Software Architecture & Design of
Large Scale Systems

By Michael Pogrebinsky

Copyright Notice

The contents of this workbook, including (but not limited to) all written material and images are
protected under international copyright and trademark laws.

Any redistribution or reproduction of part or all of the contents in any form is prohibited.

You may not, except with written permission from the author, distribute or commercially exploit
the content.

Nor may you transmit it or store it in any other website, forum or other form of electronic retrieval
system.

You may print or download to a local hard disk extracts for your personal and non-commercial
use only.

© 2022 Michael Pogrebinsky. All rights reserved.

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0

Introduction to System Requirements & Architectural Drivers
Introduction to System Design & Architectural Drivers
Feature Requirements - Step by Step Process
System Quality Attributes Requirements
System Constraints in Software Architecture

Most Important Quality Attributes in Large Scale Systems

o ©o No o~ b

Performance
Scalability 10
Availability - Introduction & Measurement 11
Fault Tolerance & High Availability 12
SLA, SLO, SLI 14
API Design 15
Introduction to API Design for Software Architects 15
RPC 16
REST API 18
Large Scale Systems Architectural Building Blocks 19
DNS, Load Balancing & GSLB 19
Message Brokers 21
API| Gateway 22
Content Delivery Network - CDN 24
Data Storage at Global Scale 25
Relational Databases & ACID Transactions 25
Non-Relational Databases 26
Techniques to Improve Performance, Availability & Scalability Of Databases 27
Brewer’s (CAP) Theorem 29
Unstructured Data Storage 30
Software Architecture Patterns 31
Multi-Tier Architecture 31
Microservices Architecture 32
Event Driven Architecture 33
Big Data Architecture Patterns 36
Big Data Processing Strategies 36
Lambda Architecture 37

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Introduction to System Requirements & Architectural
Drivers

Introduction to System Design & Architectural
Drivers

e Requirements - Formal description of what we need to build
e Types of Requirements - Architectural Drivers
o Features of the System
m Functional requirements

User Actions

\/

Syste m Result/ Outcome -

Events

o Quality Attributes
m Non-Functional requirements
e Examples:
Scalability
Availability
Reliability
o Security
o Performance
m Dictate the software architecture of our system

o

o O

User Actions

\ /

Software
eens - Architecture

Result/ Outcome

\

o System Constraints
m Limitations and boundaries

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Feature Requirements - Step by Step Process

e Methods of Gathering Requirements
o Use Cases
m Situation / Scenario in which our system is used
o User Flows
m A Step-By-Step / Graphical representation of each use case
e Requirement Gathering Steps
o Identify all the actors/users in our system
o Capture and describe all the possible use-cases/ scenarios
o User Flow - Expand each use case through flow of events.
m Each event contains
e Action
e Data
e Sequence Diagram
o Diagram that represents interactions between actors and objects.

Unified Modeling Language - Sequence Diagram

Time Action 2

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

System Quality Attributes Requirements

e System Quality Attributes
o Provide a quality measure on how well our system performs on a particular
dimension
o Have direct correlation with the architecture of our system
e Important Considerations
o Testability and Measurability
o Trade Offs
m No single software architecture can provide all the quality attributes.
m Certain quality attributes contradict one another
m Some combinations of quality attributes are very hard / impossible to
achieve
o Feasibility
m We need to make sure that the system is capable of delivering with the
client asking for

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

System Constraints in Software Architecture

Definition:
o “Asystem constraint is essentially a decision that was already either fully or
partially made for us, restricting our degrees of freedom.”
Types of Constraints:
o Technical constraints
o Business constraints
m Forces us to make sacrifices in:
e Architecture
e |mplementation
o Regulatory/legal constraints
m Global
m Specific to a region
Considerations:
We shouldn't take any given constraint lightly
Use loosely coupled architecture

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Most Important Quality Attributes in Large Scale
Systems

Performance

e Definitions

o Response Time:
Time between a client sending a request and receiving a response

|

m Response Time = Processing Time + Waiting Time

m Waiting Time - Duration of time request/response spends inactively in our
system
o\ >

Response Time

o Throughput
= Amount of work performed by our system time

e Measured in tasks/second

m Amount of data processed by our system per unit of time

e Measured in bits/second, Bytes/second, MBytes/second

e Important Considerations:
o Measuring Response Time Correctly

Response Time = Processing Time + Waiting Time

Request 2
Request 1 Response 1 Response 2

I I I

: : 10ms ! 10ms !

1 | | I
] 1
I

I
|
I I} I
1

I
]
"
: =

o Response Time Distribution

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

m Percentile: The “xth percentile” is the value below which x% of the values
can be found

Response Time Percentile Distribution

100

Tail Latency
75

50

Average (

10th 20th 30th 40th 50th 60th 70th 80th 90th 99th

Response Time [ms]

Percentile

m Tail Latency: The small percentage of response times from a system,
that take the longest in comparison to the rest of values
o Performance Degradation

Response Time P
A 5
»
-
-
-
-
- -
&) .
o
Load
Throughput
A
—~ -~ - N
~
-~
~
~
~
~
~
~
—
Load
Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Scalability

e Scalability Definition:
o “The measure of a systems ability to handle a growing amount of work, in an
easy and cost effective way, by adding resources to the system”
e Types of Scalability

Scale Up/
Vertical Scalability

 /

Team/Organization
Scalability

o Vertical Scalability
m Adding resources or upgrading the existing resources on a single
computer
o Horizontal Scalability
m Adding more resources in a form of new instances running on different
machines
o Team/Organizational Scalability
m Software Architecture impacts engineering velocity (team productivity)

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Availability - Introduction & Measurement

e Availability:
o “The fraction of time/probability that our service is operationally functional and
accessible to the user.”

Availability = Uptime / (Uptime + Downtime)

e Uptime:

o Time that our system is operationally functional and accessible to the user
e Downtime:

o Time that our system is unavailable to the user
e MTTR

o Mean Time to Recovery

Availability = MTBF / (MTBF + MTTR)

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Fault Tolerance & High Availability

e Sources of Failure:
o Human Error
o Software Errors
o Hardware Failures
e Fault Tolerance:
o “Enables our system to remain operational and available to the users despite
failures within one or multiple of its components”.
e Tactics for achieving Fault Tolerance
o Failure Prevention
m Redundancy and Replication

<> :
P = Data Replica 1
-_—

. s - :
K--» ~ : Replica 2
RS -
~ :
N Data
S ~_ :
\A - . »
~ Data : Replica3
Online Store Service
o Failure Detection and Isolation:
= Monitoring
' ' ' A Instance 1
P\ P\ S »
e . -
_— ,’ . Health-checks
' // = ~.
£ ~ : 4
Instance 2 - Monitoring
200 P |
Se— ;—‘ \) / 2 - ¢
\\ P M_
‘ Instance 3 N
‘.'.."'-lq.'.n

Online Store Service

o Recovery
m Stop sending traffic
m Restart the host
m Rollback

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

SLA, SLO, SLI

e SLA - Service Level Agreement
o Itis a legal contract that represents our quality service
e SLOs - Service Level Objectives
o Each SLO represents a target value/range that our service needs to meet
e SlLls - Service Level Indicators
o Quantitative measure of our compliance with a service-level objective
e Important Considerations:
o We shouldn't take every SLI that we can measure in our system and define an
objective associated with it
Promising fewer SLOs is better
Set realistic goals with a budget for error
Create a recovery plan for when the SLIs show that we are not meeting our SLOs

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

API Design

Introduction to API Design for Software
Architects

e An APl is a contract between:
o Engineers who implement the system
o Client applications who use the system
e Categories of API
o Public APIs
o Private/Internal APIs
o Partner APIs
e API best practices and patterns:
o Complete Encapsulation of the internal design and implementation
o Easyto Use
o Keeping the Operations Idempotent
m “An operation doesn’t have any additional effect on the result if it is
performed more than once”
API Pagination
Asynchronous Operations
Versioning our API

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

RPC

Client Application Server Application

»l
|

Remote Procedure Call

Subroutine

Response

A

e Features of RPC:

o Looks like calling a normal local method
o RPC frameworks support multiple programming languages

How RPC Works - Stubs Generation

Client
&
el

Client
Stub

QX

RPC Code
Generation Tool

e Benefits of RPC:

=y, Server
.E

Server
Stub

debitAccount(Userinfo userinto, int32 amount) -> Response

-

Userlnfo { Response {
String name, lastName; bool success;
String creditCardNumber, String errorMessage;
RPC Code

int32 securityCode; } it o e

o Convenience to the developers

o The details of communication establishment/data transfer between client to
server are abstracted

o Failures in communication with server result in an error or exception depending
on the programming language

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

e Drawbacks of RPC over local method invocation:
o Slower
o Less reliable

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

REST API

e REST - Representational State Transfer
o Set of architectural constraints and best practices for defining APIs for the web
e Important Concepts:
o HATEOAS -
m The interface is dynamic through Hypermedia as the Engine of the
Application State (HATEOAS)

O Statelessness

O Cacheability

O Named Resources - Each resource is either:
B Simple resource

m Collection resource
e Resources - Best Practices:

O Naming our resources using nouns

O Making a distinction between collection resources and simple resources
O Giving the resources clear and meaningful names
o

The resource identifiers should be unique and URL friendly
e REST API Operations Mapping to HTTP Methods

e REST operations are mapped to HTTP methods as follows:

o Create a new resource -> POST
o Update an existing resource -> PUT
o Delete an existing resource -> DELETE
o Get the state of a resource } ¢
o List the sub-resources of a collection
e |n some situations, we define additional custom methods

e REST API - Step by Step Process

Identifying Entities

Mapping Entities to URIs

Defining Resources’ Representations

Assigning HTTP Methods To Operations on Resources

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems
Large Scale Systems Architectural Building Blocks

DNS, Load Balancing & GSLB

e Role of Load Balancer:
o Balance load among a group of servers

i

—_

Server

-

N

Server

o

w

Server

e Types of load balancers
o DNS load balancing

o Hardware load balancing
m Run on dedicated devices designed and optimized specifically for load
balancing

o Software load balancing
m Programs that can run on a general-purpose computer and perform a

load balancing function
e Global Server Load Balancing

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Global Server Load Balancing - Monitoring

el .

Client in Germany 2 @@@
~ Y

US East

Client in Canada

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Message Brokers

° Definction:

o Asoftware architectural building block that uses the queue data structure to store
messages between senders and receivers

o Used inside our system and not exposed externally

Asynchronous Communication

v L

Message Broker

Sender Application Receiver Application

e Benefits:
o Services can
m Publish messages to a particular channel
m Subscribe to that channel
m Get notified when a new event is published

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

API| Gateway

e Definition:
o Follows a software architecture pattern called “APl composition”
o The client applications can call one single service

-

e Benefits
o Seamless internal modifications/Refactoring
o Consolidating all security, authorization, and authentication in a single place
Request Routing
o Static content and response caching
o Monitoring and alerting

o Protocol Translation

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

oftware Architecture & Design of Large Scale Systems

S
|@x:~ 5
S :
N M d
S . 7
S o Thrift gRPC, #
N . 4
S 3 7
A -~ “PROTO
' f_ REST APIN .° BUFFER
eV '
JSON S
% N HTTP1.0
S N REST API
7 F A
P ' . N Y
— . SOAP S
. ; XML S
—— y :

e Considerations:
o API Gateway shouldn’t contain any business logic

o API Gateway may become a Single Point of Failure
o Avoid bypassing AP| Gateway from external services
Notes:

www.topdeveloperacademy.com

© 2022 Michael Pogrebinsky. All rights reserved.

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Content Delivery Network - CDN

e Definition:

o Globally distributed network of servers located in strategic places
e Main purpose:

o Speeding up the delivery of content to end-users
e Content Publishing Strategies

o Pull Strategy

Request Return Asset :
s P i e S e e -

CDN 2 Server

o Push Strategy

Publish Asset

CDN

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Data Storage at Global Scale

Relational Databases & ACID Transactions

e Properties:

o The structure (schema) of each table is defined ahead of time
o Gives us the knowledge of each what each record must have
e Advantages:
Ability to form complex and flexible queries
Efficient storage

Natural structure of data for humans
ACID transactions

o

o

o

m Atomicity - Each set of operations that are part of one transaction either:
e Appear all at once
e Don’t appear at all

m Consistency -

e Atransaction that was already committed is seen by all future
queries/transactions

A transaction doesn't violate any constraints that we set for our
data

] Isolation

e Related to Atomicity in the context of concurrent operations
performed on our database
m Durability
e Once a transaction is complete, its final state will persist and
remain permanently inside the database

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Non-Relational Databases

e (Categories:
o Key/Value Store

Key e Value
23 -7 L RSN

057 |F° 7~ I . T

563 |7 o Tt

14 |---"" TTes

o Document Store
m We can store collections of documents, with more structure inside each
document
m Each document is an object with different attributes
o Graph Database
m Optimized for navigating and analyzing relationships between different
records

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

e Database Partitioning/Sharding

Partitioning

E Daia2
Server 1

Shard 2

N

Server

Shard 1

-~

Shard 3
Server 3

Notes:

© 2022 Michael Pogrebinsky. All rights reserved.

www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Techniques to Improve Performance, Availability &
Scalability Of Databases

e Database Indexing

Users Table
City Row Id City FirstName | LastName Age
Los Angeles 1 L A 1 Los Angeles Alexander Ivanov 35
Boston 2 e E Boston John Smith 44
Los Angeles 3 L~ A 3 Los Angeles Mary Johnson 15
New York P i B New York Michael Bird 86
Amsterdam 5 L~ A 5 Amsterdam Joseph Young 51

e Database Replication

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

e Database Partitioning/Sharding

Partitioning

E Daia2
Server 1

Shard 2

N

Server

Shard 1

-~

Shard 3
Server 3

Notes:

© 2022 Michael Pogrebinsky. All rights reserved.

www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Brewer’s (CAP) Theorem

e Definition:
o “In the presence of a Network Partition, a distributed database cannot guarantee
both Consistency and Availability and has to choose only one of them.”
e CAP
o Consistency
m “Every read request receives either the most recent write or an error”

Service A

Key/Value Store

o Availability
m “Every request receives a non-error response, without the guarantee that
it contains the most recent write”

Service A Service B

Key/Value Store

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Unstructured Data Storage

e Definitions:
o Unstructured Data: “Data that doesn’t follow a particular structure, schema, or
model”
o Blob: Binary Large Object
e Solutions:
o DFS - Distributed File System
o Object Store
m Object fields:
e Unique name / Identifier
e Value - Content
e Metadata
e ACL - Access Control List
m Objects are stored in Containers/Buckets
m Cloud Solutions are broken into tiers/storage classes:

High

Availability/ Amazon S3 GCP Storage Azure Blob Alibaba 0SS
Perf ;
eriormance S3 Standard Standard Hot tier Standard Expensive
Standard - Nearline IA
Infrequent Access
Glacier Instant Coldline Cool tier Archive
Retrieval
Glacier Deep Archive Archive Tier Cold Archive
Limited Access/ Archive Cheap
Low
Performance
Notes:

© 2022 Michael Pogrebinsky. All rights reserved.

www.topdeveloperacademy.com

http://www.topdeveloperacademy.com/
https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Software Architecture Patterns

Multi-Tier Architecture

! 1
! |
! |
| 1
! I
Webpage : :
! I Files
! |
! |
! |
! |
Mobile App 1 |
! I
! |
! |
! |
I Logic Tier I Database
o [I
Desktop Application I Business Tier :
! |
Presentation Tier I Application Tier I Data Tier
1 1

e Advantages:
o Fits a large variety of use cases
o Easy to scale horizontally
e Drawbacks:
o Monolithic structure of our logic tier

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Microservices Architecture

e Definition:
o “Microservices Architecture organizes our business logic as a collection of
loosely coupled and independently deployed services”
e Best Practices:
o Single Responsibility Principle
o Separate Database Per Service

Image Service
M)
: User Profile
' Service V\
- -~ T -»| Gateway [~ - _ - W
- H = = - -~ ,
; Service | Matching Service
L - 2
Billing Service
Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Event Driven Architecture

e Definition:
o An eventis an immutable statement of a fact or a change

Event Log

Event 1 - Deposit $1000

Event 2 - Withdraw $100

Event 3 - Transfer $10 to Account 3476
Replay Event 4 - Deposit $520

Event 1004 - Transfer $520 to Account 12357
Event 1005 - Withdraw $250

\/

Current Account Balance: $530

Event 2 Event 1

[Microservice A] -0~~~ 0 [Microservice B]

Message Broker

DeMende

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

e Event Sourcing Pattern

‘Q‘ .
: | ?
e CQRS
o C=Command
o Q=Query
o R =Responsibility
o S =Segregation

O
-

- S

Update Operation _ . = i =~ ~ o Read Operation
- ~

- ~

Write Optimized DB Read Optimized DB

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

O

"N

Request Joined Data

oo [> o~

g read-only
Yo

Materialized View Database2

(((
(((

Databasel

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems
Big Data Architecture Patterns

Big Data Processing Strategies

e Batch Processing

MEMECEESEEE c00 3
1 1

Batch 1 Batch 2 Batch N

e Real Time Processing

"

O,

Stream Processing Query
Job Database

Message Broker

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Lambda Architecture

e Layers:
o Batch Layer
o Speed Layer
o Serving Layer

/7
\

Real Time

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com

https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37

	Text Box 1:
	Text Box 2:
	Text Box 3:
	Text Box 4:
	Text Box 5:
	Text Box 6:
	Text Box 7:
	Text Box 8:
	Text Box 9:
	Text Box 10:
	Text Box 11:
	Text Box 12:
	Text Box 13:
	Text Box 1_2:
	Text Box 15:
	Text Box 16:
	Text Box 17:
	Text Box 18:
	Text Box 1_3:
	Text Box 19:
	Text Box 20:
	Text Box 21:
	5:

	Text Box 21_2:
	Text Box 22:
	Text Box 23:
	Text Box 24:
	Text Box 26:

