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Introduction to System Requirements & Architectural
Drivers

Introduction to System Design & Architectural
Drivers

e Requirements - Formal description of what we need to build
e Types of Requirements - Architectural Drivers
o Features of the System
m Functional requirements

User Actions

\/

Syste m Result/ Outcome -

Events

o Quality Attributes
m Non-Functional requirements
e Examples:
Scalability
Availability
Reliability
o Security
o Performance
m Dictate the software architecture of our system

o

o O

User Actions

\ /

Software
eens - Architecture

Result/ Outcome

\

o System Constraints
m Limitations and boundaries

Notes:
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Feature Requirements - Step by Step Process

e Methods of Gathering Requirements
o Use Cases
m Situation / Scenario in which our system is used
o User Flows
m A Step-By-Step / Graphical representation of each use case
e Requirement Gathering Steps
o Identify all the actors/users in our system
o Capture and describe all the possible use-cases/ scenarios
o User Flow - Expand each use case through flow of events.
m Each event contains
e Action
e Data
e Sequence Diagram
o Diagram that represents interactions between actors and objects.

Unified Modeling Language - Sequence Diagram

Time Action 2

Notes:
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System Quality Attributes Requirements

e System Quality Attributes
o Provide a quality measure on how well our system performs on a particular
dimension
o Have direct correlation with the architecture of our system
e Important Considerations
o Testability and Measurability
o Trade Offs
m No single software architecture can provide all the quality attributes.
m Certain quality attributes contradict one another
m Some combinations of quality attributes are very hard / impossible to
achieve
o Feasibility
m  We need to make sure that the system is capable of delivering with the
client asking for

Notes:
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System Constraints in Software Architecture

Definition:
o “Asystem constraint is essentially a decision that was already either fully or
partially made for us, restricting our degrees of freedom.”
Types of Constraints:
o Technical constraints
o Business constraints
m Forces us to make sacrifices in:
e Architecture
e |mplementation
o Regulatory/legal constraints
m Global
m Specific to a region
Considerations:
We shouldn't take any given constraint lightly
Use loosely coupled architecture

Notes:
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Most Important Quality Attributes in Large Scale
Systems

Performance

e Definitions

o Response Time:
Time between a client sending a request and receiving a response

|

m Response Time = Processing Time + Waiting Time

m  Waiting Time - Duration of time request/response spends inactively in our
system
o\ >

Response Time

o Throughput
= Amount of work performed by our system time

e Measured in tasks/second

m  Amount of data processed by our system per unit of time

e Measured in bits/second, Bytes/second, MBytes/second

e Important Considerations:
o Measuring Response Time Correctly

Response Time = Processing Time + Waiting Time

Request 2
Request 1 Response 1 Response 2

I I I

: : 10ms ! 10ms !

1 | | I
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I
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o Response Time Distribution
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m Percentile: The “xth percentile” is the value below which x% of the values
can be found

Response Time Percentile Distribution
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Tail Latency
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10th 20th 30th 40th 50th 60th 70th 80th 90th 99th

Response Time [ms]

Percentile

m Tail Latency: The small percentage of response times from a system,
that take the longest in comparison to the rest of values
o Performance Degradation

Response Time P
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»
-
-
-
-
- -
&) .
o
Load
Throughput
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Notes:
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Scalability

e Scalability Definition:
o “The measure of a systems ability to handle a growing amount of work, in an
easy and cost effective way, by adding resources to the system”
e Types of Scalability

Scale Up/
Vertical Scalability

 /

Team/Organization
Scalability

o Vertical Scalability
m Adding resources or upgrading the existing resources on a single
computer
o Horizontal Scalability
m Adding more resources in a form of new instances running on different
machines
o Team/Organizational Scalability
m Software Architecture impacts engineering velocity (team productivity)

Notes:
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Availability - Introduction & Measurement

e Availability:
o “The fraction of time/probability that our service is operationally functional and
accessible to the user.”

Availability = Uptime / (Uptime + Downtime)

e Uptime:

o Time that our system is operationally functional and accessible to the user
e Downtime:

o Time that our system is unavailable to the user
e MTTR

o Mean Time to Recovery

Availability = MTBF / (MTBF + MTTR)

Notes:
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Fault Tolerance & High Availability

e Sources of Failure:
o Human Error
o Software Errors
o Hardware Failures
e Fault Tolerance:
o “Enables our system to remain operational and available to the users despite
failures within one or multiple of its components”.
e Tactics for achieving Fault Tolerance
o Failure Prevention
m Redundancy and Replication

<> :
P = Data Replica 1
-_—

. s - :
K--» ~ : Replica 2
RS -
~ :
N Data
S ~_ :
\A - . »
~ Data : Replica3
Online Store Service
o Failure Detection and Isolation:
= Monitoring
' ' ' A Instance 1
P\ P\ S »
e . -
_— ,’ . Health-checks
' // = ~.
£ ~ : 4
Instance 2 - Monitoring
200 P |
Se— ;—‘ \ ) / 2 - ¢
\\ P M_
‘ Instance 3 N
‘.'.."'-lq.'.n

Online Store Service

o Recovery
m Stop sending traffic
m Restart the host
m Rollback
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Notes:
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SLA, SLO, SLI

e SLA - Service Level Agreement
o Itis a legal contract that represents our quality service
e SLOs - Service Level Objectives
o Each SLO represents a target value/range that our service needs to meet
e SlLls - Service Level Indicators
o Quantitative measure of our compliance with a service-level objective
e Important Considerations:
o We shouldn't take every SLI that we can measure in our system and define an
objective associated with it
Promising fewer SLOs is better
Set realistic goals with a budget for error
Create a recovery plan for when the SLIs show that we are not meeting our SLOs

Notes:
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API Design

Introduction to API Design for Software
Architects

e An APl is a contract between:
o Engineers who implement the system
o Client applications who use the system
e Categories of API
o Public APIs
o Private/Internal APIs
o Partner APIs
e API best practices and patterns:
o Complete Encapsulation of the internal design and implementation
o Easyto Use
o Keeping the Operations Idempotent
m  “An operation doesn’t have any additional effect on the result if it is
performed more than once”
API Pagination
Asynchronous Operations
Versioning our API

Notes:
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RPC

Client Application Server Application

»l
|

Remote Procedure Call

Subroutine

Response

A

e Features of RPC:

o Looks like calling a normal local method
o RPC frameworks support multiple programming languages

How RPC Works - Stubs Generation

Client
&
el

Client
Stub

QX

RPC Code
Generation Tool

e Benefits of RPC:

=y, Server
.E

Server
Stub

debitAccount(Userinfo userinto, int32 amount) -> Response

-

Userlnfo { Response {
String name, lastName; bool success;
String creditCardNumber, String errorMessage;
RPC Code

int32 securityCode; } it o e

o Convenience to the developers

o The details of communication establishment/data transfer between client to
server are abstracted

o Failures in communication with server result in an error or exception depending
on the programming language
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e Drawbacks of RPC over local method invocation:
o Slower
o Less reliable

Notes:
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REST API

e REST - Representational State Transfer
o Set of architectural constraints and best practices for defining APIs for the web
e Important Concepts:
o HATEOAS -
m The interface is dynamic through Hypermedia as the Engine of the
Application State (HATEOAS)

O Statelessness

O Cacheability

O Named Resources - Each resource is either:
B Simple resource

m Collection resource
e Resources - Best Practices:

O Naming our resources using nouns

O Making a distinction between collection resources and simple resources
O Giving the resources clear and meaningful names
o

The resource identifiers should be unique and URL friendly
e REST API Operations Mapping to HTTP Methods

e REST operations are mapped to HTTP methods as follows:

o Create a new resource -> POST
o Update an existing resource -> PUT
o Delete an existing resource -> DELETE
o Get the state of a resource } ¢
o List the sub-resources of a collection
e |n some situations, we define additional custom methods

e REST API - Step by Step Process

Identifying Entities

Mapping Entities to URIs

Defining Resources’ Representations

Assigning HTTP Methods To Operations on Resources

Notes:
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Large Scale Systems Architectural Building Blocks

DNS, Load Balancing & GSLB

e Role of Load Balancer:
o Balance load among a group of servers

i

—_

Server

-

N

Server

o

w

Server

e Types of load balancers
o DNS load balancing

o Hardware load balancing
m  Run on dedicated devices designed and optimized specifically for load
balancing

o Software load balancing
m Programs that can run on a general-purpose computer and perform a

load balancing function
e Global Server Load Balancing
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Global Server Load Balancing - Monitoring

el .

Client in Germany 2 @@@
~ Y

US East

Client in Canada
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Message Brokers

° Definction:

o  Asoftware architectural building block that uses the queue data structure to store
messages between senders and receivers

o  Used inside our system and not exposed externally

Asynchronous Communication

v L

Message Broker

Sender Application Receiver Application

e Benefits:
o  Services can
m  Publish messages to a particular channel
m  Subscribe to that channel
m  Get notified when a new event is published

Notes:
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API| Gateway

e  Definition:
o  Follows a software architecture pattern called “APl composition”
o  The client applications can call one single service

-

e  Benefits
o  Seamless internal modifications/Refactoring
o  Consolidating all security, authorization, and authentication in a single place
Request Routing
o  Static content and response caching
o  Monitoring and alerting

o Protocol Translation
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e Considerations:
o API Gateway shouldn’t contain any business logic

o API Gateway may become a Single Point of Failure
o Avoid bypassing AP| Gateway from external services
Notes:

www.topdeveloperacademy.com
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Content Delivery Network - CDN

e  Definition:

o  Globally distributed network of servers located in strategic places
e  Main purpose:

o  Speeding up the delivery of content to end-users
e  Content Publishing Strategies

o  Pull Strategy

Request Return Asset :
s P i e S e e -

CDN 2 Server

o  Push Strategy

Publish Asset

CDN

Notes:
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Data Storage at Global Scale

Relational Databases & ACID Transactions

e Properties:

o  The structure (schema) of each table is defined ahead of time
o  Gives us the knowledge of each what each record must have
e Advantages:
Ability to form complex and flexible queries
Efficient storage

Natural structure of data for humans
ACID transactions

o

o

o

m  Atomicity - Each set of operations that are part of one transaction either:
e  Appear all at once
e Don’t appear at all

m  Consistency -

e Atransaction that was already committed is seen by all future
queries/transactions

A transaction doesn't violate any constraints that we set for our
data

] Isolation

e Related to Atomicity in the context of concurrent operations
performed on our database
m  Durability
e  Once a transaction is complete, its final state will persist and
remain permanently inside the database

Notes:

© 2022 Michael Pogrebinsky. All rights reserved. www.topdeveloperacademy.com



https://www.udemy.com/course/software-architecture-design-of-modern-large-scale-systems/?referralCode=DE4EE6D86D9185FB85A0
http://www.topdeveloperacademy.com/
http://www.topdeveloperacademy.com/

Software Architecture & Design of Large Scale Systems

Non-Relational Databases

e (Categories:
o Key/Value Store

Key e Value
23 -7 L RSN

057 |F° 7~ I . T

563 |7 o Tt

14 |---"" TTes

o Document Store
m  We can store collections of documents, with more structure inside each
document
m Each document is an object with different attributes
o Graph Database
m Optimized for navigating and analyzing relationships between different
records

Notes:
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e Database Partitioning/Sharding

Partitioning

E Daia2
Server 1

Shard 2

N

Server

Shard 1

-~

Shard 3
Server 3

Notes:
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Techniques to Improve Performance, Availability &
Scalability Of Databases

e Database Indexing

Users Table
City Row Id City FirstName | LastName Age
Los Angeles 1 L A 1 Los Angeles Alexander Ivanov 35
Boston 2 e E Boston John Smith 44
Los Angeles 3 L~ A 3 Los Angeles Mary Johnson 15
New York P i B New York Michael Bird 86
Amsterdam 5 L~ A 5 Amsterdam Joseph Young 51

e Database Replication
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e Database Partitioning/Sharding

Partitioning

E Daia2
Server 1

Shard 2

N

Server

Shard 1

-~

Shard 3
Server 3

Notes:
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Brewer’s (CAP) Theorem

e Definition:
o “In the presence of a Network Partition, a distributed database cannot guarantee
both Consistency and Availability and has to choose only one of them.”
e CAP
o Consistency
m “Every read request receives either the most recent write or an error”

Service A

Key/Value Store

o Availability
m “Every request receives a non-error response, without the guarantee that
it contains the most recent write”

Service A Service B

Key/Value Store
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Unstructured Data Storage

e Definitions:
o Unstructured Data: “Data that doesn’t follow a particular structure, schema, or
model”
o Blob: Binary Large Object
e Solutions:
o DFS - Distributed File System
o Object Store
m Object fields:
e Unique name / Identifier
e Value - Content
e Metadata
e ACL - Access Control List
m Objects are stored in Containers/Buckets
m Cloud Solutions are broken into tiers/storage classes:

High

Availability/ Amazon S3 GCP Storage Azure Blob Alibaba 0SS
Perf ;
eriormance S3 Standard Standard Hot tier Standard Expensive
Standard - Nearline IA
Infrequent Access
Glacier Instant Coldline Cool tier Archive
Retrieval
Glacier Deep Archive Archive Tier Cold Archive
Limited Access/ Archive Cheap
Low
Performance
Notes:
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Software Architecture Patterns

Multi-Tier Architecture

! 1
! |
! |
| 1
! I
Webpage : :
! I Files
! |
! |
! |
! |
Mobile App 1 |
! I
! |
! |
! |
I Logic Tier I Database
o [ I
Desktop Application I Business Tier :
! |
Presentation Tier I Application Tier I Data Tier
1 1

e Advantages:
o Fits a large variety of use cases
o Easy to scale horizontally
e Drawbacks:
o Monolithic structure of our logic tier

Notes:
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Microservices Architecture

e Definition:
o “Microservices Architecture organizes our business logic as a collection of
loosely coupled and independently deployed services”
e Best Practices:
o Single Responsibility Principle
o Separate Database Per Service

Image Service
M)
: User Profile
' Service V\
- -~ T -»| Gateway [~ - _ - W
- H = = - -~ ,
; Service | Matching Service
L - 2
Billing Service
Notes:
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Event Driven Architecture

e Definition:
o An eventis an immutable statement of a fact or a change

Event Log

Event 1 - Deposit $1000

Event 2 - Withdraw $100

Event 3 - Transfer $10 to Account 3476
Replay Event 4 - Deposit $520

Event 1004 - Transfer $520 to Account 12357
Event 1005 - Withdraw $250

\/

Current Account Balance: $530

Event 2 Event 1

[ Microservice A ] -0~~~ 0 [ Microservice B ]

Message Broker

DeMende
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e  Event Sourcing Pattern

‘Q‘ .
: | ?
e CQRS
o C=Command
o Q=Query
o R =Responsibility
o S =Segregation

O
-

- S

Update Operation _ . = i =~ ~ o Read Operation
- ~

- ~

Write Optimized DB Read Optimized DB
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O

"N

Request Joined Data

oo [ > o~

g read-only
Yo

Materialized View Database2

(((
(((

Databasel

Notes:
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Big Data Architecture Patterns

Big Data Processing Strategies

e Batch Processing

MEMECEESEEE c00 3
1 1

Batch 1 Batch 2 Batch N

e Real Time Processing

"

O,

Stream Processing Query
Job Database

Message Broker

Notes:
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Lambda Architecture

e Layers:
o Batch Layer
o Speed Layer
o Serving Layer

/7
\

Real Time

Notes:
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