Security Vulnerabilities in C/C++ Programming

Lesson 7.5: Environmental Condition

SECURITY VULNERABILITIES

IN C/C++ PROGRAMMING

Environmental Condition

Matt Bishop, Ph.D.
Professor of Computer Science, UCDAVIS

UC Davis Continuing and Professional Education

Copyright ©The Regents of the University of California Page 1 of 7



Security Vulnerabilities in C/C++ Programming

Slide 1: Defenses

Defenses
If the file system is trustworthy (as defined above), okay

Otherwise must ensure atomicity of “check” and “use” condition

— Be careful here! Systems implement functions in unexpected ways

Usual approach is “locking” a file

Copyright ©The Regents of the University of California Page 2 of 7



Security Vulnerabilities in C/C++ Programming

Slide 2: Linux Locks

Linux Locks

Advisory locking Mandatory locking
— Useful between co-operating — Enforced for all processes
processes — Process A locks file; process B
— Process A locks file for shared forced to honor lock

(read) or exclusive (write) access;
process B checks for lock before
access

Copyright ©The Regents of the University of California Page 3 of 7



Slide 3: How to Do it

How to Do It

Advisory locks
— flock(2) system call

— fentl(3) library call

Security Vulnerabilities in C/C++ Programming

Mandatory locks

Requires file system be mounted
with option mand

Then relevant files have sgid bit
set, group execute bit off
(-0

Use fcntl to lock, unlock

Warning: applies to root, too!

Copyright ©The Regents of the University of California Page 4 of 7



Security Vulnerabilities in C/C++ Programming

Slide 4: Now...Don’t Use Mandatory Locks

Now...Don’t Use Mandatory Locks

Mandatory locks have problems

Process 1 reads file; process 2 issues a mandatory lock for that file, alters it
and unlocks it; then process 1 writes what it originally read

root cannot override the lock; it must Kill the process

If write(2) overlaps with the lock, data may be modified after another process
acquires the lock

If read(2) overlaps with a write lock, it may read changes made after another
process acquires the lock

Copyright ©The Regents of the University of California

Page 5 of 7



Security Vulnerabilities in C/C++ Programming

Slide 5: Now... Don’t Use Mandatory Locks

Now...Don’t Use Mandatory Locks

Also, locking a file does not prevent the race condition

— You need to lock the directory

Copyright ©The Regents of the University of California Page 6 of 7



Security Vulnerabilities in C/C++ Programming

Slide 6: FreeBSD system calls

FreeBSD system calls
Openat(2) and friends
1Nt openat(int Td. chap *bath, int flags)

|ldea is that the directory is open, so inode information associated
with next path element is obtained from open directory, so can’t
be switched

Note: be sure the directory you open is the rightmost one in the
path that is untrusted

Copyright ©The Regents of the University of California Page 7 of 7





