Security Vulnerabilities in C/C++ Programming

Lesson 6.3: Subprocess Environment

SECURITY VULNERABILITIES

IN C/C++ PROGRAMMING

Subprocess Environment

Matt Bishop, Ph.D.
Professor of Computer Science, UCDAVIS

UC Davis Continuing and Professional Education

Copyright ©The Regents of the University of California Page 1 of 7

Security Vulnerabilities in C/C++ Programming

Slide 1: File Descriptors

File Descriptors
Not closed across fork or execve

Threat
— Privileged parent opens sensitive file

— Privileged parent spawns a program

* Assume it drops privileges, etc., as discussed earlier

User can get subprocess to read from file’s descriptor

— Bourne shell

— Run your own program

Copyright ©The Regents of the University of California Page 2 of 7

Security Vulnerabilities in C/C++ Programming

Slide 2: Example Program

Example Program

Run this program:

int main(int argc, char *argv[])
{
ik L(fd - apenipriv file O ROONlY)) < @)
handle _open_error(priv_file);
if {dup(fd, 8) 1= 9) handle dup errorf);
if i fry - system(= /bin/sh®)) |- 127 &% pu 1= 1)
handle system_error("/bin/sh");

Type this to the Bourne shell, you get: $ cat <ag

And you will see the contents of priv_file

Copyright ©The Regents of the University of California

Page 3 of 7

Slide 3: Practice: Closing Across execve

Security Vulnerabilities in C/C++ Programming

Practice: Closing Across execve

Close sensitive files across execve:

fcntl(9, F_SETFD, FD_CLOEXEC)

on FreeBSD, Linux
Third argument to O to clear it

ioetl (9, FIOCLEX, NULL)

on FreeBSD
Second argument is FIONCLEX
to clear it

open(filename,
O _RDONLY |0 _CLOEXEC)

on FreeBSD
O_CLOEXEC sets flag to close

upon exec

Copyright ©The Regents of the University of California

Page 4 of 7

Security Vulnerabilities in C/C++ Programming

Slide 4: Design: Open Files

Design: Open Files

Access privileges checked on open only

— Not checked on read, write, etc.

Useful for pipes, log files
— Open protected log file (pipe) as root
— Drop privileges to user

— Can still log data in protected file or read/write pipe

Copyright ©The Regents of the University of California

Page 5 of 7

Security Vulnerabilities in C/C++ Programming

Slide 5: Umask is Inherited

Umask is Inherited

Set to prevent reading or writing for world
— If not, could create world-readable/writable core files

— If not, could create world-writable root-owned files and/or directories.

May enable attacks

— See the at(1) compromise that follows

May reveal confidential information

— Passwords, etc., in core dumps

Copyright ©The Regents of the University of California Page 6 of 7

Security Vulnerabilities in C/C++ Programming

Slide 6: A General Observation

[]
A General Observation
There is more to an environment than environment variables

UID Current directory of process
GIDs Paths of referenced files
Umask Network information
Open file descriptors Process name
Root directory of process Control terminal

Signal masks Interval timers, resource limits

Essentially, environment is:
— The protection state of the system

— Anything that affects that state

Copyright ©The Regents of the University of California Page 7 of 7

