Security Vulnerabilities in C/C++ Programming

Lesson 1.3: Spawning Subprocesses

SECURITY VULNERABILITIES

IN C/C++ PROGRAMMING

Spawning Subprocesses

Matt Bishop, Ph.D.
Professor of Computer Science, UCDAVIS

UC Davis Continuing and Professional Education

Copyright ©The Regents of the University of California Page 1 of 8



Security Vulnerabilities in C/C++ Programming

Slide 1: Spawning Subprocesses

Spawning Subprocesses

Games were very popular, owned as root

— Needed to update high score files

Graduate students discovered that effective UID was not reset
when a subshell spawned

— So they could start a game which kept a high score file, and run a subshell —
as root!

Copyright ©The Regents of the University of California Page 2 of 8



Security Vulnerabilities in C/C++ Programming

Slide 2: More Subprocesses

More Subprocesses
On one system, crash program used to analyze kernel dumps
crash setgid to kmem, group of memory device files

Effective GID of subshell is not reset

Copyright ©The Regents of the University of California Page 3 of 8



Security Vulnerabilities in C/C++ Programming

Slide 3: More Subprocesses

More Subprocesses

“!”

Run crash, type “!” to get subshell

— Now you can read, probably write /dev/kmem

* Depends on setting of file permissions

— If read: look in terminal buffers, memory for sensitive information

* like passwords or crypto keys

— If write: alter important data, like your shell’s EUID

Copyright ©The Regents of the University of California

Page 4 of 8



Security Vulnerabilities in C/C++ Programming

Slide 4: Practice

Practice

UID and GID are preserved across execs
— Setuid changes EUID and saved UID
— Setgid changes EGID and saved GID

* These stay with process when interpreter overlaid

UID, GID preserved across fork
— All are unchanged

— New process has those of the old parent process

Copyright ©The Regents of the University of California

Page 5 of 8



Security Vulnerabilities in C/C++ Programming

Slide 5: Practice: Changing UIDs

Practice: Changing UIDs
Drop to the lowest level of privilege as quickly as possible

Use saved UID to allow reclaiming privileges

— If no need, change to one user, then to a second, where the first has minimal
privileges (nobody)

Do not allow users to run arbitrary programs from within
privileged programs

— If necessary, clobber saved UID as described above

Copyright ©The Regents of the University of California Page 6 of 8



Security Vulnerabilities in C/C++ Programming

Slide 6: Practice: Spawning Process

Practice: Spawning Process

Reset effective UID, GID after fork to the real UID, GID

— Unless you can demonstrate that this will cause the program to fail to perform
its function

Warning: library functions like popen(3) and system(3) may
spawn subprocesses automatically — do not do this

Copyright ©The Regents of the University of California Page 7 of 8



Security Vulnerabilities in C/C++ Programming

Slide 7: Practice: Identifying Users

Practice: Identifying Users

Whose process is it?
— Who is running: getuid(2)
— Whose privileges is it running with: geteuid(2)
— Who is this user logged in as: getlogin(2)

Whose terminal corresponds to standard input, output, or error?
— getlogin(3) or cuserid(3)

Copyright ©The Regents of the University of California Page 8 of 8





