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Slide 1: Spawning Subprocesses

Spawning Subprocesses

Games were very popular, owned as root

— Needed to update high score files

Graduate students discovered that effective UID was not reset
when a subshell spawned

— So they could start a game which kept a high score file, and run a subshell —
as root!
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Slide 2: More Subprocesses

More Subprocesses
On one system, crash program used to analyze kernel dumps
crash setgid to kmem, group of memory device files

Effective GID of subshell is not reset
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Slide 3: More Subprocesses

More Subprocesses

“!”

Run crash, type “!” to get subshell

— Now you can read, probably write /dev/kmem

* Depends on setting of file permissions

— If read: look in terminal buffers, memory for sensitive information

* like passwords or crypto keys

— If write: alter important data, like your shell’s EUID
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Slide 4: Practice

Practice

UID and GID are preserved across execs
— Setuid changes EUID and saved UID
— Setgid changes EGID and saved GID

* These stay with process when interpreter overlaid

UID, GID preserved across fork
— All are unchanged

— New process has those of the old parent process
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Slide 5: Practice: Changing UIDs

Practice: Changing UIDs
Drop to the lowest level of privilege as quickly as possible

Use saved UID to allow reclaiming privileges

— If no need, change to one user, then to a second, where the first has minimal
privileges (nobody)

Do not allow users to run arbitrary programs from within
privileged programs

— If necessary, clobber saved UID as described above
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Slide 6: Practice: Spawning Process

Practice: Spawning Process

Reset effective UID, GID after fork to the real UID, GID

— Unless you can demonstrate that this will cause the program to fail to perform
its function

Warning: library functions like popen(3) and system(3) may
spawn subprocesses automatically — do not do this
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Slide 7: Practice: Identifying Users

Practice: Identifying Users

Whose process is it?
— Who is running: getuid(2)
— Whose privileges is it running with: geteuid(2)
— Who is this user logged in as: getlogin(2)

Whose terminal corresponds to standard input, output, or error?
— getlogin(3) or cuserid(3)
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