Protocol Deep Dive: OSPF

COVERING OSPF BASICS

Sean Wilkins

NETWORK ENGINEER AND AUTHOR

@Sean_R_Wilkins www.infodispersion.com

Covering OSPF Basics

Covering OSPF Basics

Forming Basic OSPF Relationships

Covering OSPF Basics

Forming Basic OSPF Relationships

Discussing Simple OSPF Communication Blocks

Covering OSPF Basics

Forming Basic OSPF Relationships

Discussing Simple OSPF Communication Blocks

Introducing Multi-area OSPF

Covering OSPF Basics

Forming Basic OSPF Relationships

Discussing Simple OSPF Communication Blocks

Introducing Multi-area OSPF

Troubleshooting Common OSPF Issues

OSPF vs. Other Routing Protocols

OSPF vs. Other Routing Protocols

Reviewing the OSPF Metric

OSPF vs. Other Routing Protocols

Reviewing the OSPF Metric

Selecting the Best Route Entry

Let's review the basics

Interior gateway protocol (IGP)

Controls traffic inside a single organization

Other IGP's Include:

EIGRP

Other IGP's Include:

IS-IS

Alternative of IGPs

Alternative of IGPs

Control traffic between organizations

Alternative of IGPs

Control traffic between organizations

BGP the only current option

Two types including:

Two types including:

- Distance vector

Two types including:

- Distance vector
- Link state

Two types including:

- Distance vector
- Link state

Distance vector:

Exchange distance (metric) and vector (direction)

Two types including:

- Distance vector
- Link state

Distance vector:

Exchange distance (metric) and vector (direction)

Devices route based on this information

Two types including:

- Distance vector
- Link state

Distance vector:

Exchange distance (metric) and vector (direction)

Devices route based on this information

Based on currently reachable destinations from neighbors

Two types including:

- Distance vector
- Link state

Distance vector:

Exchange distance (metric) and vector (direction)

Devices route based on this information

Based on currently reachable destinations from neighbors

Devices have limited view

Link State Protocols

Link State Protocols

Exchange state of all network links

Link State Protocols

Exchange state of all network links

Each device includes complete copy of link states

Updates are appended to link state database (LSDB)

Each device will have same LSDB

Have better view of network

More complex than distance vector

OSPF is an example

OSPF

Uses link state advertisements (LSA)

OSPF

Used with SPF to determine routes used

Simple metric

Simple metric

Based on configured bandwidth

Simple metric

Based on configured bandwidth

Reference bandwidth Configured bandwidth

Simple metric

Based on configured bandwidth

Reference bandwidth Configured bandwidth

Cost associated with outbound link

Default reference bandwidth is 100 Mbps

Default reference bandwidth is 100 Mbps

$$\frac{100 \, Mbps}{10 \, Mbps} = 10$$

Most interfaces are > 100 Mbps

100 Mbps interface = Cost of 1

1 Gbps interface = Cost of 1

OSPF Reference Bandwidth

Faster interfaces have the same cost

OSPF Reference Bandwidth

Faster interfaces have the same cost

Often results in higher reference bandwidth

Rounding up is limited to between 0 and 1

Rounding up is limited to between 0 and 1

OSPF normally rounds down to the whole number

Routes taken from other sources

Routes taken from other sources

Referred to as redistribution

Two types:

Two types:

Type 1

Type 2 (Default)

Type 2:

Metric given initially then locked

OSPF Type 1 External Routes

Initial metric is given

OSPF Type 1 External Routes

Initial metric is given

Used as base value

OSPF Type 1 External Routes

Initial metric is given

Used as base value

Incremented like normal OSPF costs

Route Selection!

Many vendors use administrative distance

Many vendors use administrative distance
Used to determine source preference

Source	Administrative Distance
Connected	0
Static	1
eBGP	20
EIGRP (internal)	90
OSPF	110
IS-IS	115
RIP	120
EIGRP (external)	170
iBGP	200

OSPF has its own route selection process

OSPF has its own route selection process

Some context must be given first

OSPF Hierarchy

Uses areas

OSPF Hierarchy

Uses areas

Used to limit size of LSDB

OSPF Hierarchy

Used to limit size of LSDB

Several types exist

OSPF Areas

Several differences exist

OSPF Areas

Specifics will be covered in later module

Intra-Area Entries

Intra-Area Entries

Routes sourced inside same area

Intra-Area Entries

Routes sourced inside same area
Preferred over all other OSPF sources

Inter-Area Entries

Inter-Area Entries

Sourced from other OSPF area

Inter-Area Entries

Sourced from other OSPF area
Preferred after intra-area entries

External entries only considered if internal entries don't exist

OSPF External Entries

Type 1/Type 2

OSPF External Entries

Type 1 entries preferred over type 2 entries

NSSA External Entries

Type 1 and Type 2

NSSA External Entries

Type 1 and Type 2

NSSA type 1 preferred over NSSA type 2

OSPF Route Selection

Intra-Area (O)

Inter-Area (O IA)

External Type 1 (E1)

External Type 2 (E2)

NSSA Type 1 (N1)

NSSA Type 2 (N2)

OSPF vs. Other Routing Protocols

OSPF vs. Other Routing Protocols
Reviewing the OSPF Metric

OSPF vs. Other Routing Protocols
Reviewing the OSPF Metric
Selecting the Best Route Entry

