Protocol Deep Dive: EIGRP

COVERING EIGRP ESSENTIALS

Sean Wilkins

NETWORK ENGINEER AND AUTHOR

@Sean_R_Wilkins www.infodispersion.com

Covering EIGRP Essentials

Covering EIGRP Essentials

Digging into EIGRP relationships

Covering EIGRP Essentials

Digging into EIGRP relationships

Determining How Information is Exchanged with EIGRP

Covering EIGRP Essentials

Digging into EIGRP relationships

Determining How Information is Exchanged with EIGRP

Covering EIGRP Advanced Topics

Covering EIGRP Essentials

Digging into EIGRP relationships

Determining How Information is Exchanged with EIGRP

Covering EIGRP Advanced Topics

Reviewing EIGRP Summary Routing and Load-Balancing

Covering EIGRP Essentials

Digging into EIGRP relationships

Determining How Information is Exchanged with EIGRP

Covering EIGRP Advanced Topics

Reviewing EIGRP Summary Routing and Load-Balancing

Troubleshooting Common EIGRP Issues

Module Overview

Module Overview

EIGRP vs Other Routing Protocols

Module Overview

EIGRP vs Other Routing Protocols

EIGRP Routing Concepts

Let's review the basics

Interior gateway protocol (IGP)

Controls traffic inside a single organization

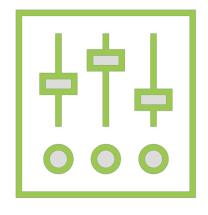
Other IGP's Include:

OSPF

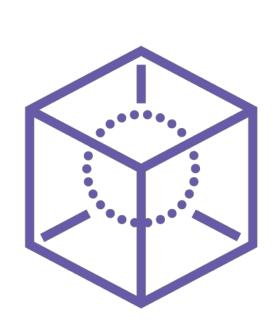
Other IGP's Include:

IS-IS

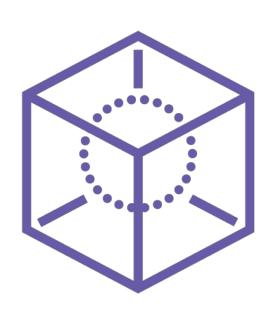
Alternative of IGPs


Alternative of IGPs

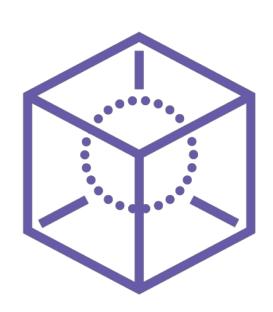
Control traffic between organizations



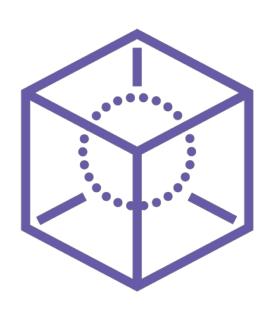
Alternative of IGPs


Control traffic between organizations

BGP the only current option

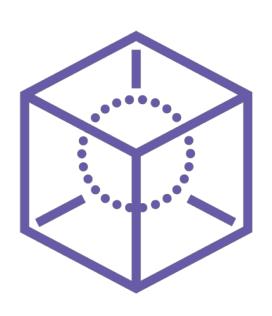


Two types including:



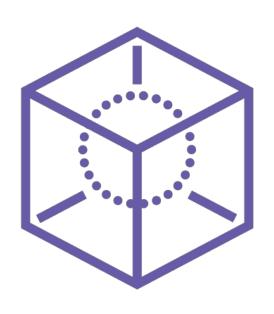
Two types including:

- Distance vector



Two types including:

- Distance vector
- Link state

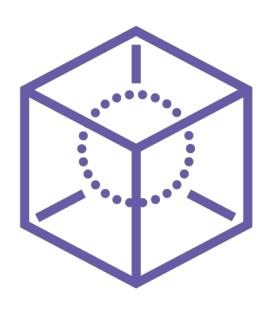

Two types including:

- Distance vector
- Link state

Distance vector:

Exchange distance (metric) and vector (direction)

Two types including:


- Distance vector
- Link state

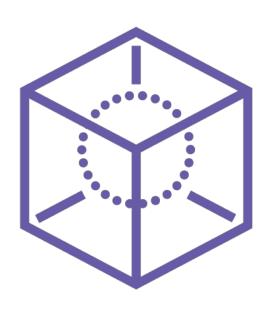
Distance vector:

Exchange distance (metric) and vector (direction)

Devices route based on this information

Two types including:

- Distance vector
- Link state


Distance vector:

Exchange distance (metric) and vector (direction)

Devices route based on this information

Based on currently reachable destinations from neighbors

Two types including:

- Distance vector
- Link state

Distance vector:

Exchange distance (metric) and vector (direction)

Devices route based on this information

Based on currently reachable destinations from neighbors

Devices have limited view

Exchange state of all network links

Exchange state of all network links

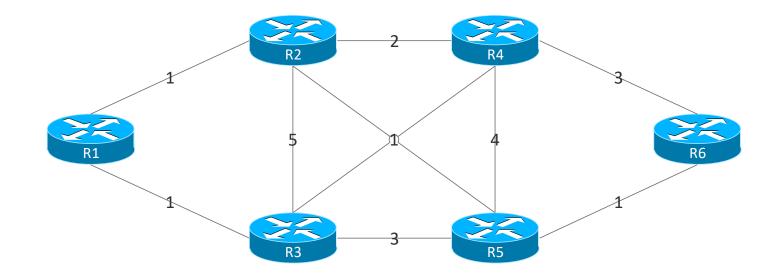
Each device includes complete copy of link states

Exchange state of all network links

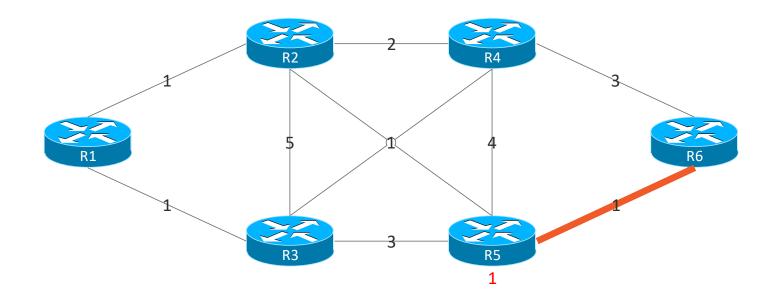
Each device includes complete copy of link states

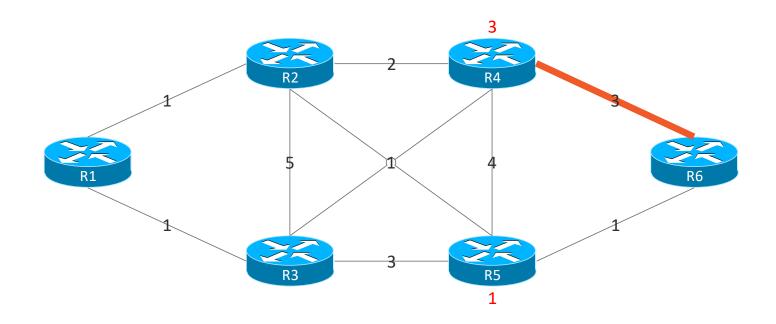
Have a better view of the network

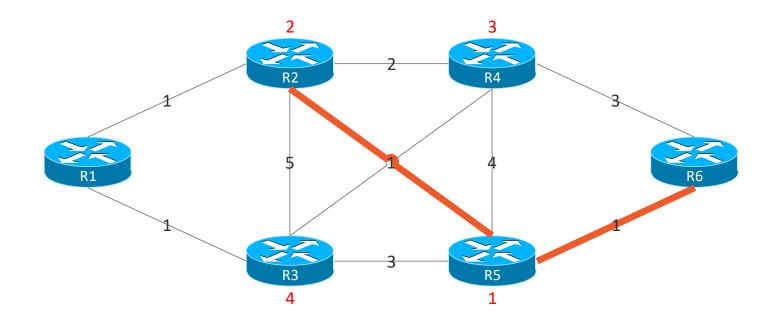
Exchange state of all network links

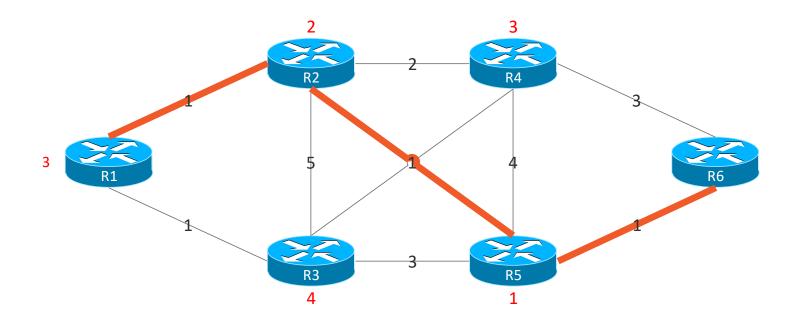

Each device includes complete copy of link states

Have a better view of the network


More complex







Course Topology - Simple Metrics

Course Topology - Simple Metrics

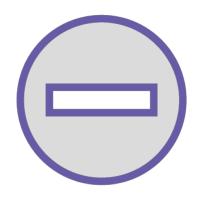
Traditional vs EIGRP DV

Common problems include speed and reliability issues

Traditional vs EIGRP DV

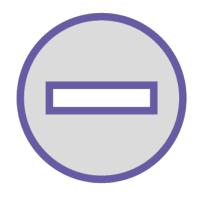
EIGRP uses common link state mechanisms to remedy

EIGRP's Differences



Utilizes neighborships

EIGRP's Differences


Utilizes neighborships

Doesn't send periodic updates

EIGRP's Differences

Utilizes neighborships

Doesn't send periodic updates

Complex metric

Let's move on to EIGRP concepts

Full EIGRP Metric

$$K_1 = 1$$
, $K_2 = 0$, $K_3 = 1$, $K_4 = 0$, $K_5 = 0$

$$256 \times \left[\left(K_1 \times Bandwidth + \frac{K_2 \times Bandwidth}{256 - Load} + K_3 \times Delay \right) \times \frac{K_5}{Reliability + K_4} \right]$$

Default EIGRP Metric

$$256 \times \frac{Bandwidth}{Delay}$$
Bandwidth =
$$\frac{10,000,000}{MinimumPathBandwidth (Kbps)}$$

$$Delay = \frac{Sum of Path Delay (10's of microseconds)}{}$$

What is Feasible?

Feasibility Condition

Not feasible if:

- The advertised distance is equal or more than the best feasible distance

Source

Administrative Distance

Connected	0
Static	1
eBGP	20
EIGRP (internal)	90
OSPF	110
IS-IS	115
RIP	120
EIGRP (external)	170
iBGP	200

Summary

Summary

EIGRP vs Other Routing Protocols

Summary

EIGRP vs Other Routing Protocols

EIGRP Routing Concepts

