Win32 API

Win32 DLLs

DLLs provided by Windows
Found in C:\Windows\System32
Eg. kernel32.dll

Try open in CFF Explorer

vV v v Vv

Other DLLs provided by Windows

Ntdll.dll
Kernel32.dll
Kernelbase.dll
Gdi32.dll
User32.dll
Comctl32.dll
Advapi32.dll
Ws32_32.dll

vV v v v vV v Vv Y

DLLs provided by Visual Studio SDK
runtime

Msvcrt.dll
Msvbvm60.dll
Vcruntimexx.dll (xx refers to version of the sdk)

.Net Frameworks (C# and VB.net)

vV v v Vv

Studying win32 API from
MSDN docs

Searching for win32 API| docs

Google for APl and MSDN
Try googling CreateFile MSDN
Not just for creating files

Can also read files

vV v v v Vv

Depends on the Parameters passed to the function

APl Parameters govern functionality

» CreateFileA() accepts 7 parameters

HANDLE CreateFileA(

LPCSTR lpFileMame,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile

)3

The dwCreationDisposition parameter decides if it is for creating file or,

for reading a file

ASCIlI and Unicode Versions of API

» CreateFileA accepts ASCII version of the string
» CreateFileW accepts Unicode
» Many other APIs also come in two versions just like this
ANDLE CreateFileA(TR T aeETL e
LPCSTR IpFileName, Tea eFilen(1bFileN
DWORD dwDesiredAccess, DWORD dle ? agi’
DWORD dwShareMode, DWORD dw5551rﬁ dccess,
LPSECURITY ATTRIBUTES lpSecurityAttributes, wohareflode,
) . - LPSECURITY ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition, T duCreationDs 1
DWORD dwFlagsaAndAttributes, DLORD dszea iﬂzniip?zltlnnj
HANDLE hTemplateFile WrF2agsAndALLribULEs,
); HANDLE hTemplateFile

s

Native (NT) Version of the APIs

CreateFileA and CreateFileW are provided by kernel32.dll
Another version is NTCreateFile which is provided by ntdll.dll
It is much low-level because it is closer to the kernel

Both CreateFileA and CreateFileB calls NTCreateFile internally
Ntdll.dll then uses system calls (SYSCALLS) to execute the task
SYSCALLS are kernel level functions

Kernel Level functions is the heart of the Operating System

vV v v v vV v Vv Y

User Level functions (APIs) make use of Kernel Level functions

Extended Version of an API

Some APIs has an extended version

Eg, VirtualAllocEx is the extended version of VirtualAlloc

They are used to allocate virtual memory

VirtualAlloc allocates virtual memory for the current running process

But VirtualAllocEx allocates virtual memory for other running processes

vV v v v v Vv

Malware frequently makes use of them

The Undocumented APIs

» NT APIs in ntdll.dll are not officially documented by Microsoft
» But hackers have reversed engineered it and put up unofficial docs
» Check out:

http://undocumented.ntinternals.net/

NtCreateSection is an undocumented APl commonly used by malware for a

technique called Process Hollowing

http://undocumented.ntinternals.net/

APls that perform file operations

CreateFile
WriteFile
ReadFile
SetFilePointer
DeleteFile

vV v v v v Vv

CloseFile

APls that perform Registry operations

» RegCreateKey
» RegDeleteKey
» RegSetValue

APls for virtual memory

VirtualAlloc
VirtualProtect
NtCreateSection
WriteProcessMemory
NtMapViewOfSection

vV v v v Vv

APIs on Processes and Threads

CreateProcess
ExitProcess
CreateRemoteThread
CreateThread
GetThreadContext
SetThreadContext

TerminateProcess

vV v v v vV v Vv Y

CreateProcessinternalW

APIls on DLLs

» LoadLibrary
» GetProcAddress

APls on Windows Services

OpenSCManager
CreateService
OpenService

ChangeServiceConfig2W

vV v v v Vv

StartService

APls on Mutexes

» CreateMutex
» OpenMutex

Behaviour ldentification
with APls

Behaviour Identifcation with APls

» Usage of APIs per se is not necessarily malware
» You need to analyze:

1. Context

2. Parameters supplied to APIs

3. Sets of APIs used in sequence

Take the case of Process Hollowing...

Example 1: Process Hollowing

» It is a popular technique used by malware
» It uses CreateProcess API to create a brand-new process in suspended mode
» To do that, it sets dwCreationFlag = CREATE_SUSPENDED

» Normal programs do not do that

BOOL CreateProcessA(
LPCSTR lpApplicationName,
LPSTR IpCommandLine,
LPSECURITY ATTRIBUTES lpProcessAttributes,
LPSECURITY ATTRIBUTES lpThreadAttributes,

BOOL bInheritHandles,

DWORD dwCreatiunFlags,1;E,a’#
LPVOID lpEnvironment,

LPCSTR IpCurrentDirectory,
LPSTARTUPINFOA lpstartupiInfo,

LPPROCESS IMNFORMATION lpProcessInformation

)s

Example 2: WriteProcessMemory

It writes into the memory of another process

Debuggers use this - so by itself it is not malicious

But if a process also uses VirtualAllocEx and CreateRemoteThread
then it is malware

So, the set of APIs used in sequence make it malicious

Using Handle to Identify Sequences

Handle is a reference to files, registry, memory and processes
Processes makes use of handles to perform operations on the object it refers
These handles are parameters passed to processes

Tracking these handles help us identify sequence of APIs for any process

These sequences help us confirm if a process is malware

vV v v v v Vv

take case of CreatefFile...

Example of using handles: CreateFile

1) hFile1 = CreateFile("C:\test1.txt", GENERIC WRITE, 0, NULL,
CREATE _NEW, FILE ATTRIBUTE NORMAL, NULL);
2) hFile2 = CreateFile("C:\test2.txt", GENERIC WRITE, 0, NULL,
CREATE _NEW, FILE ATTRIBUTE NORMAL, NULL);
3) WriteFile(hFile2, DataBuffer,
dwBytesToWrite, &dwBytesWritten, NULL);
4) WriteFile(hFilea, DataBuffer,
dwBytesToWrite, &dwBytesWritten, NULL);

Can you identify the sequences? Tip: Trace the handles

Thank you

