
A Brief
Introduction
to Web3

Decentralized Web Fundamentals
for App Development
—
Shashank Mohan Jain

A Brief Introduction
to Web3

Decentralized Web
Fundamentals for App

Development

Shashank Mohan Jain

A Brief Introduction to Web3: Decentralized Web Fundamentals for App

Development

ISBN-13 (pbk): 978-1-4842-8974-7		 ISBN-13 (electronic): 978-1-4842-8975-4
https://doi.org/10.1007/978-1-4842-8975-4

Copyright © 2023 by Shashank Mohan Jain

This work is subject to copyright. All rights are reserved by the publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham
Coordinating Editor: Gryffin Winkler
Copy Editor: April Rondeau

Cover designed by eStudioCalamar

Cover image by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit http://www.apress.com/source-code.

Printed on acid-free paper

Shashank Mohan Jain
Bangalore, India

https://doi.org/10.1007/978-1-4842-8975-4

I humbly dedicate all my work to my parents, without
whom this would never, ever be possible. I also dedicate this

to my wife, Manisha, and my daughter, Isha, for allowing
me to take time out of their time to write this book.

v

Chapter 1: �Decentralization and Web3��1

1.1 ��Web 1.0�� �1

1.2 ��Web 2.0�� �1

1.3 ��Web 3.0�� �2

1.3.1 ��Introduction to Decentralization��3

1.3.2 ��Different Topologies for Networks���4

1.3.3 ��Decentralized Systems��5

1.3.4 ��Web3 Case Study���8

1.4 ��Summary���9

Chapter 2: �Blockchain���11

2.1 ��Types of Blockchains��11

2.1.1 ��Public Blockchain��12

2.1.2 ��Private Blockchain���12

2.1.3 ��Permissioned Blockchain��12

2.2 ��What Is a Blockchain?��13

2.3 ��Blockchain Building Blocks��14

2.3.1 ��Block��14

2.3.2 ��Chain���15

Table of Contents

About the Author��ix

About the Technical Reviewer��xi

Introduction��xiii

vi

2.3.3 ��Network���15

2.4 ��Where Is Blockchain Used?��16

2.5 ��Evolution��17

2.6 ��Consensus��17

2.6.1 ��Proof of Work���18

2.6.2 ��Proof of Stake��20

2.7 ��Blockchain Architecture���21

2.8 ��Cryptographic Keys��23

2.9 ��Blockchain Compared to a Singly Linked List��24

2.10 ��Ethereum��25

2.11 ��Summary���26

Chapter 3: �Solidity���27

3.1 ��What Is Solidity?��28

3.2 ��Ethereum��29

3.2.1 ��Ethereum Virtual Machine���29

3.3 ��Smart Contracts���30

3.4 ��Making Sense of Solidity Syntax��30

3.4.1 ��Pragma��30

3.4.2 ��Variables��30

3.4.3 ��Value Types��34

3.4.4 ��Address��35

3.4.5 ��Operators in Solidity��35

3.4.6 ��Loops���37

3.4.7 ��Decision Flows��39

3.4.8 ��Functions in Solidity��41

3.4.9 ��Abstract Contracts���52

3.4.10 ��Interface��53

Table of Contents

vii

3.4.11 ��Libraries��55

3.4.12 ��Events��55

3.4.13 ��Error Handling in Solidity���56

3.4.14 ��Solidity and Addresses��56

3.5 ��Summary���62

Chapter 4: �Wallets and Gateways��63

4.1 ��Types of Wallets���64

4.2 ��So, What Is a Testnet ?���66

4.3 ��MetaMask��67

4.3.1 ��Installation���68

4.4 ��Web3.js��76

4.4.1 ��web3-eth���77

4.4.2 ��web3-shh��77

4.4.3 ��web3-bzz���77

4.4.4 ��web3-net���78

4.4.5 ��web3-utils���78

4.5 ��Infura Setup���79

4.5.1 ��Interfacing with Ropsten Network via Infura Gateway��������������������������82

4.6 ��Summary���87

Chapter 5: �Introduction to Remix IDE��89

5.1 ��Remix IDE���89

5.2 ��Creating Own Token���109

5.3 ��Summary���126

Chapter 6: �Truffle���127

6.1 ��Truffle Installation��127

6.1.1 ��Installing Node���127

6.1.2 ��Install Truffle��128

Table of Contents

viii

6.2 ��Smart Contract Deployment via Truffle��129

6.2.1 ��Contract Code��130

6.2.2 ��Compile and Deploy the Contract��137

6.3 ��Summary���144

Chapter 7: �IPFS and NFTs��147

7.1 ��IPFS��147

7.1.1 ��IPFS: 30,000-Foot View���149

7.1.2 ��Installation���150

7.2 ��ERC-721��� �152

7.3 ��Creating an ERC-721 Token and Deploying It to IPFS����������������������������������153

7.4 ��Summary���165

Chapter 8: �Hardhat��167

8.1 ��Installation of Hardhat Framework��167

8.2 ��Workflow for Hardhat���167

8.3 ��Deployment of the Smart Contract���172

8.4 ��Summary���179

Index��181

Table of Contents

ix

About the Author

Shashank Mohan Jain has been working in

the IT industry for around 22 years, mainly

in the areas of cloud computing, machine

learning, and distributed systems. He has keen

interest in virtualization techniques, security,

and complex systems. Shashank has multiple

software patents to his name in the area of

cloud computing, Internet of Things, and

machine learning. He is a speaker at multiple

reputed cloud conferences. Shashank holds

Sun, Microsoft, and Linux kernel certifications.  

xi

About the Technical Reviewer

Prasanth Sahoo is a thought leader, an adjunct professor, a technical

speaker, and a full-time practitioner in blockchain, DevOps, cloud, and

Agile, all while working for PDI Software. He was awarded the Blockchain

and Cloud Expert of the Year Award 2019 from TCS Global Community

for his knowledge share within academic services to the community. He is

passionate about driving digital technology initiatives by handling various

community initiatives through coaching, mentoring, and grooming

techniques. Prasanth has a patent under his name, and to date he has

interacted with over 50,000 professionals, mostly within the technical

domain. He is a working group member in the Blockchain Council,

CryptoCurrency Certification Consortium, Scrum Alliance, Scrum

Organization, and International Institute of Business Analysis.

xiii

Introduction

We live in exciting times. We are witnessing a revolution in the space of

technology every other day. Web3 happens to be one such revolution.

With the advent of web3 and blockchain technologies, the way we write

applications is changing. The whole idea of this book is to provide the

reader with a basic introduction to web3. The book will enable the reader

to understand the nuances of web3 and to create simple applications, like

creating one’s own tokens or NFTs.

1

CHAPTER 1

Decentralization
and Web3
In this chapter, we are going to examine the evolution of Web 3.0 starting

from Web 1.0 and 2.0.

1.1 � Web 1.0
In Web 1.0, websites delivered static content (rather than dynamic

content) written in hypertext markup language (HTML). The data and

content were sent by means of a static file system as opposed to a database,

and the web pages had only a minimal amount of interactive information.

The following is a list of the principal technologies that were included

in Web 1.0:

•	 HTML (HyperText Markup Language)

•	 URL encoded in the HyperText Transfer Protocol, or

HTTP (Uniform Resource Locator)

1.2 � Web 2.0
Since in Web 1.0 most content was static, it gave rise to Web 2.0.

© Shashank Mohan Jain 2023
S. M. Jain, A Brief Introduction to Web3, https://doi.org/10.1007/978-1-4842-8975-4_1

https://doi.org/10.1007/978-1-4842-8975-4_1

2

The vast majority of us have only experienced the World Wide Web in

its most recent iteration, sometimes referred to as Web 2.0, the interactive

read–write web, and the social web. Participating in the creative process of

Web 2.0 does not require you to have any prior experience as a developer.

A great number of apps are designed in such a way that anyone can make

their own version of the program.

You are capable of coming up with ideas and communicating those

ideas to people around the globe. You are able to post a video to Web 2.0,

where it will be available for millions of users to watch, interact with, and

comment on. Web 2.0 applications consist of social media sites, such as

YouTube, Facebook, Flickr, Instagram, and Twitter, among others. Think

about how popular these sites were back when they first launched, and

then compare that to how popular they are now.

Web 2.0 allowed applications to scale, but also gave rise to centralized

platforms that took control of all user data. This gave them a chance and

opportunity to do data mining, which can be put to both positive and

negative uses.

Since users were increasingly losing control to these centralized

platforms, it led to the emergence of Web 3.0

1.3 � Web 3.0
Web 2.0 design inherently depended on centralized systems. Those systems

might have been distributed but were not decentralized. This meant that

control of those systems remained with individuals or a group of individuals.

This led to huge issues as privacy and data usage concerns started to emerge.

This led to the evolution of Web 3.0, which keeps decentralization as its

first requirement. This means applications for Web3 will be deployed in a

decentralized way and data storage for its apps will also be decentralized.

Therefore, it’s important to have an idea of what decentralization is before

understanding the Web3 landscape.

Chapter 1 Decentralization and Web3

3

1.3.1 � Introduction to Decentralization
“Unthinking respect for the authority is the greatest enemy of truth.” This

famous quote by Albert Einstein goes a long way in making us think about

whether there should be systems that are controlled by an authority,

thereby asking us to have complete faith and trust in the authority, or

there should be systems that are decentralized, with consensus as the

root of decision making. Central systems, as their name suggests, can be

controlled by the whims of a central authority, whereas a decentralized

system will favor more inclusive decision making, thereby reducing the

chance of corruption within that system.

In a decentralized setup, there is no owner or master. There are only

peers participating in the network. These nodes exchange messages

between them to form consensus as and when needed. The protocols

governing these networks make sure that the overall system of nodes is

in a consistent state. Every node in the network has an up-to-date copy of

all the data that was recorded. Decentralized networks can also distribute

data to validate particular private information without having to hand

over that information to a third party. This validation is made possible by

the fact that data does not have to be transferred. The validation of data is

accomplished by the utilization of a consensus-based technique, wherein

the nodes on the network agree to a certain state of the overall system at a

certain point in time.

Each participant node in a decentralized network functions

independently of the other nodes in the network. Decentralized nodes

interact with one another through the use of common standards, but

they keep their independence and are in charge of their own privacy

management, rather than adhering to the directives of a centralized

authority. This not only helps to maintain the network’s safety but also

ensures that it is governed in a democratic manner.

Figure 1-1 shows how nodes connect and communicate in centralized,

decentralized, and distributed networks.

Chapter 1 Decentralization and Web3

4

Figure 1-1.  Difference between centralized, decentralized, and
distributed networks

The terms “centralization” and “decentralization” both refer to levels

of control. Control is exercised by just one organization or person in a

centralized system (a person or an enterprise, for example). There is not a

single entity that controls the operation of a decentralized system. Instead,

the control is divided among a number of different autonomous entities.

Differences in location are meant to be understood as distribution.

In a system that is not distributed, also known as being co-located, all

of the components of the system are situated in the same physical location.

A distributed system is one in which different components can be found in

different physical locations.

1.3.2 � Different Topologies for Networks
Networks can be configured in different topological settings. A few of them

are explained in the following sections.

Chapter 1 Decentralization and Web3

5

1.3.2.1 � Centralized and Non-distributed

In the event that you are putting together a stand-alone application that

will run on your Windows computer, this configuration is not distributed

and also functions as a centralized system. Your application is under the

control of one party (the application vendor), and an additional party,

such as Microsoft, is in charge of your operating system (centralized).

The application and the operating system are both stored locally on your

personal computer, making them both non-distributable components.

1.3.2.2 � Centralized but Distributed

Imagine that you are working on a cloud application that is hosted on

Amazon Web Services and runs on virtual machines hosted by Amazon

Web Services. This configuration is both centralized and distributed at

the same time. Your application and operating system are both under the

control of AWS (centralized). Cloud storage serves as the host for both the

application and the operating system, which may be partitioned across

multiple locations.

1.3.3 � Decentralized Systems
By its very nature, a decentralized system will be distributed. Peer-to-peer

software can be thought of as an example of a decentralized system, which

is defined as “a system that requires multiple parties to make their own

independent decisions.”

It is impossible to have a single, centralized authority in a decentralized

system that is responsible for making decisions on behalf of all the

different parties. Instead, each party, also known as a peer, is responsible

for making locally autonomous decisions in the direction of achieving its

own individual goals, which may or may not be in conflict with the goals

pursued by other peers. Peers engage in one-on-one communication with

Chapter 1 Decentralization and Web3

6

one another, during which they may exchange information or perform a

service for other peers. When it comes to decentralized systems, an open

system is one in which the participation of peers is not restricted in any

way. At any point, a peer may join or leave the system at their discretion.

Before information is added to a blockchain (which is an example

of a decentralized system), the nodes participating in the network must

use something called a consensus mechanism to reach a decision on

whether or not it is accurate. Once the block has been updated with the

data, it is sent to all of the nodes in the network. This makes it extremely

difficult to alter information that has already been added to the ledger.

Mutation of state on a decentralized network requires a majority of nodes

to reflect the updated state, which is a very difficult thing to achieve, and

therefore the decentralized network of nodes is immutable. This is in

contrast to changing the data in a single database that is centralized. If

rule of immutability is broken, the validating nodes will disregard such

information.

The process of dispersing functions and power away from a central

location or authority is known as decentralization. It is difficult, if not

impossible, to identify a specific center in a decentralized architecture. The

World Wide Web was created as a decentralized platform. Decentralized

architectures and systems are demonstrated by blockchain technologies

such as Bitcoin and Ethereum.

As the technological landscape changes, decentralized structures

emerge. Decentralization has the power to change a lot of things, from

governance and industry to justice systems.

Now, with this basic knowledge of decentralization, we can start to

understand the Web 3.0 landscape.

Web 3.0 apps are built on blockchains, which are decentralized

networks of numerous peer-to-peer nodes. Blockchains are used to

record transactions that take place between users. In the context of the

Web 3.0 ecosystem, these applications are referred to as decentralized

apps (DApps), which is a term that is frequently used. The participants

Chapter 1 Decentralization and Web3

7

in the network, known as developers, are paid for their efforts to provide

services of the highest possible quality in order to maintain a decentralized

network that is both robust and safe.

At a high level, the Web 3.0 architecture comprises four major parts, as

follows:

	 1.	 Blockchain – A peer-to-peer network of nodes is

responsible for the maintenance of these global

state machines. Access to the state machine, as

well as writing to it, is open to anybody on the

globe. In essence, rather than being owned by a

single company, it is held collectively by all of the

participants in the network. Users are able to upload

new data to the blockchain, but they are unable to

edit the data that has already been added. There are

many types of blockchain available, like Ethereum,

Solana, Polkadot, etc.

	 2.	 Smart Contracts – The Ethereum blockchain can

host something called a smart contract, which is

a computer program that runs on the blockchain.

These are written by app developers using high-

level programming languages such as Solidity or

Vyper to specify the logic that lies beneath the state

transitions. We will discuss Solidity in Chapter 3.

	 3.	 Ethereum Virtual Machine (EVM) – It’s a virtual

machine that is tasked with putting into action

the logic that is outlined in smart contracts. It

is in charge of managing the state machine’s

transitions between states. It generally operates

on the bytecode, which is generated by taking the

Solidity source code and compiling it via the Solidity

compiler.

Chapter 1 Decentralization and Web3

8

	 4.	 Front End/UI – The user interface (UI) logic is

defined by the front end, just like it is in any other

application. However, it does communicate with

smart contracts, which are programs that describe

how an application works.

Before we can develop a simple Web3 app, we need to be conversant

with certain technologies and environments. We will start with the Remix

integrated development environment (IDE), which we will use as an

environment in this chapter for the development and deployment of our

Web3 app based on smart contracts.

1.3.4 � Web3 Case Study
Every one of us as professionals has heard about LinkedIn, which is a

social network for professionals. It is controlled by LinkedIn, and its bosses

can decide the rules of the platform. They can also choose whom to censor

if they want to. But we don’t need to worry. There is a Web3 alternative to

LinkedIn that goes by the name of Entre. It can be accessed at https://

joinentre.com/.

It’s a decentralized professional network built using Web3

technologies. It currently has around 50,000 members and is growing. It

provides posting for jobs, calendar for events, and many other features.

Since this is a decentralized platform, the rules are hard to change by a

central authority.

Apart from this, there are other Web3 platforms, like Deso as an

alternate to Twitter and Odysee as an alternate to YouTube. I can say

that we are in very exciting times as far as the shape of the technology is

concerned.

Chapter 1 Decentralization and Web3

https://joinentre.com/
https://joinentre.com/

9

1.4 � Summary
In this chapter, we briefly touched upon the notion of Web 3.0 and

decentralization and its forms. In next chapter, we will introduce the

reader to the blockchain ecosystem and its various types. We will also

study the functioning of some of the existing blockchain networks, like

Bitcoin and Ethereum.

Chapter 1 Decentralization and Web3

11

CHAPTER 2

Blockchain
Blockchain technology presents an innovative take on the traditional

distributed database. The utilization of existing technology in

unconventional settings is the source of the innovation. When we think

of a traditional database like Postgres, there is a master node that accepts

the write requests and is responsible for synchronizing the state changes

to other Postgres nodes. In a decentralized setup like blockchain, there is

no master node, but still it serves the same purpose of updating the ledger

and making sure that other nodes in the network reflect the updated state

correctly.

There are a great number of distinct varieties of blockchains and

applications for blockchain technology. The blockchain is an all-

encompassing technology that is currently being integrated across a

variety of different platforms and pieces of hardware around the world.

A blockchain is a data structure that enables the creation of a digital

ledger of data and the sharing of that data across a network of parties that

are not affiliated with one another. There are a great number of distinct

varieties of blockchains.

2.1 � Types of Blockchains
Blockchains can be classified under three broader categories.

© Shashank Mohan Jain 2023
S. M. Jain, A Brief Introduction to Web3, https://doi.org/10.1007/978-1-4842-8975-4_2

https://doi.org/10.1007/978-1-4842-8975-4_2

12

2.1.1 � Public Blockchain
Blockchains that are open to the public, like Bitcoin, are large distributed

networks that are each managed by their own native token. They have

open-source code that is maintained by their community and welcome

participation from anyone, regardless of level of involvement.

2.1.2 � Private Blockchain
Private blockchains are typically smaller than public ones, and they do

not make use of tokens. Their membership is strictly monitored and

regulated. Consortiums that comprise reliable members and engage in the

confidential exchange of information favor the use of blockchains of this

kind. An example of this would be a corporation using a blockchain in its

own data center. IBM has an implementation called Hyperledger that is

implemented by several corporations.

2.1.3 � Permissioned Blockchain
A permissioned blockchain is one in which a user needs permission to

access it. This is very different from public and private blockchains. A

corporate setup might look for a permissioned blockchain where it uses

the blockchain more like a decentralized database within the confines

of the corporate boundaries. Examples of permissioned blockchains are

Ripple and IBM Food Trust.

The reasons blockchains rose to prominence are as follows:

	 1.	 Their decentralized nature – The blockchain setup

advocates decentralization in its architecture.

This means that in a strong blockchain network

like Bitcoin or Ethereum, there are no centralized

authorities. Anyone can participate in these

Chapter 2 Blockchain

13

networks by spinning their own node and becoming

part of the blockchain network. This is really an

empowering feature.

	 2.	 Immutable data structure for storage – All data that

is stored on the blockchain is permanently recorded

across a fleet of nodes/computers across the

globe. One can think of this as a permanent ledger

of records. Removal of a record from this ledger

needs a majority of the network to agree, which is

a practical impossibility if the network is big like

Bitcoin or Ethereum.

Though the rules vary from blockchain to blockchain, generally any

mutation or state chain on the blockchain is done by one entity, which

then publishes the changes on the network for other nodes to verify. Only

when a majority agrees to that state is the transaction considered valid.

The mechanism for who gets the right to change the state can vary from

blockchain to blockchain based on the underlying algorithm of the chain.

As an example, for a Bitcoin-based blockchain there is the proof-of-work

algorithm, which lets the nodes participate in solving a mathematical

puzzle, and the node that solves it first gets the right to write on the ledger.

The writer then broadcasts the changes to the network for the validator to

validate the changes.

2.2 � What Is a Blockchain?
A blockchain is a peer-to-peer network that does not rely on a centralized

authority to manage the state of the system or ledger. The computers that

form the network can be distributed physically. “Full nodes” is another

common name for these kinds of computers.

Chapter 2 Blockchain

14

After data has been entered into a blockchain database, it is extremely

difficult, if not impossible, to delete or alter that data. This means that

once the data is recorded and replicated across tons of nodes across the

world, the consumer of the data can have a higher level of trust in the data

as compared to data recorded on a centralized ledger. This means that

records like property rights, marriage certificates, invoices, and so on can

be recorded on the chain for permanence without the worry of tampering.

Processes that rely on having a central system in business and banking,

such as fund settlements and money wires, can now be completed

without having a central authority in place. The implications of having

secure digital records are extremely significant for the economy of the

entire world.

2.3 � Blockchain Building Blocks
There are three main components of a blockchain ecosystem.

2.3.1 � Block
A block is a listing of the transactions that have been entered into a ledger

over the course of a specific time period. Each blockchain has its own

unique dimensions, time intervals, and events that cause blocks to be

created.

There are some blockchains whose primary focus is not on

maintaining and securing a record of the transactions involving their

respective cryptocurrencies. However, every blockchain will record any

transactions involving its associated cryptocurrency or token. Consider

the transaction to be nothing more than the simple recording of data. The

interpretation of what that data means is accomplished by first giving it a

value, as is done in the course of a financial transaction.

Chapter 2 Blockchain

15

2.3.2 � Chain
A chain can be thought of as a linked list of blocks. The block that comes

after the first block (also known as genesis block) will maintain a reference

to the previous block and so on and so forth. This reference is maintained

by generating a hash of the contents of the previous block. This has some

great implications for the immutability of the chain. Anyone who has to

alter a previous block will then need to modify all blocks ahead of that

particular block. Generally this is a practical impossibility as it might

require either huge computing resources in the case of algorithms like

proof of work, or a huge stake to be put in the network for proof of stake–

based algorithms like Ethereum.

2.3.3 � Network
“Full nodes” are the building blocks of the network. Imagine them as a

computer that is actively implementing an algorithm to ensure the safety

of the network. All nodes in the network have the same copy of records

(called the ledger). The ledger comprises all transactions that have ever

been recorded on the blockchain.

The network nodes are decentralized and can be run by anyone in

any part of the world. Since running these nodes will incur costs, people

need some incentive to do so. They are motivated to run a node because

they want to earn cryptocurrency, which serves as their incentive. The

underlying algorithm of the blockchain provides them with compensation

for their service. Typically, a token or cryptocurrency, such as Bitcoin or

ether, is awarded as the reward.

Chapter 2 Blockchain

16

2.4 � Where Is Blockchain Used?
Applications based on the blockchain are designed around the principle

that the network should act as the arbitrator. This kind of system creates

an unforgiving and oblivious atmosphere for its users. The computer code

effectively becomes the law, and the rules are carried out in the manner

in which they were written and are interpreted by the network. The social

behaviors and prejudices that are characteristic of humans are absent in

computers.

The network is incapable of interpreting the user’s intent (at least

not yet). As a potential use case for this concept, insurance contracts

that are arbitrated on a blockchain have received a lot of attention and

research. The ability to keep immutable records is yet another fascinating

application of blockchain technology.

You can use them to make a comprehensible timeline of who did

what and when. Countless hours are spent by numerous industries

and regulatory bodies trying to get a handle on the magnitude of this

issue. An immutable ledger will allow us to keep a consistent timeline of

transactions that have happened right from the inception of the chain.

Although people frequently use the terms “Bitcoin” and “blockchain”

interchangeably, these two concepts are not the same. A blockchain is

used by Bitcoin. The underlying protocol that allows for the safe transfer

of Bitcoin is known as the blockchain. Bitcoin is the name of the digital

currency that serves as the driving force behind the Bitcoin network.

So Bitcoin is one of the applications built on top of the blockchain

infrastructure.

Chapter 2 Blockchain

17

2.5 � Evolution
Blockchain technology was initially developed in conjunction with the

cryptocurrency Bitcoin. The whole idea of Bitcoin was to develop a system

for decentralized money and banking. The initial purpose of the Bitcoin

network’s construction was to ensure the cryptocurrency’s safety. It has

somewhere in the neighborhood of 5,000 full nodes and is spread out

across the world. Its primary purpose is to buy and sell Bitcoin and other

cryptocurrencies, but the community quickly realized that it could be

used for a great deal more than that. Because of its size and the fact that

its security has been proven over time, it is also being used to secure other

blockchains and blockchain applications that are smaller in scale.

The blockchain technology has undergone a second iteration with the

creation of the Ethereum network. It modifies the conventional structure of

a blockchain by incorporating a programming language that is embedded

within the structure itself. Similar to Bitcoin, it has more than 5,000 full

nodes and is distributed across the world. Ether trading, the development

of smart contracts, and the formation of decentralized autonomous

organizations (DAOs) are the primary uses of Ethereum. Additionally, it is

utilized in the process of securing blockchain applications as well as more

compact blockchains.

The Ethereum ecosystem is what turned the blockchain ecosystem into

a programmable blockchain.

2.6 � Consensus
Consensus is one of the most difficult problems to solve in a distributed

systems setup.

Blockchains are useful tools because they are capable of self-correcting

and do not require the intervention of a third party in order to do so.

Through the use of their consensus algorithm, they are able to successfully

enforce the rules.

Chapter 2 Blockchain

18

In the world of blockchain technology, “reaching consensus” refers

to the procedure of reaching an agreement among a group of nodes that

typically do not trust one another. These are the nodes on the network that

have full functionality. Transactions that are entered into the network in

order for them to be recorded on the ledger are being checked for validity

by the full nodes. Each blockchain has its own set of algorithms that it

uses to get its network to reach a consensus on the new entries that are

being added. Because different kinds of entries are being generated by

each blockchain, there is a diverse range of models available for achieving

consensus.

Some of the mechanisms used by different blockchains for consensus

are as follows:

•	 Proof of Work – Used by Bitcoin blockchain

•	 Proof of Stake – Used by Ethereum

•	 Proof of History – Used by Solana

2.6.1 � Proof of Work
The first decentralized cryptocurrency to use a consensus mechanism

was Bitcoin, and that mechanism was proof of work. Mining and proof

of work are concepts that are closely related to one another. The term

“proof of work” comes from the fact that the network needs an extremely

high level of processing power to function properly. Proof-of-work

blockchains are those in which virtual miners from all over the world

compete with one another to see who can solve a mathematical puzzle

first. These blockchains are then secured and verified. The victor receives a

predetermined amount of cryptocurrency from the network as well as the

opportunity to update the blockchain with the most recent transactions

that have been verified.

Chapter 2 Blockchain

19

Proof of work offers a number of significant benefits, particularly for

the case of Bitcoin, which is a relatively straightforward but extremely

valuable cryptocurrency. It is a tried-and-trusted method that can

reliably keep a decentralized blockchain in a secure state. As the price

of a cryptocurrency continues to rise, more miners will be encouraged

to participate in the network, which will result in an increase in both the

network’s power and its level of security. The Bitcoin network also in its

algorithm has a difficulty adjustment mechanism, which is like a feedback

loop to alter the difficulty of mining based on demand. If there are huge

number of miners and they are able to mine quickly because they have

good resources at hand, the algorithm increases the difficulty level of the

mining to keep the mining time of one block to 10 minutes.

The mathematical puzzle used by a proof-of-work algorithm is

not truly a puzzle in the sense of a physical puzzle. It uses the one-

way function of cryptographic hashes as the underlying mechanism.

Cryptographic hashes are designed to be deterministic one-way functions.

What this means is that any content, be it text of few lines or document

or images or videos can be reduced to a specific size. For instance, in a

SHA 256–based hash function, the size of the output is 256 bits, no matter

how big or small the input is. The other property of hash functions is that

the same content will generate the same hash no matter how many times

you run the same hash function over it. This is where the determinism

comes from.

As I said, it’s a one-way function, so going from input to output is

easy. Going back from output to input is impossible, or one could say

computationally infeasible. Bitcoin uses this property for its proof-of-work

algorithm.

So basically the Bitcoin network provides a hash value as the input and

asks the miners to generate a hash by taking the following two inputs:

•	 The block header

•	 A random number called nonce

Chapter 2 Blockchain

20

The miner needs to add these two together and generate a hash that is

less than the value provided by the Bitcoin network for a specific block. As

we discussed, since hashing is a one-way function, the miner now starts to

add different values of nonce to the header and has to effectively generate

the hashes to make it less than the target hash provided by the system.

There is no other way to do this except by crunching these hashes.

2.6.2 � Proof of Stake
Ethereum blockchain started with proof of work as the algorithm but now

is moving to a proof-of-stake algorithm. In proof of stake, to mine the ether

(that’s the currency on the Ethereum blockchain) the network participant

has to stake the currency. Say, for example, I want to be a validator on

the network. I then have to put some money at stake to validate the

transactions. This puts my skin in the game, and I am disincentivized to

cheat. So, instead of putting in energy, as in the case of Bitcoin, Ethereum

advocates putting money itself at stake for being a participant on the

network.

From the pool of stakers, the one who puts the maximum stake will be

chosen as the validator of transactions and will be rewarded for the task.

Other validators will be able to do a proof of validity of the block

of transactions once the winner has validated the most recent block of

transactions. The blockchain is updated whenever the network reaches a

certain predetermined number of confirmations or attestations.

One of the most significant distinctions between the two consensus

mechanisms is the amount of energy required. Proof-of-stake blockchains

enable networks to function with significantly lower resource consumption

than blockchains based on proof of work. The debate still rages as to which

is a better mechanism as far as representation of money is concerned.

Both of these consensus mechanisms have economic repercussions

that punish malicious actors for disrupting the network and discourage

others from doing so. The sunk cost of computing power, energy, and

Chapter 2 Blockchain

21

time is the punishment for miners who submit invalid information or

blocks in proof-of-work systems. This is the case for Bitcoin and other

cryptocurrencies.

The main idea is to create a heavy penalty for cheating the system.

In the case of proof of work, it’s the energy spent that is at stake, whereas

in proof of stake it is the money that is put at stake. If, say, a network

participant is found to have accepted a corrupt block, a portion of the

funds that they have staked will be “slashed” as a form of punishment.

The network will determine the maximum amount by which a validator’s

reward can be reduced.

2.7 � Blockchain Architecture
A client–server network is used in the conventional design of the World

Wide Web’s architecture. Due to the fact that it is a centralized database

that is controlled by a number of administrators who each have permission

to make changes, the server in this scenario stores all of the necessary

information in a single location so that it can be easily updated.

When it comes to the distributed network architecture of blockchain

technology, every participant in the network is responsible for the

maintenance, approval, and updating of new entries. Not only are there

a number of different people who have control over the system, but

everyone who is part of the blockchain network does. Every member is

responsible for ensuring that all of the records and procedures are in order,

which ultimately leads to the validity and safety of the data. Therefore, it is

possible for parties that do not necessarily trust one another to come to an

agreement with one another.

In a nutshell, the blockchain can be described as a decentralized

distributed ledger of various transactions that is organized into a P2P

network. This ledger can be made public or kept private. This network is

Chapter 2 Blockchain

22

made up of a large number of computers, but it is constructed in such a

way that the data cannot be changed unless there is agreement from all of

the computers in the network (each separate computer).

A list of blocks containing transactions arranged in a specific sequence

is what the blockchain technology uses to represent its underlying

structure. These lists may be kept in the form of a straightforward

database or as a simple text file (using the txt format). One can think of the

blockchain as a persisted linked list of transaction blocks.

We have already covered the concepts of nodes, blocks, and chains

in the context of blockchains. There is one more important entity that

needs a mention. This entity is the miner. As an example of the Bitcoin

blockchain, the miner is the entity that is responsible for mutating the

state of the blockchain. This mutation is achieved by adding a new block

to the chain. To get permission to mutate the state, the miner has to solve a

mathematical puzzle. The puzzle is trying to find the number for a system-

provided hash. So the miner has to run through all different combinations

of numbers to see if the hash for one of them matches. This computation

is run by many miners across the globe and whoever wins the race gets

the permission to write the new block. Once the miner writes the block

they publish this on the network for the verifiers to verify the block. The

verification process is simple as the miner will provide the hash as well

as the number for which this hash was generated. So verification is to just

calculate the hash for the number and compare it with the hash the system

has asked for. Once a majority of miners has verified the block, this block

gets replicated across the network and gets added to all computers on the

network gradually.

At a high level, the transaction flow in a Bitcoin blockchain works like

the one shown in Figure 2-1.

Chapter 2 Blockchain

23

Figure 2-1.  How a transaction works on Bitcoin blockchain

2.8 � Cryptographic Keys
Since public blockchain networks are permissionless and trustless, we

need a mechanism to authenticate the users in absence of a centralized

authority. This task is achieved by providing each participant on the

network with a private and public key pair. The private key remains with

Chapter 2 Blockchain

24

the user and should be kept highly protected. The private key is used to

sign the transactions of the user, whereas the public key (which is visible to

everyone) can be used to validate the signer. In this way, without a central

authority and using the private and public key infrastructure, security is

achieved on the decentralized blockchain network.

2.9 � Blockchain Compared to a Singly
Linked List

There is a certain degree of similarity between the data structure of a

blockchain and that of a singly linked list, as shown in Figure 2-2.

Figure 2-2.  Linked list–like structure depicted for the blockchain

We can see the first block is called the genesis block, and then from

there each new block created holds a reference to the previous block. As an

example, block 1 will hold a reference to block 0 and block 2 to block 1 and

so on. Apart from this pointer, the hash of the previous block is stored. This

appears like a singly linked list data structure. To add to the list we need to

use either proof of work or proof of stake, but deletion is extremely difficult

on the blockchain, unlike a linked list, where it’s easy to remove nodes.

In essence, a blockchain is immutable. No record can be deleted. If

we try to think about it, any alteration to any block means all the blocks

ahead of that block have to be updated with the hash of previous blocks.

Chapter 2 Blockchain

25

In the case of networks like Bitcoin, this would mean needing immense

computing power to use proof of work to alter the blocks. That’s one of the

reasons it’s almost impossible to attack the Bitcoin blockchain network.

Next, we are going to introduce the Ethereum blockchain, which is the

programmable blockchain we will use for all our future work in this book.

2.10 � Ethereum
Ethereum is a blockchain network that includes a Turing-complete

programming language that can be used to build a variety of decentralized

applications (also called DApps). The Ethereum network is powered by

its own cryptocurrency, ether. The Ethereum network is currently well

known for enabling the use of smart contracts. Smart contracts can be

compared to cryptographic bank lockers that contain specific values.

Certain conditions must be met before these cryptographic lockers can be

unlocked. Solidity, a programming language, is primarily used to create

smart contracts. Solidity is a relatively simple-to-learn object-oriented

programming language. We will see more of Solidity in Chapter 3.

Ethereum works on two types of accounts:

	 1.	 Externally owned accounts (EOA)

Private keys are used to control externally owned

accounts. Each EOA is protected by a public–private

key pair. Users can communicate by creating and

signing transactions.

Chapter 2 Blockchain

26

	 2.	 Contract accounts

Contract codes are used to manage contract accounts. These

codes are saved alongside the account. Each contract account

has an associated ether balance. These accounts’ contract codes

are activated whenever they receive a transaction from an EOA

or a message from another contract. When the contract code is

enabled, it is possible to read/write messages to local storage,

send messages, and create contracts.

2.11 � Summary
In this chapter, we covered the basics of blockchain architecture and the

different consensus algorithms like proof of work and proof of stake that

are commonly used in blockchain networks like Bitcoin and Ethereum.

In the next chapter, we will cover Solidity, which is the language used

on the Ethereum blockchain, and how Solidity is used for creating smart

contracts.

Chapter 2 Blockchain

27

CHAPTER 3

Solidity
Have you ever heard of or encountered a smart contract? If someone has

been living under a rock, they maybe have not heard about it. Having said

that, smart contracts define a way by which we can execute code on the

blockchain.

One of the languages used to define these smart contracts is Solidity.

Solidity allows us to program the Ethereum blockchain, thereby opening

up doors for the immense possibilities of decentralized application

development. It’s important that blockchain beginners learn Solidity. It is

essential to have a thorough understanding of how Solidity may be utilized

for the development of smart contracts, as well as to take an in-depth look

at the various components.

Learners should also reflect on examples in order to gain a better

understanding of the components that make up the architecture and

operation of Solidity. In the same vein, an in-depth contemplation of

the various applications of Solidity could be of use in gaining a better

understanding of its significance. In addition, a lot of students wonder, “Is

it easy to study Solidity?” It is essential to be aware that it is simpler to learn

about Solidity if you have a good tutorial to follow along with.

This chapter provides a comprehensive summary of Solidity as well as

other related elements, such types, functions, events, and inheritance.

© Shashank Mohan Jain 2023
S. M. Jain, A Brief Introduction to Web3, https://doi.org/10.1007/978-1-4842-8975-4_3

https://doi.org/10.1007/978-1-4842-8975-4_3

28

3.1 � What Is Solidity?
Solidity is a high-level programming language whose primary purpose is

to facilitate the creation and execution of smart contracts. C++, JavaScript,

and Python are the key programming languages that have had an impact

on Solidity. Solidity was proposed by Gavin Wood and was written by the

Ethereum team under Christian Reitwiessner. Additionally, Solidity was

designed with a focus on the Ethereum virtual machine.

On the Ethereum blockchain, the creation of decentralized

applications, often known as DApps, can be accomplished with the

help of Solidity. The year 2015 marked a turning point for Solidity. In

this condensed version, the primary highlighted qualities of Solidity are

essential components that demonstrate the efficacy of Solidity in various

contexts. When you study Solidity, you will notice that it has the following

significant qualities:

	 1.	 Smart contracts are implemented using Solidity, a

statically typed language. Smart contracts can be

created and deployed using an object-oriented or

contract-oriented framework.

	 2.	 It is possible to create contracts that deal with

voting, consensus, multisignature wallets, and

other applications using the Solidity programming

language.

Before we start to understand the nuances of Solidity, we need to be

aware of a few things.

Chapter 3 Solidity

29

3.2 � Ethereum
Using Ethereum as a starting point for learning Solidity is a no-brainer. The

Ethereum virtual machine is the primary aim of Solidity, which means that

readers should pay attention to Ethereum in the context of Solidity. This

open-source and decentralized platform helps execute smart contracts

and is built on top of blockchain technology. Ethereum is an open software

platform that makes use of blockchain technology to assist developers in

the creation and deployment of decentralized applications.

Ether is the crypto asset that powers the Ethereum network.

Application developers use ether to pay for transaction services and

fees on the Ethereum network, making it more than just a transferable

cryptocurrency.

Ethereum uses a second token type to pay miners for the inclusion

of transactions in specific blocks of the Ethereum blockchain. For all

transactions involving smart contracts, gas is an essential component, and

Ethereum’s gas token serves as a vital link in the chain. Ethereum gas is a

key factor in attracting miners that want to plant a smart contract on the

blockchain.

3.2.1 � Ethereum Virtual Machine
The Ethereum virtual machine (EVM) is a crucial component of the

Ethereum blockchain. Smart contracts in Ethereum can be executed in

this virtual machine. Without EVM, it is impossible for a global network of

public nodes to provide the necessary security and capability for running

untrusted code.

Now, since we can run untrusted code, the environment should

provide us with the right security measures, like protection against a denial

of service attack. Ethereum, by using the concept of gas, protects against

such attacks.

Chapter 3 Solidity

30

3.3 � Smart Contracts
All of the business logic that users write in their applications should be

defined within smart contracts. As a result, it’s critical to get a firm grasp of

the fundamentals of smart contracts as soon as possible.

Before writing a smart contract, one should grasp the basics of the

Solidity programming language. That is what we will do here.

3.4 � Making Sense of Solidity Syntax
3.4.1 � Pragma
The pragma directive is the first line of code in a Solidity smart contract;

for example, the pragma directive in Solidity 0.4.16 source code samples

like this one. That’s not all: The contract is compatible with Solidity

versions higher than the specified one. Additionally, the smart contract’s

pragma directive confines Solidity to version 0.9.0, as well.

Example of pragma syntax

pragma solidity ^0.8.13;

3.4.2 � Variables
Any computer language would be incomplete without variables. As a

result, you’ll need a Solidity course to learn about variables and how they

may be used to store information. Remember that variables are nothing

more than placeholders in memory for values to be stored. As a result, by

declaring a variable, you’re reserving memory space in advance.

Solidity supports different data types, such as integer, string ,

Boolean, etc. Depending on the variable’s data type, the operating system

determines how much reserved memory should be allocated and which

entities should be stored there.

Chapter 3 Solidity

31

Learning Solidity necessitates an understanding of variables. Variables

in Solidity can be divided into three categories: state dependent, locally

dependent, and globally dependent. State variables are those that are

permanently held in contract storage. During the process of executing a

function, the values of the local variables are present.

Global variables, on the other hand, are unique variables found in the

global namespace that aid in the retrieval of blockchain-related data. As a

statically typed language, Solidity necessitates specifying the type of a state

or local variable when it’s defined. In the absence of any concept of “null”

or “undefined,” all declared variables have a default value assigned to them

based on their type. Some further thoughts on variables in Solidity are

warranted here, as follows:

	 1.	 State Variables – Variables that are stored in contract

storage.

As an example:

pragma solidity ^0.8.13;

contract NewsBlog {

 uint newsCount; // �newsCount is a State

variable

 constructor() public {

 newsCount = 1; // �Initializing the state

variable

 }

}

	 2.	 Local Variables – Variables whose values are

preserved throughout the execution of the function.

As an example:

pragma solidity ^0.8.13;

Chapter 3 Solidity

32

contract NewsBlog {

 uint newsCount; // �newsCount is a State

variable

 constructor() public {

 newsCount = 1; // �Initializing the state

variable

 }

function addToNews() public view returns(uint)

{

uint news=1; //news is an example of a local variable

used within a function scope

uint res=newsCount+news;

return res;

}

}

	 3.	 Global Variables – The global namespace contains

special variables for obtaining blockchain-

related data.

Here is a list of all of Solidity’s global variables and what they do:

	 1.	 This is what blockhash(uintblockNumber) gives

back: Block hash representation; only works for the

256 most recent blocks; current blocks are ignored.

	 2.	 Coinbase’s payment address is block.coinbase.

Displays the current block’s address.

	 3.	 Difficulty of a block is indicated by the block.

difficulty (uint).

	 4.	 The uint value of the function block.gaslimit. The

current block’s gas limit is displayed.

Chapter 3 Solidity

33

	 5.	 The uint value of block.number. The current block

number is displayed here.

	 6.	 The current time as a universal identifier (uint): The

current block’s timestamp is displayed in terms of

the number of seconds since the unix time.

	 7.	 msg.sig – You can get the first four bytes of a

function’s identification or call data by using

this method.

	 8.	 msg.data (bytes of call data)

	 9.	 If you want to know the current block timestamp,

you can use the now function.

3.4.2.1 � Variable Naming

The following guidelines should be kept in mind while naming your

variables in Solidity:

	 1.	 The Solidity reserved keywords should not be used

as a variable name. The next part includes some

discussion of these crucial terms. Variable names

such as break or boolean, for example, are invalid.

	 2.	 Variable names in Solidity should not begin with

a numeric (0–9). They can’t begin with anything

other than a letter or the underscore. A variable

name such as 543coin is invalid, while _543coin is

acceptable.

	 3.	 Capitalization is important when naming Solidity

variables. Blog and blog will be treated as two

different variables.

Chapter 3 Solidity

34

3.4.2.2 � Scope of Variables

Local variables are local to the function, which means any effect on their

state remains within the confines of that method, whereas state variables

can have three different kinds of effects:

•	 Public – State variables that are public can be accessed

both internally and through messages. A getter

function is automatically made for a state variable that

is available to the public.

•	 Internal – These state variables can only be accessed

within the same contract or from within a child

contract of this contract.

•	 Private – These are very confined in scope—only to the

same contract—and cannot be accessed even from a

child contract.

3.4.3 � Value Types
You can learn about the various data types in the Solidity blockchain

programming language by taking a thorough look at any tutorial on the

subject. Solidity supports a wide range of predefined and custom data

types. The following are some of the most common data types found in

Solidity:

•	 Integers, both signed and unsigned

•	 Boolean

•	 Fixed-point numbers, both signed and unsigned, of

various sizes

Chapter 3 Solidity

35

•	 Fixed XxY fixed-point number, where X defines the

number of bits accounted for by type and Y accounts

for the number of decimal places.

•	 Unfixed XxY, where Y represents an unsigned fixed-

point number.

3.4.4 � Address
An Ethereum address is represented by a 20-byte value called an “address”

in the Solidity tutorial. To get the balance, you can use the method

.balance with an address. The .transfer function could be used to

transfer the balance to another address.

3.4.5 � Operators in Solidity
As with other programming languages, Solidity has support for operators.

We will illustrate a few such operators here.

3.4.5.1 � Arithmetic Operator

Arithmetic operations comprise the following:

	 1.	 Addition

	 2.	 Subtraction

	 3.	 Multiplication

	 4.	 Division

	 5.	 Increment (++)

	 6.	 Decrement (--)

	 7.	 Modulus (%)

Chapter 3 Solidity

36

3.4.5.2 � Comparison Operator

Comparison operators comprise the following:

	 1.	 Equal (==) – To check if two operands are

equal or not

	 2.	 Not Equal (!=) – To check if two operands are

not equal

	 3.	 Greater than (>) – To check if operand on left of

operator is greater than one on right

	 4.	 Greater than or equal to (>=) – To check if operand

on left of operator is greater than or equal to one

on right

	 5.	 Less than (<) – To check if operand on left of

operator is less than one on right

	 6.	 Less than or equal to (<=) – To check if operand on

left of operator is less than or equal to one on right

3.4.5.3 � Logical Operators

Logical operators in Solidity comprise the following:

	 1.	 Logical And (&&) – If operands on left-hand side of

operator are positive, this returns true.

	 2.	 Logical Or (||) – If one of the operands is positive,

this returns true.

	 3.	 Logical Not (!) – It reverses the logical state

of operand and returns the reverse of the

operand state.

Chapter 3 Solidity

37

3.4.5.4 � Assignment Operators

Assignment operators in Solidity comprise the following:

	 1.	 Simple Assignment (a=b+c)

	 2.	 Add and Assign (a+=b is equivalent to a=a+b)

	 3.	 Subtract and Assign (a-=b implies a=a-b)

	 4.	 Multiply and Assign (a*=b implies a=a*b)

	 5.	 Divide and Assign (a/=b implies a=a/b)

	 6.	 Modulus and Assign (a%=b implies a=a%b)

3.4.6 � Loops
Loops are a simple construct that allows a repetition to happen in the

code. Say, for example, we want to display a count number of blog hits for

our blog web page. We can use a loop to iterate over the hits of the blog

web page and display the result.

Solidity, like other programming languages, has support for different

syntaxes for the loops.

Here is an example of a for loop in Solidity:

pragma solidity ^0.8.13;

contract News {

 uint newsCount;

 constructor() public{

 newsCount = 0;

 }

 function count() public

 returns (uint val) {

 //for loop example

 for(uint i=0; i<5; i++){

Chapter 3 Solidity

38

 newsCount++;

 }

 return newsCount;

 }

}

While loop in solidity

pragma solidity ^0.8.13;

contract News {

 uint newsCount;

 constructor() public{

 newsCount = 0;

 }

 function count() public

 returns (uint val) {

 uint i;

 while (i<=5){

 newsCount++;

 i++;

 }

 return newsCount;

 }

}

Do while loop in solidity

pragma solidity ^0.8.13;

contract News {

 uint newsCount;

 constructor() public{

 newsCount = 0;

 }

Chapter 3 Solidity

39

 function count() public

 returns (uint val) {

 uint I;

 do {

 newsCount++;

 i++;

 }

 while (i<=5);

 return newsCount;

 }

}

3.4.7 � Decision Flows
All programming languages, including Solidity, have a means to apply

conditional logic in the code. Based on certain conditions, we might

choose to take some path in code versus another path based on some

other condition’s being true. This is what decision flows allow us to

accomplish.

Solidity has support for if and if else statements to accomplish

decision flows and conditional logic within smart contracts.

Here is an example of an if statement:

pragma solidity ^0.8.13;

contract News {

 uint newsCount;

 constructor() public{

 newsCount = 0;

 }

 function isFake() public returns (string memory)

 {

Chapter 3 Solidity

40

//here we check the if condition

 if (newsCount>3) return "too many news articles";

 return "not much news";

 }

 function count() public

 returns (uint val) {

 uint i;

 do {

 newsCount++;

 i++;

 }

 while (i<=5);

 return newsCount;

 }

}

Similarly, we have the if else flow for decision making. For example:

pragma solidity ^0.8.13;

contract News {

 uint newsCount;

 constructor() public{

 newsCount = 0;

 }

 function isFake() public returns (string memory)

 {

//if else condition check here

 if (newsCount>3)

{

return "too many news articles";

Chapter 3 Solidity

41

}

 else

 {

 return "not much news";

 }

 }

 function count() public

 returns (uint val) {

 uint i;

 do {

 newsCount++;

 i++;

 }

 while (i<=5);

 return newsCount;

 }

}

3.4.8 � Functions in Solidity
Solidity advocates reusability and readability in code by allowing the

creation of functions within smart contracts. Functions allow us to provide

readable code and also allow us to have a certain functionality defined as a

chunk of code. This means that you don’t have to write the same code over

and over again. It helps programmers write code that is easy to change.

Functions let a programmer break up a big program into smaller pieces

that are easier to work with.

Solidity has all the features that are needed to write modular code with

functions, just like any other advanced programming language.

Chapter 3 Solidity

42

Let’s look at an example of a count function within a smart contract.

We are not showing the complete contract here but only the function

definition:

function count() public

 returns (uint val) {

 uint I;

 do {

 newsCount++;

 i++;

 }

 while (i<=5);

 return newsCount;

 }

Here, the function name is count, and it doesn’t take any parameters. It

returns an integer value, and its scope is public.

We can also define functions that take input values as parameters.

Here is an example of a function with parameters:

function oddEven(uint x) public returns (string memory)

 {

 if (x%2==0) return “even” ;

 else

 {

 return "odd";

 }

 }

Here, we see the function oddEven takes a parameter that is an integer

and returns a string as to whether the number is odd or even.

A Solidity function can have a return statement, but it doesn’t have

to. If you want a function to return a value, you need to do this. The last

statement in a function should be this one.

Chapter 3 Solidity

43

3.4.8.1 � Function Modifiers

A function modifier is an important construct in Solidity. It allows us to

make code more reusable by externalizing some of the common aspects of

code in a modifier. As an example, if we wanted to print a message before

and after a function invocation, one way would be to put this code in each

and every function body. Another way would be to create a modifier that

acts as a placeholder for a function and allows us to weave some aspects

around the code.

Modifiers are most often used to check a condition automatically

before a function is run. As an example, if we wanted to authenticate a user

before letting the invocation of the function happen, we would put the

authentication logic inside of a modifier. Before the function got invoked,

this authentication code would be executed. If authentication were to

succeed, the function would be executed or else an exception would

be thrown.

Here is an example of a modifier:

modifier SampleModifier {

 // logic for the modifier

}

A modifier can also take input parameters; for example:

modifier SampleModifier (string x) {

 // logic for the modifier

}

Let’s examine the workings of the modifier. Here, we create a modifier

by name of checkOwner:

modifier checkOwner {

Chapter 3 Solidity

44

 require(msg.sender == owner);

 _;

}

The reader can see there is _; in the code of the modifier. This is

known as a merge wildcard. One can treat this as a placeholder for a

function to be executed. To explain it clearly, this is the place where the

function to which this modifier is attached will be executed. This gives

us an ability to place some generic code before and after the function’s

execution. A reader familiar with aspect-oriented programming can draw

a parallel here. In order to work, a modifier must have the symbol _; in

its body.

Here, we show how the _; can be placed in a modifier:

modifier executeBefore {

 require(/*execute code before the function*/);

 �_; // here the _ signifies the actual function to be

executed.

}

This example is where post-processing is done via the modifier. Here,

the function’s execution happens before the modifier is invoked:

modifier executeAfter {

 _; // execute the actual function

 require(/* execute code after the function*/)

}

Here is an example of the usage. The function isValidUser needs

to return true only if a user is valid. We have two choices here. Either

we place the user validity check in every function that needs this, or we

externalize it via the modifier and also have clear separation of concerns.

We think using the modifier is a cleaner and better approach. Here, we

show how this can be achieved via the modifier:

Chapter 3 Solidity

45

function isValidUser(address _user) public view returns(bool) {

 // logic that checks that _user is valid

 return true;

}

modifier CheckUser {

 require(isValidUser(msg.sender));

 _;

}

There is also a way to apply multiple modifiers to a function:

contract Sample {

 modifier A() {

 require(

 //some checks

);

 _;

 }

 modifier B() {

 require(

 //some more checks

);

 _;

 }

 function test() public B() A() {

 //function code

 }

}

The modifiers get executed from left to right, which means modifier A

gets executed first and then modifier B.

Chapter 3 Solidity

46

There are more details related to modifiers that are beyond the scope

of this book.

Next, we look at view functions

3.4.8.2 � View Functions

In Solidity, a view function is a function that only reads the contract’s state

variables and doesn’t change them.

If any of the following statements are in a view function, the compiler

will think that they are changing state variables and give a warning:

•	 Modify/overwrite state variables.

•	 Create new contracts.

•	 Invoke a function that is not pure or view.

•	 Emit event.

•	 Use certain opcodes in inline assembly.

•	 Use self-destruct.

•	 Use low-level function calls.

•	 Send ether along with function calls.

Here is an example:

pragma solidity ^0.8.13;

contract Sample {

 // state variable

 uint x = 10;

 // define a view function

 // �it returns product of two numbers that are passed as

parameter

 // and the state variable x

Chapter 3 Solidity

47

 �function calculateProduct(uint y, uint z) public view

returns(uint) {

 uint product = x*y*z;

 return product;

 }

}

As we can see in the code, we use the number x, which is a state

variable only in read-only mode, and don’t modify it.

3.4.8.3 � Pure Functions

In Solidity, pure functions don’t read or change the state variables. Instead,

they only use the parameters passed to the function, or any local variables

it has, to figure out what the values are. If there are statements in pure

functions that read state variables, access the address or balance, access

any global variable like block or msg, call a function that isn’t pure, and so

forth, the compiler will issue a warning.

For example:

pragma solidity ^0.8.13;

contract Sample {

 // state variable

 uint x = 10;

 // define a pure function

 �// it returns product of two numbers that are passed as

parameter

 �function calculateProduct(uint y, uint z) public pure

returns(uint) {

 uint product = y*z;

 return product;

Chapter 3 Solidity

48

 }

}

We can see that we only use parameters to calculate the product; the

state variable is not even read within the function.

3.4.8.4 � Fallback Function

A fallback function in Solidity is an external function that doesn’t have

a name, any parameters, or any return values. As an example, a fallback

function is responsible for sending, receiving, and holding the ethers in

the smart contract in an Ethereum blockchain. In one of the following

situations, it is carried out:

•	 If a function identifier doesn’t match any of a smart

contract’s functions

•	 If the function call did not come with any data

A fallback function has the following properties:

•	 They are unnamed functions.

•	 They cannot accept arguments.

•	 They cannot return anything.

•	 There can be only one fallback function in a smart

contract.

•	 It is compulsory to mark it external.

•	 It should be marked as payable. If not, the contract will

throw an exception if it receives ether without any data.

•	 It is limited to 2300 gas if invoked by other functions.

Don’t worry about the gas aspects as of now. We will

Chapter 3 Solidity

49

cover this in detail when we have an understanding of

Ethereum.

For example:

pragma solidity ^0.8.13;

contract Sample {

 uint public z ;

 fallback () external { z = 100; }

}

contract Invoker {

 function callSample(Sample sample) public returns (bool) {

 // here we invoke a function that doesn't exist

 �(bool success,) = address(sample).call(abi.encodeWithSign

ature("hello()"));

 require(success);

 // sample.z is now 100

 }

}

Here, we can see the caller contract tries to call a hello function on

contract Sample. Since the function by name of hello doesn’t exist in

Sample contract, the fallback function is invoked, which sets the value of

state variable z to 100.

3.4.8.5 � Function Overloading in Solidity

Function overloading allows us to have multiple functions with the same

name within the same contract. This is only possible if the functions’ types

or arguments are defined differently.

Here is an example of a function overloading:

Chapter 3 Solidity

50

pragma solidity ^0.8.13;

contract Sample {

 �function calculateProduct(uint x, uint y) public pure

returns(uint){

 return x*y;

 }

 �function calculateProduct(uint x, uint y, uint z)

public pure returns(uint){

 return x*y*z;

 }

 �function doProductUsing2Arguments() public pure

returns(uint){

 return calculateProduct(4,5);

 }

 �function doProductUsing3Arguments() public pure

returns(uint){

 return calculateProduct(4,5,6);

 }

}

In all the preceding examples, we saw the usage of contracts. Here, we

define what a Solidity contract is.

One can treat a contract in Solidity similar to a C++ class. A contract in

Solidity has the following:

	 1.	 Constructor

	 2.	 State variables

	 3.	 Functions

Chapter 3 Solidity

51

There are different visibility requirements for functions and state

variables. These are accomplished by visibility quantifiers, which are

shown here:

	 1.	 External – Other contracts are supposed to call

external functions. They can’t be used to call inside

the company. To call an outside function from

within this contract, a call to the function name

is needed.

	 2.	 Public – These functions can be invoked both from

within the same contract or from other contracts.

Solidity automatically makes a getter function for

every public state variable.

	 3.	 Internal – Contrary to public functions, the visibility

of internal functions is scoped to the same contract

in which they are defined or to the child contract

of the parent within which this internal function is

defined.

	 4.	 Private – Private functions and variables can only be

used within the same contract. Even child contracts

can’t use them.

Solidity contracts can be extended in functionality by using the

concept of inheritance.

A simple example of inheritance is shown here:

pragma solidity ^0.8.13;

contract Sample {

 constructor() public {

 }

Chapter 3 Solidity

52

 //we define a public function to show inheritance

 �function getProduct(uint p, uint q) internal pure returns

(uint) { return p * q; }

}

//Derived Contract

contract ChildSample is Sample {

 uint private res;

 Sample private samp;

 constructor() public {

 samp = new Sample();

 }

 function getProductOfTwo() public {

 //invoke the parent getProduct function

 res = getProduct(6, 7);

 }

}

3.4.9 � Abstract Contracts
A contract is abstract if it has at least one function that doesn’t have an

implementation. This kind of contract is used as a starting point. Most

of the time, both implemented and abstract functions are part of an

abstract contract. Derived contracts will use the existing functions when

needed and implement the abstract function. If a derived contract doesn’t

implement the abstract function, it will be marked as abstract.

Here is an example:

pragma solidity ^0.8.13;

abstract contract Sample {

 function getProduct() virtual public view returns(uint);

Chapter 3 Solidity

53

}

contract SimpleSample is Sample {

 function getProduct() public override view returns(uint) {

 uint x = 10;

 uint y = 11;

 uint product = x*y;

 return product;

 }

}

In this code, we define an abstract contract Sample with one function

getProduct. Note the getProduct function is not implemented in the

abstract contract Sample as desired.

3.4.10 � Interface
Interfaces are like abstract contracts, and the interface keyword is used

to make them. Here are the most important parts of an interface. One can

think of an interface as a contract that can be implemented in the way

the implementer decides. As an example, the ERC20 interface defines

a set of methods that can then be implemented for creating tokens on

the Ethereum blockchain. A contract can inherit from one or multiple

interfaces. So one can combine an implementation using multiple

interfaces. The following are also true:

•	 Interfaces cannot have implemented functions.

•	 External is the only type of function that can be part of

an interface.

•	 There can’t be a function Object() { [native code]

} in an interface.

•	 There can’t be any state variables in an interface.

Chapter 3 Solidity

54

•	 Using interface name dot notation, you can get to

enums and structs that are part of an interface.

For example:

pragma solidity ^0.8.13;

interface Sample {

 function getProduct() external view returns(uint);

}

contract SimpleSample is Sample {

 function getProduct() public view returns(uint) {

 uint x = 10;

 uint y = 11;

 uint product = x*y;

 return product;

 }

}

Apart from abstract contracts and interfaces, Solidity also supports the

concept of libraries

3.4.11 � Libraries
Libraries are like contracts, but they are mostly made to be used again. A

library has functions that can be called by other contracts. There are some

rules about how a library can be used with Solidity. Here are some of the

most important things about a Solidity library:

•	 If a library function does not change the state, it can be

called directly.

Chapter 3 Solidity

55

•	 Solidity libraries are meant to be stateless, so there

can’t be any state variables for a library.

•	 As far as inheritance goes, a library cannot inherit a

variable, and the library itself cannot be inherited.

Solidity also provides the concept of events.

3.4.12 � Events
An event is a component of a contract that can be inherited. When an

event is fired, the arguments that were supplied to it are written down in

the transaction log. These logs are kept on the blockchain, and until the

contract is added to the blockchain, they can be accessed by using the

address of the contract. It is not possible to access a generated event from

within a contract, not even the contract that was responsible for producing

and emitting the event.

The keyword event is what Solidity uses to define events. When an

event is called, its arguments are added to the blockchain once the event

has completed. To begin using events, you will first need to declare them in

the manner shown here:

event moneyTransferred(address _from, address _to, uint _

amount);

Then, you need to make sure that your event is being sent out from

within the function:

emit moneyTransferred(msg.sender, _to, _amount);

3.4.13 � Error Handling in Solidity
Solidity has a variety of routines that can be used to handle errors. In

most cases, when an error occurs, the state will be reset to the way it was

Chapter 3 Solidity

56

before the problem occurred. Additional checks are performed to prevent

unwanted access to the code.

There are a few ways to handle errors in Solidity, like require, revert,

and assert. We will leave it to the user to explore these three error-

handling mechanisms.

3.4.14 � Solidity and Addresses
In this section, we will discuss how Ethereum addresses can be used and

referred to within the Solidity programming language. Since the whole

Ethereum ecosystem is based on transactions related to ether, it’s key

that we understand how different addresses work within the Solidity

environment.

There are two types of accounts on the Ethereum ecosystem:

	 1.	 Externally Owned Accounts (EOA) – The private

key allows for private control over any ether in

the account as well as any authentication that the

account requires when using smart contracts. Private

keys are the distinctive data needed to produce digital

signatures, which are necessary to sign documents so

that money in the account can be spent.

	 2.	 Contract Accounts – There are no public or private

keys connected to smart contracts, in contrast

to EOAs. Smart contracts are supported by their

underlying code rather than a private key. They

“own themselves,” as the saying goes.

The address of each contract is obtained from the

transaction that creates the contract, as a function

of the account that originated the transaction and

the nonce (we will cover this later). The Ethereum

address of a contract can be used in a transaction

Chapter 3 Solidity

57

in a number of different ways, including as the

receiver, for the purpose of paying payments to the

contract, or for the purpose of invoking one of the

functions that the contract supports.

3.4.14.1 � Ethereum Address

Hash functions are an essential component in the process of address

creation. To produce these, Ethereum employs the Keccak-256 hash

function in the generation process.

A standard address in Ethereum and Solidity has a value length of

twenty bytes (160 bits or 40 hex characters). It is equivalent to the final 20

bytes of the Keccak-256 hash that is performed on the public key. Since an

address is always represented in hexadecimal format (base-16 notation),

the prefix 0x is always added to the beginning of it (defined explicitly).

The steps for creating an Ethereum address are as follows:

	 1.	 To begin, we will use the ecparam command

provided by OpenSSL to produce an elliptic

curve private key. The standard implementation

of Ethereum employs the secp256k1 curve. This

command will output the private key in PEM format

(making use of the fantastic ASN.1 key structure),

and it will be sent to the standard output.

	 2.	 Use the openssl command to obtain the public key

from the private key.

	 3.	 To the public key, apply the Keccak-256 hashing

algorithm. You should end up with a string that is a

total length of 64 characters, or 32 bytes.

	 4.	 Take the least significant bytes, which are the

last 40 characters or 20 bytes of the hash that was

generated. (Or, to put it another way, get rid of

Chapter 3 Solidity

58

the first 24 characters and the first 12 bytes). The

address consists of these 40 characters and 20 bytes.

When the 0x prefix is added, the actual length of the address is

increased to 42 characters. Additionally, it is essential to keep in mind that

the case of the words does not matter. It is expected that all wallets would

accept Ethereum addresses written in either capital letters or lowercase

characters without any difference in the way they are interpreted.

The addresses on contracts are constructed in a different way. They are

generated in a deterministic manner based on the following two things:

	 1.	 The address of the person who created it and sent it

	 2.	 The number of transactions that the creator has

already made: nonce

The procedures involved in the formation of the address for the

contract are as follows:

	 1.	 Consider the values of sender and nonce.

	 2.	 They are encoded with RLP.

	 3.	 Keccak-256 should be used to hash them.

3.4.14.2 � Usage of Addresses in Solidity

To create a variable with the address data type, you must preface the

variable’s name with the keyword “address.”

address sender =msg.sender

Here, we hold the sender address in the sender variable.

msg.sender is the built-in solidity function, which represents the

address of the user invoking the functions on the smart contract.

There is one more type, called address payable, in Solidity.

Chapter 3 Solidity

59

In version 0.5.0 of Solidity, the difference between an address and an

address payable was first introduced. The intention was to differentiate

between addresses that are able to accept money and those that are not

able to in this way (used for other purposes). To put it another way, a

simple address is unable to receive ether but an address payable is allowed

to do so.

In simple terms it’s only possible to send ether to a variable that is

defined as an address payable.

We are going to classify the Solidity methods that are linked with

addresses into two distinct groups, or types of transactions:

	 1.	 There are three methods that are associated with

ethers: .balance(), .transfer(), and .send ().

	 2.	 Here are techniques associated with the interactions

of contracts: .call(), .delegatecall(), and

.staticcall ().

3.4.14.3 � Balance Method

This method returns the account balance in wei (1 ether = 1018 wei =

1,000,000,000,000,000,000 wei).

The technique is available to any variable that is declared as an

address.balance(). This makes it possible to access the quantity of

ether held by an externally owned account (EOA/user), as well as by a

contract account. The number that was returned is the amount of ether

measured in wei. Because it reads the data stored on the blockchain, a

statement such as address.balance is considered to be a “read from the

state” operation. As a result, any Solidity function that returns an address.

balance can be declared as a view.

Chapter 3 Solidity

60

3.4.14.4 � Transfer Function

The address.transfer function

•	 sends the quantity of ether, measured in wei, to the

account that has been provided;

•	 reverts to the previous state and raises an exception

whenever there is an error; and

•	 forwards a 2,300 gas stipend.

Before sending ether, the .transfer() method first checks the

available funds at an address by applying the property balance. This takes

place behind the scenes.

3.4.14.5 � Contract-related Functions

Solidity provides a high-level syntax for the purpose of calling

functions that are defined in other contracts (for example: Contractx.

callFunction(...)). However, in order to use this high-level syntax,

the interface of the target contract must first be understood before the

compilation process begins.

Call, delegatecode, and staticcall are the three special opcodes

that can be used by the EVM to communicate with other smart contracts.

The EVM offers a total of four special opcodes that can be used for this

purpose.

3.4.14.6 � Gas in Ethereum

In Ethereum, we must pay for every computation, which is measured in

the gas unit.

The following definition of gas is included in the Ethereum

documentation:

“Gas refers to the unit that measures the amount of computational effort

required to execute specific operations on the Ethereum network.

Chapter 3 Solidity

61

Since each Ethereum transaction requires computational resources

to execute, each transaction requires a fee. Gas refers to the fee required to

conduct a transaction on Ethereum successfully.”

3.4.14.7 � Ethereum Transaction Costs

Due to the high cost of computer resources and people’s acute awareness of

the expense of computing operations in the past (the 1960s or 1970s), people

shared computers. After that, the introduction of personal computers greatly

increased the accessibility of computer resources, and except in cases of

severe resource limitations, people no longer give much thought to cost.

Since the Ethereum Virtual Machine serves as a common computer

for the Ethereum network, we must consider how effectively we can use its

resources, just as in the past. However, due to the distributed nature of its

execution environment, Ethereum uses transaction fees rather than time-

sharing methods.

Say, for example, we create this contract:

pragma solidity 0.8.13;

contract Sample {

 uint z;

 function set(uint x) public {

 z = x;

 }

 function get() public view returns (uint) {

 return z;

 }

}

If we want to examine the gas fee for invoking the get function, we

can see it in Figure 3-1. This view is achieved using the remix IDE. We will

cover that in length in coming chapters , so don’t panic.

Chapter 3 Solidity

62

Figure 3-1.  The estimate of gas for a function

For a set function, the gas cost is 22498.

3.5 � Summary
In this chapter, we took a look at Solidity, which is the language used

on the Ethereum blockchain. We went into the details of the different

constructs and syntax of the Solidity language, like types, operators, loops,

and so on.

In the next chapter, we will look into the concept of wallets and how

they work and operate.

Chapter 3 Solidity

63

CHAPTER 4

Wallets and Gateways
Users have the ability to manage their accounts on blockchain networks

like Bitcoin or Ethereum through the usage of wallets. With an account on

Ethereum, one can participate on the Ethereum blockchain network, such

as by performing transactions on it.

An address on the Ethereum blockchain is a public string of letters and

integers that begins with 0x. Because an Ethereum address is represented

by a string of numbers and letters, it is possible to check the balance of

any Ethereum address on the blockchain. However, it is not possible to

determine who controls any given address. Users are able to exert control

over an unlimited number of addresses via wallets, which can be either

software or hardware.

Users of Ethereum wallets can move their cash around within the

wallet by using a private key. This key serves as the control mechanism for

Ethereum wallets. Because of this, these private keys are supposed to be

known only by the person who created the wallet, as anyone who knows

them can access the funds in the wallet.

There is a wide variety of Ethereum wallets available, some of which

may be stored on your computer or mobile device, and others of which can

be stored offline by means of a piece of paper, titanium, or other hardware.

You can choose the sort of Ethereum wallet that best suits your needs.

© Shashank Mohan Jain 2023
S. M. Jain, A Brief Introduction to Web3, https://doi.org/10.1007/978-1-4842-8975-4_4

https://doi.org/10.1007/978-1-4842-8975-4_4

64

One needs to use a secured key (known as the private key) to create

a wallet. A wallet can be thought of as a store that holds the private and

public keys for a user. In cryptography, a private key can be used to sign

a transaction and a public key can be used to verify the signer. The idea

is that the user keeps the private key secured with herself and shares the

public key on the network. This allows the user to sign the transactions

she wants to execute, and the verifiers using her public key can verify if

she is the signer of those transactions. Wallets simplify this process of key

management by providing a single place and an abstraction for clients

to interact with the chain. People who want to avoid managing wallets

can make use of third-party exchanges like binance that do the wallet

management on the user’s behalf. Since these exchanges are mostly

centralized, any compromise of their servers can lead to compromise of

user wallets. So, if your keys are on the exchange via an exchange-managed

wallet, it is at your own risk. As the common saying goes, “Your keys, your

money.” From a security standpoint, it’s always a better choice to have the

keys off the exchange.

4.1 � Types of Wallets
Some people store their Ethereum holdings in wallets designed for users,

while others use cryptocurrency exchanges or other services, such as

online marketplaces or loan services, offered by wallets designed for

users. Wallets like these are referred to as custodial wallets, and they are

distinguished from other wallets by the fact that they store users’ private

keys on their behalf. The user does not have direct control over the funds

stored in the wallet; rather, the service manages the wallet on behalf of the

user. There is a cost associated with this arrangement.

Chapter 4 Wallets and Gateways

65

The danger that another party will not fulfill their obligations is known

as counterparty risk. This risk is increased when funds are stored with a

third party through the use of custodial wallets. The service that stores

the private keys runs the risk of being hacked or acting maliciously, for

example.

It’s possible that various users would benefit from using one particular

wallet over another. There are a plethora of wallets available now for the

user to choose from. Most of them use Ethereum or ERC 20 standard–

based tokens to access the applications on the blockchain. This access

is realized by executing code in the form of a smart contract on the

blockchain network. ERC 20 is a set of standards defined for creating

tokens on the chain. This allows people to create their own tokens, which

then can be used for their own applications if so desired.

There are different kinds of wallets available, as follows:

	 1.	 Mobile Wallet – These are mobile applications

like the bitcoin.com app, which provides an

interface for using the keys for transactions on the

blockchain.

	 2.	 Desktop Wallet – This is installed as a desktop

application and can be used on a laptop or home

PC. An example of such a wallet is electrum.

	 3.	 Web Extensions – These are browser-based

extensions that allow the wallet to be accessed from

within the browser. MetaMask is an example of such

wallets.

	 4.	 Hardware Wallet – These are physical hardware

devices that can be used to securely manage your

wallet. This is the most secure means of keeping

keys secure.

Chapter 4 Wallets and Gateways

http://bitcoin.com

66

In this chapter, we will discuss the MetaMask wallet, which comes as

an extension to browsers like Chrome and Brave.

Once we choose a wallet, we need funds to interact with the Ethereum

network. These funds are in the form of ether, which is the cryptocurrency

used on the Ethereum blockchain. Ether can be purchased via exchanges

like Binance or Coinbase.

All transactions on the Ethereum blockchain are validated by nodes,

which are called validator nodes. They charge a fee for validating the

transactions, and this fee (called gas) has to be paid by the user initiating

the specific transaction. There are means via which a user can check the

estimated gas fee based on estimated resources needed to execute the

specific smart contract.

Since the production Ethereum network (also known as mainnet) will

charge the gas fee for every transaction, it’s not feasible to do development

on the mainnet. To facilitate the development of decentralized

applications on the Ethereum blockchain, there are many development

networks available, known as testnets, that allow one to develop

applications using exactly the same interfaces as the Ethereum blockchain,

but without incurring real gas costs.

4.2 � So, What Is a Testnet ?
When someone starts to develop a decentralized application (Dapp), they

can deploy it to a test network, which from an interface perspective is the

same as the main network. This test network is known as a testnet. This

provides an opportunity for the developers, the community, and you to

test it out before real assets are involved. Ether and tokens on a testnet are

simple to acquire and have no value in the real world.

Chapter 4 Wallets and Gateways

67

There are currently four major testnets in operation, and each

functions in a manner that is analogous to the production blockchain

(where your real ether and tokens reside). In most cases, projects will

only be developed on a single testnet, despite the fact that individual

developers may have a preference or favorite among them.

	 1.	 Ropsten – A testnet blockchain that is based on

proof of work and most closely resembles Ethereum

	 2.	 Rinkeby – A blockchain based on proof of authority

that was initiated by the Geth team

	 3.	 Kovan – Again, a blockchain based on proof of

authority

	 4.	 Goerli – A proof of authority–based testnet

To connect our wallet to any of these testnets, we need to have these

two things:

	 1.	 A wallet installed on the local machine. We will use

MetaMask as the wallet here.

	 2.	 A gateway like Infura to enable our wallet

connectivity to these testnets.

4.3 � MetaMask
MetaMask belongs to a family of what we call HD (hierarchical

deterministic) wallets. See https://coinsutra.com/hd-wallets-

deterministic-wallet/.

Chapter 4 Wallets and Gateways

https://coinsutra.com/hd-wallets-deterministic-wallet/
https://coinsutra.com/hd-wallets-deterministic-wallet/

68

4.3.1 � Installation
In the next two steps, installation and configuration instructions for

MetaMask are detailed for your convenience. After that, we will go through

a few different configurations that you ought to become familiar with.

We can install MetaMask as an extension to Chrome/Brave. Figure 4-1

shows how the extension looks on Brave.

Figure 4-1.  MetaMask extension on Brave browser

Make sure that only you can access your MetaMask account by coming

up with a password and keeping it a secret from anyone else who uses the

computer you share.

Immediately following the submission of your password, you will be

presented with your 12-word seed phrase.

Chapter 4 Wallets and Gateways

69

Even if they do not have the password that you chose for your account

in the step before this one, anyone who knows these 12 words can log in

to your account. You should never share your seed words with somebody

in whom you do not have complete faith. In the event that you forget your

password or something happens to your computer, you will need to re-

enter these 12 words to regain access to your wallet.

Launching the MetaMask wallet extension, we see three stacked dots

on the right-hand side, as shown in Figure 4-2.

Figure 4-2.  MetaMask wallet extension

By clicking on these three dots, we can get account details, as shown in

Figure 4-3.

Chapter 4 Wallets and Gateways

70

Figure 4-3.  Account details of the MetaMask wallet

We can view the account on Etherscan by clicking on the button View

on Etherscan, as shown in Figure 4-4.

Chapter 4 Wallets and Gateways

71

Figure 4-4.  Etherscan view of the account

Click on the dropdown menu to show the networks available, as shown

in Figure 4-5.

Chapter 4 Wallets and Gateways

72

Figure 4-5.  The networks available to MetaMask wallet

Before we add funds to the wallet from a testnet, we need to

understand how the connectivity to these testnets works from MetaMask.

One option is to run a testnet node ourselves and then connect our wallet

to it. Another option is to go via a hosted testnet.

There are a few hosting providers for testnets. Here, we discuss one of

them known as Infura.

Infura is an infrastructure-as-a-service (IaaS) and Web3 backend

provider that offers a variety of services and tools to blockchain developers.

This includes the application programming interface (API) suite for the

Infura platform. The Infura Web3 service revolves around the flagship

Infura Ethereum API as its central component. However, communication

with both the InterPlanetary File System (IPFS) and Filecoin is currently

Chapter 4 Wallets and Gateways

73

being worked on. Having said that, certain alternatives to Infura currently

offer wider cross-chain connectivity than Infura itself does. Many

blockchain developers are currently seeking Infura alternatives, despite

the fact that Ethereum is currently the most popular programmable

blockchain for the launch of decentralized applications (DApps). This

occurs as Binance Smart Chain (BSC) and Polygon Network are becoming

increasingly well known (previously Matic Network).

A high-level architecture of the Infura gateway is shown in Figure 4-6.

Figure 4-6.  Infura architecture

On the left side of Figure 4-6, we see the wallet that connects to the

Infura infrastructure via either https or websockets. Infura in turn provides

connectivity to the blockchain networks, like Ethereum mainnet or

testnets. Infura acts as a gateway for the wallets to the blockchain world.

Users who make use of the Infura Ethereum API are able to devote

more of their time and resources to activities such as doing market

research and product development. In addition, users are provided

with a straightforward and user-friendly dashboard that allows them to

obtain a greater understanding of how apps are performing. Utilizing

the dashboard makes it simple to conduct application analysis and

configuration. In addition, developers are able to track usage times,

Chapter 4 Wallets and Gateways

74

the effectiveness of various request types, and a great deal more. These

insights allow developers to improve their programs by gaining a deeper

understanding of the people who use those applications. In addition, the

Infura Ethereum API is interoperable with both testnets and mainnets, and

it uses client-compatible JSON-RPC that is transferred through HTTPS and

WSS. Users are also given the opportunity to obtain access to the Ethereum

Archive node data that is made accessible as an add-on.

Infura is the default node provider that MetaMask utilizes, although

users have the opportunity to switch to another node provider or even host

their own node.

Let us add some funds to our MetaMask wallet.

We will experiment a bit with the Ropsten testnet for this example.

Navigate to https://faucet.egorfine.com/.

We see a screen similar to the one shown in Figure 4-7.

Figure 4-7.  Ropsten testnet Faucet

In the address field, we need to put the public key that we get from the

MetaMask wallet. Upon clicking the Give me Ropsten ETH! Button, we see

the result shown in Figure 4-8.

Chapter 4 Wallets and Gateways

https://faucet.egorfine.com/

75

Figure 4-8.  Confirmation of ETH added to the wallet

We can check our MetaMask wallet to see if funds got added, as shown

in Figure 4-9.

Figure 4-9.  The MetaMask wallet view. It shows the Ropsten ETH
credited to the wallet

We can see 10.9973 ETH in my wallet, out of which 0.9973 were already

there from my previous addition.

We will look into Etherscan once to check the transaction. We see a

screen like that shown in Figure 4-10.

Chapter 4 Wallets and Gateways

76

Figure 4-10.  Etherscan transaction view

We can see that 10 ether got added to my account on the Ropsten

network.

We will need these funds when we create a smart contract and invoke

functions on it. We already talked about gas fees in the previous chapter.

First, we will create a simple web page that uses the web3.js library

to connect to the testnet via Infura. Let’s now get a small introduction to

web3.js.

4.4 � Web3.js
The Ethereum APIs can be consumed over an HTTP-based protocol.

So, one can create HTTP clients, which allows us to interface with the

Ethereum networks (either mainnet or testnet). To ease the process of

development, the Ethereum Foundation created a library in JavaScript

that allows us to access the Ethereum blockchain programmatically. They

called this library web3.js, and, as the name suggests, it’s for web3-based

applications, and the library itself is written in the JavaScript programming

language.

This library comprises different modules, which are described in the

next subsections.

Chapter 4 Wallets and Gateways

77

4.4.1 � web3-eth
A user of web3.js is able to connect with the Ethereum blockchain thanks

to the web3-eth module, which offers functions that make this possible.

To be more specific, these functions are able to communicate with smart

contracts, accounts that are controlled by other parties, nodes, blocks that

have been mined, and transactions.

Using the web3-eth library functions, one can sign the transations,

can check balances in your Ethereum wallet, as well as send the signed

transaction over the internet to the Ethereum blockchain.

4.4.2 � web3-shh
You will be able to interact with the Whisper protocol if you make use

of the web3-shh module. Whisper is a messaging protocol that was

developed to facilitate the easy broadcasting of messages and the low-

level, asynchronous transmission of data. The following are two instances

that illustrate the point:

	 1.	 The network receives a Whisper message when

web3.shh.post is called.

	 2.	 Apart from just sending messages, one can

subscribe to messages using the web3.ssh.

subscribe method. This allows the user to receive

messages from the network.

4.4.3 � web3-bzz
It’s in the user’s interest to have clarity as to what kind of data is stored on

the blockchain. Generally, we store only transactional data on the chain.

Other data, like documents, images, videos, and so on, are not stored on

the blockchain. We can use decentralized storage services like Swarm, ipfs,

Chapter 4 Wallets and Gateways

78

and so forth for those needs. We can store references to such content on

the blockchain though. And this is where the module web3-bzz helps. It

provides us a library-based abstraction to communicate with Swarm.

We can upload and download images, documents, videos, and audio

clips to the Swarm network using the web3.bzz.upload and web3.bzz.

download methods.

4.4.4 � web3-net
You will be able to interact with the network attributes of an Ethereum

node if you make use of the web3-net module. You will be able to get

information about the node by using the web3-net module. This module

allows us to extract metadata about the Ethereum node itself. As an

example, the network ID can be obtained by calling web3.net.getID,

and using web3.net.peerCount will return the number of peer nodes

connected to a specific node.

4.4.5 � web3-utils
The web3-utils module allows us to make use of some of the utility

functions defined inside this library module. Included in web3-utils is a

collection of utility functions that can search databases, convert numbers,

and check to see whether a value satisfies a given criterion. The following

are three instances that illustrate the point:

	 1.	 web3.utils.toWei is a converter that goes from wei

to ether.

	 2.	 web3.utils.hex converts a hexadecimal value to a

string with the ToNumberString function.

Chapter 4 Wallets and Gateways

http://web3.net
http://web3.net

79

	 3.	 The web3.utils.isAddress function determines

whether or not the given string represents a valid

Ethereum address.

4.5 � Infura Setup
Since we use Infura as the gateway, we need to configure the Infura

endpoint, which can then be used from our applications.

In order for us to access the Infura network, the first thing that has to

be done is to sign up for an Infura account and obtain an API key. We can

go to https://infura.io to access Infura.

Please visit the Infura website to create a new account for yourself.

When you open the account creation page, you will see the screen shown

in Figure 4-11.

Chapter 4 Wallets and Gateways

https://infura.io

80

Figure 4-11.  Infura account creation page

The next step is to go to the dashboard page and click the Create New

Project button. Give your project a name and click the Create button, as

shown in Figure 4-12.

Chapter 4 Wallets and Gateways

81

Figure 4-12.  Create New Project screen

I created a project named trial, as shown in Figure 4-13.

Figure 4-13.  Creating a project named trial

We next get the project ID and project secret, as shown in Figure 4-14.

Chapter 4 Wallets and Gateways

82

Figure 4-14.  Keys for the Infura project we created

Since I am using the Ropsten network, I choose the endpoint as

Ropsten.

We get two endpoints:

	 1.	 HTTPS based

	 2.	 Secure web socket

4.5.1 � Interfacing with Ropsten Network via
Infura Gateway

Please copy the HTTPS endpoint URL. Remember this URL constitutes

your project ID. We will use this URL in our HTML page, which we will

create next.

Create a directory web3

Cd to web3 directory

Inside the web3 directory, create an HTML page. Copy the following

content to this HTML page:

<html>

 <header>

Chapter 4 Wallets and Gateways

83

 <title>Sample Infura connectivity check</title>

 <script

//importing the web3.js library

 src="https://cdn.jsdelivr.net/gh/ethereum/web3.js@1.0.0-

beta.36/dist/web3.min.js" integrity="sha256-nWBTbvxhJgjslRyuAK

JHK+XcZPlCnmIAAMixz6EefVk=" crossorigin="anonymous"></script>

 <script src="https://code.jquery.com/jquery-3.4.1.min.js"

integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo="

crossorigin="anonymous"></script>

 <script>

 if (typeof web3 !== 'undefined') {

 web3 = new Web3(web3.currentProvider);

 } else {

 // Set the provider you want from Web3.providers

//see the ropsten url is the one we copied from infura

 web3 = new Web3(new Web3.providers.HttpProvider("https://

ropsten.infura.io/v3/b1c76cbfffd24d09aa70726f91de1004"));

 }

 </script>

 </header>

 <body>

 <div>

//get the last block on the ropstentestnet

 <h2>Latest Block</h2>

 </div>

Chapter 4 Wallets and Gateways

84

 <script>

 web3.eth.getBlockNumber(function (err, res) { if (err)

console.log(err)

 $("#lastblock").text(res)

 })

 </script>

 </body>

 </html>

We get the following output on loading this page in the browser; we see

the response as shown in Figure 4-15.

Figure 4-15.  Getting the latest block via web3 library

This means that our test succeeded in connecting to the Ropsten

testnet via the Infura gateway.

We modify the following HTML file to extract more information, like

the ETH balance as well as the node information:

<html>

 <header>

 <title>Sample Infura connectivity check</title>

 <script

Chapter 4 Wallets and Gateways

85

 src="https://cdn.jsdelivr.net/gh/ethereum/web3.js@1.0.0-

beta.36/dist/web3.min.js" integrity="sha256-nWBTbvxhJgjslRyuAK

JHK+XcZPlCnmIAAMixz6EefVk=" crossorigin="anonymous"></script>

 <script src="https://code.jquery.com/jquery-3.4.1.min.js"

integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo="

crossorigin="anonymous"></script>

 <script>

 if (typeof web3 !== 'undefined') {

 web3 = new Web3(web3.currentProvider);

 } else {

 // Set the provider you want from Web3.providers

 web3 = new Web3(new Web3.providers.HttpProvider("https://

ropsten.infura.io/v3/b1c76cbfffd24d09aa70726f91de1004"));

 }

 </script>

 </header>

 <body>

 <div>

 <h2>Latest Block</h2>

 <h2>My balance</h2>

 <h2>node information</h2>

 </div>

 <script>

Chapter 4 Wallets and Gateways

86

 �web3.eth.getBlockNumber(function (err, res) { if (err)

console.log(err)

 $("#lastblock").text(res)

 })

 �web3.eth.getBalance("0xb96aeD3A4e11bBB1C028Ac96420305c803880

Cd3", function (err, res) { if (err) console.log(err)

 $("#balance").text(res)

 })

 �web3.eth.getNodeInfo(function (err, res) { if (err) console.

log(err)

 $("#nodeInfo").text(res)

 })

 </script>

 </body>

 </html>

Loading this in a browser gives the output shown in Figure 4-16.

Chapter 4 Wallets and Gateways

87

Figure 4-16.  Showing block information and balance information

The same functionality we showcased via the browser can be achieved

using nodejs as the JavaScript-based application server.

4.6 � Summary
In this chapter, we looked at different kinds of wallets and how they work.

We detailed how MetaMask wallet works. We also looked at how gateways

work and their purpose in the web3 world.

In the next chapter, we will look into how we can use the Remix IDE

(a browser-based environment) to compile and deploy smart contracts.

Chapter 4 Wallets and Gateways

89

CHAPTER 5

Introduction to
Remix IDE
To develop smart contracts and then manage the lifecycle of those

contracts—like compilation, testing, deployment, and updates—we need

an integrated development environment (IDE). There are many options

available. Remix IDE is a web-based IDE (which means it does not require

any software installation). Remix comes with a full suite of development

and deployment tools integrated for developing and managing the

lifecycle of smart contracts.

In this chapter, we will introduce you to the Remix IDE and see how it

can help with creating and managing the lifecycle of smart contracts.

5.1 � Remix IDE
Remix IDE provides a browser-based environment for creating, compiling,

testing, and deploying Ethereum-based smart contracts on the blockchain

network. Actually, working with Remix IDE is a piece of cake! In this

chapter, we will go through how to make use of it.

The Remix IDE is laid out into different panels, each having a different

purpose, as shown in Figure 5-1.

© Shashank Mohan Jain 2023
S. M. Jain, A Brief Introduction to Web3, https://doi.org/10.1007/978-1-4842-8975-4_5

https://doi.org/10.1007/978-1-4842-8975-4_5

90

Figure 5-1.  Showing the different parts of the Remix IDE

	 1.	 Icon Panel – This shows the different icons for

functions like compiling, running, and deploying

smart contracts.

	 2.	 Side Panel – This shows the File Explorer where we

can create Solidity-based smart contracts.

	 3.	 Main Panel – This is specific to editing the files. We

will show examples later in the chapter.

	 4.	 Terminal – This is where you see the results of

the execution of various commands. You can run

custom scripts directly from the terminal.

Chapter 5 Introduction to Remix IDE

91

We will go over each component that makes up the Remix IDE. We

will create a straightforward smart contract, then proceed to compile and

deploy it on the Ropsten test network using MetaMask. Don’t worry: We

will walk you through the process of writing your smart contract.

The smart contract we create has two simple functions:

	 1.	 Set a message of your choice. This will store the

message on the Ropsten network.

	 2.	 Retrieve the message.

We need an understanding of Solidity and MetaMask alongside

the Remix IDE to create these smart contracts. We already learned how

Solidity and MetaMask work in the previous chapters. So let’s get started.

Any smart contract creation done via the Remix IDE has at least three

essential steps:

	 1.	 Write the smart contract using Solidity.

	 2.	 Compile the contract.

	 3.	 Deploy the contract.

To create the contract, navigate to the Remix IDE at https://remix.

ethereum.org/, as shown in Figure 5-2.

Chapter 5 Introduction to Remix IDE

https://remix.ethereum.org/
https://remix.ethereum.org/

92

Figure 5-2.  Homepage of Remix IDE

Under the default workspace, we see a folder for contracts. Right-click

on it, and then click on Create New File.

I created a file named Test.sol, as shown in Figure 5-3.

Chapter 5 Introduction to Remix IDE

93

Figure 5-3.  Creating a new file called Test.sol (.sol is the solidity
extension)

Copy the code from Listing 5-1 into the right-side window.

Listing 5-1.  Code for simple smart contract

pragma solidity 0.8.5;

contract Test{

 // state variable for holding the message

 string private message;

 // Initialize the message to Hello!!.

 constructor() public {

 message = "Welcome";

 }

Chapter 5 Introduction to Remix IDE

94

 /** @dev Function to set a new message.

 * @param newMessage The new message.

 */

 function setMessage(string memory newMessage) public {

 message = newMessage;

 }

 /** @dev Function to return the message.

 * @return The message string.

 */

 function getMessage() public view returns (string memory) {

 return message;

 }

}

As we can see, this creates a contract by name of Test in the Solidity

language. The contract has two functions:

	 1.	 setMessage

	 2.	 getMessage

Now it’s time to compile the contract, as shown in Figure 5-4.

Chapter 5 Introduction to Remix IDE

95

Figure 5-4.  Compile the Test.sol file by clicking on the Compile
button, shown circled in red

Click on the button highlighted in red. We will see the screen shown in

Figure 5-5.

Chapter 5 Introduction to Remix IDE

96

Figure 5-5.  Compilation screen for smart contract

Click on the Compile Test.sol button, and the screen shown in

Figure 5-6 will appear.

Chapter 5 Introduction to Remix IDE

97

Figure 5-6.  Compiled Test.sol

Click on the Compilation Details button to explore the different

aspects of the contract and environment, as shown in Figure 5-7.

Chapter 5 Introduction to Remix IDE

98

Figure 5-7.  See compiler version and language

Once we have compiled the smart contract, we will deploy it. Click on

the button highlighted in red, as shown in Figure 5-8.

Chapter 5 Introduction to Remix IDE

99

Figure 5-8.  Deployment button marked via red circle

Once the Deploy button has been clicked, we will see the screen shown

in Figure 5-9.

Chapter 5 Introduction to Remix IDE

100

Figure 5-9.  Environment to be chosen for deployment

We can choose from multiple deployment environments, as shown in

Figure 5-10.

Chapter 5 Introduction to Remix IDE

101

Figure 5-10.  Different environments for deployment of smart
contract

In our case, we need to choose the Injected Web3 environment, which

will connect us to the MetaMask wallet for transaction signing and gas

purposes.

The moment we choose the Injected Web3 environment, we will see

the Ropsten network, since this is the network we have chosen for our

MetaMask wallet. This is shown in Figure 5-11.

Chapter 5 Introduction to Remix IDE

102

Figure 5-11.  We choose the Ropsten test network for deployment

We see two other display sections in Figure 5-11. “Account” refers to

the account we created using MetaMask, and “Gas Limit” is the maximum

gas allowed for transactions performed via Remix.

Now, let’s go ahead and click the Deploy button. This will open

the MetaMask wallet (we have deployed MetaMask as a Brave browser

extension), as shown in Figure 5-12.

Chapter 5 Introduction to Remix IDE

103

Figure 5-12.  MetaMask wallet opens up to confirm payment of gas
for deployment

We can see the amount of the gas fee to be paid for this transaction in

terms of ether.

We will confirm this transaction to get it published on the Ropsten

testnet.

We can check on Etherscan to see the state of the transaction, as shown

in Figure 5-13.

Chapter 5 Introduction to Remix IDE

104

Figure 5-13.  Etherscan view of the deployment transaction

As we can see, initially it’s in a Pending state. Also, one can see the key

in the From field is the public key of my account. We can also validate the

key by opening the account details on MetaMask, as shown in Figure 5-14.

Figure 5-14.  MetaMask wallet showing the public key, which we can
confirm on Etherscan

After few seconds, the transaction gets confirmed on the Ropsten

testnet. The details are shown in Figure 5-15.

Chapter 5 Introduction to Remix IDE

105

Figure 5-15.  Etherscan view of the deployment transaction
(completed state)

We also see now a To field. This To field is the address of the contract.

Remember that in Chapter 3 we discussed two types of addresses. This is

the contract address.

We can also check this in Remix IDE, as shown in Figure 5-16.

Chapter 5 Introduction to Remix IDE

106

Figure 5-16.  Contract functions on Remix IDE

Apart from the contract address, Remix IDE also provides a way to

invoke these contracts.

Let’s go ahead and invoke the setMessage function on the smart

contract we just deployed.

On setting the message in the text box we will see the view shown in

Figure 5-17.

Figure 5-17.  Feeding the message for invoking a smart contract
function

Chapter 5 Introduction to Remix IDE

107

And after we click the setMessage button, the MetaMask wallet will

open again. This will allow us to sign the transaction and pay the gas fee.

We can see the amount and so forth in Figure 5-18.

Figure 5-18.  Gas consumed for invoking the setMessage function on
the smart contract

We will confirm the transaction in MetaMask now. And we can see the

transaction details on Etherscan, as shown in Figure 5-19.

Chapter 5 Introduction to Remix IDE

108

Figure 5-19.  Etherscan view of the smart contract function
invocation transaction

There are a few things one should remember about the numbers

just shown.

The quantity of gas that is used for a transaction is measured in gas

units consumed per transaction. This quantity, in turn, is a measure of

how complicated the transaction was. This is dependent on the number of

operations and amount of storage space being used by the smart contract.

The price that you are willing to pay for one gas unit is referred to as

the price per gas unit. Your transaction will be processed at a different

speed as a result of this. This process is referred to as a Priority Gas Auction

(PGA), and it means that all transactions are participating in an auction

to determine which miners will have the opportunity to include their

transactions in the blocks that are about to be mined.

The amount of ETH that goes toward covering the transaction fee is

determined by using the following formula:

Transaction Fee = Gas Units Used * Price per Gas Unit

Chapter 5 Introduction to Remix IDE

109

Calling getMessage by clicking the getMessage button gives us the

following output in the Remix IDE console:

{

 "0": "string: hello Web3"

}

This is what we had set as the message on the chain.

5.2 � Creating Own Token
Now, with knowledge of Solidity, MetaMask, and Remix, we move on to a

more concrete example of an application on the Ethereum blockchain.

How many times you might have wondered and wished to have your

own cryptocurrency. With the development of the ERC-20 standard,

creating your own coin is not that hard a job. We will go into the details in

this section.

The number 20 serves as the proposal’s identifier, and ERC is an

abbreviation for Ethereum’s Request for Comments. The ETH network was

targeted for improvement when ERC-20 was developed.

ERC-20 is the standard for creating tokens for DApps on the Ethereum

blockchain. All Ethereum-based tokens are required to adhere to the

ERC-20 standard, which provides a set of rules for creating these tokens.

Tokens, as defined by ERC-20, are assets based on blockchains that

may be sent and received and have value attached to them. To a significant

extent, ERC-20 tokens are analogous to cryptocurrencies such as Bitcoin

and Litecoin, with the difference that ERC-20 tokens operate only on the

Ethereum blockchain network.

Prior to the development of the ERC-20 standard, anyone who wanted

to produce their own token was forced to start from scratch, which resulted

in a wide variety of distinct tokens. This was the case because there were

no specific guidelines or structures for developing new tokens. Adding new

Chapter 5 Introduction to Remix IDE

110

types of tokens necessitated that the developers of wallets and exchange

platforms read through the source code of each individual token and gain

an understanding of it before they could begin to work with those tokens

on their respective platforms. This was a particularly arduous process. It

goes without saying that it was quite challenging to incorporate new tokens

into any program. Wallets can incorporate ERC-20–based tokens into their

platform and allow usage of these tokens via the apps. The ERC-20 token

standard has made it virtually simple and seamless to interface between

different tokens.

The standard specifies nine different functions that must be

implemented by a smart contract, along with three that can be

implemented if desired, including the following:

•	 totalSupply – This function specifies the total supply

for this token. Once the maximum capacity is reached,

no more tokens can be generated.

•	 balanceOf – This function, when invoked, returns the

balance for a specific wallet. We will show how this can

be invoked from Remix IDE.

•	 transfer – This function moves tokens to a specific

address. The tokens are deducted from the sender

address in this case.

•	 transferFrom – This function transfers tokens from one

user address to another. Here, the available tokens in

supply remain the same, but it’s a transfer between two

accounts.

•	 approve – This function determines, taking into

account the overall quantity of tokens, whether or not

it is permissible for a smart contract to allot a specific

number of tokens to a user.

Chapter 5 Introduction to Remix IDE

111

•	 allowance – This function checks whether the

transferor address has enough tokens to transfer to the

transferee.

So, in simple terms, ERC-20 provides the specifications or interface

that allows one to create tokens on the Ethereum blockchain.

Open the Remix IDE and create a file under the Contract directory and

name it Jain.sol.

Copy the code from Listing 5-2 to the file Jain.sol.

Listing 5-2.  Code for creating own token based on ERC-20 specs

// this is the ERC-20 interface which we will implement to

create our own coin

pragma solidity 0.8.5;

interface ERC20Interface {

 function totalSupply() external view returns (uint);

 �function balanceOf(address tokenOwner) external view

returns (uint balance);

 �function allowance(address tokenOwner, address spender)

external view returns (uint remaining);

 �function transfer(address to, uint tokens) external returns

(bool success);

 �function approve(address spender, uint tokens) external

returns (bool success);

 �function transferFrom(address from, address to, uint

tokens) external returns (bool success);

 �event Transfer(address indexed from, address indexed to,

uint tokens);

 �event Approval(address indexed tokenOwner, address indexed

spender, uint tokens);

}

Chapter 5 Introduction to Remix IDE

112

// implementation code for ERC20 interface

//here we create a smart contract named JainToken

contract JainToken is ERC20Interface {

 string public myTokenSymbol;

 string public myTokenName;

 uint8 public tokenDecimals;

 uint public _totalSupplyOfToken;

 mapping(address => uint) tokenBalances;

 mapping(address => mapping(address => uint)) allowed;

 //this is where we initialize our token with total supply,

name etc

 constructor() public {

 myTokenSymbol = "JAIN";

 myTokenName = "Shashank Jain Coin";

 tokenDecimals = 2;

 _totalSupplyOfToken = 200000;

 tokenBalances[msg.sender] = _totalSupplyOfToken;

 �emit Transfer(address(0), msg.sender, _

totalSupplyOfToken);

 }

 // function to return the supply at any point in time.

 �function totalSupply() public override view returns

(uint) {

 �return _totalSupplyOfToken - tokenBalances

[address(0)];

 }

 //function to check balance of tokens at a specific address

 �function balanceOf(address tokenOwner) public override view

returns (uint balance) {

 return tokenBalances[tokenOwner];

Chapter 5 Introduction to Remix IDE

113

 }

 // function for transferring tokens to a specific address.

 �function transfer(address to, uint tokens) public override

returns (bool success) {

//checks if there is enough balance in the sender address

 �require(tokens <= tokenBalances[msg.sender]);

//deduct tokens from the sender

 �tokenBalances[msg.sender] = tokenBalances[msg.

sender]-tokens;

 // add tokens to the recipient address

 tokenBalances[to] = tokenBalances[to] + tokens;

// once transfer is done emit a message

 emit Transfer(msg.sender, to, tokens);

 return true;

 }

 �function approve(address spender, uint tokens) public

override returns (bool success) {

 allowed[msg.sender][spender] = tokens;

 emit Approval(msg.sender, spender, tokens);

 return true;

 }

 // this is same as approve but here we can specify from

address which can be different from //message sender

 �function transferFrom(address from, address to, uint

tokens) public override returns (bool success) {

require(tokens <= tokenBalances[from]);

 tokenBalances[from] = tokenBalances[from]-tokens;

 require(tokens <= allowed[from][msg.sender]);

 �allowed[from][msg.sender] = allowed[from][msg.

sender]-tokens;

Chapter 5 Introduction to Remix IDE

114

 uint c=0;

 c = tokenBalances[to] + tokens;

 require(c >=tokenBalances[to]);

 emit Transfer(from, to, tokens);

 return true;

 }

 // checks if tokenOwner is allowed to make the transfer

 �function allowance(address tokenOwner, address

spender) public override view returns (uint remaining) {

 return allowed[tokenOwner][spender];

 }

 fallback() external payable {

 revert();

 }

}

The coin name is Shashank Jain Coin and its symbol is JAIN. We kept

the supply fixed to 200000.

Compile and deploy the contract. Remember to choose Injected Web3

as the environment with which to connect to MetaMask, as shown in

Figure 5-20.

Chapter 5 Introduction to Remix IDE

115

Figure 5-20.  Remix IDE showing the deployment screen

It will ask for approval of transaction in MetaMask, as shown in

Figure 5-21.

Chapter 5 Introduction to Remix IDE

116

Figure 5-21.  MetaMask opens up on deployment and asks for a
confirmation

Once we confirm, we can see the transaction in Etherscan, as shown in

Figure 5-22.

Chapter 5 Introduction to Remix IDE

117

Figure 5-22.  Etherscan view of the transaction just done

https://ropsten.etherscan.io/tx/0x7fcbb5d6e4414728e25905c9

7c52abc54d8afb90cfeda054c9d2cd91370d659a

Copy the contract address from the To field.

In my case it is 0xc96fcb68cdb1ac742e738294fb7db0b7455bbe6f.

Now we navigate back to the Remix IDE and open the contract, as

shown in Figure 5-23.

Chapter 5 Introduction to Remix IDE

https://ropsten.etherscan.io/tx/0x7fcbb5d6e4414728e25905c97c52abc54d8afb90cfeda054c9d2cd91370d659a
https://ropsten.etherscan.io/tx/0x7fcbb5d6e4414728e25905c97c52abc54d8afb90cfeda054c9d2cd91370d659a

118

Figure 5-23.  Remix view of the deployed contract

If you have multiple contracts deployed, please make sure you select

the right contract based on the contract address.

The first function we invoke is to check the tokens balance. Since the

token owner account is the account that created the contract, we will

copy the account address from MetaMask. Open MetaMask, as shown in

Figure 5-24.

Chapter 5 Introduction to Remix IDE

119

Figure 5-24.  MetaMask showing the account

The address for the owner in my case is

0xb96aeD3A4e11bBB1C028Ac96420305c803880Cd3.

We will now check the balance in this account using the contract API

in Remix IDE for the deployed contract, as shown in Figure 5-25.

Figure 5-25.  Feeding the address to check the balance

We can see that the tokens in this account are what we programmed it

to be when we created and deployed the contract.

Next, we do a transfer of some tokens from this account to another

account. I have already created another account in MetaMask with the

name “test,” and we can see that in Figure 5-26.

Chapter 5 Introduction to Remix IDE

120

Figure 5-26.  MetaMask showing both of my accounts

We get the address of test as

0x1A703B299d764B4e28Dc2C7849CFeDF9979D2430.

We will now transfer 100 tokens to this address using the APIs in

Remix IDE.

Since we have kept decimals to two, the number of coins displayed

would be tokens/102, which means tokens/100 in our case. So when we

transfer 100 tokens we see them as 1 JAIN token. We can see the deployed

contract transfer function in Figure 5-27.

Chapter 5 Introduction to Remix IDE

121

Figure 5-27.  Remix view of transfer function of the deployed contract

Click on the Transact button.

MetaMask opens up for approval, as shown in Figure 5-28.

Chapter 5 Introduction to Remix IDE

122

Figure 5-28.  MetaMask view of the transfer transaction

It asks for 1 JAIN token to be transferred.

We confirm the transaction.

Now, to display our ERC token in MetaMask, click on the Assets tab, as

shown in Figure 5-29.

Chapter 5 Introduction to Remix IDE

123

Figure 5-29.  MetaMask view of the account

In the Assets tab, we need to click on the Import Tokens button. Paste

the token contract address. Once we paste, the Token Symbol field is

populated, as shown in Figure 5-30.

Chapter 5 Introduction to Remix IDE

124

Figure 5-30.  Import of our token (JAIN token)

Now we will see the balance of JAIN tokens, as shown in Figure 5-31.

Figure 5-31.  Shows balance of JAIN tokens in Account 1

We will now navigate to the transferee account and check whether the

JAIN token arrived or not. We will again have to import the JAIN token into

the test account. On doing the import, we see the balance under the test

account, as shown in Figure 5-32.

Chapter 5 Introduction to Remix IDE

125

Figure 5-32.  Shows that 1 JAIN token arrived at the test account

We now see that the test account has 1 JAIN credited.

We go back to Remix IDE and also check the balance there, as shown

in Figure 5-33.

Figure 5-33.  Balance in test account

We see 100 as the balance in Remix IDE.

Chapter 5 Introduction to Remix IDE

126

5.3 � Summary
In this chapter, we introduced the reader to the concept of a Web3 app.

We learned about Remix IDE as well as about a simple manifestation of a

Web3 app in the form of an ERC-20 token on the Ropsten testnet using the

MetaMask wallet.

In the next chapter, we will introduce the reader to Truffle, which is

another development environment for DApp development.

Chapter 5 Introduction to Remix IDE

127

CHAPTER 6

Truffle
So far, we have seen how to use the Remix integrated development

environment (IDE) to create smart contracts, compile them, and then

deploy them to the blockchain network. In our example, we deployed

our contracts to the Ropsten test network. Apart from Remix, there are

standalone frameworks that allow us to create, compile, test, and deploy

contracts. Truffle is one such framework available to us.

6.1 � Truffle Installation
Before we use Truffle, we need to install the following software. We will

install everything on a Windows machine, but steps will be similar for a

Linux system.

6.1.1 � Installing Node
Install node.js (version 16.16.0) from the following link:

https://nodejs.org/en/download/

This will include npm 8.11.0 with it.

© Shashank Mohan Jain 2023
S. M. Jain, A Brief Introduction to Web3, https://doi.org/10.1007/978-1-4842-8975-4_6

https://doi.org/10.1007/978-1-4842-8975-4_6

128

6.1.2 � Install Truffle
Node Package Manager (NPM) is the best way to install Truffle. Install

Truffle after installing NPM on your computer by opening the Terminal

and typing the following:

npm install --global windows-build-tools@4.0.0

npm install -g truffle

Once we run these commands, we will see output similar to Figure 6-1.

Figure 6-1.  Truffle installation

Install the dotenv package to allow you to use a .env file to store private

environment variables on your local machine.

npm install dotenv

Install dependencies for HD Wallet next:

npm i @truffle/hdwallet-provider@next

Chapter 6 Truffle

about:blank

129

6.2 � Smart Contract Deployment via Truffle
Make a new folder for your project by issuing the following command:

mkdir mycoin

Go into the new directory by issuing the following command:

cd mycoin

Initialize a Truffle project by issuing the following command:

truffle init

This will create the following directories:

•	 contracts/ – This directory is for saving all the smart

contracts.

•	 migrations/ – This directory contains scripts used for

the deployment of smart contracts.

•	 test/ – This directory hosts the testing code for the

smart contracts.

Finally, we need a file called truffle-config.js, which contains the

configuration data and should be in the project root directory.

Change to the contracts directory using the following command:

cd contracts

Create a file named Coin.sol and copy the contract code from Listing 6-1

into the file, and then save the Coin.sol file within the contracts directory.

Chapter 6 Truffle

130

6.2.1 � Contract Code

Listing 6-1.  Code for ERC-20–based smart contract

pragma solidity 0.8.15;

interface ERC20Interface {

 function totalSupply() external view returns (uint);

 �function balanceOf(address tokenOwner) external view

returns (uint balance);

 �function allowance(address tokenOwner, address spender)

external view returns (uint remaining);

 �function transfer(address to, uint tokens) external returns

(bool success);

 �function approve(address spender, uint tokens) external

returns (bool success);

 �function transferFrom(address from, address to, uint

tokens) external returns (bool success);

 �event Transfer(address indexed from, address indexed to,

uint tokens);

 �event Approval(address indexed tokenOwner, address indexed

spender, uint tokens);

}

contract Coin is ERC20Interface {

 string public tokenSymbol;

 string public tokenName;

 uint8 public tokenDecimals;

 uint public _totalSupplyOfToken;

 mapping(address => uint) tokenBalances;

 mapping(address => mapping(address => uint)) allowed;

Chapter 6 Truffle

131

//this is where we initialize our token with total supply ,

name etc

 constructor() public {

 tokenSymbol = "ISH";

 tokenName = "Isha Jain Coin";

 tokenDecimals = 2;

 _totalSupplyOfToken = 500000;

 tokenBalances[msg.sender] = _totalSupplyOfToken;

 �emit Transfer(address(0), msg.sender, _total

SupplyOfToken);

 }

// function to return the supply at any point in time.

 �function totalSupply() public override view returns

(uint) {

 �return _totalSupplyOfToken - tokenBalances

[address(0)];

 }

 //function to check balance of tokens at a specific address

 �function balanceOf(address tokenOwner) public override view

returns (uint balance) {

 return tokenBalances[tokenOwner];

 }

 // function for transferring tokens to a specific address.

 �function transfer(address to, uint tokens) public override

returns (bool success) {

//checks if there is enough balance in the sender address

 require(tokens <= tokenBalances[msg.sender]);

//deduct tokens from the sender

 �tokenBalances[msg.sender] = tokenBalances[msg.

sender]-tokens;

 // add tokens to the recipient address

Chapter 6 Truffle

132

 tokenBalances[to] = tokenBalances[to] + tokens;

// once transfer is done emit a message

 emit Transfer(msg.sender, to, tokens);

 return true;

 }

 �function approve(address spender, uint tokens) public

override returns (bool success) {

 allowed[msg.sender][spender] = tokens;

 emit Approval(msg.sender, spender, tokens);

 return true;

 }

 // this is same as approve but here we can specify from

address which can be different from //message sender

 �function transferFrom(address from, address to, uint

tokens) public override returns (bool success) {

require(tokens <= tokenBalances[from]);

 tokenBalances[from] = tokenBalances[from]-tokens;

 require(tokens <= allowed[from][msg.sender]);

 �allowed[from][msg.sender] = allowed[from][msg.

sender]-tokens;

 uint c=0;

 c = tokenBalances[to] + tokens;

 require(c >=tokenBalances[to]);

 emit Transfer(from, to, tokens);

 return true;

 }

 // checks if tokenOwner is allowed to make the transfer

 �function allowance(address tokenOwner, address

spender) public override view returns (uint remaining) {

Chapter 6 Truffle

133

 return allowed[tokenOwner][spender];

 }

 fallback() external payable {

 revert();

 }

}

Create a file called 2_deploy_contract.js in the migrations directory.

Copy the content

const Coin_Contract = artifacts.require("Coin");

module.exports = function(deployer) {

 deployer.deploy(Coin_Contract);

};

Create a .env file in the root directory (mycoin directory) of the project

with the following content:

INFURA_API_URL = "wss://ropsten.infura.io/ws/v3/<<your infura

project id>> "

MNEMONIC = "your meta mask mnemonic"

The INFURA_API_URL should use the wss (web socket) based

endpoint rather the https

Once you log in to your Infura account, you should see something

similar to Figure 6-2.

Chapter 6 Truffle

134

Figure 6-2.  Different endpoints for Ropsten network

We can obtain the mnemonic from our MetaMask application by

following the screenshots shown in Figure 6-3 through Figure 6-5.

Figure 6-3.  MetaMask accounts

Chapter 6 Truffle

135

Click on Settings, and you should see something similar to Figure 6-4.

Figure 6-4.  Settings of the MetaMask

Click Security & Privacy, and you should see the screen shown in

Figure 6-5.

Chapter 6 Truffle

136

Figure 6-5.  Security and privacy settings in MetaMask

Click on the Reveal Secret Recovery Phase button. It will ask for your

MetaMask password and then will reveal your mnemonic.

There is a truffle-config.js file located within the project root directory

(mycoin directory for the project we created). Modify the truffle-config.js

file to include this content at the top:

require('dotenv').config();

const HDWalletProvider = require('@truffle/hdwallet-provider');

// this provides an indirection to load the Infura URL and

Mnemonic from the .env file

const { INFURA_API_URL, MNEMONIC } = process.env;

Chapter 6 Truffle

137

Also, in the Networks section of the truffle-config.js file, add the

following content:

ropsten: {

 �provider: () => new HDWalletProvider(MNEMONIC, INFURA_

API_URL),

 network_id: 3,

 gas: 5500000,

 timeoutBlocks: 200,

 skipDryRun: true

 },

As we can see now, the Infura URL and mnemonic are loaded from

the .env file. This indirection is needed for security purposes. The Ropsten

network provider then uses the URL to connect to the Ropsten network

and uses the mnemonic to interface with the MetaMask wallet.

6.2.2 � Compile and Deploy the Contract
Compile the contract using the following command:

truffle compile

Deploy the contract using the following command:

truffle migrate --network ropsten

Once we run the command for deployment, we will see the result

shown in Figure 6-6.

Chapter 6 Truffle

138

Figure 6-6.  Deployment of the ERC-20 coin via the Truffle interface

We can go to Etherscan for the transaction

0x2eee8aa7e8ea0daa71ac3f7ed0b9af3f86bd6030098e7f15247671a75ed

77bb0 and check its status, as shown in Figure 6-7. Go here:

https://ropsten.etherscan.io/tx/0x2eee8aa7e8ea0daa71ac3f7ed0b9

af3f86bd6030098e7f15247671a75ed77bb0

Chapter 6 Truffle

139

Figure 6-7.  Etherscan view of the smart contract deployment

We can also check the contract address at Etherscan. The contract

address is 0x980991118BccbD7105eBb2cDD627c7059Fe1f278. Go here:

https://ropsten.etherscan.io/address/0x980991118BccbD7105eBb2c

DD627c7059Fe1f278

We just deployed a contract that creates a coin called ISH. The contract

is deployed to the Ropsten testnet.

Now we will show how to interface with this contract using the Truffle

console.

Open another command window. Navigate to the project directory

(mycoin). Type in the following command:

truffle console –network ropsten

Once the console opens, issue the following command:

let instance = await Coin.deployed()

Chapter 6 Truffle

140

Once the smart contract is deployed on the Ropsten testnet, we

can invoke the different functions on the contract via the Truffle

framework itself.

There is a function called balanceOf that shows the balance of ISH

tokens for the address.

Let’s invoke it by using the following command:

instance.balanceOf("0xb96aeD3A4e11bBB1C028Ac9642030

5c803880Cd3")

In my case, the address I used is of the creator of the contract and as

per the code of the contract this address owns all the tokens. On running

the preceding command we will see the output as follows:

BN {

 negative: 0,

 words: [499000, <1 empty item>],

 length: 1,

 red: null

}

We can see that there are 499,000 ISH tokens available with this

address. Since I have already transferred some tokens to another address,

we have less than 500,000 tokens.

I will inspect balance of the address to which I transferred ISH tokens

by running the following command:

instance.balanceOf("0x1A703B299d764B4e28Dc2C7849CFe

DF9979D2430")

This shows the following output:

BN {

 negative: 0,

 words: [1000, <1 empty item>],

Chapter 6 Truffle

141

 length: 1,

 red: null

}

Now, let’s invoke the transfer function to transfer some ISH tokens.

Execute the following command in the console:

instance.transfer("0x1A703B299d764B4e28Dc2C7849CFeDF

9979D2430",1000)

Here, we are transferring 1000 ISH tokens to the address 0x1A703

B299d764B4e28Dc2C7849CFeDF9979D2430.

Upon execution of the command, we see the following output:

{

 �tx: '0xd174faeb28e4b9c1d409c2cf10b7d215e52b44973e4bfc

1350fb37a01282fb7a',

 receipt: {

 �blockHash: '0x516715ace04223d3a36331140d7c569c62a2b4016

a52b8d9b49d740efb41448f',

 blockNumber: 12556678,

 contractAddress: null,

 cumulativeGasUsed: 1294778,

 effectiveGasPrice: 1491261109,

 from: '0xb96aed3a4e11bbb1c028ac96420305c803880cd3',

 gasUsed: 35415,

 logs: [[Object]],

 �logsBloom: '0x000

00

00800000

00810000000000

000008000000000000000000000000000100004000000000000000000

000000000000000000080000000000000000200000000000000000000

Chapter 6 Truffle

142

000000000000000001000000000000000000000000000000000000000

000000020008000000000

000

00001000000000',

 status: true,

 to: '0x980991118bccbd7105ebb2cdd627c7059fe1f278',

 �transactionHash: '0xd174faeb28e4b9c1d409c2cf10b7d215e

52b44973e4bfc1350fb37a01282fb7a',

 transactionIndex: 19,

 type: '0x0',

 rawLogs: [[Object]]

 },

 logs: [

 {

 address: '0x980991118BccbD7105eBb2cDD627c7059Fe1f278',

 �blockHash: '0x516715ace04223d3a36331140d7c569c62a2b40

16a52b8d9b49d740efb41448f',

 blockNumber: 12556678,

 logIndex: 18,

 removed: false,

 �transactionHash: '0xd174faeb28e4b9c1d409c2cf10b7d215e52b4

4973e4bfc1350fb37a01282fb7a',

 transactionIndex: 19,

 id: 'log_1e6ce129',

 event: 'Transfer',

 args: [Result]

 }

]

}

Chapter 6 Truffle

143

We can validate the transaction on Etherscan for the transaction ID

0xd174faeb28e4b9c1d409c2cf10b7d215e52b44973e4bfc1350fb37a01282fb7,

as shown in Figure 6-8, by going to the following:

https://ropsten.etherscan.io/tx/0xd174faeb28e4b9c1d409c2cf10

b7d215e52b44973e4bfc1350fb37a01282fb7a

Figure 6-8.  Etherscan view of the transaction for checking
the balance

We can see it says 10 ISH coins, as we chose to go to two decimal

places. So 1,000 tokens get divided by 100.

Now, let’s check the balance of both the transferor and transferee.

Run the following command in the console to check the balance of the

transferor:

instance.balanceOf("0xb96aeD3A4e11bBB1C028Ac9642030

5c803880Cd3")

Chapter 6 Truffle

144

We get the following output:

BN {

 negative: 0,

 words: [498000, <1 empty item>],

 length: 1,

 red: null

}

Now, check the balance of the transferee by executing the following

command:

instance.balanceOf("0x1A703B299d764B4e28Dc2C7849CFe

DF9979D2430")

This results in the following output:

BN {

 negative: 0,

 words: [2000, <1 empty item>],

 length: 1,

 red: null

}

We can see that 1,000 ISH tokens got deducted from the transferor and

added to the transferee.

6.3 � Summary
In this chapter, we looked into one of the very famous frameworks for

smart contract development, known as Truffle. We used the Truffle

framework to create an ERC-20–based token and deployed it to the

Ropsten test network. We also learned how to interact with that token by

invoking different token functions using the Truffle framework.

Chapter 6 Truffle

145

In the next chapter, we will take a bit of a detour to learn about an

alternate decentralized storage technology called Inter Planetary File

System (IPFS). We will store digital assets in IPFS and then see how we can

use the ERC-751 standard to create an NFT using the Remix web IDE.

Chapter 6 Truffle

147

CHAPTER 7

IPFS and NFTs
When you think of creating a decentralized application, you definitely

have a blockchain platform like Ethereum in mind. The use of blockchain

technology is extremely beneficial for the management of states, the

automation of operations through the use of smart contracts, and the

trading of economic value.

But where exactly does the content of your application get stored?

Images? Videos? Where exactly are all of the HTML, CSS, and JavaScript

files that make up the application’s front end? Is the content that your users

access as well as the application that you use loaded from a centralized

AWS server?

The content would have to be stored on the blockchain, which is a

time- and money-consuming process. Your blockchain application needs

storage that is decentralized!

7.1 � IPFS
The Inter Planetary File System (IPFS) is a peer-to-peer hypermedia

protocol that aims to make the World Wide Web more open, quicker,

and safer.

IPFS is a protocol for the storage and distribution of content. Every

user acts as a node, just like in the realm of blockchain technology (server).

The nodes are able to communicate with one another and share files with

one another.

© Shashank Mohan Jain 2023
S. M. Jain, A Brief Introduction to Web3, https://doi.org/10.1007/978-1-4842-8975-4_7

https://doi.org/10.1007/978-1-4842-8975-4_7

148

To begin, the IPFS is considered decentralized due to the fact that the

content is loaded from a network of thousands of peers rather than a single

centralized server. Every single bit of data is hashed using cryptography,

which produces a secure and one-of-a-kind type of content identification

known as CID.

Since peer-to-peer file sharing has been available for some time, one

might wonder what makes IPFS so unique in this field. IPFS is now the

most well-known and widely used alternative for a decentralized internet

because it possesses a number of advantageous characteristics that set it

apart in the cryptocurrency industry.

IPFS is immutable, which means that once data has been added to the

network, it cannot be altered in any way. Customers are able to check that

the data they viewed has not been changed in any way. It is possible to

publish updates, but these will always appear in the form of new files; the

existing ones will never be overwritten.

IPFS prevents data from being duplicated by first chunking it, then

storing it, and finally hashing it when it is added to the network. This

allows for duplicate data to map to the same nodes, and as a result only

one entry is made. Assuming the new file is somewhat comparable to

those already present in the network, adding it to the network will require

a smaller amount of storage space as the network grows larger.

IPFS is decentralized, which means that the network can continue to

function even if some nodes are removed or added. Even if a significant

number of nodes were taken offline, the system as a whole would continue

to function normally. It would not be possible to delete information or

censor files without first destroying each and every node that made up the

network.

The decentralization of this system is the most important aspect.

There are some representations coming up that compare and contrast

the appearance of centralized networks with that of dispersed networks.

The crucial point here is that Facebook effectively owns the first network,

Chapter 7 IPFS and NFTs

149

and as such they are the only trustworthy source of information on the

network. On the second network, there is no one node that is more

significant than any of the others.

7.1.1 � IPFS: 30,000-Foot View
Before we get started, let’s take a high-level look at what IPFS accomplishes

behind the scenes so we know what we’re getting into. As a node in the

IPFS network, you are responsible for establishing connections to dozens

of other nodes located around the network and serving as a routing point

for those nodes. You refer to these people as your peers.

Every node in the network is either a client or a piece of content at

some point. You, as a customer, are responsible for keeping a list of peers

organized to form the list you can have. Having a few acquaintances on the

opposite side of the network (those whose IDs are substantially different

from your own) and a large number of friends in the immediate area

(whose IDs are very similar).

When requesting content, either because you desire it or because a

peer asked for it, you have the option of limiting your search to those peers

that you are familiar with that are located closest to the content ID. The

request will be completed in an average of Log(N) amount of time. In

addition, while the content is being returned, each node creates a cache

of the data so that it can be accessed more quickly during subsequent

searches. These caches are extremely aggressive and cut down network

costs as a result of the fact that data can never change.

After that, you may either utilize a node that is running locally or route

through an existing node by giving it the content ID. Either way, you will be

able to retrieve the material that was stored.

Chapter 7 IPFS and NFTs

150

7.1.2 � Installation
For Windows, download the IPFS daemon from https://dist.ipfs.

io/#go-ipfs.

Another option is to install the IPFS desktop application from https://

docs.ipfs.tech/install/ipfs-desktop/.

In this chapter, we will work with the IPFS daemon:

C:\Users\I074560>cd \shashank\apress\web3

C:\shashank\apress\web3>mkdir ipfs

C:\shashank\apress\web3>cd kubo

C:\shashank\apress\web3\kubo>ipfs.exe init

This gives the following output:

generating ED25519 keypair...done

peer identity:

12D3KooWRzcEvQWq8wvr4AckSVVjRtUAvXLxc37J8uVLaGa2Bt4G

initializing IPFS node at c:\shashank\apress\web3\ipfs

To get started, enter the following:

 ipfs cat /ipfs/

QmQPeNsJPyVWPFDVHb77w8G42Fvo15z4bG2X8D2GhfbSXc/readme

Then, run the following command:

ipfs cat /ipfs/

QmQPeNsJPyVWPFDVHb77w8G42Fvo15z4bG2X8D2GhfbSXc/readme

This will check the IPFS installation, as shown in Figure 7-1.

Chapter 7 IPFS and NFTs

https://dist.ipfs.io/#go-ipfs
https://dist.ipfs.io/#go-ipfs
https://docs.ipfs.tech/install/ipfs-desktop/
https://docs.ipfs.tech/install/ipfs-desktop/

151

Figure 7-1.  IPFS console

Now let’s add content to IPFS. Open another terminal and run the

following command:

echo "This is my first content to IPFS" | ipfs add

This returns the following output:

added QmdWENEwy4RRdvfuR6Jk86AMe7TV89yUFZec2YKHZqAKqF

The hash returned is the content identifier (CID) for the content.

Chapter 7 IPFS and NFTs

152

7.2 � ERC-721
We saw in Chapters 5 and 6 how to use the ERC-20 standard for creating

a token. But a token is a fungible entity. This means that each token is

equivalent to another token. Many requirements for applications need

different values for different assets, like the value of one piece of digital

art cannot be equated to that of another piece of digital art. We need a

mechanism to represent the value of such assets on the blockchain. This

requirement gave birth to the ERC-721 specification, which deals with

non-fungible tokens (NFTs, in short).

ERC-721 provides an interface that defines the functions for building

non-fungible tokens. The following is a list of all of the functions and

events that have been defined by the ERC-721 standard.

The ERC-721 standard defines a few functions that are compliant with

the ERC-20 standard. Existing wallets will find it much simpler to display

basic token information as a result of this change.

Functions Similar to ERC-20:
name: This field is where the name of the token is defined.

symbol: This field captures the symbol for the token.

totalSupply: This function represents the total supply of the NFT. The

supply can be dynamic as well.

balanceOf: This function returns the total number of NFTs that are

owned by an address.

Main Functions Related to Token Ownership:
ownerOf: This function gives back the address of the person who

currently possesses a token. Due to the fact that ERC-721 tokens are non-

fungible and individually identifiable, each token has its own ID that is

stored on the blockchain.

approve: This function allows the owner of the NFTs to grant

permissions for another account to transfer tokens on their behalf.

transfer: This function allows the owner of the NFT to transfer it to

another address.

Chapter 7 IPFS and NFTs

153

Metadata-related Function:
tokenMetadata: As the name suggests, this function allows the

discovery of the metadata of the NFT; for example, what kind of data this

NFT is holding, whether it’s an audio or an image or something else.

Apart from these functions, there are two events defined as per the

ERC-721 spec.

Transfer: When the token’s ownership is transferred from one person

to another, this event is triggered so that subsequent users can take control

of the token.

Approve: This event is triggered whenever the approve function is

called, which means that it occurs whenever a user gives permission to

another user for that user to take ownership of a token.

7.3 � Creating an ERC-721 Token
and Deploying It to IPFS

With a high-level introduction to IPFS as well as NFTs, it’s time to take a

look at a simple use case where we use both these technologies.

Our intended use case is to create a digital asset and upload it to IPFS.

Before adding the digital asset to IPFS, make sure you start the IPFS

daemon using the following command:

Ipfs daemon

The IPFS daemon will start as shown in Figure 7-2.

Figure 7-2.  IPFS daemon

Chapter 7 IPFS and NFTs

154

Once the daemon is started, we will add an image to the IPFS using the

following command by running the command from a different console:

Ipfs add <<filename>>

This will give us a hash (CID) as a result. Once we get this CID, to

percolate the file to other nodes we just use the following pin command:

Ipfs pin add <<cid obtained above>>

This will make the content available via IPFS commands like the

following:

Ipfs object get <<CID>>

This will return the image uploaded to IPFS.

We can also use a gateway like ipfs.io or cloudflare to get the content.

For this example, the asset is available at the following:

https://cloudflare-ipfs.com/ipfs/

QmbBp5huHazG582ean3eGGwWXkkVKnRc7V5te16ByWNs2N

https://ipfs.io/ipfs/

QmbBp5huHazG582ean3eGGwWXkkVKnRc7V5te16ByWNs2N

Here QmbBp5huHazG582ean3eGGwWXkkVKnRc7V5te16ByWNs2N is the CID

of the content (image).

Once we have uploaded the image, we will create a json file that

captures the metadata of the asset. The image URL is the IPFS URL via the

ipfs.io gateway.

{

 "name": "Shashank Jain NFT",

 "description": "This image shows image of a laptop",

 "image": "https://ipfs.io/ipfs/

QmbBp5huHazG582ean3eGGwWXkkVKnRc7V5te16ByWNs2N",

}

Chapter 7 IPFS and NFTs

155

Name the file as nft.json.

Add it to IPFS by using the following command:

Ipfs add nft.json

Pin it by using the following command:

Ipfs pin add <<hash obtained from ipfs add command output>>

In my case I have this json available at

https://cloudflare-ipfs.com/ipfs/

QmZwaouD8bVMoNgznszxsSAS7W9EgkdfC5rF7TSzz1Q25N

and

https://ipfs.io/ipfs/

QmZwaouD8bVMoNgznszxsSAS7W9EgkdfC5rF7TSzz1Q25N

Now that this part is done, we will create the smart contract using the

Remix IDE.

Open Remix IDE in the browser by navigating to https://remix.

ethereum.org/.

Create a file under the Contracts directory by the name of MyNFT.sol.

Copy the code from Listing 7-1 to the file.

Listing 7-1.  ERC-721 implementation

//SDPX-License-Identifier: MIT

pragma solidity 0.8.0;

import "https://github.com/0xcert/ethereum-erc721/src/

contracts/tokens/nf-token-metadata.sol";

import "https://github.com/0xcert/ethereum-erc721/src/

contracts/ownership/ownable.sol";

contract MyNFT is NFTokenMetadata, Ownable {

Chapter 7 IPFS and NFTs

156

 constructor() {

 //name of the NFT

 nftName = "Shashank Jain NFT";

 // nft symbol

 nftSymbol = "LAPTOP";

 }

 // this function provides the mint functionality with _to

variable will store the address of the

//receiver of the nft. tokenId stores the token identifier and

the uri stores the referenced url to the

// actual file location. In our case we have stored the file in

ipfs so the ipfs url will be used.

 function mint(address _to, uint256 _tokenId, string calldata

_uri) external onlyOwner {

 super._mint(_to, _tokenId);

 super._setTokenUri(_tokenId, _uri);

 }

}

Specifying the SPDX license type on Line 1 is a new feature that was

introduced after Solidity version 0.8. Skipping the comment will not result

in an error; instead, you will receive a warning.

The Solidity version is declared on Line 2.

The 0xcert/ethereum-erc721 contracts are imported on Lines 4 and 5.

This contract inherits most of the code from the ERC-721 spec.

We implement the mint method, which takes three inputs:

	 1.	 Address to which the NFT has to be transferred

	 2.	 Token ID (a random number)

	 3.	 URI (refers to the URL of the metadata file we

uploaded to IPFS)

Chapter 7 IPFS and NFTs

157

Compile the contract. Once the compilation is successful, we need to

deploy the contract.

Set the environment field to Web3 Injected so that we can connect it to

MetaMaskF for signing the transaction, as shown in Figure 7-3.

Figure 7-3.  Remix IDE for deploying the ERC-721 token

Click on the Deploy button, and the contract should be deployed to the

Ropsten test network, as shown in Figure 7-4.

Chapter 7 IPFS and NFTs

158

Figure 7-4.  MetaMask wallet for approving the transaction

Click the Confirm button. We can see the transaction is in a Pending

state first, as shown in Figure 7-5.

Chapter 7 IPFS and NFTs

159

Figure 7-5.  Etherscan view of the ERC-721–based NFT deployment
transaction

It takes a few seconds before it is confirmed on the network.

We can see the transaction here on Etherscan:

https://ropsten.etherscan.io/tx/0x813d53c73f8cdaa044078758a

1e80621656624ad21cf287b0774d2a22c7b0d9f

Now we will invoke some of the functions of the contract via Remix. We

can see the contract functions in Figure 7-6.

Chapter 7 IPFS and NFTs

160

Figure 7-6.  ERC-721 functions in Remix IDE

Some are inherited. We have overridden the mint function.

Let’s first mint an NFT, as shown in Figure 7-7.

Chapter 7 IPFS and NFTs

161

Figure 7-7.  Mint function in Remix IDE. We populate a random ID
for the token ID and IPFS URL for URI and the receiver address in
the _to field

We have three inputs to the function as were discussed earlier.

We click on the Transact button now.

We can see the transaction on Etherscan after the confirmation via

MetaMask, as shown in Figure 7-8.

Figure 7-8.  Etherscan view of the NFT

Once confirmed, we see the following on Etherscan, as shown in

Figure 7-9.

Chapter 7 IPFS and NFTs

162

Figure 7-9.  Etherscan view of the NFT transaction

We can see here that we have transferred the NFT to the

0x1A703B299d764B4e28Dc2C7849CFeDF9979D2430 address.

Token details can be found here, as shown in Figure 7-10.

Chapter 7 IPFS and NFTs

163

Figure 7-10.  Etherscan view of the NFT

The Etherscan address for this is https://ropsten.etherscan.io/tok

en/0x8a062615bf8d8733f7eb86e09184e744561ebe0c?a=987553434.

We initiate one more transfer of NFT to the same address, and then in

Remix click on the balanceOf function by providing the address of the NFT

beneficiary, as shown in Figure 7-11

Figure 7-11.  balanceOf function shown in Remix IDE

We see the address has received two NFTs into their account.

Chapter 7 IPFS and NFTs

164

To get the owner of the contract, we click Owner. We get the result

shown in Figure 7-12.

Figure 7-12.  Owner function shown in Remix IDE

You can check on the owner of an NFT by passing the token ID, as

shown in Figure 7-13.

Figure 7-13.  OwnerOf function in Remix IDE

Next, we check the tokenURI function, as shown in Figure 7-14.

Figure 7-14.  Roken URI (IPFS URI in this case) as shown in
Remix IDE

Chapter 7 IPFS and NFTs

165

Here again we pass the token ID as input. We can see it returns the URL

of the metadata of the NFT stored in IPFS:

https://ipfs.io/ipfs/

QmZwaouD8bVMoNgznszxsSAS7W9EgkdfC5rF7TSzz1Q25N

Figure 7-15 shows the content of the file.

Figure 7-15.  Content of the file used for NFT

We leave it to the reader now to try the same exercise using Truffle.

7.4 � Summary
In this chapter, we looked at IPFS, which is the InterPlanetary File System.

We looked at how we can upload and retrieve content via IPFS.

Next, we explored the ERC-721 spec, which is about the creation of

NFTs. We created a simple NFT using Remix and IPFS.

In the next chapter, we will get a brief overview of another framework

for the smart contract lifecycle, which is known as hardhat.

Chapter 7 IPFS and NFTs

167

CHAPTER 8

Hardhat
In previous chapters, we have seen how to manage the lifecycle of

Ethereum-based smart contracts using Remix IDE and Truffle. Now we will

look at another framework known as Hardhat that can be used to manage

the lifecycle of smart contracts. The lifecycle includes tasks like creating,

compiling, testing, and deploying the contracts.

You can create smart contracts while having the assistance of Hardhat

throughout the entire process. It is also of great assistance when testing

already implemented contracts and developing “future assumptions.”

8.1 � Installation of Hardhat Framework
Install node.js (version 16.16.0) from the following link:

https://nodejs.org/en/download/

The following will include npm 8.11.0 with it:

Use npm to install hardhat

npm install -d hardhat

8.2 � Workflow for Hardhat
At this stage, contracts are given their coding form and tested. Because

you need to test each and every line of code, writing smart contracts

and testing code typically go hand in hand. Because it offers some very

© Shashank Mohan Jain 2023
S. M. Jain, A Brief Introduction to Web3, https://doi.org/10.1007/978-1-4842-8975-4_8

https://doi.org/10.1007/978-1-4842-8975-4_8

168

nice plugins for testing and optimizing the code, Hardhat performs

exceptionally well in this regard.

During the deployment step, you will first compile the code, which will

involve converting the Solidity code into bytecode. Next, you will optimize

the code before deploying it. There are a lot of great plugins available for

Hardhat.

Let’s begin a brand-new Hardhat project now that Hardhat has been

successfully installed. We’ll use npx to do so. Npx helps process node.js

executables.

Create a project directory named coin

And cd into the coin directory

Use the command npx hardhat

Figure 8-1.  Hardhat installation

Chapter 8 Hardhat

169

Install the following dependencies:

npm install --save-dev @nomiclabs/hardhat-ethers ethers

@nomiclabs/hardhat-waffle ethereum-waffle chai

Cd to the coin directory

We will start by creating a contract.

Create a directory named Contracts inside the Coin directory and copy

the file in Listing 8-1 into the contracts directory.

Listing 8-1.  Code for coin contract

// SPDX-License-Identifier: LGPL-3.0-only

pragma solidity 0.8.15;

interface ERC20Interface {

 function totalSupply() external view returns (uint);

 �function balanceOf(address tokenOwner) external view

returns (uint balance);

 �function allowance(address tokenOwner, address spender)

external view returns (uint remaining);

 �function transfer(address to, uint tokens) external returns

(bool success);

 �function approve(address spender, uint tokens) external

returns (bool success);

 �function transferFrom(address from, address to, uint

tokens) external returns (bool success);

 �event Transfer(address indexed from, address indexed to,

uint tokens);

Chapter 8 Hardhat

170

 �event Approval(address indexed tokenOwner, address indexed

spender, uint tokens);

}

contract Coin is ERC20Interface {

 string public tokenSymbol;

 string public tokenName;

 uint8 public tokenDecimals;

 uint public _totalSupplyOfToken;

 mapping(address => uint) tokenBalances;

 mapping(address => mapping(address => uint)) allowed;

//this is where we initialize our token with total supply ,

name etc

 constructor() public {

 tokenSymbol = "ISH";

 tokenName = "Isha Jain Coin";

 tokenDecimals = 2;

 _totalSupplyOfToken = 500000;

 tokenBalances[msg.sender] = _totalSupplyOfToken;

 �emit Transfer(address(0), msg.sender, _total

SupplyOfToken);

 }

// function to return the supply at any point in time.

 f�unction totalSupply() public override view returns

(uint) {

 �return _totalSupplyOfToken - tokenBalances

[address(0)];

 }

 //function to check balance of tokens at a specific address

 �function balanceOf(address tokenOwner) public override view

returns (uint balance) {

Chapter 8 Hardhat

171

 return tokenBalances[tokenOwner];

 }

 // function for transferring tokens to a specific address.

 �function transfer(address to, uint tokens) public override

returns (bool success) {

//checks if there is enough balance in the sender address

 require(tokens <= tokenBalances[msg.sender]);

//deduct tokens from the sender

 �tokenBalances[msg.sender] = tokenBalances[msg.sender]

-tokens;

 // add tokens to the recipient address

 tokenBalances[to] = tokenBalances[to] + tokens;

// once transfer is done emit a message

 emit Transfer(msg.sender, to, tokens);

 return true;

 }

 �function approve(address spender, uint tokens) public

override returns (bool success) {

 allowed[msg.sender][spender] = tokens;

 emit Approval(msg.sender, spender, tokens);

 return true;

 }

 // this is same as approve but here we can specify from

address which can be different from //message sender

 �function transferFrom(address from, address to, uint

tokens) public override returns (bool success) {

require(tokens <= tokenBalances[from]);

 tokenBalances[from] = tokenBalances[from]-tokens;

 require(tokens <= allowed[from][msg.sender]);

Chapter 8 Hardhat

172

 �allowed[from][msg.sender] = allowed[from][msg.

sender]-tokens;

 uint c=0;

 c = tokenBalances[to] + tokens;

 require(c >=tokenBalances[to]);

 emit Transfer(from, to, tokens);

 return true;

 }

 // checks if tokenOwner is allowed to make the transfer

 �function allowance(address tokenOwner, address

spender) public override view returns (uint remaining) {

 return allowed[tokenOwner][spender];

 }

 fallback() external payable {

 revert();

 }

}

8.3 � Deployment of the Smart Contract
Create a file named hardhat.config.js inside the Coin directory as follows:

hardhat.config.js

/** @type import('hardhat/config').HardhatUserConfig */

require("@nomiclabs/hardhat-ethers")

require("@nomiclabs/hardhat-waffle")

module.exports = {

 solidity: "0.8.9",

 networks: {

 ropsten: {

Chapter 8 Hardhat

173

 �url: "https://ropsten.infura.io/v3/<<your infura

project id>>",

 accounts: {

 mnemonic: "<<your mnemonic>>",

 path: "m/44'/60'/0'/0",

 initialIndex: 0,

 count: 20,

 passphrase: "",

 },

 },

 },

};

Create a directory named Deployments inside the Coin directory.

Create a file called deployToken.js and copy the code from Listing 8-2.

Listing 8-2.  Code for deployment

async function main() {

const Coin = await ethers.getContractFactory("Coin");

const coin = await Coin.deploy();

await coin.deployed();

console.log("Coin deployed to:", coin.address);

}

main()

.then(() => process.exit(0))

.catch((error) => {

 console.error(error);

 process.exit(1);

});

Chapter 8 Hardhat

174

Deploy the contract to the Ropsten network using the following

command:

npx hardhat run deployments/deployToken.js --network Ropsten

We will see the output shown in Figure 8-2.

Figure 8-2.  Output of deployment of ERC-20–based coin
using hardhat

The contract can be seen at Etherscan at this URL:

https://ropsten.etherscan.io/address/0xc136c20061344B0D6096adB6

edd651aaCEFE0D7e

You can check the transaction at the following: https://ropsten.

etherscan.io/tx/0x048c3b3f04519df9b316363e177e26d1716ba62460

ee4764b6d0297c6b7ccd93

We can see the ISH coin tokens have been transferred to the creator

address, as shown in Figure 8-3.

Figure 8-3.  Etherscan view of the deployment transaction

Chapter 8 Hardhat

175

To invoke functions on deployed contracts, create a file invoke.js inside

the Deployments directory.

Listing 8-3.  Code for invoking the smart contract function

async function main() {

const MyContract = await ethers.getContractFactory("Coin");

const contract = await MyContract.attach(

 "0xc136c20061344B0D6096adB6edd651aaCEFE0D7e" // The deployed

contract address

);

// Now you can call functions of the contract

console.log(await contract.balanceOf("0xb96aeD3A4e11bBB1C028

Ac96420305c803880Cd3"));

}

main()

.then(() => process.exit(0))

.catch((error) => {

 console.error(error);

 process.exit(1);

});

Invoke the function using the following mentioned command by

running it from the Coin directory:

npx hardhat run deployments/invoke.js --network ropsten

We get the following output:

BigNumber { value: "500000" }

Create another file called transfer.js inside the Deployments directory

and copy the code in Listing 8-4 into this file.

Chapter 8 Hardhat

176

Listing 8-4.  Code for Transferring coins

async function main() {

const MyContract = await ethers.getContractFactory("Coin");

const contract = await MyContract.attach(

 "0xc136c20061344B0D6096adB6edd651aaCEFE0D7e" // The deployed

contract address

);

// Now you can call functions of the contract

console.log(await contract.transfer("0x1A703B299d764B4e28Dc

2C7849CFeDF9979D2430",200));

}

main()

.then(() => process.exit(0))

.catch((error) => {

 console.error(error);

 process.exit(1);

});

Execute the code using the following command:

npx hardhat run deployments/transfer.js --network ropsten

We will see the output of the command, as shown in Figure 8-4.

Chapter 8 Hardhat

177

Figure 8-4.  Hardhat output of the transfer function invocation of the
smart contract

We can see the transaction on Etherscan, as shown in Figure 8-5.

https://ropsten.etherscan.io/tx/0xb86ebde83e168acd22a424f8d125

5d317098a2bb57f92e6aa188f324bc2b28b6

Figure 8-5.  Etherscan view of the smart contract transfer transaction

We can see since the decimal place used is two, the transfer reflects

two ISH coins.

We now check the balance of transferee address with the modified

code of invoke.js (Listing 8-5).

Chapter 8 Hardhat

178

Listing 8-5.  Code for checking balance of an account

async function main() {

const MyContract = await ethers.getContractFactory("Coin");

const contract = await MyContract.attach(

 "0xc136c20061344B0D6096adB6edd651aaCEFE0D7e" // The deployed

contract address

);

// Now you can call functions of the contract, We call

balanceOf function by passing the transferee address.

console.log(await contract.balanceOf("0x1a703b299d764b4e28dc

2c7849cfedf9979d2430"));

}

main()

.then(() => process.exit(0))

.catch((error) => {

 console.error(error);

 process.exit(1);

});

Now execute the following command:

npx hardhat run deployments/invoke.js --network ropsten

This outputs the following:

BigNumber { value: "200" }

This matches with what we transferred to the transferee: 200 tokens.

In MetaMask and Etherscan, this reflects as 2 ISH coins, since we used two

decimals places as the configuration while creating the coin.

Chapter 8 Hardhat

179

8.4 � Summary
In this chapter, we looked into a framework called Hardhat for contract

deployment and testing. We looked into the installation of Hardhat and

then how we can use it for deployment of contracts. We also looked into

how we can use the same framework for invoking the functions on the

smart contract.

Chapter 8 Hardhat

181

Index

A
Abstract contract, 52–54

B
Balance, 59–60, 125
Binance, 64, 66, 73
Binance Smart Chain (BSC), 73
Bitcoin, 6, 9, 12, 13, 15–23, 25,

26, 63, 109
Blockchain technology, 6,

11, 18, 147
algorithm, 13
applications, 16
architecture

client–server network, 21
nodes, 22
transaction flow, 22
verification process, 22

block, 14
chain, 15
classification, 11
components, 14
computers, 13
cryptocurrency, 17
data, 13
database, 14

data structure, 11
network, 15
permissioned, 12
Postgres nodes, 11
private, 12
public, 12
setup, 12

C
Capitalization, 33
Centralized authority, 3, 5, 13, 23
Coinbase, 32, 66
Coin.sol file, 129
Consensus, 17

proof of work, 19
Content identifier (CID), 148,

151, 154
Contract codes, 26, 129–137
Cryptocurrencies, 14, 15, 17–19, 21,

25, 29, 64, 66, 109, 148
Cryptographic keys

blockchain networks, 23
data structure, 24
genesis block, 24

Cryptography, 64, 148
Custodial wallets, 64, 65

© Shashank Mohan Jain 2023
S. M. Jain, A Brief Introduction to Web3, https://doi.org/10.1007/978-1-4842-8975-4

https://doi.org/10.1007/978-1-4842-8975-4

182

D
Decentralization, 6

centralization, 4
components, 4
networks, 3
setup, 3

Decentralized applications
(DApps), 6, 25, 27–29, 66,
73, 109, 147

Decentralized system, 3–8
2_deploy_contract.js, 133
deployToken.js file, 173, 174
Desktop wallet, 65

E
ERC-20 standard, 109, 110, 152

smart contract, 130
functions, 110, 111

ERC-721 standard, 152, 153
NFT deployment

transaction, 159
functions, 160
implementation, 155
token, 157
Ether, 66

Ethereum, 6, 12, 13, 15, 17, 26, 27,
29, 61, 63, 109

address, 35, 56
APIs, 76
blockchain, 20, 28, 63, 111
ERC 20 standard–based

tokens, 65
wallets, 63

Ethereum virtual machine (EVM),
7, 28, 29, 60, 61

Etherscan, 70, 71, 75, 76, 104, 105,
107, 108, 117, 138, 139, 143,
159, 161–163, 174, 177, 178

Etherscan transaction
view, 76

Externally owned accounts (EOA),
25, 26, 56, 60

F, G
Function modifier, 43–46

H
Hardhat, 167

dependencies, 169
deployment, ERC-20–based

coin, 174
deployment step, 168
installation, 167
smart contract

deployment, 172–175
function, 175
transfer transaction, 177

transaction on Etherscan, 177
workflow, 167, 168

hardhat.config.js file, 172
Hardware

wallet, 65
Hash functions, 19, 57
Hypertext markup language

(HTML), 1, 82, 84, 147

INDEX

183

I
Infura, 72, 73

account creation page, 79, 80
architecture, 73
Create New Project screen, 80, 81
default node provider, 74
Ethereum API, 73, 74
IaaS and Web3 backend

provider, 72
infrastructure, 73
project ID and project

secret, 81, 82
project named trial, 81
Ropsten network, 84
Rropsten network, 82–87
Web3 service, 72

Injected Web3 environment, 101
Integrated development

environment (IDE), 62, 89,
See also Remix IDE

Interfaces, 53–54, 65, 66, 72, 76,
110, 111, 137, 139, 152

Internet Protocol File System
(IPFS), 147

256-bit hash, 149
CID, 148
content ID, 149
decentralization, 148
installation, 150, 151
peer-to-peer file sharing, 148

InterPlanetary File System (IPFS),
72, 145, 147, 165

IPFS console, 151
ISH coin tokens, 174

J, K
JAIN, 114, 120, 122, 124, 125

L
Libraries, 54, 55
LinkedIn, 8
Loops, 37–39, 62

M
Merge wildcard, 44
MetaMask wallet, 66, 91, 134

account details, 69, 70
account on Etherscan, 70, 71
confirmation of ETH, 75
extension on Brave browser, 68
HD wallet, 67
Infura, 72–74
installation and configuration

instructions, 68
networks available, 71, 72
Ropsten ETH, 75
Ropsten testnet, 74
wallet extension, 69

Mobile wallet, 65
MyNFT.sol, 155

N, O
Networks, 4, 8

cloud application, 5
stand-alone application, 5

NFTokenMetadata, 155

INDEX

184

Node Package Manager (NPM), 128
Non-fungible tokens (NFTs),

145, 147–165

P, Q
Peer-to-peer software, 5
Polygonnetwork, 73
Priority Gas Auction (PGA), 108
Private key, 23–25, 56–58, 63–65
Programming languages, 7, 17, 25,

28, 30, 34, 35, 37, 39,
41, 56, 76

Proof-of-stake algorithm, 20
Proof-of-stake blockchains, 20
Proof-of-work blockchains, 18

R
Remix IDE

account address from
MetaMask, 118

balance in test account, 125
browser-based environment, 89
code for simple smart contract, 93
compilation screen for smart

contract, 96
Compiled Test.sol, 96, 97
compiler version and

language, 97, 98
contract functions, 105, 106
for deployed contract, 119
deployed contract transfer

function, 120, 121

deployment button, 98, 99
deployment environments,

100, 101
deployment screen, 115
ERC-20 specs, 111
ERC-721 functions, 160
Etherscan view

deployment
transaction, 103–105

smart contract function
invocation transaction,
107, 108

transaction just done, 117
homepage, 92
Icon Panel, 90
Jain.sol, 111
JAIN tokens, 124, 125
Main Panel, 90
message in the text box, 106
MetaMask view

account, 123
transfer transaction, 122

MetaMask wallet, 102–104
panels, 89, 90
Remix view, deployed

contract, 118
Ropsten test network for

deployment, 101, 102
setMessage function, 107
Side Panel, 90
smart contract creation, 91
Solidity and MetaMask, 91
Terminal, 90
Test.sol, 92, 93

INDEX

185

transaction approval in
MetaMask, 115, 116

Ropsten network, 76, 82–87, 91,
101, 134, 137, 174

Ropsten test network, 74, 91,
102–104, 126, 127, 139, 140,
144, 157

S
Shashank Jain

Coin, 114
Smart contract, 7, 8, 17, 25–30, 39,

41, 42, 48, 56, 57, 59, 65, 66,
76, 77, 87, 89–91, 96, 101,
106–108, 110, 112, 127,
129–137, 139, 144, 147, 155,
165, 167, 172–178

Solidity, 26, 28, 30, 32, 33, 39, 41, 56
address data type, 59
arithmetic operations, 35
assignment, 37
comparison, 36
environment, 56
Ethereum, 57
keyword event, 55
fallback function, 48
function overloading, 50
functions, 41
logical, 36
pragma directive, 30
pure functions, 47
types, 34
variables, 31, 34

view functions, 46
visibility requirements, 51

Solidity programming
language, 30

T
Testnets, 66

Goerli, 67
Kovan, 67
in operation, 67
Rinkeby, 67
Ropsten, 67

Test.sol, 92, 93, 95–97
Tokens, 66, 67, 109–126
Transfer function, 35, 60, 120, 121,

141, 177
transfer.js file, 175
Truffle, 127, 144

installation, 127, 128
Install node.js, 127
NPM, 128

smart contract deployment
Coin.sol, 129
compilation and

deployment,
contract, 137–144

contract code, 130, 133
MetaMask accounts, 134
mkdir mycoin, 129
security and privacy settings

in MetaMask, 136
settings, MetaMask, 135
truffle init, 129

INDEX

186

U
User interface (UI), 8

V
Validator nodes, 66

W
Wallets, 63

as custodial wallets, 64
desktop wallet, 65
hardware wallet, 65
MetaMask wallet, 66 (see also

MetaMask wallet)
mobile wallet, 65
private and public keys, 64
testnets, 67
web extensions, 65

Web 1.0, 1
Web 2.0 applications, 2
Web 3.0, 2

apps, 6, 8
architecture, 7
evolution, 2
platforms, 8

web3.js library, 76
web3-bzz module, 77, 78
web3-eth module, 77
web3-net module, 78
web3-shh module, 77
web3-utils module, 78

Web extensions, 65

X, Y, Z
0xcert/ethereum-erc721, 156

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Decentralization and Web3
	1.1 Web 1.0
	1.2 Web 2.0
	1.3 Web 3.0
	1.3.1 Introduction to Decentralization
	1.3.2 Different Topologies for Networks
	1.3.2.1 Centralized and Non-distributed
	1.3.2.2 Centralized but Distributed

	1.3.3 Decentralized Systems
	1.3.4 Web3 Case Study

	1.4 Summary

	Chapter 2: Blockchain
	2.1 Types of Blockchains
	2.1.1 Public Blockchain
	2.1.2 Private Blockchain
	2.1.3 Permissioned Blockchain

	2.2 What Is a Blockchain?
	2.3 Blockchain Building Blocks
	2.3.1 Block
	2.3.2 Chain
	2.3.3 Network

	2.4 Where Is Blockchain Used?
	2.5 Evolution
	2.6 Consensus
	2.6.1 Proof of Work
	2.6.2 Proof of Stake

	2.7 Blockchain Architecture
	2.8 Cryptographic Keys
	2.9 Blockchain Compared to a Singly Linked List
	2.10 Ethereum
	2.11 Summary

	Chapter 3: Solidity
	3.1 What Is Solidity?
	3.2 Ethereum
	3.2.1 Ethereum Virtual Machine

	3.3 Smart Contracts
	3.4 Making Sense of Solidity Syntax
	3.4.1 Pragma
	3.4.2 Variables
	3.4.2.1 Variable Naming
	3.4.2.2 Scope of Variables

	3.4.3 Value Types
	3.4.4 Address
	3.4.5 Operators in Solidity
	3.4.5.1 Arithmetic Operator
	3.4.5.2 Comparison Operator
	3.4.5.3 Logical Operators
	3.4.5.4 Assignment Operators

	3.4.6 Loops
	3.4.7 Decision Flows
	3.4.8 Functions in Solidity
	3.4.8.1 Function Modifiers
	3.4.8.2 View Functions
	3.4.8.3 Pure Functions
	3.4.8.4 Fallback Function
	3.4.8.5 Function Overloading in Solidity

	3.4.9 Abstract Contracts
	3.4.10 Interface
	3.4.11 Libraries
	3.4.12 Events
	3.4.13 Error Handling in Solidity
	3.4.14 Solidity and Addresses
	3.4.14.1 Ethereum Address
	3.4.14.2 Usage of Addresses in Solidity
	3.4.14.3 Balance Method
	3.4.14.4 Transfer Function
	3.4.14.5 Contract-related Functions
	3.4.14.6 Gas in Ethereum
	3.4.14.7 Ethereum Transaction Costs

	3.5 Summary

	Chapter 4: Wallets and Gateways
	4.1 Types of Wallets
	4.2 So, What Is a Testnet ?
	4.3 MetaMask
	4.3.1 Installation

	4.4 Web3.js
	4.4.1 web3-eth
	4.4.2 web3-shh
	4.4.3 web3-bzz
	4.4.4 web3-net
	4.4.5 web3-utils

	4.5 Infura Setup
	4.5.1 Interfacing with Ropsten Network via Infura Gateway

	4.6 Summary

	Chapter 5: Introduction to Remix IDE
	5.1 Remix IDE
	5.2 Creating Own Token
	5.3 Summary

	Chapter 6: Truffle
	6.1 Truffle Installation
	6.1.1 Installing Node
	6.1.2 Install Truffle

	6.2 Smart Contract Deployment via Truffle
	6.2.1 Contract Code
	6.2.2 Compile and Deploy the Contract

	6.3 Summary

	Chapter 7: IPFS and NFTs
	7.1 IPFS
	7.1.1 IPFS: 30,000-Foot View
	7.1.2 Installation

	7.2 ERC-721
	7.3 Creating an ERC-721 Token and Deploying It to IPFS
	7.4 Summary

	Chapter 8: Hardhat
	8.1 Installation of Hardhat Framework
	8.2 Workflow for Hardhat
	8.3 Deployment of the Smart Contract
	8.4 Summary

	Index

