


Rust for Blockchain 
Application Development

Learn to build decentralized applications on popular 
blockchain technologies using Rust

Akhil Sharma



Rust for Blockchain Application Development
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted 
in any form or by any means, without the prior written permission of the publisher, except in the case 
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information 
presented. However, the information contained in this book is sold without warranty, either express 
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable 
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and 
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot 
guarantee the accuracy of this information.

Group Product Manager: Kaustubh Manglurkar
Publishing Product Manager: Arindam Majumder
Book Project Manager: Hemangi Lotlikar
Senior Editor: Vandita Grover
Technical Editor: Kavyashree K S
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Shankar Kalbhor
Senior DevRel Marketing Executive: Nivedita Singh

First published: April 2024
Production reference: 1290324

Published by 
Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83763-464-4

www.packtpub.com

http://www.packtpub.com


To the women in my life – my mother, Manisha Sharma, for all her sacrifices; my sister, Neha Sharma, 
for being a constant source of encouragement; and my wife, Akanksha, for being extremely supportive 

throughout this journey.

– Akhil Sharma



Contributors

About the author
Akhil Sharma is the founder of Armur AI, a cybersecurity company that is backed by Techstars, 
Outlier Ventures, and Aptos, and is part of the Google AI startups cloud program.

Akhil teaches advanced engineering topics (Rust, Go, Blockchain, and AI) on his YouTube channel 
and has mentored more than 200,000 engineers across platforms such as Linkedin Learning, Udemy, 
and Packt.

Being deeply involved with multiple Rust-based blockchain communities such as Aptos, Solana, and 
Polkadot inspired Akhil to write this book.

In his free time, Akhil likes to train in jiu jitsu, play the guitar, and surf.



About the reviewers
Denis Cavalli is a lead software engineer with a strong background in embedded systems, software 
development, and R&D. He graduated in computer engineering from the Universidade Federal do 
Amazonas in Brazil, and has more than 10 years of experience in software development and team 
leadership, working for start-ups and big companies.

Since 2021, he has been engaged with the Web3 environment, experimented with Ethereum/Solidity 
and Solana, worked professionally for Web3 companies using the Helium SDK, designed decentralized 
solutions targeted for Polkadot/Kusama networks using Substrate, and has had smart contracts deployed 
on the Arbitrum Nova mainnet.

Ryu Kent is a senior blockchain engineer who has worked in the industry for 7 years. He is particularly 
active in the DAO space and has launched a number of well-known smart contracts. Prior to moving 
to Web3, Ryu spent over a decade working in financial services, including HSBC, Barclays Bank, and 
PriceWaterhouseCoopers, building centralized ledgers.





Preface xv

Part 1: Blockchains and Rust

1
Blockchains with Rust 3

Laying the foundation with the 
building blocks of blockchains 3
Blocks 5
Hashes 6
Transactions 7
Security 8
Storage versus compute 9

Exploring the backbone  
of blockchains 10
Decentralization 10
Peers, nodes, validators, and collators 11
Consensus 13
Mining 15
Forking 16
Permissioned versus permissionless 17

Understanding decentralization 18
Replication 19
Governance 19
Cryptocurrencies and gas fees 19
Decentralized platforms 20

Tokens versus coins and ICOs 21
Smart contracts and NFTs 23
DAOs 24
Non-censorable apps 25
Digital assets with real-world limits 25

Scaling the blockchain 26
The blockchain trilemma 26
Sharding 27
Interoperability 28
Consensus for scale 28
Parallel processing 29
Layer 2s and side chains 29
ZK rollups and optimistic rollups 30

Introducing smart contracts 30
The future of the adoption of 
blockchains 31
Industries disrupted 31
Sociocultural and economic changes 31

Summary 32

Table of Contents



Table of Contentsviii

2
Rust – Necessary Concepts for Building Blockchains 33

Introducing Rust 34
The benefit of being statically typed 34
A dive into Rust’s applicability as a systems 
programming language 34
The reliability of Rust 35
The Rust ownership memory management 
model 36
Garbage collection 37
Speed and performance 37
Futures, error handling, and memory safety 38

Rust’s advantage for blockchains 38
Blockchains that use Rust 38
Foundry for Ethereum 39
The Fe, Move, and ink! languages 39
Interesting blockchain projects built with Rust 40
Advantages of Rust-based languages 
compared to Solidity 41

Learning basic Rust concepts 42
Variables and constants 42
Data types 44
Tuples and arrays 45

Numeric operations 46
Stack 47
Heap 47
V-tables 47
Slices 48
Strings 49
Enums 50

Exploring intermediate Rust concepts 52
Control flow 52
While loops 53
Functions 54
Match control flow 55
Structs 56
Vectors 57

Delving deep into advanced Rust 
concepts 59
Hashmaps 59
Ownership and borrowing 60
Crates, modules, and cargo 62

Summary 64

Part 2: Building the Blockchain

3
Building a Custom Blockchain 67

Technical requirements 67
Windows installation 68
Mac installation 68
Ubuntu installation 68
VS Code 69

rust-analyzer 71
Cargo 72

Planning our first blockchain project 73
Structs 73
Required functions 78



Table of Contents ix

Getting started with building the 
blockchain 83
Block 83

Creating the genesis block 87

Using helper functions 90
Exploring embedded databases 94

Summary 96

4
Adding More Features to Our Custom Blockchain 97

Technical requirements 97
Connecting the blocks 98
Libraries powering blockchain operations 98
Blockchain functions 100

Starting the node server 112
The server 112

Server struct and implemented methods 113
Enums 115
Helper functions 116
The serve function 123
The Node struct 124

Summary 126

5
Finishing Up Our Custom Blockchain 127

Technical requirements 127
Adding memory pools 128
Implementing a memory pool 128
The BlockinTransit implementation 131

Implementing transactions 133
Understanding TXInput transactions 133
Understanding TXOutput transactions 135
Understanding the Transaction 
implementation 137

Utilizing UTXOs and developing 
wallets 141
Implementing UTXOSet 141
Implementing wallets 143
Wallets 145

Setting up configurations  
and utilities 147

The Config implementation 148
Utility functions 149
Understanding the lib.rs file 150

Understanding the Main.rs file 152
Using your custom blockchain 154
Creating a new blockchain 155
Creating a new wallet 156
Checking the wallet balance 157
Starting a node 158
Sending currency 159
Listing all wallet addresses 160
Printing the blockchain 160
Rebuilding the UTXO set 161

Summary 163



Table of Contentsx

Part 3: Building Apps

6
Using Foundry to Build on Ethereum 167

Introducing Ethereum and Foundry 168
Understanding Ethereum 168
Why Rust and Foundry? 169
Installing Foundry 170
First steps with Foundry 171

Exploring Foundry 172
Working on an existing Foundry project 172
Dependencies 173
Project layout 175
Overview of Forge 176
Forge Standard Library overview 177
Forge commands 178

Understanding Foundry with Cast, 
Anvil, and Chisel 179
Overview of Cast 179

Overview of Anvil 180
Overview of Chisel 180
Cast, Anvil, and Chisel important commands 181

Testing and deployment 182
Writing tests 183
Fork and fuzz testing 185
Invariant and differential testing 186
Deployment and verification 187
Gas reports and snapshots 187

A project using Foundry 188
Getting started 189
A basic NFT 189
Testing the program 192
Gas reports 192

Summary 194

7
Exploring Solana by Building a dApp 195

Introducing dApps 196
What are dApps? 196
Types of dApps 197
Benefits of dApps 198

Setting up the environment  
for Solana 199
Installing Rust 199
Introducing Solana 200
Why Solana? 202
Generating a local key pair 205

Working with Solana frameworks 
and tools 206
Introducing Anchor 206
Creating a new Anchor project 209

Building and deploying a dApp 210
Building and deploying with Anchor 210
Running a local ledger 211
Updating the program ID 213
Utilizing Anchor scripts 213
Testing your dApp 214



Table of Contents xi

Creating accounts for our custom 
dApp 216
Defining accounts for our custom dApp 217
Implementation of message account  
structure 218
Understanding account sizing and rent in 
Solana 219
Sizing message accounts 219
Implementation in code 220

Creating our first instruction 221

Introduction to instruction creation 221
Establishing account constraints 224

Implementing logic 226
Safeguarding against invalid data 230
Instruction versus transaction 232

Creating tests for our instructions 233
Creating a client for tests 235
Sending a message 236

Summary 241

8
Exploring NEAR by Building a dApp 243

Technical requirements 244
Prerequisites 244
Installation 244

Introducing NEAR 246
Why choose NEAR? 246
Understanding the foundational elements  
of NEAR 247

Learning about the advanced 
concepts of NEAR 254
Transactions and gas 254
Data flow 255
Tokens and avoiding loss 259
Storage options 260
Validators and consensus 263
NEAR SDK 263

Getting started with the NEAR 
blockchain 265

The Contract class 265
State and data structures 268
Transfers and actions 269
Cross contract calls 271
NEAR CLI deep dive 272

Creating our first project  
with NEAR 272
Understanding the structure and rules of the 
crossword game 273
Setting up the development environment 273
Creating a smart contract skeleton 274
Testing and deployment 277
Interacting with the contract 278

Summary 279



Table of Contentsxii

Part 4: Polkadot and Substrate

9
Exploring Polkadot, Kusama, and Substrate 283

Introducing Polkadot 283
Interoperability 285
Relay chain 286
Parathreads 287
Bridges 287
Accounts 288
Transactions 288
Tokens and assets 292
NFTs 292

Understanding the core concepts  
of PolkaDot 293
XCM 293
Shared security 294
Pallets 295
Staking 296
Advanced staking concepts 297
Main actors 299
NPoS election algorithms 301

Learning about Kusama 302
Governance and on-chain upgrades 303
Chaos and experimentation 303

Introducing Substrate 304
Substrate architecture 304
Client and runtime 306
Network types 307
Node types 307

Diving deep into Substrate 308
Runtime interfaces 308
Core primitives 309
FRAME 310
Building custom pallets 311
Forkless and runtime upgrades 312
Consensus 313

Summary 316

10
Hands-On with Substrate 317

Technical requirements 317
Installing Substrate 317

Building our own blockchain 318
Starting a local node 318
Installing a frontend template 321
Starting the frontend template 321

Transferring the funds 323

Simulating a network 325
Starting the first blockchain node 325
Adding more nodes 328
Verifying block production 329

Summary 331



Table of Contents xiii

Part 5: The Future of Blockchains

11
Future of Rust for Blockchains 335

What the future looks like for Rust 
blockchains 335
Popular blockchains 336
Upcoming blockchains 339

Upcoming Rust Web3 projects 344
The Rust community 347

Jobs in the Web3 space 348
Popular job roles 348
How to find Web3 jobs 350
Building a career 351

Going beyond this book 352
Summary 353

Index 355

Other Books You May Enjoy 368





Preface

Rust is one of the most widely used languages in blockchain systems and many popular blockchains 
including Solana, Polkadot, Aptos, and Sui are built with Rust. Rust frameworks such as Foundry are 
also highly preferred by developers of established chains including Ethereum.

Learning how decentralized apps work on popular Rust chains and also how to build your own 
blockchains – whether from scratch or using frameworks such as Substrate – is an important skill 
to have since all big dApps, at some point, end up moving to their own chains, also referred to as 
application chains.

This book is for developers who want to go deep and understand how Rust is used for building dApps 
and blockchains and add a new dimension to their Rust skills.

Who this book is for
This book is for blockchain and dApp developers, blockchain enthusiasts, and Rust engineers who 
want to step up their game by adding blockchain to their repertoire of skills.

What this book covers
Chapter 1, Blockchains with Rust, outlines the critical blockchain concepts that we will use in the book.

Chapter 2, Rust – Necessary Concepts for Building Blockchains, explores the critical Rust concepts that 
we will be using to build our own blockchain.

Chapter 3, Building a Custom Blockchain, lays the foundation and the building blocks for our own 
custom blockchain that we’re building from scratch.

Chapter 4, Adding More Features to Our Custom Blockchain, sees up build on our blockchain and add 
more features to it.

Chapter 5, Finishing Up Our Custom Blockchain, brings together all the individual blocks that we have 
built and combines them into a complete blockchain.

Chapter 6, Using Foundry to Build on Ethereum, explores Foundry, a Rust framework that can be used 
to build and deploy smart contracts on Ethereum.
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Chapter 7, Exploring Solana by Building a dApp, teaches you how to build a dApp for Solana.

Chapter 8, Exploring NEAR by Building a dApp, teaches you how to build a dApp for an upcoming 
blockchain, NEAR.

Chapter 9, Exploring Polkadot, Kusama, and Substrate, explores the basic concepts behind Substrate, 
which enables developers to build their own chains.

Chapter 10, Hands-On with Substrate, uses our knowledge of Substrate to build a custom blockchain.

Chapter 11, Future of Rust for Blockchains, discusses the future of blockchains with Rust.

To get the most out of this book
We’re assuming that you know your way around Rust and have knowledge of all its basic concepts.

Software/hardware covered in the book Operating system requirements
Rust 1.74.0 or higher Windows, macOS, or Linux
Cargo Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Rust-for-Blockchain-Application-Development. If there’s 
an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “rustup 
is the toolchain manager that includes the compiler and Cargo’s package manager.”

https://github.com/PacktPublishing/Rust-for-Blockchain-Application-Development
https://github.com/PacktPublishing/Rust-for-Blockchain-Application-Development
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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A block of code is set as follows:

pub struct Block {
    timestamp: i64,
    pre_block_hash: String,
    hash: String,
    transactions: Vec<Transaction>,
    nonce: i64,
    height: usize,
}

Any command-line input or output is written as follows:

brew install rustup

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words 
in menus or dialog boxes appear in bold. Here is an example: “Working with strings is straightforward 
in Rust, so it’s important to know the difference between the String type and string literals.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
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Share Your Thoughts
Once you’ve read Rust for Blockchain Application Development, we’d love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.
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Part 1: 
Blockchains and Rust

In this part, we will first get some knowledge about blockchains and some necessary Rust concepts 
that’ll help us in building a fully fledged blockchain.

This part has the following chapters:

• Chapter 1, Blockchains with Rust

• Chapter 2, Rust - Necessary Concepts for Building Blockchains





1
Blockchains with Rust

Blockchains have a lot of mystery around them, and only a few engineers have complete clarity of the 
inner workings and how disruptive they will be to the incumbent way of working for many industries.

With the help of this chapter, we want to tackle the very core concepts of blockchains. Since this is a book 
about using Rust for blockchains, we want to, at the same time, understand why Rust and blockchains 
are a match made in heaven. This will also provide us with insight into why some popular blockchains 
(Solana, Polkadot, and NEAR) have used Rust and why the latest blockchains to enter the market 
(Aptos and Sui) are also choosing Rust above any other technology that exists on the market today.

The end goal of this chapter is to provide a comprehensive understanding of the critical concepts 
around blockchains that will enable us to build a blockchain from scratch later in the book.

In this chapter, we’re going to cover the following main topics:

• Laying the foundation with the building blocks of blockchains

• Exploring the backbone of blockchains

• Understanding decentralization

• Scaling the blockchain

• Introducing smart contracts

• The future of the adoption of blockchains

Laying the foundation with the building blocks of 
blockchains
In this section, let's learn the most basic concept of blockchains—what a blockchain is made up of.

A blockchain can be imagined as a series of connected blocks, with each block containing a finite 
amount of information.
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The following diagram demonstrates this clearly with multiple connected blocks.

Figure 1.1 – Representation of a blockchain

Just like in a traditional database, there are multiple tables in which the data is stored sequentially in the 
form of records, and the blockchain has multiple blocks that store a particular number of transactions.

The following diagram demonstrates blocks as a store for multiple transactions:

Figure 1.2 – Blocks with transaction data

The question now is, why not just use databases? Why do we even need blockchains? Well, the main 
difference here is that there is no admin and nobody is in charge. The other significant difference is 
that most blockchains are engineered to be permissionless at the core (even though permissioned 
blockchains exist and have specific use cases at the enterprise level), making them accessible to everyone 
and not just to people with access.

Another equally substantial difference is that blockchains only have insert operations, whereas databases 
have CRUD operations, making blockchains inherently immutable. This also implies that blockchains 
are not recursive in nature; you cannot go back to repeat a task on records while databases are recursive.

Now, this is a complete shift in how we approach data storage with blockchains in comparison to 
traditional databases. Then there is decentralization, which we will learn about shortly and that is 
what makes blockchains an extremely powerful tool.

Web 3.0, another confusing and mysterious term, can, at a considerably basic level, be defined as 
the internet of blockchains. Until now, we have had client-server architecture applications being 
connected to each other. That was Web 2.0, but suddenly, with the help of blockchains, we will have 
a more decentralized internet. Even if most of this does not make sense right now, do not despair, 
for we have plenty to cover.
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In the following subsections, we will learn about things such as hashes, transactions, security, 
decentralized storage, and computing.

Blocks

The smallest or atomic part of any blockchain is a block. We learned in the previous section that 
blocks contain transactions, but that’s not all; they also store some more information. Let’s peel 
through the layers.

Let's look at a visual representation of the inner workings of a block:

Figure 1.3 – Connected blocks of a blockchain

In the preceding diagram, we notice that the first block is called the Genesis Block, which is an 
industry-standard term for the first block of the chain. Now, apart from transaction data, you also see 
a hash. In the next section, Hashes, we will learn how this hash is created and why it is required. For 
now, let's consider it to be a random number. So, each block has a hash, and you will also notice that 
the blocks are storing the previous hash. This is the same as the hash of the previous block.

The previous hash block is critical because it is what connects the blocks to each other. There is no other 
aspect that connects the blocks to make a blockchain; it’s simply the fact that a subsequent, sequential 
block holds the hash of the previous block.

We also notice a field called nonce. This stands for number only used once. For now, we need to 
understand that the nonce needs to be consistent with the hash for the block to be valid. If they’re 
not consistent, the following blocks of the blockchain go completely out of sync and this fortifies 
the immutability aspect of blockchains that we will learn about in detail in the Forking section. Now, 
as we go further, we will uncover more layers to this, but we’re at a great starting point and have a 
broad overview.
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Hashes

Hashes are a core feature of the blockchain and are what hold the blocks together. We remember 
from earlier that blocks store hash and previous hash and hashes are simply created by adding up all 
the data, such as transactions and timestamps, and passing it through some hashing algorithm. One 
example is the SHA-256 algorithm.

The following diagram shows a visual representation of data being passed to the SHA-256 algorithm 
and being converted into a usable hash:

Figure 1.4 – Data to SHA-256 hash

A hash is a unique fixed-length string that can be used to identify or represent a piece of data and a 
hash algorithm, such as SHA-256, is a function that computes data into a unique hash.

While there are several other SHA algorithms available (such as SHA-512), SHA-256 stands as the 
most prevalent choice within blockchains due to its robust hash security features and the notable fact 
that it remains unbroken to this day.

There are four important properties of the SHA-256 algorithm:

• One-way: The hash generated from SHA-256 is 256 bits (or 32 bytes) in length and is irreversible; 
if you want to get the plaintext back (plaintext being the data that we passed through SHA-256), 
you will not be able to do so.

• Deterministic: Every time you send a particular data through the algorithm, you will get the 
same predictable result. This means that the hash doesn’t change for the same data.

• Avalanche effect: Changing one character of the data, completely changes the hash and makes 
it unrecognizable.

• For example, the hash for abcd is

88d4266fd4e6338d13b845fcf289579d209c897823b9217da3e161936f031589

but the hash for abce is

84e73dc50f2be9000ab2a87f8026c1f45e1fec954af502e9904031645b190d4f.
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• The only thing common between them is that they start with 8. There’s nothing else that matches, 
so you can’t possibly predict how the algorithm represents a, b, or c, and you can’t work your 
way backward to either get the plaintext data or predict what the hash representation for some 
other data will look like.

• Withstand collision: Collision in hashing means the algorithm produces the same hash for 
two different values. SHA-256 has an extremely low probability of collision, and this is why 
it’s heavily used.

All of these properties of the SHA-256 are the reason why blockchains are the way they are.

Let’s understand the effect that these properties have by going over the following few points:

• Irreversibility translates into immutability in blockchains (transaction data, once recorded, 
can’t be changed)

• Determinism translates into a unique, identifiable hash that can identify a user, wallet, transaction, 
token, or account on the blockchain (all of these have a hash)

• The avalanche effect translates into security, making the system extremely difficult to hack since 
the information that’s encrypted can’t be predicted by brute force (running multiple computers 
to estimate incrementally, starting with a hypothesis)

• Collision tolerance leads to each ID being unique and there being an extremely high mathematical 
limit to the unique hashes that can be produced, and since we require hashes to represent various 
types of information on the blockchain, this is an important functionality

In this section, we have seen how the properties of blockchains actually come from the hashing 
algorithms, and we can safely say that it’s the heart and soul of a blockchain.

Transactions

Because of the previously mentioned properties of blockchains, storing financial data is one of the 
biggest use cases that blockchains are used for, as they have advanced security requirements.

A transaction is showcased through unspent cryptocurrency, or unspent transaction output (UTXO). 
This refers to unused coins owned by individuals logged on the blockchain for transparency. It’s 
essential to recognize that while UTXO is a key element in certain blockchains such as Bitcoin, it’s 
not a universal feature across all blockchain platforms.

The following diagram helps us visualize all the fields in a transaction:
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Figure 1.5 – The contents of a blockchain transaction

Let’s go through all the fields that form a Bitcoin transaction:

• Version: This specifies which rules the transaction follows

• Input counter:  This is the number of inputs in the transaction (this is just a count)

• Inputs: This is the actual input data

• Output counter: This is similar to the input counter, but it’s for keeping a count of the 
transactions’ output

• Output: This is the actual output data from the transaction

• Blocktime: This is simply a Unix timestamp that records when the transaction happened.

Initially, blockchains were primarily designed to record financial transactions within the realm of 
cryptocurrencies. However, as they evolved, blockchains demonstrated their versatility by finding 
applications beyond this initial purpose. Soon, we’ll delve into these additional uses.

But for now, it is important to understand that when we mention transactions, it does not strictly 
mean financial or currency-related transactions. Rather, in modern blockchains, a transaction is 
anything that changes the state of the blockchain, so any program that runs or any information that’s 
stored is simply a transaction.

Security

So, the main selling point for blockchains is that they’re extremely secure. Now, let’s understand why 
this is so:

• All the records are secured with cryptography thanks to the SHA-256 algorithm.

• The records and other blockchain data are copied to multiple nodes; we will learn about this 
in the Peers, nodes, validators, and collators section. Even if the data gets deleted in one node, 
it doesn’t mean that it’s deleted from the blockchain.
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• To participate as a node in the blockchain network, requiring ownership of private keys is essential. 
Private keys and secret codes known only to you, grant access to control your cryptocurrency 
holdings, sign transactions, and ensure security. Possessing private keys safeguards your digital 
assets and enables engagement in network activities.

• Nodes need to come to a consensus on new data to be added to the blockchain. This means 
bogus data and corrupted data cannot be added to the blockchain, as it could compromise the 
entire chain.

• Data cannot be edited on the blockchain. This means the information you have stored cannot 
be tampered with.

• They’re decentralized and don’t have a single point of failure. The bigger the network or the 
more decentralized the network, the lower the probability of failure.

We will learn about nodes, decentralization, validation, and consensus later on in this book, and all 
these points will be clearer.

Storage versus compute

Bitcoin introduced blockchain for the storage of financial transactions, but Ethereum took things a 
bit further and helped us imagine what it could be like if you could run programs on a blockchain. 
Hence, the concept of smart contracts was created (we will dig deeper into smart contracts later in 
this chapter, but you can think of them as code that can run decentralized on the blockchain).

Independent nodes could join a network for the blockchain and pool their processing power in 
the network.

According to Ethereum, they’re building the biggest supercomputer in the world. There are two ways 
to build the biggest supercomputer— build it centralized, where all machines will exist centrally in 
one location, or build a decentralized version where thousands of machines can be connected over 
the internet and divide tasks among themselves.

Ethereum enables you to process programs on the blockchain. This means anyone on the internet 
can build a smart contract and publish it on the blockchain where anyone else across the world can 
interact with the program.

This is the reason we see so many startups building their products on the Ethereum chain. After 
Ethereum, blockchains such as Solana, NEAR, and Polkadot have taken this idea much further and 
brought many new concepts by improving on Ethereum. This book is going to deal with all three of 
these blockchains.
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Exploring the backbone of blockchains
This section is a deep dive into what makes blockchains so special. We will cover topics such as 
decentralization, forking, and mining, and we will understand how peers interact in a network and 
how the blocks are validated. Let’s dive in.

Decentralization

From a purely technical standpoint, Web 1.0 started with a client-server architecture, usually monoliths. 
When traffic and data started increasing, the monolithic architecture couldn’t scale well. Then, with 
Web 2.0, we had concepts such as microservices and distributed systems,which helped not only 
scale systems efficiently but also enhanced resilience and robustness, reduced failure instances, and 
increased recoverability.

The data was still centralized and private and the systems were mostly centralized, meaning they still 
belonged to a person/company and admins could change anything. The drawbacks were the following:

• A failure at the company’s end took the system down

• Admins could edit the data and block users and content from platforms

• Security was still not prioritized, leading to easy data hacks, although this could vary depending 
on the company’s approach to safeguarding information

• All the data generated on the platform belonged to the platform

• Content created and posted on a platform became the property of the platform

Web 3.0 ushers in a new age of decentralization that is made possible with blockchains where the 
entire blockchain data is copied to all the nodes. But even distributed systems had nodes and node 
recovery, so the question is, how is this any different?

Well, in the case of distributed systems, the nodes still belonged to the centralized authority or the 
company that owned the platform, and nodes were essentially their own servers in a private cloud. 
With decentralized systems, the node can be owned by another entity, person or a company other 
than the company that developed the blockchain.

In fact, in a blockchain network, having nodes owned by different companies is encouraged and this 
increases the decentralization of the network, meaning there is no real owner or authority that can 
block content, data, or users out and the data is accessible to all the nodes since all of them can store 
a copy of the data.

Even if one node goes down, there are others to uphold the blockchain, and this makes the system 
highly available. Advanced communication protocols among the nodes make sure the data is consistent 
across all the nodes.
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Nodes are usually monetized to stay in the network and to uphold the security of the network (we 
will read more about this in the next section). Nodes also need to come to a consensus regarding the 
next block that’s to be added to the chain. We will also read more about consensus shortly.

Peers, nodes, validators, and collators

In this section, we will further build upon the knowledge we have gained in the past few sections. A 
blockchain does not exist in isolation; it is a peer-to-peer network, and all full nodes save the complete 
copy of the blockchain, while some blockchains also permit other types of nodes that maintain state 
without necessarily possessing a full copy.

In the following diagram, we see this in a visual format:

Figure 1.6 – Multi-node networks

So, let’s dig a layer deeper. Nodes are listening to events taking place in the network. These events are 
usually related to transactions. It is important to reiterate that a transaction is anything that changes 
the state of the system.

As we know, a block contains the information of multiple transactions.

The following diagram shows a block with some example transactions:

Figure 1.7 – Transactions finalized to a block
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Once a new block is added by a node, which is known as mining, this new event is advertised to the 
entire network. This is visually represented in the following diagram:

Figure 1.8 – The created block is advertised

Once the new block is advertised, the rest of the nodes act as validators that confirm the outputs 
of the transactions once the block has been validated by the rest of the nodes. The nodes come to a 
consensus that yes, this is the right block that needs to be added to the chain. We can visualize this 
with the help of the following diagram:

Figure 1.9 – Other nodes validate the block data

The new block is then copied to the rest of the nodes so that all of them are on the same page and added 
to the independent chains being maintained at each node. This can be seen in the following diagram:

Figure 1.10 – A block gets finalized
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Once the blocks are added to the node, and the blockchain at each node is updated on any other node. 
Another block could be listening to all the new transactions that have happened, and these are then 
collated onto a block and the entire process then repeats.

The following criteria vary from blockchain to blockchain in terms of the following:

• The number of transactions that the block will store

• The mechanism that nodes use to collate the transactions (time-based or number-based)

• The validation mechanism

• The consensus mechanisms

Contemporary chains improved upon the Bitcoin and Ethereum blockchains by varying and innovating 
on either all or some of these criteria, but the consensus mechanism is something that is most often 
innovated upon. This is done to try and save the time required for new nodes to be added and copied 
by the entire network, which is what really slows down the network.

We learned earlier that the nodes need to be incentivized to stay in the network and keep adding the 
blocks to the chain. In chains such as Ethereum, this is achieved using gas fees, which are simply 
small fees that users pay to carry forward their transactions. We know that blocks can contain only 
a few transactions, and if the users want their transactions to get priority, they need to pay gas fees.

The gas fee depends on what other users are willing to pay to get their transactions forwarded; the 
higher the gas fee, the higher the chance of getting your transaction accepted. Think of gas fees as the 
rent that the nodes get paid for the users to use the nodes’ processors to process and validate their 
transactions. The words peers and nodes are used interchangeably, and validators and collators can 
also be used interchangeably depending on the blockchain you are on.

Consensus

In the last section, we learned that a node listens to transaction events, collates these transactions, 
and creates a block. This is called mining. After a block is mined, other nodes need to validate it and 
come to a consensus.

In this section, we want to peel the layers of consensus to understand it deeply. Understanding the 
mechanics behind some popular consensus mechanisms will help us to learn by running through 
actual examples, rather than learning in an abstract way. So, let’s understand some of these concepts:

• Proof of work (PoW): Nodes need to solve a particular cryptography problem (we will look at 
this in detail in the Mining section), and the node with the highest processing power is usually 
able to solve faster than others. This keeps the system decentralized but increases electricity 
consumption by a huge amount. It’s not considered to be very efficient and is even considered 
bad for the environment, as it increases power wastage since all the nodes are up against each 
other trying to solve the problem. Examples are Bitcoin, Litecoin, and Dogecoin.
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• Proof of authority (PoA): This is a consensus mechanism in blockchain where transactions 
and blocks are verified by identified validators, typically chosen due to their reputation or 
authority. Unlike energy-intensive mechanisms such as PoW, PoA offers efficiency by requiring 
validators to be accountable for their actions. It’s commonly used in private or consortium 
blockchains, ensuring fast transactions and reducing the risk of malicious activities. However, 
PoA’s centralized nature may raise concerns regarding decentralization and censorship resistance 
compared to other consensus methods.

• Proof of stake (PoS): Nodes need to buy stakes in the network—basically, they buy the 
cryptocurrency native to the network. Only a few nodes with a majority stake get to participate 
in the mining activity in some cases. This is highly power efficient, and this is the reason why 
Ethereum recently switched from PoW to PoS. However, it is considered to be less decentralized, 
as only the nodes with enough resources get to add the next blocks and it can be seen that some 
big players have been slowly taking ownership of the majority of the network since Ethereum 
switched to PoS. The main benefit of PoS is that since nodes have a stake in the system, they 
are de-incentivized to add unscrupulous blocks to the chain. Since the copy of the chain exists 
with all the nodes of the entire network, the nodes are running the software of the blockchain 
where the output hashes need to be consistent with the rest of the chain. Hence, when a node 
tries to add the wrong block, the rest of the nodes do not validate this block, and if such a 
scenario takes place, these nodes are then penalized where the amount of native cryptocurrency 
owned by the node that is taken away can differ depending on the seriousness of the violation. 
Generally, this penalty entails a partial loss of funds rather than a complete forfeiture of all 
holdings. Some examples are Cardano, Ethereum, and Polkadot.

• Proof of burn (PoB): Burning is a process where cryptocurrency is sent to a wallet address 
from which it’s irrecoverable. The nodes that can burn the highest amount of cryptocurrency 
get to add a node. Miners must invest in the blockchain to demonstrate their commitment 
to the network. Even though PoB is the most criticized consensus model, it can actually be 
highly effective for some blockchains that want to ensure deflationary tokenomics. Slimcoin 
is an example of PoB.

• Proof of capacity: In this consensus mechanism, the nodes with the highest storage space get 
to add a node. This means that the nodes that partake in the network can use their hard drive 
space to compete with each other to win the mining rights. An example is Permacoin.

• Delegated PoS: Participants in the network, such as end users buying cryptocurrency, can stake 
their coins in a pool, and the pool belongs to a particular node that can add blocks to a chain. 
The more tokens you stake, the bigger your payout. Examples are EOS, BitShares, and TRON.

In this section, we’ve developed a rich understanding of consensus mechanisms, and this will help us 
throughout the book, especially while building the blockchain.
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Mining

By now, we have a very basic idea of what mining is and why it’s necessary. In this section, we will dive 
into the specifics of mining. Mining happens quite differently in different consensus mechanisms. We 
will look at mining for the two major consensus mechanisms: PoW and PoS. For instance, in PoS, let’s 
consider the example of Ethereum 2.0, where validators are chosen to create new blocks and secure 
the network based on the amount of cryptocurrency they hold and are willing to “stake” as collateral.

In a PoW blockchain, to add a block to the blockchain, a cryptographic problem needs to be solved. 
The node that comes up with the solution first gets to win the competition. This means that nodes 
with the highest computational power usually win and get to add a block.

The blockchain’s cryptography challenge adjusts in complexity over time to ensure consistent block 
creation. Nodes predict a specific hash, focusing on a segment that aligns with the existing blockchain, 
maintaining chain coherence.

Nodes employ a nonce, a unique value, to address the challenge. Incrementing from zero, this value 
is adjusted until a matching hash is computed, pivotal for generating a valid hash in line with the 
network’s rules.

Solving the cryptographic problem validates transactions and creates new blocks. A successful node 
broadcasts its solution, swiftly verified by others. The first to find a valid solution is rewarded with 
newly minted cryptocurrency, incentivizing participation and bolstering network security.

The following diagram shows the different fields that add up to produce a hash:

Figure 1.11 – All the data that makes up a hash
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Now, this means the following:

• This can only be solved with brute forcing, iterating from zero to a particular number, and 
cannot be solved smartly

• All the nodes in the network compete with each other regardless of whether they ever win, and 
this means a lot of computational energy gets wasted

• Nodes need to keep upgrading their computational power to win the competition

Now that we understand what mining is and how it works, it’s time to learn about forking—an 
important blockchain concept.

Forking

There is one small detail about blockchains that we have talked about but haven’t discussed in detail yet, 
and that’s immutability. In one of the earlier sections, we learned how SHA-256’s properties translate 
into immutability for blockchains. This means all transactions that happen on-chain are immutable, 
and tokens once sent from one account to another cannot be reversed unless an actual transaction is 
initiated from the second account.

In traditional payment systems, this is not the case. If money is sent to the wrong account by mistake, 
this can be reversed, but this feature has been manipulated by centralized authorities and therefore 
immutable transactions are valued highly.

Let’s take as an example the decentralized autonomous organization (DAO) attack in 2016 that led 
to $50 million being stolen from the Ethereum blockchain due to a code vulnerability. The only way 
to reverse this was to create an entire copy of the chain where this particular transaction didn’t take 
place. This process of creating a different version chain is simply called forking. This event divided the 
blockchain between Ethereum and Ethereum Classic.

The following diagram demonstrates what forking looks like:

Figure 1.12 – Forks in a blockchain

Forking also comes into use when rules for the blockchain need to be modified. Traditional software 
gets upgraded and new updates and patches are applied, whereas the way to upgrade a blockchain is to 
fork (though some blockchains such as Polkadot have invented mechanisms to have forkless upgrades).
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Forks typically occur intentionally, but they can also happen unintentionally when multiple miners 
discover a block simultaneously. The resolution of a fork takes place as additional blocks are appended, 
causing one chain to become longer than the others. In this process, the network disregards blocks 
that are not part of the longest chain, labeling them as orphaned blocks.

Forks can be divided into two categories: soft forks and hard forks.

A soft fork is simply a software upgrade for the blockchain where changes are made to the existing 
chain, whereas with a hard fork, a new chain is created and both old and new blockchains exist side 
by side. To summarize, both forks create a split, but a hard fork creates two blockchains.

Permissioned versus permissionless

Blockchains can be permissionless or permissioned depending on the use case. A permissionless 
blockchain is open to the public with all transactions visible, but they may be encrypted to hide some 
crucial details and information if required. Anyone can join the network, become a node, or be a 
validator if the basic criteria are met. Nodes can become a part of the governing committee as well once 
they can meet additional requirements, and there are no restrictions on who can join the network. You 
can freely join and participate in consensus without obtaining permission, approval, or authorization.

Most of the commonly known blockchains, such as Ethereum, Solana, and Polkadot, are all permissionless 
chains and are easily accessible. Their transaction data is publicly available. So, a perfect use case for 
permissionless chains is hosting user-facing and user interaction-based applications.

Permissioned chains have gatekeepers that define a permission, approval, or authorization mechanism 
that only a few pre-authorized nodes can operate. So, to be a part of the permissioned blockchain 
network, you may need a special set of private keys and may also need to match some security 
requirements. Since the nodes copy the entire data of the chain and are also involved in adding blocks 
to the chain and being a part of the governing committee for the blockchains, some use cases where 
data and information need to be kept private can use permissioned chains.

The following diagram shows the difference between a public and a private blockchain network:

Figure 1.13 – Permissioned versus permissionless chains
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Governments, institutions, NGOs, and traditional corporations have found plenty of use cases for 
permissioned chains, where only a few actors trusted by the centralized authorities are permitted to 
join the network. Permissioned blockchains also have multiple business-to-business use cases and 
may be centrally stored on a single cloud provider.

Blockchains help us decentralize computing and resources, and we have been using the word 
decentralization quite often. In the next section, we will understand the concept of decentralization 
in more depth.

Understanding decentralization
Decentralization is the guiding principle for Web 3.0. It’s designed to create a win–win environment 
for the builders of a platform, the people that build on the platform decentralized applications 
(dApps), and the people that interact with the platform (users of dApps).

Let’s try and understand why decentralization is so important. In 2013, Twitter had a centralized 
developers platform where developers could use their APIs to build apps on the Twitter platform. 
A few years later, Twitter stopped the API support and also brought in a few restrictions, and every 
few months, the API’s terms and conditions would change. This affected many app developers who 
were either banned from the platform due to the restrictions or were unable to stay up to date with 
the changing terms for API usage.

Similarly, Facebook had an app developer program as well, which many developers built their apps with. 
However, developers faced similar problems here as well, and this problem is quite common wherever 
a centralized platform is involved. Play Store and App Store can ban any app from their platform, and 
Amazon can decide which sellers can sell and Uber can decide which drivers get more rides.

The issue is not just about getting banned from the platform and the policy changes, but it’s also about 
monetization. For example, the Apple App Store can take about 30% of the entire revenue from app 
developers. To prevent institutions, banks, and governments from curbing the freedom of individuals 
and communities, decentralization is a popular solution that ensures everyone gets a voice and a few 
owners of the platform do not end up controlling the entire platform.

It’s shared ownership where the ownership of the platform is not held closely by the founding team 
or the committee; rather, it belongs to the community at large where each user can hold tokens and 
gets a say in the system. We will read about this further in the DAOs section.

A blockchain network implements decentralization in a highly efficient manner, and this is why it’s 
the primary technology for a decentralized use case.

So, now that we have a clearer understanding of decentralization, let’s dig into some of the concepts 
that are closely related with decentralization that make it possible.
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Replication

Replication is at the core of decentralization. Multiple copies of the same data exist at different 
participatory nodes. If one of the copies gets corrupted, there are other copies to reference the final state 
of the data. If one of the participatory nodes fails completely, there are mechanisms by which a new 
node can be appointed to take its place, and this ensures that the entire network can’t go down easily.

Even if the network does go down, recoverability is way easier when the data is replicated as opposed 
to having a centralized store of data. In decentralized systems, both the data and the power to govern 
the system can also be decentralized. This means that multiple nodes that have access to and copies 
of the data or that simply have a stake in the network can come to a consensus on the new data that 
gets added and how the network behaves/can be improved.

This leads us to the next important topic of governance.

Governance

Every blockchain follows a unique way of governance, but, in general, blockchains are governed by 
token holders that can be users, developers, investors, the founding team, or nodes. Governance tokens 
are issued to reward the loyalty of token holders and are usually issued when they have a high stake 
in the network. Owners of governance tokens can propose changes and vote for the implementation 
of those changes to the protocol.

Each governance token is equal to one vote, so this leads to a very fair and just system, as the holders 
with more stake in the network get more influence. The details of each vote are publicly available 
for all to see. Blockchain networks sometimes suffer from the whale problem, where some network 
participants end up holding most of the tokens. This can lead to the network becoming more centralized 
than expected. In most cases, whales end up being the founding team, and votes are cast to push the 
agenda of the founding team. This ends up centralizing the network.

For a blockchain network to be more effective, it is important to ensure a fair distribution of tokens to 
ensure decentralization. Governance usually aims to ensure that the blockchains update continuously 
and the protocols align with the right direction. However, it’s worth noting that in certain cases, due to 
the influence of governance token holders, updates might not occur, potentially causing a divergence 
from the intended path.

Cryptocurrencies and gas fees

In the earlier sections, we read about cryptocurrencies and gas fees, and now that we have preliminary 
knowledge of blockchains, it’s a great time to understand this topic even better. We will look at 
cryptocurrencies and gas fees from a slightly different perspective to get a more wholesome understanding 
of the topic.
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Cryptocurrency is simply a currency that’s cryptographically secure and is backed by a blockchain. 
Since a hashing algorithm is used to create hashes in a blockchain and this secures the blockchain 
cryptographically, using blockchains to store currency-related financial information makes a currency 
a cryptocurrency.

Blockchain can be thought of as a distributed ledger, and therefore it is referred to as distributed 
ledger technology (DLT). This is where a ledger is being maintained for the transactions that are 
being recorded, but also, multiple copies of the ledger exist with different nodes.

Since multiple copies of this ledger exist with multiple different nodes, the nodes must commit their 
storage space for this ledger. We also learned that when the blocks are mined, substantial processing 
power is utilized (PoW). This implies that nodes also need to commit processors along with storage space.

Since in this section we have focused on decentralization, it is important to understand that the higher 
the number of independent nodes that maintain a copy of the ledger and participate in the mining of 
new blocks, the more decentralized the network is. Hence, it makes it more trustworthy for developers 
and users to either build on this or interact with it respectively.

To keep the nodes incentivized to dedicate substantial storage and processing resources to the network, 
we need to pay them a fee or reward them with new tokens, which is simply gas fees. We’ve read a 
little about this in the previous sections.

The gas fee is paid out to the nodes in simply the native cryptocurrency of the blockchain. For 
blockchains to be effective, a coin that represents some limited digital asset is introduced. Please note 
that coins and tokens have various similarities, but they also have differences, and we will learn about 
them in one of the later sections.

In this section, we have filled in many gaps in our knowledge. It is now clear to us that for blockchains 
to be effective, they need to be decentralized, and for them to be decentralized, they need to have more 
nodes in the network. If we’d like the nodes to dedicate resources, they need to be incentivized, and if 
they want to be incentivized, we need them to have some monetary benefit that can be created with the 
help of a coin. This is a cryptocurrency, as it is secured by a blockchain for which security originates 
from a hashing algorithm. This is a cryptography hashing algorithm, hence the term cryptocurrency. 
While the compensation given to nodes for their role in maintaining the system and keeping the 
records safe is referred to as a gas fee.

Decentralized platforms

In traditional Web 2.0 platforms, the data, as soon as uploaded or created by the users, legally 
belongs to the platform. Every time a user logs into a traditional Web 2.0 platform, the request for 
authentication is sent to the centralized server with a centralized database, both of which are entirely 
owned by the platform. The platform can decide if a user can stay on the platform or is asked to leave. 
This centralizes ownership and control.
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Now, the platform has complete ownership rights over all the data that is generated by the users that 
use the platform.

Since the platform is the owner of the data, the platform is responsible and is also incentivized to 
keep the data secure.

But since the data is users’ data, it’s actually the users that stand to lose the most when the data actually 
gets hacked or stolen.

We have seen this pattern multiple times in the past; platforms get hacked often and user data is stolen 
and sold by hackers for a small profit.

So, even though the platform is incentivized to secure the data, the platform doesn’t really stand to 
lose much when it’s stolen, and therein lies the problem.

In addition to this, the platforms also sell this data themselves to third parties or use the data for 
advertising to these users, sometimes without consent. This further deteriorates the user experience 
and trust in the platform.

Web 3.0 re-imagines this model; the data instead stays with the user and they can choose to hold it in 
their own secure wallet and use this wallet as an authentication mechanism on different platforms. 
This means they can take their data with them.

This means that there’s no central ownership over the data and no control over the rules of the platform, 
as the data exists with multiple nodes. Multiple nodes can vote for governing the network. This creates 
a healthy ecosystem for developers to come and build decentralized applications on the platform that 
will further attract even more users. At the beginning of this section, we read that decentralization 
creates a win–win solution for all the parties involved, but we hadn’t understood why. Now we know 
the reason.

The whole purpose of Web 3.0 and decentralization is to create healthy, secure ecosystems where more 
people trust the system inherently, not because they trust the central authority that controls the system 
but because they trust the mechanism and processes around how the system is set up.

So, to summarize, in Web 2.0, the tagline was Don’t be evil (this is Google’s famous tagline), meaning 
that even though the platform owns the data and is responsible for securing it, everything depends on 
the trust that users have in the platform. This trust has been exploited multiple times, whereas in Web 
3.0, the motto is Can’t be evil since the system is set up to not have a central authority. This means it’s 
built on a zero-trust system where users don’t have to trust the platform since the system takes care 
of the fact that the platform never ends up owning users’ information.

Tokens versus coins and ICOs

We learned that cryptocurrencies are created to incentivize the nodes in a network to dedicate their 
storage and processing resources. These native cryptocurrencies running on original chains and their 
forks are considered coins.
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All native cryptocurrencies, without exceptions, run on their own blockchains and have an intrinsic 
value that’s linked to multiple factors, with the efficiency and security of the underlying blockchain 
being two of the primary ones.

Tokens, on the other hand, don’t need an underlying blockchain and can be used by the following:

• Technology projects to raise capital

• Technology companies to represent digital assets

• Corporations, institutions, and individuals to represent a real-world resource in the digital world

Now, let’s discuss these three use cases in order.

The first use case is for technology projects when the technology required to be built is complex or 
advanced and will require some runway expenses for the team to research and build the project.

For early-stage and research-driven tech projects, raising capital from the general public is not an 
option, as that space is highly regulated.

So, instead of raising capital from traditional venture capitalists, such tech projects can leverage initial 
coin offerings (ICOs) to raise capital wherein a particular amount of tokens are generated. A small 
percentage of these are distributed among the founding team, developers, and some early-stage users. 
After this distribution, the majority that are left are purchased by the next set of users.

When users buy the token, they are essentially buying into the vision of the tech project and funding 
the runway required to build it. This process can be likened to a crowd-funding process.

The second use case is related to representing digital assets, such as the following:

• Smart contracts to indicate property ownership, mortgages, and digital identity

• Non-fungible tokens (NFTs) to represent art, music, in-game assets, and so on

We will learn about both in the next section.

The third use case is related to representing real-world, physical resources and assets in the digital 
world. Tokens have the perfect use case for this. Real estate assets, crops, medicines, and so on can be 
tokenized in the digital world and represented on the blockchain. They can then be traded between 
users, each trade representing an actual transfer of value between the users.

The presence of blockchain ensures that the immutable ledger is maintained and updated, and the 
immutability and cryptographic security provided by the blockchain bring trust in trading such 
physical assets digitally. This opens the possibility of cross-border transactions and trades since such 
transactions are scalable digitally.



Understanding decentralization 23

Smart contracts and NFTs

In the Tokens versus coins and ICOs section, we learned how tokens can be used to create smart 
contracts and NFTs. Now, let’s discuss what these are in a little more detail. It is important for us to 
understand them because as a blockchain developer, you will be creating smart contracts and even 
NFTs all throughout your career.

Let’s first tackle smart contracts. For a real-world, regular contract to take place, there is a governing, 
intermediary body such as a bank, legal authorities, or the government. This is basically an entity that 
has some enforceable power in the real world in case the parties signing the contract do not hold up 
their end of the bargain.

In the case of smart contracts, there is no intermediate party. Instead, there’s just a program/computer 
code that runs on the blockchain, and this code is cryptographically secure and immutable (the two 
properties that are induced due to the SHA-256 algorithm).

The smart contract ensures that none of the parties can back out of the contract or make any changes, 
and it also ensures that the parties hold up their end of the bargain without involving any manual 
intervention or human beings and institutions as authorities and witnesses.

Irreversible, immutable smart contracts are objective in nature, whereas regular contracts can be 
highly subjective in nature because the differences in interpretations of the contract usually lead to 
discord and conflict.

We mentioned that a smart contract runs on a blockchain, but how does that actually work? A smart 
contract gets its own hash, which is used to recognize it, and once the smart contract is executed 
in a particular way with different values, you get a different application binary interface (ABI) 
(a representation of your contract to be called from the external world). This is what’s stored onto 
the blockchain.

Let’s walk through a use case example to understand how this actually functions. Let’s say there are 
two parties involved. The first is a corporation that wants to transfer some stocks to an individual who 
works in that firm but the firm wants these stocks to be transferred based on the number of months 
that the individual works at the firm rather than all at once. This process can be completely automated 
with a smart contract that can be integrated to send push events to the stock vesting service based 
on a CRON script that runs every few months based on the frequency and schedule mentioned in 
the contract.

Now, this brings in a lot of trust between the corporation and the employee who will be given the 
stocks since there is no intermediary who can be swayed. There is just a computer program that gets 
executed and is immutable. Now that we have a solid understanding of smart contracts, let’s dive into 
NFTs, which are simply an extension of smart contracts.

In the previous section, we read that NFTs can be used to represent art, music, and in-game assets. 
Now, let’s understand how that works. NFTs are non-fungible tokens, meaning they are different 
from regular tokens that are fungible.
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Although each NFT is distinguishable from another, they can be exchanged with each other. The fact 
that they are distinguishable makes them non-fungible, not their exchangeability.

We can convert images such as a JPEG file into an NFT by assigning it a hash, and this process is 
called tokenization. Each NFT token has a unique hash and it cannot be exchanged since each NFT 
is associated with only one unique hash.

But we know that a crypto token is fungible and can be exchanged (if you have one crypto token and 
your friend has one crypto token and you exchange them, it doesn’t matter because those tokens aren’t 
unique, thereby making them fungible).

Since you can assign unique hashes to NFTs, this means you can represent real-world contracts in 
the digital world using NFTs. This is quite different from a smart contract, which isn’t a real-world 
contract and has no authorities involved.

DAOs

In the previous sections, we learned how real-world assets can be represented in the real world with 
tokens and NFTs, but what if we applied the same concept to organizations and corporations?

Using blockchain, we can imagine a different future for organizations where the power will not be 
centralized. Currently, many issues can be pointed out in organizations that are centrally run by just 
a handful of people. Such organizations can sometimes work against the society and the community.

But here’s a revolutionary thought: what if an entire community takes up the responsibility of running 
an organization? This means tokens would be issued to the people from this community and they 
would represent ownership. Some of these tokens would be governance tokens and would have more 
weight in the voting process.

An elaborate voting process would take place for critical decisions, and the voting weightage would 
be based on the tokens you hold.

All of the decisions resulting from the voting process would be made public and the rest of the 
community that has regular tokens and not governance tokens would be apprised of the updates.

The public would also decide to buy these tokens and take up a seat at the table for governance.

Building such a community-led organization would ensure that the decisions are always taken for the 
benefit of a very small percentage of society. Since all the decisions are available on a public blockchain, 
they are mostly irreversible, so all the promises made by corporations would need to be fulfilled.

This model of organization is known as a decentralized autonomous organization (DAO).

This is a great model to run a highly democratic organization, and it is thought that even governments 
can run like this.
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This presents us with a completely digital way to run a real-world organization fully remotely. Currently, 
many companies are experimenting with this model. It is important to note that the DAO model is 
not currently completely free of issues and vulnerabilities, and the factors that affect organizational 
decision-making in the real world can also affect DAOs. It is an evolving model and something that’s 
widely agreed upon as the future.

Non-censorable apps

Decentralization makes it extremely difficult to censor information since multiple copies of the same 
information exist, and it also makes it significantly more difficult to spread fake news and propaganda, 
as facts can be recorded on a blockchain. The facts are immutable, as the information cannot be 
changed later.

A significant number of dApp developers are focusing on creating Web 3.0 versions of apps such as 
Twitter, Reddit, and Quora where posts cannot be taken down by admins, firstly because there would 
not be any admins since the app would be community-driven and secondly because the information 
would be immutable so there would be no edit or delete functions. This enables true freedom of 
expression on an unprecedented scale.

So, now we have clarity on how information on apps can be resistant to censorship, we can go beyond 
by making websites and web apps censorship-resistant at the fundamental level.

This means that it shouldn’t be easy to take down websites by just restricting traffic to them. This is 
made possible by decentralized storage platforms such as Arweave and EmbassyOS, where independent 
individuals can buy special physical storage devices.

These storage devices can be used to store the websites on their own devices rather than on a cloud 
server, making it significantly more difficult to take websites down.

Digital assets with real-world limits

Blockchains would only matter to the common man if they’re able to affect the real world or our daily 
lives. So, let’s learn about how blockchains model real-world limits and how blockchains can be used 
to represent real-world resources.

Up until now, we’ve never had a way to represent real-world resources in a digital format, but blockchain 
and tokenization enable this for us. It’s important to discuss this, as it opens tons of possibilities, so 
let’s walk through a few use cases to understand it better.

Let’s say there’s an apartment in Japan with 1,000 square meters of space. If you want to buy this 
apartment, you must buy it as a whole, and you also need to meet a lot of criteria, such as being a 
resident of Japan. But what if there was a way to not buy the entire apartment and buy only a fraction 
of the apartment? With tokenization, this is made possible.
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This is how the process works: a tech enablement company acquires this apartment and tokenizes 
the square meters. Each token represents one square meter of the apartment, and this currency is 
restricted to 1,000 tokens (since the total space of the apartment is 1,000 square meters). This total 
limit cannot change since it’s backed by a blockchain, and now these tokens can be purchased by 
anyone in the world.

This means that if you want to buy just two square meters of that apartment in Japan, you must buy 
two tokens. The benefit of this is that you can invest in the real estate market of Japan and the growth 
that Japan will see in the coming years by just buying the token. This opens the market up for multi-
ownership models and removes long processes from the equation. Since these tokens can be traded, 
all trades will be recorded on the blockchain, and the latest ownership state will be maintained and 
updated. This same concept can be applied to many other things in the real world, and right now, we’re 
just at the cusp of a new wave of tech enablement that may end up changing our reality for the better.

We now know that blockchains have a lot of use cases, and for blockchains to be truly adopted, we 
need blockchains that can process a lot of transactions and handle a lot of users. In the next section, 
let’s look at how blockchains can be scaled to handle millions of transactions and users with ease.

Scaling the blockchain
Multiple nodes are involved in a blockchain network, and the number of nodes determines the 
decentralization coefficient, or the Nakamoto coefficient.

The Nakamoto coefficient measures the number of nodes required to maintain healthy decentralization 
in the network. This means the higher the number of nodes, the higher the Nakamoto coefficient.

Now, we know that all of the nodes in a blockchain network not only need to be aware of the transactions 
that are taking place in the network but also need to process these transactions and communicate 
with the other nodes to reach a consensus on the block to be finalized.

Since so many operations are taking place between the nodes in a network at any given point in 
time, it makes it difficult to scale transactions beyond a particular point. For example, the limit for 
Ethereum is 20 transactions per second. Many new blockchains are trying to solve this problem, and 
some companies are trying to solve this problem for existing blockchains such as Ethereum using 
some innovative solutions. In this section, our focus will be the problem of scalability.

In the next few sub-sections, we will cover the factors affecting blockchain scalability and some 
solutions to help scale blockchains with ease.

The blockchain trilemma

Before we dive deeper into scalability and look at the factors affecting it and its possible solutions, we 
first need to understand the blockchain trilemma, as just looking at scalability in isolation and solving 
for scalability does not provide us with an efficient solution.
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Three different elements are highly desirable in blockchains: decentralization, security, and scalability. 
The blockchain trilemma states that as a blockchain network evolves, it becomes difficult to maintain 
all three of these traits, and usually there’s an imbalance. One of the traits ends up being more dominant 
than the other two, and trying to enhance the others may end up weakening the dominant one.

The more nodes in the network, the higher the decentralization, but the scalability (number of 
transactions) goes down, as all nodes need to process these three elements and come to a consensus. 
Also, security can be more easily compromised since there are more points of entry.

So, to address scalability without affecting the other two elements and solving the problem effectively, 
we have a few options. We will go over them now.

Sharding

Blockchain sharding is a technique used to scale blockchain networks and improve their performance 
by dividing the network into smaller, more manageable components called shards. Each shard is like a 
separate blockchain with its own set of validators and transaction history, but they are all interconnected.

The primary goal of sharding is to increase the transaction processing capacity of a blockchain network 
by enabling parallel processing. In a traditional blockchain, every node in the network has to process 
and validate every transaction, which can result in bottlenecks as the network grows larger. Sharding 
overcomes this limitation by dividing the network into smaller shards, each capable of processing a 
subset of the total transactions.

Here’s a simplified explanation of how blockchain sharding works:

• Shard creation: The blockchain network is divided into multiple shards, with each shard assigned 
a subset of accounts or addresses. For instance, one shard could manage transactions related 
to addresses starting with the letter A, while another shard takes care of addresses starting 
with the letter B, and so forth. However, when considering sharding methods, the approach 
described resembles range partitioning, where data is distributed based on predefined ranges 
or categories. However, there are alternative methods such as hashing. Hash-based sharding 
involves distributing data across shards based on the outcome of a hash function applied to the 
data, offering a different way to achieve load distribution and network efficiency.

• Shard processing: Each shard operates independently and processes transactions related to the 
accounts or addresses assigned to it. This allows for parallel processing of transactions within 
each shard, significantly increasing the overall transaction throughput.

• Cross-shard communication: Since transactions can involve accounts or addresses from 
different shards, a mechanism is needed for communication between shards. This is typically 
achieved through a cross-shard communication protocol, where transactions that affect multiple 
shards are coordinated and validated.
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• Consensus and security: Each shard has its own set of validators responsible for validating 
transactions within that shard. This means that the consensus mechanism of the blockchain 
network must be designed to handle cross-shard transactions and ensure the overall security 
and integrity of the network.

• Shard coordination: To maintain the consistency of the blockchain across shards, some form 
of coordination is required. Techniques such as cross-links, where the state of one shard is 
included in the block of another shard, or periodic checkpoints can be used to synchronize 
the shards and maintain a consistent global state.

By implementing sharding, blockchain networks can achieve higher transaction throughput, lower 
latency, and improved scalability. However, sharding introduces additional complexity in terms of 
shard coordination, cross-shard communication, and consensus mechanisms. Designing an efficient 
and secure sharding solution is an active area of research and development in the blockchain space.

Interoperability

Interoperability is an interesting concept and has multiple implications. An indirect implication of 
interoperability can be scalability. Each blockchain has its own set of data, digital assets, and tokens 
stored on the chain, but if a user wants to move this data to another chain, there can be various 
migration and compatibility issues.

Interoperability is when you have different blockchain protocols built with different technologies and 
their own way of operations to work together and exchange resources and assets seamlessly.

A lot of companies are trying to solve the interoperability problem by building bridges that make it 
possible to transfer assets across multiple blockchain networks. This also means that if a blockchain 
is unable to scale beyond a particular point in terms of storage of assets and transactions, these can 
be shipped off to other chains.

Consensus for scale

The developers of Solana figured out that the consensus mechanism of the chain itself can be a factor 
that limits the scalability of the network.

Solana has implemented a novel Proof of History (PoH), which is used in tandem with practical 
Byzantine Fault Tolerance (PBFT). PBFT addresses Byzantine Faults, where malicious nodes can 
disrupt consensus. By integrating PoH, which cryptographically validates time passage and event order, 
Solana streamlines the chronology crucial for Byzantine Fault Tolerance. However, this integration 
adds complexity, as each node needs to execute sophisticated software for consensus participation.

Using PoH enables Solana to theoretically process 65,000 transactions per second (TPS) (currently, 
it is around 3,000 TPS) as opposed to the 20 TPS provided by Ethereum. This proves that innovating 
with different consensus mechanisms can enhance the speed and scalability of a network.
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Parallel processing

Many blockchain systems lack parallel processing, hindering scalability and speed. Without this 
capability, transactions are processed sequentially, causing bottlenecks and slower network performance. 
This limitation restricts their ability to handle a high volume of transactions efficiently, ultimately 
impeding widespread adoption and real-world applications of blockchain technology.

Newer blockchains such as Aptos and Sui, developed using Rust, have introduced a groundbreaking 
Layer-1 scaling solution known as parallel processing. This innovation significantly enhances scalability 
by allowing multiple transactions or tasks to be executed simultaneously within individual blocks. 
Unlike Layer-2 solutions that build upon existing blockchains, Layer-1 solutions such as parallel 
processing directly optimize the blockchain’s core protocol. This approach fundamentally increases 
transaction throughput and network efficiency, paving the way for nearly limitless scalability and 
improved performance, thus addressing a major limitation of traditional blockchain systems.

In older blockchains, all the present nodes in the network process all transactions individually. The 
new transactions that are recorded on the blockchain are all present in the mempool. All of the nodes 
create new blocks using the same transactions. So, this means the more nodes in the network, the 
more decentralized the network is.

But this does slow down the network because instead of leveraging the processing power of the 
nodes in the network to divide and process the blocks to enhance speed, all the nodes are essentially 
processing the same transactions and a lot of computational energy is used up.

Aptos (the new blockchain we talked about) processes pending transactions from the mempool. At 
the same time, the nodes in the network divide these transactions among themselves and process 
different transactions instead of processing the same transactions. This makes the process way more 
efficient and highly scalable at the same time since the more nodes you add, the more transactions 
you can theoretically handle. Adding more nodes speeds up the network rather than slowing it down 
(as in the case of older blockchains).

Layer 2s and side chains

Sharding, consensus, and parallel processing are all Layer-1 scaling solutions. What if, instead of trying 
to scale at Layer-1, which may require us to make changes to the blockchain’s architectural structure, 
we try to solve the blockchain trilemma by building on top of the blockchain on Layer-2? It’s important 
to note that all the layers are imaginary and the terminology is used for better understandability.

An example of a Layer-2 solution is a sidechain, which is essentially a separate blockchain connected 
to the main chain. It’s set up in a way that assets can flow between the chain flawlessly. The biggest 
difference is that sidechains can be configured with different modes of operation and rules, which 
can make them way faster than the main chain.

Transactions can be shipped off to the side chain for faster speeds, but they may still be verified by the 
main chain once the side chain sends the output of the transactions back to the main chain.
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ZK rollups and optimistic rollups

Rollups are another highly popular Layer-2 scaling solution for blockchains. They take the transactions 
off-chain and, at the same time, ensure storage on the main chain for high security.

The way they do this is by compressing the transaction data to a great extent so that it becomes a 
fraction of the size and can be stored very easily on-chain. This results in significant throughput 
enhancement. Prominent examples of this approach include Arbitrum (an optimistic rollup) and 
PLONK (a zero-knowledge rollup). These rollups employ different techniques but share the common 
goal of enabling seamless and secure scaling, making them pivotal in advancing the capabilities of 
blockchain technology.

Now that we have understood rollups, it’s time to talk about the two types of rollups: zero-knowledge 
(ZK) rollups and optimistic rollups. Optimistic rollups don’t need to provide any proof when sending 
the compressed transactions to the main chain, whereas ZK rollups need to submit cryptographic 
validation proof.

Since with optimistic rollups there is no validation proof being submitted, they are essentially operating 
on the assumption that the nodes are not going to submit any fraud transactions, and this is why these 
are called optimistic. On the other hand, ZK rollups assume that they have no knowledge of the type 
of transactions that can be submitted, and thus comprehensive crypto validation is required.

Now that we have learned about blockchain basics, let’s now understand how smart contracts work.

Introducing smart contracts
Interacting with blockchains involves a dynamic interplay between external code and the blockchain’s 
internal architecture, particularly smart contracts. Smart contracts are self-executing contracts with 
predefined rules that automatically execute actions when specific conditions are met. External code 
refers to applications, scripts, or software components running outside the blockchain network.

To bridge the gap between external code and blockchain functionality, most blockchain platforms 
offer remote procedure call (RPC) APIs. Application programming interfaces (APIs) facilitate 
communication and interaction between distinct software applications, enabling them to work 
together harmoniously.

An API defines a set of rules and protocols that govern how software components should interact, 
making it easier for developers to use functionalities provided by another system without needing to 
understand its internal workings.

Think of an API as a waiter taking orders in a restaurant. Customers (developers) interact with the 
waiter (API) to request specific dishes (functions or data) from the kitchen (the system providing the 
service). The waiter conveys the order to the kitchen, brings back the dishes, and serves them to the 
customers. The customers do not have to know how the kitchen operates; they just need to know how 
to communicate their orders effectively to the waiter.
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Similarly, in the context of blockchain platforms such as Ethereum, RPC APIs act as intermediaries 
between external code (applications) and the core blockchain software. They provide a standardized way 
for external code to send requests for actions, data retrieval, or other operations to the blockchain. The 
blockchain’s core software processes these requests and sends back the relevant information or results.

For instance, if developers want to retrieve the balance of an Ethereum address, they can use an RPC 
API call to request that information from the Ethereum network. The API handles the communication 
between the external code and the blockchain’s internal systems, abstracting away the complexity of 
direct interaction.

The future of the adoption of blockchains
In this section, we will learn about the real-world implications of blockchain technology, how it will 
affect various industries and its effects on social and cultural aspects.

Industries disrupted

Blockchains provide a secure representation of real-world assets in the digital realm, thanks to their 
cryptographic security. This introduces a revolutionary perspective across all industries.

The following use industries are well covered by blockchains:

• Banking and finance

• Healthcare and medicare

• Supply chains and warehousing

• Governance and policy-making

• NGOs, associations, and institutions

Many of these industries are getting disrupted by blockchain technology simply because it adds trust, 
security, and decentralization, creating a win–win solution for all the parties involved in the ecosystem.

Sociocultural and economic changes

Apart from disrupting industries and bringing about technological change, efficiency, and effectiveness 
into the system, blockchains are also triggering social change, as it becomes easy to track whether all 
social strata are benefiting or if there are any individuals that are left behind. Applied with the right 
policymaking, they can ensure a reduction in economic disparity and wealth equality and ensure that 
economic welfare funds reach the intended audiences.
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It is easy to see that applications and effects of blockchain technology go well beyond a few industries 
and can alter the way society and culture function at large, especially since blockchains allow the 
digital representation of real-world assets and thereby enable cross-border trading of these assets in 
a highly secure and efficient manner.

This is why it is important for engineers to gain expertise and a foothold in this new and 
upcoming technology.

Summary
In this chapter, we’ve gained deep insight into blockchains and how they operate. We covered many 
concepts that are important to understanding how blockchains truly work, such as immutability, forking, 
validation, transactions, nodes, the different consensus mechanisms, gas fees, and processing fees.

Then, we broke down how blockchains power decentralization and applications that are deployed 
to blockchains, such as DAOs, DeFi apps, NFT platforms, and so on. We also went through some 
topics such as scalability involving interoperability, consensus, and sharding. These are the hottest 
topics in blockchain technology since experts are working on them to try and scale blockchains for 
millions of users.

In the next chapter, we will understand what makes Rust the perfect fit for building blockchains and 
we will learn some Rust concepts hands-on before diving into building our own blockchain using Rust.



2
Rust – Necessary Concepts for 

Building Blockchains

Even though Rust is a new programming language, it’s gaining popularity quickly since it makes the 
job of the programmer simple. With Rust, you get a simple promise – if your program passes the 
compiler’s checks, it is most likely free of undefined behavior, in the sense that this reduces the chances 
of encountering unexpected bugs. However, it’s important to note that no compiler can guarantee 
absolute freedom from all unexpected behaviors, especially in complex domains such as asynchronous 
and embedded code.

Rust is renowned for its speed and efficiency, often drawing direct comparisons with C and C++. It holds 
significant advantages over these languages, largely due to the proactive enforcement of rules by the 
Rust compiler. Unlike C and C++, where a multitude of rules exist and the onus is on the programmer 
to adhere to them, Rust assumes a more active role in rule enforcement. This fundamental difference is 
not just about the number of rules, but about the philosophy behind them. C and C++ operate under 
the belief that the programmer should have the knowledge and responsibility to follow best practices, 
while Rust embeds these best practices into its compiler’s design, significantly enhancing the stability 
and safety of the code. Issues regarding memory management and pointer validity are taken care of 
(we will learn more about this in this chapter). Rust has all the tools to free programs of data racing.

Debugging Rust programs is much simpler because the potential consequences of a bug don’t end up 
corrupting unrelated parts of your program. Also, Rust provides us with flexibility – in the sense that 
the applications for Rust are varied and wide. All of these advantages and many more make it one of 
the most loved languages of recent times. We will explore Rust in more detail in this chapter. You will 
gain insights into important Rust features, especially the ones we will need to build blockchains with. 
By the end of this chapter, you will be comfortable working with Rust and have developed a confident 
command over the basic concepts that find their way into many applications. The end goal is to equip 
you with enough Rust knowledge that you’ll be able to understand the code in the following chapters.
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In this chapter, we’re going to cover the following main topics:

• Introducing Rust

• Rust’s advantage for blockchains

• Learning basic Rust concepts

• Exploring intermediate Rust concepts

• Delving deep into advanced Rust concepts

Introducing Rust
Many blockchains have selected Rust as their go-to programming to write their core protocol on which 
the rest of the architecture is built. There are plenty of reasons for this and since our book is about Rust 
for blockchain development, we need to understand why Rust is so popular for the blockchain use case.

In the following subsections, our focus will be on understanding the reasons why Rust is a perfect fit 
for blockchains.

The benefit of being statically typed

Rust adheres to static typing principles, requiring an explicit declaration of variable types, which are 
resolved during the compilation process. This allows the compiler to check if a variable can do what 
it’s supposed to, protecting against errors when the program runs.

In statically typed languages, the result or end product usually takes the form of a lower-level 
representation. Pre-compilation, the compiler possesses assurances for correctness and consistency 
regarding the structure of data entities, method availability, and more. Consequently, code crafted in 
such languages generally exhibits superior performance compared to interpreted dynamic languages. 
Dynamic environments necessitate heightened runtime checks for every instruction, incurring 
a performance overhead. With dynamic languages, many benefits are attributed, such as faster 
development cycles and less boilerplate code, but even these benefits are inherently present in Rust.

Having explored the advantages of Rust as a statically typed language, let’s delve into its classification 
as a systems programming language and understand how its features align with this crucial role.

A dive into Rust’s applicability as a systems programming 
language

Rust is highly suited for blockchains as it is a low-level language and a systems programming language.

A systems programming language allows us to write computer software that enables the programmer 
to interface with the hardware. Operating systems, firmware, compilers, and assemblers are examples 
of systems that can be built with a systems programming language.
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Blockchains act as the infrastructure layer for decentralized applications and need to be highly efficient 
at using server resources. This is why systems programming languages with low-level control are a 
great fit.

At the same time, systems programming languages prioritize modularity, code reuse, and code 
evolution, which makes languages such as Rust highly effective.

The reliability of Rust

Rust is the most loved language for the seventh year in a row in the Stack Overflow programming 
languages survey (https://survey.stackoverflow.co/2022/). Most loved means 
that programmers consider it to be the most effective, reliable, and elegant language out of all the 
programming languages. However, this does not mean that it is the most widely used language and 
many languages rank better in terms of usage, number of developers, and ease of learning.

However, there are some reasons why developers prefer to use Rust if they’re given a choice:

• Detailed documentation: The sheer number of resources available for Rust, such as its clear 
and detailed documentation, The Rust Book (https://doc.rust-lang.org/book/), 
the Learn Rust By Example (https://doc.rust-lang.org/rust-by-example/) 
website, and so on, make it easy to get started and gain mastery. Even though there is a learning 
curve to the language, having resources available makes the journey easier.

• Community: In specific cases when there is a lack of clarity on some aspects of the code and 
in case of errors that are not easy to figure out, developers can easily reach out to the Rust 
community on websites such as Stack Overflow and find several Rust projects created by the 
community on GitHub. There are plenty of pre-resolved issues already present that can be 
referred to.

• Type safety: TypeScript, developed to ensure type safety in JavaScript, addresses challenges 
similar to those that Rust tackles. While TypeScript adds type safety to JavaScript, preventing 
errors due to unsafe type casting, Rust inherently provides this in systems programming. This 
comparison is crucial as it highlights Rust’s commitment to type safety, akin to TypeScript’s 
role in JavaScript. Understanding TypeScript’s impact on JavaScript’s type safety helps us 
appreciate Rust’s approach to ensuring safe, reliable code that’s free from common type-related 
errors prevalent in other systems programming languages. Languages such as Rust are pre-built 
with type safety, and this makes it easy to find errors beforehand. Type safety ensures that the 
language doesn’t allow an int to be inserted into a string at runtime and so on. A type-safe 
language maintains data truthfulness from the beginning to the end, thereby making them 
extremely reliable and stable for production-level code.

https://survey.stackoverflow.co/2022/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/rust-by-example/
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• Data race-free: To increase efficiency for the execution of complex programs, we can introduce 
parallelism and multithreading. Rust is a multi-threaded language that supports concurrency 
and parallelism natively. However, in multi-threaded programming, data races can occur 
when multiple tasks or threads access a shared resource without proper protection, leading to 
unpredictable results. For instance, consider two threads trying to update the same variable 
simultaneously, leading to inconsistent values due to a race condition. The occurrence of such 
an anomaly could entail a considerable duration to replicate the problem and an even lengthier 
span to ascertain the underlying source and rectify the flaw. Rust’s memory management model 
steps in and extends to protect against data races when using shared-memory concurrency 
(we will learn about the memory management model in the The Rust ownership memory 
management model section).

• Ahead-of-time (AOT) compiled: This feature significantly reduces the amount of resources 
required and the amount of work needed to be done at run-time. AOT compilation is the 
process of compiling a relatively high-level language (such as Rust) to a low-level language 
(such as machine code). AOT is the opposite of just-in-time (JIT) compilation, which isn’t 
considered as efficient as AOT.

• Built on and encourages zero-cost abstractions: A way to make a programming language faster 
is to take away the processing cost from runtime (when the program is running) and shift this 
cost to compile time (when the program compiles); Rust does exactly this. This implies that 
Rust programs run fast, but compile times can be slow and many developers who are trying 
out Rust for the first time complain about the long compilation times but aren’t aware of the 
benefits this introduces to the speed of code execution.

Zero-cost abstractions take this concept a step further. This means that even if we add higher-level 
programming concepts such as generics, collections, and so on, these do not induce any runtime 
costs; only compile-time costs are included.

In the following subsections, we will discuss several features of Rust that make it one of the preferred 
languages for blockchain development.

The Rust ownership memory management model

Rust achieves the goal of eliminating memory errors without the runtime overhead of dynamic memory 
management (for example, garbage collection or reference counting). Rust does this with the help 
of the concept of ownership, which states that every piece of data stored in Rust will have an owner 
associated with it. Rust strictly tracks the lifetime of values, including references, to determine when 
a value can be deallocated and that no dangling references exist. This is how it’s achieved:

• Every value has a single owner (for example, a variable, structure field, and so on) and the value 
is released (dropped) when the owner goes out of scope

• One mutable reference to a value may exist
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• There may be any number of immutable references to a value and while they exist, they cannot 
be mutated

• All references must have a lifetime no longer than the value being referred to

Let us now focus on other capabilities of Rust.

Garbage collection

Garbage collection involves the automated process of reclaiming memory that the runtime is no 
longer using. In simpler terms, it serves as a means to eliminate unused objects. The purpose of 
garbage collection is to prevent a program from exceeding its allocated memory capacity or reaching 
a state where it can no longer operate properly. Additionally, it relieves developers from the manual 
burden of managing a program’s memory, thereby reducing the potential for memory-related errors.

In contrast, Rust takes a distinct approach by forgoing the use of a garbage collector. Instead, it 
accomplishes these objectives through a sophisticated yet intricate type system (as discussed in the 
The reliability of Rust section). This methodology renders Rust exceptionally efficient; however, it also 
introduces a higher level of complexity to the learning and utilization of Rust.

This additional efficiency, which is due to there being no garbage collection, makes Rust a great fit 
for blockchains.

Speed and performance

Rust’s performance is exceptional and rivals that of C and C++, languages renowned for their top-tier 
compilation-based performance. However, Rust distinguishes itself from these legacy languages 
by providing memory safety through its unique ownership-based memory management system 
(discussed in the Rust ownership and memory management section), as well as concurrency safety 
without significantly sacrificing execution speed. It excels in executing algorithms and resource-
intensive tasks with remarkable efficiency, placing it on par with the performance of C++. Rust has 
a big advantage over C – Rust ensures the thread safety of all code and data, including those from 
third-party libraries, even if their authors didn’t prioritize thread safety during development. Every 
element either adheres to specific thread-safety standards or is prohibited from being employed across 
threads. If I create any code that lacks thread safety, the compiler will identify the unsafe portions. 
Rust provides a guarantee against data races and memory vulnerabilities, such as use-after-free errors, 
even in multi-threaded scenarios. This assurance encompasses not only certain races that could be 
detected using heuristics or runtime analysis in instrumented builds but rather it encompasses all 
potential data races throughout the codebase. This is of utmost importance as data races represent 
the most critical form of concurrency-related bugs.
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Futures, error handling, and memory safety

In this section, we’ll look at some features of programming languages that enable asynchronous 
computing and processing to enable languages to be more efficient with resources and work in a 
non-blocking manner.

Just as JavaScript and Dart have the concept of async and await, Rust has futures. This feature makes 
it possible to await values of computational tasks that haven’t finished yet but still enables developers 
to handle these values that will be present to them in the future.

Futures in Rust represent values that are eventually computed from time-consuming operations, a 
concept that’s pivotal for handling asynchronous tasks. This makes Rust particularly adept for blockchain 
applications, where multiple network-level requests are made and may not resolve immediately, 
especially in multi-node environments. A future in Rust effectively encapsulates a pending result, which 
becomes available once the underlying operation completes. This delayed resolution characteristic of 
futures is what enables Rust to manage complex, asynchronous tasks efficiently, making it a powerful 
tool in scenarios such as blockchain, where delayed responses are commonplace.

Errors are common in programming and different languages deal with them in different ways. 
However, Rust makes it extremely easy for developers to locate and debug errors as it mandates that 
you recognize the potential for errors and implement necessary measures before code compilation. 
This demand enhances the resilience of your program by guaranteeing the identification and proper 
management of errors before deploying your code in a production environment.

Rust is a memory-safe language that employs a compiler to track the ownership of values that can 
be used once and a borrow checker that manages how data is used without relying on traditional 
garbage collection techniques.

These factors make Rust a perfect candidate for working with blockchains.

In the next section, we will delve deeper into the details of how Rust gives blockchains an edge.

Rust’s advantage for blockchains
Blockchains and blockchain-related technologies that use Rust have an edge over others and this section 
is dedicated to exploring this aspect. Let’s learn about how these technologies benefit from using Rust.

Blockchains that use Rust

Some of today’s most popular blockchains, such as Solana, NEAR, and Polkadot, use Rust primarily. 
Polkadot even has a framework called Substrate that can be used to build new blockchains (we have 
a chapter dedicated to it – that is, Chapter 10, Hands-On with Substrate, and this is the framework 
that was used to build Polkadot itself.
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Many new, highly innovative blockchains such as Aptos and Sui also use Rust. In Chapter 1, Blockchains 
with Rust, we learned how Aptos uses parallel processing at the Layer 1 level to make the network 
extremely scalable.

Hyperledger’s Sawtooth is an open source, enterprise-ready blockchain solution for building, deploying, 
and running distributed ledgers, and this project is also built entirely on the Rust programming language.

Elrond has a WebAssembly virtual machine that utilizes Elrond’s web assembly framework and is 
also based on Rust.

The use of Rust is growing rapidly among blockchain projects and the Web3 community at large and 
in the coming years, we will see an exponential increase here.

In the following subsections, we will learn about some technologies that make working with blockchains 
a bit easier. The best part is that these technologies are based on Rust.

Foundry for Ethereum

Ethereum, one of the most popular blockchains, requires smart contracts to be written in the Solidity 
programming language. But to build, compile, test, and deploy these contracts based on different 
environments, we usually use a framework such as Hardhat, Truffle, or Web3JS, which not only provides 
us with the packages but also with a proper project structure to build production-level applications in.

Now, all the frameworks we mentioned are in JavaScript/Node.js. However, Rust engineers also have 
an option, and that is Foundry – a fast, portable, and modular toolkit for Ethereum but one that uses 
Rust. You get all the benefits of using Rust, such as cargo for managing dependencies and compiling 
the contracts.

Since we’re learning about Rust specifically from the context of it being relevant for blockchains, it is 
important to learn about Foundry, which makes it simple to work with one of the most popular blockchains.

As part of Foundry, you get three packages – Forge, an Ethereum testing framework, Cast, a tool for 
interacting with smart contracts and on-chain EVM data, and Anvil, a local Ethereum node, just like 
Ganache or the Hardhat network.

So, Foundry is a comprehensive, capable toolset for working with Ethereum but solely using Rust.

The Fe, Move, and ink! languages

New programming languages are being built with Rust that are specifically designed for building 
smart contracts. These languages provide us with the benefit of Rust but at the same time restrict the 
scope to reduce the size of the executable and also reduce the learning curve in comparison to Rust.
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Fe is an alternative to the popular Solidity language for building smart contracts for the Ethereum 
blockchain and all other chains that use the Ethereum Virtual Machine (EVM). Fe is simple and the 
syntax is inspired by Python. It is built with Rust and introduces concepts such as constant generics, 
which let a user write clean code without sacrificing compile-time guarantees (we learned about zero-
cost abstractions previously; this is the same concept).

Fe uses the same intermediate language (Yul) as Solidity, which means it’s not just a great choice for 
Ethereum mainnet but also many Layer 2 solutions.

Move is a new programming language that was created by the Diem Association, backed by Meta, 
and built with Rust. It’s built for applications such as blockchains, where safety and correctness 
are paramount. It is an executable bytecode language that’s designed to provide safe and verifiable 
transaction-oriented computation.

ink! is a programming language developed by Parity Technologies, the parent company of Polkadot and 
Substrate, for writing smart contracts on blockchain platforms built using the Substrate framework. This 
language is specifically tailored to enhance the development of smart contracts, leveraging Substrate’s 
capabilities to offer a robust environment for blockchain applications. ink! is not to be confused with 
the INK language, which is written in Go. ink! is completely written in Rust and all the contracts 
written with ink! are compiled into WebAssembly.

In this section, we learned about the innovations that are happening in the Rust ecosystem, specifically 
in the context of blockchains. With time, Rust will only be more important and it’ll be critical to learn 
Rust to build on blockchains.

Interesting blockchain projects built with Rust

We already know about various blockchains that are built with Rust (Solana, Polkadot, NEAR, Aptos, 
and Sui), but apart from these blockchains, there are many interesting projects in the blockchain space 
that use Rust. Here are a few:

• Comit is a project that enables cross-blockchain interoperability between multiple popular 
chains such as Ethereum, Monero, and Bitcoin. It doesn’t introduce a blockchain of its own to 
provide this functionality, so it is in the blockchain space, without being a blockchain itself.

• Bonfida is a token vesting, open source program that enables you to declare timelines for 
your tokens to get vested/distributed among your founding team, developers, and early users.

• Astar is a multi-chain smart contract project built with Rust. It empowers developers to 
write smart contracts for a single chain, at which point the smart contract can be used across 
multiple blockchains and virtual machines. While Astar and Comit are both trying to solve 
the interoperability problem, they’re both doing it differently and using a different approach.

• The Graph is another highly innovative project. It is a protocol for building decentralized 
applications on Ethereum and IPFS but using GraphQL. It’s open source and built primarily 
with Rust.
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The list of new blockchain projects is increasing every day and more developers are choosing to use Rust 
to build innovative projects in the blockchain space, especially projects that enable the development 
of blockchains or smart contracts.

Advantages of Rust-based languages compared to Solidity

In the past few sections, we learned about Fe, Move, and ink! – all languages that are used for smart 
contract development, but all of them are built using Rust. The other very popular programming 
language for creating smart contracts is Solidity and a common question that comes up is how Solidity 
compares to Rust-based languages.

The main benefits Solidity provides are that it’s ultra-light and is very simple to learn, especially for 
people coming from a JavaScript background. This is the reason why some developers feel that Solidity 
is better for smart contract development usage compared to Rust since Rust is quite extensive and 
heavy, has longer build times, and also has quite a steep learning curve.

But the main difference to understand here is that Rust is the preferred language for blockchain or 
protocol development and not just smart contract development, meaning that Rust has a much wider 
and more complex use case. However, let’s also address the usage of Rust specifically for smart contract 
development, where Solidity is considered a great language to use.

For smart contract development, instead of using Rust, which is quite extensive, there are options 
such as Move, ink!, and Fe, which are based on Rust, meaning that they provide most of the benefits 
of Rust but provide this functionality in a simple and light package that’s also quite easy to learn and 
understand. This completely bridges the gap between the benefits that Solidity provides over Rust.

There are also quite a few limitations with Solidity that Rust-based languages overcome easily. For 
one, smart contracts that are built with Solidity usually have way more vulnerabilities than the ones 
built with Rust.

Since Rust is super-optimized, smart contracts end up consuming fewer gas fees compared to those 
built with Solidity.

Let’s say we wanted to represent a Bbock in Rust. Here, we can use a feature called struct, which enables 
us to define a custom data type by creating a collection of data types that Rust already understands.

The following code shows a block from a blockchain that uses a Rust struct:

pub struct Block {
   pub id: u64,
   pub hash: String,
   pub previous_hash: String,
   pub timestamp: i64,
   pub txn_data: String,
   pub nonce: u64,
}
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In the preceding code snippet, hash and previous_hash are represented as strings. timestamp 
is a 64-bit signed integer (i64) and nonce is a 64-bit unsigned integer (u64). txn_data is simply 
the data of transactions that the block will hold. We have used String to represent this, but in the 
real world, it’s going to be a data structure such as an array or vector. We will implement that when 
we build the blockchain later in this book.

Let’s observe how a blockchain can be represented:

pub struct Blockchain {
pub blocks: Vec<Block>,
}

Notice that by using structs, we can also represent an entire blockchain, which is simply a collection of 
multiple blocks. We have represented a collection of blocks by using a Rust feature called Vec, which 
enables us to store multiple structs. So, in short, a vector is a collection of structs.

Note
In a blockchain struct, there’s no need for logic to connect the blocks, and this simplistic 
implementation throws off inexperienced engineers. The fact is that the connection logic is 
inherently present inside the block itself, where we store the hash value of the previous block 
in the previous_hash field.

Now that we have a basic idea of the Rust language, it’s time to start learning the concepts that will 
help us build our blockchain in the next few chapters.

Learning basic Rust concepts
While Rust is quite an extensive language and to cover it completely requires a book of its own, you 
are advised to supplement your learning with a dedicated Rust book. You can find some examples at 
https://doc.rust-lang.org/book/. However, the most important concepts that we will 
often require when working with blockchains can be covered quickly. This is what we will attempt 
to do here.

First, let’s talk about variables and constants. These are the basic building blocks of any 
programming language.

Variables and constants

Variables are crucial to Rust as they are values that may change multiple times throughout the lifetime 
of the program. As can be seen in the following example, defining variables in Rust is extremely simple:

fn main() {
   let x = 5;

https://doc.rust-lang.org/book/
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   println!("The value of is:{x}");
}

In the preceding code, we assign a value of 5 to x, where x is the variable, after which we print out the 
value of x. The code is enclosed in the main function, which is the entry point in all Rust programs.

However, by default, as a safety check and to avoid unpredicted behavior, all variables in Rust are 
immutable (you reassign something to them), so the following example won’t work:

fn main() {
   let x = 5;
   println!("The value of is:{x}");
   let x = 6;
   println!("The value of is:{x}");
}

The preceding program will give us an error. However, there is a way to make variables mutable, and 
that is by adding the mut keyword:

fn main() {
   let mut x = 5;
   println!("The value of is:{x}");
   x = 6;
   println!("The value of is:{x}");
}

Let’s quickly talk about constants. They’re similar to immutable variables but with some differences – 
you can’t (obviously) use the mut keyword with them, which means they aren’t immutable by default 
– instead, they are always immutable. Next, you can use the const keyword instead of let to define 
constants and you must always mention the type. The last difference is that you can’t set the value 
of a constant to a value that is generated from a dynamic computation; it will always be a constant 
expression. The following code block shows an example of a constant declaration:

const HOURS_IN_A_DAY = 24;

An interesting property that needs to be pointed out here is overshadowing. Here, if we use the let 
keyword to assign a new value to x, we will not get an error. Let’s look at an example:

fn main() {
   let mut x = 5;
   println!("The value of is:{x}");
   let x = 6;
   println!("The value of is:{x}");
}
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In this example, we didn’t use the mut keyword again when reassigning the value of x to 6 as this 
will overwrite the value of x and the new value will become 6. Please note that when you run this 
code example, you will receive a warning regarding re-assignment, but there will be no error here.

Data types

As we learned in the Statically typed section, Rust is a statically typed language, meaning it has a 
requirement that it needs to be aware of the type of every single variable at compile time. Due to this, 
it is important to take a look at the various data types in Rust.

Let’s get started. In this section, we will look at the scalar data types in Rust, namely integers, floating-
point numbers, Booleans, and characters. In the Tuples and arrays section, we will learn about compound 
data types – tuples and arrays.

Let’s start with integers – they can either be signed or unsigned. Signed integers are represented with 
an i – for example, i16 and i32, while unsigned integers are represented with a u – for example, 
u16, and u32. Here, signed and unsigned refer to the possibility of the occurrence of a negative 
number and the digits 16 and 32 represent the number of bits of space that the variable is going to 
take. Additionally, Rust includes isize and usize types, which are architecture-dependent integer types. 
The isize and usize types are primarily used for indexing collections and interfacing with system calls, 
with their size varying based on the underlying machine architecture.

The most commonly used bits are 8, 16, 32, 64, and 128 and the default integer types that Rust considers 
are i32 and u32.

The next scalar data type is floating-point numbers, which (unlike integers) are numbers that can 
store decimal points. All floating-point types are signed (again, this is different from integers). The 
two sub-types that are present are f32 and f64, and they represent 32-bit and 64-bit, respectively. 
Unlike integers, the default here is 64. While f32 has single precision, f64 has double the precision 
but similar speed.

The following code block shows floating-point numbers in action:

fn main() {
   let x = 2.0;
   let y: f32 = 3.0;
}

In the preceding example, in the first line, since we don’t mention the number of bits, Rust selects 
64-bit by default. In the second example, 32-bit has been mentioned clearly by us.

The next data type is Boolean and it has two possible values – true and false. Let’s look at an example:

fn main() {
   let t = true;
   let f: bool = false;
}
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In the preceding example, we can see that we can either assign the Boolean value directly to the 
variable or we can mention bool (as can be observed on the second line), which is how we indicate 
the Boolean type to Rust.

The last scalar type is char and we can use it like this:

fn main() {
   let t: char = 'z';
   let f: char = 😄;
}

As we can see, char can represent a lot more than just American Standard Code for Information 
Interchange (ASCII) characters. Now, it’s time to move on to compound data types.

Tuples and arrays

The two compound data types present in Rust are tuples and arrays. First, let’s take a look at tuples. 
These are comma-separated lists of values inside parentheses where each value has a type.

There are two important things to remember with tuples – firstly, each value in the tuple can have a 
different type and they don’t have to be the same, and secondly, tuples have a fixed length and once 
this length has been declared, tuples cannot grow or shrink in size. An important additional point is 
that tuples are sum data types, which means their total size is the aggregate of the sizes of all contained 
elements, along with any necessary padding. To better understand tuples, let’s look at an example:

fn main() {
   let tup = (500, 6.4, 1);
   let (x, y, z) = tup;
   println!("the value of y is: {y}");
   let x:(i32, f64, u8) = (500, 6.4, 1);
   let five_hundred = x.0;
}

There are five lines in the preceding example. We will break these down to expand our understanding.

The first line defines a tuple called tup and assigns a list of three comma-separated values to it so that 
we can access individual values from tup. We can deconstruct it, as we have done in the second line, 
to print the value of y in the third line.

In the fourth line, we can be more explicit in defining our tuple and can mention the type of every single 
value to be more specific and for more control. The fifth line shows another way to access individual 
values from the tuple. So, with this extensive example, not only have we learned how to assign values 
to a tuple but also how to access those values. One thing to note is that in the preceding case, tup 
will have a padding size of i32 + f64 + u8.
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Now, let’s look at the second compound data type in Rust: array. Now, arrays are also a collection of 
values, just like tuples, but with a major difference – all the values in an array must be of the same 
type. Just like tuples, arrays also have a fixed length and are useful when you want to ensure that you 
always have a fixed number of elements. Let’s look at an example to explore arrays:

fn main() {
   let a = [1, 2, 3, 4, 5];
   let months = ["jan", "feb", "mar"];
   let b: [i32; 5] = [1, 2, 3, 4, 5];
   let z = [3; 5];
   let first = a[0];
}

In the preceding example, in the first line, we can see how we can assign an array to a variable. The 
second line also demonstrates the same but all the values being assigned are characters and these two 
variables (a and months) make it clear that all the values need to be of a specific type. In the third 
line, there’s a more explicit definition where we not only specifically mention the type of the array 
but also mention the length.

The fourth line is slightly different and if you were to print the value of z, you would get [3, 3, 
3, 3, 3] as the output. This is because in [3; 5],  3 denotes the value that will be stored in the 
array and 5 represents the number of times it will be stored or the length of the array. So, this gives 
us a great way to define an array that has repeat values.

The last line demonstrates how to access the values of an array with the help of the index, where the 
index starts with 0 and goes all the way up to n-1, where n is the length of the array. So, the a array 
starts with 0 for the first value and goes to 4 for the last value.

Numeric operations

All the basic mathematical operations are supported in Rust – for example, addition, subtraction, 
multiplication, division, and remainder. Let’s look at an example to understand this:

fn main() {
   let sum = 15 + 2;
   let difference = 15.3 – 2.2;
   let multiplication = 2 * 20;
   let division = 20 / 2;
   let remainder = 21 %2 ;
}

The mathematical operators that are used in Rust, such as / for division and % for remainder division, 
are standard and are the same as any other programming language. The preceding example is quite 
straightforward and self-explanatory.
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In Rust, the memory layout is an essential concept and mainly comprises the stack and the heap, along 
with virtual tables (v-tables) for polymorphism. First, let’s take a look at the stack.

Stack

The stack in Rust is a region of memory that’s used for static memory allocation. It operates in a very 
organized last-in, first-out manner. Variables stored on the stack have fixed sizes known at compile time. 
This makes stack operations incredibly fast as it’s just about moving the stack pointer up and down:

fn main() {
   let x = 5;    // Integer stored on the stack
   let y = true;   // Boolean stored on the stack
   let z = 'a';   // Character stored on the stack
}

In the preceding example, x, y, and z are all variables with sizes known at compile time. Rust allocates 
space for these variables directly on the stack. Each of these variables is pushed onto the stack when 
main() starts, and popped off the stack when main() completes. The efficiency of the stack comes 
from its predictability and the simplicity of the push/pop operations. Now, let’s move on to the heap.

Heap

The heap is crucial for dynamic memory allocation in Rust. It is where variables or data structures 
whose size might change or is unknown at compile time are stored. Since accessing the heap involves 
following pointers and more complex management, it’s slower compared to stack operations:

fn main() {
   let mut s = String::from("hello"); // String stored on the heap
   s.push_str(", world!");         // Modifying the string
}

In the preceding code, s is a String type, which is mutable and can change size. Initially, Rust allocates 
memory on the heap for "hello". When we modify s using push_str, it might need more space 
than initially allocated. The heap allows this flexibility, but it requires Rust to manage the memory, 
keep track of its size, and potentially move it if more space is needed. Next, we’ll look at v-tables.

V-tables

V-tables enable Rust to support dynamic dispatch, particularly with trait objects. A v-table (or virtual 
method table) is a mechanism that’s used in object-oriented programming for method resolution 
at runtime:

trait Animal {
   fn speak(&self);
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}

struct Dog;
struct Cat;

impl Animal for Dog {
   fn speak(&self) {
      println!("Dog says Bark!");
   }
}

impl Animal for Cat {
   fn speak(&self) {
      println!("Cat says Meow!");
   }
}

fn make_sound(animal: &dyn Animal) {
   animal.speak();
}

fn main() {
   let dog = Dog;
   let cat = Cat;
   make_sound(&dog);
   make_sound(&cat);
}

In this expanded example, make_sound is a function that takes a trait object, &dyn Animal. We 
have two structs, Dog and Cat, each implementing the Animal trait. When make_sound(&dog) 
and make_sound(&cat) are called, Rust uses the v-table of each object (Dog and Cat) to look 
up and call the appropriate speak method. The v-table is essentially a lookup table where Rust can 
find the correct method implementations for a trait object at runtime, allowing for polymorphism.

Slices

Slices are defined as follows:

“A slice is a pointer to a block of memory and can be used to access portions of data stored in contiguous 
memory blocks.”

To learn more, please refer to https://www.tutorialspoint.com/rust/rust_slices.
htm. This definition might be slightly confusing to us right now as we haven’t covered the concepts 
of accessing memory and pointers yet. So, to understand slices with ease, let’s break down the 
complexity slightly.
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Slices enable us to refer to a part of a string or an array. Let’s look at two separate examples that will 
help us understand this statement:

fn main() {
   let n1 = "example".to_string();
   let c1 = &n1[4..7];
}

In the preceding example, if you were to print the value of c1, you would get ple, because c1 only 
refers to a part of the n1 string.

Let’s see how this works – the values in the square brackets, [4..7], indicate that we want to refer 
to the values starting from the fifth value, which is m, all the way to the last value, e. However, the 
fifth value itself is not included in this because that’s where the counting starts and hence pleis is 
taken from n1 into c1.

Something is interesting on line 2 – the presence of &. This is the reference operator and it’s used to 
create a copy of the desired values into c1 without affecting the original value of n1. We will look at 
this in more detail in the Ownership and borrowing section. You may have also noticed to_String() 
in the first line; we will discuss this in the next section.

Slices are not just useful for strings, but for arrays of numbers as well, so let’s learn about this via 
an example:

fn main() {
   let arr = [5, 7, 9, 11, 13];
   let slice = &arr[1..3];
   assert_eq!(slice, &[7, 9]);
}

In the preceding example, we take an array called arr and then a slice that selects values starting 
from the first value and until the third value, which simply means 7 and 9. This is why in the last 
line, we assert whether the slice that we have created by selecting a value from arr is equal to the 
slice containing 7 and 9.

Strings

Working with strings is straightforward in Rust, so it’s important to know the difference between the 
String type and string literals. String literals enable us to hard-code some text into our program, 
as shown in the following code block:

fn main() {
   let s = "hello";
}
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In the preceding example, s is a variable that is equal to "hello". Now, we can’t perform any 
operations on this string literal because, in Rust, string literals are immutable (this is done for better 
stability). This is why we have the String type:

fn main() {
   let mut hello = String::from("hello");
   hello.push('w');
   hello.push_str("world!");
}

In the preceding example, note that we can create a mutable variable called "hello" that will be 
of the String type from a literal string, "hello", with the help of String::from. String is 
part of the std library. Here, we get access to methods such as push, which enables us to append 
a char type to the String type ("hello", in this case). The push_str method enables us to 
append a String type ("world!") to our existing string.

The topic of strings is incomplete without discussing 'to.string()'. Here’s an example:

fn main() {
   let i = 5;
   let five = String::from("5");
   assert_eq!(five, i.to_string());
}

In the preceding example, we take a variable, i, which has a value of 5. This is a number i64. After 
that, we take a variable, five, which converts the number 5 into a string.

In the last line, we use the assert function to try and compare the values of five and i. We know 
that one of them is a string and the other is a number, so we use the to_string() method to convert 
the value of i into a string. Now, when we compare their values, they will be equal.

Enums

Enums in Rust provide us with a way of enlisting different values for a particular value. For example, 
if you wanted to enlist different types of proxy servers, you would list forward proxy and reverse proxy 
as the two different values that can be used. For instance, let’s consider an example where we define 
different types of cache strategies.

First, let’s redefine our CacheType enum to represent two types of cache strategies – least recently 
used (LRU) and most recently used (MRU):

enum CacheType {
   LRU,
   MRU,
}
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Now, we can create variables of this enum type:

let lru_cache = CacheType::LRU;
let mru_cache = CacheType::MRU;

Here, lru_cache and mru_cache are instances of CacheType. We use the :: syntax to specify 
which variant of the enum we want to create.

Next, let’s consider a struct named Cache. This struct will have a field that uses our CacheType 
enum. Note that we avoid using “type” as a field name since it’s a reserved keyword in Rust. Instead, 
we’ll use cache_type:

struct Cache {
   level: String,
   cache_type: CacheType,
}

In this example, the Cache struct has two fields: level, which is a string, and cache_type, which 
is of the CacheType type. This demonstrates how enums can be integrated into structs, offering a 
structured and clear way to define data.

By using enums, we set a clear, defined set of values for a variable type, reducing errors and 
misunderstandings in our code. This is especially helpful for collaborative programming, ensuring 
consistency and clarity. The use of structs, which we will explore in more detail later, further enhances 
this by allowing us to create complex data types that incorporate these enums.

Enums in Rust are not just for listing values; they offer a wide range of functionalities. Beyond the 
basic use demonstrated earlier, enums can serve several other purposes:

• C-type enums: In Rust, enums can behave like C-type enums, where each variant is automatically 
assigned an integer value starting from 0 or a predefined value if specified:

enum StatusCode {
   Ok = 200,
   BadRequest = 400,
   NotFound = 404,
}

Here, StatusCode::Ok has a value of 200, BadRequest has a value of 400, and so on.

• Enums with values: Rust enums can also hold data. This feature allows more complex data 
structures than simple named values:

enum CacheStrategy {
   LRU(String),
   MRU(i32),
}
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In this example, LRU holds a String type, and MRU holds an i32 type. This makes enums 
incredibly powerful for diverse data representations.

• Enum size: An important characteristic of enums in Rust is that the size of an enum type 
is determined by the largest variant it can hold. This is crucial for understanding memory 
allocation when using enums.

By understanding these advanced aspects of enums, we can appreciate their versatility and the powerful 
role they play in Rust’s type system. Enums go beyond simple value substitution, allowing for complex 
data representations and controlled memory usage. With this knowledge, we can use enums to create 
more efficient and expressive programs in Rust.

Now that we have a firm grip on the basic concepts of Rust, let’s learn some intermediate concepts 
that will help us in the next chapters when we build actual projects.

Exploring intermediate Rust concepts
In the previous section, we understood a lot of the foundational concepts of Rust. This will help 
us in reading and deciphering larger programs that we shall encounter in the later chapters of this 
book. Now, it’s time to build upon the knowledge that we’ve acquired to start understanding slightly 
more advanced Rust concepts so that we gain a stronger grip on the concepts and deploy them in 
real-world scenarios.

Control flow

All programming languages have a way to execute different pieces of code that are dependent on 
meeting a condition. This execution happens with the help of branches, which are usually defined 
with the help of if, else, and else if. In Rust, we have similar concepts. So, let’s learn about 
these with the help of some examples:

fn main() {
   let i = 5;
   if i > 3 {
      println!("condition met, i is greater than 3");
   } else {
      println!("condition was not met");
   }
}

In the preceding example, we start with a variable, i, which is assigned a value of 5. Then, we compare 
its value to 3 to see if it’s greater than 3. Since 5 is greater than 3, the first condition with if is met 
and we print "condition met, i is greater than 3". However, if the value of i was 
2, then the if condition wouldn’t have been met and the program would enter the second branch 
for the else condition, so we would print "condition was not met".
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Let’s explore this further with another example:

fn main() {
   let a = 10;
   if a % 4 == 0 {
      println!("a is divisible by 4");
   } else if a % 3 == 0 {
      println!("a is divisible by 3");
   } else if a % 2 == 0 {
      println!("a is divisible by 2");
   } else {
      println!("a is not divisible by 4,3, or 2");
   }
}

The preceding example demonstrates multiple branches with if and else if, where we go through 
multiple conditions to check the different numbers that a (with an assigned value of 10) is divisible 
by. Now, since 10 is divisible by 2 and the remainder will be 0, the second else if condition is met 
and we print "a is divisible by 2".

While loops

In Rust, a while loop allows for repeated execution of a block of code, so long as a specified condition 
is true. It’s a useful tool for implementing situations where the number of iterations is not known in 
advance but is determined by a condition that’s evaluated at each iteration.

Here’s an example of a while loop in Rust:

fn main() {
   let mut number = 1;

   while number <= 5 {
      println!("Number: {}", number);
      number += 1;
   }

   println!("Loop exited. Number is now {}", number);
}

In this example, the while loop continues to run as long as number is less than or equal to 5. Inside 
the loop, we print the current value of number and then increment it by 1. Once number exceeds 5, 
the loop exits, and the program continues with any code that follows. This demonstrates how while 
loops can be used for repeating actions until a certain condition changes, making them a versatile 
tool for various programming scenarios.
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Understanding while loops is a stepping stone to grasping more advanced concepts in Rust. This 
knowledge will be particularly useful as we start to tackle more complex programming challenges 
and apply our skills to real-world scenarios.

Functions

Functions are the core building block of any programming language and the same is true for Rust. 
So far, we’ve been working with fn main(). This is the main function inside which the starter code 
of a program is situated and is where the control flow begins. However, there are usually many more 
functions inside a program and they can be named based on convenience and ease of remembering. 
Functions help us by breaking down a large piece of code into smaller contextual blocks that make 
the code easy to read, debug, and execute. They also group repeatable chunks of code so that instead 
of copying the code that repeats, we have a function that can be called repeatedly. This cements the 
Don’t Repeat Yourself (DRY) principle.

Let’s explore this with an example:

fn main() {
   let a = plus_ten(1);
   println!("the value of a is: {a}");
}
fn plus_ten(a: i32) -> i32 {
   a+10
}

In the preceding example, we can see a function called ten. We can define a function in Rust by using 
the fn keyword and then round brackets, ( ), after the name of the function. These round brackets 
accept parameters into the function. In our case, the parameter is a and the type is i32. Now, after 
->, we see i32 mentioned once more. This is simply the return type of the function, meaning that 
the function returns a value that’s of the i32 type. Inside this function, something very simple is 
happening – 10 is being added to the value that this function receives that’s being returned. This is 
why it has the apt name of plus_ten.

An interesting observation here is that we haven’t used the return statement in the plus_ten 
function. This is because Rust understands the difference between statements and expressions. Notice 
that after a+10, we haven’t used ; (a semi-colon) because if we use one, Rust treats it as a statement. 
In Rust, statements are actions that are performed without returning a value, whereas expressions do 
return a value. In the context of functions, an expression at the end of a block (without a semicolon) 
implicitly returns its value. However, this simplicity mainly applies to functions with a single exit 
point. For functions with multiple potential return points, explicitly using the return keyword 
becomes necessary. This keyword is crucial for clearly specifying the return value in different parts 
of the function, ensuring the intended behavior is achieved.
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In the main function, notice that we’re calling the plus_ten function but then assigning it to a 
variable, a – what’s happening here? Well, a is going to simply store the value that’s returned from 
plus_ten, so the return value from the function is being assigned to a, not the function itself. 
The benefit of this type of syntax is that you can call functions, get return values, and assign them to 
variables in your main function, at which point you can compare these values or simply print them, 
just like we’re doing here.

Even though we have seen a simple example where we call a function from our main function, it is 
important to note that this knowledge can be extrapolated and we can call other functions from inside 
regular functions too, not just the main function. With this simple example, we have understood one 
of the most important features of Rust. This will accelerate our learning through the upcoming sections.

Match control flow

A really handy and unique feature in Rust is the ability to match values against a series of values 
or patterns and then execute based on a condition. This feature goes well with the enum feature we 
learned about previously. Combining the two can lead to some great combinations, so let’s see an 
example of the same:

enum Web3{ Defi, NFT, Game, Metaverse }
fn number_assign(web3: Web3) -> u8 {
   match web3 {
   Web3::Defi => 1,
   Web3::NFT => 2,
   Web3::Game => 3,
   Web3::Metaverse => 4,
   }
}
fn main() {
   let defi = number_assign(Web3::Defi);
   assert_eq!(1, defi);
}

In the preceding example, we have an enum type called Web3 that has four different values – Defi, 
NFT, Game, and Metaverse. We want to create a function that assigns a particular number 
to every different value of the Web3 enum. For this purpose, we have created a function called 
numner_assign. This has a match statement that creates multiple branches of code that are 
executed based on a matching condition, so we assign a value of 1 if we send Defi to this function, 
2 if we send NFT to this function, and so on. The function accepts web3 as a parameter that is of the 
Web3 type. The difference is in the capital W in Web3; the latter indicates the enum, which is referred 
to as the variable’s type. Another useful feature of match is the wildcard pattern, _, which acts like 
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a “default” case in a C-type switch statement. It’s used to match any value not explicitly handled by 
the other arms of match:

fn rate_movie(rating: u8) {
   match rating {
      5 => println!("Excellent"),
      4 => println!("Good"),
      3 => println!("Average"),
      _ => println!("Need improvement"),
   }
}

In the rate_movie function, the _ pattern catches any rating that is not 5, 4, or 3, offering a default 
response. This feature is especially useful in cases where it’s impractical to list every possible variant 
or when the focus is on specific cases while treating the rest uniformly.

This is exactly why enum and match statements are extremely powerful, especially when combined.

Structs

We talked about structs a few sections back. Structs are an extremely powerful feature of Rust as they 
enable us to create custom data types by combining existing data types that Rust already understands. 
These custom data types help us to represent complex information and easily interface with databases 
and external APIs. An important aspect of structs in Rust is that they are sum data types. This means 
the total memory size of a struct is the sum of the sizes of all its fields, plus any additional padding 
necessary for memory alignment. Let’s look at a few examples:

struct Employee {
   name: String,
   assigned_id: u64,
   email: String,
   active: bool,
   }

In the preceding example, we have defined a struct called Employee, which is a custom data type 
that is going to help us store specific employee-related data. It is a combination of multiple data types 
that Rust already understands, such as String, bool, and u64.

The following example makes use of a struct:

struct Employee { name: String, assigned_id: u64, email: String, 
active: bool, }
fn main () {
let emp1 = Employee {
name: String::from("John Doe") ,
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assigned_id: 1,
email: String::from("jd@company.com") ,
active: true, };
println!("Employee Name: {}", emp1.name);
println!("Assigned ID: {}", emp1.assigned_id);
println!("Email: {}", emp1.email);
println!("Active: {}", emp1.active);
}

The preceding example shows us how to initialize a struct. emp1 is a variable that is of the Employee 
type, where Employee is the struct we defined earlier. Since we’re able to use a struct to define types 
for variables, this is what we meant when we mentioned that structs are used to define custom types 
in Rust. When we create an instance of Employee, we can access its elements using the dot notation, 
as shown in the println! statements.

Each value of the struct, such as name, email, and so on, is initialized in the preceding example 
where initialization simply provides a particular value to create the variable for that struct type.

Vectors

Vectors enable us to create collections of values of the same type. The ideal use case for vectors is to 
store a list of values of a particular struct type. In the previous section, we learned about structs and 
looked at an employee struct, where we initialized a single employee using the custom struct type 
that we defined. In a real-world scenario, we may have to work with a list of various employees. To 
handle and store this list, we need vectors. Vectors are distinguished from fixed-size arrays by their 
extensive set of utility functions and the ability to dynamically resize.

For example, consider the Employee struct that we had previously. With vectors, we can not only 
store a list of Employee instances but also change and read individual elements with ease:

struct Employee {
   name: String,
   assigned_id: u64,
   email: String,
   active: bool,
}

fn main() {
   let emp1 = Employee {
      name: String::from("John Doe"),
      assigned_id: 1,
      email: String::from("jd@company.com"),
      active: true,
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   };

   let mut employees = Vec::new();
   employees.push(emp1); // Storing an employee

   // Changing an element
   if let Some(emp) = employees.get_mut(0) {
      emp.email = String::from("johndoe@newcompany.com");
   }

   // Reading an element
   if let Some(emp) = employees.get(0) {
      println!("Employee Name: {}", emp.name);
   }
}

In the preceding code, employees is a vector that stores Employee instances. We use the push 
method to add an employee. To change an element, we use get_mut to obtain a mutable reference 
to an employee, allowing us to modify its fields. For reading elements, get provides an immutable 
reference to an employee, enabling safe access to its data. Let’s see another example to understand 
this further.

A simple vector can be created using vec! with the values that will be stored in that vector:

let vector = vec![1, 2, 3];

Since we sent 1, 2, and 3 to the vector in the preceding example, Rust can infer the type of the vector 
– in this case, i32. If we want to be more specific about the type and need to ensure the creation of 
a vector of a particular type, we can use the following syntax:

let vector: Vec<i32> = Vec::new( );

In the preceding example, vector is a variable that is actually a vector. It’s going to store values of the 
i32 type. This is represented by Vec<i32>. The creation of a new vector is represented by calling 
the "Vec::new( )" function.

Vectors have indices and the values inside a vector can be referenced using the index number, like so:

let second: &i32 = &vector[1];

In the preceding example, we can refer to the second value of our vector by using &vector[1] 
since the index number starts at 0. Something interesting here is &. This is known as a reference; we 
will look at this later.
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Let’s look at another example where we use vectors for what they’re meant for – storing collections 
of data types:

struct rectangle {
  w: i8,
  h: i8
}
fn main() {
let mut v = vec![];
v.push(rectangle{w: 3, h: 4});
v.push(rectangle{w: 99, h: 42});
}

In the preceding example, we start with a struct called rectangle that has a width and height. Then, 
we initialize an empty, mutable vector, v. In the next two lines, we push two structs into this vector. 
These two structs are rectangles that we defined earlier. This demonstrates how we can easily store 
and work with collections or lists of multiple struct objects. For more information, please refer to the 
official documentation at https://doc.rust-lang.org/std/vec/struct.Vec.html.

In the next section, we will dig into some advanced concepts that will take our Rust skills to the next level.

Delving deep into advanced Rust concepts
Now that we have built upon our foundational knowledge of Rust, it’s time to expand our bases with 
some more concepts that will make us even more comfortable with Rust and let us build real-world 
projects with it.

In the following subsections, we will learn about concepts that unlock some advanced functionality 
for us, such as hashmaps, ownership, borrowing, crates, modules, and cargo. These help us work 
smoothly with slightly bigger projects. However, you may end up using these features more often 
than you expect, so it’s important to pay close attention to these subsections.

Hashmaps

Hashmaps in Rust, as in many other programming languages, are collections of key-value pairs. They 
are especially efficient for scenarios where you need to quickly look up data using keys rather than index 
values. The efficiency of hashmaps comes from their use of a hashing function, which converts keys 
into hash codes. These hash codes are then used to determine where to store the key-value pairs in the 
hashmap’s internal array. This mechanism allows for fast data retrieval as it reduces the need to search 
through the entire data structure; instead, the key’s hash code points directly to its associated value.

https://doc.rust-lang.org/std/vec/struct.Vec.html
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Let’s explore how to use a hashmap in Rust with an example:

use std::collections::HashMap;

fn main() {
   let mut rgb = HashMap::new();

   rgb.insert(String::from("Blue"), 10);
   rgb.insert(String::from("Green"), 50);
   rgb.insert(String::from("Red"), 100);

   // Querying and using data from the HashMap
   match rgb.get("Blue") {
      Some(&number) => println!("Blue: {}", number),
      None => println!("No value found for Blue"),
   }

   // Iterating over the HashMap
   for (key, value) in &rgb {
      println!("{key}: {value}");
   }
}

In the preceding example, we create a mutable HashMap named rgb. Then, we insert key-value 
pairs into it, where each key is a color name and the value is an associated number. To query and use 
data from the hashmap, we use the get method. This method retrieves the value associated with a 
given key – in this case, "Blue". If the key exists, its value is printed; if not, a message indicating 
the absence of the key is displayed.

The final part of the example demonstrates iterating over HashMap using a for loop. This loop prints 
out each key-value pair stored in the rgb hashmap.

Hashmaps in Rust are an integral part of efficient data handling, particularly when you need fast access 
to elements through unique keys. Their underlying implementation makes them a preferred choice 
over other data structures, such as arrays or vectors, in scenarios where quick lookup is a priority.

Ownership and borrowing

The & character has been in a few examples in previous sections. We discussed that this is called passing 
values by reference. In this section, we will understand why this is a critical feature provided by Rust.

Rust has an interesting approach to the problem of memory management that many programming 
languages try and solve with an automated garbage collector. Some expect the programmer to explicitly 
allocate and free the memory. The approach that’s used by Rust involves ownership and a set of rules 
that the compiler checks for you. This harks back to what we learned about the Rust compiler at the 
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beginning of this chapter – the compiler does a lot of the work for you and prevents you from doing 
something irrational.

The general rules that define this state that all values in Rust have an owner and that there can only 
be one owner for each value. The rules also state that when the owner goes out of scope, the value 
will be dropped.

Let’s look at a few examples:

fn main() {
      let example = String::from("hello");
 }

The preceding example shows a variable called example that implements a string called 'hello'. 
What we want to demonstrate with this example is that example will go out of scope after the end 
bracket of the main function. This is where the uniqueness of Rust comes in – as soon as the variable 
goes out of scope, Rust calls a special function called drop that returns the memory to the allocator.

Let’s look at an example of how ownership plays a significant role in this process:

fn main( ){
   let example = String::from("hello");
   another_function(example);
   println!("{}", example)
}
fn another_function(example String){
   println!("{}", example)
}

In the preceding example, the main function has a variable called example that is a string, while 
the main function has ownership of example. However, as soon as we send example off to 
another_function, this called function gets ownership of example and it has the code to print 
the value of example. The issue is that since there can only be one owner of a particular value in 
Rust, the main function does not have ownership of example anymore – this is where most Rust 
beginners get confused.

This means that once we call another_function with the value of example, the main function 
loses ownership. Now, when we try to print the value of example in the main function after calling 
another_function, the Rust compiler isn’t going to allow us to do that. This is done to ensure 
the program is highly stable.

So, if we want to send ownership to another function but also want to use the value in the native 
function, how do we do this? This is where the concepts of borrowing and reference come into play.



Rust – Necessary Concepts for Building Blockchains62

Let’s demonstrate this with an example:

fn main() {
   let s1 = String::from("hello");
   let len = calculate_length(&s1);
   println!("The length of '{}' is {}.", s1, len);
}

fn calculate_length(s: &String) -> usize {
   s.len()
}

In the preceding example, we pass a value of s1, which is a string to the calculate_length 
function. However, it’s important to note &, which means that we didn’t transfer ownership to this 
function. Instead, ownership resides with main but due to &, only reference to s1 is being 
borrowed by the calculate_length function.

This means that even if we want to print the value of s1 later in the main function, even after calling 
the calculate_length function, we can do that and it won’t lead to any errors. Previously, we 
did not have this ability. With these simple examples, we have demonstrated and understood the 
important concepts of ownership and referencing in Rust.

Crates, modules, and cargo

With Rust, we can achieve modularity by separating the code into crates, the smallest compilation 
units in Rust. What we mean by this is that the Rust compiler (rustc) can compile a crate into a 
binary (which can be used to run a program) or even a library (which can be used in other projects 
or other parts of your code). This introduces modularity, reusability, and, to some extent, separation 
of concerns. This concept also brings in shareability, where crates can be shared among programmers 
across different projects for ease and to avoid building features from scratch.

In Rust, library and package are the same and Cargo is the name of the package management 
tool that we get with Rust. Both rustc and Cargo come with the standard rustup installation.

The following command creates a crate using Cargo (we will talk about Cargo in a minute):

$ cargo new phrases

This command generates a simple project for us:

.
├── Cargo.toml
└── src
   └── lib.rs

1 directory, 2 files
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Modules enable us to partition our code within the crate itself. To define modules, we use the 
mod keyword:

mod english {
   mod greetings {
   }

   mod farewells {
   }
}

The preceding example shows how we can define a module inside the phrases crate, where english 
is a module and english has greetings and farewells phrases. Similarly, the crate could 
contain phrases in many such languages, with each language being a module.

The point of having crates, as discussed earlier, is to be able to use them in different projects. We can 
import external crates into our program like so:

extern crate phrases;

The preceding line demonstrates that we’re importing the phrases crate that we created previously 
into our program.

Crates can end up getting large, hence why we had modules. So, if we want to use particular modules 
from a crate, we can do that as well:

extern crate phrases;
use phrases::english::greetings;
use phrases::english::farewells;

The preceding example imports the external phrases crate. Previously, we defined the english 
module in the phrases crate with english having its own greetings and farewells, so we see 
the second and third lines of the programs taking the help of the use keyword to access particular 
sub-modules inside the english module.

The Cargo.toml file is a crucial component of any Rust project. It contains metadata about the project 
and its dependencies. Think of it as a manifest or a blueprint for your project, detailing everything 
Cargo needs to know to build your crate, from the crate name and version to its dependencies and 
build configuration.

The standard Rust project structure includes a src directory, where your source code resides. 
Within src, the lib.rs or main.rs file is where the crate’s root module is defined. Additional 
modules can be created either as submodules in these files or as separate files and directories within 
the src directory. This structure helps in organizing code into logical units, enhancing readability 
and maintainability.
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To add external dependencies to your project, you must specify them in Cargo.toml. Cargo fetches 
these dependencies from crates.io (https://crates.io/), Rust’s package registry, when you 
build your project. Installing a crate is as simple as adding a line to your Cargo.toml file under 
[dependencies] with the crate name and desired version, then running cargo build or 
cargo run.

Summary
In this chapter, we explored why Rust stands out as one of the most favored programming languages, 
particularly due to its exceptional speed and performance. Moreover, its distinctive attributes, such as 
type safety, AOT compilation, zero-cost abstractions, and freedom from garbage collection, contribute 
to its popularity. Following this, we’ve delved into crucial Rust concepts that lay the foundation for 
upcoming chapters. These concepts encompass variables, data types, tuples, arrays, slices, control flow, 
functions, and vectors, all of which will be instrumental in our continued learning journey.

We also covered advanced concepts such as hashmaps, ownership and borrowing, crates, modules, 
and cargo, all of which help us work with projects.

This was a quick, whirlwind tour of the most important and the most commonly used Rust features 
that we will be using and reusing throughout the rest of this book, hence why it was important to get 
this out of the way. However, it must be noted that most of the explanations were quite pithy, so you 
are encouraged to read more in-depth books dedicated to the Rust programming language itself for 
a better and deeper understanding of the language.

Having said that, we feel that this chapter provides a good working knowledge of Rust that can be used 
to build complex projects. As we move on, we may need to use more concepts to build our blockchains. 
These concepts will be explained in detail as we progress through this book.

In the next chapter, we will use our Rust skills to build blockchains and decentralized applications (dApps).

https://crates.io/


Part 2:  
Building the Blockchain

In this part, we will leverage all that we have learned about blockchains and the Rust concept from 
the previous part and try and build a fully fledged blockchain.

This part has the following chapters:

• Chapter 3, Building a Custom Blockchain

• Chapter 4, Adding More Features to Our Custom Blockchain

• Chapter 5, Finishing Up Our Custom Blockchain





3
Building a Custom Blockchain

In this chapter, we will embark on the exciting journey of constructing our very own custom blockchain 
using Rust. By the end of this chapter, we will have laid the groundwork for our blockchain; in the 
subsequent chapter, we will finalize its implementation.

By undertaking this compact yet impactful project, we’ll gain a profound understanding of the 
fundamental principles underlying blockchain technology. This hands-on experience will equip us with 
the knowledge needed to recognize and comprehend the inner workings of other prominent blockchains 
such as Ethereum, Solana, NEAR, and Polkadot, all of which we’ll delve into in future chapters.

This understanding is invaluable when it comes to developing decentralized applications (dApps) 
on these blockchains. Armed with a solid foundation, we’ll be well-prepared to navigate the intricate 
world of blockchain technology and make meaningful contributions to the decentralized landscape.

To successfully build our blockchain, we will need to address a series of essential steps in this chapter. 
These include the following:

• Planning our first blockchain project

• Setting up your local environment

• Getting started with building the blockchain

• Creating the genesis block

• Using helper functions

• Exploring embedded databases

Technical requirements
First, we must get our system ready with the required installations.

The most recommended operating systems to work with Rust are Ubuntu and macOS. You can also 
install Rust on Windows and work with it but you may run into issues in slightly more advanced 
and complex programs. If you’re on Windows, the most recommended way to go is using Windows 
Subsystem for Linux (WSL-2), which enables you to work with Ubuntu inside Windows.
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Windows installation

For Windows systems, you can directly download the installer from the official Rust website (https://
www.rust-lang.org/tools/install).

To set up Rust on your Windows system, you can follow the instructions provided on the Windows 
development environment web page (https://learn.microsoft.com/en-us/windows/
dev-environment/rust/setup).

Mac installation

For macOS users, the best way to install Rust is by using the Homebrew package manager.

Make sure you have Homebrew installed. If you don’t have it, go to https://brew.sh/.

Once you have Homebrew, run the following command:

brew install rustup

rustup is the toolchain manager that includes the compiler and Cargo’s package manager. rustup 
will enable you to switch between different versions of Rust without having to download other stuff. 
Once you have rustup, you have to use it to install the Rust compiler (rustc):

rustup-init

After running this command, either restart the terminal or run the following command to activate 
your changes in the same terminal:

source ~/.bash_profile

Optionally, you can run the following command:

source ~/.zshrc

Once you’ve done this, you just need to verify your installation:

rustc –-version

Ubuntu installation

For Ubuntu and WSL-2, the installation procedure is the same.

The best way to install Rust is by using the rustup command, like so:

curl --proto '=https' --tlsv1.2 https://sh.rustup.rs -sSf | sh

You will be prompted with some options; select the default installation.

https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://learn.microsoft.com/en-us/windows/dev-environment/rust/setup
https://learn.microsoft.com/en-us/windows/dev-environment/rust/setup
https://brew.sh/
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Next, we need to run the following command to add the Rust toolchain directory to the current PATH 
environment variable:

source $HOME/.cargo/env

You can verify the installation by requesting Rust’s version:

rustc –-version

To work with Rust, you need the build-essential package, which will download the GNU 
Compiler Collection (gcc); without this package, you will get an error. You can install it with the 
following commands:

sudo apt update
sudo apt upgrade
sudo apt install build-essential

Here are some commonly used Rust commands that can be very helpful:

•  This command will help you update Rust very easily:

rustup update

• This command will enable you to uninstall Rust cleanly:

rustup self uninstall

Now, we can install a code editor to write our programs. In this case, we’ll be using Visual Studio 
Code (VS Code).

VS Code

To be able to write programs that require multiple files and modules, you need a code editor. Fortunately, 
VS Code has quite a few features that make it one of the best code editors for Rust. So, in this section, 
we will go ahead and install VS Code. You can find the installation for VS Code for Windows at 
https://code.visualstudio.com/docs/setup/windows and the one for macOS 
at https://code.visualstudio.com/docs/setup/mac?ref=hackernoon.com.

Ubuntu snap

After incorporating VS Code, we need to integrate Rust. Just like Homebrew on Mac, there’s the snap 
package manager in Ubuntu, which makes it easy to install packages such as Rust. If you already have 
snap installed, then installing Rust is quite straightforward – you just need to run one command:

sudo snap install --classic code

https://code.visualstudio.com/docs/setup/windows
https://code.visualstudio.com/docs/setup/mac?ref=hackernoon.com
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Following the integration of VS Code, the procedure seamlessly moves forward to include Rust, 
resulting in the successful installation of both VS Code and Rust on your Ubuntu machine.

Ubuntu apt

VS Code is available from the official Microsoft APT repositories and can be installed on Ubuntu, 
including within the WSL-2 environment. Let’s learn how to install it:

1. The first step is to update the packages index by running the following command as a user 
with sudo privileges:

sudo apt update

2. Then, you need the wget package to be able to hit URLs (we’ll need to download the repository 
from Microsoft’s website for this):

sudo apt install software-properties-common apt-transport-https 
wget

3. Now, we must import the Microsoft GPG key using the following wget command:

wget -q https://packages.microsoft.com/keys/microsoft.asc -O- | 
sudo apt-key add –

4. Next, we must enable the VS Code repository with the following command:

sudo add-apt-repository "deb [arch=amd64] https://packages.
microsoft.com/repos/vscode stable main"

5. Once the apt repository has been enabled, install the VS Code package:

sudo apt install code

In the future, whenever a new version is released, you can update the VS Code package through your 
standard desktop software update tool by running the following commands in your terminal:

sudo apt update
sudo apt upgrade

For users running Ubuntu on WSL-2, these same steps apply. WSL-2 provides a full Linux kernel built 
into Windows and offers an environment to run a GNU/Linux environment directly on Windows, 
unmodified, without the overhead of a traditional virtual machine or dual-boot setup. This allows 
you to install and use software such as VS Code in a Linux environment seamlessly alongside your 
Windows applications. Installing VS Code on Ubuntu on WSL-2 is especially beneficial for developers 
who need a Linux-based development environment on their Windows machine. It combines the ease 
of using Linux tools and workflows with the convenience of Windows. It’s important to ensure that 
WSL-2 is installed and set up on your Windows machine before proceeding with these installation steps.
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Once set up, open your Ubuntu terminal in WSL-2 and follow the preceding steps to install VS Code.

macOS

To install VS Code on MacOS, you can start by downloading the VS Code installer from https://
code.visualstudio.com/docs?dv=osx. Then, follow these steps:

1. Open your browser’s download list and locate the downloaded app or archive.

2. If it’s an archive, extract the archive’s contents. You must double-click for some browsers or 
select the magnifying glass icon if you’re using Safari.

3. Drag Visual Studio Code.app to the Applications folder, making it available in 
the macOS launchpad.

4. Open VSCode from the Applications folder by double-clicking the icon.

5. Finally, add VSCode to your dock by right-clicking on the icon.

Windows

For Windows, you can directly download the VS Code installer from https://code.visualstudio.
com/docs?dv=win.

Once you have downloaded it, you can run the installer; it will only take a minute or so to install.

By default, VS Code is installed under C:\Users\{Username}\AppData\Local\Programs\
Microsoft VS Code.

Alternatively, you can download a ZIP archive, extract it, and run VS Code from there.

rust-analyzer

rust-analyzer will be an important add-on in our development environment since it’s an implementation 
of Language Server Protocol (LSP) for the Rust programming language. It provides features such as 
completion and go-to definition for many code editors.

In our case, we need it to help catch issues and errors while we’re writing our code so that we don’t 
end up leaving most of the issues for compilation and can make quick fixes as we go.

rust-analyzer is available as a plugin for VS Code and is one of the reasons we went with VS Code. You 
can install and activate it in VS Code by going to the Extensions tab, searching for rust-analyzer, 
and then installing it – it’s just a one-click installation.

Once you’ve done this, you can take it for a ride by creating a simple Rust program using Cargo.

https://code.visualstudio.com/docs?dv=osx
https://code.visualstudio.com/docs?dv=osx
https://code.visualstudio.com/docs?dv=win
https://code.visualstudio.com/docs?dv=win
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Cargo

We learned about Cargo in Chapter 1, Blockchains with Rust. Cargo is Rust’s package manager; it 
downloads your Rust project’s dependencies, compiles your packages, makes distributable packages, 
and uploads them to creates.io (the Rust community’s package registry).

Cargo is automatically installed along with the Rust compiler as part of our rustup installation, so 
we don’t need to take any special steps to get it set up and we can take it for a test drive. To start a new 
Rust project with the help of cargo, run the following command in a terminal:

cargo new rust-blockchain

This will create a folder for us where we can build our blockchain program. This also gives us some 
boilerplate code and structure to get started with, as well as information about our crate. The folder 
structure for the same will look somewhat like what’s shown here:

/
rust-blockchain/
├── src/
│   └── main.rs
├── .gitignore
├── Cargo.toml
/

You will notice the src folder, which consists of a file called main.rs.  This file is where the main 
function (fn main) will reside and is where the program enters from. Also, notice the cargo.
toml file, which consists of the list of dependencies that you will need in your program. Initially, you 
won’t see any dependencies here because the boilerplate program that you get here is quite simple and 
doesn’t require any dependencies.

However, as we build, we may need to bring in some external packages to help augment and extend 
the functionalities of Rust. These packages will be mentioned in the cargo.toml file. Based on the 
list mentioned in this file, all the dependencies are downloaded and stored in the target folder.

In situations where you’re collaborating with other developers on a project, you may need to share 
your project with them or they may need to make a copy of the program. In this scenario, they don’t 
need to download the target folder – they can just copy the cargo.toml file, along with the source 
code, and install the program using cargo update or cargo build. Cargo will automatically 
go through the list and download all the dependencies on their system.
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This saves time, space, and hassle in setting up dependencies when collaborating on a project.

Apart from the dependencies, the cargo.toml file also allows you to define the project’s name, 
version, features, and edition.

To run the current boilerplate program that exists in main.rs, you can simply build the project first 
with the following command:

cargo build

Then, you can run the executable file that is generated from the build process by running this command:

cargo run

Planning our first blockchain project
Before we start writing the code for our first project, we’ll practice doing this by going through a visual 
planning exercise to help us get a visual understanding of how we will approach the project. This helps 
in setting a structure for the project and not only acts as a roadmap throughout the development of 
the project but also enhances our understanding of the core components of the project.

Let’s discuss these core components in detail.

Structs

Our program is going to contain multiple structs (we briefly touched upon structs in Chapter 2,  
Rust – Necessary Concepts for Building Blockchains, in the Advantages of Rust-based languages compared 
to Solidity section). Structs enable us to create data types using a mixture of data types that Rust already 
understands. Structs also help us keep our code highly modular, readable, and reusable.

The first thing we will start with is a block – the smallest entity of the blockchain that stores important 
information. In our case, the block will store the timestamp value for when the block was created, 
the hash of the previous Block via previous_block_hash, the hash value for this particular 
block, the transactions data via Transaction (the important data that the block stores), the nonce 
value (number only used once), and the height value (number of blocks processing this block in 
the blockchain). We learned about these concepts in Chapter 1, Blockchains with Rust.
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Let’s take a look at Figure 3.1, which illustrates the anatomy of a block:

Figure 3.1 – Visualizing the anatomy of a block

A block can have many transactions. The transactions in the block will be stored as a vector of the 
Transaction struct. Vectors enable us to create collections of structs and we can define a transaction 
(Figure 3.2) as a separate struct that stores the id value for the transaction, vin, which is a vector 
of  TXInput (transaction input), and vout, which is a vector of TXOutput (transaction output):

Figure 3.2 – id, vin, and vout

Since vin and vout are vectors of the TXInput and TXOutput structs, let’s take a look at what 
these structs look like. The TXInput struct has txid (the transaction ID), vout – which is again 
a vector of TXOutput structs. It also has a signature (to sign the transaction data) and a public key 
(required to access that data).

Let’s take a closer look at TXInput in Figure 3.3:
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Figure 3.3 – The composition and elements of TXINPUT within a transaction

TXOutput stores the value of the transaction and the public key hash, as depicted in Figure 3.4:

Figure 3.4 – The structure and components of TXOUTPUT within a transaction

To uphold the integrity of transaction data within individual blocks, it’s essential to utilize three structs: 
transaction, TXInput, and TXOutput.

A standard transaction is comprised of inputs and outputs. Among these, outputs hold paramount 
significance. These represent indivisible units of cryptocurrency (such as Bitcoin) that are logged on 
the distributed ledger. The entire network acknowledges these outputs as valid, granting them the 
ability to be expended. Most transactions work like this, though an exception is a coinbase transaction, 
which does not have input but produces an output – that is, payment to a miner for mining a block.

When a transaction occurs, such as when A sends currency to B, it generates unspent transaction 
outputs (UTXOs). These UTXOs are associated with B’s wallet address and can be utilized by B. 
The network of distributed full nodes keeps track of a set of UTXOs, known as the UTXO set. To 
use the funds that have been received, B has the option to expend one or multiple UTXOs from this 
UTXO set/pool.

As mentioned in Chapter 1, the blockchain is essentially a series of multiple different blocks that are 
connected. The connection between these blocks simply happens because the blocks are maintaining 
the hash of the previous block. The blockchain stores the tip_hash value, which is simply the hash 
of the last block, and has a db (database) value, which contains the entire block tree and specifies how 
blocks are connected, as shown in Figure 3.5:
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Figure 3.5 – Visualizing block interconnections – tip_hash and block tree in a blockchain

Blockchains have wallets that show the existing balance of the currency with a particular user or account. 
As shown in Figure 3.6, usually, a blockchain wallet stores the private key information with pkcs8 
private key information using a format known as Public-Key Cryptography Standards #8 (PKCS8):

Figure 3.6 – Balances and private key storage with PKCS8 encryption

Imagine a user, Alice, who owns a blockchain wallet. This wallet contains a private key, which Alice 
uses to sign transactions and access her funds. To secure this key, the wallet software uses PKCS8 
format. Here’s a simplified overview of what happens:

1. Key generation: Alice’s wallet generates a private key using a cryptographic algorithm such 
as RSA or ECDSA.

2. Serialization: The private key is then serialized into PKCS8 format. This process involves 
encoding the key into a standard structure that may include additional metadata about the key.

3. Encryption (optional): The PKCS8-formatted key can also be encrypted for added security. 
This means that even if someone accesses the PKCS8 file, they cannot use the private key 
without the passphrase.

4. Storage: The serialized (and possibly encrypted) PKCS8 private key is stored in the wallet.

This is the key that Alice’s wallet will use to sign transactions on her behalf. When Alice needs to make 
a transaction, her wallet software will use the PKCS8-formatted private key to sign the transaction 
securely. By leveraging PKCS8, the wallet ensures that the key is stored in a universally recognized 
and secure format, enhancing the overall security of Alice’s assets.

The adoption of PKCS8 in blockchain wallets is an example of how blockchain technology leverages 
existing, proven cryptographic standards to ensure security. By using PKCS8, wallets can securely 
store and manage private keys, which are essential for authorizing transactions and maintaining the 
integrity and security of the user’s assets on the blockchain.

Now, let’s talk a bit about nodes, which maintain copies of the blockchain we learned about earlier.
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Nodes are independent servers that maintain a copy of the blockchain. Some nodes are full nodes, 
which maintain an entire copy of the blockchain. This is really what makes a blockchain decentralized 
since many nodes are present in a blockchain and even if multiple nodes go down in the network, 
there are still many nodes to carry the blockchain forward. As shown in Figure 3.7, nodes simply 
contain the address, which is usually the port address if they’re on the same server or an IP address 
if they’re on different servers:

Figure 3.7 – Visualizing address inclusion within a network node

Now, let’s talk about servers.

As shown in Figure 3.8, servers make it easier for us to interact with the blockchain logic via nodes. 
This means that servers serve the entire blockchain via multiple blocks or the entire block tree:

Figure 3.8 – Visualizing blockchain inclusion within a server

We looked at multiple consensus mechanisms in Chapter 1. Now, it’s time to code this out. The most 
fundamental and most widely used consensus mechanism is the proof of work consensus mechanism 
and in our case, proof of work is a struct that stores block and target. As depicted in Figure 3.9, 
the target is required for mining, where the target is a mathematical result of a formula converted into 
a hexadecimal number that dictates the mining difficulty:

Figure 3.9 – Visualizing blockchain inclusion within a server

Now, let’s learn about the necessary functions for creating a custom blockchain.
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Required functions

In this section, we will cover the functions that we require to accompany each struct. This will also 
dictate how we organize the functions in their respective files – for example, all the functions related 
to a block will be in a block file. We will discuss the functional planning and file-level planning we’ll 
need to do for our project with the help of diagrams.

Figure 3.10 depicts the elements of a block file:

Figure 3.10 – Block file functions

The block file will have a new_block function, which is responsible for creating a new block for the 
chain. The generate_genesis_block function helps create the genesis block. The genesis block 
is the very first block in the blockchain and it requires special care. For example, it won’t store any 
previous_hash value; this is why it requires a separate function. The hash_transactions 
function helps us hash the transactions that take place and that are essentially stored in the block.

Let’s take a look at the contents of the Blockchain file (Figure 3.11).

Figure 3.11 – Blockchain file functions
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The blockchain file will contain helper functions to create and update the blockchain, such as create_
blockchain, update_blocks_tree, and new_blockchain, as well as some additional 
functions such as mine_block, which will mine a new block for the chain, and add_block, which 
will add the newly mined block to the blockchain.

In our program, there will be functions for nodes (Figure 3.12) that help us manage and maintain the 
nodes on which the blockchain exists:

Figure 3.12 – Node file functions

As we know, nodes maintain a copy of the chain and its latest state, and nodes exist in a network 
where they can communicate with each other to come to a consensus for the next block to be added 
to the chain.

You can add nodes with the add_node function, get all the nodes with the get_nodes function, 
and remove nodes from the network with the evict node function.

Figure 3.13 shows the various server functions. The server serves the entire blockchain and each node 
can be run as a server on a separate port. In the blockchain ecosystem, the terms node and server 
often come into play, each serving distinct yet interconnected roles. A node in a blockchain network 
refers to any computer that participates in the network’s activities. These activities include storing 
data, validating transactions, or contributing to the creation of new blocks. Each node maintains a 
copy of the blockchain and follows the network’s consensus rules.
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Figure 3.13 – Server functions

On the other hand, a server, in this context, generally refers to a more specialized role. While all 
servers can be considered nodes, not all nodes are servers. A server typically denotes a node that 
has additional responsibilities or capabilities, such as serving data or processing requests from other 
nodes or clients. For example, in a blockchain network, a server node might handle client requests 
for data, manage connections, or provide an interface for other nodes to interact with the blockchain. 
When we say a node can run as a server, this means that the node has been configured or set up 
to perform these server-like functions. It’s not just passively participating in the network by storing 
and validating data; it’s actively providing services to other nodes or clients. This could involve tasks 
such as facilitating transactions, offering data query capabilities, or even hosting a user interface for 
blockchain interaction.

The distinction is important to understand, especially when you’re setting up or managing a blockchain 
network. Each node might have the potential to act as a server, but depending on its configuration and 
the network’s architecture, it might take on a more passive or active role. Running a node as a server on 
a separate port implies that it is designated to handle specific network functions and communication, 
often requiring more resources and offering broader capabilities than a regular node:

Our program will have multiple functions for a server, such as run, which starts the server, and 
serve, which is the main function that receives requests from the peers (nodes) and then calls 
the other functions that we have mentioned based on matching conditions. There can be several 
matching conditions, such as data reception, verified blocks, and valid transactions trigger functions 
for synchronization, network integrity, and consensus among nodes.

The send_data function gets the data from the socket, while the send_block and send_tx 
functions help advertise the block and the transaction with the rest of the nodes in the network.
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Transactions are the core data that the blocks store and they usually take place when money, currency, 
or value is transferred between accounts, as shown in Figure 3.14:

Figure 3.14 – Transaction functions

To ensure the transactions are correct, they need to be verified; for each transaction that takes place, 
a hash is generated. Also, the account that sends the transaction needs to sign it with its key. This is 
why we have functions to help support all these functionalities.

As shown in the preceding figure, we have verify for verifying the transactions, sign for signing 
them, hash to create the hash, and new_utxo_transaction as the unspent transaction output 
since the receiver of the transaction will have more money in their bank account and will be able to 
spend this new money they’re received.

Wallets can hold value and have addresses associated with them. Figure 3.15 provides more details:

Figure 3.15 – Wallet functions
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In our program, we plan to have quite a comprehensive wallet implementation where we will have 
a new function to create a new wallet, a get_address function, which gets the associated wallet 
address, a validate_address function, which checks whether the address is a wallet address or 
not by using a public key hash, and a convert_address function, which takes in a public hash 
key and gives us a string.

We have organized all the code related to UTXOs into a UTXO set, as shown in Figure 3.16:

Figure 3.16 – UTXO set functions

In the UXTO set, the find_utxo function locates unspent transactions in the complete blockchain 
tree, count_transactions counts the transactions that have taken place, and find_spendable_
outputs helps us locate spendable UTXOs.

All transactions that take place between accounts on a blockchain make their way to the memory pool 
(Figure 3.17). This is where they are picked and added to a block by the nodes:

Figure 3.17 – Memory pool functions
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All the nodes have access to the memory pool. In our program, we have multiple functions to help 
work with the memory pool, such as add to add transactions to the memory pool. The get function 
will fetch the particular transaction with the provided tx_id value from the memory pool, while 
get_all will get all the transactions that are currently in the memory pool. Finally, the remove 
function removes the transactions and the contains function checks whether the memory pool 
contains a particular transaction and returns a Boolean value (true or false).

With that, we have gone through all the structs and functions that our program will have. This helps 
create a roadmap of sorts that will guide us on our journey to build a blockchain with a healthy set 
of features. Even if the functions and their uses don’t make sense right now, that’s all right – we will 
have much more clarity when we go through the code.

Now, we need to start coding up our blockchain based on the planning that we’ve done.

Getting started with building the blockchain
In this section, we’ll create our first blockchain project. We will use the Cargo project we created in 
the previous section as the starting point for our project.

Block

In the upcoming steps, we will guide you through the process of creating a block, elucidating each 
essential detail along the way. In the src folder, create a file called block.rs and implement the 
following struct in it:

pub struct Block {
    timestamp: i64,
    pre_block_hash: String,
    hash: String,
    transactions: Vec<Transaction>,
    nonce: i64,
    height: usize,
}

We will be following the plan and roadmap that we created earlier, where we did some visual planning, 
and extend upon this by going through the data types that we have chosen for each of the fields.

Here, Block has been represented as a struct where we have the following:

• timestamp: An integer value that represents the time when the block was created. It’s used 
to track the chronological order of blocks in the blockchain.

• pre_block_hash: A string containing the hash value of the previous block in the blockchain. 
This creates a link between blocks, ensuring the integrity of the blockchain.
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• hash: A string containing the hash value of the current block. This hash is generated based on 
the data within the current block, including transactions and other information. It’s a unique 
identifier for the block.

• transactions: A vector or collection that holds the various transactions included in the 
block. Transactions can represent various types of data or actions, depending on the blockchain’s 
purpose (for example, cryptocurrency transactions).

• nonce: An integer called nonce, which stands for number used only once. It’s a value that 
miners change while mining a block to find a hash that meets specific criteria. It’s a crucial part 
of the proof-of-work consensus algorithm used in many blockchains.

• height: This is a usize value that indicates the position of the current block within the 
blockchain. It represents the number of blocks that come before the current block. usize is 
a dynamic size type in Rust that’s suitable for representing this variable size.

Once we have the struct to be able to implement a structure for the block, we can take a look at some of 
the functions that will help us work with blocks. The first step in creating the new block is to initialize 
a new Block object. The timestamp field is set to current time, and the pre_block_hash, 
transactions, and height fields are set to the values that were passed in as arguments. The 
hash and nonce fields are initialized to empty values:

pub fn new_block(pre_block_hash: String, transactions: &[Transaction], 
height: usize) -> Block {
        let mut block = Block {
            timestamp: crate::current_timestamp(),
            pre_block_hash,
            hash: String::new(),
            transactions: transactions.to_vec(),
            nonce: 0,
            height,
        };

This function is used to create a new Block object for a blockchain. It takes in three arguments:

• pre_block_hash: The hash of the previous block in the chain

• transactions: An array of transaction objects that are to be included in the new block

• height: The height of the new block in the blockchain

The function returns a new Block object that has been generated using a proof-of-work algorithm.

The next step is to generate a proof of work for the new block using the ProofOfWork struct.



Getting started with building the blockchain 85

The ProofOfWork::new_proof_of_work function takes in a Block object and returns a 
new ProofOfWork object:

        let pow = ProofOfWork::new_proof_of_work(block.clone());
        let (nonce, hash) = pow.run();
        block.nonce = nonce;
        block.hash = hash;
        return block;
    }

The pow.run() method is then called on the ProofOfWork object, which performs the proof-
of-work algorithm and returns a tuple containing the nonce and hash values that were found. These 
values are then assigned to the nonce and hash fields of the Block object.

Finally, the function returns the completed Block object.

Note that this function uses the proof-of-work struct and transactions struct, so let’s define them.

For proof of work, we need to create the ProofOfWork struct, which needs to go into the proof_
of_work.rs file. Here, we have the block field, which is the Block struct we just created, and 
target, which is a big integer (BigInt):

pub struct ProofOfWork {
    block: Block,
    target: BigInt,
}

The proof-of-work implementation involves a critical step – crafting three essential transaction-
related structs. These three structs have to be added to the transaction.rs file. The first struct 
is Transaction, where id is a vector and vin and vout are collections of the TXInput and 
TXOutput structs, which will also be defined in this file:

pub struct Transaction {
    id: Vec<u8>,
    vin: Vec<TXInput>,
    vout: Vec<TXOutput>,
}

The TXInput struct contains the transaction ID (txid), which is a vector, vout, which is of the 
usize type, a dynamically determined data type, signature, and a public key (pub_key) of 
vectors of u8:

pub struct TXInput {
    txid: Vec<u8>,
    vout: usize,
    signature: Vec<u8>,
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    pub_key: Vec<u8>,
}

The TXOutput struct has value, which is an integer, and a public key hash (pub_key_hash), 
which is a vector or collection of u8 values (8-bit unsigned integer types):

pub struct TXOutput {
    value: i32,
    pub_key_hash: Vec<u8>,
}

In the Block subsection, we saw that the run function from the proof-of-work algorithm was called. 
First, we’ll copy and paste the run function, which plays a crucial role in the mining process in the 
newly created proof_of_work.rs file. Then, we’ll understand what it does:

pub fn run(&self) -> (i64, String) {
        let mut nonce = 0;
        let mut hash = Vec::new();
        println!("Mining the block");
        while nonce < MAX_NONCE {
            let data = self.prepare_data(nonce);
            hash = crate::sha256_digest(data.as_slice());
            let hash_int = BigInt::from_bytes_be(Sign::Plus, hash.
as_slice());

            if hash_int.lt(self.target.borrow()) {
                println!("{}", HEXLOWER.encode(hash.as_slice()));
                break;
            } else {
                nonce += 1;
            }
        }
        println!();
        return (nonce, HEXLOWER.encode(hash.as_slice()));
    }

This function is part of the proof-of-work algorithm and is used to find a nonce value that produces 
a hash of the block data that is lower than a specific target value. The function takes no arguments 
but operates on the ProofOfWork object on which it is called.

The function returns a tuple containing two values: the nonce value that was found, and the hash 
value that was produced using that nonce value. It works as follows:

1. The function initiates the nonce variable at 0 and prepares an empty hash vector.
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2. It enters a loop, persisting until a valid nonce value or the maximum nonce value is achieved.

3. In each loop iteration, the function does the following:

I. It invokes the 'prepare_data' method of the ProofOfWork object, extracting a 
byte slice depicting block data with the current nonce.

II. It computes the hash value of this data using the 'sha256_digest' function from 
the crypto crate (crate:😊).

III. It converts the hash value into a BigInt value through 'from_bytes_be', treating 
the hash as big-endian bytes, with 'Sign::Plus' indicating a positive BigInt value.

4. The function checks if the BigInt hash value is less than the ProofOfWork object’s target 
value. If this is true, it prints the hexadecimal hash using 'HEXLOWER.encode' from hex 
crate and exits the loop. If this is false, the function increments nonce and proceeds to 
the next loop iteration. After discovering an appropriate nonce, the function returns a tuple 
comprising the nonce and hash values in hexadecimal form.

Next, we’ll craft the very first block in our blockchain – the genesis block. This block sets the stage 
for our entire blockchain system.

Creating the genesis block
The very first block in a blockchain is called the genesis block. While we haven’t written any code for 
the blockchain, we would like to create the first block and get things started. The genesis block doesn’t 
store a previous hash since no block comes before it.

In the block.rs file, we’ll begin by implementing functions specific to the Block type. To achieve 
this, we must create a code block, like so:

impl Block{
// Functions related to the Block type can be implemented here
...
}

The impl keyword in Rust is used to define a set of methods associated with a specific type – in this 
case, Block. This block acts as a container for functionality that is directly associated with the block 
structure, allowing us to define what operations can be performed with or on a block.

Move the new_block function that we created in the Block section, where we learned how to create 
a block, to inside the preceding code block and all the other functions.

Now, we can create a block that will also be placed inside this. First, we will add two more functions 
inside the code block.
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The following two functions are used to serialize and deserialize Block objects to store them in a file, 
send them over a network, or otherwise persist them outside of memory. They rely on the bincode 
crate, which is a Rust crate that provides fast and compact binary serialization and deserialization.

The bincode crate is an essential tool for serializing and deserializing Rust data structures efficiently 
and compactly. To use bincode to handle Block objects, we must add it to our project and import 
it into our file.

To add bincode to your project, include it in your Cargo.toml file under [dependencies]:

[dependencies]
bincode = "1.3.3" # Specify the compatible version

After saving the Cargo.toml file, Cargo will automatically download and compile the bincode 
crate when you build your project.

Now, in the block.rs file where you want to serialize and deserialize Block objects, start by 
importing the bincode crate:

extern crate bincode;
use bincode::{serialize, deserialize};

With bincode imported, you can now implement the serialization and deserialization functions:

pub fn deserialize(bytes: &[u8]) -> Block {
        bincode::deserialize(bytes).unwrap()
    }

The deserialize function takes a slice of bytes and returns a Block object that has been deserialized 
from the binary data. First, it calls the deserialize method of bincode crate, passing in the 
slice of bytes. The result of this call is a Result object that contains either the deserialized Block 
object or an error. The function then unwraps this result and returns the deserialized object:

    pub fn serialize(&self) -> Vec<u8> {
        bincode::serialize(self).unwrap().to_vec()
    }

The serialize function takes a reference to a Block object and returns a vector of bytes that 
represents the object in a serialized binary format. First, it calls the serialize method of the 
bincode crate, passing in a reference to the Block object. The result of this call is a Result object 
that contains either the serialized bytes or an error. The function then unwraps this result and converts 
the serialized data into a Vec<u8> struct.

Together, these functions allow Block objects to be easily serialized and deserialized in a binary 
format that can be stored, sent, or otherwise processed outside of the Rust program that created them.
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At the top of the program, include the ProofOfWork crate, since we want to use the run function 
from it, and the Transaction crate since we want to store transactions in the block. Note that these 
are the crates we created in our program. Having crates makes programs very modular and easy to 
import, as shown in the following code snippet:

use crate::{ProofOfWork, Transaction};
use serde::{Deserialize, Serialize};

We also import serde, which helps us with serialization and deserialization. serde is a popular 
and widely used library.

The following code represents the content of the updated block.rs file and reflects the changes 
that have been made by adding the new code:

use crate::proof_of_work::ProofOfWork;
use crate::transaction::Transaction;

In Rust, serde is a framework for serializing and deserializing data structures efficiently and 
generically. To use serde in our block.rs file, we need to add it to our project’s dependencies 
and import it into the file.

Here’s how we can add serde to the project:

1. Open the Cargo.toml file located at the root of your Rust project.

2. Under the [dependencies] section, add serde and, optionally, specify the version you 
want to use. If you’re using features such as derive, you will also need to enable them:

[dependencies]
serde = { version = "1.0", features = ["derive"] }

Once you’ve saved the changes to Cargo.toml, Cargo will handle downloading and compiling the 
serde crate, along with any specified features.

Next, to import serde in your block.rs file, include the following use statement:

use serde::{Deserialize, Serialize};

This statement brings the Serialize and Deserialize traits into scope, which are necessary 
to serialize and deserialize your data structures with serde:

impl Block{
pub fn new_block(pre_block_hash: String, transactions: &[Transaction], 
height: usize) -> Block {
        let mut block = Block {

            timestamp: crate::current_timestamp(),
            pre_block_hash,
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            hash: String::new(),
            transactions: transactions.to_vec(),
            nonce: 0,
            height,
        };
        let pow = ProofOfWork::new_proof_of_work(block.clone());
        let (nonce, hash) = pow.run();
        block.nonce = nonce;
        block.hash = hash;
        return block;
    }
pub fn deserialize(bytes: &[u8]) -> Block {
        bincode::deserialize(bytes).unwrap()
    }

pub fn serialize(&self) -> Vec<u8> {
        bincode::serialize(self).unwrap().to_vec()
    }

}

Now, let’s delve into crafting some essential helper functions to complement the foundational block 
structure we’ve established here.

Using helper functions
Helper functions simplify complex blockchain operations, enhancing code readability, reusability, 
and maintenance. In Rust-based blockchain development, functions such as get_transactions, 
get_prev_block_hash, and get_hash abstract away intricacies, enabling modular design and 
efficient debugging while focusing on high-level logic.

Let’s add some functions to the block.rs file that can help us work with blocks:

pub fn get_transactions(&self) -> &[Transaction] {
        self.transactions.as_slice()
    }

This function helps us to get the list of transactions, but let’s break it down and see what’s happening here.

This function is defined on a Rust struct and returns a borrowed reference to a slice of 
Transaction objects:

• pub indicates that this function can be called from outside the struct.

• fn is the keyword that’s used to define a function.
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• get_transactions is the name of the function.

• (&self) is the function parameter, which is a reference to the struct instance. & indicates that 
this is a borrowed reference, meaning that the function can read but not modify the struct’s data.

• -> &[Transaction] is the return type, which is a borrowed reference to a slice of 
Transaction objects.

• self.transactions.as_slice() is the implementation of the function. Here, self.
transactions is a reference to a vector of Transaction objects that is a member of 
the struct.

• The as_slice() method is called on this vector to return a borrowed reference to its slice. 
This slice is then returned from the function.

Therefore, when this function is called on an instance of the struct, it returns a borrowed reference to 
the slice of Transaction objects contained within that instance. Since it is a borrowed reference, 
the caller cannot modify the contents of the slice directly.

Let’s add one more function called get_pre_block_hash:

pub fn get_pre_block_hash(&self) -> String {
        self.pre_block_hash.clone()
    }

This function is defined on a Rust struct and returns a cloned copy of the pre_block_hash string. 
Let’s break down the function definition:

• -> String is the return type, which is a new String instance containing a cloned copy of 
the pre_block_hash string.

• self.pre_block_hash.clone() is the implementation of the function. Here, self.
pre_block_hash is a string member of the struct that holds the hash of the previous block 
in the blockchain.

• The clone() method is called on this string to create a new instance with identical content. 
This new instance is then returned from the function.

Therefore, when this function is called on an instance of the struct, it returns a new String instance 
that contains a cloned copy of the pre_block_hash string held within that instance. The clone() 
method is used to ensure that the returned value is a new, independent copy of the original string, 
rather than a reference to the original string that could be modified by the caller.

A function similar to pre_block_hash is the get_hash function; both provide access to hash 
values. The get_hash function provides a reference to a block’s hash, offering an efficient way to 
access the data without taking ownership. This is useful when you only need to read the hash and do 
not require ownership, such as when you’re temporarily inspecting the hash or passing it to functions 
that don’t need to own it. On the other hand, get_pre_block_hash clones the previous block’s 
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hash, which involves allocating new memory and copying the data. This is necessary when you need 
to modify the hash or retain it independently of the original block, ensuring that the original data 
remains unchanged. So, let’s go ahead and implement get_hash as well:

pub fn get_hash(&self) -> &str {
        self.hash.as_str()
    }

This function simply gets the hash for the transaction.

We need three more helper functions that help us return values from the block struct. So, essentially, 
all the fields of the block will have functions associated to help us isolate them and return them:

pub fn get_hash_bytes(&self) -> Vec<u8> {
        self.hash.as_bytes().to_vec()
    }

The get_hash_bytes function returns a vector of bytes representing the hash string held within 
the struct instance. Let’s break down the function definition:

•  -> Vec<u8> is the return type. It is a new Vec instance containing a copy of the bytes that 
make up the hash string.

• self.hash.as_bytes().to_vec() is the implementation of the function. Here, self.
hash is a string member of the struct that holds the hash of the current block.

• The as_bytes() method is called on this string to obtain a slice of bytes that make up the 
string’s content. This byte slice is then converted into a new Vec instance using the to_vec() 
method. This new instance is then returned from the function:

pub fn get_timestamp(&self) -> i64 {
        self.timestamp
    }

The get_timestamp function returns the timestamp value held within the struct instance as an 
i64 type. Let’s break down the function definition:

• -> i64 is the return type, which is the timestamp value as an i64 type.

• self.timestamp is the implementation of the function. Here, self.timestamp is a 
member of the struct that holds the timestamp of the current block. This value is returned 
from the function:

pub fn get_height(&self) -> usize {
        self.height
    }
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The get_height function returns the height value held within the struct instance as a usize type. 
Let’s break down the function definition:

• -> usize is the return type, which is the height value as a usize type.

• self.height is the implementation of the function. Here, self.height is a member of 
the struct that holds the height of the current block.

Then, we have our hash_transactions function. Let’s take a look:

pub fn hash_transactions(&self) -> Vec<u8> {
        let mut txhashs = vec![];
        for transaction in &self.transactions {
            txhashs.extend(transaction.get_id());
        }
        crate::sha256_digest(txhashs.as_slice())
    }

Essentially, this function helps us hash our transactions by taking a collection of transaction IDs 
and using SHA-256 to hash them and then return the resulting hash as a vector of bytes. Let’s take a 
closer look:

1. The first line defines the hash_transactions function as a public function that takes a 
reference to self (which is an instance of some struct that contains a collection of transactions) 
and returns a vector of bytes (Vec<u8>).

2. In the second line, we initialize an empty vector called txhashs. This will be used to store 
the hashed transaction IDs.

3. The loop iterates through each transaction in the transactions collection of the self struct, 
gets the transaction ID using the get_id method, and appends the ID bytes to the txhashs 
vector using the extend method.

4. The last line calls the sha256_digest function defined in another crate (hence crate:: 
prefix), passing in the txhashs vector as a slice. This function applies the SHA-256 hashing 
algorithm to the input data and returns the resulting hash as a vector of bytes.

Finally, we have our generate_genesis_block function:

pub fn generate_genesis_block(transaction: &Transaction) -> Block {
        let transactions = vec![transaction.clone()];
        return Block::new_block(String::from("None"), &transactions, 
0);
    }
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As its name suggests, this function generates the genesis block of the blockchain, which is the first 
block in the chain. Let’s take a closer look:

1. The first line defines a function called generate_genesis_block that takes a reference 
to a Transaction object as input and returns a Block object.

2. The next line creates a new vector called transactions that contains a single transaction. 
This is the transaction that was passed to the function. The clone method is called on the 
transaction to create a new copy of it in memory; this is added to the transactions vector.

3. The third line creates a new Block object using the new_block method of the Block struct. 
The method takes three arguments:

 � A String object that represents the previous block’s hash. Since this is the first block, there 
is no previous block, so a value of None is passed.

 � A reference to the transactions vector we created earlier.

 � An integer value that represents the current block’s index. Since this is the first block, the 
index is set to 0.

4. Finally, the function returns the newly created Block object.

Next, we’ll look at embedded databases.

Exploring embedded databases

An embedded database blockchain employs a built-in database within its nodes, streamlining data 
storage and retrieval. This approach enhances efficiency and simplifies setup, making it a promising 
solution for decentralized applications and systems requiring a self-contained blockchain structure.

To store the block tree, we’re using an embedded database. We could store these details in a database 
such as MongoDB, but that would require a significant amount of setup and would pull away our 
focus from the blockchain logic. So, to keep things simple, we’re using an embedded database; this 
project is for learning purposes and is not intended to be used in production.

However, if you were to use it in production, you could further optimize it, change the database, 
and then use it in production. But for this book, we will focus on the learning aspect and use an 
embedded database.

Let’s learn more about the embedded database.

We’re using the popular sled database, which is quite lightweight but still packs a punch in terms of 
the number of features available. You get features such as the following:

• Zero-copy reads

• Write batches
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• Merge operators

• Forward and reverse iterators over ranges of items

• CPU-scalable lock-free implementation

• Flash-optimized log-structured storage

These features make it easy for us to quickly implement a solution that’s still quick to scale.

One more thing you will notice in the code related to sled will be IVec. You can learn more about IVec 
here: https://docs.rs/sled/latest/sled/struct.IVec.html. IVec is similar to 
binary and you need this to tell sled how to store your structs in the database. Most structs are easy but 
for the more complicated structs, we have to explain them to sled. For this reason, we will be making 
use of IVec. To use the IVec type from the sled crate in our Rust project, we must add sled as a 
dependency. IVec is an abstraction over sled’s on-disk byte arrays, and it is used extensively within 
sled’s API for data retrieval and manipulation.

Follow these steps to add sled to our project:

1. Open your project’s Cargo.toml file, which is located at the root of your Rust project directory.

2. In the [dependencies] section, add sled with the desired version number. If you do not 
specify a version, Cargo will automatically use the latest version available. It’s often a good 
practice to specify at least the major version you are targeting to avoid unexpected updates:

[dependencies]
sled = "0.34"

Once you’ve added sled to your Cargo.toml file and saved it, Cargo will handle the rest. The 
next time you build your project, Cargo will automatically download and compile the sled crate, 
along with its dependencies.

In our block.rs file, we must import IVec from sled:

 use sled::IVec;

Now that we know about sled and IVec, let’s look at some code related to this that we need to write 
in the block.rs file outside the impl block:

impl From<Block> for IVec {
    fn from(b: Block) -> Self {
        let bytes = bincode::serialize(&b).unwrap();
        Self::from(bytes)
    }
}

https://docs.rs/sled/latest/sled/struct.IVec.html
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This is an implementation of the From trait for a Block struct and an IVec struct. In Rust blockchain 
development, traits define shared behaviors among types. They enhance reusability, enforce consistent 
behavior, and promote flexible, polymorphic interactions within the blockchain system. From trait 
allows us to create an instance of one type from an instance of another type.

In this implementation, a Block instance is converted into an IVec instance. Here’s how the 
implementation works:

• impl From<Block> for IVec: This is the implementation of the From trait for the 
Block struct and the IVec struct. This means that an instance of Block can be converted 
into an instance of IVec using this implementation.

• fn from(b: Block) -> Self { ... }: This is the implementation of the from 
method for this trait. The method takes a single parameter, b, of the Block type and returns 
an instance of IVec.

• let bytes = bincode::serialize(&b).unwrap();: This line serializes the Block 
instance into a byte array using the bincode crate’s serialize function. This converts the 
Block instance into a binary format that can be stored or transmitted over a network.

• Self::from(bytes): This line converts the byte array into an instance of IVec using the 
from method of the IVec struct. Self is a special keyword in Rust that refers to the type that 
is being implemented, which is From<Block> for IVec in this case. The from method of 
the IVec struct takes a byte slice as input and returns an IVec instance containing the bytes.

Therefore, when this implementation is used to convert a Block instance into an IVec instance, 
it first serializes the Block instance into a byte array using the bincode crate, then creates a new 
IVec instance from that byte array.

With this, we’ve successfully crafted our very own custom blockchain.

Summary
In this chapter, we started building our custom blockchain in Rust. First, we planned out our entire 
project using visuals and laid out our structs and function plans. Then, we started writing the actual 
code that would help us create functions for creating blocks, transactions, and the genesis block, along 
with structs for proof-of-work consensus and transactions.

In the next chapter, we will take things further. Following our initially laid-out roadmap, we will build 
the rest of the features and functions. Just like we did in this chapter, we will go through all the lines 
of code so that you are clear about how the blockchain works.



4
Adding More Features to Our 

Custom Blockchain

In the previous chapter, we started our journey of building a blockchain using Rust. We created a visual 
plan of our structs and functions and also started writing some code. We looked at the basic building 
blocks of the blockchain project that we’re building. We defined structs and some functions that help 
understand how many of the core components in the blockchain will be represented.

This chapter is the next step, where we extend our learning and go deeper into the implementation 
and understanding of the blockchain. We will look at the rest of the code, flesh out more details to the 
elements introduced in Chapter 3, Building a Custom Blockchain, and understand how these details 
work and contribute to the blockchain at large.

By the end of this chapter, we will have a blockchain program that compiles and runs.

We will cover the following topics:

• Connecting the blocks

• Starting the node server

Technical requirements
In this phase of advancing the custom blockchain introduced in the preceding chapters, essential 
features will be integrated into the existing implementation, significantly expanding its capabilities.

To ensure a seamless learning experience, all the code related to this chapter is available in the dedicated 
GitHub repository for our book at https://github.com/PacktPublishing/Rust-for-
Blockchain-Application-Development.

https://github.com/PacktPublishing/Rust-for-Blockchain-Application-Development
https://github.com/PacktPublishing/Rust-for-Blockchain-Application-Development
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You can clone the code with this command:

git clone https://github.com/PacktPublishing/Rust-for-Blockchain-
Application-Development.git

You’ll find detailed code snippets, projects, and resources referenced from this repository.

For an immersive comprehension of the concepts discussed, it’s highly recommended to clone this 
repository. By doing so, readers will seamlessly follow and interact with the provided code examples, 
enabling a firsthand observation of the blockchain’s evolution.

Let’s delve straight into the exploration and implementation.

Connecting the blocks
This section will start bringing important independent concepts together to build a functional blockchain.

Let us first start by looking at some essential libraries that will be used throughout this project.

Libraries powering blockchain operations

This section will cover crucial libraries essential for the Blockchain struct’s operations. These 
libraries cover diverse aspects of the blockchain’s core functionalities, enhancing its efficiency and 
overall performance.

Data storage with Sled

The Blockchain struct heavily relies on the Sled library for robust data storage management. By 
utilizing a key-value store approach, Sled is fully implemented in Rust and offers ACID transactions, 
which ensures data consistency even in the presence of errors such as crashes, and that’s the right 
use case for our blockchain since data consistency is paramount. An interesting point to note is that 
Sled is an embedded database, meaning that it is designed to be directly integrated into applications 
without requiring a separate server process. It’s also optimized for performance, employs zero-copy 
architecture, and provides various configuration options to customize its behavior according to the 
requirements of the application.

Sled becomes integral in persisting crucial blockchain components, including blocks and their 
associated transactions. This utilization of Sled ensures a streamlined and efficient method for storing 
and retrieving essential data within the blockchain.

Transaction and block handling

The integration of libraries such as crate::transaction::TXOutput, crate::{Block, 
Transaction}, and sled::transaction::TransactionResult facilitates seamless 
manipulation and handling of transactions and blocks within the Blockchain struct. These libraries 
contribute to the efficient organization and interaction of transactional data within the blockchain.
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Encoding and decoding support

Utilizing data_encoding::HEXLOWER enables efficient encoding and decoding of data – in our 
case, in hexadecimal format. It makes this possible by providing utilities for encoding and decoding 
data using various binary-to-text encoding schemes, allowing developers to work with formats such 
as Base64, Base32, hexadecimal, and even custom encoding schemes, and this is a critical aspect for 
cryptographic operations and data representation within the blockchain.

It helps us by encoding binary data into a text-based format that is human-readable and easy to 
transmit over text-based protocols such as HTTP, JSON, or XML.

Data encoding is designed to be flexible and extensible and provides robust error-handling mechanisms 
to deal with invalid input data. One of the primary reasons that we have used this library is because of 
its performance and also the clear documentation available, along with clear examples and explanations 
of how to use its various features.

Key-value store implementation

The sled::{Db, Tree} libraries offer a scalable and efficient key-value storage system. Their 
integration provides the Blockchain struct with robust data storage capabilities, ensuring reliability 
and performance in managing blockchain components. We’ve already discussed Sled and how it helps 
us with consistent data storage – something that’s required by our blockchain.

Data structure management

std::collections::HashMap plays a key role in organizing and managing data structures 
within the blockchain implementation. Its functionalities contribute to efficient data handling and 
retrieval within the blockchain. A hashmap essentially stores elements as key-value pair, where each 
key must be unique within the map, and this provides very efficient lookup operations, typically 
with an average time complexity of O(1) for inserting, updating, and retrieving elements. Hashmaps 
implement automatic resizing as needed to maintain efficient performance.

Filesystem interaction

The inclusion of std::env::current_dir enables seamless access to the current directory, 
facilitating file-handling operations crucial for blockchain data management and interaction. The 
current_dir function returns a result where the success variant contains a PathBuf pointer, 
which represents the working directory. The function is particularly useful when dealing with file I/O 
operations or when the program needs to know its current location within the filesystem. PathBuf 
here is a smart pointer to a path in the filesystem.
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Concurrent access management

Utilizing std::sync::{Arc, RwLock} provides synchronization primitives, ensuring safe 
concurrent access to shared data structures. This is pivotal for maintaining data consistency and 
integrity in a multithreaded environment within the blockchain implementation. Arc here stands 
for Atomic Reference Counting; it is a thread-safe reference-counting pointer, allowing multiple 
threads to share ownership of a value. The purpose of Arc is to allow multiple threads to have read-
only access to a value without the need for explicit locking – something that’s very important in our 
blockchain application, where we’d like to support multiple concurrent reads without locking. Arc also 
maintains a reference count internally, which is incremented or decremented atomically as references 
to the value are acquired and released, and hence is used primarily for scenarios where you need to 
share immutable data across multiple threads – such as in our case.

RwLock stands for reader-writer lock; it provides a synchronization mechanism that allows multiple 
readers or a single writer to access a resource at the same time.

The lock allows concurrent read access, meaning multiple threads can acquire a read lock and access data 
simultaneously as long as no threads hold a write lock – this significantly helps with data consistency, 
and this is the same reason why we’re using Sled as well.

Now, we’ll move on to the blockchain functions that will help us perform operations on the blockchain.

Blockchain functions

Blockchain functions as a decentralized, secure ledger technology, facilitating transparent transactions. 
It encompasses consensus mechanisms, smart contracts, and tokenization. These functions enable 
diverse applications, from cryptocurrency transactions to supply chain traceability, offering a broad 
spectrum of decentralized solutions.

In the blockchain.rs file, readers will find a collection of essential functions designed to facilitate 
various operations within the blockchain. These functions are thoroughly explained here to ensure a 
comprehensive understanding. For those following along, the detailed code can be accessed within 
the GitHub repository.

create_blockchain function

The blockchain::Blockchain::create_blockchain function initializes a blockchain, 
utilizing the Sled key-value store. It checks for an existing blockchain and generates a genesis block if 
none is found. The resulting blockchain object includes a tip hash and database reference:

pub fn create_blockchain(genesis_address: &str) -> Blockchain {
    let db = sled::open(current_dir().unwrap().join("data")).unwrap();
    let blocks_tree = db.open_tree(BLOCKS_TREE).unwrap();
    let data = blocks_tree.get(TIP_BLOCK_HASH_KEY).unwrap();
    let tip_hash;
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    if data.is_none() {
      let coinbase_tx = Transaction::new_coinbase_tx(genesis_address);
      let block = Block::generate_genesis_block(&coinbase_tx);
      Self::update_blocks_tree(&blocks_tree, &block);
      tip_hash = String::from(block.get_hash());
    } else {
      tip_hash = String::from_utf8(data.unwrap().to_vec()).unwrap();
    }
    Blockchain {
       tip_hash: Arc::new(RwLock::new(tip_hash)),
       db,
    }
}

Overall, this function creates a new Blockchain instance by initializing a new database connection 
and creating a genesis block if there is no block in the blockchain yet. If there is already a block, it 
sets the tip_hash variable to the hash of the latest block.

The genesis_address parameter denotes the address designated to receive the initial reward for 
mining the first block on the blockchain. Let us now look at the algorithm of the function:

1. A new instance of the Sled embedded database library is created.

2. A database connection to a data directory is opened using the current_dir() and 
join() methods.

3. The blocks_tree key-value store in the database is opened using the open_tree() method.

4. An attempt is made to retrieve the value associated with the TIP_BLOCK_HASH_KEY key 
from the blocks_tree store using the get() method.

5. If the value is None, the process initiates the creation of a new genesis block by first establishing 
a coinbase transaction utilizing the specified genesis_address parameter. Subsequently, 
this transaction facilitates the generation of a fresh genesis block via Block::generate_
genesis_block(). Following this creation, the update_blocks_tree() method is 
invoked to seamlessly insert this newly formed block into the blocks_tree store. Upon 
successful insertion, the tip_hash variable is assigned the hash value pertaining to this 
newly minted genesis block.

6. If the value is not None, the tip_hash variable is set to the value of the stored hash.

7. A new Blockchain instance is created with tip_hash wrapped in an Arc<RwLock> to 
allow for thread-safe access and the db instance.

The method does not explicitly return a value. Instead, actions such as creating a genesis block, updating 
the blockchain, and setting up a Blockchain instance for further use are performed. The return 
may be implicit, reflecting the initialized blockchain structure available for subsequent operations.
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Now that we have learned how to create a Blockchain instance, let’s discuss how to create a 
new blockchain.

new_blockchain function

The other function we need in the blockchain.rs file is the blockchain::Blockchain::new_
blockchain function; let’s take a look at what it does. The new_blockchain function initializes 
a blockchain, leveraging the Sled key-value store. It retrieves the latest block hash from storage, 
assuming a pre-existing blockchain. The resulting blockchain object includes a tip hash and a reference 
to the database:

pub fn new_blockchain() -> Blockchain {
    let db = sled::open(current_dir().unwrap().join("data")).unwrap();
    let blocks_tree = db.open_tree(BLOCKS_TREE).unwrap();
    let tip_bytes = blocks_tree
       .get(TIP_BLOCK_HASH_KEY)
       .unwrap()
       .expect("No existing blockchain found. Create one first.");
    let tip_hash = String::from_utf8(tip_bytes.to_vec()).unwrap();
    Blockchain {
      tip_hash: Arc::new(RwLock::new(tip_hash)),
      db,
    }
}

The function initiates a new instance of the Sled embedded database library. It opens a database 
connection to a data directory using the current_dir() and join() methods. Then, it does 
the following:

1. It opens the blocks_tree key-value store in the database using the open_tree() method.

2. It tries to get the value associated with the TIP_BLOCK_HASH_KEY key from the blocks_
tree store using the get() method.

3. If the value is None, then it means that there is no block in the blockchain yet, and the function 
returns an error message using the expect() method.

4. If the value is not equal to None, it implies an existing block in the blockchain. In this case, 
the function sets the tip_hash variable to the value of the stored hash.

5. This conversion is achieved by using the String::from_utf8() method, which transforms 
a vector of bytes into a string.

6. It creates a new Blockchain instance with tip_hash wrapped in an Arc<RwLock> to allow 
thread-safe write operations and the db instance. The Blockchain instance is then returned.
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Overall, this function creates a new Blockchain instance by initializing a new database connection 
and setting the tip_hash variable to the hash of the latest block in the blockchain. If there is no 
block in the blockchain yet, the function returns an error message.

Let us now move on and learn how we add some struct methods that will be used to access and modify 
the database instance and the tip hash of the blockchain in a thread-safe manner.

Adding struct methods

Readers will find the following struct methods within the blockchain.rs file in the GitHub repository. 
These functions serve critical roles within the struct, enabling access to the database, retrieving the tip 
hash, and setting a new tip hash for the blockchain structure. Let’s talk about them briefly:

• get_db(&self) -> &Db: This method returns a reference to the sled::Db instance 
associated with the Blockchain instance. It does this by taking a reference to self and 
returning a reference to the db field:

pub fn get_db(&self) -> &Db {
    &self.db
}

• get_tip_hash(&self) -> String: This method returns the current tip hash of the 
blockchain as a string. It does this by obtaining a read lock on the tip_hash field using the 
read() method of the RwLock type, cloning the string value using the clone() method, 
and then returning the cloned string:

pub fn get_tip_hash(&self) -> String {
    self.tip_hash.read().unwrap().clone()
}

• set_tip_hash(&self, new_tip_hash: &str): This method sets the tip hash of 
the blockchain to a new value. It does this by obtaining a write lock on the tip_hash field 
using the write() method of the RwLock type, updating the value of the string by assigning 
it the new value passed as a parameter, and then releasing the write lock. The value passed as 
a parameter is first converted to a string using the String::from() method:

pub fn set_tip_hash(&self, new_tip_hash: &str) {
    let mut tip_hash = self.tip_hash.write().unwrap();
    *tip_hash = String::from(new_tip_hash)
}

Overall, these methods provide a way to access and modify the database instance and the tip hash of 
the blockchain in a thread-safe manner. The get_db() method allows external code to access the 
underlying database, while the get_tip_hash() and set_tip_hash() methods provide ways 
to access and modify the current tip hash of the blockchain.
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Following this, readers will encounter an iterator function. This function plays a crucial role 
in initializing a BlockchainIterator struct. It utilizes the tip hash and database to create an 
iterator, facilitating traversal through the blockchain structure:

pub fn iterator(&self) -> BlockchainIterator {
    BlockchainIterator::new(self.get_tip_hash(), self.db.clone())
}

Here’s how it works:

1. The method calls self.get_tip_hash() to retrieve the current tip hash of the blockchain.

2. It then calls the clone() method on the self.db instance to create a new instance of the 
sled::Db database, because the BlockchainIterator struct requires ownership of 
the database instance.

3. Finally, the method creates a new instance of the BlockchainIterator struct by passing 
the current tip hash and the cloned database instance as parameters to its new() method. 
The resulting iterator is then returned. Overall, this method returns a new iterator over the 
blocks in the blockchain by creating a new BlockchainIterator instance and passing it 
the current tip hash and a cloned instance of the database. This allows external code to iterate 
over the blocks in the blockchain in a thread-safe and efficient manner.

Let’s quickly talk about the blockchain iterator since we used it in this method.

BlockchainIterator function

We don’t yet have the struct or implementation for the BlockchainIterator struct. Let’s work 
on both of these now:

• The blockchain iterator simply helps us traverse the blockchain, facilitating sequential navigation 
through its blocks and its data. Its functionality and implementation details can be observed 
in the file when we delve into the implementation of the BlockchainIterator struct:

pub struct BlockchainIterator {
    db: Db,
    current_hash: String,
}

impl BlockchainIterator {
    fn new(tip_hash: String, db: Db) -> BlockchainIterator {
        ...
    }

    pub fn next(&mut self) -> Option<Block> {
        ...
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    }
}

• The BlockchainIterator::new method takes tip_hash, representing the latest 
block’s hash, and Db, a reference to the blockchain database (Db struct).  The method facilitates 
blockchain navigation using the next() method, which retrieves blocks from the database.

• Within next(), the algorithm involves the following:

I. Opening BLOCKS_TREE within the database.

II. Fetching block data based on current_hash.

III. Deserializing the retrieved data into a Block object.

IV. Updating current_hash to the previous block’s hash.

V. Returning the deserialized block if data is found for the current hash; otherwise, 
returning None.

• The next() method returns an Option<Block> instance  which results in either of the 
two following scenarios:

I. If data is successfully retrieved and a block is constructed, Some(block) with the 
deserialized block is returned.

II. If no data is found for the current hash, None is returned, indicating the end of the 
blockchain iteration.

Overall, this code provides an iterator-like interface for iterating over the blocks in a blockchain stored 
in a database represented by a Db struct.

Let us now move on to the update of block trees and mining of blocks.

Mining blocks and updating block trees

New blocks need to be mined, and only then they will be added to a blockchain; after blocks are added, 
the block trees need to be updated as well. So, in this part, we will tackle the important job of mining 
the blocks and updating the block trees.

The next function in the file illustrates how the mine_block function creates a new block and 
incorporates it into the represented blockchain within the current instance of the Blockchain struct:

pub fn mine_block(&self, transactions: &[Transaction]) -> Block {
    for trasaction in transactions {
        if trasaction.verify(self) == false {
           panic!("ERROR: Invalid transaction")
    }
}
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    let best_height = self.get_best_height();
    let block = Block::new_block(self.get_tip_hash(), transactions, 
best_height + 1);
    let block_hash = block.get_hash();
    let blocks_tree = self.db.open_tree(BLOCKS_TREE).unwrap();
    Self::update_blocks_tree(&blocks_tree, &block);
    self.set_tip_hash(block_hash);
    block
}

This function accepts a slice of Transaction structs as input. It then iterates through each transaction, 
verifying them individually using the verify() method of the Transaction struct. If any 
transaction is found to be invalid during this process, the function panics, providing an error message.

Here’s how it works:

1. The function begins by retrieving the height of the highest block in the blockchain via self.
get_best_height().

2. Using the Block::new_block() method, a new block is created by passing the following:

 � Transactions awaiting inclusion in the block.

 � The hash of the tip block.

 � The height of the new block, which is one higher than the best height.

 � The best height signifies the highest block index in the blockchain, indicating the current 
position of the latest block in the chain. It’s pivotal in establishing the new block’s position 
within the existing chain, ensuring its integrity and continuity.

3. Subsequently, the hash of the newly created block is computed using the get_hash() method 
of the Block struct.

4. The function proceeds to access BLOCKS_TREE within the database: self.db.open_
tree(BLOCKS_TREE).unwrap().

5. It updates the tree with the information of the newly created block. However, the method 
responsible for this update, update_blocks_tree(), is not shown in the provided code 
snippet. This method is a static one and must be explicitly invoked within the mine_block() 
function to update BLOCKS_TREE.

6. Following the update, the function sets the tip hash of the blockchain to the hash of the new 
block using self.set_tip_hash(block_hash). Finally, the function returns the 
newly created block.
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Moving on to the update process at the start of the file, readers will find a crucial function named 
update_blocks_tree. This function serves the purpose of updating BLOCKS_TREE within 
the database:

fn update_blocks_tree(blocks_tree: &Tree, block: &Block) {
    let block_hash = block.get_hash();
    et _: TransactionResult<(), ()> = blocks_tree.transaction(|tx_db| 
{
    let _ = tx_db.insert(block_hash, block.clone());
    let _ = tx_db.insert(TIP_BLOCK_HASH_KEY, block_hash);
    Ok(())
    });
}

This update_blocks_tree function updates the blocks_tree database tree with the new 
Block object passed as an argument:

1. The function initiates by computing the hash of the Block object using the get_hash() 
method within the Block struct. It utilizes a transactional approach on blocks_tree, 
employing the transaction() method from the sled::Tree struct.

2. The TransactionResult type encapsulates the outcome of the transaction. If the transaction 
is successful, it yields Ok(()). In case of a failure, it returns Err(()).

3. Within the transaction, the function inserts two distinct key-value pairs into the tree:

I. First, it inserts the Block  object with the block_hash  key using tx_
db.insert(block_hash, block.clone()). This addition involves a new 
key-value pair, where the key represents the hash of the block and the value is a serialized 
version of the block.

II. Secondly, it inserts the TIP_BLOCK_HASH_KEY key-value pair into the tree via tx_
db.insert(TIP_BLOCK_HASH_KEY, block_hash). This action associates the 
value of TIP_BLOCK_HASH_KEY with the hash of the newly added block.

4. Upon successful completion, the function returns Ok(()), signifying a successful transaction. 
Conversely, if the transaction fails, it returns Err(()).

Overall, this function updates the blocks_tree database tree by adding a new block to it and 
updating the tip block hash.

Now, we will add some blocks to our blockchain and look at some more helper functions.
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Adding blocks and some helper functions

First, readers will find the add_block function in the file. This function adds the block to the 
blockchain after it’s mined. Following this, there are some helper functions that the add_block 
function calls upon to help it with particular tasks.

The add_block function accepts a reference to a Block object as its input parameter. It operates 
within the context of the Blockchain struct, utilizing the database to manage the blockchain’s 
block storage:

pub fn add_block(&self, block: &Block) {
    let block_tree = self.db.open_tree(BLOCKS_TREE).unwrap();
    if let Some(_) = block_tree.get(block.get_hash()).unwrap() {
      return;
    }
    let _: TransactionResult<(), ()> = block_tree.transaction(|tx_db| 
{
    let _ = tx_db.insert(block.get_hash(), block.serialize()).
unwrap();

    let tip_block_bytes = tx_db
        .get(self.get_tip_hash())
        .unwrap()
        .expect("The tip hash is not valid");
    let tip_block = Block::deserialize(tip_block_bytes.as_ref());
      if block.get_height() > tip_block.get_height() {
    let _ = tx_db.insert(TIP_BLOCK_HASH_KEY, block.get_hash()).
unwrap();
        self.set_tip_hash(block.get_hash());
    }
        Ok(())
    });
}

The function starts by opening BLOCKS_TREE within the database to access block-related information.

It checks if the block already exists within the tree by retrieving its hash. If the block’s hash is found 
in the tree, indicating an existing block, the function exits. Within a transactional operation, it does 
the following:

1. It inserts the block’s serialized form into the tree, associating it with its hash.

2. It retrieves the bytes of the block referenced by the tip hash.

3. It deserializes this block to compare heights with the incoming block.
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4. If the incoming block has a greater height than the tip block, it updates the tip block’s hash in 
the tree and sets the blockchain’s tip hash accordingly.

5. Upon successful execution, the function concludes with a successful result, (Ok(())).

Overall, the add_block function serves to incorporate a new block into the blockchain stored 
within the database. It verifies the absence of a block in the tree before inserting one and manages 
the blockchain’s tip block, ensuring the insertion of blocks in sequential order and maintaining the 
blockchain’s integrity and chronological structure.

Next, readers will encounter three helper functions that are being used not only by the add_block 
function but have also been called by the mine_block and the update_block_tree functions.

Within this context, three distinct functions emerge: get_best_height, get_block, and 
get_block_hashes. These functions, serving helpers as mentioned earlier, play important roles 
in our program. Their individual contributions and functionalities will now be explored:

1. Starting with the get_best_height function, readers will encounter this function first 
within the file. This function returns the height of the block with the highest height in the 
blockchain. It does this by first getting the serialized bytes of the block corresponding to the 
current tip hash, deserializing it into a Block struct, and returning its height.

2. Next, the get_block function takes a block hash as input, retrieves the corresponding 
serialized block bytes from the blockchain database, deserializes them into a Block struct, and 
returns the block. If the block with the given hash is not found in the database, it returns None.

3. The final function that readers will encounter is the get_block_hashes function; this 
function returns a list of all block hashes in the blockchain. It does this by iterating over all blocks 
in the blockchain using the iterator function, getting the hash of each block, converting it 
to a byte vector, and adding it to a list. The function returns this list of block hashes.

Let us now understand unspent transaction outputs’ (UTXOs’) significance and transaction retrieval’s 
role within the blockchain structure for comprehensive understanding.

Finding UTXOs and transactions

To finish off the blockchain.rs file, readers will find the find_utxo and find_transaction 
functions; let’s go through them one by one.

Let’s look at the fint_utxo function in the file and then break it down to understand what it does:

pub fn find_utxo(&self) -> HashMap<String, Vec<TXOutput>> {
    let mut utxo: HashMap<String, Vec<TXOutput>> = HashMap::new();
    let mut spent_txos: HashMap<String, Vec<usize>> = HashMap::new();

    let mut iterator = self.iterator();
    loop {
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    let option = iterator.next();
      if option.is_none() {
      break;
    }
    let block = option.unwrap();
      'outer: for tx in block.get_transactions() {
    let txid_hex = HEXLOWER.encode(tx.get_id());
        for (idx, out) in tx.get_vout().iter().enumerate() {

            }
        }
    }
    utxo
}

The find_utxo function, the concluding component of our file, operates with no input parameters. 
It navigates through the blockchain, identifying UTXOs by inspecting each transaction within each 
block. Let’s break down its functionality:

1. The find_utxo function initializes two HashMap: utxo instances to store UTXOs and 
spent_txos to track spent TXOs (STXOs).

2. It starts an iteration through blocks using an iterator from the self object.

3. Within the loop, it retrieves the next block until there are no more blocks left. For each block, 
it enters a nested loop, iterating through each transaction (tx) within the block.

4. It encodes the transaction ID (txid_hex) into a hexadecimal string using a HEXLOWER 
encoding method.

5. Inside the nested loop, it further iterates through each output (out) of the transaction and 
checks if the output is spent by referencing spent_txos based on the transaction ID and 
output index.

6. If the output is found in spent_txos, it skips to the next transaction using a labeled 
loop (outer).

7. If the output is not spent, it checks if the utxo hashmap already contains the transaction ID. 
If so, it appends the output to the corresponding vector. Otherwise, it creates a new entry in 
the utxo hashmap. Additionally, if the transaction is a coinbase transaction (newly generated 
coins), it skips further processing for that transaction.

8. Moving on, it loops through each input (txin) of the transaction and extracts the referenced 
transaction ID (txid_hex) from it.

9. It checks if spent_txos already contains the referenced transaction ID. If found, it appends 
the input’s output index to the corresponding vector. Otherwise, it creates a new entry in 
spent_txos. The function continues this process until it exhausts all blocks and transactions, 
finally returning the populated utxo hashmap containing UTXOs.
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The find_utxo function is essential for analyzing and managing UTXOs within the blockchain, 
ensuring accurate tracking of unspent outputs for transaction validity and integrity.

Now, let’s go ahead and look at the find_transaction function and understand what it does.

The find_transaction function searches the blockchain for a specific transaction by its 
transaction ID. Utilizing an iterative approach, it navigates through the entire blockchain, examining 
each block and its contained transactions to identify and retrieve the desired transaction if it exists. 
If a transaction with the provided ID is found, it is cloned and returned, providing a comprehensive 
means of transaction identification within the blockchain data structure:

pub fn find_transaction(&self, txid: &[u8]) -> Option<Transaction> {
    let mut iterator = self.iterator();
      loop {
    let option = iterator.next();
      if option.is_none() {
        break;
    }
    let block = option.unwrap();
        for transaction in block.get_transactions() {
            if txid.eq(transaction.get_id()) {
            return Some(transaction.clone());
                }
            }
        }
        None
    }

Here’s how it works:

1. The find_transaction function searches through all the transactions in the blockchain 
for a transaction with a given transaction ID (txid) and returns that transaction if found, or 
None otherwise.

2. The function starts by creating an iterator over the blockchain, which allows it to loop through 
all blocks in the blockchain. It then enters a loop where it calls the next() method on the 
iterator to get the next block in the chain, and checks whether the option is None. If it is, that 
means there are no more blocks left to iterate over, and the loop breaks.

3. For each block, the function loops through all transactions in the block using the get_
transactions() method. For each transaction, it checks whether the transaction ID (txid) 
matches the ID of the current transaction being iterated over using the get_id() method. If 
there is a match, the function returns a clone of the transaction using the clone() method.

4. If the loop completes without finding a matching transaction, the function returns None.



Adding More Features to Our Custom Blockchain112

This function serves as a tool to retrieve transactions based on their unique IDs within the blockchain 
structure. With this function, we have completed our exploration of the blockchain.rs file. In 
the next sections, we will tackle each of the concepts we used here separately – transactions, UTXOs, 
nodes, servers, and memory pool.

Moving to the next section, we will see how to start up a node server.

Starting the node server
As we learned in the first chapter, a copy of the blockchain is maintained on the nodes that participate 
in the network, and this is what makes blockchains decentralized since a copy of the blockchain exists 
on multiple nodes, each of which acts as a server. Even if one node goes down or a copy is deleted, 
other nodes are still there to uphold the blockchain network.

So far, we have built the blocks, mined them, added them, and connected them to the blockchain by 
updating the block tree. Now, it’s time to see how blockchain copies are maintained on the nodes, and 
before that, we will need to start a server.

In this section, we will go through some code that will help us start servers and help operate nodes 
for our blockchain network.

The server

In the project’s GitHub repository, readers will discover a file named server.rs, dedicated to 
hosting the necessary code for initializing a server.

The crates that you see in the first line are the various crates we have either previously discussed or 
will be further elaborated on shortly – for example, block, nodes, memory pool, transaction, global 
config, and so on.

The readers will then encounter some standard libraries used in Rust development, such as time, io, 
net, error, and thread. These libraries streamline common tasks, offering pre-built functions 
that eliminate the need to write certain functionalities from scratch. They provide essential tools for 
handling errors, managing time, dealing with I/O operations, networking, and concurrent threading. 
Documentation for these libraries is readily available in the standard Rust library documentation.

We also see libraries such as serde that help us to work with JSON data by serializing and deserializing 
the data from structs to JSON and vice versa.

Let’s understand this better:

• Block, Blockchain, Transaction, and UTXOSet are custom types defined in the 
same crate as this module.

• BlockInTransit, MemoryPool, and Nodes are custom types defined in other modules 
within the same crate.
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• data_encoding::HEXLOWER is a crate that provides utilities for encoding and decoding 
hexadecimal data.

• log::{error, info} is a crate for logging error and info messages.

• once_cell::sync::Lazy is a crate that provides a lazy evaluation macro.

• serde::{Deserialize, Serialize} is a crate for serializing and deserializing Rust 
data structures.

• serde_json::Deserializer is a deserializer for JSON data structures.

• std::error::Error is a trait for errors in Rust.

• std::io::{BufReader, Write} provides I/O support for reading and writing data.

• std::net::{Shutdown, SocketAddr, TcpListener, TcpStream} provides 
support for network programming in Rust.

• std::thread provides support for concurrent programming in Rust.

• std::time::Duration provides support for representing time durations in Rust.

• NODE_VERSION is an unsigned integer that represents the version of the cryptocurrency node.

• CENTERAL_NODE is a string that represents the IP address and port number of the central 
node that the new node will connect to.

• We also define a static lazy evaluated variable named GLOBAL_NODES that is of type Nodes. 
This variable is used to store the network nodes that this node is aware of. The Lazy type 
allows for the creation of the variable to be deferred until it is needed. The closure passed to 
Lazy::new() initializes GLOBAL_NODES by creating a new Nodes instance and adding 
the CENTERAL_NODE string to it.

• We then define a static lazy evaluated variable named GLOBAL_MEMORY_POOL that is of 
type MemoryPool. This variable is used to store pending transactions that have not yet been 
included in a block. The closure passed to Lazy::new() initializes GLOBAL_MEMORY_POOL 
by creating a new MemoryPool instance.

Now, we will explore the code for the Server struct and the implementation of some other methods.

Server struct and implemented methods

Here is the Server struct, which defines essential functionalities to handle incoming client 
connections, initiate communication with a central node, and concurrently manage requests from 
multiple clients through separate threads. Through this implementation, the server efficiently interacts 
with the blockchain, utilizing the serve function to handle diverse client requests while maintaining 
synchronization and robustness within the network.
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The Server struct contains a blockchain field of type Blockchain:

pub struct Server {
    blockchain: Blockchain,
}

impl Server {
    pub fn new(blockchain: Blockchain) -> Server {
        Server { blockchain }
    }

    pub fn run(&self, addr: &str) {
        let listener = TcpListener::bind(addr).unwrap();

        if addr.eq(CENTERAL_NODE) == false {
            let best_height = self.blockchain.get_best_height();
            send_version(CENTERAL_NODE, best_height);
        }
        for stream in listener.incoming() {
            let blockchain = self.blockchain.clone();
            thread::spawn(|| match stream {
                Ok(stream) => {

                }
                Err(e) => {

                }
            });
        }
    }
}

The implementation of Server includes a new associated function that initializes a new Server 
instance with a provided Blockchain type.

The run() method takes a mutable reference to self (&self) and an address (&str) to start the 
server. Here’s how it works:

1. It creates a TCP listener bound to the provided address.

2. If the provided address is not equal to a predefined constant, CENTERAL_NODE, it retrieves 
the best height of the blockchain and sends a version message to the central node.

3. Regardless of the conditional check, it logs the initiation of the node server at the given address.

4. The function enters a loop to handle incoming TCP streams from the listener.
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5. For each incoming stream, it captures a clone of blockchain for use within the spawned thread.

6. It creates a new thread for each incoming connection using thread::spawn.

7. Within the spawned thread, it attempts to match the incoming stream:

8. If the stream is successfully received (Ok(stream)), it tries to serve the client by calling the 
serve function with the captured Blockchain instance and the stream.

9. If an error occurs during the Err(e) stream handling, it logs a connection failure.

10. This loop continues to listen for and handle incoming connections in separate threads, ensuring 
the server can handle multiple concurrent connections.

The Server struct listens for incoming connections on the specified address and handles each 
connection in a new thread by calling the serve function. The serve function handles requests 
from clients using the provided Blockchain instance.

Moving on, let us now discuss some enums.

Enums

In the server code, meaning the server.rs file in the repository, we can see a serve function 
that will actually serve the entire blockchain; this function needs enums and helper functions. Let’s 
go ahead and look at the required enums.

In the code within the file, readers will come across two essential enums: OpType and Package. 
These enums play an important role in organizing and transmitting serialized data across the 
blockchain network.

First, let us look at the OpType enum, which encapsulates the fundamental types of operations 
pertinent to blockchain functionality. The Tx variant signifies operations related to transactions, while 
the Block variant represents activities linked to blocks within the blockchain.

Package is a more complex enum with six possible values, each of which contains some associated 
data. The possible values are the following:

• Block: Contains an addr_from field (a String type) and a block field (a Vec<u8> type)

• GetBlocks: Contains an addr_from field (a String type)

• GetData: Contains an addr_from field (a String type), an op_type field (an OpType 
type), and an id field (a Vec<u8> type)

• Inv: Contains an addr_from field (a String type), an op_type field (an OpType type), 
and an items field (a Vec<Vec<u8>>> type)

• Tx: Contains an addr_from field (a String type) and a transaction field (a Vec<u8> type)

• Version: Contains an addr_from field (a String type), a version field (a usize type), 
and a best_height field (a usize type)
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The #[derive(Debug, Serialize, Deserialize)] annotations above each enum 
indicate that Debug, Serialize, and Deserialize traits should be automatically implemented 
for these types. This allows the enums to be printed with println!("{:?}", some_enum) 
and to be serialized/deserialized to and from bytes using a Rust serialization library such as serde.

In preparing for the serve function, let’s understand some essential helper functions necessary to 
support its functionalities in the next section.

Helper functions

Before we look at the serve function, we need to understand some helper functions that’ll be used 
in the serve function, so in this section, let’s go ahead and do just that.

In total, we need seven helper functions. Let us look at them one at a time.

send_get_data function

This function transmits a request for specific data to a designated network address:

fn send_get_data(addr: &str, op_type: OpType, id: &[u8]) {
    let socket_addr = addr.parse().unwrap();
    let node_addr = GLOBAL_CONFIG.get_node_addr().parse().unwrap();
    send_data(
        socket_addr,
        Package::GetData {
            addr_from: node_addr,
            op_type,
            id: id.to_vec(),
        },
    );
}

Here’s how it works:

1. First, the function takes in an address (addr: &str), an operation type (op_type: 
OpType), and an ID in the form of a byte slice (id: &[u8]).

2. It parses the addr input into a SocketAddr structure using the parse() method and 
unwraps the result.

3. It retrieves the node address from a global configuration (GLOBAL_CONFIG) and parses it 
into a SocketAddr structure, also unwrapping the result.
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4. It then invokes a send_data function, passing in the following:

 � The parsed socket_addr function as the destination address for sending data.

 � A Package::GetData enum variant containing the following:

 � addr_from: The parsed node_addr function, representing the address of the node 
sending the data

 � op_type: The specified operation type

 � id.to_vec(): The ID converted into a Vec<u8> type, which is included in the package 
for data retrieval

This function abstracts the process of sending a specific type of data (GetData) to a specified address 
using a standardized package format, including source address, operation type, and an associated ID. 
This function will initiate a data retrieval request to the specified address in the blockchain network.

send_inv function

This function notifies us about specific data items to a provided network address:

fn send_inv(addr: &str, op_type: OpType, blocks: &[Vec<u8>]) {
    let socket_addr = addr.parse().unwrap();
    let node_addr = GLOBAL_CONFIG.get_node_addr().parse().unwrap();
    send_data(
        socket_addr,
        Package::Inv {
            addr_from: node_addr,
            op_type,
            items: blocks.to_vec(),
        },
    );
}

Here’s how it works:

1. The function takes an address (addr: &str), an operation type (op_type: OpType), 
and a slice of byte vectors representing blocks (blocks: &[Vec<u8>]).

2. It parses the addr input into a SocketAddr structure using the parse() method and 
unwraps the result.

3. It retrieves the node address from a global configuration (GLOBAL_CONFIG) and parses it 
into a SocketAddr structure, also unwrapping the result.
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4. It then calls a send_data function, passing in the following:

 � The parsed socket_addr function as the destination address for sending data.

 � A Package::Inv enum variant containing the following:

 � addr_from: The parsed node_addr function, representing the address of the node 
sending the data

 � op_type: The specified operation type

 � blocks.to_vec(): The blocks are converted into a Vec<Vec<u8>> type, which is 
included in the package as items to be communicated

This function abstracts the process of sending inventory information (Inv) to a specified address 
using a standardized package format, including source address, operation type, and a collection of 
byte vector items, which in this case represent blocks. This function will help broadcast inventory 
notifications for specific data items to the indicated network address.

send_block function

This function transmits a block to a specified network address:

fn send_block(addr: &str, block: &Block) {
    let socket_addr = addr.parse().unwrap();
    let node_addr = GLOBAL_CONFIG.get_node_addr().parse().unwrap();
    send_data(
        socket_addr,
        Package::Block {
            addr_from: node_addr,
            block: block.serialize(),
        },
    );
}

Here’s how it works:

1. The send_block function accepts an address (addr: &str) and a reference to a Block 
instance (block: &Block).

2. It parses the addr input into a SocketAddr structure using the parse() method and 
unwraps the result.

3. It retrieves the node address from a global configuration (GLOBAL_CONFIG) and parses it 
into a SocketAddr structure, also unwrapping the result.
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4. The function then invokes a send_data function, passing in the following:

 � The parsed socket_addr function as the destination address for sending data.

 � A Package::Block enum variant containing the following:

 � addr_from: The parsed node_addr function, representing the address of the node 
sending the data

 � block.serialize(): The serialized form of the Block struct obtained by invoking 
the serialize() method on the provided block

This function abstracts the process of sending a block (Block) to a specified address using a 
standardized package format. The block is serialized before sending, likely to transmit it efficiently 
in byte form over the network.

send_tx function

This function dispatches a transaction to a specified network address:

pub fn send_tx(addr: &str, tx: &Transaction) {
    let socket_addr = addr.parse().unwrap();
    let node_addr = GLOBAL_CONFIG.get_node_addr().parse().unwrap();
    send_data(
        socket_addr,
        Package::Tx {
            addr_from: node_addr,
            transaction: tx.serialize(),
        },
    );
}

Here’s how it works:

1. The send_tx function takes an address (addr: &str) and a reference to a Transaction 
instance (tx: &Transaction).

2. It parses the addr input into a SocketAddr structure using the parse() method and 
unwraps the result.

3. It retrieves the node address from a global configuration (GLOBAL_CONFIG) and parses it 
into a SocketAddr structure, also unwrapping the result.
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4. The function then invokes a send_data function, passing in the following:

 � The parsed socket_addr function as the destination address for sending data.

 � A Package::Tx enum variant containing the following:

 � addr_from: The parsed node_addr function, representing the address of the node 
sending the data

 � tx.serialize(): The serialized form of the Transaction struct obtained by 
invoking the serialize() method on the provided tx instance

This function abstracts the process of sending a transaction (Transaction) to a specified address 
using a standardized package format. The transaction is serialized before sending, presumably for 
efficient transmission over the network.

send_version function

This broadcasts version information to a specified network address:

fn send_version(addr: &str, height: usize) {
    let socket_addr = addr.parse().unwrap();
    let node_addr = GLOBAL_CONFIG.get_node_addr().parse().unwrap();
    send_data(
        socket_addr,
        Package::Version {
            addr_from: node_addr,
            version: NODE_VERSION,
            best_height: height,
        },
    );
}

Here’s how it works:

1. The send_version function takes an address (addr: &str) and a height (height: 
usize) as parameters.

2. It parses the addr input into a SocketAddr structure using the parse() method and 
unwraps the result.

3. It retrieves the node address from a global configuration (GLOBAL_CONFIG) and parses it 
into a SocketAddr structure, also unwrapping the result.

4. The function then invokes a send_data function, passing in the following:

 � The parsed socket_addr function as the destination address for sending data.
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 � A Package::Version enum variant containing the following:

 � addr_from: The parsed node_addr function, representing the address of the node 
sending the data

 � version: A NODE_VERSION constant representing the version of the node’s protocol 
or software

 � best_height: The provided height, indicating the best height or the latest block height 
known to the sending node

This function abstracts the process of sending a version message (Package::Version) to a specified 
address using a standardized package format. The version message includes information about the 
node’s version and the best-known block height.

send_get_blocks function

This transmits a request for block data to a specified network address:

fn send_get_blocks(addr: &str) {
    let socket_addr = addr.parse().unwrap();
    let node_addr = GLOBAL_CONFIG.get_node_addr().parse().unwrap();
    send_data(
        socket_addr,
        Package::GetBlocks {
            addr_from: node_addr,
        },
    );
}

Here’s how it works:

1. The send_get_blocks function takes an address (addr: &str) as its parameter.

2. It parses the addr input into a SocketAddr structure using the parse() method and 
unwraps the result.

3. It retrieves the node address from a global configuration (GLOBAL_CONFIG) and parses it 
into a SocketAddr structure, also unwrapping the result.

4. The function then invokes a send_data function, passing in the following:

 � The parsed socket_addr function as the destination address for sending data.

 � A Package::GetBlocks enum variant containing the following:

 � addr_from: The parsed node_addr function, representing the address of the node 
sending the data.
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This function abstracts the process of sending a request for blocks (Package::GetBlocks) to 
a specified address using a standardized package format. This request does not include any specific 
block IDs or other parameters; it simply requests blocks from the receiving node.

send_data Function

This function sends data packages to a specified socket address:

fn send_data(addr: SocketAddr, pkg: Package) {
    info!("send package: {:?}", &pkg);
    let stream = TcpStream::connect(addr);
    if stream.is_err() {
        error!("The {} is not valid", addr);

        GLOBAL_NODES.evict_node(addr.to_string().as_str());
        return;
    }
    let mut stream = stream.unwrap();
    let _ = stream.set_write_timeout(Option::from(Duration::from_
millis(TCP_WRITE_TIMEOUT)));
    let _ = serde_json::to_writer(&stream, &pkg);
    let _ = stream.flush();
}

Here’s how it works:

1. The send_data function takes SocketAddr and Package as parameters.

2. It logs information about the package being sent using the info! macro.

3. It attempts to establish a TCP connection (TcpStream::connect(addr)).

4. If the connection attempt fails (stream.is_err()), it logs an error message, evicts the node 
associated with the invalid address from GLOBAL_NODES, and returns from the function.

5. If the connection is successful, it proceeds with the established stream.

6. It sets a write timeout for the stream using stream.set_write_timeout().

7. It serializes the Package parameter (pkg) using serde_json::to_writer() and 
sends it over the stream.

8. The function then flushes the stream to ensure all data is written.

Essentially, this function abstracts the process of sending a package (Package) over a TCP connection 
to a specified socket address, handling errors and serialization of data.

All these functions abstract away the details of sending different types of packages over a network 
connection and provide a simple interface for the caller to send data.
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Now, we’ll outline the serve function, a pivotal part of the blockchain project’s server functionality, 
providing a detailed explanation of its intricate code structure.

The serve function

The serve function is a function that is more than 100 lines of code, and this is why we will mention 
just the outline of this function here instead of explaining it in detail. The actual code for this function 
can be referred to from the official GitHub repository associated with this book. In the blockchain 
project, in the server.rs file, toward the middle of the file, you will find the serve function. 
This is what it looks like:

fn serve(blockchain: Blockchain, stream: TcpStream) -> Result<(), 
Box<dyn Error>> {

let _ = stream.shutdown(Shutdown::Both);
    Ok(())
}

This function receives a TCP stream connection and a Blockchain instance. It deserializes incoming 
packages from the stream and processes them based on their type. Here is a brief summary of what 
the function does for each type of package:

• For Package::Block, it deserializes the block and adds it to the blockchain. If there are 
blocks in transit, it sends a get_data request for the next block. If there are no more blocks 
in transit, it reindexes the UTXO set of the blockchain.

• For Package::GetBlocks, it retrieves all block hashes from the blockchain and sends an 
inv message with a list of hashes to the requesting peer.

• For Package::GetData, it retrieves the requested block or transaction from the blockchain 
or the global memory pool and sends it back to the requesting peer.

• For Package::Inv, it adds the received blocks or transactions to the global blocks in transit 
or the memory pool and requests missing blocks or transactions via get_data if necessary.

• For Package::Tx, it deserializes the transaction and adds it to the global memory pool. 
If the node is a miner and the memory pool has reached a certain threshold, it creates a new 
block containing transactions from the memory pool, mines it, and broadcasts the new block 
to other nodes via inv.

• For Package::Version, it compares the heights of the local and the remote blockchain 
and sends a get_blocks or version message to the remote node if necessary. It also adds 
the remote node to the global list of known nodes if it is not already present.

The function returns a Result indicating success or failure and closes the stream connection after 
processing all incoming packages.
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Moving on, let us now explore the Node struct, which we will use to serve the blockchain.

The Node struct

We already have the logic for the server, and the node is what’s serving the blockchain. Let’s understand 
some code that is used to implement the node. For this, readers are advised to refer to the node.rs file:

#[derive(Clone)]
pub struct Node {
    addr: String,
}
impl Node {
    fn new(addr: String) -> Node {
        Node { addr }
    }
    pub fn get_addr(&self) -> String {
        self.addr.clone()
    }
    pub fn parse_socket_addr(&self) -> SocketAddr {
        self.addr.parse().unwrap()
    }
}

The code defines a Node structure used to represent network nodes in the blockchain. The Node 
structure has a single field, addr, which stores the node’s address. It includes methods for creating a new 
Node instance, retrieving the node’s address, and parsing the address into a SocketAddr structure. 
This allows easy access to the node’s address and facilitates conversion for network communication 
within the blockchain protocol.

The Node struct has a single addr field of type String to store the address. Let’s look at this in 
more detail:

1. The implementation of Node includes a new associated function to create a new Node instance 
with a provided address.

2. The get_addr() method returns a clone of the stored address (addr) as a String type.

3. The parse_socket_addr() method attempts to parse the stored address (addr) into a 
SocketAddr structure.

4. If successful, it returns the parsed SocketAddr structure.

This struct provides a structured representation of a blockchain network node containing its address.
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Now, let us understand some code that we will need to manage multiple nodes:

pub struct Nodes {
    inner: RwLock<Vec<Node>>,
}
impl Nodes {
    pub fn new() -> Nodes {
        Nodes {
            inner: RwLock::new(vec![]),
        }
    }
    pub fn add_node(&self, addr: String) {
        ...
    }
    pub fn evict_node(&self, addr: &str) {
        ...
    }
    pub fn first(&self) -> Option<Node> {
        ...
    }
    pub fn get_nodes(&self) -> Vec<Node> {
        ...
    }
    pub fn len(&self) -> usize {
        ...
    }
    pub fn node_is_known(&self, addr: &str) -> bool {
        ...
    }
}

The code defines a Nodes struct that represents a collection of Node objects. The collection is 
implemented using a RwLock<Vec<Node>>, which allows multiple readers or a single writer to 
access the collection simultaneously.

The Nodes struct has several methods:

• new() creates a new empty Nodes object

• add_node(addr: String) adds a new Node object to the collection with the given 
address, addr, but only if the address is not already in the collection

• evict_node(addr: &str) removes the Node object with the given address, addr, 
from the collection if it exists
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• first() returns the first Node object in the collection, or None if the collection is empty

• get_nodes() returns a copy of the entire collection as a Vec<Node> collection

• len() returns the number of Node objects in the collection

• node_is_known(addr: &str) returns true if a Node object with the given address, 
addr, is in the collection and false otherwise

Each method of the Nodes struct acquires a read or write lock on the inner field, which is the 
underlying Vec<Node> collection. If a method acquires a write lock, it can modify the collection, 
while methods that acquire read locks can only read from the collection. The unwrap() method is 
used to panic if a lock cannot be acquired; for example, if another thread is already holding the lock.

Summary
This chapter helps us build up on the concepts in Chapter 3, Building a Custom Blockchain. We’ve built 
out some core blockchain functionality, such as writing the code to work with our blockchain with 
functions for adding blocks and hashes and then writing the code for the server and the node to be 
able to serve our created blockchain. We are now a step closer to creating a blockchain.

In the next chapter, we will finish up our blockchain. We will write and break down the logic for 
transactions, wallets, memory pools, and UTXOs that complete a blockchain.



5
Finishing Up  

Our Custom Blockchain

We started our journey of building a blockchain in Chapter 3, Building a Custom Blockchain, when we 
started outlining structs and functions. We then continued fleshing out those functions in Chapter 4, 
Adding More Features to Our Custom Blockchain. Now, in this chapter, we will take things forward 
and finish up our blockchain.

In the previous chapter, we built out some core blockchain functionality, such as writing the code to 
work with our blockchain with functions for adding blocks and hashes and then writing the code for the 
server and the node to be able to serve our created blockchain. Now, we will discuss the following topics:

• Adding memory pools

• Implementing transactions

• Utilizing unspent transaction outputs (UTXOs) and developing wallets

• Setting up configurations and utilities

• Understanding the Main.rs file

• Using your custom blockchain

Technical requirements
The code for each chapter is presented separately in different folders in the GitHub repository 
accompanying this book. For an uninterrupted learning journey, all the code pertaining to this chapter 
can be accessed in the dedicated GitHub repository. You can clone it with the following command:

git clone https://github.com/PacktPublishing/Rust-for-Blockchain-
Application-Development/.
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This repository contains comprehensive code snippets, projects, and resources relevant to the material 
discussed. To better grasp the explanations, you are encouraged to clone the repository and explore 
its contents as we progress through the explanations.

An important point to note
While the divided code is in different folders with the name of the specific chapter, the 
combined code from Chapters 3, 4, and 5 for the entire blockchain project is in a folder called 
complete_blockchain, so if you’d like to read the entire code and move between the 
functions for a better understanding, kindly refer to the code in this code file.

Adding memory pools
A memory pool, often referred to as a mempool, serves as a holding area for pending cryptocurrency 
transactions awaiting validation and inclusion in a block on a blockchain network. It stores unconfirmed 
transactions, acting as a temporary repository before miners select and verify them for block inclusion. 
Significantly impacting blockchain efficiency, the mempool plays a pivotal role in transaction processing 
and network performance. Its function involves validating transactions, ensuring they comply with 
network rules, and prioritizing them based on associated fees or other criteria. The mempool’s role 
in decentralized systems, such as Bitcoin, Ethereum, and various altcoins, enhances transaction 
throughput and responsiveness. Applications of mempools extend beyond basic transaction storage; 
they influence fee estimation algorithms, network scalability solutions, and transaction acceleration 
services, which are vital in optimizing blockchain operations and user experience. Understanding 
the mempool’s dynamics is crucial for developers, miners, and users navigating the intricacies of 
blockchain technology.

Our project will have a memory_pool.rs file, where the entire logic for memory pools is available. 
We will start with  understanding a simple implementation of a memory pool data structure that 
allows for the storage, retrieval, and removal of transactions in a thread-safe manner. We will follow 
it up with a simple implementation of a data structure for tracking blocks that are in transit during a 
peer-to-peer (P2P) networking protocol.

Let’s now look at the memory pool implementation in detail.

Implementing a memory pool

In the memory_pool.rs file, take a look at the following code block for MemoryPool:

pub struct MemoryPool {
    inner: RwLock<HashMap<String, Transaction>>,
}



Adding memory pools 129

The MemoryPool struct contains a field named inner of the RwLock<HashMap<String, 
Transaction>>type, which is a thread-safe read-write lock allowing multiple readers or a single 
writer at any given time to access a HashMap that maps String keys to Transaction values.

Let us now look at the definition of the MemoryPool structure in Rust, presenting a rudimentary 
implementation for managing pending transactions within a blockchain system. The MemoryPool 
struct contains essential functions to interact with and manipulate transactions stored within it. The 
definition will look like this:

impl MemoryPool {
…….
}

Let us now understand one by one what all the functions inside the definition do:

• The new() function serves as a constructor for the MemoryPool struct. It initializes and 
returns a new instance of MemoryPool, setting up an internal HashMap wrapped within 
a RwLock. This HashMap is used to store transactions, ensuring safe concurrent access by 
employing a read-write lock mechanism:

pub fn new() -> MemoryPool {
    MemoryPool {
        inner: RwLock::new(HashMap::new()),
    }
}

• The contains(&self, txid_hex: &str) -> bool function checks whether a 
transaction with a specific transaction ID (txid_hex) exists within the memory pool. It does 
this by reading the internal HashMap within the RwLock, verifying whether the provided 
transaction ID is a key in the map. If the transaction ID exists in the pool, it returns true; 
otherwise, it returns false:

pub fn contains(&self, txid_hex: &str) -> bool {
    self.inner.read().unwrap().contains_key(txid_hex)
}

• The add(&self, tx: Transaction) function inserts a new transaction (tx) into 
the memory pool. It first generates a hexadecimal representation of the transaction ID using 
a hashing algorithm. Then, it acquires a write lock on the internal HashMap to ensure safe 
concurrent modification and inserts the transaction into the map using its transaction ID as 
the key:

pub fn add(&self, tx: Transaction) {
    let txid_hex = HEXLOWER.encode(tx.get_id());
    self.inner.write().unwrap().insert(txid_hex, tx);
}
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• The get(&self, txid_hex: &str) -> Option<Transaction> function retrieves 
a transaction from the memory pool based on a given transaction ID (txid_hex). It reads 
the internal HashMap within the RwLock and attempts to find the transaction associated with 
the provided transaction ID. If the transaction exists in the pool, it returns a Some instance 
containing a clone of the transaction. If the transaction is not found, it returns None:

pub fn get(&self, txid_hex: &str) -> Option<Transaction> {
    if let Some(tx) = self.inner.read().unwrap().get(txid_hex) {
        return Some(tx.clone());
    }
    None
}

• The remove(&self, txid_hex: &str) function removes a transaction from the 
memory pool based on its transaction ID (txid_hex). It acquires a write lock on the internal 
HashMap and removes the transaction associated with the provided transaction ID, effectively 
deleting it from the pool. This function is to facilitate the auto removal of transactions that are 
rejected in mempools. Unconfirmed transactions reside only temporarily:

pub fn remove(&self, txid_hex: &str) {
    let mut inner = self.inner.write().unwrap();
    inner.remove(txid_hex);
}

• The get_all(&self) -> Vec<Transaction> function retrieves all transactions stored 
in the memory pool. It obtains a read lock on the internal HashMap and iterates through its 
entries, cloning each transaction into a vector (Vec). Finally, it returns this vector containing 
all transactions present in the memory pool:

pub fn get_all(&self) -> Vec<Transaction> {
    let inner = self.inner.read().unwrap();
    let mut txs = vec![];
    for (_, v) in inner.iter() {
        txs.push(v.clone());
    }
    return txs;
}

• The len(&self) -> usize function returns the current count of transactions in the 
memory pool. It acquires a read lock on the internal HashMap and retrieves the length of the 
map, representing the number of transactions currently stored in the memory pool:

pub fn len(&self) -> usize {
    self.inner.read().unwrap().len()
}
}
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After understanding all the functions of the MemoryPool definition, let us move on to the 
BlockInTransit implementation.

The BlockinTransit implementation

Now, we will look at the code for the BlockinTransit implementation, which is part of the 
memory_pool.rs file itself.

This code will provide a simple implementation of a data structure for tracking blocks that are in 
transit during a P2P networking protocol. It allows for the storage, retrieval, and removal of blocks 
in a thread-safe manner.

Here’s the code that you will see in the file:

pub struct BlockInTransit {
    inner: RwLock<Vec<Vec<u8>>>,
}
 impl BlockInTransit {
    pub fn new() -> BlockInTransit {
        BlockInTransit {
            inner: RwLock::new(vec![]),
    }
}
    pub fn add_blocks(&self, blocks: &[Vec<u8>]) {
        let mut inner = self.inner.write().unwrap();
        ...
}
    pub fn first(&self) -> Option<Vec<u8>> {
        ...
    }
    pub fn remove(&self, block_hash: &[u8]) {
        let mut inner = self.inner.write().unwrap();
        if let Some(idx) = inner.iter().position(|x| x.eq(block_hash)) 
{
            inner.remove(idx);
        }
    }
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Take a look at Figure 5.1, which breaks down each function within the BlockInTransit structure:

Figure 5.1 – The BlockInTransit structure

Let’s talk about each of these functions in detail:

• new(): This function acts as a constructor for BlockInTransit, creating and returning 
a new instance. Inside new(), an empty RwLock-protected vector (Vec) is initialized to 
store blocks.

• add_blocks(&self, blocks: &[Vec<u8>]): The add_blocks() function allows 
the addition of multiple blocks to the BlockInTransit structure. It obtains a write lock on 
the internal vector to ensure exclusive modification and iterates through the provided blocks, 
converting each to a vector of bytes and appending it to the internal vector.

• first(&self) -> Option<Vec<u8>>: This function retrieves the first block stored 
in the BlockInTransit structure. It obtains a read lock on the internal vector and checks 
whether there is a block available. If present, it clones the first block as a vector of bytes and 
returns it wrapped in a Some. If the vector is empty, it returns None.



Implementing transactions 133

• remove(&self, block_hash: &[u8]): The remove() function deletes a specific 
block identified by its hash (block_hash) from BlockInTransit. It acquires a write lock, 
searches for the block’s position in the vector using the provided hash, and removes it if found.

• clear(&self): This function clears all blocks from BlockInTransit. It obtains a write 
lock and empties the internal vector, effectively removing all elements.

• len(&self) -> usize: The len() function returns the current number of blocks stored 
in BlockInTransit. It obtains a read lock, retrieves the length of the internal vector, and 
returns the count as a usize pointer.

These functions collectively enable the management of blocks within BlockInTransit, allowing 
for the addition, retrieval, removal, clearing, and count retrieval of blocks stored within the structure.

Now that we’ve delved into the functionalities of managing blocks within the BlockInTransit 
structure, let’s pivot our focus toward a deeper exploration of the transactions occurring within our 
blockchain system.

Implementing transactions
Transactions in a blockchain network represent the transfer of assets or information between 
participants. In this section, we dissect the core components of transactions – TXInput, TXOutput, 
and the overarching Transaction struct. These structures intricately manage inputs, outputs, and 
transactional data, crucial for secure asset exchanges within the blockchain ecosystem.

All the code we write in this section will be available in the transactions.rs file.

Understanding TXInput transactions

We have already seen the TXInput struct in the previous chapter; now, let’s understand the 
implementation functions for all TXInput transactions. It will look like the following code:

 impl TXInput {

    pub fn new(txid: &[u8], vout: usize) -> TXInput {
        TXInput {
            txid: txid.to_vec(),
            vout,
            signature: vec![],
            pub_key: vec![],
        }
    }

    pub fn get_txid(&self) -> &[u8] {
        self.txid.as_slice()
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    }

    pub fn get_vout(&self) -> usize {
        self.vout
    }

    pub fn get_pub_key(&self) -> &[u8] {
        self.pub_key.as_slice()
    }

    pub fn uses_key(&self, pub_key_hash: &[u8]) -> bool {
        let locking_hash = wallet::hash_pub_key(self.pub_key.as_
slice());
        return locking_hash.eq(pub_key_hash);
    }
}

The TXInput constituent fields are shown in Figure 5.2:

Figure 5.2 – TXInput fields
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Here’s a description of each of the fields:

• txid: A vector of bytes representing the ID of the transaction that created the output that 
this input is spending

• vout: An index that represents which output of the transaction with ID txid this input 
is spending

• signature: A vector of bytes that will contain a digital signature of the transaction that 
includes this input

• pub_key: A vector of bytes that will contain the public key of the owner of the funds being spent

The TXInput struct has the following methods:

• new: A constructor that creates a new TXInput instance with the specified txid and vout 
fields, an empty signature, and public key fields.

• get_txid: A method that returns a reference to the txid field of the input.

• get_vout: A method that returns the vout field of the input.

• get_pub_key: A method that returns a reference to the pub_key field of the input.

• uses_key: A method that takes a pub_key_hash byte vector as input and returns a Boolean 
indicating whether the pub_key field of the input corresponds to the specified pub_key_hash 
byte vector. This method calls a wallet::hash_pub_key() function to compute the 
hash of the public key and then compares it with the specified pub_key_hash byte vector.

This concludes our explanation of TXInput.

Let us now move on to TXOutput.

Understanding TXOutput transactions

The TXOutput struct manages transaction outputs within a blockchain, storing values and public 
key hashes. It facilitates the creation of new outputs, value retrieval, and verification of locked outputs 
using cryptographic hashes. This component plays a vital role in ensuring secure asset transfers and 
validation in blockchain transactions.

Here’s the code that you will see in the file for the TXOutput struct:

 impl TXOutput {
    pub fn new(value: i32, address: &str) -> TXOutput {
        ...
        return output;
    }

    pub fn get_value(&self) -> i32 {
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        self.value
    }

    pub fn get_pub_key_hash(&self) -> &[u8] {
        self.pub_key_hash.as_slice()
    }

    fn lock(&mut self, address: &str) {
        ...
        self.pub_key_hash = pub_key_hash;
    }

    pub fn is_locked_with_key(&self, pub_key_hash: &[u8]) -> bool {
        self.pub_key_hash.eq(pub_key_hash)
    }
}

Let us now explore and understand the TXOutput struct, whose fields and methods are shown in 
Figure 5.3:

Figure 5.3 – TXOutput struct

Let’s first discuss the fields:

• value: An integer that represents the value of the output

• pub_key_hash: A vector of bytes that represents the hash of the public key of the owner 
of the output
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The TXOutput struct has the following methods:

• new: A constructor that creates a new TXOutput instance with the specified value and address, 
and sets the pub_key_hash field by calling the lock method

• get_value: A method that returns the value field of the output

• get_pub_key_hash: A method that returns a reference to the pub_key_hash field of 
the output

• lock: A private method that takes an address string as input, decodes it using the base58_
decode function, and sets the pub_key_hash field to the hash of the public key in the 
decoded payload

• is_locked_with_key: A method that takes a pub_key_hash byte vector as input and 
returns a Boolean indicating whether the pub_key_hash field of the output matches the 
specified pub_key_hash byte vector

We will now move on to the Transaction structure and explore and understand its functions 
and methods.

Understanding the Transaction implementation

This Transaction implementation manages transaction creation, validation, and signature 
verification in a blockchain. It constructs Coinbase and UTXO transactions, handles transaction 
signing and verification, and provides methods for serialization and deserialization of transaction data.

A Transaction struct contains inputs and outputs, where inputs refer to previous UTXOs that 
are being spent and outputs represent newly created UTXOs:

impl Transaction {
    pub fn new_coinbase_tx(to: &str) -> Transaction {
        let txout = TXOutput::new(SUBSIDY, to);
        let mut tx_input = TXInput::default();
        tx_input.signature = Uuid::new_v4().as_bytes().to_vec();
        ....
        return tx;
    }

    pub fn new_utxo_transaction(
        from: &str,
        to: &str,
        amount: i32,
        utxo_set: &UTXOSet,
    ) -> Transaction {
        ...
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        let mut inputs = vec![];
        for (txid_hex, outs) in valid_outputs {
            ...
        }
        let mut outputs = vec![TXOutput::new(amount, to)];
        ...
        return tx;
    }
    ...
}

Figure 5.4 gives an overview of the Transaction implementation:

Figure 5.4 – Transaction implementation

Let’s break down the functions within the Transaction implementation:

• new_coinbase_tx(to: &str) -> Transaction: This function creates a new 
Coinbase transaction, generating a transaction output (txout) with a specified value and 
recipient address. It constructs a transaction input (tx_input) with a unique signature 
using a UUID, combines these components into a Transaction struct, and computes its 
ID through hashing:

pub fn new_coinbase_tx(to: &str) -> Transaction {
        let txout = TXOutput::new(SUBSIDY, to);
        let mut tx_input = TXInput::default();
        tx_input.signature = Uuid::new_v4().as_bytes().to_vec();
        ....
        return tx;
    }
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• new_utxo_transaction(from: &str, to: &str, amount: i32, utxo_set: 
&UTXOSet) -> Transaction: This function constructs a new UTXO-based transaction 
by selecting spendable outputs and creating inputs for the transaction. It calculates the inputs 
required based on available outputs, manages outputs for the recipient and change, signs the 
transaction, and computes its ID through hashing:

pub fn new_utxo_transaction(
        from: &str,
        to: &str,
        amount: i32,
        utxo_set: &UTXOSet,
    ) -> Transaction {
        ...
        let mut inputs = vec![];
        for (txid_hex, outs) in valid_outputs {
            ...
        }
        let mut outputs = vec![TXOutput::new(amount, to)];
        ...
        return tx;
    }

• trimmed_copy(&self) -> Transaction: This internal function creates a trimmed 
copy of the transaction, excluding signatures, enabling signature verification without modifying 
the original transaction:

fn trimmed_copy(&self) -> Transaction {
        ...
    }

• sign(&mut self, blockchain: &Blockchain, pkcs8: &[u8]): The sign 
function signs the transaction inputs using the Elliptic Curve Digital Signature Algorithm 
(ECDSA). It retrieves previous transactions, prepares a copy for signature verification, signs 
inputs with the corresponding private keys, and updates the transaction with signatures:

fn sign(&mut self, blockchain: &Blockchain, pkcs8: &[u8]) {
        let mut tx_copy = self.trimmed_copy();
        for (idx, vin) in self.vin.iter_mut().enumerate() {
            ....
        }
    }
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• verify(&self, blockchain: &Blockchain) -> bool: This function verifies 
transaction signatures against corresponding public keys. It checks for Coinbase transactions, 
prepares a trimmed copy, validates signatures against public keys, and ensures the correctness 
of previous transactions before confirming the authenticity of signatures:

pub fn verify(&self, blockchain: &Blockchain) -> bool {
        ...
        let mut tx_copy = self.trimmed_copy();
        for (idx, vin) in self.vin.iter().enumerate() {
            let prev_tx_option = blockchain.find_
transaction(vin.get_txid());
            let prev_tx = prev_tx_option.unwrap();
            ...
            let verify = crate::ecdsa_p256_sha256_sign_verify(
                ...
            );
            if !verify {
                return false;
            }
        }
        true
    }

• is_coinbase(&self) -> bool: The is_coinbase function checks whether the 
transaction is a Coinbase transaction, verifying whether there’s only one input and the public 
key length is 0:

pub fn is_coinbase(&self) -> bool {
        return self.vin.len() == 1 && self.vin[0].pub_key.len() 
== 0;
    }

• hash(&mut self) -> Vec<u8>: This function generates the transaction’s hash by 
creating a copy without the ID, serializing it, and computing its SHA-256 digest:

fn hash(&mut self) -> Vec<u8> {
        ...
        crate::sha256_digest(tx_copy.serialize().as_slice())
    }

• Other helper functions: Additional functions such as get_id, get_id_bytes, get_vin, 
get_vout, serialize, and deserialize provide various utilities to retrieve transaction 
information, serialize the transaction to bytes, and deserialize it back from bytes:

pub fn get_id(&self) -> &[u8] {
        self.id.as_slice()
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    }
    pub fn get_id_bytes(&self) -> Vec<u8> {
        self.id.clone()
    }
    pub fn get_vin(&self) -> &[TXInput] {
        self.vin.as_slice()
    }
    pub fn get_vout(&self) -> &[TXOutput] {
        self.vout.as_slice()
    }
    pub fn serialize(&self) -> Vec<u8> {
        bincode::serialize(self).unwrap().to_vec()
    }
    pub fn deserialize(bytes: &[u8]) -> Transaction {
        bincode::deserialize(bytes).unwrap()
    }

These functions collectively manage the creation, signing, verification, and manipulation of transactions 
within a blockchain network, ensuring their validity and security throughout the transaction life cycle.

Let us now understand the implementation of UTXOs and wallets.

Utilizing UTXOs and developing wallets
In this section, we will explore the implementation of UTXO and wallet functionalities. UTXO tracking 
and wallet management play pivotal roles in blockchain systems, ensuring transaction outputs’ integrity 
and secure asset storage and transfer.

Let us first look at the UTXOSet structure.

Implementing UTXOSet

The UTXOSet structure helps manage UTXOs within a blockchain. It facilitates functionalities such 
as finding spendable outputs, reindexing outputs, updating outputs after block confirmation, and 
counting transactions within the blockchain.

You will find the following code in the file:

pub struct UTXOSet {
    blockchain: Blockchain,
}

impl UTXOSet {
  pub fn new(blockchain: Blockchain) -> UTXOSet {
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        UTXOSet { blockchain }
    }

    pub fn get_blockchain(&self) -> &Blockchain {
        &self.blockchain
    }
pub fn find_spendable_outputs(...) -> (i32, HashMap<String, 
Vec<usize>>) {
        let mut unspent_outputs: HashMap<String, Vec<usize>> = 
HashMap::new();        (accmulated, unspent_outputs)
...
}
pub fn find_utxo(&self, pub_key_hash: &[u8]) -> Vec<TXOutput> {
        ...
    }
    pub fn count_transactions(&self) -> i32 {
        ...
    }
    pub fn reindex(&self) {
        ...
    }
    pub fn update(&self, block: &Block) {
        ...
    }

}

Let’s break down the functionalities within the UTXOSet structure:

• new(blockchain: Blockchain) -> UTXOSet: This function initializes a new 
UTXOSet instance with a reference to the blockchain it operates on.

• get_blockchain(&self) -> &Blockchain: This retrieves a reference to the blockchain 
associated with the UTXOSet structure.

• find_spendable_outputs(&self, pub_key_hash: &[u8], amount: i32) 
-> (i32, HashMap<String, Vec<usize>>): This method identifies spendable 
outputs for a given public key hash and required amount. It iterates through UTXOs, checks 
ownership, accumulates values, and forms a HashMap of transaction IDs to output indices 
for spendable outputs.

• find_utxo(&self, pub_key_hash: &[u8]) -> Vec<TXOutput>: This finds 
all UTXOs associated with a provided public key hash, iterating through the UTXO tree and 
gathering matching outputs.

• count_transactions(&self) -> i32: This function counts the number of transactions 
in the UTXO tree by iterating through its entries.
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• reindex(&self): This reindexes the UTXO tree by clearing it and rebuilding it from the 
blockchain’s transaction outputs, ensuring consistency and correctness.

• update(&self, block: &Block): This method updates the UTXO set after a block 
confirmation. It removes spent outputs and adds new outputs generated by transactions within 
the block, maintaining the integrity of the UTXO tree in the blockchain.

These functions collectively manage UTXOs within the blockchain, enabling the identification of 
spendable outputs, retrieval of UTXOs for specific public key hashes, updating the UTXO set after 
block confirmation, and maintaining the integrity of transaction outputs in the blockchain system.

Moving on, let us explore the implementation of wallets.

Implementing wallets

Let us define functionalities for creating and managing wallet addresses in a blockchain system. This 
includes methods for generating addresses, retrieving public keys, validating addresses, and converting 
public key hashes to wallet addresses:

impl Wallets {
    pub fn new() -> Wallets {
        ...
    }

    pub fn create_wallet(&mut self) -> String {
        ...
    }

    pub fn get_addresses(&self) -> Vec<String> {
        ...
    }

    pub fn get_wallet(&self, address: &str) -> Option<&Wallet> {
        ...
    }

    pub fn load_from_file(&mut self) {
        ...
    }

    fn save_to_file(&self) {
        ...
    }
}
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Here is a breakdown of the code for the wallet and its functions:

• new() -> Wallets: Generates a new Wallet instance. It creates a new cryptographic 
key pair, extracts the public key, and initializes a Wallets structure with the generated keys:

pub fn new() -> Wallets {
        let mut wallets = Wallets {
            wallets: HashMap::new(),
        };
        wallets.load_from_file();
        return wallets;
    }

• get_address() -> String: Constructs an address from the Wallets structure’s public 
key. It combines a version number, a hashed version of the public key, and a checksum before 
encoding it in Base58 format, resulting in a unique address representation:

pub fn get_addresses(&self) -> Vec<String> {
        let mut addresses = vec![];
        for (address, _) in &self.wallets {
            addresses.push(address.clone())
        }
        return addresses;
    }

• get_public_key() -> &[u8]: Retrieves the raw bytes representing the public key 
associated with the Wallets structure.

• get_pkcs8() -> &[u8]: Retrieves the raw bytes of the PKCS #8 representation of the 
private key associated with the Wallets structure.

• hash_pub_key(pub_key: &[u8]) -> Vec<u8>: Hashes the given public key using 
SHA-256 and then RIPEMD-160 hash functions to produce a hash representation:

pub fn hash_pub_key(pub_key: &[u8]) -> Vec<u8> {
    let pub_key_sha256 = crate::sha256_digest(pub_key);
    crate::ripemd160_digest(pub_key_sha256.as_slice())
}

• checksum(payload: &[u8]) -> Vec<u8>: Generates a checksum for a payload by 
applying a double SHA256 hash and extracting the first bytes, resulting in a verification code:

fn checksum(payload: &[u8]) -> Vec<u8> {
    let first_sha = crate::sha256_digest(payload);
    let second_sha = crate::sha256_digest(first_sha.as_slice());
    second_sha[0..ADDRESS_CHECK_SUM_LEN].to_vec()
}
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• validate_address(address: &str) -> bool: Validates the integrity of an address 
by decoding it, separating its components, and recomputing the checksum. Returns true if 
the address is valid; otherwise, it returns false:

pub fn validate_address(address: &str) -> bool {
    let payload = crate::base58_decode(address);
    let actual_checksum = payload[payload.len() - ADDRESS_CHECK_
SUM_LEN..].to_vec();
    let version = payload[0];
    let pub_key_hash = payload[1..payload.len() - ADDRESS_CHECK_
SUM_LEN].to_vec();

    let mut target_vec = vec![];
    target_vec.push(version);
    target_vec.extend(pub_key_hash);
    let target_checksum = checksum(target_vec.as_slice());
    actual_checksum.eq(target_checksum.as_slice())
}

• convert_address(pub_hash_key: &[u8]) -> String: Converts a public key 
hash into an encoded address by appending a version number, the public key hash, and a 
checksum, then encoding it using Base58 encoding:

pub fn convert_address(pub_hash_key: &[u8]) -> String {
    let mut payload: Vec<u8> = vec![];
    payload.push(VERSION);
    payload.extend(pub_hash_key);
    let checksum = checksum(payload.as_slice());
    payload.extend(checksum.as_slice());
    crate::base58_encode(payload.as_slice())
}

These functions together allow for the creation, extraction, validation, and conversion of addresses 
associated with a cryptographic wallet, enabling secure transactions and identity management (IdM) 
within a blockchain system.

Let us shift our focus to developing wallets.

Wallets

Let us manage a collection of wallets within a blockchain application. Here’s a breakdown of the 
Wallets struct and its associated methods.
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The Wallets struct is organized like this:

impl Wallets{
…
}

Within this struct, we have the following code:

    pub fn new() -> Wallets {
        let mut wallets = Wallets {
            wallets: HashMap::new(),
        };
        wallets.load_from_file();
        wallets
    }

Let’s break this down:

• wallets: HashMap<String, Wallet>: Represents a collection of wallets stored in a 
HashMap, where each wallet is associated with a unique address:

     pub fn create_wallet(&mut self) -> String {
        let wallet = Wallet::new();
        let address = wallet.get_address();
        self.wallets.insert(address.clone(), wallet);
        self.save_to_file();
        address
    }

    pub fn get_addresses(&self) -> Vec<String> {
        self.wallets.keys().cloned().collect()
    }

    pub fn get_wallet(&self, address: &str) -> Option<&Wallet> {
        self.wallets.get(address)
    }

    pub fn load_from_file(&mut self) {
        // ...
    }

    fn save_to_file(&self) {
        // ...
    }
}
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• wallets: HashMap<String, Wallet>: Represents a collection of wallets stored in a 
HashMap, where each wallet is associated with a unique address.

• new() -> Wallets: Initializes a new instance of Wallets, creates an empty HashMap 
to store wallets, and attempts to load wallets from a file.

• create_wallet() -> String: Generates a new wallet, retrieves its unique address, 
inserts the wallet into the wallets HashMap using the address as the key, and saves the 
updated wallet collection to a file. Returns the newly created wallet’s address.

• get_addresses() -> Vec<String>: Retrieves all addresses associated with the wallets 
stored in the wallets HashMap and returns them as a vector of strings.

• get_wallet(&self, address: &str) -> Option<&Wallet>: Retrieves a 
reference to a wallet by its address from the wallets HashMap. Returns Some(wallet) 
if the wallet exists; otherwise, it returns None.

• load_from_file(&mut self): Attempts to load wallet data from a file. If the file exists, 
it reads the data and deserializes it into the wallets HashMap.

• save_to_file(&self): Saves the contents of the wallets HashMap into a file. It 
serializes the wallets and writes the serialized data to the specified file.

The preceding code manages the creation, retrieval, storage, and persistence of wallets within the 
blockchain application, ensuring secure wallet management and persistence across sessions.

Moving on, let us explore configurations and utilities.

Setting up configurations and utilities
Setting up configurations and utilities within the code base establishes fundamental structures and 
utility functions pivotal for blockchain operations. These components encapsulate key configurations, 
cryptographic functions, and essential utilities indispensable for secure and efficient blockchain 
functionalities. Configurations encompass system configurations, including node addresses and 
mining specifics, ensuring the adaptability and customization of the blockchain environment. On 
the other hand, utilities house crucial cryptographic functions such as hashing algorithms, key 
generation, encoding, and signature verification, serving as foundational tools for secure data handling 
and authentication within the blockchain network. This section forms the backbone of system 
configurations and cryptographic operations essential for maintaining the integrity and security of 
blockchain-based systems.

Let us first look at the Config implementation.
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The Config implementation

The Config structure serves as a centralized repository for managing configurations within a 
blockchain system. It encapsulates crucial information such as node addresses, mining settings, and 
related system configurations:

pub static GLOBAL_CONFIG: Lazy<Config> = Lazy::new(|| Config::new());

static DEFAULT_NODE_ADDR: &str = "127.0.0.1:2001";
const NODE_ADDRESS_KEY: &str = "NODE_ADDRESS";
const MINING_ADDRESS_KEY: &str = "MINING_ADDRESS";

pub struct Config {
    inner: RwLock<HashMap<String, String>>,
}
impl Config {
    pub fn new() -> Config {
        ...
    }

    pub fn get_node_addr(&self) -> String {
        ...
    }

    pub fn set_mining_addr(&self, addr: String) {
        ...
    }

    pub fn get_mining_addr(&self) -> Option<String> {
        ...
    }

    pub fn is_miner(&self) -> bool {
        ...
    }
}

The new() function initializes a new instance of Config. It reads the node address from the system 
environment variables, allowing for dynamic customization. If a specific node address is defined in 
the environment variables (NODE_ADDRESS), it overrides the default node address (DEFAULT_
NODE_ADDR) to ensure flexibility in node setup. It then creates an internal HashMap holding the 
node address under the NODE_ADDRESS_KEY key.
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The get_node_addr() method retrieves the node address stored within Config. It grants read 
access to the internal RwLock, allowing concurrent read operations. It retrieves the node address by 
accessing the value associated with NODE_ADDRESS_KEY in the HashMap, cloning the value to 
return it as a String value.

The set_mining_addr() function updates the mining address within the Config struct. It 
acquires a write lock to the internal RwLock, ensuring exclusive access for modification. The method 
inserts or updates the mining address (addr) under MINING_ADDRESS_KEY within the HashMap.

The get_mining_addr() method retrieves the mining address stored in Config. It grants read 
access to the internal RwLock, similar to get_node_addr(). It attempts to retrieve the mining 
address associated with MINING_ADDRESS_KEY from the HashMap. If found, it clones and returns 
the address as an Option<String> value. If absent, it returns None.

The is_miner() function checks whether a mining address is present in the Config struct. It 
acquires read access to the internal RwLock, permitting concurrent read operations. It verifies the 
existence of the mining address key (MINING_ADDRESS_KEY) within the HashMap, returning a 
Boolean value based on its presence.

Overall, this Config structure allows for the management and retrieval of critical system configurations, 
such as node addresses and mining settings, offering flexibility and customization options within a 
blockchain-based system.

Utility functions

Let’s move on to a breakdown of each utility function:

pub mod utils;
use utils::base58_decode;
use utils::base58_encode;
use utils::current_timestamp;
use utils::ecdsa_p256_sha256_sign_digest;
use utils::ecdsa_p256_sha256_sign_verify;
use utils::new_key_pair;
use utils::ripemd160_digest;
use utils::sha256_digest;

Here’s an overview of each function:

• current_timestamp(): This function retrieves the current timestamp as an integer 
representing milliseconds since the Unix epoch. It uses SystemTime::now() to capture 
the current time, calculates the duration since the Unix epoch, and converts it to milliseconds. 
It returns the timestamp as an i64 value.
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• sha256_digest(data: &[u8]) -> Vec<u8>: This function performs a SHA-256 
hash operation on the provided data input, returning the resulting hash as a vector of bytes. 
It initializes a hashing context with SHA-256, updates the context with the input data, generates 
the hash digest, and converts it to a vector of bytes for output.

• ripemd160_digest(data: &[u8]) -> Vec<u8>: This function calculates the 
RIPEMD-160 hash of the input, returning the resulting hash as a vector of bytes. It creates a 
RIPEMD-160 hasher, inputs the data, collects the resulting hash into a byte vector, and returns it.

• base58_encode(data: &[u8]) -> String: This function encodes the given byte 
slice using the Base58 encoding scheme and returns the encoded string representation. It utilizes 
bs58 crate to perform the encoding and converts the byte data into a Base58-encoded string.

• base58_decode(data: &str) -> Vec<u8>: Conversely, this function decodes a 
Base58-encoded string back to its original byte representation. It uses the bs58 crate to 
decode the input string and returns the decoded byte vector.

• new_key_pair() -> Vec<u8>: This function generates a new ECDSA key pair and 
returns the private key as a byte vector. It utilizes EcdsaKeyPair and SystemRandom from 
the ring crate to generate a private key in PKCS#8 format and converts it to a byte vector.

• ecdsa_p256_sha256_sign_digest(pkcs8: &[u8], message: &[u8]) -> 
Vec<u8>: This function signs the provided message parameter using the ECDSA P-256 
SHA-256 algorithm. Given a private key in PKCS#8 format (pkcs8), it creates an ECDSA 
key pair, signs the message, and returns the resulting signature as a byte vector.

• ecdsa_p256_sha256_sign_verify(public_key: &[u8], signature: 
&[u8], message: &[u8]) -> bool: This function verifies an ECDSA P-256 
SHA-256 signature against a provided message parameter using the corresponding 
public_key value. It constructs an unparsed public key from the public_key byte slice 
and uses it to verify the provided signature against the message parameter, returning a 
Boolean indicating the signature’s validity.

These functions offer utilities for cryptographic operations (hashing, encoding, decoding, key 
generation, signing, and verification) commonly used in blockchain systems, ensuring secure and 
reliable transaction handling and data manipulation within the blockchain infrastructure.

Understanding the lib.rs file

This file orchestrates the blockchain system by structuring its components into modules, which we 
have discussed in the previous sections:

blockchain_rust/
├── src/
│   ├── block.rs            // Block module
│   ├── blockchain.rs       // Blockchain module
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│   ├── config.rs         // Blockchain module
│   ├── lib.rs       // Blockchain module
│   ├── main.rs       // Blockchain module
│   ├── memory_pool.rs       // Blockchain module
│   ├── node.rs             // Node module
│   ├── req_functions.rs             // Node module
│   ├── server.rs           // Server module
│   ├── structs.rs           // Server module
│   ├── transactions.rs      // Transaction module
│   ├── utils.rs      // Transaction module
│   ├── utxo_set.rs         // UTXO Set module
│   ├── wallets.rs          // Wallets module
└── Cargo.toml               // Rust package configuration

Let’s break this down:

• Block and Blockchain: Block and Blockchain modules manage the blocks and the chain 
of blocks, respectively, forming the foundational structure of the blockchain

• UTXOSet: The UTXOSet module handles UTXOs, vital for verifying transactions’ validity

• ProofOfWork: Within the ProofOfWork module, the mining process is defined using the 
proof-of-work (PoW) consensus mechanism to add blocks to the chain securely

• Transaction: The Transaction module encapsulates transaction-related functionalities, 
facilitating value transfer between participants

• Wallet and Wallets: Wallet manages individual user wallets, while Wallets oversees 
multiple wallets, facilitating user interaction with the blockchain system

• Server and Node: The Server module handles communication between nodes, and the Node 
module manages the network’s nodes and their interactions

• MemoryPool: MemoryPool keeps track of pending transactions awaiting confirmation by 
inclusion in a block

• Configuration: The Config module manages system configurations, including node addresses 
and mining settings

• Utilities: The utils module houses utility functions essential for cryptographic operations, 
encoding, decoding, hashing, timestamp management, and cryptographic key generation, used 
across various blockchain functionalities

This file’s structural organization streamlines development, promoting modularity, code reusability, 
and easy maintenance of the blockchain system. Each module encapsulates specific functionalities, 
facilitating their integration, testing, and management within the broader blockchain architecture. 
Additionally, the separation of concerns (SoC) among modules enhances code readability and 
scalability while supporting the robustness and integrity of the blockchain implementation.
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We will now move our focus to one of the most important files,  the Main.rs file.

Understanding the Main.rs file
The Main.rs file serves as the entry point and orchestrator of operations in this Rust blockchain 
application. It defines command-line interface (CLI) options using the StructOpt crate, enabling 
users to interact with various functionalities of the blockchain system. Each command represents a 
specific action, from creating a blockchain and managing wallets to sending transactions and exploring 
the blockchain’s state. The code structure, coupled with the utilization of modules and external crates, 
forms a cohesive ecosystem to execute blockchain operations efficiently. The code is organized around 
the Opt structure, which encapsulates different commands specified under the Command enum. 
These commands offer diverse functionalities such as creating a new blockchain, managing wallets, 
checking balances, sending transactions, examining the blockchain’s state, and initializing nodes.

Let us get into an explanation of the code in the Main.rs file:

struct Opt {
    #[structopt(subcommand)]
    command: Command,
}

Let’s break this down:

• const MINE_TRUE: usize = 1;: Defines a constant flag representing a value for 
triggering immediate mining when adding a new block. The MINE_TRUE flag is used within 
the Command::Send functionality to control block mining.

• struct Opt: This structure is used in conjunction with the StructOpt derive macro to 
define command-line options. It encapsulates various commands under the Command enum, 
facilitating different interactions with the blockchain system.

• enum Command: Represents a set of distinct commands accessible via the CLI. Each command 
offers specific functionalities:

enum Command {
    #[structopt(name = "createblockchain", about = "Create a new 
blockchain")]
    Createblockchain { address: String },
    #[structopt(name = "createwallet", about = "Create a new 
wallet")]
    Createwallet,
    ...
    #[structopt(name = "send", about = "Add new block to 
chain")]
    Send { from: String, to: String, amount: i32, mine: usize },
    #[structopt(name = "printchain", about = "Print blockchain 
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all block")]
    Printchain,
    ...
}

• Createblockchain: Allows the creation of a new blockchain with a provided address to 
receive the genesis block reward.

• Createwallet: Facilitates the creation of a new wallet address within the blockchain system.

• GetBalance: Checks and displays the balance of a specified wallet address.

• ListAddresses: Lists all wallet addresses available locally.

• Send: Enables the addition of a new block to the blockchain by initiating a transaction between 
two addresses, with an option to immediately mine the block.

• Printchain: Prints details of the entire blockchain, including block hashes, timestamps, 
and transaction information.

• Reindexutxo: Rebuilds the UTXO index set.

• StartNode: Initializes a node for interacting with the blockchain, optionally enabling 
mining mode.

• fn main(): The main entry point of the application, where commands provided through 
the CLI are processed and executed. The function matches the provided commands against 
predefined options and triggers the corresponding actions:

fn main() {
    env_logger::builder().filter_level(LevelFilter::Info).
init();
    let opt = Opt::from_args();
    match opt.command {
        Command::Createblockchain { address } => {
            ...
        }
        Command::Createwallet => {
            ...
        }
        ...
        Command::Send { from, to, amount, mine } => {
            ...
        }
        Command::Printchain => {
            ...
        }
        ...
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        Command::StartNode { miner } => {
            ...
        }
    }

• Command::Createblockchain: Initiates the creation of a new blockchain and reindexes 
the UTXO set.

• Command::Createwallet: Generates a new wallet address.

• Command::GetBalance: Checks the balance of a specified wallet address by querying the 
UTXO set.

• Command::ListAddresses: Lists all available wallet addresses.

• Command::Send: Sends a transaction between addresses, optionally mining a new 
block immediately.

• Command::Printchain: Iterates through the blockchain, displaying block details and 
transaction information.

• Command::Reindexutxo: Rebuilds the UTXO set index.

• Command::StartNode: Initializes a node, allowing interaction with the blockchain and 
server initialization for networking.

Each command in the Command enum corresponds to distinct functionalities, facilitating user 
interaction with the blockchain system via a CLI. The fn main() function serves as a comprehensive 
orchestrator, executing specific actions based on user inputs, ensuring the effective operation of the 
blockchain application.

The Main.rs file acts as the control center, enabling users to interact with the blockchain system 
via a CLI. It seamlessly processes user inputs, triggering specific actions and interactions with the 
blockchain components, such as blocks, transactions, wallets, and network nodes. The modular and 
structured approach facilitates diverse blockchain functionalities, enhancing user accessibility and 
system usability within this Rust-based blockchain application.

Next up, we will see how we can use the blockchain that we have created across the three chapters.

Using your custom blockchain
Before running your blockchain, ensure your environment is set up correctly. This step involves 
installing Rust, which is necessary for compiling and managing the project, given its development in 
Rust language. Here’s what you need to do:

1. Install Rust: Visit the official Rust website and follow the instructions to install Rust and Cargo 
on your system. Cargo is Rust’s package manager and build system.
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2. Compile the project: The next step is to compile the project, which you can do as follows:

I. Open a terminal and navigate to the Rust-Advanced-Blockchain directory 
within the project.

II. Compile the project using Cargo. This will download dependencies and compile the project:

cargo build –release

III. The --release flag builds the project in release mode, which optimizes the binary 
for performance.

After running the preceding command, you will see the following result in the terminal:

blockchain_rust 0.1.0
USAGE:
    blockchain_rust.exe <SUBCOMMAND>
FLAGS:
    -h, --help       Prints help information
    -V, --version    Prints version information
SUBCOMMANDS:
    createblockchain    Create a new blockchain
    createwallet        Create a new wallet
    getbalance          Get the wallet balance of the target address
    help                Prints this message or the help of the given 
subcommand(s)
    listaddresses       Print local wallet addres
    printchain          Print blockchain all block
    reindexutxo         rebuild UTXO index set
    send                Add new block to chain
    startnode           Start a node

Let us test out each command one at a time.

Creating a new blockchain

Initialize a new blockchain, creating a genesis block and setting up the initial state of the blockchain. 
The command that we will use is createblockchain:

blockchain_rust.exe createblockchain --address YOUR_ADDRESS

Here’s an example using a specific address:

blockchain_rust.exe createblockchain --address 1AVsR...Xb3N
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This command initializes a new blockchain. The --address flag specifies the address that receives 
the reward for the genesis block, which is the first block in the blockchain. You then need to do 
the following:

1. Generate a wallet address: Before you can create a blockchain, you need a wallet address to 
receive the genesis block reward. Use the createwallet command to generate a new wallet 
and address.

2. Execute the command: Replace YOUR_ADDRESS with your wallet address. This address will 
receive the genesis block reward, effectively initializing your blockchain with its first block.

3. Blockchain initialization: The command creates a genesis block and sets up the blockchain’s 
initial state, marking the beginning of your blockchain network.

4. Outcome: Upon successful execution, your blockchain is initialized, and the specified address 
receives the genesis block reward. This step is foundational, as it prepares the blockchain for 
subsequent transactions and blocks.

After initializing the blockchain, you will want to perform additional actions such as creating wallets, 
checking balances, and making transactions. Each action corresponds to a specific command, which 
we will explore in detail, following the preceding format to ensure clarity and ease of understanding.

Creating a new wallet

Generate a new wallet, including a private and public key pair, with the public key serving as your 
blockchain address for receiving and sending currency. The command that we will use is createwallet:

blockchain_rust.exe createwallet

For example, imagine you’ve just launched the CLI and entered the preceding command.

Upon execution, the system might display something like this:

Your new wallet address: 1AVsR...Xb3N

The createwallet command is designed to generate a new set of cryptographic keys (private and 
public keys). The public key is transformed into a wallet address, which you’ll use to receive and send 
blockchain assets. Follow these steps:

1. Launch the command: Simply type blockchain_rust.exe createwallet into your 
CLI. No additional arguments are needed for this command.

2. Key generation: Behind the scenes, the blockchain application generates a secure private key, 
which is essential for signing transactions and proving ownership of assets. The corresponding 
public key is then derived from the private key.
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3. Address creation: The public key undergoes a series of cryptographic transformations to 
produce a unique wallet address. This address can be shared publicly to receive funds.

4. Safety reminder: It’s crucial to keep your private key secure. Anyone with access to your private 
key can control your blockchain assets associated with its corresponding wallet address.

You now have a unique wallet address associated with a new set of keys. This address is your identity 
on the blockchain for receiving and sending currency. It’s the first step toward interacting with the 
blockchain ecosystem, allowing you to participate in transactions.

Wallets are fundamental to blockchain technology, serving as the interface through which users interact 
with the blockchain. They store your private keys securely and provide tools to sign transactions, 
proving ownership of blockchain assets without revealing the private keys themselves. Understanding 
how to create and manage your wallet is crucial for anyone looking to actively engage with blockchain 
networks, whether for sending/receiving currency, participating in decentralized applications 
(dApps), or managing digital assets.

In the next section, we will explore how to check the balance of a wallet address using the getbalance 
command, offering insight into managing and monitoring your blockchain assets effectively.

Checking the wallet balance

Determine the balance of a specific wallet address, allowing you to see how much currency you have 
in the blockchain network, using the getbalance command:

blockchain_rust.exe getbalance --address YOUR_WALLET_ADDRESS

For example, after obtaining your wallet address by creating a wallet, you can check its balance as follows:

blockchain_rust.exe getbalance --address 1AVsR...Xb3N

The command line might return something like this:

Balance of 1AkXxhYCrtiYzV1eEAtEbGQDr6qjddCfq5: 10

The getbalance command retrieves the total amount of currency (for example, BTC) available at a 
specified wallet address. This includes the sum of all UTXOs linked to the address. Follow the next steps:

1. Identify the address: Use the address of the wallet for which you want to check the balance. 
This address was generated when you created a new wallet.

2. Execute the command: Replace YOUR_WALLET_ADDRESS with your actual wallet address. 
The system then scans the blockchain for all transactions involving this address, calculating 
the balance by summing all UTXOs that you can spend.

3. Understanding your balance: The displayed balance reflects the amount of currency you can 
spend. It’s essential for managing your assets and planning transactions.
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You’ve successfully checked the balance of your wallet address, gaining insights into your available 
blockchain assets. This step is crucial for effective asset management and strategic transaction planning 
within the blockchain ecosystem.

Wallet balances are pivotal in blockchain ecosystems, providing a clear view of your available assets 
for transactions. Understanding your balance is key to executing transactions, as it ensures you have 
enough currency for the intended operations, including transaction fees that may apply. Checking 
your balance regularly helps in monitoring incoming transactions and confirming that your funds 
are correctly updated after sending currency.

Next, we’ll explore the startnode command, focusing on how to set up and start a node in the 
blockchain network, marking a significant step toward engaging with the blockchain more dynamically, 
such as participating in network consensus or hosting a copy of the blockchain data.

Starting a node

Initiate a node within the blockchain network, enabling it to connect to other nodes, participate in 
the network’s consensus mechanism, and contribute to the blockchain’s overall functionality, using 
the startnode command:

blockchain_rust.exe startnode --address YOUR_WALLET_ADDRESS

For instance, to start a node and participate in the blockchain network, you might use the 
following command:

blockchain_rust.exe startnode --address 1AVsR...Xb3N

The system might indicate the successful launch of the node with messages such as this:

Starting node 1AVsR...Xb3N
Node successfully connected to the blockchain network.

The startnode command is used to launch a new node in the blockchain network. The node will 
attempt to connect to existing nodes, synchronize blockchain data, and participate in processing 
transactions and blocks. Let’s look at the process in more detail:

1. Node identification: The --address flag specifies the wallet address associated with the 
node. This address can be used for receiving rewards if the node participates in consensus 
mechanisms such as mining or validating transactions, depending on the blockchain’s protocol.

2. Networking: Upon starting, the node begins to connect to the network, discovering other nodes 
and exchanging blockchain data to ensure it has the latest state of the blockchain.

3. Active participation: The node now contributes to the network’s security and integrity by 
validating transactions, proposing new blocks (if applicable), and relaying information.
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Your node is now an active participant in the blockchain network, contributing to its operation and 
security. Starting a node is a significant step toward deeper engagement with the blockchain, offering 
opportunities to contribute to transaction validation, block creation, and the overall governance of 
the network.

With your node up and running, you’re well positioned to perform transactions within the network, 
such as sending currency to other addresses. This capability is crucial for leveraging the blockchain 
for its intended purpose: secure, transparent, and decentralized value exchange.

In the next section, we’ll detail the send command, which allows you to execute transactions, transferring 
value between addresses on the blockchain. This step is essential for engaging in economic activities 
facilitated by the blockchain, whether for personal transactions, investment, or as part of dApps.

Sending currency

Perform a transaction to transfer currency from one wallet to another, illustrating the process of 
sending blockchain assets, by using the send command:

blockchain_rust.exe send --from SENDER_ADDRESS --to RECEIVER_ADDRESS 
--amount AMOUNT --mine

To send an amount of 10 from your address to another address, you would execute the following command:

blockchain_rust.exe send --from 1AVsR...Xb3N --to 1BvBM...SExy 
--amount 10 --mine

You may get an output like this:

Sending 10 from 1AVsR...Xb3N to 1BvBM...SExy
Transaction successfully added to the block.

The send command is used to transfer currency from one address to another. This is one of the core 
functionalities of any blockchain, enabling the movement of assets across the network. Let’s take a 
look at the process:

• Transaction details: Specify the sender and receiver addresses, along with the amount of 
currency to be transferred. The --mine flag immediately mines a new block containing this 
transaction on your node, confirming the transaction without waiting for another miner to do so.

• Transaction execution: The blockchain application validates the transaction, ensuring the 
sender has sufficient balance and the transaction details are correct. It then broadcasts the 
transaction to the network for confirmation.

• Confirmation and mining: If the --mine option is used, your node will attempt to mine 
a new block containing this transaction. Once mined, the transaction is confirmed, and the 
receiver’s balance is updated.
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You’ve successfully sent currency from one address to another, demonstrating the ability to execute 
and confirm transactions within the blockchain network. This step is fundamental to blockchain 
technology, showcasing how assets are transferred and managed securely and transparently.

Next in the sequence is the listaddresses command, which we haven’t discussed yet. Let’s detail 
this command next, providing you with a guide on how to list all the wallet addresses you’ve generated 
or used on your local node.

Listing all wallet addresses

Let’s see how to display all wallet addresses that have been generated or used by the user on the local 
node, helping to keep track of all possible transaction endpoints. When you want to see all the wallet 
addresses associated with your node, simply run the listaddresses command:

blockchain_rust.exe listaddresses

The command might output a list like this:

1. 1AVsR...Xb3N
2. 1BvBM...SExy
3. 1C1bC...Df3Y
...

This command provides a comprehensive list of all the wallet addresses that the user’s node can 
recognize. It’s particularly useful for managing multiple addresses or verifying which addresses are 
available for transactions. Let’s take a look at the process:

• Simple execution: There are no additional arguments required. The command scans the local 
node’s data, compiling a list of all known addresses.

• Reviewing addresses: The output helps users identify which addresses they can use for receiving 
and sending transactions. It can also aid in managing assets across multiple addresses.

Users can easily view and manage their wallet addresses, enhancing their ability to engage with the 
blockchain network effectively.

After listing all the wallet addresses, we’ll move on to the printchain command, which allows 
users to view the entire blockchain.

Printing the blockchain

View all blocks in the blockchain from the most recent back to the genesis block, providing a 
comprehensive look at the entire chain’s history, by using the printchain command:

blockchain_rust.exe printchain
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This command typically generates a detailed list of all blocks in the blockchain, presented in reverse 
order (starting with the most recent). For each block, you might see information such as the block’s 
hash, the hash of the previous block, timestamps, and the list of transactions contained within:

Block Hash: 0000a1b2c3d4e...
Prev. Hash: 0000987z6y5xw...
Timestamp: 2023-01-01 12:00:00
Transactions:
    Tx Hash: 123456abcdef...
    Value: 10 BTC
    From: 1AVsR...Xb3N
    To: 1BvBM...SExy
...

The printchain command is invaluable for anyone looking to verify transactions or understand the 
flow of currency within the blockchain. It offers transparency into the blockchain’s operation, showing 
how blocks are interconnected and how the blockchain grows over time. It has the following advantages:

• Historical insight: By printing the blockchain, users gain insights into the sequence of transactions 
and blocks, which is essential for auditing and verifying the integrity of the blockchain

• Verification and trust: This command reinforces the blockchain’s transparency and trustworthiness, 
allowing users to independently verify the existence and details of transactions

You have a clear and detailed view of the blockchain’s history, enhancing your understanding of its 
integrity and the sequence of transactions that have occurred over time.

With the blockchain’s history made transparent through the printchain command, users can 
ensure the accuracy and integrity of their transactions and the blockchain as a whole. This level of 
insight is crucial for trust in blockchain systems, allowing for independent verification of all activities 
on the chain.

Next, we’ll discuss the reindexutxo command, which is vital for maintaining an accurate and 
efficient representation of available transaction outputs within the blockchain.

Rebuilding the UTXO set

Reconstruct the index of UTXOs, ensuring the blockchain accurately reflects the current set of 
spendable transaction outputs, by using the reindexutxo command:

blockchain_rust.exe reindexutxo

Upon completion, the system might not display detailed information but internally updates the UTXO 
set. You may see a simple confirmation message like this:

UTXO set successfully reindexed.
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The reindexutxo command is crucial for maintaining the integrity and efficiency of the blockchain. 
The UTXO set represents all UTXOs available in the blockchain, which is essential for verifying 
transactions and calculating wallet balances. Here’s why the process is important:

• Necessity of reindexing: Over time, transactions are added to the blockchain, and UTXOs are 
spent and created. This command ensures that the UTXO set is current, reflecting only those 
outputs that are truly unspent.

• Enhancing performance: By keeping the UTXO set accurate and minimal, this process helps 
optimize transaction verification and balance calculation, ensuring the blockchain remains 
efficient and scalable.

• Maintaining blockchain integrity: Regularly reindexing the UTXO set can prevent discrepancies 
in transaction processing and balance calculations, contributing to the overall health and 
accuracy of the blockchain.

The blockchain’s UTXO set is now up to date, ensuring that all transactions and balances are accurately 
reflected based on the current state of the blockchain. This step is essential for the correct operation 
of the blockchain, particularly for transaction verification and wallet balance calculations.

Reindexing the UTXO set is a behind-the-scenes maintenance task that, while not directly visible to 
users, plays a crucial role in the blockchain’s performance and reliability. This process ensures that 
the system can efficiently process transactions and accurately report wallet balances, reinforcing the 
trust and integrity of the blockchain network.

With the explanation of the reindexutxo command completed, we have covered essential commands 
for interacting with the blockchain, from starting a node and creating wallets to sending transactions 
and maintaining the blockchain’s integrity. Each command plays a specific role in the ecosystem, 
enabling users to engage with the blockchain in a meaningful and effective way.

Having explored the foundational commands to interact with your custom blockchain, you’re now 
equipped with the tools necessary to create, manage, and analyze a blockchain network. From initializing 
the blockchain with createblockchain, managing wallets through createwallet, conducting 
transactions with send, to ensuring the blockchain’s integrity with reindexutxo, you’ve taken 
significant steps toward understanding the operational aspects of blockchain technology.
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Summary
In this chapter, we embarked on finalizing the essential elements of a blockchain system, emphasizing 
the mechanisms that facilitate secure and efficient transactions. Initially, we focused on completing the 
blockchain code to ensure a solid foundational structure and protocol. We then delved into memory 
pools, which play a pivotal role in managing transaction queues before their incorporation into the 
blockchain. This discussion naturally progressed to understanding UTXOs, vital for processing and 
validating transactions and indicative of the spendable digital currency amount for users.

Subsequently, the chapter shifted its focus to wallet development, highlighting its significance not just 
in storing digital currency but also in securing transactions and maintaining user identity within the 
blockchain through private key management. We explored how blocks are finalized in the blockchain, 
detailing the selection, verification, and addition of transactions from the memory pool, a process 
crucial for the blockchain’s integrity and continuity. Finally, we examined methods and protocols 
for transferring value among users, concluding the chapter by demonstrating how these integrated 
concepts enable a secure and functional blockchain system.

In the next chapter we will shift our focus to building smart contracts using the Foundry framework 
on an Ethereum blockchain.





Part 3:  
Building Apps

In this part, we will build decentralized applications that can run on popular chains such as Ethereum, 
Solana, and NEAR.

This part has the following chapters:

• Chapter 6, Using Foundry to Build on Ethereum

• Chapter 7, Exploring Solana by Building a dApp 

• Chapter 8, Exploring NEAR by Building a dApp





6
Using Foundry  

to Build on Ethereum

The world of blockchain technology continues to evolve rapidly, pushing the boundaries of decentralized 
applications (dApps) and smart contracts. Ethereum, with its robust ecosystem and vibrant community, 
remains at the forefront of this revolution. Within the Ethereum network, smart contracts serve as 
the backbone for executing secure and transparent agreements without the need for intermediaries. 
Ethereum is the most popular and widely used blockchain for the development of smart contracts, 
and hence is the first blockchain that we will learn to work with in this book.

This chapter delves into the innovative Foundry framework, an advanced development tool designed 
to streamline the process of building smart contracts on the Ethereum blockchain. The Foundry 
framework is a powerful and flexible solution that empowers developers to create efficient and reliable 
smart contracts, facilitating the growth and adoption of blockchain-based applications.

Furthermore, we will delve into the practical aspects of using the Foundry framework, providing  
step-by-step tutorials and code examples to illustrate its implementation. From setting up the development 
environment to deploying and testing smart contracts, this chapter will guide you through the entire 
development lifecycle using the Foundry framework.

By the end of this chapter, you will have a comprehensive understanding of the Foundry framework and 
its capabilities, empowering you to build robust and efficient smart contracts on the Ethereum blockchain.

In this chapter, we will cover the following topics:

• Introducing Ethereum and Foundry

• Exploring Foundry

• Understanding Foundry with Cast, Anvil, and Chisel

• Testing and deployment

• A project using Foundry
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Introducing Ethereum and Foundry
In this section, we will explore Ethereum’s capabilities and dive into the Foundry framework, a powerful 
tool for building smart contracts on the Ethereum blockchain.

We will discuss the key features and benefits of Foundry and provide step-by-step guidance on 
getting started with the framework. From setting up the development environment to deploying 
and testing smart contracts, this topic serves as a comprehensive resource for developers looking to 
harness the potential of Ethereum and leverage the Foundry framework to create efficient and reliable 
blockchain applications.

So, let’s explore a bit further and learn about this framework, which is gaining significant popularity.

Understanding Ethereum

Ethereum is a decentralized, open source blockchain platform. Launched in 2015 by Vitalik Buterin, 
Ethereum introduced a significant innovation by extending the capabilities of blockchain technology 
beyond mere financial transactions.

At its core, Ethereum allows developers to create and deploy smart contracts, which are self-executing 
agreements with the terms of the contract directly written into code. This enables a wide range 
of applications, from decentralized finance (DeFi) and decentralized exchanges to supply chain 
management and many other dApps. Ethereum’s smart contracts are written using Solidity, which is 
Turing-complete, meaning these contracts can execute any algorithm or computational task, making 
it a versatile platform for building complex decentralized applications.

Self-executing agreements
Self-executing agreements are the code that executes when certain conditions are met, like how 
agreements work in real life, but automatically.

Ethereum operates using its native cryptocurrency called Ether (ETH), which serves as a means of 
exchange and incentivizes miners to secure the network. Ethereum’s consensus mechanism, known 
as Proof of Stake (PoS), has transitioned from the previous Proof of Work (PoW) system, reducing 
energy consumption and improving scalability.

The Ethereum ecosystem is highly active and vibrant, with a robust developer community continually 
creating new tools, frameworks, and libraries to enhance development on the platform. Ethereum’s 
decentralized nature also fosters a multitude of projects and protocols built on top of it, including 
decentralized exchanges such as Uniswap, lending platforms such as Aave, and stablecoins such as DAI. 
Stablecoins are vital in Ethereum, a form of cryptocurrency tied to assets such as fiat or commodities. 
They offer stability amid crypto volatility. DAI, an Ethereum stablecoin, is pegged to the US dollar, 
ensuring steadier value for transactions and DeFi activities, and reducing susceptibility to price shifts 
seen in Bitcoin or Ethereum.
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Interoperability is another essential feature of Ethereum, allowing developers to interact and exchange 
assets across different blockchain networks through standards such as ERC-20 (fungible tokens) and 
ERC-721 (non-fungible tokens (NFTs)). This interoperability contributes to the growth of the DeFi 
sector and the emergence of the metaverse.

Metaverse and blockchain
In the context of blockchain and cryptocurrencies, the metaverse has gained attention as a 
potential application area where users can own, trade, and interact with digital assets, such 
as NFTs representing virtual land, digital art, and virtual fashion. These digital assets can be 
bought, sold, and used across various virtual worlds or platforms, creating an interconnected 
digital universe. As the metaverse continues to evolve, blockchain standards such as ERC-20 
and ERC-721 play a role in enabling seamless asset exchange and ownership within these 
virtual environments.

Why Rust and Foundry?

When it comes to building dApps for the Ethereum blockchain, choosing the right programming 
language and development framework is crucial. In recent years, Rust has emerged as an excellent 
option, known for its performance, safety, and expressive syntax. When combined with the Foundry 
framework, which is built using Rust, developers can unlock a powerful and efficient toolkit for 
creating dApps on the Ethereum blockchain.

Rust stands out as a language that prioritizes memory safety and concurrency without sacrificing 
performance. It achieves this through its ownership model and strict compiler checks, preventing 
common pitfalls such as null pointer dereferences and data races. These features make Rust an ideal 
choice for building secure and reliable smart contracts, where the accuracy and integrity of the code 
are paramount. Moreover, Rust’s focus on performance ensures that dApps built with it can handle 
complex transactions and scale effectively.

The Foundry framework takes advantage of Rust’s strengths and provides a comprehensive set of tools 
and libraries for Ethereum development. It offers an abstraction layer that simplifies the process of 
building and interacting with smart contracts, reducing the complexity and boilerplate code typically 
associated with Ethereum development. Foundry provides a higher-level interface for contract 
deployment, contract interaction, event handling, and transaction management.

One of the notable features of the Foundry framework is its emphasis on security. By leveraging Rust’s 
safety guarantees, the framework minimizes vulnerabilities and reduces the risk of exploits or attacks. 
This focus on security is crucial for dApps handling sensitive data, managing financial transactions, 
or dealing with user assets.

Additionally, the Foundry framework promotes modularity and code reusability. It encourages the 
use of small, composable contracts, allowing developers to build complex systems by combining and 
integrating these modular components. This modular approach enhances code maintainability and 
flexibility, making it easier to upgrade and adapt dApps over time.
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Furthermore, the Rust ecosystem offers excellent support for Ethereum development, with libraries 
such as ethers-rs and web3-rs providing powerful tools for interacting with the Ethereum 
network. These libraries seamlessly integrate with the Foundry framework, enabling developers to 
leverage existing Rust resources and utilities to enhance their dApps.

This is the reason why, in this book, we have chosen Foundry as our framework for working with Ethereum.

It’s important to note that Solidity, the programming language used for Ethereum smart contract 
development, is constantly evolving with new versions being released. When using Foundry or any 
framework in conjunction with Solidity, it’s crucial to be aware of these updates. The versions of Solidity 
discussed in this book may become outdated over time. Therefore, always check the latest Solidity 
version on the official Solidity website at https://solidity.io/ and ensure compatibility with 
the tools and frameworks you are using. This practice helps maintain the relevance and functionality 
of your smart contracts in the rapidly changing landscape of Ethereum development.

Installing Foundry

In order to get started with Foundry, we need to have it installed on our system. You can build 
the Foundry framework from its source on GitHub (https://github.com/foundry-rs/
foundry), but the best way is to use a tool called FoundryUp that helps us manage the different 
versions of Foundry along with the updates. Along with this, it enables us to upgrade and downgrade 
based on the project requirements.

FoundryUp is a cross-platform tool and the same instructions work for Ubuntu, Windows, and macOS.

To install FoundryUp, you just need to start your terminal and run the following command:

curl -L https://foundry.paradigm.xyz | bash

Once the installation is complete, you can use the foundryup command. By running foundryup 
without any additional parameters, you will install the latest precompiled binaries for forge, cast, 
anvil, and chisel (which are included in Foundry). For more options, such as installing from a 
specific version or commit, refer to the foundryup --help command.

We can also build from source. To begin, it is essential to have the Rust compiler and Cargo, which 
is the Rust package manager. The most straightforward method of acquiring these tools is by 
utilizing rustup.rs.

For Windows users, you will need to install and use Git Bash or Windows Subsystem for Linux 
(WSL) as your terminal, since FoundryUp currently does not support PowerShell or cmd. Also, 
another requirement is a recent edition of Visual Studio, installed with the Desktop Development 
With C++ Workloads option.

https://solidity.io/
https://github.com/foundry-rs/foundry
https://github.com/foundry-rs/foundry
https://foundry.paradigm.xyz
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You can either run the foundryup command or the following commands, which you need to enter:

foundryup --branch master
foundryup --path path/to/foundry

There’s a single command that you could enter to get the same result:

cargo install --git https://github.com/foundry-rs/foundry --profile 
local --force foundry-cli anvil chisel

Alternatively, you have the option of manually building Foundry from a local copy of the repository:

# clone the repository
git clone https://github.com/foundry-rs/foundry.git
cd foundry
# install Forge + Cast
cargo install --path ./cli --profile local --bins --force
# install Anvil
cargo install --path ./anvil --profile local --force
# install Chisel
cargo install --path ./chisel --profile local –force

Additionally, Foundry offers the capability to operate entirely within a Docker container. If Docker 
is not currently installed on your system, you can follow the instructions on how to install Docker 
at https://docs.docker.com/engine/install/.

Once Docker is installed, you can retrieve the most recent release by executing the following command:

docker pull ghcr.io/foundry-rs/foundry:latest

You can also build the Docker image locally from the foundry repository by just running the 
following command:

docker build -t foundry .

Now we can get to work by leveraging the capabilities of Foundry to streamline our development process.

First steps with Foundry

In the previous section, we installed Foundry, and now that we have it, we can try out a few commands 
to explore it.

Forge is a command-line tool that you get with Foundry and you can use it to carry out various 
operations. We will learn a lot more about Forge in the Overview of Forge section, but for now, we’re 
going to use Forge to explore our newly installed Foundry in this section.

https://github.com/foundry-rs/foundry
https://docs.docker.com/engine/install/


Using Foundry to Build on Ethereum172

The init command that we get in the forge CLI helps us initialize a new foundry project, and 
that’s the command we will now run:

1. Let’s first start a new project with Foundry using the following command:

$ forge init hello_foundry

2. After this command, forge generates four different directories for us, namely, lib, script, 
src, and test.

3. After you have changed into the project root directory, which was generated with the previous 
command, it can be built with this command:

$ forge build

4. We can also run tests on this project by using the following command:

$ forge test

Once all these commands work, we can be sure that Foundry was correctly installed.

In the next section, we will dive deeper into Foundry and understand some important concepts.

Exploring Foundry
By now, we know quite a bit about Ethereum and Foundry. We also understand the various benefits 
of using Foundry. In the previous section, we learned how to start a new Foundry project using the 
forge init command.

In this section, we will cover more details about Foundry, such as how to work on an existing Foundry 
project, how to manage dependencies. We will learn in detail about Forge – the primary component 
of Foundry and also the Forge CLI tool, which makes it possible for us to work with Foundry projects.

Working on an existing Foundry project

In many cases, you might join a team as a new engineer or developer on an existing project and you 
might need to contribute to this project. With Foundry, it is super simple to join a new project and 
start contributing.

Getting started with an existing project using the Foundry framework for Ethereum is a seamless 
process that allows developers to quickly dive into the development journey. The Foundry framework 
offers a straightforward and intuitive approach, making it easy for developers to get up and running 
in no time.



Exploring Foundry 173

There are four main steps involved that you need to remember: importing the project, installing 
dependencies, building the project, and then testing the project. Forge makes it easy to do all of these, 
so let’s get started.

If you have obtained an existing project that utilizes Foundry, getting started is a breeze. Follow these 
simple steps:

1. Download the project from a suitable source. For instance, let’s consider cloning the template 
repository from GitHub:

$ git clone https://github.com/abigger87/template
$ cd template

2. Install your dependencies. Run forge install to install the submodule dependencies 
required by the project. This command ensures that all necessary components are in place for 
smooth development.

Once the project is set up, you can proceed with building and testing it using Foundry’s 
intuitive commands.

3. Utilize forge build to initiate the build process. This command compiles the project 
and prepares it for deployment, ensuring all dependencies are resolved and the code is ready 
for execution.

4. Ensure the reliability and functionality of your project by executing forge test. This command 
runs the suite of tests designed for your project, validating the behavior and performance of 
the smart contracts, and verifying that they meet the expected requirements.

With these steps completed, you are all set to start working on the existing project using the Foundry 
framework. From here, you can leverage Foundry’s comprehensive set of tools and commands to 
build, compile, test, and deploy your Ethereum smart contracts with ease.

Dependencies

The Foundry framework for Ethereum provides a streamlined approach to managing dependencies, making 
it easy for developers to incorporate external libraries and packages into their smart contract projects.

Whether you need to add new dependencies, remap existing ones, update them to newer versions, 
or remove unnecessary dependencies, Foundry offers a seamless workflow.

Additionally, Foundry ensures compatibility with popular Ethereum development tools such as 
Hardhat, enhancing flexibility and convenience.
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Adding new dependencies

To add new dependencies to your project, follow these steps:

1. Open the Forge.toml file in your project directory.

2. Locate the [dependencies] section.

3. Add a new line for each dependency in the format "<dependency-name> = <version>".

4. Save the changes.

5. Foundry will automatically download and include the specified dependencies in your project 
when using forge install or forge build.

6. Another way to add new dependencies is to use the forge install <name_of_
dependancy> command, which directly downloads and installs the required dependency.

Remapping dependencies

In certain cases, you might need to remap existing dependencies to different versions or repositories. 
To remap a dependency, follow these steps:

1. Open the Forge.toml file in your project directory.

2. Locate the [remappings] section.

3. Add a new line in the format "<dependency-name> = <new-source>".

4. Save the changes.

5. Foundry will update the dependency resolution to use the specified new source when using 
forge install or forge build.

Updating dependencies

To update dependencies to newer versions, use the following command:

$ forge update

Foundry will check for any available updates for your project’s dependencies and automatically update 
them to the latest compatible versions.

Deleting dependencies

To remove unnecessary dependencies from your project, follow these steps:

1. Open the Forge.toml file in your project directory.

2. Locate the [dependencies] section.

3. Remove the line corresponding to the dependency you wish to delete.
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4. Save the changes.

5. Foundry will remove the specified dependency from your project when using forge install 
or forge build.

Compatibility with Hardhat

Hardhat is one of the popular development environments that aid in simplifying the process of 
creating dApps, which you can read more about here: https://hardhat.org/. It can help 
with everything, including compiling, testing, deploying, and debugging smart contracts. Foundry 
is designed to seamlessly integrate with Hardhat. By utilizing Foundry with Hardhat, developers can 
leverage the benefits of both frameworks in harmony.

To ensure compatibility, follow these steps:

1. Set up your project with Hardhat using the desired configuration.

2. Follow the steps mentioned earlier to add, remap, update, or delete dependencies in your 
Foundry project.

3. Use the respective commands of each framework within your project’s directory.

The compatibility between Foundry and Hardhat allows developers to enjoy the robustness and 
flexibility of both frameworks, combining their capabilities to create and manage Ethereum smart 
contract projects efficiently.

Project layout

Understanding the project structure is crucial for maintaining a clean and structured code base. Here 
is an overview of the typical project structure in the Foundry framework:

• Contracts directory: The contracts directory is where you store your smart contract files. It contains 
the Solidity (.sol) files that define your contracts, their functionality, and their interactions.

• Test directory: The test directory holds the test files for your smart contracts. It contains 
Solidity test files or JavaScript files that define tests using frameworks such as Mocha or Hardhat.

• Scripts directory: The scripts directory is where you can include any auxiliary scripts or 
deployment scripts that are required for your project. These scripts can be written in JavaScript 
or any other supported scripting language.

• Configuration files: Foundry uses configuration files to manage project-specific settings. The 
most important configuration file is foundry.toml, which contains project-level settings 
and dependencies.

• Lib directory: The lib directory is where you can include external library dependencies. These 
libraries can be added as Git submodules or manually included in the lib folder.

https://hardhat.org/
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• Build directory: The build directory is automatically generated by Foundry when you compile 
your smart contracts. It contains the compiled bytecode, application binary interface (ABI), 
and other artifacts generated during the build process. This is named out by default when it 
is generated.

• Dist directory: The dist directory is where you can place any distribution files or artifacts 
that are produced during the deployment or release process. These files can include compiled 
contracts, documentation, or other project-specific deliverables.

By adhering to this project structure, developers can maintain a clear separation of concerns, organize 
their code base effectively, and ensure smooth collaboration with other team members. The structure 
also aligns with industry best practices, making it easier to understand and navigate the project code 
base. Overall, the project structure in the Foundry framework promotes consistency, modularity, and 
maintainability in Ethereum smart contract development projects.

Overview of Forge

Forge is a crucial component of the Foundry framework, designed to enhance the development 
experience and empower developers to build Ethereum smart contracts with efficiency and ease. As 
an integral part of the Foundry ecosystem, Forge provides a comprehensive set of tools, libraries, and 
utilities that streamline the smart contract development lifecycle.

One of the primary objectives of Forge is to simplify the process of writing, deploying, and interacting 
with smart contracts on the Ethereum blockchain. It achieves this by abstracting away the complexities 
and intricacies of the underlying Ethereum virtual machine (EVM) and providing a high-level interface 
for developers. This abstraction layer allows developers to focus on the business logic of their smart 
contracts rather than getting caught up in low-level implementation details.

Forge offers a user-friendly development environment that facilitates smooth contract deployment. 
It provides utilities for compiling smart contract source code into bytecode, generating contract 
artifacts, and handling contract deployment to the Ethereum network. With Forge, developers can 
easily manage the lifecycle of their contracts, including versioning, upgrades, and interacting with 
existing contract instances.

Furthermore, Forge simplifies contract interaction by providing intuitive APIs and utilities. Developers 
can seamlessly interact with their deployed contracts, query contract state, and execute contract 
functions using a clean and straightforward syntax. Forge takes care of the underlying web3 interactions, 
making it easier to integrate Ethereum functionality into dApps built on the Foundry framework.

Security is a paramount concern when it comes to smart contract development, and Forge prioritizes 
it by offering built-in security features. It encourages best practices for secure coding, such as input 
validation and protection against re-entrancy attacks. Forge also incorporates advanced testing utilities, 
allowing developers to write comprehensive unit tests and ensure the reliability and robustness of 
their smart contracts.
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Additionally, Forge promotes modularity and code reusability. It encourages developers to break 
down their smart contracts into smaller, composable components, which can be easily integrated 
and reused in different contracts. This modular approach simplifies code maintenance and upgrades 
and also facilitates collaboration between developers working on different parts of a contract system.

Forge Standard Library overview

Forge Standard Library (Forge Std) is a set of contracts that provide essential functionality for writing 
tests, such as the following:

• Shortcuts (or cheat codes, as people like to call them) to modify blockchain state for easy 
testing of contracts.

• Hardhat-style logging functionality.

• Basic utilities for Solidity scripting.

• DSTest is a testing library within the Foundry framework, used primarily for Ethereum smart 
contract development. It provides an assortment of assertion functions for validating contract 
behavior, alongside utilities for setting up test conditions and monitoring gas usage. It is 
enhanced by a superset with standard libraries, cheat codes, and Hardhat console integration.

There are several benefits to using Forge Std, including the following:

• It makes writing tests easier and faster

• It provides a consistent and well-tested set of functionalities

• It is compatible with both Foundry and Hardhat

Forge Std currently comprises six standard libraries that enhance various aspects of smart 
contract development:

• Std Logs: Std Logs builds upon the logging events available in the DSTest library, providing 
expanded functionality for logging purposes.

• Std Assertions: Std Assertions expands upon the assertion functions found in the DSTest 
library, offering additional capabilities for validating contract behavior.

• Std Cheats: Std Cheats are wrappers around Forge cheat codes, ensuring their safe usage and 
enhancing developer experience (DX). You can easily access Std Cheats by invoking them as 
internal functions within your test contract.

• Std Errors: Std Errors provides wrappers for common internal Solidity errors and reverts, 
simplifying error handling. They are especially useful when combined with the expectRevert 
cheat code, eliminating the need to remember internal Solidity panic codes. Accessing Std 
Errors is done through stdError, as it is a library.
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• Std Storage: Std Storage simplifies the manipulation of contract storage by facilitating the 
identification and modification of storage slots associated with specific variables. The test 
contract includes a Std Storage instance called stdstore, through which you can access the 
functionalities. Remember to add using the stdStorage function for std Storage in your 
test contract.

• Std Math: Std Math is a library that provides useful mathematical functions not natively 
available in Solidity. Accessing these functions is done through stdMath, as it is a library. 
For example, to obtain the absolute value of -10, you can utilize stdMath.abs(-10) to 
retrieve the desired result.

Forge commands

Forge provides developers with a powerful set of commands for building, testing, and deploying 
Ethereum smart contracts. These commands streamline the development process and enhance 
efficiency. Here are some of the most important Forge commands:

• forge new <project-name>: This command creates a new project, generating the necessary 
directory structure and configuration files for your Ethereum smart contract development.

• forge compile: This compiles the smart contracts within your project, generating bytecode 
and ABI artifacts. This command ensures that your contracts are syntactically correct and 
prepares them for deployment.

• forge test: This executes the unit tests written for your smart contracts. It runs a suite of tests 
to validate the behavior and functionality of your contracts, ensuring they perform as expected.

• forge deploy: This deploys your smart contracts to the Ethereum blockchain. This command 
takes care of interacting with the network, handling the deployment process, and providing 
you with the contract address for further interaction.

• forge upgrade <contract-name>: This upgrades an existing contract to a new version. 
This command enables you to introduce improvements, bug fixes, or additional features to your 
contract while preserving the contract’s state and data.

• forge interact <contract-name>: This launches an interactive shell to interact with 
deployed smart contracts. It provides a convenient way to invoke contract functions, query 
states, and handle events emitted by the contract.

• forge verify <contract-name>: This verifies your smart contract’s source code on 
blockchain explorers such as Etherscan. This command adds transparency and ensures that 
others can review and validate your contract’s code.

• forge export: This generates a client library or artifact that can be used by external 
applications to interact with your smart contracts. It simplifies the integration process for other 
developers or systems that need to interact with your contracts.
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These Forge commands, among others available in the Foundry framework, equip developers with a 
comprehensive toolkit for Ethereum smart contract development.

Understanding Foundry with Cast, Anvil, and Chisel
In this section, we will delve into the three key components of the Foundry framework: Anvil, Cast, 
and Chisel.

These powerful tools play a pivotal role in enhancing the development experience and efficiency when 
building smart contracts on the Ethereum blockchain. Anvil provides a robust testing framework, 
Cast offers a comprehensive library for contract deployment and management, and Chisel facilitates 
smart contract upgradeability.

Together, these components form the backbone of the Foundry framework, empowering you to write, 
test, deploy, and upgrade Ethereum smart contracts with ease and confidence.

Overview of Cast

Cast is a fundamental component of the Foundry framework, specifically designed to simplify the 
testing process for Ethereum smart contracts. You can look more into cast at the following link: 
https://book.getfoundry.sh/cast/. As an integral part of the Foundry ecosystem, Cast 
provides you with a comprehensive and intuitive testing framework to ensure the reliability, security, 
and proper functioning of your smart contracts.

The primary objective of Cast is to streamline the testing process by offering a range of utilities and 
functionalities tailored for Ethereum smart contract testing. It provides you with a user-friendly 
interface to write comprehensive unit tests, integration tests, and functional tests for smart contracts. By 
leveraging Cast, you can verify the correctness of your contract logic and detect potential vulnerabilities 
or bugs before deploying the contracts to the Ethereum network.

With Cast, you can simulate different scenarios and test various aspects of their smart contracts. You 
can design test cases to cover edge cases, exceptional conditions, and boundary conditions to validate 
the behavior and responses of the contracts under different circumstances. Cast provides utilities for 
mocking external dependencies, simulating transactions, and managing test accounts, ensuring that 
the testing environment accurately represents real-world conditions.

One of the key features of Cast is its ability to generate and manage test data. It simplifies the process of 
creating test scenarios by providing utilities for generating random or specific input data for contract 
functions. This functionality enables you to thoroughly test your contracts with a wide range of input 
variations and ensure that the contract’s behavior remains consistent and predictable.

Cast also integrates seamlessly with other components of the Foundry framework, such as Forge and 
the development environment. This integration enables developers to write tests that interact with 
their contracts directly, leveraging the high-level APIs provided by Forge. This not only simplifies the 
testing process but also promotes code reusability and consistency across the development lifecycle.

https://book.getfoundry.sh/cast/
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Overview of Anvil

Anvil is designed to enhance the deployment and management process of Ethereum smart contracts. 
You can read more about Anvil at the following link: https://book.getfoundry.sh/anvil/. 
As an integral part of the Foundry ecosystem, Anvil provides you with a robust and user-friendly set of 
tools and utilities for deploying, upgrading, and managing smart contracts on the Ethereum blockchain.

The primary objective of Anvil is to simplify and streamline the deployment process of smart contracts. 
It provides you with a high-level interface that abstracts away the complexities of interacting with the 
Ethereum network. With Anvil, you can easily compile your smart contract source code, generate 
bytecode, and deploy your contracts to the Ethereum network without getting bogged down in the 
intricacies of low-level deployment procedures.

Anvil also offers comprehensive contract management capabilities within the Foundry framework, 
enabling you to seamlessly handle contract upgrades and versioning. With Anvil, you can create 
upgradeable smart contracts, allowing for the seamless introduction of new features or bug fixes 
without disrupting existing contract functionality or requiring data migration. This ability to upgrade 
contracts simplifies maintenance and ensures that the contract remains up to date and adaptable.

Furthermore, Anvil provides utilities for contract verification and interaction. You can easily verify your 
smart contracts on Etherscan or other blockchain explorers, ensuring transparency and trustworthiness. 
Anvil also offers an intuitive API for interacting with deployed contracts, simplifying the process of 
invoking contract functions, querying contract states, and handling events emitted by the contracts.

Anvil’s integration with other components of the Foundry framework, such as Forge and Cast, further 
enhances its capabilities. This integration allows you to deploy, manage, and test your smart contracts 
with ease, ensuring a cohesive and efficient development process.

Overview of Chisel

Chisel is designed to enhance Ethereum smart contract development through code generation 
capabilities. You can learn more about Chisel at the following link: https://book.getfoundry.
sh/chisel/. As an integral part of the Foundry ecosystem, Chisel provides developers with a 
versatile toolkit for generating smart contract code, improving efficiency and productivity in the 
development process.

Chisel simplifies and accelerates the creation of Ethereum smart contracts by automating code generation. 
It offers you the ability to define contract templates and utilize code generation techniques to quickly 
generate boilerplate code for various contract components. This significantly reduces the amount of 
manual coding required, streamlining the development process and promoting code consistency.

Chisel provides a high-level interface for defining contract templates and specifying the desired 
contract structure, including functions, events, and modifiers. With Chisel, developers can easily 
define reusable templates for common contract patterns, such as ERC-20 tokens or decentralized 
exchanges, and generate fully functional contract code with minimal effort.

https://book.getfoundry.sh/anvil/
https://book.getfoundry.sh/chisel/
https://book.getfoundry.sh/chisel/
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The code generation capabilities of Chisel also promote best practices and adherence to standards. 
By generating code based on predefined templates, Chisel ensures that contracts adhere to industry-
standard patterns, reducing the likelihood of errors or vulnerabilities. This approach improves the 
overall quality, security, and maintainability of smart contracts built with the Foundry framework.

Furthermore, Chisel seamlessly integrates with other components of the Foundry framework, such 
as Forge and Anvil. This integration enables you to combine the benefits of code generation with the 
deployment and management functionalities provided by other components. The generated code 
can be easily deployed, managed, and tested within the Foundry ecosystem, creating a cohesive and 
efficient development experience.

Cast, Anvil, and Chisel important commands

Cast, Anvil, and Chisel are instrumental in streamlining various aspects of smart contract development 
on the Ethereum blockchain. With Cast, you can easily deploy and manage contracts, Anvil empowers 
you to write comprehensive tests for your contracts, and Chisel enables contract upgradability.

By understanding and mastering these important commands, you will gain the necessary tools to 
efficiently develop, test, deploy, and upgrade Ethereum smart contracts using the Foundry framework.

Let’s dive into the details and demonstrate how to utilize the power of Cast, Anvil, and Chisel commands 
to enhance your smart contract development workflow.

Cast commands

Some common cast commands are as follows:

• cast new <contract-name>: This creates a new contract file using the specified name. 
This command initializes a contract template with a basic structure that can be customized 
according to your requirements.

• cast generate <contract-name>: This generates contract-specific tests based 
on the defined templates. It automates the process of creating tests for the contracts, saving 
development time and effort.

• cast upgrade <contract-name>: This upgrades an existing contract to a new version. 
This command helps introduce improvements or bug fixes to an existing contract while 
preserving the contract’s state and data.

Anvil commands

Let’s cover some commonly used Anvil commands:

• anvil deploy: This deploys the smart contracts to the Ethereum blockchain. This command 
takes care of contract deployment, handling network interactions, and providing deployment 
information such as contract addresses and transaction receipts.
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• anvil interact <contract-name>: This opens an interactive shell to interact with 
deployed contracts. It allows developers to invoke contract functions, query states, and listen 
to events emitted by the contracts in real time.

• anvil test: This executes the unit tests written for the smart contracts. This command 
runs a suite of tests to verify the correctness and functionality of the contracts, ensuring they 
perform as intended.

Chisel commands

These chisel commands are essential for high productivity:

• chisel generate <contract-name>: This generates contract code based on predefined 
templates. This command simplifies contract creation by automating code generation for 
various contract components, reducing manual coding effort, and promoting code consistency.

• chisel validate: This validates the contract code against best practices and standards. 
This command ensures that the generated code follows industry-recommended patterns, 
improving contract quality, security, and maintainability.

Let’s now learn how to test and deploy the smart contracts.

Testing and deployment
In this section, we will explore various aspects of testing and deployment. You will gain a deep 
understanding of how to ensure the reliability, security, and efficiency of your smart contracts.

We will begin by delving into the realm of testing, where we will cover the essential techniques and 
tools offered by Foundry. We’ll learn how to write robust tests for our smart contracts using the Anvil 
testing framework, and we’ll explore different testing methodologies, including unit tests, integration 
tests, and functional tests. We will also discover how to leverage fork testing to simulate real-world 
scenarios, fuzz testing to identify vulnerabilities, and invariant and differential testing to validate the 
integrity of your contracts.

Next, we’ll dive into the deployment process and uncover the power of the Cast component, which 
simplifies and streamlines the deployment and management of your smart contracts. We’ll guide you 
through the steps of deploying contracts to both local and live Ethereum networks. You will learn 
how to verify the deployed contracts using tools such as Etherscan, ensuring transparency and trust 
in your deployments.

Additionally, we’ll explore advanced features of the Foundry framework that enable you to gather 
critical insights into your smart contract deployments. You will also discover how to generate detailed 
gas reports to optimize your contract’s efficiency and cost-effectiveness and learn how to capture and 
analyze snapshots of your contract’s state, enabling you to track changes and debug potential issues.
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Throughout this section, we’ll provide hands-on examples and practical guidance, enabling you 
to apply the knowledge directly to your own smart contract projects. By mastering the testing and 
deployment techniques offered by the Foundry framework, you’ll gain the confidence and expertise 
needed to build reliable and secure Ethereum smart contracts.

So, let’s dive into the world of testing and deployment with Foundry, and unlock the full potential of 
your smart contract development journey.

Writing tests

For Ethereum smart contracts, tests are typically written in Solidity, the programming language for 
Ethereum smart contracts. In Solidity testing, the outcome of a test function determines whether 
it passes or fails. If the test function reverts (throws an exception), the test is considered a failure. 
However, if the function completes without any issues, the test is considered a success.

To facilitate the process of writing tests in Solidity, Forge Std provides a test contract that offers a 
comprehensive set of functionalities. This test contract is widely recommended for writing tests 
with Forge.

In this section, we will explore the fundamental approach to writing tests using the functions provided 
by Forge Std’s test contract. This contract serves as an extension of DSTest, enhancing its capabilities. 
More advanced features of Forge Std will be covered in subsequent sections.

To access the functions offered by DSTest and Forge Std’s test contract, you need to import the Test.
sol file and inherit from the test contract in your own test contract. This provides you with access to 
basic logging and assertion functionalities, allowing you to perform assertions and log information 
during test execution.

By importing the test contract and inheriting from it, you can leverage its features to enhance your 
test cases and ensure the correctness and reliability of your Ethereum smart contracts. Forge Std’s test 
contract simplifies the process of writing tests in Solidity and provides essential utilities for effective 
testing. Let’s look at an example of a basic test:

pragma solidity 0.8.10;
// The following command imports the Test.sol file:
import "forge-std/Test.sol";
contract ContractBTest is Test {
    uint256 testNumber;
    function setUp() public {
        testNumber = 42;
    }
    function test_NumberIs42() public {
        assertEq(testNumber, 42);
    }
    function testFail_Subtract43() public {
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        testNumber -= 43;
    }
}

In Forge, tests are written using specific keywords that provide structure and define the behavior of 
the test cases. Here are the keywords commonly used in Forge tests:

• setUp: This is an optional function that is invoked before each test case is executed. It allows 
you to set up any necessary preconditions or initialize variables for the test. For example, look 
at the following code:

function setUp() public {
    testNumber = 42;
}

• test: Functions prefixed with test are considered individual test cases. These functions 
are executed as separate tests to validate specific behaviors or functionalities. For instance, see 
the following:

function test_NumberIs42() public {
assertEq(testNumber, 42);
}

• testFail: The testFail prefix is used to indicate that the test case should fail. If the 
function does not revert (throw an exception), the test is considered a failure. This is useful for 
testing scenarios where failure is expected. For example, see the following:

function testFail_Subtract43() public {
testNumber -= 43;
}

• Revert testing: A recommended practice is to use the test_Revert[If|When]_Condition 
pattern along with the expectRevert cheat code. This provides more detailed information 
about the specific revert condition and error. For instance, look at the following:

function test_CannotSubtract43() public {
vm.expectRevert(stdError.arithmeticError);
testNumber -= 43;
}

By utilizing the expectRevert cheat code in combination with a specific condition, such as 
an arithmetic error, you can accurately verify that the expected revert behavior occurs.

These keywords and conventions in Forge tests contribute to organized and structured testing. They 
enable you to define and execute individual test cases while ensuring that the expected behavior, 
including reverts and failures, is properly validated.
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Fork and fuzz testing

Fork and fuzz testing are crucial components of the Foundry framework for Ethereum, enabling 
developers to strengthen the testing process and uncover potential vulnerabilities in smart contracts. 
Let’s delve into these concepts with real-world examples:

• Fork testing: Fork testing involves creating a local replica of the Ethereum network to simulate 
real-world scenarios. This allows for comprehensive testing without interacting with the live 
network. In Foundry, you can leverage tools such as Ganache or Hardhat to set up a local fork. 
Here’s an example:

function test_ForkSimulation() public {
    // Create a local fork of the Ethereum network
    Fork fork = new Fork();

    // Perform test operations on the forked network
    // ...

    // Assert the expected outcomes
    // ...
}

• Fuzz testing: Fuzz testing, also known as fuzzing, involves providing random or mutated inputs 
to a smart contract to identify potential vulnerabilities. Foundry integrates with the Echidna 
tool, designed specifically for Ethereum smart contract fuzzing. Here’s an example:

function test_FuzzingContract() public {
    // Define properties and invariants for fuzz testing
    Property[] properties = [Property1, Property2, Property3];

    // Run fuzz tests with Echidna
    EchidnaTestRunner.run(properties);
}

By running fuzz tests with Echidna and specifying properties to test, you can automatically 
generate random inputs to uncover unexpected behaviors or vulnerabilities in your smart contracts.

The combination of fork testing and fuzz testing in the Foundry framework provides a robust approach 
to enhancing the security and reliability of Ethereum smart contracts. It allows developers to simulate 
real-world scenarios and identify potential vulnerabilities through randomized input generation. 
By leveraging these testing techniques, developers can mitigate risks and ensure the solidity of their 
Ethereum-based projects.
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Invariant and differential testing

Invariant and differential testing are essential techniques in the Foundry framework for Ethereum, 
providing developers with powerful tools to enhance the testing process and bolster smart contract 
security. Let’s explore these concepts with actual examples:

• Invariant testing: Invariant testing involves verifying specific properties that should remain 
constant throughout a smart contract’s execution. For instance, let’s consider a simple token 
contract. An invariant could be that the total supply of tokens should always equal the sum of 
individual balances. In Foundry, you can write a test case to validate this invariant:

function test_TotalSupplyEqualsSumOfBalances() public {
    // Deploy and initialize the token contract
    MyToken token = new MyToken();
    token.transfer(address(1), 100);
    token.transfer(address(2), 200);

    // Validate the invariant
    assertEq(token.totalSupply(), token.balanceOf(address(1)) + 
token.balanceOf(address(2)));
}

• Differential testing: Differential testing helps identify discrepancies or vulnerabilities by 
comparing the behavior of different implementations of the same contract. Consider a contract 
that implements a voting system. You can employ differential testing to compare two versions 
of the contract to ensure they produce the same results. Here’s an example:

function test_DifferentialVoting() public {
    // Deploy the old and new versions of the voting contract
    VotingContract oldVersion = new OldVotingContract();
    VotingContract newVersion = new NewVotingContract();

    // Execute identical inputs and compare results
    oldVersion.vote(1);
    newVersion.vote(1);

    assertEq(oldVersion.getResult(), newVersion.getResult());
}

By performing invariant and differential testing within the Foundry framework, you can verify critical 
properties and ensure consistent behavior across different contract versions. These testing techniques 
contribute to the overall security, reliability, and correctness of Ethereum smart contracts.
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Deployment and verification

Up until now, we’ve learned how Foundry makes it super simple for us to build smart contracts. But 
once the contracts are built, they can be deployed to a testnet or any of the EVM-compatible chains, 
including Ethereum, and Foundry makes the deployment process easier for us as well. You might 
also want to verify the deployment, and this can also be easily done with Foundry, so let’s take a look:

• Deployment: Foundry simplifies the deployment process of smart contracts by providing 
utilities and abstractions. For example, using the deployment capabilities in the framework, 
you can deploy a contract and perform initialization steps easily. Here’s an example:

function test_ContractDeployment() public {
    // Deploy the contract
    MyContract contract = new MyContract();

    // Perform initialization steps
    contract.initialize();

    // Assert the contract was deployed successfully
    assert(contract.isDeployed());
}

• Verification: Foundry supports the verification of smart contracts, which is crucial for establishing 
trust and transparency. By utilizing tools such as the Hardhat Etherscan plugin, you can verify 
your contract’s source code and bytecode on the Ethereum blockchain. Here’s an example:

npx hardhat verify --network sepolia 0xContractAddress

By running the preceding command, you can verify the contract with its address on the Sepolia 
network. This helps ensure that the deployed contract matches the source code, enhancing the 
trustworthiness of your application.

Gas reports and snapshots

Gas reports are an excellent tool for evaluating how smart contracts use computing resources. They also 
offer cost estimates for each function in your contract and are useful for auditing smart contracts to 
look for potential optimizations. Forge offers the capability to generate gas reports for your contracts. 
You have the flexibility to configure which contracts should generate gas reports by utilizing the 
gas_reports field in the foundry.toml configuration file.

To generate gas reports for specific contracts, you can specify them in the gas_reports field, as 
in the following:

gas_reports = ["MyContract", "MyContractFactory"]
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If you want to generate gas reports for all contracts, you can use the wildcard character (*), as in 
the following:

gas_reports = ["*"]

To generate the gas reports, you can execute the forge test --gas-report command. This 
command will initiate the testing process and generate gas reports for the specified contracts.

Additionally, you can combine the gas reporting feature with other subcommands to generate specific gas 
reports. For example, you can run forge test --match-test testBurn --gas-report 
to generate a gas report specifically for the testBurn test case.

By leveraging the gas reporting functionality in Forge, you can gain insights into the gas consumption 
of your contracts and assess their efficiency. It allows you to focus on specific contracts or tests and 
make informed decisions to optimize gas usage in your Ethereum projects.

In the Foundry framework, you can utilize Forge to generate gas snapshots for your test functions. Gas 
snapshots are beneficial for gaining insights into the gas consumption of your contract and comparing 
gas usage before and after optimizations.

To generate a gas snapshot, simply execute the forge snapshot command. By running this 
command, a file named .gas-snapshot will be generated by default. This file contains the gas 
usage information for all your tests, allowing you to assess the gas consumption of each test function.

Gas snapshots provide a helpful overview of the gas costs associated with your smart contract and aid 
in identifying areas for potential optimization. By comparing gas usage between different versions 
or after implementing improvements, you can gauge the impact of your changes on gas efficiency.

A project using Foundry
By now, we have a good understanding of Foundry and all of its core components. We’ve also talked 
about most of the important concepts, and it’s now time to start applying all that we have learned. 
We will be doing so by building a small project that will give us hands-on experience of how to build 
actual projects using Foundry.

In this hands-on project, we will create an NFT, which is a unique digital item like a collectible trading 
card that is compatible with the popular OpenSea platform. We’re going to build this with the help 
of Foundry and also Solmate.

NFTs
NFTs are unique digital assets that represent ownership or proof of authenticity of a specific 
item, artwork, video, music, or other digital content. They are stored on a blockchain, making 
them secure and easily transferable between individuals.
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Solmate is simply a gas-efficient implementation of the ERC721 standard – it is new and modern but 
is essentially a Solidity smart contract. You can learn more about it at the following link: https://
github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol.

Now that we have an idea of what we’re about to build, let’s get started.

Getting started

In the Installing Foundry section, we installed Foundry using the foundryup tool, and that’s 
essentially the first step in this process. The next step is to install the dependencies such as the Solmate 
implementation for the ERC721 and some OpenZeppelin utility libraries.

OpenZeppelin is quite popular in the web3/blockchain space as a collection of industry-standard 
utility libraries that are open source and free to use. You can read more about it at https://www.
openzeppelin.com/.

To install the dependencies in your project, all you have to do is run the following command at the 
root of your project after you use the forge init command to start a new project:

forge install transmissions11/solmate Openzeppelin/openzeppelin-
contracts

The dependencies that are installed are added to the project as Git submodules.

If you followed the instructions correctly, your project should have the oppenzeppelin-contracts 
and solmate folders created in the project and you can verify using the ls command or the  
tree -L 2 command.

A basic NFT

Let’s create our NFT contract. In the repository of your forge project created with forge init, 
delete all contracts inside the src folder and create a new one called NFT.sol. Insert the following 
code inside it and save:

// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.10;

import "solmate/tokens/ERC721.sol";
import "openzeppelin-contracts/contracts/utils/Strings.sol";

contract NFT is ERC721 {
    uint256 public currentTokenId;

    constructor(
        string memory _name,

https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol
https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol
https://www.openzeppelin.com/
https://www.openzeppelin.com/
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        string memory _symbol
    ) ERC721(_name, _symbol) {}

    function mintTo(address recipient) public payable returns 
(uint256) {
        uint256 newItemId = ++currentTokenId;
        _safeMint(recipient, newItemId);
        return newItemId;
    }

    function tokenURI(uint256 id) public view virtual override returns 
(string memory) {
        return Strings.toString(id);
    }
}

Let’s examine the preceding code. Initially, we import two contracts from our Git submodules. 
Specifically, we import Solmate’s gas-optimized implementation of the ERC721 standard, which our 
NFT contract will inherit. Within our constructor, we receive the _name and _symbol arguments 
for our NFT and transmit them to the constructor of the parent ERC721 implementation.

Lastly, we introduce the mintTo function, enabling anyone to create an NFT. This function increments  
currentTokenId and utilizes the _safeMint function from our parent contract, and the 
tokenURI function returns the Uniform Resource Identifier (URI) of a specific token based on 
its unique identifier (id). This implementation simply converts id (uint256) to a string using the 
Strings.toString method and returns this string as the token’s URI. This function is essential 
for linking each unique token to its corresponding metadata, which often includes details such as the 
token’s image, name, and attributes.

To compile the NFT contract, first delete the test file of the counter and then execute the forge 
build command. It is possible to encounter a build failure caused by an incorrect mapping, and the 
error will look like the following:

Error:
Compiler run failed
error[6275]: ParserError: Source "lib/openzeppelin-contracts/
contracts/contracts/utils/Strings.sol" not found: File not found. 
Searched the following locations: "/PATH/TO/REPO".
 --> src/NFT.sol:5:1:
  |
5 | import "openzeppelin-contracts/contracts/utils/Strings.sol";
  | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
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To resolve this issue, you can rectify it by configuring the appropriate remapping. Simply create a file 
called remappings.txt within your project and include the following line:

openzeppelin-contracts/=lib/openzeppelin-contracts/

Incompatible Solidity versions
You may also receive an error that states that the Solidity versions are incompatible: “Found 
incompatible Solidity versions...” In that case, you should change the Solidity version under 
pragma solidity 0.8.13 to the recommended one.

By default, the compiler output will be stored in the out directory. To deploy the compiled contract 
using Forge, you need to set environment variables for the RPC endpoint and the private key (PK) 
you wish to use for deployment.

An RPC endpoint is a crucial component in blockchain technology, acting as a gateway for interacting 
with a blockchain network. It allows your application to communicate with the blockchain, sending 
transactions, querying balances, and performing other network interactions. Without a properly 
configured RPC endpoint, your application would not be able to deploy or interact with contracts on 
the blockchain network. In summary, the RPC endpoint is the link between your deployment tool 
(such as Forge) and the blockchain itself, enabling the deployment and management of smart contracts.

To make the RPC endpoint work for deploying a smart contract using Forge, you typically need to set 
up an account with a blockchain infrastructure provider, such as Infura or Alchemy. These providers 
offer access to blockchain networks through their Remote Procedure Call (RPC) endpoints. Once 
you have an account, you can create a project on their platform and obtain an RPC URL specific to 
your project. This URL is then used as the RPC endpoint in your environment variables. By setting this 
along with your PK as environment variables, your deployment tool executes the following commands:

export RPC_URL=<Your RPC endpoint>
export PRIVATE_KEY=<Your wallet's private key>

It’s important to handle the PK securely. Typing your PK directly into the terminal is not recommended, 
as it can leave traces in your bash/zsh history. A safer approach is to store the PK in a script file, 
ensuring that the file is included in .gitignore to prevent it from being accidentally committed to 
version control. This way, you can run the script when needed without having to type your PK directly, 
enhancing security. For this test project, while it might be acceptable to use a PK in this manner, it’s 
crucial to remember that this is not a good practice for production environments.

Once the environment variables are set, you can deploy your NFT with Forge by running the following 
command, ensuring you include the relevant constructor arguments for the NFT contract:

forge create NFT --rpc-url=$RPC_URL --private-key=$PRIVATE_KEY 
--constructor-args <name> <symbol>
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If the deployment is successful, you will see the deploying wallet’s address, the contract’s address, and 
the transaction hash displayed in your terminal.

Testing the program

Now that we’ve built our program, let’s test it out by interacting with our smart contract.

Interacting with functions on your NFT contract is made effortless with Cast, which is Foundry’s 
command-line tool designed for smart contract interaction, transaction sending, and obtaining chain 
data. Let’s explore how we can utilize Cast to mint NFTs from our NFT contract.

Assuming you have already set your RPC and PK environment variables during the deployment 
process, you can mint an NFT from your contract by executing the following command, replacing 
<arg> with your address:

cast send --rpc-url=$RPC_URL <contractAddress> "mintTo(address)" <arg> 
--private-key=$PRIVATE_KEY

Congratulations! You have successfully minted your first NFT from your contract. To verify the 
ownership of the NFT with a currentTokenId value of 1, you can perform a sanity check by running 
the following Cast call command. The address you provided earlier should be returned as the owner:

cast call --rpc-url=$RPC_URL --private-key=$PRIVATE_KEY 
<contractAddress> "ownerOf(uint256)" 1

We have now built and interacted with our project. But that’s not all; we can also get the gas reports 
from our project, and that’s exactly what we will do in the next section.

Gas reports

Foundry offers comprehensive gas reports for your contracts, providing details about the gas costs 
associated with each function called during testing. The report includes information such as the 
minimum, average, median, and maximum gas costs. To generate the gas report, simply execute the 
following command:

forge test --gas-report

This feature proves beneficial when analyzing various gas optimizations within your contracts.

In the context of optimizing gas efficiency in our ERC721 implementation, we have conducted a 
comparative analysis using reports obtained by running forge test --gas-report on that 
repository between the utilization of OpenZeppelin and Solmate libraries. The following screenshots 
offer a comprehensive view of the gas consumption achieved through these implementations. The 
first screenshot highlights the gas utilization of the Solmate implementation.
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NftSolmate contract

Deployment cost Deployment size
1583919 8489

Function name min avg median max # calls
balanceOf 635 635 635 635 2

currentTokenld 2308 2308 2308 2308 1
mintTo 473 44574 69399 72745 9

ownerOf 566 566 566 566 1

Figure 6.1 – With Solmate’s ERC721 implementation

The second screenshot demonstrates the gas consumption of the OpenZeppelin implementation. You 
can find the NFT implementation utilizing both libraries in this repository.

NftOZ contract
Deployment cost Deployment size

1791936 9528
Function name min avg median max # calls

balanceOf 705 705 705 705 2
currentTokenld 2308 2308 2308 2308 1

mintTo 473 44797 69632 73214 9
ownerOf 602 602 602 602 1

Figure 6.2 – With OpenZeppelin’s ERC721 implementation

As evident from the report in Figure 6.2, our implementation using Solmate exhibits a reduction of 
approximately 500 gas in successful mint operations (representing the maximum gas cost for the 
mintTo function calls).

There you have it! I trust that this will provide you with a solid foundation for getting started with 
Foundry. I firmly believe that there’s no better approach to truly comprehending Solidity than by 
writing your tests in Solidity itself. This approach also minimizes the need for frequent context 
switching between JavaScript and Solidity.
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Summary
In this chapter, we delved into the Foundry framework, a powerful toolset for Ethereum development. 
The chapter commenced by introducing Forge, an essential component of Foundry that simplifies the 
compilation and deployment of smart contracts. We learned how to use Forge to compile contracts 
and handle deployment configurations effortlessly. The flexibility offered by Forge allows for seamless 
integration with different networks and deployment environments.

Next, we explored Cast, Foundry’s command-line tool designed for interacting with smart contracts. 
We discovered how Cast simplifies the process of sending transactions, querying contract data, and 
interacting with functions. The ability to specify RPC endpoints and PKs enables smooth contract 
interaction from the command line.

Anvil, another vital component, showcased the gas reporting capabilities of Foundry. We learned how 
Anvil generates comprehensive gas reports for contracts, providing valuable insights into gas costs 
for individual functions. This information proved invaluable for optimizing contract performance 
and identifying areas for improvement.

We also examined Chisel, a testing framework that facilitates writing and executing unit tests for 
smart contracts. We discovered the advantages of writing tests in Solidity itself, reducing the need for 
context switching between JavaScript and Solidity. Chisel’s integration with other Foundry components 
ensures a seamless testing experience.

Finally, we built our own project using all of the concepts we have learned and we saw how to build, 
deploy, test, verify, and get gas reports using Foundry, and all these skills are extremely important for 
working with blockchains.

Overall, this chapter equipped us with a thorough understanding of the Foundry framework and its 
core components. By leveraging Forge, Cast, Anvil, and Chisel, developers can enhance their Ethereum 
development workflow, increase efficiency, and build robust smart contracts with ease.

In the next chapter, we will learn about a popular blockchain that uses Rust – Solana. We will also 
build a small dApp using Solana, so stay tuned.



7
Exploring Solana by  

Building a dApp

In this chapter, we’ll delve into the intricate world of Solana’s development landscape, focusing on 
foundational aspects crucial for building robust programs on blockchain. With a focus on practical 
implementation and meticulous validation, we aim to provide a comprehensive understanding of 
essential concepts, empowering developers to build resilient and efficient solutions on the Solana 
network. Before diving into the practical aspects of building a decentralized application (dApp), 
it’s crucial to comprehend the fundamental concept of a dApp. Hence, in this chapter, let us lay the 
groundwork by understanding precisely what constitutes a dApp.

Exploring nuances of account structuring, data sizing, and validation mechanisms, we’ll journey 
through the following topics:

• Introducing dApps

• Setting up the environment for Solana

• Working with Solana frameworks and tools

• Building and deploying a dApp

• Creating accounts for our custom dApp

• Creating our first instruction

• Implementing logic

• Creating tests for our instructions
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Introducing dApps
dApps are digital tools and platforms that operate without a central authority, much like the apps we 
use every day, but with a twist—they are built on the backbone of blockchain technology. Think of them 
as software applications that do not rely on a single company or server to function. Instead, they run 
on decentralized networks where data is securely stored and transactions are transparently recorded 
across multiple computers, ensuring security and reliability without the need for intermediaries. 
These dApps open doors to a world where users can interact directly with services, trust is built on 
transparency, and decision-making often lies in the hands of a diverse community. Let us move on 
and understand what dApps are in more depth.

What are dApps?

dApps represent a major shift in how software applications are built and function. Unlike traditional 
apps, which rely on centralized servers, dApps use blockchain technology as their core foundation. This 
approach allows them to operate on decentralized networks, where no single entity has total control:

Figure 7.1 – Expanded concept of dApps
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Essentially, dApps are changing the way we think about software. Take a look at Figure 7.1, and you 
can see dApps run on a network of computers rather than just one server, making use of blockchain’s 
secure and distributed ledger. This setup means that dApps can function independently without 
being controlled by any one organization or person. This new way of building applications is not just 
innovative but also offers a more autonomous and democratic digital environment. Instead, they thrive 
on consensus mechanisms intrinsic to blockchain networks, enabling a democratic and transparent 
operational environment.

Types of dApps

Let’s take a look at the different types of dApps available:

• Financial dApps (DeFi): Financial dApps, commonly known as decentralized finance (DeFi) 
applications, form a cornerstone within the dApp ecosystem. These pioneering applications 
center on offering an array of financial services, leveraging the transformative potential of 
blockchain technology. Examples include the following:

 � Decentralized exchanges (DEXs): Platforms facilitating peer-to-peer (P2P) trading of 
digital assets without the need for intermediaries

 � Lending protocols: Systems enabling individuals to lend or borrow digital assets directly 
from others without the involvement of traditional financial intermediaries

 � Yield farming platforms: Mechanisms that allow users to earn rewards or yields by providing 
liquidity to DeFi protocols

 � Stablecoins: Cryptocurrencies pegged to stable assets such as fiat currencies (analogous to 
USD), providing stability amid the volatility of the cryptocurrency market

• Utility dApps: Utility dApps extend beyond the realm of financial services, offering an array of 
utilities that transcend monetary applications. These versatile applications encompass various 
functionalities, including the following:

 � Decentralized storage: Platforms that leverage blockchain for secure and decentralized 
storage solutions, ensuring data integrity and accessibility.

 � Identity verification: Applications using blockchain for secure and tamper-proof identity 
verification and management systems.

 � Prediction markets: Prediction markets are platforms that allow users to speculate on the 
outcomes of real-world events, leveraging decentralized consensus mechanisms to ensure 
fairness and transparency. Beyond prediction markets, oracles play a crucial role in the 
broader ecosystem of dAppS by serving as bridges between blockchain networks and external 
data sources. Oracles, such as Chainlink, provide vital, real-world information that smart 
contracts can rely on, making them an essential component of many blockchain-based 
applications, potentially even more critical than prediction markets themselves.
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 � Decentralized governance systems: Applications that enable decentralized decision-making 
and governance processes, often through voting mechanisms

• Gaming and entertainment dApps: The realm of gaming and entertainment has witnessed 
a significant evolution with the emergence of dApps. These applications leverage blockchain 
technology to offer the following:

 � Games and collectibles: Innovative games leveraging blockchain for asset ownership, provable 
scarcity, and interoperability between different gaming ecosystems

 � Entertainment platforms: Platforms offering diverse entertainment content, leveraging 
blockchain for provenance tracking, copyright protection, and decentralized distribution

As we delve deeper into the spectrum of dApps, it becomes evident that their diversity extends far 
beyond financial services, encompassing utilities, entertainment, and governance. These varied 
categories underscore the versatility and transformative potential of dApps, catering to a wide array 
of user needs within the decentralized ecosystem.

Benefits of dApps

The adoption and proliferation of dApps bring forth a multitude of advantages:

• Decentralization and immutability: dApps thrive on decentralized networks, eradicating 
vulnerabilities stemming from single points of failure (SPOFs). By storing data across a 
distributed ledger, dApps ensure robust data integrity and reliability. This decentralized 
architecture enhances security, eliminating risks associated with centralized control and 
fostering a resilient ecosystem.

• Enhanced transparency: At the heart of dApps lies the transparent nature of blockchain 
technology. All transactions and operations within these applications are visible and auditable 
by all participants. This transparency cultivates an environment of trust and accountability, 
mitigating the need for blind trust in intermediaries.

• Elimination of intermediaries: By circumventing intermediaries, dApps streamline processes, 
significantly reducing associated costs and enhancing operational efficiency across diverse 
industries. Sectors such as finance, supply chain management, and legal domains witness 
heightened efficiency and reduced friction through the elimination of intermediaries.

• Community governance: A distinguishing feature of many dApps is their facilitation of 
decentralized governance models. These models empower community members to actively 
participate in decision-making processes, fostering a democratic and inclusive approach to 
managing applications. This democratized governance framework ensures broader consensus 
and enhances user engagement.

• Global accessibility: Running on decentralized networks, dApps transcend geographical barriers, 
ensuring global accessibility. Individuals worldwide can interact with these applications without 
constraints, democratizing access to services and functionalities on a global scale.
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Now that we have understood what a dApp is, let’s embark on an exciting journey into the world 
of Solana-Anchor to create our own dApps! Our first step begins with setting up the environment 
essential for crafting innovative dApps on the Solana blockchain. To kick things off, we’ll dive into 
the next section. Here, we will walk through the meticulous process of installing and configuring the 
fundamental tools necessary for a conducive development environment.

Setting up the environment for Solana
Before diving into the intricacies of Solana’s development ecosystem, setting up the right environment 
lays the foundation for seamless programming experiences. In this section, we’ll navigate through 
the setup process, ensuring all necessary tools, libraries, and configurations are in place. From 
installing essential software to configuring development environments, this initial step is pivotal in 
facilitating smooth and efficient Solana development. Let’s embark on this journey to configure the 
ideal environment for building robust and scalable blockchain solutions.

Installing Rust

Rust stands as a versatile systems programming language renowned for its emphasis on safety, speed, 
and concurrency. It plays a pivotal role in building Solana programs, including smart contracts and 
dApps. The utilization of Rust within the Solana ecosystem ensures robustness and security without 
compromising performance. Rust’s memory safety guarantees, devoid of a garbage collector (GC), 
fortify the integrity of Solana’s code base, making it a preferred language for developing complex and 
secure applications.

Installation steps

Here are the steps listed for Rust installation on Unix, macOS, and Windows:

1. Install rustup:

 � Unix or macOS: To set up Rust, including rustc (the Rust compiler) and cargo (Rust’s 
package manager and build tool), run the following command in your terminal and follow 
the onscreen instructions to complete the installation process:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | 
sh

 � Windows: The installation process involves downloading and running the rustup-init.
exe file from the official Rust website. Please follow these steps:

i. Download rustup-init.exe from https://rustup.rs/.

ii. Run the downloaded file and follow the onscreen instructions to install Rust. This includes 
choosing installation options and setting your PATH variable.

iii. After installation, you might need to restart your terminal or Command Prompt to 
ensure the rustc, cargo, and rustup commands are available in your PATH variable.

https://rustup.rs/
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2. PATH variable added to shell config: After installation, it incorporates the subsequent PATH 
variable — or a similar equivalent — into your shell configurations. This detail proves useful 
should you decide to relocate it to your dotfiles or a similar setup:

export PATH="$HOME/.cargo/bin:$PATH

Windows users will typically find that rustup automatically configures the PATH variable 
during installation.

3. Check the Rust version: To verify successful installation and display the Rust compiler version, 
use the following command:

rustup --version
rustc --version

4. Additionally, confirm the installation of cargo, the Rust package manager, by entering 
the following:

cargo --version

The installation of Rust encompasses rustup for managing Rust versions, rustc for compiling Rust 
programs, and cargo for managing project dependencies and building projects. These components 
collectively provide a robust foundation for Solana program development in Rust. For further details 
on installation on Unix, macOS, and Windows, you can follow the directions at https://forge.
rust-lang.org/infra/other-installation-methods.html.

Introducing Solana

Solana is a leading blockchain platform known for its high speed and ability to handle a large number 
of transactions. It tackles common problems in traditional blockchains, such as slow speeds and limited 
scalability. Solana combines new technologies and innovative methods to process transactions quickly 
and support smart contracts with minimal delay.

In a field where slow transactions are a common issue, Solana stands out by offering a solution to 
these scalability challenges. It uses advanced technology and new protocols to allow more transactions 
without slowing down. This approach marks a significant change in blockchain design, achieving 
both speed and scalability without compromising security or decentralization. Solana’s innovative 
architecture opens up new possibilities for dApps and broadens their potential uses, setting a new 
standard in blockchain technology.

The network’s bedrock innovation, the Proof of History (PoH) consensus mechanism, operates as a 
timestamping method that sequences transactions, optimizing throughput without compromising accuracy 
or security. This ingenious approach to establishing chronological order without the computational 
intensity of traditional consensus algorithms is the linchpin of Solana’s exceptional scalability.

https://forge.rust-lang.org/infra/other-installation-methods.html
https://forge.rust-lang.org/infra/other-installation-methods.html
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Inherent challenges of scalability that have long plagued blockchain systems find resolution within 
Solana’s architectural marvel. Transactions traverse the network seamlessly, achieving speeds that had 
previously been elusive in the blockchain realm. The network prides itself on the ability to process 
thousands of transactions per second (TPS) at a fraction of the cost compared to legacy systems.

Understanding Solana’s innovative architecture

Solana’s architecture is a testament to its ambition to revolutionize blockchain technology. At the heart 
of its efficiency lies the groundbreaking PoH mechanism. PoH introduces a verifiable time function that 
provides a chronological order for transactions without necessitating the computational workload of 
traditional consensus mechanisms. This innovation significantly reduces the time required to validate 
transactions, enhancing the network’s scalability without compromising decentralization:

Figure 7.2 – Solana’s network architecture

Figure 7.2 shows how transactions work in the Solana blockchain. Transactions start at the left, where 
they are put into the network. These transactions are then processed by Solana’s PoH generator, a 
key component of its high-speed blockchain. The PoH generator sequences transactions, creating a 
historical record that proves the time and order of each transaction without needing the agreement of 
all nodes in the network. The state, represented by the 0x23434 hex code, likely signifies the current 
state of the blockchain ledger after transactions have been processed by the PoH generator. This state 
is then subject to verification by nodes within the network, labeled here as verifier 1 and verifier 2. 
These verifiers check the transactions against the blockchain’s current state to ensure they are valid 
and then apply them to their local copies of the ledger, updating the state to reflect the changes made 
by the transactions.
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This system allows Solana to process and confirm transactions rapidly, providing an architecture 
where throughput scales with the number of verifiers, thereby addressing scalability issues faced by 
earlier blockchains. The PoH component serves as a cryptographic timestamp, ensuring the sequence 
of transactions is recorded and verifiable, which contributes to the overall security and efficiency of 
the network.

In summary, the architecture depicted in the diagram showcases how Solana leverages PoH for quick 
transaction processing and verification, maintaining an accurate and secure ledger state across its 
decentralized network. This structure underpins Solana’s ability to offer fast and scalable blockchain 
solutions for a wide array of dApps.

Why Solana?

Solana’s magnetism stems from its capacity to furnish a resilient infrastructure that gracefully navigates 
the scalability trilemma - an intricate balance between scalability, decentralization, and security that 
most blockchain networks struggle to achieve simultaneously. Solana achieves its impressive balance 
of speed, scalability, and security through the integration of several innovative technologies:

Figure 7.3 – Balance between scalability, decentralization, and security

PoH is a key feature that allows the network to keep track of the order of transactions, serving as 
a cryptographic timestamp that streamlines the process of verifying transactions. This means that 
validators on the network can process transactions without waiting for consensus on transaction 
order, significantly speeding up the confirmation time.

The Tower consensus protocol builds upon PoH, providing additional security by ensuring validators 
agree on the same order of transactions and preventing them from voting on multiple conflicting 
versions of the blockchain. Gulf Stream pushes transactions to validators even before the previous 
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batch of transactions is finalized, which reduces confirmation time and the memory pool size of 
unconfirmed transactions on validators. This protocol allows Solana to support a high number of 
TPS without getting bogged down. Lastly, Turbine is a block propagation protocol that breaks data 
into smaller packets, making it easier to transmit and manage across the network. This makes the 
network more efficient, especially when handling large volumes of transactions.

Together, these technologies allow Solana to process transactions rapidly and at scale while ensuring 
the network remains secure and resilient. By cleverly combining these protocols, Solana can handle 
the high demands of modern dApps without the usual trade-offs that limit other blockchains.

Key features of Solana

Let’s now look at some key features of Solana:

• Speed and scalability: The cornerstone of Solana’s allure rests upon its unparalleled ability 
to process transactions at a breathtaking speed, soaring to an impressive 65,000 TPS. This 
monumental throughput, coupled with nominal fees, lays the foundation for a network that 
doesn’t compromise on efficiency while catering to a myriad of dApps.

• PoH: Solana’s ingenious PoH mechanism stands as a testament to its innovative architecture. By 
timestamping transactions, PoH fosters network scalability without sacrificing decentralization. 
This novel approach obviates the need for arduous consensus protocols, augmenting Solana’s 
ability to process a colossal number of transactions without compromising on precision.

• Tower consensus: Solana intertwines Proof of Stake (PoS) consensus with PoH in the Tower 
consensus mechanism. This amalgamation ensures a secure and efficient environment for block 
production, fortified by the staking of SOL (Solana) tokens. This synergy fortifies the network’s 
resilience, underscoring Solana’s commitment to a secure and decentralized ecosystem.

• Gulf Stream: Gulf Stream represents a pivotal mechanism for optimizing network bandwidth 
by adeptly propagating blocks across the network. This strategic optimization further amplifies 
Solana’s performance, reducing bottlenecks and bolstering overall network efficiency.

• Turbine: Turbine serves as a block propagation protocol meticulously designed to streamline 
the dissemination of blocks throughout the network. This protocol significantly reduces 
latency, enhancing overall efficiency and fortifying Solana’s position as an agile and responsive 
blockchain platform.

Solana’s robust feature set and meticulously engineered architecture position it as an irresistible choice 
for developers seeking to build dApps that demand top-tier throughput and ultra-low latency. Its 
innovative blend of technologies not only addresses the trilemma but transcends it, opening doors 
to a new era of scalable and high-performance blockchain networks.
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Installing Solana

The Solana installation process is designed to equip developers with the necessary command-line tools 
and a local network environment for developing and testing dApps efficiently. Here are instructions 
for how to install it on different platforms:

• For macOS users: To install Solana on macOS, using Homebrew is recommended for its 
simplicity and for ensuring you receive the latest version of Solana. If you encounter an error 
related to gnu-tar, follow the next steps to resolve it:

I. Install Solana using Homebrew by running the following command in your terminal:

brew install solana

II. If you encounter a gnu-tar error, install gnu-tar separately using Homebrew:

brew install gnu-tar

III. After installing gnu-tar, add it to your PATH variable by adding the following line to 
~/.zshrc or ~/.bash_profile (depending on the shell you use):

export PATH="/usr/local/opt/gnu-tar/libexec/gnubin:$PATH"

IV. Restart your terminal to apply the changes.

• For Linux users: Linux users should download and install the pre-built versions of Solana 
available on the official Solana GitHub releases page, following the provided instructions for 
their specific distribution.

• For Windows users: Windows users are directed to follow the detailed instructions provided 
on the official Solana documentation website to ensure a correct and efficient installation 
process. Please visit https://docs.solana.com/cli/install#windows for a 
step-by-step guide.

• Post-installation steps: After installation, Solana will be integrated into your shell’s PATH 
variable automatically, simplifying access to its functionalities. If required, manual PATH 
variable updates will be instructed by the installer:

export PATH="$HOME/.local/share/solana/install/active_release/
bin:$PATH"

• Validating your installation: To confirm a successful installation, check the Solana version:

solana --version

https://docs.solana.com/cli/install#windows


Setting up the environment for Solana 205

 � Additionally, you can initiate a local validator to verify the setup (use Ctrl + C to exit), which 
will create a test-ledger directory in your current directory:

solana-test-validator

 � This confirms that Solana is ready for local development activities.

We will now see how we can use Solana locally.

Using Solana locally

Utilizing Solana in a local environment entails the initiation of a dedicated Solana network within 
your development setup. This practice holds paramount importance as it serves as a controlled space 
for testing and deploying applications, ensuring a secure and controlled atmosphere conducive 
to development.

The rationale behind deploying Solana locally rests upon its ability to emulate the blockchain 
environment without necessitating interaction with mainnet. This emulation provides developers 
with a vital sandboxed space for rigorously testing and meticulously debugging applications before 
their deployment into live environments.

To initiate a local Solana network, the straightforward command solana-test-validator is 
employed for macOS 13 and above; you need to install gnu-tar for this to work. This action initializes 
the local Solana network and concurrently generates a dedicated directory labeled test-ledger 
within your present working directory.

Once the local Solana network is operational, verifying its status is achievable through the solana 
cluster-version command. This step is instrumental in confirming the successful initiation 
and functionality of the local Solana network, ensuring its readiness for subsequent development 
and testing tasks.

By utilizing Solana locally and executing these critical steps, developers gain a controlled environment 
for meticulous testing and debugging, fostering a robust application development cycle before deploying 
applications to production or live networks.

Let us now generate our local key pair.

Generating a local key pair

The process of generating a local key pair involves the creation of cryptographic keys imperative for 
seamless interactions within the Solana network. These keys play a pivotal role in facilitating secure 
transactions and authorizing various actions on the blockchain.

The generated key pair encompasses both a public and private key, serving as the cornerstone of security 
in Solana transactions. The private key allows for the authentication of transactions, while the public 
key enables verification and serves as the address for receiving assets or interacting with the network.
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Generation steps

Before proceeding, it’s prudent to verify whether you already possess a local key pair. You can do so 
by executing the following command:

solana address

To generate a new key pair, initiating the cryptographic key creation process involves executing the 
subsequent command:

solana-keygen new

Following the generation, to view your public key from the generated key pair, utilize the next command. 
Replace path/to/keypair.json with the appropriate path to your key-pair file:

solana-keygen pubkey path/to/keypair.json

Ensuring the presence and accessibility of a local key pair is paramount for engaging in secure and 
authorized interactions within the Solana blockchain. This foundational step establishes the cryptographic 
foundation necessary for transactions and engagement within the Solana network.

Moving on, in the next section, we will look at the setup of essential frameworks and tools pivotal 
for Solana development.

Working with Solana frameworks and tools
In this section, we’ll focus on establishing essential frameworks and tools critical for Solana development. 
This includes installing and configuring specialized frameworks such as Anchor, a key tool that 
simplifies smart contract development on Solana. We’ll delve into setting up necessary dependencies, 
exploring the functionalities of these frameworks, and configuring them to optimize our development 
workflow. By ensuring the right frameworks and tools are in place, we lay the groundwork for efficient 
and effective Solana blockchain development. Let’s embark on configuring these vital elements for a 
streamlined development journey, starting with Anchor.

Introducing Anchor

Anchor, positioned as a sophisticated and versatile framework, plays a pivotal role in the realm 
of dApp development within the Solana blockchain ecosystem. Functioning as an essential bridge 
between developers and the multifaceted features of Solana, Anchor stands distinguished by providing 
an expansive suite of tools and libraries meticulously crafted to expedite and enrich the development 
life cycle.

Anchor is a development framework that simplifies blockchain programming. Its main goal is to take 
away the complex details of blockchain technology so that developers can focus on creating new and 
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innovative applications. Anchor is especially helpful for those new to blockchain development, as well 
as experienced developers looking for a more straightforward way to build dApps.

The framework is user-friendly and well documented, making it accessible to developers of various 
skill levels. With its comprehensive tools and resources, Anchor is an ideal starting point for those 
new to blockchain and a helpful tool for experienced developers to enhance their projects.

In essence, Anchor makes developing on Solana’s powerful blockchain easier. It provides clear guidance 
and support, helping developers unlock the full potential of blockchain technology without getting 
lost in its complexity

Let us now look at some of the benefits of Anchor:

• Simplified development: Anchor provides high-level application programming interfaces 
(APIs) and tools that simplify Solana’s complex architecture, allowing developers to focus on 
creating innovative dApps more efficiently.

• Efficiency and speed: Anchor enhances dApp development on Solana by abstracting complexities 
and reducing boilerplate code, which accelerates development cycles. While Solana’s speed 
benefits all dApps, Anchor specifically speeds up the development process through its efficient 
framework, enabling quicker project completion.

• Enhanced security and reliability: With Anchor, developers get an extra layer of security by 
abstracting critical operations, leading to safer and more reliable dApps.

• Comprehensive documentation and community support: Anchor offers extensive resources 
and a supportive community for developers to learn, solve problems, and innovate together.

Apart from several advantages Anchor, Anchor functions with some key functionality, which we 
discuss next.

Key concepts in Anchor

Let us look at some important concepts in Anchor:

• Programs and transactions: Anchor revolves around the creation of programs that interact 
seamlessly with Solana’s blockchain via transactions. This core principle simplifies the intricate 
process of crafting and executing transactions, allowing developers to define program logic with 
utmost efficiency. By abstracting the complexities underlying transaction execution, Anchor 
empowers developers to focus on implementing and refining programmatic functionalities.

• Interface Description Language (IDL): The employment of IDL within Anchor plays a pivotal 
role in defining on-chain program instructions and corresponding data structures. This robust 
feature serves as a bridge, streamlining interaction between on-chain programs and off-chain 
applications. IDL ensures a standardized method of communication, facilitating seamless 
integration and interoperability between different layers of dApp architecture.
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• Context and state: Central to Anchor’s functionality is its adept management of program 
context and state. This capability enables fluid interactions between on-chain and off-chain 
components of dApps. By abstracting the complexities inherent in state management, Anchor 
ensures a level of consistency and reliability critical to the seamless functioning of dApps, thus 
bolstering their robustness and usability.

• Client library and CLI: Anchor’s provision of a comprehensive client library and command-
line interface (CLI) stands as a testament to its commitment to empowering developers. These 
tools simplify the deployment, testing, and management of Solana-based dApps, offering 
developers an intuitive and efficient workflow. The client library and CLI encapsulate essential 
functionalities, providing developers with a cohesive and streamlined environment for building 
and deploying applications.

Anchor simplifies Solana dApp development by providing developers with easy-to-use tools, 
comprehensive functionalities, and thorough documentation. It stands out in the Solana ecosystem 
for its ability to demystify blockchain complexities and boost development efficiency. As a result, 
Anchor is not just a facilitator for building applications; it actively encourages innovation, helping 
developers create effective dApps on the Solana blockchain with less effort. Its support system and 
resources make it a go-to framework for both new and experienced developers working with Solana.

Installing Anchor

To install the Anchor CLI, commence by executing the following command:

cargo install --git https://github.com/project-serum/anchor anchor-cli 
--locked

This command orchestrates the installation of the Anchor CLI, facilitating its accessibility within your 
development environment.

Once the installation concludes, confirming the installed version of Anchor is achievable through 
the following command:

anchor --version

The installation of Anchor propels developers into a domain where complexities of smart contract 
development are abstracted, fostering a conducive environment for streamlined and efficient creation 
and deployment of Solana-based dApps.

Let us now install Yarn, which will conclude the prerequisites.

Installing Yarn

Yarn operates as a robust package manager primarily utilized for handling dependencies within JavaScript 
projects, particularly in the context of React applications that interface with Solana-based dApps.
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The utility of Yarn lies in its efficiency and effectiveness in managing JavaScript packages and dependencies. 
It simplifies the installation, management, and maintenance of various packages, ensuring a seamless 
and hassle-free development experience within Solana-based projects.

Yarn installation is versatile, allowing multiple approaches across different operating systems.

For npm-based installation, run the following command:

npm install -g yarn

On Mac systems utilizing Homebrew, run this command:

brew install yarn

For Linux systems using apt, run the following command:

apt install yarn

Following the installation, confirming the version of Yarn installed can be accomplished through 
this command:

yarn --version

Each aforementioned installation method plays a pivotal role in configuring the development environment, 
enabling a smooth and efficient setup for developers venturing into Solana dApp development using 
Anchor. These detailed instructions aim to streamline the setup process, providing readers with a 
robust foundation for their Solana-based projects.

With the completion of the installation of the required frameworks and tools, let us now move on 
and create a project for our dApp.

Creating a new Anchor project

The installation and configuration of essential frameworks and tools lay the groundwork for seamless 
Solana dApp development. Now that we’ve completed the setup, let’s dive into creating our dApp 
project using Anchor.

To start our dApp journey with Anchor, let’s initiate a new project named solana-custom. 
First, navigate to your designated development folder, commonly located in ~/Code or in your 
preferred directory:

# Navigate to your development folder.
cd ~/Code
# Create a new Anchor project named "solana-custom."
anchor init solana-custom
# Move into the newly created project.
cd solana-custom
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Upon executing these commands, Anchor crafts the foundational structure for our project:

• Programs folder: This directory houses Solana programs. It comes preloaded with a basic 
program, reducing the need for extensive scaffolding.

• Tests folder: Designed for JavaScript tests directly interacting with our programs. It includes 
a pre-generated test file for the auto-created program.

• Anchor.toml configuration file: Essential for configuring program IDs, Solana clusters, and 
other project settings.

• Empty app folder: Although currently empty, this directory will eventually house our JavaScript 
client code.

Having scaffolded our project, we are now prepared to explore the developmental cycle of building a 
Solana program. In the subsequent sections, we will delve into deploying, testing, and understanding 
the default program generated by Anchor. This comprehensive exploration will provide invaluable 
insights into the intricate aspects of developing a Solana-based application.

Through the well-organized structural setup, Anchor substantially streamlines the initial stages of 
Solana dApp development. Its preconfigured elements empower developers to concentrate on core 
functionalities and innovative aspects of their dApps.

Building and deploying a dApp
This segment serves as a comprehensive guidebook to the real-world application of Solana dApps. It 
is a journey through the nitty-gritty of crafting, refining, and managing dApps leveraging Anchor’s 
CLI. The section outlines indispensable procedures fundamental for initiating, deploying, and 
refining dApps, all while employing the versatile toolkit that the Anchor CLI offers. We will delve 
into intricate nuances of building and deploying dApps, establishing and navigating a local Solana 
ledger setup to rigorously test and validate, administering and revising program IDs for seamless and 
efficient functionality, and harnessing capabilities of Anchor scripts to elevate dApp functionalities 
and automate critical tasks. Each step is meticulously crafted to impart not just theoretical insight but 
hands-on practical experience, empowering developers with the expertise required to fashion robust 
and dependable Solana-based dApps.

Building and deploying with Anchor

Anchor simplifies the intricacies of deploying Solana programs through its two pivotal commands - 
anchor build and anchor deploy. These commands act as the backbone of the development 
process, facilitating the compilation and deployment of programs onto the Solana network seamlessly.
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Compiling using anchor build

Executing anchor build initiates the compilation process for the program. This step involves 
the Rust compiler’s meticulous examination of the code, which may result in warnings or errors. For 
instance, you might encounter messages such as unused variable: 'ctx'. Typically, these 
warnings stem from the simplicity of the autogenerated program, where certain variables might not be 
actively utilized. However, they pose no significant concerns. Upon successful compilation, the target 
folder gets updated, to house built releases and deployment artifacts. This target folder serves as 
a local repository exclusive to your machine and remains outside the version control system (VCS):

# Compile your program.
anchor build

Moreover, anchor build generates an IDL file—a JSON document containing comprehensive 
specifications of your Solana program. This IDL file encapsulates essential information, including 
instructions, parameters, and generated accounts, ensuring structured interactions between your 
Solana program and its JavaScript client.

Deploying using anchor deploy

The anchor deploy command dispatches the latest build to the Solana cluster for deployment. 
When a program is initially built, it generates a public and private key pair stored in the target 
directory. This public key becomes the unique identifier or program ID for your Solana program:

# Deploy your compiled program.
anchor deploy

However, attempting deployment without a preconfigured network leads to an error—error 
sending request for url (http://localhost:8899/). To rectify this, it’s imperative 
to set up a local ledger environment.

Running a local ledger

A local Solana ledger functions as a simulated Solana cluster within your local environment, facilitating 
development without interacting with the live Solana blockchain. This emulation is instrumental for 
testing and validation purposes, enabling developers to deploy and assess their applications locally.

Initiating a local ledger is conveniently accomplished by executing the following command in 
your terminal:

solana-test-validator

http://localhost:8899/
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This command keeps an active session in your terminal until you exit using Ctrl + C. With the session 
active, you have a local ledger ready for deployment. Before deploying your applications onto this local 
ledger environment with anchor deploy, you must ensure your wallet has the necessary funds. 
This is achieved by airdropping SOL tokens to your wallet using the Solana CLI:

1. To point the Solana CLI to your local test validator, run the following command:

solana config set --url localhost

2. After setting the URL, airdrop SOL to your wallet by executing this command:

solana airdrop

This command airdrops one SOL to your wallet, which is the required balance for executing 
transactions on the local network. Note that you can airdrop one SOL at a time.

With your wallet funded, you’re now ready to deploy your applications using anchor deploy, 
interacting with your local ledger environment effectively.

However, it’s crucial to note that all data sent to your local ledger gets stored in a test-ledger 
folder created within the current directory. To prevent this folder from being committed to your Git 
repository, update your .gitignore file as follows:

.anchor

.DS_Store
target
**/*.rs.bk
node_modules
test-ledger

Exiting the local ledger using Ctrl + C won’t erase any data sent to the cluster. However, deleting the 
test-ledger folder will result in data removal. Alternatively, you can achieve the same outcome 
by employing the --reset flag:

solana-test-validator --reset

Note
To reset the state of the Solana test validator, ensuring a fresh start for development testing, 
the --reset flag can be used.

Alternatively, for convenience, the shorter -r flag can also be used.

This emulation environment serves as a valuable asset for testing Solana-based applications without 
affecting the live blockchain. By seamlessly integrating this simulated cluster, developers gain a 
controlled space for robust testing and validation.
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Updating the program ID

After deploying your program initially using anchor build and anchor deploy, it becomes 
crucial to update the program ID to ensure a consistent and accurate identifier across various 
configurations and files within your Solana project.

During the initial deployment, a new key pair is generated, containing a public address necessary for 
your program’s identification. However, this public address is not readily known right after deployment. 
You can obtain it using the following Solana command:

solana address -k target/deploy/solana_custom-keypair.json
# Example output: 6xyMvrMKdjbXuTSjaDULm2vit8Uq6MjCgJj5N6zpJASY

Please note that the solana_custom-keypair.json filename might vary based on the naming 
conventions set within your project.

Once you have retrieved the program ID, it becomes essential to update it in specific locations within 
your Solana project. Anchor uses these locations as initial placeholders during the project’s setup. 
Here are the steps to update these locations:

1. Anchor.toml configuration file: Navigate to the Anchor.toml configuration file and locate 
the [programs.localnet] section. Update the program ID within this section:

[programs.localnet]
solana_custom = " 6xyMvrMKdjbXuTSjaDULm2vit8Uq6MjCgJj5N6zpJASY"

2. lib.rs file of the Solana program: Proceed to the lib.rs file of your Solana program, often 
located in programs/solana-custom/src/lib.rs. Update the program ID within 
this file as follows:

use anchor_lang::prelude::*;
use anchor_lang::solana_program::system_program;  declare_
id!("6xyMvrMKdjbXuTSjaDULm2vit8Uq6MjCgJj5N6zpJASY");

3. After updating the program ID in these locations, the next crucial step involves rebuilding and 
redeploying your program to ensure the correct identifier is incorporated into your Solana project:

anchor build
anchor deploy

Updating the program ID ensures consistency and accuracy within your Solana project, allowing for 
seamless functionality and maintenance across various configurations and files.

Utilizing Anchor scripts

Let us now explore the utility of Anchor scripts, enabling streamlined execution of essential operations 
within your Solana project.
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If you delve into your Anchor.toml file, you’ll discover a dedicated scripts section containing 
predefined scripts, facilitating various actions within your project. One such script, specifically designed 
for running tests, is readily configured:

test = "yarn ts-mocha -p ./tsconfig.json -t 1000000 tests/**/*.ts"

This script is optimized to execute all tests located within the tests folder using Mocha, ensuring 
a comprehensive test suite for your Solana program.

Executing scripts with Anchor

To execute this predefined test script, simply run the following command:

anchor run test

If your local ledger is active via solana-test-validator and your project has been appropriately 
built and deployed using anchor build and anchor deploy, the executed tests should 
pass seamlessly!

Customizing Anchor scripts

The flexibility of Anchor scripts allows for the incorporation of custom commands within the Anchor.
toml configuration file. For instance, you can add a custom script like this:

test = "..."
my-custom-script = "echo 'Hello world!'"

Executing the custom script is as simple as invoking the anchor run command:

anchor run my-custom-script
# Output: Hello world!

By utilizing these scripts, developers unlock a realm of possibilities—automating testing suites, performing 
routine tasks, or implementing specific functionalities within the Solana project environment. Their 
versatility and adaptability offer a robust framework for enhancing project efficiency and maintainability.

Exploration of Anchor scripts underscores their significance in streamlining operations, automating 
tasks, and fortifying the reliability of Solana programs. Let us now move on and test our dApp.

Testing your dApp

Ensuring your dApp works seamlessly and reliably is crucial before deployment. Testing helps verify 
the functionality and robustness of your Solana-based dApp. Anchor provides a comprehensive testing 
suite to simplify this process, allowing you to assess your dApp’s behavior in a controlled environment.
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To understand how testing fits into the development cycle, let us recap the necessary steps:

1. Starting the local ledger: Begin by initializing a local Solana ledger to simulate a Solana cluster 
within your local environment:

solana-test-validator

2. Building, deploying, and testing manually: For manual build, deployment, and testing, you 
can do the following:

 � Use anchor build to compile the program.

 � Employ anchor deploy to deploy the program onto the local ledger.

 � Execute anchor run test to run tests specified in your Anchor.toml file.

 � However, Anchor offers a streamlined way to automate this cycle, making testing more 
efficient. Anchor introduces a dedicated command, anchor test, designed to handle 
the entire development cycle automatically. Let us break down how anchor test works.

3. Initiating the local ledger: The command starts a local ledger environment that is automatically 
terminated at the end of the testing process. It’s crucial to note that if you have an active 
local ledger running, anchor test won’t execute, so ensure to terminate any existing 
sessions beforehand:

solana-test-validator –reset

4. Building, deploying, and testing: Once the local ledger is set up, Anchor proceeds with building 
the program, deploying it onto the local ledger, and executing the tests:

anchor build
anchor deploy
anchor run test

Let’s see what these commands achieve.

The anchor test command significantly streamlines the testing process. It abstracts away 
complexities, enabling you to focus on the actual functionality of your Solana program. However, 
there is a caveat when using anchor test after initializing a new project via anchor init. 
Running anchor test immediately after generating a new project via anchor init will 
not work until you update your program ID following the first deployment. Therefore, it is 
advisable to perform the initial build and deployment manually. After updating your program 
ID, you can start utilizing the efficiency of anchor test.

Testing your dApp using Anchor ensures a reliable and efficient development process, verifying 
the functionality and performance of your Solana-based applications. By leveraging anchor 
test, developers can automate the testing cycle, fostering a more focused and streamlined 
development journey.
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This streamlined testing process significantly enhances the developer experience within the Solana 
ecosystem, ensuring a more reliable and robust final product.

Exploring localnet with Anchor

The anchor localnet command serves as a versatile tool within the Anchor framework, resembling 
anchor test in certain aspects. Unlike anchor test, this command does not execute any tests 
and doesn’t terminate the local ledger after completion.

Essentially, running anchor localnet initiates a sequence of actions equivalent to the following:

solana-test-validator --reset
anchor build
anchor deploy

Once these steps are executed, the local ledger remains active, ensuring that your program persists 
for further development and interaction with your frontend client.

The key distinction between the two lies in the behavior after deployment—unlike anchor test, 
anchor localnet keeps the local ledger active. This retention of the ledger environment is 
valuable when you require continuous access to the deployed program for frontend development or 
other interactions.

Typically, developers utilize anchor localnet in scenarios where they predominantly focus 
on frontend client development, such as creating user interfaces or integrating the Solana-based 
functionality into web applications. This command streamlines the process of deploying the Solana 
program and maintains its availability for seamless integration with frontend components.

By retaining the active local ledger, anchor localnet offers an efficient workflow, enabling 
developers to swiftly iterate on their frontend interfaces while ensuring uninterrupted access to the 
deployed Solana program.

Moving on to the next section, let us see how to create accounts for our custom dApp.

Creating accounts for our custom dApp
In the Solana ecosystem, the principle that sets it apart lies in its account-based architecture. Unlike 
other blockchain platforms where smart contracts serve as data containers, Solana takes a unique 
stance—each piece of data necessitates its own dedicated account for storage. Accounts in Solana act 
as fundamental units for storing information, offering the flexibility for Solana programs to manage, 
manipulate, and interact with these accounts as required.

One of the most captivating aspects of Solana’s architecture is the notion that programs themselves 
function as accounts. These program accounts possess distinctive characteristics—they house their 
code, remain immutable (read-only), and are designated as executable. A pivotal distinction within 
Solana’s account structure is the inclusion of a Boolean value that identifies whether an account serves 
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as a program account or a standard account intended for data storage. This foundational approach 
extends across diverse entities within Solana’s ecosystem, encompassing wallets, non-fungible tokens 
(NFTs), tweets, and more—each represented and managed as an individual account. Consider this 
representation in Figure 7.4:

Figure 7.4 – Interconnectedness of accounts

This diagram portrays the interconnectedness of different accounts within Solana’s framework. At the 
base level, a message is stored in an account, which is further linked to a user account. The user account, 
in turn, connects to an executable account identified as Solana Custom Program. This hierarchical 
visualization underscores the account-centric structure prevalent in Solana, where various entities 
and their interactions are encapsulated within distinct accounts. Let us now define accounts for our 
own dApp.

Defining accounts for our custom dApp

Before delving into the technicalities of account structuring, let’s first understand the core functionality 
of our dApp. Our dApp enables users to send and receive messages in a decentralized manner, leveraging 
the power of blockchain technology for secure and verifiable communications. When creating accounts 
in Solana for a dApp, considerations around the structuring of accounts are crucial. Let us explore 
how accounts are typically defined for storing message-related information in a Solana program.

For our message-related functionality, structuring accounts appropriately is paramount. We will 
examine two possible solutions for storing messages:

• Solution A (not scalable): This approach (Figure 7.5) involves consolidating all message-
related data within a single account. While seemingly straightforward, this method imposes 
a critical limitation: the necessity to predetermine and allocate a fixed storage size capable of 
accommodating all potential messages. The fixed size allocation presents a scalability hurdle, 
especially in environments where the volume of messages fluctuates or expands unpredictably. The 
rigidity of this structure might lead to inefficiencies and constraints in managing a burgeoning 
number of messages. Consequently, the approach might become impractical as the application 
grows, potentially impeding scalability and flexibility:
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Figure 7.5 – Illustration of solution A

• Solution B (scalable): In contrast, solution B (Figure 7.6) offers a highly efficient and scalable 
alternative by assigning individual accounts to each message. This architecture ensures that 
storage resources are generated and funded by the author of each message. By allocating 
dedicated accounts for every message, this solution optimizes storage utilization, allowing 
for a scalable and adaptable framework. Unlike solution A’s fixed-size allocation, solution B’s 
individual account model accommodates an unrestricted number of messages and users. Each 
message account operates independently, promoting efficient scalability and resource utilization, 
aligning well with the dynamic nature of dApps.

Figure 7.6 – Illustration of solution B

Now, let’s see how to implement the message account structure.

Implementation of message account structure

In our Solana program, defining the structure of the message account follows a straightforward 
process. Within the lib.rs file, we employ a Message struct, encompassing vital properties essential 
for the message’s representation within the Solana blockchain. These attributes include the following:

• author: Signifies the public key of the message’s creator or sender

• timestamp: Indicates the precise time the message was posted or sent

• topic: An optional field allowing for the classification or categorization of messages, promoting 
better organization

• content: Stores the core content or body of the message itself

The usage of the #[account] attribute significantly simplifies the task of defining accounts within 
Solana programs. This attribute, supported by the Anchor framework, handles crucial operations such 
as account parsing and conversion from arrays of bytes. This abstraction mitigates the complexity 
involved in the intricate process of account definition, allowing readers to focus on the essential 
aspects of their dApp.
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The inclusion of the author’s public key within the account data serves as a fundamental aspect enabling 
specific user-based actions, such as message updates or deletions. This design choice empowers the 
dApp to facilitate author-specific interactions, ensuring distinct and personalized engagements within 
the dApp’s ecosystem.

Understanding account sizing and rent in Solana

Within the Solana ecosystem, the sizing of accounts assumes considerable importance, particularly in 
light of the concept of rent. Rent, in the context of Solana, pertains to the cost attributed to the storage 
provided by an account. This fee is periodically collected by the blockchain. An account’s inability to 
cover this rent poses a risk of deletion, potentially leading to the loss of associated data.

The creation of rent-exempt accounts involves allocating sufficient funds to cover a period of 2 years’ 
worth of rent. By doing so, accounts become exempt from rent collection, ensuring their sustained 
existence without the looming threat of deletion. While Solana presents tools to calculate the minimum 
rent-exempt amount based on account size, the Anchor framework simplifies this process, automating 
the necessary calculations seamlessly.

Sizing message accounts

While designing a dApp on the Solana blockchain, particularly one that involves handling messages, 
careful consideration must be given to how data is structured and stored within the blockchain’s 
accounts. Determining the size of message accounts necessitates evaluating the storage requirements 
of essential properties such as the author’s public key, timestamp, topic, and content, taking into 
account their respective data types:

• Author: As a PubKey type, it occupies 32 bytes of storage

• Timestamp: Represented by the i64 type, it consumes 8 bytes

• Topic: Defined as a String type with a maximum limit of 50 characters, it potentially requires 
200 bytes along with a 4-byte prefix that indicates its length

• Content: Similarly, being a String type constrained to 280 characters, it may utilize 1,124 
bytes with a 4-byte length prefix

These considerations regarding the sizes of individual message account properties facilitate efficient 
allocation of storage space, optimizing for the required capacity while avoiding unnecessary 
storage overheads.

Each piece of data stored needs to be meticulously planned in terms of its size and role within the 
account to ensure efficient use of storage and seamless functionality of the dApp. This includes 
accounting for various elements, such as account discriminators, the sizing of the author’s public keys, 
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timestamp storage, and the allocation of space for content and topics. Here’s a detailed breakdown 
of these considerations:

• Account discriminator: In Solana, when creating a new account, an 8-byte discriminator 
is added at the beginning of the data. This discriminator serves as a type identifier for the 
account, distinguishing different account types within the program. As we establish the size 
of our message account, we must consider this 8-byte discriminator, essential for recognizing 
the tweet account within the program’s storage.

• Sizing the author’s public key: The author’s public key, represented by the PubKey data type, 
demands 32 bytes of storage. This key is vital as it links each message to its respective author, 
allowing for proper attribution and author-specific actions within the dApp.

• Timestamp storage: For the timestamp property, an i64 type that represents an integer of 64 
bits or 8 bytes suffices. Storing the time of message publication in this format ensures accurate 
time tracking within the program.

• Determining topic size: The topic field, characterized as a String type, presents a nuanced 
challenge in sizing. By setting a maximum limit of 50 characters for a topic, we tentatively 
allocate 200 bytes, which is 4 bytes per character, for its storage. It’s important to note that this 
allocation accounts for a maximum scenario based on the chosen character encoding.

• Content storage considerations: Similar to the topic, the content field, also a String type, 
is constrained to a maximum of 280 characters, corresponding to 1124 bytes of storage. This 
allocation, in combination with a 4-byte length prefix, ensures efficient handling of message 
content, accommodating variations in character lengths.

Now, we will implement the account in code.

Implementation in code

The lib.rs file encapsulates the structuring of the message account and defines essential constants 
that detail the byte sizes of various account properties:

#[account]
pub struct Message {
    pub author: Pubkey,
    pub timestamp: i64,
    pub topic: String,
    pub content: String,
}

// Constants defining sizes of account properties
const DISCRIMINATOR_LENGTH: usize = 8;
const PUBLIC_KEY_LENGTH: usize = 32;



Creating our first instruction 221

const TIMESTAMP_LENGTH: usize = 8;
const STRING_LENGTH_PREFIX: usize = 4; // Stores the size of the 
string.
const MAX_TOPIC_LENGTH: usize = 50 * 4; // 50 chars max.
const MAX_CONTENT_LENGTH: usize = 280 * 4; // 280 chars max.

impl Message {
    // Constant representing the total size of the Message account
    const LEN: usize = DISCRIMINATOR_LENGTH
        + PUBLIC_KEY_LENGTH // Author.
        + TIMESTAMP_LENGTH // Timestamp.
        + STRING_LENGTH_PREFIX + MAX_TOPIC_LENGTH // Topic.
        + STRING_LENGTH_PREFIX + MAX_CONTENT_LENGTH; // Content.
}

We will now add this code to the existing file. In this code segment, the LEN constant within the 
impl Message block aggregates the sizes of all properties, providing the total byte size for a single 
message account. This consolidated size offers a quick reference to developers and aids in the accurate 
allocation of account storage within the Solana blockchain.

Next, we will jump on to the next section and understand how to create our first instruction for our 
custom dApp.

Creating our first instruction
As we proceed into the next phase of our Solana-based dApp development, our journey so far has been 
a meticulous exploration of architecting message accounts. We’ve meticulously established account 
structures, gauged sizes, and delved into rent concepts, all to fortify the groundwork for our dApp’s 
functionality. Now, the focus shifts toward the pivotal juncture of creating our initial instruction. At 
this juncture, our focus spans various critical facets: setting account boundaries, translating logic 
into code, fortifying against invalid inputs, and understanding the nuanced difference between 
instructions and transactions. Each step within this undertaking revolves around the core aspect 
of message accounts, all geared toward building a resilient, efficient, and robust dApp core within 
Solana’s dynamic environment.

Let us start with an understanding of how we will create instructions.

Introduction to instruction creation

In Solana’s decentralized ecosystem, creating instructions is key to triggering actions on the network, a 
step we’ll explore as we navigate its account-centric architecture. Solana’s stateless programs necessitate 
a comprehensive inclusion of all requisite contexts for these instructions to execute seamlessly.
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In our pursuit to enable essential functionalities within our dApp, the structuring of contexts is 
paramount. Much like the structural definition of our Message account, contexts are crafted through 
the implementation of a Rust struct. This struct encapsulates essential accounts vital for an instruction 
to execute effectively within our Solana program.

Upon revisiting the lib.rs file, above the previously defined Message struct, you’ll likely encounter 
an empty Initialize context, resembling the following:

#[derive(Accounts)]
pub struct Initialize {}

In this instance, the Initialize context serves as a mere placeholder, devoid of the accounts 
necessary for an instruction’s execution. Replacing this placeholder context with a more purposeful 
and comprehensive structure named SendMessage is essential. The SendMessage context 
becomes the backbone for our instruction, defining crucial accounts imperative for executing this 
specific instruction.

To achieve this, simply remove the existing Initialize context and supplant it with the following 
code block:

#[derive(Accounts)]
pub struct SendMessage<'info> {
    pub message: Account<'info, Message>,
    pub author: Signer<'info>,
    pub system_program: AccountInfo<'info>,
}

Breaking down the SendMessage context, we find three fundamental accounts explicitly enlisted 
to ensure the seamless execution of our SendMessage instruction:

• message: Represents the account responsible for storing the message, necessitating an 
association with the instruction

• author: Denotes the signer required to validate the authority and authenticity of the 
message sender

• system_program: Refers to the official System Program provided by Solana, critical for 
initializing the Message account and assessing the requisite rent-exempt status

Upon introducing the SendMessage context comprising specific accounts required for executing our 
Solana instruction, a few novel concepts and Rust features come into play. Firstly, the SendMessage 
context encapsulates key accounts crucial for the successful execution of the SendMessage instruction 
within our Solana program.
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Let’s delve into the distinctive accounts specified within the SendMessage context and their significance:

• message: This account embodies the foundational element responsible for storing the message. 
Despite this instruction being the initiator of the account creation, providing the message 
account here entails passing the public key for the account’s creation. The provision of this key 
facilitates the instruction in the creation of the Message account. Additionally, signing the 
instruction using its private key verifies ownership, essentially instructing, “Here’s my public 
key; kindly create a Message account for me.”

• author: Emphasizing the essence of authentication, this account ensures the identification of 
the sender initiating the message. Requiring the author’s signature assures the authenticity of the 
sender’s identity, preventing any attempt at transmitting a message on behalf of someone else.

• system_program: Central to the functionality due to Solana’s stateless nature, this account 
represents Solana’s official System Program. Despite programs being stateless, system_
program becomes integral for initializing the Message account and determining the 
necessary rent-exempt status.

Now, let’s decipher some Rust-specific intricacies evident in the aforementioned SendMessage 
code snippet:

• #[derive(Accounts)]: This attribute, a product of Anchor, simplifies the generation of 
code and macros for the SendMessage context struct. Its presence significantly streamlines 
otherwise complex lines of code, ensuring a more comprehensible struct definition.

• <'info>: This Rust lifetime, though defined as a generic type, primarily informs the Rust 
compiler about the duration of variable lifetimes. It aids in clarifying how long specific variables 
remain active within the program, ensuring proper memory management.

In terms of types represented within the context, we have the following:

• AccountInfo: Acting as a fundamental Solana structure, AccountInfo serves as a low-level 
representation capable of accommodating any account. When utilizing AccountInfo, the 
account’s data manifests as an unparsed array of bytes.

• Account: An Anchor-provided account type that encapsulates AccountInfo within another 
struct, enabling data parsing as per the specified account struct (in this case, Message). The 
Account<'info, Message> designation explicitly denotes an account of type Message, 
parsing data accordingly.

• Signer: Similar to AccountInfo, Signer represents an account type but with the additional 
requirement of signing the instruction, ensuring validation through the provided signature.

These Rust features, while seemingly intricate, play pivotal roles in ensuring efficient structuring and 
execution of instructions within the Solana ecosystem. Additionally, employing account constraints 
enables specific assertions, ensuring the desired properties of various account types. Let us look at 
these account constraints next.



Exploring Solana by Building a dApp224

Establishing account constraints

Establishing account constraints within a Solana program is akin to setting rules of engagement for 
different account types. In this phase of our dApp development, we delve into defining specific guidelines 
and constraints for accounts, enabling a meticulous control mechanism for how these accounts interact 
within the program.  Account constraints are crucial for security in Solana’s dApps. They make sure 
each account is used correctly, whether it’s signing transactions, managing data, or using features. By 
setting these rules, developers create a secure and reliable environment for their dApps to operate on 
the Solana blockchain This section will intricately explore the nuances of these constraints, shedding 
light on their significance, implementation, and impact on the overall functionality of our dApp.

When defining a new account within our instruction—specifically for our message—implementing 
constraints ensures a streamlined process for its initiation. To integrate these constraints effectively, 
incorporate the following line atop the message property:

pub struct SendMessage<'info> {
    #[account(init, payer = author, space = 500, seeds = 
[&[b"message"[..]], &[author.key.as_ref()]], bump = 9)]
    pub message: Account<'info, Message>,
    pub author: Signer<'info>,
    pub system_program: AccountInfo<'info>,
}

However, a straightforward addition such as this might trigger an error within the code structure. 
This error stems from the absence of crucial information—specifically regarding the storage space 
required for our message account and determining the entity responsible for funding the rent-exempt 
allocation. Leveraging the payer and space arguments significantly streamlines our code for 
handling message accounts within the instruction:

#[derive(Accounts)]
pub struct SendMessage<'info> {
    #[account(init, payer = author, space = Message::LEN)]
    pub message: Account<'info, Message>,
    pub author: Signer<'info>,
    pub system_program: AccountInfo<'info>,
}

These arguments wield immense power within a single line of code, referencing vital elements crucial 
for the successful execution of our Solana-based dApp functionalities. The payer argument seamlessly 
ties to the author’s account within the same context. Simultaneously, the space argument efficiently 
allocates storage by utilizing the previously defined Message::LEN constant, simplifying the account 
initialization process remarkably.

With the declaration that the author bears the cost for the rent-exempt allocation of the message 
account, it becomes essential to mark the author’s property as mutable due to the need for potential 
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alterations in their account balance. Anchor simplifies this process using the mut account constraint, 
facilitating the necessary account mutation effortlessly:

#[derive(Accounts)]
pub struct SendMessage<'info> {
    #[account(init, payer = author, space = Message::LEN)]
    pub message: Account<'info, Message>,
    #[account(mut)]
    pub author: Signer<'info>,
    pub system_program: AccountInfo<'info>,
}

The mut constraint signifies the mutable nature of the author’s account, allowing adjustments in 
its state during the process. Additionally, though a signer account constraint could validate the 
author’s signature, it’s redundant in this context as the Signer account type inherently ensures the 
signing attribute.

It’s crucial to constrain the system_program account to guarantee its legitimacy as the official 
System Program from Solana. Without this constraint, there’s a risk of potential malicious actors 
supplying unauthorized system programs, compromising the integrity of the transaction:

#[derive(Accounts)]
pub struct SendMessage<'info> {
    #[account(init, payer = author, space = Message::LEN)]
    pub message: Account<'info, Message>,
    #[account(mut)]
    pub author: Signer<'info>,
    #[account(address = system_program::ID)]
    pub system_program: AccountInfo<'info>,
}

Utilizing the address account constraint with system_program::ID ensures an exact match 
between the provided public key and the defined constant in Solana’s code base. However, note that 
system_program::ID isn’t included in Anchor’s prelude::*, necessitating an additional line 
at the top of the lib.rs file to import this constant:

use anchor_lang::prelude::*;
use anchor_lang::solana_program::system_program;

In the latest iterations of Anchor, there’s an alternative method to validate the System Program’s 
authenticity using a distinct account type named Program. By employing this account type and 
providing it with the System type, we ascertain that it specifically refers to the official System Program:

#[derive(Accounts)]
pub struct SendMessage<'info> {



Exploring Solana by Building a dApp226

    // … other account declarations
   }

This streamlined approach offers a concise way to establish the context for our SendMessage 
instruction, simplifying the process of verifying the System Program’s validity.

Let us now understand in the next section how we implement logic.

Implementing logic
As we step into the heart of our Solana-based dApp development, the implementation of logic within 
our instruction takes center stage. This pivotal phase involves translating the conceptual architecture 
we’ve meticulously constructed into tangible code. Our focus now shifts from defining structures and 
constraints to breathing life into our application’s functionality. With a keen eye on the intricacies of 
Solana’s programming paradigm, we embark on the journey of encoding core operations for sending 
a message within our dApp. Each line of code etches a pathway toward robust functionality, laying 
the groundwork for a resilient and efficient dApp within the dynamic Solana ecosystem.

The solana_custom module in the following code snippet is utilized to encapsulate our message-
sending functionality. It’s important to note that this module is defined within the lib.rs file of our 
project, which serves as the entry point for the Rust library:

#[program]
pub mod solana_custom {
    use super::*;
        // CODE
   }
}

In our solana_custom module, let’s transition from the initialization phase to the implementation 
of our SendMessage instruction by revising the initial function. Replace the existing Initialize 
function with the following code:

pub fn send_message(ctx: Context<SendMessage>, topic: String, content: 
String) -> ProgramResult {
    Ok(())
}

This code represents a pivotal shift in our application’s flow. Several notable alterations are introduced:

• Renaming: The initialize function has been rebranded to send_message(). Rust 
follows the snake case for function names.

• Context association: We’ve specified the generic type inside Context as SendMessage, 
establishing a direct link between the instruction and the predefined context.
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• Additional arguments: We introduced two new arguments, topic and content, essential 
components encapsulating the essence of the message. These arguments, unlike accounts, are 
parameters passed directly to the function.

The function returns a ProgramResult instance, a Rust enum signaling either Ok (successful 
execution) or ProgramError (execution failure). Rust foregoes exceptions, relying on this special 
enum to communicate execution status. For now, the function returns Ok(())—an Ok type with 
an empty value inside ()—signifying an uneventful yet successful execution.

To proceed, let’s access the message account from the context. Thanks to Anchor’s init account 
constraint acting as middleware, the necessary accounts are prepared before the function execution. 
Let’s walk through how we’d approach this process:

pub fn send_message(ctx: Context<SendMessage>, topic: String, content: 
String) -> ProgramResult {
    // Accessing the message account from the context
    let message_account: &mut Account<Message> = &mut ctx.accounts.
message;

    // Additional logic can be implemented here
    // ...

    Ok(())
}

By referencing ctx.accounts.message, annotated with &mut to signify mutable borrowing, we 
obtain a mutable reference to the message account. This reference, stored in the message_account 
variable, enables us to modify or interact with the account’s data within the function.

Similarly, when retrieving the author information to link it with the message account, we access the 
author account through the context. Here’s how we’d incorporate this:

pub fn send_message(ctx: Context<SendMessage>, topic: String, 
content: String) -> ProgramResult {
    let message_account: &mut Account<Message> = &mut ctx.
accounts.message;
    let author: &Signer = &ctx.accounts.author;

    // Further operations involving author or message_account
    // ...

    Ok(())
}
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The author account is accessed via ctx.accounts.author, annotated simply with & as it’s a 
reference and doesn’t require mutability since the rent-exempt payment for this account is managed by 
Anchor. This provides us with the necessary data to establish associations or perform specific actions 
linked to the author within the context of the send_message() function.

Fetching the system’s current timestamp from Solana’s Clock system variable is crucial for our 
message creation process. By incorporating the Clock system variable and ensuring the presence of 
the System Program account, we can successfully gather the necessary timestamp for the message. 
Let’s go over the code snippet that accomplishes this task:

pub fn send_message(ctx: Context<SendMessage>, topic: String, 
content: String) -> ProgramResult {
    let message_account: &mut Account<Message> = &mut ctx.
accounts.message;
    let author: &Signer = &ctx.accounts.author;
    let clock: Clock = Clock::get().unwrap();

    // Additional logic involving clock timestamp assignment to the 
message_account
    // ...

    Ok(())
}

Here, the Clock::get() function retrieves the current system time, and by utilizing unwrap(), 
we handle the Result type that Clock::get() returns. Unwrapping the result enables us to access 
the timestamp data provided by Clock::get() and proceed with our message creation process.

By combining the gathered timestamp with the provided topic and content, we’ve gathered all the 
essential data required to populate our new message account effectively. This data aggregation sets 
the stage for the subsequent steps involved in creating a robust and complete message within our 
Solana program.

To craft a comprehensive message creation process, we need to meticulously fill in the essential details. 
Starting with the author’s public key, we access it via author.key. However, since it’s a reference, 
we dereference it using * to access the actual public key data:

pub fn send_message(ctx: Context<SendMessage>, topic: String, content: 
String) -> ProgramResult {
    let message_account: &mut Account<Message> = &mut ctx.accounts.
message;
    let author: &Signer = &ctx.accounts.author;
    let clock: Clock = Clock::get().unwrap();

    message_account.author = *author.key;
    // Additional logic involving clock timestamp assignment to the 
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message_account
    // ...

    Ok(())
}

Next, retrieving the Unix timestamp from the system clock is done using clock.unix_timestamp:

pub fn send_message(ctx: Context<SendMessage>, topic: String, content: 
String) -> ProgramResult {
    let message_account: &mut Account<Message> = &mut ctx.accounts.
message;
    let author: &Signer = &ctx.accounts.author;
    let clock: Clock = Clock::get().unwrap();

    message_account.author = *author.key;
    message_account.timestamp = clock.unix_timestamp;
    // Additional logic involving topic and content assignment to the 
message_account
    // ...

    Ok(())
}

Lastly, storing the provided topic and content parameters in their respective properties within 
the message_account variable completes the process:

pub fn send_message(ctx: Context<SendMessage>, topic: String, content: 
String) -> ProgramResult {
    let message_account: &mut Account<Message> = &mut ctx.accounts.
message;
    let author: &Signer = &ctx.accounts.author;
    let clock: Clock = Clock::get().unwrap();

    message_account.author = *author.key;
    message_account.timestamp = clock.unix_timestamp;
    message_account.topic = topic;
    message_account.content = content;

    Ok(())
}

This comprehensive process ensures that a message account is meticulously created and equipped 
with the correct information, setting the foundation for a robust message creation mechanism within 
our Solana program.
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Safeguarding against invalid data

Safeguarding against invalid data is a critical aspect of any dApp built on Solana. In the realm of 
blockchain, ensuring the integrity and validity of data is paramount, given its immutable nature 
once recorded. In Solana’s decentralized ecosystem, where every piece of information resides within 
an account, maintaining the accuracy and authenticity of data becomes even more crucial. Invalid 
or corrupted data can disrupt the entire system, affecting functionalities, compromising security, 
and eroding user trust. Hence, implementing robust measures to safeguard against invalid data is a 
fundamental pillar in developing reliable, secure, and resilient dApps on the Solana blockchain. This 
entails employing stringent validation mechanisms, ensuring data integrity during processing and 
storage, and integrating fail-safes to rectify or prevent erroneous data from impacting the system’s 
performance and overall functionality.

Ensuring the validity and integrity of data within our Solana program is crucial for maintaining 
system reliability. While Anchor’s account constraints provide a level of protection against certain 
invalid scenarios, we need to implement additional checks to enforce our specific data requirements.

In our program, we’ve designated the topic and content properties as String types, allocating 
50 characters for the former and 280 characters for the latter. However, as the String type doesn’t 
inherently limit the number of characters, there’s a possibility for users to exceed these limits, potentially 
causing issues. For instance, a user could input a topic of 280 characters and content of 50 characters, or 
even content that’s (280 + 50) * 4 = 1,320 characters long, utilizing the String type’s flexible nature.

To prevent such occurrences and ensure compliance with our predefined constraints, we’re implementing 
safeguards within our code. By introducing conditional checks using if statements before hydrating 
our message account, we’ll verify that both the topic and content parameters adhere to our 
character limits. Utilizing the chars().count() method enables us to accurately assess the 
number of characters within a String type, as opposed to the byte count provided by the len() 
method associated with vectors.

Here’s a snippet of code showcasing these validations:

pub fn send_message(ctx: Context<SendMessage>, topic: String, content: 
String) -> ProgramResult {
    let message: &mut Account<Message> = &mut ctx.accounts.message;
    let sender: &Signer = &ctx.accounts.sender;
    let clock: Clock = Clock::get().unwrap();

    if topic.chars().count() > 50 {
        // Return an error to handle the exceeding topic character 
limit...
    }

    if content.chars().count() > 280 {
        // Return an error to handle the exceeding content character 
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limit...
    }

    message.sender = *sender.key;
    message.timestamp = clock.unix_timestamp;
    message.topic = topic;
    message.content = content;
    Ok(())
}

These conditional statements, when triggered, will halt the execution of the instruction and return 
an error, effectively preventing the acceptance of invalid data that doesn’t align with our specified 
constraints. This meticulous validation process ensures the accuracy and compliance of incoming 
data, fortifying the robustness of our Solana dApp against potential data integrity issues.

Anchor simplifies error handling by enabling the definition of an ErrorCode enum using the 
#[error_code] Rust attribute. This enum allows us to categorize various errors within our Solana 
program and associate each error type with a descriptive message using the #[msg("...")] attribute.

Let’s integrate our custom ErrorCode enum into the existing code base. By defining two specific 
errors—one for cases when the topic exceeds the character limit and another for exceeding the content’s 
character limit—we establish a clear framework for handling these scenarios.

Here’s the ErrorCode enum, along with its designated errors placed at the end of the lib.rs file:

#[error_code]
pub enum ErrorCode {
    #[msg("The provided topic should be 50 characters long maximum.")]
    TopicTooLong,
    #[msg("The provided content should be 280 characters long 
maximum.")]
    ContentTooLong,
}

Implementing these errors into our message-sending logic involves utilizing conditional checks to 
verify the length of the topic and content parameters. If either parameter exceeds its predefined 
character limit, the respective error from our ErrorCode enum will be returned using the Err 
variant, effectively halting the instruction and indicating the specific error:

anchor_lang::solana_program::entrypoint::ProgramResult;
pub fn send_message(ctx: Context<SendMessage>, topic: String, content: 
String) -> ProgramResult {
    let message: &mut Account<Message> = &mut ctx.accounts.message;
    let sender: &Signer = &ctx.accounts.author;
    let clock: Clock = Clock::get().unwrap();
    if topic.chars().count() > 50 {
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        return Err(error!(ErrorCode::TopicTooLong).into());
    }
    if content.chars().count() > 280 {
        return Err(error!(ErrorCode::ContentTooLong).into()
    }
    Message.author= *author.key;
    message.timestamp = clock.unix_timestamp;
    message.topic = topic;
    message.content = content;
    Ok(())
}

By incorporating these error-handling mechanisms, we fortify our Solana dApp against potential 
issues stemming from invalid data input, ensuring stringent adherence to our predefined constraints. 
Furthermore, this setup allows easy scalability—additional error types and guards can be seamlessly 
added and expanded upon as our program evolves.

Instruction versus transaction

Understanding nuances between instructions and transactions within the Solana blockchain ecosystem 
is fundamental to developing efficient and effective dApps. In Solana, these terms represent distinct 
components that contribute to the execution and management of operations on the blockchain. 
Instructions and transactions serve unique purposes and play vital roles in orchestrating decentralized 
processes while adhering to Solana’s high-performance and scalable architecture.

Instructions serve as fundamental units of operations within Solana’s smart contracts or programs. 
These instructions encapsulate specific actions or tasks that are executed by Solana’s validators 
across the network. They embody granular commands such as transferring tokens, updating data, or 
triggering specific functions within smart contracts. Each instruction carries out a single operation 
and contains information and parameters necessary to perform the intended action. Consequently, a 
single transaction in Solana can encompass multiple instructions, allowing for efficient batch processing 
and the execution of various operations within a single atomic transaction.

On the other hand, transactions in Solana act as containers or bundles that group multiple instructions 
together, forming a cohesive set of actions to be executed on the blockchain. These transactions serve 
as the means to atomically execute a sequence of instructions, ensuring that either all operations within 
the transaction succeed or none of them do. Transactions also include essential metadata such as 
signatures, timestamps, and fee information necessary for validation and processing by Solana’s network.

Distinguishing between instructions and transactions is crucial for dApp developers to optimize the 
execution of tasks on the Solana blockchain. Understanding how instructions encapsulate specific 
actions and how transactions bundle these instructions for atomic execution allows for the creation 
of sophisticated and efficient dApps. By leveraging the flexibility and scalability inherent in Solana’s 
architecture, developers can design dApps that achieve precise and complex functionalities while 
maintaining the integrity and security of operations within the blockchain network.
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Moving on, we will now understand how to create tests for our instructions.

Creating tests for our instructions
Testing the functionality and integrity of instructions within a Solana-based dApp is a critical step in 
ensuring the reliability and robustness of smart contracts or programs. As developers craft intricate 
instructions to execute specific tasks on the blockchain, validating these instructions through 
comprehensive testing becomes indispensable. The testing process involves creating scenarios that 
mimic real-world interactions with the dApp, verifying that instructions execute as intended and 
handle various edge cases or unexpected behaviors gracefully. Through systematic and thorough 
testing, developers can identify and rectify potential bugs, vulnerabilities, or inefficiencies in their smart 
contracts, ensuring the stability and security of the dApp once deployed onto the Solana blockchain.

Testing instructions involves simulating diverse scenarios, such as valid and invalid inputs, exceptional 
conditions, and edge cases, to validate the correctness and resilience of instructions in varying 
circumstances. By designing test cases that encompass a wide range of potential interactions, 
developers can ascertain that instructions perform accurately, adhere to predefined logic, and respond 
appropriately to unexpected situations. Additionally, comprehensive testing aids in benchmarking 
the performance of instructions, ensuring they meet expected throughput and latency requirements 
within the Solana network.

Delving into the world of testing might seem less glamorous, but it’s a gateway to understanding our 
program’s interaction mechanisms and user experiences. While our focus so far has been on developing 
a blockchain-based program, it’s time to venture to the other side—the client interface.

This transition introduces us to the realm of client-side operations, akin to traditional web server-client 
interactions. To test our Solana program, we’ll utilize a JavaScript client temporarily. This serves as 
an invaluable bridge between our blockchain program and the forthcoming Vue.js based JavaScript 
client, allowing us to perfect our interactions with the program before deploying the frontend.

Interacting with the Solana blockchain involves leveraging its JSON RPC API. Despite the technical 
nomenclature, it essentially functions as an API enabling communication. Simplifying this process, 
Solana offers the @solana/web3.js JavaScript library, which streamlines interaction with the 
RPC API. This library furnishes an array of asynchronous methods nested within a Connection 
object. This object operates within a cluster, defining the destination for requests—be it localhost, 
devnet, or any other designated cluster. To launch our dApp to blockchain we need to first test it 
on localhost. For the local testing purposes, we’ll employ the localhost cluster, initiating our 
program to blockchain.

Let’s talk briefly talk about the clusters with evolving visual representation. The initial diagram (Figure 7.7) 
illustrates two key nodes—an overarching Cluster node connected to a nested Connection node.
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Figure 7.7 – Illustration of a cluster

Understanding how to communicate with the Solana blockchain is one facet, but authenticating 
transactions requires unique identity verification. This validation is achieved through the utilization of a 
Wallet object, essential for accessing the user’s key pair—a fundamental element in transaction signing.

Thankfully, the convenience doesn’t end there. Anchor extends its support to the client side with 
its @project-serum/anchor JavaScript library, simplifying this process further. This library 
introduces a Wallet object that streamlines transaction signing by incorporating the necessary key 
pair. Beyond that, it provides a Provider object, amalgamating both the connection and wallet 
functionalities. Seamlessly integrated, this Provider object ensures that the wallet’s signature is 
automatically included in outbound transactions, making interactions with the Solana blockchain 
on behalf of a user’s wallet smooth and effortless.

Figure 7.8 visually reinforces this interconnection: the Cluster node linked to the Connection node 
signifies the foundational communication structure, while the subsequent link from the Wallet node 
to the Provider node indicates the unified functionality encapsulated within the Provider object:

Figure 7.8 – Illustration of the usage of wallet and connection
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Remember that handy IDL file named idl/ generated by Anchor whenever we run anchor build? 
That file is a goldmine of structured program details—it encapsulates our program’s public key, 
instructions, and accounts in a neatly organized format. Now, consider merging this IDL file, packed 
with comprehensive program knowledge, with the Provider object we discussed earlier—the one 
that effortlessly communicates with the Solana blockchain on behalf of a wallet. Imagine the synergy!

Here’s where Anchor delivers yet another game-changer: the Program object. This nifty addition 
utilizes both the IDL file and the Provider object. It crafts a tailored JavaScript API, mirroring 
every aspect of our Solana program. With this Program object, interacting with our Solana program 
becomes a breeze, even on behalf of a wallet. No need to delve into the underlying API intricacies—it’s 
all streamlined (Figure 7.9):

Figure 7.9 – Developer-centric experiences in Solana development

This amalgamation of the IDL file’s insights and the Provider object’s functionality empowers 
developers to effortlessly engage with their Solana programs, all thanks to Anchor’s innovative approach. 
It’s the final piece completing the puzzle of developer-centric experiences in Solana development.

Creating a client for tests

Let’s dive into practical implementation by setting up a Program object for use in our tests. No 
need to import additional JavaScript libraries—both necessary libraries, @solana/web3.js and 
@project-serum/anchor, come pre-packaged in every Anchor project. Referring to the earlier 
diagram, two critical questions stand: which cluster and which wallet to utilize? Anchor simplifies 
this process by generating a Provider object, leveraging the configurations specified within our 
Anchor.toml file.
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Specifically, it looks for your provider configurations, which typically resemble the following:

toml
[provider]
cluster = "localnet"
wallet = "/Users/{your username}/.config/solana/id.json"

These configurations serve as directives for the Provider object. For instance, it automatically 
selects the localhost cluster, making use of a local ledger. Additionally, it knows precisely where 
to locate your key pair on your local machine.

This seamless configuration handling by Anchor ensures that our Provider object is equipped with 
the necessary settings, paving the way for effortless interaction with our Solana program. Navigate to 
the test file, typically located at tests/solana-custom.ts. Inside the describe() method, 
you’ll encounter the following initial lines of code:

// Configure the client to use the local cluster.
anchor.setProvider(anchor.Provider.env());
const program = anchor.workspace.SolanaMessage as 
Program<SolanaMessage>;

The first line is a call to anchor.Provider.env(), a method that generates a new Provider 
object using the configurations specified in our Anchor.toml file. This process follows this simple 
formula: Cluster + Wallet = Provider. Subsequently, this newly created provider is 
registered using the anchor.setProvider method, ensuring that our tests will interact with the 
specified Solana network environment.

Moving to the second line, it employs the registered provider to create a new Program object. In 
TypeScript, this object is tied to the specific SolanaCustom program generated by Anchor during the 
anchor build process. This linkage to the SolanaCustom program type enhances the development 
experience by enabling useful autocompletion features within code editors. And just like that, our 
test client is all set up and ready to be used!

Sending a message

Start by removing the default test template in the tests/solana-custom.ts file. Replace it 
with the following code snippet:

it('can send a new message', async () => {
    await program.rpc.sendMessage('TOPIC HERE', 'CONTENT HERE', {
        accounts: {
            // Accounts here...
        },
        signers: [
            // Key pairs of signers here...
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        ],
    });
});

Now, let’s break down this test scenario:

1. Test setup: We’ve initiated a new test named can send a new message using Mocha’s 
it method, which is ideal for creating individual test cases.

2. Asynchronous function: This test function is marked as async because it involves asynchronous 
operations. Specifically, we’ll await the completion of the transaction before proceeding to 
verify the outcome.

3. Interacting with the program: Using the Program object, which encapsulates our Solana 
program, we access the rpc object. This rpc object mirrors our program’s instructions. In this 
case, to trigger the SendMessage instruction, we call program.rpc.sendMessage.

4. Providing instruction arguments: The sendMessage method requires two arguments: the 
topic and content of the message. Replace 'TOPIC HERE' and 'CONTENT HERE' with 
your desired topic and content strings.

5. Context and signers: The last argument of the program.rpc method is the context. This 
object contains all necessary accounts for the instruction to execute successfully. Ensure to 
provide the required accounts and their corresponding key pairs in the accounts and 
signers fields, respectively. Note that the wallet’s key pair isn’t explicitly provided, as Anchor 
handles this automatically.

You might notice TypeScript flagging errors due to incomplete data. We’ll gradually add the required data to 
address these issues and progress with the test implementation. Let us fill in the sendMessage method:

it('can send a new message', async () => {
    // Generate a new key pair for the message account (message).
    const message = anchor.web3.Keypair.generate();

    // Send a message with a space theme (topic: space exploration, 
content: Discovering new worlds!)
    await program.rpc.sendMessage('space exploration', 'Discovering 
new worlds!', {
        accounts: {
            message: message.publicKey, // Define the message account.
        },
        signers: [message], // Add the message key pair as a signer.
    });
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This test scenario simulates the sending of a new message within the Solana program, specifically 
themed around space exploration with the Discovering new worlds! content:

it('can send a new message', async () => {
    // Test code here...
});

This test function, written using the it function from the Mocha test framework, checks the ability 
of the program to send a new message:

const message = anchor.web3.Keypair.generate();

The anchor.web3.Keypair.generate() method creates a new key pair (message), which 
consists of a public key and a corresponding private key. This key pair will be associated with the new 
message account:

await program.rpc.sendMessage('space exploration', 'Discovering new 
worlds!', {
    accounts: {
        message: message.publicKey, // Define the message account.
    },
    signers: [message], // Add the message key pair as a signer.
});

Let’s discuss this method in detail:

• The program.rpc.sendMessage() method invokes the sendMessage instruction in 
the Solana program. This instruction is designed to send a new message.

• The method takes three parameters:

 � space exploration represents the topic of the message, indicating a theme related 
to space exploration.

 � Discovering new worlds! is the content of the message.

 � The third parameter is an object containing the following:

 � accounts field: Defines the accounts involved in the instruction. Here, it specifies the 
message account created earlier.

 � signers field: Provides the necessary signers for executing this instruction. In this case, 
message (the key pair) is added as a signer.

As Anchor automatically includes the wallet as a signer for every transaction, there’s no need for us to 
modify the signers array. Lastly, we must supply the system_program account. In JavaScript, 
Anchor automatically converts snake-case variables to camel-case within our context. This means 
we need to reference the System Program using systemProgram instead of system_program. 
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Accessing Solana’s official System Program’s public key in JavaScript is straightforward. We utilize 
anchor.web3.SystemProgram to access the System Program and retrieve its public key 
through anchor.web3.SystemProgram.programId:

it('can send a new message', async () => {
    // Generate a new key pair for the message account.
    const message = anchor.web3.Keypair.generate();

    // Send a message about "space exploration" with content 
"Discovering new worlds!".
    await program.rpc.sendMessage('space exploration', 'Discovering 
new worlds!', {
        accounts: {
            message: message.publicKey, // Define the message account.
            author: program.provider.wallet.publicKey, // Identify the 
author using the wallet's public key.
            systemProgram: anchor.web3.SystemProgram.programId, // 
Provide the System Program.
        },
        signers: [message], // Add the message key pair as a signer.
    });
});

We’re now set up to send messages to our Solana program. However, simply running this test doesn’t 
validate much. We need to interact further by fetching the newly created account on the blockchain 
and verifying the data matches what we have sent.

To retrieve an account from the blockchain, we utilize additional APIs provided by the Program 
object. Using program.account.message, we gain access to specific methods designed to 
fetch message accounts from the blockchain. Keep in mind that these methods are available for each 
account defined within our Solana program. For instance, if we had a UserProfile account, we’d 
access it using the program.account.userProfile API.

Within these API methods, we employ fetch to precisely retrieve a single account by supplying its 
public key. Anchor comprehends the type of account we are fetching and automatically handles the 
data parsing for us.

Let’s retrieve our recently created Message account. We’ll utilize the public key associated with our 
message key pair to fetch messageAccount. Additionally, let’s log the contents of that account to 
inspect its details:

it('can send a new message', async () => {
    const message = anchor.web3.Keypair.generate();
    await program.rpc.sendMessage('space exploration', 'Discovering 
new worlds!', {
        ...
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    });
const messageAccount = await program.account. message.fetch(message.
publicKey);
    console.log(messageAccount);
});

Now, let’s execute our tests by using the anchor test command. This command is responsible for 
building, deploying, and testing our program on its local ledger. For Apple M1 users, it’s essential to 
run two commands separately, solana-test-validator --no-bpf-jit --reset and 
anchor test --skip-local-validator, ensuring smooth execution. Upon running the 
tests, you’ll notice the expected behavior of the tests passing, which is normal since we haven’t set up 
any specific assertions yet. However, along with the passing tests, you’ll encounter an object logged 
in the console resembling the following structure:

  author: PublicKey {
    _bn: <BN: 6xyMvrMKdjbXuTSjaDULm2vit8Uq6MjCgJj5N6zpJASY6xyMvr>
  },
  timestamp: <BN: 1a2b3c4d>,
  topic: 'space exploration',
  content: 'Discovering new worlds!'
}

We’ve successfully retrieved the account from the blockchain, and it seems to contain the expected 
data, at least for the topic and content fields.

To finalize our test, let’s incorporate assertions. For this purpose, we’ll include the assert library 
at the beginning of our test file. No additional installations are necessary since it’s already a part of 
our dependencies.

Now, instead of the previous console log, we’ll employ assertions from the assert library to do 
the following:

• Verify equality between two entities via assert.equal(actualThing, expectedThing)

• Check if something is truthy with assert.ok(something)

Let’s update our test accordingly, removing the console log and integrating these assertions:

Need to import: import { assert } from "chai";
it('can send a new message', async () => {
    const message = anchor.web3.Keypair.generate();
    await program.methods.sendMessage('space exploration','Discovering 
new worlds!').accounts({message: message.publicKey})
    .signers([message]).rpc();
const messageAccount = await program.account.message.fetch(message.
publicKey);
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    assert.equal(messageAccount.author.toBase58(), program.provider.
publicKey.toBase58());
    assert.equal(messageAccount.topic, 'space exploration');
    assert.equal(messageAccount.content, 'Discovering new worlds!');
    assert.ok(messageAccount.timestamp);
});

There are some things to note here:

• The initial assertion checks the match between the author of the new account and the public key 
of our wallet. It converts both messageAccount.author and program.provider.
wallet.publicKey into Base58 format using the toBase58 method, ensuring equality 
if the resulting strings match. Solana wallet addresses use Base58 encoding of public keys.

• Subsequent assertions validate the accurate storage of the message’s topic and content.

• The final assertion confirms the presence of a non-empty timestamp within the tweet account. 
While verifying the timestamp’s alignment with the current time is possible, it might lead to 
intermittent test failures due to precise time matching. Hence, the test focuses on ensuring the 
existence of a timestamp.

Everything’s set! Running anchor test will confirm the success of our test and validate each of 
its assertions.

We have reached the end of the section, where we delved into testing our Solana program. From 
sending messages to the program to fetching newly created accounts and validating their content, we 
established a robust testing environment. By using assertions and confirming the accuracy of stored 
data, we’ve ensured the correctness and reliability of our Solana application. This process not only 
validates the functionality but also lays the groundwork for further development and integration with 
frontend applications.

Summary
In this chapter, we embarked on an exploration of Solana’s development landscape, focusing on 
practical aspects of account structuring, sizing, and safeguarding against invalid data. We delved into 
nuances of Solana’s data types, storage sizes, and the critical role of maintaining account structures 
for efficient program execution.

The journey began with an understanding of sizing guidelines for various data types in Solana, aiding 
developers in estimating storage sizes effectively. A detailed discussion provided insights into storage 
occupation, facilitating optimal account structuring. Moving forward, we examined the significance of 
storing the author’s public key within the Solana program, elucidating its role in ensuring user-specific 
actions and maintaining data integrity. Safeguarding against invalid data was a key focus, wherein 
we implemented checks within the program to ensure data adherence to predefined constraints. 
These checks aimed to prevent scenarios of data overflow or invalid inputs. Transitioning to practical 
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implementation, we crafted a Solana program for handling messages or tweets, meticulously defining 
account structures, sizing constraints, and integrating checks to validate inputs. The chapter underscored 
the strategic structuring of Solana programs, emphasizing the importance of sizing, validation, and 
efficient storage allocation.

As the chapter progressed, we shifted focus to writing tests for instructions, employing JavaScript clients 
to interact with the Solana blockchain. The testing phase revolved around executing transactions, 
validating account creations, and employing assertions to ensure data accuracy. The testing process 
concluded with successful validation, marking a crucial milestone in confirming the accuracy and 
reliability of our Solana program, setting the stage for further development and integration.

In the upcoming chapter, we will explore the NEAR blockchain, introducing its core components—
accounts, transactions, and shards—to illuminate how they facilitate secure and efficient smart contract 
operations. We’ll then dive into the intricacies of smart contract development on NEAR, covering 
everything from contract deployment and upgrades to testing and security best practices.



8
Exploring NEAR  

by Building a dApp

In the fast-paced world of blockchain technology, the NEAR Protocol shines as a pioneering platform 
for building decentralized applications (dApps). Its remarkable focus on usability, scalability, and 
developer-friendly features has made it the preferred choice for diverse applications. This chapter 
provides an essential overview of NEAR and why it stands out in the world of dApp development.

The NEAR Protocol represents a paradigm shift in blockchain development. It offers a robust 
infrastructure with high performance and user-friendliness at its core. NEAR’s unique sharded 
architecture ensures scalability by parallelizing transactions, enabling an impressive throughput of 
thousands of transactions per second. Its developer-centric approach abstracts complex blockchain 
mechanics, allowing developers to focus on creating secure and efficient smart contracts.

By the end of this chapter, you’ll have a comprehensive understanding of NEAR’s smart contract 
development, ready to leverage its transformative capabilities and contribute to the vibrant dApp ecosystem.

In this chapter, we’ll cover the following key topics:

• Introducing NEAR

• Learning about the advanced concepts of NEAR

• Getting started with the NEAR blockchain

• Creating our first project with NEAR
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Technical requirements
Here’s what you will need to get started with the NEAR blockchain.

Prerequisites

To develop a smart contract, you will need to install Node.js. If you want to use Rust as your main 
language, then you’ll need to install rustup as well.

You’ll also need the following:

• Node.js: Download and install Node.js (https://nodejs.org/en/download/)

• Rust and Wasm:

I. Follow these instructions for setting up Rust: https://doc.rust-lang.org/
book/ch01-01-installation.html.

II. Then, add the wasm32-unknown-unknown toolchain, which enables compiling 
Rust to WebAssembly (Wasm) – https://webassembly.org/– the low-level 
language used by the NEAR platform:

# Installing Rust in Linux and MacOS
curl --proto '=https' --tlsv1.2 https://sh.rustup.rs -sSf | 
sh
source $HOME/.cargo/env

# Add the wasm toolchain
rustup target add wasm32-unknown-unknown

Next, we must set up the environment with the required installations.

Installation

To begin your journey with the NEAR Protocol and start developing dApps, you’ll need to set up 
the necessary tools and environment. This installation guide will walk you through the process of 
installing the NEAR SDK and the NEAR command-line interface (CLI) on various platforms, 
including Ubuntu, Windows, and macOS. By following these steps, you’ll be well-equipped to dive 
into the world of NEAR development.

Let’s get started by ensuring you have all the prerequisites in place and have installed the essential 
components for NEAR development. Choose the instructions that match your operating system to 
seamlessly set up your development environment.

https://nodejs.org/en/download/
https://doc.rust-lang.org/book/ch01-01-installation.html
https://doc.rust-lang.org/book/ch01-01-installation.html
https://webassembly.org/
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NEAR CLI installation

To install the NEAR CLI, you can follow these instructions for your preferred OS:

• Ubuntu:

I. Install Rust by running the following command:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | 
sh

II. Add the Cargo bin directory to your PATH:

source $HOME/.cargo/env

III. Install the NEAR CLI by running the following command:

cargo install near-cli --version 2.1.0

IV. Verify the installation by running the following command:

 near --version

• Windows:

I. Ensure that you have WSL activated and openup your WSL terminal.

II. Install Rust by running the following command:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | 
sh

III. Add the Cargo bin directory to your PATH:

echo 'export PATH="$HOME/.cargo/bin:$PATH"' >> ~/.bashrc
source ~/.bashrc

IV. Install the NEAR CLI by running the following command:

cargo install near-cli --version 2.1.0

V. Verify the installation by running the following command:

near –version

• macOS:

I. Install Homebrew by running the following command:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.
com/Homebrew/install/HEAD/install.sh)"
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II. Install Rust by running the following command:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | 
sh

III. Add the Cargo bin directory to your PATH:

echo 'export PATH="$HOME/.cargo/bin:$PATH"' >> ~/.zshrc
source ~/.zshrc

IV. Install the NEAR CLI by running the following command:

npm install -g near-cli

V. Verify the installation by running the following command:

near --version

Now that we have installed NEAR, let’s talk about why the NEAR blockchain is a preferred choice to 
create dApps and explore the core concepts of NEAR.

Introducing NEAR
In this section, we’ll embark on an exciting journey to explore the reasons why developers should choose 
the NEAR blockchain as their platform of choice for building dApps. We’ll delve into the essential 
concepts that form the foundation of NEAR’s ecosystem, starting with an in-depth understanding of 
accounts, addresses, and access keys. Furthermore, we’ll unravel the intricacies of smart contracts and 
the blockchain state in NEAR, equipping developers with the knowledge to unlock the full potential 
of this innovative platform.

Why choose NEAR?

The NEAR blockchain offers compelling reasons for Rust developers to choose it as their preferred 
platform for developing and deploying smart contracts. Rust is a highly robust and secure programming 
language known for its memory safety and performance, and NEAR provides a seamless integration 
of Rust into its development stack, making it an ideal choice for Rust developers.

Here are the key factors that make NEAR an attractive option:

• Native support for Rust: NEAR natively supports Rust as one of its primary programming 
languages for smart contract development. This means that Rust developers can leverage their 
existing expertise and experience to build smart contracts on NEAR without the need to learn 
a new programming language or toolset. They can capitalize on Rust’s safety features and its 
strong ecosystem of libraries and tools while benefiting from NEAR’s unique capabilities.
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• Memory safety and performance: Rust’s memory safety features, such as ownership and 
borrowing, significantly reduce the risk of common programming errors such as null pointer 
dereferences and data races. This makes Rust an excellent choice for writing secure smart 
contracts. NEAR’s integration with Rust ensures that developers can harness these advantages, 
resulting in highly reliable and performant smart contracts.

• Scalability and high throughput: NEAR’s sharded architecture and advanced consensus 
mechanism enable high scalability and transaction throughput. Rust developers can build 
applications that can handle thousands of transactions per second, making NEAR well-suited 
for demanding use cases with a large user base or complex interactions.

• Developer-friendly environment: NEAR offers a developer-friendly environment with robust 
tooling, extensive documentation, and a supportive community. Developers can access a range of 
resources, including the NEAR SDKs, code examples, and tutorials, to accelerate their learning 
and development process. The NEAR ecosystem fosters collaboration and knowledge sharing, 
allowing developers to engage with like-minded individuals and benefit from shared experiences.

• Ecosystem opportunities: NEAR has been gaining traction in the blockchain space, attracting 
numerous projects and collaborations. By choosing NEAR, Rust developers can tap into a 
thriving ecosystem of dApps, tools, and services. This presents opportunities for collaboration, 
partnerships, and building decentralized solutions that can reach a broader user base.

NEAR’s native support for Rust, combined with its scalability, performance, developer-friendly 
environment, and growing ecosystem, positions it as an excellent choice for Rust developers seeking 
to develop and deploy smart contracts. By leveraging their Rust expertise, developers can build secure, 
efficient, and scalable dApps on the NEAR blockchain.

Understanding the foundational elements of NEAR

Now, let’s explore the foundational elements of NEAR’s architecture, which are accounts, addresses, 
access keys, smart contracts, and state.

Accounts

In the NEAR ecosystem, accounts play a pivotal role, serving as the entry point for users to interact 
with dApps. Understanding the intricacies of accounts is crucial for developers seeking to build secure 
and user-friendly applications on the NEAR blockchain. Let’s dive deep into the details of account IDs, 
implicit accounts, and named accounts, providing insightful code examples along the way:

• Account ID: At the core of NEAR’s account structure is the account ID. It is a unique identifier 
associated with each account on the NEAR blockchain. Account IDs are human-readable and 
are typically represented as strings. For instance, alice.near or my_dapp.near could 
be valid account IDs. Account IDs act as the addresses to which funds can be sent and provide 
access to the associated account’s data and smart contract functionality.
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• Implicit accounts: Implicit accounts are a special type of account in NEAR that are created 
automatically as part of a transaction. When a transaction is sent from a particular account 
ID that does not exist, NEAR automatically creates an implicit account with that ID. Implicit 
accounts are useful for one-time interactions or temporary data storage within a transaction. 
They don’t have associated private keys and cannot receive funds or store long-term data. Here’s 
an example of implicit account creation in Rust:

// Create an implicit account in a transaction
#[near_bindgen]
pub fn create_implicit_account(&mut self, account_id: String) {
    let account_id: ValidAccountId = account_id.try_into().
unwrap();
    env::log(format!("Creating implicit account: {}", account_
id).as_bytes());

    // Perform actions with the implicit account
    // ...
}

• Named accounts: Named accounts are accounts with persistent state and private keys. They 
can receive funds, store data, and interact with other smart contracts. Named accounts provide 
a more permanent identity for users or dApps within the NEAR ecosystem. Developers can 
create and manage named accounts programmatically using NEAR’s SDKs.

Understanding the distinctions between account IDs, implicit accounts, and named accounts provides 
developers with the flexibility to design tailored solutions for various use cases within the NEAR 
ecosystem. By utilizing the power of accounts, developers can enable secure and seamless interactions 
for their users and build robust dApps on the NEAR blockchain.

Now, we will delve into the details of NEAR addresses, exploring their structure and their functions 
within the NEAR blockchain ecosystem.

Addresses

Addresses are a vital component of the NEAR blockchain, serving as unique identifiers for accounts 
and facilitating secure transactions and interactions within the network. Understanding addresses is 
essential for developers seeking to build dApps on the NEAR blockchain. Let’s delve into the intricacies 
of addresses, shedding light on their structure and significance.

In the NEAR ecosystem, addresses are derived from account IDs, which act as human-readable 
representations of accounts. NEAR addresses are cryptographic hashes generated from account IDs, 
providing a secure and tamper-resistant way to identify accounts. The cryptographic nature of addresses 
ensures the integrity and authenticity of transactions and interactions within the NEAR blockchain.
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NEAR addresses have two primary functions:

• Transaction routing: NEAR addresses play a crucial role in routing transactions to the 
intended recipients. When initiating a transaction, the sender specifies the destination account’s 
address to ensure that the transaction reaches the correct recipient. The NEAR network utilizes 
addresses to determine the appropriate shard, or a subset of nodes, responsible for processing 
the transaction, enabling efficient and scalable transaction processing.

• Secure transactions and interactions: NEAR addresses provide a cryptographic layer of 
security. The private key associated with an address is used to sign transactions, verifying the 
authenticity and integrity of the sender. This ensures that only the account owner or authorized 
entity can initiate transactions on behalf of that account. NEAR’s address structure and 
cryptographic mechanisms enhance the security of funds, data, and smart contract interactions 
within the ecosystem.

Developers working with NEAR can leverage addresses to enable secure and seamless user experiences. 
By incorporating addresses into their dApps, developers can enable users to interact with the blockchain 
securely, send and receive funds, and access specific functionalities within their applications.

Now, let’s talk about access keys and their pivotal role within the NEAR Protocol, encompassing 
account management, security, and enhancing flexibility throughout the ecosystem.

Access keys

Access keys are a fundamental component of the NEAR Protocol, playing a vital role in account 
management, security, and flexibility within the ecosystem.

Access keys provide a powerful mechanism for managing account permissions and controlling access 
to accounts and their associated resources within the NEAR Protocol. They offer several key benefits:

• Enhanced security: Access keys allow fine-grained control over the capabilities granted to 
different entities interacting with an account. This enables users to limit access to third-party 
applications or smart contracts, reducing the risk of unauthorized actions.

• Granular permissions: Access keys enable developers to grant specific permissions to different 
entities. This allows for modular and secure account management, ensuring that only authorized 
operations can be performed by designated entities.

• Flexibility and delegation: Access keys provide the flexibility to delegate certain functionalities to 
other accounts or smart contracts, enabling seamless integration and interaction between dApps. 
This facilitates complex multi-signature setups and delegation of authority for account management.
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The NEAR Protocol supports two types of access keys:

• Full access keys: Full access keys grant complete control over an account, allowing the holder 
to perform any operation on behalf of the account. These keys are typically used by account 
owners or trusted entities requiring full control over the associated account.

• Function call keys: Function call keys, also known as limited access keys, grant permissions 
for specific actions or function calls within a smart contract. They allow fine-grained control 
over what operations can be performed on the account. This key type is commonly used for 
the delegation of specific tasks to trusted third-party contracts or for executing specific actions 
without granting full account access.

Access keys are particularly important in the context of locked accounts, where the account owner 
designates a specific access key to manage the account’s resources. A locked account requires the usage 
of a specific access key for any transaction or operation to be executed successfully. This provides an 
additional layer of security because even if an attacker gains access to other access keys associated 
with the account, they cannot perform any operation without the designated access key.

Here’s an example of creating a full access key and a function call key in Rust:

// Create a full access key
#[near_bindgen]
pub fn create_full_access_key(&mut self, public_key: PublicKey) {
    self.env().key_create(
        public_key,
        &access_key::AccessKey {
            nonce: 0,
            permission: access_key::Permission::FullAccess,
        },
    );
}

// Create a function call key
#[near_bindgen]
pub fn create_function_call_key(&mut self, public_key: PublicKey) {
    self.env().key_create(
        public_key,
        &access_key::AccessKey {
            nonce: 0,
            permission: access_key::Permission::FunctionCall {
                allowance: access_key::FunctionCallPermission {
                    allowance: 10.into(),  // Maximum number of 
function call allowances
                    receiver_id: "receiver_account".to_string(),
                    method_names: vec!["allowed_method".to_string()],
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                },
            },
        },
    );
}

Access keys empower NEAR account holders to delegate permissions, enhance security, and enable 
flexible account management. By leveraging different key types and implementing access key strategies 
effectively, developers can build secure and dynamic dApps within the NEAR Protocol.

Now that we’ve learned about access keys and how they empower NEAR account holders, let’s shift 
our focus to smart contracts, the foundational building blocks of dApps in the NEAR blockchain.

Smart contracts

Smart contracts form the backbone of dApps in the NEAR blockchain, enabling trustless interactions 
and automating business logic. In this section, we’ll delve into the concept of smart contracts 
and their significance within the NEAR ecosystem. We’ll also provide code examples to illustrate 
their implementation.

In smart contracts, mutability is a key feature that dictates whether a contract can be updated 
post-deployment. Immutable contracts offer high security and trust by locking the code against 
changes, ensuring the original rules remain intact but at the cost of being unable to correct any flaws. 
Conversely, upgradeable contracts allow for modifications to address bugs, enhance functionality, 
or meet evolving needs, offering flexibility but adding complexity and raising security concerns to 
ensure updates are securely managed and do not undermine the contract’s or users’ interests. NEAR 
addresses these challenges by providing developers with tools and governance models to strike a 
balance between security and adaptability, guiding them to choose the level of mutability that best 
suits their application’s requirements and security needs.

Smart contracts are self-executing agreements that contain the rules and logic governing the interactions 
between participants in a decentralized system. In the NEAR blockchain, smart contracts are written 
using languages such as Rust, AssemblyScript, or TypeScript, and they reside on the blockchain, 
ensuring transparency and immutability.

Here’s an example of a simple smart contract written in Rust using the NEAR SDK:

use near_sdk::borsh::{self, BorshDeserialize, BorshSerialize};
use std::collections::HashMap;
use near_sdk::near_bindgen;
use near_sdk::borsh;
#[near_bindgen]
#[derive(Default, borsh::BorshSerialize, borsh::BorshDeserialize)]
pub struct MyContract {
    data: HashMap<u64, u64>
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}
#[near_bindgen]
impl MyContract {
    pub fn insert_data(&mut self, key: u64, value: u64) -> Option<u64> 
{
        self.data.insert(key, value)
    }
    pub fn get_data(&self, key: u64) -> Option<u64> {
        self.data.get(&key).cloned()
    }
}

In this example, we define a smart contract called MyContract.

Smart contracts in the NEAR blockchain offer several advantages. They provide transparency and 
immutability, ensuring that contract logic and data cannot be tampered with once deployed. The NEAR 
blockchain’s execution environment guarantees security and fault tolerance, ensuring that contracts 
operate as intended. Additionally, smart contracts enable the automation of business logic, reducing 
the need for intermediaries and increasing efficiency.

Next, we will explore the concept of state in the NEAR ecosystem, focusing on account metadata and 
contract state since they play crucial roles in managing data within the blockchain.

State management

State management facilitates the storage and retrieval of data associated with accounts and smart 
contracts. Let’s explore the concept of state in the NEAR ecosystem with a focus on account metadata 
and contract state.

In the NEAR blockchain, accounts can store metadata alongside their basic information. Account 
metadata includes additional details such as profile information, user preferences, or any other custom 
data relevant to the account. This metadata provides a flexible way to personalize and enhance the 
user experience within dApps. Developers can store and update account metadata using the NEAR 
SDKs and access it within their applications.

Here’s an example of storing account metadata:

// Import necessary libraries
use near_sdk::borsh::{self, BorshDeserialize, BorshSerialize};
use near_sdk::env;
use near_sdk::near_bindgen;

// Define the contract structure
#[near_bindgen]
#[derive(Default, BorshDeserialize, BorshSerialize)]
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pub struct YourContract {
    // Declare a field to store account metadata
    pub account_metadata: Option<String>,
}

// Implement methods for storing and retrieving account metadata
#[near_bindgen]
impl YourContract {
    // Method to set or update account metadata
    pub fn set_account_metadata(&mut self, metadata: String) {
        self.account_metadata = Some(metadata);
    }

    // Method to retrieve account metadata
    pub fn get_account_metadata(&self) -> Option<String> {
        self.account_metadata.clone()
    }
}

Smart contracts on the NEAR blockchain maintain their state, which represents the data and variables 
associated with the contract’s logic and functionality. The contract state includes any information 
required for the contract to perform its operations and maintain its internal state. This can include 
user balances, storage of user-specific data, and any other relevant contract-specific information. The 
contract state is persisted on the blockchain and can be accessed and modified through contract methods.

Here’s an example of a smart contract in Rust on the NEAR blockchain, showcasing the management 
of a contract state:

use near_sdk::borsh::{self, BorshDeserialize, BorshSerialize};
use near_sdk::near_bindgen;

#[near_bindgen]
#[derive(Default, BorshDeserialize, BorshSerialize)]
pub struct MyContract {
    counter: i32,
}

#[near_bindgen]
impl MyContract {
    pub fn new() -> Self {
        Self { counter: 0 }
    }

    pub fn increment(&mut self) {
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        self.counter += 1;
    }

    pub fn get_counter(&self) -> i32 {
        self.counter
    }
}

In this example, the MyContract struct represents the smart contract with the counter variable 
as its state. The new function initializes the state with a default value of 0. The increment function 
increments the counter, and the get_counter function retrieves its value.

This Rust implementation utilizes the NEAR SDK’s attributes and derives serialization traits using the 
borsh crate. These attributes and traits ensure that the contract state is properly serialized/deserialized 
when interacting with the NEAR blockchain.

Now that we have learned about the core concepts of the NEAR blockchain, it’s time to dive into some 
advanced concepts that will be helpful when we start building out our projects on NEAR.

Learning about the advanced concepts of NEAR
In this section, we’ll delve into the advanced concepts of the NEAR blockchain, expanding our 
understanding of its inner workings and exploring key topics that enable developers to build robust 
and scalable dApps. We will cover essential concepts such as transactions and gas, data flow, token 
management, storage optimization, validator networks, and the NEAR SDK.

First, we’ll talk about transactions and gas.

Transactions and gas

Transactions are the fundamental units of activity in the NEAR blockchain. They represent actions 
performed by accounts, such as transferring tokens, calling contract methods, or updating account 
data. To execute a transaction, users need to allocate gas, a unit of computation and storage resource, 
which determines the complexity and cost of the transaction.

Let’s explore a code example of a simple transaction using the NEAR SDK for Rust:

use near_sdk::borsh::{self, BorshDeserialize, BorshSerialize};
use near_sdk::env;
use near_sdk::near_bindgen;
use near_sdk::serde_json::*;
#[near_bindgen]
#[derive(Default, BorshDeserialize, BorshSerialize)]
pub struct MyContract {
    // Contract state and functionality
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}
#[near_bindgen]
impl MyContract {
    pub fn transfer_tokens(&mut self, receiver_id: String, amount: 
u64) {
        let current_account_id = env::current_account_id();
        let transfer_action = json!({ "receiver_id": receiver_id, 
"amount": amount });
        let transfer_call = json!({ "contract": current_account_id, 
"method": "transfer", "args": transfer_action, "gas": env::prepaid_
gas() - near_sdk::Gas(100_000_000), // Subtracting 100 TeraGas for 
additional actions
 "attached_gas": near_sdk::Gas(5_000_000_000), // 5 GigaGas attached 
to cover the cost
  "attached_tokens": amount });
        env::promise_create(
            env::current_account_id(),
            "do_transfer",
            transfer_call.to_string().as_bytes(),
            amount.into(),
            0.into(),
        );
    }
}

In this code snippet, we define a MyContract struct with a transfer_tokens method that 
performs a token transfer to a specified receiver account. The gas allocation is crucial for executing 
the transaction successfully. Here, we subtract a certain amount of prepaid gas to accommodate 
additional actions within the same transaction.

Gas allocation helps ensure that the NEAR blockchain’s resources are fairly and efficiently utilized. It 
incentivizes users to optimize their contracts and limit resource-intensive operations to minimize costs. 
By managing gas allocation effectively, developers can design efficient and cost-effective transactions, 
promoting scalability and user-friendly experiences within their dApps on the NEAR blockchain.

Data flow

Understanding the data flow within the NEAR blockchain is essential for designing efficient and secure 
dApps. We will examine how data is propagated, processed, and stored across the network, and explore 
strategies for optimizing data management and access. The data flow within the NEAR blockchain 
may initially appear complex, but it follows well-defined rules and can be easily understood.  In this 
section, we will explore the intricacies of data flow within the NEAR blockchain in greater detail.
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To comprehend the data flow, it is helpful to visualize it as an infinite timeline with a starting point but 
no endpoint. Blocks appear at regular intervals on this timeline, and each block contains information 
about the previous block, forming a chain of interconnected blocks. The following diagram helps us 
visualize this:

Figure 8.1 – Diagram to visualize the data flow

The NEAR Protocol employs a sharded nature, which means that multiple parallel networks, known 
as shards, can be active simultaneously. Each shard generates a chunk of a block at specific intervals. 
In the NEAR blockchain, a block is a collection of these block chunks from all shards. In the NEAR 
Protocol documentation, a block chunk is referred to as a chunk.

To better understand the data flow, we can imagine tracks similar to those found in audio/video editing 
applications. Each shard has its own set of tracks, and the top track is reserved for chunks. Chunks 
appear at fixed intervals, typically around one second in the NEAR blockchain. It’s important to note 
that chunks continue to be produced even if no blockchain activity is occurring.

By visualizing the data flow within the NEAR blockchain as tracks and chunks, we can gain a clearer 
understanding of how information is organized and processed. This understanding is essential for 
developers and users alike to navigate the NEAR ecosystem effectively and leverage its capabilities to 
build and interact with dApps.

The following diagram helps us visualize the data flow as tracks and chunks:

Figure 8.2 – NEAR data flow – chunks and shards
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When we say that something is happening within the NEAR blockchain, we refer to the occurrence 
of events that trigger changes within the blockchain. The primary method to initiate these changes 
is by sending a transaction to the blockchain, which contains instructions specifying the desired 
modifications and the identity of the requester.

To execute a transaction, it must be meticulously constructed, signed, and subsequently transmitted 
to the blockchain. After execution, we anticipate receiving a result known as the ExecutionOutcome. 
However, it is important to note that the simplicity of this concept is not entirely accurate when 
applied to the NEAR blockchain.

The NEAR blockchain introduces a unique twist to the transaction process. Rather than immediately 
providing a definitive outcome, transactions within the NEAR blockchain have a conditional nature. 
This means that ExecutionOutcome may vary, depending on the state of the blockchain during 
the transaction’s execution.

Factors such as network congestion, concurrent transactions, and conflicting state changes can influence 
the outcome of a transaction. As a result, developers and users need to account for these conditional 
outcomes when designing and interacting with smart contracts on the NEAR blockchain.

The following diagram illustrates how transactions and receipts can be visualized concerning the 
chunks and tracks as part of the data flow:

Figure 8.3 – Token transfer flow on NEAR

At the inception of a transaction in the NEAR blockchain, it contains the instructions that we wish 
to execute on the blockchain. This transaction is then sent to the NEAR blockchain for processing.



Exploring NEAR by Building a dApp258

However, it’s important to note that the immediate outcome of the transaction execution is merely 
an acknowledgment indicating that the transaction will be executed on the blockchain. This internal 
execution request is known as a receipt. Conceptually, you can envision the receipt as an internal 
transaction that facilitates the transfer of information across different shards within the NEAR blockchain.

Let’s revisit the analogy of tracks to illustrate this process. Suppose we have two accounts, alice.
near and bob.near, residing on different shards. Alice initiates a transaction to transfer tokens 
to bob.near. Upon execution, the transaction generates ExecutionOutcome, which is always 
in the form of a receipt.

However, this receipt cannot be directly executed on the current shard because bob.near resides 
on a different shard. Consequently, the receipt must be transferred to the shard where bob.near 
is located.

Once the receipt reaches the destination shard, it is executed, and the process is considered complete. 
At this point, the tokens have been successfully transferred from alice.near to bob.near.

Thus, the overall scheme can be visualized as a transaction originating from one account, moving 
through the blockchain’s internal processes, and ultimately, being executed on the appropriate shard 
where the recipient account resides. This ensures that transactions and associated receipts are processed 
accurately and efficiently within the NEAR blockchain.

The following diagram helps us to visualize the final schema:

Figure 8.4 – Token transfer flow on NEAR – sharded execution

Now, let’s delve into tokens and practical strategies for safeguarding tokens within the NEAR 
blockchain ecosystem.
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Tokens and avoiding loss

Tokens play a vital role in the NEAR blockchain ecosystem, serving as a means of value transfer and 
enabling various functionalities within dApps. However, it is crucial to implement measures to prevent 
token loss, for reasons such as loss of access key and refunding deleted accounts (when a refund receipt 
is issued for an account, if that account no longer exists, the funds will be dispersed among validators 
proportional to their stake in the current epoch), and to ensure secure token management. Here are 
two ways developers can avoid token loss in the NEAR blockchain, demonstrated using code examples:

• Implementing token transfer safeguards: When transferring tokens, it is essential to include 
checks and validations to prevent accidental loss. For instance, developers can verify that the 
recipient account exists and is valid before initiating the transfer. Here’s an example in Rust 
using the NEAR SDK:

pub fn transfer_tokens2(self, recipient: near_sdk::AccountId, 
amount: near_sdk::Balance) {
        assert!(
            env::is_valid_account_id(&recipient.as_bytes()),
            "Invalid recipient account"
        );
        let sender_balance = account_balance();
        assert!(sender_balance >= amount, "Insufficient 
balance"); // Perform the token transfer
        Promise::new(recipient).transfer(amount);
    }

• Implementing token vesting: Token vesting is a mechanism that gradually releases tokens 
over a specified period to prevent immediate loss or misuse. Developers can create smart 
contracts with token vesting functionality to lock tokens and release them gradually based on 
predetermined conditions. Here’s an example using the NEAR SDK:

pub struct TokenVesting {
    beneficiary: AccountId,
    start_timestamp: u64,
    duration: u64,
    total_tokens: Balance,
}

impl TokenVesting
        pub fn release_tokens(&mut self) {
        let current_timestamp = env::block_timestamp();
        let elapsed_time: u128 = (current_timestamp - self.
start_timestamp).into();
        let duration: u128 = self.duration.into();
        let beneficiary = self.beneficiary.clone();
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        if elapsed_time >= duration {
            Promise::new(beneficiary).transfer(self.total_
tokens);
        } else {
            let tokens_to_release = (self.total_tokens * 
elapsed_time) / duration;
            Promise::new(beneficiary).transfer(tokens_to_
release);
        }
    }
}

By implementing safeguards in token transfers and incorporating token vesting mechanisms, developers 
can mitigate the risk of token loss and enhance the security of token management within the NEAR 
blockchain. These practices promote the responsible handling of tokens and contribute to the overall 
integrity of dApps.

Now, let’s explore the various storage options that NEAR provides to developers for efficient and 
organized data storage within smart contracts. We’ll also provide code examples to illustrate their usage.

Storage options

NEAR provides developers with various data structures for efficient and organized storage of data 
within smart contracts. Let’s explore some of the storage options available on the NEAR blockchain 
along with code examples:

• Vector: Vectors are dynamic arrays that allow efficient storage and retrieval of elements. They 
are useful for collections that can grow or shrink over time. In the following code example, we 
declare a vector of unsigned 64-bit integers (u64) and demonstrate how to add elements to it 
and access specific elements:

// Declare a vector of u64 elements
let mut my_vector: Vec<u64> = Vec::new();

// Add elements to the vector
my_vector.push(10);
my_vector.push(20);
my_vector.push(30);

// Access elements in the vector
let second_element = my_vector[1];
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• LookupSet: LookupSet is an unordered collection of unique elements. It provides efficient 
membership checks. In the following code example, we declare LookupSet of string 
elements, insert values into it, and check for membership:

// Declare a LookupSet of string elements
let mut my_lookupset: LookupSet<String> = LookupSet::new();

// Add elements to the LookupSet
my_lookupset.insert("apple".to_string());
my_lookupset.insert("banana".to_string());

// Check membership
let contains_apple = my_lookupset.contains("apple".to_string());

• UnorderedSet: UnorderedSet is a collection of unique elements. It enables quick iteration over 
stored elements. In the following code example, we declare  UnorderedSet of unsigned 
32-bit integers (u32), add elements to it, and demonstrate how to iterate over the elements:

// Declare an UnorderedSet of u32 elements
let mut my_unorderedset: UnorderedSet<u32> = 
UnorderedSet::new();

// Add elements to the UnorderedSet
my_unorderedset.insert(1);
my_unorderedset.insert(2);

// Iterate over the elements
for element in my_unorderedset.iter() {
    // Process each element
}

• LookupMap: LookupMap is a key-value data structure that provides efficient value retrieval 
based on a given key. In the following code example, we declare a LookupMap structure with 
string keys and unsigned 64-bit integer values (u64), insert key-value pairs, and access 
values based on keys:

// Declare a LookupMap with string keys and u64 values
let mut my_lookupmap: LookupMap<String, u64> = LookupMap::new();

// Add key-value pairs to the LookupMap
my_lookupmap.insert("key1".to_string(), 10);
my_lookupmap.insert("key2".to_string(), 20);

// Access values based on keys
let value = my_lookupmap.get("key1".to_string());
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• UnorderedMap: UnorderedMap is a key-value data structure that does not guarantee any 
specific order of elements. In the following code example, we declare an UnorderedMap 
structure with unsigned 32-bit integer keys (u32) and string values, insert key-value pairs, 
and demonstrate how to iterate over the key-value pairs:

// Declare an UnorderedMap with u32 keys and string values
let mut my_unorderedmap: UnorderedMap<u32, String> = 
UnorderedMap::new();

// Add key-value pairs to the UnorderedMap
my_unorderedmap.insert(1, "value1".to_string());
my_unorderedmap.insert(2, "value2".to_string());

// Iterate over the key-value pairs
for (key, value) in my_unorderedmap.iter() {
    // Process each key-value pair
}

• TreeMap: TreeMap is a data structure that maintains its elements in sorted order based on 
the keys. In the following code example, we declare a TreeMap structure with unsigned 64-bit 
integer keys (u64) and string values, insert key-value pairs, and demonstrate how to iterate 
over the key-value pairs in sorted order:

// Declare a TreeMap with u64 keys and string values
let mut my_treemap: TreeMap<u64, String> = TreeMap::new();

// Add key-value pairs to the TreeMap
my_treemap.insert(3, "value3".to_string());
my_treemap.insert(1, "value1".to_string());
my_treemap.insert(2, "value2".to_string());

// Iterate over the key-value pairs in sorted order
for (key, value) in my_treemap.iter() {
    // Process each key-value pair
}

Now, let’s dive into the vital role that validators play in the NEAR network and explore the consensus 
mechanism known as Proof of Stake (PoS) that’s employed by NEAR. We’ll also discuss how validators 
contribute to the network’s integrity and governance.
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Validators and consensus

Validators are responsible for validating transactions and blocks in the NEAR network. They maintain 
the network’s decentralized nature by participating in the consensus process. Validators are chosen based 
on their stake and reputation, and they actively contribute to block production and network governance.

NEAR employs a consensus mechanism called PoS. In this mechanism, validators are selected based on 
the number of tokens they hold and are willing to stake as collateral. Validators who stake a significant 
amount of tokens have a higher chance of being selected to produce blocks and participate in consensus.

The consensus process in NEAR involves validators collectively agreeing on the state of the blockchain 
and validating transactions. They reach a consensus on the order of transactions and the validity of 
blocks, ensuring that the network remains secure and free from double-spending or malicious activities.

Validators in the NEAR blockchain earn rewards for their participation and successful block production. 
These rewards incentivize validators to act honestly and maintain the network’s integrity. They are 
also responsible for validating and executing smart contracts, ensuring the accuracy and consistency 
of the blockchain state.

Through the validators and consensus mechanism, the NEAR blockchain achieves distributed 
consensus, enabling a secure and decentralized environment for developers to build and deploy 
applications. Validators contribute to the network’s governance, maintain its security, and enable the 
smooth functioning of the NEAR ecosystem, fostering trust and reliability for all participants.

Next, we’ll talk about the NEAR SDK, a powerful toolkit tailored to streamline the development of 
dApps on the NEAR blockchain.

NEAR SDK

In multiple sections of this chapter, we have briefly mentioned the NEAR SDK, but now, it’s time to 
understand it in more detail.

The NEAR SDK is a powerful toolset that empowers developers to build dApps on the NEAR blockchain. 
The NEAR SDK provides a collection of libraries, APIs, and tools that simplify the development 
process, enabling developers to interact with the NEAR blockchain and build innovative applications.

Recently, certain functionalities of the NEAR SDK have been reorganized. Some of the components 
that were part of the NEAR SDK are now available in a separate crate called near_cli. This crate is 
specifically designed to offer command-line tools and utilities for interacting with the NEAR blockchain.

To install near_cli, you can use the following command:

cargo install near-cli-rs

For more detailed information and the latest updates on near_cli, please refer to the official 
documentation at https://docs.near.org/tools/near-cli-rs.

https://docs.near.org/tools/near-cli-rs
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Let’s explore some key features of the NEAR SDK, along with the functionalities provided by near_
cli, through code examples:

• Account creation and contract deployment: The NEAR SDK allows developers to create 
accounts and deploy smart contracts seamlessly. Here’s an example:

const NEAR_RPC_URL: &str = "https://rpc.mainnet.near.org";

// Connect to the NEAR network
let near = near_sdk::connect::connect(near_sdk::Config {
    network_id: "mainnet".to_string(),
    node_url: NEAR_RPC_URL.to_string(),
});

// Create a new account using async/await and Promises API
async fn create_and_deploy() {
    let new_account = near.create_account("new_account").await.
unwrap();

    // Load contract code
    let contract_code = include_bytes!("path/to/contract.wasm");

    // Deploy a contract to the new account using Promises API
    new_account.deploy_contract(contract_code).await.unwrap();
}

// You can call `create_and_deploy` function in an async context

• Interacting with smart contracts: The NEAR SDK provides APIs for interacting with smart 
contracts, making it easy to call contract methods and retrieve data. Here’s an example:

// Instantiate a contract object
let contract = Contract::new(account_id, contract_id, signer);

// Call a method on the contract
contract.call_method("method_name", json!({ "param": "value" 
}));

// Get contract state
let state: ContractState = contract.view_method("get_state", 
json!({}));
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• Handling tokens: The NEAR SDK offers functionalities to handle NEAR tokens within your 
dApps. Developers can transfer tokens, check balances, and implement token-related logic. 
Here’s an example:

// Transfer tokens from one account to another
let sender = near.get_account("sender_account");
let recipient = near.get_account("recipient_account");
sender.transfer(&recipient, 100);

// Check token balance
let balance = recipient.get_balance();

The NEAR SDK provides a comprehensive set of tools and APIs that simplify the development process 
for building dApps on the NEAR blockchain. Its intuitive interface, smart contract deployment 
capabilities, and token-handling features make it a valuable resource for developers seeking to leverage 
the NEAR ecosystem and build innovative dApps.

Now, let’s build our very first NEAR blockchain.

Getting started with the NEAR blockchain
At this point, we have clarity on most of the important concepts of NEAR Protocol. Now, we’ll get 
a bit more hands-on and delve into the core concepts of developing the NEAR blockchain. In this 
section, we will cover essential topics and tools that will equip you with the necessary knowledge to 
build robust dApps on NEAR.

By the end of this section, you will have a solid understanding of the core concepts and tools necessary 
for developing sophisticated dApps on the NEAR blockchain, empowering you to create innovative 
solutions within this thriving ecosystem.

First, we’ll explore the Contract class, which serves as the foundation for your smart contracts 
on NEAR. We will delve into the various modules, types, and structs that can be used to define and 
manipulate data within your contracts.

The Contract class

In NEAR Protocol, the Contract class provides a set of functionalities that allow developers to 
define and interact with smart contracts. The Contract class is written in Rust and serves as the 
bridge between the blockchain and the dApp.

Here’s an example of how to define and use the Contract class in Rust:

use near_sdk::borsh::{self, BorshDeserialize, BorshSerialize};
use near_sdk::collections::Vector;
use near_sdk::{env, near_bindgen, AccountId, Balance, PanicOnDefault, 
Promise, StorageUsage};
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Let us now complete the Contract class:

1. We start by importing the necessary dependencies from the NEAR SDK:

#[near_bindgen]
#[derive(BorshDeserialize, BorshSerialize, PanicOnDefault)]
pub struct MyContract {
    pub items: Vector<String>,
}

2. Next, we define the main contract struct, MyContract, with its associated methods:

impl MyContract {
    pub fn new() -> Self {
        Self {
            items: Vector::new(b"i".to_vec()),
        }
    }

3. The new() constructor function initializes the contract, including the vector of items:

    pub fn add_item(&mut self, item: String) {
        self.items.push(&item);
    }

4. The add_item() function allows us to add items to the vector:

    pub fn get_items(&self) -> Vec<String> {
        self.items.to_vec()
    }

5. The get_items() function retrieves all the items from the vector:

#[near_bindgen]
impl MyContract {
    pub fn contract_metadata(&self) -> ContractMetadata {
        ContractMetadata {
            name: "MyContract".to_string(),
            version: "1.0.0".to_string(),
            // Additional metadata fields...
        }
    }
}
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6. We define additional contract functions, including contract_metadata(), to 
provide metadata:

#[derive(Default, BorshDeserialize, BorshSerialize)]
pub struct ContractMetadata {
    pub name: String,
    pub version: String,
    // Additional metadata fields...
}

7. Finally, we define the ContractMetadata struct to store contract-related information.

In this example, we define a MyContract struct with a Vector collection to store items. The 
add_item and get_items functions modify and retrieve the items, respectively. The contract_
metadata function returns metadata about the contract.

The Contract class simplifies the development process by providing an intuitive interface for 
interacting with smart contracts on the NEAR blockchain. It encapsulates the necessary logic for 
serialization, deserialization, and interaction with blockchain data structures, allowing developers to 
focus on building the core functionality of their dApps.

Now, let’s look into the serialization protocols of NEAR.

The serialization protocols of NEAR

Serialization in the context of the NEAR blockchain is a critical process that transforms data structures 
or object states into a format that can be stored or transmitted and subsequently reconstructed. NEAR 
uses efficient serialization protocols to ensure that data exchanged between smart contracts and the 
blockchain is compact, fast to process, and secure. These protocols play a vital role in optimizing the 
performance and interoperability of dApps on the NEAR platform.

The primary serialization protocol used by NEAR is Borsh, which stands for Binary Object Representation 
Serializer for Hashing. Borsh is designed for optimal speed and safety, aiming to be both compact 
and fast for reading and writing operations. It ensures deterministic serialization, which is crucial 
for blockchain transactions where consistency and predictability of data representation are necessary. 
By leveraging Borsh, developers can ensure their smart contracts are efficient in terms of storage and 
speed, thereby reducing execution costs and enhancing user experience.

Borsh’s deterministic nature also contributes to the security and integrity of smart contracts by 
preventing ambiguities in data representation that could lead to vulnerabilities. This serialization 
protocol supports various data types, including primitives, structs, enums, and collections, making 
it a versatile choice for NEAR developers.

For those interested in diving deeper into the specifics of serialization, handling contract calls, and 
managing data within the NEAR blockchain, additional information and technical details are available. 
You can explore further explanations and examples by visiting this link: https://docs.near.
org/sdk/rust/contract-interface/serialization-interface.

https://docs.near.org/sdk/rust/contract-interface/serialization-interface
https://docs.near.org/sdk/rust/contract-interface/serialization-interface
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We’ll now shed light on state and data structures in the NEAR Protocol’s smart contract landscape.

State and data structures

In the NEAR Protocol, state and data structures form the backbone of smart contracts, enabling 
the storage and manipulation of information on the blockchain. Let’s explore these concepts further:

• State refers to the persistent data stored on the blockchain that represents the current state 
of a smart contract. It captures the contract’s data, variables, and values that can be accessed 
and modified by contract functions. NEAR employs a key-value store model for storing and 
retrieving the contract’s state, making it efficient and accessible. State changes are transactional, 
ensuring atomicity and consistency.

• Data structures define how the state is organized and stored within a smart contract. NEAR 
provides various built-in data structures, such as maps, vectors, and sets, to store and manipulate 
data efficiently. Developers can also create custom data structures using structs and enums, 
enabling them to model complex data relationships.

For example, consider a smart contract that manages a list of users’ information. It could use a NEAR 
map data structure to store user details, such as name, age, and address, with their account 
ID values serving as keys:

use near_sdk::borsh::{self, BorshDeserialize, BorshSerialize};
use near_sdk::collections::LookupMap;
use near_sdk::{env, near_bindgen, AccountId};

Let’s now begin creating this smart contract:

1. Import the necessary dependencies and modules from the NEAR SDK:

#[near_bindgen]
#[derive(BorshDeserialize, BorshSerialize)]
pub struct UserRegistry {
    users: LookupMap<AccountId, UserInfo>,
}

2. Define the UserRegistry smart contract struct, which includes a users field of the Map 
type to store user information:

#[derive(BorshDeserialize, BorshSerialize)]
pub struct UserInfo {
    name: String,
    age: u32,
    address: String,
}
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3. Define the UserRegistry struct, which represents the data structure for user information, 
including name, age, and address:

impl UserRegistry {
    pub fn new_user(&mut self, name: String, age: u32, address: 
String) {
        let caller = env::signer_account_id();
        let user_info = UserInfo { name, age, address };
        self.users.insert(&caller, &user_info);
    }
    pub fn get_user(&self, user_id: AccountId) -> 
Option<UserInfo> {
        self.users.get(&user_id)
    }
}

4. Implement methods for the UserRegistry smart contract:

 � new_user: This creates a new user and stores their information in the users map. It 
takes parameters for name, age, and address and associates the user data with the 
caller’s account ID.

 � get_user: This retrieves user information based on their account ID from the users 
map and returns it as Option<UserInfo>.

In this example, UserRegistry uses a NEAR map (users) to store user information using account 
IDs as keys. The new_user function adds a new user to the registry, and get_user retrieves a 
user’s information.

Transfers and actions

Now, let’s talk about two crucial concepts for interacting with and managing assets and states within 
smart contracts – transfers and actions:

• Transfers refer to the movement of tokens (NEAR tokens) from one account to another. 
Transfers enable value exchange and facilitate transactions within the blockchain. Developers 
can initiate transfers programmatically within smart contracts using the NEAR SDK. Here’s 
a simple code example:

use near_sdk::ext_contract;
use near_sdk::near_bindgen;
use near_sdk::AccountId;
#[near_bindgen]
pub struct MyContract {}
#[ext_contract(near_token_ext)]
pub trait NEARToken {
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    fn transfer(&mut self, receiver_id: String, amount: u128);
}
impl MyContract {
    pub fn transfer_tokens(&mut self, receiver_id: String, 
amount: u128) {
        let contract_account_id: AccountId = todo!();
        near_token_ext::ext(contract_account_id).
transfer(receiver_id, amount);
    }
}
fn main() {}

In this example, the transfer_tokens function initiates a transfer of NEAR tokens to the 
specified receiver_id.

• Actions represent operations that modify the state or trigger specific behaviors within smart 
contracts. Actions encapsulate a specific intent or functionality within a contract and can be 
invoked by external entities or other contract methods. Here’s a code example:

use near_sdk::env;
use near_sdk::near_bindgen;

#[near_bindgen]
pub struct MyContract {
    counter: u32,
}

impl MyContract {
    pub fn increment_counter(&mut self) {
        self.counter += 1;
    }

    pub fn get_counter(&self) -> u32 {
        self.counter
    }
}

fn main() {}

In this example, the increment_counter action increases the value of the counter by one, and 
get_counter retrieves the current value of the counter.
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Cross contract calls

Cross-contract calls allow smart contracts to interact and invoke methods on other contracts. This 
functionality enables contracts to collaborate, exchange data, and trigger actions across the NEAR 
blockchain. Let’s explore cross-contract calls through code examples.

To initiate a cross-contract call, the NEAR SDK provides the Promise struct, which allows contracts 
to invoke methods on other contracts asynchronously. Here’s an example:

use near_sdk::{env, near_bindgen, AccountId, Promise};
#[near_bindgen]
pub struct ContractA {}
#[near_bindgen]
impl ContractA {
    pub fn call_contract_b(&self, account_id: AccountId, amount: u128) 
{
        let promise = Promise::new(account_id).function_call(
            "do_something".to_owned(),
            vec![],
            amount,
            env::prepaid_gas() - near_sdk::Gas(10),
        );
        promise.as_return();
    }
}

In this example, ContractA initiates a cross-contract call to ContractB by invoking the 
do_something method. Promise::new creates a new promise with the target account ID, 
and function_call specifies the method and its arguments. The promise is then executed 
asynchronously using the then function.

On the receiving contract’s side, ContractB, the invoked method would look like this:

use near_sdk::{env, near_bindgen};

#[near_bindgen]
pub struct ContractB {}

#[near_bindgen]
impl ContractB {
    pub fn do_something(&self) {
        // Perform some action
        env::log_str(b"Doing something...");
    }
}
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In this example, ContractB receives the cross-contract call and executes the do_something 
method, which logs a message using env::log.

NEAR CLI deep dive

Now, let’s explore the NEAR CLI, providing insight into how it streamlines the process of developing 
and interacting with smart contracts on the NEAR blockchain.

The NEAR CLI enables us to build smart contracts easily and also perform operations around them 
through a simple CLI tool. We’re specifically learning about these commands because they form the 
foundation for creating, deploying, and interacting with smart contracts on NEAR. You can explore 
the complete set of NEAR CLI commands in the official documentation (https://docs.near.
org/tools/near-cli-rs). Here are some of the commands:

• near init: This command initializes a new NEAR project in the current directory, creating 
configuration files and setting up the necessary project structure.

• near login: This command allows you to authenticate yourself with a NEAR account, providing 
access to your account and enabling transactions and interactions with the NEAR blockchain.

• near deploy: With this command, you can deploy a smart contract to the NEAR blockchain. It 
requires the path to the compiled contract (WASM file) and the account ID of the deploying account.

• near call: This command invokes a method on a deployed contract. It requires the contract’s 
account ID, the method name, and any required arguments. It allows you to interact with and 
retrieve data from a smart contract.

• near view: This command is similar to near call but is used for read-only operations. 
It allows you to retrieve data from the contract without modifying the state.

• near state: This command fetches and displays the current state of a smart contract. It 
provides useful information about the contract’s storage usage and other details.

We will now start building a project, applying the knowledge and tools we’ve acquired while exploring 
the NEAR Protocol’s features and development resources. For all commands, access https://
docs.near.org/tools/near-cli.

Creating our first project with NEAR
In this section, we will explore smart contract development using the NEAR Protocol. Our focus will 
be on creating a crossword game smart contract while leveraging the capabilities of NEAR to build 
an interactive and decentralized gaming experience.

Crossword games have always captivated people with their intellectual challenges and the joy of 
uncovering hidden words. Traditionally played on paper or in digital formats, crossword games 
have now found their way into the realm of blockchain technology. By building a crossword game 

https://docs.near.org/tools/near-cli-rs
https://docs.near.org/tools/near-cli-rs
https://docs.near.org/tools/near-cli
https://docs.near.org/tools/near-cli
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smart contract, we can combine the time-tested enjoyment of crossword puzzles with the security, 
transparency, and decentralization provided by NEAR.

Let’s take a step-by-step journey to develop the crossword game smart contract. We will start by 
understanding the structure and rules of the crossword game itself.

Understanding the structure and rules of the crossword game

The smart contract we’ll build will allow players to create new crossword games, providing a title and 
a grid of squares. Players can fill in the blanks with the correct letters to form words both horizontally 
and vertically. The contract will validate the submissions, maintain the game state, and allow players 
to interact with the game by submitting words.

To facilitate this, we will define methods within the smart contract, such as creating a new game, 
retrieving game details, and submitting words. These methods will handle the game’s logic and ensure 
fair play. We will also define a struct, CrosswordGame, to represent the state of an individual game, 
including the title, grid, and other relevant fields. We will then dive into the code’s implementation, 
using Rust and the NEAR SDK to construct the smart contract.

Next, we will set up our development environment, ensuring that we have the necessary tools and 
accounts to proceed.

Setting up the development environment

To begin, let’s ensure that you have the necessary tools and setup in place for smart contract development 
on NEAR. Here’s a quick checklist:

1. Install the NEAR CLI: The NEAR CLI provides a CLI for interacting with the NEAR Protocol. 
We covered the installation for macOS, Ubuntu, and Windows in the Installation section.

2. Create a NEAR account: Use the NEAR CLI to create a NEAR account that will serve as the 
contract deployer and game administrator. Open your terminal or command prompt and run 
the following command to create a new NEAR account:

near create-account <your_account_id> --useFaucet

3. Replace your_account_id with the desired name for your NEAR account:

I. Follow the instructions provided by the NEAR CLI. You’ll need to choose a unique 
account ID and create a password for your account.

II. Once the account creation process is complete, make a note of your account ID. You’ll 
use it for deploying and interacting with your smart contract.
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4. Set up a local testnet: For development and testing purposes, set up a local testnet using the 
NEAR CLI. This will allow you to deploy and test your smart contract locally before deploying 
it to the main network. To set up a local testnet for development and testing purposes, follow 
these steps:

I. Open your terminal or command prompt and run the nearup command to initialize 
the NEAR testnet.

II. Once the testnet is up and running, you can deploy and test your smart contract locally 
before deploying it to the main network.

III. To deploy your smart contract to the local testnet, navigate to your project directory in 
the terminal and run the following command:

near deploy --accountId your_account_id --wasmFile path_to_
wasm_file

IV. Replace your_account_id with your NEAR account ID and path_to_wasm_file 
with the path to your compiled smart contract’s .wasm file.

V. You can now interact with your smart contract on the local testnet using the NEAR CLI 
or SDK libraries.

Now that our development environment is ready, let’s dive into the actual smart contract implementation.

Creating a smart contract skeleton

The smart contract we’ll build will allow players to create new crossword games, providing a title and 
a grid of squares. Players can fill in the blanks with the correct letters to form words both horizontally 
and vertically. The contract will validate the submissions, maintain the game state, and allow players 
to interact with the game by submitting words.

To facilitate this, we will define methods within the smart contract, such as creating a new game, 
retrieving game details, and submitting words. These methods will handle the game’s logic and ensure 
fair play. We will also define a struct, CrosswordGame, to represent the state of an individual game, 
including the title, grid, and other relevant fields.

We will use Rust and the NEAR SDK to build our crossword game smart contract while following 
these steps:

1. Using the NEAR CLI, create a new project named crossword-game-contract with the 
following command:

 npx create-near-app@latest
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2. After running this command, you need to select A Near Smart Contract, as shown in Figure 8.5:

Figure 8.5 – A Near Smart Contract

3. Now, select the Rust Contract option (see Figure 8.6):

Figure 8.6 – Rust Contract

4. After that, select Tests written in Rust (see Figure 8.7):

Figure 8.7 – Rust tests

5. Now, you can name the contract crossword-game-contract (see Figure 8.8):

Figure 8.8 – Rust Contract

6. Replace your_account_id with the NEAR account you created earlier.
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7. Explore the structure:

 � Inside the crossword-game-contract directory, you will find the structure of a basic 
NEAR smart contract project. Here are some of the key files and directories:

 � src/lib.rs: This is the main entry point for our smart contract. It contains the contract’s 
logic and associated methods.

 � Cargo.toml: This file specifies the project’s dependencies and settings.

8. Implement the crossword game logic:

 � Open src/lib.rs in your preferred code editor. This is where we will define the contract’s 
logic using Rust and the NEAR SDK:

// Import necessary NEAR SDK modules
[dependencies]
serde = { version = "1.0", features = ["derive"] }

use near_sdk::borsh::{self, BorshDeserialize, BorshSerialize};
use near_sdk::{env, near_bindgen, ext_contract, Promise};
// Define the contract struct
#[near_bindgen]
#[derive(Default, BorshDeserialize, BorshSerialize)]
pub struct CrosswordGameContract {
    // Add contract state variables here
}
#[near_bindgen]
use serde::{Serialize, Deserialize};
impl CrosswordGameContract {
  // Add contract methods here
}

 � In the preceding code snippet, we import the required modules from the NEAR SDK and 
define the CrosswordGameContract struct, which will hold the contract’s state 
variables. We also define the contract’s entry point using the near_bindgen attribute.

9. Now, let’s add some methods to our smart contract to handle game-related operations:

impl CrosswordGameContract {
    // Create a new crossword game
    pub fn create_game(&mut self, title: String, grid: 
Vec<Vec<Option<u8>>>) {
        // Implement game creation logic here
    }
    // Get the crossword game details
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    pub fn get_game(&self, game_id: u64) -> 
Option<CrosswordGame> {
        // Implement game retrieval logic here
    }
    // Submit a word for a specific game
    pub fn submit_word(&mut self, game_id: u64, word: String) -> 
bool {
        // Implement word submission logic here
    }
}

In the preceding code snippet, we define three methods: create_game, get_game, and 
submit_word. These methods handle the creation of new games, retrieval of game details, 
and submission of words, respectively.

10. Finally, we must define the CrosswordGame struct so that it represents the state of an 
individual crossword game:

#[derive(BorshDeserialize, BorshSerialize)]
pub struct CrosswordGame {
    pub title: String,
    pub grid: Vec<Vec<Option<u8>>>,
    // Add any other required game-related fields
}

In this snippet, we define CrosswordGame as a struct that holds the game’s title, grid, and 
any other necessary fields.

Now that the crossword game smart contract is complete, we will proceed to test it locally, ensuring 
that it functions as intended.

Testing and deployment

To test and deploy the crossword game smart contract, we can follow these steps:

1. To test the contract locally, run the following command in your project’s root directory:

cargo ./test.sh -- --nocapture

This command executes the tests defined in the tests directory of your project and displays 
the output.

2. To deploy the contract to the NEAR testnet, run the following command:

near ./deploy.sh --account_id <your_account_id> --wasm_file 
target/wasm32-unknown-unknown/release/crossword_game_contract.
wasm

3. Replace your_account_id with your NEAR account ID. This command will compile your 
contract and deploy it to the specified account.
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Now that we have deployed our crossword game smart contract successfully, let’s explore how to 
interact with it.

Interacting with the contract

Congratulations! You have successfully built and deployed your crossword game smart contract with 
the NEAR Protocol. Now, let’s explore how to interact with it.

To interact with the deployed smart contract from a client application, you can use the NEAR SDK 
libraries that are available for different programming languages. These libraries provide convenient 
functions to call contract methods, fetch contract state, and handle transactions.

Here’s an example of how you can use the NEAR JavaScript SDK to interact with the deployed contract:

const near = require('near-api-js');

async function interactWithCrosswordGameContract() {
    const keyStore = new near.keyStores.InMemoryKeyStore();
    const nearConfig = {
        keyStore,
        nodeUrl: 'https://rpc.testnet.near.org',
        networkId: 'testnet',
        contractName: 'your_account_id',
    };
    const near = await near.connect(nearConfig);

    const account = await near.account(nearConfig.contractName);
    const crosswordGameContract = new near.Contract(
        account,
        nearConfig.contractName,
        {
            viewMethods: ['get_game'],
            changeMethods: ['create_game', 'submit_word'],
            sender: nearConfig.contractName,
        }
    );

    // Interact with the contract methods
    const gameDetails = await crosswordGameContract.get_game({ game_
id: 1 });
    console.log('Game Details:', gameDetails);

    // Add more contract interactions here
}

interactWithCrosswordGameContract();
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In this code snippet, we initialize the NEAR JavaScript SDK, configure the NEAR network, and create 
an instance of CrosswordGameContract using the contract’s view and change methods. We 
can then call these methods to interact with the contract.

Summary
In this chapter, we delved into the NEAR Protocol, a blockchain platform tailored for developers, and 
explored its foundational concepts. We discussed essential elements, such as accounts, access keys, 
smart contracts, and blockchain state, establishing a solid understanding of NEAR’s core principles. 
We highlighted NEAR’s developer-friendly ecosystem, which features implicit accounts, named 
accounts, full access keys, and function keys, making it an attractive choice for blockchain projects.

We also ventured into advanced topics, including transactions, gas, data flow, tokens, storage options, 
validators, and consensus mechanisms. This deep dive into NEAR’s intricacies demonstrated its robust 
capabilities for building dApps. Finally, we got hands-on experience by installing the NEAR SDK and 
NEAR CLI, creating a crossword game smart contract, and deploying it, illustrating the practicality 
and versatility of NEAR in application development.

In the upcoming chapter, we will delve deeper into the Polkadot ecosystem, examining the fundamental 
components of Polkadot, Kusama, and Substrate. We will start by unraveling the intricate architecture 
of Polkadot, shedding light on its relay chain, parachains, and shared security model, which underpin 
its remarkable capabilities in enabling cross-chain data and asset transfers.





Part 4:  
Polkadot and Substrate

In this part, we will build our own custom blockchain, but this time, not from scratch but with a 
dedicated framework for building blockchains called Substrate, which makes it super simple to build 
our own chains, customize them, and also deploy them.

This part has the following chapters:

• Chapter 9, Exploring Polkadot, Kusama, and Substrate

• Chapter 10, Hands-On with Substrate





9
Exploring Polkadot,  

Kusama, and Substrate

In this chapter, we will dedicate our efforts to exploring Polkadot, Kusama, and Substrate – the three 
interconnected components that form the foundation of the Polkadot ecosystem. In the context of the 
rapidly evolving world of blockchain technology, understanding these components is of paramount 
importance. Our journey in this chapter will take us through a comprehensive exploration of various 
facets, ensuring that you grasp not only the fundamental concepts but also the practical applications 
and interactions within the Polkadot ecosystem.

Throughout this chapter, we will delve into a wide range of topics that are essential for anyone seeking 
a solid grasp of Polkadot, Kusama, and Substrate. By the end of our journey, you can expect to gain 
a comprehensive understanding of the Polkadot ecosystem. We will be covering the following topics 
in this chapter:

• Introducing Polkadot

• Understanding the core concepts of Polkadot

• Learning about Kusama

• Introducing Substrate

Introducing Polkadot
Polkadot is an innovative blockchain network that has gained significant attention in the cryptocurrency 
and decentralized application (dApp) development space. Traditional blockchains face scalability, 
interoperability, security, upgradeability, and innovation challenges. Polkadot addresses these by 
using a multi-chain structure with parallel parachains, enabling higher scalability and interoperability. 
Shared security minimizes vulnerabilities, and its upgrade mechanism allows for seamless updates. The 
modular design of Polkadot encourages innovation by facilitating rapid development and deployment 
of new features on custom parachains.
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At its core, Polkadot utilizes a unique multi-chain architecture (Figure 9.1) that consists of a central 
relay chain and multiple parallel chains called parachains:

Figure 9. 1 – Illustrating the interaction between the main components and features of Polkadot

The relay chain acts as the backbone of the network, coordinating the communication and consensus 
among the parachains. Parachains operate independently, allowing for custom configurations and 
specialized functionalities while benefiting from the shared security and interoperability provided 
by the Polkadot network.

Let’s discuss some of the key features of PolkaDot:

• Interoperability through XCM: Polkadot facilitates seamless data transfer and asset exchange 
between parachains using the cross-chain message passing protocol known as XCM, promoting 
interoperability among diverse blockchains

• Developer possibilities: Interoperability empowers developers to combine distinct blockchain 
features, fostering innovation and utilizing varied capabilities within a unified network

• Decentralized governance: Polkadot’s governance model engages token holders in decision-
making and network upgrades, ensuring a decentralized and community-driven evolution

• Scalable architecture: With a scalable structure, Polkadot offers a strong foundation for dApp 
development across industries

• Flexibility and security: Polkadot’s design emphasizes security and flexibility, positioning it 
as a significant blockchain ecosystem contributor that advances decentralized technologies

Interoperability is central to Polkadot’s vision, and XCM is used for achieving interoperability. We 
will delve into the details of XCM later in this chapter.

First, let’s learn about interoperability.
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Interoperability

Interoperability lies at the core of the Polkadot network, revolutionizing the blockchain landscape by 
enabling seamless communication and collaboration between disparate blockchains.

At the heart of Polkadot’s interoperability is the relay chain, which serves as the hub connecting 
different parachains and facilitating cross-chain communication. Parachains can communicate with 
each other and with external blockchains through the relay chain thanks to the XCM protocol. This 
allows for the secure transfer of assets, data, and information across various chains within the Polkadot 
network and beyond.

Polkadot’s interoperability extends beyond its network through the use of bridges. These bridges 
establish connections between Polkadot and external blockchains, such as Ethereum or Bitcoin, 
enabling the transfer of assets and data between different ecosystems. Bridges leverage interoperability 
protocols and technologies to ensure seamless interoperability and expand the possibilities for 
cross-chain collaboration.

By facilitating interoperability, Polkadot opens up new avenues for dApp development.

Figure 9.2 shows how relay chains, parachains, parathreads, and bridges work together smoothly. It 
illustrates the strong network setup of the system:

Figure 9. 2 – Interoperability between relay chains, parachains, parathreads, and bridges
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Figure 9.2 illustrates Polkadot’s unique interoperability. Relay chains act as the backbone, connecting 
various specialized chains called parachains and more flexible parathreads. Bridges extend connectivity 
beyond Polkadot, enabling seamless communication with other blockchains. This interconnected 
structure fosters a powerful and scalable ecosystem for different types of blockchain applications.

Relay chain

The relay chain is a fundamental component of the Polkadot network, serving as the central hub 
that connects and secures the entire ecosystem. It plays a vital role in coordinating and facilitating 
communication between the different parachains in the network.

One of the key features of the relay chain is its ability to facilitate interoperability among parachains. 
It enables seamless data transfer, asset exchange, and even the execution of transactions between 
different parachains. This interoperability is achieved through the innovative XCM protocol, which 
we will learn more about in the XCM section. This allows for the efficient and secure exchange of 
information across the network.

Furthermore, the relay chain serves as the backbone of the Polkadot network’s governance framework. 
This framework incorporates the use of DOT tokens, the native cryptocurrency of Polkadot. DOT 
token holders actively engage in decision-making processes by staking their tokens and participating in 
voting on referenda proposals. These referenda proposals encompass key network changes, upgrades, 
and policies. This decentralized governance mechanism underscores the network’s commitment to 
transparency and community-driven evolution.

The relay chain’s Nominated Proof of Stake (NPoS) consensus mechanism and shared security model 
collaboratively bolster Polkadot’s security and resilience. Through NPoS, token holders nominate 
validators to validate transactions and propose blocks, upholding network integrity. The shared 
security model extends this by allowing specialized blockchains, known as parachains, to leverage the 
relay chain’s security. While the relay chain ensures network-wide security, parachains enable tailored 
functionalities and optimizations for specific use cases, enhancing the network’s versatility. This dual 
approach ensures validated transactions, finalized blocks, and ecosystem integrity, underscoring 
Polkadot’s commitment to security and adaptability.

Parachains play a crucial role in realizing the vision of a scalable and interoperable blockchain 
ecosystem. Parachains are independent chains that run in parallel to the Polkadot relay chain, each 
with its own set of validators and customizable features.

Parachains enable developers to create specialized blockchains that cater to specific use cases and 
requirements. They can be designed with different consensus mechanisms, governance models, and 
functionalities, allowing for a high degree of customization. This flexibility makes Polkadot a versatile 
platform for building a wide range of dApps.

Interoperability is a key aspect of the Polkadot network, and parachains are at the forefront of enabling 
seamless communication and data transfer between different chains. Parachains can communicate 
with each other and with the relay chain using the XCM protocol. This allows information, assets, 
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and even the execution of transactions to be exchanged across parachains, fostering a highly 
interconnected ecosystem.

Parachains benefit from the shared security model of Polkadot. The security of each parachain is 
enhanced by the collective security of the entire network (we will learn more about this in the Shared 
security section), which is provided by the validators of the relay chain. This shared security model 
ensures the integrity and reliability of the parachains, bolstering trust and resilience in the network.

Moving forward, we will delve into another vital aspect of Polkadot’s architecture: parathreads. 
This innovative concept offers an alternative approach to parachains, providing more flexible and  
cost-effective options for securing a slot on the relay chain.

Parathreads

Parathreads offer a flexible and cost-effective solution for blockchain projects that do not require 
continuous and full-time access to a parachain slot. Parathreads allow these projects to gain intermittent 
access to the Polkadot network, balancing their needs for scalability and interoperability with a more 
economical approach.

Unlike parachains, which have dedicated slots on the relay chain, parathreads do not occupy a fixed 
slot permanently. Instead, they can dynamically acquire slots on-demand when needed. This enables 
projects to pay for the exact usage they require, making it a cost-efficient option for blockchain 
applications with sporadic or varying demand patterns.

Parathreads provide the benefits of interoperability and security within the Polkadot network. They 
can communicate and interact with both parachains and other parathreads through the XCM protocol, 
allowing for seamless data transfer and collaboration. They also benefit from the shared security model 
of Polkadot, leveraging the overall security provided by the validators of the relay chain.

The introduction of parathreads expands the capabilities of the Polkadot network, accommodating a 
wider range of projects with different resource requirements. It promotes inclusivity and allows for the 
efficient utilization of network resources, ensuring scalability and flexibility for blockchain applications.

Bridges

Bridges play a crucial role in the Polkadot network by enabling connectivity and interoperability 
between Polkadot and external blockchains. They serve as vital links that facilitate the transfer of 
assets, data, and information across different blockchain ecosystems.

Polkadot’s architecture allows for the creation of bridges that connect the Polkadot network to other 
blockchains, such as Ethereum, Bitcoin, or any other compatible blockchain. These bridges establish a 
secure and reliable communication channel, enabling the seamless movement of assets and information 
between Polkadot and external networks.
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Bridges in the Polkadot network leverage various interoperability protocols and technologies to 
facilitate cross-chain communication. They enable the transfer of tokens and assets between different 
blockchain networks, promoting liquidity and composability across disparate ecosystems.

Now, let’s explore another integral aspect of the Polkadot ecosystem: accounts. These serve as the 
foundational units through which users interact and participate in the ecosystem. Polkadot accounts 
enable users to securely manage their assets, execute transactions, and engage in governance processes 
within the network.

Accounts

Accounts serve as the foundational units through which users interact and participate in the ecosystem. 
Polkadot accounts enable users to securely manage their assets, execute transactions, and engage in 
governance processes within the network.

In the Polkadot network, accounts are identified by unique addresses, similar to other blockchain 
platforms. These addresses serve as public identifiers associated with a specific account and are used 
for sending and receiving transactions. Polkadot addresses are derived from the user’s cryptographic 
key pair and provide a secure and verifiable way to authenticate transactions and interactions.

Polkadot’s account system is designed to accommodate various user needs and scenarios. Within this 
system, accounts can be categorized into different types, each serving specific functions:

• Regular accounts: Typically owned by individual users and used for managing and 
transferring assets.

• Contract accounts: Accounts associated with smart contracts, allowing for the execution of 
predefined functions and interactions with the blockchain.

• Governance accounts: Special accounts that hold voting power and are used to participate in 
the governance processes of the network.

• Multi-signature (multi-sig) accounts: Polkadot’s account system supports multi-sig accounts, 
which require multiple signatures from different parties to authorize a transaction. This enhances 
security and mitigates the risk of single-point failures.

Now that we have a clear understanding of the different types of accounts, let’s delve into the essential 
concept of transactions within the Polkadot ecosystem.

Transactions

The Polkadot ecosystem is renowned for its advanced transaction capabilities, providing a secure and 
scalable network for seamless asset transfers. Transactions within the Polkadot network occur through 
its native cryptocurrency, DOT, which serves as a medium of exchange and a governance token.
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As shown in the following figure, when a transaction is initiated on the Polkadot network, it undergoes 
a series of steps. Initially, the transaction is validated by the network’s validators, who ascertain its 
integrity and adherence to the rules defined by the underlying protocol of the Polkadot blockchain. 
These protocol rules constitute a set of predefined guidelines that dictate the proper functioning of 
the blockchain network. Once validated, the transaction becomes part of a block that is subsequently 
added to the relay chain. This relay chain acts as a central hub, orchestrating and finalizing transactions, 
thereby maintaining the overall coherence and integrity of the Polkadot ecosystem:

Figure 9. 3 – A transaction getting validated and added to the blockchain

To incentivize validators and ensure network security, Polkadot employs a mechanism called NPoS, 
which we will learn about more in the NPoS election algorithms section. Validators are chosen through 
a staking process, where DOT token holders can nominate trustworthy validators. Validators are then 
selected based on their reputation and the amount of DOT tokens they have staked. Validators who 
successfully validate transactions are rewarded with DOT tokens, while those who act maliciously or 
fail to fulfill their duties may face penalties.

The Polkadot ecosystem also provides users with the flexibility to customize their transaction types 
based on their specific needs. Developers can create custom transaction types within their parachains, 
allowing for the execution of complex transactions beyond simple asset transfers.

Creating custom transaction types in a Substrate-based parachain involves defining custom runtime 
modules and specifying the logic for these transactions. Let’s take a look at an example to understand 
this. The following code provides a simplified example of using Rust and Substrate’s Flexible Runtime 
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Aggregation Modular Extension (FRAME) framework to define a custom transaction type for a 
parachain. Let’s take a closer look:

1. First, we define a custom transaction struct called MyCustomTransaction with fields 
such as sender and amount. You can add any other fields that are specific to your use case:

// Import necessary dependencies from Substrate

use frame_system::{Module as System, RawOrigin, ensure_signed, 
ensure_root};
use frame_system::pallet::Config::{AccountId, Balance}
// Define your custom transaction module
pub mod my_custom_module {
    use super::*;

    // Define the custom transaction struct
    #[derive(codec::Encode, codec::Decode, Default, Clone, 
PartialEq)]
    pub struct MyCustomTransaction {
        // Define transaction fields here
        pub sender: AccountId,
        pub amount: Balance,
        // Add any other fields you need
    }

2. Then, we implement a dispatchable function called my_custom_transaction within the 
custom module. This function defines the logic for processing your custom transaction. In 
this example, we ensure the sender’s authenticity using ensure_signed; you can add your 
specific logic to process the transaction:

use frame_support::{dispatch::DispatchResult, pallet_
prelude::*};
use frame_system::pallet_prelude::*;

pub struct MyCustomTransaction {
    // Add fields for your custom transaction
    // e.g., sender: AccountId, amount: Balance
}

pub trait Config: frame_system::Config {
    // Add any additional configuration types here
    frame_system::Config>::Event>;
}

pub mod pallet {
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    use super::*;

    #[pallet::pallet]
    #[pallet::generate_store(pub(super) trait Store)]

    pub struct Pallet<T>(_);

    #[pallet::call]

    impl<T: Config> Pallet<T> {
// Implement your custom transaction as a dispatchable function
        #[pallet::weight(0)] // Set the correct weight
        pub fn my_custom_transaction(
            origin: OriginFor<T>,
            transaction: MyCustomTransaction,
        ) -> DispatchResult {
            let sender = ensure_signed(origin)?;
 // Your custom logic for processing the transaction here
// You can access the fields of transaction, like transaction.
sender and transaction.amount

            Ok(())
        }
    }
}

3. You can emit events, perform actions, or execute any business logic within the my_custom_
transaction function, as shown in the preceding code snippet.

4. Finally, ensure that your custom module is included in the runtime configuration of your 
parachain, as shown in the following code snippet:

// Ensure your custom module is included in the runtime 
configuration
impl<T: Trait> frame_system::Module<T> {
    fn dispatch_bypass_filter(
        origin: T::Origin,
        _call: T::Call,
    ) -> dispatch::DispatchResult {
        ensure_root(origin)?;
        Ok(())
    }
}

Now, let’s understand what tokens and assets are.
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Tokens and assets

Polkadot operates on a multichain architecture, with each chain having native tokens and assets.

The primary token within the Polkadot ecosystem is DOT. DOT serves as the native cryptocurrency 
of the network and acts as a utility token for governance, staking, and bonding purposes. DOT 
holders have the power to participate in the network’s governance, including voting on proposals 
and decisions that shape the future of the ecosystem. They decide on upgrades, allocate resources, 
maintain security, promote innovation, and foster community engagement, ensuring the network’s 
evolution and adherence to decentralized principles.

In addition to DOT, each parachain within the Polkadot network can have its own native token or 
asset. Parachains are independent blockchains that connect to the Polkadot relay chain and can have 
their own unique features, governance models, and token economies. These native tokens or assets 
are used to power the specific functionalities and services offered by each parachain.

The interoperability of the Polkadot network enables the seamless transfer of assets between different 
parachains. This means that tokens and assets from one parachain can be exchanged or used within 
another parachain, providing liquidity and expanding the utility of these assets across the ecosystem.

Polkadot also supports the creation of cross-chain bridges, which enable the transfer of assets between 
Polkadot and other blockchain networks. These bridges allow for interoperability with external networks 
such as Ethereum, enabling the movement of assets between different ecosystems and unlocking new 
opportunities for collaboration and innovation.

Furthermore, Polkadot offers a framework for the creation of dApps and services. Developers leverage 
the Polkadot ecosystem to craft their tokens through smart contracts, parachains, or custom-built 
blockchain modules. These tokens are programmable, allowing developers to define their specific 
functionalities, such as transaction rules, supply limits, and ownership structures. Smart contracts, 
when executed on Polkadot’s parachains, enable the automation of in-app transactions and user 
incentives. Additionally, token standards such as ERC-20 or Polkadot’s native standards simplify the 
creation and interoperability of these assets. Tokens can also be linked to off-chain or real-world assets 
through oracles, further extending their utility in representing ownership rights over physical assets. 
In essence, Polkadot’s versatile infrastructure empowers developers to engineer tokens that serve 
diverse purposes within their dApps, enhancing the ecosystem’s flexibility and innovation potential

Now, it’s time to take a deep dive into non-fungible tokens (NFTs).

NFTs

In the Polkadot ecosystem, NFTs can be created on specific parachains or can be bridged from other 
networks into Polkadot using cross-chain bridges. NFTs are unique digital assets that represent 
ownership of one-of-a-kind items, such as digital art, collectibles, or even real-world assets. They 
provide proof of authenticity and ownership on the blockchain, making them valuable for creators 
and collectors alike. Just like other components, NFTs can be effortlessly moved and traded between 
diverse blockchains, thereby boosting liquidity and broadening the accessibility of various digital assets.
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In the Polkadot ecosystem, NFTs provide remarkable flexibility as developers can customize their 
attributes, creating unique qualities such as limited editions or provable scarcity. These adaptable 
NFTs can represent an extensive range of digital assets, from artwork and collectibles to virtual real 
estate and in-game items. What’s more, Polkadot’s infrastructure supports the creation of dApps that 
leverage NFTs. Developers can build NFT marketplaces, platforms for tokenized assets, and gaming 
ecosystems where NFTs serve as in-game items or digital representations of real-world assets. Polkadot’s 
scalability, interoperability, and security bolster these applications, offering a robust foundation for 
NFT-based experiences across diverse use cases.

Additionally, the decentralized nature of Polkadot ensures that NFT ownership and transactions are 
transparent, secure, and verifiable. The use of blockchain technology guarantees the authenticity and 
provenance of NFTs, preventing counterfeiting and providing a trustworthy environment for creators 
and collectors.

Understanding the core concepts of PolkaDot
In this section, we’ll dive deep into the Polkadot ecosystem. Here, we will explore a range of topics 
that are fundamental to understanding the inner workings and innovative features of Polkadot.

We will begin by exploring XCM, a revolutionary technology that enables communication and the 
transfer of assets across different parachains within the Polkadot network. We’ll delve into how 
XCM facilitates interoperability, allowing for seamless transactions and data transfers between 
interconnected blockchains.

XCM

XCM is a groundbreaking technology within the Polkadot ecosystem that enables seamless communication 
and asset transfer across different parachains. It plays a pivotal role in Polkadot’s interoperability 
framework by enabling the seamless exchange of messages and data among interconnected blockchains.

Let’s gain a deeper understanding of XCM’s role in facilitating interoperability within the Polkadot network:

• Asset and data transfer: XCM’s primary role is to securely and efficiently transfer assets, tokens, 
and messages between parachains within the Polkadot network, simplifying interactions.

• Standardized message format: XCM achieves interoperability through a standardized message 
format, allowing different parachains to exchange instructions or data, such as token transfers 
or smart contract execution.

• Atomic transactions: XCM ensures atomic transactions, guaranteeing that asset transfers 
and actions are executed completely or not at all, maintaining the integrity and consistency of 
transactions across the network.

• Flexibility: XCM offers flexibility, enabling parachains to define their own message formats and 
logic. This customization allows developers to build specialized parachains while retaining the 
ability to communicate and transfer assets seamlessly with others in the network.
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XCM plays a crucial role in unlocking the full potential of the Polkadot ecosystem. It promotes 
collaboration and interoperability between different blockchains, enabling a vibrant and connected 
network of dApps and services. With XCM, Polkadot offers a scalable and flexible framework for 
building the next generation of blockchain solutions that can seamlessly communicate and transact 
with one another.

Now, let’s learn more about how shared security works.

Shared security

The concept of shared security within the Polkadot ecosystem is designed to enhance the overall 
security and resilience of the network. Shared security ensures that multiple parachains within the 
Polkadot network can collectively benefit from a shared pool of security resources.

Each parachain has its own set of validators responsible for validating transactions and maintaining 
the security of the respective parachain. However, through shared security, parachains can leverage 
the collective security provided by the Polkadot relay chain. This is depicted in the following figure:

Figure 9.4 – A closer look at the shared security model

The Polkadot relay chain acts as a central hub for coordinating and finalizing transactions across the 
network. It serves as a security anchor and provides a shared pool of validators that can be allocated 
to different parachains. By utilizing shared security, parachains can tap into the validator pool of the 
relay chain, benefiting from its combined computational power and security measures.

Shared security enhances the resilience of the Polkadot ecosystem by distributing the risk and reducing 
the attack surface. If one parachain faces a security threat or an attack, the shared security model 
ensures that the other parachains remain protected.
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Also, shared security promotes a cooperative environment within the Polkadot network. Validators 
have the incentive to participate in the security of multiple parachains as it allows them to diversify 
their stake and earn rewards from multiple sources. This diversification of stake and the opportunity to 
earn rewards from multiple sources incentivize validators to act in the network’s best interest. Validators 
are motivated to maintain the network’s security and stability because their rewards depend on it. By 
actively participating in consensus and ensuring the integrity of transactions, validators contribute 
to a collaborative and secure ecosystem as their actions directly impact their potential rewards. This 
alignment of incentives encourages validators to work collectively toward the network’s well-being, 
enhancing its overall resilience and reliability.

Pallets

Pallets are building blocks that can be added to parachains to extend their capabilities and enable 
developers to create custom features and applications.

Pallets are like building blocks for parachains in the Polkadot ecosystem, each offering specific functions 
and features. These functionalities include token standards, smart contract frameworks, governance 
tools, oracles, and more. Developers can mix and match pallets to create customized parachains 
tailored to their needs. This modular approach promotes code reuse and streamlines development, 
making it faster and more efficient to deploy parachains on Polkadot.

For example, consider the following functionalities offered by pallets:

• Token standards: Pallets for token standards provide a framework for creating and managing 
digital assets, enabling developers to issue and manage tokens within their parachains

• Smart contract frameworks: These pallets offer the tools and infrastructure for deploying and 
executing smart contracts, allowing developers to build dApps on Polkadot

• Governance mechanisms: Pallets focused on governance enable the implementation of on-chain 
decision-making processes, helping communities and stakeholders reach consensus and make 
important network decisions

• Oracles: Pallets related to oracles facilitate the integration of external data into the blockchain, 
enhancing the parachain’s ability to interact with the real world by providing reliable 
off-chain information

These pallets enable developers to assemble parachains with the precise features required for their use 
cases. Furthermore, pallets enhance Polkadot’s interoperability by allowing their use across multiple 
parachains, enabling seamless communication and asset transfer between chains, and bolstering the 
ecosystem’s versatility.

Next, we’ll talk about staking.
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Staking

Staking is another important process that locks up cryptocurrency tokens as collateral in a blockchain 
network to support its operations. In return, participants earn rewards or incentives for validating 
transactions and securing the network.

Staking offers unique features and benefits that contribute to the security, governance, and overall 
operation of the network. Staking in Polkadot involves locking up DOT tokens to engage in both the 
network’s consensus and governance processes. In the consensus process, validators, who have staked 
DOT tokens, propose transaction blocks that are then verified and approved by a supermajority of 
validators. This approval mechanism ensures network security and transaction finality through 
a two-step process. Participants, including validators and nominators, receive rewards for their 
involvement, incentivizing them to maintain the network’s reliability. However, any misconduct can 
result in slashing, where tokens are forfeited. In essence, Polkadot’s staking and consensus system 
encourages agreement, security, and active network maintenance.

One unique aspect of staking in the Polkadot ecosystem is the ability of token holders to actively 
participate in network security and governance. By staking DOT tokens, individuals can become 
validators or nominators and contribute to the network’s operations. Tokens are staked by locking 
them in a designated wallet, committing them as collateral to support the blockchain’s security and 
governance. Validators actively participate in block validation, while nominators select validators 
to support and share in the rewards generated by the validator’s activities. This staking process not 
only secures the network but also aligns the interests of participants with the network’s overall health 
and performance.

Validators are responsible for validating transactions, producing blocks, and securing the network. 
They play a crucial role in maintaining the integrity and security of the Polkadot ecosystem. Validators 
are required to stake a significant amount of DOT tokens as collateral, ensuring their commitment 
to the network’s stability and performance. Becoming a validator typically involves a few key steps:

1. Staking adequate collateral: As mentioned previously, validators must stake a significant 
amount of DOT tokens as collateral. This amount needs to meet or exceed the minimum 
requirements set by the network.

2. Technical competence: Validators need to possess the technical knowledge and infrastructure to 
maintain and operate a node effectively. This includes hardware reliability, network connectivity, 
and security measures.

3. Nominated: Potential validators may be nominated by token holders who support them by 
staking their own DOT tokens. Nominators share in the rewards generated by the validators 
they nominate.

4. Community trust: Validators often need to gain the trust of the Polkadot community. This can 
be achieved by participating in testnets, demonstrating consistent performance, and engaging 
with the community through transparent communication.

5. Election: Validators are elected through Polkadot’s NPoS system.
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Staking within the Polkadot network involves nominators who delegate their DOT tokens to validators 
they trust. Nominators follow a multi-step process, starting with the careful selection of validators 
based on various criteria. These criteria often include a validator’s reputation, consistent and reliable 
performance, the amount of DOT tokens they have committed as collateral, technical competence, 
and contributions to the network’s overall health.

Once selected, nominators delegate their DOT tokens to their chosen validators, typically through the 
network’s user interface or client. By doing so, they actively contribute to the network’s security and 
performance. In return, nominators have the opportunity to earn rewards based on the validators’ 
performance. These rewards are derived from the validators’ earnings, which are often a share of the 
block rewards and transaction fees generated by the network. Overall, nominators play a crucial role 
in the Polkadot ecosystem by supporting trustworthy validators and reinforcing network reliability 
while benefiting from the rewards generated by their nominated validators.

A unique feature of staking in the Polkadot ecosystem is the concept of adaptive staking. Nominations 
in the Polkadot network represent a dynamic and participatory aspect of the proof-of-stake system. 
They allow token holders to choose and support validators they trust and believe will contribute to 
the network’s security and performance. Token holders can adapt their nominations by adjusting the 
validators they support, adding or removing validators from their list without incurring substantial 
penalties. This adaptability ensures that token holders have the flexibility to respond to changing 
conditions, such as shifts in validator performance or reputation. It also promotes a competitive 
environment among validators, encouraging them to maintain high standards to attract and retain 
nominations, ultimately enhancing the network’s overall security and reliability. It offers flexibility and 
ensures that token holders can actively participate in network governance by supporting validators 
aligned with their preferences and values.

Advanced staking concepts

In addition to the basic staking concepts mentioned previously, the Polkadot ecosystem introduces 
advanced staking concepts that further enhance participation and rewards for stakeholders. These 
advanced staking concepts provide additional opportunities for engagement and offer unique benefits 
within the network:

• Slashing: Slashing in the Polkadot ecosystem serves as a critical mechanism to deter malicious 
behavior and uphold network integrity. When a validator or nominator engages in malicious 
actions or violates network rules, they can face slashing penalties, which involve confiscating or 
reducing their staked DOT tokens. Examples of malicious actions and rule violations include 
double-signing, where a validator signs conflicting messages, and equivocation, which involves 
validators confirming two contradictory blocks. Such actions undermine network security and 
reliability. The specific algorithms and criteria for determining the extent of confiscation or 
reduction depend on the nature and severity of the violation, and these rules are typically defined 
and enforced through Polkadot’s governance processes. These mechanisms are designed to 
discourage malicious behavior, ensuring the overall trustworthiness and security of the network.
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• Validator performance monitoring: Validator performance in the Polkadot ecosystem is 
assessed through a set of key criteria that encompass various aspects of their operations. These 
criteria typically include the following:

 � Uptime: This measures how long a validator’s node is online and actively participating in 
block validation. High uptime indicates reliability.

 � Responsiveness: Validators should promptly respond to network requests and actions, 
ensuring the smooth functioning of the network.

 � Validation accuracy: Validators are expected to validate transactions and blocks accurately, 
without producing conflicting or invalid results.

 � Slashable offenses: Any malicious or rule-violating behavior, such as double-signing or 
equivocation, is heavily penalized and impacts a validator’s performance.

 � Community trust: Validators often earn trust based on their transparency, communication, 
and contributions to the community.

 � Nominator support: The number of DOT tokens staked by nominators supporting a validator 
can also be an indicator of performance and trustworthiness. These criteria are typically 
assessed over a specific timeframe, and validators meeting the network’s defined standards 
continue to operate securely. Validators failing to meet these standards may face penalties, 
and in severe cases, they could be removed from the validator set. This rigorous performance 
monitoring ensures that the Polkadot network maintains a high level of security and reliability.

• Reward distribution: Stakers in the Polkadot ecosystem are rewarded for their participation 
and contribution to the network. Rewards are distributed based on factors such as the amount 
of staked tokens, the length of the staking period, and the performance of the validator. This 
incentivizes stakeholders to actively engage in staking and ensures a fair distribution of rewards.

• Stash accounts and controller accounts: In Polkadot, stakeholders have the option to separate 
their staked DOT tokens into stash accounts and controller accounts. The stash account holds 
the staked tokens and remains secure, while the controller account manages the staking 
activities and interacts with the network. This separation provides an added layer of security 
and control for stakeholders.

• Validator rotation: The Polkadot ecosystem employs a validator rotation mechanism to ensure 
fairness and decentralization. Validators are periodically rotated, allowing different participants 
to have the opportunity to validate transactions and earn rewards. Validator rotation promotes 
a dynamic and diverse validator set, contributing to the overall security and resilience of 
the network.

These advanced staking concepts in the Polkadot ecosystem highlight the platform’s commitment to 
the security, fairness, and active participation of stakeholders. By implementing mechanisms such 
as slashing, performance monitoring, and reward distribution, Polkadot encourages a robust and 
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engaging staking environment where participants can contribute to network security and governance 
while being rewarded for their contributions.

Next, we’ll explore the main actors within the Polkadot ecosystem.

Main actors

In this section, we’ll delve into the roles and responsibilities of three key participants: validators, 
nominators, and collators (Figure 9.5). These actors play crucial roles in ensuring the security, 
governance, and functionality of the Polkadot network. We will examine their unique contributions, 
incentives, and how they interact with each other to create a robust and decentralized ecosystem:

Figure 9.5 – Consensus roles in Polkadot

We’ll start by looking at validators.

Validators

Validators are responsible for validating transactions, producing blocks, and ensuring the security and 
integrity of the network. They play a crucial role in maintaining consensus and preventing malicious 
activities within the blockchain.

They are required to stake a significant amount of DOT tokens as collateral, demonstrating their 
commitment to the network’s stability and security. By staking their tokens, validators have a financial 
stake in the system, aligning their incentives with the successful operation of the network.

Validators are selected through a unique election process in Polkadot known as NPoS. This algorithm 
takes into account various factors, including the amount of stake, reputation, and the number of 
nominations, to determine the set of active validators. This ensures a diverse and secure validator set 
that represents the interests of the network participants.

Validators are responsible for verifying transactions, executing smart contracts, and producing blocks 
that are added to the Polkadot relay chains.
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Nominators

Nominators play a vital role in contributing to network security and governance by selecting and 
supporting validators. As stakeholders, nominators hold DOT tokens and have the ability to delegate 
their stake to validators of their choice.

By nominating validators, nominators help to secure the network and ensure the integrity of 
transactions. Nominators assess validators based on reputation, performance, and the amount of stake 
they have committed. Validators’ reputation in Polkadot is typically assessed based on their historical 
performance, community engagement, and transparency. A strong track record of consistent uptime, 
accurate validation, and reliability builds a positive reputation. Active involvement in the Polkadot 
community, transparent communication, and contributions to network development enhance trust. 
Technical competence and a clean record, free from any slashable offenses or malicious behavior, also 
contribute to a validator’s positive standing. Collectively, these factors establish a validator’s reputation 
as trustworthy and dedicated to maintaining the network’s stability and security. They aim to select 
validators who have a proven track record of reliable validation and contribute to the overall stability 
of the network.

Nominators participate in the staking process by bonding their tokens to the validators they nominate. 
This bonding mechanism aligns the interests of nominators with the successful operation of the 
network as they have a financial stake in the validators they support. In return for their participation, 
nominators receive a portion of the rewards earned by the validators they nominate.

The role of nominators goes beyond simply staking their tokens. They actively monitor the performance 
of validators and may adjust their nominations based on changes in performance or reputation. This 
flexibility allows nominators to make informed decisions and adapt to the evolving dynamics of 
the network.

Nominators contribute to the decentralization and security of the Polkadot ecosystem by diversifying 
stakes across multiple validators. This helps to prevent the centralization of power and reduces the 
risk of any single validator compromising the network.

Collators

Collators are important participants in the Polkadot ecosystem, specifically within the Substrate 
framework, which we will learn more about in the Substrate section. They play a critical role in 
facilitating the execution and validation of transactions within parachains.

Let’s delve into the essential responsibilities of collators in the Polkadot ecosystem, outlining their 
pivotal role in ensuring seamless transaction processing and enhancing network scalability:

• Collator responsibilities: Collators are tasked with collecting, validating, and organizing 
transactions within their designated parachains.

• Transaction packaging: They assemble these transactions into blocks, which are then sent to 
validators for the final validation and inclusion in the Polkadot relay chain.
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• Intermediaries: Collators act as intermediaries who bridge the gap between parachains and the 
Polkadot relay chain, ensuring transactions comply with their specific chain’s rules and logic.

• Scalability enhancement: Collators play a pivotal role in enhancing the scalability of the 
Polkadot ecosystem. By handling initial transaction validation and block creation within 
parachains, they contribute to network efficiency and relieve validators, leading to increased 
transaction throughput.

• Proofs of validity: In addition to their transaction processing duties, collators are also responsible 
for producing proofs of validity. These proofs provide evidence that the transactions included 
in the blocks are valid and can be relied upon for final validation.

Collators are incentivized to perform their role diligently through rewards. They receive compensation 
for their services in the form of transaction fees and block rewards.

NPoS election algorithms

In the Polkadot ecosystem, NPoS election algorithms are instrumental in determining which validators 
and nominators actively participate in network consensus and governance. These algorithms ensure 
a fair and decentralized process for selecting key actors within the network.

The NPoS election algorithms take various factors into account, including stake, reputation, and the 
number of nominations received by validators. Validators with higher stakes and more nominations 
have a greater chance of being selected to participate in block production and transaction validation.

Let’s explore the steps involved in NPoS election algorithms:

1. Era-based elections: The election process in the Polkadot network operates in eras, which 
are fixed periods. During each era, a new set of validators is selected based on various factors.

2. Predefined parameters: The duration of each era and the number of validators to be elected are 
predefined and determined through the network’s governance mechanisms. These parameters 
can be adjusted through community governance.

3. Diverse validator selection: NPoS algorithms aim to create a diverse and secure validator 
set. They consider factors beyond stake alone to prevent excessive centralization. This ensures 
validators represent a broad range of interests in the ecosystem.

4. Inclusion of reputation: Reputation is a crucial factor in validator selection. Validators are 
incentivized to maintain a positive reputation by providing reliable and trustworthy services 
to the network.

5. Nominator participation: Nominators, who delegate their tokens to validators, play a pivotal 
role. Nominations contribute to a validator’s chance of being selected. Nominators can choose 
validators they trust and support, promoting active participation and reinforcing network security.

6. Balanced selection: The NPoS election algorithms strike a balance between stake-based 
selection and community-driven governance. This balanced approach ensures network security, 
encourages participation, and upholds the integrity of the Polkadot ecosystem.
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Overall, NPoS algorithms create a dynamic and fair process for selecting validators and nominators, 
enhancing network security and decentralization while actively involving the community in 
governance decisions.

Next, we will turn our attention to Kusama, Polkadot’s experimental network designed to foster 
innovation and rapid iteration. We will explore Kusama’s role as a canary network, where developers 
can test new features, experiment with governance, and push the boundaries of what’s possible in a 
live environment.

Learning about Kusama
Kusama is a vibrant and experimental environment within the Polkadot ecosystem. In this section, 
we will delve into the origins of Kusama, its unique benefits, and the key features that make it a 
fascinating blockchain network.

It is a decentralized blockchain network and a sister network of Polkadot. Created by the same team 
behind Polkadot, Kusama serves as a canary network designed for experimentation and innovation. 
It allows developers to test new features, economic models, and governance mechanisms before 
deploying them on the more stable Polkadot network.

Kusama offers several key benefits that make it an attractive and unique blockchain network within 
the Polkadot ecosystem:

• Fast iteration: Kusama excels in rapid project development and testing. Developers can quickly 
experiment and refine their ideas with frequent upgrades and a flexible approach, speeding 
up innovation.

• Low economic barriers: Kusama offers a cost-effective entry point. Acquiring Kusama tokens 
(KSM) and participating in the network is generally more affordable than on Polkadot, fostering 
a diverse developer and user base.

• Advanced technology: Kusama serves as a playground for cutting-edge blockchain technology. 
Developers benefit from early access to experimental features and solutions, staying at the 
forefront of innovation.

• Open governance: Kusama’s transparent governance model invites active involvement from 
token holders. They can propose and vote on upgrades and changes, ensuring community-
driven decision-making and network evolution.

Another crucial aspect we will explore is governance and on-chain upgrades in Kusama. You will 
understand how the network empowers token holders to actively participate in decision-making 
processes and propose and vote on upgrades and changes. We will discuss the self-upgradable nature 
of Kusama and the community-driven governance model that shapes its evolution.
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Governance and on-chain upgrades

Kusama’s governance model empowers token holders to propose, discuss, and vote on vital network 
decisions, ensuring inclusivity and active participation:

• Voting process: Using Kusama’s on-chain governance, proposals undergo voting, where 
token holders stake KSM tokens to support or oppose them, ensuring decentralized, 
transparent decision-making

• Efficient upgrades: On-chain upgrades bolster flexibility, allowing seamless improvements 
without hard forks or manual updates, making the process smoother

• Resilience and democracy: Kusama’s governance fosters openness, inclusivity, and decentralized 
decision-making, enhancing network resilience, adaptability, and democratic values

Kusama’s voting mechanism is pivotal in enabling democratic decision-making. Proposals are 
introduced and subsequently subjected to a transparent voting process. Token holders, as per their 
staked KSM tokens, participate by either supporting or opposing these proposals. The weight of 
their votes is directly proportional to the number of tokens staked, providing a fair representation 
of the community’s preferences. Kusama’s voting process ensures that the majority’s decision guides 
the implementation of changes, securing the network’s democratic ethos while fostering inclusivity, 
transparency, and decentralized governance.

Next, we’ll delve into the concept of chaos and experimentation within Kusama. We will explore how 
Kusama’s environment encourages risk-taking, innovation, and the testing of new features, economic 
models, and governance mechanisms before they’re deployed on the more stable Polkadot network.

Chaos and experimentation

Chaos and experimentation are fundamental principles of the Kusama network, distinguishing it 
as a platform that encourages risk-taking and innovation. Kusama’s Expect Chaos ethos creates an 
environment where developers and participants can freely experiment with bleeding-edge technologies, 
economic models, and governance mechanisms.

The chaotic nature of Kusama is intentional and serves a crucial purpose. By design, Kusama allows 
for rapid iterations and testing of new ideas before they are deployed on the more stable Polkadot 
network. This approach enables developers to identify and address any potential issues or vulnerabilities, 
ensuring the highest level of security and stability on Polkadot.

Kusama’s chaos and experimentation foster an atmosphere of innovation and freedom. Developers 
are encouraged to explore unconventional ideas and challenge the status quo. This freedom allows 
for the exploration of radical solutions and the potential discovery of groundbreaking advancements 
in decentralized technology.
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Participants in the Kusama network understand and embrace the inherent risks involved. They actively 
engage in testing and providing feedback, contributing to the collective learning and improvement 
of the ecosystem. The ability to experiment without fear of disrupting the main network creates a 
dynamic and forward-thinking community.

The chaos and experimentation in Kusama are complemented by its fast-paced development environment. 
Updates and changes are rolled out more frequently, enabling developers to quickly iterate on their 
projects and incorporate new features. This agility and responsiveness contribute to the rapid progress 
and evolution of the Kusama network.

Next up, we will cover Substrate, which forms the foundation of Polkadot and Kusama.

Introducing Substrate
Earlier, we delved into the worlds of Polkadot and Kusama. Now, it’s time to explore the common 
foundation beneath both – Substrate. This versatile framework fuels the development of these blockchain 
ecosystems, offering a glimpse into the innovative potential it unlocks with its flexible and modular 
architecture, Substrate offers the following:

• Modular components: A wide array of modular building blocks, from consensus mechanisms 
to governance models

• Tailored solutions: Developers can configure components to craft highly customized and 
scalable blockchains

• Abstraction of complexity: Substrate abstracts low-level blockchain tasks, enabling developers 
to focus on unique features and smart contracts

• Interoperability: Substrate promotes collaboration by facilitating seamless communication 
between blockchains, fostering innovation

Substrate’s robust architecture and comprehensive toolset make it a preferred framework for building 
powerful and customized dApps.

Substrate architecture

Substrate’s architecture is distinguished by its flexibility and modularity. Central to this architecture 
is the Runtime Module Library (RML), a collection of reusable modules that empowers developers 
to craft tailored, feature-rich blockchains by selecting and configuring the modules that align with 
their project’s needs. The following figure shows its architecture:
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Figure 9.6 – Polkadot’s Substrate architecture

The core of a Substrate-based blockchain is its runtime, which is responsible for executing the business 
logic and processing transactions. The runtime is customizable and can be tailored to meet the specific 
needs of the blockchain application. This allows developers to create efficient and specialized runtimes 
that optimize performance and resource utilization.

Substrate supports multiple consensus mechanisms, including proof-of-stake (PoS), proof-of-
authority (PoA), and others. Developers can choose the consensus mechanism that best aligns with 
their blockchain’s goals and requirements. This flexibility enables the creation of blockchains with 
different security models and performance characteristics.

Another key component of Substrate’s architecture is the Substrate Node. The Substrate Node is 
responsible for maintaining the blockchain’s state, validating transactions, and participating in 
consensus. It connects to the peer-to-peer network, allowing for communication and synchronization 
with other nodes in the network.

Now, let’s delve into the core components that drive the operation and functionality of a Substrate-
based blockchain: the client and runtime.
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Client and runtime

The client and runtime play critical roles in the operation and functionality of a Substrate-based 
blockchain. Figure 9.7 shows what the client and the WASM runtime environment look like:

Figure 9.7 – The client and the WASM runtime environment

The client in Substrate is responsible for managing the interaction between users and the blockchain 
network. It provides the necessary interfaces and functionalities for users to connect to the network, 
submit transactions, and retrieve information from the blockchain. The client handles the communication 
with other nodes in the network and ensures the synchronization of the blockchain’s state.

On the other hand, the runtime in Substrate contains the logic and rules that govern the behavior of 
the blockchain. It serves as the heart of the Substrate-based blockchain, executing smart contracts and 
enforcing the consensus rules. The runtime includes various modules that define the functionalities 
and features of the blockchain, such as token management, governance mechanisms, and custom 
business logic. Developers can customize the runtime by selecting and configuring the desired modules 
to create a blockchain tailored to their specific use case.

The separation of the client and runtime in Substrate allows for greater flexibility and modularity. 
Developers can choose different client implementations based on their specific needs, while still 
utilizing the same runtime logic. This separation also enables easier upgrades and maintenance of 
the client or runtime components independently.

Next, we’ll look at various network types that Substrate supports.
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Network types

Substrate supports a variety of network types, offering flexibility and adaptability to meet the diverse 
requirements of blockchain projects. These network types allow developers to tailor their Substrate-
based blockchains for specific use cases, ranging from private networks to public networks with 
different levels of permissioning:

• Private networks: Private networks are restricted to a select group of participants, ensuring 
privacy and control over the network. These networks are suitable for consortiums, enterprises, 
or organizations that require a secure and private environment for internal operations. Private 
networks in Substrate can be set up with customized permissioning and access control.

• Public networks: Public networks are open to anyone who wants to participate, allowing for 
broader accessibility and decentralization. These networks promote inclusivity and encourage 
community engagement. Public networks built with Substrate can host various applications 
and facilitate the transfer of assets and information across a wide range of users.

• Permissioned networks: Permissioned networks strike a balance between private and public 
networks by allowing controlled access to specific participants. These networks are suitable for 
scenarios where certain participants need to be validated or authorized to join the network. 
Substrate enables the creation of permissioned networks with customizable access controls 
and governance models.

• Hybrid networks: Substrate also supports hybrid network configurations, combining elements 
of private and public networks. These networks provide the benefits of both private and public 
networks, allowing for a combination of privacy, control, and community engagement. Developers 
can configure hybrid networks based on their specific requirements and the desired balance 
between openness and privacy.

By offering various network types, Substrate provides developers with the flexibility to choose the 
appropriate network configuration for their specific use case. Whether it is a private network for 
internal operations, a public network for widespread participation, or a hybrid network that balances 
privacy and openness, Substrate enables the creation of tailored blockchains that align with specific 
needs and goals.

Now, let’s look at various node types.

Node types

To ensure a consistent and current view of the blockchain state, network nodes are essential components 
of any blockchain system. These nodes synchronize with each other to maintain an updated copy 
of the blockchain and track incoming transactions. However, storing a complete copy of the entire 
blockchain can be resource-intensive in terms of storage and computing requirements. Additionally, 
downloading all the blocks from the genesis block to the latest can be impractical for many use cases.
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To address these challenges and provide more efficient access to blockchain data while maintaining 
security and integrity, different types of nodes have been introduced. These nodes enable clients to 
interact with the blockchain in varying ways, based on their specific needs and resource constraints. 
These node types offer different levels of data storage and computational requirements, allowing clients 
to choose the most suitable option:

• Full nodes: Full nodes store a complete copy of the blockchain and participate in the network’s 
consensus protocol. They require significant storage and computational resources but offer 
the highest level of security and independence, allowing for complete verification of the 
blockchain’s history.

• Light nodes: Light nodes, also known as thin clients, do not store the entire blockchain. Instead, 
they rely on other full nodes for specific data retrieval, reducing storage and computational 
requirements. Light nodes sacrifice some independence and rely on trusted nodes for information.

• Archive nodes: Archive nodes specialize in maintaining a comprehensive historical record of 
the blockchain, storing all past transactions and states. They are valuable for research, auditing, 
and compliance purposes, but they require substantial storage capacity.

Let’s embark on a deep dive into Substrate, uncovering its core components and intricate workings 
that make it a versatile framework for blockchain development.

Diving deep into Substrate
At this point, we have a basic understanding of the Substrate framework and can dive deeper by 
learning about some advanced concepts that will help us in the next chapter, when we have to use 
these concepts to build our blockchain.

In the realm of Substrate, runtime interfaces serve as vital contracts that ensure seamless compatibility 
and interoperability between the Substrate client and the blockchain runtime, especially during 
upgrades and cross-version interactions. We’ll take a closer look in the next section.

Runtime interfaces

These interfaces specify the expected functions and data structures that facilitate interaction between 
the Substrate client and the blockchain.

For instance, a Substrate client can rely on the runtime interface to access APIs that are crucial for 
transaction validation, state management, and smart contract execution. When developers upgrade 
the blockchain’s runtime, the defined runtime interface remains consistent, allowing for smooth and 
backward-compatible upgrades. This ensures that existing clients can continue to interact seamlessly 
with the blockchain, even in the presence of underlying changes and improvements.

Furthermore, runtime interfaces promote interoperability among different Substrate-based blockchains. 
By adhering to a shared runtime interface, Substrate-powered blockchains can communicate and 
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collaborate, enabling cross-chain interactions. Developers can also leverage this flexibility to create 
custom runtime interfaces tailored to their specific use cases, enhancing the extensibility and adaptability 
of Substrate-based blockchains.

Now, let’s venture into the foundational building blocks of Substrate. These are known as core primitives; 
they underpin the framework’s essential functionalities and provide a framework for developing 
customized blockchains.

Core primitives

Core primitives form the building blocks of Substrate-based blockchains. These primitives provide 
essential functionality and structures for efficient data storage, event handling, and error management. 
Understanding these core primitives is crucial for developing robust and scalable blockchain solutions 
using Substrate.

Within the Substrate framework, core primitives serve as the bedrock upon which blockchain 
functionalities are built. These essential building blocks are as follows:

• Storage: Substrate offers a sophisticated storage system that enables efficient on-chain state 
management. Developers can structure and store data with precision, ensuring rapid and 
dependable access to the blockchain’s state. This capability empowers the implementation of 
intricate data structures and the effective management of on-chain data:

 � For example, in Substrate, you can define and utilize storage items to store and retrieve data 
efficiently. For instance, to maintain a balanced ledger, you can use the following code snippet:

decl_storage! {
    trait Store for Module<T: Trait> as Balances {
        Balances: map T::AccountId => Balance;
    }
}

• Events: Events provide a mechanism to emit and monitor significant occurrences within the 
blockchain. Developers can craft custom events that represent specific blockchain actions or state 
changes. These events facilitate communication between the blockchain and external systems, 
enabling external applications to respond to blockchain events and initiate off-chain actions:

 � For instance, to define and use a custom event in Substrate, we can use the following code snippet:

decl_event! {
    pub enum Event<T> where AccountId = <T as 
system::Trait>::AccountId {
        Transfer(AccountId, AccountId, Balance),
    }
}
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• Error handling: Robust error handling is fundamental in Substrate. The framework offers 
mechanisms for defining and managing errors that may arise during blockchain logic execution. 
Effective error management ensures the resilience and dependability of Substrate-based blockchains, 
allowing developers to address exceptional scenarios and communicate errors effectively:

 � To handle errors in Substrate, we can use custom error types and error propagation mechanisms 
in the blockchain logic.

 � These core primitives, when utilized in combination, empower developers to create efficient 
and reliable Substrate-based blockchains tailored to specific use cases and functionalities.

 � By leveraging these core primitives, developers can design efficient and scalable Substrate-based 
blockchains. The storage primitives enable organized and optimized data management, while 
events facilitate effective communication with external systems. Error handling mechanisms 
ensure the reliability and resilience of the blockchain’s operations.

Next, we’ll explore the dynamic world of FRAME.

FRAME

FRAME is a powerful framework within Substrate that provides a collection of reusable modules for 
building blockchain logic. FRAME simplifies the development process by offering pre-built, modular 
components that can be customized and combined to create customized Substrate-based blockchains.

Within Substrate’s realm, FRAME emerges as a game-changing framework, offering a versatile toolkit of 
ready-to-use modules. These modules encompass a wide array of blockchain functionalities: balances, 
staking, identity, governance, treasury, and more. FRAME’s modules are meticulously designed with 
modularity in mind, allowing developers to effortlessly incorporate or remove features according to 
their project’s unique needs. A standardized structure and interface across modules ensure consistency 
and compatibility across diverse Substrate-based blockchains.

FRAME’s true power lies in its adaptability. Developers can fashion custom modules by extending 
or adjusting existing ones, molding blockchain functionality to their specific use case. This flexibility 
empowers the creation of distinctive and purpose-built blockchains that align precisely with 
project requirements.

Additionally, FRAME champions compatibility and upgradability. Adhering to FRAME standards 
assures that a blockchain remains in harmony with future Substrate upgrades. This paves the way for 
the seamless integration of new features and bug fixes without compromising the blockchain’s stability.

The following code snippet demonstrates how to include a staking module in a Substrate-based 
blockchain using FRAME:

use frame_system as system;
use pallet_staking as staking;
pub trait Config: system::Config + staking::Config {
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    // Add any additional configuration types here
}
pub use pallet::*;
pub mod pallet {
    use frame_support::pallet_prelude::*;
    use frame_system::pallet_prelude::*;
    // Define the pallet struct
    pub struct Pallet<T>(_);
    // Implement pallet-specific functionality
    impl<T: Config> Pallet<T> {
        pub fn example_call(origin: OriginFor<T>) -> DispatchResult {
            // Custom blockchain logic goes here
            Ok(())
        }

        // Other functions can be added here
    }

This snippet demonstrates integrating the staking module into a Substrate-based blockchain using 
FRAME, allowing developers to customize staking functionality as needed.

Now, let’s explore custom pallets, a vital concept within Substrate.

Building custom pallets

A pallet is a Substrate-specific term that refers to a module that encapsulates a specific set of functionalities 
within a Substrate-based blockchain.

Writing custom pallets allows developers to add custom functionalities and tailor their blockchain 
to specific use cases.

Custom pallets empower developers to extend the functionality of their Substrate-based blockchain 
beyond the standard modules offered by Substrate or FRAME. With custom pallets, developers can 
define and implement unique business logic, rules, and features tailored to their project’s needs.

There are several benefits of using custom pallets:

• Precision: Custom pallets enable the creation of blockchain solutions precisely matched to the 
project’s use case, delivering highly specialized functionality

• Innovation: Developers can stand out and innovate in a competitive landscape by offering 
unique features catering to specific industries or applications

• Modularity: Encapsulating related functionalities into pallets enhances code management and 
reusability, fostering collaboration within the Substrate community

• Upgradability: Pallets can be developed and upgraded independently, allowing seamless 
enhancements and bug fixes without disrupting the entire network
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To create a custom pallet,  you can follow these steps:

1. Define your pallet’s purpose and functionalities.

2. Write the pallet’s logic using Rust, adhering to Substrate’s coding standards.

3. Integrate your custom pallet into your Substrate-based blockchain’s runtime.

4. Test thoroughly to ensure functionality and compatibility.

5. Share your pallet with the community to foster collaboration and growth.

Now that we have discussed the important elements of Substrate, let’s delve into a remarkable capability 
offered by Substrate – forkless runtime upgrades. These upgrades enable seamless protocol and runtime 
enhancements without the need for hard forks or node interruptions.

Forkless and runtime upgrades

One of the biggest features provided by Substrate is the ability to perform forkless runtime upgrades, 
in the sense you don’t require forks for any software upgrade and the node doesn’t have to be stopped 
for any update or upgrade – it can all be done at runtime. So, essentially, forkless upgrades refer to the 
ability to upgrade the blockchain’s protocol and runtime without requiring a hard fork.

This means that the entire network does not need to undergo a disruptive split, thereby maintaining 
network continuity and preventing the creation of separate chains. Forkless upgrades are facilitated 
by Substrate’s modular architecture and runtime interfaces. Developers can introduce changes to 
the protocol and runtime through runtime upgrades, ensuring that the network remains intact and 
smoothly transitions to the upgraded version.

Runtime upgrades allow developers to update the blockchain’s runtime logic and functionality without 
interrupting the ongoing operations. With runtime upgrades, developers can introduce new features, fix 
bugs, or optimize performance without requiring a complete restart or disruption of the network. The 
upgraded runtime can be seamlessly applied to the existing blockchain, ensuring a smooth transition 
and preserving the state and history of the blockchain.

The benefits of forkless and runtime upgrades are significant. They provide a non-disruptive approach to 
evolving the blockchain, allowing for continuous improvements and enhancements while maintaining 
network consensus and preserving the integrity of the blockchain. Forkless upgrades and runtime 
upgrades ensure that Substrate-based blockchains can adapt to changing requirements, fix vulnerabilities, 
and introduce new features securely and efficiently.

By enabling forkless and runtime upgrades, Substrate empowers developers to create dynamic and 
upgradable blockchain networks that can evolve. It provides a robust mechanism for managing the 
life cycle of Substrate-based blockchains, allowing for seamless transitions and avoiding network 
disruptions that are typically associated with hard forks. Forkless and runtime upgrades contribute 
to the long-term sustainability and scalability of Substrate-based blockchains.
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Another fundamental aspect that is shared across all the blockchain networks is the consensus 
mechanism. We’ll discuss this next.

Consensus

Consensus in blockchain refers to the process by which participants agree on the state of the ledger. 
It ensures data integrity, security, and consistency among network nodes through various protocols. 
Consensus mechanisms are essential in determining the state of a blockchain, and this holds for all 
blockchain networks. With Substrate, a flexible framework for constructing blockchains, multiple 
consensus models are supported to enable nodes to reach an agreement. Each consensus model comes 
with its own set of advantages and trade-offs, making it crucial to carefully select the most suitable one 
for your chain. Substrate offers default consensus models that require minimal configuration, ensuring 
a straightforward setup process. However, if desired, it is also possible to develop a custom consensus 
model tailored to specific requirements. This flexibility empowers developers to tailor the consensus 
mechanism according to their unique needs, ensuring optimal performance and functionality for 
their blockchain network.

Let’s explore the key consensus mechanisms that are used in various blockchain networks:

1. Block authoring: This phase involves nodes creating new blocks. During block authoring, 
nodes gather transactions, organize them into blocks, and propose them for inclusion in the 
blockchain. Block authoring is a pivotal process in the consensus mechanism. Block authoring 
refers to the creation and proposal of new blocks by participating nodes within the network. 
During the block authoring phase, nodes, also known as block authors or validators, collect 
and aggregate transactions from the network’s mempool. They then organize these transactions 
into a block structure, appending them to the existing blockchain. Block authors play a critical 
role in ensuring the efficient and timely processing of transactions, as well as maintaining the 
overall integrity of the blockchain. Substrate provides a flexible environment for block authoring, 
allowing developers to design and implement their strategies based on their specific blockchain 
requirements. The framework offers a range of customizable features and modules that facilitate 
block authoring, such as transaction queues, consensus algorithms, and networking protocols. 
Substrate supports various block authoring mechanisms, including NPoS and Aura. NPoS is 
a widely used consensus algorithm in Substrate, where a set of validators is nominated based 
on stake ownership and selected to create blocks in a round-robin fashion. Aura, on the other 
hand, is a more deterministic block authoring mechanism that appoints a single validator to 
create blocks in each round.

2. Block finalization: This phase manages forks and determines the canonical chain. Block 
finalization ensures that conflicts or multiple versions of the blockchain are resolved, and a single, 
agreed-upon chain is selected as the authoritative version. Block finalization handles forks and 
determines the canonical chain within the network, ensuring consensus and maintaining the 
integrity of the blockchain. When multiple blocks are proposed during the block authoring phase, 
block finalization comes into play to select a single, agreed-upon chain as the canonical chain. 
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It resolves conflicts and establishes a definitive order of blocks, preventing diverging versions of 
the blockchain. Substrate employs various mechanisms for block finalization, including finality 
gadgets such as GHOST-based Recursive Ancestor Deriving Prefix Agreement (GRANDPA). 
This is a hybrid consensus algorithm that combines the benefits of PoS and finality gadgets. 
It utilizes a multi-round voting process where validators participate in a weighted voting 
system to determine the validity and order of blocks. Once a block receives sufficient votes 
and achieves supermajority approval, it becomes finalized, signifying its permanent position 
in the blockchain. This can be seen in the following figure:

Figure 9.8 – How does the GRANDPA protocol work?

By separating consensus into these two phases, Substrate provides a modular approach to achieving 
agreement within the network. This division allows for flexibility in selecting consensus mechanisms 
that best suit the specific requirements and desired trade-offs of the blockchain. Developers using 
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Substrate can design their own block authoring and finalization mechanisms or choose from the 
existing options provided by the framework, tailoring the consensus process to their project’s needs.

One widely recognized consensus model is Proof of Work (PoW), which is famously used in Bitcoin. In 
PoW, participants, known as miners, compete to solve complex mathematical puzzles. The first to solve 
the puzzle gets the right to validate transactions and add a new block to the blockchain. This process 
consumes significant computational power, making it computationally expensive and energy-intensive.

PoW’s security lies in its difficulty – miners must expend real-world resources (electricity and 
computing power) to participate, deterring malicious actors. However, this energy consumption has 
raised environmental concerns.

While PoW offers robust security, it’s not the most efficient solution. Blockchains such as Ethereum 
have transitioned to PoS, where validators are chosen to create new blocks based on the amount of 
cryptocurrency they stake as collateral. PoS aims to be more energy-efficient and is gaining popularity 
for its scalability and lower resource demands. Both PoW and PoS demonstrate how consensus 
mechanisms ensure network integrity and validity, albeit with differing trade-offs.

The finality that’s achieved through block finalization ensures the immutability and consistency of 
the blockchain. It provides developers and users with confidence in the reliability of transactions and 
enables the construction of secure dApps.

With Substrate, developers have the flexibility to customize block finalization mechanisms to suit 
their specific blockchain requirements. They can integrate alternative finality gadgets or design finality 
algorithms, tailoring the consensus process to the unique needs of their blockchain network.

Let’s explore the concept of deterministic finality, a crucial aspect that guarantees the irreversibility of 
transactions and offers a high degree of certainty regarding the blockchain’s ultimate state.

Deterministic finality

Deterministic finality ensures the irreversibility of transactions and provides a high level of certainty 
regarding the final state of the blockchain.

In Substrate, deterministic finality guarantees that once a block is considered finalized, it becomes 
immutable and cannot be modified or reverted. This feature is achieved through the integration of 
finality gadgets, such as the GRANDPA consensus algorithm. GRANDPA utilizes a multi-round 
voting process among validators to reach an agreement on block finalization. Once a block achieves 
supermajority approval, it attains deterministic finality. This means that the transactions included in 
the finalized block are permanently recorded and considered the definitive state of the blockchain.

Deterministic finality provides several benefits. It enables developers and users to have confidence in 
the integrity of transactions as they are assured that finalized blocks cannot be tampered with. This 
reliability facilitates the building of robust dApps and supports secure economic interactions.
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Summary
In summary, our exploration of the Polkadot ecosystem, Kusama, and Substrate has illuminated 
the realm of decentralized networks and blockchain development. We’ve delved into the innovative 
technologies, principles, and frameworks underpinning these interconnected platforms.

Polkadot’s multi-chain architecture empowers scalability and interoperability in the blockchain space, 
enabling secure communication and data transfer across chains. This facilitates dApps and cross-chain 
collaborations, offering developers the opportunity to build specialized parachains tailored to unique 
use cases while benefiting from shared security and connectivity.

Kusama, the adventurous counterpart to Polkadot, provides an experimental playground for blockchain 
projects, fostering innovation and risk-taking in a fast-paced environment. Substrate, the versatile 
blockchain development framework, has played a pivotal role in both ecosystems, empowering developers 
to craft customized blockchain networks. Our journey has introduced us to essential concepts such as 
block authoring, finality, consensus mechanisms, and governance, all of which are essential for secure 
and reliable transactions within these networks. This newfound knowledge forms a solid foundation 
for further exploration and engagement in the dynamic world of blockchain technology.

As we conclude this chapter, our newfound knowledge of the Polkadot ecosystem, Kusama’s experimental 
ethos, and Substrate’s flexibility will serve as a solid foundation for further exploration and involvement 
in the exciting world of blockchain technology. In the next chapter, we will use the Substrate framework 
to create our own blockchain.
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By now, we have gained significant knowledge about blockchains and have even constructed our 
own custom blockchain using Rust. In this chapter, our objective is to utilize a popular blockchain 
framework called Substrate (which we learned about in the previous chapter, along with Polkadot and 
Kusama) to create our own blockchain. As we progress, you will witness how Substrate streamlines 
the process of building custom blockchains by managing many of the underlying complexities on our 
behalf. The aim of this chapter is to provide you with a comprehensive understanding of Substrate 
and equip you to harness its capabilities effectively.

Here’s what we’ll cover in this chapter:

• Building our own blockchain

• Simulating a network

Technical requirements
To continue our journey of building our own blockchain, we first need to have our environment set 
up. For detailed instructions on how to accomplish this, please refer to Chapter 3, Building a Custom 
Blockchain, where we provide step-by-step guidance for various operating systems, including installing 
Rust on Mac, Linux, and Windows.

Installing Substrate

With Rust installed and the Rust toolchains configured for Substrate development, you are now ready 
to complete the setup of your development environment. This involves cloning the Substrate node 
template files and compiling a Substrate node.
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You can find detailed instructions for installing and setting up Substrate in the official Substrate 
documentation. Please refer to the following links based on your operating system:

• Linux development environment: https://docs.substrate.io/install/linux/

• MacOS development environment: https://docs.substrate.io/install/macos/

• Windows development environment: https://docs.substrate.io/install/
windows/

With these steps completed, you’re now equipped and ready to embark on your Substrate development 
journey. Happy coding!

Building our own blockchain
This section will guide you through building and initiating a functional single-node blockchain for 
practical exploration:

1. The first step in your journey as a blockchain developer is to understand the process of compiling 
and launching a single local blockchain node. We will use the Substrate framework. The Substrate 
node template provides a fully functional single-node blockchain that can be executed in your 
local development environment. It comes equipped with predefined components such as user 
accounts and account balances, enabling you to explore various common tasks.

2. By running the template without any modifications, you can have a functional node that 
generates blocks and supports transactions.

3. Once your local blockchain node is up and running, this section will demonstrate how to utilize 
a Substrate frontend template.

4. This will allow you to observe blockchain activities and submit transactions, providing practical 
insights into Substrate’s functionalities as you begin your blockchain development journey.

Starting a local node

Let’s get started with compiling and starting our own substrate node.

You first need to clone the node template repository by running the following command:

git clone https://github.com/substrate-developer-hub/substrate-node-
template

By default, this command clones the main branch. However, if you have prior experience with Polkadot 
and wish to work with a specific version of it, you can use the --branch command-line option. This 
allows you to choose the particular branch that aligns with your requirements and development goals.

https://docs.substrate.io/install/linux/
https://docs.substrate.io/install/macos/
https://docs.substrate.io/install/windows/
https://docs.substrate.io/install/windows/
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Change to the root of the node template directory by running the following command:

cd substrate-node-template

Create a new branch to contain your work:

git switch -c my-learning-branch-2023-12-11

Compile the node template by running the following command:

cargo build –release

When building optimized artifacts, it is recommended to consistently include the --release flag. 
On the initial compilation, the process may take some time to complete.

Upon successful completion, you should see a line similar to this:

Finished release [optimized] target(s) in 11m 23s

Once your node has finished compiling, you can begin exploring its functionalities with the frontend 
template that we will download, but before that, let’s first start the node.

In the same terminal where you compiled your node, you can now start the node in development 
mode by executing the following command:

./target/release/node-template --dev

The node-template command-line options determine the node’s behavior during runtime. In this 
context, the --dev option indicates that the node will run in development mode, utilizing the predefined 
development chain specification. Additionally, when the node is stopped (e.g., by pressing Ctrl + C), 
the --dev option automatically deletes all active data, including keys, the blockchain database, and 
networking information. As a result, using the --dev option guarantees a clean working state each 
time you stop and restart the node, allowing for a fresh and consistent environment.

To ensure your node is successfully up and running, review the output displayed in the terminal.

The terminal should exhibit output similar to this:

2023-12-11 09:21:34 Substrate Node

2023-12-11 09:21:34 ✌  version 4.0.0-dev-de262935ede

2023-12-11 09:21:34 ❤  by Substrate DevHub <https://github.com/
substrate-developer-hub>, 2017-2022

2023-12-11 09:21:34 📋 Chain specification: Development

2023-12-11 09:21:34 🏷  Node name: limping-oatmeal-7460
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2023-12-11 09:21:34 👤 Role: AUTHORITY

2023-12-11 09:21:34 💾 Database: RocksDb at /var/folders/2_/
g86ns85j5l7fdnl621ptzn500000gn/T/substrate95LPvM/chains/dev/db/full

2023-12-11 09:21:34 ⛓  Native runtime: node-template-100 (node-
template-1.tx1.au1)

2023-12-11 09:21:34 🔨 Initializing Genesis block/state (state: 
0xf6f5…423f, header-hash: 0xc665…cf6a)

2023-12-11 09:21:34 👴 Loading GRANDPA authority set from genesis on 
what appears to be first startup.

2023-12-11 09:21:35 Using default protocol ID "sup" because none is 
configured in the chain specs

2023-12-11 09:21:35 🏷  Local node identity is: 
12D3KooWQELo5BwrmYcG6sb5zrj3t2pSyY3QRJVDVqRFxy8NUkGX

...

...

...

...

2023-12-11 09:34:02 💤 Idle (0 peers), best: #3 (0xcdac…26e5), 
finalized #1 (0x107c…9bae), ⬇ 0 ⬆ 0

As you monitor the log, notice the incrementing number after finalized using the instruction on 
the repo at https://github.com/nvm-sh/nvm. This signifies the active generation of new 
blocks and the consensus achieved regarding the represented state within your blockchain.

In future sections, we’ll delve deeper into analyzing the log output. But for now, you can comprehend 
that your node is operational, successfully creating blocks.

To continue, ensure the terminal displaying the node output remains open.

https://github.com/nvm-sh/nvm
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Installing a frontend template

To engage with our blockchain node, Substrate provides a ready-to-use frontend template. Let’s install 
it and explore its functionality.

Firstly, it’s essential to confirm the presence of Node.js on your system, ensuring it meets the required 
version specifications, such as v19.7.0. Open a terminal and check the Node.js version using the 
following command:

node --version

If the command doesn’t display a version number, it indicates that Node.js isn’t installed on your 
system. In such a case, you can install it using nvm.

Remember, Node.js needs to be at least version v14 for running the frontend template.

Additionally, ensure you have Yarn installed for further setup:

yarn –version

To execute the frontend template, ensure that your Yarn version is at least v3. If you have an older 
version, updating can be done by specifying a version number through the yarn version command. 
In case this command doesn’t yield a version number or you require assistance installing a specific 
Yarn version, refer to the installation guidelines available on the Yarn website (https://classic.
yarnpkg.com/lang/en/docs/install/).

Now, proceed to clone the repository containing the frontend template using this command:

git clone https://github.com/substrate-developer-hub/substrate-front-
end-template

Now, let’s change to the root of this directory that we have cloned:

cd substrate-front-end-template

Now, it’s crucial to install all the dependencies listed in the Yarn files into your system. When you 
clone a Node.js or Yarn project, you’re importing specification files of the necessary dependencies to 
run the project. However, you won’t import the actual required dependencies themselves as they tend 
to be large in size. This step involves separately installing these dependencies:

yarn install

Starting the frontend template

The Substrate frontend template is equipped with user interface components that facilitate interaction 
with the Substrate node, allowing you to perform various common tasks.

https://classic.yarnpkg.com/lang/en/docs/install/
https://classic.yarnpkg.com/lang/en/docs/install/
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To utilize the frontend template, follow these steps:

1. Ensure that your current working directory corresponds to the root directory where you 
installed the frontend template in the previous section.

2. Initiate the frontend template by executing the following command:

yarn start

3. Normally, this command automatically opens http://localhost:8000 in your default 
browser. If required, you can manually enter the URL (http://localhost:8000) to 
access the frontend template.

4. The upper section of the template includes an Account selection list, enabling you to choose 
the account you wish to work with when performing on-chain operations. Additionally, this 
section provides information about the connected chain:

Figure 10.1 – Blockchain dashboard

5. You may also observe a Balances table in the frontend template, which contains a set of 
predefined accounts, some of which come with preconfigured funds. This sample data allows 
you to experiment with operations such as fund transfers:

Figure 10.2 – Balances table
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Transferring the funds

Now that you have a blockchain node up and running on your local computer and access to the 
frontend template for conducting on-chain actions, you are all set to explore various ways to interact 
with the blockchain.

The default frontend template comes equipped with numerous components that enable you to try 
out different common tasks. For this section, let’s start by performing a straightforward fund transfer 
operation, where funds will be moved from one account to another.

To transfer funds to an account, follow these steps:

1. In the Balances table, observe the predefined accounts, such as Max, which currently have no 
funds associated with them:

Figure 10.3 – Predefined user’s balance in the table

2. Beneath the Balances table, you’ll find the Transfer component. Use this component to initiate 
the fund transfer from one account to another.

3. Choose Max from the list of available accounts to populate the recipient address for the 
fund transfer.

4. Specify an amount of at least 1000000000000 as the sum to be transferred, and then click 
the Submit button:
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Figure 10.4 – Dashboard to transfer the fund

5. Observe that the values in the Balances table get updated, reflecting the successful transfer:

Figure 10.5 – Updated balances table

To view events related to the transfer you just made, check the Events component.

The Substrate blockchain communicates the results of asynchronous operations through events. By using 
the Events component, you can examine details about each operation conducted during the transfer:

Figure 10.6 – Event details
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For instance, once the transaction is completed and included in a block, you will see a confirmation 
message similar to the following:

😉 Finalized. Block hash: 
0xa50d3f99fcea8a1611806895aa3f4d4d55fdc4989fbb2148d4856a043d01f808

Next up, we will see how we can simulate a network.

Simulating a network
In this section, we will extend our knowledge from single-node operations to multi-node setups. 
We’ll focus on setting up a private blockchain network using an authority set of private validators. 
Within this network, Substrate employs an authority consensus model, where a predefined list of 
authorized accounts, known as authorities, takes turns in a round-robin fashion to create blocks. This 
fundamental introduction will equip you with the skills to work with private blockchain networks and 
understand authority-based consensus mechanisms. Throughout this chapter, you will experience the 
practical functioning of the authority consensus model by utilizing two preconfigured accounts as the 
authorities responsible for block production. This simulated network will involve running the two 
nodes on a single computer, each with different accounts and keys. In the upcoming section, we will 
begin our journey by initiating a blockchain node using a predefined account, allowing us to explore 
Substrate’s functionality further.

Starting the first blockchain node

Before generating keys to set up your private Substrate network, you can grasp the fundamental 
principles using a predefined network specification known as local. This specification runs with 
preconfigured user accounts, allowing you to learn the basics without generating new keys.

We will now simulate a private network by running two Substrate nodes on a single local computer. 
These nodes will utilize predefined accounts named Eve and Charlie.

To initiate the blockchain, follow these steps:

1. Open a terminal shell on your computer.

2. Navigate to the root directory where you compiled the Substrate node template.

3. Purge old chain data by executing the following command:

./target/release/node-template purge-chain --base-path /tmp/Eve 
--chain local

Alternatively, execute this command:
cargo run --release -- purge-chain --base-path /tmp/Eve --chain 
local
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4. The command will prompt you to confirm the operation:

Are you sure to remove "/tmp/Eve/chains/local_testnet/db"? 
[y/N]:

5. Type y to confirm that you want to remove the chain data. Remember, it’s essential to remove 
old chain data when starting a new network.

6. Start the local blockchain node using the Eve account by executing the following command 
as a single command:

./target/release/node-template \

Alternatively, execute this command:
cargo run --release --
--base-path /tmp/Eve\
--chain local \
--Eve- \
--port 30333 \
--ws-port 9945 \
--rpc-port 9933 \
--node-key 00000000000000000000000000000000000000000000000000000
00000000001 \
--telemetry-url "wss://telemetry.polkadot.io/submit/ 0" \
--validator

7. Once you put in the previous command, the node should start, and if it does, you will receive 
a message like this in the terminal:

2023-12-13 15:29:55 Substrate Node

2023-12-13 15:29:55 ✌  version 4.0.0-dev-de262935ede

2023-12-13 15:29:55 ❤  by Substrate DevHub <https://github.com/
substrate-developer-hub>, 2017-2022

2023-12-13 15:29:55 📋 Chain specification: Local Testnet

2023-12-13 15:29:55 🏷  Node name: Eve

2023-12-13 15:29:55 👤 Role: AUTHORITY

2023-12-13 15:29:55 💾 Database: RocksDb at /tmp/eve/chains/
local_testnet/db/full

2023-12-13 15:29:55 ⛓  Native runtime: node-template-100 (node-
template-1.tx1.au1)

2023-12-13 15:29:55 🔨 Initializing Genesis block/state (state: 
0x6894…033d, header-hash: 0x2cdc…a07f)
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2023-12-13 15:29:55 👴 Loading GRANDPA authority set from 
genesis on what appears to be first startup.

2023-12-13 15:29:56 Using default protocol ID "sup" because none 
is configured in the chain specs

2023-12-13 15:29:56 🏷  Local node identity is: 
12D3KooWEyoppNCUx8Yx66oV9fJnriXwCcXwDDUA2kj6vnc6iDEp

2023-12-13 15:29:56 💻 Operating system: macos

2023-12-13 15:29:56 💻 CPU architecture: x86_64

2023-12-13 15:29:56 📦 Highest known block at #0

2023-12-13 15:29:56 〽 Prometheus exporter started at 
127.0.0.1:9615

2023-12-13 15:29:56 Running JSON-RPC HTTP server: 
addr=127.0.0.1:9933, allowed origins=Some(["http://
localhost:*", "http://127.0.0.1:*", "https://localhost:*", 
"https://127.0.0.1:*", "https://polkadot.js.org"])

2023-12-13 15:29:56 Running JSON-RPC WS server: 
addr=127.0.0.1:9945, allowed origins=Some(["http://
localhost:*", "http://127.0.0.1:*", "https://localhost:*", 
"https://127.0.0.1:*", "https://polkadot.js.org"])

2023-12-13 15:29:56 creating instance on iface 192.168.1.125

2023-12-13 15:30:01 💤 Idle (0 peers), best: #0 (0x2cdc…a07f), 
finalized #0 (0x2cdc…a07f), ⬇ 0 ⬆ 0

Pay special attention to the following messages displayed in the output:

• 🔨 Initializing Genesis block/state (state: 0x6894…033d, header-
hash:  0x2cdc…a07f): This message identifies the initial or genesis block that the node 
is currently utilizing. When you launch the next node, ensure that these values are the same 
for proper network synchronization.

• 🏷 Local node identity is: 
12D3KooWEyoppNCUx8Yx66oV9fJnriXwCcXwDDUA2kj6vnc6iDEp: This message 
indicates a unique string that identifies this specific node. The string is determined by the 
--node-key used when starting the node with the Eve account. You will use this string 
to identify and connect to this node when setting up a second node.
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• 2022-08-16 15:30:01 💤 Idle (0 peers), best: #0 ( 0x2cdc…a07f), 
finalized #0 ( 0x2cdc…a07f), ⬇ 0 ⬆ 0: This message indicates that there are 
currently no other nodes in the network, and no blocks are being produced. It suggests that 
another node needs to join the network before block production can commence.

Next, we’ll expand our network by adding another node, this time using the Charlie account keys. 
This process will allow us to connect multiple nodes and further explore Substrate’s capabilities.

Adding more nodes

Now that the node initiated with the Eve account keys is up and running, you can proceed to add 
another node to the network using the Charlie account. As you are joining an already active network, 
the running node will serve as an identifier for the new node to connect with. The commands to 
accomplish this are quite similar to the ones used previously in the Starting the first blockchain node 
section, but with some crucial differences.

To add a node to the running blockchain, follow these steps:

1. Open a new terminal shell on your computer.

2. Navigate to the root directory where you compiled the Substrate node template.

3. Purge old chain data by executing the following command:

./target/release/node-template purge-chain --base-path /tmp/
Charlie --chain local -y

4. By including the y flag in the command, you can bypass the prompt for confirmation while 
removing chain data.

5. Start a second local blockchain node using the Charlie account with the following command:

./target/release/node-template database new --db-path /path/to/
Charlie_database --db-instance charlie_instance

./target/release/node-template \
--base-path /tmp/Charlie \
--chain local \
--Charlie \
--port 30334 \
--ws-port 9946 \
--rpc-port 9934 \
--telemetry-url "wss://telemetry.polkadot.io/submit/0" \
--validator \
--bootnodes/ip4/127.0.0.1/tcp/30333/
p2p/12D3KooWEyoppNCUx8Yx66oV9fJnriXwCcXwDDUA2kj6vnc6iDEp \
--database-instance charlie_instance
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Take note of the following differences between this command and the previous one. As the two nodes 
are running on the same computer, you must specify distinct values for the --base-path, --port, 
--ws-port, and --rpc-port options.

• This command includes the bootnodes option and specifies a single boot node, which is 
the node initiated by Eve.

• The --bootnodes option provides the following information:

 � ip4 indicates that the IP address for the node is in IPv4 format.

 � 127.0.0.1 specifies the IP address for the running node, which, in this case, is 
the localhost.

 � tcp designates TCP as the protocol used for peer-to-peer communication.

 � 30333 denotes the port number used for peer-to-peer communication, specifically the 
port number for TCP traffic.

 � 12D3KooWEyoppNCUx8Yx66oV9fJnriXwCcXwDDUA2kj6vnc6iDEp identifies the 
running node that this new node will communicate with within the network. In this case, 
it refers to the node initiated using the Eve account.

We’ll verify that our blockchain network is functioning correctly by confirming block production and 
examining essential information about the blockchain.

Verifying block production

Once you start the second node, both nodes should establish a peer-to-peer connection with each 
other and the process of producing blocks will commence.

To confirm that blocks are being successfully finalized, check the terminal where you started the first 
node. Look for lines similar to the following:

2023-12-13 15:32:33 discovered: 
12D3KooWBCbmQovz78Hq7MzPxdx9d1gZzXMsn6HtWj29bW51YUKB /ip4/127.0.0.1/
tcp/30334

2023-12-13 15:32:33 discovered: 
12D3KooWBCbmQovz78Hq7MzPxdx9d1gZzXMsn6HtWj29bW51YUKB /ip6/::1/
tcp/30334

2023-12-13 15:32:36 🙌 Starting consensus session on top of parent 
0x2cdce15d3...

2023-12-13 15:32:36 🎁 Prepared block for proposing at 1 (5 ms) 
[hash: 0x9ab34...4104b; parent_hash: 0x2cdc...a07f; extrinsics (1): 
[0x4634...cebf]]
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2023-12-13 15:32:36 🔖 Pre-sealed block for proposal at 1. Hash now 
0xf0869...9847, previously 0x9ab34...4104b.

2023-12-13 15:32:36 ✨ Imported #1 (0xf086…9847)

2023-12-13 15:32:36 💤 Idle (1 peers), best: #1 (0xf086…9847), 
finalized #0 (0x2cdc…a07f), ⬇ 1.0kiB/s ⬆ 1.0kiB/s

...

2023-12-13 15:32:48 🙌 Starting consensus session on top of parent 
0x0d5ef319...

2023-12-13 15:32:48 🎁 Prepared block for proposing at 3 (0 ms) 
[hash: 0xa307c...601346a; parent_hash: 0x0d5e...2a7f; extrinsics (1): 
[0x63cc...39a6]]

2023-12-13 15:32:48 🔖 Pre-sealed block for proposal at 3. Hash now 
0x0c556...cfb3d51b, previously 0xa307c...601346a.

2023-12-13 15:32:48 ✨ Imported #3 (0x0c55…d51b)

2023-12-13 15:32:51 💤 Idle (1 peers), best: #3 (0x0c55…d51b), 
finalized #1 (0xf086…9847), ⬇ 0.7kiB/s ⬆ 0.9kiB/s

In these lines, you can find essential information about your blockchain:

• The second node’s identity is discovered on the 
network (12D3KooWBCbmQovz78Hq7MzPxdx9d1gZzXMsn6HtWj29bW51YUKB)

• The node has one peer (1 peer)

• The nodes have successfully produced some blocks (best: #3 (0x0c55…d51b))

• The blocks are being finalized (finalized #1 (0xf086…9847))

Make sure you observe similar output in the terminal where you initiated the second node.

To shut down one of the nodes, press Ctrl + C in the terminal shell.

After you shut down the node, you’ll notice that the remaining node has zero peers and has stopped 
producing blocks, as shown in the following example:

2023-12-13 15:53:45 💤 Idle (1 peers), best: #143 (0x8f11…1684), 
finalized #141 (0x5fe3…5a25), ⬇ 0.8kiB/s ⬆ 0.7kiB/s
2023-12-13 15:53:50 💤 Idle (0 peers), best: #143 (0x8f11…1684), 
finalized #141 (0x5fe3…5a25), ⬇ 83 B/s ⬆ 83 B/s
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Shut down the second node as well by pressing Ctrl + C in the terminal shell .

If you wish to remove the chain state from the simulated network, employ the purge-chain 
subcommand along with the --base-path command-line options for the /tmp/Charlie and 
/tmp/Eve directories.

Summary
In this chapter, we embarked on the journey of building our very own blockchain using Substrate. 
Through hands-on experience and practical exercises, we gained a comprehensive understanding of 
setting up a Substrate node on our local machine and simulating a network of multiple nodes. We 
explored the inner workings of blockchain technology, witnessing how block production is limited to 
a rotating list of authorized accounts, known as authorities, who take turns creating blocks.

Adding a second node to our blockchain allowed us to witness decentralized node interactions and 
block production in a live environment. Throughout, we learned about essential operations, such as 
purging chain data and managing node identities, as well as command-line options for configuring 
nodes. This hands-on experience and practical knowledge will equip us for further blockchain 
development endeavors using Substrate.

In the next chapter, we will delve into the future of Rust for blockchains. After our extensive journey 
into blockchain development, it’s crucial to explore the promising prospects Rust offers for blockchain 
technology. We’ll discuss Rust’s role in various blockchains and Web3 technologies, the growing 
Rust community’s interest in blockchain development, and career opportunities in the Web3 space. 
Additionally, we’ll explore potential projects and how to extend our knowledge beyond this book, 
providing valuable insights for readers looking to advance their careers in blockchain development.





Part 5:  
The Future of Blockchains

In the final part of this book, we will explore what the future of blockchains looks like when it comes 
to Rust.

This part has the following chapter:

• Chapter 11, Future of Rust for Blockchains





11
Future of Rust for Blockchains

We’ve been together on this long journey of learning about blockchains and even building blockchains 
from scratch, and we can say that we have a great amount of information and some experience working 
with blockchains.

It might now be clear to you that blockchains have a great future because of all the benefits they 
provide – immutability, decentralization, and trust. As we know, mass adoption has even started in 
some industries and it’s only a matter of time before blockchains become mainstream.

In this chapter, we will cover the following topics:

• What the future looks like for Rust blockchains

• Upcoming blockchains

• Upcoming Rust Web3 projects

What the future looks like for Rust blockchains
In this section, we will go through all the popular and upcoming blockchains that are using Rust as 
the primary technology and learn what the future looks like for these blockchains. This will help you 
understand which particular blockchain you can focus your efforts on and which community would be 
the most beneficial for you to join. Some of the popular blockchains can be seen in the following figure:

Figure 11.1 – Popular and upcoming blockchains
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Popular blockchains

Let’s first start by talking about the blockchains that are already well established and have a great 
number of users, dApps, and active communities.

Solana

The growth story of Solana has been nothing short of phenomenal; according to https://
solanaproject.com/, there are a total of 394 projects building on the Solana blockchain with 
a total locked value of more than 600 million dollars. Solana is able to support more than 4,000 
transactions per second (TPS).

This rapid adoption of Solana can be attributed to its high throughput, low transaction fees, and robust 
developer tools, which have attracted a diverse range of projects across various industries.

Solana has surpassed two million total users with the continuous development and expansion of the 
platform. The community surrounding Solana has also been growing steadily, with active participants 
ranging from developers and investors to enthusiasts and supporters.

Solana, with its ever-improving features and a growing developer community, is poised to attract a 
larger audience of developers and users. The platform’s commitment to nurturing a developer-friendly 
ecosystem fosters innovation and diversifies the range of applications built on Solana. Moreover, as the 
blockchain industry gains mainstream recognition and adoption, Solana’s efficient performance and 
scalability make it an attractive choice for projects seeking robust and reliable blockchain infrastructure.

Rust has also proven to be highly effective in the Solana blockchain for several reasons:

• Emphasis on safety and memory management: Rust’s focus on safety and efficient memory 
management is crucial for building a secure and dependable blockchain infrastructure

• Efficiency and concurrency: Solana’s unique Proof of History consensus mechanism demands 
high efficiency and concurrency—areas where Rust excels

• Low-level programming: Rust’s ability to handle low-level programming with minimal overhead 
aligns perfectly with Solana’s requirements

• Strict type system: Rust’s strict type system enhances the protocol’s stability

• Robust error handling: Rust’s robust error handling contributes to the resilience of the 
Solana protocol

For a more detailed exploration of these advantages, refer to Chapter 7, Exploring Solana by Building 
a dApp, where we delve into Rust’s significance in blockchain development, specifically in the context 
of Solana.

https://solanaproject.com/
https://solanaproject.com/
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NEAR

According to NEAR’s official website (https://near.org/), in terms of sheer numbers, NEAR is 
highly impressive – more than 300,000 daily transactions, more than 20,000 new accounts created on a 
daily basis, and an average of 50,000 daily active accounts. NEAR is impressive for many more reasons:

• NEAR’s growth prospects are optimistic, with ongoing enhancements and developer tools 
attracting more dApps and users

• NEAR’s commitment to user-friendly experiences and scalability positions it well for adoption 
in DeFi, NFTs, and gaming

• Active community and partnerships drive innovation and collaboration in the NEAR ecosystem

• Rust’s concurrency support is essential for processing multiple transactions and smart 
contracts simultaneously

• Rust’s safety features minimize bugs and vulnerabilities in NEAR’s smart contracts, enhancing 
asset security

• Rust’s cross-compilation capabilities ensure efficient operation on various devices and 
operating systems

• The extensive Rust community and ecosystem empower NEAR developers to build and maintain 
robust applications

You can refer to Chapter 8 for more details on NEAR’s blockchain and Rust usage.

Polkadot

According to the official Polkadot website (https://www.polkadot.network/), in the 
Polkadot ecosystem, there are already more than 90 parachains, even though there can only be a total 
of 100 parachains. Since there are multiple parachains, the number of dApps has reached 300, which 
is quite high considering parachains went live just two years ago.

More than 550 projects are actively building on Polkadot and there are 2,500+ monthly active users; 
this clearly shows that Polkadot has a great future.

Apart from Polkadot, Kusama and Substrate also have a great number of users and are being adopted 
heavily. As we already know, both networks Polkadot and Kusama are built with Rust and Substrate, 
but the framework used to build these is also built with Rust. What’s more interesting is that Ink! – the 
language used to build smart contracts on Polkadot – is also based on Rust.

Since Polkadot is a highly complex technology, Rust was the right choice due to the speed, weight, 
and features it provides.

Rust has played a crucial role in enabling Polkadot to scale effectively. As a blockchain platform 
designed for interoperability and scalability, Polkadot requires a programming language that can 

https://near.org/
https://www.polkadot.network/
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handle complex and performance-critical tasks. Rust’s unique features have made it an excellent fit 
for the requirements of building a scalable and secure blockchain network such as Polkadot.

Aptos

With 110 active validators, more than 200 million total transactions, 890 million total staked tokens, 
and more than 200 dApp projects deployed, with some of them (such as Liquidswap) already having 
more than 160 K unique users, Aptos is a blockchain that’s growing extremely fast. We can learn more 
about this from the official website for Aptos at https://aptosfoundation.org/.

Based on the Diem blockchain project by meta, Aptos uses Move as the primary programming language 
for its smart contracts, where Move is derived from Rust, making it highly performant as well as stable 
and scalable. More information is available at https://github.com/move-language/move. 
We will explore Diem blockchain in greater detail in the next section.

Aptos uses proof-of-stake (PoS) with BFT consensus and staked validators that are segmented into full 
nodes and light clients and follow a modular design where changes are introduced to individual nodes.

Aptos also has a parallel transaction engine with BlocksSTM to increase throughput and logical data 
models where resources cannot be discarded. This enables the concurrent execution of all key stages 
of the transaction and introduces a structured path to add scaling validators, leading to unified state-
sharing to boost validators’ performance.

This means that Aptos is able to provide extremely high TPS (around 160,000), which is one of the 
highest in the industry, and is also highly scalable. Building a highly scalable and fast blockchain has 
really helped Aptos, since they were able to raise $200 million, meaning they will be able to fund a lot 
of projects with grants. This means more projects will build on Aptos or even shift to Aptos.

Chingaari, an app with 90 million users, recently shifted to Aptos from Solana owing to the downtimes 
that Solana faces from time to time, which have been heavily criticized, and owing to the speed and 
scalability that Aptos provides.

Sui

According to Sui Scan, the explorer for the Sui blockchain, the total number of transactions has 
already exceeded 800 million, with a recent surge in activity due to the Sui 8192 game that was recently 
released, raising the market cap to $461 million, which is huge.

While the total number of projects on Sui does not exceed 100 as of now, the fact that this is also a 
Move blockchain and a direct competitor of Aptos means that many developers will favor Sui as an 
alternative to Aptos. As ecosystems saturate, developers often opt for similar environments to capitalize 
on reduced competition, facilitating growth and development.

Sui is more focused on asset ownership and dynamic assets and claims to have security built in, 
which simply means secure assets, secure contracts, and secure transactions, leading to an overall 
secure network.

https://aptosfoundation.org/
https://github.com/move-language/move
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All in all, Sui is on a hyper-growth trajectory and the best part is that it’s built to scale, so it will see a 
lot of traction and multiple projects adopting it quickly. Aptos and Sui look like the future blockchains 
that will dominate the industry, and it’s great that they’re based on Rust.

In this section, we have learned about how popular Rust blockchains are growing and we have also 
discussed their future. These blockchains already have quite an edge over their competitors due to 
the fact that they’ve adopted Rust, which is lightweight, fast, and feature-rich as we’ve already seen in 
this book. This makes the future of these blockchains very optimistic.

Let’s now talk about some of the new blockchains that are slowly gaining popularity.

Upcoming blockchains

These are the blockchains that need to be on your radar; they are growing fast and getting a lot of 
traction. It can be highly beneficial to be a part of the communities of these blockchains because there’s 
way less competition, you don’t have to struggle for resources, and grants get approved much easier. 
You may get greater support from the community because there’s a lot of push from the blockchain 
for builders to get started and build. As more projects get built on the chain, the more users there will 
eventually be for the chain.

Diem

Diem (https://www.diem.com/en-us/) is a Rust-based project that has encountered numerous 
challenges throughout its history. While the future of Diem may seem uncertain as we explore upcoming 
blockchains, it remains important to discuss this blockchain for a couple of key reasons. Firstly, Diem 
played a significant role in the innovation of the Move programming language. Secondly, it is possible 
that Diem could attract further investments in the future, making it recommended for developers to 
be aware of its existence. Diem (formerly known as Libra) is a blockchain-based project initiated by 
Facebook (now Meta Platforms, Inc.) with the goal of creating a global digital currency and financial 
infrastructure. The project was announced in June 2019 but faced significant regulatory scrutiny and 
challenges, which led to its development being delayed and rebranded as Diem.

Diem aimed to create a new global digital currency called the diem. This digital currency was intended 
to be a stablecoin, meaning its value would be pegged to a basket of stable assets such as major fiat 
currencies, with the aim of reducing the price volatility often associated with cryptocurrencies such 
as Bitcoin.

Diem’s distinctive features lie in its ambition to establish a global digital currency and financial 
infrastructure, mitigating price volatility through stablecoin technology. Its initial consortium, the 
Libra Association, aimed for a unified currency, later pivoting to individual fiat-linked stablecoins 
in response to regulatory concerns, showcasing adaptability and innovation. The Diem project was 
initially governed by the Libra Association, a consortium of various companies and organizations, 
with Facebook (Meta) being one of the founding members. However, due to regulatory concerns and 
pressure, several prominent members, including PayPal, Mastercard, Visa, and others, withdrew their 
support from the project.

https://www.diem.com/en-us/
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The announcement of Diem (Libra) raised concerns and regulatory questions from governments 
around the world, particularly related to issues such as financial stability, money laundering, consumer 
protection, and privacy. This led to intense scrutiny and delays in the project’s development.

In December 2020, the project was rebranded from Libra to Diem as a part of an effort to address 
regulatory concerns and to create a more distinct identity. The project also shifted its approach by 
focusing on creating stablecoins tied to individual fiat currencies rather than on a single global 
digital currency.

Even though the project is keeping a low profile as of now, there is a high chance of the project 
being renewed.

Massa

Massa (https://massa.net/) is an emerging project with a unique selling point: it boasts low 
transaction fees for both transactions and smart contracts. This cost-effectiveness is attributed to 
the blockchain’s minimal infrastructure requirements, which result in reduced operating expenses 
for node operators. This, in turn, contributes to the blockchain’s low transaction fees. Furthermore, 
Massa emphasizes the balanced distribution of tokens and infrastructure, aiming to establish itself as a 
genuinely decentralized blockchain platform. This blockchain is PoS and hence consumes less energy.

Massa employs a multithreaded block graph that allows multiple threads (parallel processes) to work 
together to validate and process transactions simultaneously. This innovative approach significantly 
enhances the blockchain’s capacity to generate blocks concurrently, resulting in a remarkable throughput 
of 10,000 transactions per second.

Through its parallel block framework, Massa achieves a groundbreaking feat as the inaugural blockchain 
technology in addressing the blockchain trilemma – the challenging balance between decentralization, 
security, and scalability.

This is a new generation Rust blockchain where new generation blockchains are trying to make 
transactions cheaper and faster. The vision is to reach Web2 speeds so that blockchains blend in behind 
traditional payment systems and are adopted as the new way of financial transactions.

Imagine a future where all financial transactions occur solely on blockchains. In just a few years, these 
emerging blockchains could reap substantial benefits from this vision. While it might seem distant, 
we are rapidly progressing towards this new reality.

Phala

Phala Network (https://phala.network/) is spearheading a transformation in the realm of 
Web3 by offering dApp developers an off-chain computing infrastructure that is genuinely decentralized 
and devoid of trust dependencies. Through the linkage of Smart Contracts to our off-chain entities, 
referred to as Phat Contracts (https://phala.network/phat-contract), developers can 
infuse their dApps with a dynamic blend of cross-chain integrations, internet connectivity, and robust 

https://massa.net/
https://phala.network/
https://phala.network/phat-contract
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computational capabilities. Phat Contracts elevate the intelligence of Smart Contracts, and seamlessly 
integrating them can be accomplished in mere minutes using the user-friendly Phat Bricks, which 
require no coding expertise.

The landscape of Web3 development consistently encounters the technical confines of on-chain 
construction. Contemporary dApps demand more than just Smart Contracts to accommodate feature-
rich functionalities. As Web3 has matured, it has become evident that efficient off-chain computation, 
which involves performing complex calculations and tasks outside the blockchain network, will be 
indispensable for numerous standard dApp use cases. Phala empowers dApp developers with access 
to potent off-chain services while upholding the core tenets of Web3. This signifies the true essence of 
computation in its optimal form. Moreover, in an increasingly centralized digital environment, Phala 
Network is charting a divergent course by erecting a computational network that is open to anyone 
for contribution or establishing atop, all within the realm of trustlessness. To put it succinctly, Phala 
embodies a Public Goods Network.

Phala Network is meticulously crafted to offer a multi-tiered framework of security assurances, 
ensuring the comprehensive validation of computations. Individuals equipped with the appropriate 
hardware are empowered to take on the role of a Worker within the network, reaping rewards in 
return. Phala has implemented a range of protocols to guarantee that Workers consistently perform 
computations with unwavering fidelity and robust security. Phala Network combines tokenomic 
incentives, hardware-based security guarantees, and cryptographic validation on its blockchain. These 
elements work together to empower Phat Contracts that extend blockchain-level security to off-chain 
processes. Tokenomic incentives refer to the economic rewards tied to network participation, while 
hardware-rooted assurances involve secure hardware features. These combined features enhance 
security and facilitate off-chain computation, marking Phala a pioneer in the field of blockchain 
security and trustless computation.

Cosmos

Cosmos (https://cosmos.network/) stands out as a pioneering network in the blockchain 
landscape, aiming to solve some of the most pressing challenges faced by the industry: scalability, 
usability, and interoperability. By promoting a vision of creating an Internet of Blockchains, Cosmos 
facilitates an ecosystem where various blockchains can communicate and exchange information 
seamlessly, without sacrificing their sovereignty.

The Cosmos ecosystem, renowned for its innovative approach to blockchain interoperability and 
scalability, is witnessing a significant evolution with the integration of CosmWasm. CosmWasm is a 
pioneering smart contract platform that leverages the Rust programming language, offering a robust, 
secure, and flexible environment for developing decentralized applications (dApps). This Rust-based 
framework is empowering new blockchains within the Cosmos network to achieve greater functionality 
and interoperability, marking a critical advancement in the ecosystem’s capabilities.

CosmWasm stands out for its exceptional use of Rust, a programming language celebrated for its 
performance, reliability, and safety features. By utilizing Rust, CosmWasm ensures that smart contracts 

https://cosmos.network/
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developed within the Cosmos ecosystem are not only efficient and fast, but also secure from common 
vulnerabilities. This is particularly important in the blockchain space, where security and trust are 
paramount. CosmWasm’s integration into the Cosmos ecosystem allows developers to deploy complex 
smart contracts on various blockchains with ease, all while maintaining high levels of interoperability 
through the Inter-Blockchain Communication (IBC) protocol.

One of the core strengths of CosmWasm within the Cosmos ecosystem is its enhancement of 
interoperability among blockchains. Thanks to the IBC protocol and CosmWasm’s flexible design, new 
and existing blockchains can seamlessly connect and share information, assets, and functionalities. 
This not only broadens the scope of possible applications but also simplifies the developer experience. 
Developers can now create dApps that leverage the strengths of multiple blockchains within the Cosmos 
network, using Rust to ensure their smart contracts are both powerful and secure.

The adoption of CosmWasm by new blockchains in the Cosmos ecosystem is rapidly growing thanks 
to its developer-friendly approach and the robust support provided by the Cosmos SDK. These new 
blockchains are utilizing CosmWasm to explore innovative use cases, from decentralized finance 
(DeFi) applications to non-fungible tokens (NFTs) and beyond. The flexibility of CosmWasm, 
combined with the Cosmos SDK, enables developers to tailor blockchain functionalities to specific 
needs, fostering a diverse and vibrant ecosystem of interconnected blockchains.

Cosmos represents a significant leap forward in the quest for a decentralized, interconnected blockchain 
ecosystem. With its innovative technologies and a strong focus on interoperability, scalability, and 
user-friendliness, Cosmos is paving the way for a new era of blockchain development. As it continues 
to grow and evolve, Cosmos is poised to become a cornerstone of the next generation of blockchain 
infrastructure, facilitating a more connected and efficient decentralized world.

Fuel

Fuel v1 (https://www.fuel.network/) originated as a layer-2 (L2) scalability solution tailored 
for a unified Ethereum infrastructure. It marked a significant milestone by becoming the inaugural 
optimistic rollup on the Ethereum Mainnet.

Despite the advent of L2 solutions that have contributed to a reduction in costs for accessing the 
Ethereum ecosystem, the overall increase in throughput has been rather restrained, both within 
optimistic and ZK approaches. Zero-knowledge (ZK) methods enhance privacy and scalability. 
For further details, reputable sources, such as Ethereum’s official documentation, provide in-depth 
information on these techniques. During periods of heightened Ethereum network traffic, L2s have 
faltered in maintaining low transaction costs, frequently escalating to several dollars per transaction. 
The reason for this difficulty in maintaining low transaction costs is primarily due to the growing 
demand for Ethereum’s limited computational resources during network congestion. As more users 
and applications compete for processing power, the cost of transactions tends to rise.

The evolution of Layer-1 (L1) blockchain architecture presents a transformative solution to the current 
challenges faced by L2 solutions, particularly in transaction costs. This shift moves away from tightly 
integrated consensus, data availability, and execution models, as observed in present-day Ethereum, 

https://www.fuel.network/
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towards the forthcoming modular framework. Here, execution is decoupled from data availability 
and consensus, exemplified by projects such as Eth2 and Celestia on the horizon. This decoupling 
fosters specialization at the foundational layer, resulting in a significant increase in bandwidth capacity, 
ultimately addressing the issue of escalating transaction costs in L2 systems.

Fuel is meticulously crafted to harness this enhanced bandwidth in ways unparalleled by any other 
scalability system. It stands as the swiftest execution layer within the modular blockchain stack, delivers 
supreme security, and is adaptable throughout. The term flexible carries substantial significance here, 
denoting the capacity for Ethereum-style interoperable Turing-complete smart contracts, extending 
beyond mere straightforward transfers. Referring to the ability to execute Ethereum-like interoperable 
Turing-complete smart contracts, this denotes a capacity that goes beyond simple token transfers. 
Turing-complete smart contracts are programs on a blockchain that can perform a wide range of 
computations and tasks, making them highly versatile and capable of complex operations beyond 
basic transactional functions. They enable the implementation of sophisticated logic and automation 
within blockchain networks.

Fuel’s essence revolves around a modular execution layer, characterized as a verifiable computation 
system tailor-made for the modular blockchain stack. To put it more tangibly, Fuel encompasses a 
fraud- or validity-provable blockchain (or similar computation system) that capitalizes on a modular 
blockchain for ensuring data availability. It achieves this by leveraging a modular blockchain structure 
that prioritizes data availability. This approach ensures that transaction data is widely accessible and 
verifiable, reducing the risk of fraud or invalid transactions. In essence, Fuel’s design combines elements 
of fraud-proof and validity-proof systems with a modular blockchain architecture to enhance the 
security and integrity of its transactions.

Fuel’s specialization lies in optimizing execution efficiency to the fullest extent. This sets it apart 
from previously deployed rollup solutions that focused on the challenges inherent in a consolidated 
structure, such as constrained bandwidth. As the Ethereum ecosystem expands, ventures that fail to 
adapt will continue grappling with the repercussions of a compute-constrained design landscape. The 
moment for embracing modular execution has arrived.

With the various innovations it is spearheading, Fuel is the blockchain to watch out for.

Starcoin

Starcoin stands as a streamlined, promptly verified, and expandable application network, accompanied 
by secure native state cross-layer compatibility, establishing an infinitely scalable foundation for 
blockchain infrastructure.

Starcoin (https://starcoin.org/en/) ensures paramount security right from its inception 
through an elevated PoW consensus mechanism and a secure smart contract system executed in the 
Move programming language. Leveraging a stratified and adaptable approach to interoperability, 
developers of Starcoin equip decentralized financial networks with digital assets that empower all 
contributors in fostering a collaborative Web 3.0 ecosystem.

https://starcoin.org/en/
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Utilizing Move, Starcoin has pioneered secure digital asset protocols encompassing FT and NFT. These 
protocols present formal verification tools, supplanting traditional contract auditing and bolstering 
contract and user asset security on the chain.

At Starcoin’s Layer 1, an open and decentralized network of smart contracts beckons participation 
from all quarters, offering users ownership of their data through robust cryptographic principles 
and decentralized architecture. This layer remains fully attuned to real-time network congestion, 
dynamically tailoring network-wide configurations to optimize overall network utilization.

Meanwhile, Starcoin’s Layer 2 manifests as an effective and scalable application network, facilitating 
secure and seamless state transfers, effortless data scaling, low latency, and exceptional operability.

Next, let’s explore some innovative Rust projects that extend beyond traditional blockchain architectures, 
emphasizing their role as dynamic enablers for blockchain development across ecosystems.

Upcoming Rust Web3 projects
In this section, we delve into an intriguing realm that transcends traditional blockchain architecture. 
While the foundation of blockchain technology remains steadfast, a new horizon of innovation 
has emerged: projects that are not blockchains in themselves, but rather act as dynamic enablers 
for development across diverse blockchain ecosystems. These projects introduce a novel paradigm, 
unlocking unprecedented potential and fostering a symbiotic relationship with established blockchains.

Decentralization is crucial because it extends beyond individual blockchains. The projects we explore 
here showcase creativity and innovation, providing a vision of the future where collaboration, 
interoperability, and enhanced functionality push the boundaries of blockchain solutions.

These following projects basically enable quick and easy development on blockchains.

The Graph

The Graph Protocol (https://thegraph.com/) stands as a transformative pillar within the 
blockchain landscape, revolutionizing the way decentralized networks interact with data. At its core, 
The Graph empowers developers to seamlessly access, query, and extract insights from blockchain data, 
transcending the limitations of raw blockchain interactions. It does this by providing a decentralized 
indexing protocol and querying service that serves as the backbone of efficient data retrieval and 
analysis for dApps and services.

With its innovative architecture, The Graph serves as a bridge between developers and the vast universe 
of blockchain information, offering a user-friendly interface to create and manage subgraphs. These 
subgraphs act as tailored, modular data indexing layers, making it effortless for developers to extract 
specific data points and build immersive, data-rich dApps across a multitude of blockchain networks. 
Its architecture can be seen in the following figure:

https://thegraph.com/
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Figure 11.2 – Graph architecture

The Graph’s impact reverberates through various sectors, including DeFi, NFTs, gaming, and beyond, 
where real-time data access and analytics play a pivotal role. Its decentralized nature ensures robustness 
and censorship resistance. Moreover, being built with Rust, being 100% open source, and growing 
rapidly, it stands as a top choice for smart contract engineers worldwide, enabling easier and quicker 
blockchain development.

Fe

Fe is more than just a project that helps with blockchain development, it is actually an entire programming 
language that enables smart contract development on the Ethereum blockchain, but the amazing part 
is that Fe is built with Rust.

Fe’s design principles prioritize security by default, empowering developers to build with confidence. 
Its intuitive syntax and expressive capabilities facilitate seamless code composition, accelerating the 
development process while minimizing the risk of vulnerabilities. By integrating static analysis tools 
and leveraging the latest advancements in programming language research, Fe empowers developers 
to create robust and dependable smart contracts that mitigate common pitfalls.
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If you’re a blockchain engineer, apart from trying out languages such as Move that are based on Rust, 
you might also want to give Fe a shot since it brings the benefits of Rust – fast speed and performance 
– to Ethereum smart contracts.

Astar

Astar Network (https://astar.network/) stands as the premier smart contract platform 
in Japan, offering support for both EVM and WebAssembly (Wasm) environments and facilitating 
seamless interoperability between the two through a Cross-Virtual Machine. Embracing an inclusive 
approach, Astar Network caters to developers of all backgrounds, allowing them to harness their 
existing tools and programming languages. With the robust security foundation of Polkadot, Astar 
Network shines brilliantly within a dynamic and thriving ecosystem, playing a pivotal role in driving 
international corporate adoption and sparking consumer interest in Web3 technologies.

At the heart of Astar’s innovation lies the Build2Earn system (https://docs.astar.network/
docs/learn/build2earn/), ingeniously designed to foster network growth while rewarding 
contributors and builders. This system empowers developers to earn incentives for crafting and 
maintaining their decentralized applications, while users are incentivized to support their favored 
projects, thereby nurturing the overall ecosystem expansion.

Traditionally, blockchains face scalability challenges due to the security trade-offs inherent in 
decentralized consensus mechanisms. Astar Network is reshaping this landscape by transcending 
the limitations of independent blockchains and bridges, which often introduce vulnerabilities. 
Astar has achieved a revolutionary cross-chain synergy through its innovative utilization of both 
Ethereum Virtual Machine (EVM) and WebAssembly Virtual Machines. By seamlessly integrating 
these powerful computing engines, Astar combines the strengths of different blockchains, enabling 
them to work together cohesively. This approach allows developers to harness the best features from 
various blockchain platforms, ensuring the adaptability and future-proofing of their smart contract 
solutions. This paradigm shift in cross-chain functionality represents a significant advancement in 
blockchain technology.

Through the collaborative power of Polkadot’s shared security and Astar’s Cross-Virtual Machine, 
developers can now embark on a new era of smart contract creation. By fostering seamless cooperation 
and integration across various blockchains and applications, Astar Network pioneers the realization 
of unparalleled solutions that extend beyond replication.

Comit

Comit (https://comit.network/) is a really interesting project. While there are numerous 
existing blockchains such as Bitcoin and Ethereum, there are few projects facilitating communication 
between them. Without these connections, the Web3 landscape remains fragmented, with isolated 
blockchain communities. This hinders the realization of the Web3 vision, an interconnected internet 
of blockchains.

https://astar.network/
https://docs.astar.network/docs/learn/build2earn/
https://docs.astar.network/docs/learn/build2earn/
https://comit.network/
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Comit aims to create this connection: it is a project that enables smooth cross-chain communication 
between multiple popular chains. This means moving assets easily between them, but Comit has 
achieved this without building another blockchain of its own. It’s a solid project built in Rust, completely 
open source, and is one of the first of its kind. It is predicted that as the number of protocols increases, 
projects like these will definitely be required more and more and we will see more such projects spring 
up as more users adopt Web3.

Exonum

The Exonum platform (https://exonum.com/index), a robust open source blockchain 
framework, empowers enterprises and governments to confidently bring their blockchain initiatives 
to fruition. Leveraged across diverse industries by Bitfury’s accomplished software engineering team, 
Exonum stands at the forefront of transaction speed and scalability in the industry. Its paramount 
security fortifies your blockchain endeavors.

Within the Exonum ecosystem, you can craft potent blockchain platforms enriched with smart contracts. 
This is coupled with the ability to anchor to public blockchains and more. Specifically designed for 
seamless integration with public blockchains like Bitcoin’s, Exonum’s anchoring process captures a 
snapshot of a system state, obviating the need for unconditional trust in blockchain administrators. This 
approach maintains data confidentiality while harnessing the robust security of public blockchains. 
Consequently, any modifications to your Exonum blockchain, should a malicious entity compromise 
the majority of nodes, are documented and detected swiftly.

Augmenting its security measures, the Exonum platform is meticulously developed using Rust, a highly 
secure programming language. Rust ensures comprehensive execution safety and predictable resource 
utilization. Moreover, Exonum provides you the capability to restrict data visibility in your blockchain, 
safeguarding user privacy without compromising security. Additionally, Exonum employs a custom 
Byzantine consensus algorithm, bolstering data integrity without necessitating resource-intensive 
mining computations. This resilience remains intact even when nodes experience malfunctions or 
susceptibility to manipulation.

To facilitate streamlined audits of your Exonum blockchain, the platform seamlessly integrates into 
various customer applications, enhancing transparency and ease of oversight.

Now that we have learnt quite a bit about blockchain projects and other projects that help with 
blockchain development that use Rust, let’s talk about how the Rust community is gearing up for the 
blockchain revolution, and then about jobs in the Web3 space.

The Rust community
Rust solves a lot of problems that are present with other programming languages, and we have already 
learned about the revolutionary features of Rust. Rust is quite disruptive. Recently, Windows rewrote 
the entire Kernel of Windows with just 180,000 lines of Rust code – that’s much less code to power the 
entire Windows Kernel. This just goes to show how robust Rust is as a technology and how disruptive 
it will be in the software, operating system, and web worlds.

https://exonum.com/index
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Since this book is geared towards Web3, let’s talk about what the future looks like.

Even though Rust is highly effective and loved by a lot of programmers, the traction for Rust has been 
a bit on the lower side; that’s because it’s not a language like JavaScript or Python. While Java and 
Python are easy to pick up because of the lack of complex memory management or memory borrowing, 
Rust, on the other hand, has a need for complex memory management with a lot of features that may 
require learning and understanding programming at a deeper level, and not everyone is interested 
in doing this.

Since the number of Web3 projects that use Rust is growing at an unprecedented rate, as we have just 
seen in this chapter, the demand for Web3 engineers who know Rust will keep on growing. What’s even 
happening in the industry is that there are engineers that want to work on these projects and the only 
reason they’re learning Rust is because they want to work on the blockchain side of things. This is a 
huge shift from earlier, where developers knew Rust and only later explored blockchain engineering.

So, we’re going to see more developers enter into the Rust ecosystem just to be able to work on 
blockchains, and that’s a great thing since it would mean significant growth for Rust and a rich 
community of blockchain developers within the Rust community.

This goes on to bolster our earlier observation that the future for Rust and blockchains is really bright, 
and this might just be the right time to start a career in blockchain and Rust (https://www.rust-
lang.org/community).

Now, let’s delve into the various job roles and career opportunities within the Web3 space, where your 
Rust skills can shine.

Jobs in the Web3 space
If you’re reading this book, there’s a high chance you might be really interested in starting a career 
as a blockchain developer or engineer specializing in Rust. Since there are so many Web3 projects 
that leverage Rust, as we have seen, it is only logical that in the near future there will be significant 
demand for Rust blockchain engineers.

In this section, we will go over a few details that could be helpful to you in starting a career in Rust 
blockchain engineering.

Popular job roles

The most popular job roles are without a doubt related to engineering in blockchain, but there are 
also product managers, program managers, experience designers, and token managers or designers 
peripheral to engineering roles. Generally, blockchain is quite a technical field and even the marketing 
and community managers are also quite technical. Apart from these roles, there are other new types of 
roles that have played a great role in the Web3 world; one such role is that of the Dev-Rel, or developer 
relations manager.

https://www.rust-lang.org/community
https://www.rust-lang.org/community


Jobs in the Web3 space 349

Let’s go through each of these job roles one by one.

Engineering roles are usually of two types: smart contract engineers and protocol engineers. The 
protocol engineers work on the core blockchain product, which requires a deep level of backend 
engineering expertise. Smart contract engineers focus on building dApps; they work with smart 
contract programming languages such as Move, Fe, and Solidity.

There are also security engineers, which can be of many types. Some are focused only on smart contract 
security and this is why they’re called smart contract security engineers. Web3 security isn’t just 
restricted to smart contract auditing but goes way beyond, and this is why Web3 security engineers 
need to know about Pentesting tools, attack simulation, threat monitoring, etc. as well.

Product managers are responsible for managing the product roadmap and for the communication and 
alignment between various teams since the product roadmap for blockchains ends up being highly 
technical. It helps if the product manager already has technical experience. Program managers basically 
manage the technical work and details for the project and are responsible for ensuring everything 
is happening as intended based on the product roadmap. Their job is all about converting business 
requirements into technical requirements for the tech teams. Needless to say, they need to be more 
technically inclined than the product manager.

Then there are technical architects, or more specifically blockchain architects, who are involved in the 
planning and design of how the Blockchain will function. They come up with a blueprint, and that’s 
what the entire engineering team follows. The engineering manager (EM) is responsible for ensuring 
timely deliveries. The EM manages the engineers based on the blueprint from the architect and the 
timelines set by the program manager, and this is how the entire team works together in delivering 
the blockchain project.

To interact with the blockchain, frontend dashboards are also required, and this is why there are UX 
designers andfrontend engineers in the project, but their work is minimal in the blockchain world as 
more and more projects are relying on no-code tools to accomplish this.

Token design and management is a science because you need to think about utility, growth, and value 
exchange with tokens. From everything related to distribution to vesting to governance has to be 
planned by the token managers. Their work is complex and requires expertise.

Finally, let’s talk about Dev-Rel. Now, marketing and community managers have been important for 
digital products since the beginning, and community makes a lot of sense for Web3 projects since 
many of the projects are extremely technical and require dedicated communities that understand 
what the product does. In many cases, the community contributes to the development and growth 
of the product or platform.

Dev-Rel is just an extension of this and is a common job role in the Web3 world. Dev-Rel managers 
are responsible for ensuring that the latest technical docs are available, the engineering communities 
have all that they require to build with, and there’s enough education about the product on the market 
that developers are able to adopt the product. The target audience for most of the products is engineers, 
and success is measured based on the number of projects built by engineers for the technology.
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Now that we have clarity on the many job roles that are available in the blockchain and Web3 world, 
it’s time to learn about how you can find these jobs.

How to find Web3 jobs

Once you have a good command of Rust and some blockchain engineering, it’ll be easy to find jobs. 
Let’s talk about a few platforms that make job searching really simple for blockchain developers:

• CryptoJobs: A well-known platform that focuses specifically on job listings in the cryptocurrency 
and blockchain space. You can filter jobs by category, such as development, engineering, design, 
and more. See more at https://www.cryptojobs.com/.

• AngelList: A platform that features a section dedicated to blockchain and cryptocurrency job 
listings. You can find opportunities in various roles, including engineering, development, 
marketing, and management. See more at https://www.angellist.com/.

• LinkedIn: A versatile platform where you can network with professionals in the blockchain 
industry and discover job opportunities posted by companies. Follow relevant hashtags and join 
blockchain-related groups to stay updated. See more at https://www.linkedin.com/.

• Indeed: A widely used job search engine that includes a category for blockchain-related positions. 
You can search for roles such as blockchain engineer, Rust developer, smart contract developer, 
and more. See more at https://www.indeed.com.

• Dice: A platform with a focus on tech jobs. You can often find blockchain and Rust-related 
positions listed here. It’s especially useful for finding technology-specific roles. See more 
at https://www.dice.com/.

• GitHub Jobs: A platform where companies post developer and engineering roles, including 
those related to Rust and blockchain. You can filter by location and skills to find relevant 
opportunities. See more at https://github.com/about/careers.

• Ethlance: A decentralized job marketplace built on the Ethereum blockchain. It’s designed for 
freelancers and allows you to browse or list jobs related to blockchain and Rust development. 
See more at https://www.etherlance.io/.

• Blockchain Developer Jobs: A dedicated website that provides a curated list of blockchain 
development jobs from various sources, making it easy to find opportunities in the blockchain 
engineering field.

• Crypto Careers: A website that aggregates job listings from different sources, helping you 
discover blockchain and Rust-related roles from various platforms. See more at https://
www.crypto-careers.com/.

• X (previously Twitter): A site where you can follow blockchain influencers, developers, and 
companies. They often share job openings and opportunities within the industry. Use hashtags 
such as #BlockchainJobs or #RustJobs to find relevant posts. See more at www.X.com.

https://www.cryptojobs.com/
https://www.angellist.com/
https://www.linkedin.com/
https://www.indeed.com
https://www.dice.com/
https://github.com/about/careers
https://www.etherlance.io/
https://www.crypto-careers.com/
https://www.crypto-careers.com/
http://www.X.com
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• Reddit: A forum social network with several subreddits dedicated to job listings in the 
blockchain and Rust development fields. Subreddits such as r/BlockchainJobs and r/RustJobs 
can be helpful resources.

• Company websites: Visit the career sections of blockchain companies’ websites directly. Many 
companies in the blockchain space, including those focusing on Rust development, list job 
openings on their official sites. You could also visit https://web3.career/ to explore 
career opportunities.

Building a career

Getting a job is very different from building a strong career in blockchain engineering. Ideally, the 
play should always be long-term, since this builds credibility, so let’s talk about some ways, methods, 
and means that you can follow to build a fruitful career in Web3 engineering:

• Relevant skills: Start by building a strong foundation in blockchain-related skills, such as 
smart contract development, consensus algorithms, cryptography, decentralized applications, 
and blockchain platforms such as Ethereum, Binance Smart Chain, or Polkadot. Proficiency 
in programming languages such as Solidity, Rust, or JavaScript can be particularly valuable.

• Education and training: Consider formal education, online courses, workshops, and certifications 
that specialize in blockchain technology. Platforms such as Coursera, Udemy, and edX offer 
a variety of blockchain-related courses. Earning certificates or degrees in computer science, 
software engineering, or related fields can also enhance your qualifications.

• Networking: Attend blockchain meetups, conferences, and webinars in your area or online. 
Engaging with professionals and enthusiasts in the blockchain space can provide valuable 
insights, job leads, and opportunities to showcase your skills.

• Online platforms: Utilize online job platforms and websites that focus on blockchain and 
cryptocurrency jobs, such as CryptoJobs, AngelList, LinkedIn, Indeed, and specialized blockchain 
forums. Set up job alerts to receive notifications about relevant openings.

• Open source contributions: Contribute to open source blockchain projects on platforms 
such as GitHub. This not only showcases your skills but also allows you to collaborate with 
experienced developers and establish a presence in the community.

• Personal projects: Create your own blockchain projects, smart contracts, or dApps to demonstrate 
your capabilities. A strong portfolio of practical examples can set you apart from other candidates.

• LinkedIn profile: Optimize your LinkedIn profile to highlight your blockchain skills, projects, 
and experience. Connect with professionals in the blockchain industry to expand your network.

• Job boards and forums: Explore blockchain-focused job boards and forums where companies 
post openings. Engage in discussions, ask questions, and keep an eye out for job postings.

https://web3.career/
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• Internships and entry-level positions: Consider starting with internships or entry-level positions 
to gain hands-on experience and learn from seasoned professionals in the field.

• Tailored applications: Customize your application materials (resume, cover letter, portfolio) 
for each job you apply to. Highlight relevant skills, projects, and experiences that align with 
the specific role.

• Soft skills: In addition to technical skills, emphasize soft skills such as problem-solving, 
teamwork, communication, and adaptability. These qualities are highly valued in the fast-paced 
and collaborative blockchain industry.

• Continuous learning: Stay updated with the latest developments in the blockchain field, as 
technology evolves rapidly. Engage in continuous learning and adapt your skills to emerging trends.

Going beyond this book
In closing, this journey through the realm of Rust-powered blockchain development has equipped 
you with a robust toolkit of skills and insights, paving the way for your continued exploration of 
the Web3 landscape. As you reflect on the knowledge gained within these pages, you stand at the 
threshold of limitless possibilities, poised to embark on an exciting voyage of building, innovating, 
and transforming the decentralized world.

With a solid foundation in Rust and blockchain intricacies, your potential to contribute to the evolving 
blockchain ecosystem is boundless. Take the lessons learned from building your own blockchain 
and extending your expertise to the Rust-based ecosystems of Solana, Near, Polkadot, and beyond. 
Seize the opportunity to craft innovative solutions, bridging the gaps and shaping the future of 
decentralized technologies.

To extend your journey beyond these chapters, consider the following pathways:

• Forge your own creations: Utilize your enhanced skills to pioneer innovative projects, exploring 
the possibilities of Rust and blockchain synergy. Whether crafting pioneering decentralized 
applications, advanced smart contracts, or inventive cross-chain interoperability solutions, the 
opportunity to innovate is boundless. Dive into projects such as decentralized exchanges, NFT 
marketplaces, privacy-centric cryptocurrencies, and secure voting systems. Unleash creativity 
by merging strong coding expertise with the game-changing potential of blockchain technology.

• Join the collaborative realm of Web3: Engage with the vibrant Web3 community by contributing 
to open source projects, participating in hackathons, and attending blockchain meetups and 
conferences. Collaborating with fellow developers will not only accelerate your learning but also 
broaden your horizons through shared experiences. The collaborative platforms can include 
decentralized version control systems such as Git, collaborative coding environments such as 
GitHub, and decentralized project management tools. See more at https://github.com/
topics/blockchain-projects.

https://github.com/topics/blockchain-projects
https://github.com/topics/blockchain-projects
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• Pursue a fulfilling Web3 career: As the Web3 ecosystem continues to expand, opportunities for 
impactful careers in blockchain development are abundant. Consider roles such as blockchain 
engineer, smart contract developer, protocol designer, or decentralized application architect, 
and let your expertise propel you to the forefront of this transformative industry.

• Stay current and evolve: The blockchain landscape is ever-evolving, with new technologies, 
standards, and paradigms continuously emerging. Commit to staying up to date with the 
latest advancements, experimenting with cutting-edge tools, and embracing the dynamic 
nature of this realm. Consider exploring resources such as blockchain-focused forums (e.g., 
r/blockchain, Ethereum Stack Exchange), Rust programming communities (e.g., r/Rust, Rust 
Discord channels), blogs (e.g., Rust official blog, Ethereum Foundation blog), and reputable tech 
news platforms (e.g., Coindesk, CoinTelegraph). Additionally, following influential figures and 
thought leaders in the blockchain and Rust space on social media platforms, such as Twitter, can 
provide valuable insights into emerging trends and technologies. Remember to also keep an eye 
on official documentation and announcements from Rust and prominent blockchain projects.

Summary
In this chapter, we explored Rust’s future in the blockchain world and the career prospects it offers to 
Rust engineers and blockchain develop ers. We examined Rust’s role in various blockchains and Web3 
technologies, delved into the growing Rust community’s involvement in blockchain, and explored 
job opportunities in the Web3 space. Lastly, we discussed additional blockchain projects and how to 
extend your blockchain develoment journey.

With that, we come to the end of this book. As you step into the next phase of your journey, remember 
that the knowledge you’ve acquired here is merely the foundation. The future beckons with challenges 
and opportunities that await your unique imprint. Your dedication to mastering Rust and blockchain 
development has positioned you as an agent of change in the Web3 era. Embrace the evolution, 
champion innovation, and continue to explore the boundless frontiers of this decentralized world.

May your path be illuminated by the spirit of innovation and guided by the ever-present promise of 
the blockchain horizon. Onward, dear reader, to a future that you will help to shape and redefine.





Index

Symbols
64-bit signed integer (i64)  42
64-bit unsigned integer (u64)  42

A
access keys   249

full access keys   250
function call keys  250

account structure, NEAR
account ID  247
addresses  248
implicit accounts  248
named accounts  248

actors, Polkadot ecosystem  299
collators  300, 301
nominators  300
validators  299

adaptive staking  297
advanced staking concepts  297

reward distribution  298
slashing  297
stash accounts and controller accounts  298
validator performance monitoring  298
validator rotation  298

American Standard Code for Information 
Interchange (ASCII)  45

Anchor  206, 207
compiling, with anchor build  211
concepts  207, 208
deploying, with anchor deploy  211
installing  208
Yarn, installing  209

Anchor project
creating  209, 210

Anchor scripts
customizing  214
executing, with Anchor  214
utilizing  213, 214

AngelList reference link  350
Anvil

commands  181
overview  180
reference link  180

application binary interface (ABI)  23, 176
application programming 

interfaces (APIs)  30, 207
Aptos  338

reference link  338
archive nodes  308



Index356

arrays  45, 46
assets  292
Astar Network  346

reference link  346
Atomic Reference Counting  100
authorities  331

B
backbone, of blockchains

collators  11-13
consensus  13, 14
decentralization  10, 11
exploring  10
forking  16, 17
mining  15, 16
nodes  11-13
peers  11-13
permissionless, versus permissioned  17, 18
validators  11-13

Binary Object Representation Serializer 
for Hashing (Borsh)  267

block  5, 73
block authoring  313
block authors/validators  313
blockchain

block, creating  83-87
blocks  5
blocks, building  3-5
building  83
consensus for scale  28
future  31
hashes  6, 7
interoperability  28
industries disrupted  31
Layer 2s and side chains  29
parallel processing  29

Rust, using  38
scaling  26
security  8, 9
sharding  27, 28
sharding, considerations  27, 28
sociocultural and economic changes  31, 32
storage, versus compute  9
transactions  7, 8
trilemma  26
ZK rollups and optimistic rollups  30

Blockchain Developer Jobs
reference link  350

blockchain functions  100
add_block function  108
BlockchainIterator function  104, 105
create_blockchain function  100, 101
find_transaction function  109-112
find_utxo function  109-111
helper functions  109
mine_block function  105, 106
new_blockchain function  102, 103
struct methods, adding  103, 104
update_blocks_tree function  107

blockchain project
planning  73
required functions  78-83
struct  73-77

blockchain projects
Astar  40
Bonfida  40
Comit  40
The Graph  40

block finalization  313
borrowing  61
bridges  285, 287
Byzantine consensus algorithm  347



Index 357

C
Cargo  62, 63, 72, 73, 170
Cast

commands  181
overview  179

Chainlink  197
Chisel

commands  182
overview  180, 181

chunk  256
client-server architecture  4
cluster node  233
coinbase transaction  75, 101
coins

versus tokens  21, 22
collators  300, 301
Comit  346

reference link  346
command-line interface (CLI)  152, 208
company websites

reference link  351
Config

implementation  148
configurations

setting up  147
connection node  233
consensus  12, 13, 263, 313, 314

block authoring  313
block finalization  313
concepts  13, 14

constants  43
control flow  52, 53
core primitives  309
Cosmos  341, 342
CosmWasm  341
crates  62

reference link  64

create_blockchain function  100, 101
cross-chain bridges  292
crossword game smart contract project

creating, with NEAR  272, 273
development environment, 

setting up  273, 274
interacting with  278, 279
smart contract skeleton, creating  274-277
structure and rules  273
testing and deployment  277, 278

CRUD operations  4
Crypto Careers

reference link  350
cryptocurrencies and gas fees  19, 20
CryptoJobs

reference link  350
c-type enums  51
custom blockchain

creating  155, 156
currency, sending  159
node, starting  158, 159
printing  160, 161
using  154, 155
wallet balance, checking  157
wallet, creating  156, 157

custom dApp
accounts, creating for  216
accounts, defining  217, 218
account sizing  219
implementation, in code  220, 221
message accounts, sizing  219, 220
message account structure, 

implementing  218
rent, in Solana  219

custom pallets
benefits  311
building  311
creating  312



Index358

D
data encoding  99
data races  36
data types  44
decentralization  4, 10, 11, 18

cryptocurrencies and gas fees  19, 20
DAOs  24, 25
digital assets, with real-world limits  25, 26
governance  19
NFTs  23, 24
non-censorable apps  25
platforms  20, 21
replication  19
smart contracts  23, 24
tokens versus coins  21, 22
tokens versus ICOs  21, 22

decentralized applications (dApps)  18, 
67, 157, 167, 196, 197, 243, 341

Anchor scripts, utilizing  213
benefits  198
building  210
deploying  210
financial dApps (DeFi)  197
gaming and entertainment dApps)  198
local ledger, running  211, 212
localnet, exploring with Anchor  216
program ID, updating  213
testing  214, 215
types  197
utility dApps  197

decentralized autonomous organization 
(DAO)  16, 24, 25

decentralized exchanges (DEXs)  197
decentralized finance (DeFi)  168, 197, 342
decentralized platforms   20, 21
delegated PoS  14
dependencies  173

dependencies, Foundry
adding  174
compatibility, with Hardhat  175
deleting  174
remapping  174
updating  174

deployment  182
and verification  187

developer experience (DX)  177
Dice reference link  350
Diem  339, 340

reference link  339
differential testing  186
distributed ledger technology (DLT)  20
distributed systems  10
Don’t Repeat Yourself (DRY)  54
DOT tokens  286, 292

E
Echidna tool  185
Elliptic Curve Digital Signature 

Algorithm (ECDSA)  139
embedded database blockchain

exploring  94-96
enums  50, 51, 115, 116

size  52
with values  51

errors  38
Ether (ETH)  168
Ethereum  39, 168
Ethereum Virtual Machine (EVM)  40, 176
Etherscan  178
Ethlance

reference link  350
ExecutionOutcome  257
Exonum

reference link  347



Index 359

F
Fe  40, 345
Flexible Runtime Aggregation Modular 

Extension (FRAME)  289, 310, 311
floating-point numbers  44
Forge

commands  178, 179
overview  176, 177

Forge Standard Library (Forge Std)
benefits  177
overview  177
Std Assertions  177
Std Cheats  177
Std Errors  177
Std Logs  177
Std Math  178
Std Storage  178

forking  16, 17
fork testing  185
foundational elements, NEAR

access keys  249-251
accounts  247, 248
addresses  248, 249
smart contracts  251, 252
state management  252-254

Foundry  39, 168
Anvil  180
Cast  179
Chisel  180, 181
components  179
dependencies  173
existing project, working  172, 173
exploring  171, 172
Forge  176, 177
Forge Standard Library  177
installing  170, 171

need for  169, 170
project layout  175, 176

Foundry project  188, 189
basic NFT  189-191
gas reports  192, 193
program, testing  192

FoundryUp  170
Fuel  342, 343
Fuel v1

reference link  342
full access keys  250
full nodes  77, 308
functional single-node blockchain

building  318
frontend template, installing  321
frontend template, starting  321, 322
funds, transferring  323-325
local node, starting  318-320

function call keys  250
functions  54, 55
futures  38
fuzzing  185
fuzz testing  185

G
garbage collection  37
garbage collector (GC)  199
gas fees  13
gas reports  187, 188, 192, 193
genesis block  5, 101

creating  87-90
GHOST-based Recursive Ancestor Deriving 

Prefix Agreement (GRANDPA)  314
GitHub Jobs reference link  350
governance  19
Gulf Stream  202



Index360

H
hard fork  17
Hardhat  173

URL  175
hashes  5-7
hashing algorithm  20
hashmap  59, 60, 99
heap  47
helper functions  116

send_block  118, 119
send_data  122
send_get_blocks  121, 122
send_get_data  116, 117
send_inv  117, 118
send_tx  119
send_version  120, 121
using  90-94

hybrid networks  307

I
identity management (IdM)  145
Indeed 

reference link  350
initial coin offerings (ICOs)  22

versus tokens  21, 22
ink!  40
instruction

account constraints, establishing  224, 225
clients, creating for tests  235, 236
creating  221-223
message, sending  236-241
tests, creating for  233-235

integers  44
Inter-Blockchain Communication (IBC)  342
Internet of Blockchains  341
interoperability  28

invariant testing  186
isize  44

J
just-in-time (JIT) compilation  36

K
Kusama  283, 302

benefits  302
chaos and experimentation  303, 304
governance model  303
on-chain upgrades  303

L
Language Server Protocol (LSP)  71
Layer-1 (L1) blockchain  342
Layer-1 scaling solutions  29
least recently used (LRU)  50
Libra  339
libraries, powering blockchain operations  98

concurrent access management  100
data storage, with Sled  98
data structure management  99
encoding and decoding support  99
filesystem interaction  99
key-value store implementation  99
transaction and block handling  98

lib.rs file  150, 151
light nodes  308
LinkedIn 

reference link  350
locked accounts  250
logic implementation  226-229

instruction, versus transaction  232
safeguarding, against invalid data  230, 231



Index 361

M
macOS

installation  68
VS Code, installing on  71

Main.rs file  152-154
Massa  340

reference link  340
match control flow  55
memory pool (mempool)  29

adding  128
BlockinTransit implementation  131-133
implementing  128-130

microservices  10
miners  315
mining  13-16
modules  63
monolithic architecture  10
most recently used (MRU)  50
Move  40

N
Nakamoto coefficient  26
NEAR  246, 265, 337

actions  269, 270
advanced concepts  254
benefits  246, 247
consensus  263
Contract class  265-267
cross contract calls  271
data flow  255-258
data structure  268, 269
foundational elements  247
gas  254, 255
loss, avoiding  259, 260
project, creating with  272, 273
serialization protocols  267

state  268, 269
storage options  260-262
tokens  259, 260
transactions  254, 255
transfers  269, 270
URL  337
validators  263

NEAR command-line interface (CLI)  244
exploring  272
installation  245

NEAR SDK  263-265
network simulation  325

blockchain node, starting  325-327
block production, verifying  329, 330
nodes, adding  328, 329

network types
hybrid networks  307
permissioned networks  307
private networks  307
public networks  307

new_blockchain function  102, 103
nodes  13
node server

starting  112
Node struct  124-126
node types  307

archive nodes  308
full nodes  308
light nodes  308

Nominated Proof of Stake (NPoS)  286
nominators  300
non-censorable apps  25
non-fungible tokens (NFTs)  22-24, 

169, 217, 292, 293, 342
NPoS election algorithms 

(NPoS)  289, 299-302
number only used once (nonce)  5, 84
numeric operations  46



Index362

O
off-chain computation  341
on-chain construction  341
OpenSea platform  188
OpenZeppelin utility libraries

reference link  189
optimistic  30
optimistic rollups  30
overshadowing  43
ownership  61

P
pallets  295, 311

functionalities  295
parachains  284-286
parallel processing  29
parathreads  287
peers  13
peer-to-peer (P2P)  128, 197
permissioned networks  307
permissioning  307
Phala Network  340, 341
Phat Contracts  340
PoH  28
Polkadot  283, 284, 293, 337, 338

actors  299
advanced staking concepts  297, 298
bridges  287
features  284
interoperability  285, 286
non-fungible tokens (NFTs)  292, 293
NPoS election algorithms  301, 302
reference link  337
relay chain  286, 287
shared security, working  294, 295
staking  296, 297

tokens and assets  292
transactions  288-291
XCM  293, 294

Polkadot accounts  288
contract accounts  288
governance accounts  288
multi-signature (multi-sig) accounts  288
regular accounts  288

practical Byzantine Fault 
Tolerance (PBFT)  28

private key (PK)  191, 205
private networks  307
proof of authority (PoA)  14, 305
proof of burn (PoB)  14
proof of capacity  14
Proof of History (PoH)  28, 200
proof of stake (PoS)  14, 168, 

203, 262, 263, 305, 338
proof of work (PoW)  13, 151, 168, 315
public key  205
Public-Key Cryptography 

Standards #8 (PKCS8)  76
public networks  307

R
reader-writer lock  100
receipt  258
Reddit

reference link  351
referenda proposals  286
relay chain  284-287
remote procedure call (RPC) APIs  30
rent  219
rent-exempt accounts  219
replication  19
rollups  30
Runtime Module Library (RML)  304



Index 363

Rust  34
advanced concepts  59
advantage for blockchains  38
applicability, as systems 

programming language  34
arrays  45, 46
benefits  35
borrowing  60-62
Cargo  62-64
concepts  42
constants  43, 44
control flow  52, 53
crates  62-64
data types  44, 45
enums  50-52
error handling  38
functions  54
garbage collection  37
hashmaps  59, 60
heap  47
installing  199, 200
intermediate concepts  52
match control flow  55, 56
memory safety  38
modules  62-64
need for  169
numeric operations  46
ownership  60, 61
ownership memory management 

model  36, 37
reliability  35, 36
slices  48, 49
speed and performance  37
stack  47
statically typed benefits  34
strings  49, 50
structs  56
tuples  45, 46

URL  42
variables  42-44
vectors  57-59
v-tables  47, 48
while loops  53

rust-analyzer  71
Rust-based languages

versus Solidity  41, 42
Rust blockchains

Aptos  338
Diem  339
future  335
NEAR  337
pathway  352
Polkadot  337, 338
Solana  336
Sui  338

Rust community  347, 348
Rust Web3 projects  344

Astar  346
Comit  346
Exonum  347
Fe  345
The Graph  344

S
scalability trilemma  202
security  8, 9
send_block function  118, 119
send_data function  122
send_get_blocks function  121, 122
send_get_data function  116, 117
send_inv function  117, 118
send_tx function  119
send_version function  120, 121
separation of concerns (SoC)  151
Sepoli  187



Index364

serve function  123
server  112, 113
Server struct  113-115
SHA-256 algorithm  6
SHA-512  6
shards  256
shared security

working  294, 295
signed integers  44
single points of failure (SPOFs)  198
slashing  296, 297
Sled library

for data storage  98
slices  48, 49
smart contracts  22-24, 30, 31, 251

immutable contracts  251
upgradeable contracts  251

smart contract security  349
smart pointer  99
snapshots  187, 188
soft fork  17
Solana  200, 336

environment, setting up  199
features  203
innovative architecture  201
installing  204, 205
local key pair, generating  205
need for  202
Rust, installing  199
using, locally  205

Solana frameworks and tools  206
Anchor  206
Anchor project, creating  209

Solidity  168
URL  170

Solmate  188
spent TXOs (STXOs)  110
stack  47
staking  296, 297
standard transaction  75
Starcoin  343, 344

reference link  343
state management  252
storage options, NEAR blockchain

LookupMap  261
LookupSet  261
TreeMap  262
UnorderedMap  262
UnorderedSet  261
vectors  260

storage, versus compute  9
string literals  49
strings  49, 50
struct  41, 56, 57, 73
Substrate  38, 283, 304

architecture  304, 305
client and runtime  306
consensus  313-315
core primitives  309, 310
custom pallets, building  311, 312
deterministic finality  315
forkless and runtime upgrades  312, 313
FRAME  310, 311
installing  317, 318
network types  307
node types  307, 308
runtime interfaces  308, 309

Sui  338
systems programming language  34



Index 365

T
testing  182

differential testing  186
fork testing  185
fuzz testing  185
invariant testing  186
revert testing  184

tests
writing  183, 184

The Graph Protocol
reference link  344

thin clients  308
tokens

versus coins  21, 22
versus ICOs  21, 22

Tower consensus protocol  202
tracks  256
transaction  7, 8, 288-291

implementing  133
Transaction implementation  137-141
TXInput transactions  133-137

transactions per second (TPS)  28, 201, 336
tuples  45, 46
Turbine  203
TXInput  74
TXOutput  74
type safety  35

U
Ubuntu

installation  68, 69
Ubuntu apt  70
Ubuntu snap  69
Uniform Resource Identifier (URI)  190
unsigned integers  44

unspent transaction outputs 
(UTXOs)  7, 75, 109

set, rebuilding  161, 162
utilizing  141

usize  44
utilities

setting up  147
utility function  149, 150
UTXOSet

implementing  141-143

V
validators  12, 263, 299
variables  42, 43
vectors  42, 57, 58, 59
verifiers  201
version control system (VCS)  211
virtual tables (v-tables)  47, 48
Visual Studio Code (VS Code)  69

installing, on macOS  71
installing, on Windows  71
Ubuntu apt  70
Ubuntu snap  69

W
wallets  145-147

addresses, listing  160
implementing  143-145
utilizing  141

Web3  4
Web3 jobs

career, building  351, 352
finding  350

Web3 space
job roles  348, 349
jobs  348



Index366

WebAssembly (Wasm)  346
while loops  53
Windows

VS Code, installing on  71
Windows system

installation  68

X
XCM  284, 293, 294
X (Twitter)

reference link  350

Y
Yarn

installing  208, 209

Z
zero-cost abstractions  36
zero-knowledge (ZK)  342

rollups  30



packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as 
industry leading tools to help you plan your personal development and advance your career. For more 
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over 

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you 
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range 
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com


Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Blockchain Development for Finance Projects

Ishan Roy

ISBN: 978-1-83882-909-4

• Design and implement blockchain solutions in a BFSI organization

• Explore common architectures and implementation models for enterprise blockchain

• Design blockchain wallets for multi-purpose applications using Ethereum

• Build secure and fast decentralized trading ecosystems with Blockchain

• Implement smart contracts to build secure process workflows in Ethereum and Hyperledger 
Fabric

• Use the Stellar platform to build KYC and AML-compliant remittance workflows

• Map complex business workflows and automate backend processes in a blockchain architecture

https://packt.link/1838829091


369Other Books You May Enjoy

Securing Blockchain Networks like Ethereum and Hyperledger Fabric

Alessandro Parisi

ISBN: 978-1-83864-648-6

• Understand blockchain consensus algorithms and security assumptions

• Design secure distributed applications and smart contracts

• Understand how blockchains manage transactions and help to protect wallets and private keys

• Prevent potential security threats that can affect distributed ledger technologies (DLTs) and 
blockchains

• Use pentesting tools for assessing potential flaws in Dapps and smart contracts

• Assess privacy compliance issues and manage sensitive data with blockchain

https://packt.link/1838646485


370

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and 
apply today. We have worked with thousands of developers and tech professionals, just like you, to 
help them share their insight with the global tech community. You can make a general application, 
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Rust for Blockchain Application Development, we’d love to hear your thoughts! If 
you purchased the book from Amazon, please click here to go straight to the Amazon review page for 
this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1837634645


371

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837634644

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837634644
https://packt.link/free-ebook/9781837634644

	Cover
	Title Page
	Copyright and Credits
	Dedicated
	Contributors
	Table of Contents
	Preface
	Part 1:
Blockchains and Rust
	Chapter 1: Blockchains with Rust
	Laying the foundation with the building blocks of blockchains
	Blocks
	Hashes
	Transactions
	Security
	Storage versus compute

	Exploring the backbone of blockchains
	Decentralization
	Peers, nodes, validators, and collators
	Consensus
	Mining
	Forking
	Permissioned versus permissionless

	Understanding decentralization
	Replication
	Governance
	Cryptocurrencies and gas fees
	Decentralized platforms
	Tokens versus coins and ICOs
	Smart contracts and NFTs
	DAOs
	Non-censorable apps
	Digital assets with real-world limits

	Scaling the blockchain
	The blockchain trilemma
	Sharding
	Interoperability
	Consensus for scale
	Parallel processing
	Layer 2s and side chains
	ZK rollups and optimistic rollups

	Introducing smart contracts
	The future of the adoption of blockchains
	Industries disrupted
	Sociocultural and economic changes

	Summary

	Chapter 2: Rust – Necessary Concepts for Building Blockchains
	Introducing Rust
	The benefit of being statically typed
	A dive into Rust’s applicability as a systems programming language
	The reliability of Rust
	The Rust ownership memory management model
	Garbage collection
	Speed and performance
	Futures, error handling, and memory safety

	Rust’s advantage for blockchains
	Blockchains that use Rust
	Foundry for Ethereum
	The Fe, Move, and ink! languages
	Interesting blockchain projects built with Rust
	Advantages of Rust-based languages compared to Solidity

	Learning basic Rust concepts
	Variables and constants
	Data types
	Tuples and arrays
	Numeric operations
	Stack
	Heap
	V-tables
	Slices
	Strings
	Enums

	Exploring intermediate Rust concepts
	Control flow
	While loops
	Functions
	Match control flow
	Structs
	Vectors

	Delving deep into advanced Rust concepts
	Hashmaps
	Ownership and borrowing
	Crates, modules, and cargo

	Summary

	Part 2: 
Building the Blockchain
	Chapter 3: Building a Custom Blockchain
	Technical requirements
	Windows installation
	Mac installation
	Ubuntu installation
	VS Code
	rust-analyzer
	Cargo

	Planning our first blockchain project
	Structs
	Required functions

	Getting started with building the blockchain
	Block

	Creating the genesis block
	Using helper functions
	Exploring embedded databases

	Summary

	Chapter 4: Adding More Features to Our Custom Blockchain
	Technical requirements
	Connecting the blocks
	Libraries powering blockchain operations
	Blockchain functions

	Starting the node server
	The server
	Server struct and implemented methods
	Enums
	Helper functions
	The serve function
	The Node struct

	Summary

	Chapter 5: Finishing Up 
Our Custom Blockchain
	Technical requirements
	Adding memory pools
	Implementing a memory pool
	The BlockinTransit implementation

	Implementing transactions
	Understanding TXInput transactions
	Understanding TXOutput transactions
	Understanding the Transaction implementation

	Utilizing UTXOs and developing wallets
	Implementing UTXOSet
	Implementing wallets
	Wallets

	Setting up configurations and utilities
	The Config implementation
	Utility functions
	Understanding the lib.rs file

	Understanding the Main.rs file
	Using your custom blockchain
	Creating a new blockchain
	Creating a new wallet
	Checking the wallet balance
	Starting a node
	Sending currency
	Listing all wallet addresses
	Printing the blockchain
	Rebuilding the UTXO set

	Summary

	Part 3: 
Building Apps
	Chapter 6: Using Foundry to Build
 on Ethereum
	Introducing Ethereum and Foundry
	Understanding Ethereum
	Why Rust and Foundry?
	Installing Foundry
	First steps with Foundry

	Exploring Foundry
	Working on an existing Foundry project
	Dependencies
	Project layout
	Overview of Forge
	Forge Standard Library overview
	Forge commands

	Understanding Foundry with Cast, Anvil, and Chisel
	Overview of Cast
	Overview of Anvil
	Overview of Chisel
	Cast, Anvil, and Chisel important commands

	Testing and deployment
	Writing tests
	Fork and fuzz testing
	Invariant and differential testing
	Deployment and verification
	Gas reports and snapshots

	A project using Foundry
	Getting started
	A basic NFT
	Testing the program
	Gas reports

	Summary

	Chapter 7: Exploring Solana by 
Building a dApp
	Introducing dApps
	What are dApps?
	Types of dApps
	Benefits of dApps

	Setting up the environment for Solana
	Installing Rust
	Introducing Solana
	Why Solana?
	Generating a local key pair

	Working with Solana frameworks and tools
	Introducing Anchor
	Creating a new Anchor project

	Building and deploying a dApp
	Building and deploying with Anchor
	Running a local ledger
	Updating the program ID
	Utilizing Anchor scripts
	Testing your dApp

	Creating accounts for our custom dApp
	Defining accounts for our custom dApp
	Implementation of message account structure
	Understanding account sizing and rent in Solana
	Sizing message accounts
	Implementation in code

	Creating our first instruction
	Introduction to instruction creation
	Establishing account constraints

	Implementing logic
	Safeguarding against invalid data
	Instruction versus transaction

	Creating tests for our instructions
	Creating a client for tests
	Sending a message

	Summary

	Chapter 8: Exploring NEAR 
by Building a dApp
	Technical requirements
	Prerequisites
	Installation

	Introducing NEAR
	Why choose NEAR?
	Understanding the foundational elements of NEAR

	Learning about the advanced concepts of NEAR
	Transactions and gas
	Data flow
	Tokens and avoiding loss
	Storage options
	Validators and consensus
	NEAR SDK

	Getting started with the NEAR blockchain
	The Contract class
	State and data structures
	Transfers and actions
	Cross contract calls
	NEAR CLI deep dive

	Creating our first project with NEAR
	Understanding the structure and rules of the crossword game
	Setting up the development environment
	Creating a smart contract skeleton
	Testing and deployment
	Interacting with the contract

	Summary

	Part 4: 
Polkadot and Substrate
	Chapter 9: Exploring Polkadot, 
Kusama, and Substrate
	Introducing Polkadot
	Interoperability
	Relay chain
	Parathreads
	Bridges
	Accounts
	Transactions
	Tokens and assets
	NFTs

	Understanding the core concepts of PolkaDot
	XCM
	Shared security
	Pallets
	Staking
	Advanced staking concepts
	Main actors
	NPoS election algorithms

	Learning about Kusama
	Governance and on-chain upgrades
	Chaos and experimentation

	Introducing Substrate
	Substrate architecture
	Client and runtime
	Network types
	Node types

	Diving deep into Substrate
	Runtime interfaces
	Core primitives
	FRAME
	Building custom pallets
	Forkless and runtime upgrades
	Consensus

	Summary

	Chapter 10: Hands-On with Substrate
	Technical requirements
	Installing Substrate

	Building our own blockchain
	Starting a local node
	Installing a frontend template
	Starting the frontend template
	Transferring the funds

	Simulating a network
	Starting the first blockchain node
	Adding more nodes
	Verifying block production

	Summary

	Part 5: 
The Future of Blockchains
	Chapter 11: Future of Rust for Blockchains
	What the future looks like for Rust blockchains
	Popular blockchains
	Upcoming blockchains

	Upcoming Rust Web3 projects
	The Rust community
	Jobs in the Web3 space
	Popular job roles
	How to find Web3 jobs
	Building a career

	Going beyond this book
	Summary

	Index
	Other Books You May Enjoy

