

Developing Blockchain Solutions
in the Cloud

Design and develop blockchain-powered Web3 apps
on AWS, Azure, and GCP

Stefano Tempesta

Michael John Peña

Developing Blockchain Solutions in the Cloud
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.
Group Product Manager: Preet Ahuja
Publishing Product Manager: Suwarna Rajput
Book Project Manager: Uma Devi
Senior Editor: Romy Dias
Technical Editor: Nithik Cheruvakodan
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Alishon Mendonca
Senior DevRel Marketing Executive: Linda Pearlson
DevRel Marketing Coordinator: Rohan Dobhal

First published: April 2024

Production reference: 1280324

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83763-017-2

www.packtpub.com

http://www.packtpub.com

There a lot of people that helped me make this book possible. I want to thank them all and
acknowledge their support: Yuliia, Ivan, Clang, Lei, Red, Khel, and Aaron. You are amazing – the best

team I could dream of. We, together, left a mark on the Web3 story. This is only the beginning…

– Stefano Tempesta

Contributors

About the authors
Stefano Tempesta is a technologist working at the crossroads of Web2 and Web3 to make the internet
a more accessible, meaningful, and inclusive space. Stefano is an ambassador of the use of AI and
blockchain technology for good purposes. A former advisor to the Department of Industry and
Science, Australia, on the National Blockchain Roadmap, he is cofounder of Aetlas, a decentralized
climate action and sustainability network with a mission to source verified carbon units for liquidity
and carbon asset monetization. A passionate traveler, a poor musician, and an avid learner of new
technologies and (programming) languages, Stefano holds three citizenships and speaks fluent English,
Italian, and terrible Ukrainian.

Michael John Peña, an engineer and Microsoft MVP, excels in tech innovation and leadership. As a
data partner at Playtime Solutions, he spearheads projects utilizing Azure, big data, and AI, enhancing
data-driven decision-making. With roles ranging from CTO to software engineer, MJ’s expertise covers
web/app development, cloud computing, blockchain, and IoT. His commitment to lifelong learning
and sharing knowledge—underscored by his work with start-ups and as a technical advisor—drives
industry advancements in finance, construction, and more. MJ values inclusivity and actively fosters
diverse, collaborative environments.

About the reviewers
Faisal Ahmed Farooqui is an architect, having more than two decades of experience in the software
development industry. He’s currently serving as director of engineering and country head at KalSoft. He
completed his master’s in computer science, postgraduate diploma (computer science), and bachelor’s
in commerce all at the University of Karachi. To return to society, he taught blockchain in the same
Computer Science department at the University of Karachi. In his vast experience in the software
industry, he has worked as an architect and developer in multiple technology areas, which include
big data platforms, blockchain, DevOps, process automation, AI/ML, microservices, serverless, and
many others, particularly provided by AWS, Azure, and others such as GCP, OCI, and Databricks.

Alhamdulillah – all praise to Allah. I’d like to thank my parents, my beautiful wife, my lovely kids –
Maryam, a sweet little princess, and Abdul Hadi, a naughty Dirty Bertie, my brothers, sisters, and all
family members. Thanks to Akhter Zaib, founding member of KalSoft for being my mentor, teacher,
and guide, like an elder brother. Thanks to my previous organizations, bosses, and colleagues for giving
me opportunities to learn, grow, and make mistakes.

As a seasoned full-stack developer, Reigner Garcia Ouano seamlessly blends creativity and precision
in the digital realm. With over six years of experience navigating the intricacies of web development,
Reigner Ouano is not only a coding maestro but also a passionate explorer of diverse literary landscapes.

I would like to express my heartfelt gratitude to the author of this book for providing a comprehensive
and insightful resource that explores the intricate intersection of blockchain technology and cloud
computing. Your dedication to simplifying complex concepts and making them accessible to a broader
audience is truly commendable.

Ivan Leskov, a blockchain engineer and security analyst, has an extensive eight-year career in finance,
dedicating the last four years specifically to non-traditional, innovative finance realms. Ivan’s significant
contributions include enhancing various sectors with blockchain technology, notably in certifying
collectibles through blockchain in the firearms market and developing DeFi/ReFi protocols. His deep
insight into financial systems and innovative blockchain strategies mark him as an influencer, subtly
transforming financial landscapes into more efficient, transparent realms. Ivan’s work is a testament
to his commitment to redefining finance through thoughtful technological progress.

I extend my deepest gratitude to my peers and upcoming experts in the blockchain domain. Your
commitment to exploring and advancing this field is invaluable. Your choice to delve into blockchain
technology is not just a career path, but a significant step toward shaping a more transparent and
secure future. Thank you for your dedication and for joining in this journey to revolutionize our global
financial and technological landscapes.

Preface� xvii

Part 1: Introduction to Cloud-Native Blockchain

1
Understanding Cloud-Native and Blockchain� 3

Blockchain basics – Distributed
ledgers and cryptography� 3
Types of blockchain� 4
Consensus mechanisms – Ensuring trust
and security� 7
Smart contracts – Programmable logic on
the blockchain� 9
dapps – Building on the blockchain� 11
Tokenization – Creating digital assets on
the blockchain� 11
Scalability, interoperability, and privacy – Key
challenges and innovations in blockchain� 12

Introduction to
cloud-native technology� 13
Defining cloud-native technology� 14
Key principles of cloud-native technology� 14
Comparing traditional cloud computing
and cloud-native technology� 15

Benefits and limitations of
cloud-native blockchain� 16
Scalability – Adapting to changing workloads� 16
Security – Protecting data and infrastructure� 17
Cost-effectiveness – Optimizing
resource utilization� 17
Limitations and trade-offs of cloud-native
blockchain solutions� 18

Key considerations for cloud-native
blockchain implementation� 19
Choosing the right blockchain framework� 19
Scalability and performance� 20
Security and privacy� 26
Interoperability and integration� 27
Cost optimization� 28

Summary� 29

Table of Contents

Table of Contentsviii

2
Overview of AWS, Azure, and GCP Services for Blockchain� 31

AWS blockchain services� 32
Amazon Managed Blockchain� 32
Amazon QLDB� 32
Amazon EC2 and Amazon Elastic
Kubernetes Service (EKS)� 33
AWS Marketplace templates� 33

Azure blockchain services� 34
Microsoft Entra Verified ID� 34
Azure Managed Confidential
Consortium Framework (CFF)� 35
Azure Confidential Ledger� 36
Azure Kubernetes Service (AKS)� 36
Azure partner solutions� 37

GCP blockchain services� 37

GCP Blockchain Node Engine� 38
GCP Compute Engine and Kubernetes Engine� 38
GCP Marketplace templates� 38
GCP partner solutions� 39

Comparing AWS, Azure, and
GCP blockchain services� 40
AWS� 40
Azure� 40
GCP� 40
Strengths and weaknesses� 40
Blockchain data security� 42

Summary� 43
Further reading� 43

3
DevOps for Cloud-Native Blockchain Solutions� 45

Introduction to DevOps for
cloud-native blockchain solutions� 45
The blockchain challenge for DevOps� 46
DevOps – Definition and core principles� 47
The role of DevOps in cloud-native
blockchain solutions� 48
Benefits of using DevOps in cloud-native
blockchain solutions� 48

CI/CD for blockchain solutions� 50
CI and CD� 51
Smart contract design� 51
Smart contract testing� 53

Test data generation� 54
CI/CD tools� 56

IaC for blockchain solutions� 58
IaC – Definition and benefits� 58
Popular IaC tools for blockchain
infrastructure management� 59
Implementing IaC for blockchain solutions� 60

Monitoring and logging for
blockchain solutions� 62
Importance of monitoring and logging for
blockchain solutions� 62

Table of Contents ix

Popular monitoring and logging tools for
blockchain solutions� 63
Implementing monitoring and logging for
blockchain solutions� 64

Best practices for DevOps in
cloud-native blockchain solutions� 65
Summary� 66

Part 2: Deploying and Implementing
Blockchain Solutions on AWS

4
Getting Started with Amazon Managed Blockchain� 69

Technical requirements� 69
Introduction to AMB� 70
Features of AMB� 70
Benefits of AMB� 71
Choosing a blockchain framework� 72

Creating a managed
blockchain network� 74
Inviting members and
managing access� 77
Inviting members to the network� 77
Managing member access and permissions� 78

Deploying and managing nodes� 78
Adding a new node� 79
Removing a node� 80

Monitoring node health� 80

Key considerations for security,
scalability, and monitoring� 84
Security considerations� 84
Scalability considerations� 85
Monitoring considerations� 85

Building a tracking application� 86
Reference architecture� 86
Network Setup� 86
The chaincode� 87
Deployment� 89

Summary� 90
Further reading� 91

5
Hosting a Blockchain Network on Elastic Kubernetes Service� 93

Technical requirements� 93
Introduction to Hyperledger
Fabric on EKS� 94
Architecture and components� 94
Dynamic scalability� 95
Container orchestration� 97

Resilience and high availability� 98

Creating an EKS cluster for hosting
the Hyperledger Fabric blockchain� 100
Deploying a Hyperledger Fabric
blockchain network on EKS� 101
Persistent Storage� 101

Table of Contentsx

Fabric components� 103
Common deployment challenges� 104

Key considerations – Security,
scaling, and monitoring� 105
Enterprise deployments� 105
Security� 107
High availability� 109

Scaling� 111

Testing and troubleshooting a
Hyperledger Fabric blockchain
network on EKS� 112
Summary� 113
Further reading� 113

6
Building Records with Amazon Quantum Ledger Database� 115

Introduction to Amazon
Quantum Ledger Database� 115
Architecture� 116
QLDB and blockchain� 117
Use cases for blockchain� 118

Creating a QLDB instance� 119
Troubleshooting� 120
Creating the ledger from the AWS
Management Console� 120
Using AWS Command-Line Interface� 121
Using the AWS SDK for Python� 122

Data modeling in QLDB� 123
Data modeling pitfalls to avoid� 124
Data model for a blockchain
supply chain application� 125
Best practices for data modeling� 126
Creating a document� 127

Referencing and embedding documents� 128
Indexing� 129
Versioning� 130
Managing data history� 131

Querying data in QLDB� 131
CRUD operations� 132
Executing queries programmatically� 133
Data verification� 133
Common query access patterns� 135

Key considerations for security,
scalability, and monitoring� 136
Security� 137
Scalability� 138
Monitoring� 140

Summary� 141
Further reading� 142

Table of Contents xi

Part 3: Deploying and Implementing Blockchain
Solutions on Azure

7
Hosting a Corda DLT Network on Azure Kubernetes Service� 145

Technical requirements� 146
Understanding Corda and AKS� 146
Key features of Corda DLT� 146
Exploring AKS and its benefits� 148

Architecting Corda networks
on AKS� 150
Design considerations for Corda
network deployment� 150
Integrating your AKS configuration for
Corda with additional Azure services� 152

Provisioning an AKS cluster
for Corda� 156

Setting up an Azure subscription and
preparing the prerequisites� 157
Deploying an AKS cluster with the
appropriate Corda configuration� 159
Corda Enterprise in the Azure Marketplace� 160
Securing the AKS cluster and managing
access controls� 161

Managing Corda nodes on AKS� 164
Scaling Corda nodes as Kubernetes pods� 164
Testing and validating the resilience of
Corda networks on AKS� 166
Ensuring high availability and
disaster recovery� 168
Performing failover tests in AKS� 170

Summary� 171
Further reading� 172

8
Using the Ledger Features of Azure SQL� 173

Technical requirements� 174
Introduction to the ledger features
of Azure SQL� 174
Use cases for SQL Ledger� 176
Creating a ledger in Azure SQL database� 177
Database ledger versus table ledger� 177

Benefits of the ledger features
of Azure SQL� 178

Security and integrity� 178
Performance and scalability� 181

Using the ledger features of
Azure SQL for blockchain solutions� 183
Supply chain traceability� 183
Certificate issuance and verification� 185
Asset ownership transfer� 186

Table of Contentsxii

Integrating the ledger features of
Azure SQL with other Azure services� 186
Azure Functions� 186
Azure Logic Apps� 187
Azure Event Grid� 187
Azure Analysis Services� 187
Azure Machine Learning� 187
Power BI� 187

Azure API Management� 187
Azure Data Factory� 187

Best practices for implementing
blockchain solutions with the ledger
features of Azure SQL� 188
Summary� 190
Further reading� 190

9
Leveraging Azure Confidential Ledger� 191

Technical requirements� 192
An introduction to ACL� 193
Use cases� 195

The features and benefits of ACL� 196
Using ACL for blockchain solutions� 197
Connecting and sending data to ACL� 198

Integrating ACL with other
Azure services� 200
Integration with Azure Key Vault� 201

Best practices for implementing
blockchain solutions with ACL� 202
Summary� 203
Further reading� 204

Part 4: Deploying and Implementing
Blockchain Solutions on GCP

10
Hosting an Ethereum Blockchain Network on
Google Cloud Platform� 207

Technical requirements� 208
Setting up an Ethereum blockchain
network on Compute Engine� 208
Setting up an Ethereum blockchain
network on GKE� 212

Configuring nodes in the
Ethereum network� 216
Managing the Ethereum network
on GKE� 222
Auto-scaling� 225
Load balancing� 226

Table of Contents xiii

Gas price management� 228
Managing Ethereum accounts and wallets� 229

Troubleshooting and maintaining the
Ethereum network on GKE� 231
Summary� 234
Further reading� 234

11
Getting Started with Blockchain Node Engine� 235

Technical requirements� 236
Introduction to BNE� 236
Features and benefits of BNE� 238
Using BNE for blockchain solutions� 240
Building a dapp to interact with
the blockchain node� 243

Integrating BNE with other
GCP services� 246
Off-chain data storage� 247
Integrate Cloud Firestore� 250

Best practices for implementing
blockchain solutions with BNE� 252
Summary� 253
Further reading� 254

12
Analyzing On-Chain Data with BigQuery� 255

Technical requirements� 256
Introduction to BigQuery� 256
Setting up BigQuery in GCP� 257

Features and benefits of BigQuery
for on-chain data analysis� 260
Importing on-chain data
into BigQuery� 261
Querying Ethereum� 263
Querying Bitcoin� 265

Analyzing on-chain data
with BigQuery� 267
Analyzing transaction patterns� 267
On-chain analytics� 268
Predict the value of Bitcoin with
machine learning� 269

Visualizing on-chain data
with BigQuery� 271
Summary� 272
Further reading� 273

Table of Contentsxiv

Part 5: Exploring Real-World Use Cases
and Best Practices

13
Building a Decentralized Marketplace on AWS� 277

Technical requirements� 278
What to expect� 278
Prerequisites� 278

Solution architecture and
hosting infrastructure� 279
Solution architecture� 280
Hosting infrastructure on AWS� 281
Security and monitoring� 281

Setting up the blockchain network
on AWS� 281

Setting up Amazon EC2� 281
Setting up Amazon RDS� 284
Setting up Amazon S3� 286
Setting up Ethereum� 287

Creating the decentralized
marketplace application� 289
Deploying the decentralized
marketplace on AWS� 291
Summary� 293
Further reading� 294

14
Developing a Decentralized Voting Application on Azure� 295

Technical requirements� 296
Introduction to developing a
decentralized voting application
on Azure� 296
Data integrity� 297
Voter privacy� 297
System robustness� 298

Setting up the blockchain network on
Azure� 299
Creating a blockchain consortium on Azure� 300
Create a voting smart contract� 300

Compiling and migrating the smart contract
using Truffle� 301

Developing the voting application
frontend� 302
Installing the necessary packages� 302
Interacting with the smart contract� 302
Creating a Blazor component for voting� 304
Running your application� 305
Future trends in decentralized voting systems� 305

Summary� 306
Further reading� 306

Table of Contents xv

15
Creating Verifiable Digital Ownership on GCP� 307

Technical requirements� 308
Introduction to verifiable
digital ownership� 308
Setting up the blockchain network
on GCP� 309
Creating verifiable digital
ownership records� 311
Ownership verification through
digital signatures� 313
Multi-signature verification� 314
Smart contract deployment� 314

Off-chain checks� 315
Frontend� 315

Integrating verifiable digital
ownership with other GCP services� 320
On-chain storage using smart contracts� 320
Off-chain storage with on-chain references� 321

Deploying verifiable digital
ownership on GCP� 321
Summary� 323
Further reading� 323

16
The Future of Cloud-Native Blockchain� 325

Why cloud-native blockchain?� 325
Blockchain for good� 327
Identity verification and protection� 328
Charitable donations and aid distribution� 328
The digital archiving and provenance of
cultural artifacts� 329

Role of cloud providers in shaping
the future of cloud-native blockchain� 329

Challenges and opportunities for
cloud-native blockchain� 331
Final thoughts and predictions for
the future of cloud-native blockchain� 335
Final thoughts� 335
Predictions� 336

Summary� 337

Index� 339

Other Books You May Enjoy� 354

Preface

The adoption of cloud-native blockchain technology is on the rise in various sectors, as companies
capitalize on its advantages to stay in sync with technological advancements. This book introduces
you to the basic principles of cloud-native blockchain, its benefits, and the obstacles encountered
when implementing it in a cloud environment.

Chapter by chapter, you will learn crucial topics, including the development and deployment of robust,
scalable Web3 solutions on platforms such as AWS, Azure, and GCP, complemented by practical tutorials
and projects for hands-on learning. The book covers the most suitable tools, technologies, practical
applications, and recommended practices for Web3, enriching your knowledge about the industry’s
challenges and opportunities.

The goal of this book is to make you possess a thorough comprehension of how to deploy and implement
Web3 applications in the cloud, equipped with the skills and knowledge necessary to create secure
and scalable cloud-native blockchain solutions.

Who this book is for
This book is written for cloud developers and DevOps engineers aiming to design and develop cloud-
native Web3 applications. It serves as a valuable resource for IT professionals tasked with deploying
and managing blockchain solutions in the cloud, as well as business executives assessing the viability
of blockchain technology. Additionally, entrepreneurs, students, academics, and enthusiasts keen
on discovering the newest advancements in Web3 cloud applications will find it a useful read. A
foundational understanding of cloud computing and blockchain principles is advised to fully grasp
the expert analysis, practical tutorials, and real-life applications presented.

What this book covers
Chapter 1, Understanding Cloud-Native and Blockchain, describes the basics of cloud-native architecture
and its relationship with blockchain technology. The chapter will explain what cloud-native means,
how it differs from traditional cloud computing, and why it is relevant for blockchain applications. It
will also discuss the key benefits of using cloud-native technologies for blockchain, such as scalability,
security, and cost-effectiveness.

Chapter 2, Overview of AWS, Azure, and GCP Services for Blockchain, provides an overview of the
blockchain services offered by AWS, Azure, and GCP. The chapter will provide an understanding of the
different services and tools available for building blockchain solutions on each platform. It will also cover
the strengths and weaknesses of each platform, as well as the different features and capabilities they offer.

Prefacexviii

Chapter 3, DevOps for Cloud-Native Blockchain Solutions, explains the principles and practices of
DevOps and how they can be applied to cloud-native blockchain solutions. The chapter will provide an
understanding of how DevOps can help to build and deploy blockchain solutions more efficiently and
effectively, by creating a more collaborative environment between development and operations teams.

Chapter 4, Getting Started with Amazon Managed Blockchain, shows how to get started with Amazon
Managed Blockchain on AWS. The chapter will explain the basics of Amazon Managed Blockchain,
including how to create and manage a network, invite members, and deploy and manage nodes. The
chapter will also cover key considerations for security, scaling, and monitoring when using Amazon
Managed Blockchain.

Chapter 5, Hosting a Blockchain Network on Elastic Kubernetes Service, demonstrates how to host
a blockchain network on Elastic Kubernetes Service (EKS) on AWS. The chapter will explain the
basics of EKS, including how to create and manage a cluster and how to deploy a blockchain network
on EKS. The chapter will also cover key considerations for security, scaling, and monitoring when
using EKS for blockchain.

Chapter 6, Building Records with Amazon Quantum Ledger Database, explores the use of Amazon
Quantum Ledger Database (QLDB) on AWS for blockchain applications. The chapter will explain
the basics of QLDB, including its features and benefits for blockchain applications, and how to create
and manage a QLDB instance. The chapter will also cover key considerations for data modeling and
querying on QLDB.

Chapter 7, Hosting a Corda DLT Network on Azure Kubernetes Service, describes how to host a
blockchain network on Azure Kubernetes Service (AKS) on Azure. The chapter will explain the
basics of AKS, including how to create and manage a cluster and how to deploy a blockchain network
on AKS. The chapter will also cover key considerations for security, scaling, and monitoring when
using AKS for blockchain.

Chapter 8, Using the Ledger Features of Azure SQL, dives into use cases for the ledger features of Azure
SQL to implement blockchain solutions. The chapter will provide an overview of the ledger features of
Azure SQL, including its key features and benefits, and will explain how it can be used to implement
blockchain solutions.

Chapter 9, Leveraging Azure Confidential Ledger, is all about Microsoft Azure Confidential Ledger, a
confidential and secure ledger that provides a transparent and verifiable history of all changes to the
data stored in a ledger. The chapter will provide an overview of Microsoft Azure Confidential Ledger,
including its features and benefits, and will explain how it can be used to implement blockchain solutions.

Chapter 10, Hosting an Ethereum Blockchain Network on Google Cloud Platform, shows how to host
a blockchain network on GCP using Google Kubernetes Engine (GKE). The chapter will provide a
step-by-step guide for setting up a blockchain network on GKE, including instructions for deploying
the network, configuring the nodes, and managing the network.

Preface xix

Chapter 11, Getting Started with Blockchain Node Engine, focuses on Blockchain Node Engine, a service
provided by GCP for building and deploying blockchain applications. The chapter will provide an
overview of Blockchain Node Engine, including its features and benefits, and will explain how it can
be used to implement blockchain solutions.

Chapter 12, Analyzing On-Chain Data with BigQuery, is dedicated to Google BigQuery, a data analysis
service provided by GCP, to analyze on-chain data in their blockchain applications. The chapter will
provide an overview of BigQuery, including its features and benefits, and will explain how it can be
used to analyze on-chain data in a blockchain network.

Chapter 13, Building a Decentralized Marketplace on AWS, is our first hands-on lab on how to build
a decentralized marketplace using AWS services. The chapter will provide practical instructions
that will guide you through the process of building a decentralized marketplace on AWS, including
instructions for deploying the network, creating the marketplace application, and integrating the
marketplace with other AWS services.

Chapter 14, Developing a Decentralized Voting Application on Azure, is a second lab for developing
a decentralized voting application using Azure services. The chapter will provide a hands-on guide
through the process of developing a decentralized voting application on Azure, including instructions
for deploying a network, creating a voting application, and integrating it with other Azure services.

Chapter 15, Creating Verifiable Digital Ownership on GCP, is our third lab on how to create verifiable
digital ownership records using GCP services. The chapter will provide a hands-on lab that guides you
through the process of creating verifiable digital ownership records on GCP, including instructions
for deploying a network, creating ownership records, and integrating them with other GCP services.

Chapter 16, The Future of Cloud-Native Blockchain, closes this book with a summary of the key points
covered throughout the previous chapters, and then discusses the future of cloud-native blockchain. This
chapter will provide insights into the current state and future trends of cloud-native blockchain, including
the adoption of blockchain for good humanitarian purposes, the challenges, and its opportunities.

To get the most out of this book

Software/hardware covered in the book Operating
system requirements

A subscription to each of the cloud services utilized in the book – AWS,
Azure, and GCP. Any

A development tool of preference for smart contracts and other scripts.
VS Code is recommended. Any

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Prefacexx

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud. If there’s
an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The
PeerNode1AZ and PeerNode2AZ parameters identify the selected AWS region for deployment
of the two peer nodes.”

A block of code is set as follows:

response = cloudwatch_client.put_dashboard(
    DashboardName=dashboard_name,
    DashboardBody=json.dumps(dashboard_body)
)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

cloudwatch_client = boto3.client('cloudwatch')
alarm_name = 'AMB_CPU_Utilization_Alarm'
namespace = 'AWS/ManagedBlockchain'
metric_name = 'CPUUtilization'
threshold = 70.0  # Set your threshold

Any command-line input or output is written as follows:

$ pip install boto3

Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Click on the Private networks tab and
Create private network button in the AMB console.”

Tips or important notes
Appear like this.

https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface xxi

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Developing Blockchain Solutions in the Cloud, we’d love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share
your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
https://packt.link/r/1837630178

Prefacexxii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837630172

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837630172

This part provides an understanding of cloud-native technology and blockchain, and an overview
of the AWS, Azure, and GCP services available for implementing blockchain solutions. It will also
provide insights on DevOps practices for cloud-based blockchain solutions.

This part includes the following chapters:

•	 Chapter 1, Understanding Cloud-Native and Blockchain

•	 Chapter 2, Overview of AWS, Azure, and GCP Services for Blockchain

•	 Chapter 3, DevOps for Cloud-Native Blockchain Solutions

Part 1:
Introduction to

Cloud-Native Blockchain

1
Understanding Cloud-Native

and Blockchain

In today’s rapidly evolving technological landscape, it is vital to stay ahead by understanding and
adopting key technologies that are driving innovation and reshaping industries. This chapter will
provide you with foundational knowledge of cloud-native and blockchain technologies, their benefits,
and how they can be effectively combined to deliver solutions across multiple industries. As you
progress through this chapter, you will be exposed to blockchain services in the major cloud service
providers—AWS, Azure, and GCP—and make informed decisions about implementing cloud-native
blockchain solutions. We will explore each technology in-depth, and provide real-world examples to
demonstrate their applications and potential impact.

We will cover the following main topics in this chapter:

•	 Blockchain basics – Distributed ledgers and cryptography

•	 Introduction to cloud-native technology

•	 Benefits and limitations of cloud-native blockchain

•	 Key considerations for cloud-native blockchain implementation

Blockchain basics – Distributed ledgers and cryptography
Blockchain is a decentralized, distributed ledger technology that enables the secure recording, storage,
and verification of transactions across a network of computers. It consists of a chain of blocks, where
each block contains a list of transactions. These blocks are linked together using cryptographic
techniques, forming a chronological chain.

One of the key problems that blockchain addresses is the issue of trust in traditional centralized systems.
In traditional systems, such as banking or centralized databases, there is a reliance on intermediaries,
such as banks or clearinghouses, to facilitate and validate transactions. This reliance can lead to issues
such as fraud, data manipulation, censorship, and single points of failure.

Understanding Cloud-Native and Blockchain4

Blockchain technology mitigates these issues by decentralizing the control and storage of data.
Transactions on a blockchain are verified and recorded by a network of nodes, and once added to the
blockchain, they are immutable and tamper-resistant. This decentralized and transparent nature of
blockchain technology removes the need for intermediaries and creates a more trustless environment
for transactions to occur.

Blockchain also addresses the problem of data integrity and security. The cryptographic techniques
that are used in blockchain ensure that data stored on the ledger cannot be altered or tampered with
without consensus from the network participants. This makes blockchain particularly suitable for
applications where data integrity and security are paramount, such as financial transactions, supply
chain management, voting systems, and identity management.

Myriads of books and online resources have already been written on introducing blockchain and the
relevant technologies and frameworks that run along a blockchain network. Before progressing with
this book, we recommend the following resources for deepening your understanding of cryptocurrency
and tokens, the type and use of wallets, addresses, and cryptographic concepts, such as private and
public keys, and hash values:

•	 Mastering Blockchain: https://www.packtpub.com/product/mastering-
blockchain-third-edition/9781839213199

•	 Complete Cryptocurrency and Blockchain Course: https://www.packtpub.com/
product/complete-cryptocurrency-and-blockchain-course-learn-
solidity-video/9781839211096

•	 Cryptography Algorithms: https://www.packtpub.com/product/cryptography-
algorithms/9781789617139

•	 Hands-On Cryptography with Python: https://www.packtpub.com/product/
hands-on-cryptography-with-python/9781789534443

Types of blockchain

Blockchain operates as a form of Distributed Ledger Technology (DLT) that enables various stakeholders
to safely collaborate and oversee an ever-expanding series of data entries, termed blocks. Every block
encapsulates a group of activities, a time marker, and a nod to the preceding block. Together, these
blocks create a resilient archive of all engagements undertaken on the platform.

One of the standout attributes of blockchain is its non-centralized design. This entails that the data isn’t
dominated by a singular authority; instead, every member on the platform possesses a duplicate of the
full ledger. Such a distributed model negates the dependency on centralized regulators or middlemen,
curtailing possibilities of manipulation, deceit, and singular breakdowns.

https://www.packtpub.com/product/mastering-blockchain-third-edition/9781839213199

https://www.packtpub.com/product/mastering-blockchain-third-edition/9781839213199

https://www.packtpub.com/product/complete-cryptocurrency-and-blockchain-course-learn-solidity-video/9781839211096

https://www.packtpub.com/product/complete-cryptocurrency-and-blockchain-course-learn-solidity-video/9781839211096

https://www.packtpub.com/product/complete-cryptocurrency-and-blockchain-course-learn-solidity-video/9781839211096

https://www.packtpub.com/product/cryptography-algorithms/9781789617139

https://www.packtpub.com/product/cryptography-algorithms/9781789617139

https://www.packtpub.com/product/hands-on-cryptography-with-python/9781789534443

https://www.packtpub.com/product/hands-on-cryptography-with-python/9781789534443

Blockchain basics – Distributed ledgers and cryptography 5

Encryption is pivotal in preserving the trustworthiness of the blockchain. Each block carries a distinct
cryptographic signature, conceived from the block’s details and the signature of its predecessor. This
setup renders it exceedingly challenging to modify a block’s data without influencing the blocks that
follow, guaranteeing the permanence of the blockchain.

Blockchains can be classified into three primary categories: public, private, and consortium. Each
serves its purpose with distinct features and preferred applications.

Public blockchains

Public blockchains operate as open platforms accessible to any individual willing to join. Bitcoin and
Ethereum are classic representations of this type. These blockchains pride themselves on deep-rooted
decentralization and formidable security measures. However, their intricate validation procedures,
such as Proof of Work (PoW), can sometimes restrict their speed and scalability. Public blockchains
excel in environments that demand trust, openness, and resistance to external controls, such as with
decentralized apps (dapps) and virtual currencies.

Private blockchains

Private blockchains, also known as permissioned blockchains, in contrast, are limited-access platforms
that are often confined to specific entities or organizations. They are tailored for rapid transactions
and superior scalability, presenting an edge over public blockchains in these aspects. However, this
comes at the cost of shedding some of the complete decentralization inherent in public counterparts.
For tasks prioritizing confidentiality, oversight, and swift operations, such as within organizational
collaborations, supply chain tracking, or internal documentation, private blockchains emerge as the
go-to choice.

Here are some examples of private blockchain platforms:

•	 Hyperledger Fabric: Developed by the Linux Foundation, Hyperledger Fabric is designed for
enterprise use. It enables organizations to build scalable blockchain applications with a high
degree of privacy, performance, and customization. Industries such as finance, healthcare, and
supply chain use Hyperledger Fabric for applications such as asset tracking, secure transactions,
and compliance.

•	 R3 Corda: Corda is a distributed ledger platform designed specifically for the financial industry
but has applications in other sectors as well. It allows for the development of interoperable
blockchain networks where transaction privacy is maintained, enabling businesses to transact
directly and in strict privacy.

Understanding Cloud-Native and Blockchain6

•	 Quorum: Initially developed by J.P. Morgan, Quorum is an Ethereum-based private blockchain.
It’s designed for processing private transactions within a permissioned group of known
participants. Quorum is used in sectors such as finance for settlement, payments, and other
financial services where transaction privacy is crucial.

•	 Ripple (XRP Ledger for Private Use): While Ripple’s XRP Ledger is public, Ripple has developed
a private version of it for central banks to issue and manage digital currencies. This private
blockchain solution offers the transaction privacy and control that financial institutions require.

•	 Multichain: Multichain is a platform that allows users to establish private blockchains for
financial transactions, asset management, and other applications. It provides the tools for
creating and deploying blockchain applications with a focus on privacy, control, and scalability.

Consortium blockchains

Consortium blockchains, often referred to as federated blockchains, interweave elements from both
public and private types. They function under the stewardship of a group of trusted entities, rather
than a single overarching body. Striking a balance, consortium blockchains marry the transparency
of public chains with the control advantages of private ones. They are especially apt for situations that
entail collaboration across different organizations but also necessitate a degree of privacy and control,
such as in cross-border banking transactions or shared healthcare record systems.

Here are some examples of consortium blockchain platforms and their applications:

•	 Energy Web Foundation (EWF), https://www.energyweb.org/: EWF has developed
the Energy Web Chain, a public, enterprise-grade blockchain platform designed for the energy
sector’s specific needs. It supports a consortium of energy companies working together to
develop dapps that can drive cleaner, more efficient, and inclusive energy systems worldwide.

•	 Blockchain Insurance Industry Initiative (B3i): B3i was a consortium of insurance companies
that came together to explore and implement blockchain solutions. B3i used blockchain
technology to make insurance transactions more efficient, transparent, and customer-friendly.
B3i terminated operations in 2022.

•	 we.trade: A consortium blockchain developed by a group of 12 major banks in Europe,
we.trade was designed to simplify and secure international trade transactions for companies.
The platform leveraged smart contracts to ensure that all parties in the supply chain could
meet their obligations, offering a streamlined, secure process for trade finance. we.trade closed
in 2022, but its case study by IBM is still accessible at https://www.ibm.com/case-
studies/wetrade-blockchain-fintech-trade-finance.

These few examples illustrate how consortium blockchains are being used across various industries
to improve processes, enhance security, and facilitate collaboration between different organizations.

https://www.energyweb.org/
https://www.ibm.com/case-studies/wetrade-blockchain-fintech-trade-finance
https://www.ibm.com/case-studies/wetrade-blockchain-fintech-trade-finance

Blockchain basics – Distributed ledgers and cryptography 7

Consensus mechanisms – Ensuring trust and security

A core attribute of blockchain technology is its proficiency in ensuring agreement amid a distributed
set of nodes. These consensus models are computational strategies that validate uniform agreement
among network nodes regarding the blockchain’s status and the legitimacy of upcoming transactions.
Various consensus strategies exist, each tailored with its unique benefits and limitations. Notable
consensus models encompass the following:

•	 PoW: Adopted primarily by Bitcoin and similar digital assets, PoW mandates participants (or miners)
to employ robust computing resources to calculate intricate algorithms. When a miner cracks a
challenge, in the case of Bitcoin, for example, finding a hash value that matches the requirements of
the network, they suggest integrating a new block into the blockchain. The network’s other nodes then
scrutinize the block’s dealings, culminating in an agreement to either approve or decline the block.
While PoW assures formidable security, it is power-hungry and might lean toward concentration:

Figure 1.1 – PoW in Bitcoin

The preceding AI-generated image visually explains the PoW consensus mechanism in Bitcoin.
It depicts how miners use high-powered computers to compete in solving complex mathematical
puzzles, with the successful miner unlocking a new block through the discovery of the correct
hash. This process is symbolized by a golden key unlocking a block. The preceding figure also
shows a network of nodes connected by digital links, highlighting the decentralized validation
and addition of the newly mined block to the blockchain. The energy consumption involved
in mining is represented by electricity symbols around the miners’ computers, providing a
comprehensive overview of Bitcoin mining and the PoW system.

Understanding Cloud-Native and Blockchain8

•	 Proof of Stake (PoS): PoS emerges as a response to PoW’s limitations. Instead of expending
computational might, PoS hinges on the quantity of digital currency a user possesses (their
holdings) to gauge their likelihood of initiating a new block. Those with heftier holdings usually
have elevated chances of being elected for block validations. PoS is considerably less power-
consuming than PoW, though it might still edge toward central tendencies:

Figure 1.2 – PoS in Ethereum

The preceding AI-generated image has been created to visually explain the PoS consensus
mechanism in Ethereum. It illustrates validators staking Ethereum tokens, the selection process
symbolized by a digital scale, and the decentralized network of nodes. The energy efficiency of
PoS is also conveyed through green energy symbols, providing a clear, engaging, and informative
view of Ethereum’s PoS system.

•	 Delegated Proof of Stake (DPoS): As an offshoot of PoS, DPoS injects an element of representative
choice into the agreement process. Here, the most substantial stakeholders empower specific,
trustworthy nodes with their voting privileges. These chosen nodes then authenticate dealings
and craft new blocks. DPoS can expedite transactions and enhance scalability, yet might be
susceptible to collective manipulations and centralization.

•	 Practical Byzantine Fault Tolerance (PBFT): PBFT is a consensus model tailored for permissioned
blockchain networks where every node is identifiable and trustworthy. Within this structure,
one node gets designated as the primary proposer for a fresh block. The remaining nodes in
the system affirm the block through message exchanges. After a dominant majority concurs
on the block’s authenticity, it joins the blockchain. While PBFT assures swift transactions and
robust security, it might not be the best fit for expansive, open blockchain systems.

Blockchain basics – Distributed ledgers and cryptography 9

Smart contracts – Programmable logic on the blockchain

Smart contracts represent digital contracts where the conditions of an agreement are embedded directly
into the programming. Operating on blockchain platforms, they facilitate automatic and trust-free
completion of deals between entities, eliminating the reliance on middlemen. These contracts can be
tailored to execute a range of functions, such as handling digital asset transfers, streamlining business
operations, or activating contract stipulations upon meeting certain criteria.

Ethereum pioneered the integration of smart contracts into blockchain technology, though now,
multiple other blockchain systems, such as Cardano, Polkadot, and Tezos, also incorporate smart
contract capabilities.

The adaptability of smart contracts opens avenues for their usage in diverse sectors, encompassing
finance, logistics, insurance, property dealings, and dapps.

From a programming perspective, it’s important to emphasize that conventional programming and
smart contract development are two distinct paradigms within the software development landscape,
each with its unique characteristics, use cases, and challenges. Let’s have a look at some key differences
between conventional programming and smart contract development:

Programming paradigm Conventional Smart contract
Execution Environment Applications are usually

executed in a diverse range
of environments, from
personal computers and
servers to cloud platforms.
These environments can
vary greatly in terms of
their operating systems,
hardware configurations, and
network connections.

Smart contracts are executed
on a blockchain platform, such
as Ethereum. This environment
is deterministic, meaning that
the execution of the contract
will always produce the same
output given the same initial state
and inputs, across all nodes in
the network.

Language and Tools There is a wide range of
programming languages,
frameworks, and tools
available, each suited to
different tasks, from web
and mobile app development
to data analysis and
system programming.

Development is typically done
in domain-specific languages
such as Solidity (for Ethereum)
or Java (for Hyperledger Fabric).
These languages are designed
to facilitate the creation of
blockchain-based applications
but might have limitations or
unique features compared to more
general-purpose languages.

Understanding Cloud-Native and Blockchain10

Update
and Maintenance

Conventional software can be
updated or patched as needed.
Developers can push updates
to fix bugs, add features, or
improve performance, and
users can usually apply these
updates at their convenience.

Once deployed, a smart contract is
immutable; it cannot be changed
or updated. If a bug is found or an
update is required, a new contract
must be deployed, and the state
and assets controlled by the old
contract may need to be manually
migrated to the new one.

State Management
and Transactions

State management is handled
within the application’s
environment, and
transactions (if applicable)
are managed by external
systems such as databases or
payment processors.

State management and
transactions are intrinsic to the
blockchain platform. Smart
contracts not only manage the state
of applications but also execute
transactions that are transparent,
traceable, and irreversible, within
the blockchain network.

Consensus Mechanism It does not inherently involve
a consensus mechanism
for decision-making. The
application’s behavior is
determined by its code and the
inputs it receives.

Execution and the validity of
transactions are subject to a
consensus mechanism (for
example, PoW or PoS) among
the participants in the blockchain
network. This ensures agreement
on the state of the distributed
ledger and the results of smart
contract executions.

Security Implications Security is crucial in all
programming, but the impact
of vulnerabilities can vary.
Some issues can be patched
before they are exploited, or
their impact can be mitigated
through various means.

Security is paramount and
potentially more challenging due
to the immutable nature of smart
contracts. Vulnerabilities in smart
contracts can lead to irreversible
loss or theft of digital assets. This
necessitates rigorous testing,
audits, and formal verification
processes before deployment.

Table 1.1 – Comparison between conventional and contract-oriented development

In summary, while both conventional programming and smart contract development share the fundamental
principles of software development, they diverge significantly in their execution environments, security
considerations, update mechanisms, and the ways they handle transactions and state management. These
differences necessitate distinct approaches to development, testing, and deployment in each domain.

Blockchain basics – Distributed ledgers and cryptography 11

dapps – Building on the blockchain

dapps are applications that are built on top of blockchain platforms, utilizing smart contracts and
decentralized storage to create trustless, transparent, and censorship-resistant services. dapps leverage
the unique features of blockchain technology, such as immutability, decentralization, and tokenization,
to deliver innovative solutions and disrupt traditional industries.

Examples of dapps include Decentralized Finance (DeFi) platforms, decentralized marketplaces,
Decentralized Autonomous Organizations (DAOs), and Non-Fungible Tokens (NFTs).

Tokenization – Creating digital assets on the blockchain

Tokenization is the process of representing real-world assets or rights on the blockchain in the form of
digital tokens. These tokens can represent anything from digital currencies and financial instruments
to physical assets, such as real estate, art, or commodities.

There are two main types of tokens in the blockchain ecosystem:

•	 Fungible tokens: Fungible tokens are interchangeable and have a consistent value across all
instances. They are commonly used to represent digital currencies, such as Bitcoin and Ether,
as well as other digital assets, such as utility tokens or security tokens.

•	 NFTs: NFTs are unique, indivisible, and non-interchangeable tokens that represent ownership
of a specific digital or physical asset. Each NFT has a unique identifier, which distinguishes
it from other tokens. NFTs have gained significant popularity in the world of digital art,
collectibles, and virtual goods as they provide a way to prove the authenticity and ownership
of these assets on the blockchain.

Cryptocurrencies and tokens
Cryptocurrencies and tokens, such as NFTs, are both digital assets, but they serve different
purposes and operate on different principles. For a start, cryptocurrency works at the network
level, while tokens are governed by smart contracts. Cryptocurrencies such as Bitcoin or Ether
are fungible, meaning that each unit is interchangeable with another unit of the same value.
For example, one Bitcoin is equal in value to any other Bitcoin. NFTs, on the converse, are non-
fungible, meaning that each token is unique and cannot be replaced with another token of the
same value. In general, while both cryptocurrencies and tokens are digital assets, they serve
different purposes, have different properties, and operate on different blockchain standards.
Cryptocurrencies are primarily used for financial transactions, while tokens represent ownership
or authenticity of digital or physical items.

Tokenization has the potential to revolutionize various industries by enabling the creation, trading,
and management of digital assets in a secure, transparent, and decentralized manner.

Understanding Cloud-Native and Blockchain12

Scalability, interoperability, and privacy – Key challenges and
innovations in blockchain

As blockchain technology continues to evolve, several key challenges must be addressed to unlock its
full potential. These challenges include scalability, interoperability, and privacy.

Scalability

Scalability is the ability of a blockchain network to handle an increasing number of transactions without
compromising performance. Many public blockchains, such as Bitcoin and Ethereum, face scalability
issues due to their resource-intensive consensus mechanisms and limited transaction throughput.

Various solutions are being developed to improve the scalability of blockchain networks, including
the following:

•	 Layer 2 solutions: These are off-chain protocols that process transactions outside the main
blockchain, reducing the load on the network. Examples of layer 2 solutions include the Lightning
Network for Bitcoin and Polygon (and many others) for Ethereum.

	� The Bitcoin Lightning Network (https://lightning.network/) is a layer-two
scaling solution that’s designed to address the scalability and transaction throughput
limitations of the Bitcoin blockchain. It is built on top of the Bitcoin protocol and operates
as a decentralized network of payment channels.

	� Polygon (https://polygon.technology/) is a Layer 2 scaling solution for Ethereum
that aims to address the network’s scalability issues by providing faster and cheaper transactions.
It achieves this by using sidechains, Plasma chains, and other scaling techniques to offload
transactions from the Ethereum mainnet.

•	 Sharding: This is a technique that involves dividing the blockchain into smaller, parallel
chains (shards) that can process transactions independently, thus increasing the overall
transaction throughput.

•	 New consensus algorithms: Alternative consensus mechanisms, such as PoS and DPoS, can
offer improved scalability compared to PoW.

Interoperability

Interoperability refers to different blockchain platforms’ capability to engage and establish communication
with each other. At present, the majority of blockchains function independently, constraining
opportunities for collaboration and information sharing across chains.

https://lightning.network/
https://polygon.technology/

Introduction to cloud-native technology 13

Multiple initiatives focus on bolstering the mutual communication among blockchain platforms.
Here are some examples:

•	 Cross-chain bridges: These are structured systems that support the movement of assets and
information from one blockchain network to another. Notable instances are the Wrapped Bitcoin
(WBTC) token, enabling Bitcoin’s operation on the Ethereum network, and the Interledger
Protocol (ILP), which simplifies payments across chains.

•	 Blockchain-agnostic platforms: Platforms of this kind empower developers to craft tools that
can engage with diverse blockchain networks. Some of these frameworks include Polkadot,
Cosmos, and Avalanche.

Privacy

Preserving confidentiality remains pivotal for numerous blockchain applications since actions on open
blockchains can often be viewed and traced. This transparency becomes problematic for scenarios
necessitating discreet information storage and operations on the blockchain.

Several innovations aimed at bolstering privacy are in development:

•	 Zero-knowledge proofs: These cryptographic methods allow an entity to confirm the authenticity
of a claim without disclosing specifics about the claim. Techniques such as zk-SNARKs and
zk-STARKs are prominent instances of such proofs.

•	 Confidential transactions: These are protocols that are designed to obscure transaction
values on the blockchain, ensuring heightened privacy while still retaining traceability. The
Mimblewimble protocol, adopted by cryptocurrencies such as Grin and Beam, is a prominent
example of shielded transactions.

•	 Private and consortium blockchains: As previously discussed, selective-access blockchains,
both private and consortium types, provide an enhanced level of confidentiality when juxtaposed
with public blockchains as they limit entry to a particular set of trusted stakeholders.

By understanding these core concepts, we now have a solid foundation in blockchain technology
and its potential to revolutionize various industries. Now, we can delve deeper into the benefits and
limitations of building cloud-native decentralized applications that leverage blockchain technology.

Introduction to cloud-native technology
In this section, we will explore the concept of cloud-native technology, its underlying principles, and
the benefits it brings to the modern software development landscape. We will discuss key cloud-native
concepts, such as containerization, orchestration, and microservices, and provide examples of how
these technologies enable the development of flexible, scalable, and resilient applications.

Understanding Cloud-Native and Blockchain14

Defining cloud-native technology

Cloud-native technology refers to a software development approach that leverages the advantages of cloud
computing to build, deploy, and manage applications. This approach prioritizes flexibility, scalability, and
resilience by leveraging modern technologies and techniques such as containerization, microservices,
Continuous Integration and Continuous Delivery (CI/CD), and Infrastructure as Code (IaC).

Cloud-native applications are designed to run on distributed and scalable infrastructure, allowing them
to adapt to changing workloads and requirements quickly. This enables organizations to respond to
market changes more rapidly, improve resource utilization, and optimize the Total Cost of Ownership
(TCO) of their applications.

Key principles of cloud-native technology

There are several key principles and technologies associated with cloud-native applications. These
include containerization, orchestration, microservices, CI/CD, and IaC.

Containerization

Containerization is a lightweight virtualization technology that allows applications and their dependencies
to be packaged into isolated, portable containers. Containers can run on any platform that supports
the container runtime, providing a consistent environment for development, testing, and production.

Containers provide several advantages over traditional virtualization techniques, such as reduced
overhead, faster startup times, and improved resource utilization. Examples of popular containerization
technologies include Docker and containerd.

Orchestration

Orchestration is the process of managing and automating the deployment, scaling, and operation of
containerized applications. Container orchestration platforms, such as Kubernetes, Apache Mesos,
and Docker Swarm, provide a framework for defining, deploying, and managing containerized
applications at scale.

Orchestration platforms offer various features to support cloud-native applications, including service
discovery, load balancing, rolling updates, auto-scaling, and self-healing. These features enable
organizations to build and maintain applications that are highly available, scalable, and resilient.

Microservices

Microservices is a software architecture pattern that involves breaking down an application into small,
loosely coupled components or services. Each service is responsible for a specific piece of functionality
and can be independently developed, deployed, and scaled. This approach improves the modularity,
maintainability, and scalability of applications, as each service can be updated or replaced without
impacting the entire system.

Introduction to cloud-native technology 15

Microservices can be implemented using a variety of languages, frameworks, and platforms, allowing
organizations to choose the best tools for their specific needs. This flexibility also enables teams to adopt
new technologies and methodologies more easily as each service can evolve independently of the others.

CI/CD

CI/CD is a set of practices that involve the automatic building, testing, and deployment of application
code changes. This approach ensures that new features, bug fixes, and other changes are integrated
and delivered to users quickly and reliably.

Continuous integration involves the automatic compilation and testing of code changes, ensuring that
the application remains in a releasable state at all times. Continuous delivery extends this process to
include the automatic deployment of changes to production, minimizing the risk of human error and
ensuring a consistent, repeatable deployment process.

CI/CD practices are a core component of cloud-native development as they enable organizations to
respond to market changes more rapidly and maintain high-quality applications.

IaC

IaC is a practice that involves managing and provisioning infrastructure components, such as networks,
storage, and compute resources, using code and automation. IaC allows organizations to define their
infrastructure requirements using code templates, which can then be automatically deployed and
managed using tools such as Terraform, Azure Resource Manager, AWS CloudFormation, and
Google Cloud Deployment Manager.

By treating IaC, organizations can improve the repeatability, reliability, and consistency of their
infrastructure deployments. Additionally, IaC enables organizations to adopt version control and
collaborative development practices for their infrastructure, ensuring that changes are tracked and
reviewed before being applied.

Comparing traditional cloud computing and cloud-native
technology

To better understand the advantages of cloud-native technology, it’s helpful to compare it with traditional
cloud computing approaches. While both methods involve hosting applications and infrastructure
on remote servers, they differ significantly in terms of architecture, development practices, and
overall philosophy.

Architecture

Traditional cloud computing often involves monolithic applications running on Virtual Machines
(VMs) or physical servers. In this model, applications are typically built as a single, large unit that
contains all the required functionality. This can make the application difficult to maintain and scale
as changes to one part of the system can impact the entire application.

Understanding Cloud-Native and Blockchain16

In contrast, cloud-native applications are built using a microservices architecture, where the application
is broken down into small, loosely coupled components. This approach allows individual components
to be developed, deployed, and scaled independently, making the overall system more modular and
easier to manage.

Development practices

Traditional cloud computing often relies on manual processes and ad hoc scripting for deploying and
managing applications. This can lead to inconsistencies and errors, as well as slow release cycles and
increased risk of downtime.

Cloud-native technology emphasizes automation and the use of modern development practices such as
CI/CD, IaC, and containerization. These practices enable rapid, reliable, and repeatable deployments,
as well as improved collaboration and visibility across development teams.

Infrastructure management

In traditional cloud computing, infrastructure management is often treated as a separate concern
from application development. This can result in siloed teams and processes, as well as increased
complexity and risk.

With cloud-native technology, infrastructure is treated as an integral part of the application life
cycle. Using IaC and orchestration tools, developers can define, deploy, and manage infrastructure
components alongside application code, ensuring a consistent and repeatable process.

In the next section, we will discuss the fundamentals of blockchain and related technologies.

Benefits and limitations of cloud-native blockchain
In this section, we’ll examine the advantages and drawbacks of adopting cloud-native blockchain
solutions. We will discuss how cloud-native technologies can enhance the performance, security, and
cost-efficiency of blockchain implementations and explore the potential trade-offs and limitations.

Scalability – Adapting to changing workloads

One of the key benefits of cloud-native blockchain solutions is their ability to scale in response to
changing workloads. Scalability is essential for blockchain applications that need to handle a growing
number of transactions or users. By leveraging cloud-native technologies such as containerization,
microservices, and auto-scaling, blockchain implementations can dynamically adapt to meet increasing
demands. Consider, though, that cloud technologies are designed for elasticity and scalability, whereas
blockchain networks don’t necessarily address this technical requirement. As we will see later in this
chapter, scalability and performance for blockchain networks can be met with different strategies at
the protocol level, including transaction rollups, state channels, and off-chain storage.

Benefits and limitations of cloud-native blockchain 17

Auto-scaling

Auto-scaling is a feature provided by many cloud providers, such as AWS, Azure, and GCP, that
automatically adjusts the number of resources allocated to an application based on its current workload.
This capability enables cloud-native blockchain implementations to dynamically scale up or down to
meet fluctuating demands, ensuring optimal performance and resource utilization.

Security – Protecting data and infrastructure

Security is a critical concern for blockchain applications as they often involve sensitive data and
transactions. Cloud-native technologies offer various security features that can enhance the security
posture of a blockchain implementation.

Isolation and sandboxing

Containerization provides a natural layer of isolation between applications and the underlying infrastructure.
By running each application component in a separate container, the potential impact of a security breach
is limited to the compromised container, reducing the risk of lateral movement within the system.

Sandboxing is a technique that restricts the access and permissions of an application component,
limiting its potential to cause harm. Cloud-native blockchain solutions can leverage sandboxing to
confine smart contracts and other components, reducing the risk of vulnerabilities or malicious code
compromising the entire system.

Built-in security features and compliance

Cloud providers offer a wide range of built-in security features that can be leveraged by cloud-native
blockchain implementations. These features include data encryption, identity and access management,
network security, and security monitoring and logging.

Additionally, many cloud providers are compliant with various industry standards and regulations,
such as GDPR, HIPAA, and PCI-DSS. By utilizing cloud-native blockchain solutions, organizations
can benefit from these compliance measures without having to implement them independently.

Cost-effectiveness – Optimizing resource utilization

Cloud-native blockchain solutions can provide significant cost savings compared to traditional,
on-premises implementations. By leveraging the pay-as-you-go pricing models offered by cloud
providers, organizations can optimize resource utilization and reduce costs associated with hardware,
maintenance, and energy consumption:

•	 Pay-as-you-go pricing: Pay-as-you-go pricing models allow organizations to pay only for the
resources they consume, instead of committing to fixed hardware and infrastructure costs. This
model enables cost optimization as resources can be dynamically scaled to match changing
workloads, avoiding over-provisioning and under-utilization.

Understanding Cloud-Native and Blockchain18

•	 Reduced infrastructure and maintenance costs: By adopting cloud-native blockchain solutions,
organizations can eliminate the need to purchase, maintain, and upgrade physical hardware and
infrastructure. This approach not only reduces upfront capital expenditures but also minimizes
ongoing maintenance and energy costs.

•	 Cost optimization tools and techniques: Cloud providers offer various cost optimization
tools and techniques that can help organizations fine-tune their resource usage and spending.
These tools include budget and cost management features, as well as recommendations for
optimizing resource allocation and performance. By leveraging these tools, organizations can
ensure that their cloud-native blockchain implementations remain cost-effective and efficient.

Limitations and trade-offs of cloud-native blockchain solutions

While cloud-native blockchain solutions offer numerous benefits, there are also potential trade-offs
and limitations to consider. Some of these challenges include data sovereignty, vendor lock-in, and
network latency.

Data governance

The idea behind data governance is that data must adhere to the legal frameworks of the nation where
it’s housed. When companies integrate blockchain systems into a public cloud setting, they might
encounter the challenge of meeting data governance standards. These standards can be intricate, with
nuances from one region to the next.

In response to these challenges, companies can opt to launch their blockchain infrastructures on cloud
platforms that operate data centers in the preferred legal territories. Additionally, they might leverage
mixed or diversified cloud models, ensuring data dispersion across various geographical zones.

Vendor lock-in

Vendor lock-in is a potential concern when adopting cloud-native technologies as organizations may
become reliant on a specific cloud provider’s infrastructure, services, and tools. This dependency can
make it challenging to switch providers or migrate back to on-premises solutions.

To mitigate vendor lock-in risks, organizations can adopt multi-cloud strategies, utilize open source
technologies, and implement standardized APIs and data formats that facilitate interoperability
between different platforms.

Network latency

Network latency can be a concern for some blockchain applications, especially those that require
real-time processing or low-latency interactions. While cloud providers offer various techniques and
services to optimize network performance, such as Content Delivery Networks (CDNs) and dedicated
network connections, latency may still be higher compared to on-premises implementations.

Key considerations for cloud-native blockchain implementation 19

Organizations should carefully assess their specific latency requirements and choose the appropriate
cloud-native architecture and services to meet their needs.

Key considerations for cloud-native blockchain implementation
In this section, we will explore the key considerations and best practices for implementing cloud-native
blockchain solutions on AWS, Azure, and GCP. By understanding these factors, organizations can
make informed decisions and ensure the successful deployment and management of their blockchain
applications in a cloud-native environment.

Choosing the right blockchain framework

Determining the right blockchain platform is paramount for executing a cloud-native blockchain initiative.
Given that each platform possesses its distinct attributes, strengths, and challenges, it’s crucial to pinpoint
the one that resonates most with an organization’s distinct needs. There are many blockchain networks
in the market, and it would be impossible to cover all of them in depth. In the next few sections, we’ll
look at the three platforms that better represent a broad utilization of permissionless and permissioned
blockchain technologies for building decentralized apps: Ethereum, Hyperledger Fabric, and Corda.

Ethereum

Ethereum presents itself as a decentralized, open source platform endorsing smart contracts and
facilitating the birth of dapps. Let’s look at some of its standout features:

•	 An open, unrestricted blockchain network

•	 Endorsement for smart contracts primarily coded in Solidity

•	 Extensive developer involvement and supportive community

•	 Energy costs (or gas fees) associated with transaction handling and executing smart contracts

For organizations eyeing the development of public dapps or delving into DeFi arenas, Ethereum
emerges as a favored choice.

Hyperledger Fabric

Initiated by the Linux Foundation, Hyperledger Fabric stands out as an open source, permissioned
blockchain platform tailored for enterprise scenarios. Some of its notable attributes are as follows:

•	 An adaptable framework that allows for modifications and personalization

•	 Multi-language support for smart contracts (known as chaincode)

•	 Special channels to ensure transaction confidentiality

•	 Versatile consensus methods

Understanding Cloud-Native and Blockchain20

Given its features, Hyperledger Fabric frequently becomes the go-to for businesses keen on integrating
blockchain in sectors with regulatory measures, such as banking, healthcare, and logistics.

Corda

Tailored mainly for the world of financial services, Corda is an open source, permissioned blockchain
platform. It comes equipped with features such as the following:

•	 Direct communication pathways among network users

•	 Backing for intricate financial contracts and smart contracts

•	 Seamless merging with present financial frameworks and facilities

•	 Enhanced data privacy and confidentiality tools

Corda, with its specialized attributes, is particularly fitting for financial entities keen on leveraging
blockchain for facets such as asset oversight, transaction processing, and other fiscal operations.

Scalability and performance

Scalability and performance are critical considerations when implementing cloud-native blockchain
solutions. Organizations must ensure that their chosen platform can handle the anticipated transaction
volume and accommodate future growth. Most blockchain networks struggle on both sides in terms of
scaling and performing well when the number of transactions grows. Let’s examine a couple of strategies
that are commonly used in blockchain platforms to achieve better scalability and performance, namely
storing data off-chain (that is, not on the blockchain digital ledger), and rolling up multiple blocks
and committing them at once. This latter approach is typical in so-called Layer 2 blockchain networks.

Off-chain storage

Off-chain storage can help improve the scalability and performance of blockchain applications by
moving non-essential data and processing off the blockchain. This can help reduce network congestion
and transaction fees, while also improving the overall user experience.

Off-chain storage solutions can include the following:

•	 Traditional databases (for example, Amazon RDS, Azure SQL, and Google Cloud Spanner)

•	 Distributed databases (for example, Amazon DynamoDB, Azure Cosmos DB, and Google
Cloud Firestore)

•	 File storage services (for example, Amazon S3, Azure Blob Storage, and Google Cloud Storage)

Key considerations for cloud-native blockchain implementation 21

Layer 2 solutions

Layer 2 solutions are built on top of existing blockchain networks and aim to improve scalability and
performance by handling transactions and smart contract execution off-chain. Here are some popular
Layer 2 solutions:

•	 State channels: Off-chain communication channels that enable participants to transact privately
and securely without requiring on-chain transactions

•	 Plasma chain: A framework for creating scalable, hierarchical blockchain networks that rely
on the root chain for security

•	 Rollups: Techniques for aggregating and compressing multiple transactions into a single
on-chain transaction

State channels

To make this clearer, let’s look at examples of each solution. State channels are a Layer 2 scaling
solution that allows for off-chain transactions between participants, thereby reducing the load on the
main blockchain and increasing transaction throughput. Let’s say we have Alice and Bob, who want
to engage in multiple transactions with each other without relying on the main blockchain for every
transaction. They decide to set up a state channel between themselves to facilitate these transactions.
The following figure describes what happens next on a state channel:

Figure 1.3 – State channel transaction

Understanding Cloud-Native and Blockchain22

This is what happens:

1.	 Opening the channel: Alice and Bob create a multi-signature wallet on the blockchain and
lock some funds into it as collateral. This collateral serves as security to ensure that both parties
abide by the rules of the state channel. The state channel is now open, and Alice and Bob can
start transacting off-chain.

2.	 Transacting off-chain: Alice and Bob can now exchange transactions directly with each other
off-chain. These transactions are signed by both parties and can involve transferring funds or
updating the state of a shared application. Since these transactions are off-chain, they are fast
and have minimal fees compared to on-chain transactions.

3.	 Updating the state: As Alice and Bob continue to transact, they keep track of the current state
of their interactions. This state includes information such as the balances of each party and
any other relevant data. Each time they want to update the state, they exchange and sign a new
transaction reflecting the updated state.

4.	 Closing the channel: Once Alice and Bob are done transacting or want to settle their balances
on the main blockchain, they can close the state channel. To close the channel, they submit
the final state of their interactions to the blockchain. The blockchain verifies the final state and
settles any outstanding balances accordingly. The collateral that’s locked into the multi-signature
wallet is released back to both parties, and the state channel is closed.

By using state channels, Alice and Bob were able to conduct multiple transactions off-chain, reducing
congestion on the main blockchain and enjoying fast and low-cost transactions. State channels are
particularly useful for scenarios where frequent interactions between parties are needed, such as
gaming, microtransactions, or payment channels.

Plasma chains

Moving on to an example of a plasma chain, this approach is used by Layer 2 platforms for creating
scalable, hierarchical blockchain networks that can process a high volume of transactions off-chain while
maintaining security through periodic on-chain settlement. Let’s consider a simple implementation
of plasma called Plasma Cash, which focuses on token transfers and is often used for NFTs or unique
assets. The following figure depicts the flow of transactions between Alice and Bob:

Key considerations for cloud-native blockchain implementation 23

Figure 1.4 – Plasma chain for Layer 2 networks

This is what happens in a plasma chain:

1.	 Setup: Alice wants to trade digital artwork with Bob. She sets up the plasma chain on Ethereum
as a smart contract, which acts as the root chain. Alice deposits her digital artwork (represented
as an NFT) into the plasma chain’s contract, locking it into a specific position in the Merkle
tree. This initial state is recorded on the Ethereum mainnet.

2.	 Transactions: Alice and Bob can now trade digital artwork with each other off-chain within the
plasma chain. Each transfer of digital artwork is represented by a unique token (for example,
Plasma Cash). These transactions are conducted off-chain, allowing for fast and low-cost
transfers between Alice and Bob.

3.	 Proofs and challenges: To ensure the security of the plasma chain, participants can challenge
invalid transactions by submitting proofs to the root chain (Ethereum). For example, if Bob
tries to spend a token that he doesn’t own or tries to spend the same token multiple times,
Alice or other participants can challenge the transaction by submitting proof of the invalid
transaction to the root chain.

Understanding Cloud-Native and Blockchain24

4.	 Periodic settlement: Periodically, the plasma chain’s operator (Alice) submits a Merkle root
of the latest state of the Plasma chain to the Ethereum mainnet. This Merkle root serves as a
cryptographic proof of the state of the Plasma chain, allowing participants to verify the validity
of transactions without having to process every transaction on the Ethereum mainnet. If no
challenges are raised within a specified period, the state of the Plasma chain is considered
finalized, and any tokens can be withdrawn from the Plasma chain back to the Ethereum mainnet.

5.	 Exit mechanism: If Alice or Bob want to exit the Plasma chain and withdraw their tokens to the
Ethereum mainnet, they submit a proof of ownership (for example, a Merkle proof) to the Plasma
chain’s contract on Ethereum. The contract verifies the proof and allows the user to withdraw
their tokens to the Ethereum mainnet, ensuring that their ownership rights are preserved.

In summary, plasma allows for the creation of scalable blockchain networks by conducting most transactions
off-chain, with periodic settlement and on-chain verification to maintain security and trust. This framework
enables applications such as decentralized exchanges, gaming platforms, and asset tokenization to achieve
high throughput and low latency while leveraging the security of the Ethereum mainnet.

Rollups

Rollups are a common Layer 2 scaling solution that aggregates and submits multiple transactions
off-chain to the main blockchain, reducing congestion and increasing throughput. There are two
main types of rollups: optimistic rollups and Zero Knowledge (ZK) rollups. Let’s look at an example
of how each type works.

Optimistic rollups

Alice wants to participate in a DEX on Ethereum, which is prone to high gas fees and network
congestion during peak times. The DEX pictured in the following figure implements an optimistic
rollup solution to improve scalability and reduce transaction costs:

Figure 1.5 – Optimistic rollup transaction process

Key considerations for cloud-native blockchain implementation 25

The transaction process consists of the following steps:

1.	 Off-chain transactions: Alice and other users conduct trades off-chain within the optimistic
rollup environment. These transactions are fast and low-cost since they don’t require interaction
with the Ethereum mainnet. The DEX’s optimistic rollup operator aggregates these transactions
into a single Merkle root.

2.	 Submission to the Ethereum mainnet: Periodically, the optimistic rollup operator submits
the aggregated Merkle root to the Ethereum mainnet, along with a fraud proof that attests to
the validity of the transactions. The Ethereum mainnet verifies the validity of the Merkle root
and fraud proof. If no fraudulent activity is detected, the transactions are considered valid and
included in the Ethereum blockchain.

3.	 Challenge period: After the Merkle root is submitted to the Ethereum mainnet, there is a
challenge period during which users can scrutinize the transactions and raise disputes if
they suspect any fraudulent activity. If a challenge is raised and proven valid, the fraudulent
transactions are reverted, and the guilty party may face penalties.

Optimistic rollups enable high throughput and low-cost transactions by batching multiple transactions
off-chain and submitting them to the Ethereum mainnet periodically. Users can enjoy the scalability
benefits of Layer 2 solutions while still benefiting from the security and decentralization of the
Ethereum mainnet.

ZK rollups

Bob wants to participate in a DeFi protocol on Ethereum, which requires frequent interactions with
smart contracts and is affected by high gas fees. The DeFi protocol depicted in the following figure
implements a ZK rollup solution to achieve scalability and reduce transaction costs:

Figure 1.6 – ZK rollup transaction process

Understanding Cloud-Native and Blockchain26

This is how the transaction process goes:

1.	 Off-chain transactions: Bob and other users interact with the DeFi protocol off-chain, executing
transactions within the ZK rollup environment. These transactions are private and efficient as
they don’t require interaction with the Ethereum mainnet. The ZK rollup operator generates
a succinct proof (zk-SNARK) that attests to the validity of the transactions without revealing
sensitive information.

2.	 Submission to the Ethereum mainnet: Periodically, the ZK rollup operator submits the
zk-SNARK proof to the Ethereum mainnet, along with a commitment to the updated state
of the DeFi protocol. The Ethereum mainnet verifies the validity of the zk-SNARK proof,
ensuring that the transactions comply with the protocol’s rules without revealing the details
of individual transactions.

3.	 Finality and settlement: Once the zk-SNARK proof has been verified, the transactions are
considered finalized, and the updated state of the DeFi protocol is reflected on the Ethereum
mainnet. Users can interact with the DeFi protocol on-chain, confident that their transactions
are secure and valid.

ZK rollups provide high scalability and privacy for blockchain transactions by aggregating off-chain
transactions into succinct proofs (zk-SNARKs) that are verified on-chain. Users can enjoy the benefits
of efficient and cost-effective transactions while preserving privacy and security.

In summary, both optimistic rollups and ZK rollups are powerful Layer 2 scaling solutions that enable
high throughput and low-cost transactions on blockchain networks like Ethereum. They achieve
scalability by aggregating and batching transactions off-chain before submitting them to the mainnet,
thereby reducing congestion and increasing efficiency.

Security and privacy

Security and privacy are essential aspects of any blockchain implementation. Organizations must
ensure that their chosen platform provides the necessary features and controls to protect sensitive
data and maintain compliance with relevant regulations.

Data encryption

Data encryption is a crucial aspect of securing sensitive data within a cloud-native blockchain
environment. Organizations should ensure that their chosen platform supports the necessary encryption
standards and protocols to protect data both at rest and in transit.

Here are some encryption techniques to consider:

•	 Transport Layer Security (TLS) for securing data in transit

•	 Advanced Encryption Standard (AES) for encrypting data at rest

•	 Hardware Security Modules (HSMs) for managing cryptographic keys

Key considerations for cloud-native blockchain implementation 27

Access control and identity management

Access control and identity management are critical for ensuring that only authorized users can
access and interact with the blockchain network and its associated resources. Organizations should
implement robust access control policies and leverage the identity management features provided by
their chosen cloud provider.

Some access control and identity management considerations are as follows:

•	 Role-Based Access Control (RBAC) for managing user permissions and privileges

•	 Multi-Factor Authentication (MFA) for enhanced user security

•	 Single Sign-On (SSO) integration with existing identity providers

It’s important to note that access control and identity management are peculiar to permissioned
blockchains, where anonymous access is not authorized. Sovrin (https://sovrin.org/) is
a decentralized identity platform that provides tools and protocols for creating and managing self-
sovereign identities, where individuals have control over their identity information. Sovrin allows
organizations to issue verifiable credentials, such as government-issued IDs or academic certificates,
which can be stored and managed by individuals using their Sovrin identities.

Another example is uPort (https://www.uport.me/), a decentralized identity platform built on
Ethereum. It provides tools and libraries for developers to integrate decentralized identity into their
applications, allowing users to control their identity information. Also, uPort supports the creation
of self-sovereign identities, enabling users to manage their identity credentials and interact with
decentralized applications in a secure and privacy-preserving manner.

Smart contract security

Smart contracts play a crucial role in blockchain applications, and their security is of paramount
importance. Organizations should ensure that their smart contracts are thoroughly audited, tested,
and secured to prevent vulnerabilities and potential attacks.

Here are some smart contract security best practices:

•	 Formal verification to prove the correctness of the smart contract code

•	 Automated testing and fuzzing to identify vulnerabilities

•	 Security audits conducted by reputable third-party firms

Interoperability and integration

Interoperability and integration are essential considerations for organizations looking to leverage
existing systems and infrastructure within their cloud-native blockchain solutions. The chosen platform
should support seamless integration with other services and provide the necessary tools and APIs for
bridging blockchain networks with traditional systems.

https://sovrin.org/
https://www.uport.me/

Understanding Cloud-Native and Blockchain28

API and SDK support

APIs and SDKs play a crucial role in enabling seamless integration between blockchain networks and
existing systems. Organizations should ensure that their chosen platform provides comprehensive
API and SDK support for various programming languages and platforms.

The following are some key API and SDK features to consider:

•	 RESTful APIs for easy integration with web services and applications

•	 Web3.js, Web3.py, or other SDKs for interacting with Ethereum-based networks

•	 SDKs for popular programming languages, such as Java, Python, and JavaScript

Blockchain network interoperability

With the expansion and progression of the blockchain universe, the emphasis on ensuring compatibility
among diverse blockchain systems has amplified. Organizations need to align with platforms that
facilitate communication and interaction across chains, augmenting the effectiveness of their
blockchain integrations.

A few notable solutions promoting such inter-chain compatibility are as follows:

•	 Cosmos Network: An integrated network comprising independent, adaptable, and compatible
blockchains (https://cosmos.network/)

•	 Polkadot: A framework designed to bridge and fortify distinct blockchain entities (https://
polkadot.network/)

•	 Chainlink: A distributed oracle network that safely links smart contracts to outside data streams
and application interfaces (https://chain.link/)

Cost optimization

Implementing a cloud-native blockchain solution can be expensive, particularly when considering the
costs associated with infrastructure, development, and ongoing maintenance. Organizations should
carefully consider the costs involved and optimize their implementations to minimize expenses while
maximizing the benefits.

The following are some cost optimization strategies:

•	 Using managed services to reduce the overhead of managing infrastructure

•	 Implementing autoscaling policies to ensure efficient resource utilization

•	 Monitoring and analyzing resource usage to identify and eliminate waste

https://cosmos.network/
https:﻿//polkadot.network/
https:﻿//polkadot.network/
https://chain.link/

Summary 29

In this section, we covered the key considerations and best practices for implementing cloud-native
blockchain solutions on AWS, Azure, and GCP. By understanding these factors, organizations can
make informed decisions and ensure the successful deployment and management of their blockchain
applications in a cloud-native environment.

With that, we’ve discussed the importance of choosing the right blockchain framework, ensuring
scalability and performance, securing sensitive data and transactions, enabling seamless interoperability
and integration, and optimizing costs. By following these best practices, organizations can successfully
implement cloud-native blockchain solutions that meet their specific requirements and deliver the
desired benefits.

Summary
In this first chapter, we looked at blockchain and cloud-native technologies, exploring their core
characteristics and potential synergies. We touched on the essential features of cloud-native technology,
such as containerization and CI/CD pipelines, and the transformative attributes of blockchain, including
distributed ledgers and consensus algorithms. We then discussed the merits and trade-offs of melding
these technologies for robust, decentralized applications.

Next, we’ll start our journey together and delve into practical implementations of cloud-native Web3
applications on platforms such as AWS, Azure, and GCP to create the foundation for crafting innovative
and distributed applications.

2
Overview of AWS, Azure, and

GCP Services for Blockchain

In this chapter, we will provide an overview of the blockchain services offered by the three major
cloud providers: Amazon Web Services (AWS), Azure, and Google Cloud Platform (GCP). We will
discuss the various services and tools available for building and deploying blockchain solutions on
each platform and cover the strengths, weaknesses, and unique features of each.

Understanding the differences in each cloud offering is critical to building decentralized apps on the
most appropriate blockchain infrastructure. In this and the following chapters, we’ll dive into the
current blockchain services available in the cloud and describe various use cases for them, as well as
their potential integration with other cloud services offered by the cloud service provider.

In this chapter, we will cover the following main topics:

•	 AWS blockchain services

•	 Azure blockchain services

•	 GCP blockchain services

•	 Comparing AWS, Azure, and GCP blockchain services

Overview of AWS, Azure, and GCP Services for Blockchain32

AWS blockchain services
AWS provides a variety of managed services and tools to help organizations build and deploy
blockchain solutions. AWS offers both managed as well as custom deployment options, catering to
a wide range of use cases and requirements. In this section, we will introduce the main blockchain
services offered by AWS.

Amazon Managed Blockchain

Amazon’s Blockchain Management offers a streamlined approach to building and overseeing scalable
blockchain networks and supports recognized protocols such as Hyperledger Fabric and Ethereum.
It allows organizations to effortlessly establish blockchain networks, launch applications, and oversee
network elements.

Let’s take a look at the main features of this service:

•	 Compatibility with Hyperledger Fabric and Ethereum networks

•	 Hands-off infrastructure management, including node provisioning and network setup

•	 Collaboration with AWS services, such as Amazon’s Quantum Ledger Database (QLDB) for
external data storage and Amazon CloudWatch for tracking

Beginning with Chapter 4, we will start working with specific use cases of blockchain in AWS. Specifically,
we will discover how to deploy managed blockchain nodes in AWS, how to host a Hyperledger Fabric
network on Elastic Kubernetes Service (Chapter 5), and how to use Amazon QLDB (Chapter 6).

Amazon QLDB

Amazon QLDB is an end-to-end ledger database that ensures a clear, unchangeable, and cryptographically
secure transaction record tailored for applications requiring a centralized, reliable authority. It’s optimal
for transaction scenarios involving various stakeholders, such as financial systems or legal agreements.

Here are the key aspects of Amazon QLDB:

•	 Automatic scaling due to its serverless framework

•	 Clear and secure transaction records

•	 SQL-compatible PartiQL for ledger queries

•	 Connectivity with AWS tools such as AWS Lambda and Amazon S3 for data management

AWS blockchain services 33

As mentioned previously, we’ll discover QLDB in Chapter 6, specifically how to create an instance of
the Quantum Ledger, generate a data model, and query data out of it. Please note that the reference
to Quantum here is not related to quantum computing. QLDB runs on traditional x64 cloud
computing infrastructure.

Amazon EC2 and Amazon Elastic Kubernetes Service (EKS)

Beyond tailored blockchain services, AWS presents the option to design bespoke blockchain networks
while utilizing virtual technology and container structures. Amazon’s Elastic Computing service EC2
offers adaptable virtual systems for blockchain node hosting, and its Elastic Kubernetes container
solution EKS facilitates the deployment of container-based blockchain apps through Kubernetes.

Here are the central features for blockchain deployment using EC2 and EKS:

•	 Virtual and container setups tailored to blockchain needs

•	 Adjustability to accommodate fluctuating tasks and network requirements

•	 Synchronization with AWS tools to enhance storage, tracking, and safety

AWS Marketplace templates

AWS Marketplace provides a variety of templates and solutions from partners that help organizations
easily deploy and manage blockchain and distributed ledger technologies. By leveraging these
marketplace templates, organizations can quickly set up and configure blockchain networks and
applications tailored to their specific needs and requirements.

Here are some of the key features and capabilities of AWS Marketplace templates for blockchain:

•	 Access to a wide range of partner-provided templates and solutions for implementing blockchain
networks and applications

•	 Support for various blockchain protocols and frameworks, such as Ethereum, Hyperledger
Fabric, Corda, and more

•	 Integration with AWS services for storage, monitoring, and security

Searching for blockchain in the AWS Marketplace generates over 200 entries, as shown in the
following screenshot:

Overview of AWS, Azure, and GCP Services for Blockchain34

Figure 2.1 – Top search results for blockchain services in AWS Marketplace

This may seem overwhelming, but it demonstrates the rich offerings for blockchain services in AWS.
We’ll discover a few of them in the next few chapters.

Azure blockchain services
Microsoft Azure offers a variety of services and tools to help organizations build and deploy blockchain
solutions. Azure provides managed services, custom deployment options, and partner solutions
that cater to a wide range of use cases and requirements. In this section, we will introduce the main
blockchain services offered by Azure.

Microsoft Entra Verified ID

Microsoft Entra Verified ID is a decentralized identity platform that enables organizations to create,
manage, and verify digital identities on the blockchain. Built on the Sidetree protocol, Entra Verified
ID provides secure and privacy-preserving identity solutions.

Azure blockchain services 35

Here are the key features and capabilities of Microsoft Entra Verified ID:

•	 You can create and issue verifiable credentials by leveraging prebuilt templates or by specifying
rules and design files.

•	 You can validate a verified ID credential with the user’s approval through their digital wallet.
This selective disclosure approach enables transactions that respect people’s privacy by allowing
an individual to provide only the necessary pieces of their identity information to a service or
a third party, rather than disclosing their full identity record.

•	 You can revoke or suspend the active verified status of someone’s credential.

Microsoft Entra Verified ID doesn’t store verifiable credential data
Verifiable credentials are based on a decentralized identity model called Decentralized Identifiers
(DIDs). DIDs are owned by the user and stored in their digital wallet. Entra Verified ID enables
the issuing and verification of such identifiers (verifiable credentials).

Azure Managed Confidential Consortium Framework (CFF)

Azure Managed CCF is a set of tools and services that enable organizations to create and manage
secure, scalable, and decentralized applications using confidential computing technologies. This
framework provides the foundation for building consortium networks that require secure data sharing
and collaboration among multiple parties.

Here are the key features and capabilities of Azure Managed CCF:

•	 Support for various blockchain protocols, such as Ethereum and Hyperledger Fabric

•	 Confidential computing capabilities to protect sensitive data during processing

•	 Integration with Azure services, such as Azure Key Vault for secure key management and Azure
Monitor for logging and monitoring

CCF is built on Trusted Execution Environments (TEEs)
Microsoft CCF, which is built on TEEs, provides a highly secure and scalable platform that’s
designed to enable confidential computing and data integrity in multi-party computational
scenarios, leveraging hardware-encrypted secure memory enclaves to protect data and code from
external and internal threats. This technology is at the foundation of confidential computing.

Overview of AWS, Azure, and GCP Services for Blockchain36

Azure Confidential Ledger

Azure Confidential Ledger offers a fully controlled, unalterable ledger service that’s designed to ensure
a safe and scalable record for applications that need a centralized, dependable authority. Leveraging
confidential computing, this service guarantees the utmost security and privacy of data during its life cycle.

The following are the primary attributes of Azure Secure Ledger:

•	 An unalterable transaction log enhanced with confidential computing

•	 Adjustability to accommodate diverse workloads and transaction sizes

•	 Compatibility with Azure tools such as Azure Identity Management for user verification and
Azure Secure Key Storage for key safeguarding

We’ll be using Azure Confidential Ledger in Chapter 9 to store data confidentially, thereby preventing
users from accessing such data, even a cloud service provider.

Confidential Ledger versus SQL Ledger
At the time of writing, Microsoft offers two ledger capabilities in Azure: Confidential Ledger
and SQL Ledger. The two services are very different since they serve different purposes and are
built on different underlying technologies. Azure Confidential Ledger is designed primarily for
storing sensitive data in a highly secure, immutable, and tamper-proof environment. It is suitable
for scenarios where the integrity and confidentiality of the data are of utmost importance. It
is built on the CCF and utilizes TEEs to ensure the security and confidentiality of the data.
SQL Ledger, on the other hand, is integrated into Azure SQL Database and is designed for
applications that require a tamper-evident ledger database in a familiar SQL environment. It
is based on blockchain technology but operates within the SQL Database service, providing
blockchain-like functionalities in a relational database context.

Azure Kubernetes Service (AKS)

AKS offers managed orchestration for containers, streamlining the process of launching and overseeing
container-based applications. Ideal for blockchain applications, AKS grants organizations the agility
and scale for their blockchain structures.

Here are the central features of AKS in a blockchain context:

•	 Effortless setup and supervision of containerized blockchain solutions

•	 Adjustability to meet fluctuating tasks and network requirements

•	 Collaboration with Azure tools to enhance storage, oversight, and protection

We’ll be using AKS in Chapter 7 to deploy a Corda DLT network.

GCP blockchain services 37

Azure partner solutions

Azure offers various partner solutions for implementing blockchain networks and applications.
These solutions include managed services, tools, and resources provided by Azure partners, such as
Kaleido Blockchain Service and Calastone DMI Fund Services. By leveraging these partner solutions,
organizations can build and deploy blockchain solutions tailored to their specific needs and requirements.

The key features and capabilities of Azure partner solutions for blockchain include access to a variety
of managed services, tools, and resources for building and deploying blockchain solutions. Clients
also receive direct support from the blockchain provider, rather than generically from Microsoft about
Azure, for various blockchain protocols and frameworks. As we’ll discover in the next few chapters,
integration with other Azure services for storage, monitoring, and security is a key advantage of using
blockchain services in Microsoft’s cloud:

Figure 2.2 – Top list of blockchain services in Azure

Microsoft used to have pioneering blockchain products in Azure, such as Azure Blockchain Service
and Azure Blockchain Workbench. Unfortunately, these services have been discontinued and are no
longer available in Azure.

GCP blockchain services
GCP offers a variety of services and tools to help organizations build and deploy blockchain solutions.
GCP provides the infrastructure and technologies for deploying and managing custom blockchain
networks, as well as managed services and partner solutions for implementing a wide range of
blockchain use cases. In this section, we will introduce the main services and tools offered by GCP
for implementing blockchain solutions.

Overview of AWS, Azure, and GCP Services for Blockchain38

GCP Blockchain Node Engine

GCP Blockchain Node Engine is a fully managed service that simplifies the deployment and management
of blockchain nodes on GCP. The service supports popular blockchain networks such as Ethereum,
Bitcoin, and more. With Blockchain Node Engine, users can quickly deploy and scale nodes, ensuring
fast and reliable access to blockchain networks.

Here are some of the key features and capabilities of Blockchain Node Engine:

•	 Support for popular blockchain networks, including Ethereum, Bitcoin, and others

•	 A fully managed infrastructure that takes care of provisioning nodes, setting up the network,
and managing its ongoing operation

•	 Seamless integration with GCP services, such as Cloud Storage for off-chain data storage and
Stackdriver for monitoring

GCP Compute Engine and Kubernetes Engine

GCP Compute Engine provides customizable virtual machines that can be used to host blockchain
nodes, while GCP Kubernetes Engine allows organizations to deploy and manage containerized
blockchain applications using Kubernetes. These services offer flexibility in deploying and managing
custom blockchain networks based on various protocols, such as Ethereum and Hyperledger Fabric.

Here are some of the key features and capabilities of GCP Compute Engine and Kubernetes Engine
for blockchain:

•	 Customizable virtual machine and container configurations to suit the needs of your
blockchain network

•	 Scalability to handle varying workloads and network demands

•	 Integration with other GCP services for storage, monitoring, and security

We’ll be using the blockchain services in GCP, and specifically Kubernetes Engine, in Chapter 10.

GCP Marketplace templates

GCP Marketplace provides a variety of templates and solutions from partners that help organizations
easily deploy and manage blockchain and distributed ledger technologies. By leveraging these
marketplace templates, organizations can quickly set up and configure blockchain networks and
applications tailored to their specific needs and requirements.

GCP blockchain services 39

Let’s look at some of the key features and capabilities of GCP Marketplace templates for blockchain:

•	 Access to a wide range of partner-provided templates and solutions for implementing blockchain
networks and applications

•	 Support for various blockchain protocols and frameworks, such as Ethereum, Hyperledger
Fabric, Corda, and more

•	 Integration with GCP services for storage, monitoring, and security

GCP partner solutions

In addition to Blockchain Node Engine, GCP also offers various partner solutions for implementing
blockchain networks and applications. These solutions include managed services, tools, and resources
provided by GCP partners, such as ConsenSys, Chainstack, and Digital Asset, among others. By
leveraging these partner solutions, organizations can build and deploy blockchain solutions tailored
to their specific needs and requirements.

As seen already for the other cloud providers, partner solutions in GCP don’t differ much in terms of
benefits. Specifically for blockchain services, the key features and capabilities of GCP partner solutions
include access to a variety of managed services, tools, and resources for building and deploying
blockchain solutions in GCP, direct support for various blockchain protocols and frameworks by the
vendor, and strong integration with other GCP services for storage, monitoring, and security:

Figure 2.3 – Top list offerings for blockchain services in GCP

Overview of AWS, Azure, and GCP Services for Blockchain40

As we will learn later in this book, GCP offers a unique proposition for blockchain services that other
cloud providers don’t offer. The entire Bitcoin and Ethereum datasets are available for exploration
with Google BigQuery. All historical data is stored in these datasets and updated every 10 minutes.

Comparing AWS, Azure, and GCP blockchain services
Now that we’ve introduced the main blockchain services offered by AWS, Azure, and GCP, let’s compare
their strengths and weaknesses. Each platform has its unique features and capabilities, and choosing
the right one depends on your specific needs and requirements.

AWS

AWS offers a comprehensive suite of managed blockchain services, including Amazon Managed
Blockchain and Amazon QLDB, as well as support for custom deployments via EC2 and EKS. AWS
provides a wide range of features, integrations, and security options, making it a suitable choice for
organizations looking for a robust and versatile blockchain platform.

Azure

Azure provides various managed services, custom deployment options, and partner solutions for
building and deploying blockchain solutions. With its focus on confidential computing technologies
and decentralized identity, Azure is a strong choice for organizations that require secure data sharing
and collaboration among multiple parties.

GCP

GCP offers a combination of managed services, such as the Blockchain Node Engine, as well as custom
deployment options via Compute Engine and Kubernetes Engine. Additionally, GCP provides a range of
partner solutions and marketplace templates, catering to organizations with diverse blockchain requirements.

Strengths and weaknesses

Each cloud provider has its unique strengths and weaknesses. Azure is well-suited for enterprises deeply
invested in the Microsoft ecosystem, AWS offers a robust, scalable, and feature-rich environment,
and GCP stands out in terms of data analytics and AI/ML integration. The choice between these
platforms depends on the specific needs, existing infrastructure, and preferences of the organization.

Comparing AWS, Azure, and GCP blockchain services 41

The following table summarizes the key strong and weak points of each cloud provider, based on the
authors’ experience in delivering blockchain-based solutions:

Cloud
provider

Strengths Weaknesses

AWS •	 Amazon Managed Blockchain: Offers a fully
managed service that supports popular frame-
works such as Hyperledger Fabric and Ethereum

•	 Scalability: AWS’s infrastructure ensures
high scalability and reliability for
blockchain applications

•	 Ecosystem and integration: Robust integration
with AWS’s extensive service ecosystem, including
AWS Lambda, Amazon S3, and more

•	 Cost: AWS services can
be expensive, especially
at scale

•	 Steep learning curve: The
breadth of AWS services
can be overwhelming,
requiring significant time
investment to fully lever-
age its capabilities

Azure •	 Integration with Microsoft products: Seamless
integration with other Microsoft services and tools
such as Azure Active Directory, SQL Database, Power
BI, and more

•	 Enterprise focus: A strong focus on enter-
prise needs with robust security features and
compliance standards

•	 Developer tools: Extensive developer tools
and frameworks, such as Azure Blockchain
Workbench, which simplifies blockchain
app development

•	 Limited blockchain
protocols: It may not
support as wide a range
of blockchain protocols as
some competitors

•	 Complexity: Some users
find the platform complex
to navigate and set up,
especially for those new
to blockchain

GCP •	 Data analytics integration: Strong integration
with GCP’s data analytics tools, offering enhanced
data analysis capabilities on blockchain data

•	 AI and machine learning: Easy integration with
Google’s AI and machine learning tools, providing
advanced analytics capabilities

•	 Open source-oriented: Offers strong support
for open source technologies, which is bene-
ficial for businesses looking for flexible and
customizable solutions

•	 Limited dedicated block-
chain services: GCP does
not have as many dedi-
cated blockchain services
as Azure or AWS

•	 Focus on partnerships:
GCP often relies on
partnerships with block-
chain platform provid-
ers, which might limit
direct control or specific
service offerings

Table 2.1 – Comparison of the strengths and weaknesses of cloud blockchain services

Overview of AWS, Azure, and GCP Services for Blockchain42

Blockchain data security

Blockchain technology inherently emphasizes security, but the way Azure, AWS, and GCP implement
and enhance these security features can vary.

Azure is notable for its integration with Microsoft’s security services and compliance focus, AWS
provides robust managed services and key management options, and GCP offers strengths in data
analytics and AI for security, along with a strong commitment to open source technologies. The choice
among these platforms should be guided by the specific security needs, compliance requirements,
and existing technology stack of the organization.

The following table highlights some key differences in blockchain data security among these three
cloud platforms.

Cloud
provider

Data security offerings

AWS •	 Amazon Managed Blockchain: This service automates many aspects of
blockchain management, which can enhance security by reducing the risk of
human error

•	 QLDB: AWS’s QLDB offers an immutable and cryptographically verifiable
ledger, enhancing data integrity and security

•	 KMS: AWS integrates its blockchain services with AWS KMS, which provides
strong security for cryptographic keys

•	 Flexibility in private blockchain networks: AWS offers flexibility in setting up
private blockchain networks, which can be configured for enhanced security
based on specific needs

Azure •	 Enterprise integration: Azure’s strong suit is its integration with existing
Microsoft security tools and services, such as Azure Entra Verified ID for verifi-
able identifiers and Azure Key Vault for managing cryptographic keys.

•	 Compliance and standards: Azure places a high emphasis on compliance
with global and industry-specific standards, which is crucial for enterprises
concerned with regulatory requirements

•	 CFF: Azure offers unique features such as the CFF, which enhances security and
confidentiality in consortium blockchain networks

•	 Encryption and network security: Azure ensures data encryption both in
transit and at rest, and provides robust network security features

Summary 43

GCP •	 Data analytics and AI security: GCP’s strength lies in integrating blockchain
data with its powerful data analytics and AI tools, offering advanced security
analytics capabilities.

•	 Partnerships for blockchain services: GCP often partners with specialized block-
chain providers. The security in this case depends on both Google’s cloud infra-
structure and the security measures of the chosen blockchain platform.

•	 Encryption standards: Like Azure and AWS, GCP ensures encryption of data in
transit and at rest, adhering to strong encryption standards.

•	 Open source focus: GCP’s focus on open source technologies means that security
can be more transparent and customizable, but this also requires users to be more
proactive in managing their security configurations.

Table 2.2 – Key differences in blockchain data security among the three major cloud providers

Before progressing with the next chapters of this book, we recommend that you explore the Further
reading section at the end of this and each chapter for additional references on the topics presented.

Summary
In this chapter, we delved into blockchain services across AWS, Azure, and GCP, dissecting their
distinct features and offerings. Each platform presents a unique blend of managed services, custom
deployments, and collaborative solutions, addressing diverse blockchain needs for various organizations.

With this knowledge, we are now equipped to strategize our blockchain endeavors. Whether it’s AWS’
all-encompassing suite, Azure’s emphasis on secure collaborations, or GCP’s multifaceted approaches,
you can now make informed choices that align with your organizational objectives.

Next, brace yourself for an insightful journey into DevOps practices tailored for cloud-native blockchain.
We’ll unveil the intricacies of deployment, continuous integration, and seamless delivery, laying the
groundwork for you to proficiently implement and oversee blockchain projects on your selected platform.

Further reading
•	 Amazon Managed Blockchain Services on AWS:

https://aws.amazon.com/managed-blockchain/

•	 Amazon Quantum Ledger Database:

https://aws.amazon.com/qldb/

•	 Microsoft Web3 Solutions:

https://azure.microsoft.com/solutions/web3/

https://aws.amazon.com/managed-blockchain/
https://aws.amazon.com/qldb/
https://azure.microsoft.com/solutions/web3/

Overview of AWS, Azure, and GCP Services for Blockchain44

•	 Microsoft Entra Verified ID:

https://www.microsoft.com/en-au/security/business/identity-
access/microsoft-entra-verified-id

•	 Azure Managed Confidential Consortium Framework:

https://ccf.microsoft.com/

•	 Google Cloud for Web3:

https://cloud.google.com/web3

https://www.microsoft.com/en-au/security/business/identity-access/microsoft-entra-verified-id
https://www.microsoft.com/en-au/security/business/identity-access/microsoft-entra-verified-id
https://ccf.microsoft.com/
https://cloud.google.com/web3

3
DevOps for Cloud-Native

Blockchain Solutions

DevOps brings together people, processes, and tools to streamline software development, allowing
continuous delivery of value to users, aligned with business goals. As blockchain moves beyond
its cryptocurrency roots and into the world of enterprise software, organizations are facing a new
challenge: how to apply DevOps principles to this disruptive technology. This chapter delves into the
core tenets of DevOps, highlighting best practices and tools that can facilitate continuous delivery,
improvement, and infrastructure automation for developing secure and efficient blockchain solutions.

We will cover the following main topics in this chapter:

•	 Introduction to DevOps for cloud-native blockchain solutions

•	 CI/CD for blockchain solutions

•	 IaC for blockchain solutions

•	 Monitoring and logging for blockchain solutions

•	 Best practices for DevOps in cloud-native blockchain solutions

Introduction to DevOps for cloud-native blockchain solutions
DevOps is a combination of practices and principles aimed at creating a more efficient and effective
collaboration between development and operations teams. By bridging the gap between these teams,
organizations can build, test, and deploy software at a faster pace, reduce deployment time, and
minimize the risk of errors. The application of DevOps principles in the context of cloud-native
blockchain solutions is essential for achieving a streamlined and optimized development life cycle.

DevOps for Cloud-Native Blockchain Solutions46

In this section, we will learn about the role of DevOps in cloud-native blockchain solutions, and
identify the benefits of using DevOps in the development and deployment of blockchain applications.

In particular, we will explore the unique challenges that blockchain solutions present to DevOps
practices, such as dealing with immutable data structures, consensus mechanisms, and the integration
of off-chain and on-chain data.

The blockchain challenge for DevOps

Blockchain technology introduces several unique challenges to DevOps practices that necessitate a
rethinking of traditional approaches to development, operations, and the Continuous Integration/
Continuous Deployment (CI/CD) pipelines. These challenges stem from the inherent characteristics
of blockchain, such as immutability, decentralization, consensus mechanisms, and the need for
integration between on-chain and off-chain systems. We will discuss these challenges in detail and
explore their implications for DevOps.

Dealing with immutable data structures presents the challenge of blockchain’s data immutability,
which means that once a transaction is added to the blockchain, it cannot be altered or deleted. This
immutability is fundamental to the trust and security offered by blockchain but presents challenges
in version control, data correction, and updates.

Also, the consensus mechanism poses a challenge: blockchain networks use consensus mechanisms
to agree on the validity of transactions. These mechanisms, such as Proof of Work (PoW) or Proof
of Stake (PoS), have implications for performance, scalability, and security. For example, DevOps
must account for the latency and throughput limitations of blockchain networks, which can vary
widely based on the consensus mechanism. This may affect how applications are designed, requiring
optimizations for transaction processing and state management.

When dealing with the integration of off-chain and on-chain data, data synchronization and integrity,
as well as security and privacy, have implications for DevOps. Ensuring the integrity and consistency
of data moving between on-chain and off-chain environments is critical. This requires robust data
validation, synchronization mechanisms, and the possible use of oracles (services that feed external
data to the blockchain).

A word about security and privacy
The integration points between on-chain and off-chain systems are potential vulnerabilities.
DevOps practices must include strong security measures, including encryption, access controls,
and regular security audits.

Blockchain technologies necessitate a paradigm shift in DevOps practices, from development and
testing to deployment and monitoring. The unique characteristics of blockchain, such as immutability,
consensus mechanisms, and the integration of on-chain and off-chain data, introduce challenges that
require innovative solutions and a shift towards more rigorous, security-focused development and

Introduction to DevOps for cloud-native blockchain solutions 47

operational practices. Successful integration of blockchain into DevOps demands a holistic approach,
blending blockchain expertise with traditional DevOps capabilities to ensure reliable, efficient, and
secure blockchain applications.

Before going any further, let’s start by introducing the concept of DevOps and its core principles.

DevOps – Definition and core principles

DevOps is a portmanteau of development and operations, and it represents a cultural shift that
emphasizes collaboration, communication, and integration between these traditionally siloed teams.

The following diagram shows the four pillars of DevOps:

Figure 3.1 – The four pillars of DevOps

The core principles of DevOps include the following:

•	 Continuous Integration (CI): This involves integrating code changes from multiple developers into
a shared repository frequently to identify and fix integration issues early in the development process.

•	 Continuous Delivery (CD): A method of automatically creating, verifying, and releasing
software to production or staging environments with high assurance and dependability.

DevOps for Cloud-Native Blockchain Solutions48

•	 IaC: This involves managing and provisioning infrastructure through code, which allows for
version control, automation, and consistency across environments.

•	 Monitoring and logging: This involves collecting and analyzing data from infrastructure and
applications to ensure optimal performance, identify issues, and provide insights for improvement.

The role of DevOps in cloud-native blockchain solutions

Applying DevOps principles to cloud-native blockchain solutions allows for faster development, testing,
and deployment of blockchain applications. This is particularly important given the rapid evolution of
blockchain technology and the need to quickly adapt to changing requirements and conditions. Some
of the key benefits of applying DevOps in cloud-native blockchain solutions include the following:

•	 Accelerated time to market: Faster development and deployment of blockchain applications,
enabling organizations to respond more quickly to market demands and stay ahead of
the competition.

•	 Improved collaboration: Enhanced communication and collaboration between development
and operations teams, breaking down silos and creating a more efficient development process.

•	 Reduced risk: Early identification and resolution of integration issues, minimizing the risk of
errors, and ensuring higher-quality software releases.

Benefits of using DevOps in cloud-native blockchain solutions

By understanding the importance of DevOps in cloud-native blockchain solutions, organizations can
leverage these principles to create more efficient and effective development processes, leading to faster
deployment and a competitive edge in the market.

Some of the key benefits of using DevOps in cloud-native blockchain solutions include the following:

•	 Scalability: The ability to quickly scale blockchain applications and infrastructure to meet
changing demands, as well as the ability to scale development and operations processes.

•	 Flexibility: The ability to rapidly adapt to changing requirements and technologies, enabling
organizations to stay at the forefront of blockchain innovation.

•	 Cost efficiency: Streamlined development processes and automated infrastructure management
can lead to reduced costs associated with both development and operations.

•	 Security: Improved collaboration between development and operations teams can lead to more
secure and compliant blockchain applications.

Introduction to DevOps for cloud-native blockchain solutions 49

Let me provide a few examples so you can better understand the impact of DevOps on blockchain solutions:

Imagine a supply chain management system built on a private blockchain such as Hyperledger Fabric.
This platform would track the movement of goods from origin to destination, ensuring transparency
and efficiency. Initially, the network may only handle a low volume of transactions. When demand
increases, manually scaling the infrastructure (servers, storage, etc.) becomes a complex and time-
consuming task. IT teams need to provision new resources, configure them, and integrate them with
the existing system. This can lead to downtime and delays. During periods of low activity, underutilized
resources result in wasted costs. Manually scaling down can be equally challenging, leaving the system
vulnerable to overprovisioning. Also, the solution experiences limited agility; responding to sudden
changes in demand becomes difficult, as the lack of automation hinders the ability to quickly adapt
to market fluctuations or unexpected events.

Note
The problem with the scalability of public blockchain networks such as Bitcoin or Ethereum
is that adding multiple nodes to the network doesn’t increase the number of Transactions Per
Second (TPS) the system can process. Due to the decentralized nature of the network, only
specific mining or staking nodes get the authority to process the transaction, while other nodes
wait for the block creation. The only possible ways to increase the TPS of a blockchain is to roll
up transactions (an approach taken by Layer 2 networks) or create sidechains that can grow
independently. More information is available in this article: https://shardeum.org/
blog/what-is-blockchain-scalability/.

Now, let’s see how having fully automated DevOps practices can help improve CI/CD. Changes to
the chaincode are automatically tested and deployed, improving the speed and reliability of updates.
This allows for faster scaling of the network to meet changing demand. In Hyperledger Fabric, for
example, we can upgrade a chaincode using the same Fabric life cycle process that we initially used
to install and start the chaincode. This includes the upgrade of the chaincode binaries as well as the
update of any relevant chaincode definition policies. More information on the life cycle of chaincode
in Hyperledger Fabric can be found here: https://hyperledger-fabric.readthedocs.
io/en/release-2.5/chaincode_lifecycle.html.

Also, the infrastructure is defined as code, enabling automated provisioning and configuration of
resources. As demand increases, new resources are automatically spun up in the cloud, seamlessly
scaling the platform. This is called IaC. Lastly, real-time monitoring of the blockchain network and
its resources allows for proactive identification and resolution of bottlenecks. This ensures optimal
performance and scalability.

In this scenario, the supply chain system will reduce downtime, as automated infrastructure provisioning
and configuration minimize the risk of human errors and downtime during scaling operations. Overall,
all parties involved experience increased operational efficiency; automating routine tasks frees up IT
teams to focus on more strategic initiatives.

https://shardeum.org/blog/what-is-blockchain-scalability/
https://shardeum.org/blog/what-is-blockchain-scalability/
https://hyperledger-fabric.readthedocs.io/en/release-2.5/chaincode_lifecycle.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/chaincode_lifecycle.html

DevOps for Cloud-Native Blockchain Solutions50

Imagine now a blockchain platform used for identity management in a healthcare system. This
platform stores and verifies sensitive patient data, making security paramount. Without DevOps in
place, security vulnerabilities are often identified late in the development life cycle, requiring costly
rework and potential data breaches. Moreover, applying security patches across the distributed
blockchain network can be slow and prone to human error, leaving the system exposed for longer
periods. The lack of real-time monitoring and logging makes it difficult to detect and respond to
security incidents quickly.

Let’s apply the principles of DevOps to this solution, starting with security considerations that
are integrated into the CI/CD pipeline from the beginning, preventing vulnerabilities from being
introduced in the first place. This practice is normally called security by design static code analysis,
vulnerability scanning, and penetration testing become part of the automated build and deployment
process. Security patches are automatically deployed across the blockchain network, ensuring consistent
and timely updates on all nodes. This minimizes the window of vulnerability and reduces the risk of
attacks. Real-time monitoring and logging tools provide visibility into the network’s security posture,
allowing for early detection and rapid response to security incidents. Specifically to the blockchain
component of the solution, the inherent immutability of the digital ledger makes it tamper proof,
ensuring data integrity and preventing unauthorized modifications.

In addition to these benefits, the healthcare institute will also experience improved compliance, as
DevOps practices help organizations meet security regulations and standards more effectively, as well
as increased trust and transparency; a secure blockchain platform fosters trust and transparency in
data management, especially valuable in healthcare applications.

These are just a few examples of how blockchain applications can benefit from good DevOps practices.
In the next section, we’ll look in more detail at the common patterns and technologies for delivering
effective and robust CI/CD in blockchain.

CI/CD for blockchain solutions
CI and CD are essential DevOps practices that can be implemented for cloud-native blockchain
solutions. CI/CD helps automate the creation, verification, and release processes, resulting in faster
and more dependable software deliveries.

In this section, we will define CI and CD in the context of blockchain solutions, understand a few
popular CI/CD tools used for blockchain development, and discuss the implementation of CI/CD
for blockchain applications.

CI/CD for blockchain solutions 51

CI and CD

Together, CI/CD form a pipeline that streamlines software development, testing, and deployment
of blockchain solutions. These practices are fundamental in achieving agile and efficient software
development workflows, enabling teams to deliver high-quality software with speed and reliability.

CI involves frequent integration of code changes from multiple developers into a shared repository.
The main goal of CI is to integrate changes made to the software by different developers in the team
into a central repository frequently, typically several times a day. Whenever a developer commits
changes to the source code, automated build and test processes are triggered. This ensures that the
new code integrates well with the existing code and does not introduce bugs.

CD extends the concept of CI by ensuring that, in addition to integration, the new code is always in a
deployable state. After the CI process of building and testing, CD involves automated steps to deploy
the changes to a staging or production environment. This makes it possible to release new updates to
customers quickly and efficiently.

In the context of blockchain solutions, CI/CD plays a crucial role in enabling the rapid development,
testing, and deployment of blockchain applications and smart contracts. However, automation
cannot perform miracles if the design of smart contracts is wrong from the beginning. This is why it’s
important to consider a correct approach to coding smart contracts first, and then apply automation
in testing and deployment.

Smart contract design

Blockchain apps handle sensitive tasks such as finances, critical business processes, and member/
customer confidentiality. Errors in these areas could seriously harm your company or consortium.
So, blockchain apps need stricter risk management and testing than usual software. A common
approach is to treat smart contract design as microservice design: break down the solution into core
entities and their processes, then build separate, modular smart contracts for each. This lets them
evolve independently over time.

Common practices for writing robust smart contracts include the following:

•	 Make your code fail quickly and clearly, preventing unexpected behavior.

•	 Always check conditions first, then modify the contract state, and finally interact with other
contracts. This minimizes risk and improves readability.

•	 Whenever possible, let users initiate payments (pull) instead of pushing funds directly (push).
This avoids unexpected code execution and potential errors.

•	 Break down your code into clear, independent modules. This makes it easier to understand,
test, and maintain, ultimately leading to more secure smart contracts.

•	 Although time consuming, writing comprehensive tests is crucial for preventing future issues
and ensuring the long-term stability of your smart contracts.

DevOps for Cloud-Native Blockchain Solutions52

Let’s take the supply chain example given before and pretend we’re writing a contract that, given the
name of a party in the supply chain managed on blockchain, returns its state. Try and spot a few code
smells in the following code snippet:

contract SupplyChain {
    uint constant DEFAULT_STATE = 1;
    mapping(string => uint) partyStates;

    function getPartyState(string memory name) public view returns
(uint) {
        if (bytes(name).length != 0 && partyStates[name] != 0) {
            return partyStates[name];
        }
        else {
            return DEFAULT_STATE;
        }
    }
}

The getPartyState function might seem flawless, returning the party’s state as expected. But it
harbors a hidden danger. Instead of throwing an error when invalid input is provided, it silently returns
a default value. This seemingly harmless behavior can be a recipe for disaster. To give a metaphor for
real life (I define real life as anything that is not coding 😊), think of a faulty smoke detector. Instead
of blaring an alarm when it detects smoke, it simply flashes a harmless green light. This false sense of
security could lead to delayed action and potentially devastating consequences. Similarly, hiding errors in
this function can mask real problems, leaving the supply chain system vulnerable to unforeseen failures.

A more correct approach should consider checks for conditions before returning the desired value,
and also the separation of precondition checks, so as to make each condition fail separately with a
proper failure message:

function getPartyState(string memory name) public view returns (uint)
{
    if (bytes(name).length == 0) revert("Invalid name.");
    if (partyStates[name] == 0) revert("Name not found.");

    return partyStates[name];
}

CI/CD for blockchain solutions 53

There are several good design patterns to keep in mind when creating a smart contract. This was just
an example to consider because it defines how test scripts would be produced and then automated
as we introduce CI/CD in our blockchain software development life cycle. Test scripts require test
data. However, data on a blockchain is immutable and permanently persisted. There’s no wipeout of
dummy data after a test battery is executed. How can we automate test data generation for blockchain
solutions? Let’s have a look at a few common approaches in the next section.

These code snippets are available in the GitHub repository: https://github.com/PacktPub-
lishing/Developing-Blockchain-Solutions-in-the-Cloud

Smart contract testing

Testing smart contracts is crucial due to their immutable nature and the significant financial and
operational implications of bugs or vulnerabilities. A comprehensive testing strategy for smart
contracts typically encompasses several layers, including unit testing, integration testing, and, for
highly critical contracts, formal verification. Each of these testing layers targets different aspects of
the smart contract’s reliability and security.

Unit testing involves testing the smallest parts of a smart contract in isolation, typically individual
functions or methods, to ensure that they perform as expected under various conditions. Strategies
include the following:

•	 Mocking external calls: Use mocking frameworks to simulate external calls and dependencies,
allowing developers to test the contract’s logic in isolation

•	 Parameterized testing: Employ parameterized tests to cover a wide range of inputs, including
edge cases, to ensure functions handle all expected and unexpected inputs correctly

•	 Automated test suites: Utilize automated testing frameworks (e.g., Truffle, Hardhat for Ethereum,
etc.) to write and run unit tests, ensuring they are executed regularly

Integration testing assesses the interactions between different parts of the smart contract system,
including interactions between multiple contracts and the interaction with the blockchain itself.
Strategies include the following:

•	 Testing contract interactions: Ensure that contracts work together as expected, simulating
real-world scenarios where contracts call each other or pass data

•	 Simulating blockchain conditions: Use blockchain simulation tools to test contracts in
an environment that closely mirrors live blockchain conditions, including gas usage and
transaction ordering

•	 Cross-contract dependencies: Test how your contract responds to changes in contracts it
depends on, if applicable, ensuring that your system is resilient to changes in external contracts

https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud

DevOps for Cloud-Native Blockchain Solutions54

In the blockchain space, there’s a process known as formal verification that utilizes mathematical
methods to prove the correctness of smart contracts or protocols. It involves using formal methods,
such as mathematical logic and automated reasoning techniques, to verify that a smart contract or
protocol behaves as intended under all possible scenarios. Formal verification is particularly useful
for mission-critical contracts where the cost of failure is high. Strategies include the following:

•	 Modeling contract logic: Translate smart contract logic into a formal model that can be analyzed
mathematically. This often involves using specialized languages and tools.

•	 Property specification: Clearly define the properties and invariants a contract must maintain
(e.g., no unauthorized access, conservation of value, etc.) and use formal verification tools to
prove these properties are always upheld.

•	 Tooling: Leverage formal verification tools and platforms (e.g., K Framework, CertiK, etc.)
designed for smart contracts.

A comprehensive testing strategy for smart contracts is essential for ensuring their reliability and
security. By combining unit tests, integration tests, and formal verification methods, developers can
address different aspects of contract functionality and security. Integrating these testing practices into
a continuous development and deployment pipeline, complemented by peer reviews and professional
audits, maximizes the reliability and security of smart contracts in the blockchain ecosystem.

Test data generation

While the foundation of DevOps remains the same, blockchain’s distributed nature and immutable
ledger introduce specific considerations. These require careful assessment when tailoring a DevOps
approach for blockchain solutions. As mentioned, a typical challenge with testing smart contracts
is the generation of sample data. Filling test data in a blockchain is trickier than other databases. In
a regular database, you can use scripts to create tables and fill them with data. But in a blockchain,
it’s not so straightforward. Adding new blocks is complex, as it involves validation by all network
members. While scripting can work, it requires careful coordination and sequencing, especially
when multiple parties are involved. A common approach for testing purposes is to fork an existing
blockchain, basically making a copy, and using that for testing. This can save us the hassle of making
fake transactions from scratch.

Imagine a blockchain as a highway. Every car on the road is a transaction. Forking is like building a
detour, a new path for the cars to take. Sometimes, the detour is temporary, like for road repairs. This
is a soft fork. Other times, the detour becomes the new highway, and the old one is abandoned. This is
a hard fork. In both cases, the cars (transactions) have to choose which path to follow. The following
figure shows how a hard fork deviates from the original blockchain, creating a new chain of its own:

CI/CD for blockchain solutions 55

Figure 3.2 – Hard fork of a blockchain

When a soft fork happens, the blockchain protocol keeps the rules defined on the network backward
compatible. Blocks in the forked chain will follow the old rules as well as the new rules. Blocks in the
original chain will continue to follow the old rules. The following figure depicts the alternate chain,
which rejoins the original one when a consensus is reached:

Figure 3.3 – Soft work of a blockchain

DevOps for Cloud-Native Blockchain Solutions56

More information about hard and soft forking as a strategy for test data generation can be found
in the DevOps for Blockchain Smart Contracts article written by the author: https://learn.
microsoft.com/en-us/archive/msdn-magazine/2019/october/blockchain-
devops-for-blockchain-smart-contracts

Note
As of September 2023, the Truffle Suite is being sunset. For information on ongoing support,
migration options, and FAQs, visit the Consensys blog: https://consensys.io/blog/
consensys-announces-the-sunset-of-truffle-and-ganache-and-new-
hardhat.

It’s now time to learn about a few of the most popular CI/CD tools that can help automate and thus
improve our blockchain development.

CI/CD tools

There are several popular CI/CD tools that can be used for blockchain development, including
the following:

•	 GitHub Actions: A workflow automation tool that allows developers to build, test, and deploy
code directly from GitHub repositories. GitHub Actions can be used to automate CI/CD
pipelines for blockchain applications and smart contracts.

•	 GitLab CI/CD: A CI/CD tool integrated with GitLab, providing a seamless CI/CD experience
for developers working with blockchain applications and smart contracts.

•	 Jenkins: An open source automation server that allows developers to automate the creation,
verification, and release of applications, including blockchain solutions.

•	 Travis CI: A CI service that can be used to build, test, and deploy code hosted on GitHub and
GitLab repositories.

Typically, all these tools can be used to automate smart contract compilation, linking, deployment,
and binary management. They also provide automated contract testing, and scriptable, extensible
deployment, and migration capabilities.

They are not specific to handling blockchain networks, though. For example, we may want to have
automated network management for the deployment of nodes. More specific blockchain CI/CD tools
include the following:

•	 Truffle Suite: This has already been mentioned, and is unfortunately being sunset. Available
as open source on GitHub at https://github.com/trufflesuite.

•	 Hardhat Network: A comprehensive testing framework for Ethereum with features such as
mocking blockchain behavior and deploying contracts to testnets.

https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/october/blockchain-devops-for-blockchain-smart-contracts

https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/october/blockchain-devops-for-blockchain-smart-contracts

https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/october/blockchain-devops-for-blockchain-smart-contracts

https://consensys.io/blog/consensys-announces-the-sunset-of-truffle-and-ganache-and-new-hardhat
https://consensys.io/blog/consensys-announces-the-sunset-of-truffle-and-ganache-and-new-hardhat
https://consensys.io/blog/consensys-announces-the-sunset-of-truffle-and-ganache-and-new-hardhat
https://github.com/trufflesuite

CI/CD for blockchain solutions 57

•	 Embark: A development framework for Ethereum offering tools for building, testing, and
deploying smart contracts, including a built-in CI/CD pipeline.

•	 DAppChain: A platform specifically designed for CI/CD in blockchain development, providing
tools for automated testing, deployment, and monitoring.

•	 Blockpress: A cloud-based platform offering CI/CD services specifically for Hyperledger Fabric
applications, including smart contract testing and deployment.

Let’s take Hardhat, one of the most popular tools, for reference. Setting up Hardhat for automating
the deployment of smart contracts involves several steps, which include the following:

1.	 Install Node.js (version 14 or above) and npm.

2.	 Create a Hardhat project with the following bash command. Follow the prompts to complete
the setup:

npx hardhat

3.	 Configure Hardhat: This involves specifying networks, compilers, and other settings in the
hardhat.config.js file similar to the following example:

require("@nomiclabs/hardhat-ethers");
module.exports = {
  solidity: "0.8.4",
  networks: {
    rinkeby: {
      url: "https://rinkeby.infura.io/v3/your_project_id",
      accounts: ["0xYOUR_PRIVATE_KEY"],
    },
  },
};

Replace your_project_id and 0xYOUR_PRIVATE_KEY with your Infura project ID
and private key respectively.

4.	 Now, we’ll look at automating the deployment of a smart contract with Hardhat Network,
which requires the definition of the pipeline in a JavaScript file. Let’s call this file deploy.
js. The script first defines the contract factory by indicating the name of the smart contract,
using the hardhat library. Then, it deploys the contract by calling the deploy() method
on the contract factory:

const hre = require('hardhat');

async function main() {
  const contractFactory = await hre.ethers.
getContractFactory('Contract Name');
  const myContract = await contractFactory.deploy();

DevOps for Cloud-Native Blockchain Solutions58

  await myContract.deployed();

  console.log('Contract deployed to:', myContract.address);
}

main()
  .then(() => process.exit(0))
  .catch((error) => {
    console.error(error);
    process.exit(1);
  });

5.	 To run the script, we just need to use the npx hardhat bash command with the indication
of the deploy file:

npx hardhat deploy deploy.js

Similar scripts can be prepared for the other tools. This is an example of contract deployment
automation, but what about the required infrastructure to run the contract? We also want to automate
the deployment of IaC, as described in the next section.

IaC for blockchain solutions
IaC is a DevOps practice that involves configuring and deploying infrastructure through code. This
approach allows for version control, automation, and consistency across environments, making it
easier to scale and manage blockchain applications and infrastructure. In this section, we will explore
popular IaC tools for managing blockchain infrastructure, and discuss the implementation of IaC for
blockchain solutions. Let’s start by understanding the benefits of IaC.

IaC – Definition and benefits

IaC is the method of configuring and deploying infrastructure through code, rather than manual
processes or proprietary tools. The consistent use of IaC eventually leads to a more streamlined and
efficient management of the required infrastructure to run a software solution. It’s easy to identify a
few benefits of IaC:

•	 Faster deployment: IaC enables the rapid provisioning and configuration of infrastructure,
reducing the time it takes to deploy blockchain applications and infrastructure

•	 Scalability: IaC makes it easier to scale blockchain applications and infrastructure to meet
changing demands, ensuring optimal performance and resource utilization

•	 Consistency: By using code to manage infrastructure, organizations can ensure consistency
across environments, reducing the risk of errors and inconsistencies that can lead to downtime
or security vulnerabilities

IaC for blockchain solutions 59

•	 Version control: IaC allows for version control of infrastructure configurations, making it easier to
track changes, roll back to previous configurations, and collaborate on infrastructure management

Popular IaC tools for blockchain infrastructure management

There are several popular IaC tools that can be used for managing blockchain infrastructure, including
the following:

•	 Terraform: An open source IaC tool that enables developers to define and manage IaC using
a declarative configuration language. Terraform supports multiple cloud providers, including
AWS, Azure, and Google Cloud Platform (GCP), making it a versatile choice for managing
blockchain infrastructure.

•	 AWS CloudFormation: A service provided by AWS that allows developers to define, manage, and
update infrastructure resources using JSON or YAML templates. CloudFormation is specifically
designed for AWS environments and can be used to manage blockchain infrastructure on the
AWS platform.

•	 Azure Resource Manager (ARM) templates: A JSON-based template language used to
define and manage Azure resources. ARM templates enable developers to manage blockchain
infrastructure on the Azure platform using a declarative syntax.

•	 Google Cloud Deployment Manager: A service provided by GCP that allows developers to
define and manage infrastructure resources using YAML templates. Deployment Manager is
specifically designed for GCP environments and can be used to manage blockchain infrastructure
on the GCP platform.

To be clear, these tools are IaC automation tools for any type of software application, not only
blockchain-based solutions. There are a few other specific tools that are meant for managing blockchain
infrastructure only:

•	 Hyperledger Fabric Composer: Designed specifically for Hyperledger Fabric, Composer
offers a visual interface and templates for managing networks, channels, and smart contracts

•	 DAppChain: A cloud-based platform with built-in IaC features for deploying and managing
blockchain applications across various platforms

•	 Embark: A popular Ethereum development framework with tools for managing network
configurations, deploying smart contracts, and automating infrastructure provisioning

•	 Blockpress: A cloud-based platform specifically for Hyperledger Fabric, offering advanced IaC
features for network deployment, resource management, and scaling

•	 Constellation Network: A blockchain platform with its own built-in IaC features for managing
nodes, networks, and smart contracts

DevOps for Cloud-Native Blockchain Solutions60

Choosing the right tool depends on a number of factors, not least the specific blockchain platform of
reference. Some tools are platform specific, while others offer broader compatibility. Some tools also
require more programming knowledge than others, or require more custom scripting, as opposed to a
simpler visual configuration. Not least, budget and licensing preferences are a factor of consideration
too. Some tools are open source and free, while others offer paid plans with additional features.

Implementing IaC for blockchain solutions

We will have plenty of script examples in the next chapters of this book, but just to give a quick example
now, let’s look at how to use Embark to automatically deploy a Hyperledger Fabric network with two
nodes (one orderer and one peer) on a cloud platform such as GCP.

The following steps assume that you have access to GCP and are familiar with the GCP console, and the
services offered. If this is not the case yet, we will talk about deploying and implementing blockchain
solutions on GCP in Part 4 of the book, so feel free to skip this example for now and return to it later
after completing Part 4 of the book.

The required steps for configuration are as follows:

1.	 Define the network configuration: First, we create a directory for storing a configuration file
with the network settings (e.g., network/config.json). Within config.json, we
specify details such as the number of orderer and peer nodes, their resource requirements,
and the desired deployment environment (GCP in this case):

	� cloud: This specifies the cloud platform being used (GCP in this case)

	� gcpConfig: This provides specific configurations for GCP, such as the project ID and
the zone where to deploy the nodes as well as the type and operating system of the virtual
machine for the nodes

	� nodes: This defines the number of nodes to provision for each type

The following example can be used as a template for the config.json file to describe the
initial resources needed in the configuration of the blockchain network in the GCP:

{
  "cloud": "gcp",
  "gcpConfig": {
    "projectId": "YOUR_GCP_PROJECT_ID",
    "zone": "YOUR_GCP_ZONE",
    "machineType": "e2-micro",
    "imageProject": "debian-cloud/debian-11"
  },
  "nodes": {
    "orderer": {
      "count": 1,

IaC for blockchain solutions 61

      "services": ["orderer"]
    },
    "peer": {
      "count": 1,
      "services": ["peer"]
    }
  }
}

2.	 Write the deployment script: Create a JavaScript script (e.g., deploy.js) that uses the
Embark API to interact with the network configuration and deploy your smart contracts.

The script will load the network configuration from config.json, and use Embark’s
deployNode function to provision and configure the orderer and peer nodes on GCP. This
function will deploy the smart contracts to the network using Embark’s deployment functionalities,
and perform any additional tasks such as setting up channels or fetching contract addresses:

const Embark = require('embarkjs');
const config = require('./network/config.json');

(async () => {
  try {
    const embark = new Embark(config);
    await embark.deployNodes({
      type: 'node',
      count: 1, // One peer node
      cloud: 'gcp',
      gcpConfig: {
        // GCP project ID and other relevant details
      },
    });
    await embark.deployNodes({
      type: 'orderer',
      count: 1, // One orderer node
      cloud: 'gcp',
      gcpConfig: {
        // GCP project ID and other relevant details
      },
    });

    // Wait for nodes to be provisioned
    await embark.plugins.blockchain.ensureNetworkReady();

    // Deploy smart contracts
    await embark.contracts.deploy('MyContract');

DevOps for Cloud-Native Blockchain Solutions62

    // Get the deployed contract address
    const contractAddress = embark.contracts.MyContract.address;

  } catch (error) {
    console.error(error);
    process.exit(1);
  } finally {
    // Clean up resources
    await embark.plugins.blockchain.cleanNetwork();
  }
})();

3.	 Integrate with CI/CD pipelines, for example, using a tool such as Hardhat Network, or similar.
We have seen the configuration of Hardhat previously in this chapter, and how to prepare a
deployment script. This allows for automated deployment of the network and smart contracts
on every code push or specific trigger.

In the next section, we’ll look into best practices and tools for improving the quality of blockchain
solutions by constantly monitoring the usage of the network.

Monitoring and logging for blockchain solutions
Monitoring and logging are essential aspects of managing cloud-native blockchain solutions. Collecting
and analyzing data from blockchain nodes and infrastructure allows organizations to ensure optimal
performance, identify issues, and provide insights for improvement. In this section, we will explore
popular monitoring and logging tools for blockchain infrastructure and applications, and understand
how to implement monitoring and logging practices for blockchain solutions. Let’s start by looking
at the importance of monitoring and logging for blockchain solutions.

Importance of monitoring and logging for blockchain solutions

Monitoring and logging are critical components of managing and maintaining cloud-native blockchain
solutions. Effective monitoring and logging practices provide several benefits, including the following:

•	 Performance optimization: By continuously monitoring and analyzing data from blockchain
nodes and infrastructure, organizations can identify performance bottlenecks and optimize
their applications and infrastructure for better performance

•	 Issue detection and resolution: Monitoring and logging enable organizations to quickly identify
and resolve issues, minimizing downtime and ensuring the reliability of their blockchain solutions

Monitoring and logging for blockchain solutions 63

•	 Security and compliance: Monitoring and logging help organizations detect security vulnerabilities,
track access and usage patterns, and maintain compliance with industry regulations and standards

•	 Insights for improvement: Analyzing data from monitoring and logging systems can provide
valuable insights into how to improve the efficiency, scalability, and security of blockchain solutions

Popular monitoring and logging tools for blockchain solutions

Several popular monitoring and logging tools can be used to collect and analyze data from blockchain
nodes and infrastructure, including the following:

•	 Native logging solutions: Cloud providers such as AWS, Azure, and GCP offer native logging
and monitoring solutions for collecting and analyzing data from infrastructure and applications.
These solutions include Amazon CloudWatch, Azure Monitor, and Google Cloud’s operations
suite (formerly Stackdriver).

Figure 3.4 – A dashboard in Amazon CloudWatch visualizing different metrics

•	 Prometheus: An open source monitoring and alerting toolkit designed for reliability and
scalability. Prometheus can be used to collect metrics from blockchain nodes and infrastructure,
providing real-time insights into the performance and health of your blockchain solution.

•	 Grafana: An open source visualization and analytics platform that can be used to create interactive
dashboards for monitoring and analyzing data from blockchain nodes and infrastructure.
Grafana integrates with various data sources, including Prometheus, Elasticsearch, and native
cloud provider monitoring solutions.

DevOps for Cloud-Native Blockchain Solutions64

•	 Elasticsearch, Logstash, and Kibana (ELK stack): A popular open source log management
and analysis platform that can be used to collect, process, and visualize data from blockchain
nodes and infrastructure. The ELK stack provides a powerful solution for monitoring and
analyzing logs and metrics from blockchain applications.

Implementing monitoring and logging for blockchain solutions

To implement effective monitoring and logging practices for blockchain solutions, the following steps
can be followed:

1.	 Identify the Key Performance Indicators (KPIs) and metrics that are most relevant to a
blockchain solution, such as transaction throughput, latency, node health, and resource utilization.

2.	 Choose a monitoring and logging tool or platform that best fits business and technical needs,
and integrates with the chosen cloud provider or platform.

3.	 Configure monitoring and logging tools to collect and analyze data from blockchain nodes
and infrastructure, ensuring that the relevant KPIs and metrics are captured and analyzed.

4.	 Establish alerting and notification mechanisms to proactively identify and address issues,
minimizing downtime and ensuring the reliability of your blockchain solution.

5.	 Continuously monitor and analyze the data collected from your blockchain nodes and
infrastructure, using the insights gained to optimize performance, identify and resolve issues,
and improve the overall efficiency and scalability of your blockchain solution.

By implementing effective monitoring and logging practices for blockchain solutions, we can ensure
optimal performance, reliability, and security while gaining valuable insights for continuous improvement.

Taking Amazon CloudWatch as an example, we can use it to collect and track metrics, collect and
monitor log files, set alarms, and automatically react to changes in Amazon Managed Blockchain
(AMB). We will talk about AMB in detail in Chapter 4. CloudWatch provides insights into the
blockchain network’s performance and activity, enabling operations teams to identify issues and
respond accordingly.

Here’s an example scenario: your team is monitoring the performance of a Hyperledger Fabric network on
AMB. You want to ensure that transaction processing times remain low and that the network is healthy.

You can set up CloudWatch to monitor metrics such as BlockHeight, SuccessfulTransac-
tionsPerSecond, and FailedTransactionsPerSecond. By tracking these metrics over
time, you can identify trends or spikes that may indicate problems.

If you notice a sudden increase in FailedTransactionsPerSecond, you can set up an alarm
in CloudWatch to notify your operations team. The team can then investigate the issue, which might
involve checking for smart contract errors, network configuration issues, or resource constraints.

You may also be concerned about the resources your AMB network is consuming, particularly CPU
and memory utilization, as they directly impact the cost and performance of your blockchain network.

Best practices for DevOps in cloud-native blockchain solutions 65

You can set up alarms in CloudWatch for when CPU utilization or memory usage goes above a certain
threshold for an extended period. These thresholds are determined based on historical usage patterns
and performance requirements.

Once an alarm is triggered, automated actions can be initiated, such as sending a notification to an
SNS topic that alerts the operations team. The team might respond by scaling the network resources,
optimizing chaincode, or investigating inefficient transactions.

These examples illustrate how Amazon CloudWatch, when utilized effectively, can enhance the monitoring
and management of AMB networks, ensuring they run smoothly, efficiently, and cost effectively.

Best practices for DevOps in cloud-native blockchain
solutions
There is no technology that can work automatically and magically without a proper culture and the
adoption of best practices. Organizations can improve collaboration between development and operations
teams, streamline development processes, and ensure a more efficient and effective deployment of
blockchain applications, by following a few recommendations:

•	 Foster a culture of collaboration: Encourage open communication and collaboration between
development and operations teams, breaking down silos and promoting a shared responsibility
for the success of your blockchain solutions.

•	 Automate as much as possible: Implement automation across the development life cycle,
including CI, CD, infrastructure provisioning, and monitoring. Automation helps to reduce
manual tasks, minimize the risk of human error, and ensure a more efficient and reliable
development process.

•	 Implement IaC: Use IaC tools to manage and provision infrastructure, ensuring consistency,
scalability, and version control across environments. IaC can help streamline infrastructure
management, reduce the risk of errors, and enable more efficient deployment of blockchain solutions.

•	 Leverage monitoring and logging tools: Utilize monitoring and logging tools to collect
and analyze data from your blockchain nodes and infrastructure. This will help to optimize
performance, identify and resolve issues, and provide insights for continuous improvement.

•	 Establish a branching strategy: Define a branching strategy for your code base that promotes
frequent integration of code changes and ensures that your CI/CD pipeline is triggered for
every code change. This helps to identify and fix integration issues early in the development
process, ensuring higher-quality software releases.

•	 Continuously improve: Encourage a culture of continuous learning and improvement, regularly
reviewing and refining your DevOps practices to ensure they remain effective and relevant as
your blockchain solutions evolve and grow.

DevOps for Cloud-Native Blockchain Solutions66

•	 Test rigorously: Implement thorough testing practices, including unit testing, integration testing,
and performance testing, to ensure the quality and reliability of your blockchain applications
and smart contracts.

•	 Prioritize security: Ensure that security is considered at every stage of the development process,
incorporating security best practices and tools to safeguard your blockchain applications and
infrastructure from potential threats.

•	 Keep documentation up to date: Maintain comprehensive and up-to-date documentation
for your blockchain applications, infrastructure, and DevOps processes. This will help to
ensure that all team members have a clear understanding of your solution and can collaborate
more effectively.

If we were to identify priorities in the adoption of DevOps best practices, the following three core
areas would define the implementation process as depicted in the following image:

Figure 3.5 – Best practices for DevOps

By following these best practices for DevOps in cloud-native blockchain solutions, organizations can
create a more collaborative environment, streamline development processes, and ensure more efficient
and effective deployment of blockchain applications.

Summary
This chapter showed how DevOps can enhance cloud-native blockchain solutions by speeding up
and ensuring development and deployment. We covered the benefits of introducing a robust DevOps
practice for the development of cloud-native blockchain solutions and described how DevOps can
lower deployment time and error risk, and improve the scalability, business continuity, and security
of a blockchain solution. We then went into the details of CI/CD and IaC tools for blockchain, which
is how to automate the build, test, and deployment of smart contracts, as well as how to configure and
deploy blockchain infrastructure. The final section focused on aspects of monitoring and logging,
with specific attention to blockchain nodes.

This chapter completes the first part of the book, dedicated to providing an introduction to cloud-native
blockchain. In Part 2, we’ll be looking at the technologies, best practices, and tools for deploying and
implementing blockchain solutions on AWS.

This part covers deploying and implementing blockchain solutions on AWS, including how to host a
blockchain network on Elastic Kubernetes Service, getting started with Amazon Managed Blockchain,
and using Amazon Quantum Ledger Database.

This part includes the following chapters:

•	 Chapter 4, Getting Started with Amazon Managed Blockchain

•	 Chapter 5, Hosting a Blockchain Network on Elastic Kubernetes Service

•	 Chapter 6, Building Records with Amazon Quantum Ledger Database

Part 2:
Deploying and Implementing
Blockchain Solutions on AWS

4
Getting Started with Amazon

Managed Blockchain

Building and managing a blockchain network can be challenging as it requires significant expertise and
resources to set up, configure, and maintain the network infrastructure and software. To address these
challenges, AWS offers Amazon Managed Blockchain (AMB), a fully managed service that enables
you to easily create and manage scalable blockchain networks using popular open source frameworks.

We will cover the following main topics in this chapter:

•	 Introduction to AMB

•	 Creating a managed blockchain network

•	 Inviting members and managing access

•	 Deploying and managing nodes

•	 Key considerations for security, scaling, and monitoring

•	 Building a tracking application

Technical requirements
To run the scripts presented in this chapter for provisioning a managed blockchain service on AWS, you
will need an AWS account and access to the AWS management console at https://console.aws.
amazon.com. If you do not have an AWS account, you can create one by following the instructions
on the AWS signup page: https://repost.aws/knowledge-center/create-and-
activate-aws-account.

All scripts are available in this book’s GitHub repository at https://github.com/PacktPub-
lishing/Developing-Blockchain-Solutions-in-the-Cloud.

https://console.aws.amazon.com
https://console.aws.amazon.com
https://repost.aws/knowledge-center/create-and-activate-aws-account
https://repost.aws/knowledge-center/create-and-activate-aws-account
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud

Getting Started with Amazon Managed Blockchain70

Introduction to AMB
AMB is a fully managed service that enables us to easily create and manage scalable blockchain networks
using popular open source frameworks such as Hyperledger Fabric and Ethereum. It streamlines the
process of setting up, managing, and scaling a blockchain network, allowing us to focus on building
our applications instead of the underlying infrastructure.

In this section, we will introduce the features and benefits of AMB, providing a foundation for
understanding how it can be used to build blockchain applications on AWS.

The features and benefits are illustrated in the following figure, and described in the following
two subsections:

Figure 4.1 – The features and benefits of AMB

Features of AMB

AMB provides several key features that make it an attractive choice for deploying blockchain solutions:

•	 Fully managed service: AMB takes care of the operational aspects of running a blockchain
network, such as provisioning hardware, configuring software, and managing network
resources. This allows us to focus on developing our applications without worrying about the
underlying infrastructure.

Introduction to AMB 71

•	 Scalable and reliable: The service is built on AWS infrastructure, which ensures high availability,
fault tolerance, and scalability. We can easily add or remove nodes to adjust the network capacity
as needed, and AMB will automatically replicate data across multiple availability zones for
redundancy and fault tolerance.

•	 Multiple blockchain frameworks: AMB supports popular blockchain frameworks, such as
Hyperledger Fabric and Ethereum, enabling us to select the framework that best suits our needs.

•	 Fine-grained access control: We can control access to our blockchain network by inviting
members and setting up permissions for them. This allows us to create a secure and private
environment for our blockchain applications.

•	 Monitoring and logging: AMB integrates with Amazon CloudWatch and AWS CloudTrail,
enabling us to monitor our blockchain network and access logs for troubleshooting and
auditing purposes.

Benefits of AMB

Using AMB for our blockchain applications offers several benefits:

•	 Simplified network management: The fully managed nature of the service allows us to focus
on building your applications while AMB takes care of the operational aspects of the network.

•	 Lower costs: By leveraging the AWS infrastructure, we can benefit from economies of scale
and pay only for the resources we use. This can result in lower costs compared to running a
blockchain network on-premises or on virtual machines.

•	 Increased security: AMB provides built-in security features, such as encryption at rest and
in transit, and integrates with other AWS services for additional security, such as AWS Key
Management Service (KMS) for key management and AWS Identity and Access Management
(IAM) for access control.

•	 Faster development and deployment: With AMB, we can easily set up a blockchain network
and start building our applications without the need for extensive knowledge of blockchain
infrastructure or network management.

Now that we have an understanding of the features and benefits of AMB, let’s move on to creating a
managed blockchain network on AWS.

Getting Started with Amazon Managed Blockchain72

Choosing a blockchain framework

AMB supports two popular blockchain frameworks: Hyperledger Fabric and Ethereum. Choosing
between them depends on the specific requirements of the application, the business context, and the
desired features. The following table provides a comparison between the two frameworks to help you
determine which might be more suitable for a given use case when operating within AWS:

Hyperledger Fabric Ethereum
Type of network Hyperledger Fabric is a permissioned

network, meaning that participants are
known and verified, which is often a
requirement for enterprise applications
that demand privacy and security.

Ethereum provides the flexibility
to build applications on a public
network (main net) or a private
network. This is suitable for decen-
tralized applications (dapps)
that might benefit from broader
network effects.

Transaction and
token handling

Hyperledger Fabric supports private
transactions and private data collec-
tions, which enable transactions that are
confidential between involved parties.

Ethereum supports a variety of token
standards, such as ERC-20 and
ERC-721, which are widely used for
creating fungible and Non-Fungible
Tokens (NFTs), respectively.

Consensus
mechanism

Fabric has a modular and customizable
architecture that allows for plug-and-
play components in consensus and
membership services. The consensus
mechanism in Fabric is not about
mining but rather about reaching an
agreement on the order of transactions
and ensuring consistency of the ledger.

Ethereum’s main net has used Proof
of Stake since the release of Ethereum
2.0. Private Ethereum networks on
AWS can use alternative consen-
sus mechanisms such as Proof of
Authority (PoA), which can be more
scalable and less resource-intensive.

Programmability Fabric uses chain code (smart contracts)
to encapsulate business logic, and it can
be written in general-purpose program-
ming languages such as Go, Java,
and Node.js.

Ethereum Virtual Machine
(EVM) is a powerful component of
Ethereum, allowing developers to
write smart contracts in languages
such as Solidity or Viper.

Introduction to AMB 73

Performance Generally, it offers higher transac-
tion throughput and faster consensus
algorithms, which are more suitable for
enterprise applications.

When operating a private Ethereum
network on AMB, performance can
be significantly improved by using
alternative consensus protocols such
as PoA, which are more suited to
permissioned environments and can
provide faster and more predictable
transaction validation times.

Use cases Fabric is best for B2B environments
such as supply chain, finance, and
healthcare where data privacy and
permissioned access are a priority.

Ethereum is ideal for applications
that require a decentralized network,
such as Decentralized Finance
(DeFi), open marketplaces, or where
tokenization is necessary.

Table 4.1 – Comparison between Hyperledger Fabric and Ethereum in AMB

When you’re deciding on one framework over the other, go through a list of requirements for the
solution being developed. For example, you might need to choose between decentralization and
centralization. If the application requires or benefits from a decentralized ecosystem with many
anonymous participants, Ethereum might be the best choice. For applications that require strict
privacy and known identities, Hyperledger Fabric is preferable.

How about the consensus mechanisms? Ethereum’s mainnet consensus mechanism (Proof of Stake)
is different from Fabric’s more flexible and less resource-intensive options, such as Raft or Kafka.

On the development ecosystem side, Ethereum has a vast array of tools, wallets, and dapps already
available, which can be advantageous if interoperability with existing systems is a requirement.

On the converse, when talking of compliance and data regulation, Hyperledger Fabric is often
better suited for applications with stringent data governance and compliance requirements due to its
permissioned nature.

Does the application need to issue tokens? If the application revolves around the creation and management
of tokens, Ethereum’s native support for tokens via ERC standards makes it a strong candidate.

In conclusion, both Ethereum and Hyperledger Fabric have distinct advantages and are supported
by AMB, which simplifies the setup and management of these networks. The choice between the two
should be guided by the specific requirements of the project, including factors such as the need for
privacy, the type of consensus mechanism, and the existing developer ecosystem.

Getting Started with Amazon Managed Blockchain74

Creating a managed blockchain network
In this section, we will cover the steps involved in creating a managed blockchain network on AWS.
We will discuss how to configure the network for optimal performance and choose the appropriate
consensus algorithm for our use case.

To get started with AMB, sign into the AWS management console (https://aws.amazon.com/
console/). Search for managed blockchain; you will see the Amazon Managed Blockchain
service at the top of the results, as shown in the following screenshot:

Figure 4.2 – Search results in the AWS console for managed blockchain

Now, follow these steps to provision the AMB service:

1.	 From the list of services in the search results, select Amazon Managed Blockchain; this will
open the configuration page for AMB.

2.	 Click on the Private networks tab and then the Create private network button in the AMB console:

Figure 4.3 – Creating a private network in the AMB console

https://aws.amazon.com/console/
https://aws.amazon.com/console/

Creating a managed blockchain network 75

3.	 Choose the blockchain framework you want to use for your network. We can choose between
Hyperledger Fabric and Ethereum. For this example, we will choose Hyperledger Fabric:

Figure 4.4 – Selecting Hyperledger Fabric as our blockchain framework

Configure the network settings:

	� Enter a network name that is unique and easily identifiable.

	� Choose a network description to provide additional context about the network’s purpose.

	� Select the Hyperledger Fabric edition. We can choose between the Starter edition, which
is suitable for development and testing, and the Standard edition, which is designed for
production environments.

4.	 Configure the network’s voting policy. This policy determines how decisions are made within the
network, such as adding or removing members. We can choose between the following options:

	� Simple majority: A proposal is approved if more than 50% of the members vote in favor

	� Super majority: A proposal is approved if more than a specified percentage of the members
vote in favor, such as 80% or 90%

Getting Started with Amazon Managed Blockchain76

We can specify the required percentage when configuring the policy:

Figure 4.5 – Configuring the network’s voting policy

5.	 Click on Next to proceed to the member configuration process.

6.	 Enter a unique name for the founding member of the network. This member will have the initial
administrative privileges and be able to invite other members to join the network:

Figure 4.6 – Member configuration for joining an existing AMB network

7.	 Click on Next to review the network configuration. It is still possible to make any necessary
changes by clicking on the Edit button next to each section.

8.	 Click on Create network and member to start the process of creating our AMB network.

Inviting members and managing access 77

The network creation process can take some time, typically around 30 minutes. We can monitor
its progress in the AMB console. Once the network has been created, we can proceed with inviting
members and managing access.

Inviting members and managing access
In this section, we will cover how to invite members to the blockchain network and manage their
access to the network. We will discuss setting up permissions for members and managing their access
to the network.

Inviting members to the network

To invite other members to join the network that we have previously deployed, we just need to follow
these steps:

1.	 In the AMB console, navigate to the Networks tab and select your network.

2.	 Click on the Members tab and then click on Propose invitation to create an invitation proposal:

Figure 4.7 – Inviting members to join an existing AMB network

3.	 Enter the AWS account ID of the member you want to invite. It is possible to invite multiple
members at once by entering their account IDs on multiple lines.

4.	 Click Create to send the invitation to the specified AWS account(s).

Getting Started with Amazon Managed Blockchain78

The invited member(s) will receive an invitation in their AMB console. They will need to accept the
invitation to join the network.

Managing member access and permissions

Once a member has joined the network, we can manage their access and permissions. In the AMB
console, navigate to the Members tab and select the member you want to manage.

We can perform the following actions:

•	 View member details: Review the member’s information, such as their AWS account ID, voting
policy, and network permissions:

Figure 4.8 – Reviewing member details in an existing AMB network

•	 Update the voting policy: Modify the member’s voting policy by clicking on Edit voting policy
and choosing a new policy.

•	 Remove member: Remove a member from the network by clicking on Remove member. Note
that this action is irreversible and will permanently remove the member and their associated
resources from the network.

•	 Manage peer nodes: Add, modify, or remove peer nodes associated with the member by
clicking on the Peer nodes tab.

•	 Create and manage channels: Create new channels for the member to participate in, or manage
existing channels by clicking on the Channels tab.

With members invited and their access managed, let’s move on to deploying and managing nodes on
the managed blockchain network.

Deploying and managing nodes
In this section, we will cover how to deploy and manage nodes on the managed blockchain network.
We will discuss adding and removing nodes and monitoring the health of the network.

Deploying and managing nodes 79

Adding a new node

To create a new node for a member in the deployed network, follow these steps:

1.	 In the AMB console, navigate to the Members tab and select the member for whom we want
to create a new node.

2.	 Click on the Peer nodes tab and then click Create node:

Figure 4.9 – Adding a new node for an existing member

Configure the new node:

	� Choose an instance type for the node based on the required performance and capacity

	� Select the availability zone where the node will be deployed

	� Configure any additional settings, such as custom domain names or VPC settings, as needed

3.	 Click on Create peer node to start the process of creating the new node.

The node creation process can take several minutes. We can monitor its progress in the AMB console.

Getting Started with Amazon Managed Blockchain80

Removing a node

To remove a node from a member in our network, follow these steps:

1.	 In the AMB console, navigate to the Members tab and select the member whose node we
want to remove.

2.	 Click on the Peer nodes tab and select the node to remove.

3.	 Click on Remove node and confirm the action. Note that this action is irreversible and will
permanently remove the node and its associated resources from the network.

Monitoring node health

AMB integrates with Amazon CloudWatch, allowing us to monitor the health and performance of
our nodes. We can create custom dashboards and set up alarms to receive notifications when specific
metrics reach predefined thresholds.

Here are some important metrics to monitor:

•	 CPU utilization: The percentage of the node’s CPU capacity being used

•	 Memory utilization: The percentage of the node’s memory being used

•	 Disk space utilization: The percentage of the node’s disk space being used

•	 Network traffic: The amount of data being sent and received by the node

By following the steps in this section, we can monitor the health and performance of our provisioned
nodes using Amazon CloudWatch. Let’s create a new dashboard in CloudWatch:

1.	 Log in to the AWS management console and navigate to the CloudWatch service.

2.	 In the CloudWatch console, go to the Dashboards section and create a new dashboard. Give
your dashboard a meaningful name that reflects its purpose:

Figure 4.10 – Creating a new CloudWatch dashboard

Deploying and managing nodes 81

3.	 Add widgets to your dashboard to display various AMB metrics. CloudWatch offers different
types of widgets, such as graphs, text, or numbers, to represent your data. For each widget,
select the AMB metrics you want to monitor. You can display metrics such as block height,
transaction rate, CPU utilization, memory usage, and more:

Figure 4.11 – Adding widgets to a CloudWatch dashboard

4.	 Customize each widget to display the data in the format you prefer (for example, a line chart,
stacked area chart, or bar chart). Set the appropriate time range and period for the metrics to
ensure you’re monitoring the data in real time or over a specific historical period.

Optionally, we can set up CloudWatch Alarms to receive a notification when certain thresholds
are breached. For example, we might want to receive an alert if the CPU utilization goes beyond a
certain percentage.

Besides the AWS console for creating a new CloudWatch dashboard, we can also utilize a script to
automate this process. This can be achieved by using a Python script and Boto3, the AWS SDK for
Python. This script assumes you have already configured your AWS credentials and have the necessary
permissions to create CloudWatch dashboards and access AMB metrics.

Getting Started with Amazon Managed Blockchain82

First, we need to install Boto3 if we’ve not done so already:

pip install boto3

Then, we must run a Python script to create a CloudWatch dashboard:

import boto3
import json

cloudwatch_client = boto3.client('cloudwatch')
dashboard_name = 'MyAMBDashboard'
dashboard_body = {
    "widgets": [
        {
            "type": "metric",
            "x": 0,
            "y": 0,
            "width": 12,
            "height": 6,
            "properties": {
                "metrics": [
                    ["AWS/ManagedBlockchain", "Invocations",
"NetworkId", "YourNetworkId", "MemberId", "YourMemberId"],
                    [".", "BlockHeight", ".", ".", ".", "."]
                ],
                "view": "timeSeries",
                "stacked": False,
                "region": "us-east-1",
                "stat": "Average",
                "period": 300
            }
        },
        # Add more widgets as needed
    ]
}

Create or update the dashboard
response = cloudwatch_client.put_dashboard(
    DashboardName=dashboard_name,
    DashboardBody=json.dumps(dashboard_body)
)

Deploying and managing nodes 83

In this script, we must do the following:

•	 Replace YourNetworkId and YourMemberId with our actual AMB network ID and
member ID

•	 Modify the metrics array within the widget to include the specific metrics we want to monitor

•	 Adjust the widget properties, such as x, y, width, height, and region, as per our requirements

•	 We can add more widgets by extending the widgets array

After creating the dashboard and its widgets, we can set up a CloudWatch alarm using – once again – a
Python script with the Boto3 library. Here is an example script that demonstrates how to create an alarm
in AWS CloudWatch. This alarm will trigger if a specified metric (for example, CPUUtilization)
for an AMB resource exceeds a certain threshold:

import boto3

cloudwatch_client = boto3.client('cloudwatch')
alarm_name = 'AMB_CPU_Utilization_Alarm'
namespace = 'AWS/ManagedBlockchain'
metric_name = 'CPUUtilization'
threshold = 70.0  # Set your threshold
evaluation_periods = 1
period = 300  # In seconds
statistic = 'Average'
comparison_operator = 'GreaterThanThreshold'
network_id = 'YourNetworkId'
member_id = 'YourMemberId'
alarm_description = 'Alarm when CPU exceeds 70%'
actions_enabled = False  # Set to True if you want to enable actions
like notifications
alarm_actions = []  # List of action ARNs (e.g., SNS topic ARN) if
actions are enabled

Creating the alarm
response = cloudwatch_client.put_metric_alarm(
    AlarmName=alarm_name,
    AlarmDescription=alarm_description,
    ActionsEnabled=actions_enabled,
    AlarmActions=alarm_actions,
    MetricName=metric_name,
    Namespace=namespace,
    Statistic=statistic,
    Dimensions=[
        {'Name': 'NetworkId', 'Value': network_id},

Getting Started with Amazon Managed Blockchain84

        {'Name': 'MemberId', 'Value': member_id}
    ],
    Period=period,
    EvaluationPeriods=evaluation_periods,
    Threshold=threshold,
    ComparisonOperator=comparison_operator
)

In this script, we must do the following:

•	 Replace YourNetworkId and YourMemberId with our actual AMB network ID and
member ID.

•	 Set the threshold to the value at which we want the alarm to trigger.

•	 Use evaluation_periods and period to define the time window for evaluating the metric.

•	 Use actions_enabled and alarm_actions to specify what actions the alarm should
trigger. For example, we might want to send a notification via Amazon SNS when the alarm
state is reached.

Now that we have CloudWatch integrated into AMB for monitoring the health of the service, we can
progress with setting up security and scaling options.

Key considerations for security, scalability, and
monitoring
In this section, we will highlight the key considerations for security, scalability, and monitoring when
using AMB. We will discuss best practices for securing and scaling the network, as well as how to
monitor the network for issues and take appropriate action.

Security considerations

When deploying and managing a blockchain network with AMB, consider the following security
best practices:

•	 Encryption: Ensure that data is encrypted both at rest and in transit. AMB automatically
encrypts data at rest using AWS KMS and supports encryption in transit using Transport
Layer Security (TLS).

•	 Access control: Use AWS IAM to control access to AMB resources. The best practice is to create
IAM policies that grant the least privilege necessary to users and roles.

Key considerations for security, scalability, and monitoring 85

•	 Network isolation: Isolate an AMB network from other networks using Amazon Virtual
Private Cloud (VPC) and VPC endpoints. This will help protect the AMB network from
unauthorized access.

•	 Auditing and logging: Enable AWS CloudTrail to log API activity for AMB resources. Don’t
forget to regularly review these logs to detect and respond to potential security incidents.

Scalability considerations

As our blockchain network grows and our application’s requirements evolve, we should consider the
following best practices for scaling our network:

•	 Add or remove nodes to adjust the number of nodes in our network to meet the demands of
our application. Adding nodes can help distribute the workload and improve the network’s
performance, while removing nodes can help reduce costs when they are no longer needed.

•	 Choose the right instance type to select the appropriate instance type for our nodes based on
the performance and capacity requirements of our application. AMB supports various instance
types with different levels of compute, memory, and storage resources.

•	 Optimize the consensus algorithm to choose the consensus algorithm that best meets the
needs of our application and network size. For example, RAFT is suitable for most use cases,
while Kafka is more appropriate for large networks with higher throughput requirements.

Monitoring considerations

Monitoring your AMB network is crucial for detecting and responding to issues promptly. Consider
the following best practices for monitoring your network:

•	 Use Amazon CloudWatch: Leverage Amazon CloudWatch to monitor key performance
and health metrics for the deployed nodes, such as CPU utilization, memory utilization, and
network traffic.

•	 Set up alarms: Configure CloudWatch Alarms to receive notifications when specific metrics
reach predefined thresholds. This can help developers proactively identify and address issues
before they impact the application.

•	 Monitor logs: Enable AWS CloudTrail to log API activity for AMB resources, and regularly
review these logs to detect potential issues or security incidents.

These key considerations on security, scalability, and monitoring provide us with a comprehensive
understanding of how to get started with AMB. We are now ready to build, deploy, and manage
blockchain applications on AWS. The next section describes a common use case for building a
traceability app and its reference architecture, both of which we can deploy on AMB.

Getting Started with Amazon Managed Blockchain86

Building a tracking application
Now that we have configured an instance of AMB and members, in this section, we’ll cover a practical
example of how we can build a decentralized application for tracking products on a supply chain. We’ll
use Hyperledger Fabric since we deployed that in the AMB instance seen in the previous sections of
this chapter.

Reference architecture

The supply chain of reference has two members only, for simplicity: a retailer, who has products
in-store and sells them to the public, and its supplier, who manufactures the products and ships them
to the retailer. The following diagram shows the AMB components in this solution:

Figure 4.12 – Tracking application solution components in AMB

The ordering service broadcasts new blocks of transactions to the nodes in Hyperledger Fabric. Each
participant in the supply chain leverages a certificate authority for managing the authorized access
to the network by registered members only. Hyperledger Fabric is a permissioned blockchain where
nodes have defined identities that must be registered on the network. Nodes are in separate availability
zones for high availability and failover purposes.

Network Setup

By following the steps described in the Creating a managed blockchain network section, let’s create
a new AMB instance called SupplyChain and add two members to it: retailer and supplier. The
retailer will be the first member to be added to the network. Once it’s been created, the retailer will
invite the supplier to join the network by following the steps described in the Inviting members and
managing access section.

Building a tracking application 87

The invite process will make use of an AWS CloudFormation script to facilitate the creation of the
necessary resources in AWS. The following YAML file shows the first few lines of a CloudFormation
script that deploys the necessary resources for the SupplyChain network. The full file is available
in the GitHub repository for this chapter:

AWSTemplateFormatVersion: 2010-09-09
Description: AMB member invitation acceptance template
Parameters:
    ...
Resources:
  Member:
    Type: AWS::ManagedBlockchain::Member

The script consists of two main sections:

•	 Parameters: This defines the AMB network parameters, including network ID, instance
type and size, the names of the members, and admin credentials

•	 Resources: This defines the member configuration details (instance type, availability zone,
and so on) of each peer node

Save this file as supplychain-amb.yaml, and then deploy the described resources by running
the aws cloudformation deploy command. The PeerNode1AZ and PeerNode2AZ
parameters identify the selected AWS region for deploying the two peer nodes:

aws cloudformation deploy --template-file supplychain-amb.yaml
--stack-name amb-supplier --parameter-overrides NetworkId=$NETWORKID
InvitationId=$INVITATIONID MemberName=Supplier AdminUsername=admin
AdminPassword=Admin123 PeerNode1AZ=us-east-1a PeerNode2AZ=us-east-1b
InstanceType=bc.t3.small

We can track the progress of the deployment in the CloudFormation service by watching the events’ progress
in the Events tab of the amb-supplier stack. Upon deployment, the output should look like this:

Figure 4.13 – Successfully deploying the AMB network in CloudFormation

The chaincode

Hyperledger Fabric can run chaincode to process business login on-chain. Chaincode is written
in JavaScript. For our SupplyChain example, we’ll write a product.js file that contains the
following code.

Getting Started with Amazon Managed Blockchain88

This chaincode verifies that data sent as input to the supply chain is correct before any action is taken.
It does so by defining an FSM object (Finite State Machine) to ensure that state transitions are valid:

const StateMachine = require('javascript-state-machine');
const FSM = new StateMachine.factory({
  init: 'manufactured',
  transitions: [
    { name: 'inspect', from: 'manufactured', to: 'inspected' },
    { name: 'ship', from: 'inspected', to: 'shipped' },
    { name: 'receive', from: 'shipped', to: 'stocked' },
    { name: 'label', from: 'stocked', to: 'labeled' },
    { name: 'sell', from: 'labeled', to: 'sold' },
    { name: 'goto', from: '*', to: function(s) { return s } }
  ]
});

Then, the chaincode implements the ProductsChaincode class to track the state of products in
the supply chain:

const ProductsChaincode = class {
  constructor(cid = shim.ClientIdentity) {
    this.clientIdentity = cid;
  }

  assertCanPerformTransition(stub, transition) {
    let requiredAffiliation = 'undefined';
    switch (transition) {
      case 'manufacture':
      case 'inspect':
      case 'ship': requiredAffiliation = 'Supplier'; break;
      case 'receive':
      case 'label':
      case 'sell': requiredAffiliation = 'Retailer';
    }
    this.requireAffiliationAndPermissions(stub, requiredAffiliation,
transition);
  }

This object also ensures that a product can transition from one state to another only when specific
conditions are met:

•	 The assertCanPerformOperation method determines which membership affiliations
are required for which operations

•	 It then calls the requireAffiliationAndPermissions method to check whether the
caller belongs to the specified blockchain member and has the specified permission

Building a tracking application 89

The core functionality of transitioning products in the supply chain is executed by the updateProd-
uctState method, which, as its name implies, updates an existing product as it moves through
the supply chain:

  async updateProductState(self, stub, args) {
    const productId = args[0];
    const transition = args[1];
    self.assertCanPerformTransition(stub, transition);
    const key = `product_${productId}`;
    const productDataBytes = await stub.getState(key);
    const productData = JSON.parse(productDataBytes.toString());
    const product = new FSM();
    product.goto(productData.state);
    product[transition]();
    productData.state = product.state;
    const now = new Date();
    productData.history = productData.history || {};
    productData.history[product.state] = now.toISOString();
    const stringProductData = JSON.stringify(productData);
    await stub.putState(key, Buffer.from(stringProductData));
    return stringProductData;
  }

Deployment

Next, we need to build the chaincode into a distribution package. As we need all peer nodes to be able
to access the same package and deploy it, a good and quick approach we can take for distribution is to
copy the package into a common S3 bucket in AWS. The following command packages the chaincode
into the supplychaincc.tar.gz archive file, and then uploads it to a shared S3 bucket identified
by the $BUCKET_NAME variable:

peer lifecycle chaincode package supplychaincc.tar.gz --path $HOME/
chaincode --lang node --label supplychaincc_1.0
sudo chmod 644 supplychaincc.tar.gz
aws s3api put-object --bucket $BUCKET_NAME --key supplychaincc.tar.gz
--body $HOME/supplychaincc.tar.gz --acl bucket-owner-full-control
sudo rm supplychaincc.tar.gz

Each member of the AMB network will be able to download the identical supplychaincc chaincode
package and install it into their respective peer nodes with the chaincode install command:

aws s3api get-object --bucket $BUCKET_NAME --key supplychaincc.tar.gz
$HOME/supplychaincc.tar.gz
peer lifecycle chaincode install supplychaincc.tar.gz
CORE_PEER_ADDRESS=$PEER2ENDPOINT peer lifecycle chaincode install
supplychaincc.tar.gz

Getting Started with Amazon Managed Blockchain90

The next deployment step is approval. Hyperledger Fabric requires that all nodes in a network
approve the deployment of chaincode. This can be accomplished with the chaincode approve-
formyorg command:

peer lifecycle chaincode approveformyorg -o $ORDERER --channelID
mainchannel --name supplychaincc --version 1.0 --sequence 1 --init-
required --package-id $SUPPLYCHAIN_CC_PACKAGE_ID --tls --cafile $HOME/
managedblockchain-tls-chain.pem

We can also use the chaincode checkcommitreadiness command to verify that the chaincode
has been approved by all members and is ready for its final commit to the network:

peer lifecycle chaincode checkcommitreadiness -o $ORDERER --channelID
mainchannel --name supplychaincc --version 1.0 --init-required
--sequence 1 --tls --cafile $HOME/managedblockchain-tls-chain.pem
--output json

Lastly, to make the chaincode executable on the network for each member, one member should commit
it using the chaincode commit command:

peer lifecycle chaincode commit -o $ORDERER --channelID mainchannel
--name supplychaincc --version 1.0 --sequence 1 --init-required --tls
--cafile $HOME/managedblockchain-tls-chain.pem

Our chaincode requires initialization. This can be achieved by running the chaincode invoke
command with the --isInit flag for the first time:

peer chaincode invoke -C mainchannel -n supplychaincc --isInit -c
'{"Args": ["init"]}' -o $ORDERER --cafile $HOME/managedblockchain-tls-
chain.pem --tls --waitForEvent

At this point, the chaincode has been published on the AMB network and can be operated. Likely, the
supply chain application will have a frontend for user interaction, which will consume the chaincode
for managing the state transition of products by all relevant and authorized parties.

Summary
This chapter introduced AMB, a service that simplifies the process of building, deploying, and
managing blockchain networks on AWS. We covered how to create a network, configure its settings,
and invite members. We also discussed how to deploy and manage nodes, as well as how to secure,
scale, and monitor the network. Finally, we provided some best practices for developing blockchain
applications on AWS using AMB.

In the next chapter, we will explore how to host a blockchain network on Elastic Kubernetes Service
in AWS.

Further reading 91

Further reading
•	 AMB documentation:

https://docs.aws.amazon.com/managed-blockchain/

•	 Get Started Creating a Hyperledger Fabric Blockchain Network Using Amazon Managed
Blockchain (AMB):

https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-
fabric-dev/managed-blockchain-get-started-tutorial.html

•	 Boto3 documentation:

https://boto3.amazonaws.com/v1/documentation/api/latest/index.
html

https://docs.aws.amazon.com/managed-blockchain/

https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-get-started-tutorial.html

https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-get-started-tutorial.html

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

5
Hosting a Blockchain Network
on Elastic Kubernetes Service

In this chapter, we will delve into the fascinating world of blockchain technology and cloud-based services,
focusing on the powerful combination of Elastic Kubernetes Service (EKS) and Hyperledger Fabric.

We will cover the following topics:

•	 Introduction to Hyperledger Fabric on EKS

•	 Creating an EKS cluster for hosting the Hyperledger Fabric blockchain

•	 Deploying a Hyperledger Fabric blockchain network on EKS

•	 Key considerations – Security, scaling, and monitoring

•	 Testing and troubleshooting a Hyperledger Fabric blockchain network on EKS

Technical requirements
Hosting a blockchain network on Amazon EKS involves a set of technical requirements and considerations
to ensure optimal performance, security, and scalability. The following requirements form a comprehensive
checklist for hosting a blockchain network on Amazon EKS:

•	 Understanding Amazon EKS and Kubernetes: Familiarity with the architecture of Amazon
EKS, including how it manages Kubernetes clusters and integrates with other Amazon Web
Services (AWS), as well as a fundamental understanding of Kubernetes concepts, including
pods, services, deployments, and stateful sets, is required

•	 AWS account and IAM configuration: An active AWS account is necessary to access Amazon
EKS and other related services and properly configured IAM roles for EKS, ensuring permissions
for creating and managing Kubernetes clusters and interacting with other AWS resources

Hosting a Blockchain Network on Elastic Kubernetes Service94

This chapter will expand on key concepts of network setup and configuration and the creation of an
EKS cluster. It’s important to have basic knowledge of how to operate in AWS for the configuration of
a Virtual Private Cloud (VPC) for hosting the EKS cluster, ensuring network isolation and security.
This will be achieved by introducing adequate subnetting within the VPC to separate resources and
manage traffic effectively, with the use of an Internet Gateway for external connectivity, especially
for public blockchain networks.

Introduction to Hyperledger Fabric on EKS
Amazon’s EKS is a service offered by AWS that allows users to manage Kubernetes. This service facilitates
the deployment, management, and scaling of applications that are containerized using Kubernetes.
EKS provides a solution that is secure, scalable, and highly available for hosting blockchain networks,
including but not limited to Hyperledger Fabric.

Hyperledger Fabric is a permission-based, modular, and extensible blockchain platform designed
for enterprise use. It supports smart contracts written in various languages and offers a customizable
consensus mechanism. This chapter focuses on hosting a Hyperledger Fabric network on EKS, but
the approach can be adapted for other blockchain platforms.

Architecture and components

At a high level, the software architecture of Hyperledger Fabric includes the following components:

Figure 5.1 – High-level components of Hyperledger Fabric

The key components together provide a solid platform for running solutions in a permission-based
blockchain network:

•	 Peer nodes: These are nodes that commit transactions and maintain the state and a copy of
the ledger. Peers can be endorsers, committing peers, or both.

•	 Ordering service: The component responsible for achieving consensus on the order of
transactions and packaging them into blocks.

•	 Chaincode: Business logic is implemented in chaincode (the Hyperledger term for smart
contracts) and is run by peers.

Introduction to Hyperledger Fabric on EKS 95

•	 Membership Service Provider (MSP): This component handles identity and membership
services, ensuring authenticated and authorized access to the network.

•	 Channels: Data partitioning mechanism that allows for a group of participants to create a
separate ledger of transactions.

Hyperledger Fabric supports private transactions and confidential contracts, unlike many blockchain
solutions. Its modular architecture allows network designers to plug in their preferred implementations
for components, which are optimized for a high transaction rate and low latency. The platform can
scale to a large number of nodes and transactions in a network, enriched by a query capability against
the state database.

In terms of integration with Kubernetes, Hyperledger Fabric enjoys the following features, which will
be expanded on in the next sections:

•	 Dynamic scalability: Kubernetes facilitates the dynamic scaling of the Fabric network

•	 Container orchestration: The efficient management of Fabric components (peers, orders, etc.)
as containerized applications.

•	 Resilience and high availability: Kubernetes ensures high availability of the Fabric network
with features such as self-healing and automated rollouts/rollbacks.

EKS provides a robust, scalable, and secure environment for containerized applications, and Hyperledger
Fabric offers a flexible and secure platform for building enterprise-grade blockchain applications. Their
integration can yield powerful solutions, combining the efficiency and scalability of Kubernetes with
the security and flexibility of Hyperledger Fabric.

The next sections will expand on the strong characteristics of the integration of Hyperledger Fabric
with EKS.

Dynamic scalability

Dynamic scalability refers to the ability of the system to automatically adjust its resources to meet
changing demands. In the context of Hyperledger Fabric on EKS, this means the capability to scale
the blockchain network components up or down based on the workload.

The following figure shows a four-step flow of operations that will enhance the scalability of a
Hyperledger Fabric setup in EKS:

Hosting a Blockchain Network on Elastic Kubernetes Service96

Figure 5.2 – Steps to enhance dynamic scalability of Hyperledger Fabric in EKS

These steps can be summarized as follows:

1.	 Kubernetes can automatically increase or decrease the number of peer and order-placing nodes
in a Hyperledger Fabric network. This is typically managed through Kubernetes Horizontal
Pod Autoscaler (HPA), which adjusts the number of pod replicas based on CPU utilization
or other select metrics.

2.	 As the demand for different channels or chaincodes varies, Kubernetes can dynamically allocate
resources to maintain optimal performance.

3.	 EKS ensures the optimal usage of underlying AWS resources, helping to manage costs and
performance effectively.

4.	 EKS can distribute network traffic across various nodes evenly, ensuring that no single node
becomes a bottleneck.

To give a tangible example, think about how a financial blockchain application for cross-border
payments may have transaction volumes that can vary dramatically. During high transaction periods,
such as fiscal year-ends or during significant global events, the network can automatically scale to
handle the increased load, ensuring smooth and uninterrupted transaction processing.

In supply chain management, there might be times, such as holiday seasons or product launches,
when tracking activities surge significantly in the supply chain network. EKS can dynamically scale the
Hyperledger Fabric network to handle the increased tracking and verification requests, maintaining
the performance and responsiveness of the system.

One more example in healthcare data management is where the demand for data access and recording
can fluctuate, especially during public health crises. A Hyperledger Fabric network on EKS can adjust
its capacity to handle these fluctuations, ensuring that patient data is consistently and quickly accessible
to authorized individuals.

In each of these examples, the key benefit of using Hyperledger Fabric on Amazon EKS is its ability
to respond to varying loads with minimal manual intervention, ensuring that the blockchain network
remains efficient, cost-effective, and highly available.

Later in this chapter, we’ll see an example of a script template that can be used to introduce dynamic
scalability in our deployed Hyperledger Fabric network on EKS.

Introduction to Hyperledger Fabric on EKS 97

Container orchestration

The orchestration of the containers of Hyperledger Fabric using EKS involves managing the deployment,
scaling, and operation of Hyperledger Fabric components within the Kubernetes ecosystem. The
following figure summarizes the five key components to consider for Hyperledger Fabric container
orchestration using EKS:

Figure 5.3 – Key components of container orchestration for Hyperledger Fabric with EKS

Let’s elaborate on these key components:

•	 Peers, order placers, and Certificate Authorities (CAs): These are the core components that
are containerized and managed as Kubernetes pods.

•	 Chaincode: This is the equivalent of smart contracts in Hyperledger Fabric; it is code deployed
and executed within Docker containers and managed by peer nodes.

•	 ConfigMaps and secrets: These are used for storing and managing configuration data and
sensitive information such as credentials.

•	 Persistent volumes: This ensures data persistence for blockchain ledgers and state databases
(CouchDB or LevelDB).

•	 Network policies: These define how pods communicate with each other, enhancing network security.

Returning to the example in a financial transaction network, imagine a scenario where a multinational
bank deploys a Hyperledger Fabric network on EKS for processing international transactions. A
potential implementation may consider that peer and order-placing nodes be entirely containerized
and managed through EKS, ensuring high availability and scalability. During peak transaction
periods, EKS automatically scales up the resources to handle increased loads, maintaining transaction
processing efficiency.

In a supply chain tracking platform, a global supply chain company uses Hyperledger Fabric on
EKS to track the movement of goods in real time. Each step in the supply chain is recorded on the
blockchain. The implementation of such a solution may look at Kubernetes for orchestrating the entire
network and managing numerous peer nodes deployed worldwide. EKS ensures data consistency and
availability, even with the dynamic nature of supply chain logistics.

Hosting a Blockchain Network on Elastic Kubernetes Service98

A third example in healthcare data management, specifically a healthcare consortium that implements
a Hyperledger Fabric network on EKS for secure and confidential patient data sharing, would
implement EKS to manage the deployment of Fabric’s components, handling sensitive patient data
with strict privacy controls. The system would scale as per the incoming data traffic, ensuring the
efficient management of large volumes of healthcare data.

As we can appreciate, in each of these examples, the integration of Hyperledger Fabric with Amazon
EKS offers significant advantages in terms of scalability, reliability, and operational efficiency. The
container orchestration capabilities of EKS ensure that the Fabric network can dynamically adapt to the
specific demands of various real-world applications, from financial services to government operations.

Later in this chapter, when deploying a Hyperledger Fabric network on EKS, we will look at specific
script templates to automate the deployment and orchestration of the relevant containers.

Resilience and high availability

Resilience and high availability are critical aspects of deploying Hyperledger Fabric on EKS. This
approach ensures that the blockchain network remains operational and robust against various types
of failures, including hardware malfunctions, network issues, and unexpected surges in demand.
The following figure depicts critical capabilities for enhancing the resilience and high availability of
Hyperledger Fabric on EKS:

Figure 5.4 – Capabilities for enhancing the resilience and high availability of Hyperledger Fabric

For a start, EKS supports deployment across Availability Zones (AZ). Deploying the EKS cluster
across multiple AZs in AWS ensures that the failure of one AZ doesn’t impact the blockchain network.
This multi-AZ approach provides redundancy and high availability.

Introduction to Hyperledger Fabric on EKS 99

EKS can also automatically detect and replace unhealthy nodes (peer nodes, order-placing nodes, etc.)
in the Hyperledger Fabric network. This Kubernetes’ self-healing mechanisms ensure minimal downtime.

A critical capability is Elastic Load Balancing (ELB): ELB can distribute incoming network traffic
across multiple instances of Hyperledger Fabric’s components, preventing any single instance from
being overwhelmed.

One last comment about storage comes in two flavors: first, reliable data storage can be delivered by
integrating AWS services such as Elastic Block Store (EBS) and Elastic File System (EFS). Even if a
peer node fails, the ledger data remains intact. Secondly, we may want to implement automated backups,
that is, regular backups of the blockchain state using AWS backup, for enhanced data resilience.

Specific script examples are provided later in this chapter to configure high availability for a Hyperledger
Fabric implementation in EKS.

Going back to our real-world examples, how can we improve the high availability of a global trade
finance platform that uses Hyperledger Fabric on EKS for processing international trade transactions?
In this scenario, the EKS cluster would be spread across multiple AZs, ensuring that the trade finance
transactions continue smoothly even if one AZ faces an outage. Regular data backups and automatic
failover mechanisms ensure data integrity and continuous operation.

As seen before, the retail supply chain solution uses Hyperledger Fabric on EKS to manage its supply
chain and inventory. The network’s high availability would ensure the uninterrupted tracking of goods
across different geographical locations. In case of a node failure, Kubernetes’ self-healing capabilities
quickly restore the service with minimal disruption.

The last example is for a healthcare data exchange made of a consortium of hospitals that implement
a blockchain network on EKS for secure and confidential patient data exchange. In this case, the
implementation of EKS would automatically handle node failures, ensuring that patient data is always
accessible. ELB efficiently manages traffic during peak times, such as during health crises, ensuring
system responsiveness.

In each of these examples, the combination of Hyperledger Fabric with Amazon EKS offers a robust
and resilient infrastructure crucial for maintaining continuous operations in critical applications such
as finance, healthcare, and supply chain management. The ability of EKS to provide high availability,
along with its self-healing and load-balancing capabilities, makes it an ideal choice for hosting
enterprise-grade blockchain networks.

Now that we have understood the value that EKS adds to a blockchain solution, and specifically to an
implementation of Hyperledger Fabric, let’s progress to the next section to understand the creation
of an EKS cluster for hosting a Hyperledger Fabric blockchain.

Hosting a Blockchain Network on Elastic Kubernetes Service100

Creating an EKS cluster for hosting the Hyperledger Fabric
blockchain
Creating an Amazon EKS cluster to host a Hyperledger Fabric network involves several steps, from
setting up the AWS Command-Line Interface (CLI) and EKS CLI to configuring the Kubernetes
cluster itself. Step-by-step, let’s complete the following tasks using an active AWS account:

1.	 Install and configure the AWS CLI with a user that has the necessary permissions, which
are AmazonEKSAdminPolicy, AmazonEC2FullAccess, IAMFullAccess,
AmazonS3FullAccess, and AmazonVPCFullAccess. The latest version of the AWS
CLI for your platform (Windows, macOS, or Linux) can be found here: https://docs.
aws.amazon.com/cli/latest/userguide/getting-started-install.html.

2.	 Install eksctl, a simple CLI tool for creating clusters on EKS. It simplifies much of the cluster
creation process. Instructions on how to install eksctl can be found here: https://github.
com/eksctl-io/eksctl.

3.	 Create an IAM role that EKS can assume to create AWS resources for Kubernetes clusters.
This is typically handled by eksctl automatically but can also be done manually through the
AWS Management Console by opening the IAM console at https://console.aws.
amazon.com/iam.

4.	 Use eksctl to create an EKS cluster. This command creates a cluster with all the default settings,
including default node types and counts. Don’t forget to specify the region of preference after
the --region parameter:

eksctl create cluster --name my-hlf-cluster --version 1.21
--region us-west-2 --nodegroup-name my-nodes --node-type
t3.medium --nodes 3 --nodes-min 1 --nodes-max 4 --managed

More specifically, the parameters for the create cluster command are the following:

	� --name: The name of the EKS cluster

	� --version: Kubernetes version

	� --region: The AWS region for the EKS cluster

	� --nodegroup-name: The name of the node group

	� --node-type: The type of EC2 instances for the nodes being deployed in the cluster

	� --nodes: The initial number of nodes

	� --nodes-min: The minimum number of nodes to allocate (for auto-scaling)

	� --nodes-max: The maximum number of nodes allowed (for auto-scaling)

	� --managed: Specifies that we are creating a managed node group.

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://github.com/eksctl-io/eksctl
https://github.com/eksctl-io/eksctl
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam

Deploying a Hyperledger Fabric blockchain network on EKS 101

5.	 After the cluster is created, we need to configure kubectl and enable cluster communication.
This command updates the kubeconfig on the virtual machine to use the new EKS cluster:

aws eks --region us-west-2 update-kubeconfig --name my-hlf-
cluster

At this point, the EKS cluster is ready; it may take a few minutes for the resources to actually be ready.
Communication is enabled. In the next section, we’ll focus on the steps to deploy Hyperledger Fabric
in the EKS cluster that we have just created.

Deploying a Hyperledger Fabric blockchain network on
EKS
Now that the EKS cluster is set up, we can start deploying the Hyperledger Fabric components. This
involves preparing the relevant Docker images for Fabric components for the peers, order-placing, and
CA nodes. The official Hyperledger Fabric images can be obtained at https://hyperledger-
fabric.readthedocs.io/en/release-2.2/install.html.

In addition to creating the Kubernetes deployments and services for each component, we will also
need to set up persistent storage for data persistence, ideally using AWS EBS or EFS.

Persistent Storage

Setting up persistent storage for a Hyperledger Fabric network in Amazon EKS using EBS involves
creating Persistent Volumes (PVs) and Persistent Volume Claims (PVCs) in a Kubernetes cluster.
This setup ensures data persistence for key components such as peers, order-placing, and CAs nodes
across any restarts and failures.

First, we need to manually create an EBS volume in the same AWS region as the EKS cluster or use dynamic
provisioning with a StorageClass. For dynamic provisioning (the recommended approach), we can define
a StorageClass specifically for EBS and then create PVCs that automatically provision EBS volumes.

To define a StorageClass for dynamic storage provisioning, create a file named ebs-storageclass.
yaml with the following content:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: ebs-gp2
provisioner: kubernetes.io/aws-ebs
parameters:
  type: gp2

https://hyperledger-fabric.readthedocs.io/en/release-2.2/install.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/install.html

Hosting a Blockchain Network on Elastic Kubernetes Service102

  fsType: ext4
reclaimPolicy: Retain
allowVolumeExpansion: true

This StorageClass specifies the use of the gp2 volume type (general purpose SSD) and sets the
reclaimPolicy to Retain, meaning the volume will be retained after the PVC is deleted.

We’ll then use kubectl to apply this StorageClass:

kubectl apply -f ebs-storageclass.yaml

For each Hyperledger Fabric component requiring persistent storage (e.g., peers and order placers),
we now need to create a PVC. Here’s an example PVC for a Fabric peer:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: peer0-pvc
spec:
  accessModes:
    - ReadWriteOnce
  storageClassName: ebs-gp2
  resources:
    requests:
      storage: 10Gi

This PVC requests a 10 GiB volume using the ebs-gp2 StorageClass created earlier.

Additionally, in this case, we will use kubectl to apply this PVC:

kubectl apply -f peer0-pvc.yaml

When deploying Hyperledger Fabric components as pods, we can reference the PVC for their storage
requirements. The following YAML snippet is an example of a peer deployment. This configuration
mounts the EBS-backed persistent volume at /var/hyperledger/production in the peer
container, ensuring that ledger data are stored in the persistent volume:

volumes:
  - name: peer-storage
    persistentVolumeClaim:
      claimName: peer0-pvc
containers:
  - name: peer
    image: hyperledger/fabric-peer:latest

Deploying a Hyperledger Fabric blockchain network on EKS 103

    volumeMounts:
    - mountPath: /var/hyperledger/production
      name: peer-storage

We can now progress to the next section and set up the Hyperledger Fabric components.

Fabric components

With the StorageClass and PVCs defined and the deployment configurations updated to use these
PVCs, we can now deploy the Hyperledger Fabric components on EKS. The EBS volumes will be
automatically provisioned and attached to the pods requiring persistent storage.

Setting up and orchestrating a Hyperledger Fabric network on EKS involves several steps, including
creating Kubernetes manifests for each component of the Fabric network (such as peers, order placers,
and certificate authorities). The following is a basic example to illustrate how we might set up a simple
peer node in a Hyperledger Fabric network using a Kubernetes deployment and service manifest.

Let’s start by downloading the deployment and service YAML configurations in the hlf-peer-
deployment.yaml and hlf-peer-service.yaml files from the GitHub repository for this
chapter. The files are too long to reproduce in line in this chapter.

We will use kubectl to deploy the peer node with the following bash commands:

kubectl apply -f hlf-peer-deployment.yaml
kubectl apply -f hlf-peer-service.yaml

The deployment file makes use of the latest available version of a Docker image hyperledger/
fabric-peer:latest. A few environment variables, such as CORE_PEER_ID and CORE_
PEER_ADDRESS, also need to be set according to the specific network configuration.

Creating an EKS cluster for Hyperledger Fabric is just the beginning. The real challenge (and fun!)
comes with managing, scaling, and ensuring the security of the network as you start deploying
chaincode and handling transactions.

Remember, orchestrating a Hyperledger Fabric network on EKS can get complex, especially as we
scale up the network, add more organizations, or implement advanced features such as channel
participation and chaincode deployment. It is essential to thoroughly understand both Kubernetes
and Hyperledger Fabric to manage such a deployment effectively.

In the next section, we will have a look at a few of these key management considerations, specifically
about security, high availability, and scalability.

Hosting a Blockchain Network on Elastic Kubernetes Service104

Common deployment challenges

Deploying a Hyperledger Fabric blockchain network on EKS offers a robust platform for blockchain
applications. However, the process can present challenges, especially concerning network setup,
configuration, and management. The following table presents some common deployment challenges
and their solutions:

Challenge Problem Solution
Managing
cryp-
tographic
materials

Hyperledger Fabric requires
a meticulous setup of cryp-
tographic materials for
peers, order placers, and
CAs. The mismanagement
of these materials can lead
to security vulnerabilities or
network failure.

Utilize Hyperledger Fabric CA to streamline the
generation, renewal, and revocation of certificates.
Store cryptographic materials securely using
Kubernetes Secrets and automate their deploy-
ment and rotation to minimize human error.
Implement strict access controls and auditing to
track the use of these materials.

Network
configura-
tion
and channel
setup

Configuring the network and
setting up channels can be
complex, requiring precise
co-ordination between
different network members
and careful management of
configuration files.

Use comprehensive scripts or automation tools
such as Ansible, Helm charts, or Kubernetes
operators, which are specifically designed for
Hyperledger Fabric to automate the deployment
and configuration of network components. Ensure
that configuration files are version-controlled and
reviewed for accuracy before deployment.

Persistent
storage for
ledger data

Blockchain applications
require persistent storage
to maintain the ledger
and state data. Kubernetes
pods are ephemeral, which
could lead to data loss if not
properly managed.

Implement PVCs in Kubernetes for ledger storage,
ensuring data persists across pod restarts and
updates. Choose a reliable storage class that
matches your performance and redundancy
requirements, such as Amazon EBS volumes for
stateful data.

Network
scalability
and
performance
tuning

As the network grows, it
may face scalability issues,
with increased transac-
tion volumes leading to
performance bottlenecks.

Monitor network performance regularly using
tools such as Prometheus and Grafana. Scale
resources vertically (upgrading existing resources)
or horizontally (adding more peers/order placers)
based on the observed load. Use Kubernetes HPA
to scale your components automatically. Optimize
chaincode for efficiency and evaluate channel
architecture to distribute load effectively.

Key considerations – Security, scaling, and monitoring 105

Ensuring
high availa-
bility
and disaster
recovery

Downtime in a block-
chain network can disrupt
operations, while data
loss can compromise the
network’s integrity.

Deploy multi-zone Kubernetes clusters to ensure
high availability of the Hyperledger Fabric
network. Use StatefulSets for stateful applica-
tions such as Fabric peers and order placers to
manage pod identity and storage across restarts.
Implement backup and recovery procedures for
blockchain data and configurations, leveraging
cloud storage solutions for backups.

Network
security and
access control

Ensuring the security of the
blockchain network and
controlling access to sensitive
operations and data is critical.

Use Kubernetes network policies to control
traffic flow between pods and enforce least
privilege access. Integrate Hyperledger Fabric’s
built-in access control features with Kubernetes
Role-Based Access Control (RBAC) to manage
permissions for different network participants.
Encrypt data in transit using TLS certificates and
data at rest using Kubernetes Secrets.

Table 5.1 – Challenges to and solutions for the deployment of Hyperledger Fabric in EKS

Deploying and managing a Hyperledger Fabric network on EKS requires careful planning and attention
to detail. By addressing common challenges with thoughtful solutions, organizations can build secure,
scalable, and resilient blockchain solutions that leverage the best of Kubernetes and Hyperledger Fabric.

Key considerations – Security, scaling, and monitoring
When hosting a Hyperledger Fabric network on EKS, consider the following best practices for
improving the security posture and business continuity of the solution. Specifically, let’s look at best
practices for security, high availability, and scalability.

Enterprise deployments

Before we dive into each aspect from a configuration perspective, let’s analyze a few real-world examples
that demonstrate how these considerations are addressed in enterprise deployments.

Security in Hyperledger Fabric – Trade finance platform by we.trade

we.trade is a blockchain-based trade finance platform developed by a consortium of banks to simplify
and secure international trade transactions for SMEs. The platform leverages Hyperledger Fabric to
manage, track, and protect trade transactions between buyers, sellers, and banks.

Hosting a Blockchain Network on Elastic Kubernetes Service106

The key security measures put in place in the Hyperledger Fabric deployment are the following:

•	 Private channels: we.trade uses Hyperledger Fabric’s private channels to ensure transaction
privacy between trading parties, enabling the confidential and secure exchanges of information.

•	 MSP: The platform utilizes Fabric’s MSP for robust identity management, ensuring that only
authorized users can access the network and perform transactions, significantly reducing the
risk of fraud and unauthorized access.

•	 Smart contract security: we.trade implements comprehensive smart contract (chaincode)
security practices, including thorough testing and code reviews to prevent vulnerabilities and
ensure that business logic is accurately and securely executed.

The we.trade case study by IBM is available at this URL: https://www.ibm.com/case-
studies/wetrade-blockchain-fintech-trade-finance.

High availability in Hyperledger Fabric – The Food Trust Network by IBM

IBM’s Food Trust Network is a blockchain solution that provides traceability in the food supply
chain, enhancing food safety and reducing waste. It’s built on Hyperledger Fabric and involves various
stakeholders, including producers, wholesalers, retailers, and regulators.

High-availability measures have been put in place for the following critical areas:

•	 Multi-region Kubernetes clusters: To ensure high availability, the Food Trust Network is
deployed across multiple geographic regions using Kubernetes clusters. This setup protects
against regional outages, ensuring the network remains operational.

•	 Replicated ordering service: The network uses a replicated ordering service, ensuring that
even if one instance fails, transaction ordering can continue without interruption, which is
critical for maintaining continuous network operations.

•	 Disaster recovery plan: IBM’s Food Trust Network has a comprehensive disaster recovery plan,
including regular backups and a strategy for rapid restoration in case of significant failures,
ensuring data integrity and minimal downtime.

The Food Trust Network case study by IBM is available at this URL: https://www.ibm.com/
products/supply-chain-intelligence-suite/food-trust

Scalability in Hyperledger Fabric – TradeLens by Maersk and IBM

TradeLens was a global trade digitization platform powered by blockchain technology, developed
jointly by Maersk and IBM. The platform facilitated secure and transparent container logistics, making
it possible for all trading partners to collaborate efficiently.

https://www.ibm.com/case-studies/wetrade-blockchain-fintech-trade-finance
https://www.ibm.com/case-studies/wetrade-blockchain-fintech-trade-finance
https://www.ibm.com/products/supply-chain-intelligence-suite/food-trust

https://www.ibm.com/products/supply-chain-intelligence-suite/food-trust

Key considerations – Security, scaling, and monitoring 107

A few scalability measures were applied to reach a global market:

•	 Horizontal scaling: TradeLens was designed to scale horizontally by adding more peers to
the network to handle the increased load, leveraging Kubernetes for dynamic scaling based
on demand.

•	 Partitioning and channel strategy: To manage scalability, TradeLens employed a smart
partitioning strategy, using channels to segregate transactional data among different participants
and ensure that the network can efficiently handle a large volume of transactions without
performance degradation.

•	 Performance optimization: The platform focuses on chaincode performance optimization,
ensuring that smart contracts execute efficiently to handle high transaction throughput, which
is vital for the scalability of the network.

While TradeLens successfully developed a viable platform based on Hyperledger Fabric, unfortunately,
the need for full global industry collaboration was not achieved. As a result, TradeLens did not reach
the level of commercial viability necessary to continue operations and meet financial expectations.
The business was shut down in 2023. More information can be found in this article: https://www.
maersk.com/news/articles/2022/11/29/maersk-and-ibm-to-discontinue-
tradelens.

These real-world examples demonstrate how enterprises deploying Hyperledger Fabric can address
the critical considerations of security, high availability, and scalability. By leveraging Hyperledger
Fabric’s features, such as private channels for security, support for multi-region deployments for high
availability, and strategies for horizontal scaling and performance optimization, enterprises can build
blockchain solutions that meet the demanding requirements of large-scale, mission-critical applications.

Security

From an infrastructure perspective, a strong good practice is to use network policies to isolate and
secure communication between components.

At the application level, we may want to protect sensitive data, such as certificates and keys with
Kubernetes secrets, and implement RBAC for managing permissions.

However, this is just scraping the surface of a robust security practice. Securing a Hyperledger Fabric
deployment on EKS involves multiple layers of security, including network configurations, access
controls, data encryption, and operational security practices. The security onion in the following
figure describes the multiple layers of security to implement:

https://www.maersk.com/news/articles/2022/11/29/maersk-and-ibm-to-discontinue-tradelens
https://www.maersk.com/news/articles/2022/11/29/maersk-and-ibm-to-discontinue-tradelens
https://www.maersk.com/news/articles/2022/11/29/maersk-and-ibm-to-discontinue-tradelens

Hosting a Blockchain Network on Elastic Kubernetes Service108

Figure 5.5 – The security onion

Here’s a comprehensive approach to hardening an Hyperledger Fabric network:

•	 Network security: Utilize the Amazon VPC Container Network Interface (CNI) plugin for
Kubernetes to assign VPC IP addresses to Kubernetes pods, enabling the use of VPC security
groups and network ACLs to control pod traffic.

Define Kubernetes network policies to control the flow of traffic between pods within the
EKS cluster, ensuring that only authorized services can communicate with the Hyperledger
Fabric components.

Configure the EKS cluster for private access, ensuring that the Kubernetes API endpoint is not
accessible from the internet. Use VPC endpoints and VPN connections for administrative access.

•	 Cluster-level security: Assign fine-grained roles to the Kubernetes pods using IAM Roles for
Service Accounts (IRSAs) to limit the AWS permissions that applications can use, reducing
the risk of unauthorized access to AWS resources.

Enable logging for the EKS cluster control plane, including audit and API logs, to monitor and
record all activities. Use Amazon CloudWatch Logs for storage and analysis.

•	 Node security: Use the latest Amazon Machine Images (AMIs) for worker nodes to ensure
they include the latest security patches, and regularly update the EKS clusters and worker nodes
to the latest versions to benefit from security fixes.

Key considerations – Security, scaling, and monitoring 109

•	 Data security: Encrypt all data at rest by using Kubernetes secrets to manage sensitive information
such as credentials and config files. For enhanced security, encrypt secrets using the AWS Key
Management Service (KMS).

Ensure that the EBS volumes used by Hyperledger Fabric components are encrypted using
AWS KMS.

Encrypt data in transit by enabling Transport Layer Security (TLS) for all communication
within the Hyperledger Fabric network. This includes peer-to-peer communications, client
applications communicating with the network, and communication between services such as
CA, order placers, and peers.

Use AWS Certificate Manager (ACM) or your own public key infrastructure (PKI) to manage
certificates for TLS.

•	 Hyperledger Fabric security: Utilize Hyperledger Fabric’s Certificate Authority for issuing
and managing identities within your Fabric network. Ensure that identities are issued based
on strong authentication practices.

Security best practices include regularly auditing the production environment using tools such as AWS
Security Hub, Amazon Inspector, and third-party Kubernetes security solutions to ensure compliance
with security best practices and standards. Implement a comprehensive backup and disaster recovery
plan for your Hyperledger Fabric data stored on EBS volumes and other persistent storage options.

High availability

Configuring resilience and high availability for a Hyperledger Fabric network in EKS involves several
Kubernetes concepts such as multi-AZ deployments, pod disruption budgets, liveness and readiness
probes, and persistent storage. The following figure is a conceptual illustration that demonstrates how
these can be configured:

Figure 5.6 – Techniques for ensuring high availability and resilience

Hosting a Blockchain Network on Elastic Kubernetes Service110

With multi-AZ deployments, we can ensure that the EKS cluster spans multiple availability zones for
higher availability that is not dependent on a single deployment zone. This is part of the EKS cluster
setup and can be specified during the cluster creation phase in AWS.

Persistent storage using StatefulSets and PVs ensures that each peer node has its own persistent
storage, which is crucial for maintaining the state and data of the blockchain.

Liveness and readiness probes help Kubernetes determine whether a peer container is alive and
ready to accept traffic, ensuring that unhealthy containers are restarted and don’t impact network
performance. A liveness probe can be configured with a YAML script as follows. The probe, after a
15-second initial delay (initialDelaySeconds variable), will ping (peer node status
command) the peer node every 20 seconds (periodSeconds variable):

   livenessProbe:
     exec:
       command:
       - sh
       - -c
       - peer node status
     initialDelaySeconds: 15
     periodSeconds: 20

A Pod Disruption Budget (PDB) ensures that a certain number of pods are always running, even
during maintenance and updates. In this case, a simple YAML configuration will suffice for defining
the minimum number of pods (minAvailable variable):

   apiVersion: policy/v1beta1
   kind: PodDisruptionBudget
   metadata:
     name: hlf-peer-pdb
   spec:
     minAvailable: 1
     selector:
       matchLabels:
         app: hlf-peer

The last characteristic, load balancing and traffic management, will use a LoadBalancer-type
Kubernetes service for distributing external traffic to peer nodes evenly.

These best practices and the relevant code snippets, when presented, provide a foundational guide to
setting up a resilient and highly available Hyperledger Fabric network on EKS. However, deploying
such a system in a production environment requires careful planning, thorough testing, and continuous
monitoring to ensure it meets the necessary performance and reliability standards.

Key considerations – Security, scaling, and monitoring 111

Scaling

Configuring dynamic scalability in EKS, especially for a specific application such as Hyperledger
Fabric, involves a few steps. First, we need to set up a HPA, which automatically scales the number of
pod replicas in a Kubernetes Deployment or ReplicaSet based on observed CPU utilization or other
select metrics. The following script demonstrates how to configure HPA for a Kubernetes deployment,
which could be part of a Hyperledger Fabric network:

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
  name: hlf-peer-autoscaler
  namespace: hyperledger
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: hlf-peer
  minReplicas: 1
  maxReplicas: 5
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 50

This script sets up an HPA named hlf-peer-autoscaler that targets a deployment named
hlf-peer. It specifies that the number of replicas should be between 1 and 5, scaling up when the
average CPU utilization exceeds 50%.

Adjust the minReplicas, maxReplicas, and averageUtilization values based on the
specific needs of the solution and performance observations. It’s also important that the pods’ resource
requests (and limits, optionally) are set in their deployment configuration, as HPA uses these to make
scaling decisions. If you have custom metrics or more sophisticated scaling requirements, you might
need to configure additional metric sources and modify the HPA configuration accordingly.

Save the above YAML script to a file, e.g., hlf-peer-autoscaler.yaml, and apply the
configuration using kubectl:

kubectl apply -f hlf-peer-autoscaler.yaml

To monitor the status and see if the scaling is working, use the following:

kubectl get hpa -n hyperledger

Hosting a Blockchain Network on Elastic Kubernetes Service112

This script serves as a starting point. In a real-world application, especially for an enterprise-grade
solution such as Hyperledger Fabric on EKS, we would likely need a more complex setup, including
fine-tuned resource requests, sophisticated metric monitoring, and perhaps additional tools for
observability and management.

The next section completes this introduction to Hyperledger Fabric on EKS by looking at some quick
practices for testing and troubleshooting the deployed platform.

Testing and troubleshooting a Hyperledger Fabric
blockchain network on EKS
Testing and troubleshooting a Hyperledger Fabric blockchain network deployed on EKS is a crucial
step to ensure its reliability, performance, and security. Effective testing strategies include deploying
chaincode in a development environment, performing load testing to understand the network’s behavior
under stress, and conducting security vulnerability scans to identify potential threats.

After deploying the Hyperledger Fabric network on EKS, test network functionality by invoking and
querying chaincode and monitoring the network for potential issues. Use the following tools and
techniques for troubleshooting:

•	 Inspect network component logs using kubectl logs <pod-name> -n hyperledger-
fabric

•	 View detailed resource information and identify issues or misconfigurations with kubectl
describe <resource-type> <resource-name> -n hyperledger-fabric

•	 Execute commands inside a pod for further inspection and debugging using kubectl exec
-it <pod-name> -n hyperledger-fabric -- <command>

Consider these solutions for common issues:

•	 If a pod remains in the Pending state, check pod events and logs for issues such as insufficient
resources or scheduling constraints

•	 If a pod frequently restarts or crashes, examine the logs for error messages and stack traces
that may indicate the cause of the problem

•	 If network components cannot communicate, verify the network policies and security group
settings to ensure the required ports are open and the components can communicate with
each other

Summary 113

Tools such as Caliper, a blockchain benchmarking tool, can be used to measure the performance of
the Hyperledger Fabric network by executing defined use cases. For troubleshooting, leveraging EKS
logging and monitoring services, such as Amazon CloudWatch, provides insights into the network’s
operation, enabling the quick identification and resolution of issues. Examining pod logs, monitoring
resource utilization, and using Kubernetes commands such as kubectl logs or kubectl
describe pod are fundamental practices for diagnosing problems. Additionally, implementing a
CI/CD pipeline for automated testing and deployment can help catch issues early in the development
cycle. Regularly updating the Hyperledger Fabric network components and keeping abreast of the latest
security patches are also essential for maintaining a secure and efficient blockchain network on EKS.

Summary
This chapter focused on the integration of AWS’s EKS and Hyperledger Fabric for blockchain hosting.
We detailed the creation of an EKS cluster via the AWS Management Console and kubectl configuration,
as well as the deployment of Hyperledger Fabric’s components on EKS. We also looked at best practices
and tools for enhancing the security, high availability, and scalability of the deployed platform. The
last section was dedicated to a few strategies and tools for testing and troubleshooting infrastructure
and software components.

In the next chapter, we will dive into Amazon Quantum Ledger Database, a fully managed ledger
database that offers a transparent, immutable, and cryptographically verifiable transaction log ‎ owned
by a central trusted authority.

Further reading
•	 Amazon EKS:

https://docs.aws.amazon.com/eks/

•	 Hyperledger Fabric:

https://hyperledger-fabric.readthedocs.io/

https://docs.aws.amazon.com/eks/

https://hyperledger-fabric.readthedocs.io/

6
Building Records with Amazon

Quantum Ledger Database

In this chapter, we will explore the powerful capabilities of Amazon Quantum Ledger Database
(QLDB), a fully managed ledger database provided by Amazon Web Services (AWS), and how it can
be utilized in the context of blockchain technology. We will cover the following topics:

•	 Introduction to Amazon Quantum Ledger Database

•	 Creating a QLDB instance

•	 Data modeling on QLDB

•	 Querying data on QLDB

•	 Key considerations for security, scalability, and monitoring

Introduction to Amazon Quantum Ledger Database
Amazon QLDB is a fully managed ledger database provided by AWS that offers a transparent, immutable,
and cryptographically verifiable transaction log for blockchain applications. QLDB is designed to
provide a high-performance and scalable solution for storing and querying transactions in a tamper-
evident and tamper-resistant manner. It eliminates the need for setting up and maintaining a traditional
blockchain infrastructure and can be used as a reliable data source for decentralized applications.

In this section, we will learn about the key features and benefits of using QLDB for blockchain
applications, such as the following:

•	 Immutability: QLDB stores all transactions in a tamper-evident manner, ensuring that no one
can alter the transaction history

•	 Cryptographically verifiable: All transactions in QLDB are cryptographically chained and
hashed, allowing for easy verification of the data’s integrity

Building Records with Amazon Quantum Ledger Database116

•	 Scalability: QLDB is designed to scale automatically with the application’s requirements,
allowing organizations to handle increasing transaction loads without any manual intervention

•	 Security: QLDB is integrated with AWS Identity and Access Management (IAM), providing
fine-grained access control and secure communication between the QLDB instance and
software applications

•	 Easy integration: QLDB provides a simple API for querying and manipulating data, making
it easy to integrate with existing blockchain applications

One more feature of QLDB is its streaming capability. Streaming refers to a near-real-time flow of any
changes to data in QLDB, which are managed via Amazon Kinesis Data Streams. The architecture design
in the next section shows the building blocks of QLDB and the integration with Kinesis Data Streams.

Architecture

QLDB is designed with a unique architecture that combines elements of traditional database systems
with the immutability and verifiability features of blockchain technology. The following figure represents
the building block of the QLDB architecture:

Figure 6.1 – Building blocks of Amazon QLDB

Component by component, we can identify the following characteristics:

•	 Ledger: The ledger in QLDB is the central component. It’s akin to a database in traditional
database systems but with added characteristics of immutability and transparency. Within
each ledger, we can create multiple tables to store structured data. We can also create indexes
on these tables to optimize query performance.

•	 Journal: The journal represents an immutable transaction log. All changes (inserts, updates,
and deletes) are recorded in a transaction log. This log is append-only, meaning data can be
added but not modified or deleted, ensuring the immutability of the ledger. Each transaction
in the journal is assigned a unique, monotonically increasing sequence number, which helps
in maintaining the chronological order of transactions.

•	 Document: QLDB stores data in a document-oriented format using Amazon Ion, a superset of
JSON. Each time a document is updated, QLDB creates a new version of that document, while
retaining all previous versions. This versioning mechanism is key for tracking the history and
changes of each document over time.

Introduction to Amazon Quantum Ledger Database 117

•	 Cryptographic hashing: QLDB uses SHA-256 cryptographic hashing to chain document revisions
and transactions together, providing a secure and tamper-evident history. The hashes are organized
in a Merkle tree, a binary tree of hashes, which allows for efficient and secure verification of the data.

•	 PartiQL: QLDB supports PartiQL, a SQL-compatible query language, which allows for traditional
SQL-style interaction with the data, including INSERT, SELECT, UPDATE, and DELETE operations.

QLDB architecture
This architecture allows QLDB to combine the flexibility and ease of use of traditional database
systems with the immutable and verifiable nature of a ledger database, making it suitable for
applications that require a complete and verifiable history of all data changes.

In addition to these core components, access to QLDB is managed through AWS IAM, allowing for
fine-grained control over who can access and perform operations on the ledger. Also, from a network
security perspective, data in QLDB is encrypted at rest and in transit. Network security is managed
through AWS Virtual Private Cloud (VPC) and other AWS networking services.

Lastly, the AWS Management Console provides a user interface for managing QLDB ledgers, including
creating ledgers, tables, and indexes, and executing queries.

QLDB and blockchain

Amazon QLDB offers a unique proposition for blockchain-like applications by providing an immutable,
transparent, and verifiable transaction log, albeit without the decentralized consensus mechanism
typical of blockchain networks. QLDB is designed for use cases where a centralized, trusted authority
is acceptable, and it excels in scenarios requiring the integrity, auditability, and history tracking of data.

Figure 6.2 – Uses of QLDB for blockchain applications

Building Records with Amazon Quantum Ledger Database118

QLDB serves as a centralized ledger that is managed by a single entity, making it suitable for organizations
that need to maintain a tamper-evident history of their data but do not require a decentralized trust
model (Centralized Ledger Applications). This is particularly useful in finance, supply chain, healthcare,
and regulatory compliance where the integrity of transaction history is paramount.

With its immutable transaction log, QLDB enables straightforward auditability of all changes, making
it ideal for applications where compliance and regulatory oversight are important. Auditors can easily
verify the history and integrity of the data without relying on complex external systems or third-party
verification (Auditability and Compliance).

QLDB uses cryptographic hashing to create a secure and immutable record of transactions. Each
record’s hash is chained to the next, creating a sequence that can be verified cryptographically
(Cryptographic Verifiability). This ensures that any attempt to alter the history of transactions can
be detected, providing a level of data integrity similar to blockchain technologies.

Unlike traditional blockchain technologies, which can suffer from slow transaction speeds and
scalability issues due to the consensus mechanisms required in a decentralized network, QLDB is
designed for high performance and scalability. It can execute two to three times more transactions
per second than common blockchain frameworks, making it suitable for enterprise-grade applications
(Scalability and Performance).

Developing applications on QLDB is simpler than on a decentralized blockchain platform because
there is no need to implement a consensus mechanism or manage a network of nodes (Simplified
Development and Maintenance). This can lead to lower development and operational costs, as well
as easier maintenance and scaling of the application.

Use cases for blockchain

The use cases for using QLDB in blockchain applications are multiple and varied, from supply chain
to financial systems, healthcare, and regulatory compliance. Let’s see a few examples:

•	 Supply chain tracking: QLDB can track the provenance and status of goods as they move
through the supply chain, providing an immutable record of transactions and changes

•	 Financial systems: For financial transactions, QLDB offers an auditable and verifiable history
of all operations, suitable for banking, insurance, and stock trading systems where integrity
is crucial

•	 Healthcare data management: Patient records, treatment histories, and consent forms can be
managed in QLDB, offering a transparent and immutable history of medical data

•	 Regulatory compliance: Organizations can use QLDB to maintain records that must comply
with regulations, ensuring data integrity and providing easy access to historical data for audits

Creating a QLDB instance 119

Smart contracts
While QLDB does not natively support smart contracts in the way blockchain platforms such
as Ethereum do, business logic can be implemented in the application layer. This allows for
the execution of complex transactions and automated workflows, albeit under the control of
the centralized authority managing the QLDB ledger.

For organizations looking for the benefits of blockchain in terms of data integrity, auditability, and
transparency, but without the need for a decentralized control model, Amazon QLDB presents a
powerful alternative. It combines the security features of blockchain with the scalability, ease of use, and
performance of a managed AWS service, making it an attractive option for a wide range of applications.

QLDB versus blockchain on data privacy
When evaluating technologies such as QLDB and blockchain for data management needs, it’s
crucial to consider how ledger settings, particularly encryption and data retention options,
impact compliance and data governance. These factors play a significant role in ensuring that
data management practices align with regulatory requirements, protect sensitive information,
and enable effective data governance.

Amazon QLDB provides a centralized ledger with built-in encryption and the ability to manage
data retention through the deletion of ledger history if needed. This can simplify compliance
with regulations that require data deletion or anonymization after a certain period.

Blockchain’s immutable nature means that once data is added to the blockchain, it cannot be
altered or deleted, which might raise concerns for compliance with regulations requiring the right
to be forgotten, as stipulated by GDPR, for example. Private or permissioned blockchains may
offer mechanisms to address these concerns but require careful planning and implementation.

Creating a QLDB instance
Time to move on to putting into practice what we’ve learned about QLDB in the previous sections. In
this section, we’ll create a QLDB instance. The process involves the following steps:

1.	 Sign in to the AWS Management Console and navigate to the Amazon QLDB console.

2.	 Click on Create ledger and provide a name for your ledger.

3.	 Choose the desired settings for your ledger, such as encryption, performance, and data
retention options.

4.	 Review your settings and click on Create to provision your QLDB instance.

5.	 Once your QLDB instance is created, you can configure the necessary IAM policies and roles
to provide secure access to your application.

Building Records with Amazon Quantum Ledger Database120

Troubleshooting

When setting up QLDB for the first time, we may encounter initial setup issues. Some common
troubleshooting tips to help address these problems include the following:

•	 Check IAM permissions: Insufficient permissions can prevent you from creating or accessing
a QLDB ledger:

Solution: Ensure that the IAM user or role you’re using has the necessary permissions for QLDB.
This includes permissions to create, view, and manage ledgers. Amazon provides pre-defined
IAM policies for QLDB, such as AmazonQLDBFullAccess, which you can attach to your
IAM user or role.

•	 Verify service limits: Exceeding service limits can result in errors when attempting to create
new ledgers or resources:

Solution: Check the AWS service limits for QLDB in your account and region. If you’re
approaching or exceeding these limits, you can request an increase through the AWS Service
Quotas console.

•	 Confirm region availability: QLDB may not be available in all AWS regions:

Solution: Check the AWS regional services list to ensure that QLDB is available in your selected
region. If it’s not available, consider using a different region that supports QLDB.

•	 Use the correct AWS SDK and CLI versions: Older versions of the AWS SDK or CLI might
not support all QLDB features.

Solution: Ensure you’re using a recent version of the AWS SDK or CLI that supports QLDB.
Update your SDK or CLI to the latest version if necessary.

•	 Troubleshoot ledger creation failures: Errors during ledger creation can occur for various
reasons, including incorrect configurations or naming issues:

Solution: When creating a ledger, ensure that the name is unique within your account and
region and that it conforms to the naming rules for QLDB ledgers. Also, review any error
messages closely for specific details about the failure.

Creating the ledger from the AWS Management Console

The following screenshot shows the Create ledger screen with the options to enter a name and select
the ledger permissions mode. The Standard permissions mode is the recommended one, as it allows
writing policies that grant or deny permissions at table level. The other mode, Allow all, doesn’t allow
table-specific permissions.

Creating a QLDB instance 121

Figure 6.3 – Creating a ledger in Amazon QLDB

After creating our first instance of QLDB, we will also look at best practices for configuring the QLDB
instance for optimal performance and security, using AWS Key Management Service (KMS) for
encryption and configuring data retention policies.

Before doing that, though, we’ll look at creating an instance of QLDB by command line. This approach
will be useful for resource automation – for example, in a DevOps environment.

Using AWS Command-Line Interface

Creating a new instance of QLDB using AWS scripts typically involves using AWS Command-Line
Interface (CLI) or AWS Software Development Kits (SDKs) in programming languages such as
Python, JavaScript (Node.js), and so on. Based on the author’s experience, the following is a general
guide on how to do this using the AWS CLI, which is often the simplest method for scripting purposes.

Building Records with Amazon Quantum Ledger Database122

Before we start, let’s make sure that we have the following prerequisites covered:

•	 AWS CLI installed and configured on our local machine. The installers are available for download
from the official AWS CLI website at https://aws.amazon.com/cli/.

•	 IAM permissions: It is important that the AWS IAM user we’re using has the necessary
permissions to create and manage QLDB ledgers.

This is the step-by-step guide to creating a QLDB Ledger using AWS CLI:

1.	 On your local computer, open a Terminal or Command Prompt.

2.	 Use the following command to create a new QLDB ledger. Replace YourLedgerName with
the desired ledger name:

aws qldb create-ledger --name <YourLedgerName> --permissions-
mode STANDARD

3.	 After running the command, you’ll receive a JSON response with details of the created ledger.
You can now use the list-ledger command to list all your QLDB ledgers and verify that
this last one was created successfully:

aws qldb list-ledgers

There may be some additional configuration that you might want to consider for configuring other
aspects of the ledger, such as encryption settings, tags, or the deletion protection feature. Consult
the AWS QLDB documentation at https://docs.aws.amazon.com/qldb/latest/
developerguide/ql-db.html for more details on these options.

Using the AWS SDK for Python

Another common approach to creating a QLDB ledger is to use the AWS SDK, available for different
programming languages. The general process involves initializing an AWS client for QLDB and then
calling a method similar to the CLI command’s functionality. The following example is written in
Python and leverages the Boto3 library.

The code snippet first initializes a QLDB client with the boto3.client('qldb') method, and
then creates a new ledger by invoking the create_ledger() method on the client:

import boto3

qldb_client = boto3.client('qldb')
response = qldb_client.create_ledger(
    Name='YourLedgerName',
    PermissionsMode='STANDARD'
)

Very simple and straightforward. Now, let’s talk about data modeling.

https://aws.amazon.com/cli/
https://docs.aws.amazon.com/qldb/latest/developerguide/ql-db.html
https://docs.aws.amazon.com/qldb/latest/developerguide/ql-db.html

Data modeling in QLDB 123

Data modeling in QLDB
Data modeling in QLDB is an essential process that involves designing the structure and format
of data to be stored in the ledger. Unlike traditional relational databases, QLDB is optimized for
ledger-like transactions, making it highly suitable for tracking history and changes over time. The
data model of choice impacts how users will interact with the data, the efficiency of queries, and the
overall performance of an application.

The following is a summary of a few key considerations and strategies for data modeling in QLDB. First
of all, let’s look at document design, and specifically, the choice to make between a single document
or multiple documents, which is deciding whether to store information in a single, comprehensive
document or spread it across multiple documents. Single documents can simplify queries but may
become large and unwieldy, while multiple documents can be more manageable but require more
complex queries to aggregate information.

Because of (or thanks to) the document-oriented storage, and unlike relational databases that normalize
data to reduce redundancy, QLDB often benefits from some level of denormalization. This approach
can reduce the need for joining documents, improving read performance.

So, how are data relationships handled in QLDB? There are two approaches that can be taken: by
reference or by embedding documents. We can reference other documents within a document,
similar to foreign keys in relational databases. This is useful for maintaining relationships between
different pieces of data. Alternatively, we can embed related documents within a parent document
if the relationship is tightly coupled and the volume of related data is manageable.

QLDB allows us to create indexes on document fields to speed up query performance. Strategic
indexing is crucial, especially for frequently queried fields. However, indexes must be defined at the
creation time of the ledger and cannot be added or removed later, so careful planning is required.

Lastly, a word about versioning and data history. One of QLDB’s key features is its immutable transaction
log, which automatically versions documents upon update. This allows for easy tracking of changes
over time but also means that our data model should account for the fact that historical data will be
retained indefinitely.

Document-oriented storage
QLDB stores data in a document-oriented format using Amazon Ion, a superset of JSON that
supports additional data types such as timestamps, which are crucial for ledger applications.
Each record in QLDB is stored as an Ion document.

Building Records with Amazon Quantum Ledger Database124

Data modeling pitfalls to avoid

When working with QLDB, effective data modeling is crucial for leveraging its full potential while
ensuring efficient performance and ease of use. However, certain pitfalls in data modeling can lead
to suboptimal utilization of QLDB’s capabilities. The following figure summarizes common data
modeling pitfalls to avoid.

Figure 6.4 – Common data modeling pitfalls to avoid in QLDB

Let’s expand on each of those pitfalls with more details.

Overlooking document-oriented data modeling principles

QLDB is designed to store data in a document-oriented format using PartiQL, a SQL-compatible query
language, for interaction. A common pitfall is approaching data modeling in QLDB with a traditional
relational database mindset, which can lead to inefficient data structures and queries.

The approach to take is to embrace document modeling—that is, thinking in documents and not
tables. Design your data model around documents that can store complex nested data structures.
This allows for a more natural representation of hierarchical data and can reduce the need for joins
that are typical in relational models.

Discover nested structures. Take advantage of QLDB’s support for nested objects and arrays to
group related data together in a single document. This can significantly improve query efficiency by
minimizing the need to access multiple documents or perform complex joins.

Don’t be afraid of denormalizing data where appropriate. While normalization is a key principle in
relational databases to reduce redundancy, QLDB’s document model allows for a more denormalized
approach. This can lead to simpler queries and faster access patterns. However, be mindful of the trade-off
between duplication and performance, ensuring that any duplicated data does not lead to inconsistencies.

Ignoring the implications of immutability

Another pitfall is not fully considering the implications of QLDB’s immutable ledger. Once data is
committed to the ledger, it cannot be altered or deleted. This immutable record is a core feature for
auditability and verifiability but requires careful consideration in data modeling.

Data modeling in QLDB 125

A practical tip is to plan for immutability. Immutable does not mean unchangeable. While the ledger
itself is immutable, the current state of your data (the latest document revision) can be changed by
adding a new revision. Plan your application logic to accommodate this, especially when dealing with
updates or corrections.

Also, design for auditability. Structure your documents and transactions in a way that leverages QLDB’s
immutability for audit purposes. This includes considering how you’ll query historical data and the
metadata (e.g., document versions and transaction IDs) that you’ll need to retain for audit trails.

Not planning for query performance

Efficient querying is vital for any database application. A common mistake in QLDB data modeling
is not considering how your data model affects query performance.

Practical tip: optimize for query patterns with proper indexing strategies and query optimization.
Properly index your documents based on your query patterns. QLDB allows you to create indexes
on document fields, which can drastically improve query performance. However, indexes need to
be defined before any data is inserted into a table for them to be effective. Understand how PartiQL
queries are executed in QLDB and optimize your queries accordingly. Avoid overly complex queries
that span multiple documents or require extensive computation.

By avoiding these common pitfalls in data modeling with Amazon QLDB, you can ensure your
application is well-designed, efficient, and fully capitalizes on the unique features QLDB offers.

Data model for a blockchain supply chain application

Designing a data model for a supply chain blockchain application using QLDB involves creating a structure
that captures all essential elements of the supply chain, such as products, transactions, participants,
and events. This example data model in the next figure, along with the AWS CLI instructions, aims
to provide a foundation that can be customized for specific supply chain needs:

Figure 6.5 – Example data model for a blockchain supply chain application

Building Records with Amazon Quantum Ledger Database126

The data model includes the following tables:

•	 Products: Stores information about the products, including product ID, name, description,
and other relevant details

•	 Participants: Records details about participants in the supply chain, such as manufacturers,
distributors, retailers, and customers

•	 Transactions: Logs transactions involving products, including transfers, sales, and purchases

•	 Events: Captures events in the product life cycle, such as manufacturing, shipping, and receiving

We don’t have to specify an additional table for storing historical data, as QLDB automatically maintains
an immutable history of all changes, making it an ideal platform for supply chain applications where
tracking the provenance and history of products is crucial.

Don’t forget that this example provides a basic framework for a supply chain application on QLDB.
Depending on the specific requirements of a more sophisticated application, we may need to add
more tables, fields, and indexes, or adjust the document structure to best fit the identified use case.

Best practices for data modeling

Data modeling in QLDB requires a different mindset than traditional relational databases, emphasizing
document design, denormalization, and the efficient use of indexes. By carefully considering these
factors, we can leverage QLDB’s strengths to build robust, scalable applications that benefit from its
ledger capabilities and historical data tracking. The following figure summarizes four typical best
practices for an optimal data model:

Figure 6.6 – Best practices for data modeling in QLDB

Let’s expand on each practice:

•	 Plan for scalability refers to designing the data model with future growth in mind, considering
both the size of individual documents and the overall data set.

•	 Optimize for query patterns is all about understanding an application’s query patterns and
modeling its data to facilitate efficient querying. This may involve denormalizing data or
strategically splitting information across documents.

Data modeling in QLDB 127

•	 Use indexes wisely means creating indexes on fields that will be frequently used as query
predicates, but be mindful of the limitations and the fact that they cannot be altered after the
ledger’s creation.

•	 Consider historical data needs implies designing the model considering how the application
will query historical data, leveraging QLDB’s immutable history to track changes over time
without additional complexity in the application logic.

We’ll make a few tangible examples of each best practice in the next sections. Now, let’s proceed with
the creation of a document inside the instance of the ledger previously created.

Creating a document

To create a document in QLDB, we use the PartiQL query language, which is SQL-compatible and
allows us to interact with our ledger data. Documents in QLDB are stored in Ion format, which is
similar to JSON but with additional data types and features suitable for ledger data.

The basic command structure to insert a document into a table in QLDB using PartiQL is as follows:

INSERT INTO <TableName> << { 'field1': 'value1', 'field2': 'value2',
... } >>

Assuming we have a table named Customers, we want to insert a document with the name and
additional information of a customer. The INSERT command would look something like this:

INSERT INTO Customers << { 'name': 'John Doe', 'email': 'john.doe@
example.com', 'isActive': true } >>

To run this command via the AWS CLI, we would wrap it in a call to the execute-statement
command, specifying the ledger name and the PartiQL statement, like so:

aws qldb execute-statement --ledger-name YourLedgerName --statement
"INSERT INTO Customers << { 'name': 'John Doe', 'email': 'john.doe@
example.com', 'isActive': true } >>"

The actual AWS CLI command might differ since the execute-statement command is not
directly available in the AWS CLI for QLDB. Typically, we would execute PartiQL statements through
a programming language SDK (e.g., Python, Java, or Node.js) or the QLDB Query Editor in the AWS
Management Console.

The preceding command is conceptual. In practice, we would use the AWS SDKs such as Boto3 for
Python, the AWS SDK for Java, or another SDK to execute PartiQL commands against QLDB. Each
SDK has its own method for executing a statement, which involves creating a session with the ledger
and then executing the statement within that session.

Building Records with Amazon Quantum Ledger Database128

Here’s an example using Python with Boto3. After creating an instance of a client object to a QLDB
session, the execute_statement function executes the PartiQL command:

client = boto3.client('qldb-session')
def execute_statement(ledgerName, statement):
    response = client.send_command(
        SessionToken=<YourSessionToken>,
        Statement=statement,
        LedgerName=ledgerName
    )
    return response

In the preceding example, YourSessionToken is a placeholder for a session token that we would
obtain by starting a session with the QLDB ledger. Managing sessions and executing statements
typically involve more detailed logic to handle sessions, tokens, and parsing responses, which is why
using an AWS SDK is recommended for interacting with QLDB programmatically.

Referencing and embedding documents

As mentioned before, we can structure our data in QLDB using references to other documents (similar
to foreign keys in relational databases) or by embedding documents directly within other documents.
This flexibility allows us to model complex relationships and hierarchies in a way that best suits any
application’s needs. Let’s give an example of both approaches.

Consider a simple database with two tables, Customers and Orders. Each order is associated with
a customer, but instead of embedding customer details in each order, we reference the CustomerId
column in the Orders table. This is an example of referencing another document.

The Customers table is described by the following JSON structure:

{
  "CustomerId": "C1",
  "Name": "John Doe",
  "Email": "john.doe@example.com"
}

The Orders table, with the reference, will look like the following:

{
  "OrderId": "O1",
  "OrderDate": "2024-01-01",
  "Amount": 150.00,
  "CustomerId": "C1"
}

The C1 value references the CustomerId column in the Customers table.

Data modeling in QLDB 129

To create these documents in QLDB, we would first insert the customer and order records into their
respective tables, ensuring that the CustomerId value in the Orders table matches the CustomerId
value of the corresponding customer in the Customers table.

Let’s now look at the second scenario. Now, instead of referencing the customer in each order, we
embed the customer details directly within the order document. This is an example of embedded
documents. This approach is useful when we want to snapshot the customer information at the time
of the order because customer details can change over time.

The Orders table with the embedded customer details will have the following definition:

{
  "OrderId": "O1",
  "OrderDate": "2024-01-01",
  "Amount": 150.00,
  "Customer": {
    "CustomerId": "C1",
    "Name": "John Doe",
    "Email": "john.doe@example.com"
  }
}

In this approach, the order document contains all relevant customer information, eliminating the
need to join documents to retrieve the full order and customer details.

Here are some considerations. The referencing documents approach makes it easier to maintain
consistent data, especially for entities that change infrequently or where we want to maintain a single
source of truth (e.g., customer profiles). However, it requires additional queries to resolve references.

Embedding provides a snapshot of related data at a specific point in time, which can be beneficial for
historical accuracy and query performance since all data is contained within a single document. The trade-
off is potential data duplication and the need to update embedded data in multiple places if it changes.

Choosing between these approaches depends on an application’s specific requirements, such as query
patterns, data update frequency, and the importance of historical accuracy versus query efficiency.

Indexing

Indexing in QLDB is crucial for improving query performance. Unlike traditional databases, where
we might create indexes after populating data, in QLDB, we must define indexes at the time of table
creation or before inserting any data into the tables.

To create an index in QLDB, we use the CREATE INDEX statement in PartiQL. This statement
specifies the table and the document field (or fields) we want to index. Here’s the syntax:

CREATE INDEX ON <TableName> (<FieldName>)

Building Records with Amazon Quantum Ledger Database130

For example, for our table named Customers, we want to create an index on the Email field. The
command would be as follows:

CREATE INDEX ON Customers (Email)

As mentioned, indexes in QLDB must be created before inserting documents into the table. This is
because QLDB indexes are immutable—once set, they cannot be modified or deleted. The best practice
is to choose fields that are frequently used in query predicates. Indexing these fields can significantly
improve the performance of SELECT queries that filter or sort based on these fields.

QLDB also supports indexing multiple fields together, known as composite indexes. However, when
querying, we need to filter by all the fields in the composite index to leverage its benefits.

While indexes improve query performance, they can slightly slow down data insertion because the
index must be updated with each new entry. It’s important to balance the need for query performance
with the potential impact on write operations.

Versioning

QLDB inherently manages versioning and data history as part of its core functionality, providing
an immutable and verifiable history of all changes over time. This feature allows users to track each
document’s entire history, including inserts, updates, and deletions. Every document is versioned
automatically. Each time a document is updated or deleted, QLDB preserves the previous version,
enabling a complete and verifiable history of changes. This feature is fundamental for use cases requiring
auditability, such as financial transactions, supply chain management, and regulatory compliance.

To query the history of a document or documents within a table, we use the HISTORY function in
PartiQL. This function allows us to retrieve the history of changes to a document, including the version
metadata. The PartiQL syntax goes as follows:

SELECT * FROM HISTORY(<TableName>, <StartTime>, <EndTime>)
WHERE metadata.id = '<DocumentId>'

Here, <TableName> is the name of the table containing the document, and <StartTime> and
<EndTime> are optional timestamp parameters to narrow down the history to a specific time range.
If omitted, QLDB returns the entire history. <DocumentId> is the unique ID of the document
whose history we want to query.

Let’s have an example of retrieving the history of a document in the supply chain application, specifically
from the Transactions table. Our query might look like this:

SELECT * FROM HISTORY(Transactions, timestamp '2023-01-01T00:00:00Z',
timestamp '2023-12-31T23:59:59Z')
WHERE metadata.id = '1234567890abcdef'

This query retrieves the history of the specified transaction for the entire year of 2023.

Querying data in QLDB 131

Managing data history

While QLDB automatically manages versioning and history, understanding how to interact with this
data is crucial for managing the ledger effectively. For auditing and compliance, using the HISTORY
function to audit transactions and changes will help ensure compliance with regulatory standards.
From a data integrity perspective, QLDB’s immutable history helps maintain data integrity, as it
provides a transparent and verifiable record of all changes. Data history also helps query optimization:
when querying historical data, we can be specific with our time range and conditions to optimize
performance, especially when working with large datasets.

There are some limitations to consider:

•	 Immutable nature: The immutable nature of QLDB means we cannot delete history. If sensitive
data must be removed, we should instead consider best practices for data handling, such as
not storing direct Personally Identifiable Information (PII) or using logical deletion flags in
our document design.

•	 Storage impact: Since QLDB retains an immutable history of changes, we should consider the
impact on storage, especially for ledgers with high transaction volumes or large documents.

•	 Query performance: Querying historical data can be resource-intensive. The best practice is
always to use precise queries to minimize performance impact.

QLDB’s approach to versioning and data history is a powerful feature for applications requiring a
transparent and tamper-evident history of data changes. By leveraging the HISTORY function and
understanding how to efficiently query historical data, we can harness this capability for auditing,
data analysis, and compliance purposes.

Querying data in QLDB
QLDB provides a powerful and flexible API for querying and manipulating data stored in a ledger. In
this section, we will have a look at how to perform the following operations:

1.	 Retrieve data: Query data from tables using PartiQL, a SQL-compatible query language for
Amazon Ion.

2.	 Update data: Use the QLDB API to update documents, ensuring that all updates are recorded
as new transactions in the ledger.

3.	 Verify data: Use QLDB’s built-in cryptographic features to ensure the integrity and authenticity of
data by validating the cryptographic hashes and digital signatures associated with your transactions.

4.	 Perform advanced queries: Leverage QLDB’s support for PartiQL to perform complex queries,
such as aggregations, joins, and filtering.

Building Records with Amazon Quantum Ledger Database132

At the end of this section, we will also get familiar with common query access patterns, such as using
parameterized queries to prevent injection attacks and optimizing our queries for the specific access
patterns of our application.

CRUD operations

Querying data in QLDB involves using PartiQL. PartiQL provides the flexibility to run SELECT,
INSERT, UPDATE, DELETE, and HISTORY queries on ledger data. Let’s go case by case and perform
some common data querying operations in QLDB.

To retrieve data from a table in QLDB, we use the SELECT statement, similar to SQL. We can select
specific fields, use conditions, and perform joins across tables. The following example retrieves all
records from the Customers table:

SELECT * FROM Customers

The use of the star (*) wildcard is not recommended, though. Although it is a quick shortcut to indicate
all fields in a table, the best practice is to indicate specific fields in a table:

SELECT CustomerId, Name, Email FROM Customers WHERE IsActive = true

To add a new document to a table, we use the INSERT INTO statement followed by the table name
and the document content in Ion format. In this example, we’ll insert a new customer named Jane
Doe into the Customers table:

INSERT INTO Customers << {
    'Name': 'Jane Doe',
    'Email': 'jane.doe@example.com',
    'IsActive': true
} >>

To modify existing documents, we’ll use the UPDATE statement, specifying the table, the set of changes,
and a condition to select the document(s) to update. For example, let’s update the email address for
the customer identified by having CustomerId = 12345:

UPDATE Customers SET Email = 'new.email@example.com' WHERE CustomerId
= '12345'

Lastly, to remove documents from a table, we can use the DELETE FROM statement with a condi-
tion to specify which documents to delete. Again, as an example, let’s delete a customer from the
Customers table:

DELETE FROM Customers WHERE CustomerId = '12345'

Querying data in QLDB 133

Executing queries programmatically

While we can execute all these queries directly in the AWS Management Console using the QLDB
Query Editor, we may also want to run them programmatically using AWS SDKs, such as Boto3 for
Python, AWS SDK for JavaScript, and so on. The following is a Python example that initializes the
QLDB client and defines a SELECT PartiQL query to retrieve all active customers:

client = boto3.client('qldb')
query = "SELECT * FROM Customers WHERE IsActive = true"

response = client.execute_statement(
    LedgerName=ledger_name,
    Statement=query
)

print(response)

This example is a simplified illustration. In practice, executing a query involves handling sessions and
possibly pagination for the query results.

Note
QLDB’s execution model is different from traditional databases, and managing sessions,
transactions, and query results can vary significantly based on the SDK and programming
language in use. Always refer to the specific AWS SDK documentation for detailed examples
and best practices for managing database interactions.

Data verification

QLDB provides built-in cryptographic features to ensure the integrity and verification of the data
stored within it. This is achieved through the use of an immutable transaction log, cryptographic
hashing, and a concept known as Merkle trees. These features enable us to verify the completeness
and accuracy of our data at any point in time. Let’s first have an overview of how data verification
works in QLDB before diving into how we can perform it.

The cryptographic features of QLDB include the following:

•	 Immutable transaction log: Every transaction in QLDB is recorded in an append-only
transaction log, ensuring that once data is written, it cannot be altered or deleted.

•	 Cryptographic hashing: QLDB uses SHA-256 cryptographic hashing to generate a unique
hash for every document revision and transaction. These hashes are used to chain revisions
and transactions together, providing a tamper-evident history.

Building Records with Amazon Quantum Ledger Database134

•	 Merkle trees: QLDB utilizes Merkle trees to efficiently prove the integrity and completeness of
the data. A Merkle tree is a binary tree of hashes, where every leaf node is a hash of transaction
data, and every non-leaf node is a hash of its child nodes. The root of this tree (the Merkle root)
represents the entire dataset’s fingerprint at a specific point in time.

Performing data verification involves obtaining the digest of a ledger for a specific point in time and
then using that digest to verify the integrity of the data. The following instructions will guide us in
performing these steps:

1.	 Obtain the ledger’s digest: A ledger’s digest provides a secure output (hash) representing the
entire state of the ledger at a specific point in time. We can obtain the digest using AWS CLI
with the get-digest command:

aws qldb get-digest --name YourLedgerName

This command returns the digest, consisting of the digest’s hash and a block address (sequence
number and hash) marking the ledger’s state.

2.	 Verify a document or transaction: After obtaining the ledger’s digest, we can verify a particular
document or transaction against this digest. This involves retrieving a document’s revision
history or a transaction block, and then requesting proof that this revision or block is included
in the digest, by using the get-revision command:

aws qldb get-revision --name YourLedgerName --block-address
'{\"IonText\": \"{\\\"strandId\\\": \\\"yourStrandIdHere\\\",
\\\"sequenceNo\\\": yourSequenceNoHere}\"}' --document-id
"yourDocumentIdHere"

With this command, first, we get a revision at a specified block address – that is, the command
retrieves the specific document revision or transaction block that we want to verify. This will
give us the data and its associated metadata, including the hash.

Then, we request proof for the document revision or transaction block. The proof is a list of
hashes that, when combined with the revision or block’s hash, should match the ledger’s digest.

The command then uses the proof and the revision or block’s hash to calculate the Merkle tree.
If the calculation matches the ledger’s digest, it confirms that the document or transaction was
indeed part of the ledger at the time the digest was obtained.

There are some considerations to keep in mind when performing data verification. Frequent data
verification operations can incur costs, so it’s essential to understand the pricing model of QLDB and
optimize the verification processes accordingly. Ideally, we want to automate the verification process
for applications requiring regular verification of data integrity. Automating the data verification process
involves scheduled checks or triggers based on specific events and the use of the AWS SDK for QLDB.

Querying data in QLDB 135

Common query access patterns

When working with QLDB, optimizing data models and queries based on common access patterns
can significantly enhance performance and efficiency. Understanding and planning for these patterns
is crucial for designing optimal application interactions with QLDB. Let’s look at some common query
access patterns and strategies, as depicted in the following table:

Optimization Pattern Strategy
Direct Lookup by
Unique Identifier

Fetching a document or set
of documents using a unique
identifier, such as a customer
ID, transaction ID, or any
other unique key

Use an indexed field for the unique
identifier to ensure efficient retrieval.
Ensure you create an index on any field
used as a unique identifier to optimize
these lookups.

Historical
Data Retrieval

Querying the history of a
document to track changes
over time, which is a distinc-
tive feature of QLDB

Utilize the HISTORY function to retrieve
the history of a document based on its ID.
This access pattern is inherently optimized
by QLDB’s design, but understanding how
to filter and limit results can help manage
performance and data volume.

Conditional Queries Searching for documents
based on specific conditions,
such as date ranges, status
flags, or partial matches
on strings

Create indexes on fields that are
frequently used in query conditions to
improve performance. Be mindful that
QLDB indexes need to be set up before
inserting data.

Aggregation Queries Summarizing or aggregat-
ing data, such as counting
documents, summing values,
or averaging

While QLDB supports SQL-like aggrega-
tion functions (COUNT, SUM, AVG, etc.),
consider the volume of data being aggre-
gated and the potential impact on perfor-
mance. For large datasets, consider strate-
gies to limit the scope of aggregation.

Joining Documents Combining data from multi-
ple documents or tables, such
as joining customer informa-
tion with their orders

Although QLDB supports JOIN oper-
ations, they can be resource-intensive.
Design your data model to minimize the
need for joins, possibly by denormalizing
data where appropriate. When joins are
necessary, ensure that the fields being
joined are indexed.

Building Records with Amazon Quantum Ledger Database136

Pagination and
Batch Retrieval

Retrieving large sets of data in
manageable chunks, espe-
cially for applications with
large datasets or that serve
data to frontend interfaces

Implement pagination in your appli-
cation logic. QLDB does not natively
support SQL-style LIMIT and OFFSET
keywords, so pagination typically involves
application-side logic to manage data
retrieval in batches.

Audit and
Compliance Checks

Performing queries to
support audit and compli-
ance requirements, which
may involve complex queries
across the ledger’s history

Leverage the immutability and cryp-
tographic verification features of QLDB to
perform these checks. Efficiently structure
these queries to minimize performance
impacts, and consider offloading inten-
sive audit operations to off-peak hours
if possible.

Table 6.1 – Common query access patterns and strategies

By understanding these common access patterns and adopting the corresponding strategies, we can
design QLDB applications to be more efficient, responsive, and scalable. Additional considerations
for the optimization of a QLDB instance are also presented in the next section.

Key considerations for security, scalability, and
monitoring
When using QLDB, it is essential to consider several factors to ensure the security, scalability,
and monitoring of solutions that rely on data stored in QLDB. In this section, we will present key
considerations to adopt for the following:

•	 Security: How to secure a QLDB instance by configuring IAM policies and roles, enabling
encryption at rest using AWS KMS, and using secure communication channels such as HTTPS
and VPC endpoints

•	 Scaling: How to design the data model and queries to optimize performance and manage the
load on a QLDB instance, allowing it to scale automatically with the application’s requirements

•	 Monitoring: How to monitor a QLDB instance using AWS CloudWatch and the QLDB console
to track performance metrics, identify issues, and take appropriate action when needed

By implementing the following best practices, we can ensure that an application based on QLDB
remains secure, scalable, and easy to manage.

Key considerations for security, scalability, and monitoring 137

Security

When using QLDB, ensuring the security of data and transactions is paramount. AWS provides
robust tools and features to help secure QLDB ledgers, but it’s also crucial to follow best practices
and understand the shared responsibility model for cloud security. Let’s start with key considerations
for IAM:

•	 Use IAM policies: Define IAM policies to control access to QLDB resources. The key here
is to be specific about who can perform actions such as creating ledgers, inserting data, and
querying data.

•	 Principle of least privilege: Apply the principle of least privilege by granting only the necessary
permissions required to perform a task. For example, if a user only needs to query data, they
should not have permission to delete the ledger.

•	 Use IAM roles for applications: When accessing QLDB from other AWS services (e.g., AWS
Lambda), use IAM roles to manage permissions securely.

When talking of encryption at rest and in transit, QLDB automatically encrypts data at rest using
AWS-managed keys in AWS KMS. It is also possible to opt for customer-managed keys for enhanced
control. On top of that, we need to ensure that data is encrypted in transit by using HTTPS endpoints
provided by QLDB, which secure the data with TLS.

Network security plays also a significant importance in the overall security of the solution:

•	 Utilize VPC endpoints for QLDB to allow direct connection to QLDB from an Amazon VPC,
without using public internet. This enhances security by keeping traffic within the AWS network.

•	 Apply security groups and network Access Control Lists (ACLs) to control inbound and
outbound traffic to and from cloud resources.

When talking about best practices for the design of a data model, we’ve already mentioned data privacy
and compliance, and specifically, handling sensitive data carefully. As a rule of thumb, PII and other
sensitive data, when stored in QLDB, should always be protected by privacy preservation practices,
such as data minimization or confidential computing.

The last but not least level of security is at the application level. Always validate inputs: it’s necessary
to implement robust input validation in our applications to prevent injection attacks and ensure
that only valid data is written to the ledger. Also, it’s important to follow secure coding practices to
protect applications from vulnerabilities. A good practice, for example, is to regularly update libraries
and dependencies to mitigate known security issues.

Remember, security is not a feature, it’s a design element of a software application. By integrating these
security considerations into our QLDB application’s design and operation, we can take full advantage
of QLDB’s features while maintaining a high level of security.

Building Records with Amazon Quantum Ledger Database138

Scalability

Scalability is a critical factor when designing and deploying applications on QLDB. Ensuring that
applications can handle growth in data volume, transaction rates, and query complexity without
compromising performance requires careful planning and optimization. The following figure highlights
the key considerations for scalability when working with QLDB:

Figure 6.7 – Key considerations for scalability in QLDB

As the figure anticipates, data modeling and partitioning consist of two common approaches:

•	 Efficient data modeling: Design the data model to optimize for common access patterns.
Efficiently structured data can significantly reduce the computational overhead of queries,
especially as data volume grows.

•	 Partitioning strategy: While QLDB abstracts the physical data storage details, understanding
how data access patterns correlate with QLDB’s storage and partitioning can help in optimizing
performance. For example, frequently accessed data should be modeled in a way that minimizes
cross-partition queries.

Indexing is also a key factor in improving scalability, by adopting these two best practices:

•	 Strategic indexing: Create indexes on frequently queried fields to speed up query performance.
However, be mindful that each index comes with a storage and maintenance cost. Indexes
should be planned at the design phase, as they cannot be added or removed after data insertion.

•	 Index management: Manage indexes wisely by focusing on fields that are often used in query
predicates and ensuring they are created before data ingestion.

Key considerations for security, scalability, and monitoring 139

There’s no index that can make performance miracles if, at the foundation, queries are not optimized.
Query optimization involves the following:

•	 Optimizing query patterns: Analyze and optimize the most common query patterns. Simplifying
queries, reducing the amount of data scanned, and avoiding unnecessary joins can help maintain
performance as data grows.

•	 Pagination: Implement effective pagination in an application to manage large datasets efficiently.
Since QLDB does not natively support SQL-style pagination keywords, we may need to implement
custom logic in the application.

Improved concurrency and increased throughput are generally positive consequences of applying the
good practices described before, specifically the following:

•	 Understand QLDB’s throughput model: QLDB uses an Optimistic Concurrency Control (OCC)
model, which means it checks for transaction conflicts at commit time. Designing applications
to handle retry logic for transaction conflicts is crucial for maintaining high concurrency.

•	 Monitor and adjust transaction rates: Monitor applications’ transaction rates and adjust
request rates accordingly. Be aware of QLDB’s read and write IOPS limits and plan for scaling
these limits as needed.

For more advanced capabilities, the use of streams and batch processing requires the following considerations:

•	 Leverage QLDB streams: For applications that require real-time data replication or integration
with other services, consider using QLDB streams. This feature allows an application to capture
document revisions in near-real-time, enabling scalable integration patterns with other AWS services.

•	 Batch operations: When possible, batch processing of transactions can reduce the overhead of
writing data to QLDB. Batching is particularly effective for bulk inserts or updates.

Test, test, and test your application until you’re ultimately happy. The same applies to scalability testing:

•	 Load testing: Regularly perform load testing to understand how your application behaves under
high load conditions. This can help identify bottlenecks and areas for optimization before they
become issues in production.

•	 Adaptive scaling strategies: Plan for scalability both horizontally (e.g., by adding more
consumer applications that read from QLDB streams) and vertically (e.g., by optimizing queries
and data structures).

There are many factors, but scalability in software applications is not rocket science. It requires patience
and trial. By considering the presented factors from the outset and regularly reviewing applications’
performance and architecture, we can ensure that our QLDB-based applications remain scalable,
performant, and cost-effective as they grow.

Building Records with Amazon Quantum Ledger Database140

Monitoring

Monitoring query access patterns in QLDB can help discover access data to the ledger – in particular,
when, from where, and what transactions were run. This kind of ledger monitoring helps associate
QLDB transactions with API requests and identify the PartiQL statement run within the transaction.
It also details a solution for mapping QLDB journal blocks to corresponding entries in API logs. This
approach helps in understanding access patterns and associating client requests with ledger modifications.

The Amazon QLDB journal is a fundamental component of the QLDB architecture, acting as an
immutable transaction log. It records every change made to the data in a ledger, ensuring complete
data integrity and allowing for full traceability of the transaction history. Each transaction in the
journal is assigned a unique, sequential identifier, enabling the chronological tracking of changes.
This design ensures that once a transaction is recorded, it cannot be altered or deleted, providing a
tamper-evident history, which is crucial for applications requiring auditability and data integrity. The
journal’s immutability is key to the trust and reliability offered by QLDB.

An Amazon QLDB journal block typically contains a structured record of one or more transactions
that have been committed to the ledger. Each block in the journal includes the following:

•	 Block metadata: This includes the unique sequence number of the block, the timestamp of
when the block was written, and cryptographic hash values.

•	 Transaction details: For each transaction, the block records the transaction ID, the PartiQL
statements executed, and any resulting changes to the data. This might include details of
documents inserted, updated, or deleted.

•	 Cryptographic hashing: The block includes a hash of its contents, along with a hash that links it to
the previous block in the chain, ensuring immutability and verifiability of the transaction history.

The content of a journal block can be described by this JSON structure:

{
  "JournalBlock": 12345,
  "Timestamp": "2024-02-15T10:30:00Z",
  "BlockHash": "0x91a7364...",
  "PreviousBlockHash": "0x9b5c2a1...",
  "Transactions": [
    {
      "TransactionID": "TXN-20240215-1030-00001",
      "PartiQLStatements": [
        "INSERT INTO Orders << {'OrderId': 'O1001', 'Product':
'Widget', 'Quantity': 10, 'OrderDate': '2024-02-15'} >>"
      ],
      "DocumentRevisionMetadata": {
        "DocumentID": "some-document-id",
        "VersionNumber": "some-version-number",

Summary 141

        "DocumentHash": "some-hash-value"
      },
      "Changes": "New record added to the Orders table.",
      "TransactionHash": "0x3b7c8d9..."
    }
  ]
}

This block represents a single transaction where a new order was inserted into an Orders table. This
JSON representation includes all the key elements of the journal block: block metadata, transaction
details, PartiQL statements executed, document revision metadata, and cryptographic hashes. The
structure is designed to reflect the immutable and chronological nature of transactions in QLDB.

The design of these journal blocks is a critical aspect of how QLDB maintains a tamper-evident and
auditable history of all changes in the ledger. This structure provides the foundation for the ledger’s
integrity and trustworthiness, it includes metadata for the block, details of the transaction, and
cryptographic hashes to ensure immutability and linkage to the ledger’s history.

Summary
Amazon QLDB offers a unique value proposition in the realm of blockchain solutions by providing a
centralized, fully managed ledger database that combines the immutable and cryptographically verifiable
nature of blockchain with the ease of use, scalability, and reliability of AWS cloud infrastructure. Unlike
traditional blockchains that operate on a decentralized consensus mechanism, QLDB simplifies the
trust model by offering a single, authoritative data source. This approach eliminates the complexity
and overhead associated with managing a decentralized network while still ensuring data integrity
and transparency through an immutable transaction log.

QLDB’s added value lies in its ability to seamlessly integrate with existing AWS services, offering robust
data management capabilities, including fast and flexible querying with PartiQL, automatic scaling, and
high availability. It is particularly well-suited for use cases where the integrity of transactional data is
paramount, but the application can rely on a trusted central authority, thus bridging the gap between
traditional database systems and blockchain technology. This makes QLDB an attractive solution for
industries such as finance, supply chain, healthcare, and government, where verifiable and immutable
record-keeping is critical, without the complexities of a decentralized blockchain architecture.

This chapter provided a comprehensive exploration of Amazon QLDB and its data model. We introduced
QLDB, discussed its features, and also highlighted potential benefits and use cases for blockchain
applications. We delved into data modeling and querying in QLDB, and explained how to design
tables, manage data, and use the QLDB API for data retrieval and manipulation. Key considerations
for security, scaling, and monitoring were also discussed to ensure optimal performance and reliability
of your blockchain applications.

Building Records with Amazon Quantum Ledger Database142

As we conclude this part of our journey, we look forward to the next exciting phase, where we will shift
our focus to Microsoft Azure. In the upcoming chapters, we will explore hosting a Corda distributed
ledger technology network on Azure Kubernetes Service, using the ledger features of Azure SQL, and
leveraging Microsoft Azure confidential ledger.

Further reading
•	 Amazon Quantum Ledger Database:

https://aws.amazon.com/qldb/

•	 Amazon QLDB Developer’s Guide:

https://docs.aws.amazon.com/qldb/latest/developerguide/what-is.
html

https://aws.amazon.com/qldb/

https://docs.aws.amazon.com/qldb/latest/developerguide/what-is.html
https://docs.aws.amazon.com/qldb/latest/developerguide/what-is.html

This part covers deploying and implementing blockchain solutions on Azure, including how to host a
blockchain network on Azure Kubernetes Service, using the ledger features of Azure SQL, and leveraging
Microsoft Azure Confidential Ledger. Particular attention is paid to comparing the centralized ledger
capabilities available in Azure with pure decentralized blockchain networks.

This part includes the following chapters:

•	 Chapter 7, Hosting a Corda DLT Network on Azure Kubernetes Service

•	 Chapter 8, Using the Ledger Features of Azure SQL

•	 Chapter 9, Leveraging Azure Confidential Ledger

Part 3:
Deploying and Implementing

Blockchain Solutions on Azure

7
Hosting a Corda DLT Network
on Azure Kubernetes Service

In recent years, Distributed Ledger Technology (DLT) has emerged as a groundbreaking innovation
with the potential to revolutionize industries across the globe. Among the various DLT platforms,
Corda has gained significant attention for its focus on privacy, scalability, and interoperability. With
its unique design tailored for enterprise use cases, Corda provides a powerful foundation for building
decentralized applications and networks.

To harness the full potential of Corda, organizations require a robust and scalable infrastructure
that can support the deployment and management of Corda nodes. This is where Azure Kubernetes
Service (AKS), a managed container orchestration service provided by Microsoft Azure, comes into
play. By leveraging AKS, organizations can effectively host and manage Corda DLT networks with
enhanced scalability, security, and operational efficiency.

In this chapter, we won’t dive deep into the details of Corda’s architecture. It would take an entire book
to just describe Corda! And there’s already plenty of documentation in the official channels (see the
Further reading section at the end of this chapter).

Rather, in the next few sections, we’ll delve into the intricacies of hosting a Corda DLT network on AKS.
We’ll explore the key considerations, best practices, and step-by-step guidelines to establish a highly
available and resilient infrastructure for Corda-based applications. Whether you are an experienced
Corda developer, a DevOps engineer, or a technology enthusiast looking to deepen your knowledge
of DLT deployment, this chapter aims to provide you with a comprehensive understanding of AKS
and its integration with Corda.

Hosting a Corda DLT Network on Azure Kubernetes Service146

Now, let’s dive into the following main topics:

•	 Understanding Corda and AKS

•	 Architecting Corda networks on AKS

•	 Provisioning an AKS cluster for Corda

•	 Managing Corda nodes on AKS

Technical requirements
To run the scripts presented in this chapter for provisioning a Corda network on AKS, you will need
an Azure account with an active subscription, as well as resource administrative permissions on the
Azure subscription. You can create a free Azure account at https://azure.com/free

This chapter assumes you’re familiar with Azure and AKS for deployment tasks.

Understanding Corda and AKS
In the realm of DLT, Corda has emerged as a prominent platform with a focus on addressing the specific
requirements of businesses and enterprises. Built by R3, a leading blockchain software firm, Corda is
designed to facilitate secure and efficient transactions between parties while preserving data privacy
and confidentiality. Its unique features make it an ideal choice for industries such as finance, supply
chain, healthcare, and more. Additional information about industries and specific success case studies
for Corda can be found on the R3 Corda website: https://www.r3.com/products/corda.

At its core, Corda is a decentralized ledger that enables participants to transact directly, eliminating
the need for intermediaries and reducing transactional friction. Like the Ethereum blockchain, Corda
embraces a smart contract approach where transactions are executed using predefined business logic
known as Corda Distributed Applications (CorDapps). Unlike Ethereum’s smart contracts, CorDapps
are designed with a specific set of features and considerations that cater to the unique requirements
of regulated financial institutions and other businesses, such as privacy, legal provisions, and a
unique communication model known as flow to manage complex multi-step transaction protocols
between parties.

Key features of Corda DLT

R3, the company that develops Corda, has published a detailed white paper that describes the architecture
components of the Corda platform. The white paper is available at https://www.corda.net/
content/corda-platform-whitepaper.pdf.

Along with relevant architecture diagrams, the white paper identifies the core components of Corda,
specifically its approach to identity and consensus, the state management system, and the flow framework.
We recommend that you have a look at the white paper before progressing further with this chapter.

https://azure.com/free
https://www.r3.com/products/corda
https://www.corda.net/content/corda-platform-whitepaper.pdf
https://www.corda.net/content/corda-platform-whitepaper.pdf

Understanding Corda and AKS 147

Our focus for this chapter is to describe how Corda interacts with AKS. The following diagram
summarizes the key features of a solution built on Corda as the core DLT. Corda’s innovative approach
to DLT, with its emphasis on privacy, scalability, interoperability, and regulatory compliance, positions
it as a compelling solution for enterprises seeking to harness the benefits of blockchain technology.
As we delve deeper into hosting Corda networks on AKS in this chapter, we will explore how the
integration of Corda with AKS can amplify these key features and provide organizations with a robust
infrastructure for their Corda-based applications:

Figure 7.1 – Key features of Corda DLT

Let’s expand on the key features of Corda:

•	 Privacy and confidentiality: Corda takes privacy seriously by design. Unlike public blockchains,
where every transaction is visible to all participants, Corda ensures that transaction data is
only shared with relevant parties. It employs an approach called fine-grained access control
to enable selective disclosure of transaction details, allowing participants to maintain privacy
while sharing information on a need-to-know basis.

Hosting a Corda DLT Network on Azure Kubernetes Service148

•	 Scalability: Corda’s architecture is optimized for scalability, allowing for high transaction
throughput and network performance. Its unique approach of notarization, where only specific
transactions require consensus, contributes to the efficiency of the network. Corda also supports
horizontal scalability by allowing multiple parallel instances of the ledger, ensuring that the
system can handle increasing transaction volumes without sacrificing performance.

•	 Interoperability: Corda recognizes the importance of interoperability within complex business
networks. It enables seamless integration with existing systems and platforms through its
pluggable consensus mechanism and extensive Application Programming Interfaces (APIs).
This allows Corda to interact with external systems, legacy databases, and other DLT platforms,
facilitating the smooth flow of data and transactions across different environments.

•	 Programmability: Corda’s smart contract model, called CorDapps, provides a flexible and
secure framework for defining and enforcing business agreements. CorDapps are mainly
written in Kotlin, a modern, statically typed programming language that runs on the Java Virtual
Machine. Kotlin is designed to be fully interoperable with Java, which means that CorDapps can
also be developed using Java. This approach enables the automation and execution of complex
workflows while maintaining a high level of control and customization.

•	 Regulatory compliance: Corda is designed to meet the stringent regulatory requirements of
industries such as finance and healthcare. It incorporates regulatory and legal constructs into
the architecture, enabling compliance with data protection, Know Your Customer (KYC), Anti-
Money Laundering (AML), and other regulatory frameworks. Corda’s focus on privacy and
fine-grained access control aligns with regulatory expectations regarding data confidentiality
and consent management.

•	 Network membership and governance: Corda networks are permissioned, meaning that
participants must be explicitly invited and granted access to the network. This membership
model ensures that only trusted entities are part of the network, enhancing security and reducing
the risk of malicious activities. Corda also allows for flexible network governance, enabling
participants to define and enforce rules and consensus mechanisms, as well as upgrade protocols
as per their specific requirements.

Exploring AKS and its benefits

AKS is a managed container orchestration service provided by Microsoft Azure. It simplifies the
deployment, management, and scaling of containerized applications using Kubernetes, an open
source container orchestration platform. AKS offers a range of benefits that make it an ideal choice
for hosting and managing Corda distributed ledger networks.

Overall, AKS offers a powerful and flexible infrastructure for hosting Corda distributed ledger
networks. The following figure shows the list of benefits of running a Corda network on AKS, from
simplified deployment to scalability, high availability, security features, and monitoring capabilities.
Lastly, its integration with Azure services makes AKS an ideal choice for organizations looking to
leverage Corda’s features while ensuring operational efficiency and reliability:

Understanding Corda and AKS 149

Figure 7.2 – Benefits of AKS

Let’s expand on the benefits of AKS with additional details:

•	 Simplified deployment: AKS abstracts away the complexities of setting up and managing
Kubernetes clusters. It provides a user-friendly interface and a seamless deployment experience,
allowing developers and DevOps teams to focus on their applications rather than infrastructure
management. With just a few clicks or commands, AKS provisions and configures a fully
functional Kubernetes cluster, eliminating the need for manual setup and configuration.

•	 Scalability and elasticity: AKS enables organizations to effortlessly scale their Corda networks
based on demand. It supports horizontal scaling by automatically adding or removing computing
resources based on workload requirements. This ensures that Corda nodes can handle increasing
transaction volumes and adapt to changing business needs without disruptions. AKS also
provides built-in support for load balancing, allowing for efficient distribution of traffic across
Corda nodes.

•	 High availability and reliability: AKS ensures the availability and reliability of Corda networks
through its fault-tolerant architecture. It automatically manages the placement of Corda nodes
across multiple availability zones, minimizing the impact of hardware failures or network
disruptions. AKS also offers features such as automatic node repair, rolling updates, and self-
healing capabilities, ensuring that the Corda network remains highly available and resilient.

Hosting a Corda DLT Network on Azure Kubernetes Service150

•	 Security and compliance: AKS incorporates robust security measures to protect Corda
networks and their associated resources. It integrates with Azure Active Directory (Azure
AD) for authentication and Role-Based Access Control (RBAC), allowing organizations to
manage user access and permissions effectively. AKS also supports network policies and Azure
Virtual Networks (VNets), enabling secure communication within the Corda network and
isolation from other resources.

•	 Monitoring and management: AKS provides comprehensive monitoring and management
capabilities for Corda networks. It integrates seamlessly with Azure Monitor, allowing organizations
to gain insights into the performance, health, and usage of their Corda nodes. AKS also supports
integration with Azure DevOps and other DevOps tools, enabling efficient CI/CD workflows
and streamlined application life cycle management.

•	 Integration with Azure services: AKS seamlessly integrates with a wide range of Azure
services, expanding the capabilities and possibilities for Corda networks. Organizations can
leverage services such as Azure Storage for off-ledger data storage, Azure Key Vault for secure
key management, Azure Application Insights for monitoring, and Azure DevOps for end-to-
end DevOps workflows. This integration provides a comprehensive and cohesive ecosystem
for hosting and managing Corda networks.

By hosting Corda on AKS, organizations can leverage the strengths of both platforms to establish
a resilient, scalable, and secure infrastructure for Corda-based applications. The synergy between
Corda and AKS enables organizations to focus on building and deploying Corda networks while
taking advantage of AKS’s management capabilities, scalability, and integration with Azure services,
ultimately accelerating the development and deployment of Corda-powered solutions.

Architecting Corda networks on AKS
When architecting a Corda network on AKS, several design considerations can contribute to a well-
structured and efficient deployment. By considering these design considerations, you can create a
well-architected Corda network deployment on AKS that aligns with your business requirements,
scalability needs, security measures, and regulatory compliance obligations.

Design considerations for Corda network deployment

The following diagram describes the key design considerations for Corda network deployment on AKS:

Architecting Corda networks on AKS 151

Figure 7.3 – Key design considerations for Corda on AKS

Let’s examine each feature in detail:

•	 Network topology: Consider the network topology that best suits your Corda network
requirements. Determine whether a single Corda network is sufficient or if multiple networks
or subnetworks are necessary to isolate different business domains or participant groups.
Define the network boundaries and the required connectivity between Corda nodes within
and across networks.

•	 Node distribution: Determine the distribution of Corda nodes across AKS clusters. Consider
factors such as fault tolerance, latency, and regulatory requirements. Distributing nodes across
multiple availability zones or regions enhances fault tolerance and resilience. Evaluate the trade-
offs between centralized versus decentralized node deployments based on network requirements.

•	 Network permissions and identity: Define the membership and permissions model for the
Corda network. Identify the participants and their roles, and establish the necessary identity
and access controls. Leverage Azure AD or other identity management systems for user
authentication and authorization. Utilize Corda’s built-in identity framework to manage the
cryptographic identities of Corda nodes.

•	 Storage: Determine the storage requirements for Corda network data. Evaluate whether Azure
Storage services, such as Azure Blob Storage or Azure Files, are suitable for storing off-ledger
data or other data associated with Corda nodes. Consider data encryption and access controls
to ensure data privacy and security.

•	 Networking and integration: Plan the networking aspects and integration points of the
Corda network with other Azure services or external systems. Determine the connectivity
requirements between Corda nodes, client applications, and external services. Define the
necessary network security groups, VNet configurations, and firewall rules to ensure secure
communication within the network.

•	 Consensus and notary configuration: Evaluate the consensus and notary configuration options
based on the Corda network’s requirements. Corda allows flexibility in choosing the consensus
algorithm and the type of notary service (for example, single, non-validating, or validating).
Consider the desired level of decentralization, performance needs, and regulatory compliance
when configuring consensus and notary services.

Hosting a Corda DLT Network on Azure Kubernetes Service152

•	 Monitoring and logging: Plan for monitoring and logging capabilities to gain insights into the
health, performance, and behavior of the Corda network. Leverage Azure Monitor, Application
Insights, or other monitoring tools to collect and analyze metrics, logs, and alerts from Corda
nodes and AKS clusters. Define appropriate monitoring thresholds and establish proactive
alerting mechanisms for critical events.

•	 Security and compliance: Ensure that the Corda network deployment aligns with security best
practices and regulatory compliance requirements. Establish secure network communication
channels, enforce encryption at rest and in transit, and implement proper access controls.
Consider data privacy regulations, cryptographic key management, and compliance frameworks
applicable to your industry.

•	 Disaster recovery and backup: Define disaster recovery and backup strategies to mitigate the
impact of unforeseen events. Implement mechanisms to perform regular backups of Corda
node data and ensure the availability of backups in case of data loss or system failures. Consider
data replication across different regions or cloud providers for enhanced resilience.

•	 Testing and deployment automation: Establish automated testing and deployment processes
to streamline the deployment and management of Corda networks on AKS. Utilize CI/CD
pipelines, Infrastructure as Code (IaC) tools, and testing frameworks to facilitate rapid and
consistent deployment, testing, and updating of Corda nodes.

Integrating your AKS configuration for Corda with additional
Azure services

Selecting the appropriate AKS configuration for hosting Corda involves considering various factors
to ensure optimal performance, scalability, and cost-efficiency. First, you may want to evaluate the
resource requirements of your Corda network nodes while considering factors such as transaction
volume, computational complexity, and memory requirements. Choose AKS node sizes that provide
sufficient CPU and memory resources to support Corda nodes effectively. Additionally, consider the
scalability requirements of your Corda network and select AKS node sizes that can accommodate
future growth and handle increased transaction volumes.

More details about provisioning an AKS cluster for Corda are described in the following sections.

High availability

When running a service in Azure, you can consider the redundancy of your infrastructure by adopting
techniques such as availability sets or availability zones. With either approach, you must first determine
the number of Corda nodes required for your network and then distribute them across AKS nodes.
As a good practice, consider deploying Corda nodes across multiple availability zones for improved
fault tolerance and high availability. Distributing nodes across different availability zones ensures that
the network remains operational, even in the event of infrastructure failures or disruptions.

Architecting Corda networks on AKS 153

Integration with Azure
Configure load balancing to ensure efficient distribution of traffic across Corda nodes. Utilize
Azure Load Balancer or Azure Application Gateway to distribute incoming requests to the
Corda network endpoints. Load balancing helps improve the scalability, availability, and fault
tolerance of the Corda network. Consider using Azure Private Link to securely access Corda
nodes from within your virtual network. Private Link provides private connectivity to your
Corda nodes over the Azure backbone network, enhancing security and isolating the network
traffic from the public internet.

Follow these steps to configure load balancing in AKS and ensure efficient distribution of traffic
across Corda nodes. By setting up a Kubernetes service with the LoadBalancer type, AKS will
automatically provision an Azure Load Balancer to distribute incoming traffic across your Corda
nodes. This load balancing mechanism ensures that your Corda network remains highly available,
scales efficiently, and provides optimal performance to clients accessing the various Corda services:

1.	 After creating a Kubernetes service for your Corda nodes, AKS will abstract the network access
to your pods and provide a stable IP address or DNS name for clients to access the Corda nodes.
At this point, you can specify the service type for load balancing, which is LoadBalancer.
This will instruct AKS to automatically provision an Azure Load Balancer and distribute
incoming traffic across the Corda nodes.

2.	 You can set the service type to LoadBalancer in AKS using PowerShell. You must use the
Set-AzAksService cmdlet to update the service type for your Corda network’s Kubernetes
service to LoadBalancer:

Set-AzContext -Name <AKSContextName> -SubscriptionId
<SubscriptionId>
Set-AzAksService -ResourceGroupName <ResourceGroupName> -Name
<AKSClusterName> -ServiceName <ServiceName> -Type LoadBalancer

Replace the <ResourceGroupName>, <AKSClusterName>, and <ServiceName>
placeholders with the appropriate values for your environment.

3.	 AKS will create a basic Azure Load Balancer. You can now customize the load balancer’s
configuration to suit your specific requirements. For example, you can configure session affinity
and health probes or use Azure Application Gateway for additional functionality.

Session affinity (also known as sticky sessions) ensures that requests from a specific client
are consistently directed to the same backend pod, improving the user experience when the
application requires session state.

Hosting a Corda DLT Network on Azure Kubernetes Service154

4.	 Use the Set-AzAksService cmdlet to update the service configuration and enable session
affinity. The key parameter for enabling session affinity is SessionAffinity; it should be
set to ClientIP to enable sticky sessions based on the client’s IP address:

Set-AzAksService -ResourceGroupName <ResourceGroupName> -Name
<AKSClusterName> -ServiceName <ServiceName> -SessionAffinity
ClientIP

Replace <ResourceGroupName>, <AKSClusterName>, and <ServiceName> with
the appropriate values for your environment.

5.	 To verify that session affinity has been enabled for the service, you can get the details of the
service using the Get-AzAksService cmdlet:

Get-AzAksService -ResourceGroupName <ResourceGroupName> -Name
<AKSClusterName> -ServiceName <ServiceName>

Look for the SessionAffinity property. It should be set to ClientIP.

Storage

Azure offers multiple options for data storage. When implementing your Corda solution, you may
want to assess the storage requirements of your Corda network. Determine if Azure Disk Storage or
Azure Files can adequately fulfill the storage needs of Corda nodes. Evaluate factors such as read/write
performance, data durability, and backup options. Also, consider whether encryption at rest and data
redundancy are necessary based on your security and compliance requirements.

Integration with Azure
Leverage Azure Storage services, such as Azure Blob Storage or Azure Files, for off-ledger data
storage or file sharing among Corda nodes. Use Azure Storage SDKs or APIs to interact with
the storage services directly from your Corda applications. Securely manage cryptographic keys
and secrets using Azure Key Vault. Integrate Corda nodes with Azure Key Vault to securely
store and retrieve sensitive information, such as cryptographic keys or passwords, used within
the Corda network.

Scalability

Specifically to AKS, the Kubernetes cluster configuration defines the appropriate number of nodes,
their size, and the availability zone distribution. Factors such as cluster autoscaling to automatically
adjust the number of nodes based on resource utilization and traffic demands are key to delivering a
robust DLT solution based on Corda.

Architecting Corda networks on AKS 155

Integration with Azure
Leverage Azure DevOps or GitHub services for seamless CI/CD workflows, version control,
and release management of Corda applications and network updates. Integrate Corda network
deployments with Azure DevOps pipelines for automated testing, building, and deploying Corda
nodes and associated applications. Integrate Corda nodes with Azure Event Grid to enable event-
driven architectures. Publish events from Corda nodes to Azure Event Grid, which can then
trigger downstream processes or invoke Azure Functions for automated responses or further
processing. Utilize Azure Logic Apps to automate workflows and orchestrate actions based on
specific events or triggers within the Corda network. Integrate Corda nodes with Azure Logic
Apps to create custom workflows, automate data processing, or trigger notifications and alerts.

Security and compliance

When speaking of security and compliance, the options in Azure vary and a lot depends on your
existing Azure implementation. For example, you may want to enable Azure AD integration for
authentication and authorization of AKS resources and Corda network access and leverage AKS
features such as RBAC network policies and Azure Security Center integration to enhance your
security and compliance posture.

Integration with Azure
Utilize Network Security Groups (NSGs) and VNet service endpoints to restrict access to Corda
nodes. Apply firewall rules and network policies to control inbound and outbound traffic and
enforce secure communication within the network. Consider implementing network traffic
encryption using Transport Layer Security (TLS) for enhanced security.

Monitoring and logging

We have already mentioned various options for monitoring and logging in the context of AKS. Gaining
insights into the health and performance of Corda nodes and AKS clusters is essential to your solution
in the long term. Best practices include leveraging Azure Monitor, Azure Application Insights, or
other monitoring tools to collect metrics, logs, and alerts. Also, consider integrating with logging
and monitoring solutions specific to Corda, such as Corda Firewall or Corda Monitoring Toolkit, for
deeper visibility into Corda network operations.

Integration with Azure
Integrate Corda nodes with Azure Monitor and Azure Application Insights for comprehensive
monitoring and diagnostics. Monitor the performance, health, and availability of Corda nodes,
capture and analyze logs, and set up alerts and notifications for critical events or anomalies
within the Corda network.

Hosting a Corda DLT Network on Azure Kubernetes Service156

Cost optimization

Every resource comes with a cost, so you may also want to look at the best strategy for cost optimization.
Apart from wanting to optimize costs by selecting the AKS configuration that best aligns with your
budget and resource utilization, you can also do the following:

•	 Consider reserved instances or spot instances for cost savings

•	 Evaluate AKS scaling options, including Horizontal Pod Autoscaling (HPA), to automatically
adjust resources based on workload demands

•	 Monitor and analyze resource utilization to right-size your AKS cluster and nodes effectively

Enabling HPA in AKS requires some additional steps beyond a single PowerShell cmdlet. While you
can configure and manage AKS resources, including deployments and ReplicaSets, using PowerShell,
enabling HPA is typically done through Kubernetes manifests or the Azure CLI. Let’s perform the
following steps to enable HPA in AKS:

1.	 Ensure you have the Azure CLI and Kubernetes CLI (kubectl) installed on your machine. The
Azure CLI is used to interact with AKS resources, while kubectl is used to interact with the
Kubernetes cluster.

2.	 Use the Connect-AzAccount cmdlet in PowerShell to sign in to your Azure account.
Then, use the az aks get-credentials command (Azure CLI) or kubectl config
use-context command (kubectl) to connect to your AKS cluster.

3.	 HPA relies on Metrics Server to collect resource utilization data. If your AKS cluster does not have
Metrics Server enabled, you need to install it. Use the az aks enable-addons --addons
monitoring command to enable the monitoring add-on, which includes Metrics Server.

4.	 Create a Kubernetes HPA manifest in YAML format. The HPA manifest should specify the
deployment or replica set you want to autoscale, as well as the minimum and maximum number
of replicas and the metrics used for scaling.

5.	 Use the kubectl apply -f command to apply the HPA manifest to your AKS cluster and
enable autoscaling for the specified deployment or replica set.

It is important to note that the specific AKS configuration for Corda may vary based on your network’s
unique requirements and expected workload. It is recommended to perform thorough testing and
performance benchmarking to validate the chosen configuration before deploying Corda networks
in production on AKS.

Provisioning an AKS cluster for Corda
The previous two sections focused on understanding the core features of Corda and AKS and the
synergy of the two services in Azure, as well as the key considerations for designing a robust, secure,
and scalable solution.

Provisioning an AKS cluster for Corda 157

We will now progress with the specific steps to set up such a solution based on an AKS cluster running
a Corda DLT, starting from having access to an Azure subscription and then preparing the prerequisites
for provisioning an AKS cluster for Corda.

Setting up an Azure subscription and preparing the prerequisites

Perform the following steps:

1.	 Set up an Azure subscription:

I.	 Open the Azure portal (https://portal.azure.com/) and sign in with your
Microsoft account. If you don’t have an account yet, you can create a new one for free.

II.	 Follow the prompts to create a new Azure subscription or associate an existing subscription
with your account.

III.	 Provide the necessary information and complete the subscription setup process.

2.	 Install the Azure CLI.

Download and install the Azure CLI on your local machine by following the instructions
provided in the official Azure CLI documentation at https://docs.microsoft.com/
en-us/cli/azure/install-azure-cli.

3.	 Create a resource group:

I.	 Open a command prompt or terminal and sign into the Azure CLI by running the
following command:

 az login

II.	 Follow the prompts to authenticate with your Azure account.

III.	 Create a resource group to hold the AKS cluster resources by running the following command:

 �az group create --name <resource-group-name> --location
<location>

4.	 Register the required Azure providers.

Run the following commands to register the required Azure providers:
az provider register --namespace Microsoft.ContainerService
az provider register --namespace Microsoft.Network
az provider register --namespace Microsoft.Compute
az provider register --namespace Microsoft.Storage

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

Hosting a Corda DLT Network on Azure Kubernetes Service158

5.	 Create an Azure Container Registry (ACR).

Run the following command to create an ACR in your resource group:
az acr create --resource-group <resource-group-name> --name
<acr-name> --sku Basic

6.	 Create a VNet to isolate your AKS cluster.

Run the following command to create a VNet in your resource group:
az network vnet create --resource-group <resource-group-name>
--name <vnet-name> --address-prefixes <vnet-address-space>
--subnet-name <subnet-name> --subnet-prefix <subnet-address-
prefix>

7.	 Create a service principal.

Generate a service principal for authenticating AKS with Azure resources. Run the following
command to create the service principal and assign it the necessary role:

az ad sp create-for-rbac --skip-assignment --name <service-
principal-name>

Take note of the appId (client ID) and password (client secret) values returned by the
preceding command.

8.	 Grant permissions to the service principal.

Assign the necessary permissions to the service principal by running the following commands:
az role assignment create --assignee <service-principal-appId>
--role "Contributor" --scope /subscriptions/<subscription-id>/
resourceGroups/<resource-group-name>
az role assignment create --assignee <service-principal-appId>
--role "Contributor" --scope /subscriptions/<subscription-id>/
resourceGroups/<resource-group-name>/providers/Microsoft.
ContainerRegistry/registries/<acr-name>

9.	 Create a Kubernetes secret to store the service principal credentials securely.

Run the following command to create the secret in your AKS cluster:
kubectl create secret generic corda-azure-credentials \
      --from-literal=subscriptionId=<subscription-id> \
      --from-literal=tenantId=<tenant-id> \
      --from-literal=clientId=<service-principal-appId> \
      --from-literal=clientSecret=<service-principal-password>

Replace <subscription-id>, <tenant-id>, <service-principal-appId>,
and <service-principal-password> with the respective values.

Provisioning an AKS cluster for Corda 159

10.	 Prepare the Corda configuration files.

Gather the necessary Corda configuration files, such as network parameters and node configuration
files, according to your Corda network requirements.

Once you have completed these steps, you will have set up an Azure subscription, prepared the
prerequisites, and created the necessary resources to provision an AKS cluster for Corda. You can
now proceed with creating the AKS cluster using the Azure portal, Azure CLI, or other deployment
methods of your choice.

Deploying an AKS cluster with the appropriate Corda configuration

Once the initial setup of Azure resources and necessary prerequisites is complete, you can now deploy
an AKS cluster with the appropriate Corda configurations:

1.	 Define the Corda node configuration.

Prepare the Corda node configuration files (for example, node.conf) for each Corda node in
your network. Customize the configuration according to your network’s requirements, including
network parameters, notary settings, identity information, and other relevant parameters.

2.	 Create a Kubernetes deployment YAML:

I.	 Create a Kubernetes deployment YAML file (corda-deployment.yaml) to define
the deployment of Corda nodes in the AKS cluster.

II.	 Specify the container image for Corda nodes, as well as the desired number of replicas,
resource limits, and environment variables for Corda node configurations.

III.	 Mount the necessary configuration files (for example, node.conf) as ConfigMaps or
secrets to provide them to the Corda nodes.

3.	 Apply the Kubernetes deployment.

Use the kubectl apply command to deploy the Corda nodes in the AKS cluster by applying
the deployment YAML file:

kubectl apply -f corda-deployment.yaml

4.	 Monitor the deployment progress using kubectl commands, such as kubectl get pods
or kubectl get deployment, to ensure that the Corda nodes are successfully created
and running.

5.	 Access the Corda nodes:

I.	 Obtain the external IP address or DNS name of the Corda nodes by running kubectl
get service or going through the Azure portal.

II.	 Use the obtained IP address or DNS name to connect to the Corda nodes from external
clients or other network participants.

Hosting a Corda DLT Network on Azure Kubernetes Service160

6.	 Validate Corda network connectivity:

I.	 Validate the connectivity between Corda nodes by initiating transactions, sending
messages, or performing other interactions within the Corda network.

II.	 Monitor logs, metrics, and Corda-specific tools to ensure the proper functioning and
communication of the Corda nodes.

7.	 Scale and manage the AKS Cluster:

I.	 Use AKS’s scaling capabilities to scale the Corda nodes based on your network’s requirements
and load. You can scale horizontally by adjusting the replica count in the deployment
YAML or using AKS’s autoscaling feature.

II.	 Employ AKS management capabilities to monitor, upgrade, and manage the AKS cluster,
including node scaling, rolling updates, and version upgrades.

8.	 Implement backup and disaster recovery:

I.	 Set up regular backups of Corda node data and relevant configuration files using appropriate
backup mechanisms. Consider using Azure Backup or other backup solutions.

II.	 Implement disaster recovery strategies, such as replicating data across different regions
or using Azure Site Recovery, to ensure business continuity in case of unexpected failures
or outages.

III.	 Throughout the deployment process, closely monitor the health, performance, and
connectivity of the Corda network. Regularly review logs, metrics, and monitoring tools
to identify and address any issues that may arise.

It’s important to note that the specific deployment process may vary, depending on your specific Corda
network requirements and the tools and methodologies you choose to use. Always refer to the Corda
and Kubernetes documentation for detailed instructions and best practices related to the deployment
and management of Corda nodes on AKS.

Corda Enterprise in the Azure Marketplace

The approach described in the previous section implies that you are comfortable managing the AKS
cluster where the Corda network will be deployed. That is certainly the deployment method with the
most control over the provisioned infrastructure.

However, especially for testing or evaluation purposes, there may be circumstances in which you may want
a quicker way to deploy a Corda network without the hassle of managing the underlying infrastructure.

Provisioning an AKS cluster for Corda 161

If you want to accelerate the deployment of a Corda network, R3 offers a predefined template in the
Azure Marketplace for provisioning a Corda Enterprise single node for Corda Testnet. This template
deploys a single Corda Enterprise node and helps the user obtain a certificate for Corda Testnet, a live
network of global nodes that can be transacted for testing purposes. The following screenshot shows
the Corda Enterprise on Corda Testnet service in the Azure Marketplace:

Figure 7.4 – The Corda Enterprise service in the Azure Marketplace

As reported by R3 on the Azure Marketplace, by using this service, you can quickly deploy Corda
Enterprise nodes and test applications on a network of Corda nodes that have access to Corda Testnet.
Here are some of the key features of this deployment of Corda Enterprise:

•	 Corporate-level security: Corda Enterprise nodes are deployed inside corporate data centers
and still retain the ability to communicate securely with other nodes.

•	 Off-chain data storage: Seamless integration with database services, such as Azure SQL and
Oracle database.

•	 Runs on Corda: You can operate cross-version networks of Corda nodes by seamlessly integrating
corporate firewall-protected nodes that support multiple CorDapps on the same network. They
are enabled by Corda’s privacy model.

•	 The benefits of PaaS: All the benefits that you’d expect from a Platform as a Service (PaaS)
deployment in Azure, including predictable release schedules, performance and availability
monitoring, enhanced security, high availability, and disaster recovery of Corda nodes.

Securing the AKS cluster and managing access controls

You’re nearly there. The last step in provisioning an AKS cluster for Corda is securing the cluster and
managing access controls. These are essential steps to protect your Corda network and ensure proper
authorization. The following diagram, sourced from StackSimplify, depicts the connections between
Azure AD and the AKS cluster. For additional information on this process, please consult https://
stacksimplify.com/azure-aks/azure-ad-authentication-for-aks-admins/:

https://stacksimplify.com/azure-aks/azure-ad-authentication-for-aks-admins/
https://stacksimplify.com/azure-aks/azure-ad-authentication-for-aks-admins/

Hosting a Corda DLT Network on Azure Kubernetes Service162

Figure 7.5 – Azure AD authentication for AKS administrators

Step by step, this is how you can configure robust user authentication and role-based authorization
in AKS. Follow these steps to ensure you have strong security in your AKS deployment:

1.	 Enable Azure AD integration:

I.	 Integrate your AKS cluster with Azure AD for authentication and authorization.

II.	 Use the Azure CLI or Azure portal to enable Azure AD integration for your AKS cluster.

2.	 RBAC:

I.	 Utilize RBAC to manage access controls within the AKS cluster.

II.	 Define custom Azure AD roles or use built-in roles to grant appropriate permissions to
users or groups.

III.	 Assign roles to users or groups for managing AKS resources, such as cluster administration
or pod access.

3.	 Set up the specific Kubernetes RBAC:

I.	 Leverage Kubernetes RBAC to control access to cluster resources.

II.	 Define Kubernetes Roles and RoleBindings or ClusterRoles and ClusterRoleBindings to
grant specific permissions to users or groups within the cluster.

Provisioning an AKS cluster for Corda 163

4.	 Implement network policies:

I.	 Implement network policies to control inbound and outbound traffic within the AKS cluster.

II.	 Use Kubernetes Network Policies to define rules for pod-to-pod communication, allowing
only authorized traffic between Corda nodes or specific network segments.

5.	 Leverage Azure Firewall or NSGs:

I.	 Use Azure Firewall or NSGs to enforce network-level security controls for inbound and
outbound traffic to the AKS cluster.

II.	 Define appropriate firewall rules or NSG rules to allow only necessary traffic and block
unauthorized access.

6.	 Enforce TLS:

I.	 Enable TLS for secure communication within the Corda network and between Corda nodes.

II.	 Generate and manage TLS certificates for Corda nodes to ensure encrypted communication.

7.	 Secrets management:

I.	 Store sensitive information, such as credentials or private keys, securely using Kubernetes
Secrets or Azure Key Vault.

II.	 Use secrets to provide secure access to sensitive information required by Corda nodes
or other applications running within the cluster.

8.	 Container image security:

I.	 Employ container image security best practices.

II.	 Use container image scanning tools to identify vulnerabilities and ensure images are free
from known security issues before deployment.

9.	 Regular updates and patching:

I.	 Stay updated with the latest AKS versions and patches.

II.	 Regularly apply updates to the AKS cluster, including security patches, bug fixes, and
feature enhancements.

Hosting a Corda DLT Network on Azure Kubernetes Service164

10.	 Monitoring and logging:

I.	 Implement monitoring and logging solutions to gain visibility into cluster activities and
potential security threats.

II.	 Leverage Azure Monitor, Azure Security Center, or other monitoring tools to collect and
analyze logs, metrics, and security events.

11.	 Regular security audits and reviews:

I.	 Conduct periodic security audits and reviews to identify potential vulnerabilities
or misconfigurations.

II.	 Regularly assess and update security controls based on the evolving threat landscape
and industry best practices.

By following these steps, you can enhance the security of your AKS cluster and effectively manage
access controls for your Corda network, ensuring that only authorized users and entities have the
necessary permissions to interact with the cluster and Corda nodes.

Managing Corda nodes on AKS
Following the initial provisioning and setup of a Corda network on AKS, your deployed infrastructure
now requires constant attention: performance, scalability, high availability, security, and operating
costs are just a few of the conditions to regularly check for a sound and robust environment.

Now, let’s analyze how to scale, validate the resilience, and ensure high availability and disaster recovery
of Corda networks on AKS.

Scaling Corda nodes as Kubernetes pods

Your AKS cluster is now up and running. We’ll keep on leveraging the corda-deployment.yaml
file we created in the previous section when we deployed Corda on Kubernetes pods. This file specifies
the desired number of replicas, resource limits, and other configuration options for the Corda nodes.
In addition, the YAML file describes the source for the container image for Corda nodes. This can be
an image pulled from a container registry or a custom-built image that includes the necessary Corda
software and dependencies.

A typical strategy for anticipating traffic demand on your AKS cluster is to create a capacity plan based
on the expected growth and workload of the Corda network. Such a plan takes into consideration factors
such as transaction volume, number of participants, data growth, and expected network activity over
time (first week, first month, 3 months, 6 months, 1 year). This capacity plan with help you estimate the
required resources (CPU, memory, and storage) and scalability needs to accommodate future demand.

Managing Corda nodes on AKS 165

You can scale Corda nodes as Kubernetes pods on AKS by following these steps:

1.	 Configure Corda node identity.

There is no single out-of-the-box script provided by Corda or AKS that specifically generates
and configures Corda node identity information for scaling Corda nodes as Kubernetes pods
on AKS. The process of generating and configuring Corda node identity information involves
several steps and considerations, and it often depends on your specific deployment requirements
and security considerations:

I.	 Generate and configure the Corda node identity information (for example, private keys
and certificates) as part of the Corda configuration files or secrets. Corda nodes require
cryptographic identities to communicate securely within the network. Use Corda’s built-in
identity generation tools to generate the required cryptographic key pairs and certificates
for each Corda node. These tools include corda.jar and network-bootstrapper.

II.	 Ensure that the Corda nodes have the necessary identity information to participate in
the Corda network. For example, you may want to use a Certificate Authority (CA) to
issue and manage the certificates for Corda nodes. A CA helps ensure the authenticity
of the node identities and can simplify the certificate management process.

III.	 Securely store credentials, such as cryptographic key pairs and certificates. Avoid
exposing sensitive information in version control or public repositories. Rather, prefer
using Kubernetes secrets to store and manage the Corda node identity information
securely. AKS secrets enable you to store sensitive data such as cryptographic keys and
certificates as Kubernetes objects.

2.	 Validate Corda network connectivity:

I.	 Validate the connectivity between the Corda nodes running as Kubernetes pods by
initiating transactions, sending messages, or performing other interactions within the
Corda network. Use Corda Shell (corda-shell) to interact with your Corda nodes.
Corda Shell allows you to issue commands, initiate transactions, and query the network.

II.	 Monitor logs, metrics, and Corda-specific tools to ensure the proper functioning and
communication of the Corda nodes.

3.	 Scale and manage the Corda pods:

I.	 Use Kubernetes scaling capabilities to scale the Corda pods based on your network’s
requirements and load. You can scale horizontally by adjusting the replica count in the
deployment YAML or using the Kubernetes autoscaling feature.

II.	 Employ Kubernetes management capabilities to monitor, upgrade, and manage the
Corda pods, including rolling updates, version upgrades, and pod life cycle management

Hosting a Corda DLT Network on Azure Kubernetes Service166

You can configure your AKS cluster to scale manually or automatically. The two approaches to the
scalability of an AKS cluster are described in the following table:

Manual scaling Auto scaling
•	 Monitor the workload and performance

of the Corda network regularly

•	 Manually adjust the replica count of
Corda pods based on the observed
load or anticipated changes in
network requirements

•	 Use the kubectl scale command to
scale the Corda deployment up or down:

 �kubectl scale deployment
corda-deployment
--replicas=<replica_count>

•	 Configure HPA for the Corda nodes within
the AKS cluster

•	 Set thresholds based on metrics such as
CPU utilization or pending requests to
automatically scale up or down the number
of Corda pods

•	 Define minimum and maximum replica
counts to ensure the cluster scales within
the desired bounds

Table 7.1 – Manual versus automatic scaling of Corda nodes on AKS

By following these steps, you can configure and scale Corda nodes as Kubernetes pods on AKS. This
allows you to leverage the scalability, manageability, and container orchestration features of Kubernetes
while running Corda in a distributed and resilient manner.

However, please keep in mind that there is no magic formula for guaranteeing the scalability of your
solution. In the end, it all comes down to continuous monitoring, testing, and optimization of the
deployed resources. Don’t forget to continuously analyze performance metrics and identify any bottlenecks
or performance issues within the Corda nodes. This will help you optimize the Corda configuration,
such as tuning thread pool sizes, database settings, and network parameters, to improve performance.

Load testing is also an essential step in the healthy life cycle of your Corda network. Conduct regular load
testing on the Corda network to simulate real-world usage scenarios and evaluate the performance and
scalability of the system. You can use tools such as JMeter, Gatling, or custom scripts to generate realistic
workloads and measure the response times and throughput of the Corda nodes. Analyzing the load testing
results will help you identify performance bottlenecks and determine the optimal scaling requirements.

Testing and validating the resilience of Corda networks on AKS

Testing and validating the resilience of Corda networks on AKS is essential to ensure that your network
can withstand various failure scenarios and continue to operate effectively. Make resilience testing a
regular practice in your development and maintenance life cycle. Regularly test and validate the resilience
of your Corda network as you make updates, introduce new components, or change the configuration.

Managing Corda nodes on AKS 167

The nine-step recommended strategy for testing and validating the resilience of Corda networks on
AKS, as illustrated in the following figure, is essential for identifying potential weaknesses, optimizing
the network’s ability to recover from failures, and ensuring that your Corda network can continue to
operate reliably in challenging conditions:

Figure 7.6 – Strategy for testing and validating Corda networks

The strategy that you want to follow for testing and validating Corda networks is as follows:

1.	 Identify failure scenarios: Start by identifying potential failure scenarios that could impact
your Corda network. This may include node failures, network failures, database failures, or
other critical components.

2.	 Define test objectives: Clearly define the objectives of your resilience testing. Determine what
aspects of your Corda network’s resilience you want to validate, such as node recovery, data
integrity, failover time, or performance under stress.

Hosting a Corda DLT Network on Azure Kubernetes Service168

3.	 Create test plans: Develop test plans that outline specific test cases for each identified failure
scenario. Define the steps to simulate the failure, the expected behavior or recovery process,
and the metrics or observations to capture during testing.

4.	 Automated testing: Leverage automation tools and frameworks to simulate failure scenarios
and automate the testing process. This ensures consistent and repeatable tests while saving
time and effort.

5.	 Node failure testing: Simulate node failures by intentionally stopping or terminating individual
Corda nodes within the AKS cluster. Monitor the behavior of the network during the failure
and observe how the network recovers when the failed node is brought back online.

6.	 Network failure testing: Introduce network failures by disconnecting network links or simulating
network latency and packet loss. Observe how the Corda nodes handle network disruptions
and how the network recovers once the connection is restored.

7.	 Database failure testing: Simulate database failures by intentionally stopping or corrupting
the Corda database. Validate the ability of the network to recover from the failure, restore data
integrity, and resume normal operation.

8.	 Performance testing: Conduct performance testing under various load conditions to assess
the scalability and performance of your Corda network. Measure response times, transaction
throughput, and resource utilization to identify any performance bottlenecks.

9.	 Observability and logging: Implement observability and logging mechanisms within your
Corda network to capture detailed information during resilience testing. Use this information
to analyze the behavior of the network and identify areas for improvement.

The purpose of this testing and validation process is to provide you with a proven framework for
analyzing the results of your resilience testing and identifying any weaknesses or areas for improvement.
The action is then to address any issues or bottlenecks that were identified during testing and optimize
your Corda network accordingly.

Ensuring high availability and disaster recovery

To ensure high availability and disaster recovery for your Corda deployment on AKS, it’s
important to implement load balancing and fault tolerance strategies. The following diagram lists a
recommended approach:

Managing Corda nodes on AKS 169

Figure 7.7 – Core characteristics of a highly available cloud application

Let’s expand each of these characteristics and map them to the relevant service in Azure:

•	 Load balancing: Implement load balancing to distribute the incoming traffic across multiple
Corda nodes. This ensures even distribution of requests and prevents any single node from
becoming a performance bottleneck. There are several options for load balancing in AKS:

	� Azure Load Balancer: Use Azure Load Balancer, a native Azure service, to distribute incoming
traffic across Corda nodes. Azure Load Balancer supports various load balancing algorithms,
such as round-robin or least connections, to evenly distribute traffic.

	� Application Gateway: Consider using Azure Application Gateway, which operates at the
application layer (Layer 7) and provides additional functionalities such as SSL termination,
URL-based routing, and session affinity.

	� Ingress Controller: Utilize an Ingress controller, such as NGINX Ingress Controller or Azure
Application Gateway Ingress Controller, to manage external access and load balancing for
your Corda nodes. Ingress controllers allow you to define routing rules and SSL termination
for incoming traffic.

•	 Replication and node redundancy: Ensure that you have multiple replica instances of Corda
nodes running in your AKS cluster. This provides redundancy and fault tolerance in case
any individual node becomes unavailable. Replication can be achieved through Kubernetes
deployments and ReplicaSets, allowing automatic scaling and fault recovery.

In addition, it is recommended to implement health checks and monitoring for the Corda
nodes to identify and handle any unhealthy or non-responsive nodes. Use Kubernetes readiness
and liveness probes to regularly check the health of the Corda nodes. If a node fails the health
check, the load balancer can automatically redirect traffic to healthy nodes.

Hosting a Corda DLT Network on Azure Kubernetes Service170

•	 Database replication: If you’re using a separate database for Corda, ensure that the database has
been configured for replication and high availability. Replicating the database across multiple
nodes or using a highly available database service, such as Azure SQL Database or Azure
Database for PostgreSQL, ensures data availability in case of node failures.

•	 Disaster recovery: Implement a disaster recovery plan to protect against major outages or data
loss. Consider strategies such as database backups, off-site replication, and geo-redundancy to
ensure data durability and disaster recovery capabilities. Azure provides services such as Azure
Site Recovery and Azure Backup that can assist in creating robust disaster recovery solutions.

For regular backups of critical data and configurations related to your Corda nodes (this includes
backing up the Corda node configuration, cryptographic keys, and any other essential data), a
very good common practice is using Azure Blob storage, Azure File Storage, or Azure Backup
for secure and automated backups.

Lastly, do not forget to regularly test your high availability and disaster recovery strategies to ensure
they function as expected. Conduct failover tests, simulate node failures, and verify that the load
balancing and fault tolerance mechanisms are operating correctly.

Performing failover tests in AKS

Performing failover tests in an AKS cluster involves simulating various failure scenarios and validating
how the cluster responds to those failures. It helps ensure the high availability and resilience of your
AKS cluster. This section will outline what you can do using PowerShell and the Azure CLI to perform
some common failover tests.

Before you continue
Please note that failover tests can affect the availability of your AKS cluster and applications,
so it’s essential to perform these tests in a controlled environment, such as a staging or test
AKS cluster.

Here’s a general guide to performing failover tests on an AKS cluster using PowerShell and the Azure CLI:

1.	 Select the AKS cluster and set the right context.

Use the Get-AzAksCluster cmdlet to list the available AKS clusters and select the one you
want to perform the failover tests on. Then, set the AKS context so that it works with that cluster:

$aksCluster = Get-AzAksCluster -ResourceGroupName
<ResourceGroupName> -Name <AKSClusterName>
Set-AzContext -SubscriptionId $aksCluster.ManagedBy
Set-AzContext -Name $aksCluster.Name -ResourceGroupName
$aksCluster.ResourceGroupName

Summary 171

2.	 Simulate node failure.

To simulate node failure, you can scale down a node pool to zero replicas using the Azure
CLI. This will drain and delete the nodes in the specified node pool. Observe how the cluster
responds and auto-scales to maintain the desired replica count:

az aks nodepool scale --resource-group <ResourceGroupName>
--cluster-name <AKSClusterName> --name <NodePoolName> --node-
count 0

3.	 Test pod rescheduling.

To test how pods reschedule on node failure, scale the node pool back up to its original replica
count using the Azure CLI. Observe how the pods are rescheduled onto the newly added nodes:

az aks nodepool scale --resource-group <ResourceGroupName>
--cluster-name <AKSClusterName> --name <NodePoolName> --node-
count <OriginalNodeCount>

4.	 Simulate cluster availability zone failure (if applicable).

If your AKS cluster spans multiple availability zones, you can simulate an availability zone
failure by draining and deleting all the nodes in one of the zones. Ensure that your node pools
are spread across availability zones for this test.

5.	 Observe cluster recovery.

After simulating the availability zone failure, the AKS cluster should recover automatically by
rescheduling the affected pods onto healthy nodes in the other availability zones.

Please ensure that you fully understand the impact of the failover tests and have proper backup and
disaster recovery mechanisms in place before performing them. These steps provided a general guide
to help you get started, though you may need to tailor the tests based on your specific AKS cluster
configuration and requirements. Always perform these tests in a controlled environment to avoid
affecting production workloads.

Summary
Hosting a Corda DLT network on AKS provides organizations with a powerful combination of cutting-
edge DLT technology and scalable infrastructure. This chapter served as a comprehensive guide to
help you navigate the intricacies of deploying and managing Corda networks on AKS successfully. By
following the best practices and guidelines presented here, you can unlock the full potential of Corda
and harness the benefits of AKS at scale.

In the next chapter, we’ll progress our deep dive into blockchain-related services offered by Azure by
looking at using the ledger features of SQL databases. Besides a transactional and relational database,
Azure SQL Managed Instance and SQL Server also offer immutable storage facilities with digital
ledger technology.

Hosting a Corda DLT Network on Azure Kubernetes Service172

Further reading
Here are some websites where you can learn more about Corda and AKS.

For Corda:

•	 Corda Documentation: The official documentation for Corda provides comprehensive information
on getting started, architecture, development, and more. You can find it at https://docs.
corda.net/.

•	 Corda Network: Visit the Corda Network website to learn more about Corda’s global blockchain
network, membership, and how to join: https://www.corda.network/.

•	 Corda GitHub repository: The Corda GitHub repository contains the open source code
for Corda. You can explore the source code, contribute to the project, and access sample
applications: https://github.com/corda/corda.

•	 Corda YouTube channel: The official Corda YouTube channel features tutorials, webinars,
and presentations on various aspects of Corda: https://www.youtube.com/@
Cordablockchain.

For AKS:

•	 AKS documentation: The official documentation for AKS provides guides, tutorials, and best
practices for working with AKS: https://docs.microsoft.com/azure/aks/

•	 AKS GitHub repository: The official GitHub repository for AKS contains examples, sample
code, and community-contributed content: https://github.com/Azure/AKS

•	 Microsoft Learn – Kubernetes learning path: Microsoft Learn offers a Kubernetes learning
path that covers AKS and Kubernetes fundamentals: https://learn.microsoft.com/
en-us/azure/aks/concepts-clusters-workloads

•	 Kubernetes documentation: Familiarize yourself with Kubernetes’ concepts and features to
better understand AKS: https://kubernetes.io/docs/

https://docs.corda.net/
https://docs.corda.net/
https://www.corda.network/
https://github.com/corda/corda
https://www.youtube.com/@Cordablockchain
https://www.youtube.com/@Cordablockchain
https://docs.microsoft.com/azure/aks/
https://github.com/Azure/AKS
https://learn.microsoft.com/en-us/azure/aks/concepts-clusters-workloads
https://learn.microsoft.com/en-us/azure/aks/concepts-clusters-workloads
https://kubernetes.io/docs/

8
Using the Ledger Features of

Azure SQL

In today’s data-driven world, maintaining the integrity and immutability of sensitive information is
paramount for businesses and organizations. Blockchain technology, with its decentralized ledger
system, has set new standards for data security and transparency. While blockchain has found its
place in various industries, its implementation can be complex and resource-intensive. To address
this, Microsoft Azure offers a more accessible and efficient alternative through the ledger features of
Azure SQL Database.

The ledger features of Azure SQL Database bring the advantages of blockchain technology to a broader
audience, simplifying data integrity, security, and auditing for businesses of all sizes. With a tamper-
evident and immutable transaction log, Azure SQL Database provides a trustworthy foundation for
applications that require an extra level of assurance and transparency. Whether it’s financial systems,
supply chain management, healthcare, or any other industry requiring robust data protection, Azure
SQL Database’s Ledger offer a powerful and accessible solution to safeguard critical information.

Throughout this chapter, we’ll familiarize ourselves with the core concepts of ledgers and blockchain
technology since the ledger features in Azure SQL Database are designed to mimic some of these
principles, such as immutability and cryptographic hashing.

We’ll also plan our data model so that it accommodates the use of ledger features. While Azure SQL
Ledger maintains a transaction log for you, you need to design your database schema in a way that
aligns with your data integrity and auditing requirements.

We must also be aware of the potential impacts on storage and performance when using ledger features
as they involve maintaining a history of transactions.

Lastly, we will understand our data retention policies and regulatory compliance requirements since
the use of ledger features may have implications on data archival and compliance audits.

Using the Ledger Features of Azure SQL174

Let’s dive into the following main topics:

•	 Introduction to the ledger features of Azure SQL

•	 Benefits of the ledger features of Azure SQL

•	 Using the ledger features of Azure SQL for blockchain solutions

•	 Integrating the ledger features of Azure SQL with other Azure services

•	 Best practices for implementing blockchain solutions with the ledger features of Azure SQL

Technical requirements
Before you start using the ledger features in Azure SQL Database, there are some technical prerequisites
that you should meet to ensure the smooth implementation and utilization of these features. First, you
need an active Microsoft Azure subscription to access and use Azure SQL Database and its features.
If you don’t have one, you can sign up for a free trial or a pay-as-you-go subscription at https://
azure.com.

Once you’ve obtained an Azure subscription, you need an Azure SQL Database instance provisioned
and running. The ledger feature is available for SQL Server 2022, Azure SQL Database, and Azure SQL
Managed Instance. Specifically, the ledger features are available in the Business Critical and Premium
service tiers of Azure SQL Database.

Finally, make sure that you have appropriate permissions to manage Azure SQL Database and configure
its features. Typically, this requires the role of a Database Administrator or being the owner of the
Azure SQL Database resource.

Introduction to the ledger features of Azure SQL
Azure SQL Database, a fully managed relational database service by Microsoft, provides a scalable,
secure, and high-performance platform for applications running on Microsoft Azure. With its
continuous evolution, Microsoft introduced ledger capabilities to Azure SQL Database, empowering
businesses to benefit from the robustness of blockchain technology without the complexities typically
associated with blockchain deployment.

At its core, the ledger features of Azure SQL Database enable organizations to create immutable and
tamper-evident records of their data transactions. It ensures data integrity by providing a secure and
auditable log of all changes made to the database. Unlike traditional databases, where data changes can be
overwritten or deleted without a trace, the ledger features maintain a transparent history of each alteration.

This approach not only enhances data security but also fosters trust among stakeholders. The cryptographic
hashing of transactions creates an ordered sequence of blocks of transactions, ensuring that no single
entity can manipulate the data retroactively. This feature is particularly valuable in scenarios where
regulatory compliance and data auditing are critical requirements.

https://azure.com
https://azure.com

Introduction to the ledger features of Azure SQL 175

Azure SQL Ledger is not a blockchain
While the concept of a sequence of blocks may sound similar to a blockchain network, it’s
essential to clarify that Azure SQL Ledger is not a decentralized and distributed digital ledger
with a consensus mechanism.

Azure SQL Ledger and blockchain are distinct technologies that are designed to ensure data
integrity and trust, but they operate on different principles and serve varied use cases. Azure
SQL Ledger provides cryptographic verifiability of database changes, allowing users to maintain
an immutable record of data modifications within a centralized SQL database environment. It
offers a ledger layer on top of a relational database.

On the other hand, blockchain is a decentralized ledger technology that distributes data across
a network of computers, ensuring transparency, security, and integrity through consensus
mechanisms among participants. While Azure SQL Ledger emphasizes enhancing traditional
database systems with verifiability features, blockchain focuses on decentralization and peer-
to-peer interaction, making it more suited for scenarios that require distributed trust and
elimination of central authority.

Let’s summarize the key benefits of using the ledger features of Azure SQL in blockchain applications:

•	 Security and integrity: The ledger features of Azure SQL Database offer an additional layer of
security by design. The data remains protected against unauthorized modifications, making it
suitable for applications that require strict compliance and data governance.

•	 Simplified auditing: The ledger provides a comprehensive transaction history, simplifying the
auditing process. Organizations can easily trace back to specific points in time and investigate
the sequence of events leading to any particular data state.

•	 Data immutability: Once a transaction has been committed to the ledger, it becomes immutable.
This feature eliminates the risk of accidental or malicious data alteration and enhances the
credibility of records.

•	 Performance and scalability: Azure SQL Database’s ledger features are built to deliver high
performance and scalability. Businesses can handle large volumes of data transactions efficiently
without compromising on speed and responsiveness.

•	 Integration with existing applications: The ledger features are designed to seamlessly integrate
with existing applications. This means organizations can leverage the benefits of blockchain-like
data integrity without significant changes to their current infrastructure.

These ledger features are available in certain editions of Azure SQL Database. Specifically, they are
available in the Business Critical and Premium service tiers. Be sure to check out the latest Azure SQL
Database documentation for any updates on supported editions: https://learn.microsoft.
com/en-us/azure/azure-sql/database/ledger-landing.

https://learn.microsoft.com/en-us/azure/azure-sql/database/ledger-landing
https://learn.microsoft.com/en-us/azure/azure-sql/database/ledger-landing

Using the Ledger Features of Azure SQL176

It’s important to remember that, while the ledger features abstract many complexities, you should
have a good understanding of Transact-SQL (T-SQL), the SQL language variant used with Azure
SQL Database. This will help you interact with the database and utilize the Ledger features effectively.

Use cases for SQL Ledger

Ledger features in Azure SQL Database are well-suited for various use cases where data immutability,
transparency, and audibility are critical requirements. Typical use cases for ledger technology span
across multiple industries, such as the following:

•	 Financial transactions: Ledger technology is widely used in financial systems to record and
track transactions, ensuring that financial data remains tamper-proof and auditable. It helps
maintain an accurate and transparent ledger of financial activities, which is crucial for regulatory
compliance and fraud prevention.

•	 Supply chain management: In supply chain management, ledgers can be employed to track
the movement of goods and raw materials from their source to the end user. The immutable
records provided by the ledger enhance trust and transparency between parties and help identify
inefficiencies or bottlenecks in the supply chain.

•	 Healthcare records: In the healthcare industry, ledgers can be utilized to securely manage
patient records, medical history, and treatment information. The immutable nature of the ledger
ensures data integrity, preventing unauthorized changes to patient records and supporting data
sharing among authorized healthcare providers.

•	 Intellectual property rights: Ledgers can be used to manage intellectual property rights, such
as patents, copyrights, and trademarks. The ledger maintains a transparent history of ownership
and licensing, providing an auditable trail for legal and licensing purposes.

•	 Identity and access management: Ledger technology can be applied to manage identity and
access control. Immutable records of user access and permissions help ensure data security
and prevent unauthorized access.

•	 Public sector governance: In the public sector, ledgers can enhance transparency and
accountability in government operations. They can be used to track public funds, expenditures,
and contract management, reducing the potential for corruption and enhancing citizen trust.

•	 Legal and compliance records: Ledgers provide an ideal solution for legal and compliance
records, such as contracts, agreements, and regulatory filings. The transparent and tamper-
evident nature of the ledger ensures the integrity and validity of critical legal documents.

•	 Real estate and property transactions: In real estate, ledgers can be employed to record property
transactions, ownership history, and title transfers. This simplifies the process of verifying
property ownership and reduces the risk of fraudulent property transactions.

Introduction to the ledger features of Azure SQL 177

•	 Supply chain traceability: Ledgers can facilitate supply chain traceability for products, especially
in industries where consumers demand transparency about the origin and production process
of the goods they purchase.

•	 Voting systems: Ledger technology can be used to create secure and tamper-proof voting
systems, ensuring the integrity of election results and providing transparent audit trails.

These are just a few examples of the diverse applications of ledger technology. The underlying principles
of data immutability, transparency, and cryptographic security make ledgers an attractive solution for
a wide range of industries and use cases, where data integrity and trust are paramount.

Creating a ledger in Azure SQL database

To create a ledger database in Azure SQL Database with ledger capabilities enabled at the database
level, we need to use the CREATE DATABASE statement with the LEDGER = ON option. This
feature enhances the database with cryptographic verifiability, allowing us to maintain an immutable
record of data modifications.

First, let’s connect to an instance of Azure SQL Server, either using SQL Server Management Studio
(SSMS), Azure Data Studio, or any SQL client where it’s possible to execute T-SQL commands. Then,
we must create a new database by executing the following command:

CREATE DATABASE <database_name>
WITH LEDGER = ON;

Replace <database_name> with the name you wish to give your ledger-enabled database.

Once the database has been created, we can start using it immediately. We can create tables and
perform CRUD operations as usual. The ledger functionality will be automatically integrated into
the database, ensuring that all data modifications are recorded immutably.

To take advantage of ledger capabilities, such as verifying the integrity of the data or auditing changes,
we’ll need to familiarize ourselves with specific T-SQL extensions provided by Azure for ledger
operations. These might include functions and procedures for cryptographic verification of the data
stored in the ledger.

Database ledger versus table ledger

Creating a ledger-enabled database in Azure SQL and creating ledger-enabled tables within an
Azure SQL database are two distinct operations that cater to different levels of data integrity and
auditing requirements.

Using the Ledger Features of Azure SQL178

As we’ve seen previously, the CREATE DATABASE WITH LEDGER = ON command creates a ledger-
enabled database. This command is used at the database level, and it enables ledger functionalities for
the entire database. This means that the ledger capabilities, which include cryptographic verification of
data integrity and immutability, can be used by any table within the database, but it’s up to individual
tables to utilize these features.

The primary goal here is to establish a database environment that supports ledger functionalities across
the board, making it easier to manage and apply these capabilities on a table-by-table basis as needed.
This is ideal for new databases where we anticipate the need for ledger functionalities across multiple
tables, providing a foundation for advanced data integrity and auditing capabilities from the start.

Azure SQL Database also supports updatable ledger tables on which users can perform update and
delete operations while also providing tamper-evidence capabilities. This type of ledger can be enabled
with the CREATE TABLE WITH LEDGER = ON command.

This command is specific to a single table within a database. We can use it when creating a new
table or altering an existing one to enable ledger functionalities for that specific table. It allows for
the cryptographic verification of the data within the table, ensuring that all data modifications are
recorded immutably.

The focus here is on applying ledger capabilities to individual tables. This is useful for databases that
only require ledger functionalities for specific tables rather than at the entire database level. This is
ideal for scenarios where only certain critical or sensitive data tables require the enhanced integrity
and audit capabilities provided by ledger functionalities. It allows for a more granular application of
these features, enabling them only where necessary.

Benefits of the ledger features of Azure SQL
Before we progress any further with technical details, let’s dig into the specific benefits of the ledger
features of Azure SQL, as identified in the previous section. Each benefit will be described in terms
of impact and configuration or coding details for implementation.

Security and integrity

The ledger features of Azure SQL Database offer significant benefits concerning data security and
integrity. By leveraging these features, organizations can ensure that their data remains tamper-proof,
transparent, and resistant to unauthorized modifications. First, we’ll explore how the ledger features
enhance security and integrity, after which we’ll dive into some code examples demonstrating their usage:

•	 Data immutability: The ledger features ensure that once a transaction is committed to the
ledger, it becomes immutable. This means that historical data remains intact and cannot be
altered or deleted, providing a reliable audit trail for all database changes. This immutability
enhances data integrity and eliminates the risk of accidental or malicious modifications.

Benefits of the ledger features of Azure SQL 179

•	 Cryptographic hashing: Ledger features utilize cryptographic hashing algorithms to generate
a unique hash for each transaction. These hashes create a chain of blocks, and any change to
the data results in a new block with a new hash. This mechanism ensures that any attempt to
tamper with the data will be evident in the form of a mismatched hash, signaling potential
data manipulation.

•	 Transparent transaction history: Azure SQL Database’s ledger features maintain a transparent
and tamper-evident transaction history. Every change made to the database is recorded in
the ledger, including the date, time, and details of the transaction. This transparency enables
auditors and administrators to easily track the sequence of events leading to any specific data
state, fostering trust and accountability.

•	 Auditing made simple: The ledger features simplify the auditing process. Organizations can
efficiently query the transaction history to retrieve a full record of all data changes, making it
easier to comply with regulatory requirements and internal audit needs.

Next, we’ll provide some code examples to illustrate how to use the ledger features in Azure SQL
Database to ensure improved data security and integrity.

Enabling a ledger on a table

In this example, we’ll create a new table and enable the ledger on it. Once the ledger has been enabled,
any data changes that are made to the table will be recorded in the transaction history.

The CREATE TABLE command defines the table structure, and the additional WITH LEDGER option
will add an append-only ledger table. As the name implies, append-only ledgers only allow data to
be inserted; it can never be updated or deleted. This is indicated by the APPEND_ONLY parameter.
For scenarios where data updates are necessary, the APPEND_ONLY parameter can be omitted, and
the table will be created with an updatable ledger. In this case, data is still versioned in the ledger, and
updates and deletes can still occur. When an update or delete occurs, all rows preceding the current
one being updated/deleted are preserved in a history table, and the latest version remains in the ledger:

-- Create a new table
CREATE TABLE Sales (
    ID INT PRIMARY KEY,
    ProductName NVARCHAR(50),
    Quantity INT,
    Price DECIMAL(10, 2)
) WITH (LEDGER = ON (APPEND_ONLY = ON));

Using the Ledger Features of Azure SQL180

Whenever a data operation occurs, the ledger table will undertake extra steps to keep the historical
data up to date and calculate the digests recorded in the database ledger. In detail, for each row that
is updated, the process involves the following aspects:

1.	 Saving the previous version of the row in a history table.

2.	 Assigning a transaction ID and creating a new sequence number, then recording these in
designated system columns.

3.	 Serializing the content of the row and incorporating it into the hash calculation for all rows
affected by this transaction.

Ledger tables accommodate these requirements by modifying the Data Manipulation Language
(DML) execution plans for insert, update, and delete operations. Specifically, for the new version of
each row, the transaction ID and a new sequence number are applied. Following this, an operation
within the query plan serializes the row’s content and calculates its hash. This hash is then added to a
Merkle tree, which is kept at the transaction level and includes the hashes of all the row versions that
have been modified in this transaction for the ledger table. The Merkle tree’s root hash represents all
the modifications and deletions carried out by the transaction on this ledger table. When a transaction
involves multiple tables, a distinct Merkle tree is created for each table.

Reading data from the ledger

Selecting data from a database ledger or a table ledger in Azure SQL involves using standard SQL
queries, with some nuances depending on whether we’re querying the ledger for current data or
historical data.

When we have ledger-enabled tables, we interact with them just like any other table for most
read operations. To select the current data from a ledger-enabled table, we can use the standard
SELECT statement:

SELECT * FROM Sales;

This query returns the current state of the data in the table.

As we’re interested in the historical data for audit or verification purposes, we need to query the ledger
table as a system-versioned temporal table with history tracking enabled. This can easily be done by
using the FOR SYSTEM_TIME clause, which gets historical data:

SELECT * FROM Sales
FOR SYSTEM_TIME AS OF '2024-01-01T00:00:00.0000000Z';

This query allows us to see the state of the data at a specific point in time or the changes over time.

Benefits of the ledger features of Azure SQL 181

If we’re working with a ledger-enabled database, the process of selecting current data doesn’t change:
we use standard SELECT statements. However, querying cryptographic digests or proofs to verify
data integrity involves more specialized operations, which might require accessing specific system
tables or using built-in functions provided by Azure SQL for ledger databases.

To view all the transactions in a database ledger, we can use the following query. The database_
ledger_transactions object contains rows with the information of each transaction in the
ledger. The data includes the block’s ID, where this transaction occurred, and the sequence of the
transaction within the block:

SELECT * FROM sys.database_ledger_transactions;

To get a list of all the blocks in a ledger, we can query the database_ledger_blocks object.
Here, we can find all the blocks in the ledger, including the root of the Merkle tree, and the hash of
the previous block, similar to what happens in a blockchain:

SELECT * FROM sys.database_ledger_blocks;

With these queries in mind, let’s discuss the performance and scalability of data and transactions in
the ledger.

Performance and scalability

Performance and scalability are essential aspects of any database system, and the ledger features in
Azure SQL Database are designed to ensure that data integrity and transparency do not come at the
cost of reduced performance or limited scalability. Leveraging ledger technology, organizations can
benefit from the following aspects related to performance and scalability:

•	 Efficient storage: The ledger features use a technique called temporal data storage to efficiently manage
historical records. Rather than creating full copies of each record for every transaction, temporal storage
keeps track of only the changes made to the data. This approach minimizes storage requirements and
allows for the retention of historical data without the need to consume excessive space.

•	 Optimized transaction processing: Azure SQL Database’s ledger features are designed to
handle high volumes of transactions efficiently. The underlying mechanisms for maintaining
the ledger ensure that transaction processing remains performant, even as the volume of data
and transactions grows.

•	 Scalability with business growth: As the volume of data and the number of transactions increase
with business growth, the ledger features can scale accordingly. Azure SQL Database’s scalability
capabilities enable organizations to handle growing workloads without sacrificing performance.

•	 Minimal impact on application performance: The ledger features operate transparently in
the background, which means that application performance is not significantly affected. The
ledger is updated automatically as part of the underlying transaction processing, ensuring a
seamless experience for application users.

Using the Ledger Features of Azure SQL182

Optimizing performance in a database ledger, especially within Azure SQL Database with ledger features
enabled, involves balancing the integrity and immutability requirements of the ledger with the performance
characteristics of the database. Let’s dive into several strategies and examples to help optimize performance.

Indexing

Proper indexing is crucial for improving query performance. For ledger-enabled tables, consider indexes
on frequently queried columns, including system-versioned columns if applicable. For example, we
could add an index to the ProductName column in the Sales table:

CREATE NONCLUSTERED INDEX IX_Sales_ProductName
ON Sales (ProductName);

Modern databases can optimize the maintenance of indices on tables, although a good database
administrator should always know these basic procedures for performance optimization.

Partitioning

Partitioning can help with managing large ledger tables by dividing them into smaller, more manageable
pieces, based on a key. First, we need to define a partition function and scheme, as shown in the
following example:

-- Create a partition function
CREATE PARTITION FUNCTION SalesPartitionFunctionName (int)
AS RANGE LEFT FOR VALUES (1, 2, 3);

-- Create a partition scheme
CREATE PARTITION SCHEME SalesPartitionScheme
AS PARTITION SalesPartitionFunctionName
ALL TO ([PRIMARY]);

Then, we must create or alter a ledger-enabled table to use the partition scheme. Now, this can be
very simple if we’re creating the table for the first time. In that case, we can just specify the partition
in which the table will reside with the CREATE TABLE ON <PartitionName> command.

However, when a table already exists, the process is slightly longer. The process generally requires
creating a new partitioned table, transferring data from the existing table to the new one, and then
renaming the tables if necessary. Direct alteration of a table to add partitioning is not supported; you
must recreate the table with the desired partition scheme. With the partition we created previously,
let’s create a second Sales2 table. This new table will match the schema of the existing Sales table,
including ledger and system-versioning columns if applicable, but it will specify the partition scheme
for the primary key or clustered index:

CREATE TABLE Sales2 (
    -- Recreate all columns from the original Sales table

Using the ledger features of Azure SQL for blockchain solutions 183

    PRIMARY KEY CLUSTERED (Id) ON SalesPartitionScheme (ProductName)
);

Ensure the partition key column (in this case, ProductName) is part of the primary key or clustered
index, and use the partition scheme in the ON clause.

Now that we have the second table, we can migrate data from the original Sales table into the new one:

INSERT INTO Sales2 (Id, ProductName, ...)
SELECT Id, ProductName, ...
FROM Sales;

Once the data transfer is complete, we can rename the original table and then rename the new table so
that it uses the original table’s name. Please note that to be able to rename a ledger table, the ALTER
LEDGER permission is required:

-- Rename original table (backup or remove later as needed)
EXEC sp_rename 'Sales', 'Sales_Old';

-- Rename new table to original name
EXEC sp_rename 'Sales2', 'Sales';

Additional good practices for performance optimization include writing queries that select only the
required data or the use of query hints. Regularly maintaining the database is also another critical
factor for the overall well-being of the database server. These tasks include updating statistics, checking
index fragmentation, and performing consistency checks.

Lastly, for high-transaction scenarios, consider using memory-optimized tables for portions of the
ledger data that are accessed or modified frequently.

Using the ledger features of Azure SQL for blockchain solutions
While the ledger features of Azure SQL Database are not full-fledged blockchain solutions like
public blockchain platforms are, they can be utilized to implement certain aspects of blockchain-like
functionality for specific use cases. Let’s explore some practical examples of how the ledger features
in Azure SQL Database can be used in blockchain solutions.

Supply chain traceability

In a supply chain solution, the ledger features can be employed to record and track the movement of
goods and products from their source to the end consumer. Each transaction involving the product’s
movement, such as production, shipping, and delivery, can be recorded in the ledger. This ensures
an immutable and transparent history of the product’s journey through the supply chain, providing
traceability and accountability.

Using the Ledger Features of Azure SQL184

The architecture diagram for this solution will consist of the following components:

•	 Web application or user interface: This component represents the user-facing interface where
supply chain stakeholders interact with the system. It allows users to view product details, track
shipments, and access historical data.

•	 Azure SQL Database: This component represents Azure SQL Database, where the supply
chain transaction data is stored. The ledger features are enabled on this database to maintain
a transparent and immutable transaction history.

•	 Application backend/APIs: The application backend or APIs facilitate communication between
the web application and Azure SQL Database. It handles user requests, executes queries, and
processes data.

•	 Azure Active Directory (Azure AD – optional): Azure AD can be used for authentication and
access control, ensuring secure access to the web application and database.

•	 Azure App Service (optional): If the web application is hosted on Azure, you can use Azure
App Service to deploy and manage the application.

The connections between these components in the following architecture diagram illustrate how
data flows from IoT devices to the ledger in an Azure SQL Database, and how smart contracts on a
blockchain verify the transaction data of the supply chain in real time:

Figure 8.1 – Architecture diagram for a supply chain traceability solution

Using the ledger features of Azure SQL for blockchain solutions 185

A simplified implementation for the supply chain solution when using the ledger features in Azure
SQL Database may look like this:

-- Create a table for supply chain transactions
CREATE TABLE SupplyChainTransactions (
    TransactionID INT PRIMARY KEY,
    ProductID INT,
    Action NVARCHAR(100) NOT NULL,
    Location NVARCHAR(100),
    Timestamp DATETIME
) WITH LEDGER = ON APPEND_ONLY = ON;

In this example, the SupplyChainTransactions table stores the real-time supply chain
transaction data, including details such as product ID, action (for example, production, shipping, or
delivery), location, and timestamp.

The ledger table associated with it acts as the history table for the ledger features. It stores the historical
records of supply chain transactions with their start and end timestamps, ensuring data immutability
and transparency.

Certificate issuance and verification

For a certificate issuance and verification system, the ledger features can be utilized to maintain a
transparent and tamper-proof record of issued certificates and their validity status. Each certificate
issuance and revocation can be recorded in the ledger, ensuring the integrity of the certificate data.

A potential data model structure includes the Certificates table for storing information about
issued certificates, and the associated ledger table, which has the ledger features enabled for traceability:

-- Create a table for certificates
CREATE TABLE Certificates (
    CertificateID INT PRIMARY KEY,
    HolderName NVARCHAR(100) NOT NULL,
    IssueDate DATE NOT NULL,
    ExpiryDate DATE,
    Status NVARCHAR(50)
) WITH LEDGER = ON APPEND_ONLY = ON;

The Certificates table holds a record of unique certificates that have been issued to a named
holder, on a specific date, and with an optional (nullable) expiry date. Also, in this case, the ledger
associated with this table keeps a record of all certificates being issued, to whom and when, in an
immutable record.

Using the Ledger Features of Azure SQL186

Asset ownership transfer

In a system that deals with asset ownership transfer, such as real estate or intellectual property, the
ledger features can be used to record and track ownership changes. Each transfer of ownership can be
recorded in the ledger, providing a transparent and auditable trail of asset ownership history.

Also, in this case, our example of a data model includes two tables—AssetOwnershipTransfers,
for storing asset ownership transfers, and the ledger-enabled history table:

-- Create a table for asset ownership transfers
CREATE TABLE AssetOwnershipTransfers (
    TransferID INT PRIMARY KEY,
    AssetID INT,
    PreviousOwner NVARCHAR(100),
    NewOwner NVARCHAR(100),
    TransferDate DATE
) WITH LEDGER = ON APPEND_ONLY = ON;

In these practical examples, we use the ledger features of Azure SQL Database to create transaction logs
that serve as immutable records for specific blockchain-like use cases. While not a fully decentralized
blockchain, this approach leverages the benefits of the ledger features, such as data immutability and
transparent auditing, to enhance the security and trustworthiness of the recorded data. It is important
to note that for more complex blockchain solutions that require decentralized consensus and public
verification, a dedicated public blockchain platform would be more suitable.

Integrating the ledger features of Azure SQL with other
Azure services
Complex scenarios will benefit from the tight integration of the ledger features of Azure SQL Database
with other Azure services to build comprehensive and powerful solutions. Azure provides a wide
range of services that can be combined with the ledger features to enhance data processing, analysis,
and application capabilities. Let’s explore some possible integration scenarios.

Azure Functions

We can integrate Azure Functions with the ledger features of Azure SQL Database to trigger serverless
functions in response to data changes in the ledger. For example, when a specific event occurs in the
ledger, such as a new product shipment being recorded in the supply chain, an Azure Function can
be automatically triggered to notify relevant stakeholders via email, update a dashboard, or perform
additional processing on the data.

Integrating the ledger features of Azure SQL with other Azure services 187

Azure Logic Apps

Using Azure Logic Apps, we can create workflows that connect various services and applications. For
instance, we can set up a Logic App to monitor the ledger transactions, and when specific conditions are
met (for example, a high-value transaction), the Logic App can initiate a workflow to send notifications,
generate reports, or execute other actions using different Azure services.

Azure Event Grid

Azure Event Grid enables event-driven architectures by providing a centralized event routing service.
We can integrate the ledger features with Azure Event Grid to publish events whenever there are data
changes in the Ledger. Subscribers to the events can then react accordingly, such as updating a cache,
invoking a function, or sending notifications.

Azure Analysis Services

Azure Analysis Services allows us to build data models, perform data analytics, and create business
intelligence dashboards. By integrating the ledger data with Azure Analysis Services, we can gain
valuable insights and visualize trends and patterns in the transaction history.

Azure Machine Learning

Integrating the ledger data with Azure Machine Learning enables us to perform predictive analytics,
anomaly detection, and data-driven decision-making. For example, we can use machine learning
models to identify potential supply chain disruptions based on historical ledger data.

Power BI

Power BI is a powerful data visualization tool in the Microsoft ecosystem. We can connect Power BI
to Azure SQL Database with ledger features to create interactive dashboards and reports that provide
real-time insights into the supply chain or other ledger data.

Azure API Management

Azure API Management allows us to publish, manage, and secure APIs. By using API Management,
we can expose certain functionalities of the ledger database as APIs, enabling external applications
or partners to access specific ledger data securely.

Azure Data Factory

Azure Data Factory is a data integration service that can help orchestrate and automate data movement
and transformation. We can use Data Factory to Extract, Transform, and Load (ETL) data from
various sources into the ledger-enabled Azure SQL Database, creating a comprehensive data pipeline.

Using the Ledger Features of Azure SQL188

The combination of ledger technology and other Azure services enables us to build robust, scalable,
and intelligent solutions tailored to our specific business needs and use cases. The possibilities for
integration are extensive, and the choice of services depends on the requirements and objectives of a
specific application or solution.

Best practices for implementing blockchain solutions with
the ledger features of Azure SQL
Implementing blockchain solutions with the ledger features of Azure SQL Database requires careful
planning and adherence to best practices to ensure the successful deployment and effective use of the
technology. In this section, we’ll cover some best practices to consider when implementing blockchain
solutions with Azure SQL Ledger.

Initially, our solution should be configured to meet clear requirements for data consistency, security,
and retention:

Figure 8.2 – Best practices for a secure and consistent implementation

When going through the stages of implementing a solution that leverages the ledger features, we may
want to consider the following best practices:

•	 Identify specific use cases that can benefit from the transparency, immutability, and tamper-
evident features of the ledger. Focus on scenarios where data integrity and auditability are
critical, such as supply chain traceability, certificate issuance, or asset ownership tracking.

Best practices for implementing blockchain solutions with the ledger features of Azure SQL 189

•	 Design a data schema that aligns with the ledger requirements. Ensure that the primary table
contains all the necessary fields to record transactions, and create a history table for the ledger
feature. Plan for appropriate fields to track transaction timestamps, previous and current values,
and other relevant metadata.

•	 When enabling the ledger feature on a table, set the DATA_CONSISTENCY_CHECK option
to ON. This ensures that only consistent data can be recorded in the history table, preventing
data corruption or inconsistencies.

•	 Configure appropriate retention policies for historical data. Determine the retention period
based on business needs and regulatory requirements. Setting a suitable retention period ensures
that historical data remains accessible without burdening the database with unnecessary records.

•	 Implement proper access controls and security measures to protect Azure SQL Database and
its ledger data. Use Azure Entra ID integration for authentication and Role-Based Access
Control (RBAC) to restrict access to authorized personnel only.

Once the solution has been deployed, the following recommendations apply to runtime monitoring
and optimization:

Figure 8.3 – Recommendations for monitoring and optimization

In detail, the recommendations are as follows:

•	 Monitor the performance of the database, especially as the number of transactions and historical
records grows. Keep an eye on query performance, storage usage, and other resource metrics
to ensure scalability as the blockchain solution expands.

•	 Choose appropriate indexing strategies to optimize query performance on the ledger-enabled
tables. Use indexing on fields that are commonly used in filtering or sorting historical data to
enhance query efficiency.

Using the Ledger Features of Azure SQL190

•	 Implement disaster recovery plans to ensure the safety of historical data in the ledger in case
of any unforeseen incidents. Consider using Azure SQL Database’s backup and restore features
to maintain data resilience.

•	 Evaluate if a hybrid deployment of public blockchain technology and the ledger features of
Azure SQL Database can provide a more comprehensive solution. Public blockchain platforms
can offer decentralized consensus and public verification, complementing the data integrity
provided by the ledger features.

•	 Stay informed about the latest updates and improvements to the ledger features in Azure SQL
Database. Regularly review the Azure SQL Database documentation and announcements to
be able to leverage new capabilities and enhancements.

By following these best practices, organizations can effectively leverage the ledger features of Azure
SQL Database to implement blockchain-like functionality in their solutions while maintaining data
integrity, transparency, and security.

Summary
In this chapter, we explored the ledger features of Azure SQL Database and their potential for
implementing blockchain-like functionality in various solutions. The ledger features provide transparency,
immutability, and tamper-evident records, offering enhanced data integrity and auditability. These
features enable organizations to build reliable and secure applications that require a trustworthy
historical record of data changes.

We also discussed the technical prerequisites for using the ledger features, including enabling system
versioning and creating history tables. Additionally, we delved into typical use cases for the ledger,
such as supply chain traceability, certificate issuance, and asset ownership tracking.

This chapter highlighted several benefits of the ledger features, including improved data security,
simplified auditing, data immutability, and performance scalability. Code examples and configuration
settings demonstrated how to implement these benefits effectively in Azure SQL Database.

In the next chapter, our journey of discovering the ledger-based storage capabilities in Azure
will be enriched with Confidential Ledger, a standalone digital ledger service that’s secured with
hardware-protected enclaves.

Further reading
•	 Documentation about ledger for SQL Server 2022 and Azure SQL Database: https://

learn.microsoft.com/en-us/sql/relational-databases/security/
ledger/ledger-landing-sql-server

•	 Azure documentation on how to enable and use temporal tables (ledger) in Azure SQL
Database: https://learn.microsoft.com/en-us/azure/azure-sql/temporal-
tables?view=azuresql

https://learn.microsoft.com/en-us/sql/relational-databases/security/ledger/ledger-landing-sql-server

https://learn.microsoft.com/en-us/sql/relational-databases/security/ledger/ledger-landing-sql-server

https://learn.microsoft.com/en-us/sql/relational-databases/security/ledger/ledger-landing-sql-server

https://learn.microsoft.com/en-us/azure/azure-sql/temporal-tables?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/temporal-tables?view=azuresql

9
Leveraging Azure

Confidential Ledger

In an increasingly digital and interconnected world, data security has become a paramount concern
for businesses and organizations of all sizes. The advent of cloud computing has revolutionized the
way data is stored and processed, but it has also introduced new challenges in protecting sensitive
information from unauthorized access and tampering. To address these concerns, Microsoft Azure, a
leading cloud services platform, has developed Azure Confidential Ledger (ACL), a groundbreaking
solution that sets new standards for data privacy, security, and integrity.

In this chapter, we’ll dive into the following main topics:

•	 An introduction to ACL

•	 The features and benefits of ACL

•	 Using ACL for blockchain solutions

•	 Integrating ACL with other Azure services

•	 Best practices for implementing blockchain solutions with ACL

Leveraging Azure Confidential Ledger192

Technical requirements
To run ACL, we need to meet certain technical requirements to ensure a secure and optimal environment
for data protection.

The following are the key technical requirements:

•	 Azure subscription: First of all, we certainly need an active Azure subscription to access and
utilize ACL services. From the Azure portal, we will then be able to create a new instance of
ACL by browsing Azure Marketplace. The following screenshot shows the Confidential Ledger
component in the Azure portal:

Figure 9.1 – The Confidential Ledger component in the Azure portal

•	 Azure Entra ID: Azure Entra ID is required for managing access and permissions to Confidential
Ledger resources. It provides identity and access management capabilities, ensuring that only
authorized users and applications can interact with the ledger. The following screenshot shows
the Security settings of ACL in the Azure portal, where you can select whether you prefer
an Azure Entra ID-based authentication or a certificate-based authentication. An alternative
approach to using Azure Entra ID is to opt for certificate-based credentials:

An introduction to ACL 193

Figure 9.2 – Security settings for ACL in Azure

•	 Azure Key Vault: To enhance security and manage cryptographic keys used for data encryption,
we should utilize Azure Key Vault. This allows us to control access to keys and secrets, safeguarding
them from unauthorized access.

•	 Azure Private Link (optional): While not strictly required, Azure Private Link can be used
to further secure network communications by granting access to Confidential Ledger over a
private connection instead of the public internet.

Before deploying ACL, thoroughly review Microsoft’s official documentation, best practices, and
guidelines to ensure a secure and well-configured environment that meets specific application needs.

An introduction to ACL
ACL represents a significant step forward in the realm of confidential computing. Unlike traditional
cloud data storage, where data may be accessible to cloud service providers and their infrastructure,
Confidential Ledger takes data protection to a higher level. This innovative service allows organizations
to secure their most critical and sensitive data while maintaining the benefits of cloud scalability,
availability, and cost-effectiveness.

The core principle of ACL lies in the concept of confidential computing. It leverages Trusted Execution
Environments (TEEs) to protect data and code from unauthorized access, even from the cloud provider
itself. This ensures that data remains encrypted and is only processed in secure enclaves, thus shielding
it from any potential breaches or attacks that may occur in the cloud environment.

Leveraging Azure Confidential Ledger194

One of the key features that sets ACL apart is its tamper-resistant nature. Data stored within the
ledger is immutable, meaning once it is recorded, it cannot be altered or deleted. This capability
not only provides data integrity but also establishes an auditable record of all transactions, enabling
organizations to maintain a reliable and transparent data history. The following diagram shows the
connections between client applications that send data to the ledger and the technical foundation of
ACL, consisting of a distributed infrastructure based on hardware-secured enclaves:

Figure 9.3 – A client-server representation of ACL

In this chapter, we will delve deeper into the architecture and working principles of ACL. We will explore
how it empowers organizations to build applications with enhanced security and confidentiality, as well as the
potential use cases across various industries. Additionally, we will examine the practical aspects of implementing
Confidential Ledger, including integration with existing applications and development frameworks.

In conclusion, ACL represents a groundbreaking innovation that addresses the critical need for data
privacy and security in the cloud. By leveraging confidential computing capabilities, organizations can
now trust that their sensitive information remains safe and protected, even in a cloud environment. As
we embark on this journey into the realm of confidential computing, let us uncover the vast possibilities
and advantages that ACL brings to modern data management and security.

An introduction to ACL 195

Use cases

ACL offers enhanced data security and confidentiality in the cloud by leveraging confidential computing
capabilities. It is suitable for a wide range of use cases where data privacy, integrity, and immutability
are critical.

Some common use cases of ACL include the following:

•	 Supply chain management: In supply chain management, ACL can be used to record and
track the movement of goods, ensuring the authenticity and integrity of each transaction while
protecting sensitive supply chain data.

•	 Healthcare: Confidential Ledger can securely store and manage patient health records,
medical data, and clinical trial information, ensuring patient privacy and compliance with
healthcare regulations.

•	 Financial services: In the financial sector, ACL can be used to securely manage and track
financial transactions, such as trade settlements, fund transfers, and auditing, while keeping
sensitive financial data confidential.

•	 Intellectual property protection: For industries dealing with intellectual property, such as
software development and research, ACL provides a secure environment to store sensitive
code, designs, and patents.

•	 Blockchain and cryptocurrency: ACL can complement existing blockchain solutions by
providing a tamper-resistant and confidential storage layer for private data within a public or
consortium blockchain network.

•	 Legal and compliance records: In legal and compliance use cases, Confidential Ledger can be used
to maintain an immutable record of legal agreements, contracts, and compliance-related documents.

•	 Sensitive data processing: ACL can be used to securely process sensitive data, such as Personal
Identification Numbers (PINs) or passwords, within confidential enclaves to protect it from
unauthorized access.

•	 IoT data security: For IoT applications, Confidential Ledger can be used to store and manage
data from connected devices securely, ensuring the privacy of user data and maintaining
data integrity.

•	 Research and development: Confidential Ledger can safeguard sensitive research and
development data, such as experimental results and proprietary information, while enabling
collaboration among researchers.

•	 Government and public services: In government and public service applications, ACL can
protect citizen data and enable secure data sharing between different government entities.

Leveraging Azure Confidential Ledger196

•	 Secure data sharing: Confidential Ledger facilitates secure data sharing and collaboration
between multiple organizations without exposing the underlying sensitive information.

•	 Digital identity and access management: For identity and access management systems, ACL
can store and manage digital identities and access credentials securely, reducing the risk of
identity-related attacks.

These are just a few examples, and the potential use cases for ACL continue to expand as organizations
seek advanced data protection solutions. The versatility of Confidential Ledger allows it to address a
broad range of data security challenges across various industries and applications.

The features and benefits of ACL
ACL comes with a range of features and benefits that elevate data security and confidentiality in the cloud.

Figure 9.4 – The key features of ACL

Let’s explore the key features summarized in the preceding diagram:

•	 Secure enclaves: ACL leverages Intel Software Guard Extensions (SGX) to create a TEE. This
secure enclave ensures that sensitive data and code are protected from unauthorized access,
even from cloud service providers and infrastructure.

•	 Immutable and tamper-resistant: Data stored in ACL is immutable, meaning that once it is
recorded, it cannot be altered or deleted. This ensures data integrity and creates an auditable,
tamper-resistant record of all transactions, providing a reliable and transparent data history.

•	 Client-side encryption: Confidential Ledger enables client-side encryption of data, providing
an additional layer of protection before data is transmitted to the ledger. This ensures that data
remains encrypted even during transit.

•	 Integration with Azure services: Confidential Ledger can seamlessly integrate with other
Azure services, such as Azure Key Vault, Azure Active Directory, and Azure Virtual Networks,
allowing users to leverage existing security mechanisms and access controls.

Using ACL for blockchain solutions 197

•	 Identity and access management: With integration into Azure Active Directory, Confidential
Ledger allows for robust identity and access management. Organizations can define granular
access policies, ensuring that only authorized users and applications can interact with the ledger.

•	 Scale and performance: ACL is designed to deliver high performance and scalability. It
can handle large-scale data and transaction processing efficiently, making it suitable for
enterprise-grade applications.

By utilizing a TEE, Confidential Ledger ensures that sensitive data remains protected and confidential,
mitigating the risk of data breaches and unauthorized access. This makes ACL perfectly suitable to meet
public and private regulatory compliance. Confidential Ledger’s tamper-resistant nature and strong
security features aid governments and organizations in meeting regulatory compliance requirements,
especially in industries with stringent data protection standards.

On top of strong security, the immutability of data in Confidential Ledger allows for a transparent and
auditable transaction history, making it ideal for applications where data integrity and transparency
are critical.

However, unlike a blockchain network, ACL retains the benefits of cloud computing, such as scalability,
availability, and cost-effectiveness. Its deployment is Platform as a Service (PaaS), which means
that Azure takes care of all the aspects of running the infrastructure, and you can focus on your
business requirements. In addition, as an integral part of Azure’s PaaS offerings, Confidential Ledger
benefits from continuous updates and improvements, ensuring that it stays at the forefront of data
security advancements.

ACL is developer-friendly too. It provides developers with a REST API and programming language-
specific SDKs that make it easier to integrate ACL with existing applications, thereby encouraging
the adoption of advanced security measures in your solutions.

In summary, ACL brings a wealth of features and benefits to safeguard sensitive data in the cloud. With
its TEE, immutability, and seamless integration with Azure services, organizations can confidently
deploy critical applications with enhanced data security and confidentiality.

Using ACL for blockchain solutions
Let’s get started with ACL! Ensure you have an active Azure subscription, and then access the Azure
portal at https://portal.azure.com/. Then, follow these steps to create a new instance of ACL:

1.	 In the Azure portal, navigate to Create a resource and search for Confidential Ledger
in Azure Marketplace.

2.	 Select the Confidential Ledger service from the search results, as already shown in Figure 9.1,
and click the Create button.

https://portal.azure.com/

Leveraging Azure Confidential Ledger198

3.	 Configure the Basics settings:

A.	 Select the subscription and resource group where you want to deploy the service.

B.	 Provide a unique name for your Confidential Ledger instance.

C.	 Choose the Azure region where you want to host your Confidential Ledger (consider your
data residency requirements).

4.	 Configure the Security settings. Define access policies and roles for users and applications to
interact with the Confidential Ledger instance. This may involve integrating with Azure Active
Directory for identity management.

5.	 Review and create:

A.	 Double-check your configuration settings to ensure everything is as desired.

B.	 Click Create to initiate the provisioning of the ACL.

The provisioning process may take a few minutes to complete. During this time, Azure will create and
configure the necessary resources for your Confidential Ledger instance.

Once the deployment is successful, you can access Confidential Ledger through the Azure portal or
programmatically, using appropriate Azure SDKs and APIs.

Remember that ACL is a powerful security feature, but it’s essential to design and implement your
application securely to make the most of its capabilities. Additionally, always refer to the latest official
documentation and guidelines from Microsoft for the most up-to-date information on provisioning ACL.

Connecting and sending data to ACL

Using ACL for blockchain solutions can significantly enhance the security and confidentiality of sensitive
data within the blockchain network. ACL provides a secure and tamper-resistant storage environment
for blockchain data and ensures that data remains encrypted and accessible only to authorized parties.

Before connecting and sending data to ACL, you may first want to identify any sensitive information that
you want or don’t want to store on a permanent and immutable ledger. This could include Personally
Identifiable Information (PII), financial data, intellectual property, or any other confidential information.

By using ACL for blockchain solutions, you can effectively protect sensitive data from unauthorized
access, reduce the risk of data breaches, and maintain data integrity and transparency. This combination
of blockchain technology and confidential computing provides a robust foundation for building secure
and privacy-preserving blockchain applications across various industries.

Using ACL for blockchain solutions 199

Once ready, you can incorporate ACL as the storage layer for sensitive data within your blockchain
network. This is typically achieved through appropriate APIs and SDKs provided by Azure. The following
is a conceptual Python code example that uses the Azure SDK for Python to interact with ACL:

from azure.identity import DefaultAzureCredential
from azure.confidentialledger import ConfidentialLedgerClient,
LedgerEntry

credential = DefaultAzureCredential()
ledger_name = "your-confidential-ledger-name"
ledger_client = ConfidentialLedgerClient(ledger_name=ledger_name,
credential=credential)

def write_to_ledger(data_to_write):
    try:
        data_bytes = data_to_write.encode()
        entry = LedgerEntry(data=data_bytes)
        ledger_client.write(entry)
    except Exception as e:
        print("Error writing to the ledger:", str(e))

def read_from_ledger():
    try:
        latest_entry = ledger_client.get_last_entry()
        if latest_entry:
            data = latest_entry.data.decode()
            print("Data from the ledger:", data)
        else:
            print("No data found in the ledger.")
    except Exception as e:
        print("Error reading from the ledger:", str(e))

The code will do the following:

•	 Import the necessary Azure SDK modules.

•	 Set up the Azure credentials.

•	 Initialize ConfidentialLedgerClient.

•	 Define the write_to_ledger function, which creates a LedgerEntry object used to
write data to the ledger.

•	 Define the read_from_ledger function to read data from the ledger.

Leveraging Azure Confidential Ledger200

The full source code for interacting with ACL using Python, including access control and error
handling, can be found on the GitHub repository for this chapter at https://github.com/
PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud/tree/
main/Chapter9.

For the most current and comprehensive code examples, I recommend referring to the official Azure
SDK documentation and samples for your preferred programming language, which can be found on
the Azure SDK GitHub repository: https://github.com/Azure/azure-sdk.

Integrating ACL with other Azure services
Yes, we can integrate ACL with other Azure services to enhance the security and functionality of our
applications. Azure provides various mechanisms and APIs to enable seamless integration between
different services. Here are some examples of how we can integrate ACL with other Azure services:

•	 Azure Key Vault is a cloud service used to securely store and manage cryptographic keys,
secrets, and certificates. You can use Azure Key Vault to manage encryption keys used by
ACL to protect sensitive data. This ensures that encryption keys are securely stored and never
exposed directly to an application.

•	 Azure Entra ID provides identity and access management services. By integrating ACL with
Entra ID, we can control access to the ledger resources based on user identities, groups, or roles.
This helps ensure that only authorized users and applications can interact with the confidential
data stored in the ledger.

•	 Azure Monitor and Log Analytics provide monitoring, logging, and analytics capabilities for
Azure resources. You can use these services to gain insights into the usage and performance of
your ACL instance, track access patterns, and detect any suspicious activities. Be mindful, though,
of not storing any sensitive data in Log Analytics. This would compromise the confidentiality
that ACL offers, as Log Analytics is not a confidential service secured in a TEE.

•	 We can set up event-driven workflows by integrating ACL with Azure Event Grid and Azure
Logic Apps. For example, we can trigger specific actions or notifications when new data is
written to the ledger or when certain conditions are met.

•	 Azure Functions allows us to run serverless code in response to events. We can use Azure
Functions to process data from ACL or to trigger actions based on changes in the ledger. Again,
be mindful of not sending sensitive data from ACL to an Azure function, as functions are not
secured by confidential computing technology.

•	 For certain use cases, we might want to store associated metadata or non-sensitive data related
to the confidential data in ACL. We can use Azure Storage services (such as Azure Blob Storage
or Azure Table Storage) to store such data.

https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud/tree/main/Chapter9
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud/tree/main/Chapter9
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud/tree/main/Chapter9
https://github.com/Azure/azure-sdk

Integrating ACL with other Azure services 201

The integration possibilities are vast, and they depend on the specific requirements of the application
we’re creating. ACL is designed to be compatible with various Azure services, enabling developers to
build secure and robust solutions by leveraging the features and capabilities of the Azure cloud ecosystem.

Integration with Azure Key Vault

Let’s now examine a potential scenario where we integrate ACL with Azure Key Vault (AKV) to securely
manage encryption keys and secrets used by the ledger. The following is a Python code example that
demonstrates how to use AKV to store and retrieve an encryption key, which can be used to encrypt
data before writing it to ACL. It is assumed that you have already set up AKV and have appropriate
permissions to create and retrieve secrets:

from azure.identity import DefaultAzureCredential
from azure.keyvault.secrets import SecretClient
from azure.confidentialledger import ConfidentialLedgerClient,
LedgerEntry

key_vault_url = "https://your-key-vault-url.vault.azure.net/"
secret_name = "your-secret-name"
credential = DefaultAzureCredential()
secret_client = SecretClient(vault_url=key_vault_url,
credential=credential)

def get_encryption_key():
    try:
        secret = secret_client.get_secret(secret_name)
        encryption_key = secret.value.decode()
        return encryption_key
    except Exception as e:
        print("Error retrieving the encryption key:", str(e))
        return None

def encrypt_data(data, encryption_key):
    encrypted_data = bytes([b1 ^ b2 for b1, b2 in zip(data,
encryption_key)])
    return encrypted_data

This code will do the following:

•	 Set up the Azure credentials to instantiate a new AKV client.

•	 Define the get_encryption_key function to get the encryption key from Key Vault.

•	 Define the encrypt_data function to encrypt data to send to the ledger.

Leveraging Azure Confidential Ledger202

Note that this code example uses a simple XOR encryption for demonstration purposes only. A XOR
encryption algorithm is an example of additive symmetric encryption where the same key is used to
both encrypt and decrypt a message. In a real-world scenario, you should use a strong encryption
algorithm, such as AES, along with proper key management practices.

Additionally, ensure that you have the appropriate access policies and permissions set up in AKV to
allow your application to retrieve the encryption key securely. Also, make sure that you handle the
encryption and decryption of data securely in your application to maintain the confidentiality of your
sensitive information.

Best practices for implementing blockchain solutions with
ACL
Implementing blockchain solutions with ACL requires careful consideration of security, privacy,
and performance aspects. The following diagram shows some of the best practices to keep in mind:

Figure 9.5 – The best practices for implementing blockchain solutions with ACL

Let’s expand on each best practice:

•	 Data classification: Clearly identify and classify the data that requires confidentiality and
protection. Use ACL only for storing sensitive and confidential data, while non-sensitive data
can be stored in other components of the blockchain network. For example, when developing
a blockchain solution, data may be written on chain – that is, on the blockchain itself – or off
chain. In this case, ACL is a good storage option.

•	 Access control: Implement strict access control policies to regulate who can read, write, and
modify data in ACL. Leverage Azure Active Directory (Azure AD) for identity and access
management to ensure that only authorized users and applications can interact with the ledger.

Summary 203

•	 Key management: Use AKV to securely manage encryption keys used by ACL. Avoid hardcoding
or exposing encryption keys directly in your code or configuration files.

•	 Immutable records: Take advantage of the immutability feature of ACL to maintain a tamper-
resistant and auditable record of all transactions. This creates an accurate and transparent
history of data changes.

•	 Secure deployment: Ensure that the blockchain network and ACL are deployed securely.
Implement security best practices for both the blockchain platform and Azure services to
reduce potential attack surfaces.

•	 Monitor and audit: Implement monitoring and auditing mechanisms to track access to ACL
and detect any unusual activity or security breaches. Azure Monitor and Log Analytics can
help with monitoring and logging.

•	 Compliance and regulation: Address compliance requirements and regulations related to
data privacy and security. Confidential Ledger’s capabilities can assist with meeting specific
industry standards.

•	 Performance optimization: Optimize the performance of your blockchain solution with
ACL. Consider factors such as ledger read/write throughput, network latency, and scalability
to ensure efficient data processing.

By following these best practices, you can build a secure and privacy-preserving blockchain solution using
ACL, protecting sensitive data while leveraging the benefits of blockchain technology and cloud services.

Summary
ACL is a groundbreaking solution by Microsoft Azure that sets new standards for data privacy, security,
and integrity in the cloud. It falls under the umbrella of confidential computing and leverages TEEs
to protect data and code from unauthorized access, even from cloud service providers themselves.

Overall, ACL provides a powerful solution for organizations seeking to secure sensitive data, maintain
data integrity, and comply with strict data protection regulations in various industries. Its confidentiality
capabilities complement existing blockchain solutions and enable developers to build secure and
privacy-preserving applications in the cloud.

This chapter completes Part 3 of the book, in which we have looked at three key blockchain-related
services in the Azure cloud – Corda running on AKS, the ledger features of Azure SQL Database,
and Confidential Ledger.

In the next chapter, we’re starting Part 4 of the book, which focuses on the blockchain services available
in the Google Cloud Platform (GCP).

Leveraging Azure Confidential Ledger204

Further reading
•	 For more information about ACL, the product page on Microsoft’s website can be found

at https://azure.microsoft.com/products/azure-confidential-ledger

•	 More specifically, ACL offers a fully REST API, documented at https://learn.
microsoft.com/rest/api/confidentialledger/, as well as an SDK for Python,
documented at https://learn.microsoft.com/python/api/overview/azure/
confidentialledger-readme?view=azure-python

https://azure.microsoft.com/products/azure-confidential-ledger
https://learn.microsoft.com/rest/api/confidentialledger/
https://learn.microsoft.com/rest/api/confidentialledger/
https://learn.microsoft.com/python/api/overview/azure/confidentialledger-readme?view=azure-python
https://learn.microsoft.com/python/api/overview/azure/confidentialledger-readme?view=azure-python

This part of the book will focus on deploying and implementing blockchain solutions on GCP. It will
provide step-by-step instructions for building, deploying, and managing blockchain applications on
Google Cloud Platform.

This part includes the following chapters:

•	 Chapter 10, Hosting an Ethereum Blockchain Network on Google Cloud Platform

•	 Chapter 11, Getting Started with Blockchain Node Engine

•	 Chapter 12, Analyzing On-Chain Data with BigQuery

Part 4:
Deploying and Implementing
Blockchain Solutions on GCP

10
Hosting an Ethereum

Blockchain Network on Google
Cloud Platform

In the rapidly evolving world of blockchain technology, Ethereum has emerged as one of the most
prominent and widely adopted platforms for building decentralized applications and smart contracts.
While Ethereum offers robust capabilities, deploying and managing a blockchain network can be a
complex task. In its cloud platform, Google supports two deployment modes for Ethereum – one
based on Compute Engine and another based on Google Kubernetes Engine (GKE), a fully managed
Kubernetes service. Both offer robust solutions for deploying and managing an Ethereum network
on containers, ensuring scalability, high availability, and fault tolerance.

In this chapter, we explore the seamless integration of the Ethereum blockchain with Compute
Engine and GKE, delving into the steps, best practices, and benefits of hosting an Ethereum network
on Google Cloud Platform (GCP). By harnessing the capabilities of both technologies, developers
can unleash the full potential of their decentralized applications while enjoying the advantages of a
cloud-native and scalable infrastructure.

We’ll dive into the following main topics:

•	 Setting up an Ethereum blockchain network on Compute Engine

•	 Configuring nodes in the Ethereum network

•	 Managing the Ethereum network

•	 Troubleshooting and maintaining the Ethereum network

Hosting an Ethereum Blockchain Network on Google Cloud Platform208

Technical requirements
To run the scripts presented in this chapter, you’ll need a GCP account with active billing. If you don’t
have one already, you can create a new account in GCP by going to https://cloud.google.com/.

We will also need to enable the necessary APIs, including the Kubernetes Engine API, Compute
Engine API, and Cloud Resource Manager API, as described later in this chapter, when setting up a
GKE cluster.

Also, make sure you have the Google Cloud SDK installed and properly configured before running
the scripts in this chapter. You can install the SDK from the official Google Cloud SDK documentation
at https://cloud.google.com/sdk/docs/install

The complete source code for all the scripts presented in this chapter can be found in this book’s GitHub
repository: https://github.com/PacktPublishing/Developing-Blockchain-
Solutions-in-the-Cloud/tree/main/Chapter10.

Setting up an Ethereum blockchain network on Compute
Engine
In this section, we’ll delve into the world of running an Ethereum network on Compute Engine.
We’ll explore the key components of an Ethereum network, the challenges involved in setting up a
production-ready environment, and the benefits of leveraging Compute Engine’s cloud-native features.
By combining the power of Ethereum’s decentralized architecture with the resilience of Compute
Engine’s infrastructure, developers can unlock the true potential of their blockchain applications
while ensuring robustness, security, and seamless scalability.

In the next section, we’ll look at how to deploy Ethereum on GKE, along with best practices for
monitoring, managing, and securing your Ethereum network within GKE, enabling you to optimize
performance, mitigate potential risks, and maintain the overall health of your blockchain infrastructure.

Whether you’re an experienced blockchain developer or just starting your journey into decentralized
applications, this chapter aims to equip you with the knowledge and tools needed to confidently run
an Ethereum network on GCP.

Pointless to say, our journey starts by accessing the Google Cloud console at https://console.
cloud.google.com/. Once you’ve signed into the console, search for Ethereum in the top
search bar. The first entry in the list is the resource that we’re going to use. It should look like this:

https://cloud.google.com/
https://cloud.google.com/sdk/docs/install
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud/tree/main/Chapter10
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud/tree/main/Chapter10
https://console.cloud.google.com/
https://console.cloud.google.com/

Setting up an Ethereum blockchain network on Compute Engine 209

Figure 10.1 – Ethereum resource in GCP

This is the quickest way to deploy an Ethereum node on GCP, as we will see in the next section.

Let’s continue with the Ethereum resource we’ve identified here. By using this templated approach,
Ethereum will be deployed to a single Compute Engine instance with multiple Docker containers.
We can then customize the configuration later when deploying the solution. Be mindful that Google
does not offer support for this solution. However, community support is available on Stack Overflow.
The software solution is open source, hence there’s no license cost to pay. However, there is a cost
associated with running the underlying VM instance, which can be estimated like so:

•	 VM instance: 1 vCPU + 3.75 GB of memory (n1-standard-1) about USD 35 per month

•	 Standard persistent disk: 10 GB of memory and about USD 0.50 per month

If we opt for a sustained-use discount – that is, VM instances are discounted up to 30% monthly based
on their duration of use – we can save approximately USD 10 per month. Price estimates are based
on 30-day, 24-hour per day usage of the listed resources in the Central US region.

Let’s start the configuration process by selecting the Launch button. If this is the first time you’re
deploying a resource in your account, you’ll be asked to enable the required APIs. Please do so before
progressing to the next step:

Hosting an Ethereum Blockchain Network on Google Cloud Platform210

Figure 10.2 – Enabling the required APIs for deployment

Now, we must enter some information on the deployment screen:

1.	 First, you must enter a unique name that identifies your new Ethereum network and select
the Google Cloud zone where you want to deploy it. This zone determines what computing
resources are available and where your data is stored.

2.	 Then, select the machine type you wish to use, be it General purpose or Compute-optimised.
General purpose specifies machine types for common workloads that have been optimized for
cost and flexibility. Compute-optimised specifies machine types for performance-intensive
workloads, with the highest performance per core. Since running a blockchain network is not a
computing-intensive workload, I recommend choosing General purpose. Let’s start with the N1
series, which is powered by an Intel Skylake CPU, which has 1 vCPU and 3.75 GB of memory:

Setting up an Ethereum blockchain network on Compute Engine 211

Figure 10.3 – New Ethereum deployment in Google Cloud

3.	 The third step is choosing the disk to attach to the VM. Although storage space is much less
expensive for a standard persistent disk, I recommend selecting an SSD persistent disk, which
offers better performance for IOPS throughput. A 10 GB size disk should suffice.

Hosting an Ethereum Blockchain Network on Google Cloud Platform212

Accept the GCP Marketplace Terms of Service and then deploy this configuration:

Figure 10.4 – Disk and networking settings

The deployment is going to take a few minutes. Once completed, you will have a full Ethereum node
running on a Compute Engine VM in Google Cloud. All the infrastructure has been taken care of by
Google as part of the deployment process.

Setting up an Ethereum blockchain network on GKE
The approach described previously is easy to execute and convenient to run, but it comes with a catch:
our control over the deployed infrastructure is limited to the few options that we have seen before:
zone, machine type, and disk size. How about all the aspects of container orchestration and scalability
that Kubernetes offers? For this to happen, we need to deploy our Ethereum network in a different
manner, which involves creating a Kubernetes cluster with GKE first and then deploying the relevant
Ethereum nodes as pods.

Setting up an Ethereum blockchain network on GKE 213

Let’s perform all these steps together:

1.	 Create a Kubernetes cluster with GKE

Use the Google Cloud SDK to create a Kubernetes cluster with GKE. Choose the appropriate
machine type, region, and node pool size based on your requirements:

#!/bin/bash

Set your desired values
PROJECT_ID="your-project-id"
CLUSTER_NAME="your-cluster-name"
ZONE="us-central1-a"
NODE_COUNT=3
MACHINE_TYPE="n1-standard-2"

Authenticate with your Google Cloud account
gcloud auth login

Set the project
gcloud config set project $PROJECT_ID

Create the GKE cluster
gcloud container clusters create $CLUSTER_NAME \
    --zone $ZONE \
    --num-nodes $NODE_COUNT \
    --machine-type $MACHINE_TYPE

Get credentials for kubectl
gcloud container clusters get-credentials $CLUSTER_NAME --zone
$ZONE

Verify the cluster configuration
kubectl config get-contexts

This script does the following:

	� Authenticates you with your Google Cloud account

	� Sets the project to the specified project ID

	� Creates a GKE cluster with the given configuration (name, zone, node count, and machine type)

	� Retrieves cluster credentials and configures kubectl to use them

	� Verifies the cluster configuration

Hosting an Ethereum Blockchain Network on Google Cloud Platform214

To execute it, please replace the placeholders (your-project-id, your-cluster-name,
and so on) with your actual values. Save this script to a file (for example, create_cluster.
sh), make it executable (chmod +x create_cluster.sh), and then run it (./create_
cluster.sh) in your terminal.

2.	 Install Ethereum nodes

Once the GKE instance is ready, we can deploy the Ethereum nodes as Kubernetes pods in the
cluster. We can use Ethereum client software such as Geth or Besu for that, and then configure the
Ethereum nodes with the appropriate genesis file, network ID, and other necessary parameters.

We need to create a Kubernetes deployment and service for each node with the following YAML
file to deploy a Geth Ethereum node. Save the following script in a deployment.yaml file:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: geth-node
spec:
  replicas: 1
  selector:
    matchLabels:
      app: geth-node
  template:
    metadata:
      labels:
        app: geth-node
    spec:
      containers:
      - name: geth-node
        image: ethereum/client-go:latest
        command: ["geth", "--datadir=/geth-data", "--rpc",
"--rpcapi=eth,net,web3,personal", "--rpccorsdomain=*"]
        ports:
        - containerPort: 8545
        volumeMounts:
        - name: geth-data
          mountPath: /geth-data
  volumeClaimTemplates:
  - metadata:
      name: geth-data
    spec:
      accessModes: ["ReadWriteOnce"]
      resources:
        requests:
          storage: 100Gi

Setting up an Ethereum blockchain network on GKE 215

apiVersion: v1
kind: Service
metadata:
  name: geth-node-service
spec:
  selector:
    app: geth-node
  ports:
  - port: 8545
    targetPort: 8545

3.	 Configure a load balancer and ingress

Now that we’ve covered the pods, we can set up a load balancer and ingress to manage external
access to our Ethereum nodes. We will ensure that the load balancer is configured to route traffic
to the appropriate Ethereum nodes. To do so, we will use the following YAML file:

apiVersion: v1
kind: Service
metadata:
  name: ethereum-load-balancer
spec:
  type: LoadBalancer
  ports:
  - port: 8545
    targetPort: 8545
  selector:
    app: geth-node

4.	 Configure logging and monitoring

At the end of the deployment, optionally but highly recommended, we can configure the
logging and monitoring capabilities of the GKE cluster, auto-scalability, hardened security,
and regular backups:

	� To log and monitor an Ethereum network on GKE, I normally use tools such as Prometheus
and Grafana

	� The standard features available in Kubernetes and GKE for scaling the cluster size are
normally sufficient

Hosting an Ethereum Blockchain Network on Google Cloud Platform216

	� To secure the Ethereum network, I would implement security measures such as node
authentication, encryption, and firewalls to protect the Ethereum network from unauthorized
access and attacks

	� Finally, proper data backup and disaster recovery strategies will ensure data availability in
case of unexpected failures

5.	 One final step that we may want to consider is introducing automation in our deployment
pipeline by implementing Continuous Integration and Continuous Deployment (CI/CD).
For CI/CD in Google Cloud, I normally use Google Cloud Build, but you can use any other
similar tool, such as Jenkins or GitLab CI. Here’s an example of using Google Cloud Build:

cloudbuild.yaml
steps:
- name: gcr.io/cloud-builders/docker
  args: ['build', '-t', 'gcr.io/$PROJECT_ID/my-ethereum-
app:$SHORT_SHA', '.']
- name: gcr.io/cloud-builders/kubectl
  args: ['apply', '-f', 'deployment.yaml']

This YAML file, which uses the project ID and cluster name defined in Step 1 of the deployment
process, simply automates the execution of the deployment.yaml file described before,
which contains all the deployment instructions for a GKE cluster with Ethereum nodes.

Remember that deploying and managing an Ethereum network on GKE can be a complex process,
especially if you are new to both technologies. It’s essential to follow best practices, consult official
documentation, and seek expert advice if needed. Additionally, ensure that you are aware of the
costs associated with running your Ethereum network on GKE and monitor resource usage to
optimize efficiency.

Configuring nodes in the Ethereum network
Configuring nodes in an Ethereum blockchain network involves setting up the Ethereum client
software, connecting nodes to the network, and configuring their behavior. Nodes are essential
participants in the blockchain network that are responsible for validating transactions, executing
smart contracts, and propagating data across the network. Follow these steps to configure nodes in
an Ethereum blockchain network:

1.	 Install an Ethereum client software

Select an Ethereum client software that suits your requirements. Popular options include Geth
(Go-Ethereum), Besu (Hyperledger Besu), Nethermind, and EthereumJS. Each client has its
unique features and configurations.

Install the chosen Ethereum client on each node. The installation process may vary, depending
on the client and your operating system. The following instructions apply to Geth.

Configuring nodes in the Ethereum network 217

Save the YAML configuration in a file named geth-deployment.yaml:
apiVersion: apps/v1
kind: Deployment
metadata:
  name: geth-node
spec:
  replicas: 1
  selector:
    matchLabels:
      app: geth-node
  template:
    metadata:
      labels:
        app: geth-node
    spec:
      containers:
      - name: geth
        image: ethereum/client-go:v1.11.6   # Use the
appropriate Geth image version
        ports:
        - containerPort: 8545  # RPC port
        - containerPort: 30303 # P2P port

Apply the deployment to your GKE cluster using the kubectl command:
kubectl apply -f geth-deployment.yaml

This script creates a Kubernetes deployment named geth-node with a single replica. The
deployment uses the Ethereum Geth Docker image and exposes two ports: 8545 for the RPC
interface and 30303 for the P2P network interface. You can adjust the replica count and other
configurations as needed.

After applying the deployment, Kubernetes will create a pod running the Geth container in
your GKE cluster. You can then use Kubernetes services, load balancers, and network policies
to manage and access the Geth node as necessary.

2.	 Configure the genesis file (for new networks)

As we’re creating a new Ethereum network, we need to define the genesis block and network
parameters in a JSON-based configuration file called the genesis file. The genesis block is the
first block in the blockchain. The following example is a basic template for a Proof of Authority
(Clique) private network. Save the content into a genesis.json file. We are going to use
this file in the next step:

{
  "config": {
    "chainId": 1337,

Hosting an Ethereum Blockchain Network on Google Cloud Platform218

    "homesteadBlock": 0,
    "eip150Block": 0,
    "eip155Block": 0,
    "eip158Block": 0,
    "byzantiumBlock": 0,
    "constantinopleBlock": 0,
    "petersburgBlock": 0,
    "istanbulBlock": 0,
    "clique": {
      "period": 15,
      "epoch": 30000
    }
  },
  "nonce": "0x0",
  "timestamp": "0x5E2E70C3",
  "extraData": "0x00
000000000000000000",
  "gasLimit": "0x47B760",
  "difficulty": "0x1",
  "mixHash": "0x00
0000000000000000",
  "coinbase": "0x00",
  "alloc": {
    "address": {
      "balance": "1000000000000000000000000"
    }
  }
}

3.	 Create an Ethereum data directory

Before running the Ethereum client, we need to create a data directory for the blockchain data.
This directory will store the blockchain database and other important files. This data directory
is essential for running Ethereum clients such as Geth.

We also need to decide where we want to store our Ethereum data directory. This could be on
our local machine, a server, or cloud storage. Let’s see if we have enough storage space for the
blockchain data, which can grow over time. Then, we can create a new directory to serve as our
Ethereum data directory. I normally name it something like ethereum-data or geth-data.

As we’re starting a new Ethereum node, we need to initialize it. This process involves creating
the initial blockchain data. We will use the Ethereum client’s commands to initialize the node.
For example, with Geth, we can use the geth init command:

geth --datadir /path/to/ethereum-data init /path/to/genesis.json

Configuring nodes in the Ethereum network 219

Replace /path/to/ethereum-data with the actual path to your Ethereum data directory
and /path/to/genesis.json with the path to your genesis configuration file.

Once the data directory is set up, we can start the Ethereum client using the --datadir
flag to specify the location of the data directory. For example, with Geth, we can use the
following command:

geth --datadir /path/to/ethereum-data

Again, replace /path/to/ethereum-data with the actual path to your Ethereum
data directory.

When you start the Ethereum client for the first time, it will begin syncing with the Ethereum
network to download the blockchain data. This process can take a significant amount of time,
especially for the mainnet. Allow the client to complete the synchronization process.

4.	 Connect nodes to the network

To create a functioning Ethereum network, nodes need to be connected and communicate
with each other. This can be achieved by specifying the enode URLs of other nodes in the
network during node initialization. Assuming we’re using the Geth client, we need to execute
the following scripts to create a static nodes file, create a Kubernetes service for Geth nodes,
configure Geth to connect to the static nodes, and then deploy the Kubernetes resources. Let’s
go through this in order.

In Ethereum, nodes can have a list of peers to connect to on startup. Create a JSON file named
static-nodes.json with an array of Ethereum node URLs to connect to. Place this file
in a location accessible to your GKE nodes:

[
  "enode://enode-url-1",
  "enode://enode-url-2",
  // ... add more enode URLs
]

We’ll proceed by creating a Kubernetes service to expose the Geth nodes within the GKE cluster.
This allows other nodes to discover and connect to our Geth nodes:

apiVersion: v1
kind: Service
metadata:
  name: geth-nodes
spec:
  selector:
    app: geth-node  # Match this to the label in your Geth
deployment
  ports:

Hosting an Ethereum Blockchain Network on Google Cloud Platform220

    - protocol: TCP
      port: 30303  # P2P port
      targetPort: 30303

Then, we must modify our Geth deployment so that it includes the –bootnodes flag, pointing
to our static nodes file. Also, we must use the Kubernetes service’s DNS name to connect to peers:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: geth-node
spec:
  # ... other settings
  template:
    spec:
      containers:
      - name: geth
        image: ethereum/client-go:v1.11.6   # Use your Geth
  image
        command: ["geth"]
        args: [
          "--datadir", "/ethereum-data",
          "--bootnodes", "enode://<enode-url>",
          "--networkid", "<network-id>",
          "--maxpeers", "25",
          "--port", "30303",
          "--rpc",
          "--rpcaddr", "0.0.0.0",
          "--rpcport", "8545",
          "--rpcvhosts", "*"
          # ... other flags
        ]

In this YAML file, we need to replace <enode-url> with an actual Ethereum node (enode)
URL from our static nodes file and <network-id> with the Ethereum network ID.

Lastly, to deploy the Kubernetes resources to the GKE cluster, we must apply the Kubernetes
service and deployment files with the kubectl apply command:

kubectl apply -f your-service-file.yaml
kubectl apply -f your-deployment-file.yaml

5.	 RPC and Web3 API settings

At some point, we will need to interact with our Ethereum nodes to deploy smart contracts.
This requires us to configure the JSON-RPC and Web3 API endpoints, which enable external
applications to communicate with the nodes and access blockchain data.

Configuring nodes in the Ethereum network 221

This step can be done at any time after the configuration of the Ethereum nodes is complete.
Setting up RPC and the Web3 API in a Geth node running on GKE can be completed in a
few steps:

I.	 Modify the Geth deployment: In our Geth deployment configuration YAML, we must
add flags to enable RPC and the Web3 API. We also need to specify the allowed RPC
origins to restrict access to our node:

   apiVersion: apps/v1
   kind: Deployment
   metadata:
     name: geth-node
   spec:
     # ... other settings
     template:
       spec:
         containers:
         - name: geth
           image: ethereum/client-go:v1.11.6   # Use your Geth
   image
           command: ["geth"]
           args: [
             "--datadir", "/ethereum-data",
             "--rpc",
             "--rpcaddr", "0.0.0.0",
             "--rpcport", "8545",
             "--rpcapi", "eth,web3",  # Enable specific APIs
             "--rpccorsdomain", "https://your-external-app.
             com"  # Allow CORS from your app
             # ... other flags
           ]

II.	 Expose the RPC port using a service: We need to create a Kubernetes service to expose
the RPC port (8545) externally within our GKE cluster:

   apiVersion: v1
   kind: Service
   metadata:
     name: geth-rpc
   spec:
     selector:
       app: geth-node  # Match this to the label in your Geth
             deployment
     ports:
       - protocol: TCP

Hosting an Ethereum Blockchain Network on Google Cloud Platform222

         port: 8545
         targetPort: 8545

III.	 Apply the service: You can do this using the kubectl apply command:

  kubectl apply -f your-service-file.yaml

Important – Secure the RPC interface
Exposing the RPC interface can be a security risk if not properly secured. Make sure you use
strong authentication and restrict access to trusted IP addresses or domains. You can use
additional tools such as reverse proxies or security groups to further enhance security.

6.	 Monitoring and metrics

To monitor the health and performance of our Ethereum nodes, we may want to consider
integrating monitoring and metrics tools such as Prometheus and Grafana. This is outside the
scope of this chapter, but it’s easy to configure. Please refer to the relevant documentation for
details, such as Google Cloud Managed Service for Prometheus: https://cloud.google.
com/stackdriver/docs/managed-prometheus.

7.	 Security considerations

Last but not least, we will consider security measures to protect our nodes from unauthorized
access and potential attacks. This includes firewall configurations, restricting RPC access, and
keeping our Ethereum software up to date.

With that, you’ve configured the Ethereum nodes in GKE. In the next section, we’ll look at best
practices and techniques for managing the network when it’s deployed at its best.

Managing the Ethereum network on GKE
Managing the Ethereum blockchain network on GKE involves various tasks to ensure the smooth
operation, scalability, and reliability of the network. Here are the key aspects of managing an Ethereum
network on GKE:

https://cloud.google.com/stackdriver/docs/managed-prometheus
https://cloud.google.com/stackdriver/docs/managed-prometheus

Managing the Ethereum network on GKE 223

Figure 10.5 – Ethereum on GKE management stack

Let’s elaborate some more on these key aspects:

•	 Monitoring and alerting

Implement monitoring and alerting mechanisms to track the health and performance of the
Ethereum nodes and the overall network. Use tools such as Prometheus and Grafana to monitor
metrics and set up alerts for potential issues.

•	 Scaling and auto-scaling

Set up auto-scaling for the Kubernetes cluster to automatically adjust the number of Ethereum
nodes based on demand. This ensures the network can handle varying workloads efficiently.

Hosting an Ethereum Blockchain Network on Google Cloud Platform224

•	 Backup and disaster recovery

Establish backup and disaster recovery strategies to protect blockchain data in case of unexpected
failures. Regularly back up the blockchain database and other critical data to prevent data loss.

•	 Node upgrades and maintenance

Plan and execute node upgrades and maintenance activities to keep the Ethereum client software
up to date and secure. Ensure seamless rolling upgrades to minimize disruptions.

•	 Security hardening

Continuously monitor and manage the security of the Ethereum network. Implement security
best practices, regularly audit access controls, and keep the Ethereum software and GKE cluster
patched with security updates.

•	 Load balancing and network traffic management

Optimize load balancing and network traffic management to ensure that Ethereum nodes can
efficiently handle incoming transactions and data propagation.

•	 Monitoring transactions and smart contract execution

Monitor the progress of transactions and smart contract execution on the network to identify
potential bottlenecks or performance issues.

•	 Network and consensus configuration

Review and adjust network and consensus parameters to optimize network performance and
achieve the desired transaction throughput and block time.

•	 Gas price control

Manage the gas price for transactions to control the prioritization of transactions and incentivize
miners to include them in blocks.

•	 Managing Ethereum accounts and wallets

Implement secure account management practices and use encrypted wallets to protect private keys.

•	 Peer tracking

Keep track of connected peers and manage peer connections to ensure a healthy network topology.

•	 Graceful shutdown and recovery

Plan and test graceful shutdown and recovery procedures to handle network disruptions or
planned maintenance events.

•	 Compliance and regulation

Ensure compliance with relevant regulations and standards, especially if the Ethereum network
involves handling sensitive data or financial transactions.

Managing the Ethereum network on GKE 225

•	 Governance and consensus changes

If the Ethereum network is part of a consortium or private blockchain, plan and coordinate
governance and consensus changes with network participants.

Remember that managing an Ethereum network is an ongoing process that requires continuous
monitoring, maintenance, and optimization. Each aspect mentioned here may have several sub-tasks
and configurations that need careful attention. In the next few sections, we are going to dive into more
details regarding some of the most important tasks in the described management stack.

Auto-scaling

Scaling and auto-scaling in GKE can be achieved by configuring Horizontal Pod Autoscaler (HPA)
for the deployed Ethereum nodes. HPA allows us to automatically scale the number of replicas (pods)
based on CPU utilization or custom metrics. Here are the necessary scripts to enable scaling and
auto-scaling for our Ethereum nodes on GKE:

1.	 Enable the Kubernetes Metrics Server

First, we need to ensure that the Kubernetes Metrics Server is enabled in our GKE cluster. The
Metrics Server provides resource utilization metrics for pods and nodes, which is essential for
HPA to work. Run this bash script to enable the Metrics Server:

Enable the Metrics Server
kubectl apply -f https://github.com/kubernetes-sigs/metrics-
server/releases/latest/download/components.yaml

2.	 Configure HPA

Next, we’ll create an HPA for our Ethereum deployment to automatically adjust the number of
replicas based on CPU utilization. This is the YAML script for configuring HPA:

ethereum-hpa.yaml
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
  name: ethereum-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: geth-node  # Replace with the name of your Ethereum
deployment
  minReplicas: 1
  maxReplicas: 10  # Set the maximum number of replicas you want
for auto-scaling
  metrics:

Hosting an Ethereum Blockchain Network on Google Cloud Platform226

  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70  # Set the average CPU
utilization threshold for scaling

3.	 Apply the HPA configuration

In conclusion, we’ll apply the HPA configuration to our Kubernetes cluster by running the
following bash script:

kubectl apply -f ethereum-hpa.yaml

With the HPA in place, Kubernetes will automatically adjust the number of replicas (Ethereum nodes)
based on the CPU utilization of the pods. If the average CPU utilization exceeds the defined threshold
(70% in this example), Kubernetes will scale up the number of replicas. If the utilization decreases
below the threshold, Kubernetes will scale down the replicas accordingly.

Remember to adjust the HPA configuration based on your Ethereum deployment’s resource requirements
and your desired scaling behavior. It’s also crucial to test the auto-scaling behavior in a controlled
environment before deploying it in production.

A note on auto-scaling
The preceding example uses CPU utilization for auto-scaling, but we can also use custom
metrics such as the Ethereum transaction count or block time for more accurate scaling based
on specific Ethereum network requirements. To use custom metrics, we’ll need to set up a
custom metrics server and adapt the HPA configuration accordingly.

Load balancing

To set up load balancing for our Ethereum nodes, we can use Kubernetes services with a type of load
balancer. This will create an external load balancer that can route traffic to the Ethereum nodes. Here
are the necessary scripts to configure load balancing in GKE:

1.	 Create a Kubernetes service

The following YAML script defines the parameters for creating a Kubernetes service that exposes
the Ethereum nodes using a load balancer:

ethereum-service.yaml
apiVersion: v1
kind: Service
metadata:

Managing the Ethereum network on GKE 227

  name: ethereum-load-balancer
spec:
  selector:
    app: geth-node  # Replace with the labels of your Ethereum
deployment
  ports:
  - port: 8545  # The port on which Ethereum nodes listen for
incoming connections
    targetPort: 8545  # The port on which Ethereum nodes handle
the traffic
  type: LoadBalancer

2.	 Apply the service configuration

With the YAML file we created previously, we’ll apply the service configuration to the Kubernetes
cluster by running the kubectl apply bash command:

kubectl apply -f ethereum-service.yaml

Kubernetes will automatically create a load balancer that will distribute incoming traffic to
the Ethereum nodes labeled with app: geth-node, or any other label specified in the
selector field.

The external IP address of the load balancer will be allocated by GKE and will serve as the
entry point to access the Ethereum nodes from outside the cluster.

Keep in mind that it may take a few moments for GKE to allocate the external IP address for
the load balancer.

3.	 Access Ethereum nodes via the load balancer

Once the load balancer has been set up and the external IP address has been allocated, we can
access the Ethereum nodes using the provided IP address and the specified port (in this case,
port 8545). The following bash script is an example of how to execute a geth attach
command on the Ethereum nodes using the IP address of the load balancer:

Access Ethereum nodes using the external IP address of the
Load Balancer
Replace EXTERNAL_IP with the actual external IP address
geth attach http://EXTERNAL_IP:8545

Don’t forget to secure access to the Ethereum nodes by configuring firewall rules and other access
controls to restrict access to authorized entities only.

Hosting an Ethereum Blockchain Network on Google Cloud Platform228

Gas price management

Gas price management in Ethereum involves configuring the gas price for transactions to control the
prioritization of transactions and incentivize miners to include them in blocks. Here are the necessary
scripts to manage the gas price in the Ethereum network deployed on GKE:

1.	 Set a gas price in the Ethereum client

We can specify the default gas price for transactions in our Ethereum client’s configuration
with the Geth client using the --gasprice command-line option:

geth --gasprice "20000000000"

The indicated value is in Wei, the smallest denomination of Ether (1 Ether = 10^18 Wei).

2.	 Dynamic gas price

Instead of using a fixed gas price, we can implement a dynamic gas pricing mechanism. For
example, we can use an external oracle or a custom algorithm to determine the gas price based
on network congestion, transaction volume, or other factors.

Here’s an example of a simple bash script that uses a random gas price between a minimum
and maximum range:

#!/bin/bash
MIN_GAS_PRICE=20000000000  # Minimum gas price in Wei
MAX_GAS_PRICE=40000000000  # Maximum gas price in Wei

Generate a random gas price within the specified range
GAS_PRICE=$(shuf -i MIN_GAS_PRICE-MAX_GAS_PRICE -n 1)

Start your Ethereum client with the dynamic gas price
geth --gasprice "$GAS_PRICE" ...

This script generates a random gas price between 20 GWei and 40 GWei (1 GWei = 10^9 Wei)
and passes it as the gas price when starting the Ethereum client.

3.	 Transaction overrides

In some cases, we might want to set a custom gas price for specific transactions rather than
using the default or dynamically calculated gas price. We can do this when sending transactions
programmatically or interactively using tools such as web3.js.

For example, using web3.js, we can specify the gas price in the transaction object, as shown in
the following JavaScript, which sets a custom gas price of 30 GWei for the transaction:

const Web3 = require('web3');
const web3 = new Web3('http://localhost:8545'); // Replace with
your Ethereum client endpoint

Managing the Ethereum network on GKE 229

const txObject = {
  from: '0xYourAddress',
  to: '0xRecipientAddress',
  value: web3.utils.toWei('1', 'ether'),
  gasPrice: web3.utils.toWei('30', 'gwei') // Custom gas price
in GWei
};

web3.eth.sendTransaction(txObject)
  .on('transactionHash', function(hash) {
    console.log('Transaction hash:', hash);
  })
  .on('confirmation', function(confirmationNumber, receipt) {
    console.log('Confirmation number:', confirmationNumber);
  })
  .on('receipt', function(receipt) {
    console.log('Receipt:', receipt);
  })
  .on('error', function(error) {
    console.error('Error:', error);
  });

Gas price management is an essential aspect of Ethereum network optimization. Depending on
a case-by-case basis, we can choose a fixed, dynamic, or customized gas price strategy to balance
transaction speed and cost in our Ethereum network. We should always consider factors such as
network congestion and user preferences when determining the gas price policy for our application.

Managing Ethereum accounts and wallets

Managing Ethereum accounts and wallets involves creating, importing, and securely handling private
keys to interact with the Ethereum network. In this section, we’ll look at the necessary scripts to
manage Ethereum accounts and wallets using the web3.js library, a popular JavaScript library for
interacting with Ethereum:

1.	 Install web3.js

First, we need to install the web3.js library using npm:
npm install web3

Hosting an Ethereum Blockchain Network on Google Cloud Platform230

2.	 Create or import an Ethereum account

To create or import an Ethereum account, we can use the following JavaScript. Two methods are
implemented in the script. The first method creates a new account using the web3.eth.accounts.
create() function. The second method imports an existing account using its private key:

const Web3 = require('web3');
const web3 = new Web3('http://localhost:8545'); // Replace with
your Ethereum client endpoint

// Method 1: Create a new account
const newAccount = web3.eth.accounts.create();
console.log('New account address:', newAccount.address);
console.log('New account private key:', newAccount.privateKey);

// Method 2: Import an existing account using a private key
const privateKey = '0x...'; // Replace with the private key of
the account you want to import
const importedAccount = web3.eth.accounts.
privateKeyToAccount(privateKey);
console.log('Imported account address:', importedAccount.
address);
console.log('Imported account private key:', importedAccount.
privateKey);

3.	 Securely store private keys

Handling private keys requires the utmost security since anyone with access to the private key
can control the associated account. It’s crucial to store private keys securely, ideally using a
hardware wallet or a secure key management system.

4.	 Sign transactions

To interact with the Ethereum network, we need to sign transactions using the account’s private
key. Here’s an example of how to sign a transaction using the web3.js JavaScript library:

const Web3 = require('web3');
const web3 = new Web3('http://localhost:8545'); // Replace with
your Ethereum client endpoint

const accountAddress = '0x...'; // Replace with the address of
the account you want to use
const privateKey = '0x...'; // Replace with the private key of
the account

Troubleshooting and maintaining the Ethereum network on GKE 231

// Example transaction object
const txObject = {
  from: accountAddress,
  to: '0xRecipientAddress',
  value: web3.utils.toWei('1', 'ether'),
  gas: 21000, // Gas limit
  gasPrice: web3.utils.toWei('30', 'gwei') // Gas price in GWei
};

// Sign the transaction
web3.eth.accounts.signTransaction(txObject, privateKey)
  .then(signedTx => {
    // Send the signed transaction
    return web3.eth.sendSignedTransaction(signedTx.
rawTransaction);
  })
  .then(receipt => {
    console.log('Transaction receipt:', receipt);
  })
  .catch(error => {
    console.error('Error:', error);
  });

In this example, we used the account’s private key to sign a transaction and then sent the signed
transaction to the Ethereum network using web3.eth.sendSignedTransaction().

Managing Ethereum accounts and wallets securely is essential to protect our funds and assets. Always
follow best practices for private key management and avoid exposing private keys in public repositories
or insecure environments. Use hardware wallets or secure key management solutions whenever possible
to ensure the highest level of security for your Ethereum accounts.

In the next section, we’ll expand the maintenance practices of an Ethereum network on GKE with
more tools for troubleshooting potential issues that may arise during the execution of applications
on the network.

Troubleshooting and maintaining the Ethereum network
on GKE
Troubleshooting and maintaining an Ethereum blockchain network on GKE are critical aspects to
ensure the smooth operation and reliability of the deployed network. The following guidelines, along
with scripts when relevant, will help us troubleshoot issues and perform regular maintenance tasks.

Hosting an Ethereum Blockchain Network on Google Cloud Platform232

The first set of guidelines focuses on monitoring the GKE cluster:

•	 Monitoring and logging

Set up monitoring tools such as Prometheus and Grafana to track the health and performance
of the GKE cluster and Ethereum nodes.

Monitor metrics such as CPU usage, memory, network traffic, and blockchain-specific metrics
such as pending transactions and block times.

•	 Kubernetes dashboard

Use the Kubernetes dashboard to get insights into the state of your cluster, inspect pod logs,
and diagnose issues.

•	 Troubleshoot pods

Check the pods log files to troubleshoot issues with Ethereum nodes, and identify errors or
abnormal behavior.

The following bash script opens the log files of a specific pod identified by name inside the GKE cluster:

Get pod names in the namespace (replace NAMESPACE_NAME with your
actual namespace)
kubectl get pods -n NAMESPACE_NAME

View logs of a specific pod (replace POD_NAME and NAMESPACE_NAME)
kubectl logs POD_NAME -n NAMESPACE_NAME

The second set of guidelines is about business continuity:

•	 Backup and restore

Regularly back up the blockchain data and configuration to a secure location. This allows the
network to recover to its latest saved status in case of data loss or catastrophic events.

•	 Version compatibility

Ensure that the Ethereum client version in use is compatible with the network and smart contracts.

Update the clients regularly to take advantage of bug fixes and new features.

•	 Diagnosing network connectivity

Ensure the Ethereum nodes can communicate with each other.

Verify that pods can reach other pods and that the Ethereum network port (usually 8545) is
accessible from outside the cluster.

Troubleshooting and maintaining the Ethereum network on GKE 233

The following bash script will help diagnose potential network connectivity issues between pods by
sending a ping command to the IP address of the pod to test:

Diagnose network connectivity issues between pods (replace
NAMESPACE_NAME)
kubectl exec -it POD_NAME -n NAMESPACE_NAME -- ping OTHER_POD_IP

The third set of guidelines is about security practices:

•	 Node maintenance

Periodically check the health of individual Ethereum nodes and consider replacing
malfunctioning nodes.

Use GKE’s auto-scaling feature to automatically replace failed nodes.

•	 Security audits

Conduct security audits of the Ethereum nodes and GKE cluster regularly to identify and
fix vulnerabilities.

•	 Rolling updates

When performing updates or maintenance on the Ethereum nodes, use rolling updates to
ensure minimal disruption to the network.

The following bash script uses the kubectl set image command to update an existing deployment
with a new image:

Update a deployment with a new image (replace DEPLOYMENT_NAME and
IMAGE_NAME)
kubectl set image deployment/DEPLOYMENT_NAME DEPLOYMENT_NAME=IMAGE_
NAME:TAG

Testnet and staging environments
Always utilize testnet and staging environments to test updates and changes before deploying
them to the production Ethereum network (mainnet).

Remember that these guidelines are not exhaustive, and troubleshooting and maintenance may vary
based on the specific configuration and requirements of your Ethereum blockchain network on GKE.
In my daily maintenance routine, I regularly review my network’s performance, stay updated with
the latest tools and practices, and take proactive measures to ensure the stability and reliability of my
Ethereum network.

Hosting an Ethereum Blockchain Network on Google Cloud Platform234

Summary
Hosting an Ethereum blockchain network on GKE offers developers a flexible and scalable environment
for building decentralized applications. This chapter covered the key aspects of setting up, managing,
and maintaining an Ethereum network on GKE to ensure a secure and reliable blockchain infrastructure.

Remember that running an Ethereum network on GKE is not much different than running any other
solution. The GKE cluster still requires monitoring, securing, scaling, and all the best practices for an
enterprise architecture designed for business continuity.

In the next chapter, we’ll continue exploring the blockchain services in the Google Cloud, and we’ll
focus our attention on Blockchain Node Engine.

Further reading
•	 Google Kubernetes Engine documentation:

https://cloud.google.com/kubernetes-engine/docs

•	 Geth documentation:

https://geth.ethereum.org/docs

•	 Google Cloud Managed Service for Prometheus:

https://cloud.google.com/stackdriver/docs/managed-prometheus

https://cloud.google.com/kubernetes-engine/docs
https://geth.ethereum.org/docs
https://cloud.google.com/stackdriver/docs/managed-prometheus

11
Getting Started with

Blockchain Node Engine

In the ever-evolving landscape of technology, blockchain has gained widespread recognition among
businesses as they seek innovative ways to leverage its potential for enhancing their operations. Google
Cloud, a leading player in the cloud computing domain, has taken a significant step in this direction
with the introduction of its Blockchain Node Engine (BNE).

BNE in Google Cloud presents a cutting-edge solution for enterprises, developers, and blockchain
enthusiasts looking to build, deploy, and manage blockchain networks efficiently and securely. By
harnessing the power of Google’s robust infrastructure and network, the engine offers a wide array
of tools, services, and features to facilitate seamless blockchain deployment.

In this chapter, we’ll delve into the fundamental concepts of BNE, its capabilities, and how it empowers
businesses to harness the true potential of blockchain technology. We will explore its key components,
including consensus algorithms, cryptographic security, and decentralized data distribution, shedding
light on the essential attributes that make it stand out among other blockchain solutions.

Furthermore, we’ll discuss the advantages of utilizing BNE over traditional methods of setting up
and managing blockchain networks. From reduced operational complexities to enhanced scalability,
we’ll explore the various benefits that enterprises can expect by integrating their blockchain projects
with this state-of-the-art engine.

Getting Started with Blockchain Node Engine236

Let’s now dive into the following main topics:

•	 Introduction to BNE

•	 Features and benefits of BNE

•	 Using BNE for blockchain solutions

•	 Building a decentralized app (dapp) to interact with the blockchain node

•	 Integrating BNE with other GCP services

•	 Best practices for implementing blockchain solutions with BNE

Technical requirements
To run the scripts presented in this chapter, we need an account in Google Cloud. If you don’t already
have a Google Cloud account, sign up for one at https://cloud.google.com/. You may
need to provide billing information, but Google Cloud offers a free trial with a credit for new users.

If not already available on your workstation, you also need to download the Google Cloud SDK
from https://cloud.google.com/sdk/docs/install and install it as described in the
online documentation.

All scripts presented in this chapter are available in the GitHub repository for the book: https://
github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-
Cloud/tree/main/Chapter11.

Introduction to BNE
BNE in Google Cloud stands at the forefront of cutting-edge distributed ledger technology, providing
enterprises and developers with a powerful platform to deploy, manage, and scale blockchain networks
with unparalleled efficiency and security.

At its core, BNE is designed to function as a decentralized computing environment, where multiple
nodes collaborate to maintain the integrity and consensus of a blockchain network. By utilizing the
robust infrastructure of Google Cloud, this engine offers a seamless and scalable solution to support a
wide range of blockchain use cases, from financial applications to supply chain management and beyond.

One of the key features of BNE is its flexibility in supporting different types of blockchains and
catering to different levels of transparency, decentralization, and access control that align with business
objectives. However, it’s also fair to say that BNE does not directly support consortium blockchain
networks. This means it’s not currently designed to work with private, permissioned blockchains
used by a limited group of participants. BNE focuses on public blockchains, specifically Ethereum
(currently Proof-of-Stake (PoS) Ethereum). This implies open participation and accessibility for
anyone. There’s no built-in functionality for consortium blockchains such as Hyperledger Fabric or

https://cloud.google.com/
https://cloud.google.com/sdk/docs/install
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud/tree/main/Chapter11
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud/tree/main/Chapter11
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud/tree/main/Chapter11

Introduction to BNE 237

Quorum, commonly used for private networks. Some users have experimented with workarounds
involving setting up a private network and connecting to it through BNE. This approach is complex
and not officially supported by Google Cloud.

A critical aspect of any blockchain network is its consensus algorithm, which ensures that all nodes
in the network agree on the validity of transactions and the state of the ledger. BNE supports various
consensus mechanisms, including Proof of Work (PoW), PoS, and Practical Byzantine fault tolerance
(PBFT), among others. This enables users to select the most suitable consensus algorithm for their
specific use case, optimizing performance and resource utilization.

Security is paramount in any blockchain implementation, and BNE takes this aspect seriously. With
Google Cloud’s robust security infrastructure and cryptographic best practices, the engine ensures the
integrity and confidentiality of data, safeguarding against potential attacks and unauthorized access.

Putting all together, the four key features of BNE, as depicted in the following figure, are decentralized
architecture, the flexibility of a blockchain network support, security by design, and the adoption of
multiple consensus algorithms to suit diverse business requirements:

Figure 11.1 – Key features of BNE

The engine’s management tools offer a user-friendly interface to monitor and control the blockchain
network efficiently. Administrators can easily deploy new nodes, manage access controls, and perform
updates seamlessly, streamlining the overall network management process.

Getting Started with Blockchain Node Engine238

Scalability is a crucial factor in blockchain adoption, especially as networks grow in size and complexity.
BNE leverages Google Cloud’s autoscaling capabilities to handle increasing workloads, ensuring
optimal performance and responsiveness even during peak traffic times.

In addition to providing a feature-rich environment for blockchain network deployment, the engine also
integrates with Google Cloud’s extensive suite of services. This opens up opportunities for developers
to leverage advanced data analytics, machine learning, and artificial intelligence capabilities, enhancing
the value proposition of their blockchain applications.

In conclusion, BNE in Google Cloud empowers enterprises and developers to harness the transformative
potential of blockchain technology without the burden of managing complex infrastructure. Its
seamless integration with Google Cloud’s powerful ecosystem, coupled with its flexibility, security,
and scalability, makes it a compelling choice for businesses seeking to build innovative and efficient
blockchain-based solutions.

Features and benefits of BNE
BNE in Google Cloud offers a host of features and benefits that make it a compelling solution for
deploying and managing blockchain networks. In addition to the key features already identified in the
previous section, BNE offers seamless network management. The engine provides user-friendly tools
for deploying and managing blockchain nodes efficiently so that we can easily control access, monitor
the network’s health, and perform updates, streamlining the management process.

As we will see in the next section, interoperability with Google Cloud services allows developers to build
robust and large-scale applications, while still retaining flexible blockchain support. The engine caters
to various types of blockchains, including public, private, and consortium networks. This flexibility
allows us to choose the level of transparency and decentralization that aligns with our specific use case.

In addition, by supporting multiple consensus mechanisms such as PoW, PoS, and PBFT, the engine
enables us to select the most suitable algorithm for our network’s requirements, optimizing performance
and efficiency.

We understand that BNE is a state-of-the-art technology for the implementation of blockchain nodes
in the cloud, but why exactly should we use this blockchain service over any other cloud-managed
blockchain infrastructure? The benefits in the following pyramid will give us an idea of the operational
advantages of BNE over similar technologies.

Features and benefits of BNE 239

Figure 11.2 – Benefits of BNE

At the foundation, we have reduced operational complexity. BNE abstracts much of the underlying
infrastructure, allowing businesses and developers to focus on their blockchain applications’ core
functionalities without getting bogged down in infrastructure management.

By utilizing the pay-as-you-go model of cloud computing, we can optimize its costs based on actual
usage, avoiding the need for upfront investments in hardware and infrastructure. The engine’s robust
security measures and decentralized architecture contribute to building a high level of trust among
participants in the blockchain network, ensuring the immutability and integrity of transaction records.

Google Cloud’s extensive network of data centers worldwide enables BNE to provide low-latency
access and improved performance to users across the globe. With all these advantages, BNE is an ideal
platform to support various use cases of utilization of blockchain technology in the enterprise space.
From supply chain management and financial applications to healthcare and identity verification, the
engine is suitable for all of these types of applications. In the next section, we’ll dive into the details
of the implementation of such solutions.

Getting Started with Blockchain Node Engine240

Using BNE for blockchain solutions
Setting up BNE in Google Cloud involves a series of steps to ensure successful deployment. The
following step-by-step guide will help us get started and configure BNE:

1.	 First of all, we need to sign into the Google Cloud at https://console.cloud.google.
com/. Once we’re in, let’s search Blockchain Node Engine in the top product search
bar. The Blockchain Node Engine API screen will display:

Figure 11.3 – The Blockchain Node Engine API product in Google Cloud

As we can read in the description, BNE is a Fully managed node hosting for building on the
blockchain. The description is very vague, and it doesn’t specify which blockchain is being used.
However, by digging a bit more in detail in the official documentation available at https://
cloud.google.com/blockchain-node-engine/docs/, we can find out that it’s
Ethereum, as expected. Thank you, Google!

Note
BNE has also introduced support for Polygon and Solana networks. At the time of writing,
these two features are in preview and available to limited customers.

Also, current support for blockchain is available in three GCP regions only: us-central1,
europe-west1, and asia-east1.

2.	 Let’s enable this service by selecting the ENABLE button. The next step that we’re asked to
complete is the creation of at least one node. We can create a blockchain node in two ways:
either by carrying on using the console or by using an API call. Let’s look at both options.

3.	 Using the Google Cloud console, we have to enter the required information in the screen
depicted in the following picture, which opens when a new blockchain node is being created:

https://console.cloud.google.com/
https://console.cloud.google.com/
https://cloud.google.com/blockchain-node-engine/docs/
https://cloud.google.com/blockchain-node-engine/docs/

Using BNE for blockchain solutions 241

Figure 11.4 – Steps required to create a blockchain node

The functions of the four steps to create a blockchain node are as follows:

I.	 Step 1 is to assign a unique name to the node.

II.	 Step 2 is for selecting the blockchain type (only Ethereum is available at this point unless
you’re a selected customer participating in the preview access program), the network to
connect to (mainnet, Goerli Prater testnet, or Sepolia testnet), the node type (full node
or archive), and the client to use (geth or Erigon).

III.	 Step 3 is the selection of the deployment region. Currently, three regions are supported
for this service: us-central1 (Iowa), asia-east1 (Taiwan), and europe-
west1 (Belgium).

IV.	 Step 4, which is optional, is to add key-value labels to the node being created.

4.	 Alternatively, we can also create a blockchain node by sending the following request:

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  -d '{
    "blockchainType": "ETHEREUM",
    "ethereumDetails": {
      "consensusClient": " LIGHTHOUSE",
      "executionClient": "GETH",

Getting Started with Blockchain Node Engine242

      "apiEnableAdmin": false,
      "apiEnableDebug": false,
      "network": "MAINNET",
      "nodeType": "FULL"
    },
    "labels": {
      "LABEL_KEY": "LABEL_VALUE"
    }
  }' \
https://blockchainnodeengine.googleapis.com/v1/projects/PROJECT_
ID/\
locations/LOCATION/blockchainNodes?blockchain_node_id=NODE_NAME

This API request creates a full node on the Ethereum mainnet, with a geth client. The name of the
node is specified in the last line, in the NODE_NAME keyword. Please replace it with a suitable value.

It takes a few minutes for a blockchain node to be created. Once ready, we can connect to the node
with the client indicated in the configuration, and deploy our smart contracts.

To connect to a BNE node and deploy a smart contract, we would typically use a combination of
Web3 libraries and the blockchain node’s API endpoint. Here is a simplified example using Web3.js,
a popular JavaScript library for interacting with Ethereum blockchain. This example assumes that we
have a smart contract ready to deploy.

First, if not already done, we need to install Web3.js using npm:

npm install web3

Now, let’s assume we already have a simple smart contract written in Solidity, compiled with a tool such
as Solc or Remix to get the Application Binary Interface (ABI) and bytecode needed for deployment.

We will use the Web3 library to connect to the BNE node over an HTTP or WebSocket endpoint
provided by the Google Cloud console. In the following code snippet, replace YOUR_BNE_NODE_
ENDPOINT with the actual BNE node endpoint:

const Web3 = require('web3');
const web3 = new Web3('YOUR_BNE_NODE_ENDPOINT');

To deploy the smart contract, we need the ABI and bytecode generated when compiling the Solidity
contract. We also need an Ethereum account to deploy from, which requires having the account’s
private key. In the code snippet below, replace the contractABI and contractBytecode fields
with the actual contract’s ABI and bytecode, and YOUR_ACCOUNT_PRIVATE_KEY with the private
key of the deploying account:

const contractABI = []; // Contract's ABI
const contractBytecode = '0x...'; // Contract's bytecode
const account = web3.eth.accounts

Building a dapp to interact with the blockchain node 243

    .privateKeyToAccount('YOUR_ACCOUNT_PRIVATE_KEY');
web3.eth.accounts.wallet.add(account);
const deployerAddress = account.address;
const MyContract = new web3.eth.Contract(contractABI);
MyContract.deploy({ data: contractBytecode })
    .send({
        from: deployerAddress,
        gas: '1500000', // Adjust gas limit as necessary
        gasPrice: '30000000000', // Adjust gas price
    })

The following are very important to consider:

•	 Security: Be very careful with private keys. Never hardcode them in your scripts or expose
them publicly.

•	 Gas limit and gas price: These values are set for demonstration purposes. Actual required gas
and gas prices can vary depending on network congestion and contract complexity.

•	 Testing: Always test deployment on a test network (e.g., Rinkeby, Ropsten, etc.) before deploying
on the main network.

Now that the blockchain part (node and contract) is ready, we can prepare a dapp with a UI, that
interacts with the contracts deployed on the blockchain node. The next section describes how to build
a dapp using Node.js on the backend, and the React framework for the frontend.

Building a dapp to interact with the blockchain node
This sample dapp demonstrates a basic interaction with the blockchain node just deployed in the
previous steps. For this example, we’ll use Node.js for the application backend and React.js for
the frontend. The dapp implements the backend logic in the app.js file using Node.js and the
Express (https://expressjs.com/) web framework, while the blockchain logic resides in
the blockchain.js file. The frontend is created using React.js, which allows the user to add new
blocks to the blockchain by entering data in the input field and clicking the Add Block button. The
source code implementation is kept simple in the book for illustrative purposes. The full source code
can be found in the GitHub repository for this chapter, available at https://github.com/
PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud/tree/
main/Chapter11.

Please save this JavaScript code in an app.js file. This script first obtains a list of existing blocks in
the blockchain network by sending a GET request to the blocks endpoint exposed by the Express
framework, and then it adds a new block by sending a POST request to the addBlock API endpoint:

const express = require('express');
const bodyParser = require('body-parser');

https://expressjs.com/
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud/tree/main/Chapter11
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud/tree/main/Chapter11
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud/tree/main/Chapter11

Getting Started with Blockchain Node Engine244

const Blockchain = require('./blockchain');

const app = express();
const blockchain = new Blockchain();

app.use(bodyParser.json());
app.get('/blocks', (req, res) => {
  res.json(blockchain.getChain());
});
app.post('/addBlock', (req, res) => {
  const data = req.body.data;
  blockchain.addBlock(data);
  res.json({ message: 'Block added successfully!' });
});

Now, let’s create a blockchain.js file and save the following script. The script implements the
actual blockchain logic in the Blockchain and the Block classes. This is obviously a simplified
implementation of a block and its data to store on a blockchain, but it clarifies the kind of data required
for each block, including a timestamp of when the block is created, the SHA-256 hash of its data, and
the hash of the previous block in the blockchain:

const sha256 = require('sha256');

class Block {
  constructor(index, timestamp, data, previousHash) {
    // Initialize class variables
  }
}

class Blockchain {
  constructor() {
    this.chain = [this.createGenesisBlock()];
  }

  // Method prototypes only – full source code on GitHub
  createGenesisBlock()
  getLatestBlock()
  addBlock(data)
  getChain()
}

Building a dapp to interact with the blockchain node 245

Lastly, the dapp is complete with its frontend UI built in React. We’ll save the following script in the
app-ui.js file. The axios library is used as a client for the exposed API. The UI presents a single
Add Block button that, when selected, calls the handleAddBlock function. This function, in
turn, makes a call to the addBlock API using the Axios client to add a new block to the blockchain:

import React, { useState, useEffect } from 'react';
import axios from 'axios';

function SampledApp() {
  const [blocks, setBlocks] = useState([]);
  const [data, setData] = useState('');

  const handleAddBlock = async () => {
      await axios.post('/addBlock', { data });
      setData('');
      fetchBlocks();
  };

  return (
    <div>
        <input type="text" value={data} onChange={(e) => setData(e.
target.value)} />
        <button onClick={handleAddBlock}>Add Block</button>
        <h2>Blocks</h2>
        
          {blocks.map((block) => (
            <li key={block.index}>
              Data: {block.data}, Hash: {block.hash}
            
          ))}
        
    </div>
  );
}

As mentioned before, the full source code of this dapp is available in the GitHub repository of this book.

The backend and frontend of the app are now done. The user interaction is simple; it’s based on pressing
a single button from the user interface, but the potential is high. For example, communication with
the blockchain engine can be automated on page load or on the verification of specific events that
don’t require user interaction. This could enable scenarios for process automation with no human
intervention. On this foundation, the potential is great, and it can be expanded by integrating additional
cloud services, as we’ll see in the next section.

Getting Started with Blockchain Node Engine246

Integrating BNE with other GCP services
There cannot be a great dapp without leveraging multiple cloud services to create a richer experience
that involves data storage, analytics, logging and monitoring, and potentially the use of AI technology.
Google Cloud offers all these capabilities, and the possibility to integrate BNE with other Google
Cloud services to enhance the functionality and capabilities of blockchain applications. Here are some
examples of how we can integrate BNE with other GCP services:

•	 Storage: We can use Google Cloud Storage buckets to securely store documents, media, and
other data related to the dapp.

•	 Firestore: We can integrate Google Cloud Firestore, a scalable and serverless NoSQL database,
to store and manage additional application data related to the blockchain network. This can be
useful for storing metadata, user profiles, or other application-specific information.

•	 Data analytics: Use Google Cloud’s BigQuery service to analyze the data stored in your
blockchain. BigQuery allows us to run fast and SQL-like queries on large datasets, delivering
valuable insights from the transaction data recorded on the blockchain. We will talk about
BigQuery in detail in Chapter 12.

•	 Functions: Leverage Google Cloud Functions to create serverless event-driven functions that
can be triggered by blockchain events or external events. This enables the dapp to automate
certain actions or processes in response to specific events on the blockchain.

•	 Service bus: Use Google Cloud Pub/Sub to enable communication and messaging between
various components of the blockchain network. Pub/Sub facilitates real-time data streaming
and event-driven architectures, enhancing the overall responsiveness of the application.

•	 Monitoring and logging: Integrate the dapp with Google Cloud’s Monitoring and Logging
services to track the health and performance of the blockchain nodes and network. This allows
us to proactively identify and resolve issues before they impact the application’s functionality.

•	 Machine learning: Utilize Google Cloud’s AI and machine learning services, such as Google
Cloud AI Platform and TensorFlow, to develop predictive models based on blockchain data.
We can create models to detect anomalies, predict trends, or perform other data-driven tasks.

These are just a few examples of the many possibilities for integrating the dapp deployed on BNE with
other GCP services. The seamless integration of Google Cloud services allows us to build sophisticated
and powerful blockchain applications that leverage the strengths of both blockchain technology and
GCP’s extensive suite of tools and services.

Giving examples of integration of the previously built dapp with each cloud service is beyond the
scope of this book. However, two services are particularly interesting to analyze more in detail as they
are commonly used when building a dapp. These two services offer off-chain data storage capability,
and they are Google Cloud Storage and Google Cloud Firestore.

Integrating BNE with other GCP services 247

Off-chain data storage

In this example, we’ll demonstrate how to integrate BNE with Google Cloud Storage for off-chain
data storage. Off-chain data storage refers to storing data that is not part of the blockchain itself but
is associated with blockchain transactions or smart contract operations. This allows the dapp to store
larger or more sensitive data externally while still retaining references to it on the blockchain.

For this example, we’ll use Node.js and the @google-cloud/storage library to interact with
Google Cloud Storage. Let’s start with installing the necessary packages by running the following
bash script:

npm install @google-cloud/storage
npm install express

Next, we need to create a Google Cloud Storage bucket. Creating a Google Cloud Storage bucket using
a bash script involves using Google Cloud SDK’s gsutil command-line tool, which is part of the
Google Cloud SDK (see the Technical requirements section at the beginning of this chapter for details
of how to install the SDK). When running the script, please note down the bucket name and ensure
you have the necessary credentials to access it:

Your Google Cloud Project ID
PROJECT_ID="my-gcp-project-id"
The name of the bucket you want to create. Bucket names must be
globally unique.
BUCKET_NAME="my-unique-bucket-name"
The location where you want to create your bucket. For example, "US"
or "EU".
LOCATION="US"

Create the bucket
gsutil mb -p $PROJECT_ID -c "STANDARD" -l $LOCATION gs://$BUCKET_NAME/

Here’s what each command does:

•	 gsutil mb: This creates a new bucket.

•	 -p $PROJECT_ID: This specifies the project with which the bucket will be associated.

•	 -c "STANDARD": This specifies the default storage class for the bucket. This could be
"STANDARD", "NEARLINE", "COLDLINE", or "ARCHIVE".

•	 -l $LOCATION: This specifies the location (such as a region) for the bucket.

•	 gs://$BUCKET_NAME/: The name of the bucket you want to create.

Getting Started with Blockchain Node Engine248

Save this script in a file, for example, create-bucket.sh, give it executable permissions with
chmod +x create-bucket.sh, and then run it from your computer. Before running the
script, make sure to authenticate yourself by running gcloud auth login, and set your default
project by running gcloud config set project [PROJECT_ID]if you haven’t done so
yet. Obviously, don’t forget to replace PROJECT_ID and BUCKET_NAME in the script with your
actual Google Cloud project ID and desired bucket name.

Now, you can execute the script by bash running:

./create-bucket.sh

This will create a new bucket in Google Cloud Storage with the indicated name.

Let’s move now to the backend in Node.js. We’ll save the following JavaScript code in an app.js file.
The following is only a partial snippet of the entire source code, which you can find in the GitHub
repository for this chapter:

const express = require('express');
const bodyParser = require('body-parser');
const { Storage } = require('@google-cloud/storage');
const app = express();
const storage = new Storage();
const bucketName = 'your-bucket-name'

app.use(bodyParser.json());

app.post('/upload', async (req, res) => {
    const data = req.body.data;
    const fileId = req.body.fileId;
    const bufferData = Buffer.from(data);
    const file = storage.bucket(bucketName).file(fileId);
    await file.save(bufferData);
});

app.get('/fetch/:fileId', async (req, res) => {
    const fileId = req.params.fileId;
    const file = storage.bucket(bucketName).file(fileId);
    const [dataBuffer] = await file.download();
    res.json({ data: dataBuffer.toString() });
});

Integrating BNE with other GCP services 249

The script defines two methods:

•	 post: This is the endpoint to upload data to Google Cloud Storage. This method converts the
data to a buffer before uploading it and then uploads the data to Google Cloud Storage with
the file.save instruction.

•	 get: This is the endpoint to fetch data from Google Cloud Storage with an asynchronous
call to file.download. The fetched data is then returned as a JSON message in the
endpoint’s response.

The last step of the dapp is the frontend, which in this case is plain HTML and JavaScript. We like to
keep things simple! In the <body> section of the HTML file, add the following:

  <h1>Blockchain Data Storage Example</h1>
  <textarea id="data" rows="4" cols="50"></textarea>
  <button onclick="uploadData()">Upload Data</button>
  <div>
    <h2>Fetched Data</h2>
    <div id="fetchedData"></div>
  </div>

  <script>
    async function uploadData() {
      const data = document.getElementById('data').value;
      const fileId = generateFileId();

      const response = await fetch('/upload', {
        method: 'POST',
        headers: {
          'Content-Type': 'application/json'
        },
        body: JSON.stringify({ data, fileId })
      });

      const result = await response.json();
      console.log(result);
    }

    async function fetchData(fileId) {
      const response = await fetch(`/fetch/${fileId}`);
      const result = await response.json();

Getting Started with Blockchain Node Engine250

      const fetchedDataDiv = document.getElementById('fetchedData');
      fetchedDataDiv.textContent = result.data;
    }
  </script>

In this example, the backend (Node.js with the Express framework) provides two endpoints: /upload
to upload data to Google Cloud Storage and /fetch/:fileId to fetch data from the storage
instance. The frontend (HTML and JavaScript) allows the user to enter data in a text area and upload it
to the storage bucket. The user can also fetch data associated with a specific fileId from the bucket.

This example demonstrates a basic integration of BNE with Google Cloud Storage for off-chain
data storage. In a real-world scenario, you would have additional logic to associate fileId with
specific blockchain transactions or smart contract operations to maintain the reference to the data
stored externally.

Integrate Cloud Firestore

Leveraging the previous example, we’ll do the same but using Google Cloud Firestore for off-chain
data storage. Cloud Firestore is a NoSQL document database that allows dapps to store and manage
data in a flexible and scalable manner. We’ll modify the previous example and use Google Cloud
Firestore for data storage instead of Google Cloud Storage.

First of all, let’s install the necessary packages by running the following bash commands:

npm install @google-cloud/firestore
npm install express

Next, we need to set up an instance of Google Cloud Firestore. Creating a Firestore database in Google
Cloud Project can be automated using Google Cloud SDK’s gcloud command-line tool. The steps
involved are implemented in the following bash script:

PROJECT_ID="my-gcp-project-id"
DATABASE_MODE="NATIVE"
LOCATION="us-central1"

Initialize Firestore
gcloud firestore databases create --region=$LOCATION
--project=$PROJECT_ID

Before running the script, make sure that you’ve installed the Google Cloud SDK, as described in the
Technical requirements section at the beginning of this chapter, and that you’ve authenticated your
Google Cloud account by running gcloud auth login.

Integrating BNE with other GCP services 251

Save this script in a file, for example, create-firestore.sh, give it executable permissions with
chmod +x create-firestore.sh, and then run it from your computer. This will initialize a
new Firestore database in the specified Google Cloud Project. To execute the script, simply bash run it:

./create-firestore.sh

The Node.js backend code is very similar to what we have seen before for Google Cloud Storage, with
the difference that in this example we’re going to use Firestore instead:

const express = require('express');
const bodyParser = require('body-parser');
const { Firestore } = require('@google-cloud/firestore');
const app = express();
const db = new Firestore();

app.use(bodyParser.json());

app.post('/upload', async (req, res) => {
    const data = req.body.data;
    const fileId = req.body.fileId
    await db.collection('files').doc(fileId).set({ data });
});

app.get('/fetch/:fileId', async (req, res) => {
    const fileId = req.params.fileId;
    const doc = await db.collection('files').doc(fileId).get();
    res.json({ data: doc.data().data });
});

The two methods defined in the script are as follows:

•	 post: This is to upload data to Cloud Firestore, using the db.collection('files').
doc(fileId).set({ data }) function, where db is the Firestore object instance

•	 get: This is to fetch data from Cloud Firestore, using the db.collection('files').
doc(fileId).get() function

In this example, the backend (Node.js with Express) uses @google-cloud/firestore to
interact with Google Cloud Firestore. The endpoints for uploading and fetching data are similar to
the previous example but are modified to use Firestore’s database operations. There are no changes to
the frontend HTML and JavaScript, as all the logic to handle Firestore over Storage is in the backend.
How cool is that?

Getting Started with Blockchain Node Engine252

Best practices for implementing blockchain solutions with
BNE
Implementing blockchain solutions with BNE in Google Cloud requires careful planning and adherence
to best practices to ensure the security, scalability, and efficiency of your blockchain network. Best
practices are not only about technical details. Compliance and change management also represent key
aspects to consider in the successful implementation of a blockchain solution. The following figure
depicts some of the best practices to consider, which I collected over the years and across multiple
customers in a variety of industries:

Figure 11.5 – Key best practices for blockchain solution with BNE

Overall, based on my experience, I would define the following functional and non-functional
requirements when designing a blockchain solution:

•	 Define clear objectives: Clearly outline the objectives and use cases of your blockchain
solution. Understand the specific problems you aim to solve and the value blockchain will
add to your application.

•	 Choose the right consensus algorithm: Select the consensus algorithm that best suits your use
case. Consider factors such as scalability, performance, and security when choosing between
PoW, PoS, PBFT, or other consensus mechanisms.

•	 Set up proper network permissions: Implement robust identity and access management controls
to ensure that only authorized participants can access and contribute to the blockchain network.

•	 Use secure key management: Protect your private keys using Hardware Security Modules
(HSMs) or other secure key management systems. Proper key management is crucial for
securing access to blockchain nodes.

Summary 253

•	 Regularly update and patch nodes: Keep your blockchain nodes up to date with the latest
security patches and software updates to mitigate potential vulnerabilities.

•	 Stay updated with blockchain technology: Keep yourself and your team updated with the
latest advancements and best practices in blockchain technology to continuously improve
your implementation.

•	 Monitor and audit: Implement monitoring and logging to track the health, performance, and
security of your blockchain nodes. Regularly audit your blockchain network to identify and
address any issues promptly.

•	 Monitor transaction fees: Be aware of the transaction fees associated with your blockchain
network and factor them into your cost calculations.

•	 Optimize storage and data structure: Optimize the data structure and storage mechanisms for
efficiency and scalability. Consider using pruning techniques to remove old and unnecessary
data from the blockchain.

•	 Secure data off chain: Utilize off-chain storage, such as Google Cloud Storage or Cloud
Firestore, for large or sensitive data that doesn’t need to be part of the immutable blockchain.

•	 Plan for scalability: Design your blockchain solution with scalability in mind. Use Google
Cloud’s autoscaling capabilities to handle increased workloads as your network grows.

•	 Test and validate smart contracts: Thoroughly test and validate your smart contracts to ensure
they behave as expected and are free from vulnerabilities or bugs.

•	 Implement disaster recovery and backup strategies: Create disaster recovery and backup
plans to protect against data loss and ensure the availability of your blockchain network.

•	 Comply with regulations: Ensure that your blockchain solution complies with relevant
regulations and data privacy laws.

•	 Educate participants: Educate all participants about the functionalities, limitations, and security
practices related to the blockchain network.

By following these best practices, you can build a robust, secure, and efficient blockchain solution with
BNE in Google Cloud. Remember that each blockchain implementation is unique, so it’s essential to
adapt these best practices to suit your specific use case and requirements.

Summary
In this chapter, we discussed BNE in Google Cloud and its capabilities for deploying and managing
blockchain networks. BNE offers a flexible and secure solution for various blockchain use cases,
supporting different consensus algorithms and providing robust security measures. By leveraging
Google Cloud’s infrastructure and services, BNE simplifies the deployment and management of
blockchain applications.

Getting Started with Blockchain Node Engine254

We also demonstrated how to integrate BNE with other Google Cloud services, such as Google Cloud
Storage and Google Cloud Firestore for off-chain data storage. These integrations enable users to
harness the full potential of GCP’s offerings while leveraging the benefits of blockchain technology.

In the next chapter, we’ll continue our analysis of additional services in Google Cloud by delving into
the analytical capabilities of BigQuery, specifically in relation to blockchain data.

Further reading
•	 BNE documentation

https://cloud.google.com/blockchain-node-engine/docs/

•	 Cloud Storage documentation

https://cloud.google.com/storage/docs

•	 Firestore documentation

https://cloud.google.com/firestore/docs

https://cloud.google.com/blockchain-node-engine/docs/
https://cloud.google.com/storage/docs
https://cloud.google.com/firestore/docs

12
Analyzing On-Chain Data

with BigQuery

As blockchain technology continues to evolve and permeate multiple sectors, the need to understand
and leverage the vast amount of data these networks generate has never been more critical. The
ability to analyze and extract meaningful insights from on-chain data can serve as a powerful tool for
developers, researchers, and businesses alike, providing invaluable perspectives on the blockchain’s
operations, transactions, and user behaviors. But the question remains: how can we efficiently process
and make sense of these enormous datasets?

This is where Google Cloud Platform (GCP), with its robust data analysis tool, BigQuery, comes into
play. BigQuery allows users to examine on-chain data at scale, with the speed, power, and flexibility
that the ever-evolving world of blockchain demands.

In this chapter, we’ll delve into the exciting world of blockchain data analysis on GCP using BigQuery.
We’ll understand the complexities of on-chain data, explain the benefits of using BigQuery for data
analysis, and provide you with practical examples of how to utilize this potent tool to uncover hidden
trends, detect anomalies, and make data-driven decisions.

We’ll dive into the following main topics:

•	 Introduction to BigQuery

•	 Features and benefits of BigQuery for on-chain data analysis

•	 Importing on-chain data into BigQuery

•	 Analyzing on-chain data with BigQuery

•	 Visualizing on-chain data with BigQuery

Analyzing On-Chain Data with BigQuery256

Technical requirements
To run the scripts presented in this chapter, you’ll need a GCP account.

Visit the Google Cloud website at https://cloud.google.com/ and sign up. You will need a
Google account (for example, a Gmail account), and you will need to provide billing information. As
a new user, you’ll be given a free trial credit that you can use to explore GCP’s services.

Once you’ve signed into the Google Cloud console, you need to create a new project. Click on the
Project dropdown and select or create the project you will use to access BigQuery. You can create a
new project by clicking on the New Project button at the top right of the dashboard. Provide a name
for your project and click Create.

This book’s GitHub repository (https://github.com/PacktPublishing/Developing-
Blockchain-Solutions-in-the-Cloud/tree/main/Chapter12) contains the source
code for all the examples in this chapter.

Introduction to BigQuery
BigQuery uses the power of GCP to deliver fast data warehouse capabilities at scale. The service is
completely managed in the cloud, which means that its serverless model abstracts the underlying
architecture and allows for seamless scalability, making it an ideal solution for handling and analyzing
vast amounts of data, up to petabytes, in near real time.

At the core of BigQuery lies a distributed architecture that separates storage from computing resources.
This design enables the computing power to be scaled up or down independently of data volume,
allowing for cost-effective and flexible analysis of big data. The great advantage of all this is that it’s fully
managed in GCP: being serverless, BigQuery requires no database administration—it automatically
manages cloud resources, providing a high level of reliability, redundancy, and data protection.

The following figure lists BigQuery’s powerful features:

Figure 12.1 – BigQuery’s key features

https://cloud.google.com/
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud/tree/main/Chapter12
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud/tree/main/Chapter12

Introduction to BigQuery 257

Let’s take a closer look at each key feature of BigQuery:

•	 Standard SQL: BigQuery uses SQL, a popular, user-friendly querying language, making it
accessible for data analysts and developers alike

•	 High-speed analysis: BigQuery’s underlying Dremel technology allows for the execution of
SQL queries on large datasets in seconds

•	 Machine learning and AI integration: BigQuery ML enables users to create and execute
machine learning models using SQL, while integration with Google’s AI Platform allows more
sophisticated modeling and predictive capabilities

•	 Geospatial data analysis: BigQuery GIS provides geospatial capabilities, enabling analysis of
geographic data

•	 Data transfer and connectivity: BigQuery provides data transfer services, streaming functionality
for real-time insights, and seamless integration with popular data integration, business
intelligence, and ETL tools

•	 Security: BigQuery adheres to Google’s high-standard security model, providing encryption
at rest and in transit, identity and access management, and more

By mastering the use of BigQuery, we can unlock valuable insights from our data in a fast, cost-effective,
and scalable manner, regardless of whether we are handling gigabytes or petabytes of information.

Setting up BigQuery in GCP

Setting up BigQuery in GCP is a straightforward process. Let’s walk through the step-by-step guide.

Enabling the BigQuery API

Before we can start using BigQuery, we need to enable the BigQuery API for our project:

1.	 Click on the navigation menu (hamburger icon in the top-left corner).

2.	 Hover over APIs & Services and click on Library:

Analyzing On-Chain Data with BigQuery258

Figure 12.2 – APIs & Services > Library

3.	 In the API library, search for BigQuery API and click on it.

4.	 You will be taken to the BigQuery API page. Click on MANAGE to activate the BigQuery
API for your project:

Figure 12.3 – The BigQuery API in Google Cloud

Opening the BigQuery SQL workspace

To access the BigQuery SQL workspace, we must open the navigation menu again and hover over the
BigQuery menu item. SQL workspace is the first item on the list:

Introduction to BigQuery 259

Figure 12.4 – Accessing BigQuery’s SQL workspace

Now that we’re in the SQL workspace, we can start composing and running SQL queries on existing datasets.

Creating a dataset

Before we can create a table and load data into BigQuery, we need to create a dataset:

1.	 In the left sidebar, click on the project’s name.

2.	 Click on Create Dataset.

3.	 In the pop-up form, we need to give the dataset a unique ID and configure other settings, such
as data location, default table expiration, and others.

Creating a table and loading data

We can now create a table within the dataset and load data into it. We can upload data from a local
file, from Google Cloud Storage (GCS), or even from another BigQuery table.

BigQuery also provides the capability to query data directly from external data sources, such as GCS,
without the need to load the data into BigQuery first.

Analyzing On-Chain Data with BigQuery260

Features and benefits of BigQuery for on-chain data
analysis
Analyzing on-chain data can pose significant challenges due to the sheer volume and complexity of
data. Google BigQuery, with its powerful features and capabilities, can transform these challenges into
opportunities. Let’s explore the specific features and benefits of BigQuery when it’s used for on-chain
data analysis, as illustrated in the following figure:

Figure 12.5 – Features and benefits of BigQuery for on-chain data analysis

Let’s expand each feature and provide more details:

•	 Public datasets: Google Cloud maintains a program where public blockchain data is regularly
updated in BigQuery format. This feature makes a wealth of on-chain data readily available
for analysis.

•	 Machine learning: BigQuery’s integration with Google’s machine learning tools allows analysts
to create predictive models directly from on-chain data. This can help with identifying trends,
predicting future behavior, or detecting anomalies within the blockchain network.

•	 Interoperability: BigQuery provides seamless integration with popular data integration,
visualization, and ETL tools, which makes it easier for users to ingest, analyze, and visualize
blockchain data.

•	 Cost-effective: BigQuery’s pay-as-you-go pricing model means you only pay for the queries
you run, making it a cost-effective choice for on-chain data analysis.

Importing on-chain data into BigQuery 261

•	 Scalability: Blockchain datasets can be extraordinarily large and continue to grow with each new
block. BigQuery is designed to handle large-scale datasets, providing the ability to scale up or down
as required, ensuring that even as the blockchain grows, your ability to analyze the data keeps pace.

•	 Speed: BigQuery’s serverless model and underlying Dremel technology enable rapid data
analysis. This allows for near real-time analytics, which is particularly valuable in the fast-
moving world of blockchain.

•	 Security: Security is critical when dealing with sensitive on-chain data. BigQuery offers robust
security features including encryption, identity and access management, and more.

•	 SQL: With SQL being the interface for interaction, BigQuery makes it easier for analysts and
developers to work with blockchain data, which often has complex structures. By using SQL
as a query language, the barrier to entry is drastically reduced.

In summary, BigQuery’s features, which include scalability, speed, ease of use, machine learning
integration, robust security, and cost-effectiveness, make it an excellent tool for analyzing on-chain
blockchain data. By leveraging these features, organizations and researchers can gain valuable insights
from their blockchain data, driving better decision-making and innovation.

Billing alert in BigQuery
Google BigQuery is a powerful, serverless data warehouse that enables super-fast SQL queries when
using the processing power of Google’s infrastructure. However, users often encounter surprises
in their billing due to misunderstood aspects or common pitfalls. One of the primary issues is the
way BigQuery charges for data storage and query processing. Users are charged for the amount of
data scanned by each query, not the amount of data returned. This means that poorly optimized
queries that scan large volumes of data can lead to high costs, even if the query returns a small
result set. Another common mistake is not managing data storage effectively; stored data incurs
charges, and excessive or unoptimized storage (such as keeping large amounts of duplicate data
or not deleting temporary tables) can increase costs. Additionally, frequent use of the SELECT
* command, which scans all columns in a table, instead of selecting only the necessary columns,
can lead to unnecessary data processing and higher charges. Finally, not taking advantage of cost
control measures such as setting budgets, monitoring alerts, or using the BigQuery cost estimator
to predict query costs can lead to unexpected billing amounts. Being aware of and adjusting these
aspects can significantly help in managing and optimizing BigQuery costs.

Importing on-chain data into BigQuery
Before diving into the import process, note that Google already maintains a regularly updated dataset
for several popular blockchains, such as Bitcoin and Ethereum, as part of its public datasets program.
We can query these datasets directly in BigQuery without needing to do any imports. I recommend
that you always check if the blockchain data that you’re interested in analyzing is already part of these
public datasets.

Analyzing On-Chain Data with BigQuery262

Also, importing on-chain data into Google BigQuery involves two main GCP services: GCS and
BigQuery itself. To ensure a smooth and error-free import process, the service account that’s associated
with both storage.Client()and bigquery.Client()instances must be configured with
the appropriate permissions. Improper permission settings for these service accounts are a common
source of errors for new users. Let’s clarify what’s needed:

•	 To import data from GCS, the service account that’s used by storage.Client()needs
access to read data from the buckets where the on-chain data is stored. The minimum required
permission for this task is Storage Object Viewer.

•	 When dealing with BigQuery, the service account that’s used by bigquery.Client()must
have permissions that allow it to create and write to BigQuery datasets and tables, as well as
run queries. The required permissions include BigQuery Data Editor, for creating tables and
inserting data into BigQuery, and BigQuery Job User, for running load jobs.

If you need to import your on-chain data into BigQuery, the process typically involves obtaining
the blockchain data (usually in the form of a .csv or .json file), uploading it to GCS, and then
loading it into BigQuery. Let’s look at a high-level Python script that uses the Google Cloud client
libraries to do this.

Firstly, install the necessary Python libraries by running the following bash commands, if you haven’t
done so already:

pip install google-cloud-storage
pip install google-cloud-bigquery

Now, let’s assume we’ve got our blockchain data in a .csv file and we’ve uploaded this file to a GCS
bucket. We can use the following Python script to load that data into BigQuery:

from google.cloud import bigquery
from google.cloud import storage

storage_client = storage.Client()
bigquery_client = bigquery.Client()

bucket_name = 'your-bucket-name'
bucket = storage_client.get_bucket(bucket_name)

blob_name = 'your-data.csv'
blob = bucket.blob(blob_name)

Importing on-chain data into BigQuery 263

client = bigquery.Client()

dataset_id = "your_dataset"
table_id = "your_table"

job_config = bigquery.LoadJobConfig(
source_format=bigquery.SourceFormat.CSV, skip_leading_rows=1,
autodetect=True)

Get the URI for the blob
uri = f"gs://{bucket_name}/{blob_name}"

load_job = client.load_table_from_uri(
uri, f"{dataset_id}.{table_id}", job_config=job_config
)

Wait for the load job to complete.
load_job.result()

destination_table = client.get_table(f"{dataset_id}.{table_id}")
print("Loaded {} rows.".format(destination_table.num_rows))

This script will load our data from the .csv file in GCS into a BigQuery table, detecting data types
automatically (autodetect=True). Make sure you replace your-bucket-name, your-data.
csv, your_dataset, and your_table with your actual GCS bucket name, filename, BigQuery
dataset ID, and table ID, respectively.

Keep in mind that this is a basic script, and the specific details can vary depending on the format of
your data, the specific blockchain you’re working with, and the data types of the on-chain data. Be
sure to check the Google Cloud documentation for more details and options when loading your data.

Querying Ethereum

Let’s assume we’re working on the Ethereum network for now. As mentioned previously, Google
provides an up-to-date dataset for the Ethereum blockchain as part of their public datasets program.
The dataset is named bigquery-public-data.crypto_ethereum. It is updated daily, and
we can query it just like any other BigQuery dataset.

The following figure shows the Ethereum architecture diagram, as implemented in GCP, to extract
data from the Ethereum network daily, stage the data into GCS, and then load it into BigQuery tables:

Analyzing On-Chain Data with BigQuery264

Figure 12.6 – Ethereum ETL architecture diagram

The following SQL query fetches the top 10 Ethereum addresses by the number of transactions:

SELECT
  `from`,
  COUNT(*) AS num_transactions
FROM
  `bigquery-public-data.crypto_ethereum.transactions`
GROUP BY
  `from`
ORDER BY
  num_transactions DESC
LIMIT 10

You can run this query directly in the BigQuery console by performing the following steps:

1.	 Go to the BigQuery console in your GCP dashboard.

2.	 In the left sidebar, click on the project name, then click on Add Data | Explore public datasets.

3.	 Search for Ethereum; you’ll see the Ethereum Blockchain dataset.

4.	 Click VIEW DATASET. This will add the Ethereum dataset to your resources in the
BigQuery console.

5.	 Now, you can write and run SQL queries directly on this dataset. Paste the preceding query
into the Query editor area and click Run.

Cost control
Please remember that even though the data is public, you are still charged for the queries you
run, so be mindful of your usage. For cost-effectiveness, design your queries so that they only
retrieve the data that you need.

Importing on-chain data into BigQuery 265

This dataset contains several tables, including the following:

•	 blocks: Data about each block

•	 transactions: Information about the transactions in each block

•	 logs: Event logs produced as the result of transactions

•	 traces: The state of Ethereum, representing the computation of contracts

The actual tables and their contents may be updated, so it’s always a good idea to examine the schema
before running queries. We can do this directly in the BigQuery console.

Querying Bitcoin

How about querying Bitcoin data? Google also provides a public dataset for Bitcoin blockchain data
in BigQuery. The dataset is named bigquery-public-data.crypto_bitcoin. It’s updated
daily and can be queried just like any other BigQuery dataset:

Figure 12.7 – Querying the Bitcoin public dataset in BigQuery

Analyzing On-Chain Data with BigQuery266

As seen for Ethereum previously, to query Bitcoin data, we can use a SQL query. The following query
returns the top 10 Bitcoin addresses by the number of transactions:

SELECT
  output.output_pubkey_base58 AS address,
  COUNT(*) AS num_transactions
FROM
  `bigquery-public-data.crypto_bitcoin.transactions`,
  UNNEST(outputs) AS output
GROUP BY
  address
ORDER BY
  num_transactions DESC
LIMIT 10

This query counts the number of transactions for each address, ordering them in descending order
to get the addresses with the most transactions.

Here’s how to run this query in the BigQuery console:

1.	 Go to the BigQuery console in your GCP dashboard.

2.	 In the left sidebar, click on the project’s name, then click on Add Data | Explore public datasets.

3.	 Search for Bitcoin; you’ll see the Bitcoin blockchain dataset.

4.	 Click VIEW DATASET. This will add the Bitcoin dataset to your resources in the BigQuery console.

5.	 Now, we can write and run SQL queries directly on this dataset. Paste the preceding query into
the Query editor area and click Run.

Please remember that even though the data is public, you are still charged for the queries you run,
so be mindful of your usage.

This dataset contains several tables, including the following:

•	 blocks: Data about each block

•	 transactions: Information about the transactions in each block

•	 inputs: Inputs to the transactions

•	 outputs: Outputs of the transactions

The actual tables and their contents may be updated, so it’s always a good idea to examine the schema
before running queries. You can do this directly in the BigQuery console.

Analyzing on-chain data with BigQuery 267

Analyzing on-chain data with BigQuery
Analyzing on-chain data with BigQuery provides a powerful way to extract insights from blockchain
transactions, addresses, blocks, and more. Thanks to Google’s public dataset program, data from
popular blockchains such as Bitcoin and Ethereum are readily available for analysis, and the process
can be streamlined using BigQuery’s robust capabilities.

In the following examples, we’ll identify a few use cases for the analysis of blockchain data and the
relevant SQL queries for extracting such data in BigQuery.

The first step is to get familiar with the dataset’s structure and understand the kind of information
stored in each table. After that, we can run SQL queries to answer specific questions. For example, if
we want to find the top 10 Ethereum addresses by the number of transactions, we could use a SQL
query similar to the following:

SELECT
  `from`,
  COUNT(*) AS num_transactions
FROM
  `bigquery-public-data.crypto_ethereum.transactions`
GROUP BY
  `from`
ORDER BY
  num_transactions DESC
LIMIT 10

This SQL query counts the number of transactions by the from address in the bigquery-public-
data.crypto_ethereum.transactions table and takes the first 10 rows. As you can see, this
is a very standard SQL syntax that’s common to most relational databases. BigQuery’s SQL dialect is
powerful and familiar to many users, making it easier to create complex queries.

Analyzing transaction patterns

You can use BigQuery to analyze transaction patterns. For instance, you might want to analyze the
flow of cryptocurrency between addresses, detect patterns of fraudulent activity, or identify the most
active periods for transactions. These analyses could help in developing trading strategies, improving
network security, or forecasting network load.

Let’s assume we want to analyze the Bitcoin transaction patterns to find out the average value of all
outputs for each transaction over a specified date range. The following SQL query shows how we
might do that:

SELECT
  t.block_timestamp AS date,
  COUNT(t.transaction_id) AS num_transactions,

Analyzing On-Chain Data with BigQuery268

  AVG(o.output_satoshis) / 100000000 AS avg_output_value_btc
FROM
  `bigquery-public-data.crypto_bitcoin.transactions` AS t,
  UNNEST(outputs) AS o
WHERE
  t.block_timestamp >= '2023-01-01 00:00:00 UTC'
  AND t.block_timestamp < '2023-02-01 00:00:00 UTC'
GROUP BY
  date
ORDER BY
  date

This query fetches the average value (in BTC) of all outputs for each transaction made in January
2023, as well as the total number of transactions for each day. The average value is computed by taking
the average of the output_satoshis field (divided by 100,000,000 to convert Satoshi into BTC).

We can execute this query in the BigQuery console and then click Run to see the results.

Another point to keep in mind is that analyzing transaction patterns might involve a significant
volume of data, especially for blockchains such as Bitcoin with a high number of transactions. This
could lead to higher costs, so it’s always a good idea to keep track of your query performance and
costs in BigQuery.

On-chain analytics

BigQuery can also facilitate on-chain analytics, providing insights into blockchain operations.
For instance, we could analyze the gas prices for Ethereum transactions over time, or how Bitcoin
transaction fees evolve. This data can help users optimize their transactions and developers understand
the network better.

Let’s continue with our exploration of the Bitcoin blockchain data in BigQuery. A simple yet informative
on-chain analysis might be to calculate the daily average transaction fee for a specified period.
Transaction fees in Bitcoin are an essential part of the network as they incentivize miners to include
transactions in the blocks they mine.

The following SQL query shows how we might calculate the daily average transaction fee in Bitcoin
(in BTC) for January 2023:

SELECT
  block_timestamp_day,
  AVG((input.input_value - output.output_value)/100000000) as avg_tx_
fee_btc
FROM
  `bigquery-public-data.crypto_bitcoin.transactions` AS t
LEFT JOIN

Analyzing on-chain data with BigQuery 269

  UNNEST(inputs) AS input
LEFT JOIN
  UNNEST(outputs) AS output
WHERE
  block_timestamp_day >= '2023-01-01' AND block_timestamp_day < '2023-
02-01'
GROUP BY
  block_timestamp_day
ORDER BY
  block_timestamp_day

In this query, we calculate the transaction fee for each transaction by subtracting the total output
value from the total input value (this is how transaction fees are calculated in Bitcoin). We then take
the daily average of these fees. The resulting figure gives us an indication of the incentives being given
to miners for this period.

These kinds of on-chain analytics can provide valuable insights into the operations of the blockchain
network. By tracking changes in transaction fees over time, for example, you might be able to identify
trends in network usage or miner behavior.

Please be aware that, similar to the previous example, depending on the range of dates you are
analyzing, you may be querying a large amount of data, which may incur costs. Always consider this
when running your analyses.

Predict the value of Bitcoin with machine learning

BigQuery’s integration with Google Cloud’s AI Platform means we can use machine learning models
with our blockchain data. You might use this to predict future transaction volumes or identify anomalous
transactions that could indicate fraudulent activity.

But how about predicting the value of Bitcoin using machine learning? Now, that sounds exciting!
But I have to warn you: predicting the value of Bitcoin using machine learning models involves a
multitude of factors and it is a complex problem. In practice, you should not only use on-chain data
but also incorporate other variables, such as market sentiment, macroeconomic indicators, and so on.
However, for the sake of simplicity, let’s say we want to use the transaction fee data (that we calculated
in the previous example) to predict the average transaction fee for the next day. We will use BigQuery’s
built-in linear regression function for this simple demonstration. Remember, this is a very simplistic
model and may not give accurate predictions.

Warning
This example is a very simplistic model and may not give an accurate prediction. The author
strongly discourages you from using the output of this example to make decisions concerning
any form of cryptocurrency investment.

Analyzing On-Chain Data with BigQuery270

Here’s the SQL code for this task:

CREATE OR REPLACE MODEL `your_project_id.dataset.model`
OPTIONS(model_type='linear_reg') AS
SELECT
  EXTRACT(DAYOFYEAR from block_timestamp_day) as day_of_year,
  AVG((input.input_value - output.output_value)/100000000) as avg_tx_
fee_btc
FROM
  `bigquery-public-data.crypto_bitcoin.transactions` AS t
LEFT JOIN
  UNNEST(inputs) AS input
LEFT JOIN
  UNNEST(outputs) AS output
WHERE
  block_timestamp_day BETWEEN '2023-01-01' AND '2023-03-01'
GROUP BY
  day_of_year

By executing this query, linear regression training is performed on the average daily transaction fee
from January 1, 2023, to March 1, 2023. The model will try to predict avg_tx_fee_btc based
on day_of_year.

Once the model has been trained, we can use it to make predictions using the following query:

SELECT
  day_of_year,
  predicted_avg_tx_fee_btc
FROM
  ML.PREDICT(MODEL `your_project_id.dataset.model`,
    (SELECT EXTRACT(DAYOFYEAR from block_timestamp_day) as day_of_year
     FROM `bigquery-public-data.crypto_bitcoin.transactions`
     WHERE block_timestamp_day BETWEEN '2023-03-02' AND '2023-03-31'
     GROUP BY day_of_year))

This will give us the predicted average daily transaction fee for each day in March 2023. Before running
the query, don’t forget to replace your_project_id.dataset.model with the actual project
ID and dataset where you have stored your model.

Remember, the quality of predictions will heavily depend on the quality and relevance of input data, as
well as the sophistication of your model. This example is a very basic one and may not yield accurate
results. In a real-world scenario, we would likely need to use a more complex model and additional
relevant features to get accurate predictions.

Visualizing on-chain data with BigQuery 271

In summary, analyzing on-chain data with BigQuery involves understanding the dataset structure,
writing SQL queries, and potentially using machine learning and data visualization tools. The
combination of all these techniques allows us to extract meaningful insights from blockchain data,
helping to drive strategy, optimize transactions, improve security, and much more.

Visualizing on-chain data with BigQuery
Finally, we can use data visualization tools such as Google Data Studio, Looker, or Tableau to create
interactive dashboards with our BigQuery data. For example, we could create a real-time dashboard
showing the most active Ethereum addresses, or how Bitcoin transactions are evolving.

Visualizing on-chain data with BigQuery can be achieved by integrating BigQuery with any of the
visualization tools mentioned previously. For the sake of this example, we will use Google Data Studio
due to its seamless integration with BigQuery and GCP as a whole.

Suppose we have the query from the earlier example that calculates the daily average transaction fee
for Bitcoin transactions:

SELECT
  block_timestamp_day,
  AVG((input.input_value - output.output_value)/100000000) as avg_tx_
fee_btc
FROM
  `bigquery-public-data.crypto_bitcoin.transactions` AS t
LEFT JOIN
  UNNEST(inputs) AS input
LEFT JOIN
  UNNEST(outputs) AS output
WHERE
  block_timestamp_day >= '2023-01-01' AND block_timestamp_day < '2023-
02-01'
GROUP BY
  block_timestamp_day
ORDER BY
  block_timestamp_day

Now, we want to visualize these results. Here are the steps:

1.	 Access Google Data Studio.

You can access Google Data Studio at https://datastudio.google.com/.

2.	 Create a new report.

Click on the Blank Report option to start a new report.

https://datastudio.google.com/

Analyzing On-Chain Data with BigQuery272

3.	 Add BigQuery as a data source.

Data Studio will ask you to add a data source to your report. Click on BigQuery and authorize
Data Studio so that it can access your BigQuery data.

4.	 Configure the BigQuery data source.

After choosing BigQuery, select your project, dataset, and view (this is the query result you
saved as a view from your earlier work in BigQuery). After selecting these, click on the Add
button at the bottom-right corner.

5.	 Visualize the data.

After adding your data source, you’ll be taken to a canvas where you can start creating your
visualizations. The sidebar will show you a list of all the fields from your data source, and you
can drag and drop these onto your canvas to create charts, tables, and other visualizations.

6.	 Display the time series chart.

To plot the daily average transaction fee over time, you might use a time series chart. To do
this, click on Add a chart and then select the Time series chart. Then, drag and drop the
block_timestamp_day field into the Dimension field and avg_tx_fee_btc into
the Metric field.

7.	 Customize and share.

You can customize your visualizations, add more pages to your report, and, finally, share your
report with others using the options in the top-right corner.

If you want to practice more with Data Studio and BigQuery data, there is a terrific tutorial by Google
available at https://codelabs.developers.google.com/codelabs/bigquery-
data-studio. This tutorial will guide you through the steps of visualizing BigQuery data in Data
Studio, adding multiple visualizations, building a dashboard, and creating filters.

In conclusion, Google Data Studio provides a powerful tool for visualizing the results of on-chain data
analyses from BigQuery. The ability to create interactive dashboards means you can create engaging,
easy-to-understand presentations of your findings.

Summary
In this chapter, we discussed how to analyze on-chain data from blockchains using BigQuery, a
serverless, highly scalable, and cost-effective cloud-based data warehouse offered by GCP.

After an introduction to BigQuery, where we detailed its architecture and features that are beneficial
for on-chain data analysis, we went over the step-by-step process of setting up BigQuery in GCP. We
then moved on to discussing how to import on-chain data into BigQuery, emphasizing that Google
has made public datasets available for popular blockchains such as Bitcoin and Ethereum. We provided
SQL query examples to help you access and analyze these datasets.

https://codelabs.developers.google.com/codelabs/bigquery-data-studio
https://codelabs.developers.google.com/codelabs/bigquery-data-studio

Further reading 273

Finally, we discussed visualizing on-chain data with BigQuery. We illustrated how to integrate BigQuery
with Google Data Studio to create dynamic and interactive visualizations, providing a step-by-step
process of how to do it.

This chapter completes part four of this book. In the next chapter, we will start part five, which is
dedicated to real-world use cases. Specifically, we will present a hands-on lab for building a decentralized
marketplace on AWS.

Further reading
•	 Ethereum in BigQuery:  how we built this dataset:

https://cloud.google.com/blog/products/data-analytics/ethereum-
bigquery-how-we-built-dataset

•	 Ethereum in BigQuery: a Public Dataset for smart contract analytics:

https://cloud.google.com/blog/products/data-analytics/ethereum-
bigquery-public-dataset-smart-contract-analytics

•	 Bitcoin in BigQuery: blockchain analytics on public data:

https://cloud.google.com/blog/topics/public-datasets/bitcoin-
in-bigquery-blockchain-analytics-on-public-data

•	 Bitcoin Analytics using Google BigQuery:

https://bitcoindev.network/bitcoin-analytics-using-google-
bigquery/

https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-how-we-built-dataset
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-how-we-built-dataset
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/topics/public-datasets/bitcoin-in-bigquery-blockchain-analytics-on-public-data
https://cloud.google.com/blog/topics/public-datasets/bitcoin-in-bigquery-blockchain-analytics-on-public-data
https://bitcoindev.network/bitcoin-analytics-using-google-bigquery/
https://bitcoindev.network/bitcoin-analytics-using-google-bigquery/

This part of the book will explore real-world use cases and best practices for implementing blockchain
solutions on AWS, Azure, and GCP. It will provide hands-on labs and case studies that demonstrate
the practical applications of cloud-native blockchain in various industries and use cases. A final
chapter is dedicated to considerations of the future of blockchain in cloud applications, and the use
of blockchain technology for good humanitarian purposes.

This part includes the following chapters:

•	 Chapter 13, Building a Decentralized Marketplace on AWS

•	 Chapter 14, Developing a Decentralized Voting Application on Azure

•	 Chapter 15, Creating Verifiable Digital Ownership on GCP

•	 Chapter 16, The Future of Cloud-Native Blockchain

Part 5:
Exploring Real-World Use Cases

and Best Practices

13
Building a Decentralized

Marketplace on AWS

Welcome to this hands-on lab, where you’ll learn how to build a decentralized marketplace while
leveraging the power and flexibility of Amazon Web Services (AWS) and blockchain technology.
In today’s digital age, centralization has often led to single points of failure, potential data breaches,
and the overarching power of a single entity over a marketplace. This lab aims to introduce you to
the technical foundations of creating a marketplace that is not only decentralized but also secure,
transparent, and scalable.

In this chapter, we’ll dive into the following main topics:

•	 The solution architecture for the decentralized marketplace

•	 The hosting infrastructure in AWS

•	 Setting up a blockchain network in AWS

•	 Creating and deploying the marketplace in AWS

Building a Decentralized Marketplace on AWS278

Technical requirements
Building a blockchain solution often requires integration with third-party systems. In this case, we’re
going to leverage the following services in AWS, all of which complement the marketplace application
by adding computing and storage capabilities:

•	 Amazon Elastic Compute Cloud (EC2): Virtual servers in the cloud for running an Ethereum node

•	 Amazon Relational Database Service (RDS): A relational database service for off-chain data

•	 Amazon Simple Storage Service (S3): A storage service for unstructured data, such as files

We are going to run the marketplace on a blockchain network. Our choice for this lab is Ethereum.
Ethereum is open source and can easily be deployed on Virtual Machines (VMs) in AWS. The relevant
smart contracts will be published on the Ethereum mainnet, as described later in this chapter.

What to expect

This lab comprises step-by-step configuration guides, code samples, and best practices to ensure we
successfully build and understand how to operationalize a decentralized marketplace. We’ll be getting
our hands dirty with code, configurations, and real-world scenarios, so be prepared for an interactive
and enlightening experience.

This book’s GitHub repository (https://github.com/PacktPublishing/Developing-
Blockchain-Solutions-in-the-Cloud) contains the source code for the application
presented in this chapter.

The duration of this lab is approximately 4-6 hours.

Prerequisites

For this chapter’s lab, you’ll require the following:

•	 A basic understanding of blockchain technology.

•	 Familiarity with AWS services.

•	 Experience in software development, preferably in languages such as JavaScript, Python, or Solidity.

•	 A working AWS account. If you don’t have one, you can sign up for a free tier account
here: https://aws.amazon.com/.

https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud
https://aws.amazon.com/

Solution architecture and hosting infrastructure 279

Solution architecture and hosting infrastructure
Building a decentralized marketplace on AWS involves several key aspects and software components
that collectively contribute to the creation of a robust, scalable, and secure platform. The following
figure depicts the key aspects of a decentralized app built on a public cloud service provider:

Figure 13.1 – Key aspects of a decentralized cloud-native app

We put decentralization at the core to provide the central architectural design decision to distribute
control and management across a blockchain network, rather than having it centralized. Around the
decentralized nature of the solution, the cloud service provider adds the following capabilities:

•	 Scalability: Utilizing AWS’s cloud infrastructure allows the marketplace to scale resources up
or down as needed

•	 Security: Using blockchain for transaction validation and AWS services for secure cloud operations

•	 Transparency: All transactions are recorded on the blockchain, ensuring full transparency
within the marketplace

•	 Data integrity: Blockchain ensures that once the data is added, it can’t be changed or removed,
ensuring data integrity

•	 User experience: Despite the complex architecture, the user experience must remain intuitive
and straightforward

Building a Decentralized Marketplace on AWS280

Solution architecture

The solution we’re building relies on the combination of traditional web components, such as frontend
and backend services for managing user interaction and user data, and Web3 components such as
Ethereum, smart contracts, and the MetaMask wallet. The following figure can be used as a reference
for the designed solution:

Figure 13.2 – Architecture reference for the designed solution

For the implementation of this marketplace solution, we have identified the following traditional
web services:

•	 Web interface: A frontend developed using the React framework, which makes users interact
with the marketplace’s backend. React is purely a choice of convenience based on its popularity.
You can use any other web frontend framework that you are familiar with.

•	 web3.js: A JavaScript library to connect the frontend with the Ethereum blockchain.

•	 Node.js: A backend service running on AWS EC2, serving as a middleman between the frontend
and the various AWS and blockchain services.

On the web3.js side, the following services will be used:

•	 Ethereum network: The blockchain network where the marketplace’s smart contracts will
be deployed

•	 Smart contracts: Written in Solidity, these self-executing contracts manage the logic and state
of the decentralized marketplace on the Ethereum blockchain

•	 MetaMask: A browser extension that allows users to make transactions that interact with the
Ethereum blockchain easily

Setting up the blockchain network on AWS 281

Hosting infrastructure on AWS

We are going to host the marketplace solution on AWS by leveraging some of the AWS services that
we have already seen in Chapters 4, 5, and 6.

Specifically, EC2 will host the Node.js API and potentially blockchain nodes if you choose to host
your blockchain network. The frontend framework and backend services will communicate via API
calls. These APIs are governed by API Gateway, which securely exposes the RESTful APIs for the
frontend, at scale.

RDS will be used to manage user profiles, product metadata, and other off-chain information.

Finally, S3 will store unstructured data such as images, digital assets, or any other files related to
the marketplace.

Optionally, AWS Lambda can be used for running serverless functions for specific automation tasks
that run in the background, such as for sending notifications to users.

Security and monitoring

The marketplace solution can be completed with the following additional AWS services, which are
meant to improve security and provide monitoring for the marketplace at runtime:

•	 Identity and Access Management (IAM): To control access to AWS resources

•	 CloudWatch: For monitoring application and infrastructure performance

•	 AWS WAF and Shield: For additional security layers against web exploits

By combining these key aspects and software components effectively, we can build a decentralized
marketplace that leverages the benefits of both blockchain technology and AWS services.

Setting up the blockchain network on AWS
Setting up the essential AWS services is crucial for the infrastructure of our decentralized marketplace.

Setting up Amazon EC2

Follow these steps to set up Amazon EC2 services:

1.	 Open the AWS management console at https://aws.amazon.com/console/ and
navigate to EC2 from the list of services. Click on Launch instance to create a new EC2 instance:

https://aws.amazon.com/console/

Building a Decentralized Marketplace on AWS282

Figure 13.3 – Launching a new EC2 instance from the AWS management console

2.	 Select an Amazon Machine Image (AMI) according to your needs. For a basic setup, you can
choose an Ubuntu server:

Figure 13.4 – Selecting an Ubuntu server AMI

Setting up the blockchain network on AWS 283

3.	 Choose an existing key pair, which is required to log into the VM, or create a new one and
download it:

Figure 13.5 – Selecting or creating a key pair for logging in

4.	 Choose the instance type (for example, t2.micro for testing; this is more than enough for
testing purposes). Add storage according to the specific needs. 8 GB of general-purpose SSD would
work for a demo application. Applications in a live environment would need to be configured
with more resources, depending on the expected volume of traffic and concurrent sessions:

Figure 13.6 – Adding storage to the selected AMI

5.	 Review the configuration in the Summary area and click Launch instance.

6.	 Select the instance you just created from the list of available EC2 instances and obtain its public
IPv4 address. We’ll need it later to access the VM via SSH, along with the key pair, by using the
following command in the AWS Cloud Shell terminal:

ssh -i "Your-Key-Pair.pem" ubuntu@Your-EC2-IP-Address

Building a Decentralized Marketplace on AWS284

Setting up Amazon RDS

Follow these steps to set up Amazon RDS services:

1.	 Navigate to Amazon RDS from the AWS management console.

2.	 Create a new database by selecting Create database:

Figure 13.7 – Creating a new RDS database

3.	 Choose a database engine (for example, MySQL) and pick one of the templates – that is,
Production, Dev/Test, or Free tier:

Figure 13.8 – Choosing a template to meet your use case

4.	 Enter a unique name for the database instance and a login ID for the master user of the database
instance. I recommend changing the proposed “admin” ID to something else. Optionally, we
can use AWS Secrets Manager to safely store the user credentials. Otherwise, feel free to specify
a strong master password:

Setting up the blockchain network on AWS 285

Figure 13.9 – Entering a database name and master login credentials

5.	 In the Instance configuration section, choose a database instance class from the available
options. For MySQL on a free tier, I selected the db.t3.micro option with 2 vCPUs and 1 GiB
of RAM. Storage is general-purpose SSD and 20 GiB of allocated space. Again, this sizing is
perfect for testing and demoing purposes. It will need to be increased for live applications based
on the performance and scalability requirements of the application:

Figure 13.10 – Storage settings for the database instance

Building a Decentralized Marketplace on AWS286

6.	 Review the configurations and click Create database to finish creating the database instance.

7.	 Once the database is up, note down the endpoint and port numbers for later use.

Setting up Amazon S3

Follow these steps to set up Amazon S3 services:

1.	 Navigate to S3 from the AWS management console.

2.	 Create a new bucket by selecting Create bucket:

Figure 13.11 – Creating a new S3 bucket

3.	 On the General configuration section, choose a region where you wish to deploy the bucket
and enter a unique name:

Figure 13.12 – General configuration of the S3 bucket

Setting up the blockchain network on AWS 287

4.	 Configure permissions as per your needs. For Object Ownership, the recommended option is
to have all the objects in the bucket owned by the current account, as opposed to access specified
by using an Access Control List (ACL). In addition, we want to disable all public access to
objects in the bucket. The marketplace will authenticate into S3 to gain access to the bucket.

5.	 For this application, we will disable bucket versioning and select Server-side encryption with
Amazon S3 managed keys (SSE-S3):

Figure 13.13 – Bucket versioning and default encryption settings

6.	 Review your configurations and click on Create bucket to finish creating the bucket.

We now have the essential AWS services configured. Next, we’ll integrate these services into our
decentralized marketplace, connect our EC2 instance to the RDS database, and utilize S3 for storing
any off-chain data. By following these steps, we are well on our way to building a scalable and reliable
decentralized marketplace.

Setting up Ethereum

Setting up a blockchain network on AWS involves several steps, including setting up an Ethereum
node on an EC2 instance. This section provides a guide on how to do this, including some basic shell
commands you can use to get started.

Disclaimer
This is a simplified example. Always remember to consider best practices for production-level
deployments, such as securing the Ethereum node and using Infrastructure as Code (IaC)
tools such as AWS CloudFormation or Terraform for resource provisioning.

Building a Decentralized Marketplace on AWS288

Follow these steps to deploy an Ethereum node on AWS:

1.	 First, open a terminal and SSH into your EC2 instance by running the following bash command:

ssh -i "Your-Key-Pair.pem" ubuntu@Your-EC2-IP-Address

2.	 Update the Ubuntu package list and upgrade the system with the following bash commands.
We need to have sudo-level permissions to be able to execute these commands:

sudo apt update
sudo apt upgrade -y

3.	 Install Go Ethereum (Geth). Geth is the Go implementation of an Ethereum node. We can
install it via the following bash commands (sudo-level permissions are required):

sudo apt install software-properties-common
sudo add-apt-repository -y ppa:ethereum/ethereum
sudo apt update
sudo apt install ethereum -y

4.	 Initialize the genesis block. First, create a directory where your blockchain data will be stored:

mkdir ~/my-ethereum-network

Then, create a genesis.json file with the following sample content:
{
  "config": {
    "chainId": 12345,
    "homesteadBlock": 0,
    "eip155Block": 0,
    "eip158Block": 0
  },
  "difficulty": "200",
  "gasLimit": "2100000",
  "alloc": {}
}

Initialize the genesis block with the following bash command:
geth --datadir ~/my-ethereum-network init ~/my-ethereum-network/
genesis.json

5.	 Next, run the Ethereum node using Geth:

geth --datadir ~/my-ethereum-network --networkid 12345

Creating the decentralized marketplace application 289

Note
This will start the Ethereum node in the foreground. We may want to run it as a background
process or a service in a production environment.

6.	 Attach to the Ethereum node in a new terminal. We can interact with the node using the Geth
console. Open a new terminal and SSH into the EC2 instance:

geth attach ~/my-ethereum-network/geth.ipc

We are now connected to our own private Ethereum blockchain network hosted on an AWS
EC2 instance!

7.	 Optionally, enable the RPC API. We can also enable the HTTP-RPC server to interact with the
node remotely or via web3.js by starting our Ethereum node with the following bash instructions:

geth --datadir ~/my-ethereum-network --networkid 12345
--http --http.addr '0.0.0.0' --http.port 8545 --http.api
'eth,net,web3,personal'

Security warning
Be very careful when exposing the RPC API over the internet. Anyone can access your node;
make sure you secure it adequately.

This section has helped us set up a private Ethereum blockchain on AWS EC2. The next steps will involve
deploying our smart contracts to this network and building our decentralized marketplace on top of it.

Creating the decentralized marketplace application
Creating a frontend interface to interact with your deployed smart contract on the blockchain involves
using web development frameworks and libraries that can communicate with Ethereum nodes. For
this example, we’ll use React and web3.js.

The prerequisites for executing the code in this section include having Node.js and npm installed, a
smart contract deployed on the Ethereum node that we set up on AWS in the previous section, and
MetaMask or another web3 wallet installed in our browser. Some basic familiarity with the React
framework will also help us understand the code in detail.

The following steps will help us install the frontend of the marketplace application:

1.	 First, create a new React app by running the following bash command:

npx create-react-app my-decentralized-marketplace

Then, navigate to the project folder:
cd my-decentralized-marketplace

Building a Decentralized Marketplace on AWS290

2.	 Install the web3.js library so that you can interact with the Ethereum blockchain:

npm install web3

3.	 In the src/App.js JavaScript file, import web3 and connect to the Ethereum network:

import Web3 from 'web3';

componentDidMount() {
  this.loadBlockchainData();
}

async loadBlockchainData() {
  if (window.ethereum) {
    window.web3 = new Web3(window.ethereum);
    await window.ethereum.enable();
  }

  // Load account
  const accounts = await window.web3.eth.getAccounts();
}

4.	 To interact with the smart contract, we need the Application Binary Interface (ABI) and the
contract address. These can usually be found in the build/contracts directory of the
Truffle project after compiling the smart contract’s code:

const ABI = [...];  // Replace with your ABI array
const contractAddress = '0x...';  // Replace with your deployed
contract address

// Inside your loadBlockchainData() function
const web3 = window.web3;
const marketplaceContract = new web3.eth.Contract(ABI,
contractAddress);

5.	 Let’s add methods to add a product and get a product from the smart contract:

async addProduct(name, price) {
  const accounts = await window.web3.eth.getAccounts();
  await this.state.marketplaceContract.methods.addProduct(name,
price).send({ from: accounts[0] });
}

async getProduct(index) {
  const product = await this.state.marketplaceContract.methods.
getProduct(index).call();
}

Deploying the decentralized marketplace on AWS 291

6.	 Now, we must add a simple UI to interact with the smart contract. This can go into the render()
method inside the main React app component:

return (
  <div>
    <h1>My Decentralized Marketplace</h1>
    <button onClick={() => this.addProduct('Laptop', 1000)}>Add
Product</button>
    <button onClick={() => this.getProduct(0)}>Get Product</
button>
  </div>
);

This is a very basic example but should give us a decent starting point. You’d likely want to make
this much more sophisticated with form validation, loading states, event subscriptions, and so forth.

The React app should now be set up to communicate with the smart contract on the Ethereum network.
When we load the app, it should prompt us to connect to MetaMask. Once connected, we can add a
product by clicking the Add product button and get a product by clicking the Get product button.

We now have a full-stack decentralized application: a smart contract deployed on a private Ethereum
network running on AWS and a frontend built with React and web3.js, ready to interact with the
smart contract.

Deploying the decentralized marketplace on AWS
The final step to complete this lab is to deploy the marketplace solution to the AWS services that we
provisioned at the beginning. Deploying and especially automating the deployment of smart contracts
can be challenging. For tools and best practices in deploying smart contracts, please refer to Chapter 3
of this book.

Deploying a smart contract to a blockchain network is a key step in building a decentralized marketplace.
The following instructions focus on the Ethereum blockchain, utilizing Solidity for the smart contract
and Truffle as the development environment:

1.	 Install Truffle globally using npm:

npm install -g truffle

2.	 Create a new directory for the project and navigate to it:

mkdir MyDecentralizedMarketplace
cd MyDecentralizedMarketplace

3.	 Initialize the Truffle project:

truffle init

Building a Decentralized Marketplace on AWS292

4.	 Create a new Solidity file under the contracts directory in the Truffle project:

touch contracts/Marketplace.sol

Edit Marketplace.sol and write the smart contract:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

contract Marketplace {
    struct Product {
        string name;
        uint256 price;
    }

    Product[] public products;

    function addProduct(string memory _name, uint256 _price)
public {
        Product memory newProduct = Product(_name, _price);
        products.push(newProduct);
    }

    function getProduct(uint256 _index) public view
returns(string memory, uint256) {
        Product memory product = products[_index];
        return (product.name, product.price);
    }
}

5.	 Compile the smart contract using Truffle:

truffle compile

6.	 Edit the truffle-config.js file by specifying the network where the contract will be
deployed. Here’s an example of how you can set up the configuration for deploying to our
Ethereum node running on AWS:

module.exports = {
  networks: {
    development: {
      host: "Your-AWS-EC2-IP",
      port: 8545,
      network_id: "12345", // Match the network id you used
during Ethereum node setup
      gas: 3000000
    },

Summary 293

  },
  compilers: {
    solc: {
      version: "0.8.0",
    },
  },
};

7.	 Before deploying, create a migration script in the migrations directory:

touch migrations/2_deploy_contract.js

Edit the file and add the following code:
const Marketplace = artifacts.require("Marketplace");

module.exports = function(deployer) {
  deployer.deploy(Marketplace);
};

Run the migration to deploy the contract:
truffle migrate --network development

8.	 We can now interact with our deployed smart contract using Truffle’s console and verify that
the connection works:

truffle console --network development

Then, we can interact with the contract:
let instance = await Marketplace.deployed()
await instance.addProduct("Laptop", 1000)
let product = await instance.getProduct(0)

Our smart contract is now deployed on our private Ethereum network running on AWS, and we have
verified that we can interact with it. Along with the frontend UI presented in the previous section,
this completes the lab for developing a decentralized marketplace. The source code for this solution
can be found in this book’s GitHub repository: https://github.com/PacktPublishing/
Developing-Blockchain-Solutions-in-the-Cloud.

Summary
In this hands-on lab, we explored the key components of building and scaling a decentralized marketplace
using AWS and blockchain technology. The lab started with setting up essential AWS services, including
EC2 for hosting blockchain nodes, RDS for off-chain data storage, and S3 for storing large files. We
then dived into deploying a smart contract on an Ethereum blockchain network.

https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud

Building a Decentralized Marketplace on AWS294

Next, we developed a frontend interface using React.js and web3.js to interact with the deployed smart
contract. The frontend allows for the addition and retrieval of products in the decentralized marketplace.

Ready for another hands-on lab? In the next chapter, we’ll develop a decentralized voting application
on Azure.

Further reading
•	 Amazon EC2 documentation:

https://docs.aws.amazon.com/ec2/

•	 Amazon RDS documentation:

https://docs.aws.amazon.com/rds/

•	 Amazon S3 documentation:

https://docs.aws.amazon.com/s3/

https://docs.aws.amazon.com/ec2/
https://docs.aws.amazon.com/rds/
https://docs.aws.amazon.com/s3/

14
Developing a Decentralized

Voting Application on Azure

Welcome to this hands-on lab where we will explore the fascinating intersection of blockchain
technology and cloud computing, focusing on Microsoft’s Azure platform. As the demand for secure,
transparent, and efficient systems continues to grow, decentralized technologies such as blockchain
have stepped into the limelight. This lab is designed to give you practical experience in creating a
decentralized voting application, providing a unique blend of cryptographic security measures offered
by blockchain and the powerful computing resources available on Azure.

Why decentralized voting? Traditional voting systems, although generally reliable, are often subject
to scrutiny regarding their transparency, security, and the possibility of fraud. Decentralized voting
applications aim to mitigate these concerns by creating an immutable and transparent record of votes,
accessible to anyone who wishes to verify the results, yet secure enough to ensure the privacy and
integrity of each vote.

What will you learn? By the end of this lab, you will have a functional decentralized voting application
running on Azure, and you’ll have gained the skills needed to further explore the possibilities that
blockchain technology can offer in various domains.

Developing a Decentralized Voting Application on Azure296

The lab is structured as follows:

•	 Introduction to developing a decentralized voting application on Azure

•	 Setting up the blockchain network on Azure

•	 Developing the voting application

Let’s get started!

Technical requirements
To run the code and scripts presented in this chapter, you will need an account in the Azure cloud. A free
account, which you can obtain at https://azure.microsoft.com/en-us/free/, will suffice.

All the source code is available in this book’s GitHub repository: https://github.com/
PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud.

Introduction to developing a decentralized voting
application on Azure
Ensuring data integrity, voter privacy, and system robustness is essential for any voting application,
particularly in a decentralized environment. Before we cover the implementation details of the
proposed solution, I would like to illustrate a few common cryptographic techniques that can be used
to improve data integrity, voter privacy, and overall system robustness. We can then implement some
or all of these techniques in the smart contract of the voting application:

Figure 14.1 – Cryptographic techniques in a decentralized application

https://azure.microsoft.com/en-us/free/
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud

Introduction to developing a decentralized voting application on Azure 297

Data integrity

A very common approach to ensure data integrity in a decentralized application is to digitally sign
and verify a transaction. Digital signatures are based on asymmetric encryption algorithms and the
use of private and public keys.

In our voting app, every vote can be digitally signed using the voter’s private key. This ensures that
the vote hasn’t been tampered with after being cast. A smart contract can then validate the signature
using the public key before accepting the vote.

The following Solidity smart contract example validates a digital signature:

function castVote(bytes memory signature, uint256 candidateId) public
{
   address signer = recoverSigner(signature, candidateId);
   require(signer == msg.sender, "Invalid signature");
   // Continue with vote casting logic
}

Voter privacy

To enforce privacy in the vote, which otherwise would be openly visible on the blockchain, we can
introduce one of two privacy-enforcing techniques:

•	 Zero-Knowledge Proofs (ZKPs): ZKPs can prove that a transaction (such as a vote) is valid,
without revealing the transaction’s details. Technologies such as zk-SNARKs can be incorporated
into smart contracts to add another layer of privacy.

The following conceptual example of a Solidity smart contract illustrates how to validate a
zk-SNARK proof without revealing voter details in a castVoteWithZkSnark function:

function castVoteWithZkSnark(bytes memory zkProof) public {
   bool isValid = validateZkSnarkProof(zkProof);
   require(isValid, "Invalid zk-SNARK proof");
   // Continue with vote casting logic
}

•	 Homomorphic encryption: Votes are encrypted in such a way that they can be tallied without
being decrypted. This ensures voter privacy and allows for public verification of the tally.

The smart contract can be extended with a castVoteWithHomomorphicEncryption
function to store the encrypted vote, which will be decrypted only for tallying:

function castVoteWithHomomorphicEncryption(bytes memory
encryptedVote) public {
}

Developing a Decentralized Voting Application on Azure298

Ethical implications and challenges of voter privacy in decentralized voting systems
While decentralized voting systems offer unprecedented levels of security and transparency,
they also introduce complex ethical implications and challenges, particularly concerning voter
privacy. The balance between ensuring a transparent electoral process and protecting individual
privacy rights is delicate and requires careful consideration.

One of the core ethical challenges in decentralized voting systems is the tension between
maintaining voter anonymity and ensuring the transparency of the voting process. Blockchain
technology makes every transaction traceable and permanent, raising concerns about potential
privacy breaches. While technologies such as ZKPs offer solutions by allowing voters to verify
their vote without revealing their identity, ensuring these technologies are foolproof and
accessible to all voters is a significant challenge.

Decentralized systems, by nature, distribute data across multiple nodes, potentially reducing
the risk of mass surveillance and data collection by central authorities. However, the immutable
nature of blockchain raises concerns about the permanent storage of sensitive information,
even in encrypted forms. There’s a risk that future advancements in technology could decrypt
today’s secure data, posing long-term privacy risks.

The ethical challenge of equity and accessibility in decentralized voting systems also ties into
privacy concerns. Ensuring that all eligible voters have equal access to the voting system,
regardless of their technological literacy or access to digital infrastructure, is crucial. Otherwise,
the system could exclude significant portions of the population, undermining the democratic
process and potentially skewing election results.

In conclusion, the ethical implications and challenges of voter privacy in decentralized voting systems
highlight the need for a nuanced approach to technology implementation. Ensuring voter privacy
while maintaining transparency and integrity requires continuous technological innovation, legal and
regulatory frameworks that respect individual rights, and mechanisms to address potential abuses.
As decentralized voting systems evolve, addressing these ethical challenges will be critical in realizing
their potential to enhance democratic processes.

System robustness

Making sure that the system is robust and can respond safely to cyber attacks includes introducing
a few techniques:

•	 Multi-signatures for admin functions: Stronger system robustness can be obtained by requiring
multiple parties (instead of a single entity) to approve changes to the voting system, such as
adding or removing candidates or ending the election early. This ensures that no single entity
can control the election.

Setting up the blockchain network on Azure 299

Our smart contract can accept multiple candidates in an addCandidate function that accepts
the candidate’s name as input and adds it to an internal list:

function addCandidate(string memory name) public
onlyMultiSigners {
}

•	 Rate limiting: Implement rate limiting on contract methods that are sensitive to abuse could
prevent spam attacks.

For example, the castVote function checks whether the maximum amount of votes that can
be cast has been reached by a voting member:

function castVote(uint256 candidateId) public {
   require(voteCount[msg.sender] < MAX_VOTES, "Rate limit
exceeded");
   // Continue with vote casting logic
}

•	 Secure randomness: Using cryptographic techniques to generate secure randomness for any
lottery-based actions (such as selecting a vote auditing committee) can usually be achieved
using oracles or commitment schemes.

Our smart contract example will use a random hash in the generateRandomCommittee
function for committee selection:

function generateRandomCommittee() public {
   bytes32 randomHash = keccak256(abi.encodePacked(block.
timestamp, msg.sender));
}

Each of these techniques comes with its trade-offs in terms of complexity, cost, and performance. The
best combination will depend on the specific requirements of the voting system.

Setting up the blockchain network on Azure
Now, let’s progress with setting up the cloud infrastructure for the voting application, which includes
a blockchain consortium on Azure and the relevant voting smart contract. The scripts in this section
will leverage the Azure Command-Line Interface (CLI) for execution. We will deploy the smart
contract with Truffle, and we will also need MetaMask or a similar Ethereum wallet to sign the
voting transactions.

Developing a Decentralized Voting Application on Azure300

Creating a blockchain consortium on Azure

We will create a blockchain consortium through the Azure portal using bash instructions in the Azure
CLI to set up an Ethereum network. Here is an example using the Azure CLI:

rg_name="MyResourceGroup"
location="eastus"
consortium_name="MyBlockchainConsortium"

First of all, we must set some global variables to indicate the following:

•	 The resource group where we will save all the deployed resources (the rg_name variable).

•	 The Azure region of deployment (the location variable).

•	 The name of the blockchain consortium being created (the consortium_name variable).

The CLI instruction to create a resource group is as follows. Here, we must use the az group
create command with the resource group name and location as parameters:

az group create --name $rg_name --location $location

Creating a blockchain consortium requires us to specify the resource group, consortium name, location,
and the number of members (at least two) to deploy as part of the consortium. We will use the az
blockchain create command for this, as follows:

az blockchain create --resource-group $rg_name --name $consortium_name
--location $location --consortium-member-count 2

Create a voting smart contract

Now that we have a blockchain network up and running, we can proceed with the implementation
of the voting logic in a smart contract. Let’s create a file named Voting.sol and add the following
Solidity code to it:

pragma solidity ^0.8.0;

contract Voting {
    bytes32[] public candidateList;
    mapping (bytes32 => uint8) public votesReceived;

    constructor(bytes32[] memory candidateNames) {
        candidateList = candidateNames;
    }

    // Vote for a candidate
    function voteForCandidate(bytes32 candidate) public {

Setting up the blockchain network on Azure 301

        require(validCandidate(candidate));
        votesReceived[candidate] += 1;
    }

    // Check if a candidate is valid
    function validCandidate(bytes32 candidate) view public returns
(bool) {
        for(uint i = 0; i < candidateList.length; i++) {
            if (candidateList[i] == candidate) {
                return true;
            }
        }
        return false;
    }
}

The smart contract does the following:

•	 Stores a list of candidates in the candidateList variable and their vote counts in the
votesReceived variable.

•	 Initializes a new instance of the voting contract by passing the candidate’s name to the constructor
and adding it to the list

Compiling and migrating the smart contract using Truffle

Remember that the complete source code of the smart contract is in this book’s GitHub repository. We
can now proceed with building and deploying the contract on the provisioned blockchain network.
First, we’ll start a new Truffle project and place the Voting.sol file in the contracts directory.
To compile the smart contract, we can either use the relevant command from the Truffle dashboard
in VS Code, as shown in the following screenshot, or run a simple bash command:

Figure 14.2 – Command to build a smart contract with Truffle in VS Code

The bash command to compile a smart contract in Truffle is as follows:

truffle compile

Developing a Decentralized Voting Application on Azure302

Once the contract has been compiled, we need to deploy—or migrate—it to the blockchain network.
We’ll create a migration script in the migrations folder in the Truffle project and run the migration
task by executing the following bash command:

truffle migrate --network azureNetwork

In the preceding command, azureNetwork is specified in the truffle-config.js file and
should have configuration details specific to the blockchain service previously provisioned in Azure.

Developing the voting application frontend
After deploying the contract into the blockchain network, we need a frontend user interface for
interacting with the voting application. The frontend code will then communicate with the smart
contract and perform voting operations.

We will now create a Blazor UI frontend to interact with the Solidity smart contract. As Blazor runs on
.NET, this example will use the Nethereum library, which is a .NET library for integrating Ethereum
smart contracts using C# code.

Installing the necessary packages

First, let’s make sure we add the Nethereum.Web3 package to our Blazor project, either from the
NuGet package manager in Visual Studio, as illustrated in the following screenshot, or by running a
command-line instruction to install the package:

Figure 14.3 – The Nethereum.Web3 NuGet package

The bash command to add the Nethereum.Web3 package to our .NET solution is as follows:

dotnet add package Nethereum.Web3

Interacting with the smart contract

Now, we can focus on the interaction with the smart contract by using the Nethereum library. Let’s
add a new C# class to our project named EthereumService.cs. This class will be responsible
for all interactions with the Ethereum blockchain.

Developing the voting application frontend 303

When instantiated, the EthereumService class creates a wallet account for the user with the
indicated private key. The VoteAsync method is responsible for interacting with the smart contract
at the provided blockchain address. Once it’s obtained a reference to the voteForCandidate
function defined in the contract, an asynchronous transaction is initiated between the client code in
C# and the on-chain code in Solidity:

Secure your private keys
Never store your private keys in a project configuration file, or even worse, hard code it into
your source code. Please consider a more secure secret management solution, such as Azure
Key Vault.

using Nethereum.Web3;
using Nethereum.Web3.Accounts;
using System.Threading.Tasks;

public class EthereumService
{
    private readonly Web3 web3;
    const string contractAddress = "Contract address";
    const string abi = "contract ABI code";

    public EthereumService(string url, string privateKey)
    {
        var account = new Wallet(privateKey, null);
        web3 = new Web3(account, url);
    }

    public async Task<string> VoteAsync(uint8 candidateIndex)
    {
        var contract = web3.Eth.GetContract(abi, contractAddress);
        var voteFunction = contract.GetFunction("voteForCandidate");
        var transactionInput = await voteFunction.
SendTransactionAsync(candidateIndex);
        return transactionInput;
    }
}

Developing a Decentralized Voting Application on Azure304

Creating a Blazor component for voting

The final touch will involve creating a Blazor component that provides the user interface. We’ll call
this component Vote.razor and implement it in the following Razor code:

@inject EthereumService EthereumService

@code {
    private int selectedCandidateIndex;
    private string transactionHash;
    private bool hasVoted;

    private async Task VoteAsync()
    {
        transactionHash = await EthereumService.VoteAsync((uint8)
selectedCandidateIndex);
        hasVoted = true;
    }
}

Within the Vote.razor file, we will include some simple HTML. Feel free to make it as rich and
sophisticated as needed:

@page "/vote"

@if (hasVoted)
{
    <div>
        <h3>You have successfully voted!</h3>
        <p>Your transaction hash is: @transactionHash</p>
    </div>
}
else
{
    <div>
        <h2>Select candidate to vote</h2>
        <select @bind="selectedCandidateIndex">
            <option value="0">Candidate 1</option>
            <option value="1">Candidate 2</option>
            <option value="2">Candidate 3</option>
        </select>
        <button @onclick="VoteAsync">Vote</button>
    </div>
}

Developing the voting application frontend 305

Running your application

At this point, we should be able to run our Blazor application in a web browser. Navigate to the /
vote endpoint to interact with the voting app.

Please note
This is a very basic example and doesn’t handle several production-ready concerns such as
transaction confirmations, error handling, or user authentication. But it should give you a
starting point from which you can build a more robust solution.

Before we close this chapter, we’d like to add a brief consideration of future trends in decentralized
voting systems, emphasizing emerging technologies and their potential impact on the field.

Future trends in decentralized voting systems

Decentralized voting systems represent a transformative approach to conducting elections, leveraging
blockchain technology to ensure transparency, security, and integrity of votes. These systems aim to
mitigate traditional challenges such as fraud, coercion, and inefficiency, offering a pathway to more
democratic and accessible voting processes.

Blockchain technology and smart contracts are at the core of decentralized voting systems. They ensure
that each vote is encrypted and recorded on a distributed ledger, making the voting process tamper-
proof and transparent. Smart contracts can automate vote counting and result tabulation, reducing
human error and manipulation. As we have learned in this chapter, ZKPs allow voters to prove that
their vote is valid within the system’s rules without revealing who they voted for. This technology
enhances privacy and security, ensuring voter anonymity while maintaining the integrity of the voting
process. Similarly, DID systems enable voters to verify their identity securely and privately, without
the need for a central authority. This can significantly increase accessibility, allowing for remote voting
without compromising security.

In synthesis, decentralized voting systems do the following:

•	 Increase accessibility and participation by making it easier for people to vote, regardless of
their location, thereby potentially increasing voter participation and engagement.

•	 Enhance security and trust by leveraging blockchain and associated technologies. By doing
this, these systems can significantly reduce the risk of vote tampering and fraud, increasing
trust in the electoral process.

•	 Address regulatory and legal hurdles by establishing legal frameworks that accommodate
such technology while ensuring the integrity of the electoral process, which is crucial.

Developing a Decentralized Voting Application on Azure306

Decentralized voting systems, powered by emerging technologies such as blockchain, ZKPs, DID, and
potentially quantum computing, hold the promise of revolutionizing the way elections are conducted.
They offer a pathway to more secure, transparent, and accessible voting processes. However, addressing
scalability, regulatory, and technological challenges is essential for their widespread adoption and
success. As these technologies continue to evolve, they will undoubtedly shape the future of democratic
processes, making voting more inclusive and resilient against threats.

Summary
This hands-on lab offered a comprehensive guide to building a decentralized voting application while
utilizing Azure services for running a blockchain network and hosting a .NET Blazor frontend. The
primary goal was to educate participants on how to create a robust, scalable, and secure voting platform
that can be transparently audited and managed.

We learned about two key capabilities from this lab. The first one is related to the use of a smart contract
for the voting logic, whereas the second one is related to the Blazor frontend and communication
with the smart contract.

More specifically, we learned how to write, deploy, and interact with an Ethereum smart contract that
handles the voting logic while using the Solidity programming language and the Nethereum library
for .NET. We also developed a user interface in Blazor that interacts with the Ethereum smart contract,
enabling users to cast votes, view candidates, and see real-time results.

In the next chapter, we will dive into another hands-on lab for creating verifiable digital proofs of
ownership of digital assets.

Further reading
•	 Get started with Azure: https://azure.microsoft.com/en-us/get-started

•	 Blazor: https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/
blazor

•	 Nethereum: https://nethereum.com/

https://azure.microsoft.com/en-us/get-started

https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor

https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor

https://nethereum.com/

15
Creating Verifiable Digital

Ownership on GCP

Digital ownership has become a cornerstone of our modern economy. As digital assets such as
Non-Fungible Tokens (NFTs), cryptocurrencies, digital real estate, and intellectual property become
more prevalent, verifying their ownership in a secure, transparent, and immutable manner has never
been more critical.

The advent of digital ownership marks a paradigm shift in how we perceive and interact with assets
in the digital realm, profoundly impacting various aspects of our lives. It empowers creators and
consumers alike by providing a platform for authenticating, buying, selling, and trading digital goods
with a level of security and transparency previously unattainable. This has opened up new avenues
for artists, musicians, and writers to monetize their work directly and for collectors and investors to
diversify their portfolios into digital art, virtual real estate, and other digital collectibles. Moreover,
the use of blockchain technology in establishing proof of ownership and provenance of digital assets
such as NFTs not only ensures the integrity and uniqueness of these assets but also offers a new form
of engagement and community building around shared interests. As digital ownership continues
to weave itself into the fabric of our digital economy, it challenges traditional models of ownership
and copyright, prompting legal, economic, and social adjustments to accommodate the burgeoning
digital market space.

Welcome to this hands-on lab for creating verifiable credentials for proving ownership of digital assets.
In this lab, we’ll explore how to establish secure, traceable, and verifiable ownership records for digital
assets using blockchain technology. Leveraging the power of Google Cloud Platform (GCP), we’ll
walk together through the essential tools and services that we need to implement a decentralized
application for managing digital proofs of ownership.

Creating Verifiable Digital Ownership on GCP308

In this chapter, we’ll cover the following key topics:

•	 Introduction to verifiable digital ownership

•	 Setting up a blockchain network on GCP

•	 Creating verifiable digital ownership records

•	 Integrating the solution with other GCP services

•	 Deploying the solution into GCP

Technical requirements
To run the scripts presented in this chapter, we need an account in GCP, which you can create for free,
inclusive of $300 worth of credits, from here: https://cloud.google.com/

Code examples are provided in the Solidity and JavaScript programming languages. We will be using
the following:

•	 Remix (https://remix.ethereum.org/) for developing and testing the smart contracts

•	 MetaMask or another Ethereum-compatible wallet for interacting with the Ethereum blockchain

•	 Google Cloud’s Ethereum blockchain toolkit for deploying and managing the smart contracts

All the source code is available in the GitHub repository: https://github.com/PacktPub-
lishing/Developing-Blockchain-Solutions-in-the-Cloud

Introduction to verifiable digital ownership
Verifiable digital ownership refers to a system where digital assets or rights are represented, tracked,
and verified using blockchain technology. This concept is crucial in various applications, including
cryptocurrencies, NFTs, digital rights management, and more. The key aspects of verifiable digital
ownership include the following:

•	 Digital assets on blockchain: Digital assets can be anything from digital art, music, videos,
online collectibles, and virtual real estate to cryptocurrencies such as Bitcoin or Ether. These
assets are often tokenized, which means they are represented as digital tokens on a blockchain.
In the case of unique assets such as digital art, these tokens are often NFTs, meaning each token
is unique and cannot be interchanged with another.

•	 Ownership and provenance: The blockchain records who currently owns a digital asset. Each
token has an owner, and this information is stored in a way that is transparent and tamper-proof.
Blockchain also tracks the history of an asset, including its creation and subsequent transfers.
This helps in establishing provenance, verifying authenticity, and ensuring the asset’s integrity.

https://cloud.google.com/
https://remix.ethereum.org/
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud
https://github.com/PacktPublishing/Developing-Blockchain-Solutions-in-the-Cloud

Setting up the blockchain network on GCP 309

•	 Decentralization and trust: Blockchains are decentralized, meaning that they do not rely on
a central authority to verify transactions or ownership. Instead, consensus mechanisms among
network participants ensure trust and security. Once recorded on a blockchain, data cannot be
altered, which builds trust in the system.

•	 Smart contracts for automated verification: Smart contracts are self-executing contracts with
the terms of the agreement directly written into code. They can automate the enforcement of
ownership rights, such as transferring ownership upon payment.

Blockchain’s transparent yet secure ledger ensures that all participants can verify ownership and
transaction history. This leads to an expected reduction of fraud thanks to the difficulty in altering
immutable blockchain records, which reduces the risk of counterfeited digital transactions.

There are many domains where verifiable ownership of digital assets is already used at scale, which
include (but are not limited to) the following:

•	 Art and collectibles: NFTs have popularized the concept of digital ownership in art and
collectibles, allowing artists to sell digital works with clear ownership rights

•	 Gaming and virtual real estate: In gaming, blockchain is used to manage ownership of in-game
items and virtual land

•	 Intellectual property and licensing: Blockchain can manage and track licenses for digital
content, ensuring creators are compensated for their work

In summary, verifiable digital ownership in blockchain solutions provides a secure, transparent, and
efficient way to manage and transfer ownership of digital assets. This technology is revolutionizing
how we think about ownership and value in the digital realm.

In the next section, we will start the setup of the cloud resources necessary to build a simple yet effective
solution for issuing and verifying ownership of digital assets on a blockchain network.

Setting up the blockchain network on GCP
One of the most important aspects of establishing verifiable digital ownership is the use of smart
contracts. These contracts will encode the terms of the agreement directly written into code. In this
lab, we’ll learn how to write and deploy smart contracts to manage and facilitate transactions related
to digital ownership records. As consistently done in this book, we will work with the Ethereum
platform and Solidity, the most widely used smart contract programming language for Ethereum and
compatible blockchain networks.

As a hosting cloud of reference, for this lab, we’ll be using GCP. Before we start with Ethereum and
GCP, let’s define a high-level plan of the tasks that we want to complete in this lab, as shown in the
following figure:

Creating Verifiable Digital Ownership on GCP310

Figure 15.1 – High-level tasks for the verifiable digital ownership solution on GCP

We can detail the sequence of tasks as follows:

1.	 Ethereum node setup: The first step to complete in this lab is setting up an Ethereum node on a
GCP VM instance. This forms the backbone of the blockchain infrastructure that we’re deploying.

2.	 Smart contracts: We will then write and deploy smart contracts that facilitate asset ownership
transactions. The contracts include features for registering, transferring, and verifying ownership.

3.	 Data management: We’ll follow the lab’s instructions for delving into decentralized data
management, exploring both on-chain storage techniques and off-chain solutions such as the
InterPlanetary File System (IPFS) to manage asset metadata securely and efficiently.

4.	 Verification mechanism: Code examples are provided to demonstrate the creation of verification
procedures that are secure and tamper-proof, leveraging blockchain’s immutability.

5.	 User interface: Readers will implement a simple yet intuitive frontend using HTML and JavaScript
to interact with the deployed smart contract. This ensures a portable and user-friendly way to
handle digital asset ownership.

6.	 Deployment: Finally, the lab concludes by providing detailed steps and scripts to deploy
the entire verifiable digital ownership solution on GCP, encompassing both backend and
frontend components.

Now that we have a plan, let’s take action on Step 1. Details of how to set up a blockchain node on
GCP have already been presented in depth in Chapter 10 and Chapter 11.

Creating verifiable digital ownership records 311

Specifically, in Chapter 10, we looked at how to configure an Ethereum node using the Google
Kubernetes Engine (GKE), and then interact with it using client tools such as Geth.

In Chapter 11, we went into the specifics of Blockchain Node Engine (BNE) on GCP and how to use
BNE for running decentralized apps.

For the purpose of this lab, we will use VM instances in GCP for the Ethereum node.

Creating verifiable digital ownership records
Once the hosting infrastructure is sorted, we can proceed with Step 2, which is building the smart
contract that will do the following:

•	 Register a new digital asset with unique attributes (for example, ID and ownership details)

•	 Facilitate the transfer of ownership of a digital asset

•	 Allow for the verification of the current owner of a digital asset

As mentioned in the technical requirements, we’ll be using the Remix IDE for coding the smart
contract. Once the contract has been tested, we’ll deploy it onto the Ethereum testnet using Google
Cloud’s Ethereum blockchain toolkit.

The contract exposes functions to add new assets, register a new owner, and transfer ownership. It
will also verify the existence of the asset on the blockchain and its current ownership.

The smart contract that we’re going to develop is built on the ERC-721, NFT standard (https://
eips.ethereum.org/EIPS/eip-721), the Ethereum “request for comment” that is used for
representing ownership of NFTs—that is, where each token is unique. The smart contract performs
three tasks (proof of ownership, proof of verification, and transfer of ownership of a digital asset
between two parties), as depicted in the following figure:

Figure 15.2 – Functionalities of the digital ownership smart contract

https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721

Creating Verifiable Digital Ownership on GCP312

A simplified example of a Solidity smart contract that would fit within the context of the lab is given in
the following section. The contract allows for the registration and transfer of digital ownership of assets.

The DigitalAsset struct defines the structure to hold a digital asset’s name and current owner. Each
asset is associated with a DigitalAsset struct by a unique ID. The registerAsset function
allows a user to register a new asset by providing a unique asset ID and name. The transferAsset
function allows the current owner of an asset to transfer ownership to a new owner’s address. During
the transfer operation, the AssetTransferred event is emitted when an asset is transferred from
one owner to another. The verifyOwner function allows anyone to verify the current owner of
an asset by its ID.

To implement this code, open Remix and create a new Solidity file. Copy-paste the full source code
from the GitHub repository into the file and compile the code. Later in this chapter, we will see how
to deploy the contract to the Ethereum node that we have created in the previous section, and how
to interact with it to register assets, transfer them, and verify their ownership.

The following source code represents the DigitalOwnership smart contract written in Solidity
programming language:

contract DigitalOwnership {
    struct DigitalAsset {
        string name;
        address owner;
    }
    mapping(string => DigitalAsset) private assets;

    event AssetTransferred(string assetId, address indexed from,
address indexed to);

    function registerAsset(string memory _assetId, string memory _
name) public {
        require(assets[_assetId].owner == address(0), "Asset already
exists");
        DigitalAsset memory newAsset = DigitalAsset(_name, msg.
sender);
        assets[_assetId] = newAsset;
    }

    function transferAsset(string memory _assetId, address _newOwner)
public {
        require(assets[_assetId].owner == msg.sender, "You are not the
owner");
        assets[_assetId].owner = _newOwner;
        emit AssetTransferred(_assetId, msg.sender, _newOwner);
    }

Creating verifiable digital ownership records 313

    function verifyOwner(string memory _assetId) public view
returns(address) {
        return assets[_assetId].owner;
    }
}

Creating secure and tamper-proof verification mechanisms often involves implementing several layers
of checks and validations within the smart contract and potentially integrating off-chain services for
additional security measures. The following subsections highlight a few advanced Solidity features and
practices you can include to enhance the ownership verification mechanisms of your smart contract.

Ownership verification through digital signatures

A powerful method to verify the identity of an asset owner is using digital signatures. This involves
creating a hash of the data to be verified and then signing it with the private key of the owner. Anyone
with the corresponding public key can then verify the signature and data. We’ll now extend the
DigitalOwnership contract to include signature-based verification.

The transferAssetWithSignature function generates a message hash, recovers the signer’s
address from the signature, and then transfers ownership to the new owner. It also ensures that the signer
is the current owner of the asset, and at the end, it emits the AssetTransferredWithSignature
event to signal to external listeners that an asset has been transferred.

Internally, the signature is calculated with the recoverSigner function, which implements an
Elliptic Curve Digital Signature Algorithm (ECDSA). As usual, the full source code is on the GitHub
repository mentioned at the beginning of the chapter.

The following code snippet extends the smart contract with this new functionality:

contract DigitalOwnership {
    event AssetTransferredWithSignature(string assetId, address
indexed from, address indexed to, bytes signature);

    function transferAssetWithSignature(string memory _assetId,
address _newOwner, bytes memory _signature) public {
        bytes32 messageHash = keccak256(abi.encodePacked(_assetId,
_newOwner));
        address signer = recoverSigner(messageHash, _signature);
        require(signer == assets[_assetId].owner, "Signature does not
match with the asset's owner");

        assets[_assetId].owner = _newOwner;

        emit AssetTransferredWithSignature(_assetId, msg.sender, _
newOwner, _signature);
    }

Creating Verifiable Digital Ownership on GCP314

Multi-signature verification

For added security, we could implement multi-signature (multisig) functionality. Multisig refers to a
verification strategy that requires multiple authorized addresses to confirm a transaction. In this lab,
let’s work with the assumption that a transfer needs at least two confirmations before being processed.
This is defined in the REQUIRED_CONFIRMATIONS constant in the following code:

uint8 constant REQUIRED_CONFIRMATIONS = 2;
mapping(string => mapping(address => uint8)) private confirmations;

function confirmTransfer(string memory _assetId, address _newOwner)
public {
    require(assets[_assetId].owner == msg.sender || /* additional
authorized addresses */, "You are not authorized");

    confirmations[_assetId][_newOwner] += 1;

    if (confirmations[_assetId][_newOwner] >= REQUIRED_CONFIRMATIONS)
{
        assets[_assetId].owner = _newOwner;
        emit AssetTransferred(_assetId, assets[_assetId].owner, _
newOwner);
    }
}

The new confirmTransfer function will execute the following flow of actions:

1.	 First, it verifies whether the request for transfer has been submitted by the asset owner or any
additional authorized address.

2.	 Then, it increases the confirmation counter for that asset.

3.	 Last, when reaching the total required confirmations, it will process the transfer of ownership.

Smart contract deployment

Deploying a smart contract on GCP using the Google Cloud Ethereum blockchain toolkit involves
several steps, including the setup of a GKE cluster, as mentioned before.

After deploying an Ethereum node on GKE, we can install the Google Cloud Ethereum blockchain
toolkit. This toolkit is maintained by Techlatest.net and a video tutorial on its usage is available
at https://techlatest.net/support/ethereum_developer_kit/.

The following helm command will install the Ethereum toolkit on your cluster:

helm install my-ethereum ethereum-toolkit/ethereum

https://techlatest.net/support/ethereum_developer_kit/

Creating verifiable digital ownership records 315

Now we can prepare the DigitalOwnership contract for deployment. First, we need to compile
the smart contract by using a Solidity compiler such as solc, or a development framework such as
Hardhat, to generate the bytecode and the necessary Application Binary Interface (ABI):

solc --bin --abi DigitalOwnership.sol -o build

At this point, we can create a deployment script to deploy the smart contract to the Ethereum network.
Here’s an example using JavaScript:

const { ethers } = require("hardhat");

async function main() {
      const contractFactory = await ethers.
getContractFactory("DigitalOwnership");
      const contract = await contractFactory.deploy();
      await contract.deployed();

      console.log("DigitalOwnership deployed to: ", contract.address);
  }

This script creates an instance of the contract factory responsible for connecting to the blockchain
network. The ethers.getContractFactory()function returns a JavaScript object that
represents a smart contract factory. We can use this object to deploy our smart contract by invoking
the deploy()function. We should make sure that the DigitalOwnership.sol source code
of the smart contract is in the contracts folder in Hardhat.

Off-chain checks

Although this goes beyond smart contract programming, we could also implement additional verification
steps that involve off-chain systems. For example, before transferring an asset, a verification token
could be sent to the owner’s email or mobile number. This token would then need to be provided
to complete the transfer (multi-factor authentication). These methods, however, would require
integrating our smart contract with external systems, typically through oracles or off-chain services.

Overall, by implementing a combination of these techniques, we can make our asset transfer and
ownership verification processes both secure and tamper-proof.

Frontend

Creating a frontend UI for users to interact with the decentralized application is crucial for accessibility
and usability. web3.js and ethers.js are commonly used JavaScript libraries that allow dapps to connect
to Ethereum nodes, thus enabling users to interact with smart contracts.

Creating Verifiable Digital Ownership on GCP316

We are going to build the web page depicted in the following picture (by all means, please do work
on a better-looking UI!):

Figure 15.3 – A simple web page to interact with the digital ownership smart contract

For this example, let’s assume we’re using web3.js, HTML, and vanilla JavaScript. The UI will allow
users to do the following:

•	 Register a new digital asset

•	 Transfer ownership of a digital asset

•	 Verify the current owner of a digital asset

To start, let’s create a simple HTML file with input fields for asset registration, ownership transfer,
and verification:

<body>
    <h1>Manage Your Digital Assets</h1>

    <h2>Register Asset</h2>
    <form id="registerForm">
        Asset ID: <input type="text" id="registerAssetId" />

        Asset Name: <input type="text" id="registerAssetName" />

        <button type="submit">Register</button>

Creating verifiable digital ownership records 317

    </form>

    <h2>Transfer Ownership</h2>
    <form id="transferForm">
        Asset ID: <input type="text" id="transferAssetId" />

        New Owner Address: <input type="text" id="transferNewOwner"
/>

        <button type="submit">Transfer</button>
    </form>

    <h2>Verify Ownership</h2>
    <form id="verifyForm">
        Asset ID: <input type="text" id="verifyAssetId" />

        <button type="submit">Verify</button>
    </form>

    <div id="output"></div>

    <script src="index.js"></script>
</body>

At the bottom of the body of the HTML page, there’s a reference to an index.js JavaScript file.
This file contains the script to handle form submissions and interactions with the smart contract.

First, the script will initialize a Web3 object. In the real code, please replace the URL with the Ethereum
node address in the deployed network:

let web3 = new Web3(new Web3.providers.HttpProvider('https://ethereum-
node-address'));

Then, let’s specify the address and ABI code of the deployed smart contract:

const contractAddress = '0x...';
const abi = [...];

ABI
An ABI is a JSON representation that tells the interface how to call functions in a smart contract
and how data is structured in the contract. After compiling a smart contract with the solc
compiler, using the --abi parameter will generate the ABI code, as in the following example:
solc --abi --bin DigitalOwnership.sol -o output

Here, the -o output parameter specifies the output directory for the generated files.

Creating Verifiable Digital Ownership on GCP318

With that information, we can now create a new Web3 contract instance:

const contract = new web3.eth.Contract(abi, contractAddress);

After the initialization is done, we can handle the various form interactions. The following diagram
shows the interaction flows:

Figure 15.4 – Smart contract interaction flow with the frontend

First is the asset registration, which invokes the registerAsset method on the deployed contract:

document.getElementById('registerForm').addEventListener('submit',
function(e) {
    e.preventDefault();
    const assetId = document.getElementById('registerAssetId').value;
    const assetName = document.getElementById('registerAssetName').
value;
    contract.methods.registerAsset(assetId, assetName)
    .send({ from: web3.currentProvider.selectedAddress })
    .then((result) => {
        document.getElementById('output').innerHTML = 'Asset
Registered Successfully!';
    })
    .catch((error) => {
        document.getElementById('output').innerHTML = 'Asset
Registration Failed!';
    });
});

Creating verifiable digital ownership records 319

We then continue with the asset transfer handler by invoking the transferAsset function in the
smart contract:

document.getElementById('transferForm').addEventListener('submit',
function(e) {
    e.preventDefault();
    const assetId = document.getElementById('transferAssetId').value;
    const newOwner = document.getElementById('transferNewOwner').
value;
    contract.methods.transferAsset(assetId, newOwner)
    .send({ from: web3.currentProvider.selectedAddress })
    .then((result) => {
        document.getElementById('output').innerHTML = 'Asset
Transferred Successfully!';
    })
    .catch((error) => {
        document.getElementById('output').innerHTML = 'Asset Transfer
Failed!';
    });
});

And finally, the handler for ownership verification invokes the verifyOwner function on the contract:

document.getElementById('verifyForm').addEventListener('submit',
function(e) {
    e.preventDefault();
    const assetId = document.getElementById('verifyAssetId').value;
    contract.methods.verifyOwner(assetId).call()
    .then((result) => {
        document.getElementById('output').innerHTML = `The owner of
the asset is ${result}`;
    })
    .catch((error) => {
        console.error(error);
        document.getElementById('output').innerHTML = 'Failed to
Verify Owner!';
    });
});

In this section, we have created a smart contract that handles all the logic for issuing, transferring, and
verifying ownership of digital records. But smart contracts don’t run in isolation. We need a mechanism
for interacting with them and for storing data, either on the blockchain itself (on-chain), or in another
centralized digital storage facility (off-chain). This can be achieved by integrating additional cloud
services with the solution prepared so far, as we’ll see in the next section.

Creating Verifiable Digital Ownership on GCP320

Integrating verifiable digital ownership with other GCP
services
Managing digital assets in a decentralized manner generally involves storing data on the blockchain
and providing functionalities to interact with that data. Blockchain’s immutable nature ensures the
integrity and reliability of the data. In the context of Ethereum, this data management usually takes
place within smart contracts, which may be complemented by decentralized storage solutions such as
IPFS for handling large data or files. Let’s discover a few ways of storing and managing digital assets
in a decentralized manner.

On-chain storage using smart contracts

In Ethereum, the most straightforward way to manage digital assets is by storing all necessary information
within a smart contract. The following example extends the DigitalOwnership smart contract
to include additional attributes, such as metadata, for each digital asset. Metadata can be in any form,
for example, a JSON string or IPFS hash. The registerAsset function is extended to accept a
string memory _metadata input parameter. A new getAsset function is introduced in the
smart contract to retrieve the stored digital asset details:

contract DigitalOwnership {
    struct DigitalAsset {
        string name; // Name of the asset
        address owner; // Current owner of the asset
        string metadata; // Additional information
    }

    mapping(string => DigitalAsset) private assets;

    function registerAsset(string memory _assetId, string memory _
name, string memory _metadata) public {
        require(assets[_assetId].owner == address(0), "Asset already
exists");

        DigitalAsset memory newAsset = DigitalAsset(_name, msg.sender,
_metadata);
        assets[_assetId] = newAsset;
    }

    function getAsset(string memory _assetId) public view
returns(DigitalAsset memory) {
        return assets[_assetId];
    }
}

Deploying verifiable digital ownership on GCP 321

Off-chain storage with on-chain references

For managing larger datasets or files, a smart contract is no longer suitable for storage, due to
limitations in the blockchain itself and higher gas costs. At that point, we may opt for a decentralized
file storage system such as IPFS. With this approach, the smart contract stores a hash reference to the
data stored on IPFS.

Let’s introduce yet another function, called registerAssetWithIPFS, to our smart contract,
needed for registering a new digital asset with IPFS metadata:

function registerAssetWithIPFS(string memory _assetId, string memory
_name, string memory _ipfsHash) public {
    require(assets[_assetId].owner == address(0), "Asset already
exists");

    DigitalAsset memory newAsset = DigitalAsset(_name, msg.sender,
_ipfsHash);
    assets[_assetId] = newAsset;
}

We may also want to handle collections of assets for each user. The addUserAsset function
represents an example of using an array and mapping an asset to a specific user. Its counterpart,
getUserAssets, returns the entire collection of assets owned by the given user:

mapping(address => string[]) private userAssets;

function addUserAsset(string memory _assetId) internal {
    userAssets[msg.sender].push(_assetId);
}

function getUserAssets(address _owner) public view returns(string[]
memory) {
    return userAssets[_owner];
}

Both on-chain and off-chain techniques are perfectly viable, and both can be combined to create a
robust system for managing digital assets in a decentralized environment. This will allow a dapp to
handle both the metadata and actual content of digital assets while benefiting from the immutability
and security features of blockchain technology.

Deploying verifiable digital ownership on GCP
We’re at the final stage of our solution. Deploying a verifiable digital ownership solution on GCP
involves several steps. This comprehensive guide outlines how to set up the required components,
deploy the smart contract, and run the frontend application.

Creating Verifiable Digital Ownership on GCP322

As we have already deployed the cloud infrastructure in a previous step, we now focus on the deployment
of the smart contract:

1.	 Compile the Solidity smart contract, if not already done, with the solc command:

solc --bin --abi -o ./output/path/DigitalOwnership.sol

2.	 Deploy the compiled contract using web3.js in a Node.js script (let’s call it deploy.js) to
deploy the compiled contract. Make sure that the RPC port of the VM with the Ethereum node
is accessible, or use an SSH tunnel to route the request:

const Web3 = require('web3');
const web3 = new Web3(new Web3.providers.HttpProvider("https://
ethereum-node-address"));
const abi = [...];  // Contract ABI
const bytecode = "0x...";  // Compiled contract bytecode

const contract = new web3.eth.Contract(abi);
contract.deploy({
    data: bytecode
})
.send({
    from: 'your-ethereum-address',
    gas: 1500000
})
.then((newContractInstance) => {
    console.log(`Contract deployed at ${newContractInstance.
options.address}`);
});

3.	 Run the deployment script:

node deploy.js

4.	 Upload the frontend files to App Engine (as it’s static content, cloud storage would work too):

cd path/frontend
gcloud app deploy

5.	 Update the frontend JavaScript code to point to the deployed smart contract address and the
Ethereum RPC URL, as indicated previously.

Summary 323

Scripts for automation
To automate these steps, we can write shell scripts or use Infrastructure as Code (IaC) tools
such as Terraform to provision and configure resources on GCP. We could also use GCP’s
Deployment Manager to create templates for automating the entire setup.

That’s it! We’ve now deployed a verifiable digital ownership solution on GCP using blockchain
technology. Well done!

Summary
In this hands-on lab, we explored the fundamentals of creating verifiable digital proofs of ownership
of digital assets using blockchain technology on GCP. The lab is designed as an end-to-end tutorial,
offering guided steps and code samples that cover key aspects such as Ethereum node setup, smart
contract development, decentralized data management, and frontend application integration.

By completing this lab, we have gained a comprehensive understanding of how to build and deploy a
complete blockchain-based solution for verifiable digital ownership. This knowledge is invaluable for
anyone looking to implement secure, decentralized systems for asset management.

This chapter completes the three hands-on labs in the book. In the next and final chapter, we’ll draw
some conclusions from this journey, and make some assumptions on the future of cloud-native
blockchain solutions

Further reading
Google Cloud’s Ethereum blockchain toolkit: https://console.cloud.google.com/
marketplace/product/techlatest-public/ethereum-developer-kit

https://console.cloud.google.com/marketplace/product/techlatest-public/ethereum-developer-kit
https://console.cloud.google.com/marketplace/product/techlatest-public/ethereum-developer-kit

16
The Future of Cloud-Native

Blockchain

As we stand at the confluence of cloud computing and blockchain technology, the emergence of
cloud-native blockchain solutions offers a new frontier in scalable, secure, and easily deployable digital
infrastructure. Businesses and organizations are increasingly looking for agile and cost-effective methods
to deploy blockchain, and major cloud providers such as AWS, Azure, and GCP are stepping up to fulfill
this need. This chapter delves into the evolving landscape of cloud-native blockchain implementations,
focusing on the offerings and future directions within AWS, Azure, and GCP platforms.

The convergence of cloud and blockchain presents an unparalleled opportunity for enterprises. On
one hand, cloud platforms offer the advantages of high availability, scalability, and global reach. On
the other hand, blockchain technology promises unprecedented security and transparency, features
that are increasingly necessary in a digitized, interconnected world. But how do these technologies
evolve together within the ecosystems of the world’s leading cloud providers?

In the following sections, we will explore the current state-of-the-art solutions, scrutinize the unique
advantages and challenges posed by each cloud platform, and project future developments that could
further redefine the landscape of blockchain technology. Whether you are an enterprise decision-maker,
a blockchain developer, or a technology enthusiast, this chapter aims to provide you with insightful
perspectives on the rapidly evolving domain of cloud-native blockchain.

Why cloud-native blockchain?
Before diving into specifics, let me elucidate what cloud-native actually means in the context of
blockchain, why it’s an evolutionary step, and how it’s different from traditional blockchain deployments.
In a nutshell, cloud-native blockchain is about leveraging cloud-specific features such as microservices,
containers, serverless computing, and orchestration tools.

The Future of Cloud-Native Blockchain326

Cloud-native blockchain solutions are specifically designed to take advantage of the unique features and
benefits offered by cloud platforms. This allows them to achieve greater agility, scalability, and cost-efficiency
compared to traditional blockchain deployments. The following figure shows cloud-native architectures as
the intersection of four core pillars: containers, microservices, serverless, and automation:

Figure 16.1 – The core pillars of cloud-native architectures

In this book, we looked at cloud container platforms for the deployment of the microservice
infrastructure required to run blockchain solutions. Containers offer isolation and the portability of
services, ensuring secure and predictable execution. This allows for easy deployment across different
cloud environments and hybrid deployments. Containers are by their nature lightweight and start up
quickly, facilitating agile development and rapid scaling in response to changing demands.

Containers are also ideally placed to support microservices architectures, and this modular approach
also fits well with the decentralized and distributed characteristics of blockchain-based solutions.
Blockchain features can be broken down into independent, loosely coupled microservices, which
enable faster development, easier deployment, and improved scalability. Each microservice can be
scaled independently based on demand, optimizing resource utilization. Failure in one microservice
doesn’t affect the entire system. This enhances fault tolerance and ensures continuous operation.

Another significant cloud-native advantage is serverless computing that enables pay-per-use
models: Serverless means removing the need for dedicated servers, reducing infrastructure costs,
and eliminating management overhead. Blockchain functions can be triggered by events, optimizing
resource utilization and reducing operational complexity. Scalability is then obtained on demand:
Serverless status automatically scales resources up or down based on workload, ensuring the efficient
use of resources and cost savings.

Blockchain for good 327

The last pillar of cloud-native architectures is automated deployment and management: Tools such
as Kubernetes automate the deployment, scaling, and configuration of microservices and containers.
This simplifies managing complex blockchain deployments and ensures consistent operation.
High availability and fault tolerance are immediate benefits; orchestration tools can automatically
restart failed containers or deploy new instances, ensuring the high availability and resilience of the
blockchain network.

The cloud offers additional benefits, too:

•	 Cloud security: Cloud platforms offer robust security features and compliance certifications,
enhancing the overall security posture of blockchain solutions.

•	 Analytics and monitoring: Cloud tools provide centralized logging and monitoring capabilities,
facilitating a better understanding of blockchain network performance and identifying
potential issues.

•	 Global reach: Cloud providers offer geographically distributed data centers, enabling blockchain
solutions to be deployed and accessed from anywhere in the world.

In this book, we looked at the three major public cloud service providers, AWS, Azure, and GCP,
and offered an insight into how these three players support the development and deployment of
blockchain solutions and what additional cloud services can be leveraged to enhance the experience
of cloud-native decentralized apps.

Blockchain for good
In an era marked by global interconnectedness and technological innovation, the quest for improving
the human condition has taken on unprecedented dimensions. With each passing day, new challenges
arise, necessitating novel solutions that transcend traditional boundaries. In this pursuit, blockchain
technology has emerged as a revolutionary force with immense potential to reshape the landscape
of humanitarian efforts.

Originally conceptualized as the underlying technology supporting the cryptocurrency phenomenon,
blockchain has swiftly evolved into a versatile tool with applications that transcend the financial realm.
Its decentralized and immutable nature has captured the attention of visionaries, technologists, and
humanitarians alike, who recognize its power to foster transparency, accountability, and efficiency
in humanitarian endeavors.

At its core, humanitarian work is focused on addressing the needs of vulnerable populations, providing
aid during crises, and empowering communities to thrive. However, despite the noble intentions behind
these initiatives, traditional systems often grapple with challenges such as corruption, bureaucratic
inefficiencies, and difficulties in tracking the flow of resources. It is within this context that blockchain
technology offers a beacon of hope, promising a transformative shift towards a more equitable and
impactful approach to humanitarian aid.

The Future of Cloud-Native Blockchain328

The dynamic landscape of blockchain technology has a great potential application in the realm of
humanitarianism. From disaster response and refugee assistance to ensuring fair aid distribution and
fostering trust among stakeholders, blockchain’s unique attributes hold the promise of overcoming
long-standing obstacles in the humanitarian sector.

What are the fundamental principles that underpin blockchain technology? Which highlighted
features make it a game-changer for humanitarian purposes? Are there any real-world use cases where
blockchain has already made significant strides in improving the effectiveness and accountability of
humanitarian initiatives?

As we embark on this exploration of blockchain’s utilization for good humanitarian purposes, it is
crucial to maintain a balanced perspective, acknowledging both its transformative capabilities and
inherent limitations. While blockchain technology is not a panacea for all humanitarian challenges,
it undoubtedly represents an innovative approach that, when applied judiciously, can revolutionize
the way we deliver assistance and support to those most in need.

Ultimately, this section seeks to ignite a dialogue surrounding the fusion of cutting-edge technology and
compassionate altruism. By understanding how blockchain can serve as an enabler of positive change,
we aspire to inspire future generations of innovators, humanitarians, and policymakers to collaborate
toward a world where the full potential of technology is harnessed for the greater good of humanity.

Identity verification and protection

In the digital identity context, blockchain can offer a secure and reliable way of managing and verifying
identities, especially for refugees and displaced persons who may lack access to traditional forms of
ID. Projects such as ID2020 (https://www.id2020.org/) are exploring blockchain’s potential
to provide digital identities to the millions worldwide who are without them. Such initiatives can
significantly impact access to services, including banking, healthcare, and voting, ensuring inclusivity
and support for vulnerable populations.

Charitable donations and aid distribution

Blockchain technology can increase transparency and traceability in charitable donations, ensuring
that funds reach their intended destinations without diversion or corruption. Organizations such as
GiveTrack (https://www.givetrack.org/), a platform created by BitGive, use blockchain
to allow donors to trace their contributions in real time and see exactly how their money is being
used. Similarly, the World Food Program’s Building Blocks project (https://www.wfp.org/
building-blocks) uses blockchain to distribute cash assistance to those in need securely and
efficiently, reducing transaction costs and potential fraud.

https://www.id2020.org/
https://www.givetrack.org/
https://www.wfp.org/building-blocks
https://www.wfp.org/building-blocks

Role of cloud providers in shaping the future of cloud-native blockchain 329

The digital archiving and provenance of cultural artifacts

Blockchain can be employed to create immutable digital records of cultural artifacts, artworks, and
historical documents. This application not only helps prove the authenticity and ownership of such
items but also preserves the knowledge and context surrounding them, which might otherwise be
lost over time. By leveraging blockchain, applications can enable the verification of an item’s history
and provenance, enhancing transparency and trust in the art market. Moreover, they would allow
for the digital preservation of cultural heritage, making it accessible to future generations without
the risk of tampering or loss.

An example of this use case is the Ukrainian Heritage Hub (https://www.heritagehub.
org/). Amidst the challenges posed by ongoing conflicts, blockchain technology is being explored
as a means to document Ukrainian cultural artifacts, monuments, and historical sites securely and
immutably. The Heritage Hub aims to use blockchain for cataloging and preserving digital records
of cultural and historical significance. By creating a decentralized ledger of cultural items, these
initiatives ensure that even if physical artifacts are lost or destroyed, digital representations, complete
with historical data, provenance, and significance, are preserved for future generations.

Blockchain’s application in this area can involve creating detailed digital twins of artifacts, buildings,
or sites using 3D scanning technology, which are then recorded on the blockchain. This not only aids
in preservation efforts but can also assist in restoration and educational projects, allowing people
worldwide to access and learn about Ukrainian culture in an interactive and engaging manner.

Such efforts highlight the power of blockchain as a tool for cultural preservation, ensuring that the
richness of Ukraine’s heritage is maintained and accessible in the digital realm, regardless of the
challenges faced in the physical world.

Role of cloud providers in shaping the future of cloud-
native blockchain
The role of cloud service providers in shaping the future of cloud-native blockchain cannot be overstated.
These platforms are doing more than just hosting blockchain networks; they are actively contributing
to how businesses and organizations will interact with and utilize blockchain technologies for years
to come. We can think of at least six key benefits that cloud providers can bring to blockchain-based
applications, and we’re sure there are more. Each benefit is a slice of the big cake that cloud-native
represents, as in the next figure. None is larger or more important than the others; all contribute to
the success of the solution.

https://www.heritagehub.org/
https://www.heritagehub.org/

The Future of Cloud-Native Blockchain330

Figure 16.2 – Benefits to blockchain solutions by cloud providers

Let’s start with the standardization and simplification of blockchain services and protocols.

AWS, Azure, and GCP are in a unique position to standardize blockchain deployments. With a variety
of blockchain frameworks and protocols available, having a few influential players standardize the
technology can aid mass adoption. Through managed services such as Amazon Managed Blockchain,
Azure Confidential Ledger, or Hyperledger Fabric on GCP, these providers simplify the complex task
of setting up and maintaining a blockchain network.

The overall governance of a blockchain network is also simplified. Managing a consortium blockchain,
which is commonly used in enterprise settings, involves complex governance. Azure, for example,
provides built-in governance features to manage access and validation nodes in the network, as seen
in Part 3 of this book.

All cloud providers make it easy to integrate their blockchain services with other cloud services
for off-chain data storage, event messaging, data analytics, machine learning, and even IoT. The
integration of these services with blockchain applications is vital for creating more robust, scalable,
and versatile solutions, as we have seen with the Amazon Quantum Ledger Database in Chapter 6
and Google BigQuery in Chapter 12.

Accessibility also means the democratization of user-friendly interfaces. Amazon, Microsoft, and Google,
in their cloud offerings, are democratizing access to blockchain by offering easy-to-use interfaces for
setting up and managing blockchain networks. This reduces the entry barrier for businesses interested
in adopting blockchain but lacking the necessary expertise. These platforms also provide extensive
training resources, documentation, and community support. This helps in educating the workforce
and thus broadening the base of people capable of implementing blockchain solutions.

Challenges and opportunities for cloud-native blockchain 331

We have already mentioned global reach as an extra technical benefit of deploying a dapp in the
cloud. Global reach is more than just deployment in multiple geographic regions, though. Yes, this is
certainly a key benefit, as it immediately ensures that cloud-native blockchain solutions are viable on
a global scale and can comply with local regulations. Global reach is also about future-proofing the
technology by expanding your horizons, marketing, and talent outside of your local data center. For
example, all three cloud providers invest heavily in R&D, pushing the boundaries of what is possible
with blockchain technology. For instance, they are exploring issues such as scalability, interoperability,
and new consensus algorithms, shaping how cloud-native blockchain evolves.

They are continuously fostering innovation and the creation of new ecosystems through partner
networks: AWS, Azure, and GCP offer marketplaces where third-party vendors can offer blockchain
solutions, thereby nurturing an ecosystem of developers and business solutions. Especially in the case
of Azure and GCP, contributions to open source blockchain projects are encouraged and help evolve
the technology and build community trust.

In summary, AWS, Azure, and GCP are not just service providers; they are trendsetters in the
blockchain space. Their platforms act as both a testing ground for new ideas and a launchpad for
mature solutions, shaping the future of how businesses and organizations will leverage cloud-native
blockchain technology.

Challenges and opportunities for cloud-native blockchain
The journey towards the mass adoption of cloud-native blockchain technologies presents a mixed bag
of challenges and opportunities. The convergence of cloud computing and blockchain technologies
provides fertile ground for innovation, but there are key hurdles to overcome. The following figure
illustrates the most common challenges in the adoption of cloud-native blockchain at scale:

Figure 16.3 – Challenges in the adoption of cloud-native blockchain at scale

The Future of Cloud-Native Blockchain332

One of the significant challenges lies in the interoperability of different chains, that is, making various
blockchain protocols work seamlessly with each other and with existing systems. While cloud providers
such as AWS, Azure, and GCP are developing solutions, full interoperability remains an elusive goal.

Compliance is complex, as blockchain applications often deal with sensitive data, and navigating the
global landscape of data protection regulations is challenging. Cloud providers have to ensure their
blockchain services comply with laws such as GDPR, HIPAA, and others.

Probably the most common challenge in layer 1 blockchain networks is scalability. Traditional
blockchains struggle with scalability issues, and while cloud-native approaches promise improvements
and high-throughput, low-latency solutions are still under development.

This leads us to consider costs carefully. While cloud-native solutions offer scalability, they are not
necessarily cheaper, especially for smaller organizations. Understanding the total cost of ownership,
which includes not just cloud fees but also the costs of migration, management, and any necessary
modifications to the existing systems, is crucial.

Blockchain is generally secure, but integrating it into existing cloud infrastructures could create
potential vulnerabilities. Both the blockchain and cloud components have to be secure to ensure the
overall system’s security.

Lastly, we shouldn’t underestimate that blockchain technology is still in its emerging phase, with
quick changes happening regarding the complexity of setting up, maintaining, and effectively using
it productively. This requires specialized skills. Although cloud providers offer simplified solutions,
a skill gap remains.

Obviously, the opportunities for cloud-native blockchain solutions are equally important, and as we
hope the readers have appreciated in this book, the ease of deployment and management that clouds
offer are a competitive advantage over non-cloud-based approaches. The following figure illustrates
the most common opportunities for cloud-based solutions:

Figure 16.4 – Opportunities for cloud-native blockchain solutions

Challenges and opportunities for cloud-native blockchain 333

Cloud-native blockchain solutions are far easier to deploy and manage than traditional, on-premises
blockchain networks. Managed services offered by AWS, Azure, and GCP provide one-click solutions
to set up blockchain infrastructures, which could speed up adoption rates.

The cloud brings innovation at scale: cloud-native architecture enables scalable blockchain solutions.
Cloud providers’ global infrastructure allows blockchain networks to grow and contract dynamically
based on demand.

We also mentioned the opportunity to integrate blockchain applications with existing cloud services
such as AI, IoT, and data analytics that can result in powerful, versatile applications. This is especially
true in fields such as supply chain management, healthcare, and finance.

If data governance is a challenge, providing transparency on how data is used is an opportunity. By
implementing blockchain within cloud services, businesses can benefit from enhanced data governance
capabilities. Blockchain’s immutable ledger technology, combined with the cloud’s scalability, offers
unparalleled data tracking and auditing capabilities.

Global reach means regional compliance, too. Cloud providers have data centers worldwide, allowing
for the easy global deployment of blockchain networks that are also in compliance with local regulations.
This opens doors for multinational businesses and supply chains.

Global reach also has an impact on the development of global communities and partner ecosystems.
The growth of cloud-native blockchain technologies will likely be accompanied by an expanding
ecosystem of tools, libraries, and community contributions that make the technology more robust
and accessible.

Let’s take an example of how balancing these challenges and opportunities has the potential to
revolutionize various sectors: A connected and automated supply chain. The potential benefits of
implementing blockchain and IoT technologies in the manufacturing sector are no secret, especially
in enhancing the security and transparency of supply chains. For those unfamiliar with this area,
it’s important to note that traditional supply chain management often faces challenges in reliability,
measurement accuracy, and process transparency among all involved parties.

Blockchain and IoT technologies offer promising solutions to these issues. IoT devices can automate
metric collection at any point in the supply chain, while a decentralized digital ledger provides a secure
and unchangeable record of transactions. Furthermore, blockchain-based smart contracts can apply
rule-based logic to validate these data, ensuring each stage of the supply chain is updated and visible to
all parties in a trustworthy and clear manner. For instance, a smart contract can embed specific terms,
conditions, and logic to verify the proper transfer of goods between different supply chain phases.

The author worked on a blockchain solution for the supply chain of dairy products. A summary
of the experience is described in the Secure Your Supply Chain with the Azure IoT and Blockchain
Cloud article, available at https://learn.microsoft.com/en-us/archive/msdn-
magazine/2019/august/blockchain-secure-your-supply-chain-with-the-
azure-iot-and-blockchain-cloud.

https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/august/blockchain-secure-your-supply-chain-with-the-azure-iot-and-blockchain-cloud
https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/august/blockchain-secure-your-supply-chain-with-the-azure-iot-and-blockchain-cloud
https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/august/blockchain-secure-your-supply-chain-with-the-azure-iot-and-blockchain-cloud

The Future of Cloud-Native Blockchain334

Have a look at the following figure, which simplifies the distribution process in the supply chain.
Here, a food producer sends products to a food processing company for packaging and distribution.
The food items are packaged under specific conditions of temperature and humidity, and it’s crucial
that similar conditions are also maintained during their transportation to both the warehouse and
the retail outlet:

Figure 16.5 – IoT and blockchain-connected supply chain

In this setup, specific conditions are programmed into a blockchain smart contract, and IoT devices
equipped with temperature and humidity sensors are placed in containers and vehicles used for storing
and transporting the goods. These devices continuously record temperature and humidity data at
set intervals throughout the storage and distribution stages. The collected data are then compared
with the predefined standards in the smart contract. If the recorded temperature or humidity levels
breach these preset thresholds, the transportation status of the goods is updated to non-compliant
in the blockchain’s digital ledger. This change in status is logged and becomes visible to all supply
chain participants.

Moreover, each party responsible for storing or transporting the goods is required to designate the
next handler in the supply chain, updating this information in the system. The IoT devices continue
to send telemetry data to a central IoT hub. This process enables both the initiator and all participants
of the supply chain to pinpoint exactly which party failed to adhere to the compliance standards if the
temperature or humidity levels were not maintained at any point in the chain.

The moral of the story is that the involvement of major cloud service providers is likely to accelerate
the adoption of blockchain technology at scale, offering businesses more robust, scalable, and easy-
to-deploy blockchain solutions.

Final thoughts and predictions for the future of cloud-native blockchain 335

Final thoughts and predictions for the future of cloud-
native blockchain
As we look toward the horizon of cloud-native blockchain technology, the prospects are both promising
and complex. While the union of cloud computing and blockchain technology has laid the groundwork
for next-generation digital infrastructure, the path to realizing its full potential is fraught with both
technical and regulatory hurdles. However, with major cloud service providers such as AWS, Azure,
and GCP at the helm, the rate of innovation and solution deployment is accelerating.

The authors, reviewers, and the publisher of this book would like to thank the readers for sharing this
journey with us. We leave you with our final thoughts and predictions. Let us know yours!

Final thoughts

Our final thoughts are illustrated in the following figure:

Figure 16.6 – Final thoughts on blockchain opportunities

We have seen many bulleted lists in this book. We promise this is the last one:

•	 Convergence of technologies: The amalgamation of blockchain with other emerging technologies
such as AI, IoT, and edge computing, especially within cloud ecosystems, is likely to create
holistic solutions that are greater than the sum of their parts.

•	 Standardization: As the technology matures, expect more standardization, especially with
cloud giants driving the market. Standardized APIs, protocols, and governance models will
make adoption easier and more widespread.

The Future of Cloud-Native Blockchain336

•	 Decentralization vs. centralization: A key question for the future is how the decentralized
ethos of blockchain will mesh with somewhat centralized cloud services. This duality could
define new hybrid architectures that capture the best of both worlds.

•	 Democratization of blockchain: Cloud-native architectures and managed services will likely
democratize access to blockchain technology, making it accessible to businesses and developers
of all sizes and scopes.

•	 Industry-specific adaptations: As the technology matures, it is likely to branch into industry-
specific solutions tailored to meet the regulatory and operational needs of sectors such as
healthcare, finance, and logistics.

Predictions

Now, let’s open our crystal ball. It’d be interesting to read this section in 1, 3, and 5 years from now
and see how many of these predictions were actually true! The following last colorful figure shows
them all in a single image:

Figure 16.7 – Predictions for the future of blockchain technology

Did we say our final thoughts were our last list?

•	 Interoperability: Efforts towards achieving full interoperability between various blockchain
protocols and existing systems will likely intensify, perhaps even resulting in industry-standard
protocols that enable seamless communication between different blockchain networks.

•	 Store of value: The potential evolution of Bitcoin from a store of value to a platform supporting
Decentralized Finance (DeFi) applications through the integration of Layer 2 solutions.
Layer 2 protocols, such as Stacks, could enable Bitcoin to support smart contracts and DeFi
functionalities, thus broadening its use cases beyond just being a digital currency.

•	 Scalable consensus algorithms: The need for more scalable blockchain networks will drive the
development of new consensus algorithms that can handle higher transaction volumes while
maintaining security and decentralization.

•	 Regulatory clarity: As blockchain becomes more mainstream, we can expect clearer regulatory
guidelines that will help businesses navigate compliance more easily.

Summary 337

•	 Data privacy and sovereignty: Given global concerns about data privacy, we might see new
blockchain-based data sovereignty solutions that allow individuals and entities to own and
control their data while still benefiting from cloud-based analytics and machine learning tools.

•	 Sustainable blockchain: With growing awareness of the environmental impact of blockchain
technologies such as Bitcoin, future cloud-native blockchain solutions will likely focus on
sustainability, possibly utilizing greener consensus algorithms or carbon offset programs.

In conclusion, the union of blockchain and cloud computing heralds a paradigm shift in how we
think about digital transactions, data governance, and computational trust. While the journey ahead
is complex, the rewards—ranging from enhanced transparency and security to global and scalable
digital ecosystems—are incredibly promising. The role of major cloud service providers in shaping this
future is undeniably central, as they act as both catalysts and gatekeepers in this evolving landscape.

What we’re observing is that the current rise of blockchain projects resembles the dot-com boom in
the late 1990s, with a surge in new companies of varying viability. Like the dot-com era, only a few
blockchain endeavors may persist and significantly impact the industry, highlighting the importance
of strong fundamentals, innovation, and practicality for long-term success.

Summary
This final chapter delved into the intricacies and possibilities of cloud-native blockchain, particularly
focusing on the roles and offerings of the major cloud service providers AWS, Azure, and GCP. Starting
with an exploration of what cloud-native means within the blockchain context, the chapter discussed
how these giants of cloud computing are standardizing, simplifying, and democratizing blockchain
technologies. It also touched on the challenges that lie ahead, such as interoperability, scalability, and
regulatory compliance, while highlighting the immense opportunities for innovation, integration,
and global reach. Finally, the chapter closed with thoughtful predictions for the future of cloud-native
blockchain, including its convergence with other technologies, regulatory clarity, and evolution into
industry-specific solutions.

Stay in touch! The journey is not over with this book; it’s actually just the beginning
of it. There are many ways you can deepen your understanding of blockchain

technology, starting with additional books, videos, courses, and conferences by
Packt. Read more about all these opportunities at https://www.packtpub.com/.

As we stand at the intersection of cloud and blockchain, let’s remember that every
intersection is not just a point of meeting but a point of transformation. It’s not

merely where two paths cross; it’s where they blend to forge a trail that didn’t exist
before. And it’s up to us to navigate and shape that new trail toward a future filled

with promise and possibility.

Immensely grateful,

Stefano and Michael.

Index

A
access control and identity management 27
Access Control List (ACL) 137, 287
ACL integration, with Azure services 200

Azure Entra ID 200
Azure Event Grid 200
Azure Functions 200
Azure Key Vault 200
Azure Logic Apps 200
Azure Monitor and Log Analytics 200
Azure Storage services 200

Advanced Encryption Standard (AES) 26
AKS cluster

access control, managing 161-164
deploying, with appropriate Corda

configuration 159, 160
failover tests, performing 170, 171
securing 161-164

AKS cluster, provisioning for Corda 156
prerequisites, preparing 157-159

AKS configuration, integrating for Corda
with additional Azure services 152

cost optimization 156
high availability 152-154
monitoring and logging 155
scalability 154

security and compliance 155
storage 154

Amazon CloudWatch 113
Amazon EC2 33

central features, for blockchain
deployment 33

setting up 281-283
Amazon Elastic Kubernetes

Service (EKS) 33, 93, 94
central features, for blockchain

deployment 33
Amazon Machine Image (AMI) 108, 282
Amazon Managed Blockchain

(AMB) 32, 42, 64, 69, 70
benefits 71
blockchain framework 72
features 32, 70, 71
managed blockchain network,

creating 74-76
member access and permissions,

managing 78
members, inviting to network 77
monitoring considerations 85
node health, monitoring 80-84
nodes, adding 79
nodes, removing 80

Index340

scalability considerations 85
security considerations 84

Amazon Quantum Ledger Database
(QLDB) 32, 42, 115

architecture 116, 117
components 116, 117
cryptographic features 133, 134
data history, managing 131
data modeling 123
data, querying 131
document, creating 127, 128
documents, referencing and

embedding 128-130
features 115, 116
for blockchain applications 117, 118
indexing 129
journal 140
key aspects 32
use cases, for blockchain 118, 119
versioning 130

Amazon Quantum Ledger Database
(QLDB), considerations

for monitoring 136, 140, 141
for scalability 136, 138, 139
for security 136, 137

Amazon RDS
setting up 284, 286

Amazon S3
setting up 286, 287

Amazon Virtual Private Cloud (VPC) 85
Amazon Web Services (AWS) 31, 93, 115
Anti-Money Laundering (AML) 148
Apache Mesos 14
API Gateway 281
Application Binary Interface

(ABI) 242, 290, 315
Application Programming

Interfaces (APIs) 148

automated deployment and
management 327

auto-scaling 17
Availability Zones (AZ) 98
AWS account 93
AWS backup 99
AWS blockchain services 32, 40
AWS Certificate Manager (ACM) 109
AWS CloudFormation 15, 59
AWS CloudTrail 85
AWS Command-Line Interface

(CLI) 100, 121
AWS Identity and Access

Management (IAM) 71, 116
AWS Key Management Service

(KMS) 71, 109, 121
AWS Lambda 281
AWS Management Console 100
AWS Marketplace templates 33

features and capabilities 33
AWS Software Development

Kits (SDKs) 121
AWS Virtual Private Cloud (VPC) 117
AWS WAF and Shield 281
Azure

blockchain consortium, creating on 300
blockchain network, setting up on 299
decentralized voting application,

developing on 296
Azure Active Directory (Azure AD) 150, 202
Azure Analysis Services

integration, with ledger features
of Azure SQL 187

Azure API Management
integration, with ledger features

of Azure SQL 187
Azure Application Gateway 169
Azure blockchain services 34, 40

Index 341

Azure Command-Line Interface (CLI) 299
Azure Confidential Ledger

(ACL) 36, 191-193
attributes 36
benefits 196
client-server representation 194
connecting to 198-200
data, sending to 198-200
features 194-197
use cases 195
using, for blockchain solutions 197, 198

Azure Container Registry (ACR) 158
Azure Data Factory

integration, with ledger features
of Azure SQL 187

Azure Entra ID 192, 200
Azure Event Grid 200

integration, with ledger features
of Azure SQL 187

Azure Functions 200
integration, with ledger features

of Azure SQL 186
Azure Key Vault 193, 200

ACL integration 201
Azure Kubernetes Service

(AKS) 36, 145, 148
benefits 149, 150
Corda nodes, managing on 164
features 36

Azure Load Balancer 169
Azure Logic Apps 200

integration, with ledger features
of Azure SQL 187

Azure Machine Learning
integration, with ledger features

of Azure SQL 187

Azure Managed Confidential Consortium
Framework (CFF) 35

features and capabilities 35
Azure Monitor 200
Azure partner solutions 37

features and capabilities 37
Azure Private Link 193
Azure Resource Manager 15
Azure Resource Manager

(ARM) templates 59
Azure SQL Database 174

benefits of ledger features, in
blockchain applications 175

blockchain solutions, implementing
with ledger features of 188-190

ledger, creating 177
ledger features 174
performance and scalability 181
security and integrity 178
use cases, for SQL Ledger 176, 177

Azure SQL Ledger 175
Azure Storage 200
Azure subscription 192

setting up 157
Azure Virtual Networks (VNets) 150

B
Besu 216
BigQuery 255, 256

billing alert 261
features 256, 257
features and benefits, for on-chain

data analysis 260, 261
on-chain data, analyzing with 267-269
on-chain data, importing into 261-263
on-chain data, visualizing with 271, 272

Index342

transaction patterns, analyzing 267, 268
value of Bitcoin, predicting with

machine learning 269, 270
BigQuery Data Editor 262
BigQuery Job User 262
BigQuery setup, in GCP 257

BigQuery API, enabling 257
BigQuery SQL workspace, opening 258
data, loading into table 259
dataset, creating 259
table, creating 259

Bitcoin 11
querying 265, 266

Bitcoin Lightning Network
URL 12

blockchain 3, 4, 327, 328
charitable donations and aid

distribution 328
consortium blockchain 6
digital archiving and provenance,

of cultural artifacts 329
identity verification and protection 328
interoperability 12
privacy 13
private blockchain 5
public blockchain 5
scalability 12

blockchain-agnostic platforms 13
blockchain consortium

creating, on Azure 300
blockchain data security 42
blockchain framework, AMB

Ethereum 72, 73
Hyperledger Fabric 72, 73

Blockchain Insurance Industry
Initiative (B3i) 6

blockchain network
Amazon EC2, setting up 281-283

Amazon RDS, setting up 284-286
Amazon S3, setting up 286, 287
Ethereum, setting up 287-289
setting up, on AWS 281
setting up, on Azure 299
setting up, on GCP 309, 310

blockchain node
dapp, building for interaction 243-245

Blockchain Node Engine
(BNE) 235-238, 311

benefits 238
best practices, for implementing

blockchain solutions 252, 253
Cloud Firestore, integrating with 250, 251
features 238
integration, with other GCP services 246
off-chain data storage 247-250
reduced operational complexity 239
robust security 239
using, for blockchain solutions 240-243

blockchain scalability
reference link 49

blockchain services, AWS 32, 40
Amazon EC2 33
Amazon Elastic Kubernetes

Service (EKS) 33
Amazon Managed Blockchain 32
Amazon QLDB 32
AWS Marketplace templates 33

blockchain services, Azure 34, 40
Azure Confidential Ledger 36
Azure Kubernetes Service (AKS) 36
Azure Managed Confidential

Consortium Framework (CFF) 35
Azure partner solutions 37
Microsoft Entra Verified ID 34

blockchain services, GCP 37, 40
GCP Blockchain Node Engine 38

Index 343

GCP Compute Engine 38
GCP Kubernetes Engine 38
GCP Marketplace templates 38, 39
GCP partner solutions 39

blockchain solutions
ACL, using for 197, 198
implementation best practices,

with ACL 202, 203
Blockpress 57, 59
Building Blocks project

reference link 328

C
Caliper 113
Certificate Authority (CA) 165
Chainlink 28

URL 28
CI/CD for blockchain solutions 50, 51

Blockpress 57
DAppChain 57
Embark 57
GitHub Actions 56
GitLab CI/CD 56
Hardhat Network 56
Jenkins 56
smart contract design 51, 52
smart contract testing 53, 54
test data generation 54, 56
Travis CI 56
Truffle Suite 56

cloud blockchain services
data security offerings, comparing 42, 43
strengths and weaknesses, comparing 40, 41

Cloud Firestore
integrating, with BNE 250, 251

cloud-native blockchain
benefits 327

benefits, from cloud providers 329-331
challenges 331, 332
cost-effectiveness 17
final thoughts 335, 336
need for 325-327
opportunities 332-334
predictions 336, 337
scalability 16
security 17

cloud-native blockchain implementation,
considerations

cost optimization 28
interoperability and integration 27
right blockchain framework, selecting 19, 20
scalability and performance 20
security and privacy 26

cloud-native blockchain solutions,
limitations and trade-offs 18

data governance 18
network latency 18
vendor lock-in 18

cloud-native technology 13, 14
CI/CD 15
containerization 14
IaC 15
microservices 14
orchestration 14

CloudWatch 281
components, Amazon QLDB

cryptographic hashing 117
document 116
journal 116
ledger 116
PartiQL 117

components, Hyperledger Fabric
chaincode 94
channels 95
Membership Service Provider (MSP) 95

Index344

ordering service 94
peer nodes 94

composite indexes 130
Compute Engine

Ethereum blockchain network,
setting up 208-212

confidential computing 193
Confidential Ledger

versus SQL Ledger 36
confidential transactions 13
consensus mechanisms 7
consensus models

Delegated Proof of Stake (DPoS) 8
Practical Byzantine Fault

Tolerance (PBFT) 8
Proof of Stake (PoS) 8
Proof of Work (PoW) 7

consortium blockchain 6, 13
consortium blockchain platforms

Blockchain Insurance Industry
Initiative (B3i) 6

Energy Web Foundation (EWF) 6
we.trade 6

Constellation Network 59
containerd 14
containerization 14
Container Network Interface

(CNI) plugin 108
container platforms 326
Content Delivery Networks (CDNs) 18
Continuous Delivery (CD) 47
Continuous Integration and Continuous

Delivery (CI/CD) 14, 15
Continuous Integration (CI) 47
Continuous Integration/Continuous

Deployment (CI/CD) 46, 216

conventional programming
versus smart contract 9, 10

Corda 20, 146
AKS cluster, provisioning for 156
features 20

Corda Distributed Applications
(CorDapps) 146, 148

Corda DLT
features 146-148

Corda Enterprise
features 161
in Azure Marketplace 160, 161

Corda networks, on AKS
architecting 150
design considerations 150-152
high availability and disaster

recovery, ensuring 168-170
resilience, testing and validating 166-168

Corda nodes
managing, on AKS 164
scaling, as Kubernetes pods 164-166

Corda Shell 165
Cosmos Network 28

URL 28
cost-effectiveness, cloud-native

blockchain solutions 17
cost optimization, cloud-native

blockchain implementation 28
cross-chain bridges 13
cryptocurrencies 11
cryptographic features, QLDB

cryptographic hashing 133
immutable transaction log 133
Merkle trees 134

cryptographic hashing 117

Index 345

cryptographic techniques, decentralized
voting application

data integrity 297
system robustness 298, 299
voter privacy 297, 298

cryptography 4

D
DAppChain 57, 59
database ledger

versus table ledger 177, 178
data encryption 26
data governance 18
Data Manipulation Language (DML) 180
data modeling, QLDB 123

best practices 126, 127
data model, for blockchain supply

chain application 125, 126
pitfalls, to avoid 124, 125

data querying, QLDB 131
CRUD operations 132
data verification 133, 134
queries, executing programmatically 133
query access patterns 135, 136

decentralized application for tracking
products, on supply chain

building 86
chaincode 87, 88
deployment 89, 90
network setup 86, 87
reference architecture 86

decentralized applications (dapps) 5, 11, 72
building, for interaction with

blockchain node 243-245
Decentralized Autonomous

Organizations (DAOs) 11

decentralized cloud-native app
data integrity 279
scalability 279
security 279
transparency 279
user experience 279

Decentralized Finance (DeFi) 11, 73, 336
Decentralized Identifiers (DIDs) 35
decentralized marketplace

building, on AWS 279
deploying, on AWS 291-293
hosting infrastructure 281
security and monitoring 281
solution architecture 280

decentralized marketplace application
creating 289-291

decentralized voting application
developing, on Azure 296
future trends 305, 306

Delegated Proof of Stake (DPoS) 8
denormalization 123
DevOps 47

benefits, in cloud-native
blockchain solution 48

best practices, in cloud-native
blockchain solutions 65, 66

blockchain challenge 46
Continuous Delivery (CD) 47
Continuous Integration (CI) 47
for cloud-native blockchain solutions 45-50
IaC 48
monitoring and logging 48

digital ownership 307
digital signatures 297, 313
distributed ledger 3
Distributed Ledger Technology (DLT) 4, 145
Docker 14
Docker Swarm 14

Index346

document 116
creating, in QLDB 127, 128
embedding and referencing,

in QLDB 128, 129
document design 123

E
EKS cluster

creating, to host Hyperledger
Fabric blockchain 100, 101

eksctl 100
Elastic Block Store (EBS) 99
Elastic File System (EFS) 99
Elastic Kubernetes Service (EKS) 93
Elastic Load Balancing (ELB) 99
Elasticsearch, Logstash, and

Kibana (ELK stack) 64
Elliptic Curve Digital Signature

Algorithm (ECDSA) 313
Embark 57, 59
encryption 5
Energy Web Foundation (EWF) 6

URL 6
enode URLs 219
Ether 11
Ethereum 19, 70, 278

features 19
querying 263-265
setting up 287-289
versus Hyperledger Fabric 72, 73

Ethereum account
creating 230
importing 230

Ethereum blockchain network 280
genesis file, configuring 217
nodes, configuring 216-222
nodes, connecting 219

RPC and Web3 API settings 220
setting up, on Compute Engine 208-212
setting up, on GKE 212-216

Ethereum client software
installing 216

Ethereum data directory
creating 218

EthereumJS 216
Ethereum network, on GKE

auto-scaling 223, 225
backup and disaster recovery 224
compliance and regulation 224
Ethereum accounts and wallets,

managing 224, 229-231
gas price management 224, 228, 229
governance and consensus changes 225
guidelines, for business continuity 232
guidelines, for monitoring 232
guidelines, for security practices 233
load balancing 226
load balancing and network

traffic management 224
maintaining 231-233
managing 222
monitoring and alerting mechanisms,

implementing 223
network and consensus configuration 224
node upgrades and maintenance 224
peer tracking 224
security hardening 224
shutdown and recovery 224
transactions and smart contract

execution, monitoring 224
troubleshooting 231-233

Ethereum Virtual Machine (EVM) 72
ethers.js 315

Index 347

Express
URL 243

Extract, Transform, and Load (ETL) 187

F
fine-grained access control 147
Finite State Machine 88
Food Trust Network 106
Food Trust Network case study, by IBM

URL 106
formal verification 54
fungible tokens 11

G
GCP Blockchain Node Engine 38

features and capabilities 38
GCP blockchain services 37, 40
GCP Compute Engine 38

features and capabilities 38
GCP Kubernetes Engine 38

features and capabilities 38
GCP Marketplace templates 38

features and capabilities 39
GCP partner solutions 39
GitHub Actions 56
GitLab CI 216
GitLab CI/CD 56
GiveTrack

URL 328
Go Ethereum (Geth) 216, 288, 311

client 228
deployment, modifying 221

Google Cloud Build 216
Google Cloud Deployment Manager 15, 59

Google Cloud Platform
(GCP) 31, 59, 255, 307

blockchain network, setting up on 309, 310
verifiable digital ownership,

deploying on 321
Google Cloud Storage (GCS) 259
Google Kubernetes Engine (GKE) 311

Ethereum blockchain network,
setting up 212-216

Grafana 63, 215, 222

H
hard fork 54
Hardhat 56

setting up, for automating deployment
of smart contracts 57, 58

Hardware Security Modules (HSMs) 26, 252
high availability, Hyperledger Fabric 106
homomorphic encryption 297
Horizontal Pod Autoscaler (HPA) 96, 225

configuration, applying 226
configuring 225

Horizontal Pod Autoscaling (HPA) 156
Hyperledger Fabric 5, 19, 70, 93, 94

components 94
features 19, 95
high availability 106
scalability 106, 107
security 105
versus Ethereum 72, 73

Hyperledger Fabric blockchain
hosting, by creating EKS cluster 100, 101

Hyperledger Fabric blockchain network,
deploying on EKS 101

challenges 104, 105
Fabric components 103

Index348

Persistent Storage 101, 102
testing and troubleshooting 112, 113

Hyperledger Fabric Composer 59
Hyperledger Fabric network,

hosting on EKS 105
enterprise deployments 105
high availability 109, 110
scaling 111
security 107

Hyperledger Fabric, with EKS
container orchestration 97, 98
dynamic scalability 95, 96
resilience and high availability 98, 99

I
IaC tools, for blockchain

infrastructure management
AWS CloudFormation 59
Azure Resource Manager

(ARM) templates 59
Blockpress 59
Constellation Network 59
DAppChain 59
Embark 59
Google Cloud Deployment Manager 59
Hyperledger Fabric Composer 59
Terraform 59

IAM configuration 93
IAM Roles for Service Accounts (IRSAs) 108
Identity and Access Management (IAM) 281
identity management 50
indexing, in QLDB 129, 130, 138
index management 138
industries and specific success

case studies, Corda
reference link 146

Infrastructure as Code
(IaC) 14, 15, 48, 58, 323

benefits 58, 59
implementing, for blockchain

solutions 60-63
tools 152, 287

Ingress controller 169
integration testing 53
Interledger Protocol (ILP) 13
Internet Gateway 94
interoperability and integration, cloud-

native blockchain implementation
API and SDK support 28
blockchain network interoperability 28

InterPlanetary File System (IPFS) 310

J
Jenkins 56, 216
journal 116

K
Key Performance Indicators (KPIs) 64
Know Your Customer (KYC) 148
kubectl 101, 102, 111
Kubernetes 14, 93
Kubernetes Metrics Server

enabling 225
Kubernetes pods

Corda nodes, scaling as 164-166
Kubernetes secrets 107, 165
Kubernetes service

creating 226

Index 349

L
Layer 2 blockchain networks 20
Layer 2 solutions 12

plasma chain 21-24
rollups 21, 24
state channels 21, 22

ledger 116
creating, in Azure SQL Database 177

ledger features of Azure SQL, for
blockchain solutions 183

asset ownership transfer 186
certificate issuance and verification 185
supply chain traceability 183-185

ledger features of Azure SQL,
integration scenarios

Azure Analysis Services 187
Azure API Management 187
Azure Data Factory 187
Azure Event Grid 187
Azure Functions 186
Azure Logic Apps 187
Azure Machine Learning 187
Power BI 187

life cycle of chaincode, in Hyperledger Fabric
reference link 49

load balancer 226
Ethereum nodes, accessing via 227

load balancing and traffic management 110
load testing 166
Log Analytics 200

M
mainnet 219
Merkle trees 134
MetaMask 280
Metrics Server 156

microservices 14, 326
Microsoft Entra Verified ID 34

features and capabilities 35
monitoring and logging 48

for blockchain solutions 62
implementing, for blockchain

solutions 64, 65
monitoring and logging tools,

blockchain solutions
Elasticsearch, Logstash, and

Kibana (ELK stack) 64
Grafana 63
native logging solutions 63
Prometheus 63

Multichain 6
multi-factor authentication (MFA) 27
multi-signature (multisig) functionality 314

N
native logging solutions 63
Nethermind 216
network latency 18
network policies 107
Network Security Groups (NSGs) 155
new consensus algorithms 12
Node.js 280
nodes

configuring, in Ethereum blockchain
network 216-222

Non-Fungible Tokens (NFTs) 11, 72, 307

O
off-chain storage solutions 20
on-chain data

analyzing, with BigQuery 267-269

Index350

importing, into BigQuery 261-263
visualizing, with BigQuery 271, 272

Optimistic Concurrency Control
(OCC) model 139

optimistic rollups 24, 25
orchestration 14

P
PartiQL 117
performance and scalability, Azure

SQL Database 181
indexing 182
partitioning 182, 183

Persistent Volume Claims (PVCs) 101
Persistent Volumes (PVs) 101
Personal Identification Numbers (PINs) 195
Personally Identifiable Information

(PII) 131, 198
Plasma Cash 22
plasma chain 21-24
Platform as a Service (PaaS) 161, 197
Pod Disruption Budget (PDB) 110
Polkadot 28

URL 28
Polygon

URL 12
Power BI

integration, with ledger features
of Azure SQL 187

Practical Byzantine Fault
Tolerance (PBFT) 8

private blockchain 13
private blockchain platforms

Hyperledger Fabric 5
Multichain 6
Quorum 6

R3 Corda 5
Ripple 6

private blockchains 5
Prometheus 63, 215, 222
Proof of Authority (Pota) 72
Proof of Stake (PoS) 8, 46
Proof of Work (PoW) 5, 7, 46
public blockchains 5

Q
QLDB instance, creating 119

AWS Command-Line Interface,
using 121, 122

AWS SDK for Python, using 122
ledger, creating from AWS

Management Console 120, 121
troubleshooting 120

Quorum 6

R
R3 Corda 5
React 289
Ripple 6
Role-Based Access Control

(RBAC) 27, 105, 107, 150, 189
rollups 21, 24

optimistic rollups 24, 25
ZK rollups 25, 26

S
sandboxing 17
scalability and performance, cloud-native

blockchain implementation
Layer 2 solutions 21-26
off-chain storage 20

Index 351

scalability, cloud-native blockchain
solutions 16

auto-scaling 17
scalability, Hyperledger Fabric 106, 107
security and integrity, Azure

SQL Database 178
data, reading from ledger 180, 181
ledger, enabling on table 179, 180

security and privacy, cloud-native
blockchain implementation

access control and identity management 27
data encryption 26
smart contract security 27

security by design 50
security, cloud-native blockchain solutions

built-in security features and compliance 17
isolation 17
sandboxing 17

security, Hyperledger Fabric 105
security onion 107, 108

cluster-level security 108
data security 109
Hyperledger Fabric security 109
network security 108
node security 108

serverless computing 326
sharding 12
single sign-on (SSO) 27
smart contracts 9, 27, 280, 309

security best practices 27
versus conventional programming 9, 10

soft fork 54
Software Guard Extensions (SGX) 196
Sovrin 27

URL 27
SQL Ledger

versus Confidential Ledger 36

SQL Server Management Studio (SSMS) 177
Stack Overflow 209
standard persistent disk 209
state channels 21, 22
Storage Object Viewer 262
strategic indexing 123, 138
supply chain management system 49

T
table ledger

versus database ledger 177, 178
Terraform 15, 59, 323
tokenization 11
tokens 11

fungible tokens 11
Non-Fungible Tokens (NFTs) 11

Total Cost of Ownership (TCO) 14
TradeLens 106
traditional cloud computing, versus

cloud-native technology
architecture 15
development practices 16
infrastructure management 16

Transactions Per Second (TPS) 49
Transact-SQL (T-SQL) 176
Transport Layer Security

(TLS) 26, 84, 109, 155
Travis CI 56
Truffle

used, for compiling and migrating
smart contract 301

Truffle Suite 56
reference link 56

Trusted Execution Environments
(TEEs) 35, 193

Index352

U
Ukrainian Heritage Hub

URL 329
unit testing 53
uPort 27

URL 27

V
vanilla JavaScript 316
vendor lock-in 18
verifiable digital ownership 308, 309

deploying, on GCP 321, 322
frontend 315-319
interacting, with GCP services 320
multi-signature verification 314
off-chain checks 315
off-chain storage, with on-chain

references 321
on-chain storage, with smart contracts 320
ownership verification, through

digital signatures 313
smart contract deployment 314, 315

verifiable digital ownership records
creating 311-313

versioning, in QLDB 130
Virtual Machines (VMs) 15
Virtual Private Cloud (VPC) 94
VM instance 209
voting application frontend

application, running 305
Blazor component, creating for voting 304
developing 302
future trends, in decentralized

voting systems 305, 306
interaction, with smart contract 302, 303
necessary packages, installing 302

voting smart contract
compiling and migrating, with Truffle 301
creating 300, 301

W
web3.js 228, 280, 289, 315

installing 229
web interface 280
we.trade 6, 105
we.trade case study, by IBM

URL 106
Wrapped Bitcoin (WBTC) token 13

X
XOR encryption algorithm 202

Z
Zero-Knowledge Proofs (ZKPs) 13, 297
Zero Knowledge (ZK) rollups 24-26
zk-SNARKs 297

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Containers for Developers Handbook

Francisco Javier Ramírez Urea

ISBN: 978-1-80512-798-7

•	 Find out how to build microservices-based applications using containers

•	 Deploy your processes within containers using Docker features

•	 Orchestrate multi-component applications on standalone servers

•	 Deploy applications cluster-wide in container orchestrators

•	 Solve common deployment problems such as persistency or app exposure using best practices

•	 Review your application’s health and debug it using open-source tools

•	 Discover how to orchestrate CI/CD workflows using containers

https://packt.link/1805127985

355Other Books You May Enjoy

The Self-Taught Cloud Computing Engineer

Dr. Logan Song

ISBN: 978-1-80512-370-5

•	 Develop the core skills needed to work with cloud computing platforms such as AWS, Azure,
and GCP

•	 Gain proficiency in compute, storage, and networking services across multi-cloud and hybrid-
cloud environments

•	 Integrate cloud databases, big data, and machine learning services in multi-cloud environments

•	 Design and develop data pipelines, encompassing data ingestion, storage, processing, and
visualization in the clouds

•	 Implement machine learning pipelines in a multi-cloud environment

•	 Secure cloud infrastructure ecosystems with advanced cloud security services

https://packt.link/180512370X

356

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Developing Blockchain Solutions in the Cloud, we’d love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site that
you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1837630178
https://packt.link/r/1837630178

357

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837630172

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837630172

	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1:
Introduction to
Cloud-Native Blockchain
	Chapter 1: Understanding Cloud-Native and Blockchain
	Blockchain basics – Distributed ledgers and cryptography
	Types of blockchain
	Consensus mechanisms – Ensuring trust and security
	Smart contracts – Programmable logic on the blockchain
	dapps – Building on the blockchain
	Tokenization – Creating digital assets on the blockchain
	Scalability, interoperability, and privacy – Key challenges and innovations in blockchain

	Introduction to cloud-native technology
	Defining cloud-native technology
	Key principles of cloud-native technology
	Comparing traditional cloud computing and cloud-native technology

	Benefits and limitations of cloud-native blockchain
	Scalability – Adapting to changing workloads
	Security – Protecting data and infrastructure
	Cost-effectiveness – Optimizing resource utilization
	Limitations and trade-offs of cloud-native blockchain solutions

	Key considerations for cloud-native blockchain implementation
	Choosing the right blockchain framework
	Scalability and performance
	Security and privacy
	Interoperability and integration
	Cost optimization

	Summary

	Chapter 2: Overview of AWS, Azure, and GCP Services for Blockchain
	AWS blockchain services
	Amazon Managed Blockchain
	Amazon QLDB
	Amazon EC2 and Amazon Elastic Kubernetes Service (EKS)
	AWS Marketplace templates

	Azure blockchain services
	Microsoft Entra Verified ID
	Azure Managed Confidential Consortium Framework (CFF)
	Azure Confidential Ledger
	Azure Kubernetes Service (AKS)
	Azure partner solutions

	GCP blockchain services
	GCP Blockchain Node Engine
	GCP Compute Engine and Kubernetes Engine
	GCP Marketplace templates
	GCP partner solutions

	Comparing AWS, Azure, and GCP blockchain services
	AWS
	Azure
	GCP
	Strengths and weaknesses
	Blockchain data security

	Summary
	Further reading

	Chapter 3: DevOps for Cloud-Native Blockchain Solutions
	Introduction to DevOps for cloud-native blockchain solutions
	The blockchain challenge for DevOps
	DevOps – Definition and core principles
	The role of DevOps in cloud-native blockchain solutions
	Benefits of using DevOps in cloud-native blockchain solutions

	CI/CD for blockchain solutions
	CI and CD
	Smart contract design
	Smart contract testing
	Test data generation
	CI/CD tools

	IaC for blockchain solutions
	IaC – Definition and benefits
	Popular IaC tools for blockchain infrastructure management
	Implementing IaC for blockchain solutions

	Monitoring and logging for blockchain solutions
	Importance of monitoring and logging for blockchain solutions
	Popular monitoring and logging tools for blockchain solutions
	Implementing monitoring and logging for blockchain solutions

	Best practices for DevOps in cloud-native blockchain solutions
	Summary

	Part 2:
Deploying and Implementing Blockchain Solutions on AWS
	Chapter 4: Getting Started with Amazon Managed Blockchain
	Technical requirements
	Introduction to AMB
	Features of AMB
	Benefits of AMB
	Choosing a blockchain framework

	Creating a managed blockchain network
	Inviting members and managing access
	Inviting members to the network
	Managing member access and permissions

	Deploying and managing nodes
	Adding a new node
	Removing a node
	Monitoring node health

	Key considerations for security, scalability, and monitoring
	Security considerations
	Scalability considerations
	Monitoring considerations

	Building a tracking application
	Reference architecture
	Network Setup
	The chaincode
	Deployment

	Summary
	Further reading

	Chapter 5: Hosting a Blockchain Network on Elastic Kubernetes Service
	Technical requirements
	Introduction to Hyperledger Fabric on EKS
	Architecture and components
	Dynamic scalability
	Container orchestration
	Resilience and high availability

	Creating an EKS cluster for hosting the Hyperledger Fabric blockchain
	Deploying a Hyperledger Fabric blockchain network on EKS
	Persistent Storage
	Fabric components
	Common deployment challenges

	Key considerations – Security, scaling, and monitoring
	Enterprise deployments
	Security
	High availability
	Scaling

	Testing and troubleshooting a Hyperledger Fabric blockchain network on EKS
	Summary
	Further reading

	Chapter 6: Building Records with Amazon Quantum Ledger Database
	Introduction to Amazon Quantum Ledger Database
	Architecture
	QLDB and blockchain
	Use cases for blockchain

	Creating a QLDB instance
	Troubleshooting
	Creating the ledger from the AWS Management Console
	Using AWS Command-Line Interface
	Using the AWS SDK for Python

	Data modeling in QLDB
	Data modeling pitfalls to avoid
	Data model for a blockchain supply chain application
	Best practices for data modeling
	Creating a document
	Referencing and embedding documents
	Indexing
	Versioning
	Managing data history

	Querying data in QLDB
	CRUD operations
	Executing queries programmatically
	Data verification
	Common query access patterns

	Key considerations for security, scalability, and monitoring
	Security
	Scalability
	Monitoring

	Summary
	Further reading

	Part 3:
Deploying and Implementing Blockchain Solutions on Azure
	Chapter 7: Hosting a Corda DLT Network on Azure Kubernetes Service
	Technical requirements
	Understanding Corda and AKS
	Key features of Corda DLT
	Exploring AKS and its benefits

	Architecting Corda networks on AKS
	Design considerations for Corda network deployment
	Integrating your AKS configuration for Corda with additional Azure services

	Provisioning an AKS cluster for Corda
	Setting up an Azure subscription and preparing the prerequisites
	Deploying an AKS cluster with the appropriate Corda configuration
	Corda Enterprise in the Azure Marketplace
	Securing the AKS cluster and managing access controls

	Managing Corda nodes on AKS
	Scaling Corda nodes as Kubernetes pods
	Testing and validating the resilience of Corda networks on AKS
	Ensuring high availability and disaster recovery
	Performing failover tests in AKS

	Summary
	Further reading

	Chapter 8: Using the Ledger Features of Azure SQL
	Technical requirements
	Introduction to the ledger features of Azure SQL
	Use cases for SQL Ledger
	Creating a ledger in Azure SQL database
	Database ledger versus table ledger

	Benefits of the ledger features of Azure SQL
	Security and integrity
	Performance and scalability

	Using the ledger features of Azure SQL for blockchain solutions
	Supply chain traceability
	Certificate issuance and verification
	Asset ownership transfer

	Integrating the ledger features of Azure SQL with other Azure services
	Azure Functions
	Azure Logic Apps
	Azure Event Grid
	Azure Analysis Services
	Azure Machine Learning
	Power BI
	Azure API Management
	Azure Data Factory

	Best practices for implementing blockchain solutions with the ledger features of Azure SQL
	Summary
	Further reading

	Chapter 9: Leveraging Azure
Confidential Ledger
	Technical requirements
	An introduction to ACL
	Use cases

	The features and benefits of ACL
	Using ACL for blockchain solutions
	Connecting and sending data to ACL

	Integrating ACL with other Azure services
	Integration with Azure Key Vault

	Best practices for implementing blockchain solutions with ACL
	Summary
	Further reading

	Part 4:
Deploying and Implementing Blockchain Solutions on GCP
	Chapter 10: Hosting an Ethereum Blockchain Network on Google Cloud Platform
	Technical requirements
	Setting up an Ethereum blockchain network on Compute Engine
	Setting up an Ethereum blockchain network on GKE
	Configuring nodes in the Ethereum network
	Managing the Ethereum network on GKE
	Auto-scaling
	Load balancing
	Gas price management
	Managing Ethereum accounts and wallets

	Troubleshooting and maintaining the Ethereum network on GKE
	Summary
	Further reading

	Chapter 11: Getting Started with Blockchain Node Engine
	Technical requirements
	Introduction to BNE
	Features and benefits of BNE
	Using BNE for blockchain solutions
	Building a dapp to interact with the blockchain node
	Integrating BNE with other GCP services
	Off-chain data storage
	Integrate Cloud Firestore

	Best practices for implementing blockchain solutions with BNE
	Summary
	Further reading

	Chapter 12: Analyzing On-Chain Data
with BigQuery
	Technical requirements
	Introduction to BigQuery
	Setting up BigQuery in GCP

	Features and benefits of BigQuery for on-chain data analysis
	Importing on-chain data into BigQuery
	Querying Ethereum
	Querying Bitcoin

	Analyzing on-chain data with BigQuery
	Analyzing transaction patterns
	On-chain analytics
	Predict the value of Bitcoin with machine learning

	Visualizing on-chain data with BigQuery
	Summary
	Further reading

	Part 5:
Exploring Real-World Use Cases and Best Practices
	Chapter 13: Building a Decentralized Marketplace on AWS
	Technical requirements
	What to expect
	Prerequisites

	Solution architecture and hosting infrastructure
	Solution architecture
	Hosting infrastructure on AWS
	Security and monitoring

	Setting up the blockchain network on AWS
	Setting up Amazon EC2
	Setting up Amazon RDS
	Setting up Amazon S3
	Setting up Ethereum

	Creating the decentralized marketplace application
	Deploying the decentralized marketplace on AWS
	Summary
	Further reading

	Chapter 14: Developing a Decentralized Voting Application on Azure
	Technical requirements
	Introduction to developing a decentralized voting application on Azure
	Data integrity
	Voter privacy
	System robustness

	Setting up the blockchain network on Azure
	Creating a blockchain consortium on Azure
	Create a voting smart contract
	Compiling and migrating the smart contract using Truffle

	Developing the voting application frontend
	Installing the necessary packages
	Interacting with the smart contract
	Creating a Blazor component for voting
	Running your application
	Future trends in decentralized voting systems

	Summary
	Further reading

	Chapter 15: Creating Verifiable Digital Ownership on GCP
	Technical requirements
	Introduction to verifiable digital ownership
	Setting up the blockchain network on GCP
	Creating verifiable digital ownership records
	Ownership verification through digital signatures
	Multi-signature verification
	Smart contract deployment
	Off-chain checks
	Frontend

	Integrating verifiable digital ownership with other GCP services
	On-chain storage using smart contracts
	Off-chain storage with on-chain references

	Deploying verifiable digital ownership on GCP
	Summary
	Further reading

	Chapter 16: The Future of Cloud-Native Blockchain
	Why cloud-native blockchain?
	Blockchain for good
	Identity verification and protection
	Charitable donations and aid distribution
	The digital archiving and provenance of cultural artifacts

	Role of cloud providers in shaping the future of cloud-native blockchain
	Challenges and opportunities for cloud-native blockchain
	Final thoughts and predictions for the future of cloud-native blockchain
	Final thoughts
	Predictions

	Summary

	Index
	About Packt
	Other Books You May Enjoy

