
Apache
Essentials

Install, Conf igure, Maintain
—
Second Edition
—
Darren James Harkness

Apache Essentials
Install, Configure, Maintain

Second Edition

Darren James Harkness

Apache Essentials: Install, Configure, Maintain

ISBN-13 (pbk): 978-1-4842-8323-3		 ISBN-13 (electronic): 978-1-4842-8324-0
https://doi.org/10.1007/978-1-4842-8324-0

Copyright © 2022 by Darren James Harkness

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi
Development Editor: James Markham
Coordinating Editor: Divya Modi
Copyeditor: Kim Burton

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit http://www.
apress.com/source-code.

Printed on acid-free paper

Darren James Harkness
Port Coquitlam, BC, Canada

https://doi.org/10.1007/978-1-4842-8324-0

To my own essentials, Chance and Kirsten

v

Table of Contents

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

Chapter 1: �Getting Started with Apache�� 1

How Web Servers Work�� 1

The HyperText Transfer Protocol�� 2

A (Very) Brief History of Apache��� 3

Before You Begin…�� 5

Keep Notes��� 5

Get Familiar with Your Terminal�� 5

Be Prepared to Read Documentation��� 6

What to Know Before Installing Apache��� 6

Using the Right Development Environment��� 8

Apache vs. Other Web Servers��� 9

Choosing Apache Over Nginx�� 9

Apache over npm start for Node Development��� 10

Obtaining Apache��� 11

Installing Apache on macOS�� 11

Installing Apache Through Homebrew��� 12

Running Apache as a Service Through Homebrew��� 14

Installing Apache on Linux��� 15

Choosing the Source Installation�� 17

The Benefit of Binary Installation��� 19

Installing on Windows�� 20

vi

Installing Apache Through XAMPP��� 21

Installing Apache as a Service in Windows�� 22

Basic Configuration�� 23

Where to Put Your Website Files�� 23

Configuration Directory Structure�� 24

httpd.conf/apache2.conf�� 25

mime.types��� 26

Configuring a Default Site�� 26

Summing It Up��� 28

Chapter 2: �Configuration Essentials�� 29

How Apache’s Configuration Is Structured��� 29

Where Do I Find Modules?��� 32

Installing Modules�� 33

Adding File Types�� 33

Configuring Modules�� 34

All About Directives�� 34

Directive Configuration�� 34

DocumentRoot /var/www�� 34

Configuring Your Primary Apache Site��� 36

Creating the New Directory�� 37

Updating Your Apache Configuration�� 38

Using .htaccess Files��� 42

Other Configuration Options You Should Know�� 43

Rewriting URLs��� 43

Creating Custom Error Messages��� 50

Authenticating Users Through Apache��� 54

Adding New File Types��� 57

Including External Configuration Files��� 57

Applying Changes�� 58

Summing It Up��� 58

Table of Contents

vii

Chapter 3: �Configuring Virtual Hosts��� 59

A Quick and Dirty Guide to Domains�� 60

What Are Virtual Hosts?�� 61

Creating Development Domains��� 62

Using the hosts File to Manage Local Domains�� 62

Using ngrok to Manage Local Domains�� 63

Setting up a Subdomain Pointing to Your Local Environment�� 64

Why Develop Locally?�� 65

Configuring Apache’s Virtual Hosts�� 65

A Sample Apache Configuration��� 66

Using Separate Configuration Files�� 73

Putting It All to Work��� 73

Pointing the Virtual Domains to Your Local Computer�� 74

Configuring Apache for Multiple Virtual Hosts�� 74

Summing It Up��� 78

Chapter 4: �Scripting Languages�� 79

PHP�� 80

Installing PHP��� 80

Installing PHP on macOS�� 80

Installing PHP on Linux��� 82

Configuring Apache for PHP��� 82

On macOS��� 83

On Linux�� 85

Configuring PHP��� 86

Updating Default Configuration�� 86

Increasing the Memory Usage Limit��� 86

Increasing the Upload File Size�� 87

Configuring Noisy Error Reporting�� 87

Increasing Max Execution Time�� 88

Installing PHP Extensions��� 89

Table of Contents

viii

Recommended php.ini�� 90

Testing It Out�� 96

Configuring Node.js on Apache�� 97

Configuring Your Node.js Application for Apache�� 98

Installing pm2��� 98

Configuring the Application�� 98

Adding Your Application as a Service��� 99

Configuring Apache’s Reverse Proxy��� 100

Enabling Apache’s Proxy Modules�� 100

On macOS and Windows�� 100

On Linux�� 101

Creating a Virtual Host Configuration��� 101

Testing It Out�� 102

Configuring React Apps on Apache�� 103

Summing It Up��� 104

Chapter 5: �Securing Your Setup��� 105

SSL at a Glance�� 105

Configuring SSL for Subdomains��� 106

Installing Certbot�� 106

Running Certbot�� 107

Configuring HTTPS for Local Domains��� 109

Setting up a Local SSL Certificate Authority�� 109

Installing OpenSSL��� 109

Storing Your Certificates��� 110

Configuring Apache for HTTPS��� 116

Creating a Separate Configuration File��� 116

Loading the SSL Module��� 117

Configuring the Apache’s SSL Module�� 117

Summing It Up��� 123

Table of Contents

ix

Chapter 6: �Log Files��� 125

Error.log�� 125

Configuring the Error Log��� 125

access.log�� 128

Formatting the Access Log��� 128

Where Can I Find Apache’s Log Files?��� 135

Configuring Apache Logs��� 135

Log Files for Virtual Hosts��� 136

Rotating Logs�� 136

What Do I Do with Log Files?��� 143

Using Log Analysis Programs��� 144

Creating Custom Scripts��� 145

Apache Configuration��� 147

Tracking Down 404 Errors and Why They Occur��� 148

Troubleshooting PHP�� 148

Writing to the Error Log�� 149

Summing It Up��� 152

Chapter 7: �Sample Apache Configurations�� 153

Basic Apache Configuration (with PHP)��� 153

httpd.conf��� 153

Basic HTTPS Configuration�� 160

httpd.conf��� 160

extra/httpd-ssl.conf�� 160

Adding Rewrite Rules to Provide Human-Readable URLs�� 162

.�htaccess�� 162

Setting up Multiple Hosts (One PHP and One Node.js)��� 163

httpd.conf��� 163

portfolio.local.conf�� 164

nodejs.local.conf�� 165

Table of Contents

x

Protected Directory�� 165

httpd.conf��� 167

dev.mydomain.com.conf�� 167

�Epilogue��� 169

�Keep Learning�� 169

�Appendix: HTTP Status Codes�� 171

�HTTP Status Codes��� 171

1xx Informational Response��� 171

2xx Success��� 172

3xx Redirection�� 174

4xx Client Errors��� 175

5xx Server Errors��� 180

Index�� 183

Table of Contents

xi

About the Author

Like most of the world, Darren James Harkness started his

coding career with “Hello world!” on a computer he bought

himself at the local office supply store. Originally registered

as a computer science major, he quickly learned there might

be a different way to participate in technology better suited

to his skill set than hard coding. From that point on, Darren

turned to writing about the Web and managing smart people

who do the same. He has never looked back.

Darren lives in the lower mainland of British Columbia,

where he still spends too much time online, much to the

chagrin of his partner, son, cat, and scruffy dog.

xiii

About the Technical Reviewer

Massimo Nardone has more than 25 years of experience

in security, web/mobile development, cloud, and IT

architecture. His true IT passions are security and Android.

He has been programming and teaching how to

program with Android, Perl, PHP, Java, VB, Python, C/C++,

and MySQL for more than 20 years. He holds a Master of

Science degree in Computing Science from the University of

Salerno, Italy.

He has worked as a CISO, CSO, security executive, IoT

executive, project manager, software engineer, research

engineer, chief security architect, PCI/SCADA auditor,

and senior lead IT security/cloud/SCADA architect for many years. His technical skills

include security, Android, cloud, Java, MySQL, Drupal, Cobol, Perl, web, and mobile

development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails,

Django CMS, Jekyll, Scratch, and more.

He worked as visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University). He holds four

international patents (PKI, SIP, SAML, and Proxy). He is currently working for Cognizant

as head of cybersecurity and CISO to help clients internally and externally in areas of

information and cyber security, like strategy, planning, processes, policies, procedures,

governance, awareness, and so forth. In June 2017, he became a permanent member of

the ISACA Finland board.

Massimo has reviewed more than 45 IT books for different publishing companies

and is the co-author of Pro Spring Security: Securing Spring Framework 5 and Boot 2–

based Java Applications (Apress, 2019), Beginning EJB in Java EE 8 (Apress, 2018), Pro

JPA 2 in Java EE 8 (Apress, 2018), and Pro Android Games (Apress, 2015).

xv

Acknowledgments

I’d like to thank everyone who made this book possible. And believe me, this book

wouldn’t have been possible without a few people.

First and foremost is my partner Kirsten, who has been my biggest source of

inspiration and strength. Without her support over the past 20-plus years, I wouldn’t be

where I am today. She has also been extremely patient while I spend time ignoring our

little family to come back to a book I first wrote nearly 20 years ago.

Thank you to everyone who has worked with me and taught me what I didn’t know.

You know who you are, and there are far too many of you to list.

I also want to express my appreciation to the editors at Apress, who made some

excellent suggestions while writing this book.

Finally, I want to thank all the propellerheads—past and present—that have

worked to make Apache and the Web, in general, the great place that it is. Keep up the

good work!

xvii

Introduction

Welcome to the second edition of Apache Essentials. Two decades ago, I started playing

around with Apache—one of the most widely used web servers on the Internet. I had my

site hosted on a friend’s server, and I wanted to know more about the software running

my domain. At the same time, I’d just come off a web design job where I had relied on

two programmers to maintain the company’s website and was completely at their whim

whenever I needed something fixed or changed. Even a simple restart of the web server

was out of my control.

Tired of waiting on people to do things for me, I decided it was time to start learning

about Apache. The problem was that Apache was a completely foreign land to me,

complete with sea monsters and wizards. I quickly hit a wall; there was no guide to

Apache that talked to me as a designer in terms I could easily understand.

There are plenty of books and websites that are full of information about Apache

and its configuration; however, they are written with the system administrator or

programmer in mind. Designers are smart people, but having to read through pages

upon pages of tech-speak is enough to scare anyone off.

I’m really quite stubborn, however. I kept struggling through the tech-speak,

harassed my friend Alan, who ran my domain for me, and even installed Apache on my

own computer so that I could learn how to use it.

After a little while, I’d learned enough about Apache that it was doing what I needed:

serve web pages. Sure, I was speaking solely through the use of three-letter acronyms

and had an odd desire to stay in dark places, but I think it was worth it in the end.

Running a web server under Apache isn’t nearly as scary as it appears. The benefits of

knowing how Apache works and setting up my own environment were huge for someone

learning to be a better web developer.

Out of that learning came the first edition of Apache Essentials in 2004. I wanted to

share the knowledge I’d gathered so that other non-technical people could benefit. I

didn’t want anyone else to go through the same trials I did while learning how to use

Apache or have to wade through pages of bland, technical jargon. I wrote this book as

a friendly guide for web designers wanting to know a bit more about the system behind

their websites, with clear instructions on how to get Apache up and running with

scripting language support, secure website setup, and virtual domains.

xviii

Since then, I’ve installed Apache countless times on Linux servers, MacBooks, virtual

private servers (VPS), and even Raspberry Pis. I run my own servers now and act as a

resource for my staff when questions about hosting come up.

The first edition of Apache Essentials has stayed remarkably relevant to installing and

configuring an Apache web server, as Apache’s configuration has stayed consistent with

earlier versions. Though not much has changed with the Apache web server in the past

20 years, the landscape around it has significantly shifted: sites are far more complex and

use scripting languages more commonly than the static HTML sites of the early 2000s;

performance is a more significant concern for the majority of websites, as users are far

less patient with site load times; and troubleshooting issues on your site has become a

core skill for anyone working on the Web.

The trade of web design and development has also shifted in this time; boot camps

that push front-end developers and user experience designers through a compressed

learning period have become exceptionally common, training a new generation of

developers to rely on frameworks that speed up development but distance them from

learning about the core technologies of the Web, such as the Apache web server. Folks

receive just enough technical knowledge to get through a job interview; they don’t get

an in-depth understanding of the tools and systems they rely on. As a senior developer,

manager, and now director, I’ve seen how this lack of understanding has been limiting

for new digital professionals and affected their career development.

This edition of Apache Essentials is written to help support early career digital

professionals. It provides an overview of the technologies they use daily, hoping that

a greater understanding of them will help them grow in their careers. I’ve reorganized

the chapters to include more information about configuring Apache for two common

development languages, PHP and Node.js, and included a new chapter to help

developers use Apache as a troubleshooting tool for their code regardless of what

frameworks you might be using.

�Chapters at a Glance
Chapter 1 covers the installation of Apache on macOS, Linux, or Windows and how to

configure it for sending basic HTML files to your browser. By the end of this chapter,

you’ll have a basic understanding of Apache that we can build in later chapters.

Chapter 2 takes this further, exploring Apache’s configuration options by setting up

a basic HTML website. This chapter introduces you to Apache’s configuration options

Introduction

xix

and directives and some common configurations, such as protecting a website behind a

username and password.

Chapter 3 explores configuring Apache for multiple development environments,

letting you set up virtual domain names with the .local prefix—like http://

apachebook.local/. This lets you test things in a more realistic way that matches a live

website without having to put your development code in a publicly accessible location.

Chapter 4 goes a little further, configuring Apache to support scripting languages

such as PHP and Node.js. The vast majority of modern websites use one of these

scripting languages, whether in the form of a custom framework or a content

management system like WordPress, Drupal, or Craft CMS.

Chapter 5 explains how to secure Apache. You won’t necessarily need to do this for

your local development environments, but this is critical for production sites.

Chapter 6 discusses Apache’s log files, which are an exceptionally useful tool for

troubleshooting things that might be wrong with your website. This chapter goes into

more detail about the structure of log files and how to read them.

In Chapter 7, I share some sample Apache configurations with you and a GitHub

repository where you can find them. You can use these to quickly set up sites and

address common configuration needs.

Finally, a full list of the HTTP error codes can be found in the appendix.

�Source Code
All source code used in this book can be downloaded from github.com/apress/

apache-essentials-2e.

Introduction

http://apachebook.local/
http://apachebook.local/

1

CHAPTER 1

Getting Started
with Apache
In this chapter, you learn how to install Apache safely on macOS, Linux, and Windows

and get it up and running in its default configuration.

At the end of this chapter, you’ll be able to load up your browser and visit http://

localhost/ to see a running default installation of Apache. But before we dive headlong

into the guts of Apache, let’s do a little review to get everybody up to speed.

�How Web Servers Work
It’s probably a good idea to start the review by explaining how a web server works. It’s

somewhat like the librarian at your local reference desk, acting as a front end to a store of

information. When a web browser requests a file, the web server will process the request,

search for the location of the file requested, then respond with what it found. On the

surface, it’s pretty simple. Of course, there’s a lot of action happening behind the scenes

invisibly (see Figure 1-1).

© Darren James Harkness 2022
D. J. Harkness, Apache Essentials, https://doi.org/10.1007/978-1-4842-8324-0_1

https://doi.org/10.1007/978-1-4842-8324-0_1

2

Browser sends request for
page using HTTP protocol

Web server receives request
and evaluates it

Web server looks for file in
its storage system

Web server sends file to
scripting engine for

execution

Scripting engine executes
program(s) in file, does

evaluations, etc.

Scripting engine sends
results back to web server

Web server sends contents
of file back to the browser

Browser renders the
content sent back to it and

displays it to the user

T
H

E

I
N

T
E

R
N

E
 T

L
O

C
A

L

N
E

T
W

O
R

K

Figure 1-1.  A typical workflow for showing a web page

�The HyperText Transfer Protocol
A network is best thought of as a combination of communication layers; each layer

represents a method of communication and is assigned a unique connection point

known as a port number; there are 65,536 ports available in all, and many of those are

reserved for known network protocols. One of these reserved ports is for HyperText

Transfer Protocol (more commonly known as HTTP), which communicates on ports 80

and 443 (other examples of TCP ports include POP email (port 110) and FTP (which uses

ports 20 and 21)).

The HTTP protocol is a common language for transferring hypertext data between a

web server and a web browser. In short, it’s how the client and server talk to each other.

I’m not going to delve deeply into the protocol, but a sample HTTP transaction would

look like the following.

GET /index.php HTTP/1.1

Host: www.apachebook.com

HTTP/1.1 200 OK

Content-Type: text/html; charset=utf-8

Content-Length: length

<DATA>

Chapter 1 Getting Started with Apache

3

The transaction starts when the browser requests a file from the web server (GET

http://www.apachebook.com/index.php). When this request is received, the web server

checks to see if the file exists at the location specified and if the browser has permission

to view the page. If an error is encountered, the web server will return the error to the

browser, often followed by a brief explanation of the error. The most common of these

errors is 404 (file not found), 403 (forbidden), or 500 (script error).

If everything is fine, the web server will return a 200 OK, then start streaming the

file’s content to the browser. Whenever an tag (or any other tag that references

additional files, such as the <object> or <link> tag) is encountered, the process repeats

itself. In the end, the browser receives all the information on the web page and renders it

according to the HTML sent. Since web pages often reference one or more graphic files, a

full HTTP transaction could look as follows.

GET https://www.apachebook.com/index.php

200

<data>

GET https://www.apachebook.com/styles.css

200

<data>

GET https://apachebook.com/img/ae_logo.svg

200

<data>

A full list of the HTTP error codes can be found in the appendix.

�A (Very) Brief History of Apache
In June of 1991, the first web server was born in the most ironic of locations. In a room

at CERN (a particle physics laboratory in Geneva, Switzerland), the first version of httpd

(HyperText Transfer Protocol Daemon) was created. Little did they know they would be

opening the door to an entirely new universe. Or, maybe they did; it was a physics lab, after all.

Tim Berners-Lee, the creator of the Web, first started working on the basic concept

of linked documents as early as 1980 while on a short contract with CERN. While

there, he created Enquire, a program used privately to store information using random

associations. Though never published, a seed was planted firmly in his mind. When he

returned to CERN in 1989, he brought a massive improvement to Enquire.

Chapter 1 Getting Started with Apache

http://www.apachebook.com/index.php

4

The World Wide Web (WWW), as Berners-Lee called it, was Enquire on a global

scale. The basic idea behind WWW was to allow a group of high-energy physicists to

combine their knowledge into a library of interconnected work. Are you referring to a

colleague’s paper on quantum mechanics? Why merely cite the paper and leave it up to

the reader to search through a library for it when you can just provide a link to it within

your own paper?

In 1991, after a year or so of internal development at CERN, Berners-Lee released

httpd (the first web server) and WorldWideWeb (the first web editor and incidentally

the first WYSIWYG editor) to the public at large through the Internet and made their

own HTTP server publicly accessible. The idea hit the ‘net and exploded. According to

Berners-Lee, the load on the CERN web server grew by a factor of 10 every year. Berners-

Lee spent the next three years defining the language of the Web—HTML—and further

developing the httpd web server, working heavily with feedback from the Web’s early

adopters.

Around the same time, the National Center for Supercomputing Applications

(NCSA) was working on its own version of the httpd server. Complaining that the CERN

web server was “too large and complex”, Rob McCool (yes, his actual name) worked with

several others at NCSA to create a leaner, simpler version of the web server. He worked

on NCSA’s web server until 1994, when—as Apache’s timeline states—he “left to get a

real job.” (In fact, he left to help form Netscape, one of the first widely-used commercial

web browsers).

When Rob McCool left the httpd project, development crept to a halt. By early 1995,

as the Internet became more accessible to the general public, use of the Web started

booming, and webmasters soon discovered that httpd could no longer serve their needs

adequately. As a result, in February 1995, eight brave souls started working together to

develop the next generation of web servers—Apache. Working from the source code for

httpd, these developers started writing patches to the NCSA httpd server (and according

to Apache’s history, the name “a patchy server” was born). In April 1995, the group made

the first official public release of the Apache web server.

Over 25 years later, it is a thriving open-source community project with hundreds

of developers regularly contributing source. In 1999, the Apache Software Foundation

(ASF) was created as an official entity to help organize developers and provide legal and

financial support. Apache powers more than 286 million sites, and it serves 45% of the

Chapter 1 Getting Started with Apache

5

Web’s busiest sites.1 It’s available for any operating system that has networking, including

Linux, Windows, macOS, and even long-lost systems like OS/2 and BeOS.

�Before You Begin…
Like any grand adventure, there are some things you must prepare before you embark

on your quest. You’ll want to keep notes, become familiar with your operating system’s

terminal or command line, gather documentation, and do resource planning.

�Keep Notes
Keep running notes in your favorite notes application or desk-side notebook. There will

be several points throughout this book where you must refer to various directories and

configuration options, and having quick access to these will be helpful.

�Get Familiar with Your Terminal
Regardless of which operating system you choose to install Apache, you must be

comfortable with the command line or terminal. This text-only interface to your

computer unlocks the ability to access parts of your computer that are normally hidden

behind your desktop UI. For macOS, Linux, and Windows (using the Linux subsystem),

this is critical for accessing and editing the configuration files for Apache and other

elements.

As you move through this book, several examples use the command line to access

and modify configuration files. It’s highly recommended that you become comfortable

starting up a terminal and learning its basic commands.

On macOS, the command line is accessed through Terminal, which can be found

in the Applications ➤ Utilities folder in Finder. You can also use Spotlight to find the

Terminal application quickly.

On Windows, the command line is accessed through the command prompt (cmd.

exe), which can be found in the Windows System folder in the Start Menu. You may

also install PowerShell through the Windows Store, which provides some extra tools for

navigating the command line.

1 https://trends.builtwith.com/websitelist/Apache/Very-High-Traffic-Volume

Chapter 1 Getting Started with Apache

https://trends.builtwith.com/websitelist/Apache/Very-High-Traffic-Volume

6

On Linux, the command line is accessed directly (if no desktop GUI is installed)

or through a terminal application. On Ubuntu, this can be found by clicking Show
Applications, opening the Utilities folder, and clicking Terminal.

Several courses and resources are available to help you learn about the command

line, such as tutorials by Ubuntu2 or The Odin Project3 for UNIX-based terminals and

Microsoft’s documentation for its command prompt and PowerShell.4

�Be Prepared to Read Documentation
I will cover most of what you need to know to get Apache set up and running on your

computer. That said, I cannot cover all possibilities, and you will likely run into situations

that aren’t described in this book. For that, make sure you’ve got the documentation at

hand for Apache on your operating system.

•	 Apache: https://httpd.apache.org/docs/current/

•	 Homebrew: https://docs.brew.sh

•	 XAMPP: www.apachefriends.org/docs/

•	 Ubuntu: https://help.ubuntu.com

�What to Know Before Installing Apache
There are a few things you need to consider before installing Apache. These include

which operating system to use, what additional software is needed, and which version of

Apache to install.

A useful exercise at this point is to write a quick requirements document. If you are

moving an existing website from a hosted server to your own server, find out how busy

your web server has been and what technologies were used for it. If you are just starting

up or don’t have access to your web server’s statistics, you need to estimate your server

requirements. In both cases, you should ask the following questions.

2 https://ubuntu.com/tutorials/command-line-for-beginners
3 www.theodinproject.com/paths/foundations/courses/foundations/lessons/
command-line-basics-web-development-101
4 https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/
windows-commands

Chapter 1 Getting Started with Apache

https://httpd.apache.org/docs/current/
https://docs.brew.sh
http://www.apachefriends.org/docs/
https://help.ubuntu.com
https://ubuntu.com/tutorials/command-line-for-beginners
http://www.theodinproject.com/paths/foundations/courses/foundations/lessons/command-line-basics-web-development-101
http://www.theodinproject.com/paths/foundations/courses/foundations/lessons/command-line-basics-web-development-101
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/windows-commands
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/windows-commands

7

How complex is your site? The more complex the site, the busier

the web server. If you are experiencing heavy traffic, the web

server slows down significantly. It also needs more RAM to keep

the site in its working memory. The best way to mitigate this is by

increasing the amount of RAM allocated to the server.

Which scripting environments are currently being used for the

website? Apache supports most scripting environments (PHP,

Node.js, etc.), and some run better under Apache. Apache can

even be configured to indirectly support .NET (C#) sites, though it

requires a more advanced setup than what’s covered in this book.

How large is the website, and how long do I want to keep server

logs? With the growth in services like Amazon S3 and advances in

hard drives, storage drive space is cheaper than ever. Add as much

hard drive space as you can afford to. Modern websites often

have significant storage needs for uploaded assets, frameworks,

and libraries. You also want to provide space for your website’s

logs. The longer you keep log data, the more information

you have to work with when building website statistics or

troubleshooting issues.

Who do I want to have access to the web server? This is probably

the most important question to ask. Anyone who has access to

the web server machine also has access to the website stored on

it. Though you can secure the website’s directories under both

Linux and Windows, it’s not 100% secure so long as a user has

access to the drive. If you use tools like ngrok or port forwarding

on your router to provide outside access to your web server, this

is especially important. That said, you will most likely be setting

this up on a personal laptop or desktop machine, using Windows

or macOS. Going forward, this is referred to as your development

environment.

Chapter 1 Getting Started with Apache

8

�Using the Right Development Environment
It’s never a good idea to make changes to your live website. Your website is your

organization’s digital presence in the world; you only want to update it when you are

completely certain your code is good and bug-free.

To create this stability, most developers use a tiered set of environments that

become more as you move through them. These start with an unstable development

environment and end with a stable, tested production environment. Generally,

developers use four environments (see Table 1-1), though this can reach up to six

environments when using continuous integration.

Table 1-1.  Deployment Environments

Environment Description

Local Development This is a sandbox for the developer to test code on as they write it. This

is often their desktop or laptop, though a dedicated computer on their

network may also be used as a development environment (a Raspberry Pi,

for example).

Testing The environment where more formal testing is performed. A quality control

team ensures that the new code does not impact the existing functionality

and tests major functionalities of the system after deploying the new code

in the test environment.

It is most commonly a server located within a corporate network or on a

dedicated server outside the network.

Staging A mirror of the production environment used for user acceptance and

validation. It is generally available over the Internet but hidden from search

engines and may be behind some form of authentication.

Production/Live This is your live website, available to anyone over the Internet.

Adapted from https://en.wikipedia.org/wiki/Deployment_environment

This book only concerns the first tier, where you will build and check your code.

This is the local development environment and, most commonly, your own laptop or

desktop. In the coming chapters, I’ll show you how to install and configure Apache on

this environment so that you can view and test your website code in real time, regardless

of whether you’re connected to the Internet.

Chapter 1 Getting Started with Apache

https://en.wikipedia.org/wiki/Deployment_environment

9

Apache can be run on virtually any commercial operating system. If it can connect

to a network, chances are there’s a version of Apache available for it. This book focuses

primarily on macOS since it’s currently the most used operating system among digital

professionals. I’ll point out the differences between macOS, Linux, and Windows as

they emerge.

�Apache vs. Other Web Servers
Apache is just one of many different web server applications available in a development

environment, including free applications such as Nginx and Node.js’s built-in app server

and licensed applications such as Microsoft’s Internet Information System (IIS) and

Litespeed. On the surface, they seem to operate similarly (after all, they provide the same

basic functionality), but underneath, each web server application has its own benefits

and quirks.

Although Apache is the most commonly used web server, it’s still useful to compare

it to the other available options.

�Choosing Apache Over Nginx
Apache and Nginx (pronounced “engine x”)5 are the two most popular web servers as of

this book and have a roughly equal share of the web server market for public websites.

They are often used together to provide a robust web service for high-traffic websites.

In fact, that’s why Nginx was originally developed as a supporting tool for Apache that

helped solve a performance problem.

In the early 2000s, the amount of website traffic had been growing to the point where

Apache could not handle all the simultaneous incoming requests. It had a rough limit of

10,000 requests at the same time.

That seems like a lot of requests, right? However, you must consider this: modern

websites often have dozens of associated files on any page: style sheets, JavaScript

files, and images or other media. Add to that functionality that requires the page to

make additional requests asynchronously, such as accessing an API, which adds up

very quickly. If you consider an average of 70 requests per page on a website,6 that

5 www.nginx.com/about/the-nginx-name
6 https://httparchive.org/reports/state-of-the-web#reqTotal

Chapter 1 Getting Started with Apache

http://www.nginx.com/about/the-nginx-name
https://httparchive.org/reports/state-of-the-web#reqTotal

10

means only about 140 to 150 people can access a website at the same time without

experiencing issues.

Nginx was developed as a front-end proxy for Apache that would quickly serve static

files, such as HTML, CSS, JavaScript, and images, and pass more computationally-

involved scripts (such as PHP) to Apache to process separately. The combination of the

two removed the 10,000 connections limit in Apache alone and set the stage for a highly

performant web.

There are some downsides to using Nginx, however. First, it’s more complicated

to configure than Apache, as it uses a scripting-like format for its configuration files.

Nginx doesn’t allow directory-level overrides (discussed later), which lets you test

configuration on the fly without restarting the server. Finally, Nginx is less flexible for

scripting languages such as PHP, as it needs to pass these to separate applications to be

interpreted and run (often through Apache).

All these decisions are made for better performance for high-traffic web servers,

where milliseconds add up quickly over a large number of connections. To set up a

development environment, however, Apache on its own is more than sufficient. You

won’t ever have any concerns around server performance or high loads due to many

concurrent site visitors on your development environment. You won’t see any benefit

from using Nginx.

If you’re interested in learning more about Nginx, check out Rahul Soni’s excellent

Nginx: From Beginner to Pro (Apress, 2016).

�Apache over npm start for Node Development
Node.js is very friendly for on-the-fly testing in your browser. It lets you quickly start up

a node application on a custom port by running node app.js and accessing the port on

localhost (e.g., http://localhost:3000). This is great for very quick testing.

The downside is that the site is only available so long as the node application you

started runs in your terminal, and you don’t mind accessing things through non-

standard URLs. If you close the terminal window or quit the node program, your testing

server dies with it. If you try to access http://localhost/ without supplying the port,

you will not be able to view your Node.js project.

Apache can be configured to work with Node.js, however, and create an always

available Node.js server that’s accessible without supplying a custom port number. This

is covered in more detail in Chapter 3.

Chapter 1 Getting Started with Apache

11

�Obtaining Apache
Apache has a few system requirements, but they’re not nearly as bad as you might think.

The first of these is disk space. Apache needs a jaw-dropping 50 MB to install. After it’s

installed, it needs only 20 MB to run. No, that’s not a typo. One of the strengths of Apache

is its lean nature. Similarly, you don’t need much RAM or a powerful processor either;

Apache runs on as little as 0.5 GB of RAM on a 1 GHz CPU if running a UNIX-based

system such as Linux. If you follow the system requirements for your operating system,

you stand a good chance of being able to run Apache. For comparison, Microsoft’s

Internet Information Server (IIS) requires at least a 1.4 GHz CPU, 2 GB of RAM, and

32 GB to operate.7

I’d suggest giving your Apache web server as much RAM and hard disk space

as possible, however, and spending a little less on the processor unless you plan on

using your server heavily or accessing a database frequently. The more RAM you have

available for Apache, the happier it is and the faster it performs. And keep in mind it is

running alongside other applications, such as your code editor and browser, which all

compete for access to RAM and disk space as well as any database servers or scripting

environments you may be using, such as PHP or Node.js.

�Installing Apache on macOS
As of macOS 12, Apache is already installed on macOS. However, it’s configured very

basically, disabled by default, and doesn’t have some of the libraries needed to support

scripting, such as the PHP module. Given the direction Apple has been taking to keep

macOS focused on its most common users, it’s entirely likely that Apache itself will be

removed in the future. Beyond that, there are a series of other pros and cons highlighted

in Table 1-2.

7 https://docs.microsoft.com/en-us/windows-server/get-started/hardware-requirements

Chapter 1 Getting Started with Apache

https://docs.microsoft.com/en-us/windows-server/get-started/hardware-requirements

12

Table 1-2.  Advantages and Disadvantages of Using macOS

Advantages Disadvantages

You probably already use a Mac in web design, UX,

or web development, as they’re popular within those

disciplines.

macOS has a built-in version of Apache that

might interfere with the operation of the

version installed in this chapter.

macOS, like Linux, is built on a UNIX core, which

gives you a very stable and secure environment on

which to develop.

Apple’s shift to their own proprietary CPU in

2021 initially added some performance and

compatibility issues.

Apple provides several other developer-friendly tools

through XCode, like Git, SCP, and SSH.

Apple’s computers are priced at a premium,

making them more expensive than other

commodity desktops or laptops.

With its roots in UNIX, macOS was born and raised

as a multiuser operating system that could handle

multiple users and run multiple applications.

�Installing Apache Through Homebrew
While you can enable and configure the built-in Apache as a development environment,

I suggest that you use Homebrew. This tool provides the ability to install packages such

as Apache, PHP, and many other UNIX tools.

I recommend that you use Homebrew,8 a package manager for macOS that makes

it a bit easier to install and manage software packages like Apache, PHP, and MySQL

(among many others). Homebrew has been actively maintained for macOS as an

open source project since 2009 by a team of dedicated contributors. It provides a safe

way to install this kind of software on your system without interacting with the core

operating system.

Brew installs tools locally, outside of the protected system directories in macOS. This

also makes it simpler to modify configuration files since you don’t have to use

administrator privileges to do so.

To install Homebrew, visit https://brew.sh and follow their installation directions.

I’ll wait.

8 https://brew.sh

Chapter 1 Getting Started with Apache

https://brew.sh
https://brew.sh

13

Once Homebrew is installed, you can install the Apache web server. Open your

terminal application, and type in the following.

brew install apache2

This starts the installation process and puts a local copy of the Apache httpd server

into your computer’s /usr/local/ directory.

The following is an example of what you see in your terminal window.

swiftly:httpd darren$ brew install apache2

Updating Homebrew...

==> Auto-updated Homebrew!

Updated 3 taps (homebrew/core, homebrew/cask and homebrew/services).

==> New Formulae

rizin symengine

==> Updated Formulae

Updated 194 formulae.

==> Updated Casks

Updated 144 casks.

==> Downloading https://ghcr.io/v2/homebrew/core/httpd/manifests/2.4.51

Already downloaded: /Users/darren/Library/Caches/Homebrew/downloads/a272ee

deda41a82ae9ab973e0e620883a524607fb315d48915f9bc82a3e6a628--httpd-2.4.51.

bottle_manifest.json

==> Downloading https://ghcr.io/v2/homebrew/core/httpd/blobs/

sha256:a1f6272efc48

Already downloaded: /Users/darren/Library/Caches/Homebrew/downloads/5fa3d8

4c175b5d968c6bfad6763a753afbb4486fe4e3307a00c87b2f9cc3a689--httpd--2.4.51.

monterey.bottle.tar.gz

==> Pouring httpd--2.4.51.monterey.bottle.tar.gz

==> Caveats

DocumentRoot is /usr/local/var/www.

The default ports have been set in /usr/local/etc/httpd/httpd.conf to 80

and in /usr/local/etc/httpd/extra/httpd-ssl.conf to 443 so that httpd can

run without sudo.

To restart httpd after an upgrade:

 brew services restart httpd

Chapter 1 Getting Started with Apache

14

Or, if you don't want/need a background service you can just run:

 /usr/local/opt/httpd/bin/httpd -D FOREGROUND

==> Summary

 /usr/local/Cellar/httpd/2.4.51: 1,660 files, 31.6MB

swiftly:httpd darren$

That’s a lot of text! You can ignore most of that, but there are a few important things

about Homebrew to pay attention to.

•	 It lists the DocumentRoot as /usr/local/var/www. DocumentRoot

is an Apache configuration directive explored in more detail in the

next chapter. For now, just know that this is the directory where

the website’s files live on your computer and are accessible to the

browser. On install, this contains an empty cgi-bin directory and an

index.html file.

•	 It lists the default ports Apache is configured for. In the preceding

example, these are ports 80 and 443 (for secure web). Do note that if

you have enabled the built-in copy of Apache in macOS, these ports

may be different, such as 8080 and 80443.

•	 It provides you with the command to start up Apache manually:

/usr/local/opt/httpd/bin/httpd -D FOREGROUND. It’s better to set

this up as a service, however, so you don’t have to remember to start

Apache up every time you reboot your computer.

�Running Apache as a Service Through Homebrew
Apache can be run when you need it using the preceding command, or it can constantly

run as a background service on macOS. Running a program like Apache as a service is a

bit more convenient, as it starts every time you restart your computer.

You can use Homebrew’s built-in service manager to keep it running as a service.

Type the following into your terminal.

sudo brew services start httpd

Chapter 1 Getting Started with Apache

15

Once you’ve done that, you can skip to the “Basic Configuration” section at the end

of this chapter.

�Installing Apache on Linux
Linux offers the security and stability of a UNIX system without the cost; the Linux

operating system (as well as the bulk of applications available for it) is placed under the

General Public License (GPL) and made available to all, free of charge. It’s developed

under the philosophy of open source and, as such, is generally rock solid and secure.

There is also a large range of low-cost hardware available that is compatible with Linux,

such as the Raspberry Pi or an old desktop system sitting in a closet.

Since Linux itself consists solely of the basic operating system (and no applications

or utilities), it has been packaged with a set of applications and utilities and a method of

installation by several organizations. These different packages are called distributions; if

you choose to install Linux, the fastest and easiest way is to decide upon a distribution.

There are hundreds of distributions to choose from, but only a few are generally

accepted by most Linux developers, including Ubuntu, Debian, and Red Hat. Ubuntu is

the most commonly used for desktop or laptop installations, with Debian often used for

server installations.

However, a problem with using Linux is that there is likely a larger initial learning

curve if you aren’t already familiar with it. Though Linux does have a graphical desktop,

most administration is done through a text-only command-line interface. As a result,

there’s a new set of commands that you must learn and remember. However, most—if

not all—of the information you might need about Linux is readily available on the web.

For quick reference, Table 1-3 lists the advantages and disadvantages of installing

Apache on Linux.

Chapter 1 Getting Started with Apache

16

Table 1-3.  Advantages and Disadvantages of Using Linux

Advantages Disadvantages

Linux is far more secure, stable, and reliable

than Windows. Due to the open nature of

development, vulnerabilities are found and

repaired quickly by Linux developers. Patches

are often available within hours of a vulnerability

being reported.

Linux offers an unfamiliar interface; most

administration is done through the command-line

interface.

With its roots in UNIX, Linux was born and

raised as a multiuser operating system that

could handle multiple users and run multiple

applications. The Linux development team has

decades to hone this ability and make sure that

it handles multiple users with far more ease

than Windows.

No single commercial entity is responsible for

Linux, which might go against some corporate IT

policies. All major Linux kernel (the core operating

system) releases go through a rigorous code-

review process administered by a dedicated

community of developers sponsored by the Linux

Foundation.

Linux performs better than Microsoft Windows

since very little processing power goes into the

display.

Linux has a larger learning curve than macOS and

Windows.

Linux is built for network performance. Every

major Linux distribution comes with the network

tools needed to get a web server up and

running.

Graphical administration tools aren’t available for

all system functions. You’re going to need to be

comfortable with the command line.

Linux offers far better remote management

capability. Several methods, including Secure

Shell (SSH) and remote desktop, allow you to

connect to your server quickly and efficiently.

No commercial support is available for some

distributions.

Linux is much more modular than other

operating systems. The operating system needs

only a couple hundred megabytes of disk space,

and you only install the applications you want to

use on the server.

The configuration directory structure is different

from what Apache recommends. This can cause

confusion if you are looking at examples online.

(continued)

Chapter 1 Getting Started with Apache

17

Table 1-3.  (continued)

Advantages Disadvantages

Linux servers rarely need to be rebooted;

all system services and applications can be

modified or reinstalled without a reboot.

Linux has a much lower cost of entry than the

other operating systems, which makes it easier

and inexpensive to have a separate dedicated

development server apart from your personal

workstation. You can even install it on an entry-

level Raspberry Pi for a fraction of the cost for

Windows or Mac.

�Choosing the Source Installation
Apache is and always has been open source software. This means that the source code

is available for anybody to download, read, modify, and recompile. The source code is

a series of instructions and commands that define individual functions (for example,

reading the contents of a file and placing it in memory). These functions, when bundled

together, create a complete application. However, to get to the application from the

source code, the application must be compiled for your operating system (translated

from the programming language source code to an executable file and its supporting

library files).

One of the strong benefits of using open source software is security. Apache’s

source code is reviewed by literally thousands of eyes and is developed by a group of

programmers who volunteer their time.

What does that mean to you? It means two things: quality and security. Because

Apache is developed in an open environment, the greater the likelihood that bugs,

vulnerabilities, and security problems are found. Even if a bug slips through, it is

generally found and corrected in a matter of days.

Chapter 1 Getting Started with Apache

18

But that doesn’t tell you why you should choose the source install, does it? The

source install is used for one of three purposes.

•	 Customizing the application. Some people installing the Apache

web server may need to make changes to the source code to meet

proprietary needs. For example, they may need to change how

Apache transfers information over the network. Generally, they

need to do something that the standard Apache configuration files

don’t allow them to do. These people have a heck of a lot more

programming knowledge than I do.

•	 Security auditing. Another reason for downloading the source code

is to review it for vulnerabilities and bugs before compiling and

running it on your server. Many organizations require all software

installed on their servers to be audited before being deployed

publicly. If this sounds familiar, you may want to download a copy of

the Apache source code to hand over to the powers that be.

•	 Education. Just like it sounds. If you’re trying to learn a programming

language, what better way than to use an existing application as an

example? Apache has thousands of lines of code, all publicly open

for viewing. It serves as an excellent educational tool for aspiring

programmers.

Unless you’re running an operating system that doesn’t have a package manager

(such as Ubuntu), you don’t want to choose the source install. It’s mainly there for the

super techie folk. You gain some amount of geek credibility by saying you were able to

compile an application from the source. Of course, you also spend much longer getting

it to work than if you had just grabbed a binary install from your package manager in the

first place.

The Apache source code can be found at www.apache.org/dist/httpd/. If you want

to travel down this road, follow the process documented by the Apache group at http://

httpd.apache.org/docs/install.html#traditional.

Chapter 1 Getting Started with Apache

http://www.apache.org/dist/httpd/
http://httpd.apache.org/docs/install.html#traditional
http://httpd.apache.org/docs/install.html#traditional

19

�The Benefit of Binary Installation
OK, maybe getting the source code isn’t right for you, so you’ve decided to do a binary

install. This is a precompiled version of Apache for your operating system. Binary installs

are available for Windows, Linux, most commercial versions of UNIX, and macOS X.

The benefit of the binary file is that you significantly reduce the time between

downloading the Apache install and running an Apache web server. The drawback, of

course, is that you completely remove the ability to customize Apache before installing it

(not that you need or want to).

For this book, I will use Ubuntu as the Linux distribution of choice; however,

the instructions work for any DEB-based distribution, such as Debian, Knoppix, or

Raspberry Pi’s Raspbian OS.

First, open your terminal and type the following. Select Y when asked to continue

(see Figure 1-2).

sudo apt-get install apache2 apache2-utils

Figure 1-2.  Installing Apache on Ubuntu

Chapter 1 Getting Started with Apache

20

This installs Apache and some helper utilities like apachectl (which starts and stops

the Apache server). Ubuntu also configures Apache to run as a service automatically, so

it starts up whenever you reboot the operating system.

Once you’ve done that, you can skip to the “Basic Configuration” section at the end

of this chapter.

�Installing on Windows
Windows is the second most common choice for installing Apache, since most

organizations have a ready supply of Windows servers. There are some definite

advantages to using Windows (see Table 1-4); most people are already familiar with the

Windows interface, so there’s little time required to learn how to configure things. You

may also only be allowed to use Windows by your organization’s IT department, which

removes the possibility of using Linux or macOS.

A Linux subsystem in the Windows Store allows you to follow the Linux installation

instructions. This lets you remove any potential compatibility issues in moving your code

from a Windows development environment to a UNIX-based one. If you go down this

route (I’d recommend it!), follow the installation instructions for Linux/Ubuntu instead

of these instructions.

For quick reference, Table 1-4 lists the advantages and disadvantages of installing

Apache on Windows.

Chapter 1 Getting Started with Apache

21

Table 1-4.  Advantages and Disadvantages of Using Windows

Advantages Disadvantages

An immediately

recognizable user

interface for most people

The vast majority of production web servers run on UNIX-based systems

like Linux. Because of that, there’s a small chance that there may be

compatibility issues when you deploy code developed on a Windows

system.

Smaller learning curve Windows isn’t as secure as macOS or Linux. Vulnerabilities are routinely

found in Microsoft Windows, and viruses are common. This puts any

sensitive information you use as part of your web development at risk of

exposure, even in development environments.

Graphical tools for

administration

Due to the closed development model often takes Microsoft days to

release a patch after a vulnerability has been reported. Numerous other

vulnerabilities may have already been found but not reported.

An existing maintenance

agreement with

Microsoft

System requirements for Windows are often much higher than for Linux

performing the same tasks.

Performance doesn’t match Linux on the same system specifications;

Linux servers offer more reliable network and file operations than

Windows, using the same hardware.

Windows machines are more prone to mysterious crashes and must be

rebooted more often.

Customization of Apache or PHP on Windows is much more complicated

than on Linux or macOS.

�Installing Apache Through XAMPP
I recommend using XAMPP for Windows to install Apache. XAMPP is fully open source,

free of charge, and supported by a non-profit organization, Apache Friends. It is kept up

to date with releases of Apache, PHP, and MariaDB (a common, open source database

system based on MySQL). Other options, such as WAMP, MAMP, and AMPSS, operate

similarly but may impose licensing costs. In this book, however, refer to filenames and

locations in XAMPP.

Chapter 1 Getting Started with Apache

22

You can download XAMPP at www.apachefriends.org. Follow the on-screen

directions to install the software, selecting C:\XAMPP\ as the Installation folder. During

the installation, keep the default options selected. At a minimum, you should install

Apache and PHP because they are used later in this book.

�Installing Apache as a Service in Windows
User Account Control (UAC) prevents Apache from operating as a full system service on

Windows. If you want to use Apache this way, you must ensure that your account has

administrator privileges and needs to either disable UAC9 (not recommended) or run

XAMPP with administrator privileges. This is done by right-clicking the XAMPP Control
Panel icon and selecting More ➤ Run as administrator (see Figure 1-3).

Figure 1-3.  Running XAMPP as administrator on Windows

When the XAMPP control panel has loaded with administrator privileges, you see

the option to turn on Apache (and other tools) as a service in Windows. This means it

starts up whenever Windows starts up, instead of being manually turned on when you

want it. Select the Apache checkbox to enable the service (see Figure 1-4).

9 See https://stackoverflow.com/questions/26208848/xampp-installation-on-win-8-1-
with-uac-warning

Chapter 1 Getting Started with Apache

http://www.apachefriends.org
https://stackoverflow.com/questions/26208848/xampp-installation-on-win-8-1-with-uac-warning
https://stackoverflow.com/questions/26208848/xampp-installation-on-win-8-1-with-uac-warning

23

Figure 1-4.  XAMPP control panel

Apache now starts up whenever you reboot your Windows computer.

�Basic Configuration
So now that you have Apache installed, what do you do with it? The simplest

configuration for Apache is one that serves up static HTML files and any linked files like

graphics, CSS, or JavaScript.

�Where to Put Your Website Files
When first installed, Apache specifies where it expects to find your publicly accessible

website files. This directory should already exist on your computer as part of the Apache

install (see Table 1-5). Something to note is that this directory is not always configured

on some operating systems to allow access to non-administrator accounts.

Chapter 1 Getting Started with Apache

24

Table 1-5.  Default Location of Public Website Files

On… File location

macOS (Homebrew) /usr/local/var/www

macOS (Native) /Library/WebServer/Documents/

Ubuntu /var/www

Windows 10 /11 C:\xampp\htdocs

Table 1-6 lists where to find Apache’s configuration files.

Table 1-6.  Location of Apache’s Configuration Directory

On… File location

macOS (Homebrew) /usr/local/etc/httpd

macOS (Native) /etc/apache2

Ubuntu /etc/apache2

Windows 10 / 11 C:\xampp\apache\conf

�Configuration Directory Structure
macOS and XAMPP on Windows follow the configuration directory structure

recommended by Apache (see Table 1-7), whereas Ubuntu uses a slightly different

directory structure. This reflects how Apache is used differently on each operating

system: macOS and Windows are used solely as individual working environments,

whereas Ubuntu is often used as a server environment with several module-based

options for configuration. Ubuntu needs to use a different directory structure to support

adding and removing functionality through their package manager. To learn more about

how Ubuntu configures Apache, refer to their documentation at https://ubuntu.com/

server/docs/web-servers-apache.

Chapter 1 Getting Started with Apache

https://ubuntu.com/server/docs/web-servers-apache
https://ubuntu.com/server/docs/web-servers-apache

25

Table 1-7.  Contents of Apache Configuration Directory

macOS and Windows Ubuntu Linux

[Apache configuration directory]

|- extra (directory)

| |- *.conf

|- httpd.conf

|- magic

|- mime-types

|- original (directory)

| |- extra (directory)

| | |- *.conf

| |- httpd.conf

/etc/apache2/

|- apache2.conf

|- conf-available

| |- *.conf

|- conf-enabled (directory)

| |- *.conf (symbolic links to ../conf-available)

|- envvars

|- magic

|- mods-available (directory)

| |- *.conf

|- mods-enabled (directory)

| |- *.conf (symbolic links to ../mods-available)

|- ports.conf

|- sites-available (directory)

| |- *.conf

|- sites-enabled (directory)

| |- *.conf (symbolic links to ../sites-available)

In this book, I focus on the macOS and Windows directory structures when talking

about configuration. Though I recommend you follow Ubuntu’s provided directory

structure on Linux, you can work outside of that structure to follow the examples in this

book. Apache is flexible that way!

Now let’s review what those configuration files do.

�httpd.conf/apache2.conf
All of Apache’s basic configuration is handled in the httpd.conf file, located in the

directory indicated for your operating system. This is a text file that can be edited using

any plain text editor or code editing tool and contains a lot of configuration instructions

called directives, which you’ll learn more about in Chapter 2.

Chapter 1 Getting Started with Apache

26

The default httpd.conf installed with Apache contains many more directives than

you need; several directives and examples are commented out within the httpd.

conf configuration file. This is done by placing a # at the beginning of the line. These

commented directives come in very handy. For example, let’s say you need to load the

mod_userdir module, which allows your users to maintain their web pages on your

server. Instead of trying to figure out what the proper name of the module is, you can just

remove the comment character. All the directives discussed in the next chapter are in

httpd.conf, unless specified otherwise.

�mime.types
The mime.types configuration file is Apache’s Rosetta Stone. The contents of the mime.

types file matches file extensions to content types. For example, HTML files have the

following entry in the mime.types configuration file.

text/html htm html

This tells Apache (and the browser loading the page) that files on the server with the

extensions .htm or .html should be treated as HTML files. Likewise, you might see this

entry for PNG files, which lets Apache know that files with a .png extension should be

treated as binary rather than text.

image/png png

If you need to add a new file type, this is the place to do it. I discuss it a little more in

the “Adding New File Types” section in Chapter 2.

�Configuring a Default Site
A default site is already configured for you when you install Apache. But I find the

location configured by the Apache installer is often inconvenient to get to in your

file browser and sometimes has restricted permissions that require you to access

administrative privileges to add or edit files.

If you were to visit http://localhost in your browser, you’d see something like

Figure 1-5. The contents of this file, on macOS, can be found in /usr/local/var/www/

index.html (this file is created as part of the Apache installation). Try editing this file

and reloading it in your browser!

Chapter 1 Getting Started with Apache

27

Figure 1-5.  Apache’s default website

When setting things up, I like to reconfigure Apache to point to a different, more

easily accessible directory on my computer. For example, on macOS or Linux, I usually

create a directory called sites in my home directory (/home/darren/sites/ on Linux,

and /Users/darren/sites on macOS) that contains all the projects I’m working on. On

Windows, I create C:\sites\ to store my projects. This lets me later configure Apache for

multiple virtual host sites that I can place in this directory, such as the following.

•	 http://project.local stored in /home/darren/sites/project/

•	 http://funtoy.local stored in /home/darren/sites/funtoy/

•	 http://skunkworks.local stored in /home/darren/sites/

workproject/

Chapter 1 Getting Started with Apache

http://project.local
http://funtoy.local
http://skunkworks.local

28

Make your own sites directory, and jot the location down in your favorite notes

app. You reference this directory in the httpd.conf or apache2.conf file later in this book.

In the next chapter, you set up Apache to point to your new sites directory and set up

some basic configuration options.

�Summing It Up
Congratulations! You now have a solid foundation of server fundamentals and Apache

installed in its most basic form. If you do nothing else, you can start building static

websites and making them available to the browser. You should be comfortable installing

Apache anywhere, whether your computer or a cloud-hosted Linux server, and where

you can find the configuration files needed to customize your Apache installation.

Chapter 2 explains Apache’s configuration. You set up a basic Apache site pointing to

http://localhost/ and develop an understanding of the configuration directives. You

also learn about the structure of Apache’s configuration files and local overrides through

the .htaccess file. See you there!

Chapter 1 Getting Started with Apache

29

CHAPTER 2

Configuration Essentials
This chapter teaches you how to set up a basic Apache instance on your local computer

(localhost). To get there, I cover the structure of Apache’s configuration and commonly

used Apache directives, which are commands Apache uses to define its configuration.

You also learn about local overrides through the .htaccess file.

By the end of this chapter, you have a basic running website at http://localhost

that you can use for developing basic HTML/CSS-based websites.

Apache uses two sets of configuration files. The first set is server-level and is

contained mostly in the httpd.conf file. The second set of configuration files is a

directory-level configuration file and supersedes any server-level configuration (if

allowed).

Before you begin, back up the original configuration files into a different directory.

You’ll thank me for this later.

�How Apache’s Configuration Is Structured
One of the reasons Apache is such a lean server application is that its many directives

(discussed later in the chapter) are broken out into a modular system that breaks

functionality into several library files. These files are only accessed when Apache needs

them, so Apache doesn’t have to store the information in memory until it’s needed.

These libraries are called modules in Apache.

Apache comes with a wide variety of modules, including virtual hosting,

authentication, scripting engines, and URL rewriting. By default, quite a few modules are

enabled in Apache because they’re crucial to the day-to-day operations of your website

(for example, the logging module mod_log_config is enabled by default to provide

logging of events from your web server).

Apache’s modules don’t follow a set naming scheme but seem to use one of

two conventions most of the time. The most common naming convention is mod_

© Darren James Harkness 2022
D. J. Harkness, Apache Essentials, https://doi.org/10.1007/978-1-4842-8324-0_2

https://doi.org/10.1007/978-1-4842-8324-0_2

30

modulename. For example, the module that governs CGI applications is named mod_cgi.

Almost all the modules developed and released by the Apache Group follow this

convention.

The second most common way to name Apache modules takes its inspiration from

Perl. Perl modules are often named along the lines of Application::Function. An

example would be Apache::RandomImage (a module that randomly displays images in

a directory). For most people, the modules included with Apache by default are more

than enough to handle a website’s daily needs. You should only need to add modules

for scripting languages or specific programming functionality (image manipulation

libraries, for example). Apache uses the Perl module format, which gives it access to

thousands of modules.

The modules in Table 2-1 are installed by default in Apache. They’re included

by using the LoadModule directive inside of the httpd.conf configuration file. Other

modules are loaded by default, but I wanted to call these out as useful ones.

Table 2-1.  Useful Default Apache Modules

Module
Name

What It Does Associated
Directives

auth_

basic_

module

Apache uses this module to provide basic authentication of sites

Apache is configured to serve.

AuthGroupFile

AuthUserFile

AuthAuthoritative

mod_

access

This module allows for access control by IP address. Allow

Deny

Order

mod_alias This module allows you to map directories outside your

DocumentRoot as part of your web documents. For example, you

could create a shared cgi-bin directory at /usr/lib/cgi-bin

(or C:\cgi-bin) and alias it to www.domain.com/cgi-bin.

Alias

AliasMatch

Redirect

RedirectMatch

RedirectTemp

RedirectPermanent

ScriptAlias

ScriptAliasMatch

(continued)

Chapter 2 Configuration Essentials

http://www.domain.com/cgi-bin

31

(continued)

Table 2-1.  (continued)

Module
Name

What It Does Associated
Directives

mod_

autoindex

This module automatically creates an index of a requested

directory if no DirectoryIndex file is set or found within the

directory.

AddAlt

AddAltByEncoding

AddAltByType

AddDescription

AddIcon

AddIconByEncoding

AddIconByType

DefaultIcon

FancyIndexing

HeaderName

IndexIgnore

IndexOptions

IndexOrderDefault

ReadmeName

mod_cgi Apache uses this module to run any CGI script or file with a MIME

type of application/x-http-cgi.

ScriptLog

ScriptLogLength

ScriptBuffer

mod_dir This module works with the DirectoryIndex directive to

automatically tell Apache what files to load when a directory

is requested. For example, if you configure the DirectoryIndex

directive as index.html, the index.html file is loaded when a

browser requests www.domain.com/somedir/. If this isn’t

enabled, the browser displays a file listing of all documents within

the folder.

DirectoryIndex

mod_env This module allows scripts to access Apache’s environment

variables, which track information such as the current client’s IP

address, browser, referrer, and so on.

PassEnv

SetEnv

UnsetEnv

Chapter 2 Configuration Essentials

http://www.domain.com/somedir/

32

Module
Name

What It Does Associated
Directives

mod_log_

config

This module allows for the CustomLog directive (see Chapter 7 for

more information).

CookieLog

CustomLog

LogFormat

TransferLog

mod_

mime

This module determines how certain documents are to be

displayed. For example, an HTML document is displayed

differently than a simple text document.

AddCharset

AddEncoding

AddHandler

AddLanguage

AddType

DefaultLanguage

ForceType

RemoveEncoding

RemoveHandler

RemoveType

SetHandler

TypesConfig

Table 2-1.  (continued)

In addition to the default Apache modules mentioned earlier, I suggest enabling the

mod_rewrite module, which is often used by content management systems to provide

human-readable URLs.

�Where Do I Find Modules?
As you’ve already seen, Apache installs almost all the modules you need. If you need

something that the Apache Group doesn’t provide, there are two places you can go.

The first is the Apache Group’s documentation, which has a list of modules

developed by the Apache Group and included for use with Apache. It’s not a long list, but

you might find what you need there. You can find the list of included modules at http://

httpd.apache.org/docs/mod/index-bytype.html.

Chapter 2 Configuration Essentials

http://httpd.apache.org/docs/mod/index-bytype.html
http://httpd.apache.org/docs/mod/index-bytype.html

33

If the list of included modules doesn’t contain what you need, you can go to

Wikipedia’s list of Apache modules. For example, you might want an Apache module

that allows you to run .NET on your Apache server. None of Apache’s official modules

support this, but the Mono project developed a third-party module that does support it.1

�Installing Modules
If you find an Apache module that you’d like to install, it’s a relatively simple process to

install and configure a module.

In Apache, you use the LoadModule directive to dynamically load modules. The

LoadModule directive doesn’t require modules to be compiled against Apache ahead of

time. It uses precompiled binary files that are distributed with the module.

The LoadModule directive takes two options. The first option gives the name of the

module as it is known to Apache. Most modules tell you what their suggested name is in

their documentation. I’d recommend sticking to their suggestions. The second option

tells Apache where it can find the module’s library file. In Linux and macOS X, this file

has a .so extension. In Windows, this file has a .dll extension.

A typical LoadModule directive looks like the following.

LoadModule include_module modules/mod_include.so

�Adding File Types
This module allows you to specify outside of the mime.types configuration file, how

Apache should handle certain file types. For example, Chapter 3 discusses adding PHP to

your server. As part of that configuration, you must tell Apache how to handle files with

the .php extension. Let’s add a line like this to your httpd.conf.

AddType application/x-http-php .php

1 www.mono-project.com/docs/web/mod_mono/

Chapter 2 Configuration Essentials

http://www.mono-project.com/docs/web/mod_mono/

34

�Configuring Modules
Many modules have their own configuration directives that Apache won’t understand

if the module fails to load. As a result, it’s a good idea to use conditional <IfModule>

sections within your httpd.conf so that you can include these directives safely; if the

module doesn’t load, Apache skips them entirely.

These sections only load directives if Apache can find and load the module to which

they’re attached. An example of this is included in the sample httpd.conf installed

with Apache.

<IfModule dir_module>

 DirectoryIndex index.html

</IfModule>

�All About Directives
Directives are what Apache calls its various configuration options. These are commands

used within Apache’s configuration files to configure various aspects of the server. Each

directive takes up a single line and generally follows the same format.

�Directive Configuration
For example, if you want to configure the location where Apache can find the site’s

HTML files, you would use the DocumentRoot directive and supply a path.

�DocumentRoot /var/www
There are, quite literally, hundreds of directives available in Apache and many more

added in Apache’s modules. However, this chapter only focuses on a few of the more

commonly used ones, as outlined in Table 2-2.

Chapter 2 Configuration Essentials

35

Table 2-2.  Commonly Used Configuration Directives

Directive Description Example

ServerName

Listen It tells the server to listen on a specific port for

requests. The common ports are 80 (http://) and 443

(https://).

Listen 80

DocumentRoot It specifies the directory Apache should look at for

publicly accessible files. Apache needs read and

execute permissions on this directory.

DocumentRoot /var/www

<Directory> It starts a configuration section that allows you to

specify directives for your DocumentRoot (and any

other directories accessible via Apache).

<Directory /var/www>

AllowOverride All

Options FollowSymLinks

MultiViews

Order allow, deny

Allow from all

</Directory>

Options This configures which Apache feature are available to

the directory.

Options Indexes,

FollowSymLinks

AllowOverride It allows local overrides of a directory’s Apache

configuration through the use of a .htaccess file. You

can specify All, None, or specific groups of directives.

AllowOverrideAll

ErrorLog This configures the location of the error log. ErrorLog /usr/local/var/log/

httpd/dev.localerror.log

LogFormat It defines the formats used by the access log. LogFormat “%h %l %u %t

\”%r\“ %>s %O” common

(continued)

Chapter 2 Configuration Essentials

36

Directive Description Example

<VirtualHost> This creates a site-specific configuration in Apache,

separate from the default configuration.

<VirtualHost *:80>

 �ServerAdmin hello@

apachebook.com

 �DocumentRoot “/Users/

darren/code/apachebook.

local”

 ServerName shipton.local

 �ErrorLog “/usr/local/var/

log/httpd/apachebook.

local-error_log”

 �Customlog “/usr/

local/var/log/httpd/

apachebook.local-

access_log” common

</VirtualHost>

Table 2-2.  (continued)

Let’s learn more about how to use these directives.

�Configuring Your Primary Apache Site
Remember in the previous chapter, where I asked you to write down the location of your

code directory? Here’s where you use that. When first installed, Apache looks for the

HTML files it serves in one of the directories listed in Table 2-3.

Table 2-3.  Default Location of Public Website Files

On… File Location

macOS (Homebrew) /usr/local/var/www

macOS (Native) /var/www

Ubuntu /var/www

Windows 10/11 C:\xampp\htdocs

Chapter 2 Configuration Essentials

37

But, as I said in the previous chapter, those locations can be hard to remember and

sometimes protected by system privileges. Let’s create a new place, called sites, to put

the HTML files in your home directory.

�Creating the New Directory
Open your terminal and enter the following command in either macOS or Linux.

cd ~/

This navigates you to your home directory on the system. In Windows, you want to

get to the root of the C drive. You’d instead enter

cd \

Now that you’re in the right place, it’s time to make your sites directory. Type the

following command.

mkdir sites

followed by this command to change into the new directory.

cd sites

Finally, you want to create a directory for the primary site. Follow the preceding two

steps (mkdir and cd) to create a directory called primary.

You end up with the information listed in Table 2-4 (replacing darren with your

username on the computer for macOS and Linux installations).

Table 2-4.  Location of Primary Code Directory

On… File Location

macOS /Users/darren/sites/primary

Ubuntu /home/darren/sites/primary

Windows 10/11 C:\sites\primary

Chapter 2 Configuration Essentials

38

�Updating Your Apache Configuration
Although you can configure Apache for multiple domains, there is always a primary

site to which the server defaults. At the end of Chapter 1, I talked about creating a sites

directory that’s easier for you to manage than the default Apache /var/www directory.

�Updating the Location of Your Website’s Files

The first thing you need to do is define where Apache’s looks for the files used by your

website. This is done through the DocumentRoot directive, which is found in the httpd.

conf configuration file.

Search for DocumentRoot, and change the existing directory to your new primary

site directory. For example, on macOS, the following would be set.

DocumentRoot /Users/darren/sites

In Windows, you usually have to enclose the path to your web documents within

quotations. It would look something like the following.

DocumentRoot "C:/sites/primary"

After configuring the main document root directory for Apache, you need to specify

options for it by creating a <Directory> entry. This sets the actual configuration of your

website within Apache, and controls what access files on your website have.

<Directory /Users/darren/sites/primary>

 Options Indexes Includes FollowSymLinks MultiViews

 AllowOverride All

 Order allow,deny

 Allow from all

</Directory>

This can be broken down pretty easily. In the <Directory> directive, you need to specify

the directory you’re configuring. Since you want to configure the main site, you should match

the DocumentRoot directory, /Users/darren/sites/primary. If you want to specify options

for a different directory, let’s say /cgi-bin, you would add another section, like the following.

<Directory /Users/darren/sites/primary/cgi-bin>

 Options Indexes Includes FollowSymLinks ExecCGI MultiViews

Chapter 2 Configuration Essentials

39

 AllowOverride All

</Directory>

This section would allow CGI files to be executed in the /cgi-bin directory, but

not within the rest of your website. This allows you to contain all script files to a single

directory, making it easier to audit what scripts are running on your Apache server.

When you configure a directory, you also configure all its subdirectories. So, when you make

changes to /Users/darren/sites/primary, the changes would also be applied to /Users/

darren/sites/primary/images. To give special configurations to individual subdirectories

within your main DocumentRoot, you must create separate <Directory> entries for each.

�Directory Options

After you’ve told Apache which directory you want to set options for, you need to tell it

which options to configure the directory with. Table 2-5 lists the many options you can

set on a directory.

Table 2-5.  Available Settings for the Options Directive

Option Description Should I use it?

All Enables all options except

MultiViews. It is the default setting.

If you’re looking for a quick way

to configure a directory and are

not concerned about performance

or security, then yes. Otherwise,

specify your options manually.

AllowOverride Specifies which directives an

.htaccess file stored in the site’s

directories can override.

The default setting is None, which

prevents any overrides of the Apache

site’s configuration. Individual

directives can be specified for

overriding, or All can be provided,

which allows all eligible directives to

be overridden.

Some web applications may

require the ability for a .htaccess

file to override the Apache

configuration to function properly.

This is common in many content

management systems.

(continued)

Chapter 2 Configuration Essentials

40

Table 2-5.  (continued)

Option Description Should I use it?

ExecCGI Allows CGI files to be executed in the

directory. This should only be enabled

for directories containing scripts

because enabling it for all directories

causes Apache to take a hit on its

performance.

You should use this only for

directories that contain CGI files.

Note that you do not need to use

this setting for PHP or Node.js files

within a directory.

FollowSymLinks If this is enabled, the server follows

symbolic links within a directory.

Symbolic links are similar to Windows

shortcuts; they point to other files

or directories within a UNIX system.

This option is ignored if used within a

<Location> directive.

Yes. This allows you to set up

shortcuts to files and directories

without duplicating documents on

your system. This is a side benefit

because you only need to edit the

original file, and all symbolic links

are automatically updated.

Indexes If no documents matching the ones

specified in the DocumentIndex

directive are found (index.html, for

example), Apache returns a formatted

directory listing of the requested URL.

This option can be enabled or

disabled, depending on the level

of security that you want on your

Apache server. If this option is

enabled, it shows users a listing of

the files within a directory. Though

this is fine for most applications,

you may not want it for others

(for example, a directory that

contains script files). If this option

isn’t enabled, a request for a

directory that doesn’t contain a

DocumentIndex file return a 403

forbidden error.

(continued)

Chapter 2 Configuration Essentials

41

Option Description Should I use it?

MultiViews The MultiViews directive searches for

files matching the requested file. For

example, if a requested file doesn’t

exist on the server, such as index.

html, Apache display the closest

match before reporting a 404 not

found error, such as index.htm.

This is recommended so that you

can catch any mild typos made by

people requesting URLs.

SymLinksIfOwnerMatch It is identical to the FollowSymLinks

option but only follows the symbolic

link if it’s owned by the same user on

the system as the original directory.

If the same user does not own the

symlink, the symbolic link is not

followed.

It’s a good idea to enable this

option if you want to preserve

security within your system. For

example, enabling this option is

a good idea if you allow users on

your system to have their own

websites through user directories.

Table 2-5.  (continued)

�Configuring Your Primary Index File

When loading a directory request, Apache looks for the index.html file. To change its

default behavior, you must use the DirectoryIndex directive. For example, if you wanted

the server to load welcome.htm instead of index.html when a directory request is

received, you would use the following.

DirectoryIndex welcome.htm

DirectoryIndex is often used in the context of .htaccess but can also be specified

within a <Directory> section in the httpd.conf configuration file. For now, let’s keep

this as index.html. You’ll change this in Chapter 3 when you configure Apache for

scripting languages like PHP and Node.js.

DirectoryIndex index.html

Chapter 2 Configuration Essentials

42

�Configuring Logging

Apache makes use of two primary directives for logging: CustomLog and ErrorLog.

CustomLog specifies the location and format of the general access log for a site, which

records all requested URLs. ErrorLog records only errors encountered when trying to

start or restart Apache or attempting to execute scripts such as CGI or PHP files.

When installing Apache, it adds a default configuration for both directives. For now,

you can leave this alone. In Chapter 6, you learn how to configure logging in more detail,

which is useful for separating log files for multiple virtual domains.

�Using .htaccess Files
If the AllowOverride directive is set to anything other than None, you can specify certain

configuration options at the directory level through the .htaccess file. This file is often

used for rewriting URLs, authenticating users in a protected directory, or specifying error

documents for a site.

The directives contained within the .htaccess file precede over those in the httpd.

conf configuration file, and apply to all subdirectories contained within.

The following is an example of a .htaccess file configuring basic authentication and

setting up clean URLs that redirect everything to a parameter or index.php.

DirectoryIndex index.html index.htm

AuthName "Site Statistics...."

AuthType Basic

AuthUserFile /home/darren/sites/stats/.htpasswd

require valid-user

<IfModule mod_rewrite.c>

 RewriteEngine On

 # Enable clean URLs

 RewriteCond %{REQUEST_FILENAME} !-f

 RewriteCond %{REQUEST_FILENAME} !-d

 �RewriteCond %{REQUEST_URI} !^/(favicon\.ico|apple-touch-icon.*\.

png)$ [NC]

 RewriteRule (.+) index.php?p=$1 [QSA,L]

</IfModule>

Chapter 2 Configuration Essentials

43

�Other Configuration Options You Should Know
The preceding gets you started with an Apache installation. However, there are several

other common configuration options that you likely come across and should be familiar

with as you build out your websites.

�Rewriting URLs
In a redesign situation, you often need to move the contents of one directory to another.

On a mechanical basis, this is pretty easy and doesn’t pose a problem. You just copy the

files from one location to another. You only need to change your HTML so that users can

find the new location.

One tried and true method used by webmasters from time immemorial is to replace

the old HTML file with one that tells the user that the file has been moved to a new

location, followed by a request to update their bookmarks to match the new location.

But this causes a couple of problems. First, the user is inconvenienced since they

must go an extra step to find the content they were looking for. And some may not

understand immediately that the content has been moved; they’ll just see it isn’t there.

The second problem is much more serious, however. Search engines won’t follow your

links. They simply see that the content has changed and that it no longer matches the

search terms the page used to be associated with.

Apache supplies an alternative in the mod_rewrite module. This module allows you

to create custom rules to rewrite document requests in a way that automatically forwards

the user through to the right place. The mod_rewrite module works by capturing a

request and comparing it against the Apache configuration file. If a match is found, it

processes the rule and redirects the user to the supplied location.

Apache’s rewrite module can be configured in its main configuration file or at

the domain level through a .htaccess file (if you allow local overrides). It uses two

main directives: RewriteCond, which lets you specify conditions for the reset, and

RewriteRule, which defines a specific element to redirect. Both directives understand

regular expressions,2 making them very powerful for managing multiple redirects with

2 If you’re unfamiliar with regular expressions (also known as regex), they are patterns that you
can use within many UNIX-based systems. They let you find strings that match a set of conditions.
There are several resources, such as https://regexr.com and https://regex101.com, that can
help you to learn, build, and test regular expressions.

Chapter 2 Configuration Essentials

https://regexr.com
https://regex101.com

44

fewer configuration lines. A section of rewrite rules begins with a single RewriteEngine

On directive, which tells Apache to enable the module and process the following

directives using it.

Table 2-6 presents the directives you commonly use with the Rewrite module.

Table 2-6.  Rewrite Directives

Directive Explanation

RewriteBase This directive sets a base URL for the following conditions and rules defined.

RewriteCond It defines conditions for the following RewriteRule. You can set multiple conditions

for an individual RewriteRule.

If the conditions are not met, the associated RewriteRule is not executed.

RewriteEngine It turns the Apache rewriting module on and off. By default, the rewriting engine

is off, which means you need to include RewriteEngine On at the start of any

configuration section, including RewriteRule.

RewriteRule This is where you define your URL rewrite. You can use regular expressions, and you

can rewrite to URLs on the same domain or a separate domain.

Let’s go through a couple of examples that you will likely encounter.

�Using URL Slugs

Most modern content management systems use URL slugs, which are human-readable

URLs for their content pages. This makes it easier for people to remember how to get

back to a specific page. It has a strong positive effect on search engine optimization

since the URLs contain additional contextual information about the page contents. For

example, a URL slug translates https://mydomain.com/index.php?id=4142 to a much

more friendly https://mydomain.com/services/user-experience/.

Here’s an example from Craft CMS, which captures any directory passed through to

Apache and redirects it quietly as an HTTP query parameter to index.php.

<IfModule mod_rewrite.c>

 RewriteEngine On

 # Send would-be 404 requests to Craft

 RewriteCond %{REQUEST_FILENAME} !-f

 RewriteCond %{REQUEST_FILENAME} !-d

Chapter 2 Configuration Essentials

https://mydomain.com/index.php?id=4142
https://mydomain.com/services/user-experience/

45

 �RewriteCond %{REQUEST_URI} !^/(favicon\.ico|apple-touch-icon.*\.

png)$ [NC]

 RewriteRule (.+) index.php?p=$1 [QSA,L]

</IfModule>

Table 2-7 goes through this example line by line.

Table 2-7.  Breakdown of Conditional Rewrites

Directive Explanation

<IfModule mod_

rewrite.c>

If the Rewrite module isn’t enabled or installed, you want Apache to skip this

section so that it doesn’t fail with an error when it’s loading. Of course, that

means that the directives contained within this section do not redirect traffic.

RewriteEngine

On

Turn on Apache’s RewriteEngine.

Send would-be

404 requests to

Craft

This is a comment and is ignored by Apache when reading through this

section.

Comments are exceptionally useful in larger configuration files so that you

or the person editing this configuration file have some context around what’s

been configured and why.

RewriteCond

%{REQUEST_

FILENAME} !-f

It tells Apache to ignore this RewriteRule if a file already exists at this

URL. For example, you want this rule to be ignored for all linked assets on the

server, like CSS, JavaScript, or image files.

Let’s say you have a banner image linked to at https://mydomain.com/

assets/img/welcome.png. When Apache reads this set of RewriteRules,

it reads what’s in the %{REQUEST_FILENAME} variable, /assets/img/

welcome.png, and see if it exists as a file on the system (at /var/www/

html/image/welcome.png). You’re creating a condition that says you

want to rewrite if it is not an existing file, which you specify with ! (the not

character) and -f (a flag in Apache that signifies files).

Because the /assets/img/welcome.png file exists on the server, Apache

records the condition as not being met and stop processing this rule.

(continued)

Chapter 2 Configuration Essentials

https://mydomain.com/assets/img/welcome.png
https://mydomain.com/assets/img/welcome.png

46

Table 2-7.  (continued)

Directive Explanation

RewriteCond

%{REQUEST_

FILENAME} !-d

It is identical to the previous directive, but it is used for directories

(the -d flag). This is used when the website uses URL slugs but has

a separate administrative set of scripts. An example of this would be

WordPress, which contains a wp-admin directory on the web server.

RewriteCond

%{REQUEST_URI}

!^/(favicon\.

ico|apple-

touch-icon.*\.

png)$ [NC]

This condition instructs Apache to ignore two specific files: favicon.ico and

apple-touch-icon.png (and some derivatives).

There are two notable things in this RewriteRule to pay attention to.

First, you’re using the !(not) character along with a regular expression, which

is indicated by the ^ character: ^/(favicon\.ico|apple-touch-icon.*.png)$.

Second is the [NC] flag, which is an interaction to Apache to ignore upper and

lower case when evaluating the URL against this condition.

The combination of the two cause Apache to ignore any URLs such as the

following when considering rewrites:

https://mydomain.com/favicon.ico

https://mydomain.com/Favicon.ico

https://mydomain.com/apple-touch-icon.2x.png

https://mydomain.com/apple-touch-icon.3x.png

Putting this rewrite condition into human speech, you’d end up with this: “if

the URL does not contain /favicon.ico or /apple-touch-icon.*.png”

(continued)

Chapter 2 Configuration Essentials

https://mydomain.com/favicon.ico
https://mydomain.com/Favicon.ico
https://mydomain.com/apple-touch-icon.2x.png
https://mydomain.com/apple-touch-icon.3x.png

47

Table 2-7.  (continued)

Directive Explanation

RewriteRule

(.+) index.

php?p=$1

[QSA,L]

It is the rule that the preceding conditions apply. You commonly see several

groups of RewriteCond and RewriteRule in an Apache configuration.

(.+) is a regular expression used as a global wildcard. Everything after the

first slash following the domain in the URL is saved as a variable, which is

accessed by the $1 in the next section.

Now that you know what you need to rewrite, it’s time to tell Apache where

it’s rewriting to. This is done with index.php?p=$1. This redirects any URL

that isn’t an existing file or directory to a query parameter of the index.php

file. For example, https://mydomain.com/articles would redirect to

https://mydomain.com/index.php?p=articles.

Finally, you pass some additional flags in square brackets to let Apache know

how to continue. The first of these is QSA. This tells Apache to combine the

old URL with the new one provided. The second flag, L, tells Apache to stop

considering RewriteRules if it has met this one’s conditions. If no L flag is

supplied, Apache continues to evaluate the URL against subsequent rewrite

rules, which may cause conflicts and a nasty error message.

</IfModule> It completes the set of RewriteRules and closes the section opened by the

<IfModule mod_rewrite.c> opening directive.

If the </IfModule> directive does not appear, Apache reports an error and

prevents itself from starting.

Putting the information from this table into human-readable language, you’d get the

following.

“If the URL is not a file or a directory, and not a file named either favicon.ico or some

variation of apple-touch-icon.png, redirect the full URL to index.php as the value for the

p parameter, then stop evaluating rules.”

�Updating the URL for an Existing Page

It’s common as your website grows older that its URL structure change. For example,

your site may have started as a blog, storing each entry under a date-based URL structure

like https://mydomain.com/2021/12/25/interesting-topic. Perhaps as you grow

Chapter 2 Configuration Essentials

https://mydomain.com/articles
https://mydomain.com/index.php?p=articles
https://mydomain.com/2021/12/25/interesting-topic

48

as an online professional, you want to convert those blog entries to articles, using a

structure like https://mydomain.com/articles/interesting-topic. You’ve probably

built up a strong search engine for those old blog articles, which you don’t want to lose.

You need a way to let the search engines know the content has moved so that it

doesn’t significantly affect your search engine traffic. Of course, you also have dozens of

blog entries that need to move over. You could write out an individual

<IfModule mod_rewrite.c>

 RewriteEngine On

 # Redirect old blog entries to new articles

 RewriteRule ^(\d{4})/(\d{2})/(\d{2})/? articles/$4 [R=301,L]

</IfModule>

Table 2-8 goes through this example line by line.

Table 2-8.  Breakdown of a Rewrite Configuration Using Regular Expressions

Directive Explanation

<IfModule mod_

rewrite.c>

If the Rewrite module isn’t enabled or installed, you want Apache to skip

this section so that it doesn’t fail with an error when it’s loading. Of course,

that means that the directives contained within this section do not redirect

traffic.

RewriteEngine On Turn on Apache’s RewriteEngine.

RewriteRule

^(\d{4})/(\d{2})/

(\d{2})/? /

articles/$4

[R=301,L]

This RewriteRule uses a regular expression to capture anything using a

YYYY/MM/DD URL structure.

It also adds two flags to the rule. The first, R=301, supplies an HTTP 301

error code along with the redirect. This lets search engines know that the

old URL has been permanently moved to the new URL. The second flag, L,

tells Apache to stop processing the URL against further RewriteRules.

</IfModule> It completes the set of RewriteRules and closes the section opened by the

<IfModule mod_rewrite.c> opening directive.

If the </IfModule> directive does not appear, Apache reports an error

and prevents itself from starting.

Chapter 2 Configuration Essentials

https://mydomain.com/articles/interesting-topic

49

Putting the information from this table into human-readable language, you’d get the

following.

“If the URL matches a pattern of four digits, a slash, two digits, another slash, and two

more digits, then send the browser to a new URL that starts with /articles/. Add back

any portions of the URL after that pattern is met as a string after /articles/ and then

stop evaluating rules.”

�Fixing a Trailing Slash

One of the most common uses of the rewrite rule is to fix the “trailing slash problem.”

The trailing slash problem can be summarized like this: By default, Apache treats all

incoming requests as file requests unless they have a trailing slash.

Let’s look at an example. A user requests https://www.domain.com/about. Apache

looks for a file called about in the site folder but ignores directories with the same name.

If a file called about doesn’t exist, but a directory named about does, Apache report a 404

file not found error to the user. If the user requests https://www.domain.com/about/,

Apache finds the about directory, then loads the configured DocumentIndex file for it.

This can be exceptionally frustrating for users and developers alike since, from a human

perspective, there should be no difference between https://www.domain.com/about

and https://www.domain.com/about/.

This is generally a condition handled by most modern CMS, but you may still run

across it from time to time.

Here’s an example of how you can work around this using Apache’s RewriteEngine.

<IfModule mod_rewrite.c>

 RewriteEngine On

 # Redirect Trailing Slashes If Not A Folder...

 RewriteCond %{REQUEST_FILENAME} !-d

 RewriteCond %{REQUEST_URI} (.+)/$

 RewriteRule ^$ %1

</IfModule>

Table 2-9 goes through this line by line.

Chapter 2 Configuration Essentials

https://www.domain.com/about
https://www.domain.com/about/
https://www.domain.com/about
https://www.domain.com/about/

50

Table 2-9.  Breakdown of a Conditional Rewrite to Remove a Trailing Slash

Directive Explanation

<IfModule mod_

rewrite.c>

If the Rewrite module isn’t enabled or installed, you want Apache to skip

this section so that it doesn’t fail with an error when it’s loading. Of course,

that means that the directives contained within this section do not redirect

traffic.

RewriteEngine On Turn on Apache’s RewriteEngine.

Redirect

Trailing Slashes

If Not A

Folder...

It is a comment ignored by Apache when reading through the section.

Comments are exceptionally useful in larger configuration files so that

you or the person editing this configuration file have some context around

what’s been configured and why.

RewriteCond

%{REQUEST_

FILENAME} !-d

This condition ensures that a directory doesn’t already exist. If it does,

Apache marks the condition as not met and stops evaluating the URL

against this rule.

RewriteCond

%{REQUEST_URI}

(.+)/$

This checks to see if there is a slash at the end of the URL (e.g., https://

mydomain.com/trailing/). If it does not, Apache mark the condition as

not met and stops evaluating the URL against this rule.

RewriteRule

^(.*)/($) $1 [L]

This rule removes the trailing slash from the URL.

It also contains the L flag, which instructs Apache to stop evaluating the URL

against further RewriteRules.

Putting the preceding into human-readable language, you’d get the following.

“If the URL is not a file or a directory, and contains a forward slash at the end of the

URL, remove the slash from the end of the URL and stop evaluating rules.”

�Creating Custom Error Messages
By default, Apache opens a very plain page when an error is encountered. As you can see

in the following figure, the default Apache error message gives little detail about the error.

If Apache is not configured to provide an error document, you see an unfriendly

screen like the one shown in Figure 2-1, or even worse, simply a blank white page. This is

disruptive on live websites because it takes the user outside your organization’s branding

while giving them no real solution or way out of the error.

Chapter 2 Configuration Essentials

https://mydomain.com/trailing/
https://mydomain.com/trailing/

51

Figure 2-1.  Standard Apache error page

As you can see, the error message isn’t very descriptive or helpful for the end user;

there’s no explanation of why the user got the error and no way for the user to find what

he or she was looking for. It’s also a showstopper for search engines, whose spiders are

stopped dead in their tracks by the 404 message and do not continue to catalog your

site. Figure 2-2 is a good example of a useful 404 error message on Jakob Nielsen’s site at

https://www.nngroup.com.

Chapter 2 Configuration Essentials

https://www.nngroup.com

52

Figure 2-2.  A customized error page

As you can see, the page outlines how you may have arrived at this page by

explaining the common mistakes made on the site. It then goes on to display the most

popular pages on the website along with a link to the home page, so you can move

quickly to the content you were expecting. Finally, the page provides search functionality

so that you can search for content that isn’t covered by what I discussed.

This is handled in Apache through the ErrorDocument directive. This directive lets

you specify HTML files the web server should load if an error is encountered when trying

to load a URL.

Table 2-10 lists a few common HTTP error codes that you want to account for.

Chapter 2 Configuration Essentials

53

Table 2-10.  Common HTTP Error Codes

Error
Code

Description

401 Not authorized. This error code is used when someone attempts to access a directory

protected by a username and password.

403 Forbidden. The user has requested a URL that Apache doesn’t have access to. This is

usually a file permissions problem.

404 Not Found. The user has requested a URL that doesn’t exist on the web server.

500 Internal server error. It is one of Apache’s most vague and frustrating error codes because

it covers a wide range of problems. However, this is commonly caused by a scripting error.

I go into this more in Chapter 6.

�ErrorDocument Syntax

Error documents are handled in the following format.

ErrorDocument <error number> <file to display>

To load the /errors/404.php file when the server encounters a 404 error, you would

place the following within your httpd.conf.

ErrorDocument 404 /errors/404.php

�Redirecting to External Error Documents

You can also redirect users to external error documents in the ErrorDocument directive.

This is most useful for the 401 and 403 errors, for which users aren’t allowed access to

the requested URL.

For example, if you’re running an employee extranet at https://employees.domain.com,

and you’re employing Apache’s authentication module, you can have failed logins

redirected to https://www.domain.com/errors/401.php. The syntax would look like the

following.

ErrorDocument 401 https://www.domain.com/errors/401.php

Chapter 2 Configuration Essentials

https://employees.domain.com
https://www.domain.com/errors/401.php

54

�Authenticating Users Through Apache
Apache offers basic authentication for users on your website, which lets you password-

protect directories on your web server. It can be a very useful feature for employee- or

member-only sections of your website and is used by most web developers.

Basic authentication is basic. There’s no encryption offered through basic

authentication, which means that the username and password, as well as the

information contained within the protected directory, travel as plain text through the

Internet. Although this lack of encryption doesn’t pose a problem most of the time, it

does create the potential for a man-in-the-middle attack on your data.

One way to avoid sending username and password data in clear text are to configure

digest authentication, which uses a basic encryption method to protect the password.

This method does not protect the actual data in the protected directory from being

intercepted, however. If you want a truly secure authentication method, you should

employ SSL and a proprietary login method using a scripted language and local database

connection.

Table 2-11 details the Apache directives that relate to authentication.

Table 2-11.  Apache Directives Related to Authentication

Directive Values Recommended Setting(s)

AuthName Any string value in quotation marks. Enter something descriptive that gives the

user a clue about what they are accessing; for

example,

AuthName "Employee portal."

AuthType Basic: username and password

authenticate the user

Digest: same as basic

authentication, but the password is

encrypted

Use Basic because this is the authentication

most supported by all major browsers.

Digest authentication can be buggy in some

browsers.

AuthGroupFile Specifies the location of the group

file

Do not include this directive unless you’re

configuring access for a large number of

users.

(continued)

Chapter 2 Configuration Essentials

55

Directive Values Recommended Setting(s)

AuthUserFile Specifies the location of the

password file for use with Basic

authentication (The password file is

commonly named .htpasswd.)

I’d recommend sticking with convention

on this one. It is a good security practice

to store your .htpassword file outside your

web-accessible directories to avoid a direct

request.

AuthDigestFile Specifies the location of the

password file for use with Digest

authentication

Using this directive isn’t recommended at

this time. Not all browsers support Digest

authentication.

User Specifies that a distinct user or

users are allowed to access the

protected area

Unless you’re keeping a central .htpasswd file

and want to further limit access to a protected

directory, you don’t need this directive.

Require valid-user, user username, group

groupname, file-owner, file-group

The most used option is required-user since

most people choose to maintain separate

.htpasswd files.

Satisfy Any

All

By default, Apache chooses the All option.

However, if you want users to meet one

requirement or another, use the Any option.

Table 2-11.  (continued)

�Creating a .htpasswd File

Let’s say you want to protect https://apachebook.com/employees/, allowing only

people with a specific username and password to access the URL.

Apache uses a password file to store the users it’s allowed to provide access to. As

a result, you need to create this file to use Apache’s authentication module. This stores

passwords using an encryption algorithm in a format that Apache understands.

To create your own password file, you can use the htpasswd tool, which comes

bundled with Apache on macOS and Linux. XAMPP on Windows doesn’t make this

tool available to the command line but does provide a Shell utility that provides the

htpasswd tool.

Chapter 2 Configuration Essentials

https://apachebook.com/employees/

56

Run the following command to create a new .htpasswd file, using employees as the

username you want people to use for authentication. You should create this file in the

directory you want to be protected.

htpasswd -c .htpasswd employees

You are prompted to enter and confirm a password for the user, and a new file is

created in the employees directory named .htpasswd. The following is what you see in

your terminal.

swiftly:employees darren$ htpasswd -c .htpasswd darren

New password:

Re-type new password:

Adding password for user darren

swiftly:employees darren$

Now that you’ve got your password file created at /Users/darren/sites/primary/

employees/.htpasswd, you can configure Apache to protect the directory with basic

authentication.

�Basic Configuration

Configuring basic authentication is a two-part process. First, you must set up your

password file. This file is most often named .htpasswd, and should reside in a non-web-

accessible area on your web server so that the file isn’t accessible to web users. Second,

you must configure an .htaccess file in the directory you wish to protect.

A standard setup for basic authentication looks like the following.

AuthName "Protected Directory. Employees only."

AuthType Basic

AuthUserFile /Users/darren/sites/primary/employees/.htpasswd

Require valid-user

When you (or anyone else) attempt to access https://domain.com/employees/, the

browser pops up a dialog box that asks for a username and password. If you don’t supply

the right one, you are shown an error message and prevented from accessing the URL’s

contents.

Chapter 2 Configuration Essentials

https://domain.com/employees/

57

�Adding New File Types
Apache generally knows only a few file extensions as web content: .html, .htm, .shtml,

and .cgi in general. If it encounters a file extension it doesn’t know, Apache treats the

file as a plain text document and displays it as such. While this is good most of the time,

there are occasions on which you want to use a different file extension. For example,

when adding PHP files to your website, you must tell Apache how to handle files with the

.php file extension.

The installation program for packages such as PHP often handles this, but you

should know how to set up new file types in Apache just in case something goes

wrong. It’s also useful for creating custom file extensions if you want to obscure the

programming language used by scripts, for example.

�Configuring mime.types

The first step in creating new file types is to add a new entry to the mime.types

configuration file or add to an existing entry. For example, if you wanted files with a

.content extension to be treated as HTML files, you would need to search for the text/

html line, and edit it to match the following.

text/html html htm content

�Including External Configuration Files
The include directive in Apache allows you to maintain several Apache configuration

files separately, which are then included as part of the main httpd.conf. This is an

extremely useful directive, especially in situations in which you’re running multiple

domains on a single host, or if you want users to have the ability to access and change

the configurations for their directories on the server.

Creating multiple configuration files lets you keep the core configuration of the web

server safe from prying fingers while letting people change configurations for their own

services. It’s also an extremely effective way of managing your server’s configuration.

For example, you could set up several configuration profiles by creating multiple

configuration files, which let you adjust Apache’s settings depending on the expected

load. Alternatively, you could create a “safe” configuration for troubleshooting purposes.

Chapter 2 Configuration Essentials

58

�Applying Changes
Once you’ve made changes to your Apache configuration files, you need to apply them. If

you’ve edited an .htaccess file, there are no further steps for the configuration changes.

They are loaded the next time the directory is requested.

However, if you’ve made changes to the httpd.conf file or files included in the httpd.

conf configuration file, you must restart Apache for the changes to take. Thankfully,

Apache has included tools so you can do just that. On macOS and Linux, Apache is

controlled by a utility called apachectl. To restart the Apache server using the apachectl

utility, run the following.

apachectl graceful

There is also an apachectl restart command; however, if you use graceful to

restart your web server, you avoid disconnecting users who are currently on the server.

Two other commands are available for controlling the web server: shutdown and start.

You should only use these commands if you expect to take the web server down for an

extended time for maintenance and if you do not want any connections made to it.

The final command is apachectl configtest. I highly recommend using this to

test any configuration changes you’ve made before restarting the server, as it prevents

Apache from shutting down due to a typo or invalid configuration.

Note  In Windows, you use the XAMPP control panel to restart Apache.

�Summing It Up
You now have Apache installed and configured to its defaults. You’re almost ready to

go live with your website! You’ve learned about file types, configuring modules, and

updating the default Apache configuration. I also covered rewriting URLs, protecting

sites behind a username and password, and creating custom error pages that match your

website’s look and feel.

In the next chapters, you use the directives you learned in this chapter to set up

virtual hosts. You also learn about modules, log files, and scripting languages. And you

set up a secure server, all built using the knowledge from this chapter.

Chapter 2 Configuration Essentials

59

CHAPTER 3

Configuring Virtual Hosts
Ah, the wonders of modern technology.

In the early days of the web, it wasn’t very common for people to have their own

domain names. Hosting was hard to come by, and when you could find it, it was

anywhere from $50 to $300 a month, plus up to $75 a year for the domain name itself. I

recall one ISP in my hometown was selling a luxury hosting package that included 300

kilobytes of storage and 150 megabytes of traffic for $100 a month. A far cry from the

discount hosting of today!

As a result, most websites had impossibly long directory structures to remember to

access them directly, but you only needed one server machine to run the web server

on. For example, the first website I published was a personal site located at http://

mypage.direct.ca/s/solas/. Not exactly the most memorable URL. (The evolution of

that site now sits at http://staticred.com, which I think you will agree is a much more

memorable domain.)

Obviously, this has changed in the last few years, and the number of registered

domain names has increased dramatically to the point where it’s hard to find a domain

name that isn’t already registered.

As a result of the explosion in domain name ownership, the Apache group needed to

add a virtual hosting feature to Apache, which granted the ability for multiple domains to

share a server instead of placing each domain on its own server. As far as the domain and

the browser are concerned, the domain has its own dedicated server, and the need for

long, convoluted paths is removed.

Virtual hosting works by listening to the requests sent to the Apache web server

to determine which domain is being accessed, then directing the traffic to the proper

directory to find the files requested. In this way, you can completely segregate websites

on your server without worrying about things such as file conflicts.

And, as it turns out, this works well for setting up multiple local development sites

with their own custom domain names without having to purchase and find hosting!

© Darren James Harkness 2022
D. J. Harkness, Apache Essentials, https://doi.org/10.1007/978-1-4842-8324-0_3

http://mypage.direct.ca/s/solas/
http://mypage.direct.ca/s/solas/
http://staticred.com
https://doi.org/10.1007/978-1-4842-8324-0_3

60

�A Quick and Dirty Guide to Domains
You’ve been using domain names as long as you’ve been on the Internet. But there’s a

good chance you don’t know exactly how they work. This knowledge is useful as I start

talking about setting up virtual hosts and development domains. So, let’s take a short

tour through what domain names are and how they work.

Computers like numbers. The Internet operates primarily on a series of numbers

called IP addresses. These are like latitude and longitude for the Internet, providing

computers and servers a way of finding each other within an extremely large network.

The early Internet used a system called IPv4, which looks similar to the following.

172.16.254.1

This provides computers with a network (the first two numbers) and the host (the

second two numbers). Each of the four numbers runs from 0 to 255, though some

combinations of numbers are reserved for special use. For example, an IP address that

starts with 10.0 or 192.168 refers to a local network that is unavailable to the Internet.

IP addresses also generally do not use 255 because it is used for broadcasting. By

combining these numbers, IPv4 supported over 4 billion unique IP addresses.

As the Internet grew, however, enough devices were connected that this limit was

in danger of being exceeded. So IPv6 was created, which provided many more unique

addresses (to be precise, 340,282,366,920,938,463,463,374,607,431,768,211,456, or more

than 340 undecillion, which is an actual word I just had to look up). Although this limit

can eventually be hit, the likelihood of running out is extremely low.

An IPv6 address looks something like the following.

001:0db8:85a3:0000:0000:8a2e:0370:7334

This breaks down similarly to IPv4; the first four numbers refer to the subnet (similar

to the network in IPv4), and the second four numbers refer to the interface ID (similar to

IPv4’s host).

You might notice something with both IPv4 and IPv6: they’re not memorable or easy

to read. And at this point, you’re wondering how this all relates to domain names like

Google.com, Facebook.com, or any other website addresses you’re used to regularly

seeing. This is where DNS (Domain Name System) comes in. It translates a human-

readable (and therefore much more memorable) domain name into an IP address

behind the scenes.

Chapter 3 Configuring Virtual Hosts

61

For example, DNS maps the human-readable google.com to the machine-readable

IPv4 address 172.217.14.206.

DNS works from right to left when reading a domain name and breaks it down into

three parts. For www.apachebook.com, shown in Figure 3-1, the TLD is .com, the domain

name is apachebook, and the subdomain is www (a common website subdomain). Many

sites don’t include the subdomain, using only the domain name and TLD—for example,

apachebook.com.

Figure 3-1.  Parts of a domain name

�What Are Virtual Hosts?
One of the benefits of DNS is that there is no strict 1:1 mapping of a domain name to an

IP address. Multiple domain names can be assigned to a single IP address, allowing a

single server to handle multiple websites. Because each domain name shares a single

host, they are referred to as virtual hosts. This allows a single Apache instance to handle

multiple websites concurrently without having to set up separate servers.

For example, I run apachebook.com (the website for this book) on the same server

as my personal site, staticred.com, a Slack app I created, today.shipton.io, and

a few others. None of these domains are particularly complex or take up a bunch of

bandwidth. Setting these up as virtual hosts on the same Apache installation helps

reduce my hosting costs.

I also use virtual hosts in another context: development. I currently have around

ten virtual hosts in Apache on my workstation for various projects. Each one has its own

domain name set up. For example, today.local for the Today app’s website, apache.

local for development on apachebook.com, and personal.local for my personal site.

These domains are only available from my workstation and work even when I’m not

connected to the Internet.

Chapter 3 Configuring Virtual Hosts

http://www.apachebook.com

62

�Creating Development Domains
The previous edition of this book took readers through installing and configuring Bind,

a tool to manage the translation of domain names to IP addresses over the Internet. For

setting up local development domains, this is complete overkill. So, I’m going to simplify

it to make your life better.

There are three ways that you can go about this: using the local hosts file to configure

ad hoc domain names for your local IP address, using a tool like ngrok that sets up

temporary domain names that point back to your computer, and creating subdomains via

your hosting provider that point back to your public IP address on the Internet.

I recommend using the first of these options, as it is completely self-contained, does

not open your computer to the rest of the world, and is fairly simple to set up. However,

you may want to make the development environment on your computer available to

others, or you might be setting up a dedicated development machine that you want

access to regardless of where you are. For that, the second two options are better. Make

sure you read up on securing your Apache setup in Chapter 5.

I also recommend that unless you specifically create a subdomain, you set up all of

your development domains with the .local TLD. This special-use TLD is reserved for

this purpose to avoid issues with pre-existing domain names.

�Using the hosts File to Manage Local Domains
macOS, Windows, and Linux all have an easy method of specifying ad hoc local domain

names that don’t require you to register the domain or set up complicated DNS software.

Each of these operating systems contains a file called hosts, which acts as a local

reference for DNS lookups and overrides.

You can find the hosts file at /etc/hosts on macOS and Linux. On Windows, you

can find it at c:\windows\system32\drivers\etc\hosts. On all operating systems, this

file is protected, and you need to use administrative privileges to save your changes to

the file.

Once you have found the hosts file, edit it with administrative privileges to create a

local development domain that points to the IP address for localhost (always 127.0.0.1).

When you open this file for editing, you see some examples already exist. But in general,

the format is as follows.

domainname ip.address

Chapter 3 Configuring Virtual Hosts

63

Here’s an example of what an entry looks like.

apachebook.local 127.0.0.1

Because domain names are just easy-to-remember references for IP addresses, you

can associate multiple domains against a single IP address. And this is where things get

useful for local development because you can set up something like the following.

client-a-site.local 127.0.0.1

client-b-site.local 127.0.0.1

client-c-site.local 127.0.0.1

my-playground.local 127.0.0.1

That’s four different local domains that point to the exact same Apache installation,

but separate working directories on your computer.

/Users/darren/code/client-a/

/Users/darren/code/client-b/web/

/Users/darren/code/client-c/public/

/Users/darren/code/playground/

You can also use the hosts file to point local domain names to a different IP address.

For example, I use a Raspberry Pi for my personal dashboard. On my workstation, I’ve

added this to my hosts file.

dashpi.local 192.1681.1.42

If you are using an old desktop or a Raspberry Pi for a development environment,

you can use the preceding example to set up your local domains.

I’ll get into how to configure Apache for this shortly.

�Using ngrok to Manage Local Domains
If you don’t feel comfortable editing system files (an admirable trait), don’t fret. There

are tools available that manage local domains for you, such as ngrok (https://ngrok.

com) and localtunnel (https://localtunnel.github.io/www/). These tools create a

tunnel between your computer and its server through which Internet traffic can travel.

They’re a relatively safe way to create domain names that are accessible through the

Internet, regardless of where you are.

Chapter 3 Configuring Virtual Hosts

https://ngrok.com
https://ngrok.com
https://localtunnel.github.io/www/

64

Let’s run through a setup using localtunnel, a free service offered under an open

source license.

First, you need to install localtunnel. There’s a quick start tutorial available at

http://localtunnel.me that uses npm to install it globally. Once installed, the lt

command is available in your terminal. You can use this to create a subdomain on the fly

to point to your localhost and a port. By passing the --subdomain argument, you can also

request a specific subdomain that’s more memorable.

Here’s an example that requests the apachebook subdomain, pointing to a Node.js

application running locally on port 3000.

$ lt --port 3000 --subdomain apachebook

your url is: https://apachebook.loca.lt

This domain keeps running as long as the lt command runs on your system.

�Setting up a Subdomain Pointing to Your
Local Environment
Another option, if you manage your domain names and have access to edit DNS records,

is to set up a subdomain that branches off your main domain. For example, you might

set up a development environment for https://apachebook.com called https://dev.

apachebook.com, with dev as the subdomain and apachebook.com as the domain.

A simple method for doing this is to use a service like Cloudflare, which provides

the ability to quickly set up domains and subdomains separately from your hosting

environments. Cloudflare has extensive documentation on how to set this up, which I

won’t reproduce here. You need to know that you are creating a subdomain to point to

your external, public IP address.

Note  You need to configure your router to allow external traffic to reach your
internal computer. This varies by Internet provider, so you want to reach out to their
support team for help with this.

Chapter 3 Configuring Virtual Hosts

http://localtunnel.me
https://apachebook.com
https://dev.apachebook.com
https://dev.apachebook.com

65

�Why Develop Locally?
Chapter 1 discussed the tiered set of environments most web development organizations

use, highlighting the local development environment as a sandbox for the developer to

test code as they write it. And this book, so far, has been focused on helping you set up

that environment.

A local development environment provides two major benefits.

•	 It’s an always-available environment to test your code, regardless of

whether you are connected to the Internet.

•	 It speeds up testing and debugging while you’re developing your

codebase.

Local development doesn’t require access to the Internet to test your code’s

functionality. So long as you have Apache configured to load your local virtual domain,

you can load a site up in your browser and use it just as you would on the live website.

The ability to quickly test and debug your codebase is the real power of setting up a

local development environment, however. Changes can be tested as soon as you save the

file, instead of waiting while you upload changes to a remote environment. This might be

only a few seconds or so each time. However, that starts to add up quickly as you dig into

particularly messy bugs.

�Configuring Apache’s Virtual Hosts
You can configure virtual hosts directly within the httpd.conf file or you can create

separate files for each virtual host, then import them into the httpd.conf via that Import

directive. To maintain central control over your Apache configuration, place the virtual

host configurations within your httpd.conf. However, if you want users on your system

to have the ability to change their own Apache configurations, or you want to make

domain maintenance more efficient, you should create separate files for each domain.

For example, apachebook.com.conf would be created for the apachebook.com domain,

whereas staticred.com.conf would be created for the staticred.com domain.

The only difference between the configuration for a virtual host and that for a regular

domain is the <VirtualHost> directive and its supporting directives: ServerName and

ServerAlias. The actual configuration of a virtual host is identical to setting up your

main domain.

Chapter 3 Configuring Virtual Hosts

66

�A Sample Apache Configuration
Here’s a sample configuration for a virtual host in Apache.

<VirtualHost 127.0.0.1>

 ServerAdmin darren@staticred.com

 DocumentRoot /Users/darren/code/apachebook.local

 ServerName apache.local

 ServerAlias www.apache.local

 ErrorLog /Users/darren/code/apachebook.local/error.log

 CustomLog /Users/darren/code/apachebook.local/access.log combined

 <Directory /Users/darren/code/apachebook.local >

 Options Indexes Includes FollowSymLinks MultiViews

 AllowOverride All

 </Directory>

 ScriptAlias /cgi-bin/ /Users/darren/code/apachebook.local/cgi-bin/

 <Directory /Users/darren/code/apachebook.local/cgi-bin>

 Options Indexes Includes FollowSymLinks MultiViews ExecCGI

 AllowOverride All

 </Directory>

</VirtualHost>

The important directives to note here are the following.

•	 VirtualHost

•	 ServerAdmin

•	 DocumentRoot

•	 ServerName

•	 ServerAlias

•	 ErrorLog

•	 CustomLog

•	 ScriptAlias

•	 <Directory>

Let’s break each one of those down.

Chapter 3 Configuring Virtual Hosts

67

�<VirtualHost>

The <VirtualHost> directive tells Apache that the configuration within it refers

to a secondary domain on the server rather than the primary domain. It takes two

parameters: the IP address of the domain and the port. The syntax is as follows.

<VirtualHost 11.22.33.44:port>

Often, this is the only IP address available on the server. Occasionally, however,

a single server may have more than one IP address, so you need to specify which IP

address to use. An example is in the Apache documentation, where the server is to be

made available on both the Intranet (where it has an IP address of 192.168.1.2) and the

Internet (where it has an IP address of 204.255.176.199). The <VirtualHost> directive

would look like the following.

<VirtualHost 192.168.0.2 204.255.176.199>

Although the IP address isn’t required in the configuration, it’s a very good idea to

include it. This saves Apache some time in recognizing the domain name, as it won’t

have to ask the DNS server to look it up.

As I mentioned, you can specify the port if you are not running Apache on the

standard port (80). The directive to configure Apache to use port 8080 is as follows.

<VirtualHost 204.255.176.199:8080>

You can also include the following above the <VirtualHost> directive to perform the

same function.

Listen 204.255.176.199:8080

�ServerAdmin

This is identical to the ServerAdmin directive used in the primary domain’s

configuration. However, in the context of virtual hosting, the ServerAdmin directive

should be changed to point to the email address of the person looking after the domain.

This way, any troubles with the domain are emailed directly to them.

The syntax of the ServerAdmin directive is as follows.

ServerAdmin user@host.com

Chapter 3 Configuring Virtual Hosts

68

�DocumentRoot

The DocumentRoot directive works exactly as it does in the primary domain’s

configuration but points to the public html directory of your domain’s primary user

instead of the primary domain’s main directory. In the case of staticred.net, this would

point to /var/home/staticred.net/public_html/. It is a good idea to separate the

document root directories for different domains to avoid confusion. Mimicking the user

hierarchy is a good way of managing things.

In Windows, it’s a good idea to create a c:\htdocs folder and place each subdomain

within it. For example, the staticred.net domain would be in c:\htdocs\staticred.

net\, and the staticred.com domain would be in c:\htdocs\staticred.com\. By default,

XAMPP installs the htdocs directory within its directory in the Program Files folder.

Moving this to the root makes it easier to find your files in Explorer.

The syntax is as follows.

DocumentRoot </path/to/directory>

�ServerName and ServerAlias

Here’s where the actual domain configuration comes in. The ServerName directive takes

a single parameter: the domain name. It looks something like the following.

ServerName staticred.net

After you’ve declared the primary domain name for the virtual host, you can now

set up aliases for it. The most common one, of course, is www. You could also set up

ww.staticred.net or wwww.staticred.net (common mistyped subdomains). You could

even go wild and set up a.little.bit.of.staticred.net.

ServerAlias is also useful to point completely different domain names to the same

DocumentRoot without having to duplicate configurations. For example, you could

register two domains—domaina.com and domainz.com—and set up domaina.com in the

ServerName directive and domainz.com in the ServerAlias directive. No matter which

of the domains a browser requested, the same content would be sent back. This is the

secret trick of the bulk domain registry sites to park thousands of domains on their

servers.

The syntax of the ServerAlias directive is as follows.

ServerAlias <subdomain.domain.com>

Chapter 3 Configuring Virtual Hosts

http://ww.staticred.net
http://wwww.staticred.net

69

�ErrorLog and CustomLog

The ErrorLog and CustomLog directives set up individual log files for each domain.

I’d highly recommend this practice, as it makes things such as statistical analysis and

archiving much easier in the long run. The ErrorLog directive stores Apache runtime

information and messages from your scripting environment; the CustomLog stores the

activity between Apache and its web clients.

The syntax for the ErrorLog and CustomLog directives is as follows.

ErrorLog /path/to/error.log

CustomLog /path/to/access.log type

The ErrorLog directive is relatively straightforward: you need only point it to the

location of the domain’s error.log file. The CustomLog directive takes an additional

parameter, which tells which type of access log to record. More information can be found

in Chapter 6.

�ScriptAlias

The ScriptAlias directive in the virtual host configuration is identical to that in the

main domain configuration. However, you want to point the ScriptAlias to a unique

directory for every domain. This way, you can keep CGI scripts separate from one

domain to another and avoid scripts from one domain conflicting with another domain’s

scripts.

The first parameter of the ScriptAlias directive sets up the name of the CGI

directory, as Apache sees it, and is relative to the DocumentRoot. The second parameter

points to the physical location of the scripts directory.

One of the most useful reasons for using the ScriptAlias directive is to be able to

use CGI scripts that live outside of your DocumentRoot directory. For example, you have

two domains whose DocumentRoot directives point to different folders. However, you

want to share CGI scripts between the two of them. Using the ScriptAlias directive,

you can place the CGI scripts within DocumentRoot for the first domain, then point

the second domain’s ScriptAlias to that folder; it appears the folder exists on both

domains.

The syntax for the ScriptAlias directive is as follows.

 ScriptAlias /cgi-bin/ /home/staticred/public_html/cgi-bin/

Chapter 3 Configuring Virtual Hosts

70

�Directory

After configuring the main document root directory for Apache, you need to specify

options for it by creating a <Directory> entry. This sets the actual configuration of your

website within Apache and controls what access files on your website have.

<Directory /var/www/>

 Options Indexes Includes FollowSymLinks MultiViews

 AllowOverride All

 Order allow,deny

 Allow from all

</Directory>

This can be broken down pretty easily. In the <Directory> directive, you need to

specify the directory you’re configuring. Since you want to configure the main domain,

you should match the DocumentRoot directory, /var/www. If you want to specify options

for a different directory, say /cgi-bin, you would add another section, like the following.

<Directory /var/www/cgi-bin>

 Options Indexes Includes FollowSymLinks ExecCGI MultiViews

 AllowOverride All

</Directory>

This section would allow CGI files to be executed in the /cgi-bin directory, but

not within the rest of your website. This allows you to contain all script files in a single

directory, making it easier to audit what scripts are running on your Apache server.

When you configure a directory, you also configure all its subdirectories. So, when

you make changes to /var/www, the changes would also be applied to /var/www/

images. To give special configurations to individual subdirectories within your main

DocumentRoot, you must create separate <Directory> entries for each. After you tell

Apache which directory you want to set options for, you need to tell it which options

to configure the directory with. Table 3-1 lists the many options that you can set on a

directory.

Chapter 3 Configuring Virtual Hosts

71

Table 3-1.  Available Options in Apache

Option Description Should I use it?

All Enables all options except

MultiViews. This is the default

setting.

If you’re looking for a quick way

to configure a directory and are

not concerned about performance

or security, then yes. Otherwise,

specify your options manually.

ExecCGI Allows CGI files to be executed

in the directory (generally using

the Perl programming language).

This should only be enabled for

directories containing scripts

because enabling it for all

directories causes Apache to take

a hit on its performance.

You should use this only for

directories that contain CGI files.

Note that you do not need to use

this setting for PHP files within a

directory.

FollowSymLinks If this is enabled, the server follows

symbolic links within a directory.

Symbolic links are similar to

Windows shortcuts; they point to

other files or directories within a

UNIX system. This option is ignored

if used within a <Location>

directive.

Yes. It allows you to set up

shortcuts to files and directories

without duplicating documents on

your system. This is a side benefit

because you only need to edit the

original file, and all symbolic links

are automatically updated.

Includes If server-side includes (SSI) are

enabled on your Apache server,

this option allows HTML files to use

all functions of SSI, including the

#exec function.

No. Most modern websites no

longer use SSI, as languages such

as PHP offer this functionality.

If you are using SSI, it’s

recommended to use the

IncludesNOEXEC option.

(continued)

Chapter 3 Configuring Virtual Hosts

72

Table 3-1.  (continued)

Option Description Should I use it?

IncludesNOEXEC This option is identical to the

Includes option but doesn’t enable

the #exec function. The #exec

function allows an HTML document

to execute a system command.

Yes, if you are using SSI. This

option is identical to the Includes

option but removes the #exec

function from SSI.

Indexes If no documents matching the ones

specified in the DocumentIndex

directive are found (index.html,

for example), Apache returns a

formatted directory listing of the

requested URL.

This option can be enabled or

disabled, depending on the level

of security that you want on your

Apache server. If this option is

enabled, it shows users a listing of

the files within a directory. Though

this is fine for most applications,

you may not want it for others

(for example, a directory that

contains script files). If this option

isn’t enabled, a request for a

directory that doesn’t contain a

DocumentIndex file returns a 403

forbidden error.

MultiViews The MultiViews directive searches

for files matching the requested

file. For example, Apache displays

the closest match if a requested

file doesn’t exist on the server.

This is recommended so that you

can catch any mild typos made by

people requesting URLs.

SymLinksIfOwnersMatch IT is identical to the

FollowSymLinks option but only

follows the symbolic link if it’s

owned by the same user on the

system as the original directory. If

the same user does not own the

symlink, the symbolic link is not

followed.

It’s a good idea to enable this

option if you want to preserve

security within your system. For

example, if you allow users on your

system to have their own websites

through user directories, enabling

this option is a good idea.

Chapter 3 Configuring Virtual Hosts

73

�Using Separate Configuration Files
A great way to maintain your virtual hosts is to separate them into individual

configuration files. You can quickly find and make changes to a domain’s directives using

individual configuration files. You can also give control of the domain configuration to

individual users on the system without compromising the other domains or the main

Apache configuration. As far as Apache is concerned, it’s as though you included the

information into the main httpd.conf.

To import files into the httpd.conf, you can use the Include directive, which takes

the following syntax.

Include /path/to/file.conf

If you set up two configuration files for local domains, personal.local and company.

local, you would put the following in httpd.conf.

Include /usr/local/etc/extra/http-personal.conf

Include /usr/local/etc/extra/http-company.conf

The best practice with the Include directive is to specify the file’s absolute physical

path. However, you can also specify paths relative to the Apache ServerRoot directory.

The same file (assuming ServerRoot were set to /etc/apache) would be as follows.

Include extra/file.conf

Once you have separated the configuration into individual files, you can give read/

write permissions to allow users to modify their domain information.

�Putting It All to Work
Now you have everything you need to set up multiple development instances using

Apache. Let’s run through an example where you create a development environment for

a personal portfolio dev site and a client dev site for Cree Incorporated.

Chapter 3 Configuring Virtual Hosts

74

�Pointing the Virtual Domains to Your Local Computer
First, let’s add the virtual domains to our hosts file. Add the following lines.

127.0.0.1 personal.local

127.0.0.1 creeinc.local

Save the file, and test it out by opening your terminal and pinging the virtual

domains. Here’s an example for personal.local (the -c4 option stops after four pings. If

you don’t add this, you can stop pinging the domain by pressing Ctrl+C).

$ ping -c4 personal.local

PING personal.local (127.0.0.1): 56 data bytes

64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.033 ms

64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.240 ms

64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.131 ms

64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.100 ms

--- personal.local ping statistics ---

4 packets transmitted, 4 packets received, 0.0% packet loss

round-trip min/avg/max/stddev = 0.033/0.126/0.240/0.075 ms

You should see something similar to this. If not, check your /etc/hosts file to ensure

it’s using the right values.

If you are using a dedicated device like a Raspberry Pi for your dev server, then you

need to use its internal IP address instead of 127.0.0.1 in your hosts file.

�Configuring Apache for Multiple Virtual Hosts
Once you’ve set up the virtual domain on your computer, it’s time to start configuring

Apache. Open your terminal and head to the configuration directory specified for your

operating system in Table 1-6 in Chapter 1.

On Windows and macOS, you find a sample virtual hosts configuration file in

the extra directory called httpd-vhosts.conf. This file contains all your virtual host

configurations.

On Linux, the configuration file needs to be created in the sites-enabled directory.

You can create a single file for all configurations, like Windows and macOS, or you can

create individual files for each site. For simplicity, I recommend following the Windows

and macOS models. Create a new file called 000-vhosts.conf.

Chapter 3 Configuring Virtual Hosts

75

In your virtual hosts configuration file, add the following. Change the location of the

DocumentRoot and <Directory> to match your own public web document locations

(see the “Where to Put Your Website Files” section in Chapter 1).

Note T he following examples assume a code repository where support files are
in the main directory and publicly accessible web documents are in a subdirectory
named public.

<VirtualHost *:80>

 # Sets the document directory to our personal site.

 DocumentRoot "/Users/darren/code/personal-site/public"

 # Tells Apache what domain to listen for requests to

 ServerName personal.local

 # Configure logging for the virtual domain. This separates

 # out each domain into its own log files for easier scanning.

 ErrorLog ${APACHE_LOG_DIR}/personal.local-error.log

 CustomLog ${APACHE_LOG_DIR}/personal.local-access.log combined

</VirtualHost>

<Directory /Users/darren/code/personal-site/public>

 # Allow .htaccess files to be used

 AllowOverride All

 # Configures index.html or index.htm to be the

 # default page for each directory. For PHP-based

 # sites, this configuration will be

 # DirectoryIndex index.php index.html

 DirectoryIndex index.html index.htm

 # Turn on symbolic link following and multiviews

 Options FollowSymLinks Multiviews

 # Configures Multiviews to match any file.

 MultiviewsMatch Any

Chapter 3 Configuring Virtual Hosts

76

 # Lets anyone access the virtual domain

 Require all granted

</Directory>

<VirtualHost *:80>

 # Sets the document directory to our personal site.

 DocumentRoot "/Users/darren/code/creeinc/public"

 # Tells Apache what domain to listen for requests to

 ServerName creeinc.local

 # Configure logging for the virtual domain. This separates

 # out each domain into its own log files for easier scanning.

 ErrorLog ${APACHE_LOG_DIR}/creeinc.local-error.log

 CustomLog ${APACHE_LOG_DIR}/creeinc.local-access.log combined

</VirtualHost>

<Directory /Users/darren/code/creeinc/public>

 # Allow .htaccess files to be used

 AllowOverride All

 # Configures index.html or index.htm to be the

 # default page for each directory. For PHP-based

 # sites, this configuration will be

 # DirectoryIndex index.php index.html

 DirectoryIndex index.html index.htm

 # Turn on symbolic link following and multiviews

 Options FollowSymLinks Multiviews

 # Configures Multiviews to match any file.

 MultiviewsMatch Any

 # Lets anyone access the virtual domain

 Require all granted

</Directory>

Chapter 3 Configuring Virtual Hosts

77

Finally, open your main Apache configuration, httpd.conf (or apache.conf) and

load the configuration file(s) you have just created through the Include directive.

Here’s an example on macOS.

Virtual hosts

Include /usr/local/etc/httpd/extra/httpd-vhosts.conf

Save this file, and then restart your Apache web server. When Apache has restarted,

you can test your local environments in your browser. Figure 3-2 is an example of what

comes up for the first virtual host configured at http://personal.local.

Figure 3-2.  Your local virtual host (well, mine actually)

Chapter 3 Configuring Virtual Hosts

http://personal.local

78

�Summing It Up
In this chapter, you learned about configuring Apache for virtual hosts. You used the

hosts file to manage local domains through custom DNS settings, using a tool such

as ngrok to create tunnels for local development or setting up a custom subdomain to

point back to your local development environment. With that in place, you also learned

how to configure Apache to support multiple local development domains through its

VirtualHost functionality, which allows you to host multiple domains through a single

Apache installation.

Now that you understand how to set up multiple development environments in

your Apache installation, let’s move on to the next step: configuring Apache to support

scripting languages like PHP and Node.js. I’ll see you there.

Chapter 3 Configuring Virtual Hosts

79

CHAPTER 4

Scripting Languages
At some point in your life as a professional working on the Web, you’re going to have to

work with scripting languages. I know it’s a pain in the butt, but I resisted it as long as

possible. But I eventually gave in, and so will you (cue dramatic music).

It’s really not as bad as it seems. I started on my journey toward scripting languages

with server-side includes (SSI), a feature of Apache that lets you break HTML documents

down into components that could be included by the server, similar to how modern

templating systems like Twig or Smarty work. I’d been developing websites the old-old

fashioned way, by editing individual HTML documents and uploading them to the web

server. It was brutal, grueling work that caused me hours of grief whenever any changes

needed to be made to the look and feel of a website. SSI allowed me to configure specific

header and footer files and place them in a central location; this freed up my content

from the presentation and made global look/feel updates quick and painless since I was

now only editing a single global document.

As PHP grew in popularity and templating systems started gaining traction, the

world moved on from SSI, which is no longer commonly used. Where SSI allowed me

to separate my content from its presentation, PHP gave me the freedom to separate

my content from its source. Scripting languages like PHP allow you to generate

content dynamically, retrieve information from and store it on a database, accept and

process user information, and even tell you when there’s something wrong with the

website itself.

In this book, I focus on configuring Apache for two scripting languages: PHP and

server-side JavaScript using the Node.js framework.

JavaScript has rapidly grown as a server-side language through the Node.js and React

frameworks. Although it’s the language of choice for a fraction of sites compared to PHP,

it’s being used by some notable folks, including Twitter, Spotify, The New York Times,

© Darren James Harkness 2022
D. J. Harkness, Apache Essentials, https://doi.org/10.1007/978-1-4842-8324-0_4

https://doi.org/10.1007/978-1-4842-8324-0_4

80

and the Daily Mail.1 Many boot camps and web-development schools now prioritize

teaching their students JavaScript over PHP.

Apache has also added support for several programming languages, such as Python,

Ruby, C# (through the Mono framework), Lua, Perl, R, and TCL. But, as these aren’t as

frequently used, I’ll leave it to other authors to give you a hand setting them up.

�PHP
PHP has been around for a long time and is now a robust language. As of this writing,

78% of websites are built using a form of PHP, including Facebook, Instagram, Wikipedia,

and Slack.2 Because it has been around for so long, it has gained a solid reputation

among web developers as a reliable, stable, and fast language. It’s well established as

a scripting language for the Web and will most likely be the language you encounter,

especially if you are working with a CMS such as WordPress, Drupal, or Craft CMS.

�Installing PHP
If you’re using XAMPP on Windows, congratulations, you’re done! You can move on

to this chapter’s “Configuring PHP” section. XAMPP installs PHP alongside Apache

and takes care of the configuration for you. It might still be useful to read through this

section, however, if you want to make changes to PHP’s settings.

For the rest of you, I’m to walk through installing and configuring PHP on Apache, as

it’s not included in a basic Apache installation. But no fear! It’s not hard!

�Installing PHP on macOS
Apple used to include a default installation of PHP as a part of macOS. Unfortunately, as

of macOS 12.0 Monterey, this is no longer the case. So, first things first. You need to get

PHP installed! Like installing Apache, let’s use Homebrew to get PHP on our system.

Open your terminal application and type the following.

brew install php

1 https://w3techs.com/technologies/details/pl-js
2 https://w3techs.com/technologies/details/pl-php

Chapter 4 Scripting Languages

https://w3techs.com/technologies/details/pl-js
https://w3techs.com/technologies/details/pl-php

81

This installs the most recent stable version of PHP on your system. As of this writing,

that’s PHP 8.0.12. If you need an older PHP version for your projects, you can specify

this as part of the install command with the @ modifier. For example, WordPress and

Craft CMS both require PHP 7.4 and are not fully stable on PHP 8 (as of the writing of

this book).

To install PHP 7.4, your command would be the following.

brew install php@7.4

Like the install, this throws a bunch of text onto your screen. That’s OK. we’re just

concerned with the end bit in the Caveats section, paying attention to the full path for

the php7_module. and the path for the PHP configuration files (usually in /usr/local/

etc/php/). Homebrew also reminds you of what needs to be configured in Apache. But

don’t worry. I cover that in the “Configuring PHP” section of this chapter. Jot these down

in your notebook, however. You’ll need these paths later.

==> Caveats

To enable PHP in Apache add the following to httpd.conf and restart Apache:

 �LoadModule php7_module /usr/local/opt/php@7.4/lib/httpd/modules/

libphp7.so

 <FilesMatch \.php$>

 SetHandler application/x-httpd-php

 </FilesMatch>

Finally, check DirectoryIndex includes index.php

 DirectoryIndex index.php index.html

The php.ini and php-fpm.ini file can be found in:

 /usr/local/etc/php/7.4/

php@7.4 is keg-only, which means it was not symlinked into /usr/local,

because this is an alternate version of another formula.

If you need to have php@7.4 first in your PATH, run:

 echo 'export PATH="/usr/local/opt/php@7.4/bin:$PATH"' >> ~/.profile

 echo 'export PATH="/usr/local/opt/php@7.4/sbin:$PATH"' >> ~/.profile

Chapter 4 Scripting Languages

82

For compilers to find php@7.4 you may need to set:

 export LDFLAGS="-L/usr/local/opt/php@7.4/lib"

 export CPPFLAGS="-I/usr/local/opt/php@7.4/include"

To restart php@7.4 after an upgrade:

 brew services restart php@7.4

Or, if you don't want/need a background service you can just run:

 /usr/local/opt/php@7.4/sbin/php-fpm --nodaemonize

==> Summary

🍺 /usr/local/Cellar/php@7.4/7.4.27: 498 files, 72.3MB

�Installing PHP on Linux
Installing PHP for Apache on Linux is a pleasure if you use a distribution with

package management, such as Ubuntu. To install the latest stable PHP and a default

configuration for Apache, simply open a terminal and type the following.

sudo apt-get install libapache2-mod-php

This installs PHP and configures it for Apache, including editing the Apache

configuration files for you to point to the correct location. At the end of the installation

process, you are given the location of PHP’s configuration files. Jot these down in your

notebook, so you can refer to them later (generally, they are stored in /etc/php by

version number; for example, /etc/php/7.4/). Jot this directory down in your notepad.

You’ll use this later. It’s worth noting that there are two configuration files to keep track

of—one for the terminal (CLI) and another for Apache.

�Configuring Apache for PHP
Now that you have PHP installed, you need to configure Apache to properly handle

requests that need PHP to function. If you are using XAMPP on Windows, you can skip

this section, as PHP is already configured in Apache.

On macOS and Linux, Apache is not automatically configured to support PHP, even

when installing both. You need to configure Apache yourself using the following guides.

Chapter 4 Scripting Languages

83

�On macOS
Like other scripting languages, Apache supports PHP through an Apache module. In

your httpd.conf, look for the “Dynamic Shared Object (DSO) Support” section. This is

the section Apache uses to load libraries for additional functionality.

At the end of this section, add the following line, replacing 7.4 with the version you

have installed (e.g., php@8.1 for PHP 8.1). The path for this module file is what you jotted

down from Brew’s Caveats section in the previous installation step.

LoadModule php7_module /usr/local/opt/php@7.4/lib/httpd/modules/libphp7.so

Note A s of PHP 8, the module name no longer refers to the version of PHP
installed. For the preceding, replace php7_module with php_module and
libphp7.so with libphp.so.

That load the PHP module when Apache starts up. However, you still need to

configure Apache to understand when to invoke the PHP module. First, you need to add

index.php as a valid index file that Apache should load when requesting a directory.

Search for the DirectoryIndex directive and replace it with the following.

DirectoryIndex index.php index.html

This instructs Apache to first look for a file named index.php when a directory is

requested, and if no index.php file is found, to next look for index.html as a fallback.

If neither file is found, Apache returns an error or shows a directory listing if the

<Directory> section sets Indexes as an Option (see Chapter 2 for more information

on this).

Next, you need to configure Apache’s handling of PHP files. In general, PHP files

use the .php file extension. However, some alternatives are used alongside it, as listed in

Table 4-1.

Chapter 4 Scripting Languages

84

Table 4-1.  File Extension Alternatives

Extension Description

.phar PHP Archive. It allows a PHP application and its supporting files (such as CSS and

images) to be bundled as a single archive file.

.phtml Used when there is little or no data logic. These files tend to focus on presentation

instead of providing functionality. It’s a very old file extension used in PHP 2.x and not

very common in modern applications.

.phps PHP Source files. These are not functional PHP files and are intended to only display

the included PHP source code as HTML.

This configuration can be added by creating a new file in the extra directory called

httpd-php.conf. Put the following in this file.

<FilesMatch ".+\.ph(ar|p|tml)$">

 SetHandler application/x-httpd-php

</FilesMatch>

<FilesMatch ".+\.phps$">

 SetHandler application/x-httpd-php-source

 # Deny access to raw php sources by default

 # To re-enable it's recommended to enable access to the files

 # only in specific virtual host or directory

 Require all denied

</FilesMatch>

Deny access to files without filename (e.g. '.php')

<FilesMatch "^\.ph(ar|p|ps|tml)$">

 Require all denied

</FilesMatch>

This is a bit more than what’s recommended after installing PHP using Homebrew but

offers a bit more security and stability. The first section of this configuration configures

Apache to invoke the PHP module for any files that use the following extensions.

•	 .phar

•	 .php

•	 .phtml

Chapter 4 Scripting Languages

85

The second section prevents Apache from rendering files with the .phps file

extension. Files with this extension contain PHP code but are intended to be displayed as

plain text. This isn’t recommended, so I suggest keeping this section in.

Finally, the last section denies access to a set of dot files (files with an extension but

no filename). Generally, you should deny access to such files because they could contain

secure or sensitive information.

•	 .phar

•	 .php

•	 .phps

•	 .phtml

Once you have saved the httpd-php.conf file, you need to go back to your httpd.

conf and let Apache know to include its contents as part of its configuration. At the

bottom of httpd.conf, enter the following (replacing php7_module with php_module for

PHP 8.x installations).

<IfModule php7_module>

Include /usr/local/etc/httpd/extra/httpd-php.conf

</IfModule>

This instructs Apache to load the file’s contents as part of its configuration.

Once all this is complete, you can check the config using the following.

apachectl configtest

Then restart Apache through the following command.

brew services restart httpd

�On Linux
The PHP install script you ran on Ubuntu creates two configuration files in /etc/

apache2/mods-available: php7.4.load and php7.4.conf. For Apache to include

these files in its configuration, you must ensure they are set up in /etc/apache2/mods-

enabled/. This can be accomplished by either copying the files or creating a symbolic

link (the preferred method).

Chapter 4 Scripting Languages

86

To create a symbolic link, open your terminal and navigate to /etc/apache2/mods-

enabled. Enter the following commands.

sudo ln -s /etc/apache2/mods-available/php7.4.load php7.4.load

sudo ln -s /etc/apache2/mods-available/php7.4.conf php7.4.conf

�Configuring PHP
Now that you have PHP installed and set up within Apache, you should take some time

to update the standard configuration. This includes making configuration changes for

things such as upload file size and memory usage and enabling some extensions that will

be useful for later development.

�Updating Default Configuration
By default, the configuration for PHP is pretty decent. You don’t have to make any

changes to start developing locally, but I recommend making the following changes to

provide a more flexible development environment.

Note  Whenever you change the configuration values or add new directives in
your php.ini configuration file, you need to restart Apache for the changes to
take effect.

�Increasing the Memory Usage Limit
When using a development environment, you don’t need to be as concerned about

memory usage as you would be in a staging or production environment. PHP is

configured by default to use 128 MB of memory for any script’s execution.

If you are working with code that heavily uses data or complex data models, you may

want to increase the amount of memory used to help debug your code.

Chapter 4 Scripting Languages

87

You can do this through the memory_limit configuration directive by specifying a

different memory limit.3 To make things easier, you can append a size modifier to the

end of the number, using M for megabytes and G for gigabytes.

memory_limit = 512M

This sets the memory limit for each script execution to 512 MB. If you wanted to

increase this to a full gigabyte of memory, you’d instead use the following.

memory_limit = 1G

This will, to no surprise, increase the amount of memory available to a script to

1 GB. I wouldn’t recommend going this high, as this can cause problems when moving

to production. You should instead try reducing the amount of memory your script takes

up. I recommend starting with 128 MB and increasing if you see memory errors in your

error logs.

�Increasing the Upload File Size
The default upload limit in PHP is 2 MB, which often doesn’t work well for projects such

as content management systems. As such, you want to increase the maximum allowed

file size for uploading by editing the upload_max_filesize directive.4

Like the memory_limit directive, you can use a size modifier appended to the

number, using M for megabytes and G for gigabytes. Most importantly, you don’t need a

huge file size limit set. However, you may work with PDFs or other documents that take

up space. I’d suggest setting this to 200 MB, using the following.

upload_max_filesize = 200M

You can, of course, edit this as you see fit.

�Configuring Noisy Error Reporting
Production servers are generally configured to disable or heavily minimize error

reporting so that log files do not grow too large. But this also means that valuable

troubleshooting data is lost.

3 www.php.net/manual/en/ini.core.php#ini.memory-limit
4 www.php.net/manual/en/ini.core.php#ini.upload-max-filesize

Chapter 4 Scripting Languages

http://www.php.net/manual/en/ini.core.php#ini.memory-limit
http://www.php.net/manual/en/ini.core.php#ini.upload-max-filesize

88

Since you’re setting up a development environment, you want as much error

reporting as possible. This creates “noisy” error logs, which means more information is

available to help debug our programming problems.

First, you need to ensure that error reporting is turned on. Open your php.ini and

search for the following: display_errors.5 This directive controls whether errors are

reported to the page when viewing a script in the browser. By default, this is set to On,

but it is often changed to Off for production so that errors are not displayed to the end

user, which might create confusion.

Let’s ensure that the directive is configured like the following.

display_errors = On

Next, let’s configure PHP’s level of logging when encountering problems. This is

configured through the error_reporting directive.6

If you have installed PHP 8, you can safely ignore this section. PHP 7, however, is

configured to record all errors except notices, coding standards warnings, or code that

will be deprecated in future versions of PHP. This is great for production, where you only

want to report when something fatal happens.

On your development server, however, you want as much information as possible,

since it may be useful for troubleshooting later. Search for the error_reporting directive

(it should be near the display_errors directive) and modify it to match the following.

error_reporting = E_ALL

This configures PHP to report any warnings, errors, and notices it encounters when

attempting to execute a script.

�Increasing Max Execution Time
Most servers running websites are purpose-built for that role. The resources available are

dedicated to Apache, and whatever scripting languages are used. Often, even database

services are set up on separate servers.

If you’re setting up Apache on your laptop or desktop, that is not the case. Apache,

databases, and scripting languages will all compete for resources alongside your editing

5 www.php.net/manual/en/errorfunc.configuration.php#ini.display-errors
6 www.php.net/manual/en/errorfunc.configuration.php#ini.error-reporting

Chapter 4 Scripting Languages

http://www.php.net/manual/en/errorfunc.configuration.php#ini.display-errors
http://www.php.net/manual/en/errorfunc.configuration.php#ini.error-reporting

89

environment, communications tools, and browsers, which means that scripts take a little

longer to run than they would on a dedicated or virtual server.

If you find that your PHP scripts are failing with a timeout error, then you need to

adjust your timeout through the max_execution_time directive. This directive defines

how long PHP waits, in seconds, until stopping the execution of the script. By default,

this is set to 30 seconds, which is fine for most operations. However, if you are working

with a lot of data or a lot of operations at once or are pulling data from an external

source, you may want to increase this amount. Open the php.ini used by Apache, and

search for the max_execution_time directive.

Here’s an example that sets the timeout to 60 seconds.

max_execution_time = 60

�Installing PHP Extensions

Note  For Windows users who have installed XAMPP, installing PHP extensions
that are not included with XAMPP is a bit of a tricky affair. Best to put this book
down for a moment and hit up your favorite search engine if you need to install a
non-standard PHP extension.

Like Apache, PHP adds functionality through a module-based system. In PHP, these

are known as extensions. There are extensions available for caching, connecting to

databases, manipulating graphics files, and parsing data.

I’d recommend installing the following commonly used extensions.

•	 cURL

•	 GD Graphics Library

•	 MySQLi (or MariaDB)

•	 PDO::MySQL

To install an extension, open php.ini and search for the “Dynamic Extensions”

section. Here, you see a list of extensions commented out with a semi-colon, such as

;extension=curl.

Chapter 4 Scripting Languages

90

Find the extension you wish to enable and remove the semi-colon. For the

recommended modules, ensure the following is included in the “Dynamic Extensions”

section.

extension=curl

extension=gd2

extension=mysqli

extension=pdo_mysql

Your projects might require additional extensions to be enabled, such as gettext or

intl. For example, Craft CMS requires the following PHP extensions to be enabled to

support its functions that are not enabled by default.

•	 cURL

•	 GD Graphics Library

•	 JSON (included in PHP 8, but a separate extension in earlier versions

of PHP 7)

•	 MBString

•	 PDO::MySQL

�Recommended php.ini
The following is an example of php.ini’s contents. Several additional PHP directives

can be included in this file, but the following should be configured as part of any

PHP installation. I included a description of what each directive does, along with

recommended values.

Note A ny time you make changes to your PHP configuration, you need to
restart Apache.

; Turns on PHP's scripting engine

engine = On

; Enables or disables PHP short tags. These are not generally

; recommended, as they may create issues with other file formats,

Chapter 4 Scripting Languages

91

; such as XML.

short_open_tag = Off

; Configures how much output data, in bytes, is buffered before being

; sent in response to to a browser's request. 4096 bytes is recommended

output_buffering = 4096

; Configures which PHP functions are disabled. This is useful for

; Apache-based installs, where you do not want to open access to

; powerful and potentially damaging functions.

disable_functions = pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_

wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_

wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_

handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_

sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_

getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,

;;;;;;;;;;;;;;;;;;;

; Resource Limits ;

;;;;;;;;;;;;;;;;;;;

; Configures the amount of time, in seconds, PHP waits on a script

; before failing and reporting an error. Default is 30 seconds. For

; development environments, it may be useful to increase this to 60

; seconds.

max_execution_time = 60

; Configures the amount of memory available to a running PHP script.

; By default, this is 128 megabytes, but should be increase for data-

; heavy applications.

memory_limit = 128M

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Error handling and logging ;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Configures which errors PHP reports. Production usually ignores

; deprecation errors, compatibility notes, and notices. For a

; development environment, we want to report everything.

Chapter 4 Scripting Languages

92

error_reporting = E_ALL

; Enables or disables errors being returned as part of its output. By

; default this is disabled, reporting errors only to the log files. For

; development environments, it is often useful to display these errors

; within the browser.

display_errors = On

; Enables or disables logging of errors to Apache.

log_errors = On

;;;;;;;;;;;;;;;;;

; Data Handling ;

;;;;;;;;;;;;;;;;;

; Determines which super global arrays are registered when PHP starts.

; The below registers $_GET, $_POST, $COOKIE, and $SERVER

variables_order = "GPCS"

; Determines the order data is registered into the $_REQUEST super

; variable. This places GET first, and PUT second

request_order = "GP"

; Enables or disables the $argc and $argv variables. These are mostly

; used when a PHP script is used from the command line. Since Apache

; doesn't work this way, I recommend disabling them to increase

; performance.

register_argc_argv = Off

; Enables or disables Just In Time processing for the $_REQUEST and

; $_SERVER variables. This means they aren't created until they're

; used in the script, increasing performance.

auto_globals_jit = On

; Configure the maximum size of POST data. The default is 8 megabytes,

; which is generally considered sufficient.

post_max_size = 8M

; Configures the default MIME type sent to the browser, which helps it

; to render the content. In general, we want to keep the default value.

Chapter 4 Scripting Languages

93

default_mimetype = "text/html"

; Configures the character set sent to the browser, which helps it to

; render individual characters correctly. This is important when making

; use of non-alphanumeric extended characters.

default_charset = "UTF-8"

;;;;;;;;;;;;;;;;

; File Uploads ;

;;;;;;;;;;;;;;;;

; Enables or disables the ability to receive files uploaded via

; a user's browser.

file_uploads = On

; Configures the maximum allowable file size for uploads. We will

; configure this for 200 megabytes.

upload_max_filesize = 200M

; Configures how many files can be uploaded from a user's browser

; simultaneously.

max_file_uploads = 20

;;;;;;;;;;;;;;;;;;

; Fopen wrappers ;

;;;;;;;;;;;;;;;;;;

; Configures the ability to use URLs in PHP's fopen() function. This is

; useful for loading external data files like JSON or CSV.

allow_url_fopen = On

; Configures the ability to use external URLs in PHP's include()

; function. Since this function is most commonly used for including

; PHP functionality, it's not recommended to allow this.

allow_url_include = Off

; Configures the default timeout, in seconds, when connecting to an

; external URL. This could be increased to support connecting to slow

; APIs.

default_socket_timeout = 60

Chapter 4 Scripting Languages

94

;;;;;;;;;;;;;;;;;;;;;;

; Dynamic Extensions ;

;;;;;;;;;;;;;;;;;;;;;;

; Enables the cURL extension

extension=curl

; Enables MySQLi

extension=mysqli

; Enables the GD2 graphics library

extension=gd2

; Enables the PDO extension for MySQL, which provides additional

; functionality for secure data handling

extension=pdo_mysql

;;;;;;;;;;;;;;;;;;;;

; Configure MySQLi ;

;;;;;;;;;;;;;;;;;;;;

[MySQLi]

; Configure the number of persistent links. We'll set this to -1, which

; indicates no limit

mysqli.max_persistent = -1

; Enables or disables persistent connections to a MySQL server.

mysqli.allow_persistent = On

; Configures the number or links allowed to a MySQL server. We'll set

; this to -1, which indicates no limits

mysqli.max_links = -1

; Configures the default port for connecting to a MySQL server.

; Generally, this is port 3306

mysqli.default_port = 3306

; Enable or disable reconnecting to the MySQL Server. This is disabled

; by default, and I recommend leaving this setting.

mysqli.reconnect = Off

Chapter 4 Scripting Languages

95

;;;;;;;;;;;;;;;;;;;;;;

; Configure Sessions ;

;;;;;;;;;;;;;;;;;;;;;;

[Session]

; Configures how PHP stores and retrieves session data. This saves the

; data securely as files, which helps manage memory usage.

session.save_handler = files

; Enables or disables strict session mode. This is a security option,

; disabled by default, which requires a session ID be created before

; working with session data.

session.use_strict_mode = 0

; Enables or disables the use of Cookies within PHP

session.use_cookies = 1

; Enables or disables the use of a cookie for storing and maintaining

; the session ID. This is highly recommended for security.

session.use_only_cookies = 1

; Configures the name of the session stored in the cookie. This is

; configured to use the contents of a PHP constant.

session.name = PHPSESSID

; Configures the serializer used by PHP for session data.

session.serialize_handler = php

; Configures the expiry of data for session data, in seconds, before it

; is automatically removed.

session.gc_maxlifetime = 1440

Chapter 4 Scripting Languages

96

�Testing It Out
After making changes to your php.ini to support your particular codebase, restart

Apache and navigate to your DocumentRoot. Create a file named index.php and include

the following PHP script.

<?php

phpinfo();

This simple script calls the phpinfo() function, which returns information about

your PHP installation. Save the file, and open this URL in your browser: http://

localhost/index.php. You see a screen similar to Figure 4-1.

Figure 4-1.  PHP configuration page

Chapter 4 Scripting Languages

97

This contains a wealth of information about your PHP configuration, including its

version, installed extensions, and the Apache DocumentRoot. It’s extremely useful as a

troubleshooting tool in development environments.

�Configuring Node.js on Apache
When I wrote the first edition of this book in 2004, PHP was an up-and-coming scripting

language that was beginning to eat into the dominance of Perl, which was the more

prevalent language for building dynamic, functional websites at the time. Writing this

chapter in 2022, I feel a bit of deja vu as I discuss Node.js and PHP. PHP is still, by far, the

more prevalent scripting language for building web applications and websites, but Node.

js is starting to eat away at that.

Node.js applications operate differently from PHP-based ones; where PHP-

based sites require a web server such as Apache or nginx to handle the traffic, Node.

js applications are built to be self-sufficient applications in their own right, managing

network traffic and requests internally. When setting up a Node.js application for

production, they’re often set up as system services so that the Node.js application

restarts when the system is hosted on reboots.

The standard model for running Node.js applications on a development

environment is to use Express and set up a transitory server through a command in your

terminal, such as the following.

node app.js

This starts up a server built into the node application, which listens for connections

on a specified port, such as 3000, waiting for users to access the application.

And, for the most part, this is fine for development. However, you might want

something running a bit more permanently, where you don’t have to keep a terminal

window up and running, ensuring that the node application isn’t interrupted. You might

also want to run multiple Node.js applications without memorizing what port each is

running on.

This is where Apache can become very useful. You can combine Apache’s virtual

hosts with its ability to act as a reverse proxy or gateway server.

Chapter 4 Scripting Languages

98

�Configuring Your Node.js Application for Apache
Node applications are not, by their nature, persistent. Each Node application runs as its

own runtime executable, separate from the server it is deployed to. On the one hand, this

is extremely convenient, as you do not necessarily need to configure a full web server to

deploy your Node application. However, it also means that your Node application is only

accessible so long as that runtime is active. You must manually restart it if it’s interrupted

for any reason, including a reboot.

�Installing pm2
To be always available, you need to run the Node application as a service. There are a

couple of options to do this, but the simplest is to use PM2, a process manager for Node.

js applications that allows you to easily turn them into services.

To install PM2, open your terminal and type the following.

npm install pm2@latest -g

Note  You may need to run this as sudo on Linux

This installs PM2 globally.

�Configuring the Application
Let’s set up a basic Node.js Hello World application to show how things work. Create a new

directory in your code directory, and create a new app.js file with the following contents.

const express = require('express')

const app = express()

app.get('/', function (req, res) {

 res.send('Hello World!')

})

app.listen(3000, function () {

 console.log('Example app listening on port 3000!')

})

Chapter 4 Scripting Languages

99

Next, you need to create a package.json with the following.

{

 "name": "helloworld",

 "version": "0.0.0",

 "description": "",

 "main": "app.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "You!",

 "license": "ISC",

 "dependencies": {

 "express": "^4.15.3"

 }

}

This very simple program listens for a connection on port 3000 and outputs “Hello

world!” in response. You’re not going to win any awards, but it’ll do for our example.

You can test to make certain that things are working by typing node app.js, then

visiting http://localhost:3000/ in your browser.

�Adding Your Application as a Service
Once you’ve configured your application, you can use PM2 to add it as a service.

Type the following into your terminal. After changing to the directory, your Node.js

application is stored in (substituting app.js with your application’s main entry point).

pm2 start app.js

You see something similar to the following.

[PM2] Spawning PM2 daemon with pm2_home=/home/darren/.pm2

[PM2] PM2 Successfully daemonized

[PM2] �Starting /var/www/sites/nodejs/helloworld/app.js in fork_mode

(1 instance)

[PM2] Done.

Chapter 4 Scripting Languages

100

┌───┬──────────────┬───────┬─────┬────────┬───────┬───────┐

│  id │ name │ mode │ ↺  │ status │ cpu │ memory │

├───┼──────────────┼───────┼─────┼────────┼───────┼───────┤

│ 0 │ app │ fork │ 0  │ online │ 0% │ 29.3mb │

└───┴──────────────┴───────┴─────┴────────┴───────┴───────┘

�Configuring Apache’s Reverse Proxy
Here’s where the magic comes in. By combining what you’ve learned about virtual hosts

with a feature in Apache that lets you configure it as a gateway for other services, you

can create an always-up development service that allows for memorable domain names

instead of remembering a set of cryptic port numbers for your Node.js applications.

The full documentation for Apache’s reverse proxy is at https://httpd.apache.org/

docs/2.4/howto/reverse_proxy.html if you are interested in learning more. However,

you should only need what’s on the following pages for this use.

�Enabling Apache’s Proxy Modules
Apache’s reverse proxy functionality is handled through two modules: mod_proxy and

mod_http. These need to be enabled in your Apache installation to set up a persistent

Node.js site.

�On macOS and Windows
Open your httpd.conf, and look for the following line (the paths to mod_proxy.so and

mod_proxy_http.so differ on macOS and Windows).

#LoadModule proxy_module lib/httpd/modules/mod_proxy.so

Uncomment this directive by removing the #, so that you have the following.

// On Mac OS:

LoadModule proxy_module lib/httpd/modules/mod_proxy.so

LoadModule proxy_http_module lib/httpd/modules/mod_proxy_http.so

Chapter 4 Scripting Languages

https://httpd.apache.org/docs/2.4/howto/reverse_proxy.html
https://httpd.apache.org/docs/2.4/howto/reverse_proxy.html

101

// On Windows using XAMPP:

LoadModule proxy_module modules/mod_proxy.so

LoadModule proxy_http_module modules/mod_proxy_http.so

Test your configuration and restart Apache for the changes to take effect.

�On Linux
Open a terminal and navigate to /etc/apache2/mods-enabled.

Type the following.

ln -s ../mods-available/proxy.load proxy.load

ln -s ../mods-available/proxy_http.load proxy_http.load

This adds in a call to the LoadModule directive for the mod_proxy.so and mod_proxy_

http modules in Apache. You’ll configure these later in your virtual host configuration.

Test your configuration and restart Apache for the changes to take effect.

�Creating a Virtual Host Configuration
Despite running things through a proxy, you still need to configure Apache to provide

a virtual host for the Node.js server. The following configuration creates a domain

in Apache for http://nodeapp.local, and configures it to pass requests through a

configured proxy to port 3000 (instead of port 80, the default port for most URLs).

<VirtualHost *:80>

 DocumentRoot "/var/www/sites/nodeapp"

 ServerName nodeapp.local

 # Set up Logging

 ErrorLog ${APACHE_LOG_DIR}/nodeapp-error.log

 CustomLog ${APACHE_LOG_DIR}/nodeapp-access.log combined

 <IfModule mod_proxy.c>

 ProxyPass / http://portly.local:3000

 ProxyPassReverse / http://portly.local:3000/

 <Proxy *>

 Order allow,deny

Chapter 4 Scripting Languages

http://nodeapp.local

102

 Allow from all

 </Proxy>

 </IfModule>

</VirtualHost>

�Testing It Out
Once you have the preceding configured, visit http://nodeapp.local in your browser,

and you should see something similar to Figure 4-2.

Figure 4-2.  Loading your local Node.js development environment

If your Node.js app is not running, you see something like Figure 4-3.

Chapter 4 Scripting Languages

http://nodeapp.local

103

Figure 4-3.  Apache’s error page when loading a non-running Node.js application

�Configuring React Apps on Apache
If you’re building a React application and want to use Apache’s virtual hosts to allow for

simplified domain names, you have two options.

First, follow the directions for Node.js applications, and configure Apache as a

reverse proxy that accesses the Node Express server included in your React application.

Alternatively, you can configure Apache to point DocumentRoot to your React

application’s public folder. If you follow this path, ensure that Apache is configured to

use gzip compression. To do so, you want to enable the mod_deflate module in Apache.

Chapter 4 Scripting Languages

104

�Summing It Up
Phew! You made it. You learned about configuring Apache to support PHP and Node.

js in this chapter. For PHP, you now know how to install and configure PHP and then

configure Apache to support it. Node.js was a little trickier, but you learned how to

support a persistent virtual domain that connects to the Node.js server through a proxy.

The next chapter discusses one of the most important aspects of Apache’s

configuration: setting it up for secure communications on the web.

Chapter 4 Scripting Languages

105

CHAPTER 5

Securing Your Setup
You use the secure web every day without even thinking about it. With privacy laws,

trillions of dollars, euros, and yen, and corporate communications have grown

exponentially over the past 20 years. It was important to find a way for information on

the Internet to be transmitted securely. Browsers do this through HTTPS (HyperText

Transfer Protocol Secure). Whenever you see a small lock beside the website’s name in

your browser, you’re accessing it through HTTPS.

HTTPS uses a technology called Secure Socket Layers (SSL) that encrypts traffic

between a web server and a web browser.

�SSL at a Glance
SSL is used for much more than just serving websites securely. It protects confidential

email and secure FTP sessions over the Internet and can be applied to other Internet

communications. It’s basically an extremely complicated, prime number-driven form of

pig Latin.

Netscape developed SSL in 1994 to solve a distinct problem. People discovered that

the web wasn’t nearly as secure as they’d hoped. They had already started to want to use

the Internet for something other than mindless entertainment and email joke lists. They

wanted to start using it to sell merchandise, create employee-only sites, and conduct

financial transactions. It was clear that standard HTTP wouldn’t cut it since all the data

traveled on plain text. They needed a secure way to transfer information between the

browser and the server.

Several people came up with solutions for the problem; since Netscape had the

lion’s share of the browser market, their solution won. Netscape wanted to make SSL as

seamless as possible for the user, beyond giving them a notice that they were about to

enter a secure connection, the user shouldn’t have to do anything.

© Darren James Harkness 2022
D. J. Harkness, Apache Essentials, https://doi.org/10.1007/978-1-4842-8324-0_5

https://doi.org/10.1007/978-1-4842-8324-0_5

106

They achieved that goal: people use SSL daily without thinking about it.

Unfortunately, if you want to configure Apache to support secure socket layers, you do

have to think about it. So, let’s move on.

�Configuring SSL for Subdomains
Configuring SSL for subdomains is much easier now than when this book's first edition

was written. Two tools are now available that greatly simplify the process: LetsEncrypt

and Certbot.

When the first edition of Apache Essentials was written, obtaining a secure certificate

that worked with SSL was difficult and expensive. LetsEncrypt.org was created in 2012 to

make it easier to set up secure websites, removing both financial and technical barriers

to adoption. Certbot is a companion utility that automates registering and renewing SSL

certificates from LetsEncrypt.

This section explains using these tools to create a signed certificate for your

subdomain.

�Installing Certbot
First, you need to install the Certbot application on your system. This tool registers and

renews certificates from LetsEncrypt and installs them in Apache for you.

�On macOS

Let’s use Homebrew to install Certbot. Open your terminal and type the following.

brew install certbot

This downloads the latest version of Certbot and installs it on your system.

�On Linux

On Linux, you need to install Certbot with your package manager. Open a terminal and

type the following.

sudo apt-get install certbot

Chapter 5 Securing Your Setup

107

�On Windows

On Windows, you need to download the installer and install it on your system. You can

find the current Windows installer at https://certbot.eff.org.

�Running Certbot
Once Certbot is installed, you can run it to generate a certificate for your subdomains.

If you’ve already set up Apache for your local subdomains, you can run Certbot with

the Apache plugin. Open a terminal and type the following.

sudo certbot certonly —apache

This reads your Apache configuration files and lets you select which configuration to

generate a certificate for.

Here’s an example for the subdomain local.apachebook.com.

sudo certbot certonly —apache

Saving debug log to /var/log/letsencrypt/letsencrypt.log

Plugins selected: Authenticator apache, Installer apache

Which names would you like to activate HTTPS for?

- -- - - -

1: local.apachebook.com

2: errors.local

3: nodeapp.local

- - - - - -

Select the appropriate numbers separated by commas and/or spaces, or

leave input

blank to select all options shown (Enter 'c' to cancel): 1

Cert not yet due for renewal

You have an existing certificate that has exactly the same domains or

certificate name you requested and isn't close to expiry.

(ref: /etc/letsencrypt/renewal/local.apachebook.com.conf)

Chapter 5 Securing Your Setup

https://certbot.eff.org

108

What would you like to do?

- - - - - -

1: Keep the existing certificate for now

2: Renew & replace the certificate (may be subject to CA rate limits)

- -- - - - - -

Select the appropriate number [1-2] then [enter] (press 'c' to cancel): 2

Renewing an existing certificate for local.apachebook.com

IMPORTANT NOTES:

 - Congratulations! Your certificate and chain have been saved at:

 /etc/letsencrypt/live/local.apachebook.com/fullchain.pem

 Your key file has been saved at:

 /etc/letsencrypt/live/local.apachebook.com/privkey.pem

 Your certificate will expire on 2022-08-13. To obtain a new or

 tweaked version of this certificate in the future, simply run

 certbot again. To non-interactively renew *all* of your

 certificates, run "certbot renew"

 - If you like Certbot, please consider supporting our work by:

 Donating to ISRG / Let's Encrypt: https://letsencrypt.org/donate

 Donating to EFF: https://eff.org/donate-le

Pay attention to those important notes at the end of Certbot’s output. It contains

the full paths for the certificates it’s created (or renewed). Jot these paths down because

you’ll use them later in this chapter.

Now that Certbot has run and installed the new certificates, you can configure

Apache by jumping to the “Configuring Apache for HTTPS” section later in this chapter.

The certificate you created is stored in the location indicated in Table 5-1, depending on

your operating system. Write it down so you can reference it in that section.

Table 5-1.  Location of Certificate Files Downloaded by Certbot

Operating System Location

macOS /opt/etc/letsencrypt/live/subdomain.domain.tld/

Linux /etc/letsencrypt/live/subdomain.domain.tld/

Windows C:\Certbot\live\subdomain.domain.tld\

Chapter 5 Securing Your Setup

109

�Configuring HTTPS for Local Domains
Unfortunately, Certbot and LetsEncrypt aren’t available to use for localhost or domains

ending in the .local TLD. For this, let’s dig into things in much more detail.

�Setting up a Local SSL Certificate Authority
As I mentioned earlier, every certificate must have a certificate authority to verify its

authenticity. If the authenticity of a certificate can’t be verified, then the browser won’t

trust the connection. When you set up a local development environment and want to use

SSL, you must set up your own certificate authority (CA).

Note  Most browsers notify end users that the certificate they use does not come
from a known CA. For your first visit to a local development environment, you must
instruct your browser to trust and install the certificate.

�Installing OpenSSL
Local SSL certificates are managed through an application called OpenSSL. You must

install the OpenSSL application on your operating system to create and manage local

certificates.

�macOS

On macOS, you use Homebrew to install OpenSSL. Open a terminal and type the

following.

brew install openssl

�Linux

On Ubuntu, OpenSSL is available via its package manager. Open a terminal and type the

following.

sudo apt-get install openssl

Chapter 5 Securing Your Setup

110

�Windows

If you’re using XAMPP, you’re done! XAMPP comes preinstalled with a server certificate,

and no additional configuration is required. OpenSSL is installed, however, and available

at C:\xampp\apache\bin\openssl.exe.

�Storing Your Certificates
First, you must have a secure place to store your CA certificates and key files.

You find them in /usr/local/etc/openssl on macOS.

You find them in /etc/ssl on Linux.

You find them stored in c:\xampp\apache\conf\ssl.crt\ and C:\xampp\apache\

conf\ssl.key\ on Windows.

For UNIX and macOS X systems, your best place to store these is in the /etc/ssl

directory. For Windows, store them in the C:\OpenSSL\ca\ folder.

	 1.	 Create the certificate authority directory. In Linux, this should be

stored in /etc/ssl/ca/private; in Windows, I’d suggest storing it in

C:\OpenSSL\ca\private. Create the CA private keys directory.

mkdir –p /etc/ssl/ca/private

	 2.	 Then, set the permissions of the certificate authority directory

to be readable by root or administrator only. Nobody but the

root user or administrator should have access to the directory

that your root certificates are in. If other people can access the

root certificates, they can use them to decode the encrypted data

between the server and a browser. For Linux or macOS X, type the

following at the command prompt.

chown -R root /etc/ssl/ca/

�Generating the CA Private Key

Now that they have a place to go, you can create the key files for the CA. To do so, you

must use the OpenSSL utility, supplied with the OpenSSL libraries. To start this tool,

change to the directory you just created and type openssl.

dev:/etc/ssl# openssl

Chapter 5 Securing Your Setup

111

Note  Windows users need to specify the full path to the OpenSSL utility, which is
at C:\xampp\apache\bin\openssl.exe.

After you start the OpenSSL utility, you are presented with an OpenSSL> prompt.

Now, you can start entering commands to create your CA files. The first file you need to

create is the actual key file. This file contains a random string that creates your encrypted

data. There are several different encryption types. RSA is the most popular because it is

the most supported encryption among browser makers.

To generate an RSA key, run the genrsa command. It takes three parameters: -des3,

which selects TripleDES as the encryption format; -out, which specifies the filename to

write the RSA key to; and finally, a bit-length for the encrypted key. The recommended

bit-length is 2048. As part of the process, you are asked for a password for the private

key. Enter a unique, hard-to-guess password for your CA private key. Anyone who gains

access to this password can create new certificates using this key, allowing them to

successfully identify themselves as your server.

OpenSSL> genrsa –des3 -out ca.key 2048

When you run the command, the utility displays a bunch of information on

the screen.

warning, not much extra random data, consider using the -rand option

Generating RSA private key, 1024 bit long modulus

........................++++++

....++++++

e is 65537 (0x10001)

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

OpenSSL>

Next, you must request a new certificate from the CA through the req command.

This uses the CA’s private key and some distinct information about your installation to

create a unique public certificate. This command creates the public key you distribute to

your website users and creates new server certificates.

Chapter 5 Securing Your Setup

112

�Creating a Public CA Certificate

The public CA certificate creates and/or signs new server certificates. This is also the file

that is distributed to users of your server to authenticate that the server key is correct.

To create the public CA certificate, you must use OpenSSL utility’s req command.

The req command takes three parameters: -new tells OpenSSL to create a new key; -key

tells it which CA key to base it on, and -out specifies the file to which the certificate is

written.

OpenSSL> req -new -x509 -days 365 -key ca.key -out ca.crt

When run, the req command asks for some information about your installation.

The following is an example of the type of information it asks for and sample responses.

You can leave fields blank if you wish, but the more information you supply with the

certificate, the more confidence the end users have that it is secure.

Using configuration from /usr/lib/ssl/openssl.cnf

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:CA

State or Province Name (full name) [Some-State]:British Columbia

Locality Name (eg, city) []:Port Coquitlam

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Apache

Essentials

Organizational Unit Name (eg, section) []:

Common Name (eg, YOUR name) []:localhost

Email Address []:hello@apachebook.com

OpenSSL>

A new key, ca.csr, is written to the directory, and you are returned to the OpenSSL>

prompt. Before you can use this new public key, you must sign it. The x509 command

does this. The following command makes a new certificate (ca.crt) that expires after one

Chapter 5 Securing Your Setup

113

year (365 days). After it expires, you must generate a new CA public key. The following

shows the syntax of the x509 command and its output.

OpenSSL> x509 -req -days 365 -in ca.csr -signkey ca.key -out ca.crt

Signature ok

subject=/C=CA/ST=Alberta/L=Edmonton/O=Apache Essentials/OU=Admin/CN=Darren

James Harkness/Email=hello@apachebook.com

Getting Private key

OpenSSL>

�Signing Your Own Certificates

In most OpenSSL distributions, a script named sign.sh is included. This script signs

new certificates from the CA. There are a couple of things you need to make sure of

before running the sign.sh script.

	 1.	 Ensure that you have created a server private key and a certificate

request file (server.csr).

	 2.	 Copy the server.csr file to the CA private directory (/etc/ssl/

ca/private).

Once you’ve got everything in the right place, you can run the sign.sh script, and tell

it which file to sign. It looks something like the following.

./sign.sh server.csr

Here’s a sample of the sign.sh script output.

CA signing: server.csr -> server.crt.

Using configuration from ca.config

Check that the request matches the signature

Signature ok

The Subjects Distinguished Name is as follows

countryName :PRINTABLE:'CA'

stateOrProvinceName :PRINTABLE:'British Columbia'

localityName :PRINTABLE:'Port Coquitlam'

organizationName :PRINTABLE:'Apache Essentials'

commonName :PRINTABLE:'http://apache.local'

emailAddress :IA5STRING:'hello@apachebook.com'

Chapter 5 Securing Your Setup

114

Certificate is to be certified until May 1 00:49:36 2023 GMT (365 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

CA verifying: server.crt <-> CA cert

server.crt: OK

When the server.crt file has been written, you can move it and the original server.

key file to /etc/apache/ssl. Ensure that the server.key file is made readable only to

root or the administrator. Review the “Creating a Public CA Certificate” section for more

information on how to do this.

�The sign.sh Script

If you don’t have a sign.sh script, you can create it using the following code.

#!/bin/sh

##

sign.sh -- Sign a SSL Certificate Request (CSR)

Copyright (c) 1998-2001 Ralf S. Engelschall, All Rights Reserved.

##

argument line handling

CSR=$1

if [$# -ne 1]; then

 echo "Usage: sign.sign <whatever>.csr"; exit 1

fi

if [! -f $CSR]; then

 echo "CSR not found: $CSR"; exit 1

fi

case $CSR in

 *.csr) CERT="`echo $CSR | sed -e 's/\.csr/.crt/'`" ;;

 *) CERT="$CSR.crt" ;;

esac

make sure environment exists

if [! -d ca.db.certs]; then

Chapter 5 Securing Your Setup

115

 mkdir ca.db.certs

fi

if [! -f ca.db.serial]; then

 echo '01' >ca.db.serial

fi

if [! -f ca.db.index]; then

 cp /dev/null ca.db.index

fi

create an own SSLeay config

cat >ca.config <<EOT

[ca]

default_ca = CA_own

[CA_own]

dir = .

certs = \$dir

new_certs_dir = \$dir/ca.db.certs

database = \$dir/ca.db.index

serial = \$dir/ca.db.serial

RANDFILE = \$dir/ca.db.rand

certificate = \$dir/ca.crt

private_key = \$dir/ca.key

default_days = 365

default_crl_days = 30

default_md = md5

preserve = no

policy = policy_anything

[policy_anything]

countryName = optional

stateOrProvinceName = optional

localityName = optional

organizationName = optional

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

EOT

Chapter 5 Securing Your Setup

116

sign the certificate

echo "CA signing: $CSR -> $CERT:"

openssl ca -config ca.config -out $CERT -infiles $CSR

echo "CA verifying: $CERT <-> CA cert"

openssl verify -CAfile ca.crt $CERT

cleanup after SSLeay

rm -f ca.config

rm -f ca.db.serial.old

rm -f ca.db.index.old

die gracefully

exit 0

�Configuring Apache for HTTPS
Now that you have generated SSL keys and certificates for your subdomain, you can

configure Apache to use them. There are a few steps to this.

	 1.	 First, you must load the SSL module.

	 2.	 Next, you need to configure the global SSL options.

	 3.	 Finally, you need to configure the specific server options.

The next sections walk you through the final steps to getting an SSL server up and

running.

�Creating a Separate Configuration File
I’d suggest creating a separate configuration file for your SSL settings and naming it

ssl.conf. This file contains your SSL server's directives and <Directory> statements. By

keeping this file separate, you can easily make changes to it, without scrolling through

your main httpd.conf to find the relevant sections.

Chapter 5 Securing Your Setup

117

�Loading the SSL Module
Obviously, before using SSL, you need to ensure that the mod_ssl module is loaded. This

is done through two lines in ssl.conf.

LoadModule ssl_module /usr/lib/apache/1.3/mod_ssl.so

AddModule mod_ssl.c

Mac users find the module located at lib/httpd/modules/mod_ssl.so. Windows

users find it at modules/ssl/mod_ssl.so.

The LoadModule directive tells the Apache server the module’s name and where it

can find the files for it. Consult Table 5-2 to find the location on your operating system.

Table 5-2.  Location of Apache Modules

Operating System Location

Linux /usr/lib/apache/modules/

macOS /usr/local/lib/httpd/modules

Windows C:\xampp\apache\lib

Once the module is loaded, you need to add the module to the server. Use the

AddModule directive to do so. Here is an example of adding the SSL module to httpd.

conf for Linux.

Depends: setenvif mime socache_shmcb

LoadModule ssl_module /usr/lib/apache2/modules/mod_ssl.so

Note T he SSL module also requires that the setenvif, mime, and socache_shmcb
modules be enabled in Apache.

�Configuring the Apache’s SSL Module
Once you’ve loaded the module, you can start configuring it for use in Apache.

Chapter 5 Securing Your Setup

118

�Configuring the Global Options

First, you must set up some default directives for the Apache server.

The first directive is SSLMutex. This directive configures the SSL lock file, which

stores session data used by Apache with regard to its operations. You can leave this

unconfigured if you’re not using session data with your SSL server.

There are three ways to configure this directive, but only one that is useful for UNIX,

Windows, and macOS users: sem. This uses a common lock file format that works across

all operating systems.

SSLMutex sem

If, for some reason, sem doesn’t work on your system, you can specify a location for

the lock file by using the file option. This would look something like the following.

SSLMutex file:/var/log/apache/ssl_mutex

Next, you need to start the random seed generator through the SSLRandomSeed

directive; this, combined with the certificate, ensures that the key to encrypt a session

isn’t generated using a predictable number. Two parameters are passed to the

SSLRandomSeed directive: the method to generate random numbers and the context

where the random number generator is accessed.

There are several different methods available with the SSLRandomSeed directive, but

only two that you use: builtin and file. The builtin method uses Apache’s internal

pseudo-random number generator. The upside is that it doesn’t take any additional

processor power away from your server. The downside is that it isn’t as secure as other

methods. Windows users want to use this method since no random device exists on a

Windows server.

The file: method is available to UNIX servers, but not Windows users, and uses

the /dev/random or /dev/urandom devices. These devices are included with most UNIX

servers and exist solely to generate random data. Since they are part of the operating

system, neither of these devices takes extra processor time to run. If you add a number

after the file: method, this limits the amount of data returned from the random device.

Two contexts are available for the SSLRandomSeed directive: startup and connect. The

startup context starts the random generator when Apache starts; the connect context

starts it when an SSL connection is initiated.

More than one SSLRandomSeed directive can be configured—and it’s recommended.

Chapter 5 Securing Your Setup

119

SSLRandomSeed startup builtin

SSLRandomSeed startup file:/dev/urandom 1024

SSLRandomSeed connect file:/dev/urandom 1024

Next, you need to tell Apache how to deal with its session cache. By default, SSL

already handles its own session cache. However, if you’re running an extremely busy site,

you may notice some performance issues with the default session cache. The mod_ssl

documentation says that the SSLSessionCache directive is useful when parallel requests

are made; that is, when requests for a page and the graphics within it are made. The

default value for this is

SSLSessionCache none

If your server is experiencing performance issues, you may want to enable the

SSLSessionCache option. There are two options you can use: dbm and shm. The dbm

option is recommended in the mod_ssl documentation and promises a noticeable

speed increase. The shm option gives an even higher performance increase, as it stores

the session data to a configured amount of RAM instead of to disk. However, it’s not

supported by every operating system, so you may be unable to use it.

If you decide to enable SSLSessionCache, use the following syntax.

SSLSessionCache dbm:/var/log/apache/ssl_cache

SSLSessionCache shm:/var/log/apache/ssl_cach(256000)

Finally, you need to tell Apache where to save its log data for secure connections.

This is identical to the ErrorLog configuration discussed in another chapter.

SSLLog /var/logs/apache/ssl.log

SSLLogLevel info

The next chapter talks about configuring custom access logs. When the mod_ssl

module is installed on your server, you can extend custom access logs to SSL. The

following log records the time, remote host, SSL protocol, the HTTP protocol and file

requested, and finally, the amount of data transferred.

CustomLog logs/ssl_request "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x

\"%r\" %b"

The mod_ssl module adds the ability to use a set of preconfigured server variables

outlined in Table 5-3 (www.modssl.org/docs/2.8/ssl_reference.html#table4).

Chapter 5 Securing Your Setup

http://www.modssl.org/docs/2.8/ssl_reference.html#table4

120

Ta
bl

e
5-

3.
 S

SL
 S

er
ve

r
V

ar
ia

bl
es

Va
ria

bl
e

Ty
pe

De
sc

rip
tio

n

HTTP

S
fla

g
HTTP

S

is
 b

ei
ng

 u
se

d

SS
L_

PROTO

C
OL

St
rin

g
Th

e
SS

L
pr

ot
oc

ol
 v

er
si

on

SS
L_

SE
SS

ION
_

ID
st

rin
g

Th
e

he
x-

en
co

de
d

SS
L

se
ss

io
n

ID

SS
L_

CIPHER

st

rin
g

Th
e

ci
ph

er
 s

pe
ci

fic
at

io
n

na
m

e

SS
L_

CIPHER

_E

XPORT

st

rin
g

tru
e

if
ci

ph
er

 is
 a

n
ex

po
rt

ci
ph

er

SS
L_

CIPHER

_U

SE
KE

YS
IZ

E
nu

m
be

r
Nu

m
be

r o
f c

ip
he

r b
its

 (a
ct

ua
lly

 u
se

d)

SS
L_

CIPHER

_A

LG
KE

YS
IZ

E
nu

m
be

r
Nu

m
be

r o
f c

ip
he

r b
its

 (p
os

si
bl

e)

SS
L_

VER
S

ION
_

INTER

F
AC

E
st

rin
g

Th
e

m
od

_s
sl

 p
ro

gr
am

 v
er

si
on

SS
L_

VER
S

ION
_

LI
BRAR

Y

st
rin

g
Th

e
Op

en
SS

L
pr

og
ra

m
 v

er
si

on

SS
L_

CL
IENT

_M

_V
ER

SION

st
rin

g
Th

e
ve

rs
io

n
of

 th
e

cl
ie

nt
 c

er
tif

ic
at

e

SS
L_

CL
IENT

_M

_S
ERIA

L

st
rin

g
Th

e
se

ria
l o

f t
he

 c
lie

nt
 c

er
tif

ic
at

e

SS
L_

CL
IENT

_S

_D
N

st
rin

g
Su

bj
ec

t D
N

in
 c

lie
nt

's
 c

er
tif

ic
at

e

SS
L_

CL
IENT

_S

_D
N_

x5
09

st
rin

g
Co

m
po

ne
nt

 o
f c

lie
nt

's
 S

ub
je

ct
 D

N

SS
L_

CL
IENT

_I

_D
N

st
rin

g
Is

su
er

 D
N

of
 c

lie
nt

's
 c

er
tif

ic
at

e

SS
L_

CL
IENT

_I

_D
N_

x5
09

st
rin

g
Co

m
po

ne
nt

 o
f c

lie
nt

's
 Is

su
er

 D
N

SS
L_

CL
IENT

_V

_S
TART

st

rin
g

Va
lid

ity
 o

f c
lie

nt
’s

 c
er

tif
ic

at
e

(s
ta

rt
tim

e)

SS
L_

CL
IENT

_V

_EN
D

st
rin

g
Va

lid
ity

 o
f c

lie
nt

's
 c

er
tif

ic
at

e
(e

nd
 ti

m
e)

SS
L_

CL
IENT

_A

_S
IG

st
rin

g
Al

go
rit

hm
 fo

r t
he

 s
ig

na
tu

re
 o

f c
lie

nt
's

 c
er

tif
ic

at
e

Chapter 5 Securing Your Setup

121

SS
L_

CL
IENT

_A

_K
EY

st
rin

g
Al

go
rit

hm
 fo

r t
he

 p
ub

lic
 k

ey
 o

f c
lie

nt
's

 c
er

tif
ic

at
e

SS
L_

CL
IENT

_C

ERT

st
rin

g
PE

M
-e

nc
od

ed
 c

lie
nt

 c
er

tif
ic

at
e

SS
L_

CL
IENT

_C

ERT
_

CHAIN

n
st

rin
g

PE
M

-e
nc

od
ed

 c
er

tif
ic

at
es

 in
 th

e
cl

ie
nt

 c
er

tif
ic

at
e

ch
ai

n

SS
L_

CL
IENT

_V

ERI
F

Y
st

rin
g

NONE

, S
UC

CE
SS

, GENEROU

S
or

 F
AI

LE
D:

re
as

on

SS
L_

SER
V

ER
_M

_V
ER

SION

st
rin

g
Th

e
ve

rs
io

n
of

 th
e

se
rv

er
 c

er
tif

ic
at

e

SS
L_

SER
V

ER
_M

_S
ERIA

L

st
rin

g
Th

e
se

ria
l o

f t
he

 s
er

ve
r c

er
tif

ic
at

e

SS
L_

SER
V

ER
_S

_D
N

st
rin

g
Su

bj
ec

t D
N

in
 s

er
ve

r's
 c

er
tif

ic
at

e

SS
L_

SER
V

ER
_S

_D
N_

x5
09

st
rin

g
Co

m
po

ne
nt

 o
f s

er
ve

r's
 S

ub
je

ct
 D

N

SS
L_

SER
V

ER
_I

_D
N

st
rin

g
Is

su
er

 D
N

of
 s

er
ve

r's
 c

er
tif

ic
at

e

SS
L_

SER
V

ER
_I

_D
N_

x5
09

st
rin

g
Co

m
po

ne
nt

 o
f s

er
ve

r's
 Is

su
er

 D
N

SS
L_

SER
V

ER
_V

_S
TART

st

rin
g

Va
lid

ity
 o

f s
er

ve
r's

 c
er

tif
ic

at
e

(s
ta

rt
tim

e)

SS
L_

SER
V

ER
_V

_EN
D

st
rin

g
Va

lid
ity

 o
f s

er
ve

r's
 c

er
tif

ic
at

e
(e

nd
 ti

m
e)

SS
L_

SER
V

ER
_A

_S
IG

st
rin

g
Al

go
rit

hm
 fo

r t
he

 s
ig

na
tu

re
 o

f s
er

ve
r's

 c
er

tif
ic

at
e

SS
L_

SER
V

ER
_A

_K
EY

st
rin

g
Al

go
rit

hm
 fo

r t
he

 p
ub

lic
 k

ey
 o

f s
er

ve
r's

 c
er

tif
ic

at
e

SS
L_

SER
V

ER
_C

ERT

st
rin

g
PE

M
-e

nc
od

ed
 s

er
ve

r c
er

tif
ic

at
e

[w
he

re
 x

50
9

is
 a

 c
om

po
ne

nt
 o

f a
 X

.5
09

 D
N:

 C
,S

T,
L,

O,
OU

,C
N,

T,
I,G

,S
,D

,UI
D

,E
m

ai
l]

Chapter 5 Securing Your Setup

122

Your SSL configuration should look something like the following.

<IfModule mod_ssl.c>

 # Random Seeding

 SSLRandomSeed startup builtin

 SSLRandomSeed startup file:/dev/urandom 512

 SSLRandomSeed connect builtin

 SSLRandomSeed connect file:/dev/urandom 512

 # MIME configuration

 AddType application/x-x509-ca-cert .crt

 AddType application/x-pkcs7-crl .crl

 # How Apache configures dialogs in the terminal

 SSLPassPhraseDialog exec:/usr/share/apache2/ask-for-passphrase

 # Session Caching

 SSLSessionCache shmcb:${APACHE_RUN_DIR}/ssl_scache(512000)

 SSLSessionCacheTimeout 300

 # Encryption algorithms

 SSLCipherSuite HIGH:!aNULL

 SSLProtocol all -SSLv3

</IfModule>

�Configuring the Secure Site in Apache

Now that you have the global SSL settings, you must tell Apache about the SSL server.

This follows the form of a virtual host, which was covered in the previous chapter; in

fact, Apache makes complete use of its virtual host functionality to configure SSL, and all

directives used for virtual hosts are available for SSL servers. One difference, however, is

that SSL-specific directives are included in the <VirtualHost> section.

The SSLEngine directive turns the SSL module on for this site; without this option

set, you don’t have a secure server. So don’t forget this directive!

Next, you need to tell Apache where the certificate and certificate key files

are. You should have noted these in the previous sections of this chapter. The

SSLcertificateFile directive tells the server where the public certificate file is located.

Chapter 5 Securing Your Setup

123

If you remember, these files were obtained from Certbot and LetsEncrypt, or by

becoming our own certificate authority, and placed in the /etc/ssl directory.

In the end, your site configuration file should look like the following.

<IfModule mod_ssl.c>

<VirtualHost *:443>

 DocumentRoot "/var/www/sites/local.apachebook.com"

 ServerName local.apachebook.com

 # Other directives here

 ErrorLog ${APACHE_LOG_DIR}/local.apachebook.com-error.log

 CustomLog ${APACHE_LOG_DIR}/local.apachebook.com-access.log combined

 # SSL Configuration

 Include /etc/letsencrypt/options-ssl-apache.conf

 �SSLCertificateFile /etc/letsencrypt/live/local.apachebook.com-0001/

fullchain.pem

 �SSLCertificateKeyFile /etc/letsencrypt/live/local.apachebook.com-0001/

privkey.pem

</VirtualHost>

</IfModule>

Once you have Apache configured and your server key and the public certificate

installed, you can restart Apache and test your secure server. Test the server by loading

it up using the https:// prefix. For example, if your server existed at http://local.

apachebook.com, you would load the secure server by loading https://local.

apachebook.com in your browser.

If everything works well, you should see your page and a lock icon next to the URL in

your browser window that indicates you are connected to a secure server.

�Summing It Up
In this chapter, you learned about SSL and how to use it to secure your Apache web

server. It covered securing your Apache web server easily through LetsEncrypt and

Certbot and how to create a manual certificate for domains that LetsEncrypt can’t reach.

Chapter 5 Securing Your Setup

http://local.apachebook.com
http://local.apachebook.com
https://local.apachebook.com
https://local.apachebook.com

124

You now know how to install the certificate on your computer or server and how to

configure Apache for it.

The next chapter covers the last piece of Apache’s configuration, log files. You learn

about what they are, how to configure them in Apache, and how they can be useful for

your projects.

Chapter 5 Securing Your Setup

125

CHAPTER 6

Log Files
In previous chapters, I discussed configuring several Apache features. But I haven’t

discussed the most important Apache feature you’ll use: logging. Apache supplies

two types of log files that track the activities of the Apache web server, ranging from

errors encountered with the application and modules to pages requested by your

website’s users.

Log files are the bookkeepers of the server world. They’re plain (text) and boring but

of essential importance to daily operations. As you start working with Apache more often

and consult log files regularly, you’ll grow more comfortable with them, much like your

bookkeeper.

�Error.log
The error.log file archives all notices, warnings, and program errors encountered by

Apache. This file can be safely ignored most of the time unless your web server is acting

irrationally.

A standard entry in the error.log looks like the following.

[Fri Oct 3 06:25:11 2022] [notice] Apache/1.3.26 (Unix) Debian GNU/Linux

PHP/4.1.2 configured -- resuming normal operations

This line can be broken into three parts. The first part notes the log entry time, in this

case, Friday, October 3, 2022, at 06:25:11. The second part indicates the log entry level: a

notice. Finally, the line describes what happened: the server restarted.

�Configuring the Error Log
To configure the error log, you need to specify two things: the file’s location and the

amount of information you want to place within it.

© Darren James Harkness 2022
D. J. Harkness, Apache Essentials, https://doi.org/10.1007/978-1-4842-8324-0_6

https://doi.org/10.1007/978-1-4842-8324-0_6

126

The first step is easy: simply tell it where you want to place the error log in httpd.

conf. There is already an entry there that looks something like the following.

ErrorLog /var/log/apache/error.log

The next step is a little trickier. When configuring Apache, you can specify what

level of entries to place within this log file. Table 6-1 lists the log levels in descending

importance.

Table 6-1.  Apache Error Levels (http://httpd.apache.org/docs/mod/core.

html#loglevel)

Log
Level

Description Example

emerg Emergency. The system is unusable. Anything that would

cause Apache to quit unexpectedly or not load is logged

as an emerg-level error.

“Child cannot open lock file.

Exiting”

alert Action must be taken immediately.

These errors should be fixed as soon as possible but

won’t interfere with Apache’s startup or shutdown.

For example, if the server cannot determine its own

domain name and switches over to its IP address.

“getpwuid: couldn’t determine

username from uid”

crit Critical conditions. Errors marked critical indicate

problems with Apache’s normal operation. The example

to the right shows that Apache attempted to open a

socket (connection through which data is sent) and

failed.

These errors should be fixed relatively quickly when

spotted.

“socket: failed to get a socket,

exiting child.”:

(continued)

Chapter 6 Log Files

http://httpd.apache.org/docs/mod/core.html#loglevel
http://httpd.apache.org/docs/mod/core.html#loglevel

127

Table 6-1.  (continued)

Log
Level

Description Example

error Error conditions indicating standard errors in operation

but are still important.

For example, if you have not configured the

DocumentRoot an error condition appears, informing

you that the directory does not exist.

Often, CGI scripts can cause entries in the error.log,

such as the one in the example.

“Premature end of script

headers”

warn Warning conditions. These aren’t necessarily errors and

usually indicate problems that Apache recovered from.

“child process 1234 did not exit,

sending another SIGHUP”

notice Normal but significant condition. These tend to be

operational messages, such as Apache being started or

stopped.

“httpd:caught SIGBUS,

attempting to drop core in…”

info Informational. Doesn’t necessarily indicate an actual

error.

In the example to the right, Apache has noticed an

increase in traffic above what it can handle and has

logged the problem along with a solution.

“Server seems busy, (you may

need to increase StartServers, or

Min/MaxSpareServers)”

debug Debug-level messages. This means everything. “Opening config file…”

The further down the list you go for your LogLevel setting, the lengthier your error.

log becomes. For example, a LogLevel of Debug is filled with much more information

than a LogLevel of Crit. The Apache documentation recommends a LogLevel of Warn,

and I agree.

You’re likely to never look at error.log unless things start going drastically wrong. For

production servers you should keep the file as small as possible. By selecting warn as

your LogLevel, you can catch problems that may slow your web server down or cause it

to not work.

For a development server, I recommend going right to debug as your LogLevel setting.

Yes, this creates some larger log files over time. But it also gives you a lot of historical

information that you can use for troubleshooting. I cover that in more depth in Chapter 7.

Chapter 6 Log Files

128

The format of the LogLevel looks like the following.

LogLevel warn

�access.log
The access.log file contains a record of every single request sent to your Apache web

server. For a single web page, several entries are often entered into the access.log: one

for the web page itself, followed by one for each of the web page’s support files (images,

external CSS files, etc.). It’ll take some time, but eventually, you’ll have no problems

following a thread through the log file.

�Formatting the Access Log
The LogFormat and CustomLog directives format and create Apache log files. LogFormat

sets up the contents of the log file. Multiple LogFormat entries are allowed but must have

unique aliases.

The syntax of the CustomLog directive is the following.

LogFormat "<options>" <alias>

A sample CustomLog can be found in the default httpd.conf.

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\""

combined

Note  Double quotes must be escaped inside the LogFormat options. To escape
the double quotes, use a backslash (for example, \”).

Any text entered within the LogFormat directive’s options appears in the log file. A

full list of options can be seen in Table 6-2.

The default httpd.conf includes several pre-configured LogFormat aliases, including

full, debug, combined, common, referrer, and agent. Most of the time, this is more than

enough for you.

CustomLog tells Apache where to place the file and which LogFormat to use. The

CustomLog uses the following syntax.

CustomLog /path/to/logfile alias

Chapter 6 Log Files

129

Table 6-2.  LogFormat Options

Variable Reports Should you include it?

%a The IP address making the HTTP request. Yes. It’s included in all the default log

formats.

%A Local IP address Not really. You already know your IP

address, which is not helpful when

creating your site statistics. However, if

you are running multiple servers, and

combining the logs, this may be useful

to tell you which server.

%B Bytes sent to the browser, not including HTTP

headers.

No. Although this is useful information, it

is not in Common Log File (CLF) format.

Instead, use %b.

%b Bytes sent to the browser, not including HTTP

headers. This attribute records the data in CLF

format, however, recording a – instead of a 0

when no data is sent.

Yes. Transferring the amount of data is

extremely important in generating site

traffic statistics. Recording this data in

CLF format ensures that any statistics

package you use understands the

information.

%c Connection status when response was

completed. The following are recorded.

X means the connection was aborted before

the response was completed.

+ means the connection may be kept alive

after the response is sent.

- means the connection closes after the

response is sent.

No. This information is only useful for

debugging problems with the web

server.

%{VAR}e Contents of the environment variable VAR. No. Only use this if you need to store the

contents of session variables to a log

file outside of a scripted environment.

%f Filename requested No. This is included in the %r option.

(continued)

Chapter 6 Log Files

130

Table 6-2.  (continued)

Variable Reports Should you include it?

%h Remote Host Yes.

%H Request protocol No. This is included in the %r option.

%{VAR}i Displays the content of the specified header

variable. Replace VAR with the header variable

you want to display. For more information

about header variables, consult

http://www.w3.org/Protocols/

HTTP/Object_Headers.html.

%{Referer}i is included in the default

httpd.conf.

Yes, for specific information, such as

referrers.

%l The remote log name. Yes, but only because it is included by

default.

%m The request method used by the browser. No. This is included in the %r option.

%{VAR}n The contents of a note from the specified

module. Replace VAR with the name of the

note.

No.

%{VAR}o The contents of a specific header line in the

server’s reply. Replace VAR with the name of

the header.

No. Only include this if you need

specific information for debugging or

troubleshooting.

%p The port the web server is running on. No. Only use this if you combine logs

from servers running on different ports.

%P The process ID of the Apache session that

serviced the request.

No. This should only be used for

troubleshooting purposes.

%q The query string passed along with the URL. If

no query string is passed, this returns no

values.

No. This is included with the %r option.

%r The first line of the incoming HTTP request.

This includes the HTTP version, the request

method, and the URL requested.

Yes. This is one of the more useful

logging options.

(continued)

Chapter 6 Log Files

http://www.w3.org/Protocols/HTTP/Object_Headers.html
http://www.w3.org/Protocols/HTTP/Object_Headers.html

131

Table 6-2.  (continued)

Variable Reports Should you include it?

%s The status of the original request. No. This reports the first request made,

including forwarded pages. Use %>s

instead.

%>s The status of the last request. Yes.

%t The time in CLF that the request was made.

The CLF time format looks like the following.

[07/Dec/2021:13:15:32 -0700]

Yes.

%{format}

t

Use this option to change the time format.

The available time formats are viewable at

http://unixhelp.ed.ac.uk/CGI/man-

cgi?strftime+3.

No. Only change this if you require a

standard time format that is different

from the one supplied by the %t option.

%T The time taken to serve the request, in

seconds.

No. This is only useful for server / script

benchmarks.

%u Remote user name. This is the person logged

in to your web server via htaccess.

Yes, but only because it’s included by

default. This option is also useful if you

are using htaccess to restrict access to

directories on your web server.

%U The URL requested, not including the query

string. For example, if the requested URL was /

scripts/search.php?keyword=foobar, the value

returned by the %U option would be /scripts/

search.php.

No. The %r option covers this.

%v The name of the Apache server. No. Only use this if you are combining

log files and need to know the name of

the server.

%V The name of the Apache server, according to

the UseCanonicalName setting.

No. Only use this if you are combining

log files and need to know the name of

the server.

Chapter 6 Log Files

http://unixhelp.ed.ac.uk/CGI/man-cgi?strftime+3
http://unixhelp.ed.ac.uk/CGI/man-cgi?strftime+3

132

An example of this would be the following.

CustomLog /var/log/apache/access.log combined

This would write a log entry to the file /var/log/apache/access.log using the

combined LogFormat mentioned earlier. You can create multiple CustomLog entries, but

each must point to a unique file to avoid conflicts.

As you can see, the default CustomLog and LogFormat directives are pretty useful.

However, you may want to change the log entry format to better suit your purposes. For

example, you may want to change the LogFormat to include a comma as a delimiter

between the parts of a log file for easier importing into Excel. Or, you may want to change

the order of elements within the entry or add information not included by default.

To do so, use the options in Table 6-2 to create your own CustomLog file directives in

httpd.conf.

Caution  Changing the default LogFormat string can have undesirable effects,
especially if you are using software to analyze and create statistics on your
website. Only change this if you’re really certain that you want to and you know the
effects it has.

At first glance, Apache’s log files are pretty intimidating. There is a lot of information

recorded in each log file in a very compressed format. However, when you break it down

into recognizable parts, it becomes much easier to understand. Each entry in the access.

log contains a wealth of information; it’s just a matter of learning how to read it.

The following is a fairly typical entry in the access.log.

70.68.89.139 - darren [15/May/2022:13:17:48 -0700] "GET /contact.php

HTTP/1.1" 404 5265 "https://local.apachebook.com/" "Mozilla/5.0 (Macintosh;

Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko)

Version/15.4 Safari/605.1.15".

Figure 6-1 breaks this down into recognizable parts.

Chapter 6 Log Files

133

Figure 6-1.  Breaking down a log file entry

70.68.89.139

This is the IP the request originated from. Often, this field contains a hostname

instead of an IP address; for example, staticred.net or dialh2434.someprovider.

net. Knowing the IP address or hostname is extremely important for tracking user visits,

paths taken through the site, and so on.

This is a spot reserved for the Apache server’s IP address. This is not recorded by

default. It’s generally used when combining multiple Apache log files into a single log file

(often for load balancers).

darren

This is the authenticated user who requested the page. This should only be recorded

if a user has authenticated him or herself through Apache before requesting the page.

Once they have authenticated on the Apache server, their username is recorded with

every request they make. Refer to the section in the Chapter 2, where I discussed the

.htaccess and .htpasswd files for more information.

In this case, the “darren” user requested the page. Hey, that name looks familiar.

[15/May/2022:13:17:48 -0700]

This is the date the request was made, recorded down to the second.

"GET /contact.php HTTP/1.1"

This is the request method, page, and HTTP version sent to Apache from the

browser. In this case, a GET request was made for contact.php by a browser using version

1.1 of the HTTP protocol.

Chapter 6 Log Files

134

Apache reads this request as a user sending information to the /contact.php file.

The browser agent has told the server that it knows the 1.1 version of the HTTP protocol,

so all communications are sent using that version of the HTTP protocol. Since there are

minor differences between versions of the HTTP protocol, it is important for Apache to

know this.

Note  The path referred to in this part of the log file entry is not the physical path
of the file on the server. It is the relative path to the DocumentRoot directory set
up in your httpd.conf file for the domain. For example, if your DocumentRoot was
configured to be /var/www, the file accessed would actually exist at /var/www/
contact.php. It seems like a minor point, but I’ve known a few people to be
confused by this.

200

This is the HTTP code sent to the browser. In this case, the file requested exists on

the server, so a code 200 (OK) is sent to the browser. If the file did not exist, a 404 would

be recorded. For more information on HTTP error codes, refer to the list of HTTP status

codes in the Appendix.

41418

The number of bytes transferred to the browser is also recorded for statistics. In this

case, the script sent 41,418 bytes of information. This part of the log entry can be very

useful for troubleshooting scripts or calculating the amount of data transferred for a

given period or file.

"https://local.apachebook.com"

This field shows the referrer or page that directed the client to this request. In this

example, you can see that the user loaded the home page and has opened the contact

form (contact.php).

This field simply shows a hyphen if there is no referrer (otherwise known as a direct

request). Direct requests are often common for graphic files, flash files, or any other file

type included in a web page.

Chapter 6 Log Files

135

"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15

(KHTML, like Gecko) Version/15.4 Safari/605.1.15"

The user agent (the user’s browser and version) is the final piece of log entry puzzle.

In the example entry, the user is viewing the site in Safari 15.4 on macOS 10.15.7.

Obtaining the user agent is very helpful when auditing the site design and code. If

you know that 95% of your users are viewing the site with newer browsers, you can take

advantage of technologies supported by those browsers. Likewise, if 25% of your users

are still using older browsers that don’t support the newer technologies, you know ahead

of time that you should rethink using them.

This section gets a bit sticky since it’s one of the few pieces of information sent

directly from the browser. Some browser manufacturers don’t identify themselves

or identify themselves as another browser. For example, the Opera browser can be

configured to identify itself as Opera, Mozilla, or several versions of Internet Explorer.

�Where Can I Find Apache’s Log Files?
The location of Apache’s log files is configurable within the httpd.conf file and can vary

if you run multiple sites on a single Apache server. Generally, however, you can find

the files in the default log directory. On a Linux system, they can be found in the /var/

log/apache directory. On macOS, they are in /usr/local/logs/httpd. On a Windows

system, they can be found in C:\xampp\apache\logs.

�Configuring Apache Logs
By default, Apache’s logging is pretty good; it keeps a basic level of information about the

Apache executable in the error.log and tracks most client information in the access.log.

You’ll likely not have to change the default settings for logging. That is, until something

goes wrong.

I’ll save you a throbbing headache later and show you how to configure logging to

capture problems before they become unsolvable. We’ll focus on the directives listed in

Table 6-3.

Chapter 6 Log Files

136

Table 6-3.  Details the Directives Used When Configuring Apache Log Files

Directive Function

HostNameLookups Configures Apache to look up the hostname for a given IP address and record it

in the log files.

ErrorLog Configures the name and the location of Apache’s error log. This log records all

activities of the Apache application, depending on which LogLevel is set.

LogLevel Configures the detail to include in the Apache error log.

LogFormat Configures which information is included in Apache’s access logs. Multiple

LogFormats can be configured, each with its own unique alias.

CustomLog Configures the file location and LogFormat to use. Multiple CustomLog entries

can be configured.

�Log Files for Virtual Hosts
If you are running multiple domains from a single Apache web server, creating separate

logs for each domain is a good idea. Although you can place everything into a single log

file, it’s generally not a good idea. With the standard access.log LogFormat, there are no

identifying marks to determine which domains were accessed in any given entry.

A good convention to follow is to prefix each log’s file name with the domain name.

For example, the apachebook.local log files are apachebook.local_access.log and

apachebook.local_error.log. This way, you can easily access log files for a specific

name without searching through a monolithic log file.

For more information on virtual hosts, refer to Chapter 3.

�Rotating Logs
As information is written to Apache’s log files, they can rapidly grow to an unwieldy size.

Since Apache records every access to the website, it likely records tens of thousands of

lines of data daily. The more information recorded and supporting files it uses in a site’s

design, the more lines Apache writes to the log files.

A strategy to handle the problem of file size is to enable rotating log files in Apache.

Rotating the log files allows you to maintain several smaller log files, which automatically

archive themselves. Beyond the first archive, the files are often archived to save space.

Chapter 6 Log Files

137

The archived files keep the same filename but have a number appended to them that

grows with their age. For example, the newest archive file would be access.log if you had

ten archive files.0, while the oldest would be access.log.9.gz.

I recommend keeping about a year’s worth of log files at any given time. Log files

after that point aren’t very useful for gathering information about your website beyond

comparison purposes. If you want to keep all your web logs, simply back them up to an

alternate location once every month or so.

�Configuring Log Rotation

Older versions of Apache configured log rotation within the httpd.conf file. However,

recent versions use a third-party application called logrotate. This is installed by default

on most Linux distributions using Apache and makes the rotation of logs quite simple.

logrotate is configured through the /etc/logrotate.d/apache file.

Note  logrotate is not installed on macOS or Windows.

A sample logrotate configuration file for Apache looks like the following.

/var/log/apache/*.log {

 weekly

 missingok

 rotate 52

 compress

 delaycompress

 notifempty

 create 640 root adm

 sharedscripts

 postrotate

 /etc/init.d/apache reload > /dev/null

 endscript

}

Chapter 6 Log Files

138

Let’s break this down. The first line tells logrotate where to find the log files. In this

case, it’s being told to look in /var/log/apache for all files with a .log extension. It then

opens the options directives with an open curly bracket ({).

/var/log/apache/*.log {

The next lines indicate which options to set for logrotate. These options are outlined

in Table 6-4.

Table 6-4.  logrotate Configuration File Options (http://www.die.net/doc/

linux/man/man8/logrotate.8.html)

Option Description

compress Old versions of log files are compressed with gzip by default. See

also nocompress.

compresscmd Specifies which command to use to compress log files. The

default is gzip. See also compress.

uncompresscmd Specifies which command to use to uncompress log files. The

default is gunzip.

compressext Specifies which extension to use on compressed log files,

if compression is enabled. The default follows that of the

configured compression command.

compressoptions Command line options may be passed to the compression

program, if one is in use. The default, for gzip, is “-9” (maximum

compression).

copy Make a copy of the log file, but don’t change the original. For

instance, this option can be used to make a snapshot of the

current log file or when some other utility needs to truncate or

parse the file. When this option is used, the create option has no

effect because the old log file stays in place.

(continued)

Chapter 6 Log Files

http://www.die.net/doc/linux/man/man8/logrotate.8.html
http://www.die.net/doc/linux/man/man8/logrotate.8.html

139

(continued)

Option Description

copytruncate Truncate the original log file in place after creating a copy,

instead of moving the old log file and optionally creating a new

one, It can be used when some program can not be told to close

its log file and thus might continue writing (appending) to the

previous log file forever. Note that there is a very small time slice

between copying and truncating the file, so some logging data

might be lost. When this option is used, the create option has no

effect because the old log file stays in place.

create mode owner group Immediately after rotation (before the postrotate script is run),

the log file is created (with the same name as the log file just

rotated). mode specifies the mode for the log file in octal (the

same as chmod(2)), owner specifies the user name who owns

the log file, and group specifies the group the log file belongs

to. Any log file attributes may be omitted, in which case those

attributes for the new file use the same values as the original log

file for the omitted attributes. This option can be disabled using

the nocreate option.

daily Log files are rotated every day.

delaycompress Postpone compression of the previous log file to the next rotation

cycle. This has only effect when used in combination with

compress. It can be used when some program can not be told to

close its log file and thus might continue writing to the previous

log file for some time.

extension ext Log files are given the final extension ext after rotation. If

compression is used, the compression extension (normally .gz)

appears after ext.

ifempty Rotate the log file even if it is empty, overriding the notifempty

option (ifempty is the default).

Table 6-4.  (continued)

Chapter 6 Log Files

140

Option Description

include file_or_directory Reads the file given as an argument as if it was included inline

where the include directive appears. If a directory is given, most

of the files in that directory are read in alphabetic order before

processing of the including file continues. The only files which

are ignored are files that are not regular files (such as directories

and named pipes) and files whose names end with one of the

taboo extensions, as specified by the tabooext directive. The

include directive may not appear inside of a log file definition.

mail address When a log is rotated out of existence, it is mailed to the address.

If a particular log should generate no mail, the nomail directive

may be used.

mailfirst When using the mail command, mail the just-rotated file instead

of the about-to-expire file.

maillast When using the mail command, mail the about-to-expire file

instead of the just-rotated file. (This is the default.)

missingok If the log file is missing, go on to the next without issuing an error

message. See also nomissingok.

monthly Log files are rotated the first time logrotate is run in a month.

(This is normally on the first day of the month.)

nocompress Old versions of log files are not compressed with gzip. See also

compress.

nocopy Do not copy the original log file and leave it in place. (This

overrides the copy option.)

nocopytruncate Do not truncate the original log file after creating a copy. (This

overrides the copytruncate option.)

nocreate New log files are not created. (This overrides the create option.)

nodelaycompress Do not postpone the compression of the previous log file to the

next rotation cycle. (This overrides the delaycompress option.)

Table 6-4.  (continued)

(continued)

Chapter 6 Log Files

141

Table 6-4.  (continued)

Option Description

nomail Don’t mail old log files to any address.

nomissingok If a log file does not exist, issue an error. This is the default.

noolddir Logs are rotated in the same directory the log normally resides

in. (This overrides the olddir option.)

nosharedscripts Run prerotate and postrotate scripts for every rotated script.

(This is the default and overrides the sharedscripts option.)

notifempty Do not rotate the log if it is empty. (This overrides the ifempty

option.)

olddir directory Logs are moved into the directory for rotation. The directory must

be on the same physical device as the rotated log file. When this

option is used, all old versions of the log end up in the directory.

This option may be overridden by the noolddir option.

postrotate/endscript The lines between postrotate and endscript (both of which must

appear on lines by themselves) are executed after the log file

is rotated. These directives may only appear inside of a log file

definition. Also see prerotate.

prerotate/endscript The lines between prerotate and endscript (both of which

must appear on lines by themselves) are executed before the

log file is rotated and only if the log is actually rotated. These

directives may only appear inside of a log file definition. Also see

postrotate.

rotate count The lines between prerotate and endscript (both of which

must appear on lines by themselves) are executed before the

log file is rotated and only if the log is actually rotated. These

directives may only appear inside of a log file definition. Also see

postrotate.

(continued)

Chapter 6 Log Files

142

Option Description

size size The lines between prerotate and endscript (both of which must

appear on lines by themselves) are executed before the log file

is rotated and only if the log is rotated. These directives may only

appear inside of a log file definition. Also see postrotate.

sharedscripts Normally, prescript and postscript scripts are run for each

rotated log, meaning that a single script may be run multiple

times for log entries that match multiple files (such as the /var/

log/news/* example). If sharedscript is specified, the scripts are

only run once, no matter how many logs match the wildcarded

pattern. However, if none of the logs in the pattern require

rotating, the scripts do not run at all. This option overrides the

nosharedscripts option.

start count This is the number to use as the base for rotation. For example,

if you specify 0, the logs are created with a .0 extension as they

are rotated from the original log files. If you specify 9, log files

are created with a .9, skipping 0 to 8. Files are still rotated the

number of times specified with the count directive.

tabooext [+] list The current taboo extension list has been changed (see the

include directive for information on the taboo extensions). If a

+ precedes the list of extensions, the current taboo extension

list is augmented; otherwise, it is replaced. At startup, the taboo

extension list contains .rpmorig, .rpmsave, ,v, .swp, .rpmnew, and

~.

weekly Log files are rotated if the current weekday is less than the

weekday of the last rotation or if more than a week has passed

since the last rotation. This is normally the same as rotating logs

on the first day of the week, but it works better if logrotate is not

run every night.

Table 6-4.  (continued)

Chapter 6 Log Files

143

If you are a Windows user or don’t have access to logrotate, you can use piped logs.

Apache ships with an application called rotatelogs, a more basic version of logrotate that

doesn’t support compression. An example entry in httpd.conf for rotatelogs would look

like the following.

TransferLog "|rotatelogs /path/to/logs/access.log 86400"

This would pass the contents of the access.log file once every 24 hours.

TIP  You can also specify a file size for the rotatelog command instead of
specifying a time in seconds. To rotate a log once it reaches 5 megabytes, the
directive would be: TransferLog “|rotatelogs /path/to/logs/access.log 5M”.

�Reading Archived Log Files

To save space, archived log files are often compressed using the gzip compression

scheme. To read them, you must either uncompress their contents or use a text editor

that supports reading gzipped files.

On Linux and macOS, you can read gzipped text files using the vi editor, which is

installed by default on most systems. You can search through them using the zgrep

command, which is identical to the grep command.

With Windows, you must uncompress the archived files to a temporary directory

using a program such as WinZip.

�What Do I Do with Log Files?
You can do several things with Apache’s log files beyond taking up disk space. Apache’s

log files can be used for troubleshooting, which is covered in Chapter 7, and for site

analytics. You do not need to rely on Google Analytics and Tag Manager to analyze your

website traffic, and you’re better off from a privacy standpoint if you move away from

Google’s tools.

Apache’s log files are a very useful resource for creating statistics on your website.

Because the access.log records every piece of available information, log files can

determine your site’s usage, traffic patterns, where your visitors are coming from, or

missing pages.

Chapter 6 Log Files

144

As you’ve already seen, unless you’ve been a bad reader and skipped ahead, the

access.log records pretty much anything and everything you’ll ever want to know.

You have access to pages requested, files sent, kilobytes transferred, browsers used,

and much, much more. It’s marketing gold: not only can you see what your clients are

looking at, but how they got there, which browser they used to view it, how long they

spent browsing other pages, and in some cases, even the geographical region they were

browsing from.

By aggregating and analyzing all this data, you can better direct the content

development of your website, create marketing plans that effectively target members of

your audience and use technologies that are supported by the browsers your clients use.

It’s all a question of how to aggregate and analyze the data.

�Using Log Analysis Programs
The raw log files are strongly beneficial, but they’re a nightmare when doing anything

useful with them. A standard entry, as you have already seen, contains a large amount of

information; now, consider the entries for support files and multiply that by hundreds

or thousands of entries a day. It quickly becomes an untamed beast, and unless you’re

some kind of mathematical god able to remember and process massive amounts of

information, trying to make any sense of all that information becomes impossible very

quickly.

This is why Google Analytics has become such a popular solution for tracking

and analyzing website traffic. Of course, you’re also giving up your and your users’

information with every site visit. That doesn’t have to be the case, however. Using one

of the following tools, you can easily generate your own site analytics directly from

Apache’s log files.

•	 ApacheViewer

•	 AWStats

•	 Loggly

•	 New Relic

•	 Webalizer (old but robust)

This lets you control your and your users’ data while providing useful information

about how the website is being used.

Chapter 6 Log Files

145

�Creating Custom Scripts
Sometimes, a log analysis package won’t always fit your needs. I discovered this a few

months ago when I needed the ability to search my log files for a specific term. I already

knew enough PHP to get myself into trouble, so I decided it would be faster and more

efficient if I wrote a script to do it for me instead of searching through Google results.

One of the benefits of the script I wrote was that I could use the same search

functionality to track users’ paths through the site. I simply had to search the logs for

their hostname. The script I used is as follows (you can find a fully commented, nicer-

looking version of this script at the Apress website).

<?php

$filename="/var/log/apache/access.log"; // location of the log file –

configure this

?>

<HTML>

<head>

<title>apache log search form<?if ($searchterm) {echo ":

$searchterm";}?></title>

</head>

<body>

if ($searchterm) { ?>

Searching for: <? echo "$searchterm

"; ?>

<div class="results">

<? $entry = array();

$entry = file($filename) or die("Cannot open file");

$fillval = count($entry);

$entry = array_merge($entry);

$i=0;

foreach ($entry as $si) {

if (ereg($searchterm,$si) & !ereg(".css",$si) & !ereg(".jpg",$si) &

!ereg("search.php",$si)) {

$lineval = explode(" ",$si);

echo "Site: $

lineval[0] (click to show path through site)
";

Chapter 6 Log Files

146

echo "URL: $l

ineval[6] (click to see what other sites have hit this URL)
";

$lineval[10] = ereg_replace(chr(34),"",$lineval[10]);

if ($lineval[10] != "-") {

 �echo "Referer: $lineval[10]</

a> » <a href=\"/scripts/search.php?searchterm=$lineval[1

0]\">search this term
";

 }

 else {

 echo "Direct Request
";

 }

 �echo "Browser: $lineval[11] $lineval[12] $lineval[13]

$lineval[14] $lineval[15] $lineval[16] $lineval[17]
";

 echo "Date: $lineval[3]$lineval[4]";

 echo "<hr>";

 $i++;

 }

 }

echo "

Number of entries: $i » ";

}

?>

<form action="/scripts/search.php">

Search for term: <input type="text" name="searchterm" class="send"> <input

type="submit" class="send" value=" » ">

</form>

</body>

</html>

Note  Before you use this script, you need to specify the location of your log files
in the $filename variable.

Troubleshooting Apache
You can also use the Apache logs to troubleshoot problems with scripts and

Apache itself.

Chapter 6 Log Files

147

�Apache Configuration
Hopefully, you’ve been using sudo apachectl configtest when modifying your Apache

configuration. You’re human, so chances are good you forgot, and now your Apache

server won’t start up. Or perhaps you put a local .htaccess file in place on one of your

development servers, and the site is now reporting a 500 error. Fortunately, Apache’s

logging has your back.

Any issues that Apache encounters with its configuration are always reported to the

error log. For example, if you were configuring basic authentication on your dev site

using a .htaccess file, enter the following without first creating the .htpasswd file.

AuthType Basic

AuthName "Authentication Required"

AuthUserFile ".htpasswd"

Require valid-user

When attempting to load the dev site, the browser would ask for a username and

password and then report an internal server error. By looking in the error log, you could

see the following.

[Sun Apr 24 10:18:16.513809 2022] [authn_file:error] [pid 440770] (2)No

such file or directory: [client 70.68.89.139:57410] AH01620: Could not open

password file: /etc/apache2/.htpasswd

This tells you a couple of things. First, the .htaccess configuration refers to a

password file that does not exist (/etc/apache2/.htpasswd). Second, Apache is looking

in /etc/apache for the .htpasswd file instead of in the dev site’s directory.

This would give you all the information needed to fix the issue. First, you need to

create the .htpassword file. Open your terminal and enter the following (using the path

to your own dev site’s location).

htpasswd -c /Users/reader/sites/dev.local/.htpasswd reader

You’ll be asked to enter a password for the user.

New password:

Re-type new password:

Adding password for user reader

Chapter 6 Log Files

148

Once that’s complete, update the .htaccess file to point to the correct location of the

.htpasswd file.

AuthType Basic

AuthName "Authentication Required"

AuthUserFile "/Users/reader/sites/dev.local/.htpasswd"

Require valid-user

�Tracking Down 404 Errors and Why They Occur
Perhaps one of the most useful troubleshooting capabilities of Apache’s log files is

tracking down 404 errors (missing files) on your website and finding where they were

referred from. In Chapter 5, I discussed the structure of a log file entry for a successful

page view. The structure of the log file is nearly identical to the missing files. The only

difference is that a 404 is recorded instead of a 200 for the HTTP result code.

Because the entry in the access.log is recorded identically for a missing file as it is

for an existing file, all the information about the request is available, including a referrer.

(Can you see where I’m going with this?) As a result, you can see where the page request

originated. If the page request originated on your server, you know exactly where to go to

fix the problem.

Because you know the result code for a missing file, you could even write a script to

search for missing files in your Apache logs and report which requests are spawning 404

errors and where they are coming from.

�Troubleshooting PHP
The Apache logs are always the first place to look when a website is not acting the way

you expect. Modern content management systems and development frameworks put all

sorts of information into Apache’s log files to help developers debug issues.

The following is an example of a fatal script error and what you can learn from it.

error.local-error.log.1:[Wed Oct 06 15:40:47.879597 2021] [php7:error] [pid

770418] [client 192.168.1.173:60963] PHP Fatal error: Uncaught Error: Call

to undefined function curl_init() in /var/www/sites/errors/src/curl-call.

php:100\nStack trace:\n#0 /var/www/sites/errors/src/curl-call.php(41):

get_book_list_for_author()\n#1 /var/www/sites/errors/src/curl-call.php(18):

Chapter 6 Log Files

author_list_no_handling_errors()\n#2 {main}\n thrown in /var/www/sites/

errors/src/curl-call.php on line 100, referer: http://errors.local/

This was from a tutorial package I was writing for the dev team at my agency that was

intended to help them work through the use of error handling. However, when I placed

this on my local server, it wasn’t working at all. When I looked through the error logs, it

became quickly apparent what the problem was the following.

PHP Fatal error: Uncaught Error: Call to undefined function curl_init()

From this, I could tell that PHP had not been configured to enable the cURL module,

which includes the curl_init() function. Without this module being enabled in PHP,

that function (and all other cURL functions) simply isn’t available.

�Writing to the Error Log
Not every problem encountered by PHP is logged, unfortunately. Often, there are issues

with external services, formatting, or logic that cause a script to fail, despite having

syntactically correct PHP. When that happens, you need to debug your scripts, going

through them step by step to determine where the issue is being introduced.

One powerful way of debugging your PHP scripts is to write information to the error

logs. PHP provides two functions to support this: error_log() and trigger_error().

Both are similar; however, error_log() writes an entry to the Apache error logs

regardless of how PHP is configured. In contrast, trigger_error() depends on how PHP

is configured to record error messages (to screen, log file, or both).

I recommend using error_log() for most cases since it records the error in a more

permanent manner, making it easier to track errors over time.

�An Example

Let’s say you’re having issues writing to an API, which is expecting a JSON payload to

follow a very specific format. Here’s an example of a PHP script that sends a message

through the Slack API.

<?php

// Grab form data

$name = isset($_POST['name']) ? $_POST['name'] : null;

$email = isset($_POST['email']) ? $_POST['email'] : null;

Chapter 6 Log Files

150

$about = isset($_POST['about']) ? $_POST['about'] : null;

$webhook = "https://hooks.slack.com/services/<webhookid>";

// Prepare the payload

$payload = [

 "text" => "Incoming lead",

 "blocks" => [

 [

 "type" => "header",

 "text" => [

 "type" => "plain_text",

 "text" => "Incoming Lead",

 "emoji" => true

],[

 "type" => "section",

 "text" => [

 "type" => "mrkdwn",

 �"text" => sprintf("*%s* is curious about Apache and would

like to know more about *%s*. You can reach out to them at

%s",$name,$about,$email),

]

]

]

],

];

$json = json_encode($payload);

$curl = curl_init($webhook);

curl_setopt($curl, CURLOPT_HEADER, TRUE);

curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);

curl_setopt($curl, CURLOPT_HTTPHEADER, array("Content-type: application/

json"));

curl_setopt($curl, CURLOPT_POST, true);

curl_setopt($curl, CURLOPT_POSTFIELDS, $json);

$json_response = curl_exec($curl);

$errors = curl_error($curl);

Chapter 6 Log Files

151

$status = curl_getinfo($curl, CURLINFO_HTTP_CODE);

$json = json_decode($json_response);

When the script sends this JSON payload to the API, it returns an invalid_blocks_

format error about the JSON format for the blocks array. This is odd because that’s how

a multidimensional array should look. It’s clear that the API isn’t receiving things in the

format it’s expecting.

To help debug this, I made use of the error_log() function to record the contents of

the $json variable before it is sent, so I know exactly what’s going to the API. It looks like

the following.

$json = json_encode($payload);

$error_log("Here's what I'm sending: {$json}");

$curl = curl_init($webhook);

The following is what comes back.

[20-May-2022 23:29:41 UTC] Here’s what I'm sending: {"text":"Incoming lead

","blocks":[{"type":"header","text":{"type":"plain_text","text": "Incoming

Lead","emoji":true},"0":{"type":"section","text": {"type":"mrkdwn",

"text":"*Darren* is curious about Apache and would like to know more about

Configuring it. You can reach out to them at someone@somewhere.com"}}}]}

As it turns out, the JSON is not following the format Slack’s API expects. The json_

encode() function adds an index of 0 in the second entry in the array that shouldn’t be there.

As it turns out, this is a weird gotcha with json_encode() and multidimensional

arrays. I need to define it a little differently. First, a multidimensional array needs to be

created and added to the payload separately.

$blocks[] = [

 "type" => "header",

 "text" => [

 "type" => "plain_text",

 "text" => "Incoming Lead",

 "emoji" => true

],

];

$blocks[] = [

 "type" => "section",

Chapter 6 Log Files

152

 "text" => [

 "type" => "mrkdwn",

 �"text" => sprintf("*%s* is curious about Apache and would

like to know more about *%s*. You can reach out to them at

%s",$name,$about,$email),

]

];

 $payload = [

 "text" => "Incoming lead",

 "blocks" => $blocks,

];

Once I’ve made this change and tested it, I get the JSON payload in the format the

Slack API expects.

[20-May-2022 16:16:48 America/Vancouver] {"text":"Incoming lead", "blocks

":[{"type":"header","text":{"type":"plain_text","text":"Incoming Lead","em

oji":true}},{"type":"section","text":{"type":"mrkdwn","text": "*Darren* is

curious about Apache and would like to know more about *web development*.

You can reach out to them at hello@apachebook.com"}}]}

And now that I know it’s working, I can remove the error_log() from the script as

it’s no longer needed.

I couldn’t have debugged this script without using the error log because the API

works over a cURL session instead of writing to the screen. There isn’t an opportunity to

see what’s going there, so we must capture it and send the data elsewhere.

�Summing It Up
Apache’s logging is an extremely powerful tool for troubleshooting website issues and

managing site analytics. Combining Apache’s logging with PHP’s debugging capabilities

makes it simple to track down issues quickly and easily. Using server-side analytics

tools like AWStats or ApacheViewer gives you control over your site’s usage data without

having to share it with third-party processors such as Google.

The next chapter covers some sample Apache configurations, which you can use to

quickly spin up your own development instances.

Chapter 6 Log Files

153

CHAPTER 7

Sample Apache
Configurations
This chapter sets up several scenarios and shows you how to best configure Apache to

handle each one. I set this up in an anecdotal format because, well, it’s a heck of a lot

more interesting to read.

The following examples assume you are using macOS. You may have to adjust the

directories for Windows to suit your local installation. If you are using Linux, note that

you need to break these up to fit into the mods-enabled and sites-enabled directory

structure.

Don’t worry about typing these all out by hand. A repository of Apache

configurations is at https://github.com/staticred/apache-essentials.

�Basic Apache Configuration (with PHP)
Let’s start with the most basic of Apache configurations: a local development website

reachable at http://localhost/.

For this configuration, you only need to worry about editing the httpd.conf or

apache.conf file to configure a single site in Apache.

�httpd.conf
+---------------------+

| Basic configuration |

+---------------------+

ServerRoot: The top of the directory tree under which the server's

configuration, error, and log files are kept. This example is for

© Darren James Harkness 2022
D. J. Harkness, Apache Essentials, https://doi.org/10.1007/978-1-4842-8324-0_7

https://github.com/staticred/apache-essentials
https://doi.org/10.1007/978-1-4842-8324-0_7

154

MacOS using Homebrew to install Apache.

ServerRoot "/usr/local/opt/httpd"

Listen: Allows you to bind Apache to specific IP addresses and/or

ports, instead of the default. See also the <VirtualHost>

directive.

Listen 80

Set up a separate user for the Apache process to run under. This

protects your system from running with escalated privileges that

malicious code can take advantage of.

<IfModule unixd_module>

User _www

Group _www

</IfModule>

+----------------+

| Apache Modules |

+----------------+

LoadModule mpm_prefork_module lib/httpd/modules/mod_mpm_prefork.so

LoadModule authn_file_module lib/httpd/modules/mod_authn_file.so

LoadModule authn_core_module lib/httpd/modules/mod_authn_core.so

LoadModule authz_host_module lib/httpd/modules/mod_authz_host.so

LoadModule authz_groupfile_module lib/httpd/modules/mod_authz_groupfile.so

LoadModule authz_user_module lib/httpd/modules/mod_authz_user.so

LoadModule authz_core_module lib/httpd/modules/mod_authz_core.so

LoadModule access_compat_module lib/httpd/modules/mod_access_compat.so

LoadModule auth_basic_module lib/httpd/modules/mod_auth_basic.so

LoadModule reqtimeout_module lib/httpd/modules/mod_reqtimeout.so

LoadModule filter_module lib/httpd/modules/mod_filter.so

LoadModule mime_module lib/httpd/modules/mod_mime.so

LoadModule log_config_module lib/httpd/modules/mod_log_config.so

LoadModule env_module lib/httpd/modules/mod_env.so

LoadModule headers_module lib/httpd/modules/mod_headers.so

LoadModule setenvif_module lib/httpd/modules/mod_setenvif.so

LoadModule version_module lib/httpd/modules/mod_version.so

LoadModule unixd_module lib/httpd/modules/mod_unixd.so

Chapter 7 Sample Apache Configurations

155

LoadModule status_module lib/httpd/modules/mod_status.so

LoadModule autoindex_module lib/httpd/modules/mod_autoindex.so

LoadModule dir_module lib/httpd/modules/mod_dir.so

LoadModule alias_module lib/httpd/modules/mod_alias.so

LoadModule rewrite_module lib/httpd/modules/mod_rewrite.so

+--------------+

| PHP Config |

+--------------+

LoadModule php_module /usr/local/opt/php@8.0/lib/httpd/modules/libphp.so

<FilesMatch \.php$>

 SetHandler application/x-httpd-php

</FilesMatch>

+-----------------------------+

| 'Main' server configuration |

+-----------------------------+

#

The directives in this section set up the values used by the 'main'

server, which responds to any requests that aren't handled by a

<VirtualHost> definition. These values also provide defaults for

any <VirtualHost> containers you may define later in the file.

#

All of these directives may appear inside <VirtualHost> containers,

in which case these default settings will be overridden for the

virtual host being defined.

Your email address, where problems with the server should be emailed.

This might be exposed to users on some error pages.

ServerAdmin you@example.com

The domain or subdomain name of your primary Apache server and port.

Since we're setting up our local host, we'll call it 'localhost',

which is a reserved host name.

ServerName localhost:80

Let's protect our system's files from being accessed outside of

our site directories.

Chapter 7 Sample Apache Configurations

156

<Directory />

 AllowOverride none

 Require all denied

</Directory>

+----------------------------+

| Primary site configuration |

+----------------------------+

Where the files for the primary website live on your computer.

DocumentRoot "/Users/darren/sites/localhost"

<Directory "/Users/darren/sites/localhost">

 #

 # Possible values for the Options directive are "None", "All",

 # or any combination of:

 # �Indexes Includes FollowSymLinks SymLinksifOwnerMatch ExecCGI

MultiViews

 #

 # Note that "MultiViews" must be named *explicitly* --- "Options All"

 # doesn't give it to you.

 #

 # The Options directive is both complicated and important. Please see

 # http://httpd.apache.org/docs/2.4/mod/core.html#options

 # for more information.

 #

 # Set up our options to allow the site to create indexes of files in

 # �the browser if a directory is loaded without an index.php or

index.html,

 # and to allow Apache to load files added through a symbolic link.

 Options Indexes FollowSymLinks

 # �Allow the use of .htaccess to allow custom directives to be

added without

 # restarting Apache.

 AllowOverride All

 # Controls who can get stuff from this server.

Chapter 7 Sample Apache Configurations

157

 Require all granted

</Directory>

Look for index.php and display it. If there is no index.php, look for an

index.html instead. If nothing found, Apache will show an index of files

in the directory.

<IfModule dir_module>

 DirectoryIndex index.php index.html

</IfModule>

Prevent any file starting with .ht from being displayed on the

website. (e.g.,

.htaccess or .htpasswd)

<Files ".ht*">

 Require all denied

</Files>

+-----------------------+

| Logging configuration |

+-----------------------+

Specifies the default location of your error log. Any Virtualhosts later

defined will default to using this logfile if no other ErrorLog

location is

specified.

ErrorLog "/usr/local/var/log/httpd/error_log"

Tells Apache how detailed to be with its logging. Since this is a

development

server, we'll set it to debug, the most informative setting. For

production

servers, you would want to change this to warn instead.

LogLevel debug

Configure logging formats

<IfModule log_config_module>

 #

 # The following directives define some format nicknames for use with

Chapter 7 Sample Apache Configurations

158

 # a CustomLog directive (see below).

 �LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}

i\"" combined

 LogFormat "%h %l %u %t \"%r\" %>s %b" common

 <IfModule logio_module>

 # You need to enable mod_logio.c to use %I and %O

 �LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}

i\" %I %O" combinedio

 </IfModule>

 # �Specifies the default location of your access log. Any

Virtualhosts later

 # �defined will default to using this logfile if no other CustomLog

location

 # is specified.

 CustomLog "/usr/local/var/log/httpd/access_log" common

</IfModule>

+-------------------+

| CGI configuration |

+-------------------+

<IfModule alias_module>

 # �Sets up the location of your cgi-bin directory. More often

than not you

 # �will not use this. However, it can be useful to have this set

up just in

 # case.

 ScriptAlias /cgi-bin/ "/usr/local/var/www/cgi-bin/"

</IfModule>

<Directory "/usr/local/var/www/cgi-bin">

 AllowOverride None

 Options None

 Require all granted

</Directory>

+----------------------------+

Chapter 7 Sample Apache Configurations

159

| Content-type configuration |

+----------------------------+

<IfModule headers_module>

 #

 # Avoid passing HTTP_PROXY environment to CGI's on this or any proxied

 # backend servers which have lingering "httpoxy" defects.

 # 'Proxy' request header is undefined by the IETF, not listed by IANA

 #

 RequestHeader unset Proxy early

</IfModule>

<IfModule mime_module>

 #

 # TypesConfig points to the file containing the list of mappings from

 # filename extension to MIME-type.

 #

 TypesConfig /usr/local/etc/httpd/mime.types

 # Set up default types for compressed files. This will tell Apache to

 # �send these to the user as downloads instead of trying to

display them to

 # the browser.

 AddType application/x-compress .Z

 AddType application/x-gzip .gz .tgz

</IfModule>

Configure mod_proxy_html to understand HTML4/XHTML1

<IfModule proxy_html_module>

Include /usr/local/etc/httpd/extra/proxy-html.conf

</IfModule>

Basic HTTPS support, required even if we haven't set up a secure

site yet.

<IfModule ssl_module>

SSLRandomSeed startup builtin

SSLRandomSeed connect builtin

</IfModule>

Chapter 7 Sample Apache Configurations

160

Once you’ve updated your httpd.conf file, test the configuration, then restart

Apache. You should be able to access your site at http://localhost/.

�Basic HTTPS Configuration
A basic Apache setup is perfect for a local development environment. As soon as

you make this environment open to the Internet, however, you need to secure it with

HTTPS. Chapter 5 goes into this in more depth.

For the most part, the setup is identical to the basic Apache configuration. I've

outlined next the additions you’ll want to make in each configuration file.

�httpd.conf
First, you need to configure Apache to load the SSL module. Open httpd.conf and

navigate to the module configuration section (the section with all the LoadModule

directives). Add or uncomment the following line.

LoadModule ssl_module lib/httpd/modules/mod_ssl.so

This loads the SSL module. However, it still needs to be configured, which is done in

a separate file that Apache needs to include. It is done by adding the following line to the

end of httpd.conf.

Include /usr/local/etc/httpd/extra/httpd-ssl.conf

�extra/httpd-ssl.conf
After the SSL module has been loaded, Apache needs some additional configuration for

SSL to work well. It's recommended to keep this configuration file separate for easier

editing. You also use this file for setting up the default host running on the secure port. If

you are running multiple virtual hosts, they each have their own configuration file.

Listen 443

Configure what cipher suite Apache will allow the client to use.

For better

security, this shold be kpet at HIGH

SSLCipherSuite HIGH:!aNULL

Chapter 7 Sample Apache Configurations

161

Configure the SSL Protocol we want to use. We'll stick with just

SSLv3 for

better security.

SSLProtocol all -SSLv3

Configure how the passphrase for the SSL certificate is gathered.

We'll stick

with the built in process.

SSLPassPhraseDialog builtin

Configures how the SSL session is cached.

SSLSessionCache shmcb:${APACHE_RUN_DIR}/ssl_scache(512000)

SSLSessionCacheTimeout 300

+-------------------+

| VirtualHost Setup |

+-------------------+

<VirtualHost *:443>

 # Turn on SSL for this setup

 SSLEngine on

 # Host setup

 DocumentRoot "/var/www/sites/local.apachebook.com"

 ServerName local.apachebook.com

 ServerAdmin you@example.com

 # Other directives here

 ErrorLog ${APACHE_LOG_DIR}/local.apachebook.com-error.log

 CustomLog ${APACHE_LOG_DIR}/local.apachebook.com-access.log combined

 # SSL Configuration

 �SSLCertificateFile /etc/letsencrypt/live/local.apachebook.com-0001/

fullchain.pem

 �SSLCertificateKeyFile /etc/letsencrypt/live/local.apachebook.com-0001/

privkey.pem

</VirtualHost>

Chapter 7 Sample Apache Configurations

162

�Adding Rewrite Rules to Provide
Human-Readable URLs
Let’s say you’re writing a content management system, and you want to have nice,

human-readable URLs for pages on the site instead of something like http://

localhost/index.php?route=contact-us.

Building on the preceding basic Apache configuration, let’s use the AllowOverrides

setting and create an additional file, .htaccess. The .htaccess file is placed in your site

project directory and provides custom Apache directive overrides without the need to

restart Apache.

This overriding becomes especially useful in virtual host situations, where you might

want Apache configured differently, depending on the virtual host being accessed.

It’s also a commonly used technique for content management systems to provide

“clean” URLs.

Here’s an example of the content you might put into the .htaccess file, assuming

that you’re using the route parameter to indicate a specific page on the site. I’ve added

comments to explain what each line is doing.

�.htaccess
<IfModule mod_rewrite.c>

 # Turns the Rewrite module on in Apache. It's off by default

 # for performance reasons.

 RewriteEngine On

 # Apache will always treat a training slash as a folder request

 # and will return a 404, even if URL rewriting is available.

 # This section checks to see if a file or directory exists first,

 # and then removes the slash if one doesn't exist.

 RewriteCond %{REQUEST_FILENAME} !-d

 RewriteCond %{REQUEST_URI} (.+)/$

 RewriteRule ^ %1 [L,R=301]

 # Here's the important part of the rewrite. Apache will take everything

 # �after the domain name and pass it along to index.php through

the route

Chapter 7 Sample Apache Configurations

163

 # �parameter. For example, if the browser requests http://localhost/

contact,

 # �Apache will quietly rewrite the URL as http://localhost/index.

php?route=contact

 #

 # �Before it does any of this, however, it will check to see if

a file or

 # �directory already exists with the requested name. This is critical

for assets

 # �like CSS, javascript, or image files used as part of the

site's output.

 RewriteCond %{REQUEST_FILENAME} !-d

 RewriteCond %{REQUEST_FILENAME} !-f

 RewriteRule ^ /index.php?route= [L]

</IfModule>

Save the changes to the .htaccess file and try it out! http://localhost/contact

should be silently redirected to http://localhost/index.php?route=contact.

�Setting up Multiple Hosts (One PHP and One
Node.js)
Apache is really powerful in its ability to run multiple websites off of one server instance.

I talk about this in more depth in Chapter 3.

Let’s say you wanted to set up three virtual hosts on your computer to provide

development environments for a sandbox (http://localhost), your portfolio site in

PHP (http://portfolio.local), and a Node.js project (http://nodejs.local).

�httpd.conf
Grab a copy of the basic httpd.conf from the first section of this chapter, and add the

following lines to the end.

Chapter 7 Sample Apache Configurations

http://portfolio.local
http://nodejs.local

164

�macOS and Windows

Import the virtual host configuration files.

IncludeOptional /usr/local/etc/httpd/extra/httpd-portfolio.local.conf

IncludeOptional /usr/local/etc/httpd/extra/httpd-nodejs.local.conf

�Linux

Import the virtual host configuration files.

IncludeOptional /etc/apache/sites-enabled/*

Let’s use these two files to separate the configuration for each virtual host. On macOS

or Windows, you want to put these files in the extra directory. On Linux, these need to

be added to the sites-enabled directory.

�portfolio.local.conf
This follows the same format used in Chapter 3. Refer to that chapter for information on

what each of these directives does.

Define the virtual host settings for the local domain

<VirtualHost *:80>

 ServerAdmin hello@getshipton.com

 DocumentRoot "/Users/darren/code/portfolio"

 ServerName portfolio.local

 ErrorLog "/usr/local/var/log/httpd/portfolio.local-error_log"

 CustomLog "/usr/local/var/log/httpd/portfolio.local-access_log" common

</VirtualHost>

<Directory "/Users/darren/code/portfolio">

 AllowOverride All

 DirectoryIndex index.php index.html

 Options FollowSymLinks Multiviews

 MultiviewsMatch any

 Require all granted

</Directory>

Save the file, and let’s move on to the next virtual host.

Chapter 7 Sample Apache Configurations

165

�nodejs.local.conf
As discussed in Chapter 4, Apache can proxy requests to a Node application. This

is useful for providing a simpler URL that’s constantly available. Let’s use the same

configuration created in that chapter. Refer to it for more information about each

directive.

<VirtualHost *:80>

 DocumentRoot "/Users/darren/code/nodejs"

 ServerName nodeapp.local

 # Set up Logging

 ErrorLog "/usr/local/var/log/httpd/nodejs.local-error_log"

 CustomLog "/usr/local/var/log/httpd/nodejs.local-access_log" common

 <IfModule mod_proxy.c>

 ProxyPass / http://nodejs.local:3000

 ProxyPassReverse / http://nodejs.local:3000/

 <Proxy *>

 Order allow,deny

 Allow from all

 </Proxy>

 </IfModule>

</VirtualHost>

Once you’ve updated your httpd.conf, test the configuration, then restart Apache.

You should be able to access your sites at http://localhost/, http://portfolio.

local/, and http://nodejs.local/. Don’t forget that you have to edit your host file and

start your Node.js application before doing this, however!

�Protected Directory
If you set up your dev environments using a publicly accessible subdomain, you want to

add some protection. There are a couple of reasons for this.

•	 You don’t want search engines to index the content on your dev site,

which would harm the rankings of your production site.

Chapter 7 Sample Apache Configurations

http://portfolio.local/
http://portfolio.local/
http://nodejs.local/

166

•	 You don’t want any random person to be able to access the developer

site, which might have issues or be vulnerable to attacks.

The best way to prevent this is to protect the development subdomain behind a

password. This is covered in the “Using .htaccess Files” section in Chapter 2. Of course,

that gets annoying very quickly when you’re trying to build a site and need to access it

frequently on multiple devices.

The following configuration gives you the best of both worlds. The development

subdomain is accessible to all devices on your local network without a password.

You can access it from your laptop, desktop, or tablet and never be bothered by an

authentication prompt. People outside your local network—let’s say a colleague or a

client needing to do a review—are prompted for a password before being able to access

the site. And if they don’t have that password, they’ll get an HTTP error.

Let’s assume that addresses in your network follow the 192.168.x.x address

format. That is, the IP address on the network for your laptop might be something like

192.168.0.131, whereas your iPad’s IP address might be 192.168.0.132. You want to allow

any device on your local network to access the website without anything getting in

the way.

This configuration uses three core directives.

•	 Allow

•	 Require (and its associated directives: AuthType, AuthName, and

AuthUserFile)

•	 Satisfy

The Allow directive specifies a hostname, IP address or range, or IP addresses in a

whitelist for access.

The Require directive is used in tandem with authentication. This directive says that

Apache needs a user to be valid before they can access the website.

When set to “any”, the Satisfy directive sets an either/or scenario in Apache. If the

user requesting the page is outside the 192.168.0.x IP address range, a login prompt is

presented. Otherwise, an error page informs the user that they must authenticate on the

Apache server.

Chapter 7 Sample Apache Configurations

167

�httpd.conf
Grab a copy of the basic httpd.conf from the first section of this chapter, and add the

following lines to the end.

�macOS and Windows

Import the virtual host configuration files.

IncludeOptional /usr/local/etc/httpd/extra/dev.mydomain.com.conf

�Linux

Import the virtual host configuration files.

IncludeOptional /etc/apache/sites-enabled/*

Let’s use this file to separate the configuration for this virtual host. On macOS or

Windows, you want to put this file in the extra directory. On Linux, this needs to be

added to the sites-enabled directory.

�dev.mydomain.com.conf
Define the virtual host settings for the local domain

<VirtualHost *:80>

 ServerAdmin hello@getshipton.com

 DocumentRoot "/Users/darren/code/dev.mydomain.com"

 ServerName portfolio.local

 ErrorLog "/usr/local/var/log/httpd/dev.mydomain.com-error_log"

 CustomLog "/usr/local/var/log/httpd/dev.mydomain.com-access_log" common

</VirtualHost>

<Directory "/Users/darren/code/dev.mydomain.com" >

 Options Indexes Includes FollowSymLinks MultiViews ExecCGI

 AllowOverride All

 # Set up authentication

 AuthName "Developer Access Only"

 AuthType Basic

 AuthUserFile /Users/darren/code/dev.mydomain.com/.htpasswd

 Require valid-user

Chapter 7 Sample Apache Configurations

168

 # Tells Apache what order to read the access rules

 Order Allow, Deny

 # Allow from any IP address that starts with 192.168

 Allow from 192.168.0

 # Deny from anyone else.

 Deny from all

 # If any of the above criteria are met, let 'em in.

 Satisfy any

 # If not, show them an error page

 ErrorDocument 401 /Users/darren/code/dev.mydomain.com/blocked.php

</Directory>

Chapter 7 Sample Apache Configurations

169

�Epilogue

Welcome to the end of the book.

You’ve gone through quite the journey! You started by gently breaking into the world

of configuring Apache by editing the httpd.conf file, opening your eyes to the inner

workings of Apache. You even worked through some pretty complicated stuff, such as

configuring virtual hosts and proxying.

Throughout this book, I’ve focused on using Apache for development environments

on your computer. But here’s a secret I can now reveal: it’s no different configuring it on

a remote production server. After reading this book and putting it into practice, you can

now install, configure, and maintain an Apache server for your organization without fear,

and go on to do great things.

�Keep Learning
But your journey isn’t over yet. Like all skills, you must keep learning. Apache is as

complicated and full-featured as Figma or Illustrator, and while you have a good base of

knowledge to work on, there’s still a lot to learn.

Apache documentation is a great place to start. Now that you have enough

base knowledge to find your way around, you’ll better understand the more arcane

configuration directives and be able to tune your Apache server to your needs.

Several other resources are available to you online, including the Apache website

and community websites such as https://community.apache.org. Also, don’t hesitate

to visit Apache newsgroups or seek out an Apache user group in your area.

Maybe even talk to your local IT nerd from time to time.

You’re now a digital deity—nothing can stop you!

© Darren James Harkness 2022
D. J. Harkness, Apache Essentials, https://doi.org/10.1007/978-1-4842-8324-0

https://community.apache.org
https://doi.org/10.1007/978-1-4842-8324-0

171

�APPENDIX

HTTP Status Codes
�HTTP Status Codes
The following tables are reproduced from Wikipedia’s “List of HTTP status codes” article

(https://en.wikipedia.org/wiki/List_of_HTTP_status_codes). Don’t be intimidated

by the number of potential status codes. Generally, you will only encounter a few

of these.

�1xx Informational Response
An informational response indicates that the request was received and understood. It

is issued on a provisional basis while request processing continues. It alerts the client

to wait for a final response. The message consists only of the status line and optional

header fields and is terminated by an empty line. As the HTTP/1.0 standard did not

define any 1xx status codes, servers must not send a 1xx response to an HTTP/1.0

compliant client except under experimental conditions.

© Darren James Harkness 2022
D. J. Harkness, Apache Essentials, https://doi.org/10.1007/978-1-4842-8324-0

https://doi.org/10.1007/978-1-4842-8324-0
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

172

Table A-1.  100-Level Error Codes

HTTP Code Description

100 Continue The server has received the request headers, and the client should

proceed to send the request body (in the case of a request for which

a body needs to be sent; for example, a POST request). Sending a

large request body to a server after a request has been rejected for

inappropriate headers would be inefficient. To have a server check

the request’s headers, a client must send Expect: 100-continue as a

header in its initial request and receive a 100 Continue status code

in response before sending the body. If the client receives an error

code such as 403 (Forbidden) or 405 (Method Not Allowed), it should

not send the request’s body. The response 417 Expectation Failed

indicates that the request should be repeated without the Expect

header as the server does not support expectations (this is the case,

for example, of HTTP/1.0 servers).

101 Switching Protocols The requester has asked the server to switch protocols, and the

server has agreed to do so.

102 Processing (WebDAV;
RFC 2518)

A WebDAV request may contain many sub-requests involving file

operations, requiring a long time to complete the request. This code

indicates that the server has received and is processing the request,

but no response is available. This prevents the client from timing out

and assuming the request was lost.

103 Early Hints (RFC 8297) This returns some response headers before the final HTTP message.

�2xx Success
This class of status codes indicates the action requested by the client was received,

understood, and accepted.

Appendix HTTP Status Codes

173

Table A-2.  200-Level Error Codes

HTTP Code Description

200 OK Standard response for successful HTTP requests. The actual response

depends on the request method used. In a GET request, the response

contains an entity corresponding to the requested resource. In a POST

request, the response contains an entity describing or containing the

result of the action.

201 Created The request has been fulfilled, resulting in the creation of a new resource.

202 Accepted The request has been accepted for processing, but the processing has not

been completed. The request might or might not be eventually acted upon

and may be disallowed when processing occurs.

203 Non-Authoritative
Information (since
HTTP/1.1)

The server is a transforming proxy (e.g., a Web accelerator) that received

a 200 OK from its origin but is returning a modified version of the origin’s

response.

204 No Content The server successfully processed the request and is not returning any

content.

205 Reset Content The server successfully processed the request, asks that the requester

reset its document view, and is not returning any content.

206 Partial Content
(RFC 7233)

The server is delivering only part of the resource (byte serving) due to

a range header sent by the client. HTTP clients use the range header

to enable resuming of interrupted downloads or split a download into

multiple simultaneous streams.

207 Multi-Status
(WebDAV; RFC 4918)

The message body that follows is an XML message and can contain

many separate response codes, depending on how many sub-requests

were made.

208 Already Reported
(WebDAV; RFC 5842)

The members of a DAV binding have already been enumerated in a

preceding part of the (multi-status) response and are not being included

again.

226 IM Used (RFC
3229)

The server has fulfilled a request for the resource, and the response

represents the result of one or more instance manipulations applied to

the current instance.

Appendix HTTP Status Codes

174

�3xx Redirection
This class of status code indicates the client must take additional action to complete the

request. Many of these status codes are used in URL redirection.

A user agent may carry out the additional action with no user interaction only if the

method used in the second request is GET or HEAD. A user agent may automatically

redirect a request. A user agent should detect and intervene to prevent cyclical redirects.

Table A-3.  300-Level Error Codes

HTTP Code Description

300 Multiple
Choices

Indicates multiple options for the resource from which the client may choose

(via agent-driven content negotiation). For example, this code could present

multiple video format options, list files with different filename extensions, or

suggest word-sense disambiguation.

301 Moved
Permanently

This and all future requests should be directed to the given URI.

302 Found
(previously Moved
Temporarily)

Tells the client to look at (browse to) another URL. The HTTP/1.0 specification

(RFC 1945) required the client to perform a temporary redirect with the

same method (the original describing phrase was Moved Temporarily), but

popular browsers implemented 302 redirects by changing the method to

GET. Therefore, HTTP/1.1 added status codes 303 and 307 to distinguish

between the two behaviors.

303 See Other
(since HTTP/1.1)

The response to the request can be found under another URI using the GET

method. When received in response to a POST (or PUT/DELETE), the client

should presume that the server has received the data and issue a new GET

request to the URI.

304 Not Modified
(RFC 7232)

The resource has not been modified since the version specified by the request

headers If-Modified-Since or If-None-Match. In such a case, there is no need to

retransmit the resource since the client still has a previously-downloaded copy.

(continued)

Appendix HTTP Status Codes

175

HTTP Code Description

305 Use Proxy
(since HTTP/1.1)

The requested resource is available only through a proxy, the address

provided in the response. For security reasons, many HTTP clients (such as

Mozilla Firefox and Internet Explorer) do not obey this status code.

306 Switch Proxy No longer used. Originally meant, “Subsequent requests should use the

specified proxy.”

307 Temporary
Redirect (since
HTTP/1.1)

In this case, the request should be repeated with another URI; however,

future requests should still use the original URI. In contrast to how 302 was

historically implemented, the request method cannot be changed when

reissuing the original request. For example, a POST request should be

repeated using another POST request.

308 Permanent
Redirect (RFC
7538)

This and all future requests should be directed to the given URI. 308 parallels

the behavior of 301 but does not allow the HTTP method to change. So,

for example, submitting a form to a permanently redirected resource may

continue smoothly.

Table A-3.  (continued)

�4xx Client Errors
This class of status code is intended for situations in which the error seems to have been

caused by the client. Except when responding to a HEAD request, the server should

include an entity containing an explanation of the error situation and whether it is a

temporary or permanent condition. These status codes apply to any request method.

User agents should display any included entity to the user.

Appendix HTTP Status Codes

176

Table A-4.  400-Level Error Codes

HTTP Code Description

400 Bad Request The server cannot or will not process the request due to an

apparent client error (e.g., malformed request syntax, size

too large, invalid request message framing, or deceptive

request routing).

401 Unauthorized (RFC 7235) Similar to 403 Forbidden, but specifically for use when

authentication is required and has failed or has not yet been

provided. The response must include a WWW-Authenticate

header field containing a challenge applicable to the

requested resource. See Basic access authentication and

Digest access authentication. 401 semantically means

“unauthorized,” the user does not have valid authentication

credentials for the target resource.

Note: Some sites incorrectly issue HTTP 401 when an IP

address is banned from the website (usually the website

domain), and that specific address is refused permission to

access a website.

402 Payment Required Reserved for future use. The original intention was that this

code might be used as part of some form of digital cash

or micropayment scheme, as proposed, for example, by

GNU Taler, but that has not yet happened, and this code is

not widely used. Google Developers API uses this status

if a particular developer has exceeded the daily limit on

requests. Sipgate uses this code if an account does not have

sufficient funds to start a call. Shopify uses this code when

the store has not paid its fees and is temporarily disabled.

Stripe uses this code for failed payments where parameters

were correct, for example, blocked fraudulent payments.

(continued)

Appendix HTTP Status Codes

177

(continued)

HTTP Code Description

403 Forbidden The request contained valid data and was understood by

the server, but the server is refusing action. This may be

due to the user not having the necessary permissions for a

resource or needing an account of some sort, or attempting

a prohibited action (e.g., creating a duplicate record where

only one is allowed). This code is also typically used if the

request provided authentication by answering the WWW-

Authenticate header field challenge, but the server did

not accept that authentication. The request should not be

repeated.

404 Not Found The requested resource could not be found but may be

available in the future. Subsequent requests by the client

are permissible.

405 Method Not Allowed A request method is not supported for the requested

resource; for example, a GET request on a form that

requires data to be presented via POST or a PUT request on

a read-only resource.

406 Not Acceptable The requested resource can generate only content not

acceptable according to the Accept headers sent in the

request. See Content negotiation.

407 Proxy Authentication Required
(RFC 7235)

The client must first authenticate itself with the proxy.

408 Request Timeout The server timed out, waiting for the request. According to

HTTP specifications: “The client did not produce a request

within the time that the server was prepared to wait. The

client may repeat the request without modifications at any

later time.”

Table A-4.  (continued)

Appendix HTTP Status Codes

178

HTTP Code Description

409 Conflict Indicates that the request could not be processed because

of conflict in the current state of the resource, such as an

edit conflict between multiple simultaneous updates.

410 Gone Indicates that the resource requested is no longer available.

This should be used when a resource has been intentionally

removed, and the resource should be purged. Upon

receiving a 410 status code, the client should not request

the resource in the future. Clients such as search engines

should remove the resource from their indices. Most use

cases do not require clients and search engines to purge the

resource, and a 404 Not Found may be used instead.

411 Length Required The request did not specify the length of its content, which

is required by the requested resource.

412 Precondition Failed (RFC 7232) The server does not meet one of the preconditions that the

requester put on the request header fields.

413 Payload Too Large (RFC 7231) The request is larger than the server is willing or able to

process. Previously called Request Entity Too Large.

414 URI Too Long (RFC 7231) The URI provided was too long for the server to process.

Often the result of too much data is encoded as a query

string of a GET request, in which case it should be converted

to a POST request. Previously called Request-URI Too Long.

415 Unsupported Media
Type (RFC 7231)

The request entity has a media type that the server or

resource does not support. For example, the client uploads

an image as image/svg+xml, but the server requires that

images use a different format.

416 Range Not Satisfiable
(RFC 7233)

The client has asked for a portion of the file (byte serving),

but the server cannot supply that portion. For example, if the

client asked for a part of the file that lies beyond the end of

the file. Previously called Requested Range Not Satisfiable.

Table A-4.  (continued)

(continued)

Appendix HTTP Status Codes

179

HTTP Code Description

417 Expectation Failed The server cannot meet the requirements of the Expect

request-header field.

418 I’m a teapot (RFC 2324,
RFC 7168)

This code was defined in 1998 as one of the traditional

IETF April Fools’ jokes in RFC 2324, HyperText Coffee Pot

Control Protocol, and is not expected to be implemented by

actual HTTP servers. The RFC specifies this code should be

returned by teapots requested to brew coffee. This HTTP

status is used as an Easter egg on some websites, such as

the Google “I’m a teapot” Easter egg.

421 Misdirected Request
(RFC 7540)

The request was directed at a server unable to produce a

response (for example, because of connection reuse).

422 Unprocessable Entity
(WebDAV; RFC 4918)

The request was well-formed but was unable to be followed

due to semantic errors.

423 Locked (WebDAV; RFC 4918) The resource that is being accessed is locked.

424 Failed Dependency
(WebDAV; RFC 4918)

The request failed because it depended on another request,

and that request failed (e.g., a PROPPATCH).

425 Too Early (RFC 8470) This indicates that the server is unwilling to risk processing

a request that might be replayed.

426 Upgrade Required The client should switch to a different protocol, such as

TLS/1.3, given in the Upgrade header field.

428 Precondition Required
(RFC 6585)

The origin server requires the request to be conditional.

Intended to prevent the ‘lost update’ problem, where a client

GETs a resource’s state, modifies it, and PUTs it back to

the server when a third party has modified the state on the

server, leading to a conflict.

429 Too Many Requests (RFC 6585) The user has sent too many requests in a given amount of

time. Intended for use with rate-limiting schemes.

Table A-4.  (continued)

(continued)

Appendix HTTP Status Codes

180

HTTP Code Description

431 Request Header Fields Too
Large (RFC 6585)

The server is unwilling to process the request because

either an individual header field or all the header fields

collectively are too large.

451 Unavailable For Legal Reasons
(RFC 7725)

A server operator has received a legal demand to

deny access to a resource or to a set of resources that

includes the requested resource. Code 451 was chosen

as a reference to the novel Fahrenheit 451 (see the

Acknowledgements in the RFC).

Table A-4.  (continued)

�5xx Server Errors
The server failed to fulfill a request.

Response status codes beginning with the digit 5 indicate cases in which the server

is aware that it has encountered an error or is otherwise incapable of performing the

request. Except when responding to a HEAD request, the server should include an entity

containing an explanation of the error situation and indicate whether it is a temporary

or permanent condition. Likewise, user agents should display any included entity to the

user. These response codes apply to any request method.

Appendix HTTP Status Codes

181

Table A-5.  500-Level Error Codes

HTTP Code Description

500 Internal Server Error A generic error message is given when an unexpected condition is

encountered, and no more specific message is suitable.

501 Not Implemented The server either does not recognize the request method or cannot

fulfill the request. Usually, this implies future availability (e.g., a new

feature of a web-service API).

502 Bad Gateway The server acted as a gateway or proxy and received an invalid

response from the upstream server.

503 Service Unavailable The server cannot handle the request (because it is overloaded or down

for maintenance). Generally, this is a temporary state.

504 Gateway Timeout The server acted as a gateway or proxy and did not receive a timely

response from the upstream server.

505 HTTP Version Not
Supported

The server does not support the HTTP protocol version used in the

request.

506 Variant Also
Negotiates (RFC 2295)

Transparent content negotiation for the request results in a circular

reference.

507 Insufficient Storage
(WebDAV; RFC 4918)

The server is unable to store the representation needed to complete

the request.

508 Loop Detected
(WebDAV; RFC 5842)

The server detected an infinite loop while processing the request (sent

instead of 208 Already Reported).

510 Not Extended
(RFC 2774)

Further extensions to the request are required for the server to fulfill it.

511 Network
Authentication Required
(RFC 6585)

The client needs to authenticate to gain network access. Intended

for use by intercepting proxies to control access to the network (e.g.,

“captive portals” to require agreement to terms of service before

granting full Internet access via a Wi-Fi hotspot).

Appendix HTTP Status Codes

183

Index

A
AddModule directive, 117
Amazon S3, 7
Apache, 10

as a service in Windows, 22
as a service through Homebrew, 14
authentication for users, 54
binary installation, 19
configuration, 28
configuring basic authentication, 56
default site, 26, 27
documentation, 6
history, 4
installing on Windows, 20, 21
on Linux, 15–17
on macOS, 11, 12
vs. other web servers, 9
new file types, 57
and Nginx, 9
open source software, 17
RAM, 11
scripting environments, 7
source code, 17
source install, 18
system requirements, 11
through Homebrew, 12
through XAMPP, 21, 22

Apache configuration, 14, 18, 25, 37, 39,
43, 46, 57, 58, 65, 66, 73, 77, 82,
107, 147

extra/httpd-ssl.conf, 160, 161
httpd.conf, 153–160, 163

human-readable URLs, 162, 163
Linux, 164
macOS and windows, 164
nodejs.local.conf, 165
portfolio.local.conf, 164
protected directory

dev.mydomain.com.conf, 167
directives, 166
httpd.conf, 167
Linux, 167
macOS and windows, 167

virtual hosts, 163
Apache directives, 29, 54, 162
Apache Group’s documentation, 32
Apache modules, 30, 32, 33, 83, 117

auth_basic_module, 30
configuration, 34
configuration directives, 35
installation, 33
mod_access, 30
mod_alias, 30
mod_autoindex, 31
mod_cgi, 31
mod_dir, 31
mod_env, 31
mod_log_config, 32
mod_mime, 32

Apache’s Configuration Directory, 24, 25
Apache’s log files, 132, 135, 136, 143,

144, 148
directives, 136
rotating logs

© Darren James Harkness 2022
D. J. Harkness, Apache Essentials, https://doi.org/10.1007/978-1-4842-8324-0

https://doi.org/10.1007/978-1-4842-8324-0

184

configuration, 137–143
reading, 143

virtual hosts, 136
Apache Software Foundation (ASF), 4
Apache’s RewriteEngine, 45, 48, 49

B
Binary installation, 19

C
CERN web server, 4
Certificate authority (CA), 109, 110, 123
command prompt (cmd.exe), 5, 6, 110
Configuration, Apache

apachectl configtest, 58
authentication for users, 54
changes, 58
configuration files, 29
custom error messages, 50–52
date-based URL structure, 47
directory options, 38, 39
DocumentRoot directive, 37
DocumentRoot directory, 38
external error documents, 53
.htaccess file, 41
htpasswd tool, 55, 56
logging, 41
mime.types configuration file, 57
modules, 29
multiple configuration files, 57
rewriting URLs, 43, 44
trailing slash problem, 48
URL slugs, 44, 45, 47
using regular expressions, 48

CustomLog directive, 32, 69, 128, 158

D
Debian, 15, 19, 125
Default Apache Modules, 30, 32
Default site, 26, 27
Development environment, 7–10, 12, 20,

21, 62–65, 73, 78, 86, 88, 91, 97,
109, 160, 163, 169

DirectoryIndex, 41, 75, 76, 81, 83, 157, 164
DocumentRoot directive, 34, 37, 68, 69
Domain Name System (DNS), 60
Domains, 37, 41, 57, 59–64, 68, 73, 74,

109, 136
local

environments, 65
host file, 62, 63
ngrok, 63, 64
subdomain pointing, 64

E, F, G
Error documents, 41, 50, 53
ErrorLog directive, 69
External error documents, 53

H
Homebrew, 12, 14
.htaccess file, 41
HTML/CSS-based websites, 29
.htpasswd file, 56
httpd.conf configuration file, 41
httpd.conf file, 25, 26
httpd (HyperText Transfer Protocol

Daemon), 3
httpd-php.conf file, 85
httpd-vhosts.conf, 74, 77
HTTP error codes, 3, 52, 53
HTTP protocol, 2, 134

Apache’s log files (cont.)

INDEX

185

HTTP Status Codes, 134
client errors, 175–179
informational response, 171, 172
redirection, 174, 175
server errors, 180, 181
success, 172, 173

HTTP transaction, 2, 3
HyperText Transfer Protocol (HTTP), 2
HyperText Transfer Protocol Secure

(HTTPS), 105

I, J
Internet, 4, 8, 9, 11, 54, 60–62, 105, 112,

135, 160, 175, 181
IP addresses, 60, 62, 63, 154, 166

K
Knoppix, 19

L
Linux, 5, 11, 15, 36

advantages and disadvantages, 15–17
operating system, 15

Linux subsystem, 5, 20
LoadModule directive, 30, 33, 101, 117, 160
Local development environment, 8, 65,

78, 109, 160
Log files

error.log file, 125–127
access.log file, 128–135
analysis programs, 144
Apache’s log files, 143
custom scripts, 145, 146
troubleshooting Apache

configuration, 147

tracking down 404 errors, 148
troubleshooting PHP, 148–152

Logging, 29, 41, 75, 76, 88, 91, 92, 101, 125,
130, 135, 139, 147, 152, 157, 165

M
macOS, 5, 26, 36

advantages and disadvantages, 12
memory_limit configuration directive, 87
memory_limit directive, 87
Microsoft’s Internet Information Server

(IIS), 9, 11
mime.types configuration file, 26, 33, 57
mod_modulename, 29
mod_rewrite module, 43
Modules in Apache, 29, 101

N
National Center for Supercomputing

Applications (NCSA), 4
Nginx, 9, 10, 97
Node.js, 10, 97

adding service, 99
configuration, 98, 99
installing pm2, 98

O
The Odin Project, 6

P, Q
Perl modules, 30
PHP

configuration
increase max execution time, 88, 89
increase memory usage limit, 86, 87

INDEX

186

increase upload file size, 87
Linux, 85, 86
macOS, 83–85
noisy error, 87, 88

extensions, 89, 90
php.ini, 90–95
testing, 96, 97

installing, 80
Linux, 82
macOS, 80–82

phpinfo() function, 96
Primary Code Directory, 37
Public Website Files, 23, 24, 36

R
RAM, 7
Raspberry Pi’s Raspbian OS, 19
React application, 103
Reverse proxy, 100

Linux, 101
macOS/Windows, 100
modules, 100
testing, 102
virtual host, 101

RewriteBase, 43
RewriteCond, 43
RewriteEngine, 43
Rewrite module, 43, 45, 48, 49, 155
RewriteRule, 43

S
ScriptAlias directive, 69
Secure Socket Layers (SSL), 105

CA, 109

private key, 110, 111
public, 112, 113
script sign, 113, 114
sign.sh script, 114, 116
storing, 110

configuration, 122
global options, 118, 119
install Certbot

Linux, 106
macOS, 106
Windows, 107

install OpenSSL
Linux, 109
macOS, 109
Windows, 110

loading module, 117
local domains, 109
running Certbot, 107, 108
secure site, 122, 123
separate configuration

file, 116
server variables, 120
subdomains, 106

Security auditing, 18
ServerAdmin directive, 67
ServerAlias directive, 68
ServerName directive, 68
Server-side includes (SSI), 79
SSL Certificate Request (CSR), 114
SSLRandomSeed directive, 118
SSLSessionCache option, 119
Standard Apache error page, 51

T
Templating systems, 79
Trailing slash problem, 48

PHP (cont.)

INDEX

187

U
Ubuntu, 6, 19, 20
UNIX-based system, 11
upload_max_filesize directive, 87
URL slugs, 44, 45, 47
User Account Control (UAC), 22

V
<VirtualHost> directive, 65, 67
Virtual hosts, 61

configuration files, 73
directory, 70
DocumentRoot directive, 68
ErrorLog/CustomLog directive, 69
local computer, 74
multiple, 74, 77
sample, 66

ScriptAlias directive, 69
ServerAdmin directive, 67
ServerAlias/ServerName directive, 68

W
Web, 3, 4, 9, 173
Web server, 1–4, 6, 7, 9–11, 13, 16, 18, 19,

21, 52, 54, 56, 57, 77, 97
Windows, 5, 7, 9, 16, 17, 19–25, 27, 33, 36,

37, 39, 55, 58, 62, 68, 71, 74, 80
World Wide Web (WWW), 4, 176

X, Y, Z
XAMPP, 21–24, 55, 58, 68, 80, 82, 89,

101, 110
XAMPP control panel, 22, 23, 58

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with Apache
	How Web Servers Work
	The HyperText Transfer Protocol
	A (Very) Brief History of Apache
	Before You Begin…
	Keep Notes
	Get Familiar with Your Terminal
	Be Prepared to Read Documentation
	What to Know Before Installing Apache

	Using the Right Development Environment
	Apache vs. Other Web Servers
	Choosing Apache Over Nginx
	Apache over npm start for Node Development

	Obtaining Apache
	Installing Apache on macOS
	Installing Apache Through Homebrew
	Running Apache as a Service Through Homebrew

	Installing Apache on Linux
	Choosing the Source Installation
	The Benefit of Binary Installation

	Installing on Windows
	Installing Apache Through XAMPP
	Installing Apache as a Service in Windows

	Basic Configuration
	Where to Put Your Website Files
	Configuration Directory Structure
	httpd.conf/apache2.conf
	mime.types

	Configuring a Default Site
	Summing It Up

	Chapter 2: Configuration Essentials
	How Apache’s Configuration Is Structured
	Where Do I Find Modules?
	Installing Modules
	Adding File Types
	Configuring Modules

	All About Directives
	Directive Configuration
	DocumentRoot /var/www
	Configuring Your Primary Apache Site
	Creating the New Directory
	Updating Your Apache Configuration
	Updating the Location of Your Website’s Files
	Directory Options
	Configuring Your Primary Index File
	Configuring Logging

	Using .htaccess Files
	Other Configuration Options You Should Know
	Rewriting URLs
	Using URL Slugs
	Updating the URL for an Existing Page
	Fixing a Trailing Slash

	Creating Custom Error Messages
	ErrorDocument Syntax
	Redirecting to External Error Documents

	Authenticating Users Through Apache
	Creating a .htpasswd File
	Basic Configuration

	Adding New File Types
	Configuring mime.types

	Including External Configuration Files
	Applying Changes
	Summing It Up

	Chapter 3: Configuring Virtual Hosts
	A Quick and Dirty Guide to Domains
	What Are Virtual Hosts?
	Creating Development Domains
	Using the hosts File to Manage Local Domains
	Using ngrok to Manage Local Domains
	Setting up a Subdomain Pointing to Your Local Environment

	Why Develop Locally?
	Configuring Apache’s Virtual Hosts
	A Sample Apache Configuration
	<VirtualHost>
	ServerAdmin
	DocumentRoot
	ServerName and ServerAlias
	ErrorLog and CustomLog
	ScriptAlias
	Directory

	Using Separate Configuration Files

	Putting It All to Work
	Pointing the Virtual Domains to Your Local Computer
	Configuring Apache for Multiple Virtual Hosts

	Summing It Up

	Chapter 4: Scripting Languages
	PHP
	Installing PHP
	Installing PHP on macOS
	Installing PHP on Linux

	Configuring Apache for PHP
	On macOS
	On Linux

	Configuring PHP
	Updating Default Configuration
	Increasing the Memory Usage Limit
	Increasing the Upload File Size
	Configuring Noisy Error Reporting
	Increasing Max Execution Time

	Installing PHP Extensions
	Recommended php.ini
	Testing It Out

	Configuring Node.js on Apache
	Configuring Your Node.js Application for Apache
	Installing pm2
	Configuring the Application
	Adding Your Application as a Service

	Configuring Apache’s Reverse Proxy
	Enabling Apache’s Proxy Modules
	On macOS and Windows
	On Linux
	Creating a Virtual Host Configuration
	Testing It Out

	Configuring React Apps on Apache
	Summing It Up

	Chapter 5: Securing Your Setup
	SSL at a Glance
	Configuring SSL for Subdomains
	Installing Certbot
	On macOS
	On Linux
	On Windows

	Running Certbot

	Configuring HTTPS for Local Domains
	Setting up a Local SSL Certificate Authority
	Installing OpenSSL
	macOS
	Linux
	Windows

	Storing Your Certificates
	Generating the CA Private Key
	Creating a Public CA Certificate
	Signing Your Own Certificates
	The sign.sh Script

	Configuring Apache for HTTPS
	Creating a Separate Configuration File
	Loading the SSL Module
	Configuring the Apache’s SSL Module
	Configuring the Global Options
	Configuring the Secure Site in Apache

	Summing It Up

	Chapter 6: Log Files
	Error.log
	Configuring the Error Log

	access.log
	Formatting the Access Log

	Where Can I Find Apache’s Log Files?
	Configuring Apache Logs
	Log Files for Virtual Hosts
	Rotating Logs
	Configuring Log Rotation
	Reading Archived Log Files

	What Do I Do with Log Files?
	Using Log Analysis Programs
	Creating Custom Scripts
	Apache Configuration
	Tracking Down 404 Errors and Why They Occur

	Troubleshooting PHP
	Writing to the Error Log
	An Example

	Summing It Up

	Chapter 7: Sample Apache Configurations
	Basic Apache Configuration (with PHP)
	httpd.conf

	Basic HTTPS Configuration
	httpd.conf
	extra/httpd-ssl.conf

	Adding Rewrite Rules to Provide Human-Readable URLs
	.htaccess

	Setting up Multiple Hosts (One PHP and One Node.js)
	httpd.conf
	macOS and Windows
	Linux

	portfolio.local.conf
	nodejs.local.conf

	Protected Directory
	httpd.conf
	macOS and Windows
	Linux

	dev.mydomain.com.conf

	Epilogue
	Keep Learning

	Appendix: HTTP Status Codes
	HTTP Status Codes
	1xx Informational Response
	2xx Success
	3xx Redirection
	4xx Client Errors
	5xx Server Errors

	Index

