

Agile Model-Based Systems
Engineering Cookbook
Second Edition

Improve system development by applying proven recipes for effective
agile systems engineering

Dr. Bruce Powel Douglass

BIRMINGHAM—MUMBAI

Agile Model-Based Systems Engineering Cookbook
Second Edition

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Denim Pinto

Acquisition Editor – Peer Reviews: Saby Dsilva

Project Editor: Meenakshi Vijay

Content Development Editor: Rebecca Robinson

Copy Editor: Safis Editing

Technical Editor: Srishty Bhardwaj

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Presentation Designer: Rajesh Shirsath

First published: March 2021

Second edition: December 2022

Production reference: 2271222

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80323-582-0

www.packt.com

http://www.packt.com

Foreword

As a systems engineer, you may know that viewpoints are important to understand context. When

you read this foreword, you should be aware that I wrote it from my individual viewpoint. My

own professional role involves the development of methods, templates, and training to make

Systems engineering applicable for organizations, and also producing complex systems con-

sisting of mechanical and electrical hardware, software, and the human beings operating it or

interacting with it. Systems engineering is nowadays challenged with several constraints and

boundary conditions requiring permanent change in the organization and its processes, meth-

ods, and tools. The need to work closely cross-domain (e. g. mechanical and hardware designers

working together with software programmers, testers, and stakeholders), the need to quickly

react to external (and internal) disruptions, and the need to bridge cross-cultural gaps require

several significant changes in parallel. And this is difficult for bigger organizations and hard to

realize. This is where this book helps significantly and contributes to mastering such challenges.

The answer to those challenges lies in the introduction and application of Systems Engineering

(SE) and in agile methods. The definition, deployment, implementation, maturation, and man-

agement of those two changes is a huge challenge to bigger companies and this book provides

simple (not easy!) recipes to approach those changes.

This book perfectly fills a couple of gaps existing today in this area. Typically, there are two ways

for companies to start their Systems Engineering journey: either they start first with training

and educating Systems engineers theoretically or they start introducing a Model-Based Systems

Engineering (MBSE) tool to provide a tool to “do Systems Engineering”. I’m not saying that

the one or other method is better or worse, but I have observed this for years. Actually, both are

necessary as, Systems Engineers need a good theoretical background on the methods and on

tools. For re-use and communication, modern MBSE tools are optimally suited to implement

SE formally in all development processes. However, to implement Systems Engineering broadly

in a cross-domain development organization it is critical to follow strict modelling rules and to

install syntactic and semantic guidelines.

In this area this book perfectly meets the needs of any SE practitioner and each company imple-

menting or applying SE. The practical guidelines, the “step-by-step” descriptions, the cross-do-

main designed examples, and the provided downloads allow companies and individuals to get

quickly and easily to the core of the method and mind set. With the provided references and

additional sources, this book offers many further paths to go into more detail in many domains

if needed or desired.

The second critical area covered by this book is the “agile” aspects of modern development or-

ganizations. The beauty of this book is that it holds “agile” at its core, the agile manifesto, and

does not reduce or limit it to one of the many agile process implementations. The book provides

excellent directions and practices to become more agile, independent of the development domain

(not limited to software development), and also builds the bridge on how to use SE and MBSE

in particular to foster an agile development process in general. Using the different SE artifacts

as deliverables, prioritizing them accordingly to build a useful backlog, employing methods to

track progress and risk, etc. are well described and practically applicable. As said before, practical

examples and “step-by-step” guidelines are the core enablers for immediate practical application.

Last but not least, while the book follows the full development cycle and covers the aspects of

functional analysis, architecting, trade studies, system design, verification, and validation, it also

details the important aspects of system safety and security.

I highly recommend this book to all SE practitioners and to anyone considering how to implement

SE in a company or how to become more agile. This second edition, with all of its enhancements

and improvements in the step-by-step description and its additional areas covering things such

as system security, is a must have in each SE’s library.

Thank you Bruce, and well done!

Christian von Holst

Contributors

About the author
Dr. Bruce Powel Douglass has received an MS in exercise physiology from the University of

Oregon and a Ph.D. in neurocybernetics from the USD Medical School. He has worked as a software

developer and systems engineer in safety-critical real-time embedded systems for almost 40 years

and is a well-known speaker, author, and consultant in the area of real-time embedded systems,

UML, and SysML. He is a coauthor of the UML and SysML standards, and teaches courses in re-

al-time systems and software design and project management. Bruce has also authored articles

for many journals and periodicals, especially in the real-time domain, and authored several other

books on systems and software development. He has worked at I-Logix, Telelogic, and IBM on

the Rhapsody modeling tool. He is currently a senior principal agile systems engineer at MITRE,

and the principal at A-Priori Systems.

About the reviewers
Jaime Robles has more than a decade of experience in the development of complex engineered

systems across the entire lifecycle. Currently, he is working as a Systems Engineer at the ALMA

Observatory, the world’s most powerful telescope at millimeter and submillimeter wavelengths.

Previously, he has worked in the development of small space systems for planetary surface explo-

ration and as a consultant in systems engineering with MBSE focus at SPEX Systems.

He is an aerospace engineer, an OMG certified Systems Modeling Professional – Model Build-

er Advanced (OCSMP-MBA), an INCOSE associate Systems Engineering professional, and an

active member of this professional organization participating in several groups (Space Systems

WG, Requirements WG, LATAM Chapter). He also holds an MIT certificate in Architecture and

Systems Engineering and has gained work experience in the United States, Switzerland, and Chile.

A word of acknowledgment to the author for sharing his vast knowledge with the MBSE community and for

the opportunity to contribute with a grain of sand as a technical reviewer. Also, a special thanks to my family

for their kind support and patience during the time invested in the review process.

Dr. Saulius Pavalkis is global MBSE Ecosystem Transformation Leader and MBSE R&D Cyber

Portfolio Manager NAM at Dassault Systemes. He is also an INCOSE CAB Representative and on

the CSE Board of Advisors at the University of Texas.

He has 20 years of MBSE solutions experience, and is a product owner and analyst with the Cameo

core team, chief solution architect, consultant, and trainer. He is a world-leading expert in MBSE

ecosystem, digital engineering, system architecture and simulation.

Throughout his career, he has been actively involved in building excellent MBSE ecosystem solu-

tions in aerospace, defense, automotive and other areas as a former affiliate for JPL NASA for MBSE

consulting and a contractor for Boeing's MBSE transformation.

Dr Saulius Pavalkis contributed to the MBSE SysML Based Method and Framework MagicGrid book

and recently the Agile MBSE Cookbook by Dr. Bruce Douglass. He guides 2,000 subscribers—the

largest SysML systems simulation community on YouTube (youtube.com/c/MBSEExecution).

Saulius has INCOSE CSEP, OMG OCSMP, the No Magic lifetime modeling and simulation ex-

cellence award, a PhD in software engineering in the models query area, and a MS and BS in

telecommunications and electronics from Kaunas University of Technology.

http://youtube.com/c/MBSEExecution

I would like to thank Dr. Bruce Douglass for amazing opportunity to review his latest book on Agile MBSE

application. Dr. Bruce is a leading expert in effective and efficient MBSE application and has made this

book is the best in class as an MBSE transformation guide. It is a must-have for any company or expert.

Thank you, Dr. Bruce Douglass!

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/cpVUC

Table of Contents

Preface xix

Chapter 1: Basics of Agile Systems Modeling 1

What’s agile all about? ... 3

Incremental development • 3

Continuous verification • 3

Continuous integration • 4

Avoid big design up front • 4

Working with stakeholders • 4

Model-Based Systems Engineering (MBSE) .. 4

Managing your backlog .. 6

Purpose • 8

Inputs and preconditions • 8

Outputs and postconditions • 8

How to do it • 9

Example • 13

Measuring your success ... 19

How to do it • 21

Example • 24

Some considerations ... 27

Managing risk .. 28

Purpose • 29

Table of Contentsx

Inputs and proconditions • 29

Outputs and postconditions • 29

How to do it • 30

Example • 33

Product roadmap .. 38

Purpose • 39

Inputs and preconditions • 39

How to do it • 39

Example • 43

Release plan .. 46

Purpose • 46

Inputs and preconditons • 46

Outputs and postconditions • 46

How to do it • 46

Example • 48

Iteration plan ... 51

Purpose • 51

Inputs and preconditions • 51

Outputs and postconditions • 52

How to do it • 52

Example • 55

Estimating Effort ... 58

Purpose • 58

Inputs and preconditions • 59

Outputs and postconditions • 59

How to do it • 59

How it works • 59

Example • 62

Work item prioritization .. 66

Purpose • 67

Inputs and preconditions • 67

Table of Contents xi

How to do it • 67

How it works • 71

Example • 72

Iteration 0 ... 78

Purpose • 78

Inputs and preconditions • 78

Outputs and postconditions • 79

How to do it • 79

Example • 83

Architecture 0 ... 85

Subsystem and component view • 85

Concurrency and resource view • 85

Distribution view • 85

Dependability view • 86

Deployment view • 86

Purpose • 87

Inputs and preconditions • 87

Outputs and postconditions • 87

How to do it • 87

Example • 92

Additional note • 100

Organizing your models ... 101

Purpose • 101

Inputs and preconditions • 101

Outputs and postconditions • 101

How to do it • 102

How it works • 112

Example • 112

Managing change ... 113

Purpose • 114

Inputs and preconditions • 115

Table of Contentsxii

How to do it • 115

Example • 117

Chapter 2: System Specification 131

Recipes in this chapter ... 131

Why aren’t textual requirements enough? .. 132

Definitions ... 133

Functional Analysis with Scenarios ... 134

Purpose • 134

Inputs and preconditions • 135

Outputs and postconditions • 135

How to do it • 135

Example • 138

Functional analysis with activities ... 153

Inputs and preconditions • 153

Outputs and postconditions • 153

How to do it • 153

Functional analysis with state machines ... 171

Purpose • 172

Inputs and preconditions • 172

Outputs and postconditions • 172

How to do it • 172

Example • 176

Functional Analysis with User Stories ... 185

A little bit about user stories • 185

Purpose • 189

Inputs and preconditions • 189

Outputs and postconditions • 189

How to do it • 189

Example • 191

Table of Contents xiii

Model-Based Safety Analysis .. 196

A little bit about safety analysis • 197

Some Profiles • 198

Hazard analysis ... 202

Purpose • 202

Inputs and preconditions • 202

Outputs and postconditions • 202

How to do it • 202

Example • 205

Model-Based Threat Analysis .. 212

Basics of Cyber-Physical Security • 213

Modeling for Security Analysis • 215

Purpose • 220

Inputs and preconditions • 220

Outputs and postconditions • 220

How to do it • 220

Example • 223

Specifying Logical System Interfaces ... 231

A Note about SysML Ports and Interfaces • 231

Purpose • 235

Inputs and preconditions • 235

Outputs and postconditions • 235

How to do it • 235

Example • 237

Creating the Logical Data Schema .. 246

Definitions • 246

Example • 248

Purpose • 251

Inputs and preconditions • 251

Outputs and postconditions • 251

Table of Contentsxiv

How to do it • 252

Example • 257

Chapter 3: Developing System Architectures 269

Recipes in this chapter .. 269

Five critical views of architecture .. 270

General architectural guidelines • 271

Architectural trade studies .. 272

Purpose • 272

Inputs and preconditions • 272

Outputs and postconditions • 273

How to do it • 274

Example • 279

Architectural merge • 286

Example • 290

Pattern-driven architecture • 299

Purpose • 301

Inputs and preconditions • 301

Outputs and postconditions • 301

How to do it • 301

Example • 303

Subsystem and component architecture • 310

Purpose • 312

Inputs and preconditions • 312

Outputs and postconditions • 313

How to do it • 313

Example • 315

Architectural allocation • 321

Creating subsystem interfaces from use case scenarios ... 334

Purpose • 335

Inputs and preconditions • 335

Table of Contents xv

Outputs and postconditions • 335

How to do it • 335

Specializing a reference architecture .. 348

Purpose • 351

Inputs and preconditions • 351

Outputs and postconditions • 351

How to do it • 352

Chapter 4: Handoff to Downstream Engineering 363

Recipes in this chapter .. 363

Activities for the handoff to downstream engineering .. 364

Starting point for the examples • 365

Preparation for Handoff • 372

Federating Models for Handoff • 380

Logical to Physical Interfaces • 389

Deployment Architecture I: Allocation to Engineering Facets • 404

Deployment Architecture II: Interdisciplinary Interfaces • 421

Chapter 5: Demonstration of Meeting Needs: Verification and Validation 439

Recipes in this chapter .. 439

Verification and validation .. 441

Model simulation • 444

Purpose • 445

Inputs and preconditions • 445

Outputs and postconditions • 445

How to do it • 445

Example • 448

Model-based testing • 460

Inputs and preconditions • 462

Outputs and postconditions • 462

How to do it • 463

Table of Contentsxvi

Example • 465

Computable constraint modeling • 483

Purpose • 483

Inputs and preconditions • 484

How to do it • 484

Example • 486

Traceability ... 493

Purpose • 497

Inputs and preconditions • 497

Outputs and postconditions • 498

How to do it • 498

Example • 502

Effective Reviews and walkthroughs .. 504

Purpose • 505

Inputs and preconditions • 506

Outputs and postconditions • 506

How to do it • 506

Example • 510

Managing Model Work Items ... 514

Purpose • 514

Inputs and preconditions • 514

How to do it • 515

Example • 516

Test Driven Modeling .. 519

Purpose • 520

Inputs and preconditions • 520

Outputs and postconditions • 520

How to do it • 520

Example • 522

Table of Contents xvii

Appendix A: The Pegasus Bike Trainer 545

Overview ... 545

Pegasus High-Level Features ... 545

Highly customizable bike fit • 546

Monitor exercise metrics • 546

Export/upload exercise metrics • 546

Variable power output • 547

Gearing emulation • 547

Controllable power level • 547

Incline control • 547

User interface • 547

Online training system compatible • 548

Configuration and OTA firmware updates • 548

Other Books You May Enjoy 553

Index 557

Preface

Welcome to the Agile Model-Based Systems Engineering Cookbook! There is a plethora of published

material for agile methods, provided that you want to create software. And the system is small.

And the team is co-located. And it needn’t be certified. Or safety-critical or high-reliability.

MBSE is none of these things. The output of MBSE isn’t software implementation but system

specification. It is usually applied to more complex and larger-scale systems. The teams are di-

verse and often spread out across departments and companies. Much of the time, the systems

produced must be certified under various standards, including safety standards. So how do you

apply agile methods to such an endeavor?

Most of the work in MBSE can be thought of as a set of workflows that produce a set of inter-

related work products. Each of these workflows can be described with relatively simple recipes

for creating the work products for MBSE including system requirements, systems architecture,

system interfaces, and deployment architectures. That’s what this book brings to the table and

what sets it apart.

In this second edition, some new recipes have been added and all the examples and figures have

been done using the Cameo Systems Modeler SysML tool.

Who this book is for
The book is, first and foremost, for systems engineers who need to produce work products for

the specification of systems that include combinations of engineering disciplines, such as soft-

ware, electronics, and mechanical engineering. More specifically, this book is about model-based

systems engineering using the SysML language to capture, render, and organize the engineering

data. Further, the book is especially about how to do all that in a way that achieves the benefits

of agile methods – verifiably correct, adaptable, and maintainable systems. We assume basic

understanding of the Systems Modeling Language (SysML) and at least some experience as a

systems engineer.

Prefacexx

What this book covers
Chapter 1, Basics of Agile Systems Modeling, discusses some fundamental agile concepts, expressed

as recipes, such as managing your backlog, using metrics effectively, managing project risk, ag-

ile planning, work effort estimation and prioritization, starting up projects, creating an initial

systems architecture, and organizing your systems engineering models. The recipes all take a

systems engineering slant and focus on the work products commonly developed in a systems

engineering effort.

Chapter 2, System Specification, is about agile model-based systems requirements – capturing,

managing, and analyzing the system specification. One of the powerful tools that MBSE brings

to the table is the ability to analyze requirements by developing computable and executable

models. This chapter provides recipes for several different ways of doing that, as well as recipes

for model-based safety and cyber-physical security analysis, and specifying details of information

held within the system.

Chapter 3, Developing Systems Architecture, has recipes focused on the development of systems

architectures. It begins with a way of doing model-based trade-studies (sometimes known as

“analysis of alternatives”). The chapter goes on to provide recipes for integrating use case analyses

into a systems architecture, applying architectural patterns, allocation of requirements into a

systems architecture, and creating subsystem-level interfaces.

Chapter 4, Handoff to Downstream Engineering, examines one of the most commonly asked ques-

tions about MBSE: how to hand the information developed in the models off to implementation

engineers specializing in software, electronics, or mechanical engineering. This chapter provides

detailed recipes for getting ready to do the hand off, creating a federation of models to support the

collaborative engineering effort to follow, converting the logical systems engineering interfaces

to physical interface schemas, and actually doing the allocation to the engineering disciplines

involved.

Chapter 5, Demonstration of Meeting Needs Verification and Validation, considers a key concept in

agile methods: that one should never be more than minutes away from being able to demonstrate

that, while the system may be incomplete, what’s there is correct. This chapter has recipes for

model simulation, model-based testing, computable constraint modeling, adding traceability,

how to run effective walkthroughs and reviews, and – my favorite – Test-driven modeling.

Appendix, The Pegasus Bike Trainer, details a case study that will serve as the basis for most of

the examples in the book. This is a “smart” stationary bike trainer that interacts with net-based

athletic training systems to allow athletes to train in a variety of flexible ways.

Preface xxi

It contains aspects that will be implemented in mechanical, electronic, and software disciplines

in an ideal exemplar for the recipes in the book.

To get the most out of this book
To get the most out of this book, you will need a solid, but basic, understanding of the Systems

Modeling Language (SysML). In addition, to create the models, you will need a modeling tool.

The concepts here are expressed in SysML so any standards-compliant SysML modeling tool can

be used.

All the example models in this book are developed using the Cameo Systems Modeler tool. To

execute models and run simulations, you will need the Simulation Toolkit, included with the tool:

Software/hardware covered in the book OS requirements

Cameo Systems Modeler
Windows, macOS, or

Linux

Download the example models
You can download the example models for this book from the author’s website at www.bruce-

douglass.com. Note that these models are all in Cameo-specific format and won’t generally be

readable by other modeling tools.

We also have other code bundles from our rich catalog of books and videos available at https://

github.com/PacktPublishing/. Check them out!

Where to go from here
Visit the authors, website at www.bruce-douglass.com for papers, presentations, models, engi-

neering forums, to download the models from this book, and more.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/av1n2.

Conventions used
There are a number of text conventions used throughout this book.

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “Select System info from

the Administration panel.

http://www.bruce-douglass.com
http://www.bruce-douglass.com
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.bruce-douglass.com
https://packt.link/av1n2

Prefacexxii

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Warnings or important notes appear like this.

 Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com

Preface xxiii

Share your thoughts
Once you’ve read Agile Model-Based Systems Engineering Cookbook, Second Edition, we’d love to hear

your thoughts! Please click here to go straight to the Amazon review page for this book

and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1803235829

Prefacexxiv

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there- you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781803235820

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781803235820

1
Basics of Agile Systems
Modeling

For the most part, this book is about systems modeling with SysML, but doing it in an agile way.

Before we get into the detailed practices of systems modeling with that focus, however, we’re

going to spend some time discussing important project-related agile practices that will serve as

a backdrop for the modeling work.

Almost all of the agile literature focuses on the “three people in a garage developing a simple

application” scope. The basic assumptions of such projects include:

• The end result is software that runs on a general-purpose computing platform (i.e., it is

not embedded).

• Software is the only truly important work product. Others may be developed but they are

of secondary concern. Working software is the measure of success.

• The software isn’t performance, safety, reliability, or security-critical.

• It isn’t necessary to meet regulatory standards.

• The development team is small and co-located.

• The development is time-and-effort, not fixed-price cost.

• The development is fundamentally code-based and not model- (or design)-based.

• Any developer can do any task (no specialized skills are necessary).

• Formalized requirements are not necessary.

Basics of Agile Systems Modeling2

Yes, of course, there is much made about extensions to agile practices to account for projects that

don’t exactly meet these criteria. For example, some authors will talk about a “scrum of scrums”

as a way to scale up to larger teams. That works to a point, but it fails when you get to much larger

development teams and projects. I want to be clear – I’m not saying that agile methods aren’t ap-

plication to projects that don’t fall within these basic guidelines – only that the literature doesn’t

address how it will do so in a coherent, consistent fashion. The further away your project strays

from these assumptions, the less you will find in the literature for agile ways to address your needs.

In this book, we’ll address a domain that is significantly different than the prototypical agile

project. Our concerns will be projects that:

• Are systems-oriented, which may contain software but will typically also contain electronic

and mechanical aspects. It’s about the system and not the software.

• Employ a Model-Based Systems Engineering (MBSE) approach using the SysML language.

• May range from small- to very large-scale.

• Must develop a number of different work products. These include, but are not limited to:

• Requirements specification

• Analysis of requirements, whether it is done with use case or user stories

• System architectural specification

• System interface specification

• Trace relations between the elements of the different work products

• Safety, reliability, and security (and resulting requirements) analyses

• Architectural design trade studies

• Have a handoff to downstream engineering that includes interdisciplinary subsystem

teams containing team members who specialize in software, electronics, mechanical,

and other design aspects.

But at its core, the fundamental difference between this book and other agile books is that the

outcome of systems engineering isn’t software, it’s system specification. Downstream engineering will

ultimately do low-level design and implementation of those specifications. Systems engineering

provides the road map that enables different engineers with different skill sets, working in dif-

ferent engineering disciplines, to collaborate together to create an integrated system, combining

all their work into a cohesive whole.

Chapter 1 3

The International Council of Systems Engineering (INCOSE) defines systems engineering as

“a transdisciplinary and integrative approach to enable the successful realization, use, and re-

tirement of engineered systems, using systems principles and concepts, and scientific, techno-

logical, and management methods” (https://www.incose.org/about-systems-engineering/

system-and-se-definition/systems-engineering-definition). This book will not provide

a big overarching process that ties all the workflows and work products together, although it is

certainly based on one. That process – should you be interested in exploring it – is detailed in the

author’s Agile Systems Engineering book; a detailed example is provided with the author’s Harmony

aMBSE Deskbook, available at www.bruce-douglass.com. Of course, these recipes will work with

any other reasonable MBSE process. It is important to remember that:

What’s agile all about?
Agile methods are – first and foremost – a means for improving the quality of your engineering

work products. This is achieved through the application of a number of practices meant to con-

tinuously identify quality issues and immediately address them. Secondarily, agile is about im-

proving engineering efficiency and reducing rework. Let’s talk about some basic concepts of agility.

Incremental development
This is a key aspect of agile development. Take a big problem and develop it as a series of small

increments, each of which is verified to be correct (even if incomplete).

Continuous verification
The best way to have high-quality work products is to continuously develop and verify their

quality. In other books, such as Real-Time Agility or the aforementioned Agile Systems Engineering

books, I talk about how verification takes place in three timeframes:

• Nanocycle: 30 minutes to 1 day

• Microcycle: 1–4 weeks

• Macrocycle: Project length

Further, this verification is best done via the execution and testing of computable models. We

will see in later chapters how this can be accomplished.

The outcome of software development is implementation;

The outcome of systems engineering is specification.

https://www.incose.org/about-systems-engineering/system-and-se-definition/systems-engineering-definition
https://www.incose.org/about-systems-engineering/system-and-se-definition/systems-engineering-definition
http://www.bruce-douglass.com

Basics of Agile Systems Modeling4

Continuous integration
Few non-trivial systems are created by a single person. Integration is the task of putting together

work products from different engineers into a coherent whole and demonstrating that, as a unit,

it achieves its desired purpose. This integration is often done daily, but some teams increment

this truly continuously, absorbing work as engineers complete it and instantly verifying that it

works in tandem with the other bits.

Avoid big design up front
The concept of incremental development means that one thing that we don’t do is develop big

work products over long periods of time and only then try to demonstrate their correctness.

Instead, we develop and verify the design work we need right now, and defer design work that

we won’t need until later. This simplifies the verification work and also means much less rework

later in a project.

Working with stakeholders
A key focus of the Agilista is the needs of the stakeholders. The Agilista understands that there

is an “air gap” between what the requirements say and what the stakeholder actually needs. By

working with the stakeholder, and frequently offering them versions of the running system to try,

they are more likely to actually meet their needs. Additionally, user stories – a way to organize

requirements into short usage stakeholder-system usage scenarios – are a way to work with the

stakeholder to understand what they actually need.

Model-Based Systems Engineering (MBSE)
Systems engineering is an independent engineering discipline that focuses on system proper-

ties – including functionality, structure, performance, safety, reliability, and security. MBSE is a

model-centric approach to performing systems engineering. Systems engineering is largely inde-

pendent of the engineering disciplines used to implement these properties. Systems engineering

is an interdisciplinary activity that focuses more on this integrated set of system properties than

on the contributions of the individual engineering disciplines. It is an approach to developing

complex and technologically diverse systems. Although normally thought of in a V-style process

approach (see Figure 1.1), the “left side of the V” emphases the specification of the system proper-

ties (requirements, architecture, interfaces, and overall dependability), the “lower part of the V”

has to do with the discipline-specific engineering and design work, and the “right side of the V”

has to do with the verification of the system against the specifications developed on the left side:

Chapter 1 5

Figure 1.1: Standard V model life cycle

Of course, we’ll be doing things in a more agile way (Figure 1.2). Mostly, we’ll focus on incremen-

tally creating the specification work products and handing them off to downstream engineering

in an agile way:

Figure 1.2: Basic Agile systems engineering workflow

Basics of Agile Systems Modeling6

The basis of most of the work products developed in MBSE is, naturally enough, the model. For the

most part, this refers to the set of engineering data relevant to the system captured in a SysML

model. The main model is likely to be supplemented with models in other languages, such as

performance, safety, and reliability (although you can use SysML for that too – we’ll discuss that

in Chapter 2, System Specification—Functional, Safety and Security Analysis). The other primary work

product will be textual requirements. While they are imprecise, vague, ambiguous, and hard to verify,

they have the advantage of being easy to communicate. Our models will cluster these require-

ments into usage chunks – epics, use cases, and user stories – but we’ll still need requirements.

These may be managed either as text or in text-based requirements management tools, such as

IBM DOORS™, or they can be managed as model elements within a SysML specification model.

Our models will consist of formal representations of our engineering data as model elements and

the relationships among them. These elements may appear in one or more views, including

diagrams, tables, or matrices. The model is, then, a coherent collection of model elements that

represent the important engineering data around our system of interest.

In this book, we assume you already know SysML. If you don’t, there are many books around for

that. This book is a collection of short, high-focused workflows that create one or a small set of

engineering work products that contain relevant model elements.

Now, let’s talk about some basic agile recipes and how they can be done in a model-centric en-

vironment.

Managing your backlog
The backlog is a prioritized set of work items that identify work to be done. There are generally

two such backlogs. The project backlog is a prioritized list of all work to be done in the current

project. A subset of these is selected for the current increment, forming the iteration backlog.

Since engineers usually work on the tasks relevant to the current iteration, that is where they will

go to get their tasks. Figure 1.3 shows the basic idea of backlogs:

Chapter 1 7

Figure 1.3: Backlogs

The work to be done, nominally referred to as work items, is identified. Work items can be ap-

plication work items (producing work that will be directly delivered) or technical work items

(doing work that enables technical aspects of the product or project). Work items identify work

to do such as:

• Analyzing, designing, or implementing an epic, use case, or user story, to ensure a solid

understanding of the need and the adequacy of its requirements

• Creating or modifying a work product, such as a requirements specification or a safety

analysis

• Arranging for an outcome, such as certification approval

• Addressing a risk, such as determining the adequacy of the bus bandwidth

• Removing an identified defect

• Supporting a target platform, such as an increment with hand-built mechanical parts,

lab-constructed wire wrap boards, and partial software

The work items go through an acceptance process, and if approved, are put into the project backlog.

Once there, they can be allocated to an iteration backlog.

Basics of Agile Systems Modeling8

Purpose
The purpose of managing your backlog is to provide clear direction for the engineering activities,

to push the project forward in a coherent, collaborative way.

Inputs and preconditions
The inputs are the work items. The functionality-based work items originate with one or more

stakeholders, but other work items might come from discovery, planning, or analysis.

Outputs and postconditions
The primary outputs are the managed project and iteration backlogs. Each backlog consists of a

set of work items around a common purpose, or mission. The mission of an iteration is the set of

work products and outcomes desired at the end of the iteration. An iteration mission is defined

as shown in Figure 1.4:

Figure 1.4: Iteration mission

In a modeling tool, this information can be captured as metadata associated with tags.

The term “metadata” literally means “data about data”; in this context, we add

metadata to elements using tags.

Chapter 1 9

How to do it
There are two workflows to this recipe. The first, shown in Figure 1.5, adds a work item to the

backlog. The second, shown in Figure 1.6, removes it:

Figure 1.5: Add work item

Basics of Agile Systems Modeling10

Figure 1.6: Resolve work item

Create a workflow item
From the work to be done, a work item is created to put into the backlog. The work item should

include the properties shown in Figure 1.7:

Figure 1.7: Work item

Chapter 1 11

• Name.

• Description of the work to be done, the work product to be created, or the risk to be

addressed.

• The acceptance criteria – how the adequacy of the work performed, the work product

created, or the outcome produced will be determined.

• The work item classification identifies the kind of work item it is, as shown on the left

side of Figure 1.3.

• The work item’s priority is an indication of how soon this work item should be addressed.

This is discussed in the Prioritize work item step of this recipe.

• The estimated effort is how much effort it will take to perform the task. This can be stated

in absolute terms (such as hours) or relative terms (such as user story points). This topic

is addressed in the Estimating effort recipe later in this chapter.

• Links to important related information, such as standards that must be met, or sources

of information that will be helpful for the performance of the work.

Approve work item
Before a work item can be added, it should be approved by the team or the project leader, whoever

is granted that responsibility.

Prioritize work item
The priority of a work item determines in what iteration the work will be performed. Priority is

determined by a number of factors, including the work item’s criticality (how important it is),

its urgency (when it is needed), the availability of specialized resources needed to perform it,

usefulness to the mission of the iteration, and risk. The general rule is that high-priority tasks

are performed before lower-priority tasks. This topic is covered in the Work item prioritization

recipe later in this chapter.

Estimate effort
An initial estimate of the cost of addressing the work item is important because as work items

are allocated to iterations, the overall effort budget must be balanced. If the effort to address a

work item is too high, it may not be possible to complete it in the iteration with all of its other

work items. The agile practice of work item estimation is covered in the Estimating effort recipe

later in this chapter.

Basics of Agile Systems Modeling12

Place work item in project backlog
Once approved and characterized, the work item can then be put into the project backlog. The

backlog is priority-ordered so that higher-priority work items are “on top” and lower-priority

work items are “below”.

Allocate work item to iteration backlog
Initial planning includes the definition of a planned set of iterations, each of which has a mission,

as defined above. Consistent with that mission, work items are then allocated to the planned

iterations. Of course, this plan is volatile, and later work or information can cause replanning

and a reallocation of work items to iterations. Iteration planning is the topic of the recIteration

plan recipe later in this chapter.

In the second work flow of this recipe, the work is actually being done. Of relevance here is how

the completion of the work affects the backlog (Figure 1.6).

Perform work item
This action is where the team member actually performs the work to address the work item,

whether it is to analyze a use case, create a bit of architecture, or perform a safety analysis.

Review work performed
The output and/or outcome of the work item is evaluated with respect to its acceptance criteria

and is accepted or rejected on that basis.

Reject work performed
If the output and/or outcome does not meet the acceptance criteria, the work is rejected and the

work item remains on the backlog.

Remove resolved work item
If the output and/or outcome does meet the acceptance criteria, the work is accepted and the

work item is removed from the project and iteration to-do backlog. This usually means that it is

moved to a “to-done” backlog, so that there is a history of the work performed.

Chapter 1 13

Review backlog
It is important that as work progresses, the backlog is maintained. Often, valuable information

is discovered that affects work item effort, priority, or value during project work. When this oc-

curs, other affected work items must be reassessed and their location within the backlogs may

be adjusted.

Reorganize backlog
Based on the review of the work items in the backlog, the set of work items, and their prioritized

positions within those backlogs, may require adjustment.

Example
Consider a couple of use cases for the sample problem, the Pegasus Bike Trainer summarized in

Appendix A (see Figure 1.8):

Figure 1.8: Example user case work items in backlog

Basics of Agile Systems Modeling14

You can also show at least high-level backlog allocation to an iteration on a use case diagram, as

shown in Figure 1.9. You may, of course, manage backlogs in generic agile tools such as Rational

Team Concert, Jira, or even with Post-It notes:

Figure 1.9: Use case diagram for iteration backlog

Let’s apply the workflow shown in Figure 1.5 to add the use cases and user stories from Figure

1.8 and Figure 1.9.

Create work item
In Figure 1.8 and Figure 1.9, we see a total of seven use cases and eight user stories. For our purpose,

we will just represent the use case data in tabular form and will concentrate only on the two

use cases and their contained user stories from Figure 1.9. The description of the user stories is

provided in the canonical form of a user story (see the chapter introduction in Chapter 2, System

Specification: Functional, Safety, and Security Analysis for more details).

Chapter 1 15

Figure 1.10: Initial work item list

For the work item list, I created a stereotype work item that has the tag definitions shown as

columns in the table and then applied it to the use cases and user stories.

Approve work item

Figure 1.11: Working with the team and the stakeholders, we get approval for the work items in

As we get approval, we marked the Approved column in the table.

Prioritize work item
Using the techniques from the Work item prioritization recipe later in this chapter, we add the

priorities to the work items.

Basics of Agile Systems Modeling16

Estimate effort
Using the techniques from the Estimating effort recipe later in this chapter, we add the estimated

effort to the work items.

Our final set of work items from this effort is shown in Table 1.1:

Name OK Description Acceptance Classification Priority Effort Iteration Related

Setup

bike fit

Enable rider

to adjust bike

fit prior to

ride

Standard riders*

can replicate

their road

bike fit on the

Pegasus.

Use Case 4.38 13 *Standard

riders include

five riders of

heights 60, 65,

70, 75, and 76

inches.

Adjust

handlebar

reach

As a rider,

I want to

replicate the

handlebar

reach on my

fitted road

bike.

Standard riders*

can replicate

their handlebar

reach from

their fitted road

bikes.

User Story 3.33 3

Adjust

handlebar

height

As a rider,

I want to

replicate the

handlebar

height on my

fitted road

bike.

Standard riders*

can replicate

their handlebar

height from

their fitted road

bikes.

User Story 4.33 3

Adjust

seat

reach

As a rider,

I want to

replicate the

seat reach

on my fitted

road bike.

Standard riders*

can replicate

their seat reach

from their

fitted road

bikes.

User Story 11.67 3

Adjust

seat

height

As a rider,

I want to

replicate the

seat height

on my fitted

road bike.

Standard riders*

can replicate

their seat

height from

their fitted road

bikes.

User Story 13.33 3

Chapter 1 17

Select

crank

length

As a rider,

I want to

replicate the

crank arm

length on my

road bike.

Support crank

lengths of 165,

167.5, 170, 172.5,

and 175 mm.

User Story 1.2 1

Control

resistance

Control the

resistance

to pedaling

in a steady

and well-

controlled

fashion

within the

limits of

normal

terrain road

riding.

Replicate pedal

resistance

to within 1%

of measured

pedal torque

under the

standard ride

set*.

Use Case 2 115 *Standard ride

set includes

ride of all

combination

of rider

weights (50,

75, and 100kg),

inclines (-10, 0,

5, 10, and 20%)

and cadences

(50, 70, 80, 90,

and 110).

Provide

basic

resistance

As a rider, I

want basic

resistance

provided to

the pedals

so I can get

a workout

with an on-

road feel in

Resistance

Mode.

Control

resistance

by setting

the pedal

resistance

to 0–2000W

in 50-watt

increments for

the standard

ride set.*

User Story 1.42 55

Basics of Agile Systems Modeling18

Set

resistance

under

user

control

As a rider, I

want to set

the resistance

level

provided to

the pedals to

increase or

decrease the

effort for a

given gearing,

cadence, and

incline.

Control

resistance via

user input

by manually

setting incline,

gearing, and

cadence for the

standard ride

set.*

User Story 1.00 21

Set

resistance

under

external

control

As a rider, I

want the

external

training app

to set the

resistance

to follow

the app’s

workout

protocol

to get the

desired

workout.

Control

resistance via

app control,

manually

setting incline,

gearing, and

allow the

user to supply

cadence for the

standard ride

set.*

User Story 0.30 39

Table 1.1: Final work item list

Place WI in project backlog
As we complete the effort, we put all the approved work items into the project backlog, along

with other previously identified use cases, user stories, technical work items, and spikes. The

backlog can be managed within the modeling tool, but usually external tools – such as Jira or

Team Concert – are used.

Allocate WI to iteration backlog
Using the technique from the Iteration plan recipe later in this chapter, we put relevant work items

from the project backlog into the backlog for the upcoming iteration. In Table 1.1, this would be

done by filling in the Iteration column with the number of the iteration in which the work item

is performed.

Chapter 1 19

With regard to the second workflow from Figure 1.6, we can illustrate how the workflow might

unfold as we perform the work in the current iteration.

Perform work item
As we work in the iterations, we detail the requirements, and create and implement the technical

design. For example, we might perform the mechanical design of the handlebar reach adjust or

the delivery of basic resistance to the pedals with an electric motor.

Review work performed
As the work on the use case and user stories completes, we apply the acceptance criteria via veri-

fication testing and validation. In the example we are considering, for the set of riders of heights 60,

65, 60, 75, and 76 inches, we would measure the handlebar height from their fitted road bikes and

ensure that all these conditions can be replicated on the bike. For the Provide Basic Resistance

user story, we would verify that we can create a pedal resistance of [0, 50, 100, 150, … 2000] watts

of resistance at pedal cadences of 50, 70, 80, 90, and 110 RPM ± 1%.

Measuring your success
One of the core concepts of effective agile methods is to continuously improve how you perform

your work. This can be done to improve quality or to get something done more quickly. In order

to improve how you work, you need to know how well you’re doing now. That means applying

metrics to identify opportunities for improvement and then changing what you do or how you

do it. Metrics are a general measurement of success in either achieving business goals or com-

pliance with a standard or process. A related concept – a Key Performance Indicator (KPI) – is a

quantifiable measurement of accomplishment against a crucial goal or objective. The best KPIs

measure achievement of goals rather than compliance with a plan. The problem with metrics is

that they measure something that you believe correlates to your objective, but not the objective

itself. Some examples from software development:

Objective Metric Issues

Software size Lines of code Lines of code for simple, linear software aren’t really the

same as lines of code for complex algorithms

Productivity Shipping velocity Ignores the complexity of the shipped features, penalizing

systems that address complex problems

Accurate planning Compliance with schedule This metric rewards people who comply with even a bad

plan

Efficiency Cost per defect Penalizes quality and makes buggy software look cheap

Basics of Agile Systems Modeling20

Quality Defect density Treats all defects the same whether they are using the

wrong-sized font or something that brings aircraft down

Table 1.2: Examples from software development

Consider a common metric for high-quality design, cyclomatic complexity. It has been observed

that highly complex designs contain more defects than designs of low complexity. Cyclomatic

complexity is a software metric that computes complexity by counting the number of linearly

independent paths through some unit of software. Some companies have gone so far as to require

all software to not exceed some arbitrary cyclomatic complexity value to be considered acceptable.

This approach disregards the fact that some problems are harder than others and any design

addressing such problems must be more complex. A better application of cyclomatic complexity

is to use the metric as a guide. It can identify those portions of a design that are more complex so

that they can be subjected to additional testing. Ultimately, the problem with this metric is that

complexity correlates only loosely to quality. A better metric for the goal of improving quality

might be the ability to successfully pass tests that traverse all possible paths of the software.

Good metrics are easy to measure, and, ideally, easy to automate. Creating test cases for all possible

paths can be tedious, but it is possible to automate with appropriate tools. Metrics that require

additional work by engineering staff will be resented and achieving compliance with the use of

the metric may be difficult.

While coming up with good metrics may be difficult, the fact remains that you can’t improve what

you don’t measure. Without measurements, you’re guessing where problems are and your solutions

are likely to be ineffective or solve the wrong problem. By measuring how you’re doing against

your goals, you can improve your team’s effectiveness and your product quality. However, it is

important that metrics are used as indicators rather than as performance standards because,

ultimately, the world is more complex than a single, easily computed measure.

See The Mess of Metrics by Capers Jones (2017) at http://namcook.com/articles/

The%20Mess%20of%20Software%20Metrics%202017.pdf

Metrics should be used for guidance, not as goals for strict compliance.

http://namcook.com/articles/The%20Mess%20of%20Software%20Metrics%202017.pdf
http://namcook.com/articles/The%20Mess%20of%20Software%20Metrics%202017.pdf

Chapter 1 21

Purpose
The purpose of metrics is to measure, rather than guess, how your work is proceeding with respect

to important qualities so that you can improve.

Inputs and proconditions
The only preconditions for this workflow are the desire, ability, and authority to improve.

Outputs and postconditions
The primary output of this recipe is objective measurements of how well your work is proceeding

or the quality of one or more work products. The primary outcome is the identification of some

aspect of your project work to improve.

How to do it
Metrics can be applied to any work activity for which there is an important output or outcome

(which should really be all work activities). The workflow is fairly straightforward, as shown in

Figure 1.11:

Figure 1.12: Measuring success

Basics of Agile Systems Modeling22

Identify work or work product property important to success
One way to identify a property of interest is to look where your projects have problems or where

the output work products fail. For engineering projects, work efficiency being too low is a common

problem. For work products, the most common problem is the presence of defects.

Define how you will measure the property (success metric)
Just as important to identifying what you want to measure is coming up with a quantifiable

measurement that is simultaneously easy to apply, easy to measure, easy to automate, and ac-

curately captures the property of interest. It’s one thing to say “the system should be fast” but

quite another to define a way to measure the speed in a fashion that can be compared to other

work items and iterations.

Frequently measure the success metric
It is common to gather metrics for a review at the end of a project. This review is commonly called

a project post-mortem. I prefer to do frequent retrospectives, at least one per iteration, which I refer

to as a celebration of ongoing success. To be applied in a timely way, you must measure frequently.

This means that the measurements must require low effort and be quick to compute. In the best

case, the environment or tool can automate the gathering and analysis of the information with-

out any ongoing effort by the engineering staff. For example, time spent on work items can be

captured automatically by tools that check out and check in work products.

Update the success metric history
For long-term organizational success, recorded performance history is crucial. I’ve seen far too

many organizations miss their project schedules by 100% or more, only to do the very same thing

on the next project, and for exactly the same reasons. A metric history allows the identification of

longer-term trends and improvements. That enables the reinforcement of positive aspects and

the discarding of approaches that fail.

Determine how to improve performance against the success
metric
If the metric result is unacceptable, then you must perform a root cause analysis to uncover what

can be done to improve it. If you discover that you have too many defects in your requirements,

for example, you may consider changing how requirements are identified, captured, represented,

analyzed, or assessed.

Chapter 1 23

Make timely adjustments to how the activity is performed
Just as important to measuring how you’re doing against your project and organizational goals is

acting on that information. This may be changing a project schedule to be more accurate, perform-

ing more testing, creating some process automation, or even getting training on some technology.

Assess the effectiveness of the success metric application
Every so often, it is important to look at whether applying a metric is generating project value. A

common place to do this is the project retrospective held at the end of each iteration. Metrics that are

adding insufficient value may be dropped or replaced with other metrics that will add more value.

Some commonly applied metrics are shown in Figure 1.13:

Figure 1.13: Some common success metrics

It all comes back to you can’t improve what you don’t measure. First, you must understand how well

you are achieving your goals now. Then you must decide how you can improve and make the

adjustment. Repeat. It’s a simple idea.

Basics of Agile Systems Modeling24

Visualizing velocity is often done as a velocity or burn down chart. The former shows the planned

velocity in work items per unit time, such as use cases or user stories per iteration. The latter shows

the rate of progress of handling the work items over time. It is common to show both planned

values in addition to actual values. A typical velocity chart is shown in Figure 1.14.

Figure 1.14: Velocity chart

Example
Let’s look at an example of the use of metrics in our project:

Velocity is the amount of work done per time unit, such as the number of user stories

implemented per iteration. A burn down chart is a graph showing the decreasing

number of work items during a project.

Chapter 1 25

Identify work or work product property important to success
Let’s consider a common metric used in agile software development and apply them to systems

engineering: velocity. Velocity underpins all schedules because it represents how much function-

ality is delivered per unit time. Velocity is generally measured as the number of completed user

stories delivered per iteration. In our scope, we are not delivering implemented functionality, but

we are incrementally delivering a hand-off to downstream engineering. Let’s call this SE Veloc-

ity, which is “specified use cases per iteration” and includes the requirements and all related SE

work products.

This might not provide the granularity we desire, so let’s also define a second metric, SE Fine-

Grained Velocity, which is the number of story points specified in the iteration:

Define how you will measure the property (success metric)
We will measure the number of use cases delivered, but have to have a “definition of done” to

ensure consistency of measurement. SE Velocity will include:

• Use case with:

• Full description identifying purpose, pre-conditions, post-conditions, and in-

variants.

• Normative behavioral specification in which all requirements traced to and from

the use case are represented in the behavior. This is a “minimal spanning set” of

scenarios in which all paths in the normative behavior are represented in at least

one scenario

• Trace links to all related functional requirements and quality of service (performance,

safety, reliability, security, etc) requirements

• Architecture into which the implementation of the use cases and user stories will be placed

• System interfaces with a physical data schema to support the necessary interactions of

the use cases and user stories

• Logical test cases to verify the use cases and user stories

• Logical validation cases to ensure the implementation of the use cases and user stories

meets the stakeholder needs

SE Velocity will be simply the number of such use cases delivered per iteration. SE Fine-Grained

Velocity will be the estimated effort (as measured in story points; see the Estimating effort recipe).

Basics of Agile Systems Modeling26

Frequently measure the success metric
We will measure this metric each iteration. If our project has 35 use cases, our project heartbeat

is 4 weeks, and the project is expected to take one year, then our SE Velocity should be 35/12 or

about 3. If the average use case is 37 story points, then our SE Fine-Grained Velocity should be

about 108 story points per iteration.

Update the success metric history
As we run the project, we will get measured SE Velocity and SE Fine-Grained Velocity. We can

plot those values over time to get velocity charts:

Figure 1.15: SE velocity charts

Chapter 1 27

Determine how to improve performance against the success
metric
Our plan calls for 3 use cases and 108 story points per iteration; we can see that we are underper-

forming. This could be either because 1) we overestimated the planned velocity, or 2) we need to

improve our work efficiency in some way. We can, therefore, simultaneously attack the problem

on both fronts.

To start, we should replan based on our measured velocity, which is averaging 2.25 use cases and

81 story points per iteration, as compared to the planned 3 use cases and 108 story points. This

will result in a longer but hopefully more realistic project plan and extend the planned project

by an iteration or so.

In addition, we can analyze why the specification effort is taking too long and perhaps implement

changes in process or tooling to improve.

Make timely adjustments to how the activity is performed
As we discover variance between our plan and our reality, we must adjust either the plan or how

we work, or both. This should happen at least every iteration, as the metrics are gathered and an-

alyzed. The iteration retrospective that takes place at the end of the iteration performs this service.

Assess the affectiveness of the success metric applicaiton
Lastly, are the metrics helping the project? It might be reasonable to conclude that the fine-grained

metric provides more value than the more general SE Velocity metric, so we abandon the latter.

Some considerations
I have seen metrics fail in a number of organizations trying to improve. Broadly speaking, the

reasons for failure are one of the following:

Measuring the wrong thing
Many qualities of interest are hard to identify precisely (think of “code smell”) or difficult to

measure directly. Metrics are usually project qualities that are easy to measure but you can only

imprecisely measure what you want. The classic measure of progress – lines of code per day – turns

out to be a horrible measure because it doesn’t measure the quality of the code, so it cannot take

into account the rework required when fast code production results in low code quality. Nor is

refactoring code “negative work” because it results in fewer lines of code. A better measure would

be velocity, which is a measure of tested and verified features released per unit of time.

Basics of Agile Systems Modeling28

Another often abused measure is “hours worked.” I have seen companies require detailed report-

ing on hours spent per project only to also levy the requirement that any hours worked over 40

hours per week should not be reported. This constrained metric does not actually measure the

effort expended on project tasks.

Ignoring the metrics
I have seen many companies spend a lot of time gathering metric data (and yes, it does require

some effort and does cost some time, even when mostly automated), only to make the very same

mistake time after time. This is because while these companies capture the data, they never ac-

tually use the data to improve.

No authority to intiate change
Gathering and analyzing metrics is often seen as less valuable than “real work” and so personnel

tasked with these activities have little or no authority.

Lack of willingness to follow through
I have seen companies pay for detailed, quantified project performance data only to ignore it

because there was little willingness to follow through with needed changes. This lack of will-

ingness can come from management being unwilling to pay for organizational improvement, or

from technical staff being afraid of trying something different.

Metrics should always be attempting to measure an objective rather than a means. Rather than

“lines of code per day,” it is better to measure “delivered functionality per day.”

Managing risk
In my experience, most unsuccessful projects fail because they don’t properly deal with project risk.

Project risk refers to the potential for change that a team will fail to meet some or all of a project’s

objectives. Risk is defined to be the product of an event’s likelihood of occurrence times its severity.

Risk is always about the unknown. There are many different kinds of project risk. For example:

• Resource risk

• Technical risk

• Schedule risk

• Business risk

Chapter 1 29

Risks are always about the unknown and risk mitigation activities – known as spikes in agile lit-

erature – are work undertaken to uncover information to reduce risk. For example, a technical

risk might be that the selected bus architecture might not have sufficient bandwidth to meet the

system performance requirements. A spike to address the risk might measure the bus under stress

similar to what is expected for the product. Another technical risk might be the introduction of

new development technology, such as SysML, to a project. A resulting spike might be to bring in

an outsider trainer and mentor for the project.

The most important thing you want to avoid is ignoring risk. It is common, for example, for proj-

ects to have “aggressive schedules” (that is to say, “unachievable”) and for project leaders and

members to ignore obvious signs of impending doom. It is far better to address the schedule risk

by identifying and addressing likely causes of schedule slippage and replan the schedule.

Purpose
The purpose of the Managing risk recipe is to improve the likelihood of project success.

Inputs and proconditions
Project risk management begins early and should be an ongoing activity throughout the proj-

ect. Initially, a project vision, preliminary plan, or roadmap serves as the starting point for risk

management.

Outputs and postconditions
Intermediate outputs include a risk management plan (sometimes called a risk list) and the work

effort resulting from it, allocated into the release and iteration plans. The risk management plan

provides not only the name of the risk but also important information about it. Longer-term re-

sults include a (more) successful project outcome than one that did not include risk management.

Basics of Agile Systems Modeling30

How to do it
Figure 1.16 shows how risks are identified, put into the risk management plan, and result in spikes.

Figure 1.17 shows how, as spikes are performed in the iterations, the risk management plan is

updated:

Figure 1.16: Managing risk

Chapter 1 31

Figure 1.17: Reducing risk

Identify a potential source of risk
This is how it starts, but risk identification shouldn’t just be done at the outset of the project.

At least once per iteration, typically during the project retrospective activity, the team should

look for new risks that have arisen as the project has progressed. Thus, the workflow in Figure

1.16 isn’t performed just once but many times during the execution of the project. In addition, it

sometimes happens that risks disappear if their underlying causes are removed, so you might

end up removing risk items, or at least marking them as avoided, during these risk reassessments.

Characterize risk
The name of the risk isn’t enough. We certainly need a description of how the risk might man-

ifest and what it means. We also need to know how likely the negative outcome is to manifest

(likelihood) and how bad it is should that occur (severity). Some outcomes have a minor impact,

while others may be show-stoppers.

Basics of Agile Systems Modeling32

Add to risk list in priority order
The risk management plan maintains the list in order sorted by risk magnitude. If you have

quantified both the risk’s likelihood and severity, then risk magnitude is the product of those two

values. The idea is that the higher-priority risks should have more attention and be addressed

earlier than the lower-priority risks.

Identify a spike to address risk
A spike is work that is done to reduce either the likelihood or the severity of the risk outcome,

generally the former. We can address knowledge gaps with training; we can address bus per-

formance problems with a faster bus; we can solve schedule risks with featurecide. Featurecide

is the removal of features of low or questionable stakeholder value, or work items that you just

don’t have the bandwidth to address. Whatever the approach, a spike seeks to reduce risk, so it

is important that the spike uncovers or addresses the risk’s underlying cause.

Create a work item for a spike
Work items come in many flavors. Usually, we think of use cases or user stories (functionality) as

work items. But work items can refer to any work activity, as we discussed in the earlier recipe for

backlog management. Specifically, in this case, spikes are important work items to be put into

the product backlog.

Allocate a spike work item to an iteration plan
As previously discussed, work items must be allocated to iterations to result in a release plan.

Chapter 1 33

Perform a spike
This action means performing the identified experiment or activity. If the activity is to get training,

then complete the training session. If it is to perform a lab-based throughput test, then do that.

Assess the outcome
Following the spike, it is important to assess the outcome. Was the risk reduced? Is a change in

the plan, approach, or technology warranted?

Update the risk management plan
The risk management plan must be updated with the outcome of the spike.

Replan
If appropriate, adjust the plan in accordance with the outcome of the spike. For example, if a

proposed technology cannot meet the project needs, then a new technology or approach must

be selected and the plan must be updated to reflect that.

Example
Here is an example risk management plan, captured as a spreadsheet of information. Rather than

show the increasing level of detail in the table step by step, we’ll just show the end state (Table

1.13) to illustrate a typical outcome from the workflow shown in Figure 1.16.

Basics of Agile Systems Modeling34

It can be sorted by the State and Risk Magnitude columns to simplify its use:

Risk Management Plan (Risk List)

Ri
sk

 ID

Headline

Descrip-

tion Ty
pe

Im
pa

ct

Pr
ob

ab
ili

ty

Ri
sk

 m
ag

ni
tu

de

St
at

e

Pr
ec

is
io

n

Ra
is

ed
 o

n

It
er

at
io

n
#

Im
pa

ct
ed

 s
ta

ke
-

ho
ld

er

O
w

ne
r

Miti-

gation

strategy

(spike)

1 Robustness

of the main

motor

The sys-

tem must

be able to

maintain

2,000 W

for up to

5 minutes

and sus-

tain 1,000

W for 4

hours,

with an

MTBF of

20,000

hours.

The

current

motor is

unsuit-

able.

Tech-

nical

80% 90% 72% Open High 1/5/2020 1 Main-

tainer,

user

Sam Meet with

motor

vendors

to see if 1)

they have

an exist-

ing motor

that

meets

our needs,

or 2)

they can

design

a motor

within

budget to

meet the

need.

2 Agile MBSE

impact

The team

is using

both

agile and

MBSE for

the first

time. The

concern is

that this

may lead

to poor

technical

choices.

Tech-

nical

80% 80% 64% Open Medi-

um

1/4/2020 0 User,

buyer,

prod-

uct

owner

Jill Bring in a

consul-

tant from

aPriori

Systems

for train-

ing and

mentor-

ing

Chapter 1 35

3 Robust-

ness of USB

connection

Users will

be insert-

ing and

removing

the USB

while

under

move-

ment

stress, so

it is likely

to break.

Tech-

nical

40% 80% 32% Open Medi-

um

2/16/2020 3 User,

manu-

factur-

ing

Joe Standard

USB

connec-

tors are

too weak.

We need

to mock

up a more

robust

physical

design.

4 Aggressive

schedule

Customer

sched-

ule is

optimis-

tic. We

need to

address

this either

by chang-

ing the

expecta-

tions or

figuring

out how

to sat-

isfy the

schedule.

Sched-

ule

40% 100% 40% Miti-

gated

Low 12/5/2019 0 Buyer Su-

san

Iteration

0, work

with the

customer

to see if

the proj-

ect can be

delivered

in phases,

or if

ambitious

features

can be

cut.

5 Motor

response

lag time

To simu-

late short

high-in-

tensity ef-

forts, the

change in

resistance

must

be fast

enough to

simulate

the riding

experi-

ence.

Tech-

nical

20% 20% 4% Open High 12/19/2019 6 User Sam Do a

response

time

study

with pro-

fessional

riders to

evaluate

the ac-

ceptabil-

ity of the

current

solution.

Basics of Agile Systems Modeling36

6 Team

availability

Key team

members

have yet

to come

off the

Aerobike

project

and are

delayed

by an

estimated

6 months.

Re-

source

60% 75% 45% Obso-

lete

Low 3/1/2020 0 Prod-

uct

owner,

buyer

 See if the

existing

project

can be

sped up. If

not, work

on a con-

tingency

plan to

either hire

more or

delay the

project

start.

Table 1.3: Example risk list

For an example of the risk mitigation workflow in Figure 1.17, let’s consider the first two risks in

Table 1.3.

Perform a spike
For Risk 2, “Agile MBSE impact,” the identified spike is “Bring in a consultant from A Priori Systems

for training and mentoring.” We hire a consultant from A Priori Systems. They then train the team

on agile MBSE, gives them each a copy of their book Agile Systems Engineering, and mentors the

team through the first three iterations. This spike is initiated in Iteration 0, and the mentoring

lasts through Iteration 3.

For Risk 1, “Robustness of the main motor,” the identified spike is “Meet with motor vendors to

see if 1) they have an existing motor that meets our needs, or 2) they can design a motor within

our budget to meet the need.” Working with our team, the application engineer from the vendor

assesses the horsepower, torque, and reliability needs and then finds a version of the motor that

is available within our cost envelope. The problem is resolved.

Assess outcome
The assessment of the outcome of the spike for Risk 2 is evaluated in four steps. First, the engineers

attending the agile MBSE workshop provide an evaluation of the effectiveness of the workshop.

While not giving universally high marks, the team was very satisfied overall with their under-

standing of the approach and how to perform the work. The iteration retrospective for the next

three iterations look at expected versus actual outcomes and find that the team is performing

well. The assessment of the risk is that it has been successfully mitigated.

Chapter 1 37

For Risk 1, the assessment of the outcome is done by the lead electronics engineer. He obtains five

instances of the suggested motor variant and stress-tests them in the lab. He is satisfied that the

risk has been successfully mitigated and that the engineering can proceed.

Update the risk management plan
The risk management plan is updated to reflect the outcomes as they occur. In this example, Ta-

ble 1.4, we can see the updated State field in which the two risk states are updated to Mitigated:

Risk Management Plan (Risk List)

Ri
sk

 ID Head-

line

Descrip-

tion Ty
pe

Im
pa

ct

Pr
ob

ab
ili

ty

Ri
sk

 M
ag

ni
tu

de

St
at

e

Pr
ec

is
io

n

Ra
is

ed
 O

n
It

er
at

io
n

#

Im
pa

ct
ed

St
ak

eh
ol

de
r

O
w

ne
r

Miti-

gation

Strategy

(Spike)

1 Robust-

ness of

the main

motor

The

system

must be

able to

maintain

2,000 W

for up to

5 min-

utes and

sustain

1,000

W for 4

hours,

with an

MTBF of

20,000

hours.

The

current

motor is

unsuit-

able.

Tech-

nical

80% 90% 72% Mitigat-

ed and

updated

motor

selec-

tion

to the

appro-

priate

variant

High 1/5/2020 1 Main-

tainer,

user

Sam Meet with

the motor

vendors

to see if 1)

they have

an exist-

ing motor

that

meets

our needs,

or 2)

they can

design

a motor

without

our OEM

costing to

meet the

need.

Basics of Agile Systems Modeling38

2 Agile

MBSE

impact

The team

is using

both

agile and

MBSE

for the

first time.

The con-

cern is

that this

may lead

to back

technical

choices.

Tech-

nical

80% 80% 64% Miti-

gated,

updated

mod-

eling

tool for

Rhapso-

dy, and

MBSE

work-

flows

updated.

Me-

di-

um

1/4/2020 0 User,

buyer,

product

owner

Jill Bring in a

consul-

tant from

A Priori

Systems

for train-

ing and

mentor-

ing.

Table 1.4: Updated risk plan (Partial)

Replan
In this example, the risks are successfully mitigated and the changes are noted in the State field.

For Risk 1, a more appropriate motor is selected with help from the motor vendor. For Risk 2, the

tooling was updated to better reflect the modeling needs of the project, and minor tweaks were

made to the detailed MBSE workflows.

Product roadmap
A product roadmap is a plan of action for how a product will be introduced and evolved over time.

It is developed by the product owner, an agile role responsible for managing the product backlog

and feature set. The product roadmap is a high-level strategic view of the series of delivered sys-

tems mapped to capabilities and customer needs. The product roadmap takes into account the

market trajectories, value propositions, and engineering constraints. It is ultimately expressed

as a set of initiatives and capabilities delivered over time.

Chapter 1 39

Purpose
The purpose of the product roadmap is to plan and provide visibility to the released capabilities

of the customers over time. The roadmap is initially developed in Iteration 0, but as in all things

agile, the roadmap is updated over time. A typical roadmap has a 12–24 month planning horizon,

but for long-lived systems, the horizon may be much longer.

Inputs and preconditions
A product vision has been established which includes the business aspects (such as market and

broad customer needs) and technical aspects (the broad technical approach and its feasibility).

Outputs and postconditions
The primary work product is the product roadmap, a time-based view of capability releases of

the system.

How to do it
The product roadmap is organized around larger-scale activities (epics) for the most part, but

can contain more detail if desired. An epic is a capability whose delivery spans multiple itera-

tions. Business epics provide visible value to the stakeholders, while technical epics (also known

as enabler epics) provide behind-the-scenes infrastructure improvements such as architecture

implementation or the reduction of technical debt.

In an MBSE approach, epics can be modeled as stereotypes of use cases that are decomposed to

the use cases, which are in turn, decomposed into user stories (stereotyped use cases) and sce-

narios (refining interactions). While epics are implemented across multiple iterations, a use case

is implemented in a single iteration. A user story or scenario takes only a portion of an iteration

to complete. User stories and scenarios are comparable in scope and intent.

Basics of Agile Systems Modeling40

This taxonomy is shown in Figure 1.18, along with where they typically appear in the planning:

Figure 1.18: Epics, use cases, and user stories

The product roadmap is a simple planning mechanism relating delivered capability to time, iter-

ations, and releases. Like all agile planning, the roadmap is adjusted as additional information is

discovered, improving its accuracy over time. The roadmap updates usually occur at the end of

each iteration during the iteration retrospective, as the actual iteration outcomes are compared

with planned outcomes.

The roadmap also highlights milestones of interest and technical evolution paths as well. Mile-

stones might include customer reviews or important releases, such as alpha, beta, an Initial

Operating Condition (IOC), or a Final Operating Condition (FOC):

Chapter 1 41

C

Figure 1.19: Create product roadmap

Enumerate your product themes
The product themes are the strategic objectives, values, and goals to be realized by the product.

The epics must ultimately refer back to how they aid in the achievement of these themes. This

step lists the product themes to drive the identification of the epics and work items going forward.

In some agile methods, the themes correlate to value streams.

Basics of Agile Systems Modeling42

Create epics
Epics describe either the strategic capabilities of the system to realize the product themes. They

can be either business epics that bring direct value to the stakeholders, or technical (aka enabler)

epics that provide technological infrastructure to support the business epics. Epics may be thought

of as large use cases that generally span several iterations. This step identifies the key epics to be

put into the product roadmap.

Prioritize epics
Prioritization identifies the order in which epics are to be developed. Prioritization can be driven

by urgency (the timeliness of the need), criticality (the importance of meeting the need), the

usefulness of the capability, the availability of the required resource, reduction in project risk,

natural sequencing, or meeting opportunities – or any combination of the above. The details of

how to perform prioritization are the subject of their own recipe (see the Work item prioritization

recipe in this chapter), but this is one place where prioritization can be effectively used.

Assign a broad product timeframe
The product roadmap ultimately defines a range of time in which capabilities are to be delivered.

This differs from traditional planning, which attempts to nail down the second when a product

will be delivered in spite of the lack of adequate information to do so. The product roadmap usu-

ally defines a large period of time – say a month, season, or even year – in which a capability is

planned to be delivered, but with the expectation that this timeframe can be made more precise

as the project proceeds.

Allocate epics in the product timeframe
Epics fit into the product timeframe to allow project planning at a strategic level.

Get agreement on the product roadmap
Various stakeholders must agree on the timeframe. Users, purchasers, and marketers must agree

that the timeframe meets the business needs and that the epics provide the appropriate value

proposition. Engineering staff must agree that the capabilities can be reasonably expected to be

delivered with an appropriate level of quality within the timeframe. Manufacturing staff must

agree that the system can be produced in the plan. Regulatory authorities must agree that the

regulatory objectives will be achieved.

Chapter 1 43

Update the roadmap
If stakeholders are not all satisfied, then the plan should be reworked until an acceptable roadmap

is created. This requires modification and reevaluation of an updated roadmap.

Example
Let’s create a product roadmap for the Pegasus system by following the steps outlined.

Enumerate your product themes
The product themes include:

• Providing a bike fit as close as possible to the fit of a serious cyclist on their road bike

• Providing a virtual ride experience that closely resembles outside riding, including:

• Providing resistance to pedals for a number of conditions, including flats, climb-

ing, sprinting, and coasting for a wide range of power outputs from casual to

professional riders

• Simulating gearing that closely resembles the most popular gearing for road bi-

cycles

• Incline control to physically incline or decline the bike

• Permitting programmatic control of resistance to simulate changing road conditions in

a realistic fashion

• Interfacing with cycling training apps, including Zwift, Trainer Road, and the Sufferfest

• Gathering ride, performance, and biometrics for analysis by a third-party app

• Providing seamless Over-The-Air (OTA) updates of product firmware to simplify main-

tenance

Create epics
Epics describe either the strategic capabilities of the system to realize the product themes. This

step identifies the key epics to be put into the product roadmap. Epics include:

Business epics:

• Physical bike setup

• Ride configuration

• Firmware updates

Basics of Agile Systems Modeling44

• Controlling resistance

• Monitoring road metrics

• Communicating with apps

• Emulating gearing

• Incline control

Enabler epics:

• Mechanical frame development

• Motor electronics development

• Digital electronics development

Prioritize epics
These epics are not run fully sequentially, as some can be done in parallel. Nevertheless, the basic

prioritized list is:

1. Mechanical frame development

2. Motor electronics development

3. Digital physical bike setup

4. Monitor road metrics

5. Ride configuration

6. Control resistance

7. Emulating gearing

8. Communicating with apps

9. Firmware updates

10. Incline control

11. Electronics development

Assign a broad product timeframe
For this project, the total timeframe is about 18 months, beginning in early spring 2021 and ending

at the end of 2022, with milestones for fall 2021 (a demo at the September Eurobike tradeshow),

spring 2022 (the alpha release), summer 2022 (beta), and the official release (October 2022).

Chapter 1 45

Allocate epics into a product timeframe
Figure 1.20 shows a simple product roadmap for the Pegasus system. At the top, we see the planned

iterations and their planned completion dates. Below that, important milestones are shown. The

middle part depicts the evolution plan for the three primary hardware aspects (the mechanical

frame, motor electronics, and digital electronics). Finally, the bottom part shows the high-level

system capabilities as epics over time, using color coding to indicate priority:

Figure 1.20: Pegasus Product Roadmap

Note the pseudo-epic “Stabilization” appears in the figure and indicates a period of removal of

defects and refinement of capability.

Get agreement on the product roadmap
We discuss the roadmap with stakeholders from marketing, engineering, manufacturing, and our

customer focus group to agree on the product themes, epics, and timeframes.

Update roadmap
The focus group identifies that there is another tradeshow in June 2022 that we should try to

have an updated demo ready for. This is then added to the product roadmap.

Basics of Agile Systems Modeling46

Release plan
While the product roadmap is strategic in nature, the release plan is more tactical. The product

roadmap shows the timing of release goals, high-level product capabilities, and epics that span

multiple iterations, but the release plan provides more detail on a per-iteration basis. The product

roadmap has a longer planning horizon of 12–24 months while a release plan is more near-term,

generally three to nine months. This recipe relies on the Managing your backlog recipe that appears

earlier in this chapter.

Purpose
The purpose of the release plan is to show how the product backlog is allocated to the upcoming

set of iterations and releases over the next three to nine months.

Inputs and preconditons
The product vision and roadmap are sketched out and a reasonably complete product backlog

has been established, with work items that can fit within a single iteration.

Outputs and postconditions
The release plan provides a plan for the mapping of work items to the upcoming set of iterations

and releases. Of course, the plan is updated frequently – at least once per iteration – as work is

completed and the depth of understanding of the product development increases.

How to do it
Epics and high-level goals need to be decomposed into work items that can be completed within

a single iteration. Each of these work items is then prioritized and its effort is estimated. The re-

lease plan identifies the specifically planned iterations, each with a mission (as shown in Figure

1.4). There is some interplay between the missions of the iterations and the priority of the work

items. The priority of a work item might be changed so that it is completed in the same iteration

as a set of related work items.

Once that has been done, the mapping of the work items to the iterations can be made. The

mapping must be evaluated for reasonableness and adjusted until the plan looks both good and

achievable. This workflow is shown in Figure 1.21:

Chapter 1 47

Figure 1.21: Release planning

Identify epics’ high-level goals
If you’ve done a product roadmap (see the Product roadmap recipe), then you are likely to already

have established the epics and high-level goals (themes) for the product. If not, see the recipe

for how to do that.

Decompose epics
Epics are generally too large to be completed in a single iteration, so they must be decomposed

into smaller pieces – use cases and technical work items, and possibly user stories and scenarios

– that can be completed within a single iteration. These will be the work elements allocated to

the iterations.

Establish iteration missions
Each iteration should have a mission, including purpose, scope, and themes. This was discussed

in the Managing your backlog recipe earlier in this chapter.

Basics of Agile Systems Modeling48

This mission includes:

• Use cases to be implemented

• Defects to be repaired

• Platforms to be supported

• Risks to be reduced

• Work products to be developed

Prioritize iteration work items
A work item’s priority specifies the order in which it should be developed. Prioritization is a sub-

ject of its own recipe, Work item prioritization. Here it is enough to say that higher-priority work

items will be performed in earlier iterations than lower-priority work items.

Allocate work items to iterations
This step provides a detailed set of work items to be performed within the iteration (known as

the iteration backlog). Ultimately, all work items are either allocated to an iteration, decomposed

into smaller work items that are allocated, or are removed from the product backlog.

Review iteration plan
Once the allocations are done, the iteration plan must be reviewed to ensure that the release plan is:

1. Consistent with the product roadmap

2. Has iteration allocations that can be reasonably expected to be achievable

3. Has work item allocations that are consistent with the mission of their owner iterations

Example
While the product roadmap example we did in the previous recipe focused on a somewhat-vague

strategic plan, release planning is more tactical and detailed. Specific work items are allocated to

specific iterations and reviewed and “rebalanced” if the release plan has discernable flaws. For

this example, we’ll look at a planning horizon of six iterations (plus Iteration 0) and focus on

the allocations of functionality, technical work items, platforms to be supported, and spikes for

the reduction of specific risks.

Identify high-level goals
The high-level goals are identified in the project plan from the previous recipe, as exemplified in

the business and enabler epics.

Chapter 1 49

Decompose epics
The epics to be implemented in the iterations in this planning horizon must be decomposed into

use cases and technical work items achievable within the allocated iteration. Figure 1.22 shows the

decomposition of the epics into use cases and user stories. Note that epics (and, for that matter,

user stories) are modeled as stereotypes of use cases, and the figure is a use case diagram with

the purpose of visualizing that decomposition. Since epics and user stories are represented as

stereotypes of use cases, the «include» relationship is used for decomposition:

Figure 1.22: Mapping epics to use cases

Establish iteration missions
To establish the mission for each iteration, a spreadsheet is created (Table 1.4) with the iterations

as columns and the primary aspects of the mission as rows.

Prioritize iteration work items
Work items are prioritized to help us understand the sequencing of the work in different iterations.

As much as possible, elements with similar priorities are put within the same iteration.

Basics of Agile Systems Modeling50

As discussed in the Work item prioritization recipe, during a review, we may increase or decrease

a work item’s priority to ensure congruence with other work items done in a specific iteration.

Allocate work items to iterations
Based on the prioritization and the work capacity within an iteration, the work items are then

allocated (Table 1.5).

Table 1.5 shows an example in which allocations are made based on priority (see the Work item

prioritization recipe), the estimated effort (see the Estimating effort recipe), and the congruency

of the functionality to the mission of the use case:

Release plan Iteration 0 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

Functionality

Initial

Frame

Mockup,

Basic

Motor

Electronics,

Basic Rider

Controls,

and

Basic Re-

sistance

Set Up the

Bike Fit

(seat),

Basic

Digital

Electronics,

Calibrate

Power Out-

put, and

Basic gear-

ing

Set up the

Bike Fit

(handle-

bars),

Manually

adjust the

bike fit,

and

Monitor

Power

Set up the

Bike Fit

(Cranks),

and

Monitor

Speed,

Distance,

Bluetooth,

Cadence,

and

Data to the

App

Bike fit

with

external

parameters,

Motorized

Incline,

Monitor

Incline,

ANT+, and

ANT FEC

Manage

personal data,

and

Predict the

Bike with a

Camera Image,

External Resis-

tance control,

and

ERG Mode

Target Platforms

Hand-

build me-

chanicals,

Hand-built

analog

electronics,

and

Simulated

digital

electronics

Basic

hand-built

mechani-

cals and

Hand-built

electronics

Prototype

mechan-

icals for

manufac-

turing

First-run

factory

electronics

First run

mechani-

cals

Second-run

factory elec-

tronics and

2nd run fac-

tory mechan-

icals

Chapter 1 51

Technical Work

Items

Analyze

frame sta-

bility and

strength

and

Refine SW/

EE de-

ployment

architec-

ture

Design

cable runs,

Analyze

electrical

power

needs, and

Add in SW

concurren-

cy architec-

ture

Add in an

SW Dis-

tribution

Framework

Finalize

flywheel

mass

EMI Con-

formance

testing

Spikes

Team Avail-

ability,

Aggressive

Schedule,

and

Agile MBSE

Impact

Motor

Response

Time

Robustness

of the main

motor

USB Ro-

bustness

Table 1.5: Release plan

Review iteration plan
We then look at the release plan and see that we think it is achievable, the missions of the itera-

tions are reasonable, and the allocations of work items make sense for the project.

Iteration plan
The iteration plan plans out a specific iteration in more detail, so the planning horizon is a single

iteration. This is typically 1–4 weeks in duration. This is the last chance to adjust the expectations

of the iteration before work begins.

Purpose
The purpose of the iteration plan is to ensure that the work allocated to the iteration is achievable,

decompose the larger-scale work items (for example, use cases and technical work items) into

smaller work items, and plan for the completion of the iteration.

Inputs and preconditions
Preconditions include the release plan and the initial iteration backlog.

Basics of Agile Systems Modeling52

Outputs and postconditions
The resulting plan includes the complete work items, generated engineering work products, iden-

tified defects and technical work items (pushed into the product backlog), and uncompleted work

items (also pushed back onto the product backlog).

How to do it
Use cases in the iteration backlog, which may take an entire iteration to fully realize, are decom-

posed into user stories or scenarios, each of which takes a few hours to a few days to realize. The

iteration plan is created just-in-time before the start of the iteration but is based on the release

plan. This flow is shown in Figure 1.23:

Figure 1.23: Iteration planning

Chapter 1 53

Review/update the iteration mission
The iteration should already have a mission from the release plan. This will include:

• Functionality to be achieved (in use cases, user stories, and/or scenarios)

• Target platforms to be supported

• Architectural and other technical work items to support the functionality and technical

epics

• Defects identified in previous iterations

• Spikes to reduce risks

There is a decent chance that this mission will require updating, based on lessons learned in pre-

ceding iterations, so this is a place to do that if it has not already been done. Any changes made

here may impact the allocation of work items to the iteration backlog.

Select work items from the backlog
Based on the iteration mission, the list of work items allocated is reviewed. Some may be removed

or new ones added, as necessary and appropriate.

Break use cases into user scenarios or user stories
Use cases themselves are generally rather large and it is useful to have smaller work items in the

backlog. These work items might be estimated to take anywhere from a few hours to a few days.

Note that estimation of epics and use cases is often done using relative measures (e.g., use case

points) but once you get down a few hours in duration, estimates often transition to hour-based,

as determined by the team’s velocity.

Break use stories into tasks
If the user stories are small, then this step can be skipped. If they are still rather large, say a week

or two, then they might be decomposed further into smaller tasks. This step is optional.

Estimate the effort for work tasks
If you’ve decomposed the original iteration backlog work items, then those elements should

be estimated. This can be done either using relative measures, such as story points, or absolute

measures, such as the number of hours to complete.

Put tasks into the iteration backlog
Any modified or newly created work item tasks must be added to the backlog for the iteration.

Basics of Agile Systems Modeling54

Evaluation team loading
Once we have a detailed vision of the expected work to do in the upcoming iteration and a pretty

good idea of the effort, we can reevaluate whether the scope of work is reasonable.

Adjust team
The size or makeup of the team may be adjusted to better fit the more detailed understanding of

the scope of work to be undertaken.

Adjust backlog
If the scope looks too demanding for the team, items can be removed from the iteration backlog

and pushed back to the product backlog. This will spin off an effort later to rebalance the release

plan. Note that this is also done at the end of the iteration, when the team can see what planned

work was not achieved.

Iteration planning is pretty simple as long as you keep some guidelines in place. The larger-scale

work items allocated to the iteration are sized to fit into a single iteration. However, they are de-

composed into somewhat smaller pieces, each taking from a few hours to a few days to complete.

For use cases, this will be either user stories or scenarios; this decomposition and analysis will

be detailed in the recipes of the next chapter. The work items should all fit within the mission

statement for the iteration, as discussed in the first recipe, Managing your backlog.

The work items should all contribute to the mission of the iteration. If not, they should either be

pushed back to the product backlog or the iteration mission should be expanded to include them.

It is also helpful to have the larger-scale work items broken down into relatively small pieces;

you should be less concerned about whether are called use cases, user stories, scenarios, or tasks,

and more concerned that they 1) contribute to the desired functionality, and 2) are in the right

effort scope (a few hours to a few days). Work items that are too large are difficult to estimate

accurately and may not contribute to understanding the work to be done. Work items that are

too small waste planning time and effort.

Chapter 1 55

Example
For our example, let’s plan Iteration 4.

Review/update the iteration mission
The mission for a hypothetical iteration is shown in Table 1.6:

Release plan Iteration use cases

Iteration user

stories

Effort (hours)

Functionality

Predict the Bike Fit with a Camera

Estimate the Bike Fit from External

Parameters

Monitor the

Distance

Calibrate the

Power Output

Provide Basic

Resistance

Set resistance un-

der user control

Target Platforms

First-run factory electronics

Hand-built mechanical frame

Technical Work

Items Finalize the flywheel mass

Spikes <none>

 Table 1.6: Iteration mission

Select work items from the backlog
These work items are selected from the product backlog and placed in the iteration backlog.

Break use cases into scenarios or user stories
Figure 1.24 shows the planned functionality for our hypothetical iteration of the Pegasus bike

trainer. The ovals without stereotypes are use cases that are decomposed with the «include»

relation into user stories.

Basics of Agile Systems Modeling56

Each of these is then estimated to get an idea of the scope of the work for the iteration:

Figure 1.24: Iteration planning example

Break user stories into tasks
These user stories are all pretty small, so this optional step is skipped.

Chapter 1 57

Estimate effort for work tasks
We then estimate the hours required to complete these small work items for the task. This results

in the updated table in Table 1.7:

Release plan Iteration use cases

Iteration user stories/work items Effort

(hours)

Functionality

Predict the bike fit with a

Camera

Access the camera image 2

Retrieve the road bike dimensions

from the camera image

16

Compute the fit parameters from the

road bike dimensions

4

Estimate the bike fit from the

external parameters

Load GURU bike fit data 4

Load trek bike fit data 4

Compute fit from professional fit data 2

Monitor distance 6

Calibrate power output 12

Provide basic resistance 20

Set resistance under user control 4

Target platforms

First-run factory electronics

Hand-built mechanical frame

Technical work items Finalize flywheel mass 4

Spikes <none>

Totals 78

 Table 1.7: Iteration 4 mission with estimates

Basics of Agile Systems Modeling58

Put tasks into the iteration backlog
Work items from the Iteration User Stories/Work Items column are added to the backlog for

the iteration.

Evaluate team loading
The six-person team executing the iteration should be able to complete the estimated 78 hours

of work in the 2-week iteration timeframe.

Adjust the team
No adjustment to the team is necessary.

Adjust the backlog
No adjustment to the backlog is necessary.

Estimating Effort
Traditionally absolute duration measures – such as person hours – are used to estimate tasks. Agile

approaches generally apply relative measures, especially for large work items such as epics, use

cases, and larger user stories. When estimating smaller work items of a duration of a few hours,

it is still common to use person-hours. The reasoning is that it is difficult to accurately estimate

weeks- or months-duration work items, but there is better accuracy in estimating small work

items of 1–4 hours.

There are a number of means by which effort can be estimated, but the one we will discuss in this

recipe is called planning poker. This is a cooperative game-like approach to converge on a relative

duration measure for a set of work items.

Purpose
The purpose of effort estimation is to understand the amount of effort required to complete a

work item. This may be expressed in absolute or relative terms, with relative terms preferred for

larger work items.

Chapter 1 59

Inputs and preconditions
A backlog of work items for estimation.

Outputs and postconditions
The primary outcome is a set of relative effort estimates of the work required to complete each

work item from the set, or shelving a set of work items that the team agrees requires additional

clarification or information.

How to do it
Work durations come in different sizes. For the most part, epics are capabilities that require at

least two iterations to perform. Epics are typically broken down into use cases that are expected

to be completed within a single iteration. User stories and scenarios are singular threads within

a use case that require a few hours to a few days to complete. To be comparable, the epic’s work

estimates must be, in some sense, the sum of the work efforts for all its contained use cases, and

the use case work estimates are the sum of the effort of all its contained user stories and scenarios.

Of course, the real world is slightly more complex than that. The last sentence of the preceding

paragraph is true only when the user stories and scenarios are both independent and complete;

this means that all the primitive behaviors contained within the use case appear in exactly one

use case or user story. If there is overlap – that is, a primitive behavior appears as a part of two

scenarios – then the use case estimate is the sum of the user story estimates minus the overlapping

behavior. This removes “double counting” of the common behavior. Since these are relative and

approximate measures, such subtleties are generally ignored.

How it works
Use case points or user story points are a relative measure of effort. The project velocity (see the

Measuring your success recipe for more details) maps points to person-hours. Velocity is often un-

known early in the project but becomes better understood as the project progresses. The value of

use case or user story points is that they remove the temptation of being overly (and erroneously)

precise about estimated effort. All absolute work estimates assume an implied velocity, but in prac-

tice, velocity varies based on team size, team skill, domain knowledge, work item complexity, tools

and automation, development environment factors, and regulation and certification concerns.

Basics of Agile Systems Modeling60

Figure 1.25 shows the workflow for planning poker:

Figure 1.25: Planning poker

Moderator prepares a list of work items
The moderator of the planning sessions prepares a list of work items, which are generally epics,

use cases, user stories, or scenarios. In addition to these common items, spikes, technical work

items, defect repairs and other work items may be considered as a part of the session as well.

Moderator hands a set of planning cards to each player
These “planning cards” have an effort estimate on one side but are otherwise identical.

Chapter 1 61

Most commonly, numbers in a Fibonacci sequence (1, 2, 3, 5, 8, 13, 21, 34, 55, 89, and 144) or

something similar are used.

Get the next work item
Start with the first work item. I recommend beginning with what appears to be the smallest work

item, and this will often serve as a standard by which subsequent work items will be judged. As

each work item is either estimated or shelved, go to the next.

Team discusses the features and asks questions of the product
owner
It is crucial to have a common understanding of what the work item entails. The product owner

is the person who generally has the best understanding of the user needs but others may play

this role for technical work items.

Each team member selects one card to represent their estimate
and places it face down
The estimates are approximately linear, so an estimate of “5” will be more than twice as much

work as a work item estimate of “2” but less than twice the effort required for an estimate of “3.”

The cards are placed face down to ensure that the initial estimate of the work item is the unbiased

opinion of the team member.

When all team members have made their choice, the cards are
flipped over
Flipping the card over exposes the estimates to the group.

The common value is used as the estimate
If the estimates all agree, then that value is used as the “job size” estimate for the work item, and

the team moves on to the next work item.

Shelve that work item with a TO DO to get the missing
information
If the team is unable to reach a consensus after multiple voting rounds on a single work item,

then the item is shelved until it can be resolved. The underlying assumption is that there must

be some crucial bit of misunderstanding or missing information needed. The team agrees to a

task to identify the missing information and re-estimate this item in a later session.

Basics of Agile Systems Modeling62

Team members discuss why they voted as they did
If the estimates differ, then the team must share why they estimated as they did. This is partic-

ularly important for the lowest and highest estimated values.

Considerations
It is important that the relative size of the work items is consistent. If the average user story point

is “8,” and on average, a use case contains four user stories, then you would expect the average

use case size to be about 34–55 points. If the average epic is split across three use cases, you would

expect the average epic estimate to be 144–233 (selecting numbers only from the Fibonacci series).

While strict adherence isn’t crucial, planning well is made more difficult if you have a user story,

a use case, and an epic with independent point scales.

Example
This example is for the user stories derived from the use case Control Resistance.

Use case: Control Resistance
Purpose: Provide variable resistance to the rider to simulate on-road riding experience for ad

hoc and planned workouts in Resistance Mode. In ERG mode, the power output is held constant

independent of the simulated incline or pedal cadence.

Description: This use case provides variable resistance to rider pedaling depending on a num-

ber of factors. The first is gearing. As with on-road cycling, a larger gear ratio results in a higher

torque required to turn the pedals. The user can select gears from the emulated gearing (see

Use case: Emulate Gearing) to change the amount of torque required to turn the pedals. Next, the

user can set the “incline” of the bike. The incline adds or subtracts torque required based on the

effort it would take to cycle up or down an incline. Lastly, the base level can be set as a starting

point from which the previous factors may offset. By default, this is set by the estimated rider

effort on a zero-incline smooth grade. The above are all factors in “Resistance Mode,” in which

the power output varies as a function of the cadence, gearing, and incline, as described above.

In ERG mode, the power is held constant regardless of these factors. ERG mode is intended to

enforce power outputs independent of rider pedal cadence. The power level in ERG mode can be

manually set by the user or externally set by a training application. In all modes, the power level

can be controlled in a range of 0 to 2,000 W.

Chapter 1 63

Now let’s consider the user stories derived from this use case:

User story: Provide Basic Resistance

This means that for a given gear ratio and simulated incline, the rider feels a smooth and consis-

tent resistance to pedaling.

User story: Set Resistance under user control

User story: Set Resistance under external control

User story: ERG mode

The other use cases and user stories will be similarly detailed. See the recipes in Chapter 2, System

Specification: Functionality, Safety, and Security Analysis, for more details on use cases and user stories.

The team votes via planning poker on the efforts for each of these elements, negotiating when

there is no agreement, until a consensus on the efforts is reached.

As a rider, I want basic resistance provided to the pedals so I can get a workout with

an on-road feel in Resistance Mode.

As a rider, I want to set the resistance level provided to the pedals to increase or

decrease the effort for a given gearing, cadence, and incline-simulated road riding.

As a rider, I want the external training app to set the resistance to follow the app’s

workout protocol to get the desired workout.

As a rider, I want to pedal at a constant power regardless of variations in simulated

terrain, cadence, or gearing to follow the prescribed power settings for my workout

protocol.

Basics of Agile Systems Modeling64

Table 1.8 shows the results:

Work item type

Epic Work item use case Work item user story Spike or technical work item

Job size (user

story points)

 Spike: Team availability 2

 Spike: Aggressive schedule 3

 Spike: Agile MBSE impact 3

Resist Control resistance

Provide basic resis-

tance 55

 Spike: Motor response lag time 8

Spike: Robustness of the main

motor 5

Set up physical

bike Set up bike fit Adjust seat height 3

Set up physical

bike Set up bike fit Adjust seat reach 3

Calibrate power

output 8

Emulate gearing

Emulate front and

rear gearing 34

Emulate gearing

Emulate mechanical

gearing 34

Emulate gearing Emulate basic gearing 89

Set up physical

bike

Manually adjust

bike fit 13

Set up physical

bike Set up bike fit

Adjust handlebar

height 3

Set up physical

bike Set up bike fit

Adjust handlebar

reach 3

Monitor ride

metrics Monitor power 13

Monitor ride

metrics Monitor speed 5

Monitor ride

metrics Monitor distance 5

Monitor ride

metrics Monitor cadence 5

Chapter 1 65

Communicate

with apps

Communicate with

low-power Bluetooth 34

Set up physical

bike Set up bike fit Select crank length 5

Resist Control resistance

Set resistance under

rider control 21

Configure bike for

rider

Connect personal

data to the app 21

Set up physical

bike

Estimate bike fit with

external parameters

Compute fit from pro-

fessional fit data 1

Monitor ride

metrics Monitor incline 8

Communicate

with apps

Communicate with

ANT+ 34

Communicate

with apps

Communicate with

ANT FEC 55

Set up physical

bike

Estimate bike fit with

external parameters

Load GURU bike fit

data 13

Set up physical

bike

Estimate bike fit with

external parameters Load trek bike fit data 13

Resist Control resistance ERG mode 55

 Manage personal data 5

Set up physical

bike

Predict bike fit with a

camera image Access camera image 2

Set up physical

bike

Predict bike fit with a

camera image

Retrieve road bike

dimensions from the

camera image 5

Set up physical

bike

Predict bike fit with a

camera image

Compute fit param-

eters from road bike

dimensions 2

Resist Control resistance

Set resistance under

external control 39

Emulate gearing Emulate DI2 gearing 55

 Spike: USB robustness 5

Table 1.8: Story point estimates for work items

Basics of Agile Systems Modeling66

Work item prioritization
This recipe is about the prioritization of work items in a backlog. There is some confusion as to

the meaning of the term priority. Priority is a ranking of when some task should be performed

with respect to other tasks. There are a variety of factors that determine priority and different

projects may weigh such factors differently. The most common factors influencing priority are:

• Cost of delay – the cost of delaying the performance of the work item, which in turn is

influenced by:

• Criticality – the importance of the completion of the work item

• Urgency – when the outcome or output of the work item completion is needed

• Usefulness – the value of the outcome of the work item to the stakeholder

• Risk – how the completion of the work item affects project risk

• Opportunity enablement – how the completion of the work item will enable stake-

holder opportunity

• Cost – what is the cost or effort needed to complete the work item?

• Sensical sequencing – what are the preconditions of the work item and what other work

items depend upon the completion of this work item?

• Congruency – consistency of the work item to the mission of the iteration to which it is

assigned

• Availability of resources – what resources, including specialized resources, are needed to

complete this work item, and what is their availability?

Some priority schemes will be dominated by urgency while others may be dominated by criticality

or resource availability. The bottom line is that work item priority determines which iteration a

work item will be allocated to from the project backlog and to a lesser degree when, within an

iteration, the work item will be performed.

Chapter 1 67

Purpose
The purpose of work item prioritization is to intelligently plan the work so as to achieve the prod-

uct goals in an incremental, consistent fashion. Specifically, the goal of work item prioritization

is to allocate work items to the iteration backlogs well.

Inputs and preconditions
The product backlog has been created.

Outputs and postconditions
Work items in the product backlog are prioritized so that iteration planning can proceed.

How to do it
There are many ways to prioritize the backlog. Some, such as the MoSCoW method, are quali-

tative. Must, Should, Could, Won’t prioritization as described in the International Institute of

Business Analysis (IIBA) Business Analysis Body of Knowledge (BABOK) Guide, www.iiba.org/

babok-guide.aspx. In this approach, work items are categorized into the following four groups:

• Must: A requirement that must be satisfied in the final solution for the product to be

considered a success

• Should: Represents a high-priority work item that should be included in the final solution

if possible

• Could: A work item that is desirable but not necessary for success

• Won’t: A work item that the stakeholders have agreed to not implement now, but might

be considered in a future release

Priority poker is another means by which priority may be assigned. Priority poker is similar to

planning poker used for the estimation of work item effort. Planning poker is discussed in more

detail in the Estimating effort recipe and so won’t be discussed here.

This recipe outlines the user of a prioritization technique known as Weighted Shortest Job First

(WSJF) as defined by the Scaled Agile Framework (SAFe), see www.scaledagileframework.com/

wsjf. The basic formulation is shown below.

 ÿĀĀāĀÿýþĀĀĂÿāĀ

http://www.iiba.org/babok-guide.aspx
http://www.iiba.org/babok-guide.aspx
http://www.scaledagileframework.com/wsjf
http://www.scaledagileframework.com/wsjf

Basics of Agile Systems Modeling68

The SAFe definition of the cost of delay is provided in the equation below. This equation differs

from the original SAFe formulation by adding a project value term. þąĀā ąĄ ĂăĂÿ ĀăĀĀ ÿĂă ąăā ÿĂă ă āÿĂā Ā ăĂāą ą ÿĆĆąāā ăÿĂăăā

Business value is either critical or useful to the stakeholders or some combination of the two.

Project value, the term I added to the formula, refers to the value of the project. For example, the

reduction of technical debt may not add direct value to the stakeholders but does provide value

to the project. Time criticality, also known as urgency, refers to when the feature provides value

to the stakeholder. Risk reduction is the improvement in the likelihood of project success, while

opportunity enablement refers to business opportunities, such as new markets, that a feature

will enable.

Each of the aspects of the cost of delay is scaled using values such as the Fibonacci sequence (1, 2,

3, 5, 8, 21, 34, 55, 89, 144, and so on) with larger values indicative of a higher cost of delay. Since

these are all relative measures, the summation provides a good quantitative idea of the cost of

delay. For a given job size, a higher cost of delay results in a higher priority. For a given cost of

delay, a larger job size reduces the priority.

Job duration is difficult to estimate until you know the resource loading, so we normally sub-

stitute Job cost for Job duration. Job cost is the topic of the Estimating effort recipe. WSJF does a

good first stab at determining priority, but it needs to be adjusted manually to take into account

congruency with iteration missions and specialized resource availability. The workflow is out-

lined in Figure 1.26:

Chapter 1 69

Figure 1.26: Work item prioritization

Select the next work item from the backlog
Starting with the first work item, select the work item to prioritize.

Estimate the job cost
Estimate the cost of performing the work item. The details of how do to this are discussed in the

Estimating effort recipe.

Basics of Agile Systems Modeling70

Estimate the business value
Whether you are considering the criticality of the work item or its usefulness of the work item, or

both, estimate its business value. For this and the other estimates contributing to the cost of delay,

we are using relative measures with a Fibonacci sequence with the higher values corresponding

to greater business value. Work items of similar business value should have the same value here.

Estimate the project value
The project value is the value that the completion of the work item brings to the project, such as

the completion of a technical work item or paying down technical debt.

Estimate the time criticality
Estimate the time criticality of the work item, with more urgent work items having a higher value.

Estimate the risk reduction or opportunity enablement value
Estimate either the reduction of project risk or the enablement of business opportunity since the

approach of the previous to steps. Greater risk reduction or greater opportunity means higher value.

Compute the Cost of Delay (CoD)
Compute CoD as the sum of the business value, project value, time criticality, and risk reduction.

Compute the weighted shortest job first
Compute WSJF as the cost of delay divided by the job cost.

Group similar priority items into the iteration backlog
The backlog for each iteration should contain elements of the same priority, depending on the

availability of resources to perform the work. If there is capacity left over after allocating all ele-

ments of the same or similar priority, add work items from the next lowest priority. Similarly, if

the accumulated cost of the set of work items of the same priority exceeds capacity, then move

some to the next iteration backlog.

Chapter 1 71

Adjust work item priorities to account for iteration missions
Examine the work items for congruence with the mission of the iteration. If there is no congruence,

then is there another iteration where the work item is more in line with the iteration purpose? If

so, adjust the priority to match that of the more relevant iteration.

Adjust work item priorities to adjust for any needed specialized
resources available
Are there specialized resources needed for the completion of a work item? This might be the avail-

ability of a Subject Matter Expert (SME), or the availability of computational or lab resources.

Adjust the priority of work items to align with the availability of resources needed to accomplish

the task.

Populate iteration backlogs with items of similar priority
Once the priorities have stabilized to account for all concerns, populate the iteration backlogs

with the work items.

How it works
Prioritization is the ranking of elements on the basis of their desired sequencing. There are many

means for prioritization with varying degrees of rigor. I prefer the WSJF approach because it takes

into account most of the important aspects that should affect priority, resulting in a quantitative

measure of the cost of delay divided by the size of the job.

Figure 1.27 shows a graph of WSJF isoclines. All curves show how the resulting value of WSJF

changes as job size increases. Each separate curve represents a specific value for the cost of delay.

You can see that the priority value diminishes rapidly as the size of the job grows. The practical

effect of this is that higher-cost (i.e., higher-effort) tasks tend to be put off until later.

Basics of Agile Systems Modeling72

Just be aware that this is a bit problematic; since they require multiple iterations, there will be

fewer iterations in which to schedule them:

Figure 1.27: WSJF iscoclines

While this method is recommended by the SAFe literature, in actual practice it must be modified

so that you have congruence with the missions of the iterations. For example, it could happen

that providing an encrypted message transfer has a high WSJF value while the creation of the base

protocol stack is a lower value. Nevertheless, it makes no sense to work on the encryption design

before you have a protocol in place over which the messages can be sent. Thus, you would likely

raise the priority of the creation of the protocol stack and lower the priority of the encryption

work to get “sensical sequencing.” Encryption math can be quite complex and if the encryption

subject matter expert isn’t available for Iteration 6 but is available for Iteration 8, then it makes

sense to adjust the priority of the encryption task to implement it when that expertise is available.

Example
Table 1.11 shows a worksheet that has a number of different kinds of work items, their previously

estimated effort (job size), and the CoD terms. The spreadsheet sums up the terms to compute the

Cost of Delay (CoD) column and then the WSJF shows the computed Weighted Shortest Job First.

Chapter 1 73

The next column is the adjusted priority. This priority is generally the WSJF value but some of

these are adjusted to move the work item into an appropriate iteration. The last column shows

in which iteration a work item is planned to be resolved:

Work

item type Cost of delay terms Priority

Epic

Work

item use

case

Work

item

user

story

Spike or

tech-

nical

work

item

User

busi-

ness

val-

ue

Proj-

ect

value

Time

criti-

cality

RR |

OE CoD

Job size

(user sto-

ry points) WSJF

Prior-

ity

Planned

Itera-

tion

Spike:

Team

avail-

ability 1 55 1 21 78 2 39.00 39.00 0

Spike:

Aggres-

sive

sched-

ule 1 1 34 34 70 3 23.33 23.33 0

Spike:

Agile

MBSE

impact 1 34 21 13 69 3 23.00 23.00 0

Re-

sist

Control

resis-

tance

Pro-

vide

basic

resis-

tance 55 1 21 1 78 55 1.42 1.42 1

Spike:

Motor

re-

sponse

lag time 8 1 1 1 11 8 1.38 12.00 1

Spike:

Robust-

ness of

main

motor 34 1 1 34 70 5 14.00 14.00 1

Basics of Agile Systems Modeling74

Set

up

phys-

ical

bike

Set up

bike fit

Adjust

seat

height 13 1 13 13 40 3 13.33 13.33 1

Set

up

phys-

ical

bike

Set up

bike fit

Adjust

seat

reach 13 1 8 13 35 3 11.67 11.67 2

Cali-

brate

power

output 8 8 21 1 38 8 4.75 10.00 2

Em-

ulate

gear-

ing

Emulate

front

and rear

gearing 34 1 21 1 57 34 1.68 19.00 2

Em-

ulate

gear-

ing

Emulate

me-

chanical

gearing 21 1 21 1 44 34 1.29 10.00 2

Em-

ulate

gear-

ing

Emulate

basic

gearing 34 1 34 1 70 89 0.79 10.00 2

Set

up

phys-

ical

bike

Manually

adjust

bike fit 34 1 21 1 57 13 4.38 4.38 3

Set

up

phys-

ical

bike

Set up

bike fit

Adjust

han-

dlebar

height 8 1 1 3 13 3 4.33 4.33 3

Chapter 1 75

Set

up

phys-

ical

bike

Set up

bike fit

Adjust

han-

dlebar

reach 5 1 1 3 10 3 3.33 3.33 3

Mon-

itor

ride

met-

rics

Mon-

itor

power 34 1 1 1 37 13 2.85 2.85 3

Mon-

itor

ride

met-

rics

Mon-

itor

speed 21 1 1 1 24 5 4.80 4.80 3

Mon-

itor

ride

met-

rics

Moni-

tor dis-

tance 21 1 1 1 24 5 4.80 4.80 3

Spike:

USB

robust-

ness 21 8 1 8 38 5 7.60 7.60 3

Mon-

itor

ride

met-

rics

Moni-

tor ca-

dence 8 1 1 1 11 5 2.20 2.20 4

Com-

mu-

ni-

cate

with

apps

Commu-

nicate

with

low-pow-

er Blue-

tooth 55 1 8 1 65 34 1.91 1.91 4

Basics of Agile Systems Modeling76

Set

up

phys-

ical

bike

Set up

bike fit

Select

crank

length 2 1 1 2 6 5 1.20 1.20 4

Re-

sist

Control

resis-

tance

Set

resis-

tance

under

rider

control 13 1 5 1 20 21 0.95 1.00 4

Con-

figure

bike

for

rider

Connect

personal

data to

app 13 1 1 1 16 21 0.76 1.00 4

Set

up

phys-

ical

bike

Estimate

bike fit

with

external

parame-

ters

Com-

pute fit

from

profes-

sional

fit data 3 1 1 1 6 1 6.00 0.50 5

Mon-

itor

ride

met-

rics

Mon-

itor

incline 13 1 1 1 16 8 2.00 0.50 5

Com-

mu-

ni-

cate

with

apps

Commu-

nicate

with

ANT+ 34 1 5 1 41 34 1.21 0.50 5

Com-

mu-

ni-

cate

with

apps

Commu-

nicate

with ANT

FEC 34 1 13 1 49 55 0.89 0.89 5

Chapter 1 77

Set

up

phys-

ical

bike

Estimate

bike fit

with

external

parame-

ters

Load

GURU

bike fit

data 5 1 1 2 9 13 0.69 0.69 5

Set

up

phys-

ical

bike

Estimate

bike fit

with

external

parame-

ters

Load

trek

bike fit

data 5 1 1 2 9 13 0.69 0.69 5

Re-

sist

Control

resis-

tance

ERG

mode 21 1 1 1 24 55 0.44 0.30 5

Manage

personal

data 21 3 2 1 27 5 5.40 0.30 6

Set

up

phys-

ical

bike

Predict

bike fit

with

camera

image

Access

camera

image 5 1 1 1 8 2 4.00 0.30 6

Set

up

phys-

ical

bike

Predict

bike fit

with

camera

image

Re-

trieve

road

bike

dimen-

sions

from

camera

image 8 1 1 1 11 5 2.20 0.30 6

Basics of Agile Systems Modeling78

Set

up

phys-

ical

bike

Predict

bike fit

with

camera

image

Com-

pute fit

param-

eters

from

road

bike

dimen-

sions 1 1 1 1 4 2 2.00 0.30 6

Re-

sist

Control

resis-

tance

Set

resis-

tance

under

exter-

nal

control 21 1 5 1 28 39 0.72 0.30 6

Em-

ulate

gear-

ing

Emulate

DI2 gear-

ing 13 1 5 1 20 55 0.36 0.30 6

Table 1.9: Prioritized work items

Iteration 0
Iteration 0 refers to the work done before incremental development begins. This includes early

product planning, getting the development team started up and setting up their physical and

tooling environment, and making an initial architectural definition. All this work is preliminary

and most of it is expected to evolve over time as the project proceeds.

Purpose
The purpose of Iteration 0 is to prepare the way for the successful launch and ultimately the

completion of the product.

Inputs and preconditions
The only inputs are initial product and project concepts.

Chapter 1 79

Outputs and postconditions
By the end of Iteration 0, initial plans are in place and all that they imply for the product vision,

the product roadmap, the release plan, and the risk management plan. This means that there is

an initial product backlog developed by the end of Iteration 0, at least enough that the next few

iterations are scoped out. Iterations further out may be more loosely detailed but, as mentioned,

their content will solidify as work progresses. Additionally, the team is selected and enabled with

appropriate knowledge and skills to do the work, their physical environment is set up, and their

tools and infrastructure are all in place. In short, the engineering team is ready to go to develop

the first increment and plans are in place to provide a project trajectory.

How to do it
Iteration 0 is “the work that takes place before there is any work to do.” That is, it is the prepara-

tory work to enable the team to deliver the product.

There are four primary areas of focus:

Focus Work to be done Outputs

Product Create an initial vision, product plan, and release

plan

Product vision

Product roadmap

Release plan

Risk management plan

Initial product backlog

Team Ready the team with knowledge, skills, tools, and

processes

Assembled team

Environment Install, configure, and test tooling and workspaces Team environment set up

Architecture Define the initial high-level architecture with

expectations of technology and design approaches

Architecture 0

Table 1.10: Four primary areas of focus

It is important not to try for high precision. Most traditional projects identify a final release date

with a finalized budget but these are in error. It is better to plan by successive approximation.

Realize that early on, the error in long-range forecasts is high because of things you do not know

and because of things you know that will change. As the project progresses, you gain knowledge

of the product and the team’s velocity, so precision increases over time. These initial plans get the

project started with a strong direction but also with the expectations that those plans will evolve.

Basics of Agile Systems Modeling80

It is important to understand that you cannot do detailed planning in Iteration 0 because you

don’t have a complete backlog, and you haven’t yet learned all the lessons the project has to teach

you. That doesn’t mean that you shouldn’t do any planning; indeed, four of the outputs – the

product vision, the product roadmap, the release plan, and the risk management plan – are all

plans. However, they are all incorrect to some degree or another, and those plans will require

significant and ongoing modification, enhancement, and evolution. This is reflected in the Law

of Douglass #3 (https://www.bruce-douglass.com/geekosphere):

We discussed earlier in this chapter the product roadmap, release plan, and risk management

plan. Their initial preparations are the key ingredients of Iteration 0. The workflow for Iteration

0 is shown in Figure 1.28:

Figure 1.28: Iteration 0

Plan to re-plan.

Law of Douglas #3

https://www.bruce-douglass.com/geekosphere

Chapter 1 81

Create an initial product vision
The product vision is a high-concept document about the product scope and purpose and the

design approach to meet that purpose. It combines the company’s business goals with the spe-

cific needs of the customer. It identifies how this product will differentiate itself from competing

products and clarifies the value to both the company and the customers.

Create an initial product roadmap
The product roadmap is a strategic plan that defines how the product will evolve over time. See

the Product roadmap recipe in this chapter for more detail.

Create an initial release plan
The release plan is a tactical plan for how features will be developed in the next several product

iteration cycles. The Release plan recipe discusses this in more detail.

Create an initial risk management plan
The risk management plan is a strategic plan that identifies project risks and how and when they

will be addressed by allocating spikes (experiments) during the iteration cycles. See the Managing

risk recipe for information on this plan.

Select the team
The team is the set of people who will collaborate on the development of the product. This includes

engineers of various disciplines (systems, software, electronics, and mechanical, typically), testers,

configuration managers, integrators, a product manager, and a process lead, sometimes known

as a scrum master. There may be specialized roles as well as a safety czar, reliability czar, security

czar, biomedical engineer, or aerospace engineer, depending on the product.

Provide the team with domain knowledge
Unless the team has prior experience in the domain, it will probably be useful to expose the team

to the customer domain concepts and concerns. This will enable them to make better choices.

Provide the team with skills and tools
Any new technology, such as the use of Java or SysML, should be preceded by training and/or

mentoring. The introduction of new tools, such as Jira for project tracking or Cameo Systems

Modeler for SysML modeling, should likewise involve training.

Basics of Agile Systems Modeling82

Provide the team with process knowledge
The team must understand the procedures and practices to be employed on the project to ensure

good collaboration. The recipes in this book identify many such practices. The project may also

employ a process that incorporates a set of practices, such as the Harmony aMBSE or OOSEM

processes.

Install and configure tools
The tooling environment should be set up and ready for the team to use. This might include

project enactment tools such as Jira in addition to modeling tools, compilers, editors, and so on.

Test tool installations
This step verifies that the tools are properly installed and the infrastructure for the tools works.

This is especially important in collaborative environments such as team clouds.

Set up team workspaces
This action refers to the physical and virtual workspaces. It is common to co-locate teams where

possible and this ensures that the teams have spaces where they can do individual “thought

work,” as well as collaborative spaces where they can work together.

Identify architectural goals
Architecture, as we will see in the recipe Architecture 0, is the set of large-scale product organi-

zation and design optimization decisions. Goals for architecture are often focused on simplicity,

understandability, testability, stability, extensibility, robustness, composability, safety, security,

and performance. Frequently these properties are in conflict; something easy to understand may

not be scalable, for example. Thus, the architectural goals identify the relative importance of the

goals with respect to the success of the project and the product.

See Agile Systems Engineering by Bruce Powel Douglass, at https://www.amazon.

com/Agile-Systems-Engineering-Bruce-Douglass/dp/0128021209

and https://www.incose.org/incose-member-resources/working-
groups/transformational/object-oriented-se-method for further

information.

https://www.amazon.com/Agile-Systems-Engineering-Bruce-Douglass/dp/0128021209
https://www.amazon.com/Agile-Systems-Engineering-Bruce-Douglass/dp/0128021209
https://www.incose.org/incose-member-resources/working- groups/transformational/object-oriented-se-method for further information
https://www.incose.org/incose-member-resources/working- groups/transformational/object-oriented-se-method for further information
https://www.incose.org/incose-member-resources/working- groups/transformational/object-oriented-se-method for further information

Chapter 1 83

Define the initial high-level architecture
This action defines the high-level architecture, congruent with the architectural goals identified

in the previous step. This is known as Architecture 0, the subject of the recipe Architecture 0.

Example
For the example problem outlined in Appendix A, the road map, release plan, risk management

plan, and Architecture 0 are developed in other recipes in this chapter and need not be repeated

here. The other aspects are discussed here.

Create an initial product roadmap
The initial product vision and roadmap are discussed in more detail in the Product roadmap recipe.

Create the initial release plan
The release plan is discussed in more detail in the Release plan recipe.

Create the initial risk management plan
The risk management plan is discussed in more detail in the Managing risk recipe.

Select the team
In our project, we select the systems, software, electronic, and mechanical engineers for the project.

The team consists of three systems engineers, two mechanical engineers, three electronics engi-

neers, and 10 software engineers. They will all be co-located on the fourth floor of the company’s

building, except for Bruce who will be working from home and come in when necessary. Each will

have an individual office and there are two conference rooms allocated to the team.

Provide the team with domain knowledge
To provide the team with domain understanding, we bring in SMEs to discuss how they train

themselves and others. The SMEs include professional cyclists, personal trainers, amateur cyclists,

and triathletes. Members of the focus group lead the team through some workouts on existing

trainers to give them an understanding of what is involved in different kinds of training sessions.

Some classwork sessions are provided as well to give the team members a basic understanding

of the development and enactment of training plans, including periodization of training, tempo

workouts versus polarized training, and so on.

Basics of Agile Systems Modeling84

Install and configure tools
In addition to standard office tools, several engineering tools are installed and configured for

the project:

• Systems engineers will use DOORS for requirements, Cameo Systems Modeler for SysML,

and Groovy for simulation along with the Teamwork Cloud for configuration management.

• Mechanical engineers will use AutoCAD for their mechanical designs.

• Electronic engineers will use SystemC for discrete simulation and Allegro Cadence for

their designs.

• Software engineers will use Rhapsody for UML and code generation and Cygwin for C++,

along with the Rhapsody Model Manager.

• The collaboration environment will use the Jazz framework with Rational Team Concert

for project planning and enactment.

Test tool installations
The IT department verifies that all the tools are properly installed, and can load, modify, and

save sample work products from each. Specific interchanges between DOORS, Cameo Systems

Modeler, Rhapsody, and both the Cameo Teamwork Cloud and Rhapsody Model Manager can

successfully store and retrieve models.

Provide the team with skills and tools
• System engineers will receive week-long training on Cameo Systems Modeler and SysML.

• Software engineers will receive week-long training on Rhapsody and UML.

• All engineers have used DOORS before and require no additional training.

Provide the team with process knowledge
The team will use the Harmony aMBSE process and attends a 3-day workshop on the process.

In addition, A Priori Systems will provide agile and modeling mentoring for the team through at

least the first four iterations.

Set up team workspaces
Systems engineers are provided with a configuration computer environment that includes in-

stalled Cameo Systems Modeler, DOORS, the company’s network, and Cameo Teamwork Cloud.

Chapter 1 85

Software engineers are provided with a configured computer connected to the company’s network,

and can connect to the local Jazz team server to access the Jazz tooling – Rhapsody, DOORS Next

Generation, Rational Team Concert, and Rhapsody Model Manager.

Define initial high-level architecture
Both of these actions are discussed in more detail in the recipe Architecture 0.

Architecture 0
Architecture is the set of strategic design optimization decisions for a system. Many different

architectures can meet the same functional needs. What distinguishes them is their optimization

criteria. One architecture may optimize worst-case performance, while another may optimize

extensibility and scalability, and yet another may optimize safety, all while meeting the same

functional needs.

The Harmony process has two primary components: the Harmony Agile Model-Based Systems

Engineering process (Harmony aMBSE) and the Harmony for Embedded Software process

(Harmony ESW). They each describe workflows, work products, practices, and guidance for

combining agile and model-based engineering in their respective disciplines. See the author’s

Real-Time Agility book for more details.

The Harmony process identifies five key views of architecture.

Subsystem and component view
This view focuses on the largest scale pieces of the system, and their organization, relations,

responsibilities, and interfaces.

Concurrency and resource view
This view focuses on the concurrency units and management of resources within the system.

Processes, tasks, threads, and the means for safely sharing resources across those boundaries are

the primary concerns of this view.

Distribution view
This view focuses on how collaboration occurs between different computational nodes within the

system and how the subsystems share information and collaboration. Communication protocols

and middleware make up the bulk of this view.

Basics of Agile Systems Modeling86

Dependability view
The three pillars of dependability are freedom from harm (safety), the availability of services

(reliability), and protection against attack (security).

Deployment view
Generally, subsystems are interdisciplinary affairs, consisting of some combination of software,

electronic, and mechanical aspects. This view is concerned with the distribution of responsibil-

ity among the implementation of those disciplines (called facets) and the interfaces that cross

engineering disciplinary boundaries.

Some recommendations for architecture in agile-developed systems are shown in Figure 1.29:

Figure 1.29: Agile architectural guidelines

Chapter 1 87

Purpose
Because architecture provides, among other things, large-scale organization of design elements,

as engineers develop those design elements, Architecture 0 provides a framework into which

those elements fit. It is fully expected that Architecture 0 is minimalist, and therefore incomplete.

It is expected that the architecture will change and evolve through the development process but

it is an initial starting point.

Inputs and preconditions
A basic idea of the functionality and use of the system is necessary to develop the initial archi-

tectural concept. Thus, the preconditions for the development of Architecture 0 are the product

vision and at least a high-level view of the epics, use cases, and user stories of the system.

Outputs and postconditions
The output is a set of architecture optimization criteria and an initial set of concepts from the

different architectural views. This may be textual, but I strongly recommend this being in the form

of a SysML architectural model. This model may have a number of different diagrams showing

different aspects of the architecture. It is common, for example, to have one or more diagrams for

each architectural view. In Architecture 0 many of these will be missing and will be elaborated

on as the project proceeds.

How to do it
Architecture 0 is an incomplete, minimalist set of architectural concepts. Some thought is given to

architectural aspects that will be given later, if only to assure ourselves that they can be integrated

smoothly when they are developed. Again, it is expected that the architecture will be elaborated,

expanded, and refactored as the product progresses.

Basics of Agile Systems Modeling88

Figure 1.30shows the basic workflow.

Figure 1.30: Architecture 0

Review the scope of functionality
Architectures must be fit for purpose. This means that while architectural decisions are largely

about optimizations, the architecture must, first and foremost, achieve the functional needs of

the system. This step reviews the essential required functionality that must be supported by the

architecture.

Determine primary architectural optimizations
Selecting a design is an exercise in balancing competing optimization concerns making up the

primary set of architectural goals. This step identifies and ranks the most important architectural

considerations, such as worst-case performance, average performance, bandwidth, throughput,

scalability, extensibility, maintainability, manufacturability, testability, and certifiability, to name

a few.

Chapter 1 89

Identify key technologies
It is common that one or more key technological ideas dominate the vision of the product. Electric

cars, for example, have electric motors and electronic means to power them. While not necessarily

defining the solutions here, it is important to at least identify the key technologies to constrain

the solution space.

Consider existing technologies assets
Unless this is the very first time an organization has developed a similar product, there is likely

some “prior art” that should be considered for inclusion in the new product. The benefits and costs

can be considered as employing the organization’s existing technological intellectual property

versus creating something entirely new.

Identify subsystem organizational concerns
Subsystems are the largest-scale pieces of the system and thus serve as the primary organization

units holding elements of designs from downstream engineering. This step considers the pros

and cons of different subsystem allocations and organizations. A good set of subsystems are:

• Coherent – provide a small number of services

• Internally tightly coupled – highly codependent elements should generally reside in the

same subsystem

• Externally loosely coupled – subsystems should stand on their own with their responsi-

bilities but collaborate in well-defined ways with other subsystems

• Collaborative with interfaces – interact with other subsystems in well-defined ways with

a small number of interfaces

Consider contributions of engineering disciplines
The aspects of a design from a single engineering discipline is called a facet. There will typically

be software facets, electronic facets, mechanical facets, hydraulic facets, pneumatic facets, and so

on. The set of facets and their interactions are known as the deployment architecture, an important

view of the system architecture. Early on, there may be sufficient information to engage engineers

in these disciplines and consider how they are likely to contribute to the overall design.

Identify computational needs
Computational needs affect both software and electronics disciplines. If the system is an embed-

ded system – the primary case considered in this book – then the computational hardware must

be selected or developed with the particular system in mind.

Basics of Agile Systems Modeling90

These decisions can have a huge impact on performance and the ability of the software to deliver

computational functionality. The software concurrency architectural concerns are not consid-

ered here, as they are solely a software concern. Nevertheless, the system must have adequate

computational resources, and early estimates must be made to determine the number and type

of CPUs and memory.

Identify distribution needs
Networks such as 1553 or CAN buses and other connection needs, as well as possible middleware

choices including AUTOSAR, CORBA, and DDS, are the focus of this step.

Identify dependability needs
This step is crucial for safety-critical, high-reliability, or high-security systems. The initial con-

cepts for managing dependability concerns must be considered early for such high-dependability

systems and may be saved for later iterations in systems in which these are a minimal concern.

Select the most appropriate subsystem patterns
There are many organizational schemes for subsystem architecture, such as the layered pattern

microkernel pattern, and channel pattern, that provide different optimizations. See the author’s

book Real-Time Design Patterns for more detail on these patterns. The definition and use of patterns

are discussed in more detail in Chapter 3, Developing Systems Architecture.

Map likely facets to subsystems
Facets are the contributions to an overall design from specific engineering disciplines, such as

software, electronics, and mechanical engineering. We recommend that subsystem teams are

interdisciplinary and contain engineers from all relevant disciplines. This step is focused on early

concept deployment architecture.

Select the most appropriate computational patterns
Computational patterns concentrate on proposed computational approaches. While largely a soft-

ware concern, electronics play a key role in delivering adequate computation power and resources.

This is especially relevant when the computation approach is considered a key technology, as it is

for autonomous learning systems or easy-to-certify cyclic executives for safety-critical systems.

Chapter 1 91

Select the most appropriate distribution patterns
There are many ways to wire together distributed computing systems with networks, buses, and

other communication links, along with supporting middleware. This architectural view focuses

on that aspect of the system design. This impacts not just the software, but the electronic and,

to a lesser degree, mechanical designs.

Select the most appropriate dependability patterns
Different patterns support different kinds of optimizations for safety, reliability, and security

concerns. If these aspects are crucial, they may be added to Architecture 0 rather than leaving

them for later design. Deciding to “make the product safe/reliable/secure” late in the development

cycle is a recipe for project failure.

Create initial subsystem architecture
This aspect is crucial for the early design work so that the design elements have a place to be

deployed. Subsystems that are not needed for early iterations can be more lightly sketched out

than ones important for the early increments.

Create initial mechanical architecture
The initial mechanical architecture provides a framework for the development of physical struc-

tures, wiring harnesses, and moving mechanical parts.

Create initial electronic architecture
The initial electronics architecture provides a framework for the development of both analog

electronics such as power management, motors, and actuators, as well as digital electronics,

including sensors, networks, and computational resources.

Create technical work items or architectural implementation
A skeletal framework for the architecture is provided in Architecture 0 but beyond this, archi-

tectural implementation work results in technical work items that are placed in the backlog for

development in upcoming iterations.

Allocate technical work items to iterations
Initial allocation of the technical work items is done to support the product roadmap and, if

available, the release plan. These elements may be reallocated later as the missions of the iter-

ations evolve.

Basics of Agile Systems Modeling92

Example
Review the scope of functionality
The Pegasus is a high-end smart cycling trainer that provides fine-grained control over bike fit,

high-fidelity simulation of road feel, structured workouts, and interactions with popular online

training apps. Read the content of Appendix A to review the functionality of the system.

Determine primary architectural optimizations
The primary optimization concerns in this example are determined to be:

• Recurring cost – the cost per shipped item

• Robustness – maintenance effort and cost-of-ownership should be low

• Controllability – fine-grained control of power over a broad range

• Enhance-ability – the ability to upgrade via Over-The-Air to add new sensors, capabilities,

and training platforms is crucial

Identify key technologies
There are a number of key technologies crucial to the acceptance and success of the system:

• Low-energy Bluetooth (BLE) Smart for interacting with common sensors and app-hosting

clients (Windows, iPad, iPhone, and Android)

• ANT+ for connecting to common sensors

• IEEE 802.11 wireless networking

• An electronic motor to provide resistance

These technologies are considered essential in this case, but we do want to take care not to overly

constrain the design solution so early in the product cycle.

Consider existing technologies assets
This is a new product line for the company and so there are no relevant technological assets.

Identify subsystems organizational concerns
To improve manufacturability, we want to internalize cabling as well as minimize the number

of wires. This means that we would like to co-locate the major electronics components to the

greatest degree possible. However, user controls must be placed within convenient reach. Care

must also be taken for adequate electric shock protection as the users are likely to expose the

system to corrosive sweat.

Chapter 1 93

Select the most appropriate subsystem patterns
We select the Hierarchical Control Pattern and Channel Pattern, from Real-Time Design Patterns, Ad-

dison-Wesley by Bruce Powel Douglass, 2003, as the most applicable for our systems architecture.

Create an initial subsystem architecture
Figure 1.31 shows the operational context of the Pegasus indoor training bike. This is captured

in a Block Definition Diagram (BDD) in the architectural design package of the model. The

operational context defines the environmental actors with which the architecture must interact

during system operation:

Figure 1.31: Pegasus context diagram

Figure 1.31 shows the elements in the Pegasus context. Note that we used blocks with the stereotype

«Actor Block», each with a «represents» dependency to the actor they represent. This is done

because in Cameo actors cannot have ports, and we wish to use ports to specify the interfaces

used in the system context. These stereotypes are not defined in Cameo and so must be added in

a user-created profile within the project.

Basics of Agile Systems Modeling94

Figure 1.32 shows how these elements connect in an internal block definition diagram owned by

the System Context block:

Figure 1.32: Pegasus connected context

Next, Figure 1.33 shows the set of subsystems. This diagram is like a high-level parts list and is

very common in system designs in SysML:

Figure 1.33: Pegasus subsystems

Chapter 1 95

Perhaps more interesting is Figure 1.34, which shows how the subsystems connect to each other

in an Internal Block Diagram (IBD). This is also a commonly used architectural view in SysML

models. Specifically, this figure shows the primary functional or dynamic interfaces.

I follow a convention in my architectural models in which dynamic connections – that is, ones

that support runtime continuous or discrete flow – use ports, but static connections – such as

when parts are bolted together – as shown using connectors with the «static» stereotype. I find

this a useful visual distinction in my systems architecture diagrams. Thus, the relation between

the Frame and the Drive Unit is an association but the relation between the Pedal Assembly and

the Drive Unit employs a pair of ports, as there are runtime flows between the pedals and the

drive motor during system operation.

Figure 1.34: Pegasus connected architecture – Primary dynamic interfaces

Consider contributions of engineering disciplines
The electronics will provide the interfaces to the user for control of the trainer as well as physical

protocols for app communication. It will also provide resistance via the application of torque

from the electronic motor.

The mechanical design will provide the bike frame and all the bike fit adjustments. The pedals

will accept torque from the user and provide resistance to applied force via the crank arms. Ad-

ditionally, the weighted flywheel smooths out resistance by providing inertial load.

Basics of Agile Systems Modeling96

Finally, the mechanical design will provide all the cable routing.

The software will provide the “smarts” and use electronics to receive and process user input

from controls, inputs from connected apps, as well as from the pedals. The software will also be

responsible for messages to the apps for measured sensor data.

Map likely facets to subsystems
Facets, you will remember, are the contributions engineering disciplines provide to the system

design. Table 1.11 shows the initial concept for mapping the engineering facets to the subsystem

architecture. This will result, eventually, in a full deployment architecture, but for now, it just

highlights our current thinking about the work from the engineering disciplines that will map

to the subsystems.

Subsystem Mechanical Electronics Software

Frame Mechanical only

Handlebar assembly Mechanical only

Drive unit Housing for motor, fly-

wheel, and drive train

Motor electronics Discrete outputs from control

unit SW controlled

Control unit Cabling and mounting Primary CPU, memory, and

electronic resources for SW,

persistence storage for SW

Control motor, process incom-

ing sensor and power data, pro-

cess communications with apps,

and Over-The-Air updates

Seat assembly Mechanical only

Display assembly Cabling and mounting Display and buttons, and

USB connectors (future

expansion)

User I/O management and USB

interface support

Pedal assembly Crank arms,

LOOK-compatible shoe

mount, connects to

drive train

Power sensor in the pedal

assembly

Discrete inputs to SW in control

unit

Comm unit Cabling and mounting 802.11, Bluetooth (BLE)

Smart, and ANT+

SW in control unit controls and

mediates communications from

sensors and external apps

Power unit Cabling and mounting Converts wall power to

internal power and distrib-

utes where needed

Table 1.11: Initial deployment architecture

Chapter 1 97

Identify computational needs
At a high level, the primary computational needs are to:

• Receive and process commands to vary the resistance either from the internal load, user

input, or app control

• Actively control the resistance provided by the motor

• Monitor connected Bluetooth and ANT+ sensors, such as from heart-rate straps

• Send sensor data to connected apps

• Update the user display when necessary

• Perform Over-The-Air updates

Select the most appropriate computational patterns
An asymmetric dual-processor architecture is selected with a single primary CPU in the Control

Unit and a secondary processor to manage communications.

Identify distrubtion needs
All communications needs will be performed by a (proposed) 16-bit communication processor

housed in the comm unit; all other SW processing will be performed by the control unit on the

primary CPU.

Select the most appropriate distribution patterns
To facilitate the timely distribution of information within the system, an internal serial interface,

such as RS232, is deemed adequate.

Identify dependability needs
The primary safety concern is electric shock caused by faulty wiring, wear, or corrosion. Reliability

needs to focus on resistance to corrosion due to sweat, and the durability of the main drive motor.

Security is determined to not be a significant concern.

Select the most appropriate dependability patterns
Single-Channel Protected Pattern is selected as the most appropriate.

Basics of Agile Systems Modeling98

Create initial electronic architecture
The power interfaces are shown in Figure 1.35:

Figure 1.35: Pegasus connected architecture – Power interfaces

In addition, the drive unit hosts the primary motor to provide resistance to pedaling.

Create initial mechanical architecture
The internal mechanical connections are shown in Figure 1.36:

Chapter 1 99

Figure 1.36: Pegasus connected architecture – Mechanical interfaces

The seat and handlebars are adjustable by the user and pedals can be added or removed, as well

as providing a spot for the rider to “clip in” when they get on the bike. Thus, these connections

use ports. The other connections are places where pieces are bolted together and do not vary

during operation, except under catastrophic mechanical failure, so connectors represent these

connections.

Basics of Agile Systems Modeling100

Create technical work items for the architectural implementation
We identify the following technical work items in Architecture 0:

Mechanical technical work items:

• CAD frame design

• Hand-built frame

• Factory built frame

Electronic technical work times:

• Motor simulation platform

• Hand-built motor

• Factory-built motor electronics

• CPU selection

• Simulated digital electronics platform

• Hand-built digital electronics platform

• Factory-built digital electronic platform

Allocate technical work items to the iterations
Allocation of such technical work items is discussed in detail in the Iteration plan recipe.

Additional note
Note that this is not a fully fleshed-out architecture. We know that in principle, for example, the

pedals and the drive unit have flows between them because the pedals must provide more re-

sistance when the main motor is producing greater resistance, but we don’t know yet if this is a

mechanical power flow perhaps via a chain, an electronic flow, or discrete software messages to

active resistance motors at the site of the pedals. I added a power interface to the Pedal assembly.

If it turns out that it isn’t needed, it can be removed. That’s a job for later iterations to work out.

I also didn’t attempt to detail the interfaces – again, deferring that for later iterations. But I did

add the ports and connectors to indicate the architectural intent.

Chapter 1 101

Organizing your models
Packages are the principal mechanism for organizing models. In fact, a model is just a kind of

package in the underlying SysML metamodel. Different models used for different purposes are

likely to be organized in different ways. This recipe focuses on systems’ engineering models to

specifically support requirements capture, use case and requirements analysis, architectural trade

studies, architectural design, and the hand-off of relevant Systems Model data to the subsystem

teams. In this recipe, we create not only the systems model but also the federation of models

used in systems engineering. Federations, in this context, are sets of interconnected models with

well-defined usage patterns defined.

Purpose
Organizing well is surprisingly important. The reasons why include:

• Grouping information to facilitate access and use

• Supporting concurrent model use by different team members performing different tasks

• Serving as the basis for configuration management

• Allowing for relevant portions of models to be effectively reused

• Supporting team collaboration on common model elements

• Allowing for the independent building, simulation, and verification of model aspects

Inputs and preconditions
The product vision and purpose are the primary input for the systems engineering model. The

hand-off model is created after the architecture is stable for the iteration and is the primary input

for the subsequent Shared Model and Subsystem Models.

Outputs and postconditions
The outputs are the shells of the Systems, Shared, and Subsystem Models, a federation of models

for downstream engineering The Systems Model is populated with the system requirements, if

they exist. The Shared Model is initially populated with (references to) the system requirements,

(logical) system interfaces and (logical) data schema from the Systems Model. A separate Sub-

system Model is created for each subsystem and is initially populated with a reference to its

subsystem requirements from the Systems Model, and the physical interfaces and data schema

from the Shared Model.

Basics of Agile Systems Modeling102

How to do it
Figure 1.37 is the workflow for creating and organizing the Systems Model. In the end you’ll have

logical places for the MBSE work, and your team will be able to work more or less independently

on their portions of the effort:

Figure 1.37: Organizing the systems engineering model

Review product vision, scope, and intent
Every product has a vision that includes its scope and intent. Similarly, every model you create

has a scope, purpose, and level of precision. A model’s scope determines what goes into the model

and what is outside of it. A common early failure of modeling happens when you don’t have a

well-defined purpose for a model.

Chapter 1 103

The purpose of the model is important because it determines the perspective of the model. George

Box is famously attributed to the quote “All models are wrong, but some are useful.” What I

believe this means is that every model is an abstraction of reality. A model fundamental represents

information useful to the purpose of the model and ignores system properties that are not useful.

The purpose of the model, therefore, determines what and how aspects of the product and its

context will be represented.

The level of precision of the model is something often overlooked but is also important. It is too

often that you will see requirements such as:

That’s fine as far as it goes, but what does it mean to achieve a value of +15 degrees? Are 14.5 degrees

close enough? How about 14.9? 14.999? How quickly will the position of the rudder be adjusted?

If it took a minute, would that be OK? Maybe 1.0 seconds? 100ms? The degree to which you care

about how close is “close enough” is the precision of the model, and different needs have different

levels of required precision. This is sometimes known as “model fidelity.” The bottom line is to

know what you are modeling, why you are modeling it, and how close to reality you must come to

achieve the desired value from your model. In this case, the model is of the requirements, their

analyses, supporting analyses leading to additional requirements, and the architecture structure.

Create a new model
In whatever tool you use, create a blank, empty model.

Add the canonical system model structure
This is the key step for this recipe. The author has consulted for decades to literally hundreds

of systems engineering projects, and the Subsystem Model organization shown in Figure 1.38

has emerged as a great starting point. You may well make modifications, but this structure is so

common that I call it the system canonical organization.

The aircraft will adjust the rudder control surface to ±30 degrees.

Basics of Agile Systems Modeling104

It serves the purpose of MBSE well:

Figure 1.38: Systems model canonical structure

The main categories in Figure 1.38 are packages that will hold the modeled elements and data.

The main packages are:

Model Overview Package – this package holds the model overview diagram, model summary

information, and a glossary, if present.

Capabilities Package – holds all capability-related information, including requirements, use

cases, and functional analyses.

Chapter 1 105

Requirements Package – holds the requirements, either directly (most common) or as remote

resources in the Jazz environment.

Use Case Package – holds the system use cases and use case diagrams.

Note that while this organization is labeled canonical, it is common to have minor variants on

the structure.

Functional Analysis Package – holds the use case analyses, one (nested) package per use case

analyzed. An example “template” package is shown with a typical structure for the analysis of

a single use case.

Architecture Package – holds all design-related information for the Systems Model.

Architectural Analysis Package – hold architectural analyses, such as trade studies, usually in

one nested package per analysis.

Architectural Design Package – holds the architectural design, the system and subsystem blocks,

and their relations. Later in the process, it will hold the subsystem specifications, one (nested)

package per subsystem.

Interfaces Package – holds the logical system and subsystem interfaces as well as the logical data

schema for data and flows passed via those interfaces. Logical interfaces are discussed in more

detail in Chapter 2, System Specification: Functional, Safety, and Security Analysis.

Add systems requirements, if they exist
It is not uncommon that you’re handed an initial set of system requirements. If so, they can be

imported or referenced. If they are added later, this is where they go.

Modify the model structure for special needs, if required
You may identify special tasks or model information that you need to account for, so it’s OK to

add additional packages as needed.

Add a model overview diagram
I like every model to contain a Model Overview Diagram. This diagram is placed in the Model

Overview package and serves as a brief introduction to the model’s purpose, content, and or-

ganization. It commonly has hyperlinks to tables and diagrams of particular interest. The lower

left-hand corner of Figure 1.39 has a comment with hyperlinks to important diagrams and tables

located throughout the model.

Basics of Agile Systems Modeling106

This aids model understanding and navigation, especially in large and complex models:

Figure 1.39: Example model overview diagram

After systems engineering work completes and the time comes to handoff to downstream engi-

neering, more models must be created. In this case, the input is the Systems Model and the output

is the Shared Model and a set of Subsystem Models. The Shared Model contains information

common to more than one subsystem – specifically the physical system and subsystem interfaces

and the corresponding physical data schema used by those interfaces. The details of elaborating

those models are dealt with in some detail in Chapter 4, Handoff to Downstream Engineering, but

their initial construction is shown in Figure 1.40:

Chapter 1 107

Figure 1.40: Organizing the shared and subsystem models

Create the Shared Model
This task creates an empty shared model. This model will hold the information shared by more

than one subsystem; that is, each subsystem model will have a reference to these common inter-

faces and data definitions and elements.

Apply the canonical shared model structure
Apply the canonical shared model structure

The purpose of the shared model is twofold. First, using the logical interfaces and data schema

as a starting point, derive the physical interfaces and data schema, a topic of Chapter 4, Handoff

to Downstream Engineering. Secondly, the Shared Model serves as a common repository for infor-

mation shared by multiple subsystems.

Basics of Agile Systems Modeling108

The organization shown in Figure 1.41 does that:

Figure 1.41: Shared model canonical structure

The Requirements and Interfaces packages in Figure 1.41 reference the Systems Model packages

of the same name. In this way, those elements are visible to support the work in the Shared Model.

The Physical Interfaces package holds the physical interfaces and data schema to be used by the

subsystems. The Common Elements package holds elements used in other places in the model

or in multiple subsystems. The Common Stereotypes profile holds stereotypes either used in the

Physical Interfaces package or created for multiple subsystems to use.

Add a reference to the system requirements
As shown above, the Requirements package of the systems model is referenced so that they are

available to view but also so that the physical interfaces and data schema can trace to them, to

provide a full traceability record.

Add references to the logical interfaces and data schema
The logical interfaces and related logical data schema specify the logical properties of those ele-

ments without specifying physical implementation details. The Creating the Logical data schema

recipe from Chapter 2, System Specification: Functional, Safety, and Security Analysis, goes into the

creation of those elements. By referencing these elements in the Shared Model, the engineer has

visibility to them but can also create trace links from the physical interfaces and data schema to

them.

Chapter 1 109

Add model overview diagram
As in the systems model organization, every model should have a Model Overview diagram to

serve as a table of contents and introduction to the model:

Figure 1.42: Example shared model overview diagram

Create the subsystem model
Commonly, each subsystem has its own interdisciplinary team, so the creation of a Subsystem

Model per subsystem provides each team with a modeling workspace for their efforts.

Basics of Agile Systems Modeling110

Apply the canonical subsystem model organization
Figure 1.43 shows the canonical organization of a Subsystem Model. Remember, that each sub-

system team has their own, with the same basic organization:

Figure 1.43: Subsystem model canonical structure

The Common Stereotypes and Physical Interfaces packages are referenced from the Shared

Model, while the Requirements package is referenced from the Systems Model.

We would like to think that the requirements and use cases being handed down to the subsys-

tem team are perfect; however, we would be wrong. First, there may be additional elaboration

work necessary at the subsystem level to understand those subsystem requirements. Further,

discipline-specific requirements must be derived from the subsystem requirement so that the

electronics, mechanical, and software engineers clearly understand what they need to do. That

work is held in the Subsystem Spec Package. If we create additional, more detailed use cases,

they will be analyzed in the Functional Analysis Package in the same way that the system use

cases are analyzed in the Systems Model.

The Deployment Architecture Package is where the identification of the facets and the allocation

of responsibilities to the engineering disciplines takes place. To be clear, this package does not

detail the internal structure of the facets; the electronics architecture, for example, is not depicted

in this package, but the electronics facet as a black box entity is. Further, the interfaces between

the electronics, software, and mechanical facets are detailed here as well.

Chapter 1 111

Lastly, the SW Design Package is where the design and implementation of the software will

be done. It is expected that the software will continue to work in the model but that the other

facets will not. Alternatively, the software engineers can create their own separate model that

references the subsystem model. For electronics and mechanical design, we expect that they will

use their own separate tools and this model will serve only as a specification of what needs to be

done in those facets. It is possible that the electronics design could be done here, using SysML

or UML and then generating SystemC, for example, but that is fairly rare. SysML and UML are

poorly suited to capture mechanical designs, as they don’t have any underlying metamodel for

representing or visualizing geometry.

Copy the subsystem specification
The Subsystem Package is copied (rather than referenced) from the Systems Model. This model

holds the subsystem details such as subsystem functions and use cases. Of course, the name of

this package in Figure 1.43 is misleading; if the name of the subsystem was Avionics Subsystem,

then the name of this package would be Avionics Subsystem Package or something similar.

In a practical sense, I prefer to copy the subsystem package from the Systems Model, because that

isolates the Subsystem Model from subsequent changes to that package in the Systems Model

that may take place in later iterations. The subsystem team may then explicitly re-import that

changed Subsystem Model at times of its own choosing. If the subsystem package is added by

reference, then whenever the systems team modifies it, the changes are reflected in the referencing

Subsystem Model. This can also be handled by other means, such as referencing versions of the

system model in the configuration management set, but I find this conceptually easier. However, if

you prefer to have a reference rather than a copy, that’s an acceptable variation point in the recipe.

Add a reference to the subsystem requirements
The Requirements package in the Systems Model also holds the derived subsystem requirements

(see Chapter 2, System Specification: Functional, Safety, and Security Analysis). Thus, referencing the

Requirements package from the system model allows easy access to those requirements.

Add a reference to the physical interfaces and data schema
Logical interfaces serve the needs of systems engineering well, for the most part. However, since

the subsystem team is developing the physical subsystem, they need to know the actual bit-level

details of how to communicate with the actors and other subsystems, so they must reference the

physical interfaces from the Shared Model.

Basics of Agile Systems Modeling112

Add model overview diagram
As before, each model should have a Model Overview diagram to serve as a table of contents and

introduction to the model.

How it works
At the highest level, there is a federated set of models defined here. The Systems Model holds the

engineering data for the entire set, and this information is almost exclusively at the logical level

of abstraction. This means that the important logical properties of the data are represented – such

as the extent and precision of the data – but their physical properties are not. Thus, we might

represent an element such as a Radar Track in the Systems Model as having a value property of

range with an extent of 10 meters to 300 kilometers and a precision of ± 2 meters. Those are log-

ical properties. But the physical schema might represent the value as a scaled integer with 100*

the value for transmission over the 1553 avionics bus. Thus, a range of 123 kilometers would be

transmitted as an integer value of 12,300. This representation is a part of the physical data schema

that realizes the logical properties.

Beyond the Systems Model, the Shared Model provides a common repository for information

shared by multiple subsystems. During the systems engineering work, this is limited to the phys-

ical interfaces and associated physical data schema. Later in downstream engineering, other

shared subsystem design elements might be shared, but that is beyond our scope of concern.

Lastly, each subsystem has its own Subsystem Model. This is a model used by the interdisciplin-

ary subsystem team. For all team members, this model serves as a specification of the system

and the related engineering facets. Remember that a facet is defined to be the contribution to

a design specific to a single engineering discipline, such as software, electronics, or mechanical

design. Software work is expected to continue in the model but the other disciplines will likely

design their own specific tools.

Example
Figure 1.44 shows the initial organization of the Pegasus System Model, with Architecture 0 already

added (see recipe Architecture 0). I’ve filled in a few other details, such as adding references to

diagrams to illustrate how they might be shown here:

Chapter 1 113

Figure 1.44: Pegasus system model – overview diagram

The shared model and subsystem model are not created early in the MBSE process but rather late,

after the Pegasus architecture work is completed for the current iteration and the work developing

the hand-off to downstream engineering is underway. We will discuss their creation in Chapter

4, Handoff to Downstream Engineering.

Managing change
In real engineering environments, work products are not the result of a single person working in

isolation. Rather, they represent the integration of the efforts of many people. In model-based

systems engineering, the model is central to the project and this means that many people must

work simultaneously on the model. Without getting in each other’s way. Or losing work.

The heart of managing such a shared engineering work product is change management and its

close cousin configuration management. The former is the process and procedures that govern

how changes made to a work product are controlled, including the controlled identification of

changes, the implementation of those changes, and the verification of the changes. Configuration

management is a systems engineering process for establishing and maintaining consistency of

a product’s performance, functional, and physical attributes with its requirements, design, and

operational information throughout its life.

Basics of Agile Systems Modeling114

See https://en.wikipedia.org/wiki/Configuration_management for more information. Both

of these are deep and broad topics and will be treated somewhat superficially here. It is never-

theless an important topic, so we will present a simple workflow for change and configuration

management of models in this recipe.

Central to this recipe is the notion that we change a model for a purpose. In traditional engineer-

ing processes, this is managed via a change request, sometimes called an Engineering Change

Order (ECO). In agile processes, this is due to a work item in the iteration backlog. In either case,

the change is made to the model for a reason and to achieve some goal. The problem is that many

people need to change other elements in the model to achieve other goals. Frequently, different

changes must be made by different people to the same model elements.

The concept of a package was introduced early in the development of UML. A package is a model

element that contains other model elements, including use cases, classes, signals, behaviors,

diagrams, and so on. As such, it is the fundamental unit of organization for models. It was also

intended to be the fundamental Configuration Item (CI), the atomic piece for configuration

management. It was envisioned that a modeler would manage the configuration of a package as

a unit, including all its internal contained elements together. Modern tools like Cameo and Rhap-

sody support this but also allow finer-grained configuration management down to the individual

element level, if desired. Nevertheless, the package remains the most common CI.

The terms version and revision are common terms in the industry around this topic. A model

version is a changed model. Such changes are typically considered minor. A revision is a controlled

version and is generally considered a major change. It is common that revisions are numbered as

whole numbers and versions are fractional numbers. Version 19.2 indicates revision 19 version

2. Revisions are considered baselines and permanent, and versions are minor changes and tem-

porary. Revisions generally go through a more robust verification and validation process, often

at the end of a sprint. Versions may be created at each test-driven development cycle (known

in the Harmony process as the nanocycle – see the Test-Driven Modeling pattern in Chapter 5,

Demonstration of Meeting Needs) and so come and go rapidly.

All this is relevant to the two basic workflows for change and configuration management: Lock

and Release and Branch and Merge. Both primarily work at the package level.

Purpose
The purpose of this recipe is to provide a workflow for robust change control over model contents

in the presence of multiple and possibly simultaneous changes to the model made by different

engineers.

https://en.wikipedia.org/wiki/Configuration_management

Chapter 1 115

Inputs and preconditions
This recipe starts after a model is baselined. A baseline means that the model is stored under a

configuration and change control environment, usually after it has achieved some basic level of

maturity. This means that there is a current source of truth for the model contents, and all changes

are managed by the configuration and change control environment. The second precondition is

the presence of a change to be made to the model. This recipe does not concern itself with how

the decision is made to proceed with the change, only that the decision has been made.

Outputs and postconditions
The output is the updated model put back under configuration and change control either as a

version or as a revision, depending on the scope of the change.

How to do it
Figure 1.45 shows the workflow for this recipe. Two alternative flows are shown. On the left is the

more common and simpler Lock and Release sub-workflow, and on the right is the Branch and

Merge sub-workflow. Both sub-workflows reference the Make Change activity, which is shown

as a nested diagram on the right of the figure:

Figure 1.45: Managing change

Basics of Agile Systems Modeling116

Get work item
The start of the workflow is to get a request to modify the baseline model. This can be the addition

of a model structure, behavior, functionality, or some other property. It can also be to repair an

identified defect or pay off some technical debt.

Determine the change to be made
Once the request for change has been received, the engineer generally develops a plan for the

modification to be made. The work may involve a single element, an isolated set of elements in

the same package, or broad, sweep changes across the model.

Lock and release
The Lock and Release workflow is by far the most common approach to modifying a model un-

der configuration control. The detailed sub-tasks follow. Its use means that other engineers are

prohibited from making changes to the elements checked out to the first engineer, until the locks

owned by the latter are released.

Open the model
This step opens the model in the configuration management repository.

Make a change
This makes and verifies the change in the model. It has a number of sub-tasks, which will be

described shortly.

Branch and merge
This alternative sub-workflow is useful when there are many people working on the model simul-

taneously. People will create a separate branch in which to work so that they will not interfere with

anyone else’s work. The downside is that it is possible that they will make incompatible changes,

making the merge back into the main trunk more difficult. This sub-workflow has three steps.

Create a branch
In this step, the engineer creates a branch of the main project; this latter model is known as the

trunk. A branch is a separate copy of the project completely independent of the original, but

containing, at least at the start, exactly the same elements.

Chapter 1 117

Merge a branch
This step takes the changes model and merges those changes back into the main project or trunk.

There are usually changes that are merely additions but other changes may be in conflict with

the current version of the trunk, so this step may require thoughtful intervention.

Make a change activity
This activity is referenced in both the Lock and Release and Branch and Merge sub-workflows. It

contains several included steps.

Lock relevant elements
Whenever you load a model that is under configuration control, you must explicitly lock the

elements you wish to modify.

Modify elements
This step is where the actual changes to the model are performed.

Verify change
Before checking in a changed model, it is highly recommended that you verify the correctness of the

changes. This is often done by performing tests and a review/inspection of the model elements.

Recipes in Chapter 5, Demonstration of Meeting Needs, discuss how to perform such verification.

Unlock relevant elements
Once the changes are ready to be put back into the configuration management repository, they

must be unlocked so that other engineers can access them.

Store updated model
In this final step of the Make Change Activity, store the unlocked model back into the configuration

management repository.

Example
Since we are using Cameo in this book, we will be using Cameo Teamwork Cloud as the config-

uration management environment. Other tools, such as Rhapsody from IBM, can use various

configuration management tools but with Cameo, either Teamwork Cloud or the older Teamwork

Server is required.

Basics of Agile Systems Modeling118

Because the more common Lock and Release workflow is a degenerative case of the more elaborate

Branch and Merge sub-workflow, we will just give an example of the latter.

The example here shows a context for an exercise bike. The context block is named Pain Cave, and

it contains a Rider part that represents the system user, and an Exercise Bike part that represents

the system under design. The Rider block provides cadence and power as inputs to the system

as flow properties and receives resistance back:

Figure 1.46: Pain cave model composition architecture

Figure 1.47 shows the internal block diagram connecting the Rider and Exercise Bike parts in the

context of the Pain Cave, while Figure 1.48 shows the internal structure of the Exercise Bike itself:

Chapter 1 119

Figure 1.47: Pain cave connected context

Figure 1.48: Exercise bike connected architecture

Basics of Agile Systems Modeling120

Finally, Figure 1-49 shows the behaviors of two elements, Rider and Resistance Unit. The concept

here is that the Resistance Unit produces resistance based on the power and cadence it receives

from the Rider. Of course, this behavior performed is not in any way realistic but just a simple

example of behavior:

Figure 1.49: Behaviors

This system does execute, as can be seen in Figure 1.50, which shows the current states of the run-

ning simulation using Cameo’s Simulation Toolkit, and the current values of the flow properties

in Figure 1.51. In Cameo, you can visualize a running system in a number of ways, including the

creation of diagrams that contain other diagrams; for activity and state diagrams, Cameo high-

lights the current state or action as it executes the model. The Simulation Toolkit also exposes

the current instances and values held in value properties during the simulation:

Chapter 1 121

Figure 1.50: Pain cave simulation view

Figure 1.51: Pain cave values during simulation

This is our baseline model.

Basics of Agile Systems Modeling122

Get work item
For this example, we will work on two user story work items together:

1. As a rider, I want to be able to see the pedal cadence and power as I ride so that I can set

my workout levels appropriately.

2. As a Rider, I want to be able to control the amount of resistance, given cadence, and power

so I have finer control over my workout efforts.

Determine the change to be made
In this simple example, the changes are pretty clear. The Display block must be able to get input

from the Rider to change the scaling factor for the resistance, and then send this information to

the Resistance Unit. The Resistance Unit must incorporate the scaling factor in its output. Ad-

ditionally, behavior must be added to the Display block to display cadence and power.

Create branch
In the Cameo tool, after logging in to the Teamwork Cloud environment, select your project using

Collaborate > Projects menu to select your project. At the right of the project from which you

want to create a baseline, click on the ellipsis to open the Select Branch dialog, then select Edit

Branches, which opens the Edit Branches dialog. Here, select the version from which you wish

to branch and select Create Branch. These dialogs are all shown in Figure 1.52:

Figure 1.52 Creating a branch

Once created, you can open the branch in the Manage Projects dialog.

Chapter 1 123

Make Change::Lock relevant elements
To edit the elements you must lock them. In Cameo, this is a right-click menu option for elements

in the containment tree. We will work exclusively in the 02 Architectural Design Pkg package,

so we will lock that package and all its contents. In Cameo, you must select Lock Elements for

Edit Recursively to lock the package and the elements it contains. If you lock without recursion,

you only have edit rights to the package itself and not its content.

Make Change::Modify elements
Let’s look at the changes made for each of the work items:

1. As a rider, I want to be able to see the pedal cadence and power as I ride so that I can set

my workout levels appropriately.

For this change, we’ll modify the Display block to have a state behavior driven by a change

event, whose specification is when either the power or the cadence changes. This requires

the addition of a couple of value properties. The Display state machine is shown in Figure

1.53. For our purposes here, we’ll just use Groovy print statements to print out the values. In

the simulation, these print statements output text to the console of the Simulation Toolkit:

Figure 1.53: Display state machine

Basics of Agile Systems Modeling124

2. As a Rider, I want to be able to control the amount of resistance, given cadence, and power.

For this work item, we’ll need to add a pair of ports between the Rider and the Resistance Unit

blocks so the Rider can send the evAugmentGear and evDecrementGear events. The Rider state

machine will be extended to be able to send these events (under the command of the simulation

user), and the Resistance Unit state machine will accept these events and use them to update

the scaling factor used to compute resistance. We will also need to add said scaling factor and

update the computation.

Figure 1.54 shows the updated Rider state machine and Figure 1.55 shows the updated Resistance

Unit state machine. The latter state machine was refactored a bit to account for the issue that

you also want to recompute the resistance when the gearing is changed, as well as when cadence

or power changes:

Figure 1.54: Updated rider state machine

Chapter 1 125

Figure 1.55: Updated resistance unit state machine

The updated block definition diagram is shown in Figure 1.56. Note the changes to the interface

block iRider, the addition of a new port, and the value property for the Resistance Unit:

Figure 1.56: Updated pain cave BDD

Basics of Agile Systems Modeling126

Lastly, Figure 1.57 shows the updated internal block diagram for the Exercise Bike. Note that the

Exercise Bike.pRider port is now also connected to the pRider port of the Resistance Unit. This

allows the latter to receive the gearing events:

Figure 1.57: Updated exercise bike IBD

Make Change::Verify change
To make sure we made the changes correctly, we can run the simulation. As a simulation operator,

you can use the simulation toolkit to start the operation sending the evFast signal to the Rider,

and then send the evGearUp and evGearDown events to see the effect on the resulting resistance.

Also, you can check the output console to ensure the cadence and power are being displayed.

Cameo makes it simple to create a simulation view that allows visualization of the behaviors

(see Figure 1.58). I’ve superimposed the console window in the figure so you can see the results

of the Display block behavior:

Chapter 1 127

Figure 1.58: Exercise bike verification via simulation

Make Change::Unlock relevant element
Having made and verified the changes, we can save the changes. Right-click the package in the

containment tree, and select Lock > Unlock elements recursively. This will open the Commit

Project to Server dialog.

Make Change::Store the updated model
In the Cameo tool, unlocking the elements also stores them in the Teamwork Cloud repository,

so this step is done.

Merge a branch
We now have a baselined and unmodified trunk version and our updated branch version. The

last step is to merge our branch changes into the baseline.

Basics of Agile Systems Modeling128

In Cameo, open the trunk (target) model, then select Collaborate > Merge From; this opens the

Select Server Project dialog. Here, select the branch version you just created:

Figure 1.59: Selecting the branch for merge

Then a dialog pops up if you want to merge with the trunk locked or not. Always merge with the

trunk locked.

Once you click on Continue, the Merge dialog opens. There are many options for seeing what the

changes are, accepting some changes, and rejecting others. Color coding identifies the different

kinds of changes: addition, deletions, and modifications:

Figure 1.60: Review merge changes

Chapter 1 129

Any conflicting changes are highlighted and can be resolved manually, by right-clicking and ac-

cepting either the source (updated branch) change or keeping the target (trunk) version of the

element. Cameo has a nice feature that allows you to explore diagrammatic changes graphically.

The scroll bar at the bottom of the window allows you to switch between the unchanged and

changed views of the diagram.

Figure 1.61: Reviewing diagrammatic changes

Click Finish Merging when you’re ready to complete the merge process and click Collaborate >

Commit Changes to save the updated merged model to the trunk. Remember that the Branch

and Merge approach is the lesser-used workflow, and the simpler Lock and Release approach

is more common. Just remember to lock and unlock elements recursively and be sure to unlock

when you’re done making your changes.

Basics of Agile Systems Modeling130

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/cpVUC

2
System Specification

Recipes in this chapter
• Functional Analysis with Scenarios

• Functional Analysis with Activities

• Functional Analysis with State Machines

• Functional Analysis with User Stories

• Model-Based Safety Analysis

• Model-Based Threat Analysis

• Specifying Logical System Interfaces

• Creating the Logical Data Schema

This chapter contains recipes to do with the capturing and analysis of requirements. The first

four recipes are alternative ways to achieve essentially the same thing. Functional analysis gen-

erates high-quality requirements, use cases, and user stories – all means to understand what the

system must be.

By “high-quality requirements,” I mean requirements focused on a use case that are demonstrably:

• Complete

• Accurate

• Correct

• Consistent

• Verifiable

System Specification132

The problem is that natural language is ambiguous, imprecise, and only weakly verifiable. Keeping

the human-readable text is very useful, especially for non-technical stakeholders, but insufficient

to ensure we are building the right system. Let’s look at why that is.

Why aren’t textual requirements enough?
There are many reasons why textual requirements by themselves fail to result in usable, high-qual-

ity systems.

First, it is difficult to ensure all the functionality is present:

• All normal (sunny day) functionality?

• All edge-cases?

• All variations of inputs, sequences, and timings?

• All exception, error, and fault cases?

• Qualities of service such as performance, range, precision, timing, safety, security, and

reliability?

• All stakeholders appropriately represented?

Getting that much detail is a daunting task indeed. But even beyond that, there is an “air gap”

between realizing a possibly huge set of “shall” statements and actually meeting the stakeholder

needs. The stakeholder believes that if the system performs a specific function, then in practice,

their needs will be met. Experience has shown that this is not always true. Customers often ask

for features that don’t address their true needs. Further, requirements are volatile and interact

often in subtle but potentially catastrophic ways.

We address this issue by capturing requirements both in textual and formal means via modeling.

The textual requirements are important because they are human-readable by anyone even with-

out modeling training and often appear in binding legal contracts. The model representation of

the requirement is more formal and lends itself to more rigorous thought and analysis, including

simulation. In general, both forms are necessary.

Chapter 2 133

Definitions
Before we get into the recipes, let’s agree on common terms.

Requirement A stakeholder requirement is a statement of what a stakeholder needs. A system

requirement is a statement of what the system must do to satisfy a stakeholder’s

need. We will focus on system requirements in this chapter. Normally, requirements are

written in an active voice using the shall keyword to indicate a normative requirement, as

in

The system shall move the robot arm to comply with the user directive.

Actor An actor is an element outside the scope of the system we are specifying that has

interactions with the system that we care about. Actors may be human users, but they

can also be other systems, software applications, or environments.

Use case A use case is a collection of scenarios and/or user stories around a common usage of a

system. One may alternatively think of a use case as a collection of requirements around

a usage-centered capability of the system. Still another way to think about use cases

is that they are a sequenced set of system functions that execute in a coherent set of

system-actor interactions. These all come down to basically the same thing. In practice, a

use case is a named usage of a system that traces to anywhere from 10-100 requirements

and 3-25 scenarios or user stories.

Activity An activity in SysML is a composite behavior of some portion of a system. Activities are

defined in terms of sequences of actions that, in this context, correspond to either

• A system function

• An input

• An output

Activities can model the behavior of use cases. Activities are said to be fully constructive in

the sense that they model all possible behavior of the use case.

State machine A state machine in SysML is a classifier behavior of a system element, such as a block

or use case. In this context, a state machine is a fully constructive behavior focusing on

the conditions of the system (states) and how the system changes from state to state,

executing system functions along the way.

Scenario A scenario is an interaction of a set of elements in a particular case or flow. In this usage,

a scenario represents a partially complete behavior showing the interaction of the actors

with the system as it executes a use case. The reason that it is partially complete is that

a given scenario only shows one or a very small number of possible flows within a use

case. Scenarios are roughly equivalent to user stories. In SysML, scenarios are generally

captured using sequence diagrams.

System Specification134

User Story A user story is a statement about system usage from a user or actor’s point of view that

achieves a user goal. User stories describe singular interactions and so are similar in

scope to scenarios. User stories use a canonical textual formulation such as

“As a” <user> “I want” <feature> “so that” <output or outcome>.

For example,

As a pilot, I want to control the rudder of the aircraft using foot pedals so that I can set the yaw of

the aircraft.

User stories tend to be most beneficial for simpler interactions, as complex interactions

are difficult to write out in an understandable text. Scenarios are generally preferred

for complex interactions or when there is a lot of precise detail that must be specified.

Consider this somewhat unwieldy user story:

As a navigation system, I want to measure the position of the aircraft in 3 dimensions with an

accuracy of +/- 1 m every 0.5s so that I can fly to the destination.

And that’s still a rather simple scenario. We will talk about user stories more later in this

chapter in the Functional Analysis with User Stories recipe.

Table 2.1: Some important specification terms

Now that we have defined the most important terms used in system specification, let’s look at

different recipes that allow us to understand what we want the system to do.

Functional Analysis with Scenarios
As stated in the chapter introduction, functional analysis is a means to both capture and improve

requirements through analysis. In this case, we’ll begin with scenarios as a way to elicit the scenar-

ios from the stakeholder and create the requirements from those identified interactions. We then

develop an executable model of the requirements that allows us to verify that the requirements

interact how we expect them to, identify missing requirements, and perform “what-if” analyses

for additional interactions.

Purpose
The purpose of this recipe is to create a high-quality set of requirements by working with the

stakeholders to identify and characterize interactions of the system with its actors. This is par-

ticularly effective when the main focus of the use case is the interaction between the actors and

the system, or when trying to gather requirements from non-technical stakeholders.

Chapter 2 135

Inputs and preconditions
A use case naming a capability of the system from an actor-use point of view.

Outputs and postconditions
There are several outcomes, the most important of which is a set of requirements accurately and

appropriately specifying the behavior of the system for the use case. Additional outputs include

an executable use case model, logical system interfaces to support the use case behavior along

with a supporting logical data schema, and a set of scenarios that can be used later as specifica-

tions of test cases.

How to do it
Figure 2.1 shows the workflow for this recipe. There are many steps in common with the next

two recipes:

Figure 2.1: Functional analysis with scenarios

System Specification136

Identify use case
This first step is to identify the generic usage of which the scenarios of interest, user stories, and

requirements are aspects.

Describe use case
The description of the use case should include its purpose, and a general description of the flows,

preconditions, postconditions, and invariants (assumptions). Some modelers add the specific

actors involved, user stories, and scenarios, but I prefer to use the model itself to contain those

relations.

Identify related actors
The related actors are those people or systems outside our scope that interact with the system

while it executes the current use case. These actors can send messages to the system, receive

messages from the system, or both.

Define execution context
The execution context is a kind of modeling “sandbox” that contains an executable component

consisting of elements representing the use case and related actors. The recommended way to

achieve this is to create separate blocks representing the use case and the actors, connected via

ports. Having an isolated simulation sandbox allows different system engineers to progress in-

dependently on different use case analyses.

Capture use case scenarios
Scenarios are singular interactions between the system and the actors during the execution of

the use case. When working with non-technical stakeholders, it is an effective way to understand

the desired interactions of the use case. We recommend starting with normal, “sunny day” sce-

narios before progressing to edge case and exceptional “rainy day” scenarios. It is important to

understand that every message identifies or represents one or more requirements.

Create ports and interface in execution context
Once we have a set of scenarios, we’ve identified the flow from the use case to the actors and from

the actors to the system. By inference, this identifies ports relating the actors and the system, and

the specific flows within the interfaces that define them.

Chapter 2 137

Create executable state machine
This step creates what I call the “normative state machine.” Executing this state machine can

recreate each of the scenarios we drew in the Capture use case scenarios step. All states, transitions,

and actions represent requirements. Any state elements added only to assist in the execution that

do not represent requirements should be stereotyped as «non-normative» to clearly identify this

fact. It is also common to create state behavior for the actors in a step known as “instrumenting

the actor” to support the execution of the use case in the execution context.

Verify and validate requirements
Running the execution context for the use case allows us to demonstrate that our normative state

machine in fact represents the flows identified by working with the stakeholder. It also allows

us to identify flows and requirements that are missing, incomplete, or incorrect. These result in

Requirements_change change requests to fix the identified requirements defects.

Requirements_change
Parallel to the development and execution of the use case model, we maintain the textual require-

ments. This workflow event indicates the need to fix an identified requirements defect.

Update requirement set
In response to an identified requirements defect, we fix the textual requirements by adding, de-

leting, or modifying requirements. This will then be reflected in the updated model.

Add trace links
Once the use case model and requirements stabilize, we add trace links using the «trace» relation

or something similar. These relations allow the backtrace to stakeholder requirements as well

as forward links to any architectural elements that might already exist. For relations forward to

design elements, we generally prefer «satisfy».

Perform use case and requirements review
Once the work has stabilized, a review for correctness and compliance with standards may be

done. This allows subject matter experts and stakeholders to review the requirements, use cases,

states, and scenarios for correctness, and for quality assurance staff to ensure compliance with

modeling and requirements standards.

System Specification138

Example
Identify use case
This example will examine the Emulate Basic Gearing use case. The use case is shown in Figure 2.2:

Figure 2.2: Emulate Basic Gearing Use Case

Describe use case
All model elements deserve a useful description. In the case of a use case, we typically use the

format shown here:

Chapter 2 139

Figure 2.3: Use Case Description

Identify related actors
The related actors in this example are the Rider and the Training App. The rider signals the

system to change the gearing via the gears control and receives a response in terms of changing

resistance. The training app, when connected, is notified of the current gearing so that it can be

displayed. The relation of the actors to the use case is shown in Figure 2.2.

Define execution context
The execution context creates blocks that represent the actors and the use case for the purpose

of the analysis. In this example, the following naming conventions are observed:

• The block representing the use case has the use case name (with white space removed)

preceded by uc_. Thus, for this example, the use case block is named uc_EmulateBasic-

Gearing.

System Specification140

• Blocks representing the actors are given the actor name preceded with a and an abbrevi-

ation of the use case. For this use case, the prefix is aEBG_ so the actor blocks are named

aEBG_Rider and aEBG_TrainingApp.

• The interface blocks are named i + <use case block>_<actor block>. The names of the

two interface blocks are iEmulateBasicGearing_Rider and iEmulateBasicGearing_Train-

ingApp. The normal form of the interface block is associated with the proxy port on the

use case block; the conjugated form is associated with the corresponding proxy port on

the actor block.

All these elements are shown on the block definition diagram in Figure 2.4. This diagram uses a

Cameo feature to display the contents of a diagram – in this case, the IBD for the Emulate Basic

Gearing Context block – on another:

Figure 2.4: Emulate Basic Gearing Execution Context

Chapter 2 141

Capture use case scenarios
Creating continuous flows in Cameo sequence diagrams isn’t obvious. You’ll need to do a few

preparatory steps:

1. First, create the «continuous» stereotype. Add this into a profile in the project and use

the default Element for the base metaclass.

2. Add flow properties to the blocks that you want to flow. In this first scenario, we want

resistance to flow from the aEBG_Rider block to the uc_Emulate Basic Gearing block

and appliedTorque to flow in the opposite direction.

3. Add value types AppliedTorque and Resistance (as subtypes of Real) and use these to

type the above flow properties.

4. On the context internal block diagram, add item flows of the created types to the connector

between the rider and EBG parts. Make sure the directions are correct!

5. On the sequence diagram, add a message that you want to convey the flow. Add the item

flow to that message with the Item Flow Manager.

6. Add the «continuous» stereotype to the message, as it is a continuous rather than discrete

message.

7. I use a critical region interaction operator to provide the context over which the contin-

uous flow applies. Note that ordinary sequence diagram rules of ordering do not apply to

continuous flows. I also apply the «continuous» stereotype to the interaction operator as

well. In this case, the use of the «continuous» stereotype declares an intent but doesn’t

really change the execution semantics of the model.

This results in the flow being defined as shown in Figure 2.5. You can see the flow properties in

the actor and use case blocks, the types that define them, the item flows between the blocks, and

the item flows on the connector relating the parts on the included internal block diagram.

Cameo note: The Item Flow Manager is best found by selecting the relation

or message and selecting the item flow manager from the hovering quick

tools menu that appears.

System Specification142

All of this is to support adding the item flows in the sequence diagram (Figure 2.6):

Figure 2.5: Blocks with value types and item flows added

Scenarios here are captured to show the interaction of the system with the actors using this use

case. Note that continuous flows are shown as flows with the «continuous» stereotype. This

resistance at a specific level is applied continuously until the level of resistance is changed. As is

usual in use case analysis, messages between the actors are modeled as events, and invocation

of system functions on the use case lifeline are modeled as operations.

The first scenario (Figure 2.6) shows normal gear changes from the rider. Note that the messag-

es to self on the use case block lifeline indicate system functions identified during the scenario

development. The state invariants show the state of the instance fulfilling the part role in the

scenario at various points in the interaction. States, of course, are conditions of the instance, and

may also be used to imply pre and postconditions:

Chapter 2 143

Figure 2.6: Emulate basic gearing scenario 1

The next scenario shows what happens when the rider tries to increment the gearing beyond the

maximum gearing allowed by the current configuration.

System Specification144

It is shown in Figure 2.7:

Figure 2.7: Emulate basic gearing scenario 2

The last scenario for this use case, shown in Figure 2.8, shows the rejection of a requested gear

change below the provided gearing:

Figure 2.8: Emulate basic gearing scenario 3

Based on these sequences, we identify the following requirements:

• The system shall respond to applied pedal torque with resistance calculated from the

base level of resistance, current gearing, and applied torque to simulate pedal resistance

during road riding.

• The system shall send the current gearing to the training app when the current gearing

changes.

• The system shall respond to a rider-initiated increase in gear by applying the new level of

gearing provided that it does not exceed the maximum gearing of the gearing configuration.

Chapter 2 145

• The system shall respond to a ride-initiated decrease in gear by applying the new level of

gearing provided that it does not exceed the minimum gearing of the gearing configuration.

Create ports and interfaces in execution context
It is a simple matter to update the ports and interface blocks to contain the messages going be-

tween the actors and the use case. The sequence diagrams identify the messages between the

use case and actor blocks, so the interface blocks must support those specific flows (Figure 2.9):

Figure 2.9: Emulate basic gearing with properties and interfaces

After updating the block and interface block definitions, we need to connect the flow properties to

the port on the Emulate Basic Gearing Context block. This is done by showing the flow properties

in both the parts and the ports and connecting them with connectors. In Cameo, this is done by

right-clicking on the part or port and selecting Display > Flow Properties in the pop-up menu.

System Specification146

See Figure 2.10:

Figure 2.10: Internal block diagram with connected flow properties

Create executable state model
This step constructs the normative state machine for the use case as well as instrumenting the

actors with their own state machines. The state machine of the use case block is the most inter-

esting because it represents the requirements. Figure 2.11 shows the state machine for the Emulate

Basic Gearing use case. The figure also shows the simple activity send gearing to training app

that is referenced on the transition inside the Basic Gearing and Handing Gear Change states:

Figure 2.11: Emulate Basic Gearing State Machine

Chapter 2 147

The when () trigger used in the state machine is a SysML change event. The trigger is invoked

when the expression value appliedTorque != oldTorque (i.e., then the value of appliedTorque

changes) transitions from false to true.

To support the execution, the system functions must be elaborated enough to support the exe-

cution and simulation. These system functions include applyResistance(), checkGearing(), and

changeGear() operations. Each of these is defined by a support opaque behavior method. Table

2.2 shows their simple implementation.

Note that this is a “low-fidelity” simulation so the precise calculation relating resistance, torque,

and gearing need not be implanted here. The designers will certainly need to do so, however:

Operation Method Opaque Behavior

applyResistance applyResistance method Resistance = gear * 100

changeGear(newGear: Real) changeGear method (newGear:

Real)

gear = newGear

checkGearing(newGear: Real):

Boolean

checkGearing

method(newGear:Real): Boolean

return (newGear <= MAX_GEARING) and

(newGear >= MIN_GEARING)

Table 2.2: Emulate Basic Gearing operations and methods

Note that all opaque behaviors in this book are implemented in Cameo’s Groovy action language.

To set this as the default action language for your projects, simply access the Options > Project

menu, enter “language” in the dialog’s filter field, and set each language option to Groovy.

The system variable gear is represented as a Real (from the SysML value type library), representing

the gear multiplier, in a fashion similar to gear inches, a commonly used measure in cycling. The

flow properties appliedTorque and resistance are likewise implemented as Reals.

The state machines for the actor blocks are even simpler than that of the use case block. Figure

2.12 shows the Rider state machine and Figure 2.13 shows the Training App state machine and

implementation of its displayGearing() function.

System Specification148

I have a convention that I commonly use for naming signals; external signals generated by the user

running the simulation have an “ex” prefix (for external event) while internal signals generated

within the context have an “ev” (for event) prefix:

Figure 2.12: Rider Actor Block state machine

Figure 2.13: Training App Actor Block state machine

The displayGearing operation is realized by a displayGearing method with a simple implemen-

tation:

Chapter 2 149

displayedGear = gear

print “Training App: Gear = “ + displayedGear

Lastly, some constants are defined. DEFAULT_GEARING is set to the same value as MIN_GEAR-

ING; in this case, 30 gear inches. MAX_GEARING is set to about the same as a 53x10 gearing, 140.

The GEAR_INCREMENT is used for incrementing or decrementing the gearing and is set to 5

gear inches for the purpose of simulation.

Verify and validate requirements
To facilitate control of the execution, a user interface display can be created. To do this in Cameo,

the basic steps are:

1. Create a Sim Support Pkg package to hold it all (optional).

2. Add a Configuration diagram with a single configuration. Name this configuration Em-

ulate Basic Gearing Sim Config.

3. Drag the Emulate Basic Gearing Context block and drop it on the simulation configura-

tion to make that block the simulation target.

4. If you want to automatically create a sequence diagram every time you run a simulation,

add a Sequence Diagram Generator to the diagram and then drag it onto the simulation

configuration to add it as a listener.

5. Create a User Interface Modeling diagram (it’s in the expert view of the menu).

6. Add a frame to this diagram:

1. Drag the Emulate Basic Gearing Context block and drop it on this frame to set

its represents property.

2. In the specification for the frame, change the title property to Emulate Basic

Gearing UI Panel. That will be the title of the dialog when it pops up during the

simulation.

7. Add three panels:

1. Drag the rider part (not the block, but the part) owned by the Emulate Basic

Gearing Context block and drop it on the leftmost pane.

2. Drag the EBG part owned by the Emulate Basic Gearing Context block and drop

it on the middle pane.

3. Drag the trainingApp part owned by the Emulate Basic Gearing Context block

and drop it on the right pane.

System Specification150

8. In each pane, add text labels for fixed text fields, text fields for the values you want to

display from those parts, and buttons for the events you want to insert into the running

simulation.

9. Drag the relevant property from the blocks defining those parts onto the appropriate

control.

10. Once you have defined the frame and its properties, drag the frame onto the simulation

configuration you created in Step 2 to add that as a UI element.

When that’s done, you’ll have a UI diagram that looks like Figure 2.14 (note I added a view of the

simulation configuration diagram as well):

Figure 2.14: Emulate basic gearing simulation user interface

To run the simulation with Cameo’s Simulation Toolkit, you’ll need to select the configuration

to run from the configuration list menu just below the Analyze menu. To run without the con-

figuration, simply right-click the element you want to simulate and select Simulation > Run.

The control panel you created will pop up when you run the configuration. Then on the dialog,

click Start Pedaling, Augment Gear, and Decrement Gear, waiting for things to stabilize between

clicking.

The execution of the state model recreates the sequence diagrams. Figure 2.15 shows the first part

of the recreation of Scenario 1 (Figure 2.6) by the executing model. That is, the Simulation Toolkit

creates the diagram from the running simulation. The user lifeline (created by Cameo during the

simulation run) represents you, the simulation driver, as you insert events by clicking buttons

or otherwise entering events.

Chapter 2 151

The assignments in curly braces denote values being changed, whether through operation exe-

cution or the flow of values across the ports:

Figure 2.15: Animated sequence diagram from model simulation

While in review, the project lead notices that there is no requirement initial starting value for

the gearing before a specific gear has been selected. Additionally, we see that the requirement

to notify the training app was missing. These are identified missing requirements that must be

added. In general, any message flowing into the use case indicates requirements to receive a

request or flow, and then invoke an internal behavior (system function) to handle the request

or process the flow. Any message flowing from the use case to an actor indicates requirements

to send information, results, or flows to the actor. Messages from the use case to itself indicate

requirements for a transformation of some kind.

Requirements_change
In this example, we notice that we omitted a requirement to update the rider display of the gearing.

The change has already been made to the state machine.

Update requirement set
We add the following requirements to the requirements set:

• The system shall display the currently selected gear.

System Specification152

• The system shall default to the minimum gear during initialization.

Add trace links
In this case, we ensure there are trace links back to stakeholder requirements as well as from the

use case to the requirements. This is shown in the use case diagram in Figure 2.16. The newly

identified requirements are highlighted with a bold border:

Figure 2.16: Emulate basic gearing requirements

Perform use case and requirements review
The requirements model can now be reviewed by relevant stakeholders. The work products that

should be included in the review include all the diagrams shown in this section, the requirements,

and the executing model. The use of the executing model allows for what-if examination of the

requirements set to be easily done during the review. Such questions as “What happens to the

gearing if the Rider turns the system off and back on?” or “What is the absolute maximum gearing

to be allowed?” can be asked. Simulation of the model allows the questions to either be answered

by running the simulation case or can be identified as an item that requires resolution.

Chapter 2 153

Functional analysis with activities
Functional analysis can be performed in subtly different ways. In the previous recipe, we started

with the sequence diagram to analyze the use case. That is particularly useful when the inter-

esting parts of the use case are the interactions. The workflow in this recipe is slightly different,

although it achieves exactly the same objectives. This workflow starts with the development of

an activity model and generates scenarios from that. In this recipe, just as in the previous one,

when the work is all complete, it is the state machine that forms the normative specification of

the use case; the activity diagram is used as a stepping stone along the way. The objective of the

workflow, as with the previous recipe, is to create an executable model to identify and fix defects

in the requirements, such as missing requirements, or requirements that are incomplete, incorrect,

or inaccurate. Overall, this is the most favored workflow among model-based systems engineers.

Purpose
The purpose of the recipe is to create a set of high-quality requirements by identifying and char-

acterizing the key system functions performed by the system during the execution of the use case

capability. This recipe is particularly effective when the main focus of the use case is the set of

system functions and not the interaction of the system with the actors.

Inputs and preconditions
A use case naming a capability of the system from an actor-use point of view.

Outputs and postconditions
There are several outcomes, the most important of which is a set of requirements accurately and

appropriately specifying the behavior of the system for the use case. Additional outputs include

an executable use case model, logical system interfaces to support the use case behavior and a

supporting logical data schema, and a set of scenarios that can be used later as specifications of

test cases.

How to do it
Figure 2.17 shows the workflow for this recipe. It is similar to the previous recipe. The primary

difference is that rather than beginning the analysis by creating scenarios with the stakeholders,

it begins by creating an activity model of the set of primary flows from which the scenarios will

be derived:

System Specification154

Figure 2.17: Functional Analysis with Activities

Identify use case
This first step is to identify the generic usage of which the scenarios of interest, user stories, and

requirements are aspects.

Chapter 2 155

Describe use case
The description of the use case should include its purpose, and a general description of the flows,

preconditions, postconditions, and invariants (assumptions). Some modelers add the specific

actors involved, user stories, and scenarios, but I prefer to use the model itself to contain those

relations.

Identify related actors
The related actors are those people or systems outside our scope that interact with the system

while it executes the current use case. These actors can send messages to the system, receive

messages from the system, or both.

Define execution context
The execution context is a kind of modeling “sandbox” that contains an executable component

consisting of elements representing the use case and related actors. The recommended way to

achieve this is to create separate blocks representing the use case and the actors, connected via

ports. Having an isolated simulation sandbox allows different system engineers to progress in-

dependently on different use case analyses.

Identify primary functional flows
The activity model identifies the functional flows of the system while it executes the use case

capability. These consist of a sequenced set of actions, connected by control flows, with control

nodes (notably, decision, merge, fork, and join nodes) where appropriate. In this specific recipe

step, the focus is on the primary flows of the system – also known as “sunny day” flows – and

less on the secondary and fault scenarios (known as “rainy day” scenarios). The actions are ei-

ther system functions, reception of messages from the actors, sending a message to the actors,

or waiting for timeouts.

This activity model is not complete in the sense that it will not include all possible flows within

the use case. The activity diagram can be made complete, but it is usually easier to do that with

a state machine. If you prefer to work entirely in the activity diagram, then evolve the activity

model to be executable rather than develop a state machine for this purpose. The later recipe

step Create executable state model will include all flows, which is why the state machine, rather

than the activity model, is the normative specification of the use case. This activity model allows

the systems engineer to begin reasoning about the necessary system behavior. Most systems

engineers feel very comfortable with activity models and prefer to begin the analysis here rather

than with the scenarios or with the state machine.

System Specification156

Derive use case scenarios
The activity model identifies multiple flows, as indicated by control nodes, such as decision

nodes. A specific scenario takes a singular path through the activity flow so that a single activity

model results in multiple scenarios. The scenarios are useful because they are easy to review

with non-technical stakeholders and because they aid in the definition of the logical interfaces

between the system and the actors.

Create ports and interface in execution context
Once we have a set of scenarios, we’ve identified the flow from the use case to the actors and from

the actors to the system. By inference, this identifies ports relating the actors and the system, and

the specific flows within the interfaces that define them.

Create executable state model
This step identifies what I call the “normative state machine.” Executing this state machine can

recreate each of the scenarios we drew in the Capture use case scenarios step. All states, transitions,

and actions represent requirements. Any state elements added only to assist in the execution that

do not represent requirements should be stereotyped as «non-normative» to clearly identify this

fact. It is also common to create state behavior for the actors in a step known as “instrumenting

the actor” to support the execution of the use case in the execution context.

Verify and validate requirements
Running the execution context for the use case allows us to demonstrate that our normative state

machine in fact represents the flows identified by working with the stakeholder. It also allows

us to identify flows and requirements that are missing, incomplete, or incorrect. These result in

Requirements_change change requests to fix the identified requirements defects.

Requirements_change
Parallel to the development and execution of the use case model, we maintain the textual require-

ments. This workflow event indicates the need to fix an identified requirements defect.

Update requirement set
In response to an identified requirements defect, we fix the textual requirements by adding, de-

leting, or modifying requirements. This will then be reflected in the updated model.

Chapter 2 157

Add trace links
Once the use case model and requirements stabilize, we add trace links using the «trace» relation

or something similar. These relations allow the backtrace to stakeholder requirements as well

as forward links to any architectural elements that might already exist. For relations forward to

design elements, we generally prefer «satisfy».

Perform use case and requirements review
Once the work has stabilized, a review for correctness and compliance with standards may be

done. This allows subject matter experts and stakeholders to review the requirements, use cases,

activities, states, and scenarios for correctness, and for quality assurance staff to ensure compli-

ance with modeling and requirements standards.

Example
The example used for this recipe is the Control Resistance use case, shown in Figure 2.18 along

with some other use cases:

Figure 2.18: Use Cases for Analysis

System Specification158

Describe use case
All model elements deserve a useful description. In the case of a use case, we typically use a format

as shown in Figure 2.19. To show an element’s description on a diagram in Cameo, attach a note,

right-click the note, and select Text Display Mode > Show Documentation:

Figure 2.19: Control Resistance Use Case Description

Identify related actors
The related actors in this example are the Rider and the Training App. The rider signals the

system to change the gearing via the gears control and receives a response in terms of changing

resistance as well as setting resistance mode to ERG or SIM mode. The training app, when con-

nected, is notified of the current gearing so that it can be displayed, provides a simulated input

of incline, and can, optionally, change between SIM and ERG modes. The relation of the actors

to the use case is shown in Figure 2.18.

Define execution context
The execution context creates blocks that represent the actors and the use case for the purpose

of the analysis. In this example, the following naming conventions are observed:

• The block representing the use case has the use case name (with white space removed)

preceded by uc. Thus, for this example, the use case block is named ucControlResistance.

Chapter 2 159

• Blocks representing the actors are given the actor name preceded with “a” and an abbre-

viation of the use case. For this use case, the prefix is aCR_ so the actor blocks are named

aCR_Rider and aCR_TrainingApp.

• The interface blocks are named i + <use case block>_<actor block>. The names of the two

interface blocks are iControlResistance_Rider and iControlResistance_TrainingApp. The

normal form of the interface block is associated with the proxy port on the use case block;

the conjugated form is associated with the corresponding proxy port on the actor block.

All these elements are shown on the internal block diagram in Figure 2.20:

Figure 2.20: Control Resistance Execution Context

System Specification160

Identify primary functional flow
This step creates an activity model for the primary flows in the use case. We will create an activity

diagram to get us started, but we will also create a state machine for the actual simulation. We

do this because state machines are usually more appropriate for use case behaviors, but activity

diagrams allow us to get started with the analysis more easily. Thus, the activity diagram is

notional but the state machine is normative. This is a common way that system engineers do use

case analysis. In Cameo, a block can own multiple behaviors. In our example here, the block will

own both the activity diagram and the state machine but the classifier behavior of the block will

be the state machine. This can be set in the block’s Specification Dialog.

The flow consists of a set of steps sequenced by control flows and mediated by a set of control nodes.

The actual system generates resistance in two different ways: SIM mode, in which the resistance

is generated as a function of gearing, pedal cadence, force applied to the pedal, and simulated

values of bike inertia, speed, acceleration, and drag; and ERG mode, in which a constant power

is generated by the user by the system adjusting the resistance to pedal cadence.

The high-level flow is shown in Figure 2.21. Note that some actions – such as Read Self – are in the

Any Actions list in the Cameo activity diagram toolbar:

Figure 2.21: Activity for Compute Resistance

Chapter 2 161

Directly from the activity diagram, we can identify several requirements, shown in tabular form

in Figure 2.22:

Figure 2.22: Control Resistance initial requirements

Derive use case scenarios
The activity flow in Figure 2.21 can be used to create scenarios in sequence diagrams. It is typical

to create a set of scenarios such that each control flow is shown at least once.

System Specification162

This is called the minimal-spanning set of scenarios. In this case, because of the nature of parallelism,

a high-level scenario (Figure 2.23) is developed with more detailed flows put on reference scenarios:

Figure 2.23: Compute Resistance Main Scenario

The first reference scenario (Figure 2.24) reflects the inputs, gathered via system sensors, of the

pedal status. This part of the overall scenario flow provides the necessary data for the computa-

tion of resistance:

Chapter 2 163

Figure 2.24: Process Pedal Inputs Scenario

Create ports and interfaces in execution context
Now that we have defined some interactions between the system and the actors, we can elaborate

on the interfaces to support those message exchanges. This shows the flow properties supported

by actor and use case blocks and the interfaces. The interfaces are defined so that the use case

block is the unconjugated side and shows not only the flow properties that pass through the ports

but also the signal receptions from the sequence diagrams.

In the example shown, several flow properties are typed by elements in the ISO-

80000 SI standard units library. To get this library, select “Use Basic Units Library”

in the New Project dialog when you create your model. RPM is not in the standard

units library, but can be easily added as a specialization of the Real type from the

SysML primitive types library.

System Specification164

This is shown in the BDD in Figure 2.25:

Figure 2.25: Compute resistance interfaces

Create executable state model
Because we added the activity diagram first, Cameo made that the classifier behavior for the

use case block. We will need to change the classifier behavior property of this block to the state

machine in the specification dialog for the use case block for the execution to proceed.

Figure 2.26 shows the state machine for the use case Control Resistance:

Chapter 2 165

Figure 2.26: Control resistance use case state machine

This state machine uses orthogonal regions. Two of these regions use change events, as indicated

by when (<condition>). Change events are triggered when the condition changes from false to

true. In both uses, the old value of a flow property is stored, and the change event transition fires

when the current value of the flow property changes from its old value. In this way, the transitions

are triggered when either the gearing is changed or when the pedal speed changes. Another and-

state has a transition triggered when the signal evGradient is received from the Training App,

indicating that the gradient from the virtual terrain has changed.

In all these cases, a signal is sent that causes the physics model to be reevaluated, resulting in

a changed resistance at the pedal. Figure 2.27 shows a very simplified behavior to update the

pedal resistance, speed, acceleration, cadence, and power. Several of these values are passed to

the Training App via signals. Note that this physics model is not correct, but getting the physics

right is not relevant to the purpose of this simulation. Certainly, the designers must create a

proper physics model.

System Specification166

We are doing a low-fidelity simulation for the purpose of ensuring that the right system functions

are being called at the right time and the correct interactions between the system and the actors.

This model is adequate for that purpose:

Figure 2.27: Compute resistance activity

We also need to “instrument the actors” for simulation support. A simple state behavioral model

for the Rider is shown in Figure 2.28 and the state machine for the Training App is shown in

Figure 2.29:

Figure 2.28: Rider state machine

Chapter 2 167

For the purposes of the simulation, two user events were added: exRideEasy and exRideHard.

These just set the flow properties appliedPower, pedalSpeed, and gearing to values representative

of those conditions. You can always set the flow property values individually during simulation if

desired. The aCR_Rider block processes those events as internal transitions in the Riding state:

Figure 2.29: Training app state machine for the control resistance use case

Before we run the simulation, we also need to connect the flow properties on the Control Re-

sistance Context internal block diagram. This is done by adding connectors between the flow

properties in the ports (defined by the interface blocks) and the flow properties in the blocks.

See Figure 2.30:

Figure 2.30: Connecting the flow properties on the IBD

System Specification168

Verify and validate requirements
The simulation is not meant to be a high-fidelity physics simulation of all the forces and values

involved, but really to give a medium-fidelity simulation to help validate the set of requirements

and to identify missing or incorrect ones. A control panel was created to visualize the behavior

and provide input of values (Figure 2.31) using the same techniques as in the previous recipe.

This is done in a Cameo “User Interface Modeling Diagram,” which is just a repurposed package

diagram with specialized controls. The text controls are bound to the flow and value properties

in the different blocks. The buttons send external (simulation user) events to the elements to

make things happen:

Figure 2.31: Control Resistance simulation user interface

This frame is used as the UI for a simulation configuration named Control Resistance Sim Config.

I’ve also added a sequence diagram listener so that when the configuration is run, an animated

sequence diagram will be created. You can also see in Figure 2.32 that the Control Resistance

Context is set as the execution target:

Chapter 2 169

Figure 2.32: Control resistance simulation configuration

Simulation of difference scenarios results in many sequence diagrams capturing the behavior,

such as the (partial) one shown in Figure 2.33.

System Specification170

The User lifeline is created by Cameo to represent you, as a simulation operator, and show when

you insert events into the running simulation:

Figure 2.33: (Partial) animated sequence diagram example of control resistance use case

Requirements_change
A number of minor requirements defects are identified and flagged to be added to the require-

ments set.

Update requirements set
The creation and execution of the use case simulation uncovers a couple of new requirements

related to timing:

• The system shall update the physics model frequently enough to provide the rider with

a smooth and road-line experience with respect to resistance.

• The system shall update the training app with pedal cadence at least every 1.0 seconds.

• The system shall update the training app with rider-filtered power output at least every

0.5 seconds.

• The system shall update the training app with simulated bike speed at least every 1.0

seconds.

Chapter 2 171

Also, we discover a missing data transmission to the training app:

• The system shall send current watts per kilogram to the training app for the current power

output at least every 1.0 seconds.

Add trace links
Trace links are updated in the model. The trace links for this and the previous example are shown

in matrix form in Figure 2.34:

Figure 2.34: Control Requirements use case requirements trace matrix

Perform use case and requirements show
The requirements model can now be reviewed by relevant stakeholders. The work products that

should be included in the review include all the diagrams shown in this section, the requirements,

and the executing model. The use of the executing model allows for what-if examination of the

requirements set to be easily done during the review. Such questions as “How quickly does the

resistance control need to be updated to simulate the road riding experience?” or “What is the

absolute maximum resistance supported to be allowed?”. Simulation of the model allows the

questions to either be answered by running the simulation case or can be identified as an item

that requires resolution.

Functional analysis with state machines
Sometimes beginning with the state machine is the best approach to do use case analysis. This

is particularly true when the use case is obviously “modal” in nature with different operational

modes. This approach generally requires systems engineers who are very comfortable with state

machines. The recipe is much like the previous use case analyses and can be used instead; the

output is basically the same for all three of these recipes.

System Specification172

The primary differences are that no activity diagram is created and the sequence diagrams are

created from the executing use case state behavior.

Purpose
The purpose of the recipe is to create a set of high-quality requirements by identifying and char-

acterizing the key system functions performed by the system during the execution of the use case

capability. This recipe is particularly effective when the use case is clearly modal in nature and

the system engineers are highly skilled in developing state machines.

Inputs and preconditions
A use case naming a capability of the system from an actor-use point of view.

Outputs and postconditions
There are several outcomes, the most important of which is a set of requirements accurately and

appropriately specifying the behavior of the system for the use case. Additional outputs include

an executable use case model, logical system interfaces to support the use case behavior and a

supporting logical data schema, and a set of scenarios that can be used later as specifications of

test cases.

How to do it
Figure 2.35 shows the workflow for this recipe. It is similar to the previous recipe. The primary

difference is that rather than beginning the analysis by creating scenarios with the stakeholders,

it begins by creating a state machine model of the set of primary flows from which the scenarios

will be derived:

Chapter 2 173

Figure 2.35: Functional analysis with states

Identify use case
The first step is to identify the generic usage of which the scenarios of interest, user stories, and

requirements are aspects.

Describe use case
The description of the use case should include its purpose, and a general description of the flows,

preconditions, postconditions, and invariants (assumptions). Some modelers add the specific

actors involved, user stories, and scenarios, but I prefer to use the model itself to contain those

relations.

System Specification174

Identify related actors
The related actors are those people or systems outside our scope that interact with the system

while it executes the current use case. These actors can send messages to the system, receive

messages from the system, or both.

Define execution context
The execution context is a kind of modeling “sandbox” that contains an executable component

consisting of executable elements representing the use case and related actors. The recommended

way to achieve this is to create separate blocks representing the use case and the actors, connected

via ports. Having an isolated simulation sandbox allows different system engineers to progress

independently on different use case analyses.

Create ports and interface in execution context
In this step, we create or update the ports and their defining interface blocks to specify the flows

between the use case block and the actors.

Create executable state model
This step creates a state machine that represents the textual requirements in the formal language

of state machines. Executing this state machine can recreate each of the scenarios we drew in

the Capture use case scenarios step of the Functional Analysis with Scenarios recipe. Almost all states,

transitions, and actions represent requirements. Any state elements added only to assist in the

execution that do not represent requirements should be stereotyped as «non-normative» to

clearly identify this fact. It is also common to create state behavior for the actors in a step known

as “instrumenting the actor” to support the execution of the use case in the execution context.

Generate use case scenarios
The state model identifies multiple flows, driven by event receptions and transitions, executing

actions along the way. A specific scenario takes a singular path through the state flow so that a

single state machine model results in multiple scenarios. The scenarios are useful because they

are easy to review with non-technical stakeholders and because they aid in the definition or re-

finement of the logical interfaces between the system and the actors. Because the state machine

is executable, it can be automatically created from the execution of the state machine if you are

using a supportive tool.

Chapter 2 175

Verify and validate requirements
Running the execution context for the use case allows us to demonstrate that our normative state

machine in fact represents the flows identified by working with the stakeholder. It also allows

us to identify flows and requirements that are missing, incomplete, or incorrect. These result in

Requirements_change change requests to fix the identified requirements defects.

Requirements_change
Parallel to the development and execution of the use case model, we maintain the textual require-

ments. This workflow event indicates the need to fix an identified requirements defect.

Update requirement set
In response to an identified requirements defect, we fix the textual requirements by adding, de-

leting, or modifying requirements. This will then be reflected in the updated model.

Add trace links
Once the use case model and requirements stabilize, we add trace links using the «trace» relation

or something similar. These relations allow the backtrace to stakeholder requirements as well

as forward links to any architectural elements that might already exist. For relations forward to

design elements, we generally prefer «satisfy».

Perform use case and requirements review
Once the work has stabilized, a review for correctness and compliance with standards may be

done. This allows subject matter experts and stakeholders to review the requirements, use cases,

states, and scenarios for correctness, and for quality assurance staff to ensure compliance with

modeling and requirements standards.

System Specification176

Example
The example used for this recipe is the Emulate Front and Rear Gearing use case. This use case

is shown in Figure 2.36 along with some closely related use cases:

Figure 2.36: Emulate front and rear gearing use cases

Describe use case
All model elements deserve a useful description. In the case of a use case, we typically use a format

as shown in Figure 2.37:

Chapter 2 177

Figure 2.37: Emulate front and rear gearing use case description

Identify related actors
The related actors in this example are the Rider and the Training App. The rider signals the

system to change the gearing via the gears control and receives a response in terms of changing

resistance as well as setting resistance mode to ERG or SIM mode. The training app, when con-

nected, is notified of the current gearing so that it can be displayed, provides a simulated input

of incline, and can, optionally, change between SIM and ERG modes. The relation of the actors

to the use case is shown in Figure 2.36.

Define execution context
The execution context creates blocks that represent the actors and the use case for the purpose

of the analysis. In this example, the following naming conventions are observed:

• The block representing the use case has the use case name (with white space removed)

preceded by uc_. Thus, for this example, the use case block is named uc_EmulateFrontan-

dRearGearing.

• Blocks representing the actors are given the actor name preceded with “a” and an abbre-

viation of the use case. For this use case, the prefix is aEFRG so the actor block is named

aEFRG_Rider.

System Specification178

• The interface blocks are named i + <use case block>_<actor block>. The name of the

interface block is iuc_EmulateFrontandRearGearing_aEFRG_Rider. The normal form of

the interface block is associated with the proxy port on the use case block; the conjugated

form is associated with the corresponding proxy port on the actor block.

All these elements are shown on the internal block diagram in Figure 2.38:

Figure 2.38: Emulate Front and Rear Gearing use case execution context

Chapter 2 179

Create ports and interface in execution context
The (empty) ports and interfaces are added between the use case block and the actor blocks, as

shown in Figure 2.38. These will be elaborated on as the development proceeds in the next step.

Create executable state model
Figure 2.39 shows the state machine for the use case Emulate Front and Rear Gearing. It is im-

portant to remember that the state machine is a restatement of textual requirements in a more

formal language and not a declaration of design. The purpose of creating this state machine during

this analysis is to identify requirement defects, not to design the system:

Figure 2.39: State machine for Emulate Front and Rear Gearing

The state machine starts off initializing the gearing and sending that gearing to the Rider (pre-

sumably via a display on the bike). This activity uses a loop node to initialize the set of 12 rear

cassette cogs. Using the loop node in Cameo is a little tricky. One key is that the action in the test

compartment returns a Boolean value named result, and this is set as the Decider property of

the loop node.

System Specification180

See Figure 2.40:

Figure 2.40: Initialize Gearing Activity

This activity invokes another via a call behavior action named update rider with gear info. This

latter activity is also invoked from the main behavior state machine when gears are changed. It

updates a value property known as gear inches; this is the distance the bike travels with one

turn of the pedals. It also sends the gearing information to the rider. It is shown in Figure 2.41:

Chapter 2 181

Figure 2.41: Update rider with gear info activity

The Rider state machine accepts the evFrontAndRearGear signal from the use case block to up-

date it when the gears have changed. All this block does with this information is print the gearing

to the console during the simulation. It also accepts the ex signals from the user running the

simulation and sends these signals out of the port that is connected to the use case part. In this

way, the Rider actor block can gear up and down for both the front chain ring and rear cassette:

Figure 2.42: Rider actor block state machine

System Specification182

Similar to the example in the last recipe, I created a simple UI to allow easier control of the sim-

ulation and visualization of the result. This UI is shown in Figure 2.43. The UI uses text fields for

scalar values and list control for the front chain ring and rear cassette arrays. It defines the UI for

a simulation configuration:

Figure 2.43: Emulate Front and Rear Gearing UI

Generate use case scenarios
Scenarios are specifically sequenced interaction sets that identify sequencing, timing, and values

of different exemplar uses of a system. Sequence diagrams are generally easy to understand, even

for non-technical stakeholders. In this recipe, sequences are created by exercising the use case

state machine by changing the inputs to exercise different transition paths in the state machine.

It is important to understand that there are usually an infinite set of possible scenarios, so we

must constrain ourselves to consider a small representative set. The criteria we recommend is

the minimal-spanning set; this is a set of scenarios such that each transition path and action is

executed at least once. More scenarios of interest can be added, but the set of sequences should

at least meet this basic criterion.

Chapter 2 183

Let’s consider a scenario showing the rider changing gears while riding (Figure 2.44). The figure

skips over the initialization of the gearing and gets directly to the changing of the front chain

ring and the rear cassette:

Figure 2.44: Scenario for gear changes while riding

Verify and validate requirements
The creation of the state machines in the previous section and their execution allows us to identify

missing, incorrect, or incomplete requirements. The panel diagram in Figure 2.44 allows us to

drive different scenarios and perform “what if” analyses to explore the requirements.

Requirements_change
Parallel to the development and execution of the use case model, we maintain the textual require-

ments. This workflow event indicates the need to fix an identified requirements defect.

System Specification184

Update requirement set
In this example, we’ll show the requirements in a table in the modeling tool. Figure 2.45 shows

the newly added requirements:

Figure 2.45: Emulate Front and Rear Gearing requirements

Add trace links
Now that we’ve identified the requirements, we can add them to the model and add trace links

to the Emulate Front and Rear Gearing use case. This is shown in the table in Figure 2.46:

Figure 2.46: Emulate Front and Rear Gearing requirements trace matrix

Chapter 2 185

Perform use case and requirements review
With the analysis complete and the requirements added, a review can be conducted to evaluate

the set of requirements. This review typically includes various subject matter experts in addition

to the project team.

Functional Analysis with User Stories
The other functional analysis recipes in this chapter are fairly rigorous and use executable models

to identify missing and incorrect requirements. User stories can be used for simple use cases that

don’t have complex behaviors. In the other functional analysis recipes, validation of the use case

requirements can use a combination of subject matter expert review, testing, and even formal

mathematical analysis prior to their application to the system design. User stories only permit

validation via review and so are correspondingly harder to verify as complete, accurate, and correct.

A little bit about user stories
User stories are approximately equivalent to scenarios in that both scenarios and user stories

describe a singular path through a use case. Both are “partially constructive” in the sense that

individually, they only describe part of the overall use case. User stories do it with natural lan-

guage text, while scenarios do it with a SysML sequence diagram. The difference between user

stories and scenarios is summarized in Figure 2.47:

Figure 2.47: User story or scenarios

System Specification186

User stories have a canonical form:

A few examples of user stories are provided in Chapter 1, Basics of Agile Systems Modeling, in the

recipe for Estimating Effort, such as:

User Story: Set Resistance Under User Control:

Each user story represents a small set of requirements. A complete set of user stories includes all

or most requirements traced to by the use case.

In SysML, we represent user stories as stereotypes of use cases and use the «include» relations to

indicate the use case to which the user story applies. The stereotype adds the acceptance_criteria

tag to the user story so that it is clear what it means to satisfy the user story. An example, relating

a use case, user stories, and requirements, is shown in Figure 2.48:

“As a” <user> “I want” <feature> “so that” <reason>|<outcome>

As a rider, I want to set the resistance level provided to the pedals to increase or

decrease the effort for a given gearing, cadence, and incline so that the system

simulates road riding effort.

Chapter 2 187

Figure 2.48: User Story as a stereotype of use case

User Story Guidelines
Here are some guidelines for developing good user stories:

1. Focus on the users.

Avoid discussing or referencing design, but instead, focus on the user-system interaction.

2. Use personae to discover the stories.

Most systems have many stakeholders with needs to be met. Each user story represents

a single stakeholder role. Represent all the users with the set of user stories.

System Specification188

3. Develop user stories collaboratively.

User stories are a lightweight analytic technique and can foster good discussions among

the product owner and stakeholders, resulting in the identification of specific requirements.

4. Keep the stories simple and precise.

Each story should be easy to understand; if it is complex, then try to break it up into

multiple stories.

5. Start with epics or use cases.

User stories are small, finely-grained things, while epics and use cases provide a larger

context.

6. Refine your stories.

As your understanding deepens and requirements are uncovered, the stories should be

updated to reflect this deeper understanding.

7. Be sure to include acceptance criteria.

Acceptance criteria complete the narrative by providing a clear means by which the sys-

tem design and implementation can be judged to appropriately satisfy the user’s needs.

8. Stay within the scope of the owning epic or use case.

While it is true that in simple systems, user stories may not have an owner epic or use

case, most will. When there is an owner epic or use case, the story must be a subset of

that capability.

9. Cover all the stories.

The set of user stories should cover all variant interaction paths of the owning epic or

use case.

10. Don’t rely solely on user stories.

Because user stories are a natural language narrative, it isn’t clear how they represent

all the quality of service requirements. Be sure to include safety, reliability, security, per-

formance, and precision requirements by tracing the user story to those requirements.

Chapter 2 189

Purpose
User stories are a simple way to understand and organize requirements. Most commonly, these are

stories within the larger capability context of an epic or use case. User stories are approximately

equivalent to a scenario.

Inputs and preconditions
A use case naming a capability of the system from an actor-use point of view.

Outputs and postconditions
The most important outcome is a set of requirements accurately and appropriately specifying the

behavior of the system for the use case and acceptance criteria for what it means to satisfy them.

How to do it
Figure 2.49 shows the workflow for this recipe. It is a more informal approach than the preceding

recipes but may be useful for simple use cases. Note that, unlike previous recipes, it does not in-

clude a behavioral specification in a formal language such as activities or state machines:

Figure 2.49: Functional analysis with user stories

System Specification190

Identify use case
This first step is to identify the generic usage of which the scenarios of interest, user stories, and

requirements are aspects.

Describe use case
The description of the use case should include its purpose, and a general description of the flows,

preconditions, postconditions, and invariants (assumptions). Some modelers add the specific

actors involved, user stories, and scenarios, but I prefer to use the model itself to contain those

relations.

Identify related actors
The related actors are those people or systems outside our scope that interact with the system

while it executes the current use case. These actors can send messages to the system, receive

messages from the system, or both.

State the user stories
This step includes more than creating the “As a <role> …” statements. It also includes creating

«include» relations from the owning use case and the addition of acceptance criteria for each user

story. If this is the first time this is being done, you will also have to create a «user story» stereo-

type that applies to use cases to be able to create the model elements, as illustrated in Figure 2.48.

Specify acceptance criteria
Clearly state the criteria that will be applied to the system to demonstrate that the user story is

acceptably implemented.

Identify quality of service as requirements
It is very common to forget to include various kinds of qualities of service. This step is an explicit

reminder to specify how well the services are provided. Common qualities of service include safety,

security, reliability, performance, precision, fidelity, and accuracy.

Verify and validate requirements
For this recipe, validating the requirements is done with a review with the relevant stakeholders.

This should involve looking at the use, the set of user stories, the user stories themselves and their

acceptance criteria, and the functional and quality of service requirements.

Chapter 2 191

Requirements_change
Parallel to the development and execution of the use case model, we maintain the textual require-

ments. This workflow event indicates the need to fix an identified requirements defect.

Update requirement set
In response to an identified requirements defect, we fix the textual requirements by adding, de-

leting, or modifying requirements. This will then be reflected in the updated model.

Add trace links
Once the use case model and requirements stabilize, we add trace links using the «trace» relation

or something similar. These relations allow the backtrace to stakeholder requirements as well

as forward links to any architectural elements that might already exist. For relations forward to

design elements, we generally prefer «satisfy».

Perform use case and requirements review
Once the work has stabilized, a review for correctness and compliance with standards may be

done. This allows subject matter experts and stakeholders to review the requirements, use cases,

and user stories for correctness, and for quality assurance staff to ensure compliance with mod-

eling and requirements standards.

Example
Identify use case
For this recipe, we will analyze the Emulate DI Shifting use case. In many ways, this use case is

an ideal candidate for user stories because the use case is simple and not overly burdened with

quality-of-service requirements.

Interested readers can learn more about DI shifting here: https://en.wikipedia.

org/wiki/Electronic_gear-shifting_system.

https://en.wikipedia.org/wiki/Electronic_gear-shifting_system
https://en.wikipedia.org/wiki/Electronic_gear-shifting_system

System Specification192

Describe use case
The use case description is shown in Figure 2.50:

Figure 2.50: Description of the emulate DI shifting use case

Identify related actors
The only actor in this use case is the Rider, as shifting gears is one of the three key ways that the

Rider interacts with the system (the other two being pedaling and applying brakes).

Chapter 2 193

State the user stories
Figure 2.51 shows the three identified user stories for the use case: using buttons to shift gears,

handling gearing crossover on upshifting, and handling gearing cross-over on downshifting:

Figure 2.51: Emulate DI shifting user stories

System Specification194

Specify the related requirements
As these are simple user stories, there are a small number of functional requirements. See Figure

2.52:

Figure 2.52: Emulate DI shifting functional requirements

Identify quality of service as requirements
The previous step specified a small number of requirements but didn’t clarify how well these

system functions are to be performed. Most notably, performance and reliability requirements

are missing. These are added in Figure 2.53, shown this time in a requirements table:

Chapter 2 195

Figure 2.53: Emulate DI Shifting QoS and Functional Requirements

Verify and validate requirements
The next step is to validate the user stories and related requirements with the stakeholders to

ensure their correctness and look for missing, incorrect, or incomplete requirements.

Requirements_change
During this analysis, a stakeholder notes that nothing is said about how the system transitions

between mechanical shifting and DI shifting. The following requirements are added:

• The system shall enter DI Shifting mode by selecting that option in the Configuration App.

• Once the DI Shifting mode is selected, this selection shall persist across resets, power

resets, and software updates.

• Mechanical shifting shall be the default on initial startup or after a factory-settings reset.

• The system shall leave DI Shifting mode when the user selects the Mechanical Shifting

option in the Configuration App.

Update requirements set
The requirements are updated to reflect the stakeholder input from above.

Add trace links
Trace links from both the use case and user stories to the requirements are added. These are

shown in diagrammatic form in Figure 2.54.

System Specification196

Note: the figure does not show that use case Emulate DI Shifting traces to all these requirements

just to simplify the diagram:

Figure 2.54: Emulate DI Shifting trace links

Perform use case, user story and requirements review
With the analysis complete and the requirements added, a review can be conducted to evaluate

the set of requirements. This review typically includes various subject matter experts in addition

to the project team.

Model-Based Safety Analysis
The term safety can be defined as freedom from harm. Safety is one of the three pillars of the more

general concern of system dependability. Safety is generally considered with respect to the system

causing or allowing physical harm to persons, up to and including death. Depending on the in-

dustry, different systems must conform to different safety standards, such as DO-178 (airborne

software), ARP4761 (aerospace systems), IEC 61508 (electronic systems), ISO 26262 (automotive

safety), IEC 63204 and IEC 60601 (medical), and EN50159 (railway), just to name a few. While

there is some commonality among the standards, there are also a number of differences that you

must take into account when developing systems to comply with those standards.

Chapter 2 197

The recipe in this chapter provides a generic workflow applicable to all these standards but you

may want to tailor it to your specific needs. Note that we recommend this analysis is done on a

per-use case basis so that the analysis of each relevant use case includes safety requirements in

addition to the functional and quality of services requirements.

A little bit about safety analysis
Some key terms for safety analysis are:

• Accident – A loss of some kind, such as injury, death, equipment damage, or financial.

Also known as a mishap or harm.

• Risk – The product of the likelihood of an accident times its severity, so R = L * S.

• Hazard – A set of conditions and/or events that inevitably results in an accident.

• Fault Tolerance Time – The period of time a system can manifest a fault before an acci-

dent is likely to occur.

• Safety control measure – An action or mechanism that improves systems safety either

by 1) reducing its likelihood or 2) reducing its severity.

The terms faults, failures, and errors are generally used in one of three ways, depending on the

standard employed:

1. Faults lead to Failures, which lead to Errors:

a. Fault – An incorrect step, process, or data

b. Failure – The inability of a system or component to perform its required function

c. Error – A discrepancy between an actual value or action and the theoretically

correct value or action

d. A fault at one level can lead to a failure one level up

2. Faults are actual behaviors that conflict with specified or desired behaviors:

a. Fault – Either a failure or an error

b. Failure – An event that occurs at a point in time when a system or component

performs incorrectly:

Failures are random and may be characterized by a probability distribution

c. Error – A condition in which a system or component systematically fails to achieve

its required function:

Errors are systematic and always exist, even if they are not manifest

System Specification198

Errors are the result of requirement, design, implementation, or deployment mis-

takes, such as a software bug

d. Manifest – When a fault is visible. Faults may be manifest or latent

3. Faults are undesirable anomalies in systems or software (ARP-4761):

a. Failure – A loss of function or a malfunction of a system

b. Error –

• An occurrence arising as a result of an incorrect action or decision by per-

sonnel operating or maintaining a system, or

• A mistake in specification, design, or implementation

The most common form to perform the analysis is with a Fault Tree Analysis (FTA) diagram. This

is a causality diagram that relates normal conditions and events, and abnormal conditions and

events (such as faults and failures) with undesirable conditions (hazards). A Hazard Analysis is

generally a summary of safety analysis from one or more FTAs.

An FTA diagram connects nodes with logic flows to aid understanding of the interactions of el-

ements relevant to the safety concept. Nodes are either events, conditions, outcomes, or logical

operators as shown in Figure 2.55. See https://www.sae.org/standards/content/arp4761/ for

a good discussion of FTA diagrams.

Some Profiles
Cameo provides the Cameo Safety and Risk Analyzer that supports table-based representations

of information, mostly relying on Failure Means and Effect (FMEA) tables. Although this profile

does not support diagrammatic representations such as FTAs, it is a viable approach for doing

safety analysis. An introduction to this profile can be seen on the No Magic YouTube channel at

https://www.youtube.com/watch?v=NwuTV5-HAws. See also Fault Tree Analysis and Simulation at

https://www.youtube.com/watch?v=A86q00kF8Eo.

I have long used the Dependability Profile I developed over a decade ago that supports FTA diagrams

and safety analysis, along with support for reliability and security analysis. Recently, however,

the Risk Analysis and Assessment Modeling Language (RAAML) has been released by OMG

(see https://www.omg.org/spec/RAAML/). There is a prototype implementation of the RAAML

standard available for Cameo at the time of this writing.

https://www.sae.org/standards/content/arp4761/
https://www.youtube.com/watch?v=NwuTV5-HAws
https://www.youtube.com/watch?v=A86q00kF8Eo
https://www.omg.org/spec/RAAML/

Chapter 2 199

Much of this Cameo profile is based on the internals of my Dependability Profile as well as RAAML,

and I am completely in favor of the reuse of my profile in this context. RAAML is more expansive

than the Dependability Profile in its safety analysis in that it supports some other analytic ap-

proaches; the two are similar in their support for reliability analysis, but the Cameo profile lacks

any explicit security analysis. I hear from the team working on the RAAML standard that they are

looking at a 1.1 revision to the RAAML standard that will address security analysis in the future. I

will provide a simple profile for security analysis based on the Dependability Profile for the next

recipe, Model-Based Threat Analysis.

I will use the Cameo prototype implementation in this book. Interested readers can download

my Dependability Profile from my website at https://www.bruce-douglass.com/models, but

be aware that it is only available for the Rhapsody tool.

Figure 2.55 shows the symbology in the Cameo RAAML prototype. It is slightly less complete than

the Dependability Profile but is a serviceable set of elements.

 Figure 2.55: FTA symbology

The Cameo prototype is available at https://www.dropbox.com/s/

g20itfxpdnyolzg/FTA%20RAAML%20Sample.mdzip?dl=0. A Rhapsody RAAML pro-

totype can be downloaded at https://jazz.net/blog/index.php/2021/10/20/
model-based-risk-analysis-with-raaml-in-ibm-engineering-

systems-design-rhapsody/.

https://www.bruce-douglass.com/models
https://www.dropbox.com/s/g20itfxpdnyolzg/FTA%20RAAML%20Sample.mdzip?dl=0
https://www.dropbox.com/s/g20itfxpdnyolzg/FTA%20RAAML%20Sample.mdzip?dl=0
https://jazz.net/blog/index.php/2021/10/20/model-based-risk-analysis-with-raaml-in-ibm-engineering- systems-design-rhapsody/
https://jazz.net/blog/index.php/2021/10/20/model-based-risk-analysis-with-raaml-in-ibm-engineering- systems-design-rhapsody/
https://jazz.net/blog/index.php/2021/10/20/model-based-risk-analysis-with-raaml-in-ibm-engineering- systems-design-rhapsody/

System Specification200

At its core, an FTA is a causality diagram with conditions connected via logical operators showing

a chain of causality. The logical operators take one or more inputs and produce a singular output.

The AND operator, for example, produces a TRUE output if both its inputs are TRUE, while the

OR operator returns TRUE if either of its inputs is TRUE.

Figure 2.56 shows an example FTA diagram. This diagram shows the safety concerns around an

automotive braking system. The hazard under consideration is Failure to Brake. The diagram

shows that this happens when the driver intends to brake and at least one of three conditions is

present: a pedal input fault, an internal fault, or a wheel assembly fault:

Figure 2.56: Example FTA diagram

Cut sets
A cut is a collection of faults that, taken together, can lead to a hazard. A cut set is the set of such

collections such that all possible paths from the primitive conditions and events to the hazard

have been accounted for. In general, if you consider n primitive conditions as binary (present or

non-present), then there are 2n cuts that must be examined. Consider the simple FTA in Figure

2.57. The primitive conditions are marked as a through e:

Chapter 2 201

Figure 2.57: Cut set example

With 5 primitive conditions, there are 32 prospective cut sets that should be considered, of which

only 3 can lead to the hazard manifestation, as shown in Figure 2.58. Only these three need to be

subject to the addition of a safety measure:

Figure 2.58: Cut sets example (2)

System Specification202

Hazard analysis
There is normally one FTA diagram per identified hazard, although that FTA can be decomposed

into multiple FTA diagrams (although the Cameo profile lacks the transfer operator from the FTA

standard, there are other means to accomplish this decomposition). A system, however, normally

has multiple hazards. These are summarized into a hazard analysis. A hazard analysis summarizes

the hazard-relevant metadata, including the hazard name, description, severity, likelihood, risk,

tolerance time, and possibly, related safety-relevant requirements, and design elements.

It should be noted that safety analysis is a rich and deep topic, the details of which are beyond the

scope of this book. In this recipe, we will provide a simple FTA-based approach for performing

safety analysis.

Purpose
The purpose of this recipe is to create a set of safety-relevant requirements for the system under

development by analyzing safety needs.

Inputs and preconditions
A use case naming a capability of the system from an actor-use point of view that has been iden-

tified, described, and for which relevant actors have been identified. Note: this recipe is normally

performed in parallel to one of the functional analysis recipes from earlier in this chapter.

Outputs and postconditions
The most important outcome is a set of requirements specifying how the system will mitigate or

manage the safety concerns of the system. Additionally, a safety concept is developed identifying

the need for a set of safety control measures, which is summarized in a hazard analysis.

How to do it
Figure 2.59 shows the workflow for the recipe:

Chapter 2 203

Figure 2.59: Model-based safety analysis workflow

Identify hazards
A hazard is a condition that leads to an accident or loss. This step identifies the hazards relevant

to the use case under consideration that could arise from the system behavior in its operational

context.

Describe hazards
Hazards are specified by their safety-relevant metadata. This generally includes the hazard name,

description, likelihood, severity, risk, and safety integrity level, adopted from the relevant safety

standard.

Identify related conditions and events
This step identified the conditions and events related to the hazard, including:

• Required conditions

• Normal events

System Specification204

• Hazardous events

• Fault conditions

• Resulting conditions

Describe conditions and events
Each condition and event should be described. A typical set of aspects of such a description

includes:

• Overview

• Effect

• Cause

• Current controls

• Detection mechanisms

• Failure mode

• Likelihood, or Mean Time Between Failure (MTBF)

• Severity

• Recommended action

• Risk priority (product of likelihood and severity or MTBF/severity)

Create causality model
This step constructs an FTA connecting the various nodes with logic flows and logic operators

flowing from primitive conditions up to resulting conditions and, ultimately, to the hazard.

Identify cut sets
Identify the relevant cuts from all possible cut sets to ensure that each is “safe enough” to meet

the safety standard being employed. This typically requires the addition of safety measures, as

discussed in the next step.

Add safety measures
Safety measures are technical means or usage procedures by which safety concerns are mitigated.

All safety measures reduce either the likelihood or the severity of an accident. In this analysis, care

should be taken to specify the effect of the measures rather than their implementation, as much

as possible. Design-level hazard analysis will be conducted later to ensure the adequacy of the

design realization of the safety measures specified here.

Chapter 2 205

Review safety concept
This step reviews the analysis and the set of safety measures to ensure their adequacy.

Add safety requirements
The safety requirements specify needs that the design, context, or usage must meet in order to

make the system adequately safe. These requirements may be specially annotated to indicate

their safety relevance or may just be treated as requirements that the system must satisfy.

Add trace links
Once the use case model and requirements stabilize, we add trace links using the «trace» relation

or something similar. It is especially important to trace the safety measures to the elements of

the FTAs that identify the need for those requirements.

Perform use case and requirements review
Once the work has stabilized, a review for correctness and compliance with standards may be

done. This allows subject matter experts and stakeholders to review the requirements, use cases,

and user stories in light of the safety concerns.

Example
The Pegasus example problem isn’t optimal to show safety analysis because it isn’t a safety-crit-

ical system. For that reason, we will use a different example to illustrate the use of this recipe.

Problem statement – medical gas mixer
The Medical Gas Mixer (MGM) takes in gas from wall supplies for O2, He, N2, and air and mixes

them, and delivers a flow to a medical ventilator. When operational, the flow must be in the range

of 100 ml/min to 1500 ml/min with a delivered O2 percentage (known as Fraction of Inspired

Oxygen, or FiO2) of no less than 21%. The flow from individual gas sources is selected by the

physician via the Ventilator interface.

Neonates face an additional hazard of hyperoxia – too much oxygen in the blood – as this can

damage their retina and lungs.

In this example, the focus of our analysis is the use case Mix Gases.

Identify hazards
The fundamental hazard of this system is hypoxia – delivering too little oxygen to sustain health.

System Specification206

The average adult breathes about 7-8 liters of air per minute, resulting in a delivered oxygen flow

of around 1450 ml O2/minute. For neonates, the required flow can be as low as 40 ml O2/minute,

while for large adults, the need might be as high as 4000 ml O2/minute at rest.

Describe hazards
The «Hazard» stereotype includes a set of tags for capturing the hazard metadata. This is shown

in Figure 2.60. An explanation of the tags of this stereotype is in order:

• Probability – This is the likelihood of occurrence of the item, event, or condition.

• ftt – Fault Tolerance Time – How long a fault can be tolerated before a mishap is likely

to occur.

• fftu – Fault Tolerance Time Units – The time units for the fault tolerance time.

• Severity – The negative impact of the mishap. Different standards specify this in various

ways.

• Risk – The product of the probability and the severity of the item.

• SIL – Safety Integrity Level – This is a safety-standard-specific risk categorization:

Figure 2.60: Mix Gases Hazards

Chapter 2 207

Identify related conditions and events
For the rest of this example, we will focus exclusively on the Hypoxia hazard. There are two

required conditions (or assumptions/invariants). First, that the gas mixer is in operation, and

second, that there is a physician in attendance. This latter assumption means that the physician

can be part of the “safety loop.”

There are a number of faults that are relevant to the Hypoxia hazard:

• The gas supply runs out of either air or O2, depending on which is selected

• The gas supply valve fails for either air or O2, depending on which is selected

• The patient is improperly intubated

• Faults in the breathing circuit, such as disconnected hoses or leak

• The ventilator commands a FiO2 that is too low

• The ventilator commands a total flow of a specified mixture that is too low

Describe conditions and events
The «BasicFault» stereotype provides tags to hold fault metadata. The metadata for three of

these faults, Gas Supply Valve Fault, Improper Intubation, and Commanded FiO2Too Low, are

shown in Figure 2.61. Since the latter has more primitive underlying causes, it will be changed to

a Resulting Condition and the primitive faults added:

Figure 2.61: Fault Metadata

System Specification208

Create causality model
Figure 2.62 shows the initial FTA. This FTA doesn’t include any safety mechanisms, which will be

added shortly. Nevertheless, this FTA shows a causality tree linking the faults to the hazard with

a combination of logic operators and logic flows:

Figure 2.62: Initial FTA

Chapter 2 209

Identify cut sets
There are 10 primitive fault elements, so there are potentially 210 (1024) cuts in the cut set, although

we are only considering cases in which the assumptions are true so that immediately reduces

the set to 28 (256) possibilities. All of these are ORed together so it is enough to independently

examine just the 8 basic faults.

Add safety measures
Adding a safety measure reduces either the likelihood or the severity of the outcome of a fault

to an acceptable level. This is done on the FTA by creating anding-redundancy. This means that

for the fault to have its original effort, both the original fault must occur and the safety measure

must fail. The likelihood of both failing is the product of their probabilities. For example, if the

Gas Supply Valve Fault has a probability of 8 x 10-5, and we add a safety measure of a gas supply

backup that automatically kicks in that has a probability of failure of 2 x 10-6, then the resulting

probability of both failing is 16 x 10-11. Acceptable probabilities of hazards can be determined from

the safety standard being used.

For the identified faults, we will add the following safety measures:

• Gas Supply Valve Fault safety measure: Secondary Gas Supply

• Gas Supply Exhausted fault safety measure: Secondary Gas Supply

• Improper Intubation fault safety measures: CO2 Sensor on Expiratory Flow and Alarm

on Fault

• Breathing Circuit Fault safety measures: Inspiratory Limb Flow Sensor and Alarm on

Fault

• Physician Error in Commanded O2 safety measures: Range Check Commanded O2 and

Alarm on Fault

• Computation Error fault safety measures: Secondary Parallel Computation and Alarm

on Fault

• Message Corruption fault safety measure: Message CRC

• Commanded Flow Too Low fault safety measures: Inspiratory Limb Flow Sensor and

Alarm on Fault

System Specification210

Adding these results in a more detailed FTA
To ensure readability, the inputs to the resulting condition are shown in another diagram for FiO2

Too Low (Figure 2.64). Figure 2.63 shows the high-level FTA diagram with safety measures added.

Note that they are added in terms of what happens when they fail. Failure of safety measures is

indicated with a red bold font for emphasis:

Figure 2.63: Elaborated FTA diagram

Chapter 2 211

Figure 2.64: FIO2 flow too low sub-FTA

Review safety concept
The set of safety measures addresses all the identified safety concerns.

System Specification212

Add safety requirements
Now that we have identified the safety measures necessary to develop a safe system, we must

create the requirements that mandate their inclusion. These are shown in Figure 2.65:

Figure 2.65: Safety requirements

Model-Based Threat Analysis
It used to be that most systems were isolated and disconnected; the only way to attack such a

system required physical presence. Those days are long gone.

These days, most systems are internet-enabled and connected via apps to cloud-based servers

and social media. This presents opportunities to attack these systems, compromise their securi-

ty, violate their privacy, steal their information, and cause damage through malicious software.

Unfortunately, little has been done to protect systems in a systematic fashion. The most com-

mon response I hear when consulting is “Security. Yeah, I need me some of that,” and the issue

is ignored thereafter. Sometimes, some thought is given to applying security tests ex post facto, or

perhaps doing some code scans for software vulnerabilities, but very little is done to methodically

analyze a system from a cyber-physical security posture standpoint. This recipe addresses that

specific need.

Chapter 2 213

Basics of Cyber-Physical Security
Security is the second pillar of dependability. The first, safety, was discussed in the previous recipe.

Key concepts for a systematic approach to cyber-security needs are:

Security – resilience to attack

Asset – a security-relevant feature of a system that the system has a responsibility to protect.

Assets have the following properties:

• Access Level Permitted

• Accountability

• Asset Kind

• Actor

• Information Asset

• Currency Asset

• Resource Asset

• Physical Asset

• Service Asset

• Security Asset

• Tangible Asset

• Intangible Asset

• Availability

• Clearance Required

• ID

• Integrity

• Value

Asset context – The system or extra-system elements enshrouding one or more assets; e.g., a

safe in which money is kept is a simple example of an asset context. An asset context may be

decomposed into contained asset context elements.

Security field – The set of assets, asset contexts, vulnerabilities, and countermeasures for a system

(also known as the system security posture).

System Specification214

Vulnerability – A weakness in the security field of an asset that may be exploited by an attack.

Threat – A means by which a vulnerability of the security field of an asset may be exploited.

Attack – The realization of a threat invoked by a threat agent.

Attack chain – A type of attack that is composed of sub-attacks. Sometimes known as a Cyber

Killchain. Most modern attacks are of this type.

Threat agent – A human or automated threat source that invokes an attack, typically intentionally.

Security countermeasure – A means by which a vulnerability is protected from attack. Counter-

measures may be passive or active and may be implemented by design elements, policies, pro-

cedures, labeling, training, or obviation. Countermeasure types include (but are not limited to):

• Access Control

• Accounting

• Active Detection

• Authentication

• Recovery

• Boundary Control

• Backup

• Encryption

• Deterrence

• Obviation

• Nonrepudiation

• Policy Action

• Response

• Scanning Detection

Role – A part a person plays in a context, e.g., a user, administrator, or trusted advisor.

Authenticated role – A role with explicit authentication, which typically includes a set of per-

missions.

Permission – The right or ability to perform an action that deals with an asset. A role may be

granted permission to perform different kinds of access to an asset.

Chapter 2 215

Access – A type of action that can be performed on a resource. This includes (and this list may

be extended):

• No access

• Unrestricted access

• Read access

• Modify access

• Open access

• Close access

• Entry access

• Exit access

• Create access

• Delete access

• Remove access

• Invoke access

• Configure access

• Interrupt access

• Stop access

Security violation – The undesired intrusion, interference, or theft of an asset; this may be the

result of an attack (intentional) or failure (unintentional).

Risk – The possibility of an undesirable event occurring or an undesirable situation manifest-

ing. Risk is the product of (at least) two values: likelihood and severity. Severity in this case is a

measure of the asset value.

Risk number – The numeric value associated with risk (likelihood x severity).

Modeling for Security Analysis
The UML Dependability Profile used in the previous recipe also includes cyber-physical threat

modeling using the above concepts. The security information can be captured and visualized in

a number of diagrammatic and tabular views. It may be downloaded at https://www.bruce-

douglass.com/safety-analysis-and-design; however, it is profile-specific for the Rhapsody

tool. For the purpose of this recipe, I created a simplistic security analysis profile for Cameo. The

stereotypes used in this recipe are shown in Figure 2.66.

https://www.bruce-douglass.com/safety-analysis-and-design
https://www.bruce-douglass.com/safety-analysis-and-design

System Specification216

Icons I commonly use to represent those elements are shown next to the relevant stereotypes:

Figure 2.66: Bruce’s simplified security analysis profile stereotypes

Some of the stereotypes have tagged values to hold security-relevant metadata. Figure 2.67 shows

two stereotypes that have tags – Asset and Asset Context – and some value types used to define

those tags:

Figure 2.67: Security profile stereotype tags and types

Chapter 2 217

Security analysis diagram
The Security Analysis Diagram (SAD) is a logical causality diagram very similar to the Fault Tree

Analysis diagram used in the previous recipe. A SAD shows how assets, events, and conditions

combine to express vulnerabilities, how countermeasures address vulnerabilities, and how at-

tacks cause security violations. The intention is to identify when and where countermeasures are

or should be added to improve system security. This diagram uses logical operations (AND, OR,

NOT, XOR, and so on) to combine the presence of assets, asset context, situations, and events.

Figure 2.68 shows a typical SAD. You can identify the kind of element by the stereotype, such as

asset, asset context, countermeasure, vulnerability, and threat:

Figure 2.68: Security analysis diagram example

Asset diagram
Another useful diagram is the asset diagram. The asset diagram is meant to show the relationships

among assets, asset contexts, vulnerabilities, countermeasures, supporting security requirements,

and other security-relevant elements.

System Specification218

Figure 2.69 shows an asset diagram in use:

Figure 2.69: Asset diagram

Attack flow diagram
The last diagram of particular interest is the attack flow diagram. It is a specialized activity diagram

with stereotyped actions to match the canonical attack chain, shown in Figure 2.70:

Figure 2.70: Canonical attack chain

Chapter 2 219

The purpose of this diagram is to allow us to reason about how attacks unfold so that we can

identify appropriate spots to insert security countermeasure actions. Figure 2.71 shows an ex-

ample of use:

Figure 2.71: Example attack flow diagram

The stereotyped actions either identify the action as a part of the attack chain or identify the action

as a countermeasure. The actions without stereotypes are normal user actions.

System Specification220

Tabular views
Tables and matrices can easily be constructed to summarize the threat analysis. The Security

Posture Table, for example, is a tabular summary of assets, asset context, vulnerabilities, and

countermeasures, and their important security-relevant metadata, including name, description,

risk number, severity, probability, consequence, and impact.

Purpose
The purpose of this recipe is to identify system assets subject to attack, how they can be attacked,

and where to best apply countermeasures.

Inputs and preconditions
A use case naming a capability of the system from an actor-use point of view that has been iden-

tified, described, and for which relevant actors have been identified. Note: this recipe is normally

performed in parallel to one of the functional analysis recipes from earlier in this chapter.

Outputs and postconditions
The most important outcome is a set of requirements specifying how the system will mitigate or

manage security concerns of the system. Additionally, a security posture concept is developed

identifying the need for a set of security control measures, which is summarized in cyber-physical

threat analysis.

How to do it
The workflow for this recipe is shown in Figure 2.72:

Chapter 2 221

Figure 2.72: Security analysis workflow

Identify assets and asset contexts
Assets are system or environmental features of value that the system is charged to protect. Assets

can be classified as being one of several types, including:

• Information – information of value, such as a credit card number

• Currency – money, whether in physical or virtual form

• Resource – a capability, means, source, system, or feature of value, such as access to GPS

for vehicle navigation

• Physical – a tangible resource that can be physically compromised, threatened, or dam-

aged, such as a gas supply for a medical ventilator

• Service – a behavior of the system that provides value, such as delivering cardiac therapy

• Security – a security measure that can be compromised as a part of an attack chain, such

as a firewall

System Specification222

Of course, these categories overlap to a degree, so categorize your assets in a way that makes

sense to you and your stakeholders.

Asset diagrams can be used to create and visualize assets. Assets are system or environmental

features that have a value that your system is responsible to protect. Create one or more asset

diagrams to capture the assets and asset contexts. You can optionally add access roles, permissions,

and vulnerabilities, but the primary purpose is to identify and understand the assets.

Describe assets and asset context
Assets have several properties you may want to represent. At a minimum, you want to identify

the asset kind and the value of the asset. Asset value is important because you will be willing to

spend greater cost and effort to protect more valuable assets. You may also want to specify the

asset availability, clearance, or access level required.

Identify vulnerabilities
Vulnerabilities are weaknesses in the system security field; in this context, we are especially con-

cerned with vulnerabilities specific to asset and asset contexts. If you are using known technology,

then sources such as the Common Vulnerability Enumeration (CVE, see https://cve.mitre.

org/cve/) or Common Weakness Enumeration (CWE, see https://cwe.mitre.org/) are good

sources of information.

Specify attack chains
Most attacks are not a single action, but an orchestrated series of actions meant to defeat counter-

measures, gain access, compromise a system, and then perform “actions on objective” to exploit

the asset. Use the attack flow or attack scenario diagrams to model and understand how an attack

achieves its goals and where countermeasures might be effective.

Create causality tree
Express your understanding of the causal relations between attacks, vulnerabilities, and counter-

measures on security analysis diagrams. These diagrams are similar to FTAs used in safety analysis.

Add countermeasures
Once a good understanding is achieved of the assets, their vulnerabilities, the attack chains used

to penetrate the security field, and the causality model, you’re ready to identify what security

countermeasures are appropriate and where in the security field they belong.

https://cve.mitre.org/cve/
https://cve.mitre.org/cve/
https://cwe.mitre.org/

Chapter 2 223

Review security posture
Review the updated security posture to ensure that you’ve identified the correct set of vulnerabil-

ities, attack vectors, and countermeasures. It is especially important to review this in the context

of the CVE and CWE.

Add security requirements
When you’re satisfied with the proposed countermeasures, add requirements for them. As with

all requirements, these should specify what needs to be done and not specifically how, since the

latter concern is one of design.

Add trace links
Add trace links from your security analysis to the newly added requirements, from the associated

use case to the requirements, and from the use case to the security analysis. If an architecture

already exists, also add «satisfy» relations from the architectural elements to the security re-

quirements, as appropriate.

Perform use case and requirements review
This final step of the recipe reviews the set of requirements for the use case, including any re-

quirements added as a result of this recipe.

Example
For this example, we’ll consider the use case Measure Performance Metrics. This use case is about

measuring metrics such as heart rate, cadence, power, (virtual) speed, and (virtual) distance and

uploading them to the connected app. The use case is shown in Figure 2.73:

Figure 2.73: Measure performance metrics use case

System Specification224

Identify assets and asset contexts
There are two kinds of assets that might be exposed; the login ID and password used during the

connection to the app and the rider’s privacy-sensitive performance data. The assets of concern

are the Ride Login Data and Rider Performance Metrics.

Other use cases potentially expose other assets, such as the Update Firmware use case exposing

the system to malware, but those concerns would be dealt with during the analysis of the latter

use case.

Describe assets and asset contexts
The asset metadata is captured during the analysis. It is shown in Figure 2.74. Both assets are of

asset kind INFORMATION_ASSET. The Rider Login Data is a High valued asset, while the Rider

Performance Data is of Medium value. To create this table, apply the «asset» stereotype to the

elements in the table, add the security metadata to those elements, then create a table with Tools

> Generic Table Wizard. Once the table is created, add the columns for the tagged values with

the Columns > Select Columns tool:

Figure 2.74: Asset metadata

Chapter 2 225

Identify vulnerabilities
Next, we look to see how the assets express vulnerabilities. We can identify three vulnerabilities

that apply to both assets: impersonation of a network, impersonation of the connected app, and

sniffing the data as it is sent between the system and the app. See Figure 2.75:

Figure 2.75: Asset vulnerabilities

Specify attack chains
Figure 2.76 shows the attack chain for the Measure Performance Metrics use case. It is further

decomposed into a call behavior, shown in Figure 2.77.

System Specification226

These attack chains show the normal processing behavior along with the attack behaviors of the

adversary and the mitigation behaviors of the system:

Figure 2.76: Measure performance metrics attack chain

Chapter 2 227

Figure 2.77: Process messages attack chain

System Specification228

Create causality tree
Now that we’ve identified and characterized the assets, vulnerabilities, and attacks, we can put

together a causality model. This is shown in Figure 2.78 for the compromising of login data and

credentials, and in Figure 2.79 for the rider metric data:

Figure 2.78: Security analysis diagram for rider login data

Chapter 2 229

Figure 2.79: Security analysis diagram for rider metric data

Add countermeasures
We can see in the previous two figures that our causality diagram has identified two security

countermeasures: the use of credentials for Bluetooth connection and the addition of encryption

for message data.

Review security posture
In this step, we review our security posture. The security posture is the set of assets, asset contexts,

vulnerabilities, and countermeasures. In this case, the assets are the rider login data and the rider

metrics data. The login data includes the username and password.

System Specification230

The metrics data includes all the metrics gathered, including speed, distance, elapsed time, date

and time of workout, power, cadence, and heart rate.

There are two asset contexts: the system itself and the phone hosting the app. The latter context is

out of the system’s scope and we have limited ability to influence its security, but we can require

the use of the protections it provides. Notably, this includes Bluetooth credentials and encryp-

tion of data during transmission. Other use cases may allow us better control over the security

measures in this asset context. For example, the use case Configure System uses a configuration

app of our own design, which we can ensure stores data internally in encrypted form; we have

no such control over the third-party training apps.

We identified three vulnerabilities. During login, the system can be compromised either with

network or app impersonation. By pretending to be a trusted conduit or trusted actor, an adver-

sary can steal login information. We address these concerns with two explicit countermeasures:

message encryption and the use of credentials. Security could be further enhanced by requiring

multi-factor authentication, but that was not seen as necessary in this case. During rides, the

system transmits metric data to the app for storage, display, and virtual simulation. An adver-

sary could monitor such communications and steal that data. This is addressed by encrypting

messages between the system and the app.

Add security requirements
The security requirements are simply statements requiring the countermeasure design and im-

plementation. In this case, there are only two such requirements:

• The system shall require the use of a Bluetooth credential agreement between the system

and the app to permit message traffic.

• The system shall encrypt all traffic between itself and the app with at least 128-bit en-

cryption.

Add trace links
The new requirements trace to the Measure Performance Metrics use case. Further, trace links

are added from the countermeasures to the requirements, linking our analysis to the requirements.

Perform use case and requirements review
We can now review the use case, functional analysis, and dependability analyses for completeness,

accuracy, and correctness.

Chapter 2 231

Specifying Logical System Interfaces
System interfaces identify the sets of services, data, and flows into and out of a system. By logical

interfaces, we mean abstract interfaces that specify the content and precision of the flows but not

their physical realization. For example, a system interface to a radar might include a message

herezaRadarTrack(r: RadarTrack) as a SysML event carrying a radar track as a parameter without

specifying what communication means will be used, let alone the bit-mapped structure of the

realizing 1553 Bus message. Nevertheless, the specification of the interface allows us to consider

the set of services requested of the system by actors, the set of services needed by the system from

actors, and the physical and information flow across the system boundary.

The initial set of interfaces is a natural outcome of use case analysis. Each use case characterizes

a set of interactions of the system with a group of actors for a similar purpose. These interactions

necessitate system interfaces. This recipe will focus on the identification of these interfaces and

the identification of the data and flows that they carry; the actual definition of these data elements

is described in the last recipe in this chapter, Creating the Logical Data Schema.

The logical interfaces from a single use case analysis are only a part of the entire set of system

interfaces. The set interfaces from multiple use cases are merged together during system archi-

tecture definition. This topic is discussed in the recipes of the next chapter, Developing Systems

Architectures. Those are still logical interfaces, however, and abstract away implementation detail.

The specification of physical interfaces from their logical specification is described in Chapter 4,

Handoff to Downstream Engineering.

A Note about SysML Ports and Interfaces
SysML supports a few different ways to model interfaces, and this is intricately bound up with the

topic of ports. SysML has the standard port (from UML), which is typed by an interface. An interface

is similar to an abstract class; it contains specifications of services but no implementation. A block

that realizes an interface must provide an implementation for each operation specified within

that interface. UML ports are typed by the interfaces they support. A port may either provide or

require one or more interfaces. If an interface is provided by the system, that means that the system

must provide an implementation that realizes the requested services. If an interface is required,

then the system can request an actor to provide those services. These services can be synchronous

calls or asynchronous event receptions and can carry data in or out, as necessary. Note that the

difference between provided and required determines where the services are implemented and

not the direction of the data flow.

System Specification232

These interfaces are fundamentally about services that can, incidentally, carry data. SysML also

defines flow ports that allow data or flow to be exchanged without services being explicitly involved.

Flow ports are bound to a single data or flow element and have an explicit flow direction: either

into or out of the element. Block instances could bind flow ports to internal value properties and

connect them to flow ports on other blocks that were identically typed.

SysML 1.3 and later deprecate these standard and flow ports and added the proxy port. To be clear,

“deprecated” means that the use of these ports is “discouraged” but they are still part of the stan-

dard, so feel free to use them. Proxy ports essentially combine both the standard ports and flow

ports. The flows specified sent or received by a proxy part are defined to be flow properties rather

than value properties, a small distinction in practice. More importantly, proxy ports are not typed

by interfaces but rather by interface blocks. Interface blocks are more expressive than interfaces in

that they can contain flow properties, nested parts, and proxy ports themselves. This allows the

modeling of some complex situations that are difficult with simple interfaces. With proxy ports,

gone are the “lollipop” and the “socket” notations; they are replaced by the port and port conju-

gate (”~”) notation. In short, standard ports use interfaces but proxy ports use interface blocks.

The examples in this book exclusively use proxy ports and interface blocks and not standard ports.

This recipe specifically refers to the identification and specification of logical interfaces during

use case specification, as experience has shown this is a highly effective means for identifying

the system interfaces.

Continuous flows
Systems engineering must contend with something that software development does not: continu-

ous flows. These flows may be information but are often physical in nature, such as material, fluids,

or energy. SysML extends the discrete nature of UML activities with the «continuous» stereotype

for continuous flows. The «stream» stereotype (from UML) refers to object flows (“tokens”) that

arrive as a series of flow elements at a given rate. «continuous» is a special case where the time

interval between streaming flow elements approaches zero. In practice, «stream» is used for a

flowing stream of discrete elements, often at a rate specified with the SysML «rate» stereotype,

while «continuous» is used for truly continuous flows. An example of «stream» might be a set

of discrete images sent from a video camera at a rate of 40 frames per second. An example of a

«continuous» flow might be water flowing through a pipe or the delivery of electrical power.

Chapter 2 233

In my work, I use these stereotypes on flows in sequence diagrams as well. I do this by applying

the stereotypes to messages and through the use of a continuous interaction operator. To create the

flows, I use a standard Message on the sequence diagram and add item flows to it with Cameo’s

Item Flow Manager. To enable that, the relations between the elements typing the lifelines must

have such flows defined. Figure 2.80 shows such a context for a system that heats water for bathing:

Figure 2.80: Structural context for continuous flows example

Since the flows are defined, they can be added to the messages sent between the lifelines defined

by those blocks. While the Rhapsody tool allows me to create new interaction operators, Cameo

does not. Thus, in Cameo, I use a Critical Region interaction operator and apply the continuous

stereotype to it.

System Specification234

The resulting sequence diagram is shown in Figure 2.81:

Figure 2.81: Continuous flows on sequence diagrams

The figure shows flows (messages with item flows) marked with the «continuous» stereotype.

This indicates that the flow is continuous throughout its execution context. That context can

be the entire diagram or limited to an interaction operator, as it is in this case. Within a context,

there is no ordering among «continuous» flows; this is in contrast to the normal partial ordering

semantics of SysML sequence diagrams in which “lower in the diagram” corresponds (roughly)

to “later in time.” However, «continuous» flows are active throughout their execution context

and so the ordering of continuous flows is inherently meaningless.

The use of the interaction operator with the continuous stereotype defines the context during

which the flows are continuous and unordered. Any normal (non-continuous) messages within

the interaction operator still operate via the normal partial ordering semantics.

Chapter 2 235

Purpose
The purpose of this recipe is to identify the exchange of services and flows that occur between a

system and a set of actors, especially during use case analysis.

Inputs and preconditions
The precondition is that a use case and set of associated actors have been identified.

Outputs and postconditions
Interfaces or interface blocks are identified, as well as which actors must support which interfaces

or interface blocks.

How to do it
Figure 2.82 shows the workflow for this recipe. This overlaps with some of the other recipes in

this chapter but focuses specifically on the identification of the system interfaces:

Figure 2.82: Specify logical interfaces workflow

System Specification236

Identify use case
This first step is to identify the generic usage of the system that will use the to-be-identified

system interfaces.

Identify related actors
The related actors are those people or systems outside our scope that interact with the system

while it executes the current use case. These actors can send messages to the system, receive

messages from the system, or both using the system interfaces.

Create the execution context
The use case execution context is a kind of modeling “sandbox” that contains an executable

component consisting of executable elements representing the use case and related actors. The

recommended way to achieve this is to create separate blocks representing the use case and the

actors, connected via ports. Having an isolated simulation sandbox allows different system en-

gineers to progress independently on different use case analyses.

Create activity flow
This step is optional but is a popular way to begin to understand the set of flows in the use case.

This step identifies the actions – event reception actions, event send actions, and internal system

functions – that define the set of flows of the use case.

Capture the use case scenarios
Scenarios are singular interactions between the system and the actors during the execution of

the use case. When working with non-technical stakeholders, they are an effective way to under-

stand the desired interactions of the use case. We recommend starting with normal, “sunny day”

scenarios before progressing to edge case and exceptional “rainy day” scenarios. It is important

to understand that every message identifies or represents one or more requirements and results

in messages that must be supported in the derived interfaces. If the Create Activity Flow task is

performed, then the sequence diagrams can be derived from those flows.

Use asynchronous events for all actor > system and system > actor service invoca-

tions. This is specifying the logical interfaces and so the underlying communication

mechanism should be abstracted away. Later, in the definition of the physical in-

terfaces and data schema, these can be specified in a technology-specific fashion.

Chapter 2 237

Add message parameters
These signals often carry data. This data should be explicitly modeled as signal attributes that

become message arguments.

Add flows
Use UML “flows” to indicate discrete flows of information, material, fluids, or energy exchanges

between the system and an actor that are not intimately bound to a service request. Stereotype

these flows as «continuous» when appropriate, such as the flows of energy or fluids.

Create parameter and flow types
The event arguments must be typed by elements in the logical data schema (see the recipe Creating

the Logical Data Schema). The same is true for flow types. Because these types are specifications,

they will include not only some (logical) base types, but also units, ranges, and other kinds of

metadata.

Create ports and interfaces
Based on the defined interaction of the system with the actors while executing the use case, add

ports between the actor and use case blocks and type these ports with interfaces. These inter-

faces will enumerate the services and flow going between the actors and the system. Technically

speaking, this can be done using UML standard ports and SysML flow ports, or the more modern

SysML 1.3 proxy ports.

Example
This example will use the Control Resistance use case but we will a different approach than was

used for this use case in the Functional Analysis with Activities recipe, just to demonstrate that there

are alternative means to achieve similar goals in MBSE.

Identify use case
The Control Resistance use case focuses on how resistance is applied to the pedals in response

to simulated gearing, conditions, and user-applied force. The description was shown previously

in Figure 2.19.

Identify related actors
There are two actors here for this use case: Rider and Training App. The Rider provides power to

and receives resistance from the pedals. The Training App is sent the rider power information.

System Specification238

Create the execution context
Creating the execution context creates blocks that represent the actors and use cases for the pur-

pose of analysis and simulation. They contain proxy ports that will be defined by the interfaces

identified in this workflow:

Figure 2.83: Control resistance execution context for interface definition

Create activity flow
The activity flow shows the object and control flows for the use case. In this example, we will show

continuous flows in addition to discrete flows. The activity is decomposed into three diagrams.

The top level is shown in Figure 2.84. This diagram shows the system sending bike data to the

Training App on the left. The center part, containing the Determine Base Pedal Resistance call

behavior, does the bulk of the functional work of the use case.

Chapter 2 239

Note that it takes the computed base resistance on the pedal and adjusts it for its current angular

position. On the right, pedal cadence is computed from pedal speed.

Discrete events, such as turning the system on and off or changing the gears, are simple to mod-

el in the activity diagrams; they can easily be modeled as either signal receptions for incoming

events or send signal actions for outgoing events. Of course, these events can carry information

as arguments as needed.

It is somewhat less straightforward to model continuous inputs and outputs. These are modeled

on the flow properties pedalSpeed and pedalResistance. The activity uses a change event for mon-

itoring when the pedal speed changes and uses this, along with other information, to compute

and apply resistance at the point of the pedal:

Figure 2.84: Control resistance activity flow for creating interfaces

Figure 2.85 shows the details for the Determine Pedal Resistance call behavior from the previous

figure. In it, we see the base pedal resistance is computed using another call behavior, Compute

Bike Physics. The Determine Pedal Resistance behavior never terminates (at least until the

entire behavior terminates) so it uses a «rate» stereotype to indicate the data output on these

activity parameter streams, although Cameo doesn’t show it graphically. I added a constraint to

show the rate.

System Specification240

Remember that normal activity parameters require the activity to terminate before they can

output a value:

Figure 2.85: Determine base pedal resistance activity

Lastly, we have the call behavior Compute Physics, shown in Figure 2.86. This simulates the phys-

ics of the bike using the rider mass, current incline, current speed, and the power applied by the

rider to the pedal to compute the resistance to movement, and couples that with the combined

bike and rider inertia to compute the simulated bike speed and acceleration:

Chapter 2 241

Figure 2.86: Compute bike physics activity

Capture the use case scenarios
The interfaces can be produced directly from the activity model but it is often easier to produce

them from a set of sequence diagrams derived from the activity model. Accept event actions and

flows on activities don’t indicate the source but this is clearly shown in the sequences. If you do

create a set of sequence diagrams, it is adequate to produce the set of scenarios such that all inputs

and outputs and internal flows are represented in at least one sequence diagram.

System Specification242

The next three diagrams show the functional behavior modeled to follow the same structure as

the activity model. Figure 2.87 shows the high-level behavior. Note the use of «continuous» flows

for the resistance to movement supplied by the system (pedal resistance) and the speed of the

pedal (pedal speed). The critical region interaction operator is stereotyped as «continuous» and

defines a scope for continuous flows. Note the use of a parallel interaction operator to show things

that are going on concurrently, and loops and critical regions nested within it. The referenced

interaction occurrence Determine Pedal Resistance Scenario references the sequence diagram

shown in Figure 2.7:

Figure 2.87: Control resistance scenario

Chapter 2 243

Throughout the entire scenario shown in Figure 2.88, the continuous flows are active, so no scop-

ing continuous interaction occurrence is required. This scenario also includes a nested scenario,

the referenced Compute Physics, shown in Figure 2.89. This scenario includes a continuous flow

but doesn’t need a critical region stereotyped as continuous because the scope of the continuous

flow is the entire sequence diagram:

Figure 2.88: Determine pedal resistance scenario

Figure 2.89: Compute bike physics

System Specification244

Add message parameters
Rather than show all the stages of development of the scenarios, the previous step is shown

already including the message parameters.

Add flows
Rather than show all the stages of development of the scenarios, the previous step is shown

already including the continuous flows.

Create parameter and flow types
The detail of how to create all the types is the subject of the next recipe, Creating the Logical Data

Schema. The reader is referred to that recipe for more information.

Create ports and interfaces
Now that we have the set of flows between the actors and the system and have characterized them,

we can create the interfaces. In this example, we are using the SysML 1.3 standard approach of

using proxy ports and interface blocks, rather than standard ports, flow ports, and standard inter-

faces. This is a bit more work than using the older approach but is more modern and descriptive.

Figure 2.83 shows the execution context of the use case analysis for the Control Resistance use

case. Although the diagram is itself a block definition diagram, Cameo allows you to show dia-

grams within diagrams; thus the corresponding internal block diagram is shown at the bottom

of the figure. The IBD parts of the use case block Uc_ControlResistance and the actor blocks

aCR_Rider and aCR_TrainingApp with SysML connectors between the appropriate ports. Note

that, by convention, the unconjugated form interface is referenced at the use case block end of

the connector and the conjugated form is used at the actor end, as indicated by the tilde (“~”) in

front of the interface block name.

At the top of the diagram are the (current empty) interface blocks that will be elaborated on in

this step. Later, during architecture development, these interface blocks will be added to the

interfaces provided by the system and decomposed and allocated to the subsystems.

A note about naming conventions
The package Functional Analysis Pkg::Control Resistance Pkg holding the model used in this

recipe provides a sandbox for the purpose of analyzing the Control Resistance use case. To that

end, a block representing the use case is created and given the name uc_ControlResistance.

Chapter 2 245

For the actors, local blocks are created for the purpose of analysis and are given the names of a

(for actor), followed by the initials of the use case (CR) followed by the name of the actor (with

white space removed). So, these sandbox actor blocks are named aCR_Rider and aCR_Train-

ingApp. The interfaces are all named i <use case block name> “_” <actor block name>, as in

iControlResistance_ Rider. This makes it easy to enforce naming consistency at the expense of

sometimes creating lengthy names.

Since the flows are shown on the sequence diagrams, it is a simple matter to add these elements

to the interface blocks:

• For each message from the use case to an actor, add that signal reception as required to

the interface block defining that port.

• For each message from an actor to the use case, add that signal reception as provided to

the interface block defining that port.

• For each flow from the use case to an actor, add that flow as an output flow property to

the interface block defining that port.

• For each flow from an actor to the use case, add that flow as an input flow property to the

interface block defining that port.

The result is shown in Figure 2.90. Note that the event receptions are either provided (prov) or

required (reqd) while the flow properties are either in or out (from the use case block perspective):

Figure 2.90: Created interface blocks

System Specification246

You should note that these are, of course, logical interfaces. As such, they reflect the intent and

content of the messages but not their physical realization. For example, bike data sent to the

training app is modeled in the logical interface as an event, but the implementation will actually

be as a Bluetooth message. The creation of physical interfaces from logical ones is discussed in

the last chapter.

Creating the Logical Data Schema
A big part of the specification of systems is specifying the inputs and outputs of the system as well

as what information a system must retain and manage. The input and outputs are data or flows

and may be direct flows or may be carried via service requests or responses. Early in the system

engineering process, the information captured about these elements is logical. The definition of

a logical schema is provided below, along with a set of related definitions.

Definitions
Data Schema: a data or type model of a specific problem domain that includes blocks, value

properties, value types, dimensions, units, their relations, and other relevant aspects collectively

known as metadata. This model includes a type model consisting of a set of value types, units, and

dimensions, and a usage model showing the blocks and value properties that use the type model.

Logical Schema: a data schema expressed independently from its ultimate implementation,

storage, or transmission means.

Value Property: a property model element that can hold values. Also known as a variable or

attribute (UML).

Value Type: specify value sets applied to value properties, message arguments, or other parameters

that may carry values. The system predefines primitive scalar types including number, integer,

real, complex, Boolean, and string. These base types may have additional properties or constraints,

specified as metadata.

Metadata: literally “data about data,” this term refers to ancillary properties or constraints on

data, including:

Chapter 2 247

• Extent – the set of values of an underlying base value type that are allowed. This can be

specified as:

• a subrange, as in 0 .. 10

• a low-value and high-value pair, as in “low value =-1, high value = 1”

• an enumerated list of acceptable values

• a specification of prohibited values

• the specification of a rule or constraint from which valid values can be determined

• Precision – the degree exactness of specified values; for scalar numeric values, this is often

denoted as the “number of significant digits”

• Accuracy – the degree of conformance to an actual value, often expressed as ±<value>, as

in “± 0.25”. Accuracy is generally applied to an output or outcome

• Fidelity – the degree of exactness with which value may be specified. Fidelity is generally

applied to an input value

• Latency – how long after a value property occurs is the value representation updated

• Availability – a measure of what percentage of the system lifecycle value is actually ac-

cessible

Note that these properties are sometimes not properties of the value type but of the value property

specified by that value type. In any case, in SysML, these properties are often expressed in tags,

metadata added to describe model elements:

Quantity Kind: specifies the kind of value (its dimensionality). Examples include length, weight,

pressure, and color. Also known as Dimension in SysML 1.

Unit: specifies a standard against which values in a dimension may be directly compared. Ex-

amples include meters, kilograms, kilopascals, and RGB units. The SysML provides a model library

of SI units that are directly available for use in models. However, it is not uncommon to define

your own as needed.

Recommendation: Each value property should be typed by a unit, unless it is unitless, in which

case, it should be typed by a defined value type.

System Specification248

Schematically, these definitions are shown in Figure 2.91 in the data schema metamodel:

Figure 2.91: Data schema metamodel

Although this is called the data schema, it is really an information schema as it applies to elements

that are not data per se, such as physical flows. In this book, we will use the common term data

schema to apply to flows as well.

Beyond the underlying type model of the schema, described above, the blocks and their value

properties and the relations among them constitute the remainder of the data schema. These

relations are the standard SysML relations: association, aggregation, composition, generalization,

and dependency.

Example
So, what does a diagram showing a logical data schema look like?

Typically, a data schema is visualized within a block definition diagram and shows the data

elements and relevant properties. Consider an aircraft navigation system that must account

for “own craft” position, velocity, acceleration, flight plans, attitude, and so on. See Figure 2.92:

Chapter 2 249

Figure 2.92: Data schema for flight property set

You can see in the figure, a Flight Property Set contains Airframe_Position, Airframe_Velocity,

Airframe_Acceleration, and so on. These composed blocks contain value properties that detail

their value properties; in the case of Airframe_Position, these are altitude, latitude, and longi-

tude. Altitude is expressed in the unit Meters (defined in the Cameo SysML type library) while

latitude and longitude are defined in terms of the unit Meridian_Degrees, which is not in the

SysML model library (and so is defined in the model).

On the left of the diagram, you can see that a Flight Plan contains multiple Flight Property Sets

identifying planned waypoints along the commanded flight path. These Flight Property Sets

may be actual current information (denoted with the actual Flight Path role end) or commanded

(denoted with the commanded Flight Path role end). The latter forms a list of commanded flight

property sets and so stores the set of commanded waypoints.

System Specification250

Figure 2.93 shows the scalar types, units, and quantity kind used in Figure 2-92:

Figure 2.93: Types, units, and quantity kinds

This is a serviceable data schema, however, details about the data (metadata) are missing. What

are the allowed ranges of values (known as a type’s extent); what is acceptable precision (degree of

detail in representation), accuracy (conformance to a value’s specification), and fidelity (degree of

precision of inputs)? Figure 2.94 shows an example of applying a stereotype with tags that define

this metadata. In this case, «qualified» adds low-value and high-value tags for specifying an

extent, as well as accuracy and fidelity tags:

Chapter 2 251

Figure 2.94: Specifying metadata with tags

Purpose
The purpose of the logical data schema is to understand the information received, stored, ma-

nipulated, and transmitted by a system. In the context of the capture of system specification, it

is to understand and characterize data and flows that cross the system boundary to conceptually

solidify the interfaces a system provides or requires.

Inputs and preconditions
The precondition is that a use case and set of associated actors have been identified or that struc-

tural elements (blocks) have been identified in an architecture or design.

Outputs and postconditions
The output is a set of units, dimensions, and types (the type model), and value properties that

they specify along with the relations among the value types and blocks that own them (the usage

model).

System Specification252

How to do it
The workflow has a number of small, well-defined steps. The overall workflow for this recipe is

shown in Figure 2.95:

Figure 2.95: Creating the logical data schema

This workflow contains two elaborated call behaviors: Construct Type Model and Specify Meta-

data Aspects. The first of these is detailed in Figure 2.96 and the latter in Figure 2.97:

Chapter 2 253

Figure 2.96: Construct the type model

Figure 2.97: Specify metadata aspects

System Specification254

Create collaboration
This task creates the collaboration of elements that will own or use the elements defined within

the data schema. This provides the context in which the types may be considered. In the case of

system specification, this purpose is served by defining the use case and its related actors, or by

the execution context of block stand-ins for those elements. In a design context, it is generally

some set of design elements that relate to some larger-scale purpose, such as showing an archi-

tectural aspect or realizing a use case.

Define structure
This structured activity adds blocks and other elements to the collaboration, detailed in the steps

Identify Block, Add Relation, Identify Value Properties, and Add Flow Property.

Identify block
These are the basic structural element of the collaboration, although rarely value properties may

be created without an owning block.

Add relation
These relations link the structural element together allowing them to send messages to support

the necessary interactions. They might be associations to add reference properties, compositions

to add part properties, or generalizations to define specialization relations.

Identify value property
This step identified the data property features of the blocks.

Identify flow property
This step identified the flow property features of the blocks. Remember, a flow property is noth-

ing more than a value property that flows across a block’s encapsulation boundary without the

explicit use of services.

Define interaction
The interaction consists of a set of message exchanges among elements in the collaboration. This

is most often shown as sequence diagrams. This structured activity defines an internal workflow.

Chapter 2 255

Identify message
Messages are the primitive elements of interaction. These may be synchronous (such as function

calls), asynchronous (as in asynchronous signal receptions), or flows (represented as flow items on

a synchronous or asynchronous message). A single interaction contains a set of ordered messages.

Define operation
For synchronous call operation messages, the block receiving the message must define an oper-

ation to be invoked. The step includes the operation signature, as defined by its parameters, and

any return values.

Define signal reception
For asynchronous signal receptions, a signal must be defined.

Define signal attributes
Signals can carry information, just as operation calls can. The signal attributes specify the infor-

mation passed along with the signal.

Define flow message
As we have seen in previous recipes, flows can be sent between elements of collaboration, as

defined with flow properties and item flows. These are represented in the scenarios as flow mes-

sages – that is, messages with flow items.

Define flow item to structure
For correctness and consistency, the flow items must correspond to flow properties defined in

the collaborating elements.

Add message parameters
Most messages, whether synchronous or asynchronous, carry information in the form of param-

eters (sometimes called arguments). The types of this data must be specified in the data model.

Construct type model
Once a datum is identified, it must be typed. This call behavior is detailed in the following steps.

System Specification256

Define unit
Most data relies on units for proper functioning and too often, units are implied rather than ex-

plicitly specified. This step references existing units or creates the underlying unit and then uses

it to type the relevant value properties. The SysML defines a non-normative extension to include

a model library of SI units. Cameo, the tool being used here, has a rich set of units and quantity

kinds as defined by the SI standard. Not all types are present, and it is common to add additional

units and quantity kinds, as needed.

Define quantity kind
Most units rely on a quantity kind (aka dimension). For example, the unit Meter might represent

the quantity kind of distance, length, height, or width. Quantity kinds have many different units

available. Length, for example, can be expressed in units of cm, inches, feet, yards, meters, miles,

kilometers, and so on.

Define value types
The underlying value type is expressed in the action language for the model. This might be C,

C++, Java, Ada, or any common programming or data language. OMG also defined an abstract

action language called Action Language for Foundational (ALF) UML, which may be used for

this purpose. See https://www.omg.org/spec/ALF/About-ALF/ for more information. This book

uses Groovy as the action language because it is supported in the Cameo tool, but there are equally

valid alternatives.

Apply type to relevant properties
This step applies the defined type to the relevant value and flow properties owned by the elements

of the collaboration.

Specify metadata aspects
It is almost always inadequate to just specify the value type from the underlying action language.

There are other properties of considerable interest. As described earlier in this section, they in-

clude extent, precision, latency, and availability. There are many additional metadata properties

that may be of concern, including some that may be domain-specific. This call behavior action

defines a simple workflow for the identification and application of metadata to the value and

flow properties.

https://www.omg.org/spec/ALF/About-ALF/

Chapter 2 257

Identify metadata of interest
The first step in this nested workflow is to identify which metadata properties should be represent-

ed. These will be properties of the data, such as the extent, precision, fidelity, latency, and so on.

Create stereotype
The recommendation here is to use stereotypes with tags that define the metadata properties

of interest.

Add metadata tags
Add tags to represent the metadata of interest. Not all value or flow properties to which the ste-

reotype is applied must use or provide values for all tags.

Apply stereotypes to properties
Once the stereotypes are defined, the value and flow properties can be stereotyped so that they

can own the metadata. Sometimes the stereotypes will be applied to value types or units.

Fill in specific metadata properties
Different value types will provide different values for the metadata tags. For example, consider

a stereotype Defined Extent that has tags Low Value (specifying the lowest acceptable value for

the property) and High Value (specifying the largest acceptable value). A block Hand might have

a value property fingerCount for which the lowest value is 0 and the highest value is 10. Another

block – say, Car – might have a value type numberOfDoors with a lowest possible value of 2 and

a highest possible value of 5.

Example
This example will use the Measure Performance Metrics use case. The earlier recipe Model-Based

Threat Analysis used this use case to discuss modeling cybersecurity. We will use it to model the

logical data schema. For the most part, the data of interest is the performance data itself, although

the threat model identified some additional security-relevant data that can be modeled as well.

Create collaboration
The use case diagram in Figure 2.73 provides the context for the data schema, but usually, the

corresponding block definition and internal block diagrams of the execution context are used.

System Specification258

That diagram is shown in Figure 2.98:

Figure 2.98: Measure performance metrics execution context

Define structure
This task is mostly done by defining the execution context, shown in Figure 2.98. In this case, the

structure is pretty simple.

Identify blocks
As a part of defining the structure, we identified the primary functional blocks in the previous

figure. But now we need to begin thinking about the data elements as blocks and value types.

Figure 2.99 shows a first cut at the likely blocks. Note that we don’t need to represent the data

schema for the actors because we don’t care. We are not designing the actors since they are, by

definition, out of our scope of concern. We must, on the other hand, define the data schema for

information passed between the actors and the system:

Chapter 2 259

Figure 2.99: Blocks for measure performance data schema-initial

Add relations
The instances of the core functional blocks are shown in Figure 2.98. Relations of the data ele-

ments to the use case block are shown in Figure 2.100. This is the data that the use case block

knows (owns) or uses:

Figure 2.100: Data schema with relations

System Specification260

Identify value properties
The blocks provide owners with the actual data of interest, which is held in the value properties.

Figure 2.101 shows the blocks populated with value properties relevant to the use case:

Figure 2.101: Data schema value properties

Define interaction
Another way to find data elements to structure is to look at the messaging; this is particularly

relevant for use case and functional analysis since the data on which we focus during this analysis

is the data that is sent or received. This is represented as a structured action in Figure 2.95. We

will employ all its contained actions together.

The first interaction we’ll look at is for uploading real-time ride metrics during a ride. This is

shown in Figure 2.102:

Chapter 2 261

Figure 2.102: Real-time ride metrics scenario

System Specification262

The second interaction is for uploading an entire stored ride to the app. This is in Figure 2.103:

Figure 2.103: Upload saved ride

Chapter 2 263

Note that these are just two of many scenarios for the use case, as these do not consider concerns

such as dropped messages, reconnecting sessions, and other rainy-day situations. However, this

is adequate for our discussion.

In this step, when we draw a “message to self,” this will be realized as an operation in the own-

ing block; received signals will be realized as a signal reception, and flows are realized as flow

properties.

Construct type model
Figure 2.101 goes a long way for the definition of the type model. The blocks define the structured

data elements, but at the value property level, there is still work to be done. The underlying value

types must be identified, their units and dimensions specified, and constraints placed on their

extent and precision.

Most, but not all, value properties must be defined in terms of units and quantity kinds.

Define units
Identify quantity kind
It is common for engineers to just reference base types – Integer, Real, and so on – to type value

properties, but this can lead to avoidable design errors. This is because value types may not be

directly comparable, such as when distanceA and distanceB are both typed as Real but in one case

are captured in Kilometers and in the other, Miles. Further, one cannot reason about the extent

of a type (the permitted set of values) without specified units. For this reason, we recommend –

and will use here – unit definitions to disambiguate the values we’re specifying.

The SI Units model library of the SysML specification is an optional compliance point for the

standard, and Cameo does an excellent job of providing a set of units and quantity kinds. In this

model, we will reference some that exist in that library and create those that do not.

Figure 2.101 uses a number of special units for value properties and operation arguments, including:

• Degrees of Arc

• Newton

• DateTime

• Kilometers per Hour

• Kilometers per Hour Squared

• Kilocalorie

System Specification264

• RPM

• Kilometer

• Resistance Mode

Some of these exist in the SI library and are included in the Cameo tool, such as Newton and Ki-

lometer (although Cameo uses the English spelling of the latter, Kilometre). Others could have

been expected to be included, but are not, such as Degrees of Arc, Kilocalorie, and RPM. Still

others are application-specific, including Resistance Mode.

Degrees of Arc are a measure of angular displacement and are used for the cycling incline. RPM

is a measure of rotational velocity used for pedaling cadence. DateTime is a measure of when

data was measured. Kilometer is a measure of linear distance, while Kilometers per hour is a

measure of speed, and Kilometers Per Hour Squared is a measure of acceleration. Kilocalorie is

a measure of energy used to represent the Rider’s energy output. In our model, we will define all

these as units. They will be defined in terms of their dimension in the next section.

Cameo uses a naming convention for value types in its SI library. A value type is given the name

of the quantity kind + [+ unit +], as in speed[kilometre per hour]. This is a useful naming con-

vention telling the modeler about the type, quantity kind, and units in a simple, consistent way.

Figure 2.104 shows the value types, units, and dimensions defined for this logical data schema.

Resistance Mode is an enumeration value type with two possible values, RESISTANCE_MODE

and ERG_MODE:

Chapter 2 265

Figure 2.104: Value types, units, and quantity kinds

Define value type
Once the units and quantity kinds are defined, we can define the value types. Once again, the

Cameo SI Types library provides a large set of values types. The naming convention for value types

is quantity kind + [+ unit], so you get a value type such as power[watt]. Knowing this allows

you to find these value types in the types library. We will mostly follow that naming convention

here. The value type acceleration[kilometers per hour squared] in Figure 2.104 follows that

convention, although Degrees of Arc does not (to demonstrate an alternative).

Apply type to relevant properties
Now that we have the value types, we can use them to type the value properties in our model.

System Specification266

Define value type and properties for metadata
The last thing we must do is specify the relevant value type properties. In the logical data schema,

this means specifying the extent and precision of the values. This can be done at the unit/value

type level; in this case, the properties apply to all values of that unit or type. These properties can

also be applied at the value property level, in which case the scope of the specification is limited

to the specific values but not to other values of the same unit or type.

One way to specify these properties is to specify them as SysML tags within a stereotype, apply

the stereotype to the relevant model elements, and then elaborate on the specific values. To that

end, we will create a stereotype, «tempered». This stereotype applies to object nodes, types, pa-

rameters, and variables (and therefore, also to pins, value types, units, and value properties) in

the SysML metamodel.

The stereotype provides three ways to specify the extent. The first is the extent tag, which is a

string in which the engineer can specify a range or list of values, such as [0.00 .. 0.99] or 0.1, 0.2,

0.4, 0.8, 1.0. Alternatively, for a continuous range, the tags lowValue and highValue, both of type

Real, can serve as well; in the previous example, you can set lowValue to 0.0 and the highValue

to 0.99. Lastly, you can provide a range or list of prohibited values in the prohibitedValues tag,

such as -1, 0.

The stereotype also provides three means for specifying scale. The scaleOfPrecision tag, of type

integer, allows you to define the number of significant digits for the value or type. Numeric

values are also further refined with fidelity (precision of an input) and accuracy (degree of con-

formance to the specified value). Both fidelity and accuracy are usually specified as a ± value to

give a range, as in ± 2 mm.

Another stereotype tag is maxLatency, using a time[second] value type from the SI library to

allow specification of the maximum allowable latency of the data. Other metadata can be added

to the stereotype as needed for your system specification.

Precision technically refers to the number of significant digits in a number, while

scale is the number of significant digits to the right of the decimal point. The number

123.45 has a precision of 5, but a scale of 2. People usually speak of precision while

meaning scale.

Chapter 2 267

This level of detail in the specification of quantities is important for downstream design. Re-

quiring 2 digits of scale is far different than requiring 6 and drives the selection of hardware and

algorithms with effects on system cost and required effort. These stereotypes can be applied at

different levels of specification: the value property, the value type, or the unit:

Figure 2.105: Measure performance metrics metadata

Figure 2.105 shows the application of the tempered stereotype to a number of value properties

of relevant data blocks in the model. Different metadata may be relevant to different value prop-

erties; for example, latency is not a concern for Ride Session::Ride Time but is relevant for more

real-time data, such as Compute Performance Data::acceleration.

And there you have it: a logical data schema for the values and flows specified as a part of the

Measure Performance Metrics use case. These, along with data schema from other use cases,

will be merged into the architecture in the architecture design work.

In the next chapter, we move to the topic of design. This, as we will see, is a topic rich with recipes.

System Specification268

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/cpVUC

3
Developing System
Architectures

Recipes in this chapter
• Architectural trade studies

• Architectural merge

• Pattern-driven architecture

• Subsystem and component architecture

• Architectural allocation

• Creating subsystem interfaces from use case scenarios

• Specializing a reference architecture

System analysis pays attention to the required properties of a system (such as its functionality),

while system design focuses on how to implement a system that implements those needs effec-

tively. Many different designs that can realize the same functionality; system engineers must

select from among the possible designs based on how well they optimize crucial system prop-

erties. The degree of optimization is determined by examining with Measures of Effectiveness

(MoE) applied to the design. Design is all about optimization, and architecture is no different.

Architecture is the integration of high-level design concerns that organize and orchestrate the

overall structure and behavior of the system.

Developing System Architectures270

Design exists at (at least) three levels of abstraction. The highest level – the focus of this chap-

ter – is architectural design. Architectural design makes choices that optimize the overall system

properties at a system-wide level. The next step down, known as collaboration design, seeks to

optimize collaborations of small design elements that collectively perform important system

behaviors. Collaborative design is generally an order of magnitude smaller in scope than archi-

tectural design. Finally, detailed design individually optimizes those small design elements in

terms of their structure or behavior.

Five critical views of architecture
The Harmony process defines six critical views of architecture, as shown in Figure 3.1. Each view

focuses on a different aspect of the largest scale optimization concerns of the system:

• Subsystem/Component Architecture is about the identification of subsystems, the al-

location of responsibilities to the subsystems, and the specification of their interfaces.

• Distribution Architecture selects the means by which distributed parts of the system

nteract, including middleware and communication protocols; this includes, but is not

limited to, network architecture.

• Concurrency and Resource Architecture details the set of concurrency regions (threads

and processes), how semantic elements map into those concurrency regions, how they

are scheduled, and how they effectively share and manage shared resources.

• Data Architecture focuses on how data is managed. It includes technical means and pol-

icies for data storage, backup, retrieval, and synchronization, as well as the overall data

schema itself. Beyond that, this view includes the policies for ensuring data correctness

and availability.

• Dependability Architecture refers to large-scale design decisions that govern the abil-

ity of stakeholders to depend on the system. This is subdivided into the Four Pillars of

Dependability:

• Safety Architecture – the large-scale mechanisms by which the system ensures

the risk of harm is acceptable

• Reliability Architecture – the system-wide decisions that manage the availability

of services

• Security Architecture – the important design decisions that control how the sys-

tem avoids, identifies, and manages attacks

• Privacy Architecture – how the system protects information from spillage

Chapter 3 271

• Deployment architecture is the allocation of responsibilities to different engineering

facets, such as software, electronics, and mechanical design concerns.

This chapter focuses on the development and verification of systems architecture with some key

recipes, including the following:

• Selecting from architectural alternatives with trade studies

• Merging different use cases analyses together into a system architecture

• Application of architectural design patterns

• Creating the subsystem and component architecture

• Allocation of system properties into the subsystem architecture

• Defining system interfaces

Figure 3.1: Six critical views of architecture

General architectural guidelines
As previously shown in Figure 1.27, good architecture:

• Is architected early

Developing System Architectures272

• Evolves frequently

• Is as simple as possible (but no simpler than that)

• Is based on patterns

• Integrates into project planning via Technical Work Items

• Optimizes important system properties

• Is written down (specifically, modeled)

• Is kept current

The Architecture 0 recipe in Chapter 1, Basics of Agile Systems Modeling, concentrated on creating

an early model of architecture so that more detailed engineering work had a structural context

and to establish the feasibility of desired system capabilities early. Remember – from Chapter

1 – in the context of an agile approach, engineers establish an architectural roadmap in which

architectural features that meet requirements are added incrementally over time. The recipes

in this chapter will therefore be performed multiple times during the development of a product.

Thus, the expectation is that architecture evolves throughout the development work as more

functionality is added to the evolving system design.

This chapter provides some important recipes for architectural definition, whether it is done as

Big-Design-Up-Front or in an incremental agile process.

Architectural trade studies
Trade studies are specifically concerned with the merit-based selection of approach or technol-

ogy based on important concerns specific to the system development, system environment, or

stakeholder needs. At a very fundamental level, trade studies are about making design choices

to optimize important properties of the system at the expense of properties deemed less critical.

To effectively perform trade studies, it is important to identify the things that can be optimized,

the aspects subject to optimization, the MoE, and a set of alternatives to be evaluated.

Purpose
The purpose of performing an architectural trade study is to select an optimal design solution

from a set of alternatives.

Inputs and preconditions
The inputs to this recipe are:

1. Functionality of concern, scoped as a set of requirements and/or use cases

Chapter 3 273

2. Design options capable of achieving that functionality

Outputs and postconditions
The primary output of this recipe is an evaluation of alternatives, generally with a single technical

selection identified as the recommended solution. This output is often formatted as a Decision

Analysis Matrix. This matrix is normally formatted something like Table 3.1:

Candidate

Solutions

Solution Criteria Weighted

Total
Power

Consumption

(W1= 0.3)

Recurring

Cost

(W2 = 0.2)

Robustness

(W3 = 0.15)

Development

Cost

(W4 = 0.1

Security

W5 = 0.25)

MoE Score MoE Score MoE Score MoE Score MoE Score

Gigabit

Ethernet

Bus

2 0.6 2.7 0.54 4 0.6 8 0.8 4 1.0 3.54

1553 Bus 3 0.9 4 0.8 10 1.5 1.5 0.15 6 1.5 4.85

CAN Bus 6 1.8 8 1.6 7 1.05 3 .3 1 0.25 5.0

Table 3.1: Example Decision Analysis Matrix

In the table, the middle columns show the optimization criteria; in this case, Power Consumption,

Recurring Cost, Robustness, Development Cost, and Security. Each is shown with a relative

weight (W). This weighting factor reflects the relative importance of that criterion with respect

to the others. It is common, as done in this example, for the weights to be normalized so that

they sum to 1.00. It is also common to normalize the MoE values as well, although that was not

done in this example.

Each of those columns is divided into two. The first is the MoE value for a particular solution,

followed by the MoE value times the weighting factor for that criterion. This is the weighted

Score value in the table for that criterion. Coming up with a good MoE is a key factor in having a

useful outcome for the trade study.

The last three rows in the example are different technical solutions to be evaluated. In this case,

the trade study compares Gigabit Ethernet Bus, 1553 Avionics Bus, and the Control Area Net-

work (CAN) Bus.

Developing System Architectures274

The last column is the weight score for each of the solutions, which is simply the sum of the

weighted scores for the solution identified in that row. The matrix is set up so that the highest

value here “wins,” that is, it is determined to be the best overall solution based on the MoE and

their criticalities.

How to do it
Figure 3.2 shows the basic workflow for performing an architectural trade study. This approach

is useful when you can a relatively small set of alternatives (known as the “trade space”) in the

evaluation. Other techniques are more appropriate when you have a very large trade space. Note

that we will be using SysML parametric diagrams in a specific way to perform the trade study,

and these specific techniques will be reflected in the recipe step details.

Figure 3.2: Perform trade study

Identify key system functions
Key System Functions are system functions that are important, architectural in scope, and subject

to optimization in alternative ways. System functions that are neither architectural nor optimiz-

able in alternative ways need not be considered in this recipe. To be “optimizable in alternative

ways” means:

• At least one criterion of optimization can be applied to this system function

• There is more than one reasonable technical means to optimize the system function

An example of a system function would be to provide motive force for a robot arm. This could be

optimized against different criteria, such as lifecycle cost, reliability, responsiveness, accuracy,

or weight.

Identify candidate solutions
Candidate solutions are the technical means to achieve the system function. In the case of pro-

viding motive force for a robot arm, technical means include pneumatics, hydraulics, and electric

motors. All these solutions have benefits and costs that must be considered in terms of the system

context, related aspects of the system design, and stakeholder needs.

Chapter 3 275

This step is often performed in two stages. First, identify all reasonable, potential technical solu-

tions. Second, trim the list to only those that are truly options for consideration. It is not uncom-

mon for several potential solutions to be immediately dismissed because of technical maturity

issues, availability, cost, or other feasibility reasons. At the end of the step, there is usually a

shortlist of three to ten potential solutions for evaluation.

In SysML, we will model the key system function as a block and will add the assessment criteria

(in the next step) as value properties. The different candidate solutions will be then modeled as

instance specifications of this block with different values assigned to the value property slots.

Although it’s not strictly necessary, we will name the block for each trade study with the name

of the key function being optimized.

Define assessment criteria
The assessment criteria are the solution properties against which the goodness of the solution

will be assessed.

There is a wide variety of potential evaluation criteria, including:

• Development cost

• Lifecycle cost (aka recurring cost)

• Requirements compliance

• Functionality, including:

• Range of performance

• Accuracy

• Performance (execution speed), including:

• Worst case performance

• Average performance

• Predictability of performance

• Consistency of performance

• Dependability, including:

• Reliability

• System safety

• Security

Developing System Architectures276

• Maintainability

• Availability

• Quality

• Human factors, including:

• Ease of use

• Ease of training to use

• Support for standardized work flow

• Principle of “minimum surprise”

• Presence or use of hazardous materials

• Environmental factors and impact, including:

• EMI

• Chemical

• Biological

• Thermal

• Power required

• Project risk, including:

• Budget risk

• Schedule risk

• Technical risk (technology maturity or availability)

• Operational complexity

• Engineering support (tools and training)

• Verifiability

• Certifiability

• Engineering familiarity with the approach or technology

To perform this step, a small, critical set of criteria must be selected, and then a metric must be

identified for each to measure the goodness of the candidate solution with respect to that criterion.

In SysML, we will model these concerns as value properties of the block used for the trade study.

Chapter 3 277

Assign weights to criteria
Not all assessment criteria are equally important. To address that, each criterion is assigned a

weight, which is a measure of its relative criticality. It is common to normalize the values so that

the weights sum to a standard value, such as 1.00.

Define utility curve for each criterion
A utility curve for an assessment criterion defines the goodness of a raw measurement value. The

computed utility value for a raw measurement is none other than the MoE for that criterion. It is

common to normalize the utility curves so that all return values in a set range, say 0 to 10, where

0 denotes the worst case under consideration and 10 denotes the best case.

While any curve can be used, by far the most common approach is a linear curve (a straight line).

Creating a linear utility curve is simple:

• Among the selected potential solutions, identify the worst solution for this criterion and

define its utility value to be 0.

• Identify the best solution for this criterion and define its utility value to be 10.

• Create a line between these two values. That is the utility curve.

The math is very straightforward. The equation for a line, given two points (x1, y1) and (x2, y2),

is simply þ = þ2 2 þ1(ý2 2 ý1) ý +

We have special conditions, such as (worst, 0) and (best, 10), on the linear curve. This simplifies

the utility curve to: þĀþ = 10ĀþĀā 2 ĀĀā āþþ Ā

And: 10
Where:

• best is the value of the criterion for the best candidate solution

• worst is the value of the criterion for the worst candidate solution

Developing System Architectures278

For example, let’s consider a system where our criterion is throughput, measured in messages

processed per second. The worst candidate under consideration has a throughput of 17,000 mes-

sages/second and the best candidate has a throughput of 100,000 messages/second. Applying

our last two equations provides a solution of: 8300 − 170/83

A third candidate solution, which has a throughput of 70,000 messages/second, would then have

a computed MOE score of 6.39, computed from the above equation.

Assign MoE to each candidate solution
This step applies the constructed utility curves for each criterion to each of the potential solutions.

The total weighted score for each candidate solution, known as its weighted objective function, is

the sum of each of the outputs of the utility curve for each assessment criteria times its weight:ℎýĂ ý ýĀ = ∑ ýýÿ(ý Ā) ∗ ℎýÿÿ

That is, for each candidate solution k, we computed its weighted objective function as the sum of

the product of that solution’s utility score for each criterion j times the weight of that criterion.

This is easier to apply than it is to describe.

Perform sensitivity analysis
Sometimes, the MoEs for different solutions are close in value but the difference is not really

significant. This can result when there is measurement error, low measurement precision, or

values are reached via consensus. In such cases, a lack of precision in the values can affect the

technical selection based on the trade study analysis. This issue can be examined through sensitivity

analysis, which looks at the sensitivity of the resulting MoE to small variations in the raw values.

For example, consider the precision of the measurement of message throughput in the example

used earlier. Is the value exactly 70,000, or is it somewhere between 68,000 and 72,000? Would

that difference affect our selection? The sensitivity analysis repeats the computation with small

variations in the value and looks to see if different solutions would be selected in those cases. If

so, closer examination might be warranted.

Determine solution
The recommended solution is simply the candidate solution with the highest value of its com-

puted objective function.

Chapter 3 279

Example
We’ve seen the recipe description in the previous section. Let’s apply it to our system and consider

the generation of pedal resistance in a Pegasus smart bicycle trainer.

Identify key system functions
The key system function for the example trade study is Produce Resistance.

Identify candidate solutions
There are a number of ways to generate resistance on a smart bicycle trainer, and they all come

with pros and cons:

• Wind turbine: A blade turbine that turns based on the power output. Cheap, light, and

resistance increases with speed but in a linear fashion, not closely related to the actual

riding experience where effort increases as a function of velocity cubed.

• Electric motor with flywheel: An electric motor generates resistance. Expensive and

potentially heavy but can produce resistance in any algorithmically defined way.

• Hydraulic with flywheel: Moving fluid in an enclosed volume with a programmatically

controlled aperture to generate resistance. The heaviest solution considered but provides

smooth resistance curves.

• Electrohydraulic: Combining the hydraulic approach with an electric motor to simulate

inertia. This solution is available as a pre-packaged unit for easy installation.

Define assessment criteria
There are many factors to consider when selecting a technology for generating resistance:

• Accuracy: This criterion has to do with how closely and accurately resistance can be

applied. This is very important to many serious cyclists. This is a measured boundary

of error in commanded wattage versus actual wattage. As this is a measure of deviation,

smaller values are better.

• Reliability: This is a measure of the availability of services, as determined by Mean Time

Between Failure (MTBF), as measured in hours. Larger numbers are better because they

indicate that the system is more reliable.

• Mass: The weight of the system increases the cost of shipping and makes it more difficult

for a home user to move and set up the system. Smaller numbers are better for this metric.

• Parts Cost: This is a measure of recurring cost, or cost-per-shipped system. Smaller values

are better.

Developing System Architectures280

• Rider Feel: This is a subjective measure of how closely the simulated resistance matches

a comparable situation on a road bike. This is particularly important in the lower power

generation phase of the pedal stroke as well as for simulating inertia over a longer time-

frame for simulated climbing and descending. This will be determined by conducting an

experiment with experienced cyclists on hand-built mock-up prototypes over a range of

fixed resistance settings and then averaging the results. The scale will be from 0 (horrible)

to 100 (fantastic); larger numbers are better.

For this example, Table 3.2 summarizes the values for the criteria for the four candidate solutions:

Candidate Solution Accuracy (±

watt)

Reliability MTBF

(hour)

Mass (kilograms) Parts Cost

($US)

Rider Feel

(survey, out

of 100)

Hydraulic 5 4,000 72 800 80

Electric 1 3,200 24 550 95

Electrohydraulic 2 3,500 69 760 92

Wind Turbine 10 6,000 13 375 15

Table 3.2: Properties of candidate solutions

For our proposed GenerateResistance_TradeStudy block, these properties are modeled as value

properties, as shown in Figure 3.3. Note that we added units such as US_dollars and MTBF_Hours

following the data schema recipe from the previous chapter. Mass[kilogram] is already provided

as units in the Cameo SysML SI Units model library. I also created a block to hold the worst-case

value for each criterion from all the candidate solutions and another to hold the best case. We

will use these values later in the evaluation of the utility curves:

Chapter 3 281

Figure 3.3: Example block and value properties for a trade study

Assign weights to criteria
In our example, we’ll make the weights as follows:

• Accuracy: 0.30

• Mass: 0.05

• Reliability: 0.15

• Parts Cost: 0.10

• Rider Feel: 0.25

The weights will be reflected in a parametric constraint block (see Figure 3.4) for use in compu-

tation:

Figure 3.4: Objective function as a constraint block

Developing System Architectures282

This constraint block will be used to generate the overall goodness score (known as the objective

function) of the candidate solutions.

Define utility curve for each criterion
In the approach we’ll take here for determining the utility curves, we need to know the best and

worst possible values for each of the criteria. As shown in Figure 3.3, GR_Best has all the value

properties of GenerateResistance_TradeStudy but has the best values of any of the considered

solutions defined as the default value of the value property. For example, GR_Best::Accuracy has

a default value of 1 because ± 1 watt error is the best of any solution begin considered; similarly,

GR_Best::Reliability has a default value of 6,000 because that’s the best of any solution under

consideration. GR_Worst has the worst case values; GR_Worst::Accuracy has a default value

of 10 because a ± 10 watt error is the worst case in the trade study, and GR_Worst::Reliability =

3,200, the lowest MBTF of any proposed solution.

Now that we have our data, we can create the utility curves. In this example, we will use a linear

curve (i.e. a straight line) for each criterion’s utility curve. To assist in the computation, we will

define a LinearUtilityCurve constraint block that constructs such as curve for us and incorporates

the assumptions that the worst input should have a utility function value of 0 and the best input

should have an output value of 10. This constraint block is shown in Figure 3.5:

Figure 3.5: Linear utility curve

In this constraint block, the worst and best inputs are used to construct the slope and intercept

of the utility curve for that criterion; the inputValue constraint parameter is the value of that

criterion for the selection under evaluation; the resulting utilityValue is the value of the utility

curve for the input value. Since we have five criteria, we must create five constraint properties

from this constraint block, one for each utility function.

Chapter 3 283

Assign MoE to each candidate solution
In our example, this results in four instance specifications that have values corresponding to these

MoEs. For this purpose, let’s assume that Table 3.2 represents the raw measured or estimated

values for the different criteria for the different solutions.

We then create a set of instance specifications that provide those specific values:

Figure 3.6: Instance specifications for trade study

We can now add the parametric diagram to the Generate Resistance TradeStudy Pkg; this will

create a new block (with the same name as the package). Into this diagram we will drag the

GenerateResistance_TradeStudy, GR_Worst, and GR_Best blocks, and connect the value prop-

erties to multiple occurrences of the LinearUtilityCurve constraint block. This results in Figure

3.7. While Figure 3.7 looks complex, it’s really not, since it just repeats a simple pattern multiple

times. Cameo’s parametric equation wizard makes connecting the constraint parameters simple:

• The GeneralResistance_TradeStudy block is shown with value properties representing

the criteria of concern.

• In the middle, each criterion is represented by a LinearUtilityCurve constraint property

connected to its source value property and to the corresponding input in the itsWeight-

edUtilityFunction constraint property.

Developing System Architectures284

• Additionally, relevant value properties for GR_Best and GR_Worst provide necessary

information for the construction of each utility curve.

• The final computed ObjectiveFunction value then gives us the overall weighted score for

a selected solution. It has a binding connector back to the GenerateResistance_Trade-

study::goodness value property for storing the result of the computation.

Figure 3.7: Complete parametric diagram

To perform the computations, simply compute the equation set for each instance specification.

Cameo supports this computation with its Simulation Toolkit plugin. To do this, run the sim-

ulation toolkit; it precomputes the values. Drag each of the instance specifications from Figure

3.6, one at a time, drop them on the GenerateResistance_Tradestudy part in the variables area

of the simulation toolkit window, and look at WeightedObjectiveFunction.ObjectiveFunction

to get the computed goodness of the solution.

Figure 3.8 shows the output from the simulation toolkit when you drag and drop the Wind Tur-

bine instance specification on the :GenerateResistance_Tradestudy part. The goodness value

property is updated with the computed value resulting from the evaluation of the parametric

diagram for this case:

Chapter 3 285

Figure 3.8: Evaluating the trade study

You can save this resulting set of instance values by selecting the part in the Variables area,

right-clicking and selecting Export value to > New Instance. If you do this for all cases, you can

construct the instance table in Figure 3.9:

Figure 3.9: Instance table for trade study

You can see that the Electric_Solution has the highest goodness score, so it is the winner of the

trade study.

Perform sensitivity analysis
No sensitivity analysis needs to be performed on this analysis because the electric solution is a

clear winner by a wide margin.

Developing System Architectures286

Determine solution
In this case, the electric motor wins the trade study because it has the highest computed weighted

objective function value.

Architectural merge
The recipes in the previous chapter all had to do with system specifications (requirements). Those

recipes create specifications in an agile way, using epics, use cases, and user stories as organizing

elements. One of the key benefits of that approach is that different engineers can work on different

functional aspects independently to construct viable specifications for the system. A downside

is that when it comes to creating architecture, those efforts must be merged together since the

system architecture must support all such specification models.

What to merge?
During functional analysis, various system properties are identified. Of these, most should end

up in the system architecture, including:

• System functions

• System data

• System interfaces

Issues with merging specifications into a singular architecture
Merging specifications into an architecture sounds easy, right? Take all the features from all the

use case analyses and copy them to the system block and you’re done. In practice, it’s not that

easy. There are several cases that must be considered:

• The feature is unique to one use case

• The feature occurs in exactly the same form in multiple use cases

• The feature has different names in different use cases but is meant to be the same feature

• The feature has the same name and form in different use cases but is intended to be a

semantically distinct feature

• The feature occurs in multiple use cases but is different in form:

• Same name, different properties

• Different name, different properties, but nevertheless still describes the same

feature

Chapter 3 287

In this discussion, the term property refers to aspects such as structuring, argument or data type,

argument order, feature name, type of service (event reception or operation), and metadata such

as extent, units, timeliness, dependability, and precision.

As an aside, we should copy the features to the system block rather than move or reference them

because we want to preserve the integrity of the use case analysis data. This allows us to come

back later and revisit the use case models and modify them, if the stakeholder need to change or

evolve. This does mean some additional work to maintain consistency, but it can save significant

time overall.

Cases 1 and 2 are trivially simple; just add the feature to the system block. The other cases require

some thought. Although trivial might be an overstatement for interfaces since they reference the

local sandbox proxies for the actual actors rather than the actors themselves, so some cleanup is

required to deal with that. This recipe will address that concern.

In a traditional V lifecycle, this merge takes place a single time, but in an agile approach it will

be applied repeatedly, typically once per iteration. Our approach supports both traditional and

agile lifecycles.

Purpose
The purpose of the recipe is to incorporate system features identified during functional analysis

into our architectural model.

Inputs and preconditions
Analysis is complete with at least two use cases, including the identification and characterization

of system functions, system data, and system interfaces relevant to the use cases.

Outputs and postconditions
A system block is identified that contains the relevant system properties identified in the incor-

porated use cases.

How to do it
While non-trivial, the recipe for merging use case features into the architecture is at least straight-

forward (Figure 3.10).

Developing System Architectures288

Please note that this can be done once, as it would be in a traditional V lifecycle, or iteratively, as

would be done in an agile approach:

Figure 3.10: Architectural merge workflow

Create system context
The system context includes a block denoting the system of concern and its connection to the

actors in the environment with which it interacts. This is normally visualized as a “context dia-

gram,” a block definition diagram whose purpose is to show system context. We call this BDD the

system type context. In addition, we want to show how the system block connects to the actors.

This is shown as an internal block diagram and is referred to as the system connected context.

Chapter 3 289

Copy system functions from use cases to system block
During use case analysis, use case blocks are created and elaborated. The primary reasons this

is done is to 1) create high-quality requirements related to the use case, 2) identify the relevant

actors for the use case, and 3) characterize system features necessary to support the use case. This

latter purpose includes the identification of system data elements (represented as value properties

and blocks and is detailed in the use case logical data schema), system functions (represented as

actions executed in operations and signal receptions), and system behaviors (represented using

activity, sequence, and/or state machines). This step copies the operations and signal receptions

from the use cases to the system block. It is important to note that this must be a deep copy; by

that, I mean that any references to types should refer to types defined in the architecture not the

original types in the use case package.

Resolve system function conflicts
As discussed earlier in the recipe description, there are likely to be at least some conflicts in the

system functions coming from different use cases. These can be different operations that are

meant to be the same, or the same operation meant to do different things. These cases must be

resolved. For the first case – different operations meant to be the same thing – a single operation

should generally be created that meets all the needs identified in the included use cases. This

includes their inputs, outputs, and functionality. For the second case – the same operation meant

to do different things – it is a matter of replicating the conflicting functions with different names

to provide the set of required system behaviors. In both cases, the hard part is identifying which

is which.

Copy system data from use cases to system block
This step copies the data elements from the various use cases to the system block, including the

value properties of the use case and the data schema that defines the data relations. Remember,

however, that if we just copy the operations, the input and output parameters of the functions

will refer to the original model elements in the use case packages.

Certain features may have been added to the use case block for purposes other

than specification, such as to support simulation or to aid in debugging the use

case analysis. Such features should be clearly identified; I recommend creating a

«nonNormative» stereotype to mark such features for just this purpose. Non-nor-

mative features need not be copied to the system block, since they do not levy re-

quirements or constraints on the system structure or behavior.

Developing System Architectures290

As a part of this step, we must update the system functions to refer to our newly copied data

elements. I refer to this as a deep copy. As noted in the paragraph on copying functions, non-nor-

mative value properties and data need not be copied to the architecture.

Resolve system data conflicts
The same kinds of conflicts that occur with copying the system functions can also occur with

system data. This step identifies and resolves those conflicts.

Copy interfaces from use cases to system block
As a part of use case analysis, interfaces between the use case and the actors are defined. They

need to be copied to the architecture as well.

Update interfaces to refer to copied system functions
As with the copied functions and data, the interfaces will also refer to their original referenced

elements back in the use case analysis packages. These references must be updated to point to the

copied system features in the architecture, taking into account that conflicts have been resolved,

so the function names and parameters list are likely to have changed.

Update interfaces to refer to copied systems data
The interfaces can refer to data either as flow properties or as parameters on the functions within

the interface. This step resolves those references to the architectural copies of those data elements

as updated as a solution of the “resolve conflicts” step before.

Merge all interfaces for each actor
Actors interact with multiple use cases. This means that different interfaces relating to the same

actor will be copied over from the use cases to the system architecture. Commonly, the set of

interfaces from the use cases to the actor are merged into a single interface between the system

and that actor. However, if an interface from the system to an actor is particularly complex, it

might result in multiple interfaces supporting different kinds of services.

Example
In this example, we will use some of the use cases we analyzed in Chapter 2, System Specification:

• Control Resistance

• Emulate Basic Gearing

Chapter 3 291

• Emulate Front and Rear Gearing

• Measure Performance Metrics

Create system context
The system type context can be shown in a couple of ways. Figure 3.11 shows one way:

Figure 3.11: System type context as a block definition diagram

I created the stereotype «actor block» for blocks specifically representing actors because in

Cameo, actors cannot have ports. The «represents» stereotype of dependency is used to explicitly

relate the actor blocks and the actors. The «system» stereotype is from Cameo’s SysML profile in

SysML::Non-Normative Extensions::Blocks package.

And – as I plan to use ports for actual connections – it can also be shown in an IBD, as in Figure 3.12.

Developing System Architectures292

This shows the system connected context and focuses on how the system and the actors connect

to each other:

Figure 3.12: System connected context as internal block diagram

Copy system functions from use cases to systems block
To illustrate this, Figure 3.13 shows a block definition diagram with all the included use cases (as

use case blocks) with their system functions and value properties and up-to-date Pegasus block:

Chapter 3 293

Figure 3.13: Use case block features to copy

It is important to perform a deep copy of the elements. Operations, signal receptions, flow, and

value properties may reference types that are defined in the use case packages. This also includes

reference and part properties owned by the copied elements. Simply copying the owning element

doesn’t change that. We need to update the copy to point to the copied types as well.

Similarly, signal receptions will specify a signal that they receive, which is located in the use

case packages. These signal receptions must be updated to reference the new copy of the signal

in the architecture.

Developing System Architectures294

Figure 3.14 illustrates the problem:

Figure 3.14: The problem with copy

The signal reception evSendPerformanceData is copied from the ucMeasure Performance Metrics

block to the Pegasus block. If we look at the specification of the signal reception, we see that it ref-

erences the signal back in the use case package FunctionalAnalysisPkg::Measure Performance

Metrics Pkg. Further, it carries a parameter, pd:Ride Performance Data, and that block defining

the parameter is, once again, located back in the use case package. Since we are doing an archi-

tectural merge that includes both data and signals, these references must be updated to point to

those elements in the architectural packages, as shown in Figure 3.15:

Chapter 3 295

Figure 3.15: Updated copies to local referents

These copy updates aren’t difficult to do, although it can be a bit time-consuming.

Resolve system function conflicts
As you can see in Figure 3.13, the system block must merge a large number of functions. For

the most part, there is no conflict; either the system functions are unique, such as Uc_

MeasurePerformanceMetrics::send performance data() or they do the same thing in every

usage. Nevertheless, a detailed inspection uncovers a few cases that must be considered.

Developing System Architectures296

For example, consider Uc_EmulateBasicGearing::changeGear(newGear: Real) and related

functions like checkGearing(gear: Real) and the event ChangeGear(new gear: Real). These

all have to do with the emulation of basic gearing. How do those functions relate to the specific

front and rear gearing functions of the use case Emulate Front and Rear Gearing, such as

selectGear(front: Unlimited Natural, rear: Unlimited Natural), augmentFrontGear(),

augmentRearGear(), decrementFrontGear(), and decrementRearGear?

It could be that the changeGear function is called by the more specific functions that set the

gearing for the front and rear chain rings, but does the training app need both the gearing (in

gear-inches) and the currently selected front and rear? Gearing is a function of not only the gear

ratio between the front and rear chain rings but also the wheel size, which the training app may

not know. If the training app uses the current front and rear as a display option for the rider,

does it still need the gearing value? Probably not, since the system itself calculates metrics such

as power, speed, and incline, not the training app. In this case, it is enough to send the gearing

event to the training app.

There is some subtlety in the various system functions and events. For example, the training

app sends the event triggering the Uc_MeasurePerformanceMetrics::reqStartRide() event

reception to indicate that it is ready to begin the ride and therefore ready to receive incoming

data, while Uc_EmulateFrontandRearGearing::evBeginRiding() event reception is triggered

by an event sent from the rider and not the training app. This points out just how important it

is for every important system property to have a meaningful description! It would be very easy

to get these events confused.

Copy system data from use cases to systems block
In addition to showing the system functions to copy, Figure 3.13 also shows the data, as value

properties, to copy as well.

Resolve system data conflicts
Just as with the system functions, the data copies over without issue, but there are a few ques-

tions to resolve. Uc_EmulateFrontandRearGearing::gearInches: Real is the gearing ratio

computed as a function of front and rear chain rings and wheel size. This is the same as Uc_

ControlResistance::gearRatio: Real, so they can be merged into a single feature. We will use

gearRatio: Real for the merged value property.

Chapter 3 297

Copy interfaces from use cases to systems block
A number of interfaces were produced in the merged use case analyses. To start with, we will copy

not only the interfaces themselves but also the events and any data types and schema passed as

arguments for those events.

Figure 3.16 shows the copied interfaces in three different browsers, each showing different kinds

of elements. The one on the left shows the interface blocks copied over and exposes their opera-

tions and flow properties. The middle browser shows (most of) the events copied over. The one

on the right shows the copied data elements:

Figure 3.16: Interfaces copied to the architecture

Update interfaces to refer to copied system functions
The copied interfaces refer to events back in the originating use case analysis packages. In our

use case analyses, we followed the convention that all services in these interfaces are modeled as

event receptions, so we can limit our focus to ensure that the interface blocks refer to the event

definitions in the architecture rather than to their definition in their original source, the use case

analysis packages.

Update interfaces to refer to copied systems data
The system functions and event receptions of the Pegasus system block must all refer to the

copied data types, not the original data types. This is also true for any flow properties in the

interface blocks.

Developing System Architectures298

In this particular case, there is no use for user-defined types in the interfaces, so the data refer-

ences are fine without changes.

Merge all interfaces for each actor
The last step in the recipe is to create the interfaces for the actors. In the previous chapter, we

created interfaces not to the actors themselves during use case analysis but rather to blocks meant

to serve as local stand-ins for those actors. The naming convention for the interfaces reflects that

choice. For example, the interface block iUc_EmulateBasicGearing_aEBG_Rider is an interface

between the use case EmulateBasicGearing and its local proxy for the Rider actor, aEBG_Rider.

In this way, we can see which interfaces to merge together. All interfaces that contain a…Rider

should be merged into an iPegasus_Rider interface. A similar process is followed for each of

the other actors. This is because the system architecture must merge all the interfaces referring

to the same actor. At the end, we’ll have an interface for each actor that specifies the interface

between the system and the actor.

When it’s all said and done, Figure 3.17 shows the merged interfaces. Additional actors and in-

terfaces may be uncovered as more use cases are elaborated, or they will be discovered as system

design progresses:

Figure 3.17: Merged system interfaces

Chapter 3 299

Pattern-driven architecture
Design patterns are “generalized solutions to commonly occurring problems,” (Design Patterns

for Embedded Systems in C, by Bruce Douglass, Ph.D. 2011). Let’s break this down.

First, a design pattern captures a design solution in a general way. That is, the aspects of the

design unique to the specific problem being solved are abstracted away, leaving the generally

necessary structures, roles, and behaviors. The process of identifying the underlying conceptual

solution is known as pattern mining. This discovered abstracted solution can now be reapplied

in a different design context, a process known as pattern instantiation. Further, while each de-

sign context has unique aspects, design patterns are appropriate for problems or concerns that

reappear in many systems designs.

To orient yourself to work with design patterns, you should keep in mind two fundamental truths:

• Design is all about the optimization of important properties at the expense of others (see

the previous recipe about trade studies at the start of this chapter).

• There are almost always many different solutions to a given design problem.

With many design solutions (patterns) able to address a design concern, how is one to choose?

Simple – the best pattern is the one that solves the design problem in an optimal way, where

“optimal” means that it maximizes the desired outcomes and minimizes the undesired ones.

Typically, this means that the important Qualities of Service (QoS) properties should be given

a higher weight than those properties that are less important. A good solution, therefore, solves

the problem by providing the desired benefits at a cost we are willing to pay. This is often deter-

mined via a trade study.

Dimensions of patterns
Patterns have four key aspects, or dimensions:

• Name: The name provides a way to reference the pattern independent of its application

in any specific design.

• Purpose: The purpose of the pattern identifies the design problem the pattern addresses

and the necessary design context preconditions necessary for its use.

• Solution: The solution details the structural elements, their collaboration roles, and their

singular and collective behavior.

Developing System Architectures300

• Consequences: The pattern consequences highlight the benefits and costs from the use

of the pattern, focusing on the design properties particularly optimized and deoptimized

through its use. This is arguably the most important dimension because it is how we will

decide which pattern to deploy from the set of relevant patterns.

Pattern roles
Structural roles are fulfilled by the structural elements (blocks) in systems engineering. A role

can be defined as the use of an instance in a context. Design patterns have two broad categories

of roles. The first is as glue. Roles of this type serve to facilitate and manage the execution of the

collaboration of design elements of which the pattern is a part.

The second category is as a collaboration parameter. Design patterns can be described as param-

eterized collaborations. The parameterized roles are placeholders that will be replaced by specific

elements from your design. That is, some design elements will be substituted for these roles

during pattern instantiation; design elements substituting for pattern parameters are known as

pattern arguments. Once the pattern is instantiated, the glue roles will interact with the pattern

arguments to provide the optimized design solution.

Patterns in an architectural context
Architecture is design writ large. Architectural design choices affect most or all of the system and

all more detailed design elements must live within the confines of the architectural decisions. As

we said in the lead-in to this chapter, we are focused on six key views of architecture: subsystem

and component view, concurrency and resource view, distribution view, data view, dependability

view, and deployment view. Each of these views of architecture has its own rich source of design

patterns. A system architecture is a set of architectural structures integrated with one or more

patterns in each of these views.

This recipe will provide a workflow for the identification and integration of a design pattern in

general; later recipes will use this pattern to address their more specific concerns.

For further information, please see Real-Time Design Patterns by Bruce Douglass,

Ph.D. 2011 or Pattern-Oriented Software Architecture Volume 1: A System of Patterns by

Bushmann, Meunier, Rhnert, Sommerlad, and Stal 1996.

Chapter 3 301

Purpose
The purpose of design patterns is twofold. First, design patterns capture good design solutions so

that they can be reused, providing an engineering history of good design solutions. Secondly, they

provide a means by which designers can reuse existing design solutions that have proven useful.

Inputs and preconditions
The fundamental precondition for the use of design patterns is that there is a design problem to

be solved, and some design elements have been identified.

Outputs and postconditions
The primary output of the application of design patterns is an optimized collaboration solving

the design solution.

How to do it
The use of design patterns is conceptually simple, as can be seen in Figure 3.18. This simple flow

somewhat belies the difficulty of good design because a good design generally has several inter-

connected patterns working together to optimize many aspects at once:

Figure 3.18: Apply design Patterns

Developing System Architectures302

Define design context
This step is generally a matter of defining essential elements of the design (sometimes known

as the analysis model) without optimization. This includes the important properties including

value properties, operations, state behavior, and relations. A general guideline I use is that this

design context is demonstrably functionally correct, as demonstrated through execution and

testing, before optimization is attempted. Optimizing too soon (i.e. before the design context is

verified) generally leads to bad outcomes.

Determine design problem to solve
During the development of the design context, it is common to uncover a design issue which im-

pacts the design qualities of services, such as performance, reusability, safety, or security. These

design issues have often been solved before by other designers in many different ways.

Select potential pattern solutions
This step involves reviewing the pattern literature for solutions that other designs have found

to be effective. A set of patterns is selected from the potential solution candidates based on their

applicability to the design issue at hand, the similarity of purpose, and the aspects of the design

that they optimize.

Perform trade study of pattern solution
Earlier in this chapter, we highlighted a recipe called Architectural Trade Studies. In some cases, a

full-blown trade study may not be called for, but in general, this step of the recipe selects from

a set of alternatives, which is what a trade study does. The observant reader will note that the

icon used in Figure 3.18 for this step is a call behavior, which is a formal use of the earlier recipe.

Instantiate selected pattern
Once a pattern is selected, it must be instantiated. This is largely a matter of creating the structural

and behavioral elements of the pattern and making small changes to some of the existing design

elements to make them proper arguments for the design pattern parameters (aka refactoring).

Validate design solution
Once the pattern is instantiated, it must be examined for two things. First, before the pattern was

instantiated, the design collaboration worked, albeit suboptimally (Step 1: Define design context).

We want to verify that we didn’t break it so that it no longer works. Secondly, we applied the

design pattern for a reason – we wanted to achieve some kind of optimization.

Chapter 3 303

We must verify that we have achieved our optimization goals. If we have not, then a different

pattern should be used instead or in addition to the current pattern. Patterns can be combined

to provide cumulative effects in many cases.

Example
In this example, we will take a non-architectural design context. Later examples will apply the

recipe to the Pegasus architecture for specific views of architecture.

Define design context
In this example, let’s consider a part of the internal design that acquires measured ride data from

the power and pedal position sensors. See Figure 3.19:

Figure 3.19: Design collaboration (pre-pattern)

The design collaboration shows three device drivers: two for rider power (left and right sensors)

and one for the pedal position for determining pedal cadence.

The Rider Power block gets the data from the two Power Sensor instances and aggregates it,

Developing System Architectures304

along with the current time into a Measured Power block that includes left and right power, the

average of those two values, the time-averaged power, and a time stamp. The Rider Cadence

block gets the pedal position and, using the real-time clock, can determine cadence. The Ride

Data block then aggregates this data into an ordered collection Ride Datum constituting the

information about the ride. The actual design incorporates much more computed data, such as

computed speed and distance, but we’ll ignore that for now.

Determine design problem to solve
Some design optimization questions arise.

What’s the best way to get the data from the sensors in a timely way? It must be sampled fast

enough so as not to miss peak power and cadence spikes (riders love that kind of data) and the

data from the two different sources must be synchronized in terms of when they are measured.

On the other hand, sampling at too high a rate requires more data storage and could limit the

length of rides that can be recorded and stored.

Further, note the existence of multiple clients for the real-time clock. Is having all the clients

request the current time the best approach?

Select potential pattern solutions
Let’s consider three design patterns that address the concern of getting data in a timely manner

(from the author’s Design Patterns for Embedded Systems in C, 2011): the Interrupt Pattern, Opportu-

nistic Polling Pattern, and Periodic Polling Pattern. The first creates an interrupt driver that notifies

the clients when data becomes available. The second pattern requires the client to poll the data

sources when it gets a chance. The last pattern is a modification of the second pattern in which

the client is notified, via a timer interrupt, when it should go poll the data.

Chapter 3 305

Figure 3.20 shows the Interrupt Polling Pattern. It is conceptually very simple: an interrupt handler

installs a set of interrupt handler functions by first saving the old address in the interrupt vector

table for the selected interrupt, and then it puts the address of the desired interrupt handler in its

place. Later, when that interrupt occurs, the CPU invokes the selected interrupt handler function.

There are some subtleties of writing interrupt handlers, but that’s the basic idea:

Figure 3.20: Interrupt pattern

Figure 3.21 shows the Opportunistic Polling Pattern. It works by having a Client, on whatever

criteria it decides to use, invoke the OpportunisticPoller::poll() function.

Developing System Architectures306

The OpportunisticPoller then gets data from all the devices it polls (defined by NUM_POLL_

DEVICES) and returns it to the Client. Easy peasy:

Figure 3.21: Opportunistic polling pattern

Chapter 3 307

Figure 3.22 shows a specialized form of the previous pattern called the periodic polling pattern.

In this pattern, the polling is driven by a timer; PeriodicPoller initializes and sets up the timer,

which then invokes it with the specified period (ms are used here, but finer-grained polling can

be supported with appropriate hardware resources):

Figure 3.22: Periodic polling pattern

Developing System Architectures308

The consequences of the patterns are summarized in Table 3.3:

Pattern Pros (Benefits) Cons (Costs)

Interrupt • Highly responsive to

incoming data events

• Can lead to data corruption

unless interrupts are

disabled during interrupt

processing

• Can lead to data loss if the

interrupt handler takes too

long

• Can lead to processing

starvation if data arrival is

too frequent

Opportunistic Polling • Simple implementation

• Efficient use of processor

resources since data

is acquired when the

processor is otherwise idle

• No timeliness guarantee

• Slow polling can lead to data

loss

• Less responsive to incoming

data

• Data can be corrupted if

interrupts are not disabled

during polling

Periodic Polling • Relatively simple

implementation

• Period is tunable for data

arrival frequency

• Data can be lost if the polling

period is too long

• Processing starvation can

occur if the frequency is too

high

• Handling timer interrupt

must be short or it can lead

to data loss

• Data can be corrupted if

interrupts are not disabled

during polling

Table 3.3: Design patterns for timely data acquisition

Chapter 3 309

Perform trade study of pattern solution
I won’t detail the process of conducting the trade study but instead provide a summary in Table

3.4. In this trade study, the Periodic Polling Pattern is selected:

Pattern Criteria Total

Weighted

Score
Simplicity

(W1 = 0.1)

Avoid Data Loss

(W2 = 0.7)

Resource Efficiency

(W3 = 0.2)

MoE Score MoE Score MoE Score

Interrupt 4 0.4 6 4.2 6 1.2 5.8

Opportunistic Polling 6 0.6 3 2.1 2 0.4 3.1

Periodic Polling 2 0.2 6 4..2 8 1.6 6

Table 3.4: Results of the trade study

The results in the table show that the Periodic Polling Pattern is selected as the best fit for our design.

Instantiate selected pattern
The next step is to instantiate the pattern. Conceptually, this is a matter of replacing the param-

eters of the pattern with design elements. In practice, this is often done via specialization of the

parameters, so the design classes now inherit the structure and behavior required to integrate

into the pattern. Additionally, there may be some small amount of reorganization (known as

refactoring) such as the removal or modification of relations in the pre-pattern collaboration.

Figure 3.23 shows the instantiated design pattern. I’ve added colored shading to the pattern

elements to highlight their use. The RiderData block subclasses the PeriodicPoller block; the

RiderCadence and RiderPower both subclass the Device block. I’ve also elected to show the

inherited features in the updated design blocks (indicated with a caret, ^). Those inherited op-

erations will be implemented in terms of the existing functions within those specialized blocks.

Further, the inherited data elements will not be used; the original data elements from the design

elements will be used in their stead.

Note also that the original relations between RideData and RiderCadence and RideData and

RiderPower have been deleted and subsumed by the single relation from RideData to Device;

this relation applies to both RiderCadence and RiderPower since the latter two blocks are sub-

types of Device.

Developing System Architectures310

In this case, NUM_POLL_DEVICES is 2. As mentioned previously, this change falls under the heading

of refactoring:

Figure 3.23: Instantiated design pattern

Validate design solution
At this point, we reapply the test cases used to verify the collaboration previously and additionally

look to ensure our objectives (as stated by the trade study criteria) have been addressed.

Subsystem and component architecture
The Subsystem and Component Architecture view focuses on the identification and organization

of system features into the largest-scale system elements – subsystems – their responsibilities,

and their interfaces. In the Architectural merge recipe, we learned how the system features may be

aggregated into a singular system block and to create merged interfaces and associated logical

data schema. In this recipe, we’ll look at how to identify subsystems, allocate functionality to

those subsystems, and create subsystem-level interfaces.

So, what’s a subsystem?

We’ll use the definition from Agile Systems Engineering (see Agile Systems Engineering by Bruce

Douglass, Ph.D., Morgan Kaufman Press, 2016):

Chapter 3 311

Note that the definition includes the notion of a subsystem being interdisciplinary. This means

that you will not define a “software subsystem,” an “electronics subsystem,” and a “mechanical

subsystem,” although in a particular subsystem, one engineering discipline may dominate the

design. Rather, subsystems are focused around tightly coupled requirements and coherent pur-

pose and then implemented with some combination of engineering disciplines. The engineering

contribution of an engineering discipline to a subsystem is referred to as a facet to distinguish it

from subsystems and components. Discipline-specific facets are discussed in Chapter 4, Handoff

to Downstream Engineering.

Modeling a subsystem in SysML
In SysML, a subsystem is just a block, although it is common to add a «Subsystem» stereotype. This

can be found in the Cameo SysML library in the SysML::Non-Normative Extensions::Blocks

package. It is common – although by no means required – to connect subsystems together by

adding connectors between ports on the subsystems. In this book, we will use SysML proxy ports

for that purpose.

More specifically, we will use proxy ports for dynamic connections, that is, connections that require

the exchange of flows, such as control, energy, fluid, or data, whether discrete or continuous. For

static connections, such as when mechanical pieces are bolted together, we will use associations

between the blocks and direct connectors between the parts.

Block definition diagrams will be used to show the subsystem types and properties. This view

is known as the system composition architecture. Internal Block Diagrams will show how the

usages of the blocks are connected together to create an operational, running system. This latter

view is sometimes known as the system connected architecture.

Choosing a subsystem architecture
It is important to remember that many subsystem architectures can achieve the same system-level

functionality. The selection of a specific subsystem architecture is always an optimization decision.

Subsystem: An integrated interdisciplinary collection of system components that

together form the largest-scale pieces of a system. It is a key element in the Subsystem

and Component Architecture of the system.

Developing System Architectures312

Some of these optimization criteria are typically stated as “guidance” or “rules of thumb,” but

they are really stating properties you’d like a good subsystem architecture to enhance. Some goals

and principles for the creation of good subsystems are:

• Goals of subsystem and component architecture:

• Reuse proven subsystem architectural approaches (patterns)

• Support end-to-end performance needs easily

• Minimize system recurring cost (cost per shipped system)

• Maximize ease of maintenance

• Minimize the cost of repair

• Leverage team skills

• Leverage existing technology and intellectual property (IP)

• Principles of subsystem and component architecture selection:

• Coherence: Subsystems should have coherent intent and content

• Contractual interaction: Subsystems should provide a small number of well-de-

fined interfaces and services

• Encapsulation: Tightly-coupled requirements and features should be in the same

subsystem

• Collaboration: Loosely-coupled requirements and features should be in different

subsystems

• Integrated teams: A subsystem is typically developed by a well-integrated inter-

disciplinary team

• Reusability: Good subsystems can be reused in other, similar systems without

requiring other contextual elements

Purpose
The purpose of creating this architectural view is to identify the subsystems and their responsi-

bilities, features, connections, and interfaces. This provides a large-scale view of the largest-scale

pieces of the system into which more detailed design work will fit.

Inputs and preconditions
The inputs include a set of requirements defining the overall system functionality. It is recom-

mended that these requirements are organized into use cases, but other organizations are possible.

Chapter 3 313

This input is a natural consequence of the recipes of Chapter 2, System Specification.

Additionally, the set of external actors – elements outside the system with which the system

must interact – have been defined. This input is a natural consequence of the recipes of Chapter

2, System Specification.

Finally, an initial set of system functions, flows, and information has been identified through

requirements or use case analysis and merged into a system block via the Architectural merge

recipe or its equivalent.

Outputs and postconditions
At the end of this recipe, a set of subsystems have been identified, including their key system

functions, data, and interfaces.

How to do it
The recipe workflow is shown in Figure 3.24:

Figure 3.24: Create subsystem and component architecture

Developing System Architectures314

Groups systems functions and data into coherent sets
This task groups system features together by commonality. That commonality can be along dif-

ferent dimensions, such as a common flow source (sensors or system inputs), similar processing/

transformation, similar use, reuse coherence (things that tend to be reused together), and de-

pendability level (high-security or high-safety features tend to be grouped together).

These sets form the basis on which subsystems can be identified.

Review potential architectural patterns
As mentioned, there are many ways of organizing subsystems. The book, Real-Time Design Patterns

by Bruce Douglass, Ph.D., Addison-Wesley Press (2003) identifies a number of popular subsystem

patterns, such as the Microkernel, Layered, and Hierarchical Control patterns. Select one or more

patterns that have the desired system properties.

Select a subsystem and component architectural pattern
This step is actually a reference to the Pattern-driven architecture recipe. This recipe details how

to quantitatively select from a set of alternative technical approaches.

Assign each subsystem a mission statement
Once a set of subsystems is identified, each should be given a description that identifies the criteria

for deciding whether or not it should host or contribute to a system capability.

Allocate requirements, data, and system features to subsystems
This step allocates system functionality, flows, and data to the subsystems. This is sometimes a

little tricky and so is implemented by the next recipe in the book, Architectural allocation.

Chapter 3 315

Create subsystem interfaces
System functionality will be provided by a collaboration of subsystems, and this requires those

subsystems to communicate and coordinate. The subsystem interfaces specify the services and

flows that will be used to accomplish this. They often tie in with the system-actor interfaces at

one end or the other, but not necessarily. The system interfaces are created by the recipe Specifying

logical system iInterfaces in the previous chapter.

Validate architecture
This step examines the resulting subsystem architecture to ensure that it can deliver the nec-

essary system functionality and also that it achieves the optimization goals used to select the

subsystem pattern.

Example
In this example, we’ll create an architecture for the Pegasus system based on some of the use cases

considered in previous recipes, such as Emulate Front and Rear Gearing, Control Resistance,

Measure Performance Metrics, and Manually Adjust Bike Fit.

Groups systems functions and data into coherent sets
The functionality of the system can be grouped by common purpose and capability. A good way

to do this is by looking at the system use cases, as we did in Chapter 2, System Specification. Similar

to how we treat requirements and system functions, either a use case can be directly allocated to

a single subsystem or it must be decomposed into subsystem-level use cases that can be so allo-

cated. This decomposition is best represented with the «include» relation. Any subsystem-level

use cases created in this way will be tagged with the «Subsystem» stereotype.

For the most part, elements added to the system block during the Use case merge recipe can just

be moved to the appropriate subsystems. If you want to capture your reasons for the allocation,

SysML provides a special kind of comment, «rationale», which you can anchor to the elements.

You can even create element groups (in the right-click menu in Cameo for model elements).

Element groups anchor elements and have a criterion property where you can add the rationale

for the grouping.

Developing System Architectures316

To begin with, let’s consider a set of use cases (Figure 3.25). Note that while this set encompasses

a wide range of system capabilities, it doesn’t include all capabilities. We recommend this work

is done incrementally, and additional use cases – and even subsystems – can be added later as

the need for them is identified:

Figure 3.25: Set of use cases for subsystem allocation

Some of these use cases are likely to be allocated to a single subsystem. For example, the Man-

ually Adjust Bike Fit use case might be allocated to a single Mechanical Frame. Others are likely

to use multiple subsystems. For example, the Control Incline use case might be decomposed

into subsystem-level use cases that map functionality to the User Input and Mechanical Frame

subsystems. The exact decomposition will, of course, depend highly on the set of subsystems

upon which we decide.

Review potential architectural patterns
There are many potential subsystem patterns from which to choose. From Buschmann et al., the

Model-View-Controller and Microkernel architecture patterns seem potentially viable, although the

former is more of a design collaboration-level pattern than an architectural design pattern. From

the previously mentioned Real-Time Design Patterns book, the Layered, Channel, and Hierarchical

Control patterns are possibilities.

See A System of Patterns by Buschmann, Meunier, Rohnert, Sommerlad and Stol, Wiley

Press 1996 for further information.

Chapter 3 317

Select a subsystem and component architectural pattern
Using the workflow from the previously presented Pattern-driven architecture recipe, we select the

Five-Layer Architecture Pattern from the Real-Time Design Patterns book as our base pattern. We

will modify it to use subsystems rather than packages, as in the original, and to replace Abstract

OS Layer with Abstract Common Services Layer, as it seems more relevant to our design. See

Figure 3.26:

Figure 3.26: Modified Five-Layer Architecture Pattern

Each of the blocks in the pattern may have multiple instantiations for peers (such as multiple

Application Layer elements) or may have an internal sub-subsystem structure (which we will

refer to as simply “subsystems”).

Each of these blocks in the pattern has its own purpose and scope.

Application layer
This layer contains features at the application level, so system features (data and services) such

as Ride and Rider metrics and properties would reside in this layer.

Developing System Architectures318

UI layer
This layer contains elements for the system user input. This includes the selection and display

of current gearing, for example. Most display features actually reside on the third-party training

apps, so the system itself has a limited UI.

Communications layer
The system requires Bluetooth and ANT+ communications protocols, setting up sessions, and so

on. All those features reside largely in this layer.

Abstract common services layer
This layer contains common services such as data storage and data management and also electric

power delivery.

Abstract HW layer
This layer focuses on electronic and mechanical aspects; frame adjustment, drive train, various

sensors, and so on all reside here. This is likely to have peer instantiations and substructure.

The above discussion explains the pattern per se. Now, let’s look at the pattern instantiation.

The set of six proposed primary subsystems is shown in Figure 3.27 along with their high-level

parts (also identified as subsystems).

In Cameo, «System» and «Subsystem» are defined in the SysML::Non-Normative

Extensions::Block package in the SysML profile. I applied this «system» stereotype

to the Pegasus block.

Chapter 3 319

Figure 3.27: Pegasus proposed subsystems

We can create a “connected architecture” view showing how we expect the subsystems to connect.

This will evolve as we elaborate the architecture and allocate functionality. Figure 3.28 shows

the connected architecture showing only the high-level subsystems. Figure 3.29 shows the same

view but with the internal structure we’ve identified so far. In both cases, I used Cameo’s Symbol

Properties feature to change the line color and width for the electrical power connections to dif-

ferentiate them. The connections are notional at this point and may change as we dive into the

details of the architecture:

Figure 3.28: Pegasus high-level connected architecture

Developing System Architectures320

Figure 3.29: Pegasus detailed connected architecture

Assign each subsystem a mission statement
The mission statement for each subsystem is added to the Description field of the subsystem

block. The mission statements for the high-level subsystems are provided in Table 3.5:

Subsystem Mission Statement

Mechanical Frame This subsystem provides the physical system structure and rider adjustment

features – all of which are assumed to be strictly mechanical in nature – and also

the inclination delivery/monitoring capability, which is planned to be motorized.

This subsystem is envisioned to primarily consist of mechanical and electronic

aspects.

Electric Power Delivery This subsystem is responsible for receiving wall power and distributing managed

electrical power to the other subsystems. This includes low amperage power

for digital electronics, moderate amperage power for the motorized inclination

capability, and high amperage power for the rider power and resistance. This

subsystem design is envisioned to be dominated by electronic aspects.

Comms This subsystem is responsible for all communications with external devices.

At this time, this includes low-power Bluetooth and ANT+ communications

protocols. This includes the physical layer through the network layer of the

OSI protocol stack. The initial concept for this subsystem includes one or more

smart communications processors to manage the communications activity. This

subsystem is envisioned to consist primarily of digital electronics and software.

Chapter 3 321

Main Computing

Platform

The main computing platform contains the primary computing electronics and

software for the system. It manages rider-level applications such as controlling

and monitoring rides and sensor data, system configuration (including motor

transfer function tuning and rider settings), and data management. This

subsystem is envisioned to be primarily software and digital electronics hardware.

Rider Interaction This subsystem provides the primary user interface (except for pedals) for the

system, including shift and brake levers, and a display of the currently selected

gearing. This system is envisioned to include mechanical, electronic, and software

aspects.

Power Train This subsystem manages the pedal assembly, the monitoring of rider power

and pedal cadence input, and the creation of resistance to pedaling, under the

direction of the Main Computing Platform subsystem. This system is envisioned

to include mechanical, electronic, and software aspects.

Table 3.5: Subsystem missions

Allocate requirements and system features to subsystems
This task is complex enough to have its own recipe, Architectural allocation, later in this chapter.

The example is elaborated on in that section.

Create subsystem interfaces
This task is complex enough to have its own recipe, Creating subsystem interfaces from use case

scenarios, later in this chapter. The example is elaborated on in that section.

Architectural allocation
The recipes for functional analysis of use cases have multiple outcomes. The primary outcome is

a set of high-quality requirements. The second is the identification of important system features

– system functions, data, and flows. The third outcome is the identification of interfaces necessary

to support the behavior outlined in the use case. This recipe focuses on allocating the first two of

these to the subsystem architecture.

Purpose
The purpose is to detail the specification of the subsystems to get ready to hand off those speci-

fications to the interdisciplinary subsystem teams for detailed design and development.

Inputs and preconditions
A set of requirements and system features have been identified, and a subsystem architecture has

been created such that each subsystem has a defined mission (scope and content).

Developing System Architectures322

Outputs and postconditions
The primary outcome of this recipe is a specification for each subsystem that includes:

• System requirements allocated directly to the subsystem

• Subsystem requirements derived from system requirements, which are then allocated

to the subsystem

• System features allocated directly to the subsystem

• Subsystem features derived from system features, which are then allocated to the sub-

system

How to do it
This recipe is deceptively simple. The tasks are straightforward, although difficult to completely

automate. This task can take a while to perform because there are often many requirements and

features to allocate. The basic idea is that given the selected subsystem structure, either allocate

a feature directly, or decompose that feature into subparts that can be so allocated. The workflow

is shown in Figure 3.30:

Figure 3.30: Architectural allocation

Chapter 3 323

Decompose non-allocable requirements
Requirements can sometimes be directly allocated to a specific subsystem. In other cases, it is

necessary to create derived requirements that take into account the original system requirements

and the specifics of the selected subsystem architecture. In this case, create derived requirements

that can be directly allocated to subsystems. Be sure to add «deriveReqt» relations from the

derived requirements back to their source system requirements.

Allocate system requirements
Allocate system requirements to the subsystems. In general, each requirement is allocated to a

single subsystem, so in the end, the requirements allocated to each subsystem are clear. The set

of allocated system requirements after this step is normally known as subsystem requirements.

Decompose non-allocable system functions and data
Some system features – which refer to operations, event receptions, flows, and data – can be di-

rectly allocated to a single subsystem. In practice, many cannot. When this is the case, the feature

must be decomposed into subsystem-level features that trace back to their system-level source

feature but can be directly allocated to a single subsystem.

Allocate system functions and data
Allocate system features to subsystems. That is, each system function now becomes a subsystem

function allocated to a single subsystem, or it is decomposed to a set of subsystem functions, each

of which is allocated. Similarly, system event receptions must be allocated to some subsystem and,

often, this results in new subsystem event receptions being added elsewhere in the architecture

to support the subsystem collaboration required to fulfill the system functionality needs. System

flows and data must also be allocated to subsystems.

Example
In real system development, this recipe can take a substantial amount of time, not due to the

complexity of the task but because of the large number of system requirements and features

requiring allocation.

Developing System Architectures324

To keep the example manageable for the book format, we will focus on a subset of the requirements

and system features identified in the use cases under consideration for this book:

Figure 3.31: Requirements selected for allocation

Figure 3.31 shows the set of requirements for a single use case, Compute Resistance. In the inter-

ests of brevity, we will decompose and allocate a subset of these requirements.

Decompose non-allocable requirements
As mentioned, some requirements must be decomposed into derived requirements before allo-

cation. This is because these requirements are partially met by different subsystems. In this case,

a set of derived requirements must be created that are collectively equivalent to the original

requirement but are of appropriately narrow focus so that they can be directly allocated. This is

modeled with the «deriveReqt» relation, going from the derived requirement to the originating

requirement:

Chapter 3 325

Figure 3.32: Some derived requirements

Figure 3.32 shows some of the requirements created during the derivation process. I color-coded

the original system requirements and the derived requirements as a visual aid. Again, note the

directions of the relations.

The figure shows a number of the system requirements decomposed into subsystem requirements.

For example, CR_requirement_7 states “The system shall provide time-filtering of power, sup-

porting 0, 1-second, 3-second, and 5-second power averaging, settable by the rider.” This results

in three derived requirements:

• CRD_05: The Pedal Assembly subsystem shall provide rider power at the point of the

pedal at least every 100 ms to the Rider Application Subsystem.

Developing System Architectures326

• CRD_06: The Rider Application subsystem shall accept time-filter settings from the

Trainer App from the set of 0 (instantaneous power), 1-second, 3-second, and 5-second).

• CRD_07: The Rider Application shall compute time-filtered power at least every 300 ms.

It can be cumbersome to show derived requirements diagrammatically for large numbers of

derived requirements. An alternative is to construct a matrix showing originating and derived

requirements. Such a matrix is shown in Figure 3.33:

Chapter 3 327

Fi
gu

re
 3.

33
: D

er
ive

d
re

qu
ire

m
en

ts
 m

at
rix

Developing System Architectures328

As we create new subsystem requirements, we need a place to put them. In this example, we’ll

create SubsystemRequirementsPkg under RequirementsAnalysisPkg::RequirementsPkg for

this purpose. We may later decide to create a package per subsystem within SubsystemRequire-

mentsPkg if the number of derived requirements grows large enough to justify it.

Allocate system requirements
Allocation means “assignment” in the sense that a subsystem is expected to implement its allo-

cated requirements. This can be done diagrammatically, but in this case, we’ll do this using an

allocation matrix, as shown in Figure 3.34. In this matrix, the allocation relation goes from the

subsystem to the requirement. The matrix itself is located in DesignSynthesisPkg::Architectur-

alDesignPkg in the model, but other locations are possible. The matrix layout used Block as the

from element type, Requirement as the to element type, and Allocation as the cell element type.

The actual allocation is performed by walking through the requirements and creating an alloca-

tion relation from the subsystem to the requirement. Figure 3.34 shows the system and derived

requirements and their allocation for this subset:

Chapter 3 329

Fi
gu

re
 3.

34
: S

ub
sy

st
em

 re
qu

ire
m

en
ts

 a
llo

ca
tio

n m
at

rix
 (s

ub
se

t)

Developing System Architectures330

Note that the matrix uses the convention that system requirements requiring decomposition are

shown as allocated to the Pegasus block in Figure 3.34, while system requirements that are directly

allocable are allocated directly to the subsystem. The requirements derived from the decomposed

requirements are allocated to individual subsystems. In the figure, system requirements are all

named CR_requirement_<#> (the CR indicating the Control Resistance use case), while the

derived requirements are named CRD_<#>.

Also note that, for the most part, the high-level subsystems – that is, those that contain subsystems

themselves – don’t have allocated requirements, although their internal parts do. This is not un-

common. Thus, the Main Computing Platform, Power Train, and Rider Interaction subsystems

don’t have requirements directly allocated to them, but each contains nested subsystems that do.

Finally, note that the matrix is sparsely populated. This is because it only shows requirements from

a single use case. As use cases are added, this matrix will become much more densely populated.

The matrix is shown with the subsystems as the rows because it fits better into the book format.

Normally, the systems would be the columns because I prefer to have matrices with more rows

than columns for readability within the modeling tool.

Allocate system functions and data
For the system features, we’ll use the features we allocated to the system object during the Ar-

chitectural merge recipe earlier in this chapter. The set of system features is shown in Figure 3.35.

Note the Pegasus block is shown three times with different features shown for readability reasons.

Chapter 3 331

The view on the left shows flow and value properties, while the views on the right show opera-

tions and event receptions:

Figure 3.35: System features for allocation

The standard way of performing the allocation following the architectural merge is to move (in

Cameo, drag and drop) the system feature to the appropriate subsystem. Any system features

that remain after that initial pass are then decomposed and allocated (the last step in the recipe).

It may happen that a system feature cannot be allocated, not because it must be decomposed but

because there is no appropriate subsystem. In this case, the missing subsystem must be added.

It can also happen that at the end of the entire recipe, there are subsystems to which no require-

ments or features have been allocated. This simply means that subsystem isn’t being used in the

current iteration but might be in future iterations. Generally speaking, at the end of the recipe, all

subsystems should have features allocated to them or serve another purpose (such as organizing

and containing smaller subsystems).

Figure 3.36 shows the result of this step. Several of the subsystems have value properties, event

receptions, and operations allocated to them:

Developing System Architectures332

Figure 3.36: Initial allocation of system features

Decompose non-allocable system functions and data
In this example, the only system feature not directly allocated is the operation Send_Perfor-

mance_Data. We have decomposed this service into:

• Gather_Performance_Data (allocate to the Rider Application subsystem)

• Construct_Performance_Data_Msg (allocate to the Rider Application subsystem)

• Send_Msg (allocate to the Comms subsystem)

Chapter 3 333

While we’re doing that, we note that we also need Receive_Msg and Dispatch_Msg system

functions for the Comms subsystem.

To then allocate these created system features, leave the decomposed system feature in the sys-

tem block and directly add the created features to the appropriate subsystem. Then add relations

from the original feature to the derived features. In this case, we’ll use the «derive» relation (as

opposed to «deriveReqt» since these are system properties, not requirements). This is shown

graphically in Figure 3.37. If you look closely, you can see the relations not between the blocks

themselves, but the operations shown:

Figure 3.37: Some derived system features

Developing System Architectures334

An easier way to visualize these relations is with a dependency matrix, as shown in Figure 3.38:

Figure 3.38: Dependency matrix showing derived relations between operations

Creating subsystem interfaces from use case
scenarios
There are many methods by which subsystem interfaces can be created. For example, a common

approach is to refine the black box activity diagrams from the use case analyses into so-called

white box activity diagrams with activity partitions representing the subsystems. When control

flows cross into other swim lanes, the flow or service invocation is added to the relevant subsys-

tem interface. Another common approach is to do the same thing but use the use case sequence

diagrams rather than the activity diagrams. The advantage of these approaches is that they tie

back into the use case analysis. It is also possible to create the interfaces de novo from the alloca-

tion of system features to the subsystems.

Chapter 3 335

This recipe focuses on using sequence diagrams in the creation of the system interfaces. One

advantage of this approach is that this approach can leverage sequence diagrams created from

the execution of the use case models that may not appear on the activity diagram. Further, many

engineers use the activity diagrams as the starting point but the state machines become the nor-

mative specification of the use case; that is, the activity diagrams are not fully fleshed out but the

state machines are. In such cases, this approach is superior to basing the interface definitions on

the incomplete activity diagrams.

Purpose
The purpose of this recipe is to develop the interfaces between the subsystem so that the subsys-

tem teams can design with an understanding of the flows and services they must provide to and

require from other subsystems. These interfaces are still logical and reference essential aspects

and are largely technology independent. These interfaces will be refined into physical interfaces

that explicitly expose technical details in recipes discussed in the next chapter.

Inputs and preconditions
The inputs include the identified set of subsystems to which system features have been allocat-

ed. In addition, each referenced use case has a set of black box sequence diagrams showing the

interaction of the use cases and the actors.

Outputs and postconditions
The primary outcome of the recipe is the set of interfaces (as interface blocks) defining the logical

flows and service invocations between the subsystems and between the system and the actors. A

part of that definition will be the logical data schema for flows and service parameters.

How to do it
This recipe is straightforward, although it can be a little tedious to perform by hand in many

scenarios. Figure 3.39 shows the workflow.

Developing System Architectures336

In any case, the outcome is a set of subsystem interfaces that support the necessary interactions

for the architecture to realize the use case behaviors:

Figure 3.39: Creating subsystem interfaces from use case scenarios

Add owner to hold white box scenarios
In Cameo, the owner of a sequence diagram must be a classifier (unlike Rhapsody, which allows

packages to directly own sequence diagrams).

Chapter 3 337

In this case, the logical choice for the owner of the architectural white box scenarios is the archi-

tectural system context block that has the system and the architectural actor blocks as parts. This

is the System Context block shown in Figure 1.29 in the Architecture 0 recipe.

Create scenario
Either copy an existing interaction in the browser or create an entirely new sequence diagram

for the owner. If you create a new sequence diagram for the context block, Cameo will pop up a

dialog asking you to select which parts you’d like to include. This will be done for each scenario in

every included use case. I like to ensure the same ordering of all the lifelines for all the scenarios,

so I generally prefer to copy the interaction and its own sequence diagram to retain the same

ordering. This makes it easier to compare sequence diagrams later.

As a part of this step, you can add a «refine» relation from the new architectural scenario (in-

teraction) back to the original use case scenario (interaction) it is elaborating. In Cameo, it is a

simple task to create a matrix showing which architectural interactions elaborate which functional

analysis interactions based on this relation.

I find it useful to add _WB (for “white box”) to the name of the new sequence diagram to ensure

that it isn’t confused with its source.

Replicate the source scenario but with the real actors and
subsystems
In this step, we will recreate the messages from the actor block to the use case and from the use

case to the actor block in the new scenario. What will be different is that the architectural actor

block will be used, and the message termination inside the system will be some specific subsystem

rather than the use case or use case block.

Add necessary subsystem interaction messages
This is a “magic step” in the recipe and requires the engineer to decide how the subsystem inter-

action should occur to realize the use case messages at the black-box level. The engineer must

consider the requirements, data, and services allocated to the subsystems and create messages

to support an interaction that will use them to achieve the system-level objective.

We will use the term scenario to be synonymous with interaction in this recipe

description since we have modeled each scenario of interest as a single sequence

diagram in most cases.

Developing System Architectures338

Create subsystem ports if missing
If there is at least one message between a subsystem and another, or between a subsystem and

an actor, then the subsystem must have a port to support that message exchange. If the message

is between a subsystem and an actor, then it will require a port on the system block. In this case,

the subsystem’s port will connect to the system’s port, and then in turn, the system’s port will

connect to the actor’s port. It is a good idea to set each block’s isEncapsulated property to true,

as this enforces the rule that a block’s parts may only be accessed through the composite block’s

properties. This is especially true for the system block. Unfortunately, it doesn’t appear to be

possible to set this as a project option, so it must be done separately for each block. Once set, the

Cameo rules validator will detect and report any such violations (see the Analyze > Validation

> Validate menu).

Create subsystem interfaces if missing
Once the white box sequence diagram is updated, interfaces can be created wherever two sub-

systems exchange messages. This means that in the architecture, they will relate via a connector.

I recommend this connection is done via ports typed by interfaces that support those messages.

These interfaces will include any operations, event receptions, and flow properties that cross the

system boundary.

The above is true for real interfaces that support actual messaging. When the “mes-

sage” is displayed on a screen, or received by the system by the user pressing a button

on the system, then that interaction is “virtual” and no real system interface needs to

be created in the architecture. This is typical of user interfaces owned by the system.

Chapter 3 339

Update interfaces with messages
In the previous step, we added interfaces whenever there was at least one message exchanged

between a pair of subsystems or a subsystem and an actor. In this step, we will add the messages

as signal receptions. We will stereotype them as «directedFeatures» in the interface blocks if

we’re using proxy ports.

This cycle is repeated for all functional analysis scenarios included in the architectural design.

Example
For this example, we will focus on the scenarios from two use cases: Measure Performance Met-

rics and Control Resistance. These scenarios show the interactions between actor blocks (acting

as proxies for the actual actors) and the selected use case.

Add owner to hold white box scenarios
If the model doesn’t already have a System Context block that has composition relations to the

Pegasus and the architectural actor blocks, we will do it now. This block will own the white box

interactions, which will in turn own the sequence diagrams.

Create scenario
The first scenario is Measure Performance Metrics Black Box View 1, which was derived from

the use case activity diagram. The original sequence diagram is shown in Figure 3.40. We show

it here as reference; we won’t modify it, but we will replicate it in the upcoming steps:

Developing System Architectures340

Figure 3.40: Original use case scenario

In the containment tree, also open the newly created sequence diagram showing all the subsys-

tems as lifelines. In Cameo, you can right-click a diagram tab and select New Vertical Group to

show diagram windows side by side.

Chapter 3 341

Replicate the original scenario but with system actor blocks and
subsystems
The easiest way to work is to open the new and original sequence diagrams side by side (Figure

3.41):

Figure 3.41: Ready to replicate messages

This step is easy; using the original scenario as guidance, add the same messages to the new scenario.

The slightly tricky part is deciding which subsystem should be the sender or receiver lifeline. For

this scenario, the lifeline receiving and sending the events to and from the Training App lifeline

will be the Comms subsystem. Deciding where the “messages to self” go is only a little harder.

If the services have to do with communications per se, then they will be put on the Comm sub-

system lifeline. In this case, all the other messages to self will be put on the Main Computing

Platform lifeline.

Developing System Architectures342

The sequence diagram now looks like this (Figure 3.42):

Figure 3.42: Scenario replicated

You will note that a miracle occurs between the Comm subsystem receiving a message and the

Main Computing Platform doing something. That is because we are missing the messages be-

tween those subsystems; their identification and elaboration are outcomes of this recipe.

Add necessary subsystem interaction messages
As we go down the sequence, we need to add messages between the subsystems so that we can

coordinate their actions and collectively perform the overall system interaction with the actors.

It also happens that we may discover discrepancies in the original interaction, such as missing

messages to or from an actor or data that must be passed with an existing message. Since we are

defining the actual logical messages within the architecture, we will address those defects here.

Chapter 3 343

The result of this step is a white box sequence diagram that shows the interaction of the sub-

systems with other subsystems and the actors. Some of these messages will be realized by the

operations allocated to the subsystem during the Architectural allocation recipe earlier in this

chapter. Others will be new.

Figure 3.43 shows the previous sequence diagram elaborated with the messages between the

subsystems to complete the architectural flow. If we then repeat this for all the scenarios under

consideration, we can use that to form the basis of the architectural interfaces:

Figure 3.43: White-box scenario measure performance metrics

Repeating that elaboration process for the other three scenarios – Control Resistance, Process

Pedal Inputs, and Execute Physical Model – results in Figure 3.44, Figure 3.45, and Figure 3.47:

Developing System Architectures344

Figure 3.44: White-box scenario control resistance

Chapter 3 345

Figure 3.45: White-box scenario process pedal inputs

Note the item flows on a few of the messages in Figure 3.45. This is done in Cameo by selecting

the message and clicking on the item flow manager icon in the popup quick toolbar. However,

in Cameo, this can only be added when the flow item is already defined in the model as occurring

between the elements represented by the lifelines. One natural place to do that is in the internal

block diagram, as shown in Figure 3.46:

Developing System Architectures346

Fi
gu

re
 3.

46
: IB

D
w

ith
 fl

ow
 it

em
s

Chapter 3 347

Figure 3.47: White-box scenario execute physics model

Create subsystem ports if missing
Wherever at least one message exists between elements in the white box scenarios, there must

be a port pair supporting that message exchange. The ports necessary to support the white box

scenarios are shown in Figure 3.46.

Ports are named with a p followed by the name of the target element to which they will connect.

The Comms port that will connect to the Main Computing Platform subsystem is thus named

Comms.pMainComputingPlatform. The ports for delivery of power from the Electric Power

Delivery subsystems are flow ports because they each only deliver a singular flow without the

invocation of services.

Create subsystem interfaces if missing
In the elaboration of the white box scenarios in the example, we have identified interactions

between a number of subsystems and added port pairs to support the messaging.

Interface blocks are named with an i followed by the name of the unconjugated user of the in-

terface block, an underscore, and the name of the conjugated side of the connection. Consider

the interface block is named iMainComputingPlatform_Comms; its naming indicates that the

MainComputingPlatform.pComms port uses the interface block in its normal form but the

Comms.pMainComputingPlatform port uses the interface block in conjugated form.

Developing System Architectures348

Update interfaces with messages
This step adds the messages sent across the ports to the interface blocks. These messages are the

messages on the white box sequence diagrams. Note that, by convention, we are using asynchro-

nous messages between the subsystems and between the system and the actors to define these

logical interfaces. Since these are proxy ports, SysML requires us to stereotype these messages

in the interface blocks as «directedFeatures». Once this stereotype is applied, the feature di-

rection property appears and the message direction can be specified as provide, required, or

providedrequired.

In this example, Figure 3.48 shows interface blocks and their services identified from the scenarios

examined in this example:

Figure 3.48: Derived subsystem interface blocks

Specializing a reference architecture
In this recipe, we will discuss the first of two approaches for using a reference architecture.

Chapter 3 349

What is a reference architecture?
In Chapter 1, Basics of Agile Systems Modeling, we defined architecture as “the set of strategic design

optimization decisions for the system.” The use of the word strategic here is important; these

are design decisions that affect most or all subsystems and impact the overall performance and

structure of the system. In the previous discussions, we went on to identify the six key views of

architecture: the subsystem and component view, the concurrency and resource view, the distri-

bution view, the data view, the dependability view, and the deployment view.

In the Pattern-driven architecture recipe in this chapter, we talked about how an architecture is an

instantiation of patterns. In fact, a systems architecture is an integration of one or more patterns

in each of the architectural viewpoints.

A reference architecture is an extension of this concept. A reference architecture is a pattern writ

large; it is a combination of a set of patterns to define a master pattern for the architecture of a

type of system, such as perhaps an aircraft, satellite, or medical ventilator. That means that a

reference architecture generally cannot be used as-is. It must be instantiated for use to create

specific system designs. In this recipe, I will call that process specializing the reference architecture.

Why would I use a reference architecture?
There are six main reasons for using a reference architecture.

Frame of reference
A reference architecture provides a frame of reference to get an overview of a system’s structure,

organization, functionality, and behavior. Because the principles of the system’s architecture

are defined by the reference architecture to which it complies, it becomes easier to understand

how a system is put together and how to effectively maintain, update, and enhance the system.

Interoperability
Systems are almost never standalone islands of capability. They fit into both an engineering

and an operational context. In the engineering context, we have common development tools,

plug-and-play components, and other common elements to assist in design and development.

In the operational context, we have concerns about the use, maintenance, and sustainment of

the system in operation – including the dev sec ops culture, automation, and integration of the

system into enterprise architectures.

Developing System Architectures350

Interoperability is also important when you have a portfolio of related systems. You will gain

economy-of-scale advantages with common usable elements and designs across a portfolio.

Reference architectures are a way of specifying that commonality.

Reuse of effective architectures
The vast majority of systems are rehashing or slight improvements on the existing design. We

have decades of experience developing avionics and medical systems, for example. As we gain

industrial experience with such systems, we learn which architectures are effective in practice

(and not just in theory) and which are not. Complying with a reference architecture enables

gaining these benefits with relatively little effort.

Benchmarking
Comparing metrics and outcomes of different systems is made easier when they are specializa-

tions compliant with a common reference architecture.

Regulatory compliance
In regulated industries, such as aerospace, automotive, and medical, gaining regulatory approval

is crucial to a system’s success. Regulators often show a preference for architectures that have

previously demonstrated that they are safe, secure, and effective. Reference architectures can

provide that assurance.

Owning the baseline
In the US Department of Defense (DoD), a common concern is the ownership of the baseline

technology and architecture. The DoD doesn’t develop the vast majority of systems that it owns

but has them developed under an acquisitions process. One of the historical problems with the

acquisitions approach is that the Original Equipment Manufacturers (OEMs) generally retain

ownership of the system design as their intellectual property. This has the downside of vendor

lock. The DoD can call for the development of a system – such as the F-35 aircraft – and purchase

hundreds of millions of dollars worth of systems, but they do not own the design. As such, when

it becomes necessary to modernize or update the system, the DoD cannot simply go through an

open acquisitions process but is limited to working with the vendor who owns the design. This

has led to the Modular Open Systems Approach (MOSA). See https://ac.cto.mil/mosa/

https://ac.cto.mil/mosa/

Chapter 3 351

Using a reference architecture
A reference architecture is a collection of interlocking patterns for a kind of system or a set of

systems in a kind of operational environment. Put another way, a reference architecture is a

generalized set of abstractions that collectively organize a system at a strategic level. However,

you don’t manufacture a reference architecture; you manufacture a specific architecture. The use

of a reference architecture involves the specification of a specific system that complies with the

reference architecture and instantiates the patterns that constitute it.

Purpose
The purpose of this recipe is to create a specific system design that conforms to a reference ar-

chitecture. This recipe is particularly relevant whether you want to develop a new system type

or simply a system instance.

Inputs and preconditions
The system’s primary capabilities have been identified and analyzed, along with a significant set

of system requirements.

Outputs and postconditions
A reference architecture is selected and a specific system architecture is defined, especially with

respect to conformance to the selected reference architecture.

Developing System Architectures352

How to do it
Figure 3.49 shows the workflow for this recipe:

Figure 3.49: Specializing a reference architecture

Chapter 3 353

Select a reference architecture
In your industry, it is likely that reference architectures exist and are competing with each other.

It may also be that there is a single reference architecture provided to you. It may even be that

one of your engineering tasks is to develop a reference architecture.

In any case, this first step is to select the reference architecture with which your system must

conform. This architecture should have, at a minimum:

• Definition of the operational context in which conformant systems exist both as type

definitions (BDD) and connected architectures (IBD)

• Standardized and possibly generic interfaces to actors in the operational context

• Standard capabilities of a system that is conformant, generally represented as system

use cases

• Composition architecture of the system, including identification of the subsystems rele-

vant to conformance, and the multiplicities of those relations

• Type architecture of the system, including the key properties of the subsystems, such as

ports, relations, key system data, and key system functions allocated to the subsystems

• Connected architecture shows how the subsystems connect (IBD)

• Standardized and possibly generic interfaces between the subsystems

Identify areas of deviation from reference architecture
There are several different ways that a specific architecture differentiates itself from the reference

architecture to which it conforms:

• Specific subtypes of identified subsystems or components

• Specific implementation technologies

• Specific multiplicities of contributing design elements

• Addition of new capabilities

• Addition of new subsystem and design elements to support new capabilities

• Addition of greater levels of detail over what is specified in the reference architecture

Create a specific architecture type
This structured action contains the following sequence of actions. This sub-workflow is appro-

priate when you want to create a new type of system or when you want to add a fundamentally

new capability to the specific architecture.

Developing System Architectures354

Define the specific system block
In this recipe, one of the outcomes is a new system type that is still conformant to the reference

architecture. The new system block is that type.

Subclass relevant architectural elements
When developing specific architectures, it is very common to subclass an architectural element

to redefine how a behavior is performed (also known as polymorphic behavior) or to extend the

functionality of the element. In SysML, this is done by subclassing the element.

Redefine the specific architecture elements
Once the subclasses are defined, they must be referenced in the specific architecture at exactly

the same point in which their super-classes are used in the reference architecture. This is done

with a redefinition of the element in the specialized system.

Add new architectural elements
Of course, a specialized system may do additional things beyond the capabilities of the reference

architecture. An E3 Sentry (AWACS) is a specific kind of aircraft and may be compliant with

an aircraft reference architecture, but it is also a Command-and-Control Battle Management

(C2BM) platform as well. Additional architectural elements must be added to support additional

capabilities of the specific system.

Create a specific architecture instance
This structured action contains the following nested actions. This sub-workflow is used when

you 1) don’t need to create a new type of reference architecture system and 2) you don’t need to

add fundamentally new elements or capabilities to the specific architecture. It is always possible

to refine and extend existing parts and capabilities in an instance, but it is difficult to add entirely

new ones.

Chapter 3 355

Define the specific system instance specification
Another approach to creating a specialized architecture is to create a specific instance, represented

with an instance specification. This is most useful when you needn’t create a new type of system

but merely wish to create a specific instance of the architecture. In this step, create an instance

specification of the reference system.

Subclass relevant architectural elements
If the elements from the reference architecture are used as is, you can create instance specifica-

tions of those elements to plug them into the slots of the system instance specification. You may,

however, want to put in specialized forms of those elements, so in this step, you may subclass

some of the architectural elements.

Create instance specification of architectural elements
The system instance specification has slots for all its part properties. In this step, create an instance

specification for every subsystem you want contained within the system instance.

Populate instance specification slots
In this step, you add the instance specifications of the architectural elements into the slots of the

system instance specification.

Demonstrate compliance
The last step in this recipe is to demonstrate how the specific system complies with the reference

architecture. This may be a simple matter if relations formally represent compliance when it is

direct usage in the specific architecture or the subclassing of elements defined in the reference

architecture. It is a bit more work when you don’t have the model of the reference architecture

or when the reference architecture is notional or not formally defined.

Developing System Architectures356

Example
Select a reference architecture
For this example, we’ll start with a reference architecture for a generic Exercise Bike. The reference

composition architecture for this system is shown in Figure 3.50:

Figure 3.50: Exercise bike reference composition architecture

This system has a Mechanical Frame, zero to two Gear Shifters, and a Power Train subsystem that

contains an internal Pedal Assembly, Drive Train, and Resistance Assembly. If the system has at

least one Gear Shifter, then it will also have a Computation Unit to change the resistance offered

at the pedal assembly. Optionally, if the system has at least one Gear Shifter and a Computation

Unit, it may also optionally have a Display and may also provide information via a Comms unit.

Figure 3.51 shows how these parts connect in the reference architecture:

Chapter 3 357

Figure 3.51: Exercise bike reference connected architecture

One can imagine different specific architectures that could conform to this reference architecture.

The simplest such system would have only the required subsystems of a mechanical frame and

a power train.

Indeed, I trained on wind turbine trainers in the 1980s that worked just like that. More elaborate

specific systems might add a dual shifter (simulating front chain rings and a rear cassette) and

a computation unit that modifies the resistance, which might be provided hydrostatically by

pushing fluid through variable valves or by varying resistance electronically with a motor. An

even more elaborate system that still conforms to this reference architecture might add both a

display of information about resistance and gearing, and even send it out through the (optional)

communication system. Each of these variants can vary not only the multiplicity of elements

(say, from 0 to 1) but also their type and implementation. A display could be done with simple

LEDs, a low-resolution black and white screen, a high-resolution color display, or even a virtual

reality headset. Communications can be similarly varied to support different kinds of networks

and communication standards. Even with such a simple reference architecture, one can easily

envision many different specific architectures derived from it.

Identify areas of deviation from the reference architecture
Let’s envision two systems, one for each of the different paths through the workflow. For the left

workflow in Figure 3.49 (Create a specific architecture type), let’s develop an exercise bike that

has a single shifter, a computational unit, and a nice large color display.

Developing System Architectures358

We’ll also add a communications link that uses Ethernet so we can log on to live training sessions

offered by the League of Racers Extraordinaire server site. In addition, we’ll add a built-in fan for

cooling off our sweaty user. For the right workflow (Create a specific architecture instance),

let’s create a system with two shifters (for front and back shifting), and BLE for connection to a

suitable phone or tablet running the Cycling God training application. This system will have no

display, as the relevant data will be displayed by the training application.

We’ll do the left workflow first.

Define the specific system block
In this step, we simply create the League of Racers Extraordinaire (LORE) block and make it a

subclass of the Exercise Bike block.

Subclass relevant architectural elements
For the LORE system, we need a special kind of display and a special communications unit that

supports Ethernet. In addition, we subclass to change port multiplicity in the subclass; for example,

the Computation Unit is subclassed so that the multiplicities of the ports can be set to specific

values from the range of values in the reference architecture. The same is true for the Power Train

and Resistance Assembly blocks. See Figure 3.52:

Figure 3.52: LORE architectural subclasses

Chapter 3 359

Redefine the specific architectural elements
This is the secret sauce of this recipe. You must redefine the architecture with the subclassed

elements and with the specific multiplicity in the LORE system.

To do this in Cameo, first, expose the inherited parts for the LORE symbol on the diagram with

the Symbol Properties dialog. Then, right-click the part property in the block symbol you want

to redefine and select Refactor > Redefine To. This pops up a dialog from which you can select

the subclass you want. If you only want to change the multiplicity, use this same technique but

select the original type, then open the specification dialog for the part and change the multiplicity.

Figure 3.53 shows what that looks like for redefining the display part:

Figure 3.53: Redefining part properties in Cameo

The result of this redefines the parts inherited in the LORE block to the new subclasses and then

part property multiplicity can be changed in their specifications dialog as needed. The redefini-

tion of the port multiplicity, such as LORE::pExternalComms, must be done in the specification

dialog for the owning block.

Developing System Architectures360

Once this is done, you have the parts redefined in the LORE system as shown in Figure 3.54:

Figure 3.54: LORE redefined

Add new architectural elements
Now we can add the Fan to the LORE block with a composition relation. We can see in Figure

3.55 the connected architecture of the LORE system with all its specialized parts and specific

multiplicities:

Figure 3.55: LORE redefined connected architecture

Chapter 3 361

Let’s now create the right workflow and create our specific instance of the Cycling God system.

Remember that this system has two shifters and supports the BLE communications protocol.

Define the specific system instance specification
In this step, we add an instance specification named Cycling God of the Exercise bike block.

Subclass relevant architectural elements
We only really need to subclass Comms to BLE Comms because we want different behavior in

the included element, that is, support for the BLE protocol.

Create instance specifications of architectural elements
The instance specifications for the architectural element of the Cycling God instance are shown

in Figure 3.56:

Figure 3.56: Set of instance specifications

Populate instance specification slots
The next step is to populate the slots in the instance specifications. The Power Train has three

instance slots, so they must be populated with the ra, pa, and dt instances. The Exercise Bike::Gear

Shifter slot must hold both the left and right shifter instances.

Developing System Architectures362

The resulting instance specifications with populated slots are shown in Figure 3.57. Note that the

names of the instances are given in the slots:

Figure 3.57: Populated instance specifications

In this latter example, we minimized the use of subclasses. Had we wanted to, we could have

specialized the multiplicities of the ports and parts with subclassing and redefinition.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/cpVUC

4
Handoff to Downstream
Engineering

Recipes in this chapter
• Preparation for Handoff

• Federating Models for Handoff

• Logical to Physical Interfaces

• Deployment Architecture I: Allocation to Engineering Facets

• Deployment Architecture II: Interdisciplinary Interfaces

The purpose of the Handoff to Downstream Engineering recipes is to:

• Refine the system engineering data to a form usable by downstream engineers

• Create separate models to hold the prepared engineering data in a convenient organiza-

tional format (known as model federation)

• For each subsystem, work with downstream engineering teams to create a deployment

architecture and allocate system engineering data into that architecture

It is crucial to understand that the handoff is a process and not an event. There is a non-trivial

amount of work to do to achieve the above objectives. As with other activities in the Harmony

aMBSE process, this can be done once but is recommended to take place many times in an iterative,

incremental fashion. It isn’t necessarily difficult work, but it is crucial work for project success.

Handoff to Downstream Engineering364

The refinement of the system’s engineering data is necessary because, up to this point, the focus

primarily has been on its conceptual nature and logical properties. What is needed by the down-

stream teams are the physical properties of the system – along with the allocated requirements

– so that they may design and construct the physical subsystems.

Activities for the handoff to downstream engineering
At a high level, creating the logical system architecture includes the identification of subsystems

as types (blocks), connecting them up (the connected architecture), allocating requirements

and system features to the subsystems, and specifying the logical interfaces between the archi-

tectural elements. Although the subsystems are “physical,” the services and flows defined in the

interfaces are almost entirely logical and do not have the physical realization detail necessary for

the subsystem teams. One of the key activities in the handoff workflows will be to add this level

of detail so that the resulting subsystem implementations created by different subsystem teams

can physically connect to one another.

For this reason, the architectural specifications must now be elaborated to include physical real-

ization detail. For example, a logical interface service between a RADAR and a targeting system

might be modeled as an event evGetRadarTrack(rt: RadarTrack), in which the message is

modeled as an asynchronous event and the data is modeled as the logical information required

regarding the radar track. This allows us to construct an executing, computable model of the

logical properties of the interaction between the targeting and RADAR subsystems. However, this

logical service might actually be implemented as a 1553 bus message with a specific bit format,

and it is crucial that both subsystems agree on its structure and physical properties for the correct

implementation of both subsystems. The actual format of the message, including the format of the

data held within the message, must be specified to enable these two different development teams

to work together. That is the primary task of the process step Handoff to Downstream Engineering.

Chapter 4 365

Other relevant tasks include establishing a single source of truth for the physical interface and

shared physical data schema in terms of a referenced specification model, the large-scale decom-

position of the subsystems into engineering facets, the allocation of requirements to those facets,

and the specification of interdisciplinary interfaces. A facet, you may recall, is the term used for

the design contribution from a single engineering discipline, such as software, electronics, me-

chanics, and hydraulics.

The recipes in this chapter are devoted to those activities.

Once fully defined, the handoff data can be used in a couple of different ways. For many organiza-

tions, it is used as the starting point for the downstream implementors/designers. In other cases,

it can be incorporated into Request for Proposals (RFPs) and bids in an acquisition process or

for source selection if Commercial Off-the-Shelf (COTS) is to be used.

Starting point for the examples
In this chapter, we will focus on the requirements and allocations from a number of use case anal-

yses and architectural work done earlier in the book. Specifically, we’ll focus on requirements from

the use cases Compute Resistance, Emulate Front and Rear Gearing, and Emulate DI Shifting.

Because not all subsystems are touched by these requirements, we will focus this incremental

handoff on the following subsystems: Comms, Rider Interaction, Mechanical Frame, Main

Computing Platform, and Power Train. The other subsystems will ultimately be elaborated and

added to the system in future iterations. For brevity, we will not consider the subsystems nested

with those subsystems but focus solely on the high-level subsystems.

The relevant system-connected architecture is shown in the internal block diagram of Figure 4.1:

Handoff to Downstream Engineering366

Fi
gu

re
 4.

1:
 C

on
ne

ct
ed

 a
rc

hi
te

ct
ur

e f
or

 in
cr

em
en

ta
l h

an
do

ff

Chapter 4 367

System requirements have either been allocated or derived and allocated. Figure 4.2 shows some

of the requirements with their specification text:

Figure 4.2: Pegasus system and subsystem requirements

Figure 4.3 shows how they are satisfied by subsystems. A nice feature of Cameo tables is that

it identifies not only direct satisfies relations between subsystems and requirements, but also

relations implied by the composition architecture (i.e. a part having a satisfy relation implies a

satisfy relation to the element owning that part):

Handoff to Downstream Engineering368

Figure 4.3: Requirements - subsystem satisfy matrix

Based on the white box scenarios, the interface blocks for the ports have been elaborated, as

shown in the block definition diagram in Figure 4.4. Note that the interfaces include signals sent

from one element to another but also flow properties, indicating flows between elements not

invoking behaviors directly:

Chapter 4 369

Figure 4.4: Subsystem interface blocks for incremental handoff

The logical data schema for data passed in the services has been partially elaborated. The infor-

mation is collected into the subpackage InterfacesPkg::LogicalDataSchemaPkg. Figure 4.5 shows

the scalar value types, units, and quantity kinds. Named constants are shown as read-only value

properties within a block.

Figure 4.6 shows the logical data schema that uses those types to represent the information within

the architecture. The figure also shows the «tempered» stereotype, which is used to specify im-

portant value type metadata such as extent (the allowable range of values), lowest and highest

values, latency, explicitly prohibited values, and precision, accuracy, and fidelity.

As a side note, some of the metadata can be specified in constraints, such as a constraint on a

power value property using OCL: {(self >=0) and (self <=2000)}. However, Cameo doesn’t seem to

evaluate constraints owned by value properties for a violation during simulation (one of the key

benefits of modeling subranges that way), and can only evaluate them when assigned to blocks.

In such a case, a block Measured Performance Data could constrain the value property power

with {(power >= 0) and (power <= 2000)}. For this reason, we decided that using the stereotype

tags to represent the subrange metadata was a simpler solution.

I want to emphasize again that this is not the entire, final architecture; rather, it is the architec-

ture for a particular iteration. The final, complete architecture will contain many more elements

than this:

Handoff to Downstream Engineering370

Fi
gu

re
 4.

5:
 Sc

al
ar

 va
lu

e t
yp

es
, u

ni
ts

, a
nd

 q
ua

nt
ity

 ki
nd

s

Chapter 4 371

Fi
gu

re
 4.

6:
 B

lo
ck

s a
nd

 lo
gi

ca
l d

at
a

sc
he

m
a

Handoff to Downstream Engineering372

Preparation for Handoff
Purpose
The purpose of this recipe is to facilitate the handoff from systems engineering to downstream

engineering. This will consist of a review of the handoff specifications for adequacy and organiz-

ing the information to ease the handoff activities. Ideally, each subsystem team needs access to

system model information in specific and well-defined locations, and they only see information

necessary for them to perform their work.

Inputs and preconditions
The precondition for this recipe is that the architecture is defined well enough to be handed off

to subsystem teams for design and development. This means that:

• The system requirements for the handoff are stable and fit for purpose. This doesn’t nec-

essarily mean that the requirements are complete, however. If an iterative development

process is followed, the requirements need only be complete for the purpose of this increment.

• The subsystem architecture is defined including how it connects to other subsystems and

the system actors. As in the previous point, not all subsystems need to be specified, nor

must the included subsystems be fully specified in a given iteration for an incremental

engineering process. It is enough that the subsystem architecture is specified well enough

to meet the development needs of the current iteration.

• The subsystem requirements have been derived from the system requirements and allo-

cated to the subsystems.

• The logical subsystem interfaces are defined so that the subsystems can collectively meet

the system needs. This includes not only the logical specification of the services but also the

logical data schema for the information those services carry. In addition, flows not directly

related to services must also be logically defined as a part of the subsystem interfaces.

Outputs and postconditions
The resulting condition of the model is that it is organized well to facilitate the handoff work-

flows. Subsystem requirements and structures are accessible from external models with minimal

interaction between the system and subsystem models.

How to do it
Figure 4.7 shows the workflow to prepare the handoff. While straightforward, doing a good job

at this task means that the subsequent work for the handoff will be much easier:

Chapter 4 373

Organize the subsystems
The next recipe, Federating Models for Handoff, will create a model for each subsystem. Each sub-

system should reach into the system model as efficiently as possible to retrieve its – and only its

– specification details. This is not to hide information about other subsystems but is instead meant

to simplify the process of retrieving specification information that it needs. We must organize

each subsystem into its own package so that the subsystem team can add this package to their

model to serve as their starting architectural specification.

Organize the requirements
At this point, all the requirements relevant to the current handoff should be allocated to the

subsystems. This means that the subsystems have relations identifying the requirements they

must meet. These may be either «allocate» or «satisfy» relations, owned by the subsystem

blocks and targeting the appropriate subsystems. This step involves locating the requirements so

that they can be usably accessed by the downstream engineers and provided in summary views

(tables and matrices). The package holding the requirements, which might be organized into

subpackages, will be referenced by the individual subsystem models during and after the handoff.

Organize the interface data
One of the things put into the Shared Model (in recipes later in this chapter) is the physical in-

terface specifications and the physical data schema for the data used within those interfaces. The

logical interfaces and related schema must be organized within the systems engineering model so

that it can easily be referenced by the Shared Model. This means putting the interfaces, interface

blocks, and data definition elements – such as blocks, value types, quantity kinds, and units – in

a package so that the Shared Model can easily reference it.

Review model for handoff readiness
After all the information is readied, it should be reviewed for completeness, correctness, and ap-

propriateness for the downstream handoff workflow to occur. Participants in the review should

be not only the systems engineers creating the information but also the subsystem engineers

responsible for accepting it.

Handoff to Downstream Engineering374

To review the readiness of the systems model for handoff, we look at the parts of the model that

participate in the process:

• Subsystems:

• Are the subsystems each nestled within their own packages?

• Does each subsystem have ports defined with correct interfaces or interface blocks

and with the proper conjugation?

• Is the set of all subsystems complete with respect to the purpose of the handoff

(e.g. does it support the functionality required of this specific iteration)?

• Does each subsystem package have a reference to the requirements allocated to it?

• Requirements:

• Are the requirements all located within a single package (with possible subpack-

ages) for reference?

• Are all requirements relevant to this handoff either directly allocated to subsystems

or decomposed and their derived requirements allocated?

• Interfaces:

• Is all the interface data located within a single package (which may have sub-

packages)?

• Are all the interfaces or interface blocks detailed with the flow properties, opera-

tions, and event receptions?

• Is the directionality of each interface feature set properly?

• Are the properties of the services (operations and event receptions) complete,

including data passed via those services?

• Is the logical interface data schema fully, properly, and consistently defined for

blocks, value types, quantity kinds, and units?

Example
The starting point for the example of this recipe is the detail shown at the front of this chapter. In

this recipe, we will organize and refactor this information to facilitate the other handoff activities.

Chapter 4 375

Organize the subsystems
Here, we will create a package within the Architecture Pkg::Architectural Design Pkg for each

subsystem and relocate the subsystem block into that package. This will support later import into

the subsystem model. These packages will be nested within the Architecture Pkg::Architectural

Design Pkg. See Figure 4.8:

Figure 4.8: Subsystem organization in the system model

Handoff to Downstream Engineering376

Organize the requirements
The requirements are held within the Requirements Analysis Pkg :: Requirements Pkg. While it

is possible to redistribute the requirements into a package per subsystem based on those relations,

it isn’t always practical to do so. Minimally, two summary views are needed. First, a table of the

requirements showing the name and specification text of all requirements must be provided.

This should be placed in the Requirements Analysis Pkg::Requirements Pkg so the subsystem

teams can access it easily (as shown in Figure 4.2 and Figure 4.3) and use it to determine their

requirements.

Secondly, matrix views showing the allocation relations between the subsystems and the allocated

requirements are needed (as shown in Figure 4.3). Since the subsystems are the owners of the

«allocate» and «satisfy» relations, it makes sense for these matrices to be in the Architecture

Pkg::Architectural Design Pkg. The overall matrix can be put in that package directly. Figure 4.9

shows the package organization of the requirements in the model:

Figure 4.9: Requirements organization

In addition, each subsystem package contains an allocation matrix just showing the requirements

allocated to that specific subsystem. Figure 4.10 shows the example for the Comms subsystem.

The Cameo feature Show Elements > With relations is used to just show the requirements allo-

cated to the Comms subsystem:

Chapter 4 377

Figure 4.10: Comms subsystem allocated requirements

Handoff to Downstream Engineering378

Organize the interface data
In the canonical model organization used in the example, the logical interfaces are located in

the systems engineering model InterfacesPkg. These may be either Interfaces or Interface Blocks

depending on whether standard or proxy ports are used. In addition, the package contains the

specifications of the logical data passed via those interfaces, whether that data is expressed as

service-independent flow properties or arguments for services. All this information should be

organized for reference by the Shared Model, defined in the next recipe. The Shared Model will

define physical interfaces and an associated data schema that represents the logical interfaces

and data schema in the systems model. Those physical interfaces will then be made available to

the subsystem teams via the model federation defined in the next recipe.

The information for this example is already shown in Figure 4.4, Figure 4.5 and Figure 4.6. The

organization of the interface data is shown in Figure 4.11. Although the figure only shows the

services for a single interface block, note that we have followed the convention of using event

receptions for all logical service specifications in the systems engineering model. These will be

changed into a physical schema in later recipes in this chapter:

Chapter 4 379

Figure 4.11: Organization of interface data

Handoff to Downstream Engineering380

Review model for handoff readiness
In this example, the model is set up and ready for handoff. See the Effective Reviews and Walk-

throughs recipe in Chapter 5, Demonstration of Meeting Needs, for the workflow for performing the

review.

Federating Models for Handoff
In SysML, a model is not the same as a project. A model is a special kind of package used to orga-

nize information for a particular modeling purpose. It may contain many nested packages and

even other nested models. What we normally call the “systems engineering model” normally

contains at least two models: a specification model (containing requirements, use cases, and

functional analyses) and an architecture model (identifying subsystems and their properties,

relations, and interfaces). There may be additional models for various analyses, such as trade

studies or safety analyses.

In many cases, all these models are contained within a single SysML project. A project can contain

one or more models, but a model can also be split across multiple projects. This is often done

when the model is being worked on by different, geographically distributed teams. Projects and

models are related but are distinct concepts. Many people just squint and say model = project and

while that isn’t wrong, neither is it the entire story.

Downstream engineering is different in that many separate, independent models will be created.

These models will interact with each other in specific and well-defined ways. A set of such in-

dependent, yet connected models is called a federation, and the process of creating the models

and their linkages is called a model federation.

One of the key ideas in a model federation is the notion of a single source of truth. This concept

means that while there may be multiple sources for engineering data, each specific datum is

situated in a single, well-defined location known as the datum’s authoritative source. When a

value is needed, the authoritative source for that data is referenced.

This means that, for the most part, data is not copied from model to model, which can lead to

questions such as “The value reported for this datum is different if I look at different sources – so

which is correct?” Instead, data is referenced.

To share packages from a project in Cameo, the source project must identify the packages allowed

to be shared. This is done by right-clicking a package in the Cameo containment tree and selecting

Project Usages > Share Packages. This pops up the Share Packages dialog, which allows the user

to select which packages they will allow to be shared with other projects.

Chapter 4 381

Sharing packages is how models are federated.

In the Cameo tool, model federations are constructed with the File > Use Project > Use Local

Project feature (or File > Use Project > Use Server Project for projects stored on Teamwork Cloud).

This feature can add data – usually packages with their contained elements – to other models.

This feature loads in packages and model elements from other models or projects, provided they

have been designated by that project owner as sharable. Once the Use Project dialog pops up,

you can select the desired reference project and see the sharable packages. You can access them

as read-only or read-write. In the former case, you can see the used model elements and create

references to them. In the latter case, you can also create bidirectional relations with those ele-

ments and modify them – this can lead to synchronization issues later, so we recommend:

Always make packages in a federation read-only.

If the element in the source project must be changed, simply open the source project and make

the edits.

While many models might be federated, including CAD models, PID control models, environment

simulation models, and implementation models, we will focus on a core set of models in the

recipe. The models in our federation will be:

• Systems engineering model:

• This is the model we’ve been working with so far

• Shared Model:

• This model contains elements used by more than one subsystem model

• Our focus here will be the system and subsystem physical interfaces, including

the physical data schema for information passed in those interfaces

• Subsystem model [*]:

• A separate model per subsystem is created to hold its detailed design and imple-

mentation

Purpose
The purpose of this recipe is to provide workspaces to support both the handoff process itself and

the downstream engineering work to follow.

Handoff to Downstream Engineering382

Inputs and preconditions
The starting point for this recipe is the system engineering model with engineering data necessary

to perform the handoff to downstream engineering, including the set of identified subsystems.

This information is expected to be organized to facilitate the referencing of requirements, ar-

chitectural elements, and interface data for the linking together of the models in the federation.

Outputs and postconditions
At the end of the recipe, a set of models are constructed with limited and well-defined points of

interaction. Each model is created with a standard canonical model organization supportive of

its purpose.

How to do it
The steps involved in the recipe are shown in Figure 4.12:

Figure 4.12: Create model federation

Chapter 4 383

Create the Shared Model
Create a new model, named the Shared Model. This is normally located in a folder tree underneath

the folder containing the system engineering model, but it needn’t necessarily be so.

Structure the Shared Model
This model has a recommended initial structure containing the package Physical Interfaces Pkg,

which will be referenced by the Subsystem Models. This package will hold the specification of

the interfaces and has two nested packages, one for the physical data schema and the other for

related stereotypes. The stereotypes are commonly used to specify metadata to indicate sub-

ranges, extent, and precision, and this information is important for the subsystem teams to use

those data successfully. The subsystems need a common definition for interfaces and they get it

by referencing this package.

It should be noted that it is common to add an additional DomainsPkg later in the downstream

engineering process to hold design elements common to multiple subsystems, but the identifi-

cation of such elements is beyond the scope of the handoff activity.

Add SE Model references to the Shared Model
There are a small number of SE Model packages that must be referenced in the Shared Model.

Notably, this includes:

• A Requirements Pkg package

• An Interfaces Pkg package

• A Shared Common Pkg package, which may contain a Common Stereotypes profile

The first two are discussed in some detail in the previous recipe. The Shared Common package

includes stereotypes and other reusable elements that may be necessary to properly interpret the

elements in the referenced packages.

In Cameo, adding these references is done with the File > Use Project feature. If you select the

menu item, the Use Project dialog will open and you can navigate to the systems engineering

model you want to reference.

Handoff to Downstream Engineering384

Once there, you can select the packages it has shared (Figure 4.13):

Figure 4.13: Use Project dialog

It is highly recommended that you use the packages as Read-only. This will prevent synchroni-

zation problems later. If you need to modify the source package, open up the system engineering

model and edit it there.

Create the subsystem model
It is assumed that each subsystem is a well-defined, mostly independent entity and will generally

be developed by a separate interdisciplinary engineering team. For this reason, each subsystem will

be further developed in its own model. In this step, a separate model is created for the subsystem.

This step is repeated for each subsystem.

Structure the subsystem model
A standard canonical structure is created for the subsystem. It consists of two packages, although

it is expected that the subsystem team will elaborate on the package structure during the design

and implementation of that subsystem. These packages are:

• A Subsystem Spec Pkg package:

Chapter 4 385

• This package is intended to hold any requirements and requirements analysis

elements the team finds necessary. Further recipes will discuss the creation of

refined requirements for the included engineering disciplines and their facets.

• A Deployment Pkg package:

• This package contains what is known as the deployment architecture for the sub-

system. This is a creation of engineering-discipline-specific facets, which are

contributions to the subsystem design from a single engineering discipline. The

responsibilities and connections of these facets define the deployment architecture.

This step is repeated for each subsystem.

Add SE Model references to the subsystem model
Each subsystem model has two important references in the SE Model:

• Subsystem package:

• In the previous recipe, each subsystem was located in its own package in the SE

Model, along with its properties and a matrix identifying the requirements it must

meet. The package has the original name of the subsystem package in the SE Model.

• Requirements Pkg package:

• This is a reference to the entire set of requirements, but the matrix in the subsys-

tem package identifies which of those requirements are relevant to the design of

the subsystem.

While in almost all cases, it is preferable to add these other model packages to the subsystem

model by reference, it is common to add the subsystem package by value (copy). The reason is that

in an iterative development process, systems engineering will continue to modify the SE Model

for the next iteration while the downstream engineering teams are elaborating the subsystem

design for the current iteration. As such, the subsystem teams don’t want to see new updates to

their specification model until the next iteration. By adding the subsystem spec package by copy,

it can be updated at a time of the subsystem teams choosing and SE Model updates won’t be

reflected in the subsystem model until the subsystem model explicitly updates the reference. Any

relations from other subsystem model elements to the elements in the subsystem spec package

will be automatically updated because the reloaded elements will retain the same GUID. However,

any changes made to the copied elements will be lost.

Handoff to Downstream Engineering386

Insulation from changes made by system engineers can also be handled by a configuration man-

agement tool that manages baselined versions of the referenced models, so there are multiple

potential solutions to this issue.

This step is repeated for each subsystem.

Add Shared Model references to the subsystem model
The relevant package to reference in the Shared Model is Physical Interfaces Pkg. This will con-

tain the interface definitions and related data used by the subsystems, including the physical

data schema.

This step is repeated for each subsystem.

Example
In this example, we will be creating a Shared Model and a subsystem model for subsystems

Comms, Electrical Power Delivery, Main Computing Platform, Mechanical Frame, Power

Train, and Rider Interaction.

Create the Shared Model
We will put all these models, including the Shared Model, in a folder located in the folder contain-

ing the SE Model. This folder is named Subsystem Model and contains a nested folder, Shared-

Model.

Structure the Shared Model
It is straightforward to add Physical Interfaces Pkg and its nested packages.

Add SE Model references to the Shared Model
It is similarly straightforward to add the references back to the common, requirements, and log-

ical interface packages in the systems engineering model. When this step is complete, the initial

structure is as shown in Figure 4.14. The grayed-out package names are the shared/referenced

packages from the systems engineering model and the darker package names are the ones that

are new and owned by the Shared Model:

Chapter 4 387

Figure 4.14: Initial structure of the Shared Model

Create the subsystem model
For every subsystem, we will create a separate subsystem model. If we are practicing incremental

or agile development, the handoff recipes will be performed multiple times during the project.

In this case, it isn’t necessary that all of the subsystem will be involved in every increment of the

system, so subsystem models only need to be created for the subsystems that participate in the

current iteration.

In this example, those subsystems are Comms, Electric Power Delivery, Main Computing Plat-

form, Mechanical Frame, Power Train, and Rider Interaction.

Handoff to Downstream Engineering388

Structure the subsystem model
Although the subsystem models may evolve differently depending on the needs and engineering

disciplines involved, they all start life with a common structure. This structure consists of a Sub-

system Spec Pkg and Deployment Pkg packages. If software engineering is involved in subsys-

tem development, then additional packages to support software development are added as well.

While it’s not strictly a part of the handoff activity per se, I’ve added a typical initial structure for

software development in the Main Computing Platform model, shown in Figure 4.15.

Add SE Model references to the subsystem model
Each subsystem model must have access to its specification from the SE Model; as previously

mentioned this can be done by value (copy) or by reference (project usage). In the previous recipe,

we organized the SE Model to simplify this step; the information for a specific subsystem is all

located in one package nested within the Architecture Design Pkg. In our example SE Model,

the names of these subsystem packages are simply the name of the subsystem followed by the

suffix Pkg. For example, the package containing the Main Computing Platform subsystem is

Main Computing Platform Pkg.

In addition, each subsystem model must reference the Requirements Pkg package so that it can

easily locate the requirements it must satisfy.

Add Shared Model references to the subsystem model
Finally, each subsystem needs to reference the common physical interface specifications held in

the Shared Model:

Figure 4.15: Main computing subsystem model organization

Chapter 4 389

Logical to Physical Interfaces
The previous chapters develop interfaces from the functional analysis (Chapter 2, System Spec-

ification) and the architecture (Chapter 3, Developing Systems Architecture). These are all logical

interfaces that are defined by a set of logical services or flows. These logical interfaces characterize

their logical properties – extent, precision, timeliness, and so on – as metadata on those features.

In this book, all services in the logical interface are represented as events that possibly carry in-

formation or as flow properties. In this recipe, that information is elaborated in a physical data

schema, refining their physical properties.

The subsystem teams need physical interface specifications, since they are designing and imple-

menting physical systems that will connect in the real world. We must refine the logical interfaces

to include their implementation detail – including the physical realization of the data – so that

the subsystems can be properly designed and be ensured to properly connect and collaborate in

actual use.

For example, a logical service specifying a command to enter into configuration mode such as

evSetMode(CONFIGURATION_MODE) might be established between an actor, such as the Con-

figuration App, and the system. The physical interface might be implemented as a Bluetooth

message carrying the commanded mode in a specific bit format. The bit format for the message

that sends the command is the physical realization of the logical service.

A common system engineering work product is an Interface Control Document (ICD). While I am

loath to create a document per se, the goal itself is laudable – create a specification of the system

interfaces and their metadata and present it in a way that can be used by a variety of stakehold-

ers. I talk about creating model-based ICDs both on my website (https://www.bruce-douglass.

com/_files/ugd/21dc4f_7bf30517b9ca46c59c21eddedf18663c.pdf) and on my YouTube chan-

nel (https://www.youtube.com/watch?v=9pzjMkhFIoM&t=23s). What should an ICD contain?

An ICD should identify:

• Systems and their connections and connection points

• Interfaces, which in turn contain:

• Service specifications, including:

• Service name

• Service parameters, including their direction (in, out, or inout)

• Service direction (e.g. provided vs required)

https://www.bruce-douglass.com/_files/ugd/21dc4f_7bf30517b9ca46c59c21eddedf18663c.pdf
https://www.bruce-douglass.com/_files/ugd/21dc4f_7bf30517b9ca46c59c21eddedf18663c.pdf
https://www.youtube.com/watch?v=9pzjMkhFIoM&t=23s

Handoff to Downstream Engineering390

• Description of functionality

• Preconditions, post-conditions, constraints, and invariants

• Flow specifications, including:

• Flow type

• Data schema for arguments and flows:

• Type model

• Metadata, including extent (set of valid values), precision, accuracy, fidelity,

timeliness, and other constraints

In SysML models, this means that the primary element will be Interface Blocks and their owned

features.

Representing an ICD
In SysML, ICD can be visualized as a set of diagrams, tables, matrices, or (in a best case scenario)

a combination of all three. One of the useful mission types for block definition diagrams that I

use is creating an Interface Diagram, which is nothing other than a BDD whose purpose is to

visualize some set of interfaces, their owned features, and related metadata. I normally create

one such diagram for each subsystem, showing the ports and all the interfaces specifying those

ports. It is also easy to create an Interface Specification Table (in Cameo, usage of a Generic Ta-

ble) that exposes the same information but in tabular form. An advantage of the tabular format

is the ease with which the information can be exported to spreadsheets.

Purpose
The purpose of this recipe is to create physical interfaces and physical data schema and store them

in the Shared Model so that subsystem teams have a single source of truth for the definition of

actor, system, and subsystem interfaces.

Note that any interfaces defined within a subsystem are out of scope for this recipe and for the

Shared Model; this recipe only addresses interfaces between subsystems, the system, and the

actors, or between the subsystems and the actors.

Inputs and preconditions
The inputs for the recipe include the logical interfaces and the logical data schema. Preconditions

include the construction of the Shared Model complete with references to the logical interfaces

and data schema in the SE Model.

Chapter 4 391

Outputs and postconditions
The outputs from this recipe include both the physical interface specifications and the physical

data schema organized for easy import into the subsystem models.

How to do it
The workflow for the recipe is shown in Figure 4.16:

Figure 4.16: Define physical interfaces

Reference the logical interfaces
The physical interfaces we create must satisfy the needs of the already-defined logical interfaces.

To start this recipe, we must review and understand the logical interfaces.

Select technology for physical interfaces
Different technological solutions are available for the implementation of physical interfaces. Even

for something like a mechanical power transfer interface, different solutions are possible, such

as friction, gearing, direct drive, and so on. For electronic interfaces, voltage, wattage, amperage,

and phase must be specified. However, software interfaces – or combined electro-software inter-

faces – are where most of the interface complexity of modern systems reside.

In the previous recipes, we specified a logical interface using a combination of flow properties

(mostly for mechanical and electronic interfaces) and signal events (for discrete and software

interfaces). This frees us from early concern over technical detail while allowing us to specify the

intent and logical content of interfaces. Once we are ready to direct the downstream subsystem

teams this missing detail must be added.

Flow properties with mechanical or electronic realization may be implemented as energy or

matter flows, or – if informational in nature – perhaps using a software middleware such as Data

Distribution Service (DDS). Events are often implemented as direct software interfaces or as

messages using a communication protocol.

Handoff to Downstream Engineering392

The latter case is an electro-software interface, but the electronics aspect is dictated by a standard

in the physical layer of the protocol definition and while the software messages are constrained

by the defined upper layers of the protocol stack. This is assuming that your realization uses a

pre-defined communications standard. If you define your own, then you get the joy of specifying

those details for your system.

In many cases, the selection of interface technology will be driven by external systems that already

exist; in such cases, you must often select from technology solutions those external systems already

provide. In other cases, the selection will involve performing trade studies (see the Architectural

Trade Studies recipe from the previous chapter) to determine the best technical solutions.

Select technology for use interfaces
User interfaces (UIs) are a special case for interface definition. Logical interfaces defining UIs are

virtual in the sense that our system will not be sending flows or services directly to the human user.

Instead, a UI provides sensors and actuators manipulated or used by human users to provide the

information specified in the logical interfaces. These sensors and actuators are part of the system

design. Inputs from users in a UI may be via touchscreens, keyboards, buttons, motion sensors,

or other such devices. Outputs are perceivable by one or more human sensors, typically vision,

hearing, or touch. The interactions required of the UI are often defined by a human factors group

that does interaction workflow analysis to determine how users should best interact with the

system. The physical UI specification details the externally-accessible interactions although not

necessarily the internal technical detail. For example, the human factors group may determine

that selection buttons should be used for inputs and small displays for output, but the subsys-

tem design team may be charged with the responsibility of selecting the specific kind of buttons

(membrane vs tactile) and displays (LED, LCD, plasma, or CRT).

Define the physical realization of the logical interfaces
Once the technology of the physical interfaces is decided, the use of the technology for the in-

terfaces must be defined. This is straightforward for most mechanical and electronic interfaces,

but many choices might exist for software. For example, TCP/IP might be a selected technology

choice to support an interface. The electronic interfaces are well defined in the physical layer

specification. However, the software messages at the application layer of the protocol are defined

in terms of datagrams. The interfaces must define the internal structuring of information within

the datagram structure.

Chapter 4 393

The basic approach here is to define the message packet or datagram internal data structure,

including message identifier and data fields, so that the different subsystems sending or receiv-

ing the messages can properly create or interpret the messages. Be sure to add a dependency

relation from the physical packet or datagram structure to the logical service being realized. I

create a stereotype of dependency named «represents» for this purpose. The relations can best

be visualized in matrix form.

Add «represents» relations
It is a good idea to add navigable links from the physical interfaces back to their logical coun-

terparts. This can be done as a «trace» relation, but I prefer to add a stereotype just for this

purpose named «represents». I believe this adds clarity whenever you have model elements

representing the same thing at different levels of abstraction. The important thing is that from

the logical interface, I can identify how it is physically realized, and from the physical realization,

I can locate its logical specification.

Create interface visualization
In this step, we create the diagrams, tables, and matrices that expose the interfaces and their

properties to the stakeholders.

Example
In this example, we will focus on the logical interfaces shown in Figure 4.4. We will define the

physical interfaces and physical ports.

Reference the logical interfaces
In the last recipe, we added the Interfaces Pkg from the SE Model for reference. This means that

we can view the content of that package, but cannot change it in the Shared Model, only in the

owning SE Model. The model reference allows use to create navigable relations from our physical

schema to its logical counterpart.

Select technology for physical interfaces
The interfaces in Figure 4.4 have no flow properties so we must only concern ourselves with the

event receptions of the interfaces. Specifically, the Configuration App and Training App com-

municate with the system via a Bluetooth Low Energy (BLE) wireless protocol. The system must

also interact with its own sensors via either BLE or ANT+ protocols for heart rate and pedal data,

but we are considering those interfaces to be internal to the subsystems themselves and so they

will not be detailed here.

Handoff to Downstream Engineering394

The BLE interfaces in our current scope of concern are limited to the Comm subsystem and the

Configuration App and Training App.

For internal subsystem interfaces, different technologies are possible, including RS-232, RS-485,

the Control Area Network (CAN) bus, and Ethernet. Once candidate solutions are identified, a

trade study (not shown here but described in the previous chapter’s Architectural Trade Studies

recipe) would be done and the best solution would be selected.

In this example, we select the CAN bus protocol. This technology will be set to connect all sub-

systems that are software services, such as the interfaces among the Comm, Main Computing

Platform, Rider Interaction, and Power Train subsystems. The interactions for the Electric Power

Delivery subsystem will be electronic digital signals. Table 4.1 summaries the technology choices:

Interface Participants Purpose Technology

App Interface Comm subsystem

Training app

Configuration app

Send Rider data to the Training app for

display and analysis.

Support system configuration by the

Configuration app.

BLE

Pedal Interface Rider

Power Train subsystem

Reliably connect to Rider’s shoes via cleats

in order to determine the power from the

Rider in which position and cadence can

be computed.

Look™

compatible

clipless pedal

fit

Standard

pedal spindle

Pedal-based

power meter

Internal Bus Comms subsystem

Rider Interaction subsystem

Power Train subsystem

Main Computing Platform

subsystem

Mechanical Frame subsystem

Send commands and data between

subsystems for internal interaction

and collaboration, including sending

information to the Comms subsystem to

send to the apps, and sending received

information from the apps received by the

Comms subsystem to other subsystems.

CAN bus

Power Enable Power subsystem

Rider Interaction subsystem

Main Computing Platform

subsystem

Signal the power system to turn power on

and off.

Digital

voltage 0-5V

DC

Chapter 4 395

Electrical Power Electric Power Source

Electrical Power Delivery

subsystem

Electrical power provided from the

external power source to the system

100-240V, 5A,

50-60Hz AC

Electrical Power

distribution

Electric Power Delivery subsystem

and:

• High Power: Power Train

subsystem

• Medium Power:

Mechanical Frame

subsystem

• Digital Power: Rider

Interaction subsystem

• Main Computing

Platform subsystem

• Comms subsystem

• Power Train subsystem

Electrical power is transformed and

delivered to subsystems in one of three

ways:

• High power for the motor to

generate resistance to pedaling

for the Rider

• Medium power for the

Mechanical Frame subsystem to

raise or lower the incline

• Digital Power provided to the

components using digital power

To be defined

by the

Electric Power

Delivery

subsystem

team working

with the other

subsystem

teams

Table 4.1: Interface technologies

Of these technologies, BLE and the CAN bus will require the most attention.

Select technology for UIs
There are several points of human interaction in this system that are not in the scope of this par-

ticular example handoff, including the mechanical points for fit adjustments, the seat, and the

handlebars. In this particular example, we focus on the rider interface via the pedals, the gear

shifters, the power button, and the gearing display. The rider metrics and ride performance are

all displayed by the Training App while the Configuration App provides the UI for setting up

gearing and other configuration values.

The Pegasus features a simple on-bike display for the currently selected gearing and current in-

cline, mocked up in Figure 4.17. It is intended to be at the front of the bike, under the handlebars

but in easy view of the Rider. It sports the power button, which is backlit when pressed, a gearing

display, and the currently selected incline.

Handoff to Downstream Engineering396

The gearing display will display the index of the gear selected, not the number of teeth in the gear:

Figure 4.17: On-bike display

To support Shimano and DI shifting emulation, each handlebar includes a brake lever that can

be pressed inward to shift up or down for the bike (left side for the chain ring, right side for the

rear cassette). In addition, the inside of the shifter has one button for shifting (left side for up,

right side for down) to emulate Digital Indexed (DI) shifting.

Define the physical realization of the logical interfaces
Let’s focus on the messaging protocols as they will implement the bulk of the services. Bluetooth

and its variant BLE are well-defined standards. It is anticipated that we will purchase a BLE pro-

tocol stack so we only need to be concerned about the structuring of the messages at the 1, that

is, structuring the data within the Payload field of the Data Channel PDU (Figure 4.18):

Figure 4.18: BLE packet format

Chapter 4 397

Similarly, for internal bus communication, the CAN bus protocol is well developed with commer-

cial chipsets and protocol stacks available. The CAN bus is optimized for simple data messages

and comes in two forms, one providing an 11-bit header and another a 29-bit header. The header

defines the message identifier. Because the CAN bus is a bit-dominance protocol, the header also

defines the message priority in the case of message transmission collisions. We will use the 29-

bit header format so we needn’t worry about running out of message identifiers. In either case,

the data field may contain up to 8 bytes of data, so that if an application message exceeds that

limit, it must be decomposed into multiple CAN bus messages and reassembled at the receiver

end. The basic structure of CAN bus messages is shown in Figure 4.19:

Figure 4.19: CAN bus message format

For CAN bus messages, we’ll use an enumeration for the message identifier and define the struc-

ture of the data field for interpretation by the system elements.

The basic approach taken is to create base classes for the BLE and CAN bus messages in the Shared

Model. Each will have an ID field that is an enumeration of the message identifiers; it will be the

first field in the BLE PDU. That is, the BLE messages that have no data payload will only contain

the message ID field in the BLE message data PDU. The CAN bus messages will be slightly different;

the ID field in the message type will be extracted and put into the 29-bit identifier field. Data-less

messages will have no data in the CAN bus data fields but will at least have the message identifier.

Handoff to Downstream Engineering398

We won’t show all the views of all the data elements, but Figure 4.20 shows the types for the BLE

packets and physical data types:

Figure 4.20: Physical data schema for BLE messages

This figure merits a bit of discussion. First, this data schema denotes the physical schema for

bits-over-the-air; this is not necessarily how the subsystem stores the data internally for its own

use. Secondly, note that the figure denotes the use of some C++ language-specific types, such

as uint_t as the basis for the corresponding transmission type uint_1Byte. Next, note the types

scaled_int32x100 and scaled_int16x100. These take a floating-point value and represent them

as scaled integers – in the former case, multiplying the value times 100 and storing it as a 32-bit

signed integer, and in the latter case, multiplying the value times 100 and storing it in a 16-bit

signed integer. The practice of using scaled integers is very common in embedded systems and

cuts down on bandwidth when lots of data must be passed around. Metadata specified for the

logical interfaces must be copied or added and refined in the physical interfaces.

Chapter 4 399

For example, if the range of power applied by the Rider in the logical interface is specified to be

in the subrange (0...2000) and units of watts, then this would need to be replicated in the phys-

ical data schema as well. Lastly, note how the physical data schema blocks have «represents»

relations back to elements in the logical data schema (color-coded to show them more distinctly).

Figure 4.21 shows how these data elements are used to construct BLE packets. The logical data

interface blocks for the Training App and Configuration App are shown in the upper part of the

figure (again, with special coloring), along with their services. Each service must be represented

by one of the defined packet structures. The structure of the BLE Packet class has a pdu part, of

type PDU_Base. PDU_Base contains a 2-byte header, which indicates the message size as well as

a msg_type attribute of type APP_MESSAGE_ID_TYPE, which is an enumeration of all possible

messages. Messages without data, such as evClose_Session, can be sent with a BLE Packet with

a pdu part of type PDU_Base.

For messages that carry data, PDU_Base is subclassed to add appropriate data fields to support

the different messages, so that a BLE Packet can be constructed with an appropriate subtype of

the PDU_Base to carry the message data. For example, to send the logical message evReqSet-

GearConfiguration, the BLE Packet would use the PDU_Gearing subclass of PDU_Base:

Figure 4.21: BLE Packets

Handoff to Downstream Engineering400

While messages between the system and the apps use Bluetooth, messages between subsystems

use an internal CAN bus. The CAN bus physical schema is different in that it must be detailed to

the bit level, since there are packet fields of 1, 4, 7, 11, and 18 bits in addition to elements of one

or more byte lengths. We’ll let the software engineers define the bit-level of the manipulation of

the fields and just note, by type, those fields that have special bit lengths where necessary. Figure

4.22 shows the structure of the CAN bus messages that correspond to the services:

Figure 4.22: CAN bus messages

Chapter 4 401

Add «represents» relations
We must add the «represents» relations so it is clear which Bluetooth or CAN bus messages are

used to represent which logical services in the SE Model interface blocks.

These relations are best visualized in a matrix. We will define a matrix layout that uses the fol-

lowing settings:

• From Element Types: Block

• To Element Types: Receptions

• Cell Element Types: Represents the stereotype of dependency

Then we can use that matrix layout to create a matrix view (created in Cameo as a “dependency

matrix”) with the Physical Interfaces Pkg set to the From Scope and Interfaces Pkg referenced

from the SE Model.

Handoff to Downstream Engineering402

When you’re all done, you should have a matrix of the relations from the messaging classes to

the event receptions in the SE Model interface blocks, as shown in Figure 4.23:

Figure 4.23: Message mapping to logical services

Create interfaces visualization
In this step, we want to create a model-based version of an Interface Control Document (ICD).

Chapter 4 403

In this example, I will show a subsystem interface diagram (Figure 4.24) and an interface specifi-

cation table (Figure 4.25). In a real project, I would create a subsystem interface diagram for every

subsystem in the project increment and the table would be fully elaborated:

Figure 4.24: Subsystem interface diagram

Figure 4.25: Interface specification table

Handoff to Downstream Engineering404

Deployment Architecture I: Allocation to Engineering Facets
The Federating Models for Handoff recipe created a set of models: a Shared Model and a separate

model per subsystem. The current recipe creates what is called the deployment architecture and

allocates subsystem features and requirements to different engineering disciplines. Once that is

done, the real job of software, electronic, and mechanical design can begin, post-handoff. In this

chapter, we will separate two key aspects of the deployment architecture into different recipes.

The first will deal with the allocation of subsystem features to engineering facets. The next recipe

will focus on the definition of interdisciplinary interfaces enabling those facets to collaborate.

Deployment architecture
Chapter 3, Developing Systems Architecture, began with a discussion of the “Six Critical Views of

Architecture.” One of these – the Deployment Architecture – is the focus of this and the next recipes.

The deployment architecture is based on the notion of facets. A facet is a contribution to a design

that comes from a single engineering discipline (Figure 4.26). We will not design the internal

structure or behavior of these facets, but will refer to them collectively; thus, we will not identify

here software components, or electrical parts, but rather simply refer to all the contributions from

these as the “software facet” or “electronics facet.” A typical subsystem integrates a number of

different facets, the output from engineering in disciplines such as:

• Electronics:

• Power electronics

• Motor electronics

• Analog electronics

• Digital electronics

• Mechanics:

• Thermodynamics

• Materials

• Structural mechanics

• Pneumatics

• Hydraulics

• Aerodynamics

• Hydrodynamics

• Optics

Chapter 4 405

• Acoustics

• Chemical engineering

• Software:

• Control software

• Web/cloud software

• Communications

• Machine learning

• Data management

Figure 4.26: Some engineering facets

These disciplines may result in facets at a high-level of abstraction – such as an electronics facet

– or may result in more detailed facets – such as power, motor, and digital electronics, depending

on the needs and complexity of the subsystem.

A subsystem team is generally comprised of multiple engineers of each discipline working both

independently on their aspect of the design and collaboratively to produce an integrated, func-

tioning subsystem.

Creating a deployment architecture identifies and characterizes the facets and their responsibil-

ities in the scope of the subsystem design. This means that the subsystem features – subsystem

functions, information, services, and requirements – must be allocated to the facets.

Handoff to Downstream Engineering406

This makes it clear to the subsystem discipline-specific engineers what they need to design and

how it contributes to the overall subsystem functionality.

The deployment architecture definition is best led by a system engineer but must include input

and contributions from discipline-specific engineers to carry it forward. This is often called an

Interdisciplinary Product Team (IPT). Historically, a common cause of project failure is for a

single engineering discipline to be responsible for the creation of the deployment architecture

and allocation of responsibilities. Practice clearly demonstrates that an IPT is a better way.

The system engineering role in the deployment architecture is crucial because system engineers

seek to optimize the system as a whole against a set of product-level constraints. Nevertheless, it

is a mistake for systems engineers to create and allocate responsibilities without consulting the

downstream engineers responsible for detailed design and implementation. It is also a (common)

mistake to let one discipline make the deployment decisions without adequate input from the

others. I’ve seen this on many projects, where the electronics designers dictate the deployment

architecture and end up with a horrid software design because they didn’t adequately consider

the needs of the software team. It is best for the engineers to collaborate on the deployment

decisions, and in my experience, this results in a superior overall design.

Purpose
The purpose of this recipe is to create the deployment architecture and allocate subsystem fea-

tures and requirements to enable the creation of the electronic, mechanical, and software design.

Inputs and preconditions
The preconditions are that the subsystem architecture has been defined, subsystems have been

identified, and system features and requirements have been allocated to the subsystems.

Inputs include the subsystem requirements and system features – notably system data, system

services, and system functions – that have been allocated to the subsystem.

Outputs and postconditions
The output of this recipe is the defined deployment architecture, identified subsystem facets, and

allocation of system features to those facets.

The output is the updated subsystem model with those elements identified and allocated.

Chapter 4 407

How to do it
Figure 4.27 shows the recipe workflow. This recipe is similar to the Architectural Allocation recipe

in Chapter 3, Developing Systems Architecture, except that it focuses on the facets within a subsys-

tem rather than on the subsystems themselves. This recipe is best led by a system engineer but

performed by an interdisciplinary product team to optimize the deployment architecture:

Figure 4.27: Create the deployment architecture

Identify contributing engineering facets
The first step of the recipe is to identify the engineering disciplines involved. Some subsystems

might be mechanical only, electrical-mechanical, software-electronic, or virtually any other com-

bination. Any involved engineering discipline must be represented so that their facet contribution

can be adequately characterized. For an embedded system, a software-centric subsystem typically

also includes electronic computing infrastructure (a digital electronic facet) to provide hardware

services to support the functionality. The capacities of the electronics facet, including memory size,

CPU throughput, and so on, are left to negotiation among the coordinating engineering disciplines.

Handoff to Downstream Engineering408

This topic is discussed in a bit more detail in the next recipe, Deployment Architecture II: Interdis-

ciplinary Interfaces.

Create a block for each facet
In the deployment model, we will create a block for each facet. We will not, in general, decompose

the facet to identify its internal structure. That is a job for discipline-specific engineers who have

highly developed skills in their respective subject matters. It is enough, generally, to create a sep-

arate block for each facet. Each facet block will serve as a container or collector of specification

information about that facet for the downstream engineering work.

Decompose non-allocatable requirements
Requirements can sometimes be directly allocated to a specific facet. In other cases, it is neces-

sary to create derived requirements that take into account the original subsystem requirements

and the specifics of the subsystem deployment architecture. In this latter case, create derived

requirements that can be directly allocated to subsystems. Be sure to add «deriveReqt» relations

from the derived requirements back to their source subsystem requirements. These derived re-

quirements can either be stored in the subsystem model, the system model, or in a requirements

management tool, such as IBM DOORS™.

Allocate requirements to facets
Allocate system requirements to the identified facets. In general, each requirement is allocated to

a single facet, so in the end, the requirements allocated to the subsystem are clearly and unambig-

uously allocated to facets. The set of allocated subsystem requirements after this step is normally

known as software, electronic, or mechanical requirements. It is crucial that the engineers of

the involved disciplines are a part of the allocation process.

Decompose non-allocatable subsystem features
Some subsystem features – which refer to operations, signal receptions, flows, and data – can be

directly allocated to a single facet. In practice, most cannot. When this is the case, the feature must

be decomposed into engineering-specific-level features that trace back to their subsystem-level

source feature but can be directly allocated to a single facet.

Allocate subsystem features to facets
Each subsystem function now becomes a service allocated to a single facet OR it is decomposed

to a set of services, each of which is so allocated. Subsystem flows and data must also be allocated

to facets as well.

Chapter 4 409

Perform initial facet load analysis
This step seeks to broadly characterize the size, capacity, and other summary quantitative prop-

erties of the facets. The term load means different things in different disciplines. For mechanical

facets, it might refer to weight or shear force. For digital electronics, it might refer to CPU through-

put and memory size. For power electronics, it might mean the maximum available current. For

software, it might mean volume (roughly, “lines of code”), nonvolatile storage needs, volatile

memory needs, or message throughput. The important properties will also differ depending

on the nature of the system. Helicopters, for example, are notoriously weight-sensitive, while

automobiles are notoriously component price-sensitive (meaning they want to use the smallest

CPUS and the least memory possible). These system characteristics will drive the need for the

quantification of different system properties.

These properties will be estimates of the final product qualities but will be used to drive engi-

neering decisions. Digital electronics engineers will need to design or select CPU and memory

hardware, and they need a rough guess of the needs or requirements of the software to do so. It

is far too common that a lack of understanding leads to the design of underpowered comput-

ing hardware resulting in decreased software (and therefore, system) performance. Is a 16-bit

processor adequate or does the system need a pair of them or a 32-bit CPU? Is 100Kb of memory

adequate or does the system need 10Mb? Given these rough estimates, downstream design refines

and implements these properties.

Estimating the required capacity of the computing environment is difficult to do well and a

detailed discussion is beyond the scope of this book. However, it makes sense to introduce the

topic and illustrate how it might be applied in this example. Let’s consider memory sizing first.

Embedded systems memory comes in several different kinds, each of which must be accessible

by the software (i.e. part of the software “memory map”). Without considering the underlying

technology, the kinds of memory required by embedded software are:

• Non-reprogrammable non-volatile memory:

This kind of memory provides storage for code that can never be changed after manufac-

turing. It provides boot-loading code and at least low-level operating system code.

• Programmable non-volatile memory:

This kind of memory provides storage for software object code and data that is to be re-

tained across power resets. This can be updated and rewritten by program execution or

via Over-the-Air (OTA) updates.

Handoff to Downstream Engineering410

• Programmable read-write memory for software object code execution:

Because of the relatively slow access times for non-volatile memory, it is not uncommon

to copy software object code into normal RAM for execution. Normally, the contents of

this memory are lost during power resets.

• Programmable read-write memory for software data (heap, stack, and global storage):

This memory provides volatile storage for variables and software data during execution.

Generally, the contents of this memory are lost during power resets.

• Electronic registers (“pseudo-memory”):

This isn’t really memory, per se, as it refers to hardware read-only, write-only, and read-

write registers used to interface between the software and the digital electronics.

• Interrupt vector table:

This isn’t a different kind of memory as it may be implemented in any of the above means

but must be part of the memory map.

A typical approach is to estimate the need for each of the above kinds of memory and then construct

a memory map, assigning blocks of addresses to the kinds of memory. It is common to then add

a percentage beyond the estimated need to provide room to grow in the future.

CPU capacity can be measured in many ways. CPU capacity estimating can be performed by

comparing the computation expectations of a new system based on throughput measurements of

existing systems. An alternative is to base it on experimentation: write a “representative” portion

of the software, run it on the proposed hardware platform, measure the execution time, bandwidth

or throughput, and then scale it to your estimated software size. You can even do “cycle counting”

by determining the CPU cycles needed to perform critical functionality on a given CPU, and then

compute the CPU speed as a cycle rate fast enough to deliver the necessary functionality within

the timeliness requirements. Of course, there are many other considerations that go into a CPU

decision including cost, availability, longevity, and development support infrastructure.

Chapter 4 411

Example
We will limit our example to a single subsystem identified in the last chapter: the Power Train

subsystem.

Identify contributing engineering facets
The Power Train subsystem is envisioned to have mechanical, electronic, and software aspects.

Create a block for each facet
Figure 4.28 shows the blocks representing these facets while Figure 4.29 shows how they connect.

Note the «software», «electronics», and «mechanical» stereotypes added to the facet blocks.

I defined these stereotypes in the Shared Model::Shared Common Pkg package so that they are

available to all subsystems. This is an example of the use of stereotypes to indicate a “special

kind of” modeling element.

Also note the connection points for those facets. There are two pairs of ports between the Software

and Electronics blocks, one for communications (it is anticipated that the electronics will pro-

vide an interface to the CAN bus) and one for interaction with the electronics of the power train.

This separation is not a constraint on either the software or electronics design but represents the

connections between the facets being really independent of each other.

There is both a port pair and an association between the Electronic and Mechanical blocks on

the BDD and a corresponding connector between their instances on the IBD. This is a personal

choice of how I like to separate dynamic and static connections between these facets by modeling

them with ports and direct associations, respectively. By dynamic, I am referring to connections

that convey information or flows during system operation.

Handoff to Downstream Engineering412

By static, I am referring to connections that do not, such as the physical attachments of electronic

components to the mechanical power train with bolts or screws:

Figure 4.28: Deployment Architecture BDD

Figure 4.29: Connected deployment architecture IBD

Chapter 4 413

Decompose non-allocatable requirements
These facets provide responsible elements to which requirements may be allocated. As mentioned,

many requirements must be decomposed into derived requirements prior to allocation.

One issue is where to place such requirements. If you are using a third-party requirements man-

agement tool such as DOORS, then clearly, this tool should hold those requirements. If you are

instead managing the requirements directly in your model, then there are a couple of options: the

Requirements Pkg package in the SE Model or in the subsystem model. I personally prefer the

latter, but valid arguments can be made for the former. In this case, I will create a Capabilities::Re-

quirements Pkg package inside the Power Train Subsystem Model to hold these requirements.

Before we can decompose requirements for this subsystem, we need to highlight the relevant

requirements, i.e. the ones to which the Power Train subsystem has an «allocate» or «satisfy»

relation. The Power Train Pkg, imported from the SE Model, has these relations, and the Require-

ments Pkg, also loaded from the SE Model, has the requirements. The appropriate requirement

may be easily identified by creating a relation map in Cameo for the Power Train block (right-

click the block and select Related elements > Create Relation Map) or by building a matrix. Both

are shown in Figure 4.30:

Figure 4.30: Finding requirements allocated to the subsystem

Handoff to Downstream Engineering414

Having identified the relevant requirements, it is a simple matter to build a requirements diagram

exposing just those requirements in the Subsystem Requirements Pkg package (Figure 4.31):

Figure 4.31: Requirements allocated to the power train subsystem

When working in diagrams, adding derived requirements is straightforward. For example, look at

Figure 4.32. In this figure, which works with a subset of the subsystem requirements, we see the

facet requirements with «deriveReqt» relations. I’ve also added the facet stereotypes to clarify

the kind of requirement being stated:

Chapter 4 415

Figure 4.32: Diagrammatically adding facet requirements

The other subsystem requirements are decomposed in other requirements diagrams. The derived

requirements are summarized in Table 4.2:

Requirement Name Specification Derived From

EEReq_01 The electronics will measure rider power at the pedal and

present the value to the software at least every 50 ms.

CRD_05,

CR_requirement_6

EEReq_02 The electronics shall accept commands from the software to

set the resistance to the motor.

CRD_14

EEReq_03 The electronics shall change the power output to its

software-commanded value within 50 ms.

CRD_28,

CRD_27

EEReq_04 The electronics shall measure pedal position within 1 degree

of accuracy.

CR_requirement_3

EEReq_05 The motor shall produce resistance to be applied to the pedal. CRD_26

EEReq_06 The electronics shall measure the pedal position at least

every 10 ms.

CR_requirement_3

EEReq_07 The electronics shall provide the measured pedal position to

the software at least every 10 ms.

CR_requirement_3

EEReq_08 The electronics shall accept commands from the software

to set the resistance to the rider, resulting in power to the

pedals in the range of 0 to 2,000W.

CRD_24

Handoff to Downstream Engineering416

EEReq_09 The electronics shall produce resistance resulting in the

command power with an accuracy of +/- 1 watt.

CRD_24

EEReq_10 The electronics shall update the resistance at the pedal to a

commanded value within 10ms.

CRD_24

MEReq_01 The mechanical drive train shall transmit the motor

resistance to the pedal without rider-perceivable loss.

CRD_26

MEReq_02 The mechanical drive train shall deliver resistance to the

pedal with a power loss of < 0.2W.

CRD_24

SWReq_01 The software will send measured rider power at least every

100 ms to the Rider Application Subsystem.

CRD_05,

CR_requirement_6

SWReq_02 The software shall accept commands from the Rider

Application to set the commanded pedal resistance.

CRD_14

SWReq_03 The software shall command the electronics to set the pedal

resistance.

CRD_14

SWReq_04 The software shall command the electronics to set power

output within 50ms of receiving a command to do so from

the Rider Application subsystem.

CRD_28,

CRD_27

SWReq_05 The software shall read a measured pedal position from the

electronics at least every 10ms.

CR_requirement_3

SWReq_06 The software shall compute pedal cadence and pedal speed

from pedal position changes at least every 20ms.

CR_requirement_3

SWReq_07 The software shall convey pedal position and pedal cadence

at least every 50ms to the Rider Interaction subsystem.

CRD_04

Chapter 4 417

SWReq_08 The software shall receive resistance commands from

the Rider Application subsystem and convey them to the

electronics within 10ms.

CRD_24

SWReq_09 The software shall reject commanded resistance, resulting in

power outputs that fall outside the range of 0–2,000W, and

return an error message to the Rider Application subsystem.

CRD_24

SWReq_10 The software shall convey commanded resistance to the

electronics within 50ms of receipt from the Rider Application

subsystem.

CRD_24

Table 4.2: Derived facet requirements table

Allocate requirements to facets
The next step in the recipe is to allocate the requirements to the facets. Figure 4.33 shows the use

of the «satisfy» relations from the facets to the requirements:

Figure 4.33: Matrix of facet and subsystem requirements

Decompose non-allocatable subsystem features
Figure 4.34 shows the subsystem block features to allocate. On the right side of the figure is the

logical Power Train subsystem block from the SE Model, while on the left is the physical version.

Handoff to Downstream Engineering418

There are a few differences:

Figure 4.34: Subsystem block features to allocate to facets

First, note that the physical version contains no flow properties because all the flow properties

for this block represent things that the subsystem’s internal sensors will measure. Secondly, the

gearing and computation of gear ratio are really managed by the Main Computing Platform sub-

system and all this subsystem cares about is the gear ratio itself. Third, all of the event receptions,

specifying the logical services available across the interface, are summarized by a single event –

evCanMessageReceived() –and two operations – sendCANMessage() and receiveCANMessage().

All of the value properties in the Power Train Subsystem Physical block must be decomposed

into elements in the electronics and software facets. For example, applied Torque is (perhaps)

measured by the hardware in a range of 0 to 10,000 in a 16-bit hardware register. The software

must convert that value to a scaled integer value (scaled_int32_x100) that represents applied

force in watts (ranging from 0 to 2,000) for sending in a CAN message.

Chapter 4 419

We want the software in the Power Train Subsystem Physical to encapsulate and hide the motor

implementation from other subsystems to ensure robust, maintainable design in the future. This

means that the information is represented in both the software and the electronic facets. The

expectation is that the software will be responsible for scaling, manipulating, and communicating

these values with the Main Computing Platform, while the electronics will be responsible for

setting or monitoring device raw data and presenting it to the software.

Figure 4.35 and Figure 4.36 show the derived value properties and operations respectively. I add-

ed a «deriveFeature» stereotype for the dependency between the derived features and its base

feature in the Power Train Subsystem Physical block. These figures show a matrix of such de-

pendencies from the facet properties to the subsystem block properties. The column elements are

properties of the facet blocks – Power Train Electronics, Power Train Mechanicals, and Power

Train Software – while the rows are the value properties allocated to the subsystem itself. This

can be shown diagrammatically but the matrix form is easier to read.

Figure 4.35 shows how some elements (such as gearRatio) are allocated only to a single facet

while others (such as appliedTorque) are decomposed and allocated to multiple facets:

Figure 4.35: Derived facet value properties matrix

The subsystem pedal Cadence value property is only represented in the software because the

software will compute it from the value property pedal Speed, which is provided by the electronics.

Handoff to Downstream Engineering420

Similarly, the gear ratio is used by the software to determine how much resistance should be

applied to the pedal given the pedal cadence and desired pedal resistance. Figure 4.36 shows

a similar mapping but of operations from the software and electronics facets to the operations

allocated to the Power Train Subsystem Physical block:

Figure 4.36: Derived facet functions matrix

The allocation of subsystem data and function is not meant to overly constrain the design of the

facets; they are internal features that the design of these features must support, rather than the

actual design of those features. Facets should feel free to design those features in whatever means

makes the most sense to them. The primary reason for the allocation of the system features to

facets is to be clear about the data and functionality that the facet design is expected to deliver.

Allocate subsystem features to facets
In this example, the identification of the derived facet feature was performed concomitantly with

their allocation, as shown in the previous two figures.

Perform initial facet load analysis
The last step in the recipe is to determine facet capacity. In this example, the primary concerns are

the power of the motor and the computational capacity and memory size of the digital electronics.

Chapter 4 421

The motor power is specified in the requirements; the system is expected to deliver up to 2,000W

of power via resistance to the rider pedal motion.

In this case, we determine that a 32-bit STM32F2 ARM processor running at 120MHz with 1MB

ROM and 1MB RAM is the best fit for our needs and expected future expansion.

Deployment Architecture II: Interdisciplinary Interfaces
One of the most common points of failure in the development of embedded systems is inade-

quately nailing down the interdisciplinary interfaces, especially the electronics-software inter-

faces. These interfaces inform related disciplines about common expectations as to the structure

and behavior of those interfaces. Left to their own devices (so to speak), software engineers will

develop interfaces that are easy for the software implementation while electronics engineers

will develop interfaces that simplify the electronic design. Interdisciplinary interfaces are best

developed cooperatively with all the contributing engineering disciplines present.

In my experience it is best to develop these interfaces early to set expectations, and freeze these

interfaces under configuration management. This is important even if some of the details may

change later. When it becomes obvious during the development of a facet that an interface needs

to be modified, then thaw the interface from configuration management, discuss with all the

stakeholders of that interface, agree upon an appropriate revision, and refreeze it in the CM

tool. Failure to define the interfaces early will inevitably lead to significant downstream rework

and often to suboptimal designs and implementations. It’s an annoyingly common yet easily

avoidable problem.

Purpose
The purpose of this recipe is to detail the interactions between the engineering facets in a system

or subsystem design.

Inputs and preconditions
The context of the deployment architecture (typically a subsystem) must be specified in terms of

its external interfaces and its responsibilities (requirements). Additionally, the contributions of

the engineering facets to the design of the context (i.e. the requirements allocated to the facets)

must be understood.

Outputs and postconditions
When the recipe is completed, the interfaces among the disciplines are adequately specified to

enable the design of the involved facets.

Handoff to Downstream Engineering422

How to do it
Figure 4.37 shows the workflow for the recipe. The flow is pretty simple but some of the actions

identified in the workflow may require significant thought and effort:

Figure 4.37: Define interdisciplinary interfaces

Review allocations to engineering facets
The previous recipe allocated requirements, values, and functions to the different engineering

disciplines. Having a clear understanding of the contributions that must be provided by the en-

gineering facets is a crucial step to creating good interdisciplinary interfaces.

Identify facet properties that must interact with other facets
Interfaces are all about defining the interactions between collaborating elements. In this case, we

want to focus on the coordination of elements in different engineering facets. The previous recipe

decomposed subsystem features into features within different engineering disciplines. The task

here is to relate the properties in collaborating facets.

Chapter 4 423

For example, an electronic sensor may provide a value to the software for manipulation and use,

so the device driver (in the software facet) must interact with the actual sensor (in the electronics

facet). This interaction will result in a service or flow connection of some kind.

Define port pairs between facets that must interact
Once we have identified that properties in two facets must interact, we define a port pair between

the facets to convey the values or service invocations that will be added to the interface.

Define the interaction among facet properties in different facets
The exact nature of the interaction between the facets must be captured in the interface. For ex-

ample, the software sensor device driver may write to a hardware register to signal the sensor to

read a value, wait at least 1 ms, read the sensed value from another hardware register, and then

scale the value to what the software needs to manipulate. This interaction and use must be clear

in the interface specification.

Capture interaction metadata as appropriate
Metadata is “data about data.” In this case, we use metadata to capture the aspects of an interface

that may not be obvious or easy to model in other ways. For example, the previous paragraph

provided a simple example of the interaction of a software device driver with an electronic sen-

sor. Relevant metadata would be the memory map address of the hardware registers and the

bit-mapping of the values in the registers. For example, in the sensor control register, writing a 1 to

bit 0 might activate the sensor, while writing a 0 bit to the same register has no effect; the value

from bits 1–5 might provide a read-only error code should the electronics fail. The fact that the

software must wait for 1 ms after activating the sensor before reading the value must be captured

in the interface as metadata if the software and electronics are to work together properly.

Group interactions across facets into interfaces
All the interactions between the facets must be captured in interfaces. These interfaces must con-

tain relevant information about the interfaces, including how they are accessed by the respective

facets. This is most obvious with respect to electronic-software interfaces. The two most common

technical means for interfacing between software and electronics are memory-mapped registers

and hardware-generated software interrupts.

Negotiate the interface details among interface stakeholders
Keep in mind in this step is that the engineering disciplines must be free to develop their facets

using their hard-won engineering skills without being overly encumbered by expectations from

other engineering disciplines.

Handoff to Downstream Engineering424

In other words, the systems or software engineers shouldn’t dictate the electronics design and

the systems or electronics engineers shouldn’t dictate the design of the software. Nevertheless,

the interfaces do specify the overlap between the disciplines. All the stakeholders should agree

on the specifications of the interfaces. This includes the systems engineers – who have a stake in

overall system optimization – and the involved engineering disciplines.

Store the agreed-upon interfaces in configuration management
There should always be a “known target” for the interfaces between facets even if that interface

changes in the future. Yes, changing interfaces downstream will entail some amount of rework,

but in practice, it is much less rework than if agreements aren’t there in the first place. The worst

outcomes occur when the disciplines continue without a shared understanding of those interfac-

es. Storing the interfaces under configuration management establishes a baseline and a source

of truth from which the engineering disciplines can draw. Should future work uncover some

inadequacy of the interfaces, the interfaces can be renegotiated and the configuration-managed

baseline updated.

Example
This example will continue from the last recipe with the definition of the Power Train subsystem

interfaces. The example in the previous section detailed the allocated requirements and subsystem

features to the disciplines of mechanical, electronic, and software.

Review allocations to engineering facets
Read the example from the previous section to review the requirements, value, and function

allocation.

Chapter 4 425

Identify facet properties that must interact with other facets
In an effort to avoid over-specification of the facet designs, let’s limit our concerns to the subsystem

features that decomposed into elements mapped into different facets. In the previous example, we

added dependencies from the decomposed facet-specific feature to the subsystem block features.

Figure 4.38 shows the mapping of facet features to subsystem block features:

Figure 4.38: Subsystem features decomposed to facets

Define port pairs between facets that must interact
We previously defined the port and added empty interfaces to define them. See Figure 4.28.

Handoff to Downstream Engineering426

Define the interaction among facet properties in different facets
This is the interesting part of the recipe: defining exactly how the facets will interact. Because we

are using SysML proxy ports, we will capture these as interface blocks as shown in Figure 4.39:

Figure 4.39: Deployment interfaces

The software-electronic interfaces are mostly composed of hardware registers, represented as

flow properties. Both the iSW_EE_Control and iSW_EE_Comm interface blocks have control

and data registers. The software triggers hardware actions or reads status information with these

control registers. The data registers provide raw data from the software to the hardware or from

the hardware to the software. The iSW_EE_Comm interface block also has two 64-byte blocks,

one for sending a CAN bus message and the other for receiving one. The event receptions indicate

interrupts generated by the hardware under different conditions. Also, the electronics-mechanical

interface block iEE_ME_Resistance contains a drive train connection value property defined by

the special value type chain_drive.

Let’s now consider how the software-electronic interfaces will work, starting with the iSW_EE_

Control interface block. In actual practice, this would be an outcome of a discussion between

software, electronic, and systems engineers.

Chapter 4 427

The control register in this case will have control or error indication responsibility, each of which

requires a single bit:

• Bit 0 will be a software write-only bit that informs the hardware to start monitoring the

pedal and providing resistance. When a 1 is written to this bit, the hardware will start

applying the force as specified in the resistance hardware register and also start measur-

ing pedal position, pedal speed, and power. The electronics will write those values to the

corresponding hardware registers. When a 0 is written to this bit, the electronics stop

providing resistance to the pedals and stop measuring pedal and power data. The hard-

ware must assure the software that the updates to any register are all completed within

a single CPU cycle to prevent race conditions.

• Bit 1 of the control register is read-only by the software and is used to indicate an error

condition in the delivery of power via the motor: a 0 value indicates no error while a 1

indicates an error has occurred.

• Bit 2 of the control register is read-only by the software and indicates an error in the pedal

position or pedal speed measurement (0 is no error, 1 indicates an error).

• Bit 3 is an indicator of an error reading power delivered by the rider (0 is no error, 1 in-

dicates an error).

• Bits 4–7 are unused.

The other registers indicate either measured values from the electronics (read-only by the soft-

ware) or commanded resistance from the software (write-only by the software). The electronics

will have their own scale of these values, using either 8 bits (such as for the pedal speed and

position) or 16 bits (for resistance and power). The direction of the flow properties is from the

software perspective (following our previous convention that the first field in the interface block

name indicates the unconjugated side of the interface). However, the range of values represented

is not scaled by how the user would interpret the values, but rather by the hardware capability.

The software is expected to scale the values to units meaningful elsewhere.

The electronics measures pedal position as an 8-bit value from 0 (right crank vertical) to 255

(almost vertical). Pedal speed is an 8-bit value ranging from 0 (no movement) to 255 (maxi-

mum measured speed of the hardware). Resistance is written to the register by the software as

a 16-bit value from 0 (no resistance) up to 65,535 (maximum resistance). Likewise, power is a

hardware-measured value from 0 (no power) to 65,535 (maximal measured power). The exact

scaling factors will be specified by the hardware at a later date.

Handoff to Downstream Engineering428

The iSW_EE_Comm interface is a bit more interesting. The core flow properties are the CAN

Receive Buffer and CAN Send Buffer. Each of these is a 64-byte wide, byte-addressable memory

register that holds CAN bus messages. The expected interaction flow looks like this:

To send a message:

1. The software checks bit 0 of the CAN control register. If it’s a 0, then data may be written

to the CAN Send Buffer. If not, the software must wait.

2. The software then writes the CAN bus message it wants to send into the CAN Send Buffer.

3. The software then writes a 1 to bit 0 of the CAN control register.

4. The hardware sets the read value of this bit to 1.

5. The hardware bangs the bits out on the CAN bus.

6. When the hardware has sent the message, the hardware sets the software read value of

bit 0 of the control register to 0.

7. The hardware generates an interrupt 2 to the software to indicate that the CAN Send

Buffer is now available.

8. The software may install an interrupt service routine to interrupt 2 (swCANMsgSend) to

send the next message if desired.

To receive a message:

1. The hardware begins receiving the CAN bus message, filling in the 64-byte wide CAN

Receive Buffer.

2. When the message has been received and stored, the hardware generates interrupt 3

(swCANMsgReceived) and sets the read value of bit 1 of the control register to 1 to indicate

that a message is available.

3. The software is expected to either poll bit 1 of the control register or install an interrupt

service routine to read the message.

4. Once the software has read the message, it is expected to write a 0 value to bit 1. The

hardware ignores this value, but it serves as a flag to the software.

Capture interaction metadata as appropriate
The proper way to interpret the bits of the flow properties and the ordering and timing of actions

to properly interact over the interface constitute the metadata of interest. To this end, I created a

set of stereotypes for this purpose and put them into a shared common profile (Table 4.3).

Chapter 4 429

Most of these stereotypes have tags to represent metadata of interest about the element, but some

stereotypes are simply used to identify a “special kind of thing.” There is some redundancy in the

stereotype tags to allow a degree of flexibility in modeling the necessary information:

Stereotype Applicable to Tag Description
bitmapped Argument

Attribute/Value

Property

Call Operation

Class/Block

Signal

Flow/Flow Proper-

ty/Item Flow

Part

Instance

Operation

Reception

bit_0 Interpretation and use, including read, write, or read/

write
bit_1 Interpretation and use, including read, write, or read/

write
bit_2 Interpretation and use, including read, write, or read/

write
bit_3 Interpretation and use, including read, write, or read/

write
bit_4 Interpretation and use, including read, write, or read/

write
bit_5 Interpretation and use, including read, write, or read/

write
bit_6 Interpretation and use, including read, write, or read/

write
bit_7 Interpretation and use, including read, write, or read/

write
bit_8 Interpretation and use, including read, write, or read/

write
bit_9 Interpretation and use, including read, write, or read/

write
bit_10 Interpretation and use, including read, write, or read/

write
bit_11 Interpretation and use, including read, write, or read/

write
bit_12 Interpretation and use, including read, write, or read/

write
bit_13 Interpretation and use, including read, write, or read/

write
bit_14 Interpretation and use, including read, write, or read/

write
bit_15 Interpretation and use, including read, write, or read/

write
Number_Of_Bits Which bits are valid
Start_Address Memory map starting address
T i m i n g _
Constraints

Timing and delays in use

Usage Description of the use of the register overall

Handoff to Downstream Engineering430

bytemapped Argument

Attribute/Value

Property

Call Operation

Class/Block

Signal

Flow/Flow Proper-

ty/Item Flow

Part

Instance

Operation

Reception

Endianism Big or little endian
Format How to interpret the collection bytes
Number_Of_Bytes How many bytes are included in the value
Start_Address Memory map starting address
Starting_Byte_
Number

Index into a larger array, if necessary

T i m i n g _
Constraints

Timing and delays in use

Units If appropriate, units represented by the value
Usage Description of the use of the register overall

interrupt-

mapped

Call Operation

Signal

Operation

Reception

Byte_Width Byte width of arguments (if any)
Data_Address Location of arguments (if any)
Data_Field_Type Format/interpretation of arguments (if any)
I n t e r r u p t _
number

Interrupt vector #

Usage What the interrupt indicates
memory-

mapped

Argument

Attribute/Value

Property

Call Operation

Class/Block

Signal

Flow/Flow Proper-

ty/Item Flow

Part

Instance

Operation

Reception

Triggered Oper-

ation

Bitmap Internal format of the memory-mapped item
Numer_Of_Bytes Size (in bytes) of the memory-mapped item
Range_High High end of range (if continuous)
Range_low Low end of range (if continuous)
Start_Address Location of the first element in the memory map
T i m i n g _
Constraints

Timeliness constraints on use

Usage Description of the use of the element

Chapter 4 431

<none>digi-

talVoltage

Attribute/Value

Property

Class/Block

Reception

Operation

Signal

Part

Instance

Usage How to interpret different voltage levels

ee_hy_inter-

face

Attribute/Value

property

Argument

Call Operation

Class/Block

Part

Instance

Operation

Reception

Triggered Oper-

ation

<none> Indicates this interface is between electronics and

hydraulics

ee_me_inter-

face

Attribute/Value

property

Argument

Call Operation

Class/Block

Part

Instance

Operation

Reception

Triggered Oper-

ation

<none> Indicates this interface is between electronics and

mechanical parts

Handoff to Downstream Engineering432

electrohydrau-

lic

Attribute/Value

Property

Class/Block

Part

Instance

Operation

Reception

Indicates this element is composed of integrated elec-

tronics and hydraulics

electronics Attribute/Value

Property

Class/Block

Part

Instance

Operation

Reception

<none> Indicates this element is implemented in electronics

hydraulic Attribute/Value

Property

Class/Block

Part

Instance

Operation

Reception

<none> Indicates this element is implemented in hydraulics

mechanics Attribute/Value

Property

Class/Block

Part

Instance

Operation

Reception

<none> Indicates this element is implemented in mechanics

physicalReal-

ization

Dependency <none> Relates a logical element (target) to its physical realiza-

tion (source)

Chapter 4 433

software Attribute/Value

Property

Class/Block

Part

Instance

Operation

Reception

<none> Indicates this element is implemented in software

staticMechan-

ical

Association

Link/Connector

<none> Indicates this relation indicates a mechanical linkage

that does not convey a flow (e.g. a static connection,

such as bolting something together)
sw_ee_inter-

face

Attribute/Value

property

Argument

Call Operation

Class/Block

Part

Instance

Operation

Reception

Triggered Oper-

ation

<none>

voltagemapped Attribute/Value

Property

Flow/Flow Proper-

ty/Item Flow

<none> Indicates this element represents values via voltage

levels

Table 4.3: Some useful handoff stereotypes

We will use these stereotypes to model relevant metadata for the interfaces in our model. The

flow properties and event receptions in the interface blocks in Figure 4.39 are elaborated and

filled out in Table 4.4:

Interface Feature Feature Type Tag Value

iEE_ME_Resistance drive_train_
connection

FlowProperty direction Bidirectional

Handoff to Downstream Engineering434

iSW_EE_Comm CAN_control_
register

FlowProperty bit_0 SW read: 0 = data

may be written to

send buffer; 1 = buffer

is in use

SW write: 0 = no

effect, 1 = signal for

electronics to send

message

iSW_EE_Comm CAN_control_
register

FlowProperty bit_1 SW read 0 = no new

message, 1 = new

message in CAN

Receive Buffer

SW Write: 0 = value

saved to display on

next read (otherwise

ignored by electron-

ics)

iSW_EE_Comm CAN_control_
register

FlowProperty direction Bidirectional

iSW_EE_Comm CAN_control_
register

FlowProperty Start_Address A000: A0020

iSW_EE_Comm CAN_control_
register

FlowProperty Usage Controls/indicates

the status of the CAN

message flow

iSW_EE_Comm CANReceiveBuffer FlowProperty direction In

iSW_EE_Comm CANReceiveBuffer FlowProperty Format Defined by the CAN

Bus Standard

iSW_EE_Comm CANReceiveBuffer FlowProperty Start_Address A000: 0100

iSW_EE_Comm CANReceiveBuffer FlowProperty Starting_Byte_
Number

0

iSW_EE_Comm CANReceiveBuffer FlowProperty Usage Electronics write the

values to the buffer

and notify the SW

when the complete

message is stored.

iSW_EE_Comm CANSendBuffer FlowProperty direction Out

iSW_EE_Comm CANSendBuffer FlowProperty Format Defined by the CAN

Bus standard

iSW_EE_Comm CANSendBuffer FlowProperty Start_Address A000: 1200

Chapter 4 435

iSW_EE_Comm CANSendBuffer FlowProperty Usage SW writes the CAN

message to be sent

and then notifies the

electronics to send

the message via the

CAN Control Register.

Electronics notify the

software when the

message is sent.

iSW_EE_Comm swCANMsgReceived Reception Interrupt_number 3

iSW_EE_Comm swCANMsgReceived Reception Usage Electronics generate

this interrupt to indi-

cate that a message

has been received

and is available in

the CAN Receive

Buffer.

iSW_EE_Comm swCANMsgSent Reception Interrupt_number 2

iSW_EE_Comm swCANMsgSent Reception Usage Electronics generate

interrupt #2 to

indicate that the

commanded CAN

message has been

sent.

iSW_EE_Control control_register FlowProperty bit_0 SW WO (Write

Only). 0 = do not

provide resistance, 1

= provide resistance

iSW_EE_Control control_register FlowProperty bit_1 SW RO (Read Only).

0 = no error in resis-

tance, 1 = error

iSW_EE_Control control_register FlowProperty bit_2 SW RO (Read Only).

0 = no pedal position

error, 1 = pedal posi-

tion error

iSW_EE_Control control_register FlowProperty bit_3 SW RO (Read Only).

0 = no rider power

measurement error,

1 = rider power mea-

surement error

iSW_EE_Control control_register FlowProperty direction Bidirectional

Handoff to Downstream Engineering436

iSW_EE_Control control_register FlowProperty Number_Of_Bits 4

iSW_EE_Control control_register FlowProperty Start_Address 0 x A000 0001

iSW_EE_Control control_register FlowProperty T i m i n g _
Constraints

none

iSW_EE_Control control_register FlowProperty Usage Bit 0 enables/

disables power

measurement and

delivery. Other bits

provide error indi-

cators.

iSW_EE_Control pedal_position FlowProperty direction In

iSW_EE_Control pedal_position FlowProperty Numer_Of_Bytes 1

iSW_EE_Control pedal_position FlowProperty Start_Address A000: 0002

iSW_EE_Control pedal_position FlowProperty Starting_Byte_
Number

0

iSW_EE_Control pedal_position FlowProperty Units Each value corre-

sponds to 1/256 of a

circle.

iSW_EE_Control pedal_position FlowProperty Usage SW RO (Read Only).

Read the value to get

the pedal position.

iSW_EE_Control pedal_speed FlowProperty direction In

iSW_EE_Control pedal_speed FlowProperty Numer_Of_Bytes 1

iSW_EE_Control pedal_speed FlowProperty Start_Address A000 0004

iSW_EE_Control pedal_speed FlowProperty Units Each value corre-

sponds to 1/1,608

radians/min (max-

imum of 256 revs/

min).

iSW_EE_Control pedal_speed FlowProperty Usage SW RO (Read Only).

Read this value to get

the current velocity

of the pedals.

iSW_EE_Control power FlowProperty direction In

iSW_EE_Control power FlowProperty Units 0 = no resistance, 0

x FFFF = max power

(0.046W per step)

Chapter 4 437

iSW_EE_Control power FlowProperty Usage SW RO (Read Only).

Read the value of the

power applied to the

pedal by the rider.

iSW_EE_Control resistance FlowProperty direction Out

iSW_EE_Control resistance FlowProperty Format 16-bit value

iSW_EE_Control resistance FlowProperty Numer_Of_Bytes 2

iSW_EE_Control resistance FlowProperty Start_Address A000: 0006

iSW_EE_Control resistance FlowProperty Starting_Byte_
Number

0

iSW_EE_Control resistance FlowProperty Units 0 = no resistance,

0 x FFFF = max

resistance (18.3N per

step)

iSW_EE_Control resistance FlowProperty Usage SW Write Only

(WO). Specify the

resistance to be

applied to the rider

at the pedal.

Table 4.4: Power train deployment interface metadata

Group interactions across facets into interfaces
We incrementally added the interface block features directly into the interface blocks already, so

this step is already done!

Negotiate the interface details among interface stakeholders
Now that we have defined the interface blocks and their features (flow properties and event

receptions) and characterized them with metadata, the stakeholders can meet to review and ne-

gotiate the interface details. The stakeholders, in this case, include representatives from systems,

software, electronics, and mechanical engineering. The interface will define a kind of contract

that all parties agree to honor.

Store the agreed-upon interfaces in configuration management
The defined interfaces can now be baselined in configuration management. All parties agree to

uphold those interfaces. Should downstream work demonstrate inadequacies or identify problems

with the interface, the relevant stakeholders can meet again, renegotiate the interface definition,

and get back to engineering.

Handoff to Downstream Engineering438

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/cpVUC

5
Demonstration of Meeting
Needs: Verification and
Validation

Recipes in this chapter
• Model simulation

• Model-based testing

• Computable constraint modeling

• Traceability

• Effective reviews and walkthroughs

• Managing model work items

• Test-driven modeling

George Box famously said that “all models are wrong, but some are useful,” (Box, G. E. P. (1976),

“Science and statistics,” Journal of the American Statistical Association, 71 (356): 791–799). Al-

though he was speaking of statistical models, the same can be said for MBSE models. In the sys-

tems world, models are both approximations of the real systems and subsets of their properties.

First, all models are abstractions; they focus on details of relevance of the system but completely

ignore all other aspects. Therefore, the models are wrong because they don’t include all aspects

of the system, just the ones we find of interest.

Demonstration of Meeting Needs: Verification and Validation440

Second, all models are abstractions; they represent information at different levels of detail. When

we model fluid flow in a water treatment system, we don’t model the interactions at the mo-

lecular level. Rather, we model fluid dynamics but not the interaction of electric fields of atoms

bound together into molecules, let alone get into quantum physics. Therefore, the models are

wrong, because they don’t model the electrodynamics of the particles and the interaction of the

quantum fields of the elementary particles.

Third, all models are abstractions; they represent information at a level of precision that we

think is adequate for the need. If we model the movement of an aircraft rudder control surface,

we may very well decide that position, represented with 3 significant digits and an accuracy of ±

0.5 degrees, meets our needs. Therefore, our models are wrong because we don’t model infinite

levels of precision.

You get the idea. Models are not exact replicas of reality. They are simplified characterizations

that represent aspects in a (hopefully) useful conceptual framework with (also hopefully) enough

precision to meet the need.

So, questions arise when considering a model:

1. Is the model right?

2. What does right mean?

3. How do we know?

We will try to provide some practical answers to these questions in this chapter. The answers will

vary a bit depending on the kind of model being examined.

Let’s address the second question first: what does right mean? If we agree with the premise that

all good models have a well-defined scope and purpose, then right surely means that it address-

es that scope with the necessary precision and correctness to meet its purpose. If we look at a

stakeholder requirements model, then the requirements it contains would clearly, unambiguously,

and completely state the needs of the stakeholders with respect to the system being specified. If

we develop an architecture, then the architectural structures it defines meet the system require-

ments and the needs of the stakeholder (or will, once it is developed) in an “optimal” way. If we

develop a set of interfaces, then we describe all the important and relevant interactions with all

the applicable details of that system with its actors.

If we use that answer for question #2, then the answer to the first question pertains to the veracity

of the statement that the model at hand meets its scope and purpose. Subsequently, the answer to

the third question is that we generate evidence that the answer to question #1 is, in fact, the case.

Chapter 5 441

Verification and validation
Most engineers will agree with the general statement that verification means demonstration that

a system meets its requirements while validation means demonstration that the system meets the need.

In my consulting work, I take this slightly further (Figure 5.1):

Figure 5.1: Verification and validation core concepts

In my mind, there are two kinds of verification: syntactic and semantic. Syntactic verification is

also known as compliance in form, because it seeks to demonstrate that the model is well-formed,

not necessarily that it makes sense or represents statements of truth. This means that the mod-

el complies with the modeling language syntactic rules and the project modeling standards

guidelines. These guidelines typically define how the model should be organized, what infor-

mation it should contain, the naming conventions that are used, and action language used for

primitive actions, and so on. Every project should have a modeling guidelines standard in place

and it is against such a standard that the syntactic well-formedness of a model may be verified.

See https://www.bruce-douglass.com/papers for downloadable examples of MBSE and MDD

guidelines. In addition, check out SAIC’s downloadable style guide and model validation tool at.

Semantic verification is about demonstrating that the content makes sense; for this reason, it is

also known as compliance in meaning. It is possible to have well-formed sentences that are either

incorrect at best or nonsense at worst. There is even a Law of Douglass about this:

https://www.bruce-douglass.com/papers

Demonstration of Meeting Needs: Verification and Validation442

For the current state of the Laws of Douglass, see https://www.bruce-douglass.com/geekosphere.

The reason why this is important becomes clear when we look at the techniques of semantic

verification (see Figure 5.1): semantic review, testing, and formal (mathematical) analysis.

If we have vague or imprecise models, we only have the first technique for ascertaining correct-

ness: we can look at it. To be clear, a review is valuable and can provide insights for subtle issues

or problems with a model; however, it is the weakest form of verification. The problem is largely

one of vigilance. In my experience, humans are pretty good at finding issues for only a few hours

at most before their ability to find problems degrades. You’ve probably had the experience of

starting a review meeting with lots of energy but by the time the afternoon rolls around, you’re

thinking, “Kill me now.” Reviews definitely add value in the verification process but they are

insufficient by themselves. There’s a reason why we don’t say, “We can trust the million lines of

code for the nuclear reactor because Joe looked at it really hard.”

The second technique for performing verification is to test it. Testing basically means that we

identify a set of test cases – a set of inputs with specific values, sequence, and timing and well-de-

fined expected outputs or outcomes – and then apply them to the system of interest to see if it

performs as expected. A test objective is what you want to get from running the test case, such as

the demonstration of compliance to a specific set of requirements. In SysML, a test case is a ste-

reotype of behavior; in Cameo, a test case can be an activity, interaction, or state machine. This

approach is more expensive than just looking at the system but yields far superior results, in terms

of demonstration of correctness and identifying differences between what you want and what

you have. Testing fundamentally requires executability and this is crucial in the MBSE domain. If

we want to apply testing to our model – and we should – then it means that our models must be

specified using a language that is inherently precise, use a method that supports executability,

and use a tool environment that supports execution. An issue with testing is that it isn’t possible

to fully test a system; there is always an essentially infinite set of combinations of inputs, values,

sequences, and timings. You can get arbitrarily close to complete coverage at increasing levels of

cost and effort, but you can never close the gap completely.

Any language rich enough to say something useful is also expressive enough to state

utter nonsense that sounds, at first glance, reasonable.

Law of Douglass, #60

https://www.bruce-douglass.com/geekosphere

Chapter 5 443

The third technique for verification is applying formal methods. This requires rendering the system

in a mathematically precise language, such as Z or predicate logic, and then applying the rules

of formal mathematics to demonstrate universals about the system. This is arguably the stron-

gest form of verification but it suffers from two problems: 1. It is incredibly hard to do, in general.

PhDs and lots of effort are required; and 2. The approach is sensitive to invariant violations. That

means that the analysis must make some assumptions, such as “the power is always available”

or “the user doesn’t do this stupid thing,” and if you violate those assumptions, you can’t trust

the results. You can always incorporate any specific assumption in your analysis, but that just

means there are other assumptions being made. Gödel was right (Kurt Gödel, 1931, “Über formal

unentscheidbare Sätze der Principia Mathematica und verwandter Systeme,” I Monatshefte für

Mathematik und Physik, v. 38 n. 1, pp. 173–198).

In my experience, the best approach for semantic verification is a combination of all three ap-

proaches – review, test, and analyze.

Verification is not the same as validation. Being valid means that the model reflects or meets

the true needs of the stakeholders, even if those needs differ from what is stated in the system

requirements. If meeting the system requirement is demonstrated through verification, meeting

the stakeholder need is demonstrated through validation. For the most part, this is historically

done with the creation of stakeholder requirements, and then reviewing the work products that

describe the system. There are a couple of problems with that.

First, there is an “air gap” between complying with the stakeholder requirements and meeting

the stakeholder need. Many a system has failed in its operational environment because, while it

met the requirements, it didn’t meet the true needs. This is primarily why agile methods stress

continuous customer involvement in the development process. If it can be discovered early that

the requirements are not a true representation of the customer’s needs, then the development

can be redirected and the requirements can be amended.

In traditional methods, customer involvement is limited to reviews of work products. In gov-

ernment programs, a System Requirements Review (SRR), Preliminary Design Review (PDR),

and Critical Design Review (CDR) are common milestones to ensure the program is “on track.”

These are almost always appraisals of many, many pages of description, with all of the problems

inherent in the review previously mentioned. However, if you build executable models, then that

execution – even if it is a simulated environment – can demonstrate how the system will operate

in the stakeholders’ operational context and provide better information about system validity.

Demonstration of Meeting Needs: Verification and Validation444

In this chapter, I will use the terms computable and executable when referring to well-formed

models. When I say computable model, I mean a model that performs a computation, such as

F=ma. In that equation, given two values, the system can compute the third, regardless of which

two values are given. An executable model is a computable model in which the computation has a

specific direction. Executable models are not necessarily computable. It is difficult to unscramble

that egg or unexplode that bomb; these are inherently irreversible processes.

This chapter contains recipes that provide approaches to demonstrate the correctness of your

models. We’ll talk about simulation when it comes to creating models, developing computational

models for analysis, performing reviews, and creating system test cases for model verification.

Model simulation
When we test an aircraft design, one way is to build the aircraft and see if it falls out of the sky.

In this section, I’m not referring to testing the final resulting system. Rather, I mean verifying

the model of the system before detailed design, implementation, and manufacturing take place.

SysML has some expressive views for representing and capturing structure and behavior. Both

the IBM Rhapsody and No Magic Cameo SysML tools have some powerful features to execute

and debug models as well as visualize and control that execution.

The Rhapsody modeling tool performs simulation by generating software source code from the

model in well-defined ways, and automatically compiling and executing that code. Rhapsody can

instrument this code to interact with the Rhapsody tool so that the tool can visualize the model

execution graphically and provide control of the execution. This means that SysML models can be

simulated, executed, and verified in a relatively straightforward fashion, even by non-program-

mers. Cameo, on the other hand, is a true simulation tool. It does not generate code for the execu-

tion of the simulation. While in many senses, the execution capabilities of Cameo are somewhat

weaker than those in Rhapsody, the fact that Cameo provides a true simulation improves other

capabilities. For example, because it performs simulation, Cameo gives you complete control over

the flow of time, so time-based analyses are simplified in Cameo over Rhapsody.

Simulation can be applied to any model that has behavioral aspects. I commonly construct ex-

ecutable requirements models, something discussed in Chapter 2, System Specification. I do this

one use case at a time, so that each use case has its own executable model stored in its own

package. Architectural models can be executed as well to demonstrate their compliance with

the use case models or to verify architectural specifications. Any SysML model or model subset

can be executed if it can be specified using well-define behavioral semantics and is rendered in

a tool that supports execution.

Chapter 5 445

Purpose
The purpose of a model simulation is to explore, understand or verify the behavior of a set of

elements defined within the model. This simulation can be used to evaluate the correctness of

a model, to explore what-if cases, or to understand how elements collaborate within a context.

Inputs and preconditions
The model is defined with a purpose and scope, and a need for simulation has been identified.

Outputs and postconditions
The results of the simulation are the computation results of running the simulation. These can

be captured in values stored in the model, as captured diagrams (such as animated sequence

diagrams), or as outputs and outcomes produced by the simulation.

How to do it
Figure 5.2 shows the workflow for performing general-purpose model-based simulation. Given

the powerful modeling environment, it is generally straightforward to do, provided that you

adhere to the tooling constraints:

Figure 5.2: Model simulation workflow

It is common to have many different simulations within a systems model, to achieve different

purposes and results. In Cameo, a simulation context is normally a block – it defines the set of

elements (as parts) that collaborate in the simulation.

Demonstration of Meeting Needs: Verification and Validation446

You may also create a simulation configuration with properties such as listeners, including

sequence diagrams and user interfaces, as defined within the Cameo tool. It is common to have

many such structures within a single MBSE model.

Define simulation purpose
It is imperative that you understand why you’re performing model simulation in order to get a

useful outcome. I like to phrase the problems as “what does success smell like” in order to ensure

that you’re going after the kind of results that will address your concerns. It matters because the

models you create will vary depending on what you want to achieve.

Common purposes of model simulation include:

• Ensure the completeness and correctness of a set of requirements traced to by a use case.

• Demonstrate the adequacy of a set of interfaces.

• Explore behavioral options for some parts of a design model.

• Prove compliance of an architecture with a set of requirements.

• Reveal emergent behaviors and properties of a complex design.

• Verify a system specification.

• Validate a system architecture.

• Explore the consequences of various input values, timing, and sequence variation (“what-

if” analyses).

Define structural context
The structural context for the model identifies the structural elements that will exhibit behavior

– or used by structural elements that do – during the simulation. This includes blocks, use cases,

and actors, along with their structural properties, such as value and flow properties, ports, and

the relations among the structural elements.

Define behaviors
At the high-level, behavioral specification such as activity and state models provide the behavior

of the system context as a whole or of the individual structural elements. At the detailed level,

operations and activities specify primitive behavioral elements, often expressed in an action lan-

guage, such as C, C++, Java, or Ada. In Cameo, I use the Groovy language, even though the default

action language is, inexplicably, English. I can find and download a language specification for

Groovy but not, again inexplicably, for Cameo’s English usage.

Chapter 5 447

It should be noted that the SysML views that contribute directly to the simulation and code

generation are the activity and state diagrams, and any code snippets put into the action and

operation definitions. Sequence diagrams, being only partially constructive, do not generally

completely specify behavior; rather, they depict specific examples of it, although in Cameo, they

can be used to drive a simulation.

Identify desired outputs or outcomes
In line with the identification of the simulation purpose, it is important to specify what kind of

output or outcome is desired. This might be a set of output interactions demonstrating correct-

ness, captured as a set of automatically generated sequences (so-called “animated sequence

diagrams”). Or it might be a demonstration that an output computation is correct under differ-

ent conditions. It might even be “see what happens when I do this”. Clarity in expectation yields

satisfaction in outcomes.

Define simulation structure
The simulation structure refers to the elements used to create the simulation. In Cameo, this will

be the set of elements that participate in the simulation, a simulation context (typically a block),

and, optionally, a simulation configuration and user interface.

Create simulation
Creating the simulation is easily done by right-clicking the simulation context and selecting

Simulation > Run, or selecting the simulation configuration in the simulation configuration

selection list. In Cameo, it’s common to create a diagram that contains other diagrams and use

this to visualize the behaviors of the simulation. While this can be almost any kind of diagram, I

generally use a BDD or free-form diagram. Cameo has properties that can be specified for sim-

ulation initialization in the Options > Environment > Simulation menu. See a description of

these options at https://docs.nomagic.com/display/CST185/Automatic+initialization+o

f+context+and+runtime+objects.

Run the simulation
Once created, the executable can be run as many times and under as many different circumstanc-

es as you desire. In Cameo, ill-formed models are detected either by running validation checks

(with Analyze > Validation > Validate) or through execution. When a problem occurs during the

execution, the element manifesting the problem will drop out of the simulation and an obscure

error message is displayed.

https://docs.nomagic.com/display/CST185/Automatic+initialization+of+context+and+runtime+objects
https://docs.nomagic.com/display/CST185/Automatic+initialization+of+context+and+runtime+objects

Demonstration of Meeting Needs: Verification and Validation448

Analyze simulation outputs and outcomes
The point of running a simulation is to create some output or outcome. Once this is done, it can

be examined to see what conclusions can be drawn. Are the requirements complete? Were the

interfaces adequate? Did the architecture perform as expected? What behavior emerged under

the examined conditions? I especially like creating animated sequence diagrams from the exe-

cution for this purpose.

Example
The Pegasus model offers many opportunities to perform valuable simulations. In this case, we’ll

simulate one of the use cases from Chapter 2, System Specification, Emulate Basic Gearing. The use

case was used as an example to illustrate the Functional analysis with scenarios recipe.

The mechanisms for defining simulations are tool-specific. The example here is simulated in

Cameo and uses the Groovy action language. If you’re using a different SysML tool, then the exact

means for defining and executing your model will be different.

Define simulation purpose
The purpose of this simulation is to identify mistakes or gaps in the requirements represented

by the use case.

Define structural context
The execution context for the simulation is shown in Chapter 2, System Specification, in Figure 2.9

and Figure 2.10. The latter is an internal block diagram showing the connected instances of the

actor blocks prtTrainingApp:aEBG_TrainingApp and prtRider:aEBG_Rider and the instance of

the use case block itsUc_EmulatedBasicGearing:Uc:EmulateBasicGearing.

This model uses the canonical model organization structure identified in the Organizing your

models recipe from Chapter 1, Basics of Agile Systems Modeling (see Figure 1.35). In line with this

recipe, the detailed organization of the model is shown in Figure 5.3:

Chapter 5 449

Figure 5.3: Organization of simulation elements

The Functional Analysis Pkg package contains a package for every use case being analyzed. This

figure uses arrows to highlight elements and packages of importance for the simulation, including

the actor blocks, the Events Pkg package, the Sim Support Pkg package, and the use case block.

The Sim Support Pkg package contains the simulation configuration and UI developed for the

simulation.

Demonstration of Meeting Needs: Verification and Validation450

Define behaviors
The use case block state machine is shown in Figure 2.11. This state machine specifies the behavior

of the system while executing that use case. The state machine represents a concise and executable

restatement of the requirements and is not a specification of the design of the system. Figures

2.12 and Figure 2.13 show the state machines for the actor blocks. Elaborating the behavior of the

actors for the purpose of supporting simulation is known as instrumenting the actors. Actor

instrumentation is non-normative (since the actors are external to our system and we’re not

designing them) and is only done to facilitate simulation.

Identify desired outputs or outcomes
The desired outcome is to either identify missing requirements by applying different test cases

to the execution, or to demonstrate that the requirements, as represented by the model, are ade-

quate. To do this, we will generate animated sequence diagrams of different situations, examine

the captured sequences, and validate with the customer that it meets the need. We will also want

to monitor the output values to ensure that the Rider inputs are processed properly and that the

correct information is sent to the Training App. Note that this is a low-fidelity simulation and

doesn’t emulate all the physics necessary to convert input Rider torque and cadence into output

resistance and take into account Rider weight, wind resistance, current speed, and incline. While

that would be an interesting simulation, that is not our purpose here.

We want to ensure that the Rider can downshift and upshift within the gearing limits, and this

results in changing the internal gearing and the Training App being notified. Further, as the Rider

applies input power, the output torque should change; a bigger gear with the same input power

should result in larger output torque. These relations are built into the model; applied torque

and resistance are modeled as flow properties while upshift and downshift are simulated with

increment gear and decrement gear signal events. Further, the gearing (represented in gear

inches, which is the distance the bike travels with one revolution of the pedal) should be limited

between a minimum of 30 and a maximum of 140, while a gear shift changes the gearing by a

constant 5 gear inches, up or down.

For this simulation, the conditions we would evaluate include:

• The gearing is properly increased as we upshift.

• The gearing no longer increases if we try to upshift past the maximum gearing.

• The gearing is properly decreased as we downshift.

• The gearing no longer decreases if we try to downshift past the minimum gearing.

Chapter 5 451

• For a given level of input force, the output resistance is increased as we upshift (although

the correctness of the output resistance is not a concern here).

• For a given level of input force, the output resistance is decreased as we downshift (al-

though the correctness of the output resistance is not a concern here).

Define simulation view
Another nested package, named Sim Support Pkg, contains three things of interest with regard

to the simulation structure. First, it contains a simulation configuration. In this case, the exe-

cution target is the context of the simulation, the block Emulate Basic Gearing Context. It also

specifies that there is an execution listener, a Sequence Diagram Generator Config. Using this

listener means that when the simulation is performed, an animated sequence diagram is created.

In addition, a UI Frame is added. This user interface allows the simulator to insert events and

monitor and control values within the running simulation. The UI Frame is set to be the UI for

the simulation configuration. See Figure 5.4:

Figure 5.4: Simulation Settings

Although not a part of the simulation structure per se, the figure shows a simple panel used to

visualize and input values and to enter events during the execution. Such UI Frames are not the

only means Cameo provides to do this, but they are convenient.

Demonstration of Meeting Needs: Verification and Validation452

Create simulation
Creating the simulation is a simple matter of selecting the simulation configuration to run from

the simulation configuration list, and clicking the Play button. This list is directly beneath the

Analyze menu at the top of the Cameo window.

Run the simulation
Simply run the simulation configuration. With a simulation configuration being run, the sim-

ulation starts immediately. If you simulate by right-clicking on a block, there is an extra step of

clicking a green triangle on the Simulation Toolkit window that pops up. In this case, the start of

the simulation looks like Figure 5.5:

Chapter 5 453

Fi
gu

re
 5.

5:
 R

un
ni

ng
 th

e s
im

ul
at

io
n

Demonstration of Meeting Needs: Verification and Validation454

Analyze simulation outputs and outcomes
We capture the inputs and outputs using a number of simulation runs. In the first such run, we

initialize the running simulation to output a resistance of 100 and the rider to provide a power

value of 200. Then we augment the gearing and see that it increases. Further, the training app is

updated with the gearing as it changes. We see that in the animated sequence diagram in Figure 5.6:

Chapter 5 455

Figure 5.6: Simulation run 1

Since the system starts in the lowest gear, the next simulation run should demonstrate that an

attempt to downshift below the minimum gearing should result in no change.

Demonstration of Meeting Needs: Verification and Validation456

That’s what we see in Figure 5.7; notice the coloring of the animated state machine shows the

[else] path was taken and the gearing was not decremented. This is also seen in the gear value

for the Emulate Basic Gearing panel (highlighted with arrows). The sequence diagram shows

the false result of the guard following the exDecrement signal event:

Chapter 5 457

Fi
gu

re
 5.

7:
 Si

m
ul

at
io

n
ru

n
2

Demonstration of Meeting Needs: Verification and Validation458

In the last run shown here, we set the gearing to 135, and then augment it twice to try to exceed

the maximum gearing of 140 gear inches. We should see the resistance value go up with the first

upshift, and then not change with the second. This is in fact what we see in Figure 5.8.

I’ve marked relevant points in the figure with red arrows. In the state diagram, you can see the

[else] path was taken because the guard correctly identifies that the gear is at its maximum (140

gear inches). You can see the value in the UI at the bottom left of the figure. The sequence dia-

gram shows that the guard returns false and the limiting value, 140, is sent to the Training App:

Chapter 5 459

Fi
gu

re
 5.

8:
 Si

m
ul

at
io

n
ru

n
3

Demonstration of Meeting Needs: Verification and Validation460

We have achieved the desired outcome of the simulation by demonstrating that the requirements

model correctly shifts up and down, stays within gearing limits, properly updates the output

resistance as the gearing is changed, and the Training App is properly notified of the current

gearing when it changes.

Model-based testing
If you agree that modeling brings value to engineering, then Model-Based Testing (MBT) brings

similar value to verification. To be clear, MBT doesn’t limit itself to the testing of models. Rather,

MBT is about using models to capture, manage, and apply test cases to a system, whether or not

that system is model-based. In essence, MBT allows you to:

• Define a test architecture, including:

• Test context

• Test configuration

• Test components

• The System Under Test (SUT)

• Arbiter

• Scheduler

• Test cases, using:

• Sequence diagrams (most common)

• Activity diagrams

• State machines

• Code

• Test objectives

Bringing the power of the model to bear on the problems of developing test architectures, defining

test cases, and then performing the testing is compelling. This is especially true when applying

it in a tool like Cameo that provides such strong simulation and execution facilities.

While MBT can be informally applied, the UML Testing Profile specifies a standard approach. The

profile defines a standard way to model test concepts in UML (and therefore in SysML). Figure

5.9 shows the basic meta-architecture of the profile.

Chapter 5 461

While it doesn’t exactly represent what’s in the profile, I believe it explains it a little better.

Figure 5.9: UML Testing Profile meta-architecture

I don’t want to spend too much time on the details of the profile definition; interested people can

check out the standard itself (https://www.omg.org/spec/UTP2/2.1/PDF) or books on the topic

such as Model-Driven Testing (https://www.amazon.com/Model-Driven-Testing-Using-UML-
Profile/dp/3540725628/ref=sr_1_1?dchild=1&keywords=uml+testing+profile&qid=16064

09327&sr=8-1) by Baker, et al. However, I do want to highlight some aspects.

https://www.omg.org/spec/UTP2/2.1/PDF
https://www.amazon.com/Model-Driven-Testing-Using-UML-Profile/dp/3540725628/ref=sr_1_1?dchild=1&keywords=uml+testing+profile&qid=1606409327&sr=8-1
https://www.amazon.com/Model-Driven-Testing-Using-UML-Profile/dp/3540725628/ref=sr_1_1?dchild=1&keywords=uml+testing+profile&qid=1606409327&sr=8-1
https://www.amazon.com/Model-Driven-Testing-Using-UML-Profile/dp/3540725628/ref=sr_1_1?dchild=1&keywords=uml+testing+profile&qid=1606409327&sr=8-1

Demonstration of Meeting Needs: Verification and Validation462

First, note that a Test Case is a stereotype of UML’s metaclass Behavior such as an interaction,

activity, or state machine. That means we can define a Test Case using the standard SysML be-

havioral representations.

The Test Context includes a set of Test Cases, and also a set (one or more) of SUTs. The SUT is

a kind of Classifier, from the UML Metamodel; Classifiers can be Blocks, Use Cases, and Actors

(among other things of course), which can be used in a context as singular design elements, com-

posite elements such as subsystems, systems, or even an entire system context. SUTs themselves

can, of course, have behavior. The Test Log records the executions of Test Cases, each of which

includes a Verdict, of an enumerated type.

You can model these things directly in your model and build up your own Test Context, Test Cases,

and so on. Cameo provides an implementation of the Testing Profile, which can be installed in

the Help > Resource/Plugin Manager dialog, which we will use in the recipe.

Purpose
The purpose of model-based testing is to verify the semantic correctness of a system under test

by applying a set of test cases. This purpose includes the definition of the test architecture, the

specification of the test cases, the generation of the outcomes, and the analysis of the verdict – all

in a model-based fashion.

Inputs and preconditions
The preconditions include both a set of requirements and a system that purports to meet those

requirements. The system may be a model of the system – such as a requirement or design model

– or it may be the final delivered system.

Outputs and postconditions
The primary output of the recipe is a test log of a set of test executions, complete with pass/fail

verdicts of success.

Chapter 5 463

How to do it
A model-based test flow (Figure 5.10) is pretty much the same as a normal test flow but the im-

plementation steps are a bit different:

Figure 5.10: Model-based test workflow

Identify system under test
The SUT is the system or system subset that we want to verify. This can be a use case functional

analysis model, an architecture, a design, or an actual manufactured system. If it is a design, the

SUT can include a single design element or a coherent set of collaborating design elements.

Define test architecture
The test architecture includes, at a minimum, the instance of the SUT and test components sub-

stituting for elements in the actual environment (“test stubs”). The test architecture can also

include a test context (a test manager), scheduler, and arbiter (to determine verdicts).

Demonstration of Meeting Needs: Verification and Validation464

Specify test cases
Before we start rendering the test cases themselves, it makes sense to specify the test cases. The

test cases include the events the test architecture will introduce and include the values of data

they will carry, their sequence and timing, and the expected output or outcome.

Relate test cases to requirements
I am a huge fan of requirements-based testing. I believe that all tests should ultimately be trying to

verify the system against one or more requirements. This step in the recipe identifies one or more

test cases for each requirement of the SUT. In the end, there should be no requirements that are not

verified by at least one test case, and there are no test cases for which there are no requirements.

Analyze test coverage
Test coverage is a deep topic that is well beyond the scope of this book. However, we will at least

mention that coverage is important. Test coverage may be thought of in terms of the coverage of

the specification (need) and coverage of the design (implementation). In terms of coverage of the

specification we can think in terms of coverage of the inputs (sources and events types, values,

value fidelity, sequences, and timings) and outputs (targets and event types, values, sequences,

accuracy, and timings).

Design coverage is different. Mostly, it is evaluated in terms of path coverage. This is best de-

veloped in safety-critical software testing standards, such as DO-178 (https://my.rtca.org/

NC__Product?id=a1B36000001IcmwEAC or see https://en.wikipedia.org/wiki/DO-178C for a

discussion of the standard), that talk about three levels of coverage:

• Statement coverage: every statement should be executed in at least one test case.

• Decision coverage: statement coverage plus each decision point branch should be taken.

• Modified condition/decision coverage (MC/DC):

• Each entry and exit point is invoked.

• Each decision takes every possible outcome.

• Each condition in a decision is evaluated in every possible outcome.

• Each condition in a decision is independently evaluated as to how it affects the

decision outcome.

The point of the step is to ensure the adequacy of the testing given the set of requirements and

the structure of the design.

https://my.rtca.org/NC__Product?id=a1B36000001IcmwEAC
https://my.rtca.org/NC__Product?id=a1B36000001IcmwEAC
https://en.wikipedia.org/wiki/DO-178C

Chapter 5 465

Render test cases
In model-based testing, we have a number of options for test specifications. The most common

is to use sequence diagrams; since they are partially constructive, they are naturally suited to

specify alternative interaction flows. The second most common approach is to specify multiple

test paths using activity diagrams. The third is to specify the test cases with a state machine, a

personal favorite. You can always write scripts (code) for the test cases, but as that isn’t very

model-based, we won’t consider it here.

Apply test cases
The stage (test architecture) is set and the dialog (the test cases) has been written. Now comes

the performance (test execution). In this step, the test cases are applied against the SUT in the

context of the text architecture. The outcome of each test case is recorded in the test log along

with a pass or fail verdict.

Render verdict
The overall verdict is a roll-up of the verdicts of the individual test cases. In general, an SUT is

considered to pass the test only when it passes all of the test cases.

Fix defects in SUT
If some test cases fail, that means that the SUT didn’t generate the expected output or outcome.

This can be either because the SUT, the test case, or the test architecture is in error. Before moving

on, the defect should be fixed and the tests rerun. In some cases, it may be permissible to con-

tinue if only non-critical tests fail. When I run agile projects, the basic rule is that critical defects

must be addressed before the iteration can be accepted, but non-critical defects are put into the

backlog for a future iteration and the iteration can progress.

To classifiy a defect as “critical” in this context, I generally use the severity of the consequence as the

deciding factor. If the defect could have a significant negative outcome, then it is critical; such

outcomes include system crashing or enable an incorrect decision or output that would have grave

impact on system use. Causing a patient to die or leading a physician to a misdiagnosis of a medical

issue would be a critical defect; having the color of an icon the wrong shade of red would not be.

Example
In this example, we’ll look at the portion of the architectural design of the Pegasus system that

accepts inputs from the Rider to change gears and make sure that the gears are properly changed

within the Main Computing Platform.

Demonstration of Meeting Needs: Verification and Validation466

To simplify the example, we won’t look at the impact changing gears has on the delivered resis-

tance.

Identify system under test
The system under design includes a few subsystems and some internal design elements. We are

limiting ourselves to only designing the part of the system related to the rider’s control of the

gearing within those design elements. To show the element under test will take a few diagrams,

so bear with me:

Figure 5.11: SUT structure

Figure 5.11 shows the blocks that together constitute the SUT: the Rider Interaction subsystem,

which internally contains left and right Shift Levers and up and down Digital Indexed (DI) shift

buttons (DI Button), is one key part. The other key part is the Main Computing Platform, which

contains the Rider Application that manages the gears. This diagram shows the blocks and their

relevant properties.

Chapter 5 467

This diagram doesn’t depict well the runtime connected structure, so another diagram, Figure

5.12, shows how the instances connect:

Figure 5.12: Connected parts in the SUT

All of these blocks have state machines that specify their behavior. The DI Button has the sim-

plest state machine, as can be seen in Figure 5.13. As the Rider presses the DI Button, it sends an

evDIShift event to the Gearing Control instance. The event carries a Boolean parameter that

specifies it is the up (TRUE) or down (FALSE) button. The Gearing Control block initializes one of

the DI buttons to be the up button and one to be the down button:

Demonstration of Meeting Needs: Verification and Validation468

Figure 5.13: DI Button state machine

The Shift Lever state machine is only a little more complicated (Figure 5.14). The left Shift Lever

controls the front chain ring and can either augment or decrement it; the right Shift Lever con-

trols the cassette ring gear but works similarly. The state machine shows that either shift lever

can send the evShiftUp or evShiftDown event. As with the evDIShift event, these events also

carry a parameter that identifies which lever (left (true) or right (false)) is sending the event:

Figure 5.14: Shift Lever state machine

Chapter 5 469

The Gear Control state machine is more complex, as you can see in Figure 5.15. It receives events

from the left and right Shift Levers and the up and down DI Buttons. It must use the passed pa-

rameters to determine which events to send to the Rider Application. It does this by assigning a

value property to be the passed parameter (either leftSide or DIUp, depending on which event),

and then uses that value in a guard.

The lower AND-state handles the display of the current gearing confirmed by the Rider Applica-

tion; this is sent by the Rider Application after it adjusts to the selected gears.

Also notice the initialization actions on the initial transition from the Initializing to the Con-

trolling Gears state; this specifies the handedness of the Shift Levers and the DI Buttons:

Figure 5.15: Gear Control state machine

Demonstration of Meeting Needs: Verification and Validation470

The last state machine, shown in Figure 5.16, is for the Rider Application, which is owned by the

Main Computing Platform subsystem. This state machine supports both mechanical shifting

and DI shifting. It works by receiving the events from the Gear Control block and augments/

decrements the gearing based on the values:

Figure 5.16: Rider Application state machine for gearing

The gear adjustments are made by operations that ensure that the gearing remains within the

set limits (1 to maxChainRings and 1 to maxCassetteRings). Figure 5.17 shows a table of the

opaque behaviors (code snippets) for each of the operations referenced in Figure 5.16. Note that

the operation itself is in the Specification column.

Chapter 5 471

The methods are all written using the Groovy language:

Figure 5.17: Functions for setting gearing

Finally, the request display act behavior invoked on the Rider Application state machine is

shown in Figure 5.18:

Figure 5.18: Request display act

So, there’s our system under test. Is it right? How can you tell? Without testing, it would be easy

for simple mistakes to creep in.

Demonstration of Meeting Needs: Verification and Validation472

Define test architecture
The test architecture includes the development of the test fixtures or stubs we will use to perform

the test. The test fixtures must provide the ability to repeatably set up the initial starting con-

ditions for our tests, introduce the events with the proper values, sequences, and timings, and

observe the results and outcomes.

We could create some blocks to do this in an automatic fashion. I personally use the stereotypes

«testbuddy» and «testarchitecture» for such created elements.

Figure 5.19: Pegasus test architecture

Figure 5.19 shows the Test Context block added with the SUT, Pegasus System, as a part. This

means that the testing doesn’t interfere at all with the behavior or structure of the SUT. It is, of

course, important to not modify the elements of the SUT for the purpose of the test, as much as

possible. As the testing maxim goes, “Test what you do; do what you test.” In this case, no modi-

fications of the SUT to facilitate testing are necessary. Sometimes you may want to add «friend»

relations from the elements of the SUT to the test components to make it easier to perform the

tests. Note that the Test Context block has value properties of type VerdictKind from the Sys-

ML profile or Verdict from the testing profile. These will hold the outcomes of the different test

cases (in this case, test # 1, 3, 7, and 9). We will capture the outcomes of the test runs as instance

specifications of type Test Context to record the outcomes.

Chapter 5 473

There are many approaches to doing a model-based test, but in this example, we will use elements

from the Cameo Testing Profile plugin.

Specify test cases
Let’s think about the test cases we want (Table 5.1). This table describes the test cases we want

to apply:

Test Case Preconditions Expected Outcomes Description

Test case 1 Initial starting conditions.

Mechanical shifting,

chain ring 1, cassette

ring 1

Chain ring selection moves up to

desired chain ring

Augment the front chain ring

from 1 to 2

Test case 2 Mechanical shifting,

chain ring 1

Remain in chain ring 1 Decrement chain ring out of

range low

Test case 3 Chain ring 3 Remains in chain ring 3 Augment chain ring out of

range high

Test case 4 Initial starting conditions.

Mechanical shifting,

chain ring 1, cassette

ring 1

Cassette ring selection moves up

to desired cassette ring

Augment the front cassette ring

from 1 to maxCassetteRings

(12)

Test case 5 Mechanical shifting,

cassette ring 1

Remains in cassette ring 1 Decrement cassette ring out of

range low

Test case 6 Mechanical shifting,

cassette ring 12

Remains in cassette ring 12 Augment cassette ring out of

range high

Test case 7 Mechanical shifting Switches to DI shifting Move to DI shifting

Test case 8 DI shifting Switches to mechanical shifting Move to mechanical shifting

Test case 9 DI shifting, Chain ring 1,

cassette ring 2

Augments to cassette ring 3, then

4, then 5

With DI shifting, press UP three

times to see that shifting works

Test case 10 DI shifting in chain ring 2,

cassette 1

Decrements to appropriate chain

and cassette rings

Decrements to next lowest

gear inches, augmenting chain

ring, and going to appropriate

cassette ring

Table 5.1: Test case descriptions

To fully test with even the limited functionality we’re looking at, more test cases are needed, but

we’ll leave those as exercises for you. This should certainly be enough to give the reader a flavor

of model-based testing.

Demonstration of Meeting Needs: Verification and Validation474

Relate test cases to requirements
To look at how the tests address the requirements, I created «verify» relations from each of the

test cases to the set of requirements they purported to verify. I then created a matrix displaying

those relations. Obviously, more test cases are needed, but Figure 5.20 shows the starting point

for test case elaboration:

`

Figure 5.20: Test case verifies requirements table

Analyze test coverage
For our purposes here, we will examine coverage in terms of both the requirements and path

coverage in the SysML behavioral models – that is, our test cases should execute every transition

in each state machine and every control flow in every activity diagram.

Chapter 5 475

As far as requirements coverage, there is a test case for the requirements in Figure 5.20, but many

more requirements are not yet covered. We must also consider the degree completion of the

coverage of requirements that are covered. The control of the chain ring in mechanical shifting

mode is pretty complete: we have test cases to ensure that in the middle of the range, augmenting

and decrementing work properly, that you can’t augment beyond the limit, and that you can’t

decrement below the minimum. However, what about DI mode? There are a couple of test cases

but we should consider cases where augmentation forces a change in the chain ring as well as

the cassette ring, where gear decrement forces a reduction in the chain ring, and cases where

they can be handled completely by changing the cassette ring only. In addition, we need cases

to ensure that the calculations are right for different gearing configurations, and that we can’t

augment or decrement beyond available gearing.

To consider design coverage, you can “color” the transitions or control flows that are executed

during the executions of tests. As more tests are completed, fewer of the transitions in the design

element state behaviors should remain uncolored. One nice thing about the Cameo Simulation

Toolkit is that it does color states, actions, transitions, and control flows that are executed, so it

is possible to visually inspect the model after a test run.

Render test cases
We will implement these case cases with activity behavior in the Test Context block. The testing

profile defines Behavior and Operation as the base metaclasses for the «testcase» stereotype;

I’ve applied that stereotype to those specific testing activities. One result of doing this is that each

test case has an output activity parameter named verdict, which is of enumerated type Verdict-

Kind. The potential values here are pass, fail, inconclusive, or unknown. The basic structure of

this test suite is shown in Figure 5.21.

Demonstration of Meeting Needs: Verification and Validation476

The Test Context behavior runs the four rendered tests in order; in each case, the initial starting

conditions for the test are set, and then the test is run:

Figure 5.21: Test architecture main behavior

Chapter 5 477

To assist in the execution of the test cases, I also created a simulation configuration. In the config-

uration, I set the run speed to 100% and instructed the system to put the final resulting instance

in the Testing Results package. This allows me to create an instance table of test case runs:

Figure 5.22: Test simulation configuration

Let’s render just four of these test cases: 1, 3, 7, and 9.

Render test case 1: Augment the front chain ring from 1 to
maxChainRings (3).
Adding the state behavior for this test case is pretty simple. The initialization just needs to:

• Set the shifting mode to mechanical shifting.

• Set the selected chain ring to the first (1).

The test execution behavior is pretty simple. The system just needs to send the left Shift Lever

the evUp event and verify that both the set chain ring and the displayed chain ring are correct.

Figure 5.23 shows the details of the state TC1_Execution activity:

Demonstration of Meeting Needs: Verification and Validation478

Figure 5.23: Test case 1 specification

In this case, test case 1 sends the leftShiftLever part the signal evUp. Following a short delay to

allow the target to receive and consume the incoming signal, the values of the cassetteRingNum-

ber and chainRingNumber are checked, and if found to be correct, the test case returns a verdict

of pass; otherwise, it returns a verdict of fail.

Render test case 3: Augment chain ring out of range high
In this test case, the set up for the test for mechanical shifting and sets the selected chain ring to 3.

It tries to augment the chain ring (which is already at its maximum); it should remain at the value 3.

Chapter 5 479

The test case activity is shown in Figure 5.24:

Figure 5.24: Test case 3 specification

Render test case 7: Move to DI shifting
This is an easy test case. All we have to do is to run the system and then check that the system

is set to use DI shifting; this is best done by ensuring that the Gear Control state is currently DI

Shifting. Cameo provides an action language helper named ALH.inState that returns a Boolean

if the specified instance is in the specified state and False otherwise.

Demonstration of Meeting Needs: Verification and Validation480

The activity for test case 7 is shown in Figure 5.25:

Figure 5.25: Test case 7 specification

Render test case 9: With DI shifting, press UP three times to see
that shifting works
In the last test case, we’ll enter DI mode and then shift UP twice to ensure that shifting works. The

gearing is initialized to chain ring 1 and cassette ring 2 with DI shifting enabled. The test presses

the DI Up Button three times, and we expect to see it augment the gearing to 1:2 and on to 1:3:

Chapter 5 481

Figure 5.26: Test case 9 specification

Apply test cases
Now, let’s run the test cases and look at the outcomes. Since I think you learn more from test

failures than successes, prepare to see some failures. In the Test Results Pkg package, I added an

instance table showing the results generated by running the test case. In it, we can see that while

test 1 passed, test cases 3, 7, and 9 failed:

Figure 5.27: Test results instance table

Render verdict
As not all tests succeeded, the test suite, as a whole, fails. This means that the design must be

repaired and the tests rerun.

Demonstration of Meeting Needs: Verification and Validation482

Fix defects in SUT
The defects are all fairly easy to fix. For test 3, the issue is in the implementation of the Rider

Application operation augmentChainRing. The current implementation is:

if (chainRingNumber <= maxChainRings) chainRingNumber++;

but it should be:

if (chainRingNumber < maxChainRings) chainRingNumber++;

Tests 7 and 9 failed because the Rider Application activity send DI Shifting act sent the wrong

event. In Figure 5.16, you can see that it sends the evMechanicalShifting event, but it should send

the evDIShifting event. This is fixed in the following diagram:

Figure 5.28: Updated Rider Application behavior

Chapter 5 483

After making the fixes, we can rerun the test suite. We can see in Figure 5.29 that all the tests pass

in the second run:

Figure 5.29: Test outcomes take two

Computable constraint modeling
Mathematics isn’t just fun; it’s also another means by which you can verify aspects of systems.

For example, in the Architectural trade studies recipe in Chapter 3, Developing System Architecture,

we created a mathematical model to evaluate design alternatives as a set of equations, converting

raw properties – including measurement accuracy, mass, reliability, parts cost and rider feel – into

a computed “goodness” metric for the purpose of comparison. Using trade studies is a way to

verify that good design choices were made. We did this using SysML constraints and parametric

diagrams to render the problem and “do the math.”

Math can address many problems that come up in engineering, and SysML parametric diagrams

provide a good way to render, compute, and resolve such problems and their solutions. An arche-

typal example is computing the total weight of a system. This can be done by simply summing up

the weights of all its constituent parts. However, far more interesting problems can be addressed.

Because math is the language of quantities, it is very general, so it is a challenge to come up

with a workflow that encompasses a wide range of addressable problems. But we are not alone.

Thinkers such as Polya (Polya, G. How to Solve It: A new aspect of mathematical methods, Princeton

University Press, 1945) or recent rereleases such as those available on Amazon.com and Wickel-

gren (Wickelgren, W. How to Solve Problems: Elements of a theory of problems and problem solving, W.

H. Freeman and Co, 1974). have proposed means by which we can apply mathematics to general

kinds of problems. As we did with in the trade studies, we can capture an approach that employs

mathematics and SysML to provide a means to mathematically analyze and verify system aspects.

Purpose
The purpose is to solve a range of problems that can be cast as a set of equations relating to values

of interest. We will call problems of this type Mathematically-Addressable Problems (MAPs).

Demonstration of Meeting Needs: Verification and Validation484

Inputs and preconditions
The input to the recipe is a MAP that needs to be solved, such as the emergent properties of a

system being developed.

Outputs and postconditions
The output of the recipe is the answer to the problem – typically, a quantified characterization

of the emergent property (also known as the answer).

How to do it
Figure 5.30 shows the steps involved:

Figure 5.30: Computational constraint modeling workflow

Chapter 5 485

Understand the problem
The first step in this recipe is to understand the problem at hand. In MBSE, that generally means:

• Identifying the structural elements (blocks, value properties, and so on).

• Discovering how they connect.

• Understanding how the elements behave both individually and collectively.

• Reviewing the qualities of services of those behaviors (such as worst-case performance).

• Looking at other quantifiable properties of interest for the system or its elements.

Identify the available truths
This step is about finding potentially relevant values and constraints. This might be universals –

such as the value of the gravitational constant on the surface of the earth is 9.81 m/s2 or that the

value of π to nine digits is 3.14159265. It might be constraints – such as the limit on the range of

patient weights (0.5 KG to 300 Kg). It might be quantifiable relations – such as F = ma.

Determine the necessary properties of acceptable solutions
This is the step where the problem gets interesting. I personally cast this as “what does the

solution smell like?”. I want to understand what kind of thing I expect to see when a solution is

revealed. Is it going to be the ratio of engine torque to engine mass? Is it the likelihood of a fault

manifesting as an accident in my safety critical system? What is the nature of the result for which

I am looking? Many times, this isn’t known or even obvious at the outset of the effort but is critical

in identifying how to solve the problem.

Constrain the problem to only relevant information
Once we understand the problem, the set of potentially useful information, and the nature of the

solution, we can often limit the input information to a smaller set of truly relevant data. By not

having to consider extraneous information, we simplify the problem to be solved.

Construct the mathematical formulation
In this step, we develop the equations that represent the information and their relations in a

formal, mathematical way. Remember, math is fun.

Render the problem as a set of connected constraint properties
The equations will be modeled as a set of constraints owned by SysML constraint blocks. The input

and output values of those equations are modeled as constraint parameters. Then the equations

are linked together into computation sets as constraint properties on a parametric diagram.

Demonstration of Meeting Needs: Verification and Validation486

Perform analysis of units
In complex series of computations, it is easy to miss subtle problems that could be easily iden-

tified if you just ensure that the units match. Perhaps you end up trying to add inches to meters

or add values of force and power. Keeping track of units and ensuring that they balance is a way

to find such mistakes.

Do the math
Cameo can evaluate parametrics with its Simulation Toolkit. If you simulate a context that has

parametrics, these are evaluated before the actual simulation begins in a pre-execution compu-

tational step.

Do a sanity check
A sanity check is a quick verification of the result by examining its reasonableness. One quick

method that I often employ is to use “approximate computation.” For example, if you say that

1723/904 is 1.906, I might do a sanity check by noting that 1800/900 is 2, so the actual value should

be a little less than 2.0. If you tell me that a medical ventilator should deliver 150 L/min, I might

perform a sanity check by noting that an average breath is about 500 ml (at rest) at an average

rate of around 10 breaths/min, so I would expect a medical ventilator to deliver something close

to 5 L/min, far shy of the suggested value.

More elaborate checks can be done. For a critical value, you might compute it using an entirely

different set of equations, or you might perform backward computation whereby you start with

the end result and reverse the computations and see if you end up with the starting values.

Example
The Architectural trade studies recipe example from Chapter 3, Developing System Architectures,

showed one use for computable constraint models. Let’s do another.

In this example, I want to verify a resulting computation performed by the Pegasus system, re-

garding simulated miles traveled as a function of gearing and cadence. We will build up and

evaluate a SysML parameter model for this purpose.

Understand the problem
The potentially relevant properties of the Bike and Rider include:

• Chain ring gear, in the number of teeth.

• Cassette ring gear, in the number of teeth.

Chapter 5 487

• Wheel circumference, inches.

• Cadence of the rider, in pedal revolutions per minute.

• Power produced by the rider, in watts.

• Weight of the rider and bike, in kilograms.

• Wind resistance of the rider, in Newtons.

• Incline of the road, in % grade.

• How long the rider rides, in hours.

The desired outcome is to know how far the simulated bike travels during the ride.

Identify the available truths
There are some constraints on the values these properties can achieve:

• Chain ring gears are limited to 28 to 60 teeth.

• Cassette ring gears are limited to 10 to 40 teeth.

• The wheel circumference for a normal road racing bike is 82.6 inches (2098 mm).

• Reasonable rider pedal cadence is between 40 and 120 RPM.

• Maximum output power for elite humans is about 2000W, with 150–400W sustainable

for an hour or more (depending on the person).

• The UCI limits the weight of road racing bikes to no less than 15 lbs (6.8 Kg) but 17–20

lbs is more typical.

• Rider weight is generally between 100 to 300 lbs (45.3 Kg to 136 Kg).

• Wind resistance is a function of drag coefficient, cross-sectional area, and speed (https://

ridefar.info/bike/cycling-speed/air-resistance-cyclist/).

• Road inclines can vary from -20 to +20% grade with an approximately normal distribution

of around 0%. A notable exception is the 32% climb in the Savageman Triathlon “Western-

port Wall,” https://kineticmultisports.com/races/savageman/.

• Ride lengths of interest are between 0.5 and 8 hours.

https://ridefar.info/bike/cycling-speed/air-resistance-cyclist/
https://ridefar.info/bike/cycling-speed/air-resistance-cyclist/
https://kineticmultisports.com/races/savageman/

Demonstration of Meeting Needs: Verification and Validation488

Determine the necessary properties of acceptable solutions
What we expect is a distance in miles as determined by a ride of a certain length of time in specific

gearing, with other parameters being set as needed.

Constrain the problem to only relevant information
A little thought on the matter reveals that many of the properties outlined are not really relevant

to the specific computation. Assuming no wheel slippage on the road, the only properties nec-

essary to determine distance are:

• Chain ring gear

• Cassette ring gear

• Pedal cadence

• Wheel circumference

• Ride time

If the other properties vary, they will manifest as changing one or more of these values. For ex-

ample, if wind resistance changes due to a headwind, then the rider will either pedal more slowly,

change gear, or ride longer in time to cover the same distance.

Construct the mathematical formulation
There are a number of equations we must construct, with several of them solely for converting

units:

• Gear ratio = chain ring teeth / cassette ring teeth.

• Gear inches = gear ratio * wheel circumference in inches.

• Gear miles = gear inches / 12 / 5280.

• Revolutions per hour = revolutions per minute * 60.

• Speed in MPH = revolutions per hour * gear miles.

• Distance = speed * duration.

Render the problem as a set of connected constraint properties
These equations are rendered as constraint blocks, as you can see in Figure 5.31. The inputs and

outputs are shown as the constraint parameters, shown as included boxes along the edge of the

constraint blocks.

Chapter 5 489

The front gear and rear gear are modeled as Integers, but all others are represented as Reals:

Figure 5.31: Bike gear constraint blocks

A parametric diagram is a specialized form of an internal block diagram. The usage of the constraint

blocks, known as constraint properties, in the computational context is shown in Figure 5.32:

Figure 5.32: Gear calculation parametric diagram

Demonstration of Meeting Needs: Verification and Validation490

Note the binding connectors relate the constraint parameters together as well as the constraint

parameters to the value properties of the Bike block. This will become important later in the

recipe when we want to evaluate different cases.

Perform analysis of units
This problem is computationally simple but is easy to screw up because of the different units

involved. Wheel circumference is measured in inches. Pedal cadence in RPM. However, we ulti-

mately want to end up with the distance in miles.

We can recast the equations as units to ensure that we got the conversions right:

• Gear ratio = chain ring teeth / cassette ring teeth

• Real = teeth / teeth (note: Real is unitless)

• Gear inches = gear ratio * wheel circumference

• Inches / revolution = real * inches / revolution

• Gear miles = gear inches / 12 / 5280

• miles / revolution = inches / revolution / (inches/foot) / (feet/mile)

• = feet / revolution / (feet / mile)

• = miles / revolution

• Revolutions per hour = revolutions per minute * 60

• RPH = revolutions / min * (minute / hour)

• = revolutions / hour

• Speed in MPH = revolutions per hour * gear miles

• MPH = (revolutions / hour) * (miles / revolution)

• = miles / hour

• Distance = speed * duration

• Miles = miles / hour * hour

• = miles

The units balance, so it seems that the equations are well-formed.

Chapter 5 491

Do the math
Before we do the math, it will be useful to review SysML instance specifications a bit, as they are

not covered in much detail in most SysML tutorials. An instance specification is the specification

of an instance defined by a block. Instance specifications have slots that hold specific values re-

lated to the value properties of the block. That means we can assign specific values to the slots

corresponding to value properties. In practice, we can assign a partial set of slot values and use

the parametric diagram to compute the rest. We can then save the resulting elaborated instance

specification as an evaluation case, much like we might have multiple parts instantiating a block.

This concept is illustrated in Figure 5.33:

Figure 5.33: Blocks and instance specifications

Demonstration of Meeting Needs: Verification and Validation492

To perform the math, we’ll define a set of instance specifications for the cases that we want to

compute. In this example, we’ll look at six cases:

• 34 x 13 @ 90 RPM for 1 hour

• 34 x 18 @ 90 RPM for 1 hour

• 34 x 13 @ 105 RPM for 0.75 hour

• 53 x 13 @ 90 RPM for 1 hour

• 53 x 18 @ 90 RPM for 1 hour

• 53 x 13 @ 105 RPM for 1.5 hour

We will create a separate instance specification for each of these cases. Each of these cases is

an instance specification typed by the block Bike. We will name these as “IS” + gearing + pedal

cadence, such as IS 34x13 at 90 for 1 hour.

To perform the computations, we will use the Cameo Simulation Toolkit. This toolkit performs

a pre-execution computation – that is, it evaluates the parameters in the simulation before per-

forming any behaviors.

To actually perform the calculations is easy – if you know how (although it isn’t well explained

in the documentation). Simply right-click on the Bike block and select Simulation > Run. Al-

though the block has default values for the value properties, you can set the values that you want

to compute for the different cases. Once completed, you can click the export to new instance

button in the Simulation Toolkit (see Figure 5.34) to save the values as an instance specification.

Select the package where you want the instance placed. You’ll have to rename it after it is created:

Figure 5.34: Simulation Toolkit variables window

Chapter 5 493

I updated the computed properties and then constructed a table of the values for the different

evaluation cases (Figure 5.35):

Figure 5.35: Instance table of computed outcomes

Do a sanity check
Are these values reasonable? As an experienced cyclist, I typically ride around 90 RPM, and in a

gear 53x18 gear, I would expect to go about 20 miles, so the computed result for that case seems

right. As I switch to a small 13-cog cassette, I would expect to go about 50% further, so the 28 miles

at 53x13 seems about right. In a smaller front chain ring of 34 with a small cog (13), I’d expect to

go about 80% as far as in the 53x18, so that seems reasonable as well.

Traceability
Traceability in a model means that it is possible to navigate among related elements, even if

those elements are of different kinds or located in different packages. This is an important part

of model verification because it enables you to ensure the consistency of information that may

be represented in fundamentally different ways or different parts of the model. For example:

• Are the requirements properly represented in the use case functional analysis?

• Do the design elements properly satisfy the requirements?

• Is the design consistent with the architectural principles?

• Do the physical interfaces properly realize the logical interface definitions?

The value of traceability goes well beyond model verification. The primary reasons for providing

traceability are to support:

• Impact analysis: determine the impact of change, such as:

• If I change this requirement or this design element, what are the elements that

are affected and must also be modified?

• If I change this model element, what are the cost and effort required?

Demonstration of Meeting Needs: Verification and Validation494

• Completeness assessment: how done am I?

• Have I completed all the necessary aspects of the model to achieve its objectives,

such as with a requirement, safety goal, or design specification?

• Do I have an adequate set of test cases to verify the requirements?

• Design justification: why is this here?

• Safety standards require that all design elements exist to meet requirements. This

allows the evaluation of compliance with that objective.

• Consistency: are these things the same or do they work together? For example:

• Are the requirements consistent with the safety concept?

• Does the use case activity diagram properly refine the requirements?

• Does the implementation meet the design?

• Compliance:

• Does the model, or elements therein, comply with internal and external standards?

• Reviews:

• In a review or inspection of some model aspect, is the set of information correct,

complete, consistent, and well-formed?

By way of a very simple example, Figure 5.36 schematically shows how you use a trace matrix. The

rows in the figure are the requirements and the columns are different design elements. Require-

ment R2 has no trace relation to a design element, indicating that is an unimplemented require-

ment. Conversely, design element D3 doesn’t realize any requirements, so it has no justification:

Figure 5.36: Traceability

Chapter 5 495

Some definitions
Traceability means that a navigable relation exists between all related project data without regard

to the data location in the model, its representation means, or its format.

Forward traceability means it is possible to navigate from data created earlier in the project to

related data produced later. Common examples would be to trace from a requirement to a design,

from a design to implementation code, or from a requirement to related test cases.

Backward traceability means it is possible to navigate from data created later in the project to

related data produced earlier in the process. Common examples would be to trace from a design

element to the requirements it satisfies, from a use case to the requirements that it refines, from

code back to its design, or from a test case to the requirements it verifies.

Trace ownership refers to the ownership of the trace relation, as these relations are directional.

This relation is almost always in the backward direction. For example, a design element owns the

satisfy relation of the requirement. Forward traceability is supported by tools via automation and

queries by looking at the backward trace links to identify their owners. This is counterintuitive

to many people, but it makes sense. A requirement in principle shouldn’t know how it is imple-

mented, but a design in principle needs to know what requirements it is satisfying. Therefore, the

«satisfy» relation is owned by the design element and not the requirement.

Trace matrices are tabular relations of the relations between sets of elements. Cameo supports

the creation of matrix layouts that define the kinds of elements for the rows and columns and the

kind of relation depicted. Matrix views visualize data based on the layout specifications. Multiple

kinds of relations can be visualized in the same matrix, but in general, I recommend different

tables to visualize different kinds of trace links.

Types of trace links
In SysML, trace relations are all stereotypes of dependency. Table 5.2 shows the common relations

in SysML:

Relation Source type Target type Description

«trace» Any Any A general relation that can be used in all

circumstances where a navigable relation

is needed. A common use is to relate

requirements in different contexts, such

as system requirements (source) and

stakeholder requirements (target).

Demonstration of Meeting Needs: Verification and Validation496

«copy» Requirement Requirement Establishes that a requirement used in a

context is a replica of one from a different

context.

«deriveReqt» Requirement Requirement Use when the source requirement is

derived from the target requirement; this

might be used from subsystem to system

requirements, for example.

«refine» Any Any Represents a model transformation;

in practice, it is often used to relate a

requirement (target) with a behavioral

description (source), such as an activity

diagram.

«allocate» Any Any Relates elements of different types or in

different hierarchies; in practice, it is most

commonly used to relate a design element

(source) to a requirement (target) and is, in

this usage, similar to «satisfy».

«satisfy» Design element Requirement A relation from a model element (source)

and the requirement that it fulfills (target).

«verify» Test case Requirement Indicates that the source is used to verify

the correctness of the target. The source

may be any kind of model element, but it

is almost always a test case. See the Model-

based testing recipe, earlier in this chapter,

for more information.

 Table 5.2: SysML trace relations

You may, of course, add your own relations by creating your own stereotype of dependency. I

often use «represents» to trace between levels of abstraction; for example, a physical interface

«represents» a logical interface.

It is reasonable to ask why there are different kinds of trace relations. From a theoretical standpoint,

the different kinds of relation clarify the relation’s semantic intent. In practice, different tables can

be constructed for the different kinds of relations and make them easier to apply in real projects.

Traceability and agile
 Many Agilistas devalue traceability; for example, Scott Ambler says:

Chapter 5 497

See http://www.agilemodeling.com/essays/agileRequirementsBestPractices.htm for more

information.

However, in my books on agile systems engineering and agile development for real-time, safe-

ty-critical software, I make a case that traceability is both necessary and required:

See Bruce Douglass, Ph.D, Real-Time Agility (Addison-Wesley, 2009): https://www.amazon.com/

Real-Time-Agility-Harmony-Embedded-Development/dp/0321545494 for more information.

In my agile projects, I add traceability relations as the work product content stabilizes to minimize

rework, usually after most of the work has been done but before the system is verified and reviewed.

Purpose
The purpose of traceability is manifold, as stated earlier in this recipe. It enables model consis-

tency and completeness verification as well as the performance of impact analysis. Additionally,

it may be required by standards a project must meet.

Inputs and preconditions
The sets of elements being related are well enough developed to justify the effort to create trace

relations.

Too many projects are crushed by the overhead required to develop and maintain

comprehensive documentation and traceability between it. Take an agile approach

to documentation and keep it lean and effective. The most effective documentation

is just barely good enough for the job at hand. By doing this, you can focus more of

your energy on building working software, and isn’t that what you’re really being

paid to do?

Traceability is useful for both change impact analysis and to demonstrate that a

system meets the requirements or that the test suite covers all the requirements. It

is also useful to demonstrate that each design element is there to meet one or more

requirements, something that is required by some safety standards, such as DO-178B.

http://www.agilemodeling.com/essays/agileRequirementsBestPractices.htm
https://www.amazon.com/Real-Time-Agility-Harmony-Embedded-Development/dp/0321545494
https://www.amazon.com/Real-Time-Agility-Harmony-Embedded-Development/dp/0321545494

Demonstration of Meeting Needs: Verification and Validation498

Outputs and postconditions
Relations between related elements in different sets have been created and are captured in one

or more trace matrices.

How to do it
Figure 5.37 shows the simple workflow for this recipe. Although the steps themselves are simple,

not thinking deeply about the steps may result in unsatisfactory outcomes:

Figure 5.37: Create traceability

Establish traceability goals
Traceability can be done for a number of specific reasons. Different stakeholders care about

demonstrating that the design meets the requirements, versus test cases adequately covering

the design, versus ensuring that the stakeholder requirements are properly represented in the

system requirements.

Chapter 5 499

All of these are reasons to create traceability, but different trace views should be created for each

purpose.

Common traceability goals in MBSE include tracing between:

• Stakeholder needs and system requirements.

• System and subsystem requirements.

• Subsystem requirements and safety goals.

• Facet (e.g., software or electronic) requirements and system requirements.

• Requirements and test cases.

• Design and test cases.

• Design and safety goals.

• Logical schemas and corresponding physical schemas, including:

• Data schema

• Interfaces

• Model products and standard objects, such as ASPICE, DO-178, and ISO26262.

• Design and implementation work products.

For your project, you must decide on the objectives you want to achieve with traceability. In

general, you will create a separate traceability view for each trace goal.

Decide which relations to use
SysML has a number of different kinds of stereotyped dependency relations that can be used for

traceability purposes. In modern modeling tools, you can easily create your own to meet any

specified needs you have. For example, I frequently create a stereotype of dependency named

«represents» to specifically address trace relations across abstraction levels, such as between

physical and logical schemas.

Which relation you use is of secondary importance to establishing the relations themselves, but

making good choices in the context of the set of traceability goals that are important to you can

make the whole process easier. Table 5.3 shows how I commonly use the relations for traceability:

Demonstration of Meeting Needs: Verification and Validation500

Source Target Relation Purpose

Requirement Requirement «trace» Relate different sets of requirements,

generally from later developed to

earlier, such as system (source) to the

stakeholder (target).

Use case Requirement «trace» Show which requirements are related

to a use case.

Requirement Requirement «deriveReqt» Relate a more detailed requirement

(source) to a more abstract one.

Design element Requirement «satisfy» Identify which requirements a design

element satisfies.

Design element Requirement «allocate» Identify which design elements

(source) requirements (targe) are

allocated.

Model element Requirement «refine» Provide a detailed, often behavioral,

representation of a textual

requirement, such as an activity or

state diagram elaborating on one or

more requirements.

Test case Requirement,

design element

«verify» Relate test cases to either the

requirements or design elements.

Comment Model element «rationale» Provide an explanation for the

existence or representation of one or

more model elements.

Model element Model element «represents» Relate elements that are intended to be

the “same thing” but at different levels

of abstraction, such as logical versus

physical data schema.

Table 5.3: Common trace relation usage

Specify trace views
Once the element type and relations are decided, you must decide the best way to represent them.

The first decision here is whether to use a matrix or a table.

A matrix is often the first choice for traceability. A matrix is a relation table between element sets,

one set shown in the rows and the other in the columns. The contents of the cells in the matrix

indicate the presence or absence of the desired relation.

Chapter 5 501

This is a great view for determining the presence or absence of relations. For example, the

«satisfy» matrix between requirements and design elements is very useful to determine ab-

sence; an empty requirements row means that the requirement isn’t represented in the design

while an empty design element column means that the design element isn’t there to meet any

requirements. For practical reasons, I prefer the smaller set of elements to be shown as columns

and the larger set of elements to be shown as the rows. The downside of a matrix is that you can’t

see anything other than the name of the involved elements and the presence or absence of the

desired relation. If you want to see other data, such as the text of the requirements, a list of the

value properties of blocks, or the metadata tags, then a table is preferable.

Tables consist of rows of data, one per primary table element, along with information owned

by or about that element about which you care. Table elements that have properties – such as

textual specifications, value properties, or metadata held in owned tags – can display that data in

an easy-to-read summary form. In the context of traceability, one of the kinds of properties the

elements can own are relations, such as «trace» or «verify», and these can be shown in tables

as well. In Cameo, this is done with the Columns tool above the table.

You can even create both tables and matrices.

Create trace views
Once the layouts are defined, create views that apply the layout to the specific set of elements.

Add trace links
You can use the trace views as a means for creating the trace views if you like, but you are not

required to do so. I often create a use case diagram whose mission is to show the «trace» relation

between one use case and a set of requirements, but then use a trace matrix to summarize the

results of all such use cases. It is perfectly reasonable to simply create an (empty) matrix and add

the relations directly to the matrix. The reverse can also be done: if you create the relations in a

matrix, you can create a diagram, drag onto it the relevant elements, and expose those relations

with the right-click menu option Display > Display All Paths. However you do it, this step adds

the relations of the selected type to the appropriate elements in your model.

Review traces
Once the previous steps are complete, you can open the views and use the trace views to achieve

your traceability objectives.

Demonstration of Meeting Needs: Verification and Validation502

Example
In this example, we’ll consider the relation of the system architecture to the system requirements.

In the Subsystem and component architecture recipe of Chapter 3, Developing System Architectures,

we created a subsystem architecture for the Pegasus system. While incomplete (it was for an

early iteration after all), we created subsystems to meet those interfaces. Let’s apply this recipe

to develop a traceability view from the subsystems to the requirements.

Establish traceability goals
In this example, the purpose of traceability is to show all the requirements allocated to the itera-

tion and allocated to a subsystem. If there are requirements in the iteration that are not allocated,

then we can either directly allocate the requirements or create derived requirements that are

then allocated.

Decide which relations to use
We will use the «satisfy» relation. It’s also very common to use «allocate» to relate require-

ments to architectural elements. In this case, we will use «satisfy» between the subsystems

and the requirements.

Specify trace views
We will use a matrix of Block vs Requirement «satisfy» relations from the subsystem blocks

to the requirements for our view.

Create trace views
The matrix view uses the layout to display the specified data. In Cameo, the layout information

is provided above the matrix (Figure 5.38):

Figure 5.38: Satisfy matrix view layout

Add trace links
There are a couple of ways to populate the «satisfy» relations from the blocks. In this case, I

prefer to diagram the relations rather than work in the matrix directly. The reason is that on the

diagram, I can see the text of the requirement, while in the matrix, I can only see the name of the

requirement.

Chapter 5 503

Figure 5.39 shows one of the requirement diagrams created to create the relations:

Figure 5.39: Example requirements diagram to add satisfy relations

Review traces
Figure 5.40 shows a portion of the resulting allocation relations from the subsystem elements

to the requirements. The property with relations is used to only show rows and columns where

a relation exists:

Figure 5.40: Subsystem-Requirement satisfy matrix

Demonstration of Meeting Needs: Verification and Validation504

It is common to also show a matrix view where no relations exist. This allows easy identification

of requirements not allocated to design elements or design elements that have no relation to the

requirements. See Figure 5.41:

Figure 5.41: Subsystem-Requirements satisfy matrix – missing relations

Effective Reviews and walkthroughs
At the beginning of this chapter, I talked about reviews being the easiest but weakest form of

model verification. This shouldn’t be construed to mean that I don’t believe reviews have value.

Properly applied, reviews are a very useful adjunct to other, more rigorous forms of verification.

Reviews can contribute to both syntactic (“compliance in form”) and syntactic (“compliance in

meaning”) verification. They are relatively easy to perform and can provide input that is other-

wise difficult to obtain.

Syntactic reviews, performed by quality assurance personnel, demonstrate compliance of the

model to the project modeling guidelines, including the organization of the model, the presence

of required elements and views, the structuring of those views, compliance with naming con-

ventions, and more.

Semantic reviews are performed by Subject Matter Experts (SMEs). Some of the questions such

reviews can address include:

• Does the model appropriately cover the necessary subjects (breadth)?

• Does the model include an appropriate level of detail (depth)?

• Is the level of precision, accuracy, and fidelity appropriate?

• Does the model accurately represent the physics of the situation?

Chapter 5 505

• Are relevant standards properly taken into account?

• Is the technology accurately represented?

• Are all primary (“sunny day”) conditions considered?

• Are exceptional and edge cases (“rainy day”) cases adequately addressed?

• Is there anything of significance missed or inappropriately modeled?

• How will the correctness be verified?

• Is the information (typically the views) consumable by the stakeholders?

Reviews can be a valuable adjunct to other verification means. However, it is easy, and far too

common, to perform them poorly in ways that are both expensive and ineffective. Reviews are

very expensive because they typically have several people engaged for a significant number of

hours. It is imperative that the meeting time is used efficiently. It is common for people to come

unprepared, wasting others’ time with questions to which they should already have answers. It

is also common to “go down the rabbit hole” in exploring solutions – that is, out of scope of the

review. It is enough to identify the problem and move on. If a reviewer has a suggestion for a

solution, they can present it to the author after the meeting. Further, because authors are putting

their egos on the line, it is important that review comments address the product aspects and

not what the author did wrong (“The product has this defect”, not “You made a mistake here”).

Subsequent reviews of the same product should be limited solely to the resolution of action items,

unless new information appears that invalidates the previous review.

The recipe described here is adapted from the notion of Fagan inspections, which were originally a

means for software source code review (https://en.wikipedia.org/wiki/Fagan_inspection).

I’ve adapted them to apply to engineering work products in general and especially to models.

Purpose
All models are abstractions but some are useful abstractions. A review ascertains whether they are

the right abstractions covering the appropriate topics with adequate precision, depth, and breadth

and represent the system correctly in such a way that the model fulfills its intended purpose.

The recipe provided here is very general and can be applied to any technical work product, but

our focus will be on the review of models and their content and views.

Note that this recipe describes how to conduct a review only. There are other reasons to have

meetings with technical work products, including the dissemination of information held within

the work product. Those may be valid and important meetings to have but they are not reviews.

https://en.wikipedia.org/wiki/Fagan_inspection

Demonstration of Meeting Needs: Verification and Validation506

The purpose of a review is to verify the content of a collection of project data, either syntactically, se-

mantically, or both.

Inputs and preconditions
A body of work is completed to the extent that the project can profitably conduct a review.

Outputs and postconditions
The primary outcomes are either a quality assurance record that the review was performed and

no significant defects or issues were found, an action list of issues for the product authors to

resolve, or both.

How to do it
Figure 5.42 shows the workflow for the recipe. A couple of main points in the figure should be

emphasized.

First, the reviewers are expected to come to the review having examined the work products in

detail. This is not a meeting for explanation, although questions of clarification are permitted.

Second, solutions to identified issues are not discussed; suggestions can be discussed directly

with the author after the review. Lastly, subsequent reviews are limited to the resolution of the

action items from previous reviews:

Figure 5.42: Conduct review workflow

Chapter 5 507

Establish the purpose of the view
Real models are too large to be reviewed in their entirety in a single review. Each review must have

a specific purpose or intent that can be performed in a reasonable timeframe and consider only

the subset of the model relevant to that purpose. Some common review intents are performing

the following actions:

• Evaluate and understand systems engineering handoff models.

• Evaluate the use cases and their details.

• Evaluate architectural models.

• Evaluate design models.

• Evaluate the adequacy and coverage of a test plan and its details.

• Evaluate the result of the actions taken after a previous review.

Prepare materials for review
In this step, the material is gathered together for review. There are almost always multiple arti-

facts that are reviewed together. For example, a review of a use case model usually includes the

following artifacts:

• Relevant use case diagrams

• Corresponding requirement text

• Use case sequence diagrams

• Use case state machines and activity diagrams

• Quality of service constraints

• Use case descriptions

• List of actions from previous reviews (if applicable)

For the review of a design model, common artifacts include:

• For each use case in the design model:

• Block definition diagram(s) showing the collaboration of elements realizing the

use case

• Internal block diagram(s) showing how the collaborating elements connect

• Original use case sequence diagram(s)

• Elaborated design sequence diagrams showing the interaction

• State machine diagrams for stateful classes

Demonstration of Meeting Needs: Verification and Validation508

• Activity diagrams for complex algorithms

• List of actions from previous reviews (if applicable)

In Cameo, smart packages are special packages that contain elements by reference. An element

can be added manually (such as by drag and drop) or automatically by defining criteria for inclu-

sion. This feature can be used to gather up the packages, model elements, and diagrams relevant

to a particular review.

Assign reviewer roles
Reviews have a number of roles that people can fulfill during the review. These need to be assigned

to actual people to play those roles:

• Review coordinator:

This role organizes and runs the meeting, ensuring compliance with the review’s rules of

conduct, such as “Direct comments to product, not the author” and “Discuss solutions

with the author after the meeting.”

• Product owner/presenter:

This is generally one of the authors of the material under review. This person is technically

knowledgeable and can answer questions of clarification during the meeting.

• SME reviewer:

This role is expected to provide a critical eye from a semantic viewpoint, whether it is

about the specific technology, tool use, or engineering.

• Quality Assurance (QA) reviewer:

The QA role is there to ensure syntactic correctness and review the work product for

compliance with relevant standards, including both internal standards (such as modeling

guidelines and process definition) and external standards (such as industry or regulatory

standards).

• Scribe:

The scribe takes the meeting minutes and creates and updates the action list, the list of

actions and issues to be addressed after the meeting. The action list will serve as the basis

for subsequent reviews of the work product.

Chapter 5 509

Disseminate materials for review
The materials should be in the hands of the reviewers no less than 2 nor more than 14 days prior

to the review.

Schedule review
The room for the review – along with any special equipment required (e.g., projector, whiteboards,

internet connection, computer, modeling tool availability, etc.) – is scheduled and invitations

issued to the reviewers. This may also be done virtually.

Reviewers independently inspect materials
The time to read the materials is not within the review meeting itself! The reviewers should come

to the meeting with comments and issues they want to address. For complex work products, there

may be value in the authors presenting a tutorial of the information to be reviewed. However,

this should be a separate meeting, done prior to the review.

If the work product being reviewed is a model, then either the reviewers must have access to the

relevant modeling tool, a web-based review environment (such as Cameo Collaborator), or reports

must be generated for the purpose of the review that show the model content in an accessible

format, such as Word, PowerPoint, or PDF.

Collectively discuss reviewer comments
Each issue or comment from a review should be heard and addressed by the product owner. If it

is determined to be an issue, the issue is specified on the list of actions to be resolved.

DO NOT discuss solutions during this meeting. If someone has a solution they want to offer, have

them do it outside the meeting with the work product owner.

Capture issues as action items
The primary outcome of the review is either an approval OR a set of action items to be resolved.

Some action items might require modification to the work product, while others might require

exploration or a trade study.

Both Cameo Magic Draw (via Collaborator) and Rhapsody (via Model Manager)

support online review of models, removing the need to generate work products for

people who do not have access to the tools.

Demonstration of Meeting Needs: Verification and Validation510

The action item list must be captured and will be used as the agenda for any subsequent reviews

of the same work product set.

Resolve action items
As a result of the list of actions identified in the review, the product owner must modify the model

or in some way address each of the issues. Then, if the changes are not trivial, a follow-up meeting

is planned (repeat the recipe from the first step).

Plan review of action item resolutions
Unless the action items are considered trivial and not worth following up, a subsequent meet-

ing should be scheduled specifically to address what was done to resolve the action items, and,

typically, nothing more.

This subsequent review is performed in the same fashion as the original review.

Example
Let’s consider doing a review of one of the use cases from the Pegasus system, Emulate Front and

Rear Gearing, presented as an example in the Functional analysis with state machines recipe.

Establish the purpose of the view
The primary outcomes of use case analysis are:

• Ensure a good set of requirements.

• Define system interfaces necessary to support the related requirements.

The purpose of the review is to examine the work products created to perform that analysis

and its outputs to ensure that the analysis was done adequately for the need and that the work

products fulfill their purpose.

Prepare materials for review
The purpose of the review will be to look at the work products around:

• The use case and associated actors and their key properties (such as description):

• Use case diagram showing actors and related use cases.

• Traced requirements – use case diagram showing traced requirements.

• The use case sequence diagrams:

• Specification scenarios.

Chapter 5 511

• Animated scenarios.

• The use case execution context:

• BDD/IBD showing the use case block and actor blocks.

• Use case block specification:

• State and/or activity diagram for a use case or use case block.

• State and/or activity diagrams for the actors or actor blocks.

• Value and flow properties owned.

• Data schema:

• BDD showing information known or relevant to the use case, including value

types, dimensions (quantity kind), and units.

• The interfaces needed to support the use case:

• BDD showing the interface blocks and their supported flow properties, operations,

and event receptions.

Collectively, these diagrams and views form the work product to be reviewed. They are shown in

Figure 2.32 through Figure 2.42 in Chapter 2, System Specification.

Assign reviewer roles
This step identifies the various roles. The review coordinator and the scribe are singletons – there

is only one of those in the review. There must be at least one product owner (author) to present

the materials and answer questions. The QA reviewer is optional but, if present, is usually a single

person. There may be multiple SME reviewers, however. For the purpose of this example, let’s as-

sume 2 software, 1 mechanical, 2 electronic, 1 system engineer, and 1 marketer are invited as SMEs.

The identified personnel must be notified of their responsibilities.

Disseminate materials to reviews
In this case, some of the SMEs may not have access to the modeling tool and may not be skilled

in SysML (I’m looking at you, marketing). For those reviewers, we can print out a report of the

parts of the model relevant to their concern, such as a requirements table for the marketing SME.

Other SMEs who have access and skill with the modeling tool can either be granted access to the

model in a shared repository or even emailed the model.

Demonstration of Meeting Needs: Verification and Validation512

Schedule review
Scheduling the meeting is generally easy but finding a time available for all attendees can be a

challenge.

Reviewers independently inspect materials
This is a place where compliance can be spotty, especially when the workflow is introduced. In

my experience, it is common for people who “meant to get around to” reviewing the materials

to show up unprepared and expect to be walked through the materials they were expected to

already examine. It is better to cancel a review if most people haven’t reviewed the materials and

reschedule than to waste everyone’s time.

Here, the reviewers are expected to examine the use case, requirements, structural and behavioral

views for syntactic conformance (in the case of the QA reviewer) and semantic correctness (in the

case of the engineering SMEs). The marketer here is serving as a proxy for the customer (training

athlete) and should look for the appropriateness and quality of the requirements.

Sidebar: Recording review comments in the model in Cameo.

There are many ways to make and record comments. Here is a method I like to use when review-

ing Cameo models.

In the model, I create a _Reviews package to hold the review comments. In this package, I create

nested packages, one per reviewer or review. In these nested packages, I add Problem elements

identifying the issues found. Since Problem is a kind of Comment, I can anchor the problem to

the element manifesting the concern, whether it is a diagram, block, operation, value property,

state, action, etc. Then in the specific review package, I create a table summarizing my comments

along with the annotated elements. This latter column can be added with the Columns tool for

the generic table. Such a table is shown in Figure 5.43:

Figure 5.43: Review comment table

Chapter 5 513

Collectively discuss reviewer comments
The comments often vary widely in terms of usefulness. Syntactic comments about spelling and

standards conformance are useful, to be sure. Most useful are comments about semantic content.

This will not only improve the product but also improve understanding and agreement among

the attendees.

I believe in what is known as “ego-less” reviews, but they can seem a little awkward at first. The

idea is that comments only refer to the work product and never to the author. You would never

say, “You made a mistake here” to the author, but rather, “This requirement seems incorrect” or

“There is a missing value property here.” This is an attempt to avoid hurt feelings and focus on

the technical aspects of the work product.

Here are some (hypothetical) comments and issues that might be raised by the reviewers:

• QA reviewer: The use case diagram doesn’t have a mission statement, as defined by the

modeling guidelines standard.

• QA reviewer: The requirements standard says that each use case should specify the re-

liability, in MTBF, of the service delivery. There is no requirement to specify reliability

traced to the use case.

• Marketer: Requirement efarg17 says, “The default number of teeth for 12 cassette rings

shall be 11, 13, 15, 17, 19, 21, 24, 28, 32, 36, 42, and 50. I think the gearing for the cassette

should be from 12 to 28 instead.”

• Marketer: Requirement efarg19 says that “the default starting gear should be the smallest

possible gear.” I think that’s ok for the very first ride, but subsequent rides should start

up in the last gear the rider used.

• SME 1: The use case block has a value property cassette of type int. It isn’t clear whether the

value being held is the number of teeth of the currently selected cassette or which cassette

is in use. Please either add a comment or rename the value property to make that clear.

• SME 2: The name of the state ChangeGearing for the use case block state machine is

misleading. It is actually waiting for a gear change, not performing a gear change while

in that state.

Demonstration of Meeting Needs: Verification and Validation514

The product owner can respond to these comments, and a discussion of the comment ensures.

Some action items may be resolved as not requiring action because of a corrected misunderstand-

ing on the part of the reviewer or as inconsequential. The group may decide that other issues must

be acted upon, and these end up as action items.

Capture issues as action items
The scribe records the action items and may add annotations depending on the urgency or crit-

icality of the concerns. After the meetings, the action items are typically sent to all attendees so

they can ensure their issues are properly recorded or understood.

Resolve action items
The product owner can then address the concerns. In this case, they can add the missing mission

statement to the use case diagram, add reliability requirements, change the name of the value

property to cassetteIndex, and the name of the state of WaitingToChangeGear.

Plan review of action item resolutions
Since the changes are minor, the group can decide that a subsequent review isn’t needed.

Managing Model Work Items
There are many ways to manage to do items or work items in a backlog. This recipe is one specific

way to simply and easily manage work items within a model. I’ve found this an effective way to

track and enact changes in models on projects.

Purpose
The purpose of this recipe is to allow model authors to track, manage, and enact work items for

a model.

Inputs and preconditions
The input for this recipe is an existing model that has work to be performed on its elements.

Outputs and postconditions
The primary output is an updated model that contains not only the changes made but also a

record of changes, along with their priority and status.

Chapter 5 515

How to do it
Figure 5.44 shows the workflow for this recipe.

There are two flows within the recipe. The first adds new work items and assigns their properties,

while the second resolves the work items:

Figure 5.44: Manage work items

Create work item structures
This action adds the structures to represent, organize, and visualize the work items. We must

define a work item as a type of element we can create and add relevant properties to it. The most

obvious properties of such a type would be its status and its priority. The status of the work item

identifies whether or not it is accepted or rejected, and whether it is waiting to be worked on,

currently being worked on, or resolved. Additionally, a diagram or table should be defined so that

we can easily see the work to be done.

Create work item
Once the work item types, structures, and visualization are defined, they can be used to charac-

terize work items; as they are identified, they can be added to the list

Demonstration of Meeting Needs: Verification and Validation516

Characterize work item
In this step, the properties of the work item are clarified. These properties are likely to include at

least the work to be done, the status of the work item, and its priority.

Select work item
The other side to this recipe is performing the work. The first step is to select the work item to be

resolved. Ideally, the work items are resolved on a higher-priority first basis.

Enact work item
This step is “simply” modifying the model to resolve the work item.

Update work item
Once the work has been performed, the status of the work item should be updated. Additionally,

you may want to record how the work item was resolved.

Example
Create work item structures
In this example, we define a Work Item Profile that creates Work Item (a stereotype of Comment)

and defines metadata properties status, priority, and resolution. The first two tags are typed by

enumerations and the last is typed by String. It is possible to add other metadata, such as the type

of work item (such as user story or spike), the author of the work item (for example, a particular

quality assurance reviewer or subject matter expert), the date of the work item creation, and the

date of the work item resolution:

Figure 5.45: Work item profile

Chapter 5 517

The reason for adding prefix numbers to the priority enumeration literals is so that you can sort

the table of work items in a reasonable order, so that the TOP items appear before the URGENT

items, which appear before the IMPORTANT work items, and so on.

Next, we must also define a place in our model to hold the work items and related elements. In

this case, I create a package named Work Items to hold the work items to be added and to contain

the visualization of those work items.

Finally, we must provide a visualization for the set of work items. Here, we will add a generic

table of work items showing the target of the work items (if known) and the properties of the

work item. Since Work Item is a stereotype of Comment – and we can anchor comments to model

elements (including diagrams) – we can add Annotated Elements in the table as a column. Thus,

as we add a work item, we can potentially anchor the work item to relevant model elements (if

known), providing valuable guidance for its later resolution. Such a table, with a sample work

item, is shown in Figure 5.46:

Figure 5.46: Work item table

Create work item
Now that the structures are in place, we can start adding work items. This might come from

inspection and review (see the previous recipe Effective walkthroughs and reviews) or some other

source such as user stories, spikes, defect reports, or technical work items from the project backlog.

Characterize work item
Because Work Item is a stereotype of Comment, you may add anchors to elements, although when

the work item is created, the elements to be modified may not be obvious or known. The status

should be initially set to PENDING and the priority of the work item should be specified. The

easiest way to add an anchor is to place the work item on a relevant diagram and add the anchor.

It is simple to create diagrams in the Work Items package and drag the relevant elements onto

that diagram and add the anchors there. This is my preferred approach so the presence of the work

items doesn’t “pollute” the other diagrams in the model. In Cameo, you can drag diagrams onto

other diagrams, making it easy to add anchors to the model element to be modified in a diagram.

Demonstration of Meeting Needs: Verification and Validation518

Figure 5.47 shows an example:

Figure 5.47: Adding anchors to model elements

The desired visualization for the work items is the work item table. Figure 5.48 shows an example,

sorted in priority order:

Figure 5.48: Working work item table

Select work item
To resolve the work item, we must first select it.

Chapter 5 519

Enact work item
This step involves updating the model to enact the required changes. The first step is to change

the work item status to IN PROCESS.

Update work item
Once completed, the work item can be updated. At the very least, the status property is changed

to RESOLVED. You might want to also update the priority to 8 – RESOLVED so that it isn’t mixed

in with the work items yet to be resolved.

Test Driven Modeling
For the last recipe in the book, I’d like to present a recipe that is central to my view of the inte-

gration of modeling and agile methods. The archetypal workflow in software agile methods is

test-driven development (TDD), in which you do the following:

 Loop

 Write a test case

 Write a bit of code to meet that test case

 Apply test case

 If (defect) fix defect

 Until done

It’s an appealing story, to be sure. Each loop shouldn’t take more than a few minutes. This is a

key means in agile methods to develop high-quality code: test incrementally throughout the

coding process.

TDD aligns with this Law of Douglass:

See https://www.bruce-douglass.com/geekosphere for further information.

This points out that it is far easier to develop high-quality systems if you avoid entering defects

rather than putting defects in and trying to identify, isolate, and correct them sometime in the

future. TDD is a way to do that.

The best way not to have defects in your system is to not put any defects into your

system.

Law of Douglass #30

https://www.bruce-douglass.com/geekosphere

Demonstration of Meeting Needs: Verification and Validation520

The same kind of approach is possible with respect to developing models, particularly executable

models, an approach I call Test-Driven Modeling (TDM). These models needn’t be limited to de-

sign models; they can also be models of architecture, requirements, or any kind of computational

model. Such models can be developed in small, incremental steps and verified as the model evolves.

When it comes to modeling, this is not what people typically do. Most people build huge mono-

lithic models before deciding to verify them. I remember one consulting customer who had a

state machine with 800+ states. They had put it together and then attempted to “beat it with

the testing stick” until it worked. They gave up after several months without ever getting it to

even compile, let alone run properly. Then they called me.

The first thing I did was discard the expensive-yet-unworkable state machine and developed an

equivalent using this TDM recipe. Each small iteration, known as a nanocycle in the Harmony

aMBSE process (see Agile Systems Engineering by Bruce Douglass (Morgan Kaufmann, 2016) for

further information) is executed anywhere from 30 to 60 minutes. In less than a week, the com-

pleted state machine was compiling, running, and working. It was then possible to uncover a

number of subtle, yet important, specification defects from their source material.

Like I said, TDM is not the way most people create models. Let’s change that.

Purpose
The purpose of this recipe is to quickly develop a demonstrably correct model by frequently ex-

ecuting and running the model.

Inputs and preconditions
The input is a well-defined modeling objective that can be rendered with executable modeling

constructs.

Outputs and postconditions
The output is a well-constructed, executable, and verified model.

How to do it
Figure 5.49 shows the basic flow. I would take care to note that I don’t really care whether the test

case is created just prior to the “Model a bit” step or just after; it is essentially at the same time.

Classic TDD has the test case definition first, but it doesn’t really matter to me.

Chapter 5 521

The primary point is that the test case isn’t defined weeks to months after the design work is

done but is done continuously as the work product is developed:

Figure 5.49: TDM

Define the test case
This step can come immediately before or after the Model a bit step, but logically they are done at

about the same time. The test case defines a Minimal Testable Feature (MTF), sometimes known

as a Minimal Verifiable Feature (MVF), that is to be modeled in this particular nanocycle. The

MTF in this context is a small evolution of the model from its current state, enroute to the complete

model that satisfies the initial modeling objective. The tendency is to make the nanocycles too

large, so keep them short. The properties of the MTF to strive for are:

Demonstration of Meeting Needs: Verification and Validation522

• The feature can be modeled in a few (<30) minutes.

• The feature tests differently from the previous model’s condition.

• The feature contributes to the modeling objective that the sequence of nanocycles is

intended to achieve.

For example, suppose the modeling objective is to construct an executable use case. Each nanocy-

cle would add one or more requirements to the use case model, such that the state machine adds

a few transitions, actions, or states. A state machine with 30 states and 40 transitions might be

done as a series of 10–15 nanocycle iterations, each of which has a small MTF evolution.

Model a bit
In this step, the model is evolved by adding a small number of features: a value property or two,

perhaps a couple of transitions, a state, or a small set of other model elements.

Apply the test case
At this point, you have a (small) model evolution and a (small) test case. In this step, you apply

the test case to ensure that it is modeled correctly.

Fix defects
If the model fails the test, it is fixed in this step.

The nanocycles repeat until the initial modeling objective is satisfied.

Example
I want to introduce my favorite example for TDM. I’ve used this example in numerous courses

and found it to be instructive and accessible to my students. I’ve even done the experiment: I told

some groups to develop the model without giving them guidance (and they all tried to do it in

a single step) or gave them an explicit instruction to do it in several separate steps, with a short

description of the MTF increments. The results are that, in the time frame allotted, 100% of the

unguided groups failed while 80% of the nanocycle groups succeeded.

Chapter 5 523

The problem
Consider an intersection Traffic Light Controller (TLC). The TLC controls traffic (via lights) on

a primary road and a secondary road. The roads contain both through-lane traffic and left-turn

lane traffic. In addition, the TLC also controls pedestrian traffic along those roads as well (again,

via lights). The basic control rules are:

• In the absence of both pedestrians and left-turn cars, the through lights operate entirely

based on time:

• Turn lane lights remain red; pedestrian lights remain DON’T WALK.

• All lights are red for RED TIME.

• The through lanes (both direction for a given road) go green for GREEN TIME,

while cross traffic lights are red while cross traffic remains stopped.

• The through lanes (again, in both directions) go yellow for YELLOW TIME.

• The through lanes all turn red and the cross traffic gets to go next, using the same

flow.

• Repeat forever.

• If cars are present in the left turn lane for a given road, the behavior is slightly different:

• When a road is ready to set through traffic green but there is a car waiting in that

road’s left turn lane, the turn lanes (both directions on the same road) go first,

and the through lane remains red:

• Turn lanes go green for GREEN TIME

• Turn lanes go yellow for YELLOW TIME

• Turn lanes go red for RED TIME

• Now the through lanes can continue normally

• If pedestrians are waiting to cross a road (that is, they want to cross the cross-traffic road),

then the behavior is modified:

• When the through light goes green, the pedestrian light displays “Walk” for WALK

TIME.

Demonstration of Meeting Needs: Verification and Validation524

• The pedestrian light then displays flashing “Don’t Walk” for RUN TIME.

• The pedestrian light then displays a solid “Don’t Walk” and the through light now

goes yellow for YELLOW TIME.

• The through lane proceeds normally.

I like this example because it is easy to describe, it is conceptually simple, and it is very familiar.

Since this is a short, iterative cycle, we’ll just run the cycle multiple times in the example:

• MTF 0: Single through traffic light

• MTF 1: Primary and secondary through lights

• MTF 2: Add turns lights

• MTF 3: Add pedestrians

Define test case: MTF 0: Episode III: The Revenge of the
Through Light
Let’s define the first MTF step.

Test case: Single light should go through the colors in the right sequence with the right timing –

red for RED TIME, green for GREEN TIME, and yellow for YELLOW TIME.

Model a bit: MTF 0: Episode III: The Revenge of the Through
Light
Evolution: Add a single traffic light that cycles through its colors.

This model is pretty simple. It consists of two blocks: Traffic Light Control System (which will

also serve as our tester) and Traffic Lane, with a single, directed composition from the former

to the latter. We need to define the timings – I used value properties in the Traffic Lane block

with the readOnly property set. I also added an enumerated type COLOR_TYPE to define the

different colors.

Chapter 5 525

A setcolor(color: COLOR_TYPE) just prints out the value of the color to standard output for the

purpose of this model. This simple model is shown in Figure 5.50:

Figure 5.50: Structure and behavior for MTF 0

Apply test case: MTF 0: Episode III: The Revenge of the Through
Light
Now let’s run the model. In Cameo, right-click the Traffic Light Control System block and select

Simulation > Run. When we run, we manually insert the exStart event to the Traffic Light Con-

trol System to kick it off, and we can view the execution outcomes in Figure 5.51:

Demonstration of Meeting Needs: Verification and Validation526

Figure 5.51: Running MTF 0

We’ve now completed our first nanocycle. It was very short – and it didn’t do much – but we

quickly got it to work.

Chapter 5 527

Define test case: MTF 1: Episode IV: A New Hope (For the
Secondary Through Lane)
Let’s define the next MTF step.

Test case: Both roads should cycle through the lights, with cross traffic held red while the current

lane cycles through.

Model a bit: MTF 1: Episode IV: A New Hope (For the Secondary
Through Lane)
Evolution: Add a second composition to the through lane to add the secondary road; the system

now contains two traffic light instances. Modify the state machine of the traffic light so that the

two instances of Traffic Lane can properly coordinate. In this case, we add proxy ports pOutThru

and pInThru, both typed by the interface block ibLane. One of these ports is conjugated so that

it can send and receive the same event, though via different ports. See Figure 5.52:

Figure 5.52: Structure for MTF 1

In the figure, we take advantage of Cameo’s ability to show diagrams on other diagrams to show

the internal block diagram contents on the block definition diagram.

Demonstration of Meeting Needs: Verification and Validation528

The state machine for the Traffic Light Control System is exactly the same except that it now

sends the evGo event to both instances and the signal has an additional attribute. The first (Bool-

ean) value tells the instance whether it should go first or wait. The second gives the instance its

identity for the whoAmI value property. Figure 5.53 shows the state machine for Traffic Light

Control System along with the behaviors to send the evGo signal to initialize the two traffic lights.

Figure 5.54 shows the Traffic Lane behavior:

Figure 5.53: Traffic Light Control System state machine for MTF 1

Chapter 5 529

Figure 5.54: Traffic Lane state machine for MTF 1

Apply test case: MTF 1: Episode IV: A New Hope (For the
Secondary Through Lane)
Now the model is getting interesting. Is it right? Let’s run the test case and see.

Figure 5.55 shows the outcomes, both in the animated sequence diagram and the output window.

Demonstration of Meeting Needs: Verification and Validation530

The scenario is a bit small to read, but you can see in the output window that it operates as ex-

pected:

Figure 5.55: Running MTF 1

Chapter 5 531

Fix Defects: MTF 1: Episode IV: A New Hope (For the Secondary
Through Lane)
There are no defects to fix in this nanocycle.

Define test case: MTF 2: Episode V: The Turn Lane Strikes Back
Test case: When a car arrives on a road regardless of when in the cycle that occurs, the system properly

allows turn lanes to cycle through, followed by the through light on the same road.

Test case: In subsequent cycles, the system “forgets” the turn lane was previously activated.

Model a bit: MTF 2: Episode V: The Turn Lane Strikes Back
Evolution: Add turn lanes and update state machines to manage them.

We must add two more lights to the system to support the left turn lanes, and make them com-

posite parts of the Traffic Light Control System. In this case, the through lights and the turn

lights are actually different types because while the through lights must coordinate with the

cross-traffic through light, the turn lane coordinates in a different way with its corresponding

road through light. We’ll make the Thru Lane and Turn Lane lights different subclasses of Traffic

Lane, and remove the state behavior from the Traffic Lane base class. The structural model is

shown in Figure 5.56:

Figure 5.56: Structure for MTF 2

Demonstration of Meeting Needs: Verification and Validation532

The Traffic Light Control System internal block diagram (Figure 5.57) shows the expected con-

nections among the instances:

Figure 5.57: MTF 2 IBD

The state machine for Traffic Light Control System is modified so that it starts the turn lane

lights in addition to the through lane lights. See Figure 5.58:

Figure 5.58: State machine for traffic light system MTF 2

Chapter 5 533

More interesting are the modifications to the Thru Lane and Turn Lane lights. The state machine

in Figure 5.59 is for the Thru Lane and Figure 5.60 is for the Turn Lane. The send actions on the

state machines show the coordination of the through lanes as well as between the through lane

and its connected turn lane:

Figure 5.59: MTF 2 through lane states

Demonstration of Meeting Needs: Verification and Validation534

Figure 5.60: MTF 2 turn lane states

Chapter 5 535

Apply test case: MTF 2: Episode V: The Turn Lane Strikes Back
Running the test case results in long sequence diagrams, so we will simply look at the output

console window to verify the correctness of the execution. In this case, we’ll start the system and

while the primary through lane is green, we will have a car arrive for the secondary turn lane. The

expected behavior is that the primary light will go green, yellow, and then red. Then, because

there is a car waiting in the secondary turn lane, we expect to see the secondary turn lane go

green, yellow, and then red. Following that, the secondary through lane should go green, yellow,

and red before the primary through lane again goes green.

When running the state machine, we note that we cannot send the event exCarArrive at the right

time because of a race condition. Because of the order in which the behavior unfolds, the primary

through lane – being initialized first – starts cycling through its behavior even while the Traffic

Light Control System is initializing the other parts. This is a classic race condition.

To fix this problem, we will change the behavior of the state machines:

• evGo will no longer have a first parameter. Both through lanes will start in the Wait for

Other Lane Completion state.

• At the end of initialization, the Traffic Light Control System will send the evLaneDone

signal to the Primary Thru Lane part to kick things off.

Demonstration of Meeting Needs: Verification and Validation536

The updated behavior for the Traffic Light Control System is shown in Figure 5.61:

Figure 5.61: Traffic light control system updated behavior

Chapter 5 537

The change to the Thru Lane is simpler. See Figure 5.62:

Figure 5.62: Updated thru lane behavior

Now we can run the model and while the Traffic Light Control System waits for the exStart

event, we can send the exCarArrive signal to the secondary turn lane part to simulate the arrival

of a car in that lane.

In Cameo, when the context has multiple parts of the same type, it isn’t obvious how to send the

signal to the correct part. The trick is to look in the Variables section of the Simulation Toolkit and

find the address of the part you want, match that address to a running behavior in the Sessions

window, and then use the pull-down trigger list to send the event.

Demonstration of Meeting Needs: Verification and Validation538

See Figure 5.63:

Figure 5.63: Sending the signal to the correct part

Figure 5.64 shows the console window output for the updated model:

Figure 5.64: Running MTF 2

Fix Defects: MTF 2: Episode V: The Turn Lane Strikes Back
The race condition has been identified and resolved.

Chapter 5 539

Define test case: MTF 3: Episode VI: Return of the Pedestrian
Test case: When a pedestrian arrives on the secondary road and the primary through light is

green, the pedestrian gets the walk light at the same time that the secondary through lane gets

a green light.

Test case: When a pedestrian arrives on the primary road and the primary through light is currently

green, the pedestrian gets a walk light the next time the primary through lane gets a green light.

Model a bit MTF 3: Episode VI: Return of the Pedestrian
Evolutions: Add pedestrians and update state behavior to manage them.

This last nanocycle adds the pedestrian crosswalks, and updates the behavior of the Traffic

Light Control System and the through lanes to properly interact with them. The BDD shows the

evolving structure (Figure 5.65) and the Traffic Light Control System IBD shows the connected

design (Figure 5.66):

Figure 5.65: MTF 3 structure

Demonstration of Meeting Needs: Verification and Validation540

Figure 5.66: Traffic light system IBD for MTF 3

The Traffic Light Control System has a minor change to its state machine to initialize and start

the Cross Walk instances (Figure 5.67):

Figure 5.67: Traffic light system state machine for MV3

Chapter 5 541

The state machine for the Thru Lanes adds an AND-state to keep track of whether pedestrians

are waiting and a few states to handle the behavior when a pedestrian is crossing (Figure 5.68).

If you compare this state machine with the Thru Lane state machine from MTF 2 (Figure 5.59),

you can see that the updated state machine is a fairly simple evolution of its previous condition:

Figure 5.68: Thru lane state machine for MTF 3

Lastly, the state machine for the Cross Walk is straightforward, as can be seen in Figure 5.69.

Demonstration of Meeting Needs: Verification and Validation542

Note that the Turn Lane state machine didn’t change from MTF 2:

Figure 5.69: Cross walk state machine for MTF 3

Apply test case MTF 3: Episode VI: Return of the Pedestrian
The model is getting a bit complex to rely solely on the animated sequence diagrams for testing,

so we elaborate the UI diagram by adding controls related to the pedestrian traffic and adding

a simulation configuration to use as the user interface to monitor and control the simulation.

 This MTF has two test cases; the output window in Figure 5.70 shows the outcome for test case 1:

Figure 5.70: Output from MTF 3 test case 1 run

Chapter 5 543

Figure 5.71: Output from MTF 3 test case 2 run

Fix defects MTF 3: Episode VI: Return of the Pedestrian
No defects were found. MTF 3 runs as expected.

This example illustrates that it was pretty simple to construct a (somewhat complex) model

easily by developing it in small iterations and verifying its correctness so far before moving on.

Now that’s pod racing!... Er, TDM.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/cpVUC

Appendix A: The Pegasus Bike
Trainer

Overview
The Pegasus is an indoor cycling training system to support both casual and professional athletes

in their cycling training. It has a large set of features to make indoor training effective and enjoy-

able. It simulates road feel, including automated control of power-on-pedal requirements and

bike incline. It is expected that the bike will not be used in isolation, but will be used with an iOS,

Android, or Windows device that receives, displays, records, and analyzes data from exercise ses-

sions. Support is provided through standard low-power Bluetooth, ANT+, and ANT FEC interfaces.

Figure A.1: Pegasus indoor training bike

Pegasus High-Level Features
This section describes a number of the key features and benefits of the Pegasus Bike Trainer.

The Pegasus Bike Trainer546

Highly customizable bike fit
It fits users from 5 ft tall to 6’4 with a rider weight of up to 300 lbs. It has an adjustable crank

length from 160 mm to 180 mm.

Figure A.2: Customizing bike fit

Monitor exercise metrics
Metrics monitored include speed, distance, power, cadence, time, and grade (incline). Data will

be uploaded to connected devices at a rate of at least 5 Hz.

Export/upload exercise metrics
The system monitors, stores, and reports metrics over Bluetooth, ANT+, and ANT FEC interfaces.

It is assumed that the user will provide their own heart rate strap for capturing and reporting

their heart rate to their iOS, Android, or Windows devices.

Appendix A 547

Variable power output
Output can be set from 0 to 2,000 watts with a heavy flywheel to provide power smoothing over

changing effort with an accuracy of 1%. Resistance may be manually set by the user or externally

controlled via the Bluetooth or ANT FEC interfaces. Resistance is provided by electromagnetic

resistance.

Gearing emulation
The system simulates standard bicycle gearing including the for the user to “change gears” in the

same way they would on a road bike. The user can select the kind of gearing emulated including

standard mechanical index shifting as well as DI-2 electronic shifting. The system can emulate

1-3 front chain rings with 30 to 60 teeth. Rear cassette emulation supports 9-12 rings ranging

from 10 to 40 teeth.

Controllable power level
The power level can be controlled from 0 to 2,000 watts and provide a similar user feel for the

current cadence and power output as the user would experience on a road back with similar

gearing. Both user-set output level (“level mode” or “resistance mode”) and externally set output

level (“ERG mode”) operational modes are provided.

Incline control
The incline angle of the bike may be set by the user or via an external system over the Bluetooth

or ANT FEC interfaces. The range of incline may be set in the range of -15 to + 20 degrees. This

can be automatically by an external device to emulate “terrain following” as the user rides over

virtual bike courses. Alternatively, the user is provided with a pair of buttons to raise or lower

the incline manually.

User interface
A simplified user interface is provided for viewing and changing selected gears on both the front

chain ring and rear cassette.

Gearing
User buttons on the “brake hoods” of the handlebars allow for increasing or decreasing the selected

gears. The LED display on the system frame shows the currently selected front and rear chain rings.

The Pegasus Bike Trainer548

Incline
Up and down buttons on the frame allow the user to select the bike incline. A small LED display

shows the current incline.

Setup
Separate (provided) iOS, Android, and Windows apps provide configuration and setup instructions.

Ride
There is no interface provided for the exercise or performance metrics. It is assumed that the user

will provide a compatible third-party device for this purpose.

Online training system compatible
Almost all users will use third-party training systems that support the required interfaces to

monitor and control the workout. These systems provide a range of capabilities ranging from

running downloadable workouts and fitness assessment protocols to social gaming environ-

ments for virtual riding and racing. The most popular systems include Strava™, Trainer Road™,

Zwift™, and Sufferfest™.

These applications run on third-party iOS, Android, or Windows devices and support ANT FEC,

ANT+, and/or low-energy Bluetooth communications protocols. The system is open with published

interfaces so that additional third-party device vendors can support the Pegasus.

Configuration and OTA firmware updates
The Pegasus configuration app allows the user to register their product, search and download

firmware upgrades, set the rider profile (height, weight, age, and gender), and the selected crank

arm length. The app provides the means for initial calibration of the output settings via a guided

protocol. This app is provided to the user and runs on iOS, Android, and Windows devices.

Appendix A 549

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/cpVUC

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Modern Computer Architecture and Organization – Second Edition

Jim Ledin

ISBN: 9781803234519

• Understand the fundamentals of transistor technology and digital circuits

• Explore the concepts underlying pipelining and superscalar processing

• Implement a complete RISC-V processor in a low-cost FPGA

• Understand the technology used to implement virtual machines

• Learn about security-critical computing applications like financial transaction processing

• Get up to speed with blockchain and the hardware architectures used in bitcoin mining

• Explore the capabilities of self-navigating vehicle computing architectures

• Write a quantum computing program and run it on a real quantum computer

https://www.packtpub.com/product/modern-computer-architecture-and-organization-second-edition/9781803234519

Other Books You May Enjoy554

Systems Engineering Demystified

Jon Holt

ISBN: 9781838985806

• Understand the three evils of systems engineering - complexity, ambiguous communi-

cation, and lack of understanding

• Realize successful systems using model-based systems engineering

• Understand the concept of life cycles and how they control the evolution of a system

• Explore processes and related concepts such as activities, stakeholders, and resources

• Discover how needs fit into the systems life cycle and which processes are relevant and

how to comply with them

• Find out how design, verification, and validation fit into the life cycle and processes

https://www.packtpub.com/product/systems-engineering-demystified/9781838985806?_ga=2.56901994.1360499480.1670825792-1060321437.1657688636

Other Books You May Enjoy 555

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Agile Model-Based Systems Engineering Cookbook, Second Edition, we’d love to

hear your thoughts! If you purchased the book from Amazon, please click here to go straight

to the Amazon review page for this book and share your feedback or leave a review on the site

that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1803235829
https://packt.link/r/1803235829

Index

A
Action Language for Foundational (ALF) 256
Agile methods 3, 4
agility

concepts 3
analysis model 302
animated sequence diagrams 447
architectural allocation 321

inputs 321
non-allocable requisites, decomposing 323
outputs 322
postconditions 322
preconditions 321
purpose 321
system requisites, allocation 323

Architectural Analysis Package 105
architectural design 270
Architectural Design Package 105
architectural merge 286

example 290
inputs 287
interfaces, copying from use cases

to system block 290
interfaces, merging 290
interfaces, updating to refer copied system

functions 290

issues, with merging specifications 286, 287
outputs 287
performing 287
postconditions 287
preconditions 287
purpose 287
system architecture 286
system context, creating 288
system data, copying from use cases

to system block 289, 290
system function conflicts, resolving 289
system functions, copying from use cases

to system block 289
architectural trade studies 272

architectural merge 286
assessment criteria, defining 275, 276
candidate solutions, identifying 274
inputs 272
key systems functions, identifying 274
MoE, assigning to candidate solution 278
outputs 273, 274
pattern-driven architecture 299
Pegasus smart bicycle trainer example 279
postconditions 273, 274
preconditions 272
purpose 272
sensitivity analysis, performing 278
solution, determining 278

Index558

subsystem and
component architecture 310, 311

utility curve, defining for assessment
criterion 277

weights, assigning to criteria 277
architecture 85

critical views 270
guidelines 271, 272

Architecture 0
electronic technical work items 100
inputs and preconditions 87
mechanical technical work items 100
outputs and postconditions 87
purpose 87
technical work items 100
workflow 87, 89

Architecture 0, Harmony process views
concurrency and resource view 85
dependability view 86
deployment view 86
distribution view 85
subsystem and component view 85

Architecture 0, workflow
computational needs, identifying 89, 90
computational patterns, selecting 90
dependability needs, identifying 90
dependability patterns, selecting 91
distribution needs, identifying 90
distribution patterns, selecting 91
electronic architecture, creating 91
engineering disciplines contributions,

considering 89
example 92-100
existing technologies assets, considering 89
key technologies, identifying 89
mechanical architecture, creating 91
primary architectural optimizations,

determining 88

scope of functionality, reviewing 88
subsystem architecture, creating 91
subsystem organizational concerns,

identifying 89
subsystem patterns, selecting 90
technical work items, allocating

to iterations 91
technical work items, creating 91

asset diagram 217
assets

types 221
attack flow diagram 218, 219
authoritative source 380
automatic initialization of context

and runtime objects
reference link 447

B
backlog management 6, 7

inputs and preconditions 8
outputs and postconditions 8
purpose 8
use cases 13, 14
workflow 9

backlog management, workflow
effort, estimating 11
item, creating 10, 11
resolved work item, removing 12
work item, allocating in iteration backlog 12
work item, approving 11
work item, performing 12
work item, placing in project backlog 12
work item, prioritizing 11
work items, reorganizing 13
work performed, rejecting 12
work performed, reviewing 12

backward traceability 495

Index 559

baseline 115
Bluetooth Low Energy (BLE) 393
branch 116
burn down chart 24
Business Analysis Body of Knowledge

(BABOK)
reference link 67

business epics 39, 43

C
Cameo prototype

reference link 199
Cameo Safety and Risk Analyzer 198
Cameo Teamwork Cloud 117
Capabilities Package 104
change management 113, 114

inputs and preconditions 115
outputs and postconditions 115
purpose 114
workflow 115

change management, workflow
branch and merge 116
change activity, making 117
changes, verifying 117
elements, locking 117
elements, modifying 117
elements, unlocking 117
example 122-129
Lock and Release 116
model, opening 116
modification, determining 116
updated model, storing 117
work item, obtaining 116

collaboration design 270
collaboration parameter 300

Collaborator 509
Command-and-Control Battle Management

(C2BM) platform 354
Commercial Off-the-Shelf (COTS) 365
Common Vulnerability

Enumeration (CVE) 222
Common Weakness Enumeration (CWE) 222
compliance in form 441
compliance in meaning 441
component architecture 270
computable constraint modeling 483

inputs and preconditions 484
outputs and postconditions 484
purpose 483

computable constraint modeling,
example 486

analysis of units, performing 490
available truths, identifying 487
mathematical formulation,

constructing 488
necessary properties of acceptable

solutions, determining 488
problem, constraining to relevant

information 488
problem, rendering as set of connected

constraint properties 488, 490
problem, understanding 486
sanity check, performing 493

computable constraint modeling, workflow
analysis of units, performing 486
available truths, identifying 485
mathematical formulation,

constructing 485
necessary properties of acceptable

solutions, determining 485
problem, constraining to relevant

information 485

Index560

problem, rendering as set of connected
constraint properties 485

problem, understanding 485
sanity check, performing 486

computable model 444
concurrency and resource architecture 270
Configuration Item (CI) 114
configuration management 113

reference link 114
constraints 485

blocks 485
parameters 485
properties 485, 489

Control Area Network (CAN) 394
Cost of Delay (CoD) 72
Critical Design Review (CDR) 443
critical views, architecture

concurrency and resource architecture 270
data architecture 270
dependability architecture 270
deployment architecture 271
distribution architecture 270
subsystem/component architecture 270

cut set 200
Cyber-Physical Security 213

key concepts 213-215
cyclomatic complexity 20

D
data architecture 270
Data Distribution Service (DDS) 391
data schema 248
Decision Analysis Matrix 273

dependability architecture 270
deployment architecture 271, 404

engineering facets 404
interdisciplinary interfaces 421
privacy architecture 270
reliability architecture 270
safety architecture 270
security architecture 270

Deployment Architecture Package 110
design patterns 299

design context, defining 302
design solution, validating 302
dimensions 299
example 303
in architectural context 300
inputs 301
issues, determining 302
issues, solving 302
outputs 301
pattern roles 300
postconditions 301
potential pattern solutions, selecting 302
preconditions 301
purpose 301
selected pattern, instantiating 302
trade study, performing 302

detailed design 270
Digital Indexed (DI) 396
DI shifting

reference link 191
distribution architecture 270
DO-178C

reference link 464

Index 561

E
effort estimation 58

inputs and preconditions 59
outputs and postconditions 59
purpose 58
use cases 62, 63
user stories and scenarios 59

ego-less reviews 513
enabler epics 39, 44
Engineering Change Order (ECO) 114
engineering facets

block, creating 408, 411
deployment architecture 404-406
example 411
initial facet load analysis,

performing 409, 410, 420
inputs and preconditions 406
involved disciplines, identifying 407, 411
non-allocatable requisites,

decomposing 408, 413-415
non-allocatable subsystem features,

decomposing 408, 417-420
outputs and postconditions 406, 407
purpose 406
requisites, allocating 408, 417
subsystem features, allocating 408, 420

epic 39
example, of architectural allocation 323, 324

non-allocable requirements 324, 325
non-allocable system functions

and data, decomposing 332-334
system functions

and data allocation 330, 331
system requirements allocation 328-330

example, of architectural merge
interfaces, copying from use cases

to system block 297
interfaces, merging 298
interfaces, updating to refer copied system

functions 297
interfaces, updating to refer copied systems

data 297
system context, creating 291
system data conflicts, resolving 296
system data, copying from use cases

to system block 296
system function conflicts, resolving 295
system functions, copying from use cases

to system block 292-294
example, of design pattern 303

design context, defining 303, 304
design solution, validating 310
issues, determining 304
issues, solving 304
potential pattern solutions,

selecting 304-308
selected pattern, instantiating 309
trade study, performing 309

example, of reference architecture
architectural elements, adding 360, 361
areas of deviation, identifying 357
instance specifications, creating 361
instance specification slots,

populating 361, 362
reference architecture, selecting 356, 357
relevant architectural elements,

subclassing 358, 361
specific architectural elements,

redefining 359
specific system block, defining 358
specific system instance specification,

defining 361
executable model 444

Index562

F
facets 89, 90
Fagan inspections

reference link 505
Failure Means and Effect (FMEA) 198
Fault Tree Analysis (FTA) 198
Federating Models for Handoff 380, 381

example 386
inputs and preconditions 382
outputs and postconditions 382
purpose 381
SE model references, adding

to Shared Model 383-386
SE model references, adding

to subsystem model 385, 388
Shared Model, creating 383, 386
Shared Model references, adding

to subsystem model 386, 388
Shared Model, structuring 383, 386
subsystem model, creating 384, 387
subsystem model, structuring 384, 385, 388

federation 380
Final Operating Condition (FOC) 40
forward traceability 495
Fraction of Inspired Oxygen (FiO2) 205
free-form diagram 447
Functional Analysis Package 105
functional analysis with activity model,

example 157
execution context, defining 158
ports and interfaces, creating in execution

context 163-167
primary functional flow, identifying 160
related actors, identifying 158
Requirements_change 170
requisites set, updating 170, 171

requisites show, performing 171
requisites, validating 168, 169
requisites, verifying 168, 169
trace links, adding 171
use case, describing 158
use case, performing 171
use case scenarios, deriving 161, 162

functional analysis with activity model,
workflow

executable state model, creating 156
execution context, defining 155
ports and interface, creating in execution

context 156
primary functional flows, identifying 155
related actors, identifying 155
Requirements_change 156
requisite set, updating 156
requisites review, performing 157
requisites, validating 156
requisites, verifying 156
trace links, adding 157
use case, describing 155
use case, identify 154
use case, performing 157
use case scenarios, deriving 156

functional analysis with scenarios 134
inputs and preconditions 135, 153
outputs and postconditions 135, 153
purpose 134, 153

functional analysis with scenarios,
example 138

activities 153
executable state model, creating 146-149
execution context, defining 139
ports and interface, creating in execution

context 145
related actors, identify 139
Requirements_change 151

Index 563

requisites review, performing 152
requisites set, updating 151
requisites, validating 149-151
requisites, verifying 149-151
trace links, adding 152
use case, describing 138
use case, identifying 138
use case, performing 152
use case scenarios, capturing 141-144

functional analysis with scenarios,
workflow 135, 153

executable state machine, creating 137
execution context, defining 136
ports and interface, creating in execution

context 136
related actors, identify 136
Requirements_change 137
requisites review, performing 137
requisites set, updating 137
requisites, validating 137
requisites, verifying 137
trace links, adding 137
use case, describing 136
use case, identify 136
use case, performing 137
use case scenarios, capturing 136

functional analysis with state machine 171
inputs and preconditions 172
outputs and postconditions 172
purpose 172

functional analysis with state machine,
example 176

executable state model, creating 179-182
execution context, defining 177
ports and interface, creating in execution

context 179
related actors, identifying 177
Requirements_change 183

requisites review, performing 185
requisites set, updating 184
requisites, validating 183
requisites, verifying 183
trace links, adding 184
use case, describing 176
use case, performing 185
use case scenarios, generating 182

functional analysis with state machine,
workflow 172

executable state model, creating 174
execution context, defining 174
ports and interface, creating in execution

context 174
related actors, identifying 174
Requirements_change 175
requisites review, performing 175
requisites set, updating 175
requisites, validating 175
requisites, verifying 175
trace links, adding 175
use case, describing 173
use case, identifying 173
use case, performing 175
use case scenarios, generating 174

functional analysis
with user stories 185, 186

guidelines 187, 188
inputs and preconditions 189
outputs and postconditions 189
purpose 189

functional analysis with user stories,
example 191

buttons, using to shift gears 193
functional requisites, specifying 194
quality of service as requisites,

identifying 194
related actors, identifying 192

Index564

Requirements_change 195
requisites review, performing 196
requisites set, updating 195
requisites, verifying 195
trace links, adding 195
use case, describing 192
use case, identifying 191
use case, performing 196

functional analysis with user stories,
workflow 189

<role> statement 190
acceptance criteria, specifying 190
quality of service as requisites,

identifying 190
related actors, identifying 190
Requirements_change 191
requisites review, performing 191
requisites set, updating 191
requisites, validating 190
requisites, verifying 190
trace links, adding 191
use case, describing 190
use case, identifying 190
use case, performing 191

H
Handoff to Downstream Engineering

activities 364, 365
purpose 363

Handoff to Downstream Engineering,
activities

examples 365-369
logical interface, migrating

to physical interfaces 389
model federation 380
preparation 372

Harmony Agile Model-Based Systems
Engineering process (Harmony
aMBSE) 85

Harmony for Embedded Software process
(Harmony ESW) 85

Harmony process
Harmony aMBSE 85
Harmony ESW 85

hazard analysis 202
inputs and preconditions 202
outputs and postconditions 202
purpose 202

hazard analysis, example 205
causality model, creating 208
conditions and events, describing 207
cut set, identifying 209
hazard, describing 206
hazard, identifying 205
problem statement 205
related conditions and events,

identifying 207
results, adding in FTA 210
safety concept, reviewing 211
safety measures, adding 209
safety requisites adding 212

hazard analysis, workflow 202
causality model, creating 204
conditions and events, describing 204
cut set, identifying 204
hazard, describing 203
hazard, identifying 203
related conditions and events,

identifying 203
requisites review, performing 205
safety concept, reviewing 205
safety measures, adding 204

Index 565

safety requisites, adding 205
trace links, adding 205
use case, performing 205

I
Initial Operating Condition (IOC) 40
interdisciplinary interfaces 421

agreed-upon interfaces, storing in
configuration management 424, 437

allocations, reviewing to engineering
facets 422

examples 424
facet properties, identifying 422, 425
inputs and preconditions 421
interaction, defining among facet

properties 423, 426, 427
interaction metadata,

capturing 423, 428, 433
interactions, grouping across facets into

interfaces 423, 437
interface details, negotiating 423, 437
outputs and postconditions 421
port pairs, defining between facets 423, 425
purpose 421

Interdisciplinary Product Team (IPT) 406
Interface Control Document (ICD) 389
Interface Diagram 390
Interfaces Package 105
Interface Specification Table 390
Internal Block Diagram (IBD) 95
Iteration 0 78

areas of focus 79, 80
inputs and preconditions 78
outputs and postconditions 79
purpose 78
workflow 80

Iteration 0, workflow
architectural goals, identifying 82
example 83-85
high-level architecture, defining 83
product roadmap, creating 81
product vision, creating 81
providing, team with domain knowledge 81
providing, team with process knowledge 82
providing, team with skills and tools 81
release plan, creating 81
risk management plan, creating 81
team, selecting 81
team workspaces, setting up 82
tool installations, testing 82
tools, configuring 82
tools, installing 82

iteration plan 51
backlog, adjusting 54
effort, estimating for work tasks 53
inouts and preconditions 51
iteration mission, reviewing 53
outputs and postconditions 52
purpose 51
tasks, adding to backlog for iteration 53
team, adjusting 54
team loading, evaluation 54
use cases, breaking into user scenarios 53
use stories, breaking into tasks 53
workflow 52
work items, selecting from backlog 53

iteration plan, workflow
example 55-58

K
Key Performance Indicator (KPI) 19

Index566

L
League of Racers Extraordinaire (LORE) 358
logical data schema

creating 246
defining 246-248
example 248-250
inputs and preconditions 251
outputs and postconditions 251
purpose 251

logical data schema, example 257
blocks, identifying 258
collaboration, creating 257
interaction, defining 260-263
properties for metadata, defining 266, 267
relations, adding 259
structure, defining 258
type model, constructing 263
units, defining 263
value properties, identifying 260
value type, applying to relevant

properties 265
value type, defining 265-267

logical data schema, workflow 252
block, identifying 254
collaboration, creating 254
flow item to structure, defining 255
flow message, defining 255
flow property, identifying 254
interaction, defining 254
message, identifying 255
message parameters, adding 255
metadata of interest, identifying 257
metadata aspects, specifying 256
metadata properties, filling 257
metadata tags, adding 257
operation, defining 255

quantity kind, defining 256
relation, adding 254
signal attributes, defining 255
signal reception, defining 255
stereotype, creating 257
stereotypes to properties, applying 257
structure, defining 254
type, applying to relevant properties 256
type model, constructing 255
unit, defining 256
value property, identifying 254
value type, defining 256

logical interface, migrating to physical
interface 389, 390

examples 393
ICD, representing 390
inputs and preconditions 390
interface visualization, creating 393, 403
navigable links, adding 393, 401, 402
outputs and postconditions 391
purpose 390

logical interfaces
physical realization,

defining 392, 393, 396-400
referencing 391, 393

logical system interfaces
inputs and preconditions 235
outputs and postconditions 235
purpose 235
specifying 231
SysML ports and interfaces 231, 232

logical system interfaces, example 237
activity flow, creating 238-240
execution context, creating 238
flows, adding 244
message parameters, adding 244
naming conventions 244-246

Index 567

parameter and flow types, creating 244
ports and interfaces, creating 244
related actors, identifying 237
use case, identifying 237
use case scenarios, capturing 241, 243

logical system interfaces, workflow 235
activity flow, creating 236
execution context, creating 236
message parameters, adding 237
parameter and flow types, creating 237
ports and interfaces, creating 237
related actors, identifying 236
UML flows, adding 237
use case, identifying 236
use case scenarios, capturing 236

Low-energy Bluetooth (BLE) 92

M
Mathematically-Addressable

Problems (MAPs) 483
MBSE and MDD guidelines

reference link 441
Mean Time Between Failure (MTBF) 204, 279
Measure Performance Metrics 223
Medical Gas Mixer (MGM) 205
metadata 8, 246
metrics 20
Minimal Testable Feature (MTF) 521
Minimal Verifiable Feature (MVF) 521

model
purpose 103

model-based safety analysis 196
cut set 200, 201
key terms 197
profile 198-200

Model-Based Systems
Engineering (MBSE) 4-6

model-based testing (MBT) 460, 461
inputs and preconditions 462
outputs and postconditions 462
purpose 462
reference link 461

model-based testing (MBT),
example 465, 466

defects, fixing in SUT 482
system under test, identifying 466-471
test architecture, defining 472
test cases, applying 481
test cases relating to requirements 474
test cases, rendering 475-480
test cases, specifying 473
test coverage, analyzing 474
verdicts, rendering 481

model-based testing (MBT), workflow 463
defects, fixing in SUT 465
system under test, identifying 463
test architecture, defining 463
test cases, applying 465
test cases relating to requirements 464
test cases, rendering 465
test cases, specifying 464
test coverage, analyzing 464
verdicts, rendering 465

model-based threat analysis 212
Cyber-Physical Security 213
inputs and preconditions 220
modeling for security analysis 215
outputs and postconditions 220
purpose 220

model-based threat analysis, example 223
asset contexts, describing 224
asset contexts, identifying 224

Index568

assets, describing 224
assets, identifying 224
attack chain, specifying 225
causality tree, creating 228
countermeasures, adding 229
requisites review, performing 230
security posture, reviewing 229, 230
security requisites, adding 230
trace links, adding 230
use case, performing 230
vulnerabilities, identifying 225

model-based threat analysis, workflow 220
asset contexts, describing 222
asset contexts, identifying 221, 222
assets, describing 222
assets, identifying 221, 222
attack chains, specifying 222
causality tree, creating 222
countermeasures, adding 222
requisites review, performing 223
security posture, reviewing 223
security requisites adding 223
trace links, adding 223
use case, performing 223
vulnerabilities, identifying 222

model federation 380
model fidelity 103
modeling for security analysis 215, 216

asset diagram 217
attack flow diagram 218, 219
security analysis diagram (SAD) 217
tabular views 220

Model Manager 509
Model Overview Diagram

example 106
Model Overview Package 104

model simulation 444
inputs and preconditions 445
outputs and postconditions 445
purpose 445

model simulation, example 448
behaviors, defining 450
creating 452
desired outputs/outcomes, identifying 450
outputs and outcomes,

analyzing 454, 455, 458, 460
purpose, defining 448
running 452
structural context, defining 448, 449
view, defining 451

model simulation, workflow 445
behaviors, defining 446
creating 447
desired outputs/outcomes, identifying 447
outputs and outcomes, analyzing 448
purpose, defining 446
running 447
structural context 446
structure, defining 447

model version 114
model work items

inputs and preconditions 514
managing 514
outputs and postconditions 514
purpose 514

model work items, example
characterizing 517, 518
creating 517
enacting 519
selecting 518
structures, creating 516, 517
updating 519

Index 569

model work items, workflow 515
characterizing 516
creating 515
enacting 516
selecting 516
structures, creating 515
updating 516

N
nanocycle 520

O
Over-the-Air (OTA) updates 409

P
package 114
Pain Cave model

composition architecture 118
connected context 118
elements, behavior 120
simulation view 120, 121

pattern arguments 300
pattern-driven architecture 299
pattern instantiation 299
pattern mining 299
pattern roles 300
Pegasus 545
Pegasus key features 545

customizable bike fit 546
emulation, gearing 547
exercise metrics, exporting 546
exercise metrics, monitoring 546
exercise metrics, uploading 546
incline control 547
online training system compatible 548

OTA firmware updates 548
power level, controlling 547
user interface 547
variable power output 547

Pegasus smart bicycle trainer, trade study
example

assessment criteria, defining 279, 280
candidate solutions, identifying 279
key system functions, identifying 279
MoE, assigning for candidate

solution 283, 284, 285
sensitivity analysis, performing 285
solution, determining 286
utility curve, defining for criterion 282
weights, assigning to criteria 281, 282

Pegasus system architecture, example
abstract common services layer 318
abstract HW layer 318, 319
application layer 317
communications layer 318
mission statement, assigning 320
potential architectural patterns,

reviewing 316
requirement allocation 321
subsystem and component architectural

pattern, selecting 317
subsystem interfaces, creating 321
system features, allocating 321
systems functions and data, grouping

into coherent sets 315, 316
UI layer 318

Pegasus System Model
overview diagram 112

physical interfaces
technology, selecting 391-395

planning poker 58
workflow 60-62

Index570

polymorphic behavior 354
Preliminary Design Review (PDR) 443
preparation, of Handoff to Downstream

Engineering
examples 374
inputs and preconditions 372
interface data, organizing 373, 378
outputs and postconditions 372
purpose 372
requirements, organizing 373, 376
review model, for handoff

readiness 373, 380
subsystems, organizing 373, 375

prioritized epics 44
priority 66

influencing, factors 66
priority poker 67
product owner/presenter 508
product roadmap 38-40

agreement, obtaining 42
broad product timeframe, assigning 42
epics, allocating in product timeframe 42
epics, creating 42
epics, prioritizing 42
inputs and preconditions 39
outputs and postconditions 39
product themes, enumerating 41
purpose 39
updating 43

product roadmap, for Pegasus system
agreement, obtaining 45
epic, allocating into product timeframe 45
epics, creating 43
epics, prioritizing 44
product themes, enumerating 43
product timeframe, assigning 44
updating 45

project risk management 28
inputs and preconditions 29
outputs and postconditions 29
purpose 29
types 28

Q
Qualities of Service (QoS) 299
Quality Assurance (QA) reviewer 508
quantity kind

identifying 263, 264

R
Real-Time Agility 3
reference architecture 349

architectural element, adding 354
areas of deviation, identifying 353
compliance, demonstrating 355
example 356
features 349-351
inputs 351
instance specification slots, populating 355
outputs 351
postconditions 351
preconditions 351
purpose 351
relevant architectural elements,

subclassing 354, 355
selecting 353
specializing 348
specific architecture elements,

redefining 354
specific architecture instance, creating 354
specific architecture type, creating 353
specific system block, defining 354

Index 571

specific system instance specification,
defining 355

system instance specification, creating 355
workflow 352

release plan 46
epics decomposing 47
epics high-level goals, identifying 47
example 48-51
inputs and preconditons 46
iteration missions, establishing 47
iteration plan, reviewing 48
iteration work items, prioritizing 48
outputs and postconditons 46
purpose 46
work items, allocating to iterations 48

Request for Proposals (RFPs) 365
Requirements Package 105
resistance generation, smart bicycle trainer

electric motor with flywheel 279
electrohydraulic 279
hydraulic with flywheel 279
Wind Turbine 279

review
inputs and preconditions 506
outputs and postconditions 506
overview 504, 505
purpose 505

review coordinator 508
reviewers

comments and issues 513
review, example 510

action item resolutions, planning 514
action items, resolving 514
issues, capturing as action items 514
materials, disseminating 511
materials, preparing 510
purpose, establishing 510

reviewer comments, discussing 513
reviewer roles, assigning 511
reviewers independently inspect

materials 512
scheduling 512

review, workflow 506
action item resolutions, planning 510
action items, resolving 510
issues, capturing as action items 509
materials, disseminating 509
materials, preparing 507
purpose, establishing 507
reviewer comments, discussing 509
reviewer roles, assigning 508
reviewers independently inspect

materials 509
scheduling 509

revision 114
Rhapsody RAAML prototype

reference link 199
Risk Analysis and Assessment Modeling

Language (RAAML) 198
risk list 29
risk management plan 30

example 33, 36-38
outcome, assessing 33
potential source, identifying 31
replanning 33
risk, characterizing 31
risk list, adding in priority order 32
spike, identifying to address risk 32
spike, performing 33
spike work item, allocating

to iteration plan 32
updating 33
work item, creating for spike 32

Index572

S
Scaled Agile Framework (SAFe) 67
scribe 508
security analysis diagram (SAD) 217
semantic reviews 504
semantic verification 441
smart packages 508
SME reviewer 508
spike 29, 32
Subject Matter Experts (SMEs) 504
subsystem and component

architecture 310, 311
data, allocating 314
example 315
inputs 312
mission statement, assigning 314
outputs 313
pattern, selecting 314
postconditions 313
potential architectural patterns,

reviewing 314
preconditions 312
purpose 312
requirements allocation 314
selecting 311
subsystem interfaces, creating 315
subsystem, modeling in SysML 311
system features, allocating 314
systems functions and data, grouping

into coherent sets 314
validating 315
workflow 313

subsystem interfaces
creating 338
creating, from use case scenarios 334, 335

example 339
inputs 335
outputs 335
owner, adding to hold white box

scenarios 336
postconditions 335
preconditions 335
purpose 335
scenario, creating 337
source scenario, replicating 337
subsystem interaction messages,

adding 337
subsystem ports, creating 338
updating, with messages 339

subsystem interfaces, example
interfaces, creating 347
interfaces, updating with messages 348
original scenario, replicating 341, 342
owner, adding to hold white box

scenarios 339
scenario, creating 339, 340
subsystem interaction messages,

adding 342-345
subsystem ports, creating 347

Subsystem Package 111
subsystems 89

cons 89
pros 89

success metrics measurement 19, 20
failure, reasons 27, 28
inputs and preconditions 21
outputs and postconditions 21
purpose 21
usage, example 24-27
workflow 21-23

Index 573

SW Design Package 111
syntactic reviews 504
syntactic verification 441
SysML ports and interfaces 231, 232

continuous flows 232-234
system requirement

defining 133, 134
System Requirements Review (SRR) 443
Systems Models 112

organizing 101
Requirements package 111

Systems Models, organizing
example 112, 113
inputs and preconditions 101
outputs and postconditions 101
purpose 101
workflow 102-111

T
tabular views 220
test-driven development (TDD) 519
Test-Driven Modeling (TDM) 519, 520

example 522-543
inputs and preconditions 520
outputs and postconditions 520
purpose 520

Test-Driven Modeling (TDM), workflow 520
bit, modeling 522
defects, fixing 522
test case, applying 522
test case, defining 521

textual requirements 132
traceability 493, 496, 497

definitions 495
inputs and preconditions 497

outputs and postconditions 498
purpose 497
trace links, types 495, 496

traceability, example 502
goals, establishing 502
links, adding 502
relations, deciding to use 502
reviewing 503, 504
views, creating 502
views, specifying 502

traceability, workflow 498
goals, establishing 498
links, adding 501
relations, deciding to use 499
reviewing 501
views, creating 501
views, specifying 500

trace matrices 495
trace ownership 495
Traffic Light Controller (TLC) 523
trunk 116

U
UML Testing ProfileTM 2 (UTP 2)

reference link 461
Use Case Package 105
user interfaces (UIs)

technology, selecting 392, 395, 396
user interfaces (UIs), Pegasus key features

gearing 547
incline 548
ride 548
setup 548

Index574

V
validation 441, 443
velocity 24
verification 441, 442

W
Weighted Shortest Job First (WSJF) 67
work items

mapping 46
work items prioritization 66

example 72, 78
inputs and preconditions 67
outputs and postconditions 67
purpose 67
workflow 68-71
WSJF approach 71, 72

Index 575

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there- you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781803235820

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://dev.packt.link/free-ebook/9781801071109

	Cover
	Copyright page
	Contributors
	Table of contents
	Preface
	Chapter 1: Basics of Agile Systems Modeling
	What’s agile all about?
	Model-Based Systems Engineering (MBSE)
	Managing your backlog
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example

	Measuring your success
	How to do it
	Example

	Some considerations
	Managing risk
	Purpose
	Inputs and proconditions
	Outputs and postconditions
	How to do it
	Example

	Product roadmap
	Purpose
	Inputs and preconditions
	How to do it
	Example

	Release plan
	Purpose
	Inputs and preconditons
	Outputs and postconditions
	How to do it
	Example

	Iteration plan
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example

	Estimating Effort
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	How it works
	Example

	Work item prioritization
	Purpose
	Inputs and preconditions
	How to do it
	How it works
	Example

	Iteration 0
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example

	Architecture 0
	Subsystem and component view
	Concurrency and resource view
	Distribution view
	Dependability view
	Deployment view
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example
	Additional note

	Organizing your models
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	How it works
	Example

	Managing change
	Purpose
	Inputs and preconditions
	How to do it
	Example

	Chapter 2: System Specification
	Recipes in this chapter
	Why aren’t textual requirements enough?
	Definitions
	Functional Analysis with Scenarios
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example

	Functional analysis with activities
	Inputs and preconditions
	Outputs and postconditions
	How to do it

	Functional analysis with state machines
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example

	Functional Analysis with User Stories
	A little bit about user stories
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example

	Model-Based Safety Analysis
	A little bit about safety analysis
	Some Profiles

	Hazard analysis
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example

	Model-Based Threat Analysis
	Basics of Cyber-Physical Security
	Modeling for Security Analysis
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example

	Specifying Logical System Interfaces
	A Note about SysML Ports and Interfaces
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example

	Creating the Logical Data Schema
	Definitions
	Example
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example

	Chapter 3: Developing System Architectures
	Recipes in this chapter
	Five critical views of architecture
	General architectural guidelines

	Architectural trade studies
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example
	Architectural merge
	Example
	Pattern-driven architecture
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example
	Subsystem and component architecture
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example
	Architectural allocation

	Creating subsystem interfaces from use case scenarios
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it

	Specializing a reference architecture
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it

	Chapter 4: Handoff to Downstream Engineering
	Recipes in this chapter
	Activities for the handoff to downstream engineering
	Starting point for the examples
	Preparation for Handoff
	Federating Models for Handoff
	Logical to Physical Interfaces
	Deployment Architecture I: Allocation to Engineering Facets
	Deployment Architecture II: Interdisciplinary Interfaces

	Chapter 5: Demonstration of Meeting Needs: Verification and Validation
	Recipes in this chapter
	Verification and validation
	Model simulation
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example
	Model-based testing
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example
	Computable constraint modeling
	Purpose
	Inputs and preconditions
	How to do it
	Example

	Traceability
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example

	Effective Reviews and walkthroughs
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example

	Managing Model Work Items
	Purpose
	Inputs and preconditions
	How to do it
	Example

	Test Driven Modeling
	Purpose
	Inputs and preconditions
	Outputs and postconditions
	How to do it
	Example

	Appendix A: The Pegasus Bike Trainer
	Overview
	Pegasus High-Level Features
	Highly customizable bike fit
	Monitor exercise metrics
	Export/upload exercise metrics
	Variable power output
	Gearing emulation
	Controllable power level
	Incline control
	User interface
	Online training system compatible
	Configuration and OTA firmware updates

	Packt page
	Other Books You May Enjoy
	Index

