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Preface

The protection of information and information infrastructures from unauthorized access,
use, disclosure, disruption, modification, or destruction is today more critical than ever
as they represent attractive targets for a diversity of malicious actors. Those actors have
different motivations, such as financial gains, sabotage, espionage, intellectual property
theft, and data theft. They may be supported by enemy nations and can leverage an arsenal
of attack toolkits, zero-day vulnerabilities, and compromised passwords available on the
dark web.

Research and design of defense techniques have, however, greatly progressed over
the past 30 years, and there is an increased general awareness of threats and attacks
in cyberspace and the need for better defenses by public and private organizations and
governmental agencies as well as by the general public.

In order to devise more effective defenses, recent security solutions leverage machine
learning techniques, which are today quite effective because of the huge and diversified
technical advances in the area of machine learning combined with big data collection and
analysis capabilities. We observed that in the last 10 years, the use of machine learning
techniques for security tasks has been steadily increasing in research and also in practice.
Many recent papers have proposed approaches for specific tasks, such as software security
analysis and anomaly detection. However, these approaches differ in many aspects, for
example, with respect to the types of features used in machine learning models and the
datasets used for training the models. Also, the use of machine learning for security tasks
is not trivial. For example, suppose one would like to use machine learning techniques
for network intrusion detection. In that case, one has to understand the features to extract
from network flows for proper training and use machine learning models able to classify
the flows as benign or malicious. To date, however, there is no book or survey article that
systematically covers the entire area of machine learning techniques for cybersecurity.
This monograph aims to address such a gap.

A comprehensive discussion and analysis of the various machine learning techniques
require, however, a proper taxonomy of these techniques. We decided to organize the
discussion around the following main cybersecurity functions: security policy learning,
software security analysis, hardware security analysis, detection, and attack management.

v



vi Preface

For some of those functions, many approaches have been proposed, such as the ones for
intrusion detection. For others, approaches are still very limited—for example, for attack
management. For topics on which many approaches have been proposed, we selected
the approaches that we considered most interesting for the discussion. The monograph
also covers challenges in using machine learning for cybersecurity—many of which are
common to other domains; however, we try, whenever possible, to discuss these chal-
lenges from a cybersecurity perspective. Throughout the discussion, we also point out
research directions based on our analysis of existing approaches, techniques, and tools.
The book also includes a chapter that can be interesting from an educational point of
view. This chapter covers three case studies—each related to a well-known cyber attack;
for each attack, we discuss which machine learning technique(s) (if any) would have
prevented/mitigated which steps of the attack. The case studies are interesting as they
show that attacks are typically multi-steps, so one must deploy many different defense
techniques to enhance security.

Writing this monograph has been an exciting journey for us as we had several interest-
ing discussions and also identified new ideas for future research. We hope you will enjoy
learning about machine learning for cybersecurity as much as we have!!
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1Introduction

Attacks to computer, information, and communication systems, collectively referred to as
cyberspace, are on a dramatic increase. Attacks have a variety of goals, such as data ransoms,
denial of service, critical infrastructure sabotage, data theft, and information tampering,
and are carried out by many different actors with motivations that include financial gains,
cyberwar, misinformation, and disinformation. Security of the cyberspace, referred to as
cybersecurity (security, for short), is more critical than ever for our society that increasingly
relies on cyberspace for all services, functions, and processes we may think of.

It however is well known that there is no system that can be 100% secure from all
adversaries. Critical systems, protocols, and software considered secure are constantly ana-
lyzed by intelligent adversaries with sufficient resources, leading to the identification of
vulnerabilities allowing these adversaries to craft exploits for breaking into computer and
network systems. Vulnerabilities, unknown to the creators or users of a system, are called
zero-day vulnerabilities, and the exploits that take advantage of them are called zero-day
exploits [213]. Recent attacks are increasingly more sophisticated in the vulnerabilities they
exploit, and are supported by the availability on the dark web of attack toolkits, detailed
zero-day vulnerability information, and compromised security credentials.

The huge expansion of cyberspace due to Internet of Things (IoT) devices and systems,
robots, autonomous vehicles, and newwireless and cellular technologies, eachwith different
security postures, has also substantially increased the attack surface. Consequently, the
number of adversaries attempting to find new ways of breaking into these systems has
skyrocketed. It is clear that protecting the cyberspace requires an array of advanced technical
defenses as well as their systematic deployment based on a security life cycle.

In order to devise more effective defenses, recent security solutions leverage machine
learning (ML) techniques, which are today widely applied because of their technical sig-
nificant advances combined with big data collection and analysis capabilities. However, a
major problem is that the application of ML techniques to cybersecurity is not trivial. For

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Bertino et al., Machine Learning Techniques for Cybersecurity, Synthesis Lectures
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2 1 Introduction

example, if one would like to use ML techniques to classify malware, one has to under-
stand the features to extract from malware for properly training and using ML classification
models.

1.1 Artificial Intelligence,Machine Learning, and Deep Learning

Today, terms such as artificial intelligence (AI), machine learning (ML), and deep learning
(DL) are widely used not only in the technical literature but also in the media, popular
culture, advertising, and more [41]. These terms are often used interchangeably. There are
however differences among the respective areas that we outline in what follows.

AI is a field that started in 1956. The goal then, as now, was to use computer systems to
perform tasks requiring human intelligence [124]. The initial focus was on tasks like playing
checkers and solving logic problems. AI then specialized based on specific application areas,
such as robotics, natural language processing, and computer vision [13]. EarlyAI approaches
were mainly based on declarative knowledge provided by humans, for example, in terms
of logical rules and ontologies. Such knowledge would then be used as input by inference
mechanisms, often based on some formal logic. Today, AI encompasses a broad set of
technology solutions that can learn on their own.

A major problem of early AI approaches was the lack of scalability because of their
reliance on human inputs. ML techniques, which started to be widely used in the1980s,
address this problemby relyingondata, insteadof explicit human input. They apply statistical
methodologies to identify patterns occurring in data. They improve their prediction tasks
every time they acquire new data. A special category of ML techniques is represented by
data mining (DM), which basically addressed the problem of identifying patterns on very
large datasets. Most research in DM was initiated by the database community, which for
example introduced the pioneering concept of association rule mining [10] and designed
efficient algorithms to minimize scans on data stored in secondary storage. However, even
though ML techniques can improve their prediction accuracy, “they only explore data based
on programmed data feature extraction; that is, they only look at data in the way we program
them to do so. They do not adapt on their own to look at data in a different way” [41].

DL techniques represent an important category of ML techniques that address the short-
coming of earlyML techniques. DL essentially refers to algorithms that adapt, when exposed
to different situations or data patterns. Vaguely inspired by biological neural networks,
DL algorithms try to learn various characteristics from data and use them for decision-
making/prediction on similar unseen data. DL techniques have gained interest because of
the increased amounts of data available and their various algorithmic innovations as well as
significant improvements in computing capabilities enabled by GPUs, which have made fast
training and deployment of DLmodels possible [169]. DL has been tremendously successful
at tasks such as image classification, object detection, and text and voice recognition.
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1.2 Security Functions

A detailed and comprehensive discussion of ML-based techniques for cybersecurity is best
based on a taxonomy of ML-based security functions, that is, security techniques and pro-
cesses for which ML approaches have been proposed. The taxonomy we refer to is shown
in Fig. 1.1. As we can see from the taxonomy, the top five categories correspond to major
ML-based security functions that we briefly discuss in what follows.
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Fig. 1.1 Taxonomy of ML-based security functions
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1.2.1 Security Policy Learning

Security policies are critical for configuring security tools and appliances, including access
control systems, authentication systems, and network firewalls. As a manual specification
of policies is time-consuming and not scalable, it has been one of the first areas to whichML
techniques have been applied. The relevance of security policy learning will be increasing
given the recent zero-trust architectures [192] and frameworks [133], which will require the
specification, deployment, and testing of very large number of policies.

1.2.2 Software Security Analysis

Software systems are key components of all infrastructure and application domains we
may think of. However, software systems are still insecure, despite the fact that the “prob-
lem of software security” had been known to the industry and research communities for
decades [31]. Therefore, it is not surprising that software security analysis has recently
become one relevant application area for ML techniques. ML-based approaches range from
enhancing fuzzing to ensure better coverage [187] to predicting the effects of different com-
binations of control parameter values for drones [95] and making static analysis scalable for
large code bases [119]. Such initial approaches show that ML techniques can make software
security analysis more effective. We can expect that this area will see many novel ML-based
approaches to be developed, given the pressing problem of software security.

1.2.3 Hardware Security Analysis

Hardware is commonly assumed to be the root-of-trust for computer systems, in that trust
is established by committing functionality to silicon, which represents a stronger security
foundation compared to the flexible but more vulnerable software [223]. However, hard-
ware can be attacked, via for example side channels [188], and can even include malicious
components (e.g., hardware Trojans). The major use of ML has been for the security evalu-
ation of cipher implementations against side-channel attacks [100] and the construction of
attack models against physical unclonable functions [101]. More recent applications of ML
include the characterization of faults that can be exploited by attackers [206] and security-
aware design flow for chip design [118, 188]. However, ML techniques will undoubtedly
enable the design of novel approaches expanding the faults and vulnerabilities that can be
detected.
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1.2.4 Detection

Detection of security-relevant events, such as intrusions, represents a key security function.
Therefore, over the years, manyML techniques have been proposed specifically for assisting
intrusion detection systems. For example for misuse-based intrusion detection systems, a
ML model can learn from a training dataset containing examples from all of the misuse
classes. It can then be used to infer whether a certain event belongs to one of the misuse
classes or it is a normal event. In the case of anomaly detection, the model can learn the
defined normal behavior and then be used to differentiate between normal and anomalous
behavior. Over the years, detection systems have been specialized for different environments
(e.g., hosts, networks, cyber-physical systems, and IoT systems) and specific attacks (e.g.,
ransomware and botnets). As the detection of security-relevant events is critical for com-
prehensive security, advances in ML techniques will play a critical role in enhancing the
accuracy and adaptation capabilities of detection systems.

1.2.5 AttackManagement

Properly managing attacks is critical to make sure that the protected system can continue
working, perhaps with reduced capabilities, by taking defensive actions for blocking the
attack and for recovering. Also, forensics activities are critical for identifying the vulner-
abilities exploited by the attack and the attack steps, and for attack attribution. In general,
with the exception of forensics analysis, ML techniques have not been used much for attack
management. The reason is that the best strategy for attackmanagement is often application-
dependent, especially for systems whose continuity, despite being under attack, is critical.
However, this is an area where ML techniques can be applied, especially if datasets were
available. Also, ML techniques could be critical in the case of multi-step attacks for predict-
ing possible next steps of an attack based on some attack early indicators. Such predictions
would be invaluable for containing/stopping the attack.

1.3 Security Life Cycle

The security life cycle is a fundamental notion for systematically organizing security
defenses. It typically consists of multiple phases (see Fig. 1.2). As each such phase can
be supported by one or more ML-based security functions, in addition to conventional secu-
rity functions, the security life cycle represents the foundation for a systematic deployment
of ML for cybersecurity.

Preparation activities are at the core of security. They include ensuring that messages and
data at rest are encrypted, access control systems and firewalls are installed, and applications
are free of vulnerabilities. Because of the large number of security tools and techniques
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Fig. 1.2 Security life cycle

developed over that security risks be considered when selecting the most effective solutions.
In the preparation phase, relevant security functions for which ML techniques are critical
include: learning access control policies from data and context; guiding fuzzing techniques
to discover application vulnerabilities, ensuring high coverage, and enhancing application
testing [187]; identifying where to allocate security resources so to maximize security and
minimize its cost as organizations often have limited budgets for security.

However, even the best prepared system can still be breached, and the trade-offs. There-
fore, monitoring activities are critical for detecting attacks or anomalies that may be indica-
tive of attacks. A real-time anomaly detection system is crucial for enabling quick responses
to attacks. Here, ML techniques can be used to build anomaly detection systems, and this is
the security function for which severalML techniques have been proposed. At this phase, the
dangers of privacy infringements and selective barriers to service also need to be carefully
calibrated and explained to the stakeholders. Yet, discrepancies between assumptions and
variability in training datasets can create unreliable diagnoses, including false positives and
false negatives that can, again, affect stakeholders differently and need to be appropriately
communicated. Developing an early and effective ability to think in terms of trade-offs to
minimize false signals and maximize accuracy is extremely important.

Once an anomaly or attack has been detected, it is critical to carry out diagnostic activities
to identify the type of attack, the system components affected by the attack—for example
hosts or network links—and depending on the type of attack identifying the affected portions
of the system, the entry point of the attack, or the source of attack. Here, approaches based on
federated ML techniques and causality reasoning techniques are critical. Yet, discrepancies
between assumptions and variability in training datasets can create unreliable diagnoses,
including false positives and false negatives that can, again, affect stakeholders differently
and need to be appropriately communicated.

Finally, once a diagnosis has been obtained, response activities have to be executed. In
this phase, ML reinforcement learning techniques are critical to determining the response
actions that best contain the attack and minimize the attack damages. As responses entail
real-life consequences, from those related to the quality of service and applicability of
solutions to differential impact on stakeholders, again, understanding and communicating
them is of crucial importance.

These four phases are continuously executed and depending on the situation may even
run in parallel. For example, once attacks/anomalies are diagnosed, the prepare phase may
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be executed again to undertake activities such as patching vulnerabilities—exploited by the
attacks—and changing permissions, while at the same time activities are executed to contain
the attacks/manage the anomalies.

1.4 Organization of This Monograph

The remainder of this monograph is structured as follows. Chapter 2 provides some
background about the main ML techniques used in ML-based security functions and
includes pointers to detailed surveys and other resources concerning these techniques. Chap-
ters 3, 4, 5, 6, and 7 cover the ML-based approaches for the main five security functions dis-
cussed in Sect. 1.3. In addition to detailed technical discussions, each such chapter includes
a discussion on research directions. Chapter 8 presents case studies focusing on well-known
multi-step attacks and showswhichML techniques could havemitigated some/all of the steps
of these attacks. Chapter 9 discusses a variety of issues in the application of ML techniques
to security, including scarcity and quality of training datasets, selection of hyperparameters,
models, and configuration, explainability, ethics, and security of models and algorithms.
Finally, Chapter 10 outlines some concluding remarks. The monograph also includes an
appendix with short descriptions of the publicly available datasets used for experimental
evaluations of the ML-based security techniques we have discussed.



2Background onMachine Learning Techniques

In what follows, we introduce the ML techniques most widely used in security functions.
The introduction is meant to provide the high-level concepts of those ML techniques with
references to materials providing more in-depth coverage. The chapter also covers transfer
learning techniques that are critical to addressing the problem of scarce training data, which
is often the case in security. In addition, the chapter covers embedding techniques as they
are often used in conjunction with ML.

2.1 Preliminary Notions

An important distinction between the various ML approaches is supervised learning versus
unsupervised learning. The main difference is that the former uses labeled data to train the
model, while the other does not. Supervised learning is thus a ML approach defined by
the use of labeled datasets. These datasets are built to train or “supervise” ML algorithms
for accurately executing learning tasks, such as data classification or outcome predictions.
They consist of raw data (images, text, videos, etc.) to which one or more meaningful and
informative labels are added—typically by humans, to provide semantics and context. For
example, labels might indicate whether a photo contains a cat or a vehicle, or which words
are present in an audio recording. By contrast, unsupervised learning uses algorithms that
discover hidden patterns in data without the need for human intervention, that is, they do
not need labeled data.

As the process of labeling datasets can be expensive and time-consuming, a category of
approaches, referred to as semi-supervised learning, has been proposed. Such approaches
combine a small amount of labeled data with a large amount of unlabeled data. Semi-
supervised learning falls between unsupervised learning (with no labeled training data)
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and supervised learning (with only labeled training data). Yet another category is repre-
sented by theweakly supervised learning;methods in this category learnwith coarse-grained
labels or inaccurate labels. These methods thus represent another approach for dealing with
the problem of obtaining high-quality labeled datasets. More recently, another category of
approaches, referred to as self-supervising learning, has been introduced. Such approaches
are able to adopt self-defined pseudo-labels as supervision, and use the learned representa-
tions for downstream ML tasks. These approaches have been mainly applied to computing
vision and natural language processing. We refer the reader to [125, 128] for surveys on
self-supervising learning.

2.2 Neural Networks

An artificial neural network (ANN) consists of a pool of simple processing units (neurons)
which communicate by sending signals to each other over a large number of weighted
connections [137]. The most common form of ANN is the feedforward network, which
has a layered structure and where each layer consists of some neuron(s). In a feedforward
network, the data always flows from the input layer to the output layer. Each neuron receives
inputs from neurons from the previous layer and sends its outputs to neurons in the next
layer. There is no data flowwithin a layer or to the previous layers. In Sect. 2.4, we introduce
a different ANN where feedback connections are present. In this section, we focus on
feedforward network.

A feedforward network learns a function that maps a set of inputs to a desired set of
outputs. The most common learning situation is supervised learning, where the network is
trained by providing it with data and matching outputs, that is, a training dataset. During
training, the network computes a loss function thatmeasures the distance between the outputs
of the network and the desired outputs. The network then changes its internal weights to
reduce the distance. As a typical training practice, the network is given many small sets of
examples called batches. In each iteration, the network computes the loss for one batch and
adjusts the weight accordingly. After training, the network is tested on a new set of data
called a test dataset. DL uses multi-layer neural networks to learn representations of data
with multiple levels of abstraction [117].

Unsupervised learning is the case where the networks are trained without any labeled
training data. These methods discover salient features from the data population. Popular
unsupervised learning methods include k-means clustering, agglomerative clustering, and
autoencoders (Sect. 2.3).

In a neural network, the weights/parameters are critical features in that they define the
input-output function of the network. To understand what those weights are, it is important
to have a closer look at neurons again. Each layer of a feedforward network consists of one
or more neurons. Figure2.1 shows a single neuron with two inputs and a single output. Each
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Fig. 2.1 Single neuron with one output and two inputs

connection has a weight wi where xi is the input. The final input of the neuron is calculated
as the weighted sum of the inputs plus the bias term θ . The output is defined as

y = F

(∑
i

wi xi + θ

)
(2.1)

where F is a non-linear activation function. The activation function decides whether a
neuron should be activated or not. This means that it will decide whether the neuron’s
input to the network is important or not in the classification process. The most common
non-linear functions include ReLU, Tanh, and Sigmoid. Choosing the most appropriate
activation function in the output layer is critical since it defines the type of task the model
can perform. We refer the reader to an interesting discussion on how to choose an activation
function for neural networks [218].

Today, neural networks often have millions of weights. Every weight can be updated
individually to gradually reduce the error over many training iterations. We can think of all
these weights as a vector. To adjust such a vector, the learning method computes a gradient
vector that contains partial derivatives of the loss function with respect to each weight. The
parameter vector is then adjusted in the opposite direction to the gradient vector. This process
is repeated in each training step until the loss function stops decreasing. The procedure of
repeatedly computing the gradient vector and then updating the parameters is called gradient
descent.

The critical mathematical process involved in gradient descent is the calculation of the
partial derivatives of the loss function with respect to each weight of the network. Back-
propagation is an efficient way of computing the gradient vector in a multi-layer neural
network via the chain rule of calculus. The backpropagation algorithm works by computing
the gradient one layer at a time, iterating backward from the output layer all the way to
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the input layer. To calculate the gradient at a particular layer, the gradients of all following
layers are combined via the chain rule.

2.3 Autoencoders

An autoencoder is a neural network that is trained to reconstruct its input. The network
has two components: an encoder e that produces a compressed latent space h = e(x) and
a decoder d that produces a reconstruction x̂ = d(h). The objective is to minimize the
reconstruction error

L(x, d(e(x))) = ‖x − x̂‖2 = ‖x − d((e(x))‖2 (2.2)

where L is a loss function measuring the distance between x and d(e(x)). Autoencoders
can be trained with minibatch gradient descent. At each batch, we feed the autoencoder
with some data and backpropagate the error through the layers to adjust the weights of the
networks.

Autoencoders are used for dimension reduction or feature learning, as they can extract
useful information from the data. However, autoencoders can cheat by copying the input to
the output without learning useful properties of the data [89]. One way to prevent copying
tasks is to have undercomplete autoencoders, where the latent space has a smaller dimension
than the input. With a reduced dimension, the autoencoders are forced to learn the most
important attributes of the data.

While carefully choosing the latent space dimension might avoid that an encoder and a
decoder copy the input to the output, a more systematic approach is to enforce the models
to have other properties by adding some regularization terms to the loss functions. We
now introduce two types of regularized autoencoders: (i) denoising autoencoders, which are
robust against corrupted inputs; and (ii) variational autoencoders, which ensure that all the
points of the latent space give meaningful content once decoded.

2.3.1 Denoising Autoencoders

Recall that autoencoders minimize the function defined by expression (2.2). A denoising
autoencoder instead minimizes the function

L(x, d(e(x̃)) (2.3)

where x̃ is x with some added noise. An autoencoder receives corrupted data as input and is
trained to reconstruct the original data as its output. The expectation is that the autoencoder
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learns some useful information about the data in the presence of noise rather than simply
copying the inputs.

2.3.2 Variational Autoencoders

Sharp reconstruction of autoencoders is mainly required because of the goal to reconstruct
the input perfectly without any constraint on the latent space itself, and the price to pay is
that the latent space is likely to have many empty areas. Those empty areas usually give
a random/uninterpretable output [191]. Variational Auto Encoders (VAEs) try to solve this
problem by regularizing the latent space to be continuous, hence, removing empty areas
where they might return meaningless output.

The solution is to output a probability distribution for each latent attribute. For example, if
the latent dimension is two, then the encoder will output two distributions for each attribute.
The next step is to sample any value from the distribution(s) for the decoder. In VAE, the
latent distributions are always Gaussian distributions so that they can be described with the
mean and the variance.

This architecture is shown in Fig. 2.2. We denote N (μ, σ ) as the latent distribution.
The encoder produces a distribution N (μ, σ ) which is sampled for a value z. Finally, the
sampled point is decoded and the reconstruction error can be computed. The loss function
has two parts: a reconstruction term that tends to make the reconstructions as similar to the
inputs as possible; and a regularization term that tends to make N (μ, σ ) close to a Gaussian
distribution. The regularization term uses Kullback-Leibler divergence:

L(x, d(e(x))) = ‖x − x̂‖2 + K L[N (μ, σ ), N (0, 1)] (2.4)

= ‖x − d((e(z))‖2 + K L[N (μ, σ ), N (0, 1)] (2.5)

While VAEs can remove the gaps in the latent space, thus allowing easy random sampling
and interpolation, the generated outputs tend to be blurry.

Fig. 2.2 Variational autoencoders
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2.4 Recurrent Networks and Long Short-TermMemory

A Recurrent Neural Network (RNN) is a special type of neural network that remembers
its previous inputs and outputs. RNNs are very useful in cases where temporal dependen-
cies between inputs are observed, such as handwriting recognition [67], language transla-
tion [132], and speech recognition [210]. Due to their ability to memorize previous inputs
and their corresponding outputs, they are able to process variable-length sequences of inputs.

The main component in a recurrent neuron is the internal memory, see Fig. 2.3), which
allows the network to include the context when predicting the current output. To show the
benefit of the internal memory, consider the task of predicting text sequences. For example,
we want to predict the right word to fill the {} in the following sentence: Mother said Go
play outside. The boy said Yes {}. Now given the context, the right word can be one of the
following: ma’am, mother, or mom. However, if we exclude the context, words such as sir
or mister are also a good fit. In order to assign higher probability scores to the right gender,
the network needs to recall the wordMother from the previously observed inputs, which is
achieved through RNN’s internal memory.

In order to leverage the internal memory capability of RNNs, we feed in the inputs
serially (e.g., word-by-word) according to their temporal relations. Accordingly, the output
of the neural unit for item Xt is included as an additional input when processing item Xt+1.
However, as we feed the network with new data items, the impact of older decisions on
newer items decreases. Accordingly, the network operates as if it has a short-term memory
and fails to learn the long-range dependencies across time-steps. This is known as the
vanishing gradient problem [243]. To address this problem, a few variants of RNN have
been introduced. In this section, we describe one popular variant, namely the Long Short-
Term Memory (LSTM).

LSTMs solve the vanishing gradient problem by introducing a more complex cell struc-
ture, called the memory cell. This key component allows the network to decide what to
memorize and what to forget. In other words, instead of trying to memorize the entire his-
tory, LSTMs memorize only the relevant items with the highest impact on future items. In

Fig. 2.3 Feedforward neural
unit (left) versus recurrent unit
(right). RNNs use information
from prior inputs to influence
the current output
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light of our previous example, the word Mother is more relevant than words Go or said
in deciding the right gender of the missing word. This information-selective behavior is
achieved through the concept of gates. A gate is responsible for deciding whether to let
information in (remember), or exclude information (forget). This is achieved by multiply-
ing the important indexes in the input vector or matrix by 1, and blocking the non-relevant
information by multiplying them by 0. LSTMs use three gates in their structure: (1) Input
gate that decides which information to enter in the cell state. (2) Forget gate that tells the cell
state which information to keep or forget. (3) Output gate that decides which information to
pass to the next hidden state. Note that the difference between cell and hidden state is that the
cell state is meant to encode a kind of aggregation of data from all previous time-steps that
have been processed, while the hidden state is meant to encode a kind of characterization of
the previous time-step’s data.

2.5 AttentionMechanism

“Attention” means focusing on or making people notice something. Likewise, the attention
mechanism has been introduced in DL to focus on certain factors when processing data.
The attention mechanism was initially introduced to address the bottleneck problem in the
sequence-to-sequence architecture in neural machine translation. As sentences in a language
can be easily modeled as sequences of words, translation from one language to another one
can be seen as mapping one sequence to another sequence. Based on this idea, Cho et al.
applied deep learning techniques to map two such sequences by using two RNNs [49]. As
input sequences can differ in length from output sequences, they introduced a fixed-length
data structure referred to as context vector in between. Therefore, their approach consists of
two steps. In the first step, one RNN compresses a sentence in one language into a context
vector. The last hidden state of the RNN is selected as the context vector. Based on the
context vector, another RNN generates a translated sentence based on the context vector.
The former RNN is an encoder as it is responsible to encode or compress the input sequence
into a fixed-length context vector. The latter is a decoder because it outputs the sequence
from the context vector. Therefore, we call the translation architecture the encoder-decoder
approach.

However, Cho et al. [49] pointed out that the encoder-decoder approach has the main
drawback due to the context vector. In other words, the encoder compresses all the infor-
mation of an input sequence into a fixed-length vector. The use of such a vector makes it
difficult to handle long sentences, especially for the ones longer than the sentences in the
training set. To address such an issue, they designed another neural network that uses all the
words in the input sentences instead of only considering the context vector (see Fig. 2.4).
Whenever the neural network outputs the next word of the translated sentence, it does not
focus on all the words equally. Rather, it tries to identify which parts of the input sequence
are relevant to produce the next word accurately. For instance, when a non-English sentence
is translated into an English sentence “I did it by myself”, it is good to more focus on “I”
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(a) Without the attention mechanism (b) With the attention mechanism

Fig.2.4 The architectural difference in the encoder-decoder architecture without and with the atten-
tion mechanism in neural machine translation

than other words to generate “myself” (and not “yourself”). As such, an approach pays
greater attention to particular input words, the mechanism implementing it is referred to as
attention mechanism.

The attention mechanism assigns different weights to the input words with regard to the
current word in the decoder to generate the most appropriate next word. In detail, given
a translated word, the attention mechanism evaluates the alignment scores between the
translated word and all the hidden states of the input words by using the alignment score
function. Next, each alignment score is normalized against others, resulting in an attention
weight.We call a set of all the attentionweightswith regard to a particularword of the decoder
an attention vector. Finally, a context vector of the current translated word is calculated as
the inner product of the attention vector and the hidden states of the input words. Then,
the decoder outputs the next translated words based on the context vector. This process is
repeated until the decoder outputs the special word indicating the end of the sentence. By
generating the context vector per word (and not one context vector per sentence) explicitly
capturing the long-term dependencies, the bottleneck problem is significantly addressed.

Although the attentionmechanismwas initially introduced in NLP, it can be reformulated
into a general form that can be applied to any sequence-to-sequence task where a sequence
consists of several tokens. To this end, the attention mechanism uses three main components
called the queries Q, the keys K, and the values V. A query is a vector attributed to some
specific word against the keys with respect to which all the attention scores are calculated.
In the above example, the current translated word is a query, and the hidden states of the
input words are the keys. The values are a set of tokens scaled according to the attention
weights in order to retain focus on the tokens that are relevant to the given query. In the
above example, the values are the same as the keys. The attention weights are applied to the
hidden states of the input words. However, note that, according to the definition, the values
can be different from the keys. Finally, the attention mechanism produces the next token
(e.g., the next translated word in the above example).

We refer the reader to surveys [43] for further details on the attention mechanism.
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2.6 Reinforcement Learning

RL is a framework by which an agent interacting with a given environment learns an optimal
policy, by trial and error, for sequential decision-making problems [145]. By using RL, the
agent can acquire near-optimal decision skills, represented by policies, for optimizing user-
specified reward functions. The reward function defines what the agent should do, and an
RL algorithm determines how to do [143]. More specifically, a RL framework [220] (see
Fig. 2.5) is a probabilistic state transition environment where state transitions are caused by
actions executed by an agent and every state-action pair (s, a) is assigned a reward value
r given by a reward function R(s, a). The agent traverses the environment according to a
policy π that selects an action to execute in a given state for policy parameters θ and receives
the rewards accrued over all the state transitions that happened according to θ . In aQ learning
framework, the goal is to find the optimal policy which maximizes the cumulative reward
through a function Q(s, a) that estimates the expected cumulative reward the agent will get
at the end of an episode if the current state is s; the agent executes a and follows learned
policy πθ .

In a deep Q learning system, a deep neural network, referred to as DQN, is used to
determine the optimal Q function using a temporal difference equation defined as follows:

Qt (s, a) = Qt−1(s, a) + α[R(s, a) + γ Maxa′ {Qt (s
′, a′)} − Qt−1(s, a)]

where Qt is the current estimation of the Q function, and Qt−1 is the previous estimation
of Q after t − 1 steps of training. The estimated next state and action are denoted by s′ and
a′, respectively. The learning rate (α) determines to what extent newly acquired information
overrides old information. The discount factor (γ ) determines the importance of future
rewards.

One important issue in RL is related to training. There are three main approaches: (i)
on-policy, by which the agent interacts with the environment using the latest learned policy,
and then uses that experience to improve the policy; (ii) off-policy, by which the agent

Fig. 2.5 Deep Q learning environment; diagram from [162]
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interacts with the environment to collect experience samples but also re-uses samples from
older policies, thus enhancing efficiency; and (iii) offline, by which the agent is trained on a
static dataset of fixed interactions and thus does not have to interact with the environment.
Offline training is used when interactions with the environment are difficult, expensive, or
dangerous and has thus generated considerable interest [143]. However, it requires suitable
training data. Additional approaches are however also possible by which the agent can
be pre-trained in a constrained/simulation environment and then adapted to a real-world
environment with a few actual interactions with the environment [144], or an agent trained
in one environment can be adapted to a new environment, related to the initial one, by using
transfer learning [254].

Another critical issue is related to safety,which refers to complyingwith safety constraints
during the training and/or deployment processes [83]. Approaches proposed for safe RL can
be classified into two categories. The first approach is based on modifications to the reward
function with the introduction of a safety factor. The second approach is based on the
modification of the exploration process with the incorporation of external knowledge. A
concrete example of the latter can be found in the context of smart IoT systems [161]. We
note that similar approaches may have to be applied when security is a requirement for the
application domain of interest, in that one must make sure that decisions taken by an RL
agent do not introduce security risks.

We refer the reader to well-known surveys and books [134, 145, 220, 245] for further
details on RL techniques.

2.7 Transfer Learning

Transfer learning (TL) refers to the ML problem of using knowledge gained while solving
one learning task and applying it to a different but related learning task. In the real world, we
observe many TL examples. We may find, for example, that learning audio data from many
speakers may help understand the audio data of a specific user. The key observation is that
humans can apply knowledge learned from previous tasks to solve new problems faster. In
ML, the ability to transfer the knowledge gained by learning one or more source tasks in a
domain, referred to as source domain, comes into play when dealing with limited training
data in another domain, referred to as target domain.

2.7.1 Notations and Definitions

We follow the definitions by Pan and Yang [176]. A domainD consists of a feature spaceX
and amarginal probability distribution P(X), where X = {x1, . . . , xn} ∈ X. Given a specific
domain D = {X, P(X)}, a task T consists of a label space Y and an objective predictive
function f (·), which can also be viewed as a conditional probability distribution P(Y |X). In
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general, we can learn P(Y |X) in a supervised manner from the labeled data {xi , yi }, where
xi ∈ X and yi ∈ Y.

Assume that we have two domains: the dataset with sufficient labeled data is the source
domain Ds = {Xs, P(X)s}, and the dataset with a small amount of labeled data is the
target domain Dt = {Xt , P(X)t }. Each domain has its own task: the source task is T s =
{Ys, P(Y s |Xs)}, and the target task is T t = {Yt , P(Y t |Xt )}. In traditional deep learning,
P(Y s |Xs) can be learned from the source labeled data {xsi , ysi }, while P(Y t |Xt ) can be
learned from labeled target data {xti , yti }. Here, we give a formal definition of TL from Pan
et al. [176].

Definition 2.1 (Transfer Learning.) Given a source domain Ds and learning task T s , a
target domainDt and learning task T t , transfer learning aims to help improve the learning
of the target predictive function ft (·) in Dt using the knowledge in Ds and T s , where
Ds �= Dt or T s �= T t .

2.7.2 Fine-Tuning

While traditionalML techniques learn amodel from scratch, the fine-tuning approachmakes
use of a pre-trained model that is already trained by another dataset. The model uses labeled
target data as a guide for transferring knowledge between different domains. The size of
the output layer is usually modified based on the label size of the target task. Several layers
preceding the output layer are set to be trainable while the earlier n layers are frozen.
The weight of the trainable layers is updated using target data to minimize errors between
predicted labels and true labels. The first n layers can also be fine-tuned depending on the size
of the target dataset and its similarity to the source dataset [239]. The fine-tuning approach
has been applied to different tasks, including machine fault diagnosis [208] and network
intrusion detection [214].

2.7.3 Domain Adaptation

Based on the definition ofTL, the domain shift can be caused bydomain divergenceDs �= Dt

or task divergence T s �= T t . Domain adaptation (DA) is the case where the source task T s

and the target task T s are the same, and the domains are related but different. When the
domains are different, then either ➊ the feature spaces are different (heterogeneous DA),
i.e., Xs �= Xt , or ➋ the feature spaces are the same for both domains but the probability
distributions are different (homogeneous DA), i.e., P(X)s �= P(X)t . In the example of
host-based malware detection, Case 1 corresponds to when the two datasets represent two
hosts with different underlying operating systems. Case 2 corresponds to when the source
and target datasets are from the same host, but they focus on different attack families.
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2.7.3.1 Adversarial Domain Adaptation
We introduce a DA approach referred to as adversarial DA, which typically leverages the
generative adversarial networks (GANs) [88]. The idea is to use a domain discriminator to
encourage domain confusion through an adversarial objective.

Historically, the use of GANs focused on generating data from noise. Its main goal
is to learn the data distribution and then create adversarial examples that have a similar
distribution, to deceive an image classifier. However, the use of GANs extends beyond the
recognition domain and GANs have been applied to generate benign data, attack data, or
both, in the area of cybersecurity.

A basic GAN consists of a generative model, called generator G, and a discriminative
model, called discriminator D. The generator G generates data that are indistinguishable
from the training data and the discriminator D distinguishes whether a sample is from the
data generated by G or from the training data by predicting a binary label. The training of
the GAN is modeled as a minimax game where G and D are trained simultaneously and get
better at their respective goals: training G to minimize the loss in Eq.2.6 while training D
to maximize it:

min
G

max
D

V (G, D) = Ex [logD(x)] + Ez[log(1 − D(G(z)))] (2.6)

where Ex is the expected value over all real instances, Ez is the expected value over all the
generated data instances, D(x) is the probability of D predicting a real instance as real, and
D(G(z)) is the probability of D predicting a generated instance as real.

In adversarial DA, this principle has been employed to ensure that the network cannot
distinguish between the source and target domains. The key to adversarial DA is learning a
domain-invariant representation from source and target datasets. A good domain invariant
representation can be directly used to train a classifier that performs well on both domains.

In the approach by Singla et al. [215], the DA GAN architecture integrates a classifier to
ensure that the representation is domain-invariant and meaningful in terms of classification.
The discriminator is trained to minimize the loss in Eq.2.7, where Exs and Ext are expected
values of the source and target samples, D(G(xs)) is the probability of predicting a source
domain sample as belonging to source, and D(G(xt )) is the probability of predicting a
target domain as belonging to the source. The classifier is trained to minimize a binary
cross-entropy loss—Eq.2.8. The approach by Singla et al. [215] focuses on the intrusion
detection problem where the data is either labeled as attack or benign. Exattack and Exbenign
are the expected values of attack and benign samples, C(G(x)) is the probability of the
classifier predicting a sample as attack and 1 − C(G(x)) is the probability of classifying a
sample as benign. The generator has two objectives, maximize the domain classifying loss
and minimize the classification loss. Hence, it is trained using both Eqs. 2.9 and 2.8:
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Ld = −Exs [logD(G(xs))] − Ext [log(1 − D(G(xt )))] (2.7)

Lc = −Exattack [logC(G(x))] − Exbenign [log(1 − C(G(x)))] (2.8)

Lg = −Ext [logD(G(xt ))] (2.9)

To apply this approach in a heterogeneousDA settingwhere the source and target datasets
can have different dimensions,DAGANtransformsboth datasets to have the samedimension
using the Principal Component Analysis (PCA).

2.8 EmbeddingTechniques

The idea of representing classifiable items as vectors (a.k.a. embeddings) has been investi-
gated in many domains. Examples of these items are words, sentences, and paragraphs in
the NLP domain, or malicious and benign applications in cybersecurity. By representing
the items as vectors (i.e., transforming them into vector space), multiple operations can be
applied such as computing Euclidean or cosine distance, or more complex operations such
as ML classification or clustering. Accordingly, the vector representation of an item should
preserve its semantics, allowing for similarity and composition operations to be performed
accurately.

Different techniques for vector space representation have been proposed. The simplest
technique is to manually identify the semantic features of an item and assemble them into
a vector representation. This technique is very similar to manual feature engineering, and
hence suffers from the same challenges such as problem instance dependency or handling
large datasets. Furthermore, it is very hard to apply in domains where features are not easily
extracted based on domain knowledge such as image classification.

Due to the shortcomings of manual embedding techniques, automated techniques that
are easier, more generic, and less prone to errors have been proposed. The most common
automated embedding technique is the autoencoder. An autoencoder (see also Sect. 2.3) is a
type of a neural network in which the input and the output are the same, with a hidden layer
of reduced dimensionality. Mapping the input to the hidden layer serves as an encoding step,
whereas mapping the hidden layer to the output (same as input) serves as a decoding step. If
the output can be accurately reconstructed from the hidden layer’s reduced dimensionality,
then the hidden layer representation can be used as a semantic-preserving embedding for
this input. We refer the reader to surveys by Goyal and Ferrara [91] on graph embedding
and by Almeida and Xexeo [6] on word embedding, respectively.
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Security policies define a set of rules and procedures that must be followed in order to
protect assets and users from insider or outsider threats. An important category of policies
is represented by access control policies, by which policy developers and security officers
specify how users may interact with resources. This implies defining varying groups of users
with different sets of permissions on resources.

Access control policies are expressed based on access control models such as Attribute-
based (ABAC) [102] and Role-based access control (RBAC) [199]. The policy is defined
in terms of user characteristics (e.g., attributes or roles), resources, and operations. For
example, all users with the Engineer role are permitted “read” and “write” operations on
the Customers database. On the other hand, the policy can be explicitly expressed based
on low-level information, such as login identifiers and IP addresses. For example, Alice’s
laptop with IP address 192.168.5.2 is permitted to send HTTP traffic to the web server with
IP address 172.50.2.58, or all traffic originating fromVLAN15 can be routed to the Internet.
In both those examples, the policy specification is time-consuming and error-prone [122,
133].

On the other hand, when using a high-level policymodel, onemust have detailed semantic
knowledge, such as roles and attributes. At the network level, network administrators must
have a thorough knowledge of the network entities, such as IP/MAC addresses, protocols
used, involved ports, and allowed or denied communications. Even the slightest error in the
specification could result in unintended accesses or legitimate communication failures.

Another important category of security policies is privacy policies. Privacy policies are
the basis with respect to which (i) organizations deploy security controls and privacy mech-
anisms; and (ii) inform end-users about privacy choices the users have when interacting with
the organizations and the use of their data by the organization. Those policies are typically
specified as legal documents in natural language. One major issue with these policies is that
they can contain contradictions [16], potentially leading to various problems. First, the con-
ditions and actions of the policy become unclear due to such contradictions. For instance,
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a policy part may allow data, which is privacy-sensitive, to be transmitted via untrusted
channels, whereas another part of the policy may prohibit it. Second, if the privacy policy
is erroneous, it is extremely hard to investigate whether deployed software systems comply
with the privacy policy.

Therefore, approaches have been proposed for automatically learning security policies
usingML techniques. Such approaches aim to reduce the number of errors due to the manual
specification of policies and create more intelligent access control systems that can adapt to
policy changes. However, the design of such ML-based approaches must address specific
requirements [28] to ensure that all legitimate accesses and actions are granted, and all
illegitimate accesses and actions are denied. We define those requirements as follows:

1. Policy completeness: It means that theML-based learning system should be able to make
a decision on any received access request.

2. Policy correctness: It means that the ML-based learning system should be able to make
the correct decision for any received access request.

In what follows, we first discuss learning the access control policies from data while
also discussing approaches to transfer and adapt the learned policies to other domains.
Then we discuss DL approaches to policy learning and conclude the section with model-
independent policy learning. Then we focus on network security policies as these policies
are very critical today. First, we discuss rule mining techniques for firewalls and present
approaches for training ML models for firewall systems. Then we cover ML techniques for
learning the security policy for traditional and IoT networks. Then we discuss contradiction
identification in privacy policies. Finally, we discuss adaptive policy learning systems and
conclude the chapter with research directions.

3.1 Access Control Policies

Access control policies are typically composed of conjunctions of predicates depending on
the security model. ABAC and RBAC are two widely adopted and well-studied security
models. The security model formalizes the specification of security policies and allows the
proof of security properties [198].

Example

The following is an example of an ABAC rule expression.

<Rule10: user (ID: pr-1, business_unit: marketing),
resource (ID: strategic_planning_document,

business_unit: marketing),
edit, permit>
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“Rule10” is a unique identifier for the rule. “user (ID: pr-1, business_unit: marketing)” refers
to someuserwith identifier “pr-1” appointed to the “marketing”business unit. The resource in
this example is a document called “strategic_planning_document,” and the aforementioned
user is permitted edit access.

3.1.1 Learning Access Control Policies

Several approaches have been proposed that use ML techniques to learn (or mine) access
control policies from data, such as logs of access requests along with the decisions (e.g.,
allow or deny). A recent approach is Polisma [122], a framework that uses data mining,
statistical, and ML techniques to learn ABAC policies using access control logs and contex-
tual information. Such contextual information can be obtained from multiple data sources,
for instance, LDAP directories, SIEM systems, and organizational charts. The framework
comprises the set of users and their attributes, resources and their attributes, operations, and
attribute relations. Polisma organizes the ABAC policy learning process into four steps (see
Fig. 3.1).
(1) Rule mining: Polisma uses Association Rule Mining (ARuM) [9] to analyze the asso-
ciation between users and resources and extract the rules from the examples provided. In
particular, Polisma uses the Apriori ARuM [10] algorithm to generate the rules. However,
the rules resulting from rule mining are potentially overfitted or unsafely generalized. In
the former case, the rules have attributes that are not useful for making decisions. Thus,
overfitting impacts the system’s completeness. In the latter case, the rules are too generic
and thus could give access to a set of users larger than the intended one. Therefore, unsafe
generalization impacts the correctness of the system.

Generated
rulesRule mining Safely generalized 

rules
Rule

generalization
Domain restricted 

rules

Rule augmentation
using domain-

based restrictions

Rule augmentation
using ML

ABAC 
rules

User attributes Resource
attributes

Attribute
relations Operations

Contextual information

1 2 3 4

Access
logs/Dataset

[INPUT]

[OUTPUT]

Fig. 3.1 Polisma architecture [122]



26 3 Security Policy Learning

Example

The following is an example of two rules generated using ARuM. The first is an overfitted
rule, while the second is an unsafely generalized rule.

<Rule1: user (ID: developer-1), resource (ID: git-1), read,
permit>

<Rule2: user (group: engineers), resource (ID: git-1), write,
permit>

(2) Rule generalization: Polisma provides two strategies to address the unsafe generaliza-
tion and overfitting issues. The first is the brute force strategy, where each generated rule is
post-processed by analyzing the user and resource attributes and statistically choosing the
ones that grant permission to specific subsets of users on the resource. The second strategy
assumes that attribute-relationship metadata (i.e., attribute relations in Fig. 3.1) is given to
the system. Thus, Polisma constructs a graph out of those relations. Then, it traverses the
graph and selects the minimum set of attributes of users and resources that grant permission
to access the resource.
(3) Rule augmentation using domain-based restrictions: The previous steps focus on
generating rules that grant permission for accessing resources (i.e., positive/allow rules).
However, to address the completeness requirement, the system applies this step to generate
negative rules (i.e., deny rules). The system identifies the attributes in the dataset or the
contextual information to evenly partition the users and resource sets. Then, it generates
negative rules for a user group to perform a specific operation on a resource or a group of
resources.
(4) Rule augmentation using ML: While the previous steps generate rules based on the
knowledge extracted from the training dataset and contextual information (if available),
these rules cannot handle new requests similar to old ones. Specifically, the new request’s
access patterns are similar to the old ones, but the new request’s attributes do not match the
old ones. Suppose that software engineer A from department X has access to the git server
in the same department. Now imagine a software engineer B from department Y requesting
access to the git server in department Y . Clearly, the access pattern is very similar. Polisma
trains an ML classifier (e.g., Random Forest and kNN) on the attributes provided in the
training dataset and context information. Then the classifier predicts the decision on a new
request based on the similarity to the rules generated in the previous steps.

The performance of Polisma has been evaluated using two metrics: (i) the F1 metric;
and (ii) the percentage of covered requests (PCR), which assess the policy completeness.
The evaluation has been carried out on the Amazon Access Samples Dataset and the Project
Management Dataset (see Appendix). The results show that Polisma achieves an F1 score of
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0.98 and a PCR of 1.00 when using the Amazon Access Samples Dataset, and an F1 score
of 0.86 and a PCR of 0.95 when using the Project Management Dataset.

Das et al. [62] proposed an algorithm to mine minimal sets of ABAC rules that con-
sider environmental variables. Environmental variables typically complement the policies
by adding environmental conditions that must be met to approve an access request. For
instance, a software engineer may access a production server only if they are located within
the company’s physical premises.

The proposed algorithm takes as input the sets of subjects, objects, and environmental
variables. It also expects a three-dimensional matrix, where the first dimension represents
the subjects (s), the second the objects (o), and the third the environmental variables (e).
If the value at the point (s, o, e) is 1, the access should be granted; otherwise, it should be
denied. The algorithm’s output has three objectives: (1) Each entry in the matrix should be
covered by at least one tuple in the mined policy, (2) no permissive rules should exist, and
(3) the number of rules in the mined policy should be minimum.

The algorithm first computes the gini impurity1 [36] for each attribute data and selects
the attributes that best divide the accesses into a permit or deny decisions. The less the gini
impurity, the better the access split. Then it recursively repeats the process following the
different gini impurities until the algorithm obtains groups of accesses leading to a single
decision. Refer to Sect. 3.2 of the paper for more details on the formula used to compute the
gini impurity. The authors demonstrate that this approach generates as many or fewer rules
as other proposed methods.

Molloy et al. [159] have proposed generative models for mining usable and accurate
RBAC policies. While accuracy deals with the precision of the generated RBAC policy
(i.e., whether roles and permissions have been correctly assigned to the users), usability
focuses on mining practically usable models based on the user’s usage of the permissions
(i.e., entitlements). For example, if two users have the same permissions but different usage
of those permissions, they should be assigned to different roles in the generated model. An
additional advantage of the generative models is that they are explainable in the sense that
there is a reason why a role is assigned to a user. The authors also define a variation of such
models called attributive generative models. This variation states that roles assigned to the
users are causally correlated with the user attributes (e.g., affiliated department), and the
assignment of permissions to roles is based on usage patterns.
The author’s approach is based on two ML models:
(1) Latent Dirichlet Allocation (LDA): LDA [34] is a probabilistic generative model that
works with collections of documents composed of discrete data. Each document is a finite
mixture of topics, and each topic represents a probabilistic distribution over words. A docu-
ment (which is a set of words) could be assigned to multiple topics. In the role mining task,
each document represents a user’s observed actions, and the extracted topics correspond

1 Gini impurity is a measurement method used to determine how nodes should be split in a decision
tree.
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to roles. Thus, LDA estimates the roles (topics) assigned to each user’s observed actions
(document).
(2) Author-Topic Model (ATM): ATM [193, 194] is an extension of LDA modeling rea-
soning about the documents and the corresponding authors. An author is a multinomial
distribution over the topics, and a topic is a probability distribution over the words of the
documents, as mentioned above. In the task of role mining, an author models a user with
explicit attribution.

In summary, the authors represent the user attributes, the documents represent the user
actions and usage, and the topics represent the observed roles. Themodel learns to extract the
roles based on the observed users’ actions and automatically assigns users to the appropriate
roles. We refer the interested reader to [159] for technical details on the model parameters
and algorithms.

Molloy et al. have evaluated their approach to real-life data, such as access logs and
entitlement data. The approach exhibits a good performance as it produces a stable decom-
position in less than one hour for a dataset of 36M actions performed by 2050 users. Thus,
the most significant advantage of the approach is the dramatic performance improvements
compared to other techniques. In addition, the approach generates only a tiny amount of
over-assignments (i.e., users are assigned to more roles than they should) and shows a low
percentage of model uncoverage (i.e., permissions that have not been given to users that thus
may not be able to complete all their tasks).

Karimi et al. [131] proposed an approach to detect patterns in access records using
unsupervised learning and extract the ABAC policy from those patterns. Each line in the
access record represents a tuple composed of the user, resource, session attributes, and access
rights. It is important that the authors only consider positive permissions (i.e., allow rules
only). The clustering algorithm maps each tuple to a cluster, and each cluster’s centroid
represents a policy rule. The distribution of the attribute values of each tuple appointed to
a cluster and the centroids’ attributes are used to extract the policy rules. The steps are as
follows.
(1) Data Selection and Preprocessing: In this step, the algorithm parses the data files and
collects the various features and their values. In cases of missing values, the algorithm uses
the special value “UKN” (standing for “unknown”).
(2) Tuning Learning Parameters: In this step, the algorithm discovers (i) which should
be the number of clusters (k), (ii) which learning algorithm to use, and (iii) the cluster
initialization parameters and local optima. This step uses two methods to select the best
value for k. First, it uses the elbow method [92], which is the within-cluster sum of squares
(WCSS). In this method, one steadily increases k and observes how the value of WCSS
decreases. The point for which the decrease is negligible is a good value for k. In addition
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to this method, this step computes the mined model’s accuracy and selects the k that gives
the highest accuracy in a tenfold cross-validation. The accuracy is defined as follows:

Accuracy = T P + T N

T P + T N + FP + FN
(3.1)

where

• T P: The outcome of the access request is allowed both in the original andmined policies.
• T N : The outcome of the access request is denied both in the original and mined policies.
• FP: The outcome of the access request is denied in the original policy, but it’s allowed

in the mined policy.
• FN : The outcome of the access request is allowed in the original policy, but it’s denied

in the mined policy.

The authors found that k-modes [107], a variation of k-means [127], is best suitable for this
task due to the use of categorical features. Multiple models are trained with different cluster
initialization, and the model with the smallest clustering error is selected.
(3) Rule Extraction: This step first performs clustering with all the available features, such
as user and resource attributes. The respective rule is extracted from the attribute values
of the clusters’ centroid. However, it is possible that not all of those attributes are really
effective in the mined policy. To check the effectiveness of an attribute in the extracted rule,
the occurrence frequency of the attribute’s value is measured in the original dataset and
within the cluster. If the difference is higher than a pre-set threshold value, d, the attribute
and its value are deemed effective and are part of the extracted rule.

Example

Table3.1 shows an example of the extracted attributes from a cluster’s centroid. The attribute
t ype has the discrete values application, gradebook, roster , and transcript based on
some university dataset. Suppose that t ype = application occurs in 60% of the rules in
the cluster and in 25% of the rules in the dataset. If d = 30%, then t ype = application is
effective and will be part of the rule generated from the cluster.

Table 3.1 An example of a cluster centroid (adapted from [131])

User_department Object_department Position Type Location

CS CS Staff Application Campus



30 3 Security Policy Learning

(4) Policy Improvement: The step aims to improve the quality of the mined policy using
two algorithms: rule pruning and policy refinement. Those algorithms aim to eliminate rules
that are subsets of one another and refine the policy to reduce the number of FN and FP .

Karimi et al. evaluated their approach using synthetic datasets with positive permissions.
Thus, only examples with allowed permission are given as input to the unsupervised learning
model. The evaluation shows that their approach can achieve an accuracy of 99% after policy
refinements.

3.1.2 Policy Transfers Across Domains

Jabal et al. also proposed FLAP [123], an extension of Polisma, that focuses on transferring
ABAC policies from a source domain to a target domain. Such a transfer is useful when the
target domain has limited training data, whereas the source has a sufficiently large training
dataset. Each domain has its own datasets, such as logs or existing policies, each perhaps
with different characteristics. The main issue in policy transfer is handling conflicts between
the policies of the source and target domains. Such conflicts could arise, for example, due
to regulatory or policy differences.

The FLAP approach consists of the following steps:
(1) Rule Similarity Analysis: In this step, FLAPevaluates the similarity of each rule from the
source domain to the log of the access control decision examples or rules at the target domain.
The similarity process checks (a) whether the user in the example satisfies the user attribute
expression in the source domain rule; (b) whether the resource in the example satisfies the
resource attribute expression in the source domain rule; and (c) whether the operation in the
example is included in the source domain rule’s operation set. A consistency check is also
performed to verify whether a source domain rule is similar to an access control decision
example in the target domain. If the source domain rule has the same decision as the example
in the log, then they are deemed consistent; otherwise, they are not.
(2) Rules Adaptation: This step applies to inconsistent rules found in the previous step.
Given two inconsistent rules, FLAP identifies the mutual and non-mutual attributes in the
rule expressions. The proposed algorithm first derives rules based on the mutual attributes
while setting the decision to either permit or deny. The access decision is set based on the
number of conflicting decision examples. Then it derives new rules based on non-mutual
attributes (see Algorithm 1 in [123]).

The FLAP policy transfer process has been evaluated according to two approaches:
(1) Policies Transfer using Local Learning: The rule generated after each Polisma step
(see Fig. 3.1) is compared against the source domain rules using the rule similarity analysis.
If there is a conflict, the local rules are adapted accordingly using the rule adaptation while
conflicting source domain rules are filtered out. The remaining source domain rules after all
the steps are transferred to the target domain.
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(2) Policies Transfer using Hybrid Learning: In this method, the source domain rules are
combined with the intermediate local rules allowing Polisma to leverage both the source
and target domains’ knowledge for the next step. The intermediate rules are adapted based
on the source domain rules, while the conflicting source domain rules are discarded.

The FLAP transfer learning approach was evaluated using the Amazon Access Samples
Dataset and the Project Management Dataset (see Appendix). The results showed that the
generated rules achieved an F1 score of about 0.80 on the Amazon Access Samples Dataset
and an F1 score of about 0.75 on the Project Management Dataset.

3.1.3 DLModels for Access Control Decisions

The previous approaches take input data, such as logs, histories of accesses, and access
control lists, and employ ML techniques to generate ABAC rules as output. A different
approach is by Nobi et al. [172], which proposes an approach that generates a trained DNN
instead of access control rules.

During training, the DNN receives metadata and access requests as input and decides
whether access should be permitted or denied. Metadata information could be any relevant
information including access logs, employee join date, access times, etc. Access request
tuples are in the form <user , resource, operations>. The DNN has a classification layer
where the number of neurons equals the number of operations. Each neuron outputs the
probability of permitting or denying the execution of a related operation to a user. The DNN
is mathematically abstracted as ŷ = f (x), where ŷ is the access prediction probability for
executing a certain operation, and x is the user and resource metadata. If the prediction is
greater than a threshold (0.5, in the paper), access is permitted; otherwise, it is denied. Since
the samples in the training set have categorical features, the feature values are transformed
into a two-dimensional array using one-hot encoding.2 The rows represent training examples,
and each column holds the value of each feature (that is, metadata values).

Once the DNN is trained, it is used for the access decision-making process. Specifi-
cally, the system receives the tuple <user , resource, operation> and fetches additional
metadata information from internal data stores. Then, the DNN decides whether the request
should be approved or not. The authors have demonstrated the effectiveness of the proposed
approach using three DNN architectures: ResNet [99], DenseNet [106], and Xception [59].
They used two real-world datasets (dataset #1 and #4 in Appendix) and eight synthetic
datasets (dataset #3 Appendix). The results show that the F1 score ranges from 0.75 to 0.95
depending on the dataset.

2 Some ML algorithms require categorical features to be converted to a numerical form. If the cat-
egories are independent (e.g., “cat” and “dog”), then the one-hot encoding breaks and replaces the
feature with one binary feature per category. For example, if a feature can only have two labels, “cat”
and “dog”, it will be converted to the vector [1,0] if the feature has the label “cat” or [0,1] if it has
the label “dog”.
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3.1.4 Model-Independent Policy Mining

One limitation of the existing policy miners, such as [122, 197, 248], is that their design
and implementation are based on specific access control models. Thus, the miners must be
updated depending on the access control models they need to support. Cotrini et al. [56]
proposed Unicorn, a universal method for access control policy mining. Due to its generic
design,Unicorn generates policyminers for diverse policymodels, such asABACandRBAC
with spatial-temporal constraints [4] without assuming any prerequisite in ML techniques
and combinatorial algorithms.

In order to apply Unicorn, one needs to perform three steps:
(1) Template: In this step, the user must express the model as a first-order logic formula
defined as ϕb(u), where u is a user in the organization. The template formula contains
Boolean variables whose assignment must correspond to a policy.

Example

Consider the following ABAC rules:

<Alice (position = “Doctor”), resource (ID = “databzase1”), 1>
<Bob (position = “Doctor”), resource (ID = “database1”), 1>
<Nick (position = “Nurse”), resource (ID = “database1”), 0>
<Nick (position = “Secretary”), resource (ID = “database1”), 0>

The convention followed in those rules is <user (attribute = value), resource (attribute =
value), 1—Allow/0—Deny>. A potential template formula for those rules is the following:

ϕb(u) = (attV al(u) = Doctor ∧ b1)∨ (attV al(u) = Secretary ∧ b2)∨ (attV al(u) =
Nurse ∧ b3)

where b1, b2, b3 are Boolean variables, u is a user in the organization, and attV al(u) is a
function thatmaps users to their attribute values (i.e., the attribute “position” in this example).

For b = (0, 1, 1) = b1 = 0, b2 = 1, b3 = 1, we have
ϕ(0,1,1)(u) = (attV al(u) = Doctor ∧ 0)∨ (attV al(u) = Secretary ∧ 1)∨ (attV al(u) =
Nurse ∧ 1) ⇔
⇔ ϕ(0,1,1)(u) = (attV al(u) = Secretary) ∨ (attV al(u) = Nurse) =
= {Secretary, Nurse}
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The above statement defines a policy for secretaries and nurses. For b = (1, 0, 0), we would
have ϕ(1,0,0)(u) = Doctor , and this is a policy that applies to doctors.

The above example shows that the template formula may express an arbitrary policy
independent of the access control model of choice. The example also shows two interpreta-
tions of the template formula; b = (0, 1, 1) and b = (1, 0, 0). Thus, the policies are nothing
more than interpretations of the user-defined template formula. Hence, mining the policy
becomes a searching problem in the interpretation space.
(2) Objective Function: An objective function measures how well the generated policy fits
the log.

Example

A simple example of an objective function is

L(b) = ∑
u |Log(u) − ϕb(u)|

where Log(u) : {1, 0} is a function that returns whether the user receives permission for par-
ticular access based on the log, and ϕb(u) is the decision result from the template function.
L(b) is, in this case, the Hamming distance between Log(u) and ϕb(u) given an interpreta-
tion b.

Another possible objective function is

L(b) = λ
∑

u |Log(u) − ϕb(u)| + Complexi t y(ϕb)

Here, the sum is multiplied by a constant weight λ. Complexi t y is a user-specified function
that quantifies the complexity of the template formula (e.g., number of predicates).

(3) Implementation of Unicorn’s Pseudocode: In this step, Unicorn attempts to generate
a policy that minimizes the objective function using Unicorn’s pseudocode. The approach
used to mine the policy is deterministic annealing with mean-field approximation [56].
Deterministic anneal is a greedy algorithm that tries to minimize L(b). However, for tem-
plate functions with several Boolean variables, the problem becomes intractable. Hence,
approximations are used to find a good solution to the problem.

Unicorn has been evaluated based on three metrics: True Positive rate (TPR), False
Positive Rate (FPR), and Complexity. TPR expresses the fraction of correctly authorized
users. FPR is the fraction of incorrectly authorized users, and complexity is the number
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of lines when the policy is written in a programming language. Unicorn archives TPR of
about 90, 60, 90, and 70% for RBAC, ABAC, XACML, and STARBAC, respectively. The
reported FPR was less than 1% for all the policy languages. In terms of complexity, Unicorn
has generated substantially less complex policies only in the case of ABAC.

3.2 Network Security Policies

While the access control policies discussed in the previous section typically involve con-
ceptual entities (e.g., users, resources, and operations), network policies are more specific to
the underlying network topology and organization. Network security policies are expressed
in terms of rules that involve network-level intricacies, such as host network identifiers and
how the endpoints communicate with each other.

Example

Table3.2 lists a set of network security policies. The first rule allowsHTTP traffic originating
from host 192.168.1.2 at port 3035 destined to host 192.168.1.3 at port 80. The second rule
denies any TCP traffic originating from host 192.168.1.3 to host 172.50.50.23 at port 4444.
Finally, the third rule allows the host 192.168.5.5 to communicate with any party on the
network. Clearly, the first is the least privilege rule, as it only allows a specific type of traffic
to flow between certain application ports of the endpoints. The second and third rules are
less restrictive, with the latter being the least restrictive of the three.

ML approaches have been proposed to learn network access control policies. Typically,
the training would be carried out on historical network access requests or communication
flows.

Table 3.2 An example of a set of network security policies

Source IP address Source port Destination IP address Destination port Protocol Access

192.168.1.2 3035 192.168.1.3 80 HTTP Allow

192.168.1.3 – 172.50.50.23 4444 TCP Deny

192.168.5.5 – – – – Allow
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3.2.1 Firewall Rule Miners

One of the most critical elements in network security is firewalls. Firewalls are typically
placed on the network boundaries to control and filter inbound and outbound traffic. Of
course, networks could also be architected with micro-segmentation [133], in which case a
firewall device guards the micro-segment. A firewall requires the network administrator to
define the policy in terms of network rules. Typically, those include the classic 5-tuple, that
is, source and destination IP addresses, the source and destination ports, and the transport
layer protocol. However, the policy could incorporatemore fields depending on the firewall’s
capabilities.

Authoring the firewall policy, however, is a daunting, time-consuming, and highly error-
prone task. The slightest error in the policy rules could result in a cascade of network
communication failures or even allow potentially malicious traffic to cross into the net-
work. Therefore, approaches have been proposed to generate the rules for firewalls cost-
effectively by providing high-level network requirements or analyzing the network traffic.
In this section, we focus on the latter.

Golnabi et al. [69] proposed approaches to mine firewall rules from traffic logs. Their
approach has three objectives: (1) mine the firewall rules from traffic logs using frequency
analysis, (2) perform rule generalization to reduce the number of generated rules, and (3)
identify decaying and dominant rules as observed in the traffic logs. The mining process has
the following steps:
(1) Analysis of firewall rules: In this step, the algorithm takes as input the ruleset of a
firewall.

Example

Here is an example of a policy rule specified in a Linux firewall.

-A INPUT -s 129.168.47.35 -p tcp --dport 80 -j DROP

The above rule specifies that any TCP packet originating from the IP address 129.168.47.35
to the local destination port 80 should be dropped. Here is an explanation of the rule com-
ponents: -A: Append the rule to the ruleset. INPUT: for packets destined to local sockets.
-s: source address. -p: protocol. –dport: destination port. -j: jump to target (in this case, to
drop the packet).

From each firewall rule, the algorithm extracts the following fields: the protocol (i.e.,
TCP and UDP in the paper), the traffic direction (i.e., inbound or outbound), the source and
destination ports, the source and destination IP addresses, and the target action (i.e., allow
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or deny). If any of the attributes mentioned above are absent from a rule, it is assumed that
these attributes do not impact the rule.
(2) Firewall traffic log analysis: In this step, the algorithm processes the packet traffic log
using ARuM and mining firewall log using frequency (MLF). MLF extracts the attribute
features from each log entry and computes the number of packets that match every rule.
(3) Filtering-Rule Generalization (FRG): This step aims to minimize the number of the
generated rules for efficiency purposes by aggregating them together. Rule aggregation is
achieved through a decision tree method. The tree’s root is the action (either allow or deny),
and then follows the protocol (TCP orUDP in this paper), the traffic direction, the destination
port, the source port, the source IP address, and the destination IP address.
(4) Ruleset generation: The fourth step combines the firewall ruleset (step 1) with the
rules generated by applying MLF on the traffic log (step 2). The combination is carried out
using an anomaly detection and resolution algorithm. The algorithm considers four anomaly
categories:

• Rule Shadowing: A previous rule in the ruleset matches all packets of this rule; hence
this rule is never activated.

• Rule Correlation: Two rules are correlated if they have different target actions, and the
first rule matches some packets matching the second rule and vice versa.

• Rule Generalization: This is the case where a subsequent rule is a generalized version of
the previous one, but they have different target actions.

• Rule Redundancy: A rule is redundant if its removal does not affect the overall policy. In
other words, the rule is never activated.

(5) Dominant and Decaying Rule Detection: Then the probability distribution is computed
for each generated rule using the firewall traffic log. In particular, the probability distribution
of the rule is computed as P = f /N where f is the frequency of the packet occurrence
matching the rule, N is the total number of packets, and P is the probability distribution.

A similar approach was proposed by Tongaonkar et al. [229], which aimed to infer the
high-level policy from low-level packet filtering rules and convey the analysis to the end-user.
The approach has two steps:
(1) Priority Elimination: In this step, the algorithm generates a flattened ruleset from the
provided iptables firewall ruleset. A flattened ruleset is a ruleset that captures the properties
from the underlying low-level rules (such as ports and addresses), and the rules have no
priority. If the rules in a ruleset do not have any priority, then any ordering of the rules does
not change the overall policy. Thus, the rules are not overlapping (only one rule can match
a given packet).
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A naive approach to generating a flattened ruleset could result in an exponential number
of flattened rules. To prevent such an exponential rule generation, a technique, called packet
classification automaton based on directed acyclic graphs [230], is used. The idea is that a
network node in the packet header is represented as a node in the graph (e.g., destination
host). The leaf nodes correspond to target actions (i.e., allow and deny). The outgoing edges
from each node are labeled with the values that the edge’s source node can take. In addition,
a node has an “else” edge that denotes the next state in the automaton. This edge is applied
to a packet if no other outgoing edges (i.e., values) meet the property value of the packet
under test.

Once the automaton is constructed, for every packet, there is a path from the root to a
leaf of the automaton that determines whether the packet should be allowed or denied. In
addition, every path is unique; thus, all the paths (i.e., generated rules) are not conflicting.
(2) Policy Inference: The priority elimination step could generate a massive number of rules
as the automaton could become overly complex depending on the scenario. This step first
defines a complexity metric between two representations of the same flattened ruleset and
aims to reduce the complexity of the generated flattened rules.

In order to reduce the complexity of the rules, one must merge them so to minimize
complexity. Thus, the problem is to generate an equivalent representation of the ruleset with
minimum complexity. This problem is equivalent to the minimum set cover problem, which
is NP-complete. However, exploiting the properties of the flattened rule structure makes the
problem tractable. We refer the interested reader to [229] for more details.

3.2.2 ML-Based Firewall Systems

Ertam et al. [68] proposed the idea of training an MLmodel that enforces the firewall policy
instead of mining the ruleset. In particular, they conducted an experiment in which they
trained a multiclass SVM using firewall log data. The firewall log data are composed of
packet header features such as involved ports, bytes sent and received, and elapsed time.
The target (i.e., the labels) is the action field, and it has four classes: allow, deny, drop, and
reset-both. The difference between deny and drop is that in the former case, a message will
be sent back to the sender (typically a “Destination Unreachable” ICMP message) letting
it know that the packet is not delivered, whereas in the latter case, the firewall will silently
drop the request without sending any notification message. Ertam et al. have experimented
with SVM Linear, SVM Polynomial, SVM RBF, and SVM Sigmoid, achieving F1 scores
of 75.4, 53.6, 76.4, and 74.8%, respectively.

Aljabri et al. [12] have conducted a similar study, experimenting with a broader range
of ML models: K-Nearest Neighbors, Naive Bayes, J48, Random Forest (RF), and Neu-
ral Networks. At the same time, they performed feature correlation, and they found the
most crucial feature that highly influences the model classification. They found that the RF
classifier produced the highest accuracy of around 99.11%.
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3.2.3 Network Security Policies for Traditional Networks

Drozdov et al. [70] proposed OLAPH, a system for online learning of anomaly detection
(AD) policies from historical data. Their approach is based on symbolic learning. Symbolic
learning refers to the learning of high-level knowledge, such as knowledge expressed as
rules and logic programs like answer set programs [140, 141]. Such rules and programs
thus use symbols, such as variables, and express relevant semantic relationships among
different entities. Two advantages of symbolic learning are that (1) it requires less training
data than other ML techniques; and (2) it is explainable as the generated expressions are in
human-readable form.

OLAPH uses FastLAS [140] for learning the policies. FastLAS is a system for learn-
ing answer set logic programs, a special form of logic programs. FastLAS thus returns a
set of logical rules. An example of such a rule is allow ← source_address(192.168.5.5),
source_port(5050), which implies that all traffic originating from 192.168.5.5 at port 5050
should be allowed. Of course, rule expressions can grow arbitrarily large, in that they may
include large number of predicates; thus, the attribute search space could be huge. In Fast-
LAS, one has to define the language bias, which defines which attributes may be used in the
head of the rules and which ones in the body of the rules. We refer the readers to [140] for
more details.

The input data are access requests, each of which may contain an arbitrary number of
attributes. The usermust provide a hyperparameter that sets themaximumnumber of features
that FastLAS should select. Once the data are fed into FastLAS, the system applies a feature
selection process where it identifies the most important features that significantly impact
the decision (allow or deny). This process ranks features by kurtosis, which measures the
tailedness of a feature’s distribution.

The next step is to generate the learning task for FastLAS. FastLAS has to search the
entire space of all the possible attribute combinations to learn the positive rules. The more
the attributes, the larger the search space is. Thus, it is a typical combinatorial problem,
which could require a very long time to return the results. OLAPH addresses this challenge
by applying a domain-specific scoring function that the user must provide. Then the problem
turns into an optimization problem, as FastLAS tries to find a solution (i.e., a set of symbolic
rules) that minimizes the score.

The final component of OLAPH is online learning, where the system implements a
procedure for updating the policy over time. Policy updates are an essential part of the
process as the underlying requirements may change for several reasons, such as application
updates or device replacements. OLAPH implements this mechanism by computing the
distance between incremental windows (i.e., batches) of requests and the training set used to
learn the current policy. This distance is called confidence level and is used to compute the
relearn indicator. OLAPH uses the relearn indicator to determine when the policy should
be relearned. Each rule is converted to a numerical vector using one-hot encoding, and the
distance is the minimal value of the Manhattan distances between the one-hot vector and
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each of the one-hot vectors of the rules in the current training set. Then the indicator is
computed as the mean of the maximum distances across the windows.

The relearn algorithm extracts two threshold values from the standard deviation of the
learn indicator, which forms a range. If the relearn indicator falls out of that range, then the
relearn process is initiated based on the new windows. FastLAS generates the new rules and
sends them to a user administrator for review.

The experimental results show that OLAPH achieves a 0.8 AUC score. We refer the
interested reader to the experimental section of [70] for more details on the experiments.

3.2.4 Network Security Policies for IoT

Over the years, IoT networks have become increasingly popular in many different environ-
ments, such as smart buildings, smart cities, smart homes, and even smart grids. IoT devices
(smart locks, cameras, lighting, and sensors) are highly heterogeneous and from different
vendorswith proprietary control platforms (such as PhilipsHue andSmartThings). Such lim-
itations led to interoperability issues in operations across different platforms (i.e., domains),
including access control. The second challenge for the security policy learning task is that
IoT users may be reluctant to share their datasets (e.g., access logs) or choose to share part
of the data. Training on incomplete training data results in problems with policy correctness
and completeness of the learned policy.

Li et al. [148] have proposed an approach to address the two aforementioned challenges.
They proposed FCAD, a federated learning-based cross-domain access decision method.
FCAD eliminates the need for access control logs exchange between the domains. In partic-
ular, domains train their ML models using local data, and then a global model is developed
by obtaining the calculated gradients from the local model. In other words, domains share
only the computing gradient values, not local access control data.

In the first step, each participant (i.e., domain) generates its own model and then shares
the model parameters (i.e., model weights) with the central server. FCAD uses a sequential
model composed of four interconnected neural network structures where the first three use
ReLU and the last uses Sigmoid activation functions. The last layer predicts the access
request result (i.e., allow/deny). The authors have used the binary cross-entropy as the loss
function. The training set used is the DS2OS (dataset #6 in Appendix).

The central server uses the model parameters received from each participant and updates
the global model using the gradient aggregation scheme. This scheme measures the contri-
bution of each participant. The higher the contribution, the more influence the participant
has on the training of the federated model. The training of the federated model continues
until the proposed loss function has a value that is less than a user-specified hyperparameter
θ . The experimental results show that FCAD achieves a prediction accuracy of 83.6%.
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3.3 Privacy Policy Contradiction Identification

Andow et al. [16] propose PolicyLint, a privacy policy analysis tool that identifies contra-
dictions in privacy policies by simultaneously considering negation and varying semantic
levels of data objects and entities. PolicyLint automatically generates ontologies from a large
corpus of privacy policies and uses sentence-level NLP to capture both positive and negative
data collection and sharing statements. Figure3.2 shows the steps followed by PolicyLint.

The first step is ontology generation, for which PolicyLint uses a semi-automated and
data-driven technique. It breaks ontology generation into three main parts. First, PolicyLint
performs domain adaptation of an existing model of named entity recognition (NER). NER
is used to label data objects and entities within sentences, capturing not only terms but also
the surrounding context in the sentence. Second, PolicyLint learns subsumptive relationships
for labeled data objects and entities by using a set of lexicosyntactic patterns with enforced
named entity label constraints. Last, PolicyLint takes a set of seed words as input and
generates data-object/entity ontologies using the subsumptive relationships discovered in
the prior step.

The second step is the policy statement extraction, which generates a concise representa-
tion of a policy statement to allow for automated reasoning over this statement. PolicyLint
represents data sharing and collection statements as a tuple (actor, action, data object, and
entity) where the actor performs some action on the data object, and the entity represents the
entity receiving the data object. PolicyLint extracts complete policy statements from privacy
policy text by using patterns of the grammatical structures between data objects, entities,
and verbs.

The last step for PolicyLint is to use ontology and extracted policies to detect contradic-
tions. The first step is to simplify the policies by capturing shared information as a collection.
For the second step, privacy policies are modeled as a set of simplified policy statements.
A contradiction occurs if two policy statements suggest that entities both may and may not
collect or share a data object. Contradictions have two primary impacts when privacy poli-
cies are analyzed. First, the contradictions may result in incorrect automatically generated

Fig. 3.2 Overview of PolicyLint [16]
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decisions. Second, contradictions may impact a human analyst’s understanding of a privacy
policy, such as containing misleading statements.

PolicyLint is a really interesting approach for finding contradictions in policies. Poli-
cyLint is built on top of current NLP techniques for NER and parsers. Since the paper’s
publication by Andow et al., the NLP community has made significant progress in tackling
these tasks by introducing transformers and large languagemodels.Maybe PolicyLint would
perform much better if it were updated with state-of-the-art NLP techniques. Furthermore,
as PolicyLint has false positives, this issue can also be addressed by using state-of-the-art
NLP models. This might be interesting future work.

3.4 Adaptive Security Policy Learning Systems

Policy adaptation is a critical requirement in the policy learning pipeline. Policies evolve
over time due to changes in the underlying environment. Relevant use case scenarios include
changes in user or resource behavioral patterns (e.g., changes in the number of accesses,
access request types, and generated network traffic) due to newly introduced users and
resources or changes in role assignments. Another consideration is the availability of more
training features (i.e., attributes), such as location information which may substantially
improve the completeness and the correctness of the learned policy. Therefore, the training
of the security policy learning model cannot be a one-time operation, but it must be a
continuous process.

Karimi et al. [130] proposed ABAC-RL, an adaptive access control model based on
Reinforcement Learning (RL) for IoT. RL does not require much pre-labeled data compared
to supervised learning techniques. Also, the deployed agent learns from the environment in
which it is deployed and can adjust to dynamically changing conditions.

ABAC-RL has two components: the Authorization Engine (AE) and the environment.
The AE includes an agent RL agent that automatically adapts the ABAC policy using a
feedback control loop while interacting with the environment. The environment comprises
the users interacting with the IoT devices and the system administrators. Initially, the agent
may have little or no knowledge regarding existing authorization policies. Then the agent
learns the policies using a reward/penalty scheme from its environmental actions.

When the AE receives an access request, it checks the system’s state and decides the
action (i.e., permit/deny) based on the learned policy. Each state in the system is composed
of four attribute tuples: attributes of the user requesting access, attributes of the object,
environmental attributes, and the operation to be executed on the object. Once the AE has
executed the action, the agent receives a reward or penalty based on the feedback provided
by the users and adapts the learned policy accordingly. The agent is rewarded if the users
agree with the authorization decision or penalized in the other case. The reward is calculated
using the predefined reward function and affects the agent’s future decisions. The authors
proposed the following reward function (rt ):
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rt =
∑

w∈owner(ot )

λT P · T Pw + λT N · T Nw − λFP · FPw − λFN · FNw (3.2)

where

• rt is the computed reward at step t .
• owner(ot ) returns all the owners/admins of the object on which the user requests access

at time step t .
• λT P , λT N , λFP , λFN are constant weights.
• T Pw is 1 if the agent correctly permitted the access; 0 otherwise.
• FPw is 1 if the agent incorrectly permitted access; 0 otherwise.
• FNw is 1 if the agent incorrectly denied access; 0 otherwise.
• FNw is 1 if the agent correctly denied access; 0 otherwise.

Defining a good reward function is extremely important for effective agent training.
However, the agent will become as good as the training access requests it receives. If the
set of unseen states (i.e., examples) is large, then the agent is expected to perform poorly
on future requests. The authors have proposed an approach to reduce the space of unseen
states. The idea is that the states are not necessarily independent, and there could be some
that are actually related. The admins need to predefine hierarchical attribute relations used in
identifying related states. Informally, two states are related if all their corresponding attribute
values except one are the same. For instance, suppose that two access requests were made
where all attributes are the same except the “age_group”. The access was granted for the
first request where the age_group of the requester is a teenager. For the second, the requester
is an adult. If the admin has defined a relationship between the value “adult” and “teenager”
where the “adult” is an ancestor of “teenager”, then the access should be granted as well.

Argento et al. [18] proposed ML-AC, which uses ML techniques to adapt the access
control policy based on users’ behavioral patterns. For example, suppose the following
policy is enforced:

<Rule 3: userA (ID: risk_analyst),
resource (ID: RecordsDatabase-1),

read, permit>

The rule states that user A can read data from the records database. At the same time,
user A can perform an arbitrary amount of reading operations on the database. For several
reasons, such operations could be anomalous (or suspicious); for example, user A is fetching
too much data or performing this action outside business hours. ML-AC aims to augment
the policy by learning contextual features such as the number of accesses and the amount
of accessed data.
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ML-AC builds a behavioral model for each user, which consists of attributes of the access
requests (i.e., user, resource/object, and action) as well as contextual information available to
the access control system (e.g., location, time of day, and bytes sent). Behaviors are grouped
into classes of interactions where each class has instances of normal user behavior. Anything
outside those classes is considered abnormal. Random Forest (RF) [35] classifiers are used
for each interaction class to predict whether a new instance (i.e., access request) belongs to
a user class of interaction. In particular, each RF is an ensemble of Decision Trees (DT),
each modeling the conditions that identify normal behaviors. Each DT outputs rules in the
form antecedent ⇒ consequent as shown in [183]. The antecedent expresses the rules in
the form of logical conjunctions, while the consequent is either normal or abnormal.

Example

The following is an example of the DT output:

<Rule 4: userA (ID: risk_analyst),
resource (ID: RecordsDatabase-1), read, #read<20, #byte<1 GB

permit>

The augmented rule has two additional attributes, #read and #byte, based on the behavioral
observations made by the DT. The access will be permitted if the user makes up to 20
requests fetching at most 1 GB of data within a specific time frame.

Once the behavioral profile of users is constructed, the next step is to monitor compliance
with the policies. Policy monitoring must be performed for two crucial reasons. First, to
detect any anomalous behaviors by users and react by quarantining users. Quarantine actions
could limit a user’s ability to access some resource or deny any action until the administrator’s
intervention. Second, policies naturally evolve over time due to several factors, such as
promotions of employees that would thus need access to other types of resources and perhaps
not require access to resources accessed before the promotion. For those reasons, an ML-
based access control system must continuously look for changing behaviors.

Argento et al. [18] use the Ollinda clustering-based approach [216] to monitor policy
compliance and update the policy. They use the k-means algorithm to formulate behavioral
clusters and detect new ones.
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3.5 Research Directions

Most approaches proposed for policy learning typically consider only two types of actions,
namely allow or deny. However, the action set could be more extensive. For example, when
suspicious access requests are identified, instead of completely denying access to the net-
work, a policy could allow access but route the traffic through a suitable network security
function (NSF) such as an intrusion detection system (IDS). Then, access decisions could
be based on taking into account the feedback from the IDS.

Such a scenario leads to the following research directions:

• Dynamic NSF orchestration policies: We need an approach to decide when a NSF or
chain ofNSFs shouldmediate a particular trafficflow. In otherwords, deploy theNSFonly
when needed. ML techniques could be instrumental in solving this task. One could train
an ML classifier on an IDS dataset and then run the observed flow through the classifier
to see whether it is anomalous. In such a case, a dynamically generated policy must be
enforced to route this flow through the IDS. A benefit of such an approach is minimizing
the security overhead introduced by the NSFs and improving network performance.

• Policy engine and enforcement: The output obtained from NSFs results in valuable
network awareness data, for instance, when a firewall has identified suspicious traffic.
Such data should be sent to the policy engine to generate dynamic policies (e.g., route
traffic through IDS, or drop the communication). In addition, features extracted from
anomalous traffic flows could be used to enhance the learning process and thus improve
the efficacy of the employed ML techniques and evolve over time. A challenge here is
to see how to utilize the knowledge extracted from the different NSFs along with any
training datasets and develop a suitable ML architecture.

• Integration with Software-Defined Networks (SDNs): The foundation laid out by
SDNs makes them a suitable environment for the policy engine. The policy engine could
be implemented as a network application running on an SDN controller. Then one would
need to design and implement interfaces (or protocols) to facilitate the communication
of the NSF with the controller (e.g., see [77]). The policy engine could utilize such com-
munication interfaces to configure the NSFs and collect their output automatically. The
policy engine module needs to take action by generating appropriate policies and enforc-
ing them in the data plane. An example policy could be to route the communication of
endpoints through a NSF. Then the controller should collect NSF results and decide how
to handle the flow.
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• Attack management policies:Once an attack has been identified, a keydecision is related
to the steps to contain/stop the attack. Assuming a pool of potential actions, deciding
which action or set of actions to perform highly depends on desirable objectives. For
example, denying all communications is less viable when critical infrastructure services
are involved. Once again, ML approaches could make a step toward solving such a
problem. For instance, RL techniques could be trained on several attack scenarios and,
given network awareness information, could decide which actions to take.
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Researchers in academia and industry have proposed numerous approaches to automatically
analyze software to detect bugs and vulnerabilities. Approaches can be divided into twomain
categories: static analysis and dynamic analysis. Static analysis aims at analyzing software
without executing its code. It is usually performed by dissecting the different resources of
a binary file or source code and analyzing each component in detail to expose bugs and
vulnerabilities. Dynamic analysis refers to techniques that evaluate software correctness by
dynamically executing the target software. Such techniques are performed by observing
the program’s behavior while running and monitoring its activities and processes. Dynamic
analysis objective is to spot anomalous events that can expose the existence of vulnerabilities
and unintended software behaviors. However, it is important to note that to ensure that
software is secure, also the specifications need to be analyzed to identify mistakes, such as
inconsistency and underspecifications.

In the chapter, we first present approaches that use ML techniques for static analysis. We
then focus on fuzzing techniques, which arewidely used for dynamic analysis. Because of its
popularity, many approaches have been proposed to enhance fuzzing with ML techniques—
many of which focus on the problem of fuzzing coverage. We then discuss approaches using
natural language processing (NLP) techniques for the analysis of software specifications and
other software documentation written in natural language. This is an important emerging
area as specifications often consist of large-scale documents written in natural language, as
is the case for example of the 5G cellular network standard specifications. NLP techniques
allow one to quickly identify issues in the specifications. However, NLP-based analysis of
specifications is also useful for other tasks, such as identifying risks in protocols and attack
generation, which we also discuss in this chapter.
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4.1 Static Analysis

Static analysis refers to techniques and tools designed to extract facts from a “program’s
source code, without executing the program in question” [227]. In the context of software
security, facts extracted by using static analysis include misuse of cryptographic APIs, taint
analysis, which identifies andmonitors the use of values that could be tainted with malicious
data, and bounds checking, which ensures that accesses to arrays or memory locations fall
within the bounds that the programmer intended. Because of its relevance, the area of static
analysis has been extensively investigated over the years, andmany tools are today available.
We refer the reader to [228] for an interesting historical perspective and an outlook toward
the future, and to [74] for a detailed comparison of industrial static analysis tools.

In what follows, we first summarize the results of a recent survey that covers the applica-
tion ofML techniques to source code analysis for different tasks, including the identification
of vulnerabilities. We then summarize three recent approaches which useML in a novel way
compared to other approaches.

4.1.1 A Survey onMachine LearningTechniques for Source Code
Analysis

Sharma et al. [209] recently published a comprehensive survey onML techniques for source
code analysis. The survey reviews a corpus of 479 papers in the existing literature on ML
techniques applied to 12 different source code analysis categories: code completion, code
representation, code review, code search, dataset mining, general, program comprehension,
program synthesis, quality assessment, refactoring, testing, and vulnerability analysis. In the
following,webrieflyoverview the approaches for someof the source code analysis categories
following the survey structure. We primarily focus on the categories more relevant from a
software security standpoint, trying to provide some insights into the high-level ideas. Most
approaches follow the typical ML pipeline: dataset collection, feature extraction, and model
training.

Code representation.One cannot directly give source code as input toML algorithms as
they are mainly designed to work with numerical representations. Thus, different techniques
have been proposed to address this challenge. Such techniques typically convert the source
code into an intermediate representation, apply a tokenization mechanism, and then produce
a vectorial representation. Examples of intermediate representations are Abstract Syntax
Tree (AST), Control Flow Graph (CFG), Inter-procedural Value Flow Graph (IVFG), and
LLVM-IR (LLVM Intermediate Representation). In some cases, the tokenization is directly
applied to the source code. Once the source code is translated into an ML-compatible rep-
resentation, the approaches in this category mainly employ DL techniques, such as LSTM
and GRU, DNN, and CNN, to learn a model of the source code. Some approaches also use
combinations of multiple models.
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Testing. ML techniques for source code testing aim to investigate the target code to
detect functional or non-functional bugs. Most approaches in this category leverage existing
datasets, such as the PROMISE [182] dataset. Some approaches build approach-specific
datasets from publicly available GitHub repositories. Later in this section, we also present
in more detail a unique approach by Ahmadi et al. [3] that, instead of using external datasets,
leverages the target code itself as a dataset to train the ML model. The extracted features
typically represent meaningful code metrics, such as the number of lines of code or of
function calls. Several approaches use techniques to reduce the feature space, such as PCA
and Sequential Forward Search (SFS). Often, this step also involves translating the code
into an ML-compatible code representation, as discussed above. Finally, the approaches
train MLmodels to detect buggy code. The most popular techniques here include traditional
ML models, such as Decision Tree, Random Forest, Support Vector Machine (SVM), and
AdaBoost, as well as DL models, such as RNN, among which LSTM is the most common,
and CNN.

Program synthesis. Among program synthesis techniques, the survey primarily focuses
on program repair, which aims to patch erroneous code automatically. Approaches in this
category often build their own dataset by mining existing software project revisions from
open-source libraries and repositories (e.g., GitHub). Some approaches collect datasets of
buggy code and manually introduce the fixes using known fixes corpus. All approaches
aim to build a dataset containing pairs of buggy and corresponding fixed code components.
For feature extraction, most approaches use similarity metrics to detect similar bug patterns
based on word embeddings (e.g., Word2Vec) or structure-based representations (e.g., AST).
Traditional ML techniques for program synthesis include Decision Tree, Random Forest,
SVM, and Logistic Regression, whereas approaches that employ DL use RNNmodels, such
as LSTM.

Quality assessment.ML techniques for quality assessment aim to investigate the target
code to detect code smell and replication. Code smells are a result of poor or misguided
programming; they typically stem from the failure to write the code in accordance with
necessary standards. Datasets for quality assessment are typically generated by manually
annotating existing collections of code smells and replication. Few approaches leverage
existing tools to automatically detect code smells and label their dataset. For code smell
detection, the most common feature selection processes focus on object-oriented metrics,
such as the number of lines of code, number of methods, function parameter count, and
depth of nested conditionals, whereas for code replication, the features are typically based
on the textual properties of the source code (e.g., word embeddings). Traditional ML tech-
niques (e.g., Decision Tree, Support VectorMachine, Random Forest, Naive Bayes, Logistic
Regression, Linear Regression, Polynomial Regression, andMulti-layer Perceptron) andDL
methods (e.g., ASN, DNN, CNN, and RNN) have been proposed for both code smell and
code replication detection. Some approaches also experiment with ensemble methods, such
as Majority Training Ensemble and Best Training Ensemble, for code smell detection.
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Vulnerability analysis. ML models for vulnerability analysis aim to identify potential
vulnerabilities in source code. Some of the approaches in this category use existing labeled
datasets for PHP, Java, C, C++, and Android, whereas others generate their own datasets
by collecting open-source applications and manually inserting vulnerabilities. The feature
selection is rather diverse across the approaches and can be categorized into source code
metrics (e.g., number of instructions and number of blank lines, and inheritance tree depth),
data/control flow (e.g., CFG and AST), repository and file metrics (e.g., programming lan-
guage, fork count, commits number), and code and text tokens (e.g., character count and
diversity,if,while, and for count and complexity). As for the other categories,MLmod-
els for vulnerability analysis range from traditional ML models, including Naive Bayes,
Decision Tree, Support Vector Machine, Linear Regression, Decision Tree, and Random
Forest to DL models, such as CNN, ANN (specifically BP-ANN), and RNN (LSTM and
Bi-LSTM).

4.1.2 Recent Approaches

An interesting ML-based approach for static analysis is by Ahmadi et al. [3]. The approach,
referred to as FICS, leverages a two-step clustering model to detect code inconsistencies
using the target source code itself (note that code inconsistency refers to code snippets
that are semantically and logically equivalent but different in their implementation). FICS
first converts the source code into an LLVM intermediate representation and then applies
intraprocedural data flow analysis to extract code pieces in the form of Data Dependency
Graphs (DDG). Such code pieces, referred to as constructs, represent self-contained sub-
routines included in a function. The nodes of the constructs represent the code instructions,
whereas the edges express the hierarchy of the instructions. Subsequently, FICS abstracts the
constructs to a more general representation by removing constants and literals to better sup-
port clustering. The first step of clustering aims to detect similar constructs. To do so, FICS
employs an approach referred to as bag-of-nodes, namely the constructs are represented only
using their nodes (i.e., instructions), thus ignoring the edges. Ahmadi et al. suggest using
the connected-component algorithm as it achieves better performances with an unknown
number of expected clusters. For this step, the cluster similarity threshold is between 0.8
and 0.95, as the goal is to cluster together similar but not necessarily equal constructs. For
the second step of clustering, FICS reintroduces the edges in the constructs representation
and employs Graph2Vec, a graph embedding mechanism, to translate the constructs into a
vectorial representation. Then, FICS independently performs clustering within each cluster
identified in the first step. For this step, the authors suggest using a very high similarity
threshold (“1 or very close to 1”) as they aim to separate constructs that are similar but not
exactly the same. The output is a set of similar but different constructs that can potentially
represent code inconsistencies. Finally, a manual analysis is required to discern false incon-
sistencies from true ones. The advantage of the approach by Ahmadi et al. is that it leverages



4.1 Static Analysis 51

the source code itself. Thus, unlike other approaches addressing the same problem, it does
not require any dataset, is not limited to any specific type of inconsistencies, and can detect
one-to-one inconsistencies. However, the approach requires a large codebase for the ML
model to be effective, and incorrect code sections can only be detected if there is a correct
version of the same sections in the code, thus generating an inconsistency.

Another example of a ML-based static analysis is represented by the tool GLACIATE
[151], which has been designed to detect flaws related to the implementation of the basic
login-password authentication in Java mobile applications. More specifically, GLACIATE
detects vulnerabilities related to (i) insecure password transmission, that is, passwords that
are not encrypted, or encrypted but not hashed before encryption; (ii) lack of server valida-
tion, that is, the server certificate is not properly validated (or not validated at all), or the
host name on the certificate is not validated against the host portion of the server’s URL;
(iii) repeatable timestamps for timestamp-based authentication. Given only a small amount
of training data, GLACIATE creates detection rules automatically. It generates enriched
call graphs for the apps and groups similar enriched call graphs into different clusters, and
mines the patterns of flaws in each cluster to obtain templates of insecure implementation.
GLACIATE then uses a forward and backward program slicing to locate the code part of
password authentication in an Android app, and compares it with the obtained templates to
check whether the implementation is insecure.

An interesting novel approach that enhances the efficiency of static analysis with the use
of ML is represented by the Goshawk tool [150]. Goshawk has been designed with the goal
of enhancing the accuracy of static analysis in the presence of memory bugs due to custom
memory allocation, while also reducing the time required to statically analyze very large
code bases. To address such a goal, Goshawk uses the concept of structure-aware and object-
centric memory operation synopsis (MOS). A MOS is a tuple that comprises a primary
function name, a primary property (allocation or deallocation), and a list of dynamically
managed memory objects occurring in either a return value or parameters of the function.
It summarizes the structural relations of memory objects in memory management (MM)
functions. Because how amemory object should be operated on by anMM function depends
on its structure, a MOS focuses on the object (hence object-centric) and its structure (hence
structure-aware). Moreover, a MOS not only captures the structure of memory objects but
also describes the function action (allocation or deallocation) against each object. By using
MOS, a bug detection tool does not need to explore the internal implementation of all MM
functions but can still precisely model the dynamically managed memory objects.

A significant requirement forMOS-enhancedbugdetection is, however, to first identify all
MMfunctions, as these functions are the basis ofMOS. To address such requirements despite
the fact MM functions follow various implementation styles in different kinds of source
code projects, Goshawk uses an accurate and yet very efficient identification technique that
combines natural language processing (NLP) and data flow analysis. The Goshawkmemory
function identification technique is organized according to two main steps. The first step
uses an NLP-assisted classification against function prototypes in source code to categorize
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functions as MM-relevant or MM-irrelevant. The insight here is that a function prototype is
often human-readable, and the natural language semantics of the prototype usually reflects
the functionality. Experiments have shown that by using this semantic information, Goshawk
has been able to approximately classify MM functions in a short time even out of millions of
functions. The second step applies a data flow analysis against the implementation of each
MM-relevant function identified by the first step. The data flow analysis checks whether
the function does indeed perform memory allocation/deallocation using known memory
allocators/deallocators (which are previously defined manually). The combination of those
two steps achieves both efficiency and accuracy. Efficiency is achieved because the NLP
analysis prunes irrelevant functions (i.e., functions not related to MM), for which a detailed
analysis is thus not required. Accuracy is achieved because the MM-relevant functions are
analyzed in detail by using a static analysis.

The NLP-assisted classification starts from parsing the source code of the tested project
to extract all function prototypes, and chooses the prototypewith at least one pointer (either a
return value or a function parameter). The extracted prototypes are then sent to a ULM-based
segmentation process [138], and each is split into a list of subwords. Then, Goshawk converts
the list of subwords into a numeric vector by utilizing a Siamese network [37] with a trans-
former encoder [235] trained with manually labeled MM and non-MM functions. Finally,
Goshawk computes a similarity score between the numeric vector of a function and three
reference vectors, which separately indicate memory allocation function, memory deallo-
cation function, and non-MM function type. According to the similarity score, Goshawk
classifies the tested functions as one of the above types. We refer the reader to [150] for
details about the model training.

Experimental results show that Goshawk is highly effective. For example, Goshawk has
been able to detect 40 new memory bugs in the Linux Kernel.

4.2 Fuzzing Techniques

Fuzzing is an approach that feeds randomly generated inputs to the target software and
dynamically evaluates its behavior. New inputs are continuously produced as mutations of
previously generated inputs and fed to the target software until the fuzzing loop is interrupted.
Malformed inputs, namely inputs not compliant with the expected input syntactically or
semantically, can trigger unexpected behavior and uncover potential vulnerabilities. For
instance, one of the most common scenarios is a malformed input that causes a crash in the
target software. Amalicious entity could leverage this type of input to carry out DoS attacks.
In what follows, we first give a high-level overview of the main steps involved in a fuzzing
testing framework and then discuss how ML techniques have been used to improve each
step (see Fig. 4.1). For detailed information about each step, we refer the reader to [152].
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Fig. 4.1 Fuzzing main steps

4.2.1 Fuzzing Steps

4.2.1.1 Seed Generation/Selection
Thefirst step of the fuzzing process consists of selecting a seed corpus fromwhich to generate
the inputs or testcases. Typically, the initial corpus can be randomly generated, obtained from
a set of valid inputs to the program, or generated according to a given grammar. After the
first selection, the fuzzing framework selects seeds from the set of previously generated
testcases based on a feedback function that allows one to select testcases more likely to
execute unexplored portions of the target software code. Once the seed corpus is selected,
the fuzzing processmoves to the second step, that is, seedmutation. Note that when selecting
the new seeds, the fuzzing framework can also choose (typically randomly) not to mutate
any previous testcases, but to generate entirely new seeds. This method allows one to avoid
situations in which the fuzzing framework keepsmutating the same inputs without, however,
never really moving forward in the exploration process.

4.2.1.2 SeedMutation andTestcase Selection
In the second step, the fuzzing framework mutates the selected seeds to generate potentially
malformed testcases. Several mutation strategies have been proposed to alter the structure
and content of the selected seeds. Some of the most commonly used mutation strategies in
state-of-the-art approaches, such as AFL [252] and its evolution AFL++ [79], change the
seeds at the bit/byte level and include bit flips, byte flips, arithmeticmutation, block deletion,
block swapping, etc. Once the testcases are generated, the fuzzing framework runs the target
software with each testcase and evaluates the software execution.

4.2.1.3 Execution andMonitoring
In this step, the fuzzing framework executes the target software using each selected test-
case as input. As the testcases are randomly generated, their syntax and semantics can be
significantly diverse and potentially execute different sections of the target software. Some
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testcases might be quickly discarded, while others might trigger unexpected behaviors. To
capture such unexpected instances, the fuzzing framework monitors the target software exe-
cution and signals anomalous events (for instance, through logging mechanisms). Execution
information is then passed to the feedback function to select the corpus seeds for the subse-
quent execution. Monitoring for anomalous events is a critical task as it can expose existing
bugs and detect potential software vulnerabilities.

4.2.1.4 Feedback (Fitness) Function
The feedback, or fitness function, is a key element in the fuzzing framework in that it allows
one to evaluate the execution results of each testcase and detect the testcases that enable better
exploration of the target software. One can opt for different feedback functions based on
howmuch information about the software is available. One of themost popular techniques is
code coverage, namely the amount of target code covered during the execution of a testcase.
The intuition is that testcases that increase the code coverage are more likely to lead to
the execution of additional code and, consequently, expose higher numbers of bugs and
vulnerabilities. However, in some cases, it is not possible to have access to code coverage
data, and it is necessary to employ techniques that infer execution information based on
correlational measurements (e.g., execution time). According to the feedback function, the
fuzzing framework selects the new corpus seeds, and the fuzzing loop starts again.

4.2.1.5 Bug Analysis
While fuzzing aims to expose bugs, it is also critical to analyze the exposed bugs and
potentially understand their cause. Their understanding can help pinpoint the source of
the bugs and also reason about potential exploitability. This could help to automatically
evaluate if a bug is, in fact, exploitable and thus represents an actual vulnerability of the
target software. Currently, this task is mostly performed manually, which entails potential
errors and oversights.

4.2.2 ML-Based Fuzzing

We now discuss theML techniques proposed for each step of the fuzzing process separately.
Note that when applying ML techniques, the target domain is critical to the choice of the
technique. For instance, when considering one step of the fuzzing process, the techniques
used for document parser fuzzingmight differ entirely from those used for fuzzing a network
communication protocol.
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4.2.2.1 Seed Generation/Selection
Generating and selecting high-quality corpus seeds can significantly improve the fuzzing
performances when compared with merely randomly generated seeds. The reason is that
the quality of the testcases produced from the seeds depends on the quality of the seeds and
can avoid numerous fruitless fuzzing loop executions that do not explore any interesting
software code sections. Thus, several ML-based approaches have been proposed to enhance
seed generation and selection.

Reddy et al. [187] propose an approach to automatically generate program inputs that
are both diverse and valid, leveraging an on-policy reinforcement learning (RL) algorithm.
They assume the presence of an input generator specific to the target program input domain
and its implementation to be accessible to introduce additional RL-related instructions. The
generator constructs each input based on a sequence of choices taken at choice points. Thus,
the intuition is to model the problem of generating diverse valid inputs as an RL problem as
follows: the choices represent the typical actions in an RL problem, whereas the sequence
of previous choices defines the state. Thus, the agent, referred to as the learner, aims to
maximize the reward function by making the choices that lead to the best inputs, namely
inputs with the highest potential to improve the feedback function (e.g., code coverage).
Reddy et al. define the reward function as a combination of three weights associated with
whether the generated input is unique (i.e., different from all previous ones), valid, or invalid.
The first two weights are positive numbers to promote diverse and valid inputs, whereas the
last is negative to demote fruitless inputs. As the fuzzing process runs, the learner learns
how to guide the generator to construct the best possible inputs based on the feedback of
previous inputs. Based on their insights, Reddy et al. implemented RLCheck, a framework
to generate diverse valid inputs based on the on-policy Monte Carlo [220] RL approach.
RLCheck outperforms similar existing approaches significantly, proving the tremendous
impact RL can provide in generating effective inputs for fuzzing frameworks.

Wang et al. [237] propose Syzvegas—an ML-based extension of the kernel fuzzing
approach Syzkaller [90]. They recognize two fundamental tasks in kernel fuzzing: (1) select-
ing the most rewarding fuzzing task between seed generation, seed mutation, and seed triage
(evaluate and minimize the current seed to ensure that the next mutation can achieve at least
the same code coverage); (2) selecting themost valuable seeds formutation.While Syzkaller
employs a fixed strategy, Wang et al. propose to model the problem as an adversarial multi-
armed bandit (MAB) RL problem, where the different tasks represent the “arms” of the
bandit. Such an approach allows Syzvegas to continuously learn as the fuzzing process pro-
ceeds and improve its decisions throughout time. The specific reward function is adjusted
according to the executed task and is based on achieved code coverage and execution time.
The objective is to maximize the former and minimize the latter. Wang et al. show that their
ML fuzzing approach can significantly outperform previous state-of-the-art kernel fuzzing
frameworks, such as Syzkaller and HFL [136].

Wang et al. [238] propose a similar idea to model the problem of selecting the best seed as
a MAB RL problem. However, they also use hierarchical seed clustering that allows them to
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incrementally cluster seeds based on code coverage information. The reward for each seed is
based on the code coverage achieved during its execution and its rareness, which expresses
how rarely other seeds hit the code hit by the seed in consideration. The intuition is that seeds
that hit rarely explored paths should be prioritized. Their fuzzing framework, referred to as
AFL-Hier, is compared against existing AFL-based frameworks over the programs provided
in the CGC benchmark and seems to perform significantly better than all its predecessors.

4.2.2.2 SeedMutation andTestcase Selection
Mutating the seeds to produce testcases that are more likely to increase code coverage is
fundamental to improving the fuzzing performance. A seed that previously increased the
code coverage might result in testcases that are immediately discarded if the wrong section
of the seed is mutated. Thus, ML techniques can help evaluate which section of the input to
mutate (where) and what mutation strategies to employ (how) to produce better testcases.

Rajpal et al. [185] explore whether it is possible to augment the AFL [252] seed mutation
strategy with ML learning techniques based on the previous mutation history of executed
testcases and code coverage data. They propose ML models that intelligently select specific
bytes to mutate in the selected seeds, leaving the other bytes unchanged. The goal is to
increase code coverageminimizing the risk of mutating the seed portions that enabled higher
code coverage in a previous iteration. They experimented with different models based on
LSTM and sequence-to-sequence methodologies. These two approaches can effectively
support long and varying-length inputs and handle the sequential nature of the input (a
sequence of bytes potentially correlated). Before mutating a seed, the fuzzing framework
queries the ML model to learn which seed bytes are useful and focus the mutation on the
bytes deemed not useful. The objective is to maximize code coverage. The model must be
trained on a dataset containing inputs and related code coverage information. To obtain such
a dataset, an approach is to run an initial AFL campaign on the target software and then
apply their augmented version of AFL. While the results are not overwhelming (only slight
improvements are reported compared to the base version of AFL), the proposed ML-based
approach improves the fuzzing mutation strategy. Given the results shown by Syzvegas and
AFL-Hier for the seed selection task, one could also experiment with a MAB reinforcement
learning model to dynamically enhance the fuzzing mutation strategy.

Similarly, She et al. [202] propose to use surrogate neural networkmodels to learn approx-
imations of real-world program branching behaviors through neural program smoothing and
leverage such models to guide and optimize fuzzing mutation strategies. They implement
their ideas in a fuzzing framework called NEUZZ. She et al. recognize that gradient-guided
(e.g., gradient descent) optimization has significant potential to aid fuzzing approaches.
However, they point out that it cannot be directly applied to fuzzing real-world programs as
they often entail discontinuous branching behaviors. In other words, a real-world program
often involves branching conditions on specific values with specific discrete output values.
These branching behaviors translate into gradient functions with ridges and plateaus that
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Fig. 4.2 NEUZZ program smoothing methodology

gradient-based techniques cannot efficientlymodel. Therefore, She et al. propose to leverage
feedforward neural networks (NN) to generate a smooth function of the program’s behavior
that can minimize the branching discontinuity. Given the complexity of the approach, we
report a figure from the original paper to better clarify the authors’ methodology. Figure4.2
displays different functions representing the code snippet on the right. The original function
image exposes the discontinuous behavior mentioned above, whereas the NN smoothing
image shows the function profile after the smoothing process.

The smoothed function is then suitable for gradient-guided optimization. The authors
highlight that NNs are advantageous as they can model complex non-linear program behav-
iors, support efficient computation of their gradients, and generalize and predict the program
behavior with unknown inputs based on known similar inputs. For their experiments, the
authors train the NN models using traces previously generated with existing fuzzing tech-
niques, such as AFL. The traces contain program inputs and related behaviors expressed as
exercised program control flow edges. A loss function based on distance metric is then used
to train the NN model. Once trained, NEUZZ leverages the NN model to identify mutation
locations in the fuzzing testcases that can maximize the number of program control flow
edges exercised and, thus, potentially expose a larger number of bugs. As NEUZZ executes,
the NN model also incrementally learns new program behaviors from new inputs. This neu-
ral program smoothing technique allows NEUZZ to outperform existing fuzzing approaches
on both program datasets, such as LAVA-M and CGC, and real-world programs, such as
strip and nm, also leading to 31 previously unknown bugs and two CVEs.

4.2.2.3 Feedback Function
Selecting the most effective corpus seeds for the next fuzzing iteration can increase the
probability of finding software bugs. Standard code coverage has twomain limitations: (1) it
entails no understanding of what type of code is covered, whichmeans that an increased code
coverage might not lead to more exposed vulnerabilities—for instance, increased code cov-
erage involving authentication routines might be more relevant from a security standpoint;
(2) It is not always possible to collect code coverage information, such as in cyber-physical
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system black-box fuzzing. Therefore, in some cases, it is necessary to resort to alternative
methods to collect information for the feedback function.

An interesting use of the ML technique to guide the fuzzing process through a domain-
specific feedback function is proposed by Cheng et al. [44]. They target cyber-physical
systems (CPS) by building an ML-guided actuator fuzzing. Their intuition is to use ML
algorithms to model the behavior of the target CPS based on physical data logs that charac-
terizes its normal behavior. Such anMLmodel is then used to determine which testcases are
more likely to cause the system to reach an unsafe state. In this case, a testcase represents
a possible configuration for the system, and the configurations are mutated to produce new
testcases. TheMLmodel of the CPS can predict the effects of the input configuration given a
certain system state. At the end of each execution, the feedback function computes how close
the predicted state is to an unsafe state. The predicted value is then used to select the best
candidates for the subsequent execution. For this domain, Cheng et al. suggest using LSTM
networks as these support the learning of longer term dependencies in the systems’ input
configurations and consequent state, and the support vector regression (SVR) [65] model
to handle continuous values. The training dataset is a log dataset that contains information
on the systems’ normal behavior in a format that highlights the relationship between the
systems’ states and configurations, and the evolution of the states. The two models seem to
perform very similarly in terms of the time necessary to reach the same unsafe states, so, for
this domain, the authors could identify no specific advantage in using one model over the
other. However, fuzzing based on either model significantly outperforms random fuzzing.
Through their work, Cheng et al. show thatML techniques can be used tomodel the behavior
of devices with limited capabilities based on previous execution logs. Although applying the
same approach for devices with much more complex capabilities (e.g., smartphones) could
be very challenging due to the model learning requirements, the authors’ research could be
extended to general IoT infrastructures and enable the fuzzing of IoT devices.

A novel ML-based approach to provide feedback has been recently proposed by
Han et al. [95] in the context of LDGFuzzer, a fuzzing framework to detect unsafe combi-
nations of control parameters for drones. Control systems of drones allow one to support
a variety of missions and deal with different flight environments via configurable control
parameters. However, such flexibility introduces vulnerabilities. One such vulnerability,
referred to as range specification bugs, originates from the fact that even though each indi-
vidual parameter receives a value in the recommended value range, certain combinations
of parameter values may affect the drone’s physical stability. To detect incorrect parameter
configurations, LDGFuzzer applies metaheuristic search algorithms for mutating config-
urations. One issue, however, is how to effectively and efficiently obtain feedback from
the tested configurations. Possible approaches can be based on realistic or simulated flight
executions. However, because of the large number of control parameters, each with a wide
value range, changing the parameter values to generate configurations and validating all
these configurations is inefficient. Completing the entire validation procedure may then end
up requiring hours or even days. To address such a challenge, LDGFuzzer uses a state gen-
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eration approach that leverages a machine learning algorithm to train a state predictor, based
on the LSTM technique, that based on the current position of the drone and a set of values
for the control parameters predicts the next drone state. The predictor is trained with a set
of flight logs collected from a simulation. However, this is cost incurred only once. Experi-
mental results show that the total time required by LDGFuzzer, from generating the data to
searching out 1,000 incorrect configurations, was only about 25 minutes, as the simulation
does not have to be repeated for each configuration.

4.3 NLP-BasedTechniques for Specification Analysis

NLP is a subfield of ML, mainly concerned with preprocessing and understanding human
language by machines. With the improvement of state-of-the-art NLP techniques by large
language models (LMs), such as BERT [63], and TL, a few approaches have been recently
proposed using specialized NLP tasks for security. Furthermore, as software specifications,
developer’s notes, and policy guidelines often include large amounts of unstructured text
that have to be manually analyzed, NLP techniques are now being investigated in order to
automatically carry out such analyses. In what follows, we discuss a few use cases of NLP
techniques for security. These cases range from the very rudimentary task of detecting some
privacy-related settings to the task of generating 4G LTE testcases and to the difficult task
of extracting formal models from the specifications.

4.3.1 Finite State Machine Extraction

Automated attack discovery techniques, such as attacker synthesis or model-based fuzzing,
provide powerful ways to ensure network protocols operate correctly and securely. Such
techniques, in general, require a formal representation of the protocol, often in the form of
a finite state machine (FSM). Unfortunately, many protocols are only described in English
prose, and implementing even a simple network protocol as an FSM is time-consuming and
prone to subtle logical errors. To address such an issue, Pacheco et al. [175] have developed
a data-driven approach for extracting FSMs from RFC documents. The approach is a hybrid
with three steps: (i) large-scaleworld representation learning for technical language, (ii) zero-
shot learning for mapping protocol text to a protocol-independent information language, and
(iii) rule-based mapping from protocol-independent information to a specific protocol FSM
(overview shown in Fig. 4.3). They apply this approach to six different protocols and use
the FSMs to synthesize attackers as a representative technique for protocol security.
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Fig. 4.3 Overview of FSM extraction from documents [175]

4.3.1.1 Technical Language Embedding
The first step for the NLP-based FSM extraction method is to learn the technical embedding
of the underlying language. In recent years, in the NLP community, pre-trained language
models (LM) provide the best way to derive contextualized representations of text, while
allowing the users to fine-tune these representations for any downstream task. The most
prominent example of such models is BERT [63]. BERT is built using a transformer, a
neural architecture that learns contextual relations between worlds in a word sequence. A
transformer network includes two mechanisms, an encoder that reads the input sequence,
and a decoder that predicts an output sequence. Unlike directional models that read the
input sequentially, transformer encoders read the whole sequence at once. To learn the
representations, BERT uses two learning strategies, masked language modeling and next
sentence prediction. In their approach, Pacheco et al. use the full set of RFC documents
that are publicly available to pre-train BERT. These documents cover different aspects of
computer networking, including protocols, procedures, programs, concepts, meeting notes,
and options. The resulting dataset consists of 8,858 documents and approximately 475M
words.

4.3.2 Zero-Shot Protocol Information Extraction

For the zero-shot protocol information extractions, Pacheco et al. aim to design a system
that can adapt to new, unobserved protocols without re-training the system. To achieve this
and parse the documents, they use a sequence-to-sequence model that receives text blocks
as input, and outputs a sequence of tags corresponding to a simple grammar. For each textual
unit in the input, a set of features such as vocabulary, capitalization patterns, logical and
mathematical expression patterns, and position features are learned. They consider twomod-
els to learn the sequence-to-sequence mapping: a linear model referred to as LINEARCRF,
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and a neural model based on BERT embedding which is called NEURALCRF. The output
for this step is an intermediate representation.

4.3.2.1 FSM Extraction
The intermediary representation obtained using the LINEARCRF or NEURALCRF model
is not an FSM. Therefore, Pacheco et al. design a simple algorithm that extracts states S and
transitions T by scanning the intermediary representation. The algorithm is based on several
heuristics, and we refer the reader to the original paper [175] for details on these heuristics.

4.3.2.2 Attacker Synthesis
For showing a use case for the extracted FSM, they show the attacker synthesis. LTL attacker
synthesis is a popular formal method problem, where a vulnerable part of a program or a
system is determined based on a property, typically expressed in linear temporal logic (LTL).
Suppose that P ‖ Q is a system consisting of some programs P and Q, and φ is an LTL
correctness property which is made true by the system. In the threat model where Q is the
vulnerable party of the system, the attacker synthesis problem is to replace Q with some new
attacker having the same inputs and outputs as Q, such that the augmented system behaves
incorrectly and the system violates φ. One of the most interesting results of this approach is
that the extracted FSM is not complete and the authors could not extract the complete FSM
of the protocols. For example, in the case of DCCP from the complete FSM which has 34
transitions, this framework can extract a maximum of 24 transitions, among which 15 are
correct, 1 is partially correct and 8 is incorrect. To use these partial FSM, the authors needed
to modify an existing attacker synthesis tool named KORG.

4.3.2.3 Limitations and Discussion
One important result of this work is that it shows that a completely automated approach
may not be enough to extract a complete FSM. The reason is that these complete FSM or
canonical FSMs are created based not only on RFCs but also on input from experts with
exposure to protocol implementations, and often also rely on analyzing the code. RFCs
contain ambiguities, and unspecified behaviors that human experts solve in creating the
canonical FSM. Moving forward, there are two approaches that can be taken (i) either
design techniques that make it possible to create specs that are complete, or (ii) design NLP
approaches that take human knowledge into account as well. From our perspective, applying
a more human-in-the-loop approach is the viable path in this regard.
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Fig. 4.4 Overview of ATOMIC (redrawn from Fig. 3 in [46])

4.3.3 4G LTETestcase Generation

Chen et al. [46] propose an approach to use the technical documentation of cellular network
protocols to generate testcases. They use the concept of hazard indicators (HIs)—a statement
that describes a risky operation (e.g., abort and ongoing procedure) when a certain event
happens at a state, which can guide a test on the system to find out whether the operation can
indeed be triggered by an unauthorized party to cause harm to the cellular core or legitimate
users’ equipment. Based on this idea, they propose an approach, referred to as Atomic, that
utilizes NLP and ML techniques to scan a large amount of LTE documentation for HIs. The
HIs discovered are further parsed and analyzed to recover state and event information for
generating testcases. These testcases are utilized to automatically construct tests in an LTE
simulation environment. Figure4.4 shows an overview of the approach.

4.3.3.1 Atomic
The approach is based on the observation that some risky operations, as described in the
cellular network documentation, can be triggered in an insecure way, so identification of
these operations and their conditions can help determine whether they have been properly
protected and whether a vulnerability is present and can be exploited. The authors show
this process can be automated with a threat model, risky operation description ROD, and
using some NLP tasks such as textual entailment and dependency parsing. As shown in
Fig. 4.4, Atomic works with a Hazard Indicator Detector, LTE testcase generator (LTCG),
and PoC Identifier (PI). The HID extracts conditional statements, extends RODs, and runs a
text entailment model to find HIs from all located conditional sentences, those implying any
of the events and RODs. The LTCG analyzes the semantics of each HI to discover the state
and events described and based on such information, constructs the testcases—a message
to be issued by the adversary at the state through the templates retrieved from a database.
The PI then executes the testcase on a configured simulation environment and automatically
analyzes its logs to determine whether the attack succeeds.

4.3.3.2 Limitations and Discussion
All approaches prior to Atomic required significant human effort in documentation inspec-
tion, which is expensive and error-prone. Therefore, the approach utilized by Atomic is
interesting as it takes the first step toward automating such tasks. In spite of this, the design
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of Atomic is still limited to HIs that include a single sentence or within a well-formed multi-
sentence structure, and the risky operation of the HI is described as a verb phrase. Most of
the issues found by Atomic are related to Denial-of-Service (DoS), because operations and
HIs related to DoS are more explicit in the standards.

4.3.4 Semantic Information Analysis of Developer’s Guide

Chen et al. [47] propose an approach for using the documentation of emerging syndication
services to detect whether these contain logical vulnerabilities. They look at whether a
syndication service will cause some security requirements to become unenforceable due
to losing visibility of key parameters for the parties involved in the syndication, or bring
in implementation errors when required security checks fail to be communicated to the
developer. To address such a goal, Chen et al. develop a suite of NLP techniques that enables
automatic inspection of the syndication developer’s guide, based on the payment models
and security requirements from the payment service. In this regard, they develop Dilution,
a technique that automatically analyzes the developer’s guide of payment syndication to
infer potential security flaws in the merchant system. Dilution uses NLP to automatically
uncover semantic information from the wrapper’s integration instructions documented by
the developer’s guide and compare it against the FSM of the payment service encapsulated
that is manually extracted. Figure4.5 shows a high-level overview of Dilution.

4.3.4.1 Preprocessing
ThoughDilution is claimed to be an automated tool, it requires a lot ofmanual preprocessing.
For instance, it involves a one-time preprocessing step in which the FSMs of major payment
processors are constructed and security requirements (SRs) for different states are identified.
Such information is extracted fromdocuments.Usually, payment process is clearly described
through a diagram, which can be converted into an FSM.

Fig. 4.5 Overview of Dilution [47]
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4.3.4.2 Document Analyzer
Here, the FSM and SRs are used to automatically analyze the developerâŁ™s guides of
different syndication services. The most important part here is to discover the syndicated
payment process by extending the payment FSM, which further allows one to find out
whether the parameters of required security checks are still visible to the new states supposed
to perform the checks, and how these security requirements are explained to the developer. To
achieve this, Dilution utilizes a suite of NLP techniques to first find out all sentences related
to transmission activities, then performs syntactic analysis on each sentence and further
converts detected syntactic elements to a semantic triplet describing the parties involved in
a transition as well as the message sent.

4.3.4.3 Logic-Flaw Predictor
From the FSM and the SR information discovered from the syndication documentation, the
logic-flaw predictor infers the possible presence of logic flaws, that is, the SRs expected
by the payment processor that cannot be fulfilled in the syndication FSM, and those that
have not been explained to the developer. To achieve this, Chen et al. define two types of
security goals: (1) secure design; (2) secure implementation. The idea of a secure design
is that for any security requirement to be enforced, there should be an enforceable security
requirement in any state. Intuitively, this means that every payment security requirement
should be fulfilled after syndication. Secure implementation on the other hand means that
every security requirement is correctly implemented by either themerchant or the syndicator.
For finding these, Dilution goes through the developer’s guide and the extended FSM for the
indicators that could lead to implementation flaws. The most important one is the absence
of explanations about security requirements, a clear signal that the related security checks
might not be implemented by the uninformed developer.

4.3.4.4 Limitations and Discussion
This research demonstrates that logic flaws or issues in the implementation can be predicted
from documentation or standards. However, though the approach is claimed to be automatic,
there is a lot of manual expertise and effort involved. Particularly, the extraction of SRs
and FSMs is carried out manually. Though SRs and FSMs are small in number, we feel
with the recent improvements in the state-of-the-art NLP tools, this can also be automated.
The ultimate goal would be to have a completely automated analyzer that can analyze
and specification for several downstream tasks such as policy enforcement weakness and
inaccurate guidelines.
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4.3.5 Security-Specific Change Request Detection

Chen at al. [45] have proposed an approach to understand security hazards in cellular network
protocols (e.g., 5G) by an NLP analysis of Security Related Change Requests (SR-CRs)
from the available Change Requests (CRs). They developed a pipeline called CREEK (CR
Seeker). This approach is innovative in that it uses state-of-the-art language models such as
BERT for cellular network analysis. Figure4.6 shows an overview of the approach.

4.3.5.1 Embedding Generation
In this step, every sentence in each CR is converted into an embedding, a feature vector
of the same size that captures the key information of the input sentence with a varying
length. For this, BERT [63] is used. Then the pre-trained BERT is fine-tuned on all 3GPP
specifications using two tasks, namely masked language modeling and binary classification
for security-related specifications.

4.3.5.2 PU Learning
For the embedding generated by Step 1, high-quality labeling for training a classifier is
needed. As there is only a small set of positive instances, they use positive-unlabeled (PU)
learning to build the classifier. They develop an adversarial learning framework [105] with a
classifier C and a discriminator D:D tries to recover the bias between the training distribution
and the testing distribution, while C seeks an optimal separation between positive instances
and negative ones with sample weights calculated from the bias recovered by D.

4.3.5.3 Self-Training
The last step is training. After the classifier is trained on the 10% unlabeled data, an
uncertainty-aware self-training algorithm is run on the remaining 90% of the data to refine
the classifier. Finally, the trained classifier is used to detect CR-SRs.

Fig. 4.6 Overview of CREEK [45]
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Fig. 4.7 Overview of Hound (redrawn from Fig. 5 in [48])

4.3.5.4 Limitations and Discussion
This is the first approach that uses large language models such as BERTs for the security
analysis of cellular network protocols. However, among all the SR-CRs discovered in the
author’s research, 453 have not yet been accepted. An in-depth analysis of the ecosystem of
these SR-CRs is an important issue that the authors do not consider. Therefore, they have
some false positives. Future research needs to revisit these problems, and this can be an
important research work.

4.3.6 Capturing Privacy-Related Settings in Android

Mobile apps include privacy settings that allow their users to configure how their data
should be shared. These settings, however, are often hard to locate and hard to understand
by the users. To address such a problem, Chen et al. [48] carry out the first large-scale
measurement study on such hidden privacy settings. They develop an automatic analysis
tool, called Hound, to recover unique features from the app and detect hidden settings. In
the tool, they utilize NLP to capture privacy-related settings, by training a classifier on top of
a set of feature vectors, each constructed from a settings’ description. From these settings,
Hound further discovers those considered to be hidden, based on the features identified.
To be frank, this is a very rudimentary use of NLP. Figure4.7 shows an overview of the
approach.

4.4 Supporting Techniques

In what follows, we discuss two important tasks that are critical for software security anal-
ysis, for which ML approaches have been proposed. They are function boundary and type
identification in binaries, and reverse engineering.

4.4.1 Neural Network-Based Function andType Identification

Binary analysis facilitates many important applications like malware detection and auto-
matic patching of vulnerable software. Some of the important problems in binary analysis
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Fig. 4.8 Overview of EKLAVYA [50]

are function type signature identification, and function identification. Here, we discuss two
approaches that use neural networks for binary analysis: one that recognizes functions in
binaries [204], the other that learns function type signature dubbed as EKLAVYA [50]. The
approach by Shin et al. [204] is based on training a recurrent neural network (RNN) to take
bytes of the binary as input, and predict, for each location, whether a function boundary is
present at that location. For this, no preprocessing is needed, such as disassembly or normal-
ization of immediate operands in order to obtain good results. The EKLAVYA approach also
uses a RNN architecture to learn function types from disassembled binary code of functions.
One of the most important requirements in the design of EKLAVYA is explicability, that is,
to find evidence that the learning network could learn something explainable or compara-
ble. To gather evidence on the correctness of a learning network’s outputs, Chua et al. [50]
employ techniques to measure its explicability using analogical reasoning, dimensionality
reduction, and saliency maps. By using these techniques, one is able to select the network
architecture that exhibits consistent evidence of learning meaningful artifacts. See Fig. 4.8
for a high-level overview of EKLAVYA.

4.4.2 Reverse Engineering

In security-oriented software investigation and reverse engineering tasks that involve binary
analysis, one of the most critical steps is to disassemble the target binary. Disassembly
aims to recover the high-level structure from a binary code, such as assembly code, func-
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tion, data types, and control flow information. However, due to compilation, optimization,
and stripping, this type of high-level information is not accessible in most binaries, and
disassembling tools often resort to approximations, which are frequently inaccurate. The
problem worsens in the case of obfuscated binaries. Therefore, Pei et al. [179] propose to
use TL to aid binary disassembling tasks and implement a disassembler calledXDAbased on
their intuition. In particular, XDA focuses on recovering function boundaries and assembly
instruction boundaries. To do so, they adopt a 2-step TL approach (based on BERT [63]). In
the first step, XDA learns to “understand” machine code semantics from raw bytes. Using
masked language modeling, XDA learns to recognize randomly masked bytes from byte
sequences based on the correlation with the other bytes in the sequences. In the second step,
XDA is fine-tuned to recover functions and instructions in byte sequences by recognizing
their boundaries. The entire process is based on unsupervised learning and, thus, completely
automated. For both steps, Pei et al. suggest employing self-attention layers as they capture
the long-range dependencies in byte sequences better than sequential connections in RNN.
XDA shows solid results achieving high accuracy (>99 F1) in recovering functions and
assembly instructions from binaries compiled with several compilers. The results signifi-
cantly outperform existing tools and previously proposed methods based on bidirectional
RNN [204].

Prior to XDA, Wang et al. [240] proposed FID, an approach to automatically recognize
functions in binary code based on classification. Their approach is unique in that it combines
disassembling, symbolic execution, andML classification. FID first employs an open-source
reverse engineering tool UROBOROS [241] to disassemble the target binary and produce
the program control flow structures, such as the basic blocks. Then, FID applies symbolic
execution to each basic block to generate accurate semantics of the blocks. As the symbolic
engine executes each basic block, FID records information such as assignment formulas for
general-purpose registers (e.g., esp and epb) and memory accesses. The authors’ intuition is
that stackmemory operations involving registers are often related to function parameter read
operations, which can help detect the functions’ entry point. To support effective learning,
FID needs to translate the semantics into numeric feature vectors. Thus, FID first selects
the most informative semantics (e.g., stack registers and memory read operations) and then
converts them into numerical vectors by leveraging lexical and syntactic features, such as
the number of tokens in a formula divided by the length of characters (lexical) or the maxi-
mum level of nested parenthesis (syntactic). Subsequently, FID employs three classification
algorithms, namely LinearSVC, AdaBoost, and Gradient Boosting, to implement a majority
votingmechanism to classify the disassembly instructions and detect functions’ entry points.
Finally, FID splits the code into multiple regions according to the functions’ entry point and
reconstructs the code control flow graph (CFG) [21] to recover the functions’ boundaries.
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4.5 Research Directions

The application of ML to software security has several open directions, many of which have
been discussed throughout the chapter. Here, we mention two additional directions. The
first is related to the ML-based enhancement of static analysis; the chapter has described
some recent approaches. However, more work is needed to develop ML-based approaches
for detecting specific types of vulnerability. The second is related to fuzzing and is based
on the observation that the ML-based approaches that have been proposed focus each on
using ML for one specific phase in the fuzzing process. It would be interesting to evaluate
the efficiency and accuracy of fuzzing when using ML for all the phases or a subset of the
phases.
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Hardware is the backbone of all computing resources, and its security is of great importance.
Compared with software vulnerabilities, hardware vulnerabilities are much harder to deal
with because hardware cannot be patched easily as software. Thus, hardware developers
heavily rely on hardware verification to find vulnerabilities in the prototype before the official
release. In fact, in the hardware design cycle, hardware verification can take 60–75% of the
time, computing, and human resources.

Traditional approaches for hardware verification can be divided into two categories: for-
mal verification and random testing. Formal verification aims to mathematically prove that
the hardware implementation meets the desired specification. However, formal verification
requires substantial manual and expertise efforts and does not scale as the hardware evolves
quickly. Thus, random testing—a more practical method that uses various randomly gener-
ated inputs to exercise the hardware—has recently become more popular.

However, random testinghas the drawback that it does not guarantee testing completeness.
Due to the hardware complexity, certain parts of the hardware can only be tested with
dedicated test inputs, which can hardly be generated randomly. For instance, testing a certain
circuit block might require test inputs that satisfy a very specific value. As a result, hardware
developers still need to spend a lot of manual effort writing heuristics-based rules to limit
the search space of the new inputs and therefore increase the chance to find hard-to-find test
inputs.

Several ML approaches have been recently proposed to avoid such manual efforts. Intu-
itively, a ML model can be trained to learn the hardware executions that are triggered by
different test inputs, and then be used to help generate test inputs that trigger uncovered
execution paths. Some approaches use ML to guide the input generator generating unique
inputs that cover different parts of the hardware. Others use ML to perform binary classifi-
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cation on randomly generated test inputs into error-inducing and legitimate inputs, so that
only error-inducing inputs need to be tested and analyzed.

Another important verification task for hardware security is related to the detection of
hardware Trojan. A hardware Trojan is a malicious modification of the circuitry of an
integrated circuit. The problem of hardware Trojan has been known for a long time [42], but
it still continues to be of major interest. Therefore, recent work has leveragedML techniques
to design more effective approaches in hardware Trojan detection.

In what follows, we first present approaches that use ML for enhancing test input gener-
ation. We then focus on the use of ML for detecting hardware Trojans.

5.1 ML-Based Hardware Test Input Generation

Random testing on hardware is mainly performed by simulation. Hardware developers first
describe the functionality of the hardware in specialized languages such as Verilog RTL.
Next, they can use automated tools to randomly generate test inputs to the hardware, during
which certain constraints or rules can be applied to guide the input generation so that the
hardware can be tested thoroughly with distinct inputs. Then the test inputs are provided to
the hardware under simulation to test if the expected results are obtained. Any simulation
failures (e.g., incorrect results) indicate that the hardware design is problematic and should
be fixed.

Additionally, because passing a certain number of test inputs does not necessarily mean
that the hardware design is free from bugs, hardware developers often usemetrics tomeasure
the amount of effective testing that has been performed. And the testing only becomes
sufficient when the target coverage is fully achieved. For instance, the hardware is only
considered to be fully tested if all unique hardware states are tested by at least one test input.

Recently, ML is being used to guide the input generation for hardware [84, 114, 115] to
improve the coverage (testing completeness) or efficiency (finding bugs quickly). Existing
approaches use differentMLmodels but share a similarworkflow, consisting of the following
steps:

1. Collect a set of test inputs as training samples. Example inputs can be generated randomly
with existing manually written constraints and rules. They can be tested individually
under simulation to collect the labels. In practice, the coverage triggered by a test input
will be used as the label.

2. Train a ML model on the training samples. Generally, the input to the model is the test
input, which is usually expressed as a byte or text sequences. The output of the model
is the coverage, often expressed in binary vectors. The relationship between test inputs
and the coverage they trigger is learned by the model.

3. Use the model to assist with hardware verification tasks. For this task, some approaches
use the trained model to predict the possible coverage for a given test input. Intuitively,
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if the prediction indicates that the input will not contribute to increasing the overall
coverage, it is likely that this input is redundant and should be de-prioritized or even
skipped. Other approaches use themodel to generate new test inputs. As themodel learns
the function mapping from a test input to the coverage result, certain computations can
be performed to know which parts of the input should be changed in order to cover a
new state or condition.

Case-1: Use ML to generate effective test input for hardware verification

Design2vec is a recently proposed ML architecture for learning continuous representations
to capture the semantics of a hardware design [234]. Design2vec (see Fig. 5.1) enables
several key hardware verification tasks such as coverage prediction and test input generation
assistance. The insight behind the Design2vec approach is that the hardware design can be
abstracted at a higher level than gates or bits, and can thus be described using digital circuit
languages, such as the Register Transfer Level (RTL), which is similar to software source
code. The benefit of using RTL is that it allows one to use software representation techniques
for hardware-related tasks. For instance, a circuit described in RTL can then be represented
in a graph that incorporates control and data flow, which then can be learned effectively
using graph neural networks.

Fig. 5.1 Overview of the Design2vec model (redrawn from Fig. 2 in [234])
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Design2vec constructs a graph for the hardware described by RTL and then uses a graph
neural network (GNN) to learn the hardware semantics. To build the graph, Design2vec first
represents each statement in the RTL code, the feature of which contains information, such
as the node identifier, node type, and the statement token sequence. Nodes are connected by
heterogeneous edges such as control and data flow edges. In particular, hardware execution,
unlike software execution, has a unique non-terminating property. For instance, if the exe-
cution in the current cycle reaches the end of a circuit block, in the next cycle the execution
will continue from the beginning of the block, instead of exiting the block as the software
execution. To reflect this property of the hardware, Design2vec adds artificial control edges
that connect the last and the first statements in each code block, indicating that the code
block will execute in a dead loop.

The graph representation of the hardware, as well as the test input, are the input to the
model to perform learning and prediction. For the graph input, Design2vec first performs
an embedding of the node feature using LSTM. Then it uses a new model architecture,
called RTL IPA-GNN, to learn the graph. For the test input, Design2vec uses a feedforward
multi-layer perceptron (MLP) layer for the embedding. The embeddings of the graph and the
test input are finally concatenated and then provided to a feedforward layer (with sigmoid
activation) to predict each code block (e.g., whether this block will be covered or not given
the test input).

Design2vec has been evaluated on real-world hardware including IBEXv1, IBEXv2, and
Google TPU for two tasks. In the task of predicting hardware input coverage, Design2vec
can achieve an accuracy as high as 90%, indicating that it can be used in practice. In the task
of test input guidance, Design2vec has been compared against Vizier SRP [87], a random
testing tool that uses black-box optimization to maximize total coverage. Specifically, the
experiments show that Design2vec can both (1) find more hardware failures, in that it is able
to generate inputs that can trigger failures that Vizier cannot find; (2) find failures quickly,
in that it is able to trigger a hardware failure with fewer test inputs generated and tested than
Vizier.

Case-2: Use ML to identify error-inducing hardware input

A recent work [211] by ARM researchers has explored the use of ML techniques to identify
test inputs that might cause hardware failures. Specifically, they propose a testing workflow
where both traditional random-based testing and ML-guided testing are executed at the
same time (see Fig. 5.2). The random-based testing keeps generating various test inputs to
exercise the hardware, duringwhich a large amount of data is generated and then used to train
ML models. The ML-guided testing uses an ensemble of both supervised and unsupervised
models to flag test inputs that might cause hardware failures. A test input is flagged as
suspicious and is tested later if at least one model predicts it as suspicious.



5.2 ML-Based Detection of Hardware Trojans 75

Fig. 5.2 Overview of the approach using ML for error-inducing test input [211]

In terms of the model architecture, several non-neural-net classifiers, such as logistic
regression and random forest, have been evaluated as part of this work, whereas isolation
forest has been used as an unsupervised learning algorithm. The models were trained on a
dataset collected over a month, which contains many test inputs and their execution results.

The evaluation shows that the ensemble model is promising. First, the results show that
the model helped find 80% unique hardware failures by running only 40% of test inputs.
Furthermore, the approach shows a relatively high recall score (e.g., 85%) and high efficiency
in the metrics adopted by the authors of the approach. For example, under the metric that
divides the number of unique bugs found by the number of unique failures predicted to
happen, the model can achieve scores as high as 80%.

5.2 ML-Based Detection of Hardware Trojans

Hardware Trojans are malicious modifications introduced into hardware design by an adver-
sary. Identifying hardware Trojans is essential for securing hardware given the recent evolv-
ing trends of the semiconductor supply chain that involves many entities [108]. Techniques
for the detection of hardware Trojans are used to check whether unwanted circuits are
implanted in designed or fabricated integrated circuits. Toward such a goal, ML-based tech-
niques have been proposed with respect to

• Reverse engineering, which aims to repackage the integrated circuits to reconstruct the
original design. Proposed approaches include (i) using SVM and k-means to create mod-
els able to distinguish between the expected and suspicious structures on integrated cir-
cuits [22, 23]; (ii) creating an input-output model of the integrated circuits via behavioral
pattern mining and then discovering Trojans via behavioral pattern matching [120].
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• Circuit feature analysis, which aims to extract circuit features, either functional or struc-
tural ones, and identify whether a net or gate is suspicious. The goal is to identify Trojans
that are activated under rare conditions or implanted into the design of integrated circuits
as redundancy modules. The proposed approaches typically determine the features to
extract and then train classifiers, such as SVM and ANN, to differentiate circuits infected
by Trojans from the normal ones.

• Side-channel analysis, which measures circuit parameters, such as power, path delay,
temperature, and electromagnetic radiation profiles, to distinguish integrated circuits
infected by Trojan from the “golden” ones. However, due to the high complexity, side-
channel traces tend to contain a lot of noise (resulting from process variances) and make
manually crafted analysis rules ineffective. Side-channel analysis has attracted a lot of
interest in the past few years and recently a few approaches have been proposed that
leverage ML to address issues related to noise.

In what follows, we summarize two recent approaches for side-channel analysis. We
refer the reader to the survey by Huang et al. [108] for a detailed discussion of ML-based
approaches for protection against hardware Trojans.

Yang et al. [251] explore different ML techniques to detect potential hardware Trojans.
The key insight is that the side-channel signature can be analyzed using statistical methods.
They built a dataset on a custom hardware platform (HaHa board) and evaluated ML tech-
niques such as naive Bayes, decision tree, K-nearest neighbor, and SVM. Models are then
trained to detect Trojans of different types, sizes, and chip locations. The results show that
SVM is better than other ML models in terms of performance and scalability.

Ashok et al. [19] (see Fig. 5.3) focus on finding better inputs that have more information
for theMLmodels. They propose to use QuantumDiamondMicroscope (QDM) to generate
high spatial resolution magnetic fields of the hardware chip. QDM uses internal quantum
transitions of optically active nitrogen-vacancy centers in a chip so that it can provide a more
sensitive and high-resolution image of the chip. Therefore, QDM allows one to collect very
precise measurements. They apply some CNN models to learn the QDM image. For every

Fig. 5.3 Overview of the approach using ML for better hardware representation [19]
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graph, the CNN model outputs a vector representation. Then a clustering algorithm, such
as DBSCAN, is applied to all graphs to cluster them into Trojan-free and Trojan-infected
groups according to their vector representations. Such an approach has the advantage that it
does not require comparison with the golden circuits to detect Trojans. The evaluation shows
that the Trojan detection accuracy is over 87%. Additionally, they compare the CNN-based
approach against PCA—a traditional technique for processing vector representations—and
found that using the CNN increases the accuracy by 10%.

5.3 Research Directions

Hardware security analysis is an area where interesting ML-based approaches have been
proposed. However, it is clear that much more work is required to understand how best
to leverage ML techniques and how to extend these techniques for hardware security. An
interesting direction is to develop a detailed taxonomy of vulnerabilities and identify which
ML techniques are more suitable for each such vulnerability. Also, ML techniques should
be analyzed with respect to the hardware life cycle to identify for example approaches that
can be used to detect anomalies at runtime.
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Intrusion detection represents a fundamental security function. It consists of monitoring
network traffic and host processes for suspicious activity, and issuing alerts when such
activity is discovered.

There are two main approaches to intrusion detection: signature-based detection and
anomaly detection (AD). In the former approach, a signature is a pattern of a specific
intrusion. Once the system detects on-the-fly any pattern that exactly matches a signature,
it raises an alarm. For instance, let us assume that there is an attack packet that always
contains a special character “$” in the User-Agent field in the HTTP header. The detection
system raises an alarm if it sees a packet exactly matching the signature, which is “‘$’ in the
User-Agent field in the HTTP header”. Although this approach has a high true positive rate
on known attacks, the main drawback is that it cannot detect unknown attacks. For example,
the detector cannot detect an attack variant packet that contains “@” instead of “$” in the
User-Agent field in the HTTP header. To detect a new attack, a human should understand
the new pattern, generate the corresponding signature, and add it to the set of signatures of
the detector. On the other hand, AD is effective in detecting unknown attacks. This approach
learns the normal behavior pattern of a system and raises an alarm if a given pattern deviates
from the normal pattern. The main advantage of AD is the ability to automatically detect
unknown attacks. However, it is important to point out that combining both types of detection
provides a more comprehensive detection-based defense.

Another important category of detection is related to malware detection and analysis,
which is typically executed to determine whether a piece of software is malicious and if
so to determine the type of the malware. The latter is critical to understand, for example,
if a previously unseen malware is derived from some known malware. If this is the case,
one can often eradicate the new malware by following the same steps taken for the known
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malware. Approaches for malware detection and analysis are mainly based on analysis of
the malware code. However for certain types of malware, such as ransomware, one may also
use behavioral analysis, based on detecting specific anomalies in the execution of processes.

ML techniques have been widely used in both categories of detection. In what follows,
after an introduction of the mainmalware categories, we coverML-based anomaly detection
and then ML-based malware detection and analysis.

6.1 Types of Malware

There are several malware families that typically differ with respect to their goal and
approach:

• Adware: It is a form of malware that hides in user interfaces and serves advertisements
to the users. Some adware also monitors user behavior online so it can target users with
specific ads.

• Fileless Malware: It is different from other malware in that it does not rely on files con-
tainingmalicious code to infect a host. Instead, it exploits applications that are commonly
used for legitimate and justified activities to execute malicious code in resident mem-
ory. This malware is hard to detect as it attaches to legitimate scripts, and these scripts
continue to run with the hidden malware.

• Viruses: These are malicious executable codes that usually attach themselves to an exe-
cutable file and get triggered when the infected file is opened. The virus exploits vulner-
abilities of the operating systems; sharing of files spread the virus across systems.

• Worms: They act like viruses that leverage security loopholes and infect the system by
replicating themselves. The worms do not require any human activity to propagate as
they are self-replicating.

• Trojans: This type of malware seems like legitimate software and tricks the users to
download and install the malicious software into their systems. Once a Trojan enters the
victim system, it can perform all the tasks that legitimate users can perform, like reading,
modifying, deleting, and transferring files, connecting over the Internet, and redirecting
the traffic.

• Botnets: They are networks of interconnected infected devices that are managed and run
by a command-and-control server. The infected devices, often referred to as bots, are
tasked with executing various operations to conduct malicious activities, like performing
a distributed DoS (DDoS) attack.

• Ransomware: The ransomware makes files unavailable, by typically encrypting them
with an encryption key not available to the victim, and demands a ransom in order to
make the files available again to legitimate users (see also the discussion in Sect. 6.2.4).

• Downloader: It is malicious software used to support other malware. The purpose of
the downloader is to download additional malicious files needed for the malware on the
infected system.
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6.2 ML-Based Anomaly Detection

Detecting behavioral anomalies in computer systems is an essential step in many defenses.
The main objective of AD is to learn the normal behavior of the system over some period
of time, and then flag any activity that deviates from that learned behavior. In many cases,
learning the normal behavior requires monitoring and recording all the activities being
executed in the system in order to extract a pattern or a profile for each user/application.
Due to their broad applicability, anomaly detectors have been successfully applied in many
domains such as network management [2, 76] and operating systems [217].

Anomaly detectors typically consist of two modules, namely a data collector and a data
analyzer. The former is a module that collects logs from the system being monitored, while
the latter is a module that analyzes the collected logs. Depending on the placement of data
collectors, there are two types of anomaly detectors: network-based ones and host-based
ones. Those two types of detectors generate different types of logs; thus, features used for
anomaly detection are different, depending on the placement of the detectors.

Over the collected logs, a data analyzer performs AD. In what follows, we discuss what
algorithm is used to address what problem. The algorithms are categorized as supervised,
semi-supervised, and unsupervised techniques. Within each category, there are many dif-
ferent algorithms, such as LSTM or autoencoder (see Chap. 2). Furthermore, the features
one can use for AD are diverse, depending on the types of logs. For instance, from network
packets, a detector can use as features inter-arrival time between packets or the number
of packets in one direction. From host logs, a detector can use CPU/memory utilization.
Also, the features may differ depending on the specific threat against which one deploys
the anomaly detector. For example, an anomaly detector for ransomware detection (see
Sect. 6.2.4) uses features that are different with respect to the features used by an anomaly
detector for cryptojacking detection [226].

There are several challenges when deploying an AD system. A major challenge is how
to obtain the normal behavior patterns. It is difficult to define what “normal behavior” is;
thus, it is challenging to collect such data. Another challenge is that a detector may suffer
from high number of false positives as it may raise an alarm for all the unexpected patterns.
Unfortunately, unexpected patterns do not always mean that there is an intrusion. Rather,
there can be lots of unexpected normal patterns, for example, due to congestion in networks
or bottlenecks in systems. Therefore, reducing the number of false positives is critical for
the successful deployment of AD systems.

In what follows, we discuss AD approaches proposed in diverse domains including net-
works, IoT systems, and cyber-physical systems (CPS). For each domain, we discuss chal-
lenging issues and howML algorithms help to address them.We also describe an AD system
for ransomware as this gives an example of specific features required for AD that are dif-
ferent from features typically used in AD for networks and hosts, as selecting the proper
features is a critical step for AD.
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6.2.1 Networks

A network-based AD system is a detector in which a data collector is placed on an edge
of a network the detector aims to protect. For instance, a data collector is typically located
on a gateway and collects packets passing through the gateway. Based on the packets, a
data analyzer performs AD. In what follows, we describe reconstruction-based approaches
proposed for learning the normal behavior of networks. Then, as networking patterns are
usually time-dependent, we describe approaches usingADbased onmultivariate time series.
Finally, we describe one interesting approach that uses DL for feature engineering.

6.2.1.1 Reconstruction-Based Approaches Through Zero-Positive Learning
The reconstruction-based approach relies on a model that learns a normal distribution. A
given pattern should be reconstructed by the model if it follows a normal distribution.
Otherwise, the output of the model would significantly deviate from the input, which turns
out to be an anomaly.

One of the example systems is Kitsune [158], an AD system that uses an ensemble
of autoencoders. To avoid the expensive labeling process typical of supervised learning,
Kitsune uses as a model an autoencoder because it is effective for unsupervised learning.
Furthermore, Kitsune has been designed for deployment at routers and therefore being
lightweight is a critical design requirement. Once Kitsune acquires a packet, it parses the
packet to get the meta information and then sends it to the feature extractor, which extracts
features and generates an instance. The feature extractor obtains temporal statistical features
using incremental statistics for small memory. Next, based on the extracted features, the
feature mapper splits the instance into several sub-instances, each of which is fed to the
ensemble of autoencoders. The main reason for this splitting is to make sure that AD is
executed effectively with low complexity. Finally, the ensemble outputs whether a given
packet is anomalous or not.

DAGMM [257] is another example of an anomaly detector that uses an autoencod-
ing Gaussian mixture model. It performs density estimation to determine anomalies, after
reducing the dimensionality of the given samples. However, important features for density
estimation may be lost during dimensionality reduction; thus, an important requirement is
to avoid losing important features for better performance. To this end, DAGM leverages an
autoencoder that extracts useful features as its non-linear dimensionality reduction helps to
get important features, represented as a low-dimensional sample (i.e., a latent representa-
tion), and concatenates them with reconstruction error features, such as Euclidean distance.
Then the resulting sample is fed to the detector that performs density estimation under the
Gaussian mixture model to determine anomalies.

ZeroWall [224] is also an example anomaly detector that aims to detect zero-day attacks
on web requests based on unsupervised encoder-decoder recurrent neural networks. The
main insight, on which ZeroWall is based, is that benign web requests follow the HTTP
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protocol while malicious web requests show inconsistent syntax and semantic patterns.
ZeroWall augments existing signature-based firewalls so that it is immediately deployable.
By being co-located with existing firewalls, it benefits from collected web requests allowed
by the firewalls as benign training sets based on the observation that zero-day attacks rarely
happen. Then, it applies machine translation quality assessment techniques to address the
detection problem. In detail, ZeroWall trains an encoder-decoder model that learns from
benign web requests as language. By tokenizing the requests and generating a sequence of
resulting tokens, the model generates an LSTM encoder that encodes a given sequence into
a latent representation, and an LSTM decoder that outputs a reconstructed sequence from
the latent representation. Anomalies are detected if the model cannot reconstruct a given
sequence.

6.2.1.2 Multivariate Time-Series-Based Approaches
A multivariate time series is a series with multiple time-dependent variables. It is useful in
AD as recent attacks typically follow multiple steps to achieve their goals and time series
are helpful to understand the attack contexts for detecting anomalies.

MTAD-GAT [255] uses not only multiple features in its decisions but also the tempo-
ral dependencies and the correlation between different features. It is different from other
approaches that analyze each variable independently. By correlating different features,
MTAD-GAT can detect unexpected but normal patterns, reducing the number of false posi-
tives. The rationale behind it is that a sudden change in a certainmetric does not alwaysmean
that the change is actually indicative of an intrusion. For example, the CPU utilization of a
server can abruptly increase because of the normal behavior of a particular process. If using
only the CPU utilization metric, the system would always raise an alarm, resulting in lots of
false positives. However, by considering the information about the process simultaneously
when the CPU utilization has skyrocketed, the system may understand normal cases with
sudden changes. To this end, MTAD-GAT introduces the graph attention layer to detect
multivariate correlations. With the graph attention layer, MTAD-GAT performs AD through
a combination of single-timestamp predictions and reconstruction of the entire time series.

6.2.1.3 LearningWithout Feature Selection
nPrint [110] is a unified feature vector that captures diverse types of packets, namely TCP,
UDP, and ICMP. As such packets have different header structures, nPrint represents packets
based on all the header fields in TCP, UDP, and ICMP. For example, nPrint has a sequence
number field (TCP). When a TCP packet should be described in nPrint, a sequence number
in the packet is assigned to the field. However, a UDP packet does not have a sequence
number; thus, nPrint assigns -1 to the field. In this way, all the IP packets can be vectorized
regardless of the transport layer protocol. Based on the vectors, a ML algorithm [97] is used
to select an appropriate model with the best hyperparameters. The experiment result shows
that the performance of the model achieves high accuracy on the netML challenge [24],
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which consists of flow-level traffic analysis problems, namely malware detection for IoT
devices, intrusion detection, and traffic identification. The result is promising as it removes
the need of selecting the proper features to be used for ML-based AD and thus reduces
human costs.

6.2.2 IoT Systems

IoT systems are increasingly being deployed in many application-critical sectors, and there-
fore several ML-based intrusion detection techniques have been proposed for their pro-
tection. The design of those techniques requires, however, addressing several challenges,
including the limited computing resources of IoT devices and the lack of sufficient training
data. Also, IoT systems often use wireless communication networks with specialized pro-
tocols and therefore IDSes must be customized to detect attacks on these networks. In what
follows, we first introduce two approaches to deal with the limited computing resources of
IoT devices, and then an approach, based on federated learning, to deal with the lack of
sufficient training data. We then conclude with approaches specialized for detecting attacks
on wireless networks used by IoT systems.

6.2.2.1 Architectural Solutions for Constrained IoT Devices
Deploying a host-based anomaly detector on IoT devices is challenging due to their limited
capabilities. To address this challenge, the E-spion intrusion detection system [163] has
been designed with a device-edge split architecture where data collectors are located on
IoT devices, while the data analyzer, based on ML, is placed at an edge server. As the data
analyzer performs the heavy computation, the IoT devices only have to perform minimal
work, which consists of collecting logs and sending them to the data analyzer. An interesting
aspect of E-spion is represented by three different levels of granularity for data collection
at the IoT devices. At the lowest level, the log only collects the names of processes running
on the devices. At the medium level, the log collects metrics, such as CPU and IO usage.
At the highest level, the log collects the number of system calls, for each type of call. The
highest level provides the highest accuracy while however increasing the processing costs
at the devices, whereas the lowest level has the lowest accuracy but incurs the lowest pro-
cessing costs at the devices. E-spion can then be configured by choosing the data collection
granularity which represents the best trade-off for the different devices in the IoT system of
interest.

6.2.2.2 Selection of Appropriate Detectors
Pasikhani et al. [177] propose a network-based, hybrid-based, and distributed IDS based on
RL, referred to as RL-IDS. The proposed IDS employs several lightweight signature-based
or anomaly-based detectors, each of which is built from a subset of the training dataset. The
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subsets have different patterns of attacks; thus, the detectors have different strengths and
weaknesses in analyzing different attacks. RL-IDS then uses RL to select an appropriate
detector to analyze the current input packets. The agent gets a reward when it successfully
selects the best detector for particular scenarios.

6.2.2.3 Federated LearningTechniques to Deal with Insufficient Data
As networking patterns of IoT devices are usually simple and scarce, it is challenging to
learn the normal behavior of them. To address such a problem, Nguyen et al. [171] propose
DÏoT that leverages federated learning. Motivated by similar patterns of the same type of
devices such as a camera, DÏoT collects data per device type and performs AD based on the
type of device. In other words, the intrusion detection system (IDS) uses federated learning
to generate a profile for specific types of devices, for which the data used for the profile
are collected and aggregated across several networks. The resulting model is managed by
a global IoT security service; thus, any DÏoT analyzer module can obtain the profiles from
this service to carry out AD activities.

6.2.2.4 Detection of IoT-Specific Attacks
There are IoT-specific protocols supporting the connection to the Internet of devices with
low capabilities. 6LoWPAN and RPL are two such protocols. 6LoWPAN is an adaptation
protocol layer for low-rate wireless personal area network (IEEE 802.15.4 hereafter) devices
that allow these devices to use IP version 6. As the size of the frame of IEEE 802.15.4
is only 127 bytes, IEEE 802.15.4 cannot use IPv6, which requires at least 1,280 bytes.
6LoWPAN addresses this limitation by using fragmentation, reassembly, and compression.
On the other hand, RPL is a routing protocol between these devices. It relies on the notion of
destination-oriented directed acyclic graph (DODAG) for routing. To generate the DODAG,
devices exchange routing information. However, such an information exchange between
devices with low capabilities opens a new attack surface. For instance, by manipulating
this information, an attacker can perform routing attacks. Therefore, appropriate security
mechanisms are required.

Shukla [203] suggests three IDSes, namely KM-IDS, DT-IDS, and Hybrid IDS utilizing
both KM-IDS and DT-IDS that aim to detect wormhole attacks. KM-IDS relies on the
k-means clustering algorithm, while DT-IDS leverages the decision tree algorithm. Those
IDSes detect the attack based on the distance threshold between any two devices. If an IDS
determines that the distance between two devices is higher than the threshold, the IDS raises
an alarm. To determine the exact distance, ML algorithms are used. In the case of KM-IDS,
devices are clustered based on their distance from the gateway. Then, the attack is detected
if two communicating devices are in different clusters. In DT-IDS, the IDS calculates the
average of distances between two devices and sets the result as the threshold. Hybrid-IDS
combines KM-IDS with DT-IDS. It uses two threshold values set by KM-IDS and DT-
IDS, respectively. Whenever KM-IDS detects an anomaly based on clusters, Hybrid-IDS
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compares the distance between the two devices with the threshold set by DT-IDS. Hybrid-
IDS only raises an alarm if the distance is longer than the threshold. This approach removes
the false positive cases in which two close devices in two different clusters are around the
boundary of the clusters, thus improving accuracy.

Napiah et al. [165] introduce an IDS, called CHA-IDS, that leverages the 6LoWPAN
compression header. The reason for using the compression header is that it contains routing
information; thus, such information is helpful to detect routing attacks. It is different from
prior IDSes that usually use the rank of devices as the main feature in identifying routing
attacks. The simulation results show that such a new feature enhances the model’s accuracy
in detecting anomalies in the 6LoWPAN packets.

6.2.3 Cyber-Physical Systems

A cyber-physical system (CPS) is a computer system that controls a set of given physical
components by interacting with sensors and actuators. Examples of CPSes are smart fac-
tories, industrial control systems, smart grid, and intelligent transportation systems. In a
CPS architecture (see Fig. 6.1), the physical components are controlled by a CPS workflow.
The sensors are responsible for interfacing between a physical world and a cyber world by
measuring the status of the physical components, while the actuators actively manipulate
the state of physical components. The sensors and actuators are directly connected to control
systems, like programming logic controllers (PLCs), which obtain data from the sensors and
send commands to the actuators. The control systems are again supervised by a comprehen-
sive system, called the supervisory control and data acquisition (SCADA) system.

Luo et al. [149] discuss AD systems in CPS applications including industrial control
systems (ICSes), smart grid, intelligent transportation systems (ITS), and aerial systems
against the following three potential threats. The first is the tampering of sensors and actu-
ators; in this threat, sensor data collected from physical components and data reported to
control systems are different. Similarly, commands from the control systems and commands
to physical components are different. The second is the reading and manipulation of packets

Fig. 6.1 A cyber-physical system (CPS) architecture
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in the communication channels between physical components and sensors (or actuators),
and between the SCADA system and the control systems. The third is the breaching of
control systems. In other words, an attacker controls the control systems causing internal
faults or false control signals.

A typical CPS AD system is designed considering three aspects. The first is the data
used to train a model. Usually, sensor and actuator data, communication traffic, and control
system logs are used. Those data are preprocessed and then fed to neural networks. Second,
different MLmodels should be considered. Different models, such as RNN or autoencoders,
can be used. Finally, metrics to update the models by loss functions that calculate anomaly
scores referring to output data and ground truth data are one of the important factors. They
are (1) prediction error, (2) reconstruction error, and (3) predicted labels.

Below, based on [149], we describe CPS AD systems in four CPS applications which
adopt some novel approaches.

6.2.3.1 Industrial Control Systems
The area of AD for industrial control systems (ICSes) has been widely investigated. As
CPS systems are usually resource-constrained, Feng et al. [78] have designed a system
that uses the Bloom filter to capture suspicious packets, so that only these packets are
transmitted to the ML model, thus greatly reducing the amount of packets that the model
must process. Many systems leverage the temporal behaviors of data (i.e., time series) as
a sensor’s or an actuator’s values are one-dimensional. However, there are relationships
between sensors. Thus, approaches have been proposed [39, 116] that use CNNs to capture
those correlations. A framework has also been proposed that leverages a GAN to capture the
spatial-temporal correlation [147]. The framework detects false control signals from sensor
and actuator values based on reconstructing discrimination errors from both the generator
and discriminator.

6.2.3.2 Smart Grid
One of the most widely investigated attacks in the context of a smart grid is the false
data injection attack. Such an attack aims to cause measurement errors to provide false
information to state estimators, which leads to incorrect behavior of the smart grid. As
the false data injection attack is typically stealthy, much research has focused on how to
improve the accuracy of state estimators. One approach is to introduce a filter to remove
the anomalous data items before transmitting the data to the state estimators. Basumallik et
al. [25] have introduced a filter in the detection system that captures potentially anomalous
data, which are then transferred to a detector. If potentially anomalous data is classified as
anomalous data, it is not used in the estimation of the state of the system. Another approach
is to improve AD by using joint detection. Wang et al. [242] have proposed a framework
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consisting of several autoencoders and conventional detectors. The framework raises an
alarm only if both the autoencoders and the detectors raise the anomaly. This joint approach
significantly reduces false positives.

6.2.3.3 Intelligent Transportation Systems
Most approaches proposed in this domain focus on the controller area network (CAN) bus, a
communication bus between devices and electronic control units (ECUs). The threat model
considered in this domain is an active network attacker on the CAN bus that performs traffic
drop, reordering, replay, injection, and so on. For a vehicle, not only the sensor data in the
CAN network is important to detect anomalies, but also the environment information is
critical. The reason is that the same physical status can be classified differently according
to the condition of the environment, such as the weather or the road. Kieu et al. [135] have
proposed a method to capture context information by matrices, resulting in higher precision
and recall. As the CAN network is delay-sensitive but usually resource-constrained, an
approach has been proposed to boost computing relying on mobile edge devices [256]. Such
an approach uses amulti-dimension LSTM framework computing part of which is delegated
to mobile edge devices. An experimental evaluation shows that this approach significantly
reduces the computation time (100 times faster). Robustness is also an important factor
for intelligent transportation systems; thus, responses to environments should be correctly
generated. To this end, Wyk et al. [233] have designed a two-level framework where the first
level consists of a three-layer CNN model, followed by Kalman filters (KFs) in the second
level. The KFs eliminate false sensor readings that are undetected by the first level; thus,
this framework improves accuracy.

6.2.3.4 Aerial Systems
Several approaches have been proposed aiming to detect faults in aircraft or unmanned aerial
vehicles (UAVs). As all approaches require a threshold to detect anomalies, setting up an
appropriate threshold is important for the performance of the models. However, it is quite
challenging to decide the accurate threshold as it needs to be set based on large number of
observations. To address such a challenge, Hundman et al. [111] have proposed a framework
to calculate the threshold in a dynamic and automatic way. In the first stage, the framework
evaluates smoothed prediction errors. Then, an exponentially weighted average is applied
to the errors. Next, the threshold is adjusted according to an expression that consists of the
mean and standard deviations. Since spacecraft generate lots of telemetry data, the data size
and noise can negatively affect the performance of themodel. To address such an issue, Tariq
et al. [225] have proposed a method to reduce the data amount by sampling. The method
relies on ConvLSTM—a convolutional LSTM network, and mixtures of probabilistic PCA
to detect anomalies.
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6.2.3.5 Future Directions
Luo et al. [149] have identified several issues that need to be addressed in order to improve
detection methods. First, as most approaches use empirical thresholds, which are not opti-
mized and robust against changes in the environments, one important issue is to determine
the threshold automatically and adaptively. Second, there is a need for benchmarks specific
to CPS to assess the performance of AD techniques and systems. Third, the deployment of
AD systems requires these systems to meet real-time requirements. Fourth, forensic analy-
sis techniques are needed to identify the compromised devices, the steps of attacks, and the
exploited vulnerabilities.

6.2.4 Ransomware

Ransomware attacks are today major security risks for public and private organizations
around theworld. In a ransomware attack, attackers remotely compromise computer systems,
block access to the data by legitimate users—by typically encrypting the datawith encryption
keys only known to the attackers, and demand a ransom in return for restoring access to the
data. More recently, attackers also steal the data and sell or expose the data if the victims
do not pay the ransom, and have been targeting critical infrastructure [93]. As discussed in
a recent report by the Institute for Security and Technology [113], this form of cybercrime
leads to dangerous real-world consequences that far exceed the costs of ransom payments
alone, including loss of human life.

Therefore, defenses against ransomware have been, and are still being, widely investi-
gated. As discussed by Moussaileb et al. [160], defenses can be classified according to the
typical workflow of ransomware attacks, namely infection, environment preparation, data
access denial, and ransom request. Figure6.2 lists examples of activities performed in each
step—some of these activities may only be present in ransomware that not only encrypts the
data but also exfiltrates the data to then sell or expose them if the victim does not pay the
ransom. ProposedML techniques have been typically applied to the infection step, by using
approaches to identify malware (that we describe in Sect. 6.3), and to data access denial
step by using ML-based AD models that are trained to recognize specific process activi-
ties typical of ransomware. Therefore, for the training of these models, feature selection is
critical.

Fig. 6.2 Ransomware’s workflow (based on Fig. 1 in [160])
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Table 6.1 RWGuard’s
process features

Metric # Metric name

1 Number of IRP_WRITE requests

2 Number of FastIO_WRITE requests

3 Number of IRP_READ requests

4 Number of FastIO_READ requests

5 Number of IRP_OPEN requests

6 Number of FastIO_OPEN requests

7 Number of IRP_CREATE requests

8 Number of FastIO_CREATE requests

9 Number of IRP_CLOSE requests

10 Number of FastIO_CLOSE requests

11 Number of temporary files created

An example of a comprehensive approach to AD for ransomware is the RWGuard system
by Mehnaz et al. [155]. RWGuard uses two different sets of features, characterizing respec-
tively processes behavior and changes to files. Concerning processes, RWGuard monitors
261 processes, including Explorer, Svchost, Chrome, GoogleUpdate, WinRAR, Taskhost,
and Drpbx, and for each collects data on 11 metrics, each of which corresponds to a feature
used by the ML-based detector for processes (see Table6.1 for the list of these features).
Key features are represented by the number of different types of fast I/O operations, as fast
I/O is an activity typical of ransomware. The reason is that ransomware has to very quickly
encrypt all the files to reduce the chance of being detected, especially when AD systems
are very fast. For process AD, four different ML techniques were evaluated, namely Naive
Bayes (using estimator classes), Logistic Regression (multinomial logistic regression model
with a ridge estimator), Decision Tree, and RandomForest. The experimental results showed
Random Forest to be the more accurate technique.

Concerning the file system, RWGuard monitors file changes to detect anomalous file
changes; these anomalies are detected by using several indicators:

• Similarity metric: In comparison with a benign file change, e.g., modifying some of the
existing text or adding some text, encryption would result in data that is very dissimilar
with respect to the original data.

• Entropy metric: Entropy, as it relates to digital information, is the measurement of ran-
domness in a given set of values (data), i.e., when computed over a file, it provides
information about the randomness of data in the file. Therefore, a user’s data file in
plaintext form has low entropy, whereas its encrypted version would have high entropy.

• File type change metric: A file generally does not change its type over the course of its
existence. However, it is common for a number of ransomware families to change the
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file type after encryption. Therefore, whenever a file is written, RWGuard compares the
file types before and after the write operation.

• File size change metric: Unlike file type change, file size change is a common event, e.g.,
adding a large text to a document. However, this metric along with other metrics can
determine if the file changes are benign or malicious.

For detecting anomaly file changes, however, noMLmodel was used as just a simple custom
algorithm was sufficient. In addition, RWGuard used an additional technique based on the
notion of decoy files, that is, fictitious files that are not written by users/applications. As
such, modifications to these files represent an indicator of a potential ransomware attack.

It is important to mention that the evaluation experiments of RWGuard on several ran-
somware families have shown that monitoring only the process activities or only the file
changes is not sufficient for effective detection and results in both high false positives and
high false negatives (e.g., the Cryptolocker ransomware encrypts files very slowly, which
sometimes evades process monitoring), and that decoy files are effective. Therefore, com-
bining process AD with file changes AD and decoy files represents a strong defense. Exper-
iments have also shown that RWGuard is extremely fast in detecting ransomware, which is
critical in order to quickly stop the attack and thus minimize the number of files that end up
encrypted.

The design and experimental evaluation of RWGuard have given important insights into
an effective AD. First, the selection of features is critical and requires insights about the
activities of the specific malware—based on which one can determine the features to use.
Second, effective AD must observe malware with respect to different points of view—such
as processes and files as in the case of RWGuard. Different detectors may be used—some of
which are based on ML techniques whereas others are not. Then the results of these various
detectors must be properly combined to optimize the accuracy metrics of interest. Third,
AD must be extremely fast as very early detection is critical to contain/block/respond to the
attack.

6.3 Malware Detection and Classification

Malware, also referred to as malicious software, is still today one of the major threats.
Attackers often install malware on the victim system by tricking the users into performing
certain actions, such as clicking on some URL from which the malware is downloaded, or
opening e-mail attachments, or downloading some files. To gain a foothold in the victim
system, malware can also exploit vulnerabilities of the victim, such as bugs, open ports, and
plugins. Once downloaded, the malware often spreads to other systems/networks.
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To protect against malware, an important security function is to determine whether a
software sample is malicious or not, and if the software sample is malicious, to determine
its type. Therefore, malware detection techniques have been continuously enhanced to deal
with the rapid evolution of malware [129, 222].

Many proposed approaches are based on ML-based classification techniques. Classifi-
cation can be binary, that is, it categorizes the software samples into two classes, namely
malicious and non-malicious (benign/normal), or multi-classification, that is, it classifies
the sample according to different malware categories, such as backdoor, Trojan, and virus.
Being able to correctly classify malware helps to gain knowledge about the behavior of
the malware and thus to better defend against it. Malware detection is however challeng-
ing because of obfuscation and behavior modification techniques adopted by the malware
authors.

In what follows, we first introduce the structure of the portable executable file format.
We then briefly discuss existing malware analysis and detection techniques and their short-
comings. We then cover the issue of preparing malware code for training ML models. We
then discuss the analysis of malware for different platforms, mainly focusing on the used
features. We then discuss three different approaches to represent the entire malware code.

6.3.1 Portable Executable File Format

Malware analysis requires analyzing the malicious files by understanding the structure of
the portable executable (PE) file format, as this format is often used by malware authors
to create and manage their wrapped executable codes. The PE format encapsulates the
necessary information, like dynamic link libraries, object codes, resource management, and
API import and export, required by the operating system to manage the executable. The
format consists of a series of headers and sections that carry information of various nature.
The structure of the PE format for a “Cookrel2.exe” file (malware executable) is shown in
Fig. 6.3.

The PE header contains some important contextual information related to file attributes
that is useful for malware analysis. The timestamp information in the PE header helps in
identifying the compilation time of the malware file. The optional header defines the entry
point location of the PE file. The information about the entry point address is important
for the malware analysts to begin with their analysis via reverse engineering. The optional
header also carries information about the amount of the data initialized or uninitialized
loaded into memory when a PE file is executed. The other essential information carried by
the optional header is related to the size of the code, memory, and file alignments.

The section header maps the data and instructions for the loading process into memory
and includes the permissions (read, write, and execute) that must be given to the code. The
section header has special sections that are intended to handle different types of data and
instructions:
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Fig. 6.3 PE file format

• .text: This section contains the executable code of the program. The x86 processor has
an executable section header marked as .text.

• .rdata: It contains the initialized data which is only readable.
• .data: It is meant for the initialized data and also includes additional information such as

button skins, cursor images, and so on.
• .idata: It contains the import address table (IAT), which includes the library calls and

functions, and lists the dynamically linked libraries.
• .tls: This section provides storage for the program threads.
• .reloc: It contains the relocation information that allows the code to be executed without

interruption even if it is moved during the execution.

The PE file structure also includes some optional fields like the export section, which
is the mandatory information related to communication sessions, mainly secure socket
layer/transport layer security (SSL/TLS) connection information. Malware makes use of
SSL/TLS to hide network traffic from monitoring. The optional field also contains a check-
sumvalue to be used for checking the integrity of thefile. The checksumvalue is calculated by
the compiler when the execution file is created, therefore, any modification to the checksum
invalidates the integrity of the file post compilation. The import section in the PE structure
contains information regarding memory operations and thread libraries. The information
about the resources accessed by the code is included in the resource section. The resource
section also includes information related to dialog layouts, icons, manifest, and schemas.
At the end of the structure, there is the version section, indicating the version number of
the file with the creation date, and copyright information (if available). In most cases, the
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malware sets the checksum and version value to “0” to indicate that no checksum and version
verification are required by the execution file, which is usually not the case for legitimate
execution files.

6.3.2 Analysis and Detection Techniques

Malware analysis determines the impact, origin, and goal of the malware. Such an analysis
may have different objectives [231], namely

• Malware detection: to detect whether a sample is malicious.
• Malware similarity analysis: to identify similarities among malware samples—for exam-

ple to assess whether a new sample is similar to previously seen samples. As discussed by
Ucci et al. [231], there are several versions of this objective, including variant detection,
family detection, similarity detection, and difference detection.

• Malware category detection: to detect the specific type of malware with respect to a given
malware taxonomy.

Malware analysis is generally categorized as static, analysis, or hybrid (see Fig. 6.4).
Static analysis focuses on the malware executable code and structure without executing

it. Static analysis is useful for identifying malicious software samples and differentiating
them from benign ones by generating fingerprints of the malicious samples. The malicious
sample fingerprints help to uniquely identify the known malware. The features analyzed
during static analysis include strings, file hashes, DLL imports, opcodes, API calls, and
metadata associated with the PE file. Static analysis is however not very effective when the
malware authors use dynamically downloaded data, malware packing, resource obfuscation,
and anti-disassembly methods.

In contrast to static analysis, dynamic analysis monitors the behavior of the malware
when is executing. It is typically carried out in a controlled virtual environment, like a

Malware
Analysis

Classification Detection

Static Dynamic Hybrid Signature-
based

Behavioral-
based

Specification-
based

Fig. 6.4 Malware analysis techniques
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sandbox. The actions executed by the malware are traced dynamically and extended to trace
the traffic, API calls, registry edits, memory analysis, and modification to the system files.

Hybrid analysis combines static and dynamic analyses. Initially, the source code is ana-
lyzed without executing it and later the analysis is performed by executing the code in a
controlled virtual environment. In other words, hybrid analysis is concerned with analyzing
the signatures of the malware code and improving the analysis by combining it with the
dynamic parameters.

With respect to detection, there are two main techniques, namely signature-based and
behavior-based. Signature-based detection is based onfingerprints that uniquely characterize
the different types of malware. It has low false positives, but it can be evaded by malware
code modifications. Its main limitation is, however, in the case of unknown malware. The
behavior-based detection monitors the malware actions dynamically and is effective for
detecting unknown malware. However, it is prone to high number of false positives. In
addition to signature-based and behavior-based techniques, there are specification-based
techniques that impose some rules that specify the valid behavior, in order to distinguish it
frommalicious behaviors. The rules imposed are based on the features extracted and may be
applicable for networks or systems depending on the detection site for malware. However,
when obfuscation techniques are adopted by malware, one has to frequently update the
rules which increase the complexity of the systems monitoring the malicious behavior.
To address the shortcoming of the existing techniques, ML-based techniques have been
proposed to enhance malware detection and classification and also to deal with large-sized
data generated by commercial threat intelligence feeds.

6.3.3 Data Preparation and Labeling for ML-BasedMalware Analysis

An important step for ML-based malware detection and classification is the training of the
models, which then requires preprocessing malware datasets in order to generate proper
feature vectors. Such a preprocessing involves recognizing malware patterns and data dis-
tributions, and identifying dependent and independent variables through exploratory data
analysis (EDA) which involves visualizing the dataset through graphs mainly through scat-
ter plots and histograms. To apply EDA, domain knowledge expertise is required for the
interpretation of data. EDA is also helpful in identifying class imbalance issues and avoiding
biased results from the models. For building the feature vector space, one typically applies
feature extraction and feature selection techniques. We now illustrate such activity with
a simple scenario showing how the feature vector is prepared for malware detection and
classification.

Example

Suppose we have 50 malware files and 50 normal files in a dataset as in Table6.2, and
let’s consider malware detection as a NLP problem. We consider the malware, the normal,
and log files as documents containing codes, functions, connections, API calls, and other



96 6 Detection

Malware
Analysis

Supervised Unsupervised Semisupervised

Classification Detection ClassificationClassification Detection Classification Detection

Rule-based

Bayesian
Networks

Random
Forest

SVM Multi-Kernel
Learning

Decision Tree

Logical model
Tree

KNN

Bayes

Naive bayes

Self Organising Map

Hierarchial Clustering

K-means Clustering

K-mediods

Belief Propogation

Learning with global
and Local

consistency
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Table 6.2 Malware feature extraction example scenario

# of samples Analysis mode File samples Features

50 malware Static Bad_Rabbit.exe; cooker1.exe API calls, Opcodes, strings

50 normal Static Calculator, Browser files API calls, strings, opcodes

50 malware Dynamic Log file Dll, registry keys,
connections

50 normal Dynamic Log file Dll, registry keys,
connections

information. The log files are obtained after running the malware and normal files on an
emulator (sandbox environment). The goal of the MLmodel is to find a pattern or difference
between the malicious and normal code samples like finding the frequency of the calls to
“dll23” expected to be higher in malware.

Using NLP to generate the feature vector space gives the following matrix:

mask dll23 dll85 . . . urldown⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

s1 1 1 0 · · · 1
s2 1 0 1 · · · 0
s3 1 1 1 · · · 1

...
...

. . .
...

s100 0 0 1 · · · 1

target⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

M1

N2

M3
...

N100

(6.1)

The row labels indicate whether the file is malware or normal, and the column label indicates
whether or not the file contains functions, dlls, connections, and memory information that
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contribute to relevant features. The target variable denotes whether the file ismalicious “Mn”
or normal “Nn” based on the values in the feature space. A “1” value denotes the presence
of a feature in the sample file, like “dll23” which is a feature present in the malware file and
not in the normal one. Similarly, a “0” value denotes the absence of a feature. The feature
vector created in this way is best suited for supervised classification models as it contains
well-defined labels.

In the case of high-dimensional feature space, PCA and t-distributed stochastic neighbor
embedding (t-SNE) can be applied to reduce the data dimensionality and visualize the
distribution of the data for selecting the important features from the dataset.

The feature selection for malware can be carried out using filter-based or wrapper-based
methods. The filter-based method focuses on the intrinsic characteristics of the features like
information gain, correlation, consistency, and distance. On the other hand, the wrapper-
based method uses learning algorithms like Support Vector Machine (SVM), Neural Net-
works (NN), and Random Forest (RF) to evaluate the importance of a feature for classifica-
tion.

The model is then trained on the preprocessed dataset and, as customary when training
ML models, then validated and tested (see Fig. 6.6). We notice however that in some cases
the validation phase is omitted. Once tested, the model is then deployed.

A challenge for the use of supervised ML models is the manual effort required for
labeling the malware samples. To address this challenge, Rizvi et al. [190] propose a DL-
based unsupervised classification technique that uses the feature attention block for static
analysis. The main idea is to train the DL framework on pseudo-labels and use the k-
means clustering algorithm which partitions the samples into clusters of benign samples
and malicious samples. The use of the attention mechanism is to prioritize the PE features
(see Table6.3), which have a higher impact than other features on malware detection.
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Fig. 6.6 ML workflow for malware detection
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Table 6.3 Essential features for malware analysis

Features Description Feature for ML-based analysis

Byte sequences Specifying the number of
times, a sequence and
combination of n-bytes have
occurred

n-gram

Opcodes Machine-level interaction of PE Opcode sequence

API and system calls List of calls executed and
invoked by the PE file

Execution traces

Network activity Interaction of PE with the
network regarding C and C
server

Protocols, DNS interactions,
HTTP requests, TCP/UDP
ports

File system File operations done by
malware to gain persistence

Number of files created,
modified, encrypted, deleted

CPU registers Registers or hidden registers
used by the PE

FLAG register values

PE file characteristics Information about the PE file
sections

Imports, compilers, symbols

Strings Strings contained in PE file
carrying information regarding

Signatures, file names, code
fragments

Control Flow Graphs (CFGs) Information about the programs
structure

Functions, control
relationships, code sequence

6.3.4 Malware Detection and Analysis: Features for Specific Platforms

In what follows, we discuss malware features used by ML-based models for analyzing
malware on different platforms, namely Android-, Windows-, and Linux-based systems.

• AndroidMalwareAnalysis.Themain concern forAndroid security arises fromAndroid
ability of easily invoking third-party code, which may include malicious codes, and its
coarse-grained permissions. To enhance security, Android’s latest versions provide sev-
eral security capabilities, such as lockmode, access control for cameras andmicrophones,
encrypted backup, file-based encryption, Google Play protection mechanism, and access
control for sensitive information. However, such security capabilities are not always
able to protect against malware, as there are apps that look legitimate to users and ask
for permission from users for downloading themselves like other benign applications.
The permissions granted by users then allow the attackers to access the “.apk” files and
exploit the permissions to install themselves and access device information. Therefore,
permission-based controls fail to block malware. To enhance security, ML-based mod-
els have been proposed that rely on extracting meaningful features from the APK files,
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Table 6.4 Features for malware detection in Android

Features Description

Permissions used Requested permissions by apps

Application components Include Android components like service, activity, broadcast
receiver, and content provider

Filtered intents Messages passed between Android components

API calls Calls to invoke core functionalities

Network addresses URLs and IP addresses used by the application

Opcodes Operation codes and their sequences in the application

Native code Function calls to external libraries

Hardware components USB, Camera, GPS accessed by the application

API Call Graph (CG) API calls between modules depicting nodes as APIs and edges
as links between the nodes

Control Flow Graphs (CFGs) Represent the code blocks and transitions between the blocks

Data Flow Graphs (DFG) Information flow between the program entities

based on which one can detect malware. The features to be used can be selected by
carrying out a feature validity analysis using chi-square tests, correlation analysis, con-
ditional entropy, information gain, and posterior probability. The features typically used
for Android malware analysis are listed in Table6.4 [207].
The “manifest.xml” file is a binary file that consists of all the permission requests made
by the apps. This file is converted to a text file before carrying out the malware analy-
sis. The feature vector is created by selecting the important features and assigning the
binary values (“1” if the feature is selected and “0” if the feature is not selected). Android
applications can be classified as malicious or legitimate based on multiple semantic fea-
tures as well [20]. The semantic features are useful for identifying behavioral semantics,
like n-gram sequences, source or sink methods, dynamic code methods, and sensitive
permissions selected based on the activation events, context semantics, and data flow
environment indicating whether the flow is malicious or not [247]. A particle swarm
optimization-based technique is used by Azat et al. [20] to extract the features from the
publicly available Android malware dataset CICAndMal2017 [139] containing samples
of both benign and malicious applications with a dimensionality of 919. Samples are
classified using NNs with 2 hidden layers all densely connected. The model is trained
using the stochastic gradient descent (SGD) algorithm with backpropagation; the feature
vector is fed forward through the layers. The experiments show that the model achieves
a true positive rate of 83.4% and an F-measure of 82.5%.

• Windows-based Malware. For detection purposes, API-based features are important
for understanding the program’s behavior. Most ML-based approaches use API’s statis-
tical features, like malicious sequence patterns or calculating the API call frequencies,
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Table 6.5 Features and extraction techniques for detecting Windows malware

Feature extraction technique Features extracted

Signature extraction Byte sequence hash code, file Hash codes

DLL function call extraction List of DLLs used, function calls, number of
function calls

Binary sequence extraction Hexadecimal code of each file, Binary sequence
of n-gram, mapping each byte to feature vector

Assembly sequence extraction Assembly sequence, opcode sequence, n-grams

PE file Header fields extraction DLL bindings, API import, exports, threads,
sources, file size, packer info, section alignment,
sizeOfimage, COFF file header

Machine activity metrics CPU usage, Context switches, SWAP use,
Number of Processes running, sent and received
bytes, network information, memory
information

Entropy signals extractions Entropy of code chunks, signal values, file as
entropy stream

in order to distinguish malicious behavior from a normal program behavior. However,
such approaches can be easily evaded by the attackers by shuffling the API sequence or
inserting irrelevant calls. Therefore, only using API sequences and patterns is insufficient
for effective detection. To address such an issue, an important source of information is
represented by the actual API calls. API calls carry different functionalities, which can be
determined based on their functions and function parameters. The approach by Rabadi
and Teo [184] thus also uses information about the API calls, functions, and function
parameters from the collected execution traces to analyze the program’s behavior and
select the unique features by performing a similarity analysis between the API functions
using a Markov chain. ML models are trained to learn from the extracted features, using
a 5-cross-validation approach, to distinguish malicious API calls from normal ones.
However, as even usingAPI calls may not be sufficient for an accuratemalware detection,
additional features can be extracted, using different techniques. Examples of those fea-
tures include DLL function calls, binary sequences, assembly sequences, PE file header
fields, machine activitymetrics, and entropy signals [73]. It is important to notice that dif-
ferent features often require different extraction methods. Table6.5 lists the features that
can be used for malware detection and classification, and the corresponding extraction
method.

• Linux-basedMalware. Linux has an effective built-in user privilege model, built-in ker-
nel security defenses, and kernel lockdown mechanism. However, despite those security
mechanisms, Linux is also prone to malware attacks. Malware typically infects the run-
ning processes by modifying the environment variables, which allows access to libraries
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Table 6.6 Features for Linux malware analysis

Static features Dynamic features

Text Strings Unique system calls

Cyclomatic complexity Ioctl

Basic blocks Renamed processes

Machine code Number of processes created

Library functions Check user and group identifier

Entropy Information of opened files

and functions. After gaining access, the malware typically collects commands and login
passwords in order to give remote access to the attackers.
To study and analyze the behavior of Linuxmalware Carrillo-Mondejar et al. [38] applied
different ML algorithms to mine information from ELF headers and train the model
with static, dynamic, and hybrid features. The features used for training the model are
listed in Table6.6. The labeled and unlabeled samples were distributed among different
architectures: ARM32, MIPS I, AMD x86-64, Intel 80386, and PowerPC.
The approach by Carrillo-Mondejar et al. [38] recognizes unknown threats from unla-
beled malware data samples by clustering the samples based on features and similarity
index. Different learning algorithms already trained on labeled datasets were used to
identify known malware patterns in the unlabeled data. The study was further extended
to identify the unknown clusters for unlabeled datasets by using identified known pat-
terns and distance metric-based clusters. The performance of different classifiers was
then evaluated on unlabeled malware datasets.
An interesting observation is made by Sentanoe et al. [200] regarding the sequence of
system calls. The sequence indicates the start of the SSH session, which can be used for
recreating the session and reproducing malicious files. However, if the sequence calls are
of variable length, hypergram sequences [153] can be used. The hypergram sequences
represent the n-gram sequences in a k-dimensional hyperspace, where “k” denotes the
unique system call. The API calls can be combined with knowledge-based meta-features
to improve the classification accuracy of the model [253].

6.3.5 Malware Representation

Even though feature-based detection of malware is generally effective, features alone are not
sufficient to always fully characterize malware. Also, models based on features alone may
be bypassed by malware using evasion techniques, such as obfuscation and alterations to the
sequences of calls. Characterizations by which static and dynamic features are organized
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according to a representation are critical to allow ML tools to better analyze malware.
Important information to be captured by such a characterization includes

• Order of actions performed by malware.
• Actions performed on intended file or object.
• Program control flow and data flow.

To address the need for such comprehensive characterizations, three different malware
representations have been proposed that we discuss in what follows.

Graphs

A graph representation can be based on system calls, function calls, API calls, and control
flows. System call graphs are used to represent the system call traces of a program having
processes as vertices and system call invocations as edges. In function calls graphs, vertices
represent functions and associated attributes and edges represent caller-callee relationship.
Function call-based graphs are less prone to instruction-level obfuscation techniques adopted
by malware for evading anti-virus software. API call graphs are used to represent the API
calls and their associated functions. Control flow graphs (CFGs) represent the control flow
structure of the program where each node corresponds to a basic block of the program and
edges represent the control flows between blocks. In order to be used by ML models, such
graphs are typically transformed into vector forms through the use of embedding techniques
(see Sect. 2.8). A challenge in the use of graph representations is to find similarities between
the samples based on the structural similarities of the graphs as the computation of the
similarities among graphs can be computationally prohibitive.

To address such a challenge, graph neural networks (GNN) have been used. The approach
by Yan et al. [249] uses deep graph convolutional neural networks (DGCNN) to handle
variable-size graphs through fixed-sized tensors employing the Graph2vecmodel for feature
extraction. Graph2vec—a model similar to the Doc2vec model [157]— is used to convert
graphs into vector representations. Graph2vec uses skip-grams to cluster similar graphs
based on the code sequences, structures, and attributes of the neighbors.

The limitation of theGraph2vec technique is that it suffers from an unnecessary neighbor-
hood expansion, increasing the space complexity. Possible solutions include partitioning the
graphs into subgraphs, applying the Node2vec model for generating a node-to-vector repre-
sentation, and restricting the search to the subgraphs of the node. The Node2Vec model [40]
captures the features of each node from the graph and maps the nodes of the graph to an
embedding space. The embedding space has dimensions lower than the number of nodes in
the original graph.
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Abstract Syntax Trees

Abstract syntax trees (ASTs) are used for the intermediate representation of source code.
A code can be represented using an AST by traversing the code line by line and gathering
the class names, functions, and other objects of the code and representing them as nodes.
The edges are represented by the sequence of instructions, including branching instructions
(i.e., function calls) and iterations.

Before the training phase, an AST is divided into subtrees based on the functionality
carried by the respective code sections represented in the tree to determine the malware
obfuscation transformations. The subtrees are then parsed to build an embedding matrix
containing nodes and node types (e.g., object expression, variable declaration) that describe
the subtrees. Figure6.7 shows an example of a malicious code snippet (on the left-hand side)
for string encryption. Then the code is parsed (i.e., tokenized) to capture various information
such as keywords, function calls, and variable declarations. Finally, the AST is generated
based on the tokenization (on the right-hand side) step.

Rusak et al. [196] used the Doc2Vec model to extract the necessary features from AST
nodes and edges obtained by code tokenization. Then, they trained a DL classifier on the
fixed-length feature vectors and generated a similarity matrix that measures the similarity
between normal subtrees and malicious subtrees [196]. When the model is applied to a mali-
cious code not seen during model training, the AST representation of the code is generated,
and the feature vectors are extracted using the Doc2vec model. Then the model classi-
fies the code as normal or malicious. Ndichu et al. [167] have found that Doc2vec model

Fig. 6.7 AST representation of malicious code snippet for string encryption
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hyperparameters, such as the minimum frequency of words, the distance between the words,
and the vector size (i.e., feature vector dimensionality), can be tuned to improve the classi-
fication accuracy.

Images

Malware representation using images was inspired by progress in ML learning techniques
for image analysis. The approach is based on the observation that a malware executable can
be represented as a binary string of zeros and ones. Such a vector can then be organized into a
matrix and viewed as an image [166]. In their experiments, Natraj et al. observed significant
visual similarities in image textures for malware samples belonging to the same family.
Therefore, based on such insights, malware can be classified, according to families, by
using ML models for image classification. More recent approaches based on the same ideas
are by Dai et al. [60], which use grayscale images or red-green-blue (RGB) representation
and pre-trained networks like RESNeT, and by Huang et al. [104], which use images for
representing both static and dynamic analysis results.

6.4 Research Directions

Detection is an important cybersecurity function with several interesting research directions.
One important direction is to enhance models to reduce the number of false positives, espe-
cially for ML models deployed in dynamically changing environments. Also enhancing the
robustness of the models against adversarial attacks aiming to evade the models is criti-
cal. Approaches to ensure robustness have been developed mainly for image applications,
and they need to be revised/extended for data specific to cybersecurity functions, such as
tabular data. Also concerning malware classification and analysis one interesting direction
would be to use multiple representations, instead than just one. The reason is that different
representations may provide different complementary information.
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Even well-secured systems can be breached. There are several reasons for this, including the
complexity and dynamic nature of today’s systems, insider threats, zero-day vulnerabilities,
and human errors. Therefore, as we have discussed in Chap. 6, monitoring and anomaly
detection activities are critical. However, one important task in the security life cycle is
to take proper actions, based on the results of those activities. The goals of those actions
include mitigating, containing, and recovering from the attack, while at the same time trying
to maintain the system operational as much as possible. In this respect, it is important to
mention that resilience to attacks is today increasingly critical asmany systems have stringent
continuity requirements.

Also, analyses, referred to as digital forensics or computer forensics, of attacks are critical
in order to determine the steps of the attacks and the vectors used in each step, so as to
eliminate vulnerabilities, exploited by the attacks, and enhance defensive mechanisms.

To date, the area of attack mitigation, containment, and recovery has not been widely
explored, as the actual approaches to use depend on the application domain and the security
and resilience requirements. It is however an area forwhich the application ofML techniques,
and especially RL techniques is promising and a few interesting approaches have been
recently proposed. By contrast, the area of digital forensics has been widely investigated
over the past [126, 195], and many ML-based approaches have been proposed [201].

In what follows, we first present an approach leveraging RL for attack mitigation in
networks; this approach provides an example of actions that can be taken to mitigate a
potential attack, while at the same time ensuring that the system is able to continue working
with good performance. We then present an initial approach, based on the notion kill chain,
to enhance ML-based defenses by leveraging the ML attention technique. We then briefly
discuss ML-based digital forensics.
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7.1 Attack Mitigation

In general when dealing with attack mitigation, one has to take into account that early
mitigation is critical to reducing the effects of the attack, but at the same time an anomaly
detectormayneedmore data before having high confidence that an attack is actually ongoing.
Therefore, depending on the specific system/domain, attackmitigation strategies have to take
actions based on the trade-off.

An example of such an approach is represented by Jarvis-SDN, a RL-based system,
designed to mitigate attacks in software-defined networks (SDNs) [162]. The goal of Jarvis-
SDN is to optimize rate control for network flows by detecting and then blocking malicious
flows. It is important to notice that reducing the number of false positives is critical. A large
number of false positives would result in blocking a a large number of benign flows, thus
resulting in very poor rate control.

RL-based approaches for network control typically focus on optimizing a single function-
ality, whichmakes them not suitable for applications in real networks. For example, learning
a policy which maximizes the throughput of the network (functionality 1: optimal routing)
may have the cost of unfair bandwidth consumption by a set of users (functionality 2: per
user bandwidth fairness). More challenging is the case of security policies. For example,
learning a policy which maximizes the throughput of the network (functionality 1: opti-
mal rate control for QoS) can unknowingly facilitate the propagation of a high throughput
DoS attack. To address such a challenge, Jarvis-SDN uses a reward defined as a weighted
combination of individual functionality performance metrics, including a metric for security
behavior of the system.

A challenge when using RL for security is the definition of security metrics as it is not
obvious how to define performancemetrics for security (see [180] for a discussion on security
metrics). To address such a challenge, the approach adopted in Jarvis-SDN for quantifying
security is to measure the ability to detect known attacks. The approach requires to first build
a set of “attack signatures” from packet captures of previously seen attacks. Those signatures
are then used by the RL agent to determine a security quality value for the network state
depending on the perceived threat a network flow has on the current and near-future states
of the network. Then once the set of signatures is built, a RL-DQN-based IDS is trained.
Once trained, the IDS analyzes network flows and reports at each given interval the security
quality value to the RL agent controlling the rate.

The reward function of Jarvis-SDN is thus defined as follows:

R(St , At ) = (1− δ)[ f1F1(St , At ) + f2F2(St , At )] + δD(St , At )

where ST denotes the state at time t , and At denotes the action taken at time t ; δ, f1, and f2
are hyperparameters to incorporate security metrics, rate control, and user fairness weights
in the objective function.
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The normalized functionality and security metrics used in the reward function are defined
as follows. We observe that the rewards are expressed as expectations over all the flows in
the network.

• Rate Control: It gives a positive reward proportional to the amount of traffic allowedwhen
the current load is less than the threshold and a large negative reward for overloading the
server. The positive rewards are proportional to the amount of traffic let through, which
encourages higher throughput.

• User Fairness: It gives a positive reward proportional to the amount of traffic allowed
when the service-level agreement is upheld and a large negative otherwise.

• Security: It is the quality security value generated by RL-DQN IDS built based on the
set of attack signatures. It gives a positive reward when the flow matches a benign flow
and a negative reward when it matches a malicious flow.

Another important aspect when using a RL-based approach is related to the space of
actions that the RL agent can take. In Jarvis-SDN, at each interval the agent can take 11
possible actions {0, 10, 20, ...,100} corresponding to percentages of packets to drop while
allowing the rest to flow. 0 corresponds to allowing all traffic to pass and 100 corresponds
to dropping all traffic.

Jarvis-SDN has been evaluated via simulation. An interesting result from the experiments
is that Jarvis-SDN is able to detect malicious flows while at the same time minimizing the
number of false positives. The reason is that when Jarvis-SDN observes some initial packets
of a flow, and these packets are classified as malicious by the IDS, Jarvis-SDN just slows
down the flow and waits to analyze more packets. As a result, a few malicious packets can
still be transmitted but at a lower rate, which makes most attacks ineffective. However, on
the other hand, benign flows whose initial packets may be classified as malicious are not
blocked, even though some of their packets may be transmitted at a lower rate.

7.2 Defense Enhancement

Aswe discussed inChap. 6,ML-based detection techniques are an important defensemecha-
nism.However, their accuracy can be undermined for various reasons, namelymodel evasion
techniques and poor training. Model evasion techniques allow an attacker to craft malicious
input that is not detected as malicious by the detector (see Sect. 9.4). Poor training is often
due to the lack of training data of good quality or changes in the protected systems (see the
discussion on robustness in Sect. 9.3.3). Therefore, a key requirement is to develop tech-
niques to enhance the accuracy of detectors based on analyses of data collected during the
attack.

A novel approach addressing such a requirement has been recently proposed by
Lee et al. [142] for the case of IoT systems. The approach is based on several insights:
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• Attacks have several steps; these steps are often referred to as kill chain. Although the
number and the name of steps vary, these kill chains commonly break down an attack
into the following five steps:
– Reconnaissance: the attacker collects information about the target. The attacker may

perform social engineering or port scanning.
– Infection: the attacker exploits vulnerabilities of the target to take over and install mal-

ware binaries required to launch attacks. The attacker may launch dictionary attacks
or zero-day attacks for this purpose.

– Lateral movement: once the attacker has access to the target, the attacker may move
laterally to other devices to gain more leverage. The attacker may perform scanning
activities or propagate malware in the internal domain.

– Obfuscation: the attacker hides its tracks. This step may involve laying false trails
and clearing logs.

– Action: the attacker launches the attack. For example, in botnets, the attacker directs
bots to perform a DDoS attack such as UDP flooding.

• Arobust defense is based on allocating several detectors based on the kill chain. Each such
detector is specialized in detecting anomalies for a given attack step. Such an approach
raises the bar for the attacker in that the attacker would have to evade all the detectors in
order to succeed (see also discussion in Sect. 9.4).

• Today, systems and networks provide logging facilities by which one can collect data to
analyze security-relevant events, such as network packets.

• If a detector D misses to flag a malicious event part of an attack, it is likely that some
of the other detectors will detect other malicious events related to the same attack. Then
based on the log, by using correlation techniques, one may identify the activity missed
by detector D and use the data in the log to re-train the detection model of D.

Based on those insights, Lee et al. [142] designed IoTEDef, which detects attacks based
on analysis of network logs and subsequently retrains detectors. IoTEDef is based on a
kill chain consisting of three steps, namely reconnaissance, infection, and action, and thus
includes three detectors—one for each such step. Its goal is to enhance the accuracy of the
detectors associated with the early attack steps, that is, reconnaissance and infection. The
reason is that in order to acquire a foothold in a target system, an attacker typically attempts
to evade the detection systems by performing stealthy attacks (e.g., stealthy, distributed SSH
brute-forcing) or exploiting unknown device vulnerabilities (i.e., zero-day attacks). To detect
such attacks, the detectors may classify all the suspicious or unknown patterns as anomalies,
but it would result in a high number of false positives.

Upon detecting anomalies related to a later stage of the kill chain, IoTEDef backward-
traverses the log of the events and analyzes these events to identify infection events. Then
based on the identified events, IoTEDef improves the performance of its infection detector.
Essentially, IoTEDef gives up precise detection of unknown patterns of an early stage attack
when it faces an unknown attack for the first time. Instead, after IoTEDef recognizes that
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there has been an early stage attack through known patterns of the later stage attack, IoT-
EDef identifies the corresponding early-stage attack patterns and makes its early detector
learn the patterns. Then, IoTEDef can detect such an early-stage attack with high precision
later on.

A critical issue is the correlation between adversarial and separate events in two different
steps (e.g., UDP flooding in the action step and dictionary attack packets in the infection
step), where the interval between them can be long. Addressing such a challenge requires
mapping diverse networking patterns onto kill chain steps and backtracking from later events
to earlier events. The approach designed for IoTEDef is based on the observation that similar
challenges are also present in the area of language translation, and many techniques have
been developed to address these challenges [43]. Therefore, the approach taken for IoTEDef
is to model the event correlation problem as a language translation problem by introducing
a novel probability-based embedding to encode past events into steps that the events belong
to and an attention-based infection identification algorithm to correlate the encoded events
with long-term dependencies in different steps. Such an approach allows one to identify
infection events that lead to action events. The identified infection events are then used to
improve the performance of the infection detector. Extensive experiments show that the
attention mechanism is effective in enhancing the accuracy of the early detectors also with
respect to other baseline approaches.

7.3 Digital Forensics

Digital forensics is a very rich area, which is articulated in many subareas, including operat-
ing system forensics, disk and file system forensics, live memory forensics, web forensics,
email forensics, network forensics, and multimedia forensics. Many forensics techniques
and tools have been also developed over the years. These tools are usually tailored for specific
forensic tasks, such as attribution, alibi and statement, intent, provenance of artifact and data,
and document authentication, and we refer the reader to [126] for a recent comprehensive
survey of forensics tools and techniques.

Because of the relevance of forensics, also from a legal point of view, it is not surprising
that forensics is an important application area forML in the context of security. As discussed
by Shahzad et al. [201], ML techniques can reduce the time required for finding evidence
from vast amounts of data generated from different sources. They can also augment evidence
for nonstructured data by building interlinkages and identifying otherwise hidden patterns,
and identify malicious artifacts via prediction techniques. ManyML-based approaches have
been proposed, which use a variety of techniques including DL, DM, and SVM, and we refer
the reader to [173, 201] for discussions and surveys. More advanced ML techniques have
been recently used for digital forensics. For instance, Alsaheel et al. useNLP techniques such
as lemmatization and LSTM [7], and Ede et al. use transformers for digital forensics [232].
In the following, we look into the details of these advanced approaches.
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7.3.1 NLP-Based Attack Analysis

Advanced Persistent Threats (APT) involve multiple attack steps over a long time period,
and their investigation requires the analysis of myriads of logs to identify these steps. To
automate this highly manual task, Al Saheel et al. [7] have developed ATLAS, a frame-
work that constructs an end-to-end attack reconstruction from off-the-shelf audit logs. The
main idea is that different attacks may share similar abstract attack strategies, regardless of
the vulnerabilities exploited and the payloads curated. ATLAS leverages a combination of
causality analysis, NLP, and ML techniques to build a sequence-based model, which estab-
lishes key patterns of attack and non-attack behaviors from a causal graph. At inference time,
given a threat alert event, an attack symptom node in a causal graph is identified. ATLAST
then constructs a set of candidate sequences associated with the symptom node, uses the
sequence-based model to identify nodes in a sequence that contribute to the attack, and
unifies the identified attack nodes to construct an attack story. For NLP, ATLAS uses word
embedding to map the lemmatized sequences to a vector of real numbers, which captures the
context of an entity in a sequence and its relation with other entities. This sequence-based
representation then is fitted into the training of a LSTMmodel. The overview of the approach
is shown in Fig. 7.1.

7.3.2 Transformer-Based Contextual Analysis of Security Events

Security monitoring systems detect potentially malicious activities in IT infrastructure, by
looking for known signatures or anomalous behaviors. Security operators investigate these
events to determine whether they pose a threat to their organization. In most cases, single
events are not enough to determine whether certain activity is indeed malicious. Correlat-
ing multiple events is a hard manual task. Therefore, van Ede et al. [232] have designed
DEEPCASE, a system that leverages the context around events to determine which events
require further inspection. Figure7.2 gives an overview of the approach. The core idea is
to analyze, besides the security event itself, the preceding security events. Those preceding
events represent the context in which the event is triggered. An event in combination with
its context is called a sequence. DEEPCASE leverages a deep learning model with trans-

Fig. 7.1 Overview of ATLAS [7]
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Fig. 7.2 Overview of DEEPCASE [232]

formers designed to expose complex relations between both new and previously observed
event sequences. These sequences are subsequently grouped based on a similar function,
providing concrete information about why various event sequences are treated as the same.

7.3.3 GNN-BasedMemory Forensic Analysis

Memory forensic analysis can provide live digital evidence of attack footprints by analyzing
thememory snapshot or dumpof a runningmachine. For instance, by identifying thememory
objects that hold the process information, analysts can know all the running processes when
the attack happens.

However, memory forensic analysis is challenging for several reasons. First, memory
analysis requires a large amount of manual effort to understand the target system and write
rules to guide the analysis process. Second, the manually written searching rules can be
easily bypassed by privileged attackers. For instance, once the attacker has gained control
over the victim machine, the attacker could use techniques such as direct kernel object
manipulation (DKOM) to modify the kernel object values to avoid being caught by memory
forensic analysis tools. Finally, analyzing the memory dump/snapshot of the machine is
inevitably expensive, especially when the analyst often has to analyze snapshots taken on
several machines at different times.

To address such challenges, Wei et al. [244] propose the use of ML for memory forensic
analysis (see Fig. 7.3). To enable the use of existing ML techniques for such analysis, they
propose a graph-based representation of the memory dump and a graph neural network
(GNN) architecture that performs classification tasks on graphs.

The memory dump, in practice, is represented as a sequence of raw bytes. However,
this representation makes it hard for models to learn because it does not explicitly provide
several vital information such as the relationship between different bytes. For instance, if the
value of a memory byte is the address of another memory byte, it is likely that the two bytes
have points-to relationship. To address such an issue, a more effective representation of the
memory dump is adopted in DeepMem by representing the dump in a graph consisting of
nodes and edges. Each node in the graph is a segment of memory. Nodes are connected by
edges of different types. Different types indicate different relationships between nodes such
as adjacency and points-to relations.
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Fig. 7.3 Overview of DeepMem (redrawn from Fig. 1 in [244])

Given amemory dump, DeepMem generates a graph based on it and feeds it to themodel.
The model consists of two major components. First, a GNN component executes messaging
passing on the whole graph to learn a vector representation (referred to as embedding) of
each node. Then, the second component—a multi-layer fully connected neural network—
takes the embedding as input and performs multiclass classification for each node. At the
end, each node (each memory segment) in the graph is classified into a class that represents
a certain type of data structure. Then further analysis such as process information extraction
can be easily carried out based on the classification results.

DeepMem was evaluated over 400 1GB memory dumps on the Windows 7 operating
system. Wei et al. even enabled kernel address randomization to increase the challenge of
the memory forensic analysis. The results of the model performance are satisfactory. The
precision, recall, and F1 values of the model are higher than 99%, showing the model’s
high accuracy in identifying different memory objects in the dump. In another experiment,
they evaluated if the model can still maintain the accuracy when the attacker performs
certain malicious modifications to the kernel objects. However, the model still achieves
100% precision and 99.77% recall.

7.3.4 An ExplanationMethod for GNNsModels

Although GNNs can achieve high performance on many real-world tasks including security
applications such as code vulnerability detection, users cannot easily understand the reasons
behind the model prediction by the GNN (e.g., why the GNN would predict a code block
as vulnerable). Thus, a tool that can understand the process according to which the model
makes the precision and then provides the explanation to the user is critical.

However, explaining GNN models is challenging. First, due to the models and input
complexity (e.g., a GNN model might have 1 million parameters), it is hard to both com-
prehensively and accurately identify all the important factors that contribute to the model
prediction. Failing to do either would hinder the real-world usability of the tool. Second,
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Fig. 7.4 Overview of ILLUMINATI (redrawn from Fig. 2 in [98])

an effective method needs to support various GNN architectures. Recently, many different
GNN architectures have been proposed, and they are quite different from the basic GNN
design. An explanation method that only works for specific GNNs will not be useful in
practice.

To address such challenges, Hayou et al. [98] have proposed a new explanation approach
and implemented ILLUMINATI—a prototype explanation tool (see Fig. 7.4). ILLUMINATI
uses a two-stage workflow to explain a GNN model. First, it takes the trained GNN model
and the model input as ILLUMINATI’s input. It performs masking learning on the model,
duringwhich different edges or node features are removed from the input graph and analyzed
in order to determine if the GNN model can still provide an accurate prediction. Intuitively,
an important edge—if removed from the original input graph—may largely affect the model
prediction.

Second, ILLUMINATI computes a score for each node in the input graph, indicating
the importance of this node when making the prediction. The important score is computed
based on the important edges and node features identified in the first stage. Once the score
is computed for each node, ILLUMINATI extracts a subgraph from the input graph and
reports this subgraph to the user, which consists of crucial nodes that contribute to the
model prediction.

To evaluate ILLUMINATI, Hayou et al. choose the Essentialness Percentage (EP)metric,
which is the percentage of subgraphs that retain the original model prediction. In general,
an explanation method that has higher EP is more accurate in providing the user with
useful information. ILLUMINATI is compared against existing explanation methods such
as PGExplainer, and it has over 10% higher accuracy than them.

7.4 Research Directions

The area of ML-based attack management has many interesting research directions. The
first is the prediction of possible next steps of attacks. As we have already mentioned,
attacks are in most cases multi-steps. Therefore, based on some initial knowledge—based
for example on the detection of an anomalous event—one could determine whether the
event is related to an attack, and if this is the case one could determine the potential goal
of the attack and then the next possible steps. Identifying the potential next steps of the



114 7 Attack Management

attack would then allow the defender to execute actions to block, contain, and possibly
respond to the attack. A challenge is, as in other cases, represented by the training of suitable
ML models, which for example would require large sets of attack graphs, and also domain
knowledge, such as vulnerability databases and details on the system under attack. A second
research direction is the forensics of ML models and algorithms, and ML-based systems.
There are many challenges, such as the difficulty of explainability of ML (see discussion in
Sect. 9.3.1), whichmakes it very difficult to pinpoint specific reasons for incorrect/malicious
decisions/previsions by these models. Reasons can include wrong parameter settings and
malicious training data. Therefore, suitable forensics processes would require fine-grained
and comprehensive logging capabilities able to capture all activities involved in training
and using these models. Also as ML models and algorithms will be increasingly able to
autonomous evolve, forensics processes will require detailed tracking and recording of this
evolution, including contextual information.
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In this chapter, we briefly discuss three case studies with the goal of highlighting, in addition
to the conventional defenses, theML-based defenses that could have prevented/mitigated the
different steps of the attacks. Notice that in some cases, conventional defenses andML-based
defenses would be alternatives to each other; in other cases, they should be both deployed
for enhanced security.

These case studies cover attacks with different goals; also the covered attacks differ with
respect to some of the attack steps. The first case study covers the Target data breach, by
which attackers exfiltrated large datasets of customer data and credit card data. The second
case study covers The recent SolarWinds attack, by which attackers were able to inject
malicious code inside a patch, which was then distributed to a large number of customers.
The SolarWinds attack represents an example of supply-chain attacks, in which instead of
directly attacking the victims, the attackers target a supplier of some software and inject
malicious code into this software. The malicious code is then unknowingly distributed by
the supplier to all its customers. The third case study covers the WannaCry ransomware,
as this is a representative of today’s most common attacks; most ransomware attacks have
targeted healthcare and local governmental organizations, and also corporations. Recently
however, they have targeted critical infrastructures, and in these cases the consequences can
have disastrous consequences.

8.1 TheTarget Data Breach

The Target data breach is considered one of the biggest security attacks in history. The attack
happened in 2013 and affected 41 million customers, causing Target to pay $18.5 million
multistate settlement. This attack is a clear example of the worst outcome of a data breach,
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Fig. 8.1 Overview of the target data breach

which is customers losing confidence in the security of the system and refraining from the
service (purchasing from Target) even after the security issue was resolved. Similar to many
breaches, the attackers did not go directly through Target’s system, but through a third-party
vendor. Companies should make sure that their suppliers follow good security practices. In
this section, we give an overview of the steps of the attack (see Fig. 8.1) and discuss potential
ML-based techniques for prevention and/or detection and mitigation. For additional details
on the attack, we refer the reader to the report by Aorato Labs [17].

Step 1: Installing malware to steal credentials from Target’s vendor

The attackers first infected the system of Target’s HCAV contractor with amalware known as
Citadel, which can gather web application credentials from infected machines. The malware
infected one of the contractor’s machines through phishing emails.

Non-ML Defenses: Effective email spam filtering mechanisms are critical in filtering
out illegitimate emails. Also, user education about fishing and spear phishing attacks
is important.
ML Defenses: Adoption of advanced ML-based solutions combining NLP and clas-
sification algorithms would enhance the ability to filter out suspicious e-mails and
would prevent malware infection. If, however, the malware is still able to infect the
victim’s machine and starts its execution, ML models can be deployed to perform
runtime process analysis to detect malicious processes. As the malware scanned the
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victim’s machine to find web application credentials, ML-based AD systems or clas-
sification algorithms could efficiently distinguish an anomalous process from regular
ones. In our view, unsupervised ML approaches would be more suitable for detection
as obtaining labeled datasets for this type of scenario is rarely possible.

Step 2: Connecting to Target using stolen credentials

After stealing the web application credentials, the attackers were able to connect to Target’s
web services dedicated to vendors and run tests to expose vulnerabilities to exploit for the
subsequent attack steps.

Non-ML Defenses: Non-ML techniques based on multi-factor authentication logins
can be extremely effective in preventing this type of attack. Recall that the Target attack
happened in 2013, and in recent years we have seen a clear transition to multi-factor
authentication mechanisms.
ML Defenses: Once the attackers are connected to the server, ML techniques that
leverage action sequence labeling can be deployed to detect users’ anomalous behav-
iors. For instance, a possible solution is to employ unsupervised MLmodels that learn
the typical users’ behavior and recognize anomalous behavioral patterns. Classifi-
cation and anomaly or intrusion detection algorithms can effectively perform such
tasks. After detection, one could consider techniques (e.g., account blacklisting) to
temporarily block the compromised account and prevent it from performing any addi-
tional actions.

Step 3: Exploiting a web application vulnerability

The attackers leveraged the stolen credentials to connect to the vendor services and discover
existing vulnerabilities. In particular, the attackers discovered a vulnerability that allowed
them to upload documents to Target’s server without any check on the document type. Thus,
the attackers uploaded a PHP script that generated a web-based backdoor on the server, and
exploited the backdoor to upload additional files and execute arbitrary OS commands.

Non-ML Defenses: Techniques, such as rule-based filtering, can be effective for
avoiding this type of vulnerability, provided that the rules are accurate.
ML Defenses: ML classification techniques (e.g., clustering and SVM) for filtering
would be also suitable to identify the files’ type. As, however, attackers could be able to
evade the filtering, additional protection would be the deployment of ML techniques
for runtime process analysis to detect anomalous processes. The reason is that the
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attacker process connected to the backdoor continuously executed OS commands
with a behavior that likely deviated from the typical processes running on Target’s
servers. Unsupervised classification and AD algorithms can be viable options in this
case.

Step 4: Searching relevant targets for propagation

By executing arbitrary commands, the attackers were able to perform reconnaissance cam-
paigns to collect information on Target’s internal infrastructure and identify potential targets
to continue the attack. In particular, the attackers queried the active directory, which con-
tained data on all entities on the internal network (e.g., users, computers, services, and SQL
servers). Note that any user could query the active directory, and no special restrictions were
applied to the query type. Thus, the attacker could retrieve the names and IP addresses of
relevant SQL servers and point of sales (POS) machines.

Non-ML Defenses: One of the main vulnerability points lies in the fact that the active
directory allowed each user to perform any type of query. Thus, an effective solution
would have been to deploy access control for query execution, to limit the types and
numbers of queries users can do on the directory. The reason is that typical users only
perform a few queries against active directories, and only specific user issue queries
(e.g., administrators). Therefore, one could issue fine-grained permissions to users to
limit access to the directory.
ML Defenses:An alternative approachwould be to useML-basedmodels of the user’s
normal behavior, possibly grouping users by roles or groups, and then carry out AD
against the normal behavior of these roles/groups.

Step 5: Stealing access token from domain administrators (DAs)

After identifying relevant targets, the attackers needed a DA privilege to access them. Thus,
the attackers employed a well-known technique called Pass-the-Hash to log in as a valid
user. The attackers could steal a DA’s NT hash (a token used in place of the actual password)
from the Web server memory and use it to log in successfully.

Non-ML Defenses: Once again, the attackers could steal and exploit valid users’
credentials. For this type of vulnerability, multi-factor authentication techniques, such
as proof of possession for the token, can effectively prevent unauthenticated logins.
Moreover, one can consider decreasing the expiration time associated with password
tokens to reduce the time window in which each token can be used.
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ML Defenses: Although detecting stolen credentials can be challenging, one can
resort to strategies to analyze the users’ behavior and detect users performing unex-
pected actions. As discussed in previous steps, one can consider ML algorithms for
classification and AD.

Step 6: Creating new DA account using the stolen token

To ensure long-term control within Target’s network, the attackers could not rely on the
stolen admin credentials as these could expire or change. Therefore, the attackers leveraged
the stolen credentials to create a new DA account. This step was highly critical as the
attackers were able to obtain complete control over a domain admin account, which entails
the maximum privilege permissions.

Non-ML Defenses:Given thepermissions associatedwith admin accounts, one should
consider a multi-step authorization mechanism every time a new admin account is
created. Non-ML techniques can successfully implement this type of mechanism.
ML Defenses: Once an administrator account is created, one can consider ML tech-
niques to learn typical admins’ behavioral patterns and recognize anomalous ones.
Once again, possible ML-based approaches include classification and anomaly detec-
tion algorithms.

Step 7: Propagating to relevant computers with new admin credentials

At this point, the attackers had information regarding the servers with relative information
they want to access (from step 4) and the credentials to access these servers (from step 6).
In order to propagate to the relevant computers with admin credentials, the attackers had
to bypass the firewall. This was achieved by propagating through a series of servers and
running a specialized tool to identify which computers were network accessible from the
current computer.

Non-ML Defenses: Non-ML techniques can be used to impose fine-grained access
control policies.
ML Defenses: Similar to step 6, ML techniques for AD can be used and combined
with multi-factor authentication techniques.
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Step 8: Stealing 70M of Records with Personal Identifiable Information (no credit
cards)

With access to computers with databases of user information, the attackers tried to access
Personal Identifiable Information (PII) of 70M users. The attackers tried to use bulk SQL
copy tools, but that step failed due to Target being compliant with Payment Card Industry
Data Security Standard (PCI). Accordingly, the attackers had to change their strategy and
move to installing malware on POS.

Non-ML Defenses: PCI compliance was in place and prevented the attack.

Step 9: Installing malware on POS and steal 40M credit cards

This is the first step in the attackers’ alternative plan, which they switched to after failing
to extract the credit card information from the SQL database. The alternative plan was to
use the same propagation techniques in step 7 to install a malware on all POS machines.
The malware scanned the memory of each POSmachine to find credit card information, and
then saved the collected information into a file on the machine’s permanent storage.

Non-ML Defenses: Techniques such as hardware memory encryption can be used so
that memory contents for one process are not accessible by any other process nor by
the operating system (e.g., Intel SGX/TDX). Such techniques are however expensive
because they require specialized hardware and also may introduce delays.
ML Defenses: ML techniques can be used to identify executable files that might
be harmful and prevent their execution. Also, AD can be executed to detect unusual
process behavior such as full-memory scanning. These techniques would not require
specialized hardware. However, since the system under attack was a POS, onemay not
have been able to use a large and resource/time-consuming ML model. Accordingly,
for this attack, the models should have had a very small memory footprint and very
low inference latency as a POS is a customer-facing system. An additional defense
is to use ML-based NLP scanning programs to classify files containing sensitive data
and delete or prevent access to these files. Again, very lightweight models should be
used here to minimize resource requirements and user-observable latency.

Steps 10 and 11: Sending and storing stolen data within Target’s internal network; then
sending stolen data via file transfer protocol (FTP) to an attacker-controlled server

In this step, the attackers copied the locally stored files containing credit card information
to a remote server using standard FTP. However, the data was still within Target’s internal
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network at this point. Afterwards, the attacker exfiltrated the data via FTP to an external
attacker-controlled server.

Non-ML Defenses: Techniques such as access control policies can be deployed to
prevent FTP data transfer from a POS to any internal or external server, or between
any internal server and an external server.
ML Defenses: Once the data transfer starts, one can use network sniffing to analyze
the packets and ML/NLP classification techniques to detect sensitive information in
the packet such as credit card information.

8.2 The SolarWinds Attack

The SolarWinds attack is a supply chain breach that involved SolarWind’s Orion system, a
networkmanagement system tool used bymore than 30,000 public and private organizations.
The cybersecurity company FireEye first detected the breach. The company identified the
inclusion of malicious code in the Orion build cycle, which gives hackers access to its
systems. FireEye labeled this backdoor as “Sunburst”. Alternatively, the backdoor is referred
to as “Solorigate”. We will use the term “Solorigate” for consistency. Extensive analysis
has been conducted on the SolarWinds attack, which has been shown to be one of the most
sophisticated attacks. The breachwas discovered a year after the hackers gained unauthorized
access to the SolarWinds network. In this section, we analyze the SolarWinds attack and
proposeML-based and non-ML-based solutions that could thwart such an attack in different
stages.

The attackers initially accessed SolarWinds’s update server. This server compiles Orion’s
source code and distributes it to SolarWinds’ customers. Then, they installed the SUNSPOT
malware on the server, which compromised the compilation pipeline of Orion’s source code
by adding malicious compartments. The malicious code, incorporated in Orion’s core, gave
remote access to any customer network systems on which Orion was deployed. Once the
binarywas compiled, itwas distributed to the customers.All the instances ofOrion’s software
in the customer networks communicated with attacker command and control servers.

Preparation Step 1: Getting access to SolarWinds’s network

The attackers had installed the SUNSPOTmalware remotely. The question is, howwere they
able to do that? SolarWinds reported that an easily guessable password for the company’s
critical update serverwas stored in a privateGitHub repository formore than a year. TheCEO
mentioned that the intern assigned the access password “solarwinds123” to the company’s
update server and posted the password to a private GitHub repository which several people
may have access to. Presumably, this could have allowed the attackers easy access to the
company’s update server.
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Non-ML Defenses: The adoption of a strong authentication mechanism is highly
recommended in critical environments such as an update server. Such authentication
techniques could be two-factor authentication and public key-based authentication.

Preparation Step 2: Escalating privilege

At this point, SUNSPOT malware had been deployed on SolarWinds’ production server.
First, the malware created a mutex to ensure that only one instance would run in the system.
Otherwise, multiple parallel executions of the malware may have risked detection. It then
generated a log file for any errors that themalware encountered and deployment information.
The log filewould report information to the attackers, such aswhere it failed or the location of
Orion’s source code. In addition, the malware granted itself debugging privileges, meaning
it could practically access the memory locations of other system processes.

Non-ML Defenses: In critical production environments, system processes and their
permissions must be documented. In other words, it should be clear which processes
are allowed to execute and with what permissions. In addition, privilege elevation
should not be permitted, at least from processes that should not have this ability. Such
constraints could have made this step impractical to perform.

Preparation Step 3: Monitoring the running process to inject the code

Since SUNSPOT now had debugging privileges, it could perform system calls to check
the current status of other processes. The malware was actively looking (i.e., every 1 s)
for “MsBuild.exe”, which is part of Microsoft Visual Studio development tools and was
invoked when Orion was ready to build. If there was an “MsBuild.exe” process, SUNSPOT
would spawn a new thread to determine if the Orion software was being built and then
would hijack the build operation to inject Solorigate. The monitoring frequency of 1 s would
allow the malware to essentially never miss any Orion’s build operation and then hijack the
process before sending the source code to the compiler. Due to the use of mutex (from step
2), the malware prevented itself from executing multiple monitoring loops. Threads were
extremely risky since any compilation issue would have triggered manual inspections from
the engineers. Thus, the attackers had to be very careful and stealthy.

Non-ML Defenses: Monitoring other processes requires the invocation of certain
system calls. One could whitelist the processes that should be allowed to perform
such system calls while blocking the ones that should not.
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ML Defenses: The invocation of such system calls is a typical malware behavior. A
ML model could be trained to recognize such behavioral patterns and classify them
as malicious.

Preparation Step 4: Extracting the command-line arguments from process memory

The malware extracted the command-line arguments for each running “MsBuild.exe” pro-
cess from the virtual memory. The command line was then parsed to extract individual
arguments, and SUNSPOT looks for the directory path of the Orion software Visual Studio
solution.

Preparation Step 5: Injecting Solorigate source code

After finding the directory of the Orion solution, SUNSPOT replaced the source file content
with a malicious variant to inject Solorigate while Orion was being built. The malicious
source code was stored in encrypted blobs to evade static analysis. SUNSPOT decrypted the
code and then replaced the source file content, which involved creating and deleting inter-
mediate files. The attackers adopted several sophisticated techniques to ensure the backdoor
had a persistent foothold in the system without being detected. For example, they used com-
pilation directives to remove any warnings generated at the output. The malicious code was
added to a frequently invoked class, so the backdoor was always alive.

Non-ML Defenses:Enforcing trusted execution environments by forcing thememory
associated with the compiler to be read-only and (or) creating enclaves which are
secure partitions within the main system memory would be effective defenses. The
applications running in enclaves are encrypted,making them impenetrable to outsiders.
ML Defenses: SUNSPOT shows several behaviors common in malware infections,
including memory accesses to other process regions, creation of intermediate files,
and deletion of system files. Hence, ML-based malware detection techniques can be
helpful here.

Infection Step 1: Checking the victim’s environment

Once the attack against the Orion’s built was successful, the update server dispatched the
compromised version to SolarWinds’ customers. The customers are called the “victims”
since those were the ultimate attack targets.

Solorigate carried out several checks to verify that therewere no running processes related
to security-related software (e.g., Windbg, Autoruns, and Wireshark) or that no analysis
tools were present. Those checks included checking process names and file timestamps.
If Solorigate detected such processes, it attempted to disable them by manipulating their
configurations in the Windows Registry.
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In addition, themalware checked the active directory domain in the victim’s environment.
The active directory naming convention may have revealed information about the network
environment, such as if its local network is a demilitarized zone (DMZ). In such cases, the
malware did not take any action. Finally, it checked for Internet connectivity to ensure that
a command and control channel could be established.

Non-ML Defenses: Since Sunburst did not re-check once it disabled the security-
related service, checking unintentionally disabled services and restarting them could
have mitigated this attack.
ML Defenses: One could useMLmodels for recognizing suspicious activities such as
disabling security services throughWindows Registry. AnMLmodel could be trained
using features such as system calls to check security-related software and drivers and
system calls to disable processes via Windows Registry.

Infection Step 2: Setting command and control

Solorigate used an intermediary command and control (C2) coordinator as a DNS server
to retrieve its final C2 server. Solorigate used a domain generation algorithm to construct
subdomains used to reach and exchange information with the C2 coordinator. Regular DNS
queries and responses between the victim and the C2 coordinator were used to exchange
encrypted information. The information and instructions for the malware were encoded in
the IP ranges in the DNS responses. The C2 coordinator then communicated the victim-
specific C2 server to Solorigate. Solorigate and the specific C2 server then communicated
through encoded HTTP requests and responses.

Non-ML Defenses:Awhitelisting domain approach could have been sufficient to pre-
vent the software from contacting unknown domains. This requires, however, knowl-
edge of the trusted domains that Orion should be able to communicate with.
ML Defenses: Since Solorigate performed queries to several subdomains of an
unknown domain, AD techniques could detect such malicious behavior.

8.3 TheWannaCry Ransomware

TheWannaCry ransomware attackwas aworldwide attack that happened in 2017. This attack
targeted the Microsoft OS and encrypted the user data on affected machines. WannaCry
exploited a Windows vulnerability in the server message block (SMB protocol). According
to the estimate, it affected over 200,000 computers across 150 countries, with total damages
ranging from hundreds of millions to billions of dollars.
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In what follows, we introduce the different steps according to which the WannaCry
attack was organized and discuss both non-ML and ML defenses that could have been used
to avoid/mitigate the attack.

Step 1: Finding and infecting machines

To infect machines, WannaCry first found machines from both the internal network and
the external network. It performed network probing within the internal network to find
the IPs of machines to which it could connect. To spread over the external network, it
randomly generated public IP addresses and performed a trial and error to find reachable
machines. Once a list of reachable machines was found, WannaCry built connections to
them and performed kernel exploitation. It used a vulnerability in the Windows OS called
EternalBlue. EternalBlue was present in the Windows implementation of the SMB network
protocol, and it had been originally developed by the US NSA and later leaked by a hacking
accident. EternalBlue, in general, is an exploitation that uses a buffer overflow bug and then
performs arbitrary heap write, therefore gaining control over the infected machine.

Non-ML Defenses: Traditional network monitoring techniques could be effective in
detecting the large amount of network traffic generated by WannaCry. Intuitively, the
host making such network requests should be forbidden from accessing the network
before it is confirmed to be safe. Second, proper kernel sandboxing techniques could
be adopted to minimize the privileged access of different system components. Ideally,
when a subsystem of the kernel is compromised, other subsystems should not be
affected.
ML Defenses: ML techniques can be used to improve network monitoring. Tradition-
ally, a network alert is generated when certain traffic patterns are observed. However,
these patterns are usually written manually and can be easily bypassed by skilled
attackers. ML models can be trained on datasets consisting of network traffic traces
and labels (whether there is an attack or not) to detect malicious events. However,
effective and efficient ML is challenging because of unbalanced training datasets, as
most real-world network traces are benign and do not contain any malicious traffic.

Step 2: Establishing persistence

Once WannaCry gained control over the infected machines, it tried to persist and hide itself
so that it could not be easily detected and removed. To do so, it changed several system
settings. First, it created a process called “Microsoft Security Center Service” to disguise
itself as a legitimate system service. Next, it modified the Windows Registry table to make
sure that it was launched automatically after every boot. The AutoRun feature provided by
Windows was also used to establish memory persistence. Additionally, WannaCry granted
itself full-disk access on the machine, which was later used to encrypt the user data. It
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then deleted all the existing backups, which prevented users from recovering the data, and
disabled system security features, such as safe mode features.

Non-ML Defenses: WannaCry persistence is achieved by operations with high-
security impact. Thus, traditional auditing techniques to detect such suspicious oper-
ations and alert the system administrators could detect the ransomware. For instance,
deleting system backups rarely happens in practice.
ML Defenses: ML techniques can be used to analyze the operation sequences exe-
cuted in the system. However, how to represent the system operation sequences to
support effective learning remains challenging. Since the auditing log is often long
and complex, ML can hardly learn anything if the input is not carefully built. The
current trend is to leverage NLP techniques and graph models to learn the system logs
both in texts and graphs.

Step 3: Loading the configurations

WannaCry loaded the “XIA resource” which corresponds to the password-protected ZIP
file after going through the persistence phase. It dropped the file into the working directory
loading the configuration data into memory. There were three bitcoin addresses available to
choose from, one of which was written back to the configuration data. The address was used
as the payment address in the extortion message demanding the ransom. After selecting an
address,WannaCry set the hidden attributes for the working directory and granted full access
to the target system for all the files. Next, the hardcoded public RSA keys were imported
from the offset of tasksche.exe. The t.wnry contained the default encrypted AES required
to decrypt the DLL responsible for file encryption on the infected machine. The first eight
bytes of the t.wnry were checked for the string WANACRY! and decrypted the AES key
stored at the beginning of the t.wnry file using the imported RSA key.

Non-ML Defenses: A static analysis can be carried out by disassembling the ZIP files
for identification of the files containing the encrypted keys, configuration data, DLLs,
and permissions.
ML Defenses: Log analysis can be carried out on the infected host for malware
activities, and TF-IDF can be applied to strings, patterns, and URL identification
typical of ransomware. ML models can be used to detect abnormal log leveraging
clustering algorithms.
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Fig. 8.2 Encryption component procedure

Step 4: Encrypting the files

After loading all the configuration data, the encryption component of WannaCry encrypted
the files by following the procedure shown in Fig. 8.2. The procedure was invoked by the
TaskStart thread and checked for one of the three mutexes. If a mutex were present, the task
stops; otherwise, the encryption began with reading the content of C.wnry file containing
Tor addresses from current directory and creating the “MsWin-ZonesCacheCounterMutexA”
mutex . After that, WannaCry created three configuration files containing the information
of TOR/C2 addresses, the public RSA key, and the encrypted private RSA key.

To encrypt the files, WannaCry checked the existence of the public RSA key
(00000000.pky) and decryption RSA key(00000000.dky). The decryption RSA key was
received after the payment verification. If the two keys did not exist, a RSA 2048-bit sym-
metric key pair was generated after which WannaCry exported the victim’s private key and
encrypted the private key with a hardcoded RSA public key (00000000.eky). Once the key
was stored, WannaCry cleared off the memory to avoid the recovery of the private key. Wan-
naCry kept track of the logical drives attached to the system and navigated the directories to
encrypt the files of interest by generating a 16-byte symmetric AES key. The generated AES
key was encrypted with the public RSA key and stored in the file starting with WANACRY!
string and extension .wncry.
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Non-ML Defenses: The use of decoy files can help in tracking accesses to the files
by malicious processes. Decoy files are used to deceive DLL search order hijacking
by spoofing the shared file libraries. File analysis is also important for analyzing and
listing the shared file libraries and information regarding the permissions on the files.
It requires disassembling the files and the associated DLL libraries. This further helps
in whitelisting the processes that should be allowed to access the files and restricting
unauthorized access.
ML Defenses: ML-based analysis can be executed based on the sequence and fre-
quency of I/O operations, API calls, and opcode for detecting malicious behavior.
Packers and encryptors can be detected by applying NLP-based techniques integrated
with static and dynamic analyses.

Step 5: Preventing recovery

After completing the encryption, the goal of WannaCry was to avoid the recovery of data
from the memory. Some of the strategies it adopted include

• Deleting all the shadow volumes without alerting the user.
• Ensuring the machine reboots even if any error occurs.
• Disabling theWindow recovery feature, thereby, preventing users to revert their systems.
• Ensuring that the victim was unable to use any backup files created by the Windows

server.

Non-ML Defenses: To monitor the memory and restore memory back to its normal
state, memory snapshots can be taken at regular intervals. The snapshots can also be
helpful for carrying outmemory forensicswhich gathers thememory logs andmemory
dumps to identify the abnormalities created by the malware.
ML Defenses: Memory forensics can be carried out to fetch volatile memory dumps
and patterns and, thereby, can be used to create meta-features to train the ML model
for analysis. The snapshots taken can be used to fetch API function calls, registry
activities, and imported libraries to apply ML-based techniques for analysis.

Step 6: Propagating

WannaCry used the EternalBlue exploit and the DoublePulsar backdoor to leverage the
MS17-010 SMB vulnerability. It obtained the IP addresses of local network interfaces and
the worm component tried to connect to all possible IP addresses in any available local
network on port 445.
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Non-ML Defenses: The basic solution could be to block the IP address of the infected
machine and isolate it from the network to prevent further scanning for propagation.
Apart from isolation, limiting the number of connections any host can make in the
local as well as a public network can also be useful. Another defense is to list the
unused incoming open ports, disable them, and allow the sharing of files from secured
ports like ports 8443, 4500, etc. SMB vulnerability was present in the old version
of Windows. Installing a newer version could make the attack more difficult as the
attackers would need to find other exploitable vulnerabilities.
ML Defenses: ML-based network behavioral analysis can be carried out to identify
port scanning, suspicious connections, unauthorized file transfers, infected IPs, and
so on. This also includes abnormal traffic detection.

Step 7: Communicating

WannaCry unpacked and dropped the files from the s.wnry file, which contained the Tor
executable, into the installation directory. If the contents of the s.wnry file were corrupted,
WannaCrywould download theTor executable fromahardcodedURL.WannaCry parsed the
contents of the c.wnry file, which specified the configuration data. During its communication
with Tor addresses, WannaCry established a secure HTTPS channel and used Tor ports for
network traffic and directory information.

Non-ML Defenses: Application control mechanisms can mitigate illegitimate mod-
ifications to the system. A few rules can be implemented on the files like adding
read-only files to user machines to prevent changes to the executables. URL filtering
can be employed to identify hardcoded suspicious URLs.
ML Defenses: ML-based behavioral monitoring and network traffic analysis can aid
to identify flow patterns, suspicious URLs, IPs exploited, ports utilized, and so on.
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The use of ML techniques for security has several challenges, many of which are common
with other applications. Main challenges include training data scarcity and quality, proper
model configurations, ML ethics and security. In what follows, we discuss these challenges
and related proposed approaches, if any, and emphasize whenever appropriate a security
perspective.

9.1 Data Availability and Quality

In previous chapters, we have shown that ML techniques are highly effective for several
security functions, such as malware classification and intrusion detection. Training ML
models, however, requires vast amounts of labeled data. Obtaining abundant labels is the
main obstacle in applying ML techniques for security, due to the high cost of data labeling
and the evolving nature of attacks. In what follows, we discuss four issues related to data
acquisition commonly encountered across security functions.

• Scarcity of labeled data, which refers to when the amount of labeled data does not
suffice to achieve satisfactory training results. Attack data is often very time-consuming
and costly to collect and label. Investigating attack samples requires substantial domain
expertise and effort. Consequently, only smalls sets of data can be labeled manually by
security analysts.

• Imbalanced classes, which refers to the imbalanced coverage of all class labels. Take
network intrusion detection for example; a labeled dataset might have little or no samples
for new attack types, while having a lot of samples for old attacks. Imbalanced data is a
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notorious issue which causes model performance degradation, since a classifier cannot
accurately detect all types of classes.

• Coarse-grained labels, which refers to when the provided labels lack specificity. For
example, for malware classification, evolving malware of the same family may be
assigned to a generic label. However, they may use different tactics and techniques in
initial infection and lateral movement, hence based on different kill chains. For timely
and targeted post-infection actions, each malware should be assigned a specific label.

• Noisy labels, which refers to when the analyst assigns incorrect labels by mistake. In
malware detection, different attack families may be classified under the same family. We
differentiate the noisy labels from data poisoning attacks introduced in Sect. 9.4 where
the attacker inserts carefully crafted malicious samples into the training dataset.

A promising approach to address label scarcity is the use of TL techniques by which
knowledge, in form of a pre-trained model or training data, can be transferred from one
domain, referred to as source domain, to another domain referred to as target domain that
has scarce training data. Conventional TL-based approaches usually leverage a pre-trained
model and fine-tune the trainable parameters using limited training samples in the target
domain. However, these pre-trained models typically learn inferences from a huge dataset
and consequently, the models contain many redundant features or irrelevant latent spaces
that have no benefits to the target inference tasks. In addition, they require manual efforts, to
decide for example which layers are trainable. Adversarial domain adaptation, on the other
hand, aims to learn the target task by leveraging some training samples from a source domain
that is related to the target domain, but, at the same time, attempts to directly minimize the
discrepancy in latent space distributions between the source and the target. We refer readers
to the approach by Singla et al. [215], which uses adversarial domain adaptation to address
the problem of scarcity of labeled training data in network intrusion detection datasets (see
also Sect. 2.7.3).

With respect to the data imbalance issue, common approaches include weighted loss
functions, or oversampling and undersampling of the training data in theminority andmajor-
ity classes, respectively. However, the effectiveness of these methods highly depends on the
nature of the datasets and the learning task at hand. For image data, another category of tech-
niques is to leverage unsupervised learning algorithms, such as the variational autoencoder
[212], and produce synthetic images for data augmentation. Unfortunately, such techniques
cannot be directly applied to security application data because they are non-image data.

To address fine-grained attack classification under coarse-grained and noisy labels, the
approach by Liang et al. [121] combines different clustering algorithmswith the given labels
to mitigate the negative impact of low-quality labels. The input of the approach is a dataset
with limited labeled data. The output is a clustering assignment for all the data samples. The
data samples are expected to be either correctly clustered under the known labels or form
new clusters representing new labels. These clustering results can then be used by human
analysts to derive labels efficiently.
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9.2 Selection of Models,Hyperparameters, and Configurations

Selecting the right ML model and its hyperparameters is an essential and challenging step
to achieve the best model accuracy. Additionally, the model type and hyperparameters can
significantly impact the model’s training and inference times. In general, the higher the
complexity of the model, the higher the number of the model’s parameters and hence the
longer its training time. Although the majority of model and parameter selection decisions
are based on mere exploration, there are a few semi-automated techniques, such as grid
search, random search, and Bayesian optimization, that can narrow down the options using
the nature of the problem and the dataset.

9.2.1 Selecting the Right Model

Selecting the right model is usually achieved through domain knowledge followed by a
systematic evaluation. Depending on the nature of the problem and the dataset, the type of
the right model can vary. For example, if plenty of labeled data points are available for all
classes, then a supervised model is adequate. However, for data that have no labels, or for
which collecting labels is either costly or impractical, an unsupervised learning algorithm
is more appropriate. One example of such a domain with very few labeled points is outlier
detection, in which there are usually none or a few samples that represent the outlier class. In
this case, a clustering algorithm is usually used to identify the boundaries for non-malicious
applications, and any application that falls outside of these boundaries is flagged as an outlier.

On the other hand, if the system setup allows for a domain expert to provide feedback
(i.e., human in the loop), then using a semi-supervised model is more adequate. In this case,
unlike supervised models, only a few labeled data points are sufficient. One example of such
a domain is malware detection systems. Here, a few suspected malicious applications can
be manually evaluated by a domain expert, and then their label is sent back to the model for
refinement.

9.2.2 Hyperparameter and Configuration Tuning

After selecting and evaluating the right model type, it is very critical to select the right
hyperparameters for the model to achieve the desired accuracy. Hyperparameters control
the complexity, and in many cases, also control the model’s vulnerability to overfitting.
Examples of hyperparameters are (1) number of layers/neurons in a deep learning model;
(2) number of trees in a random forest; (3) number of clusters in k-means clustering. Even
for the same dataset, different values of the hyperparameters can yield significantly different
model accuracy.
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The simplest technique to select the best hyperparameters is to evaluate all possible values
and select the one that yields the best model accuracy. However, this is usually an impractical
technique due to several reasons: (1) the abundance of the hyperparameters, making the
combinatorial search space very large; (2) the continuous and unbounded nature of the
hyperparameters (e.g., number of trees); (3) the dependency between the hyperparameters.
Accordingly, the most common technique for hyperparameter tuning is the grid search by
which one splits each hyperparameter into a finite and discrete set of values, organizing the
search space into a grid. For example, suppose we are tuning two hyperparameters for a DL
model, and we need to determine the number of layers and the number of neurons in each
layer. First, we select a set of reasonable values for each hyperparameter such as layers =
[2, 4, 6] and neurons = [10, 20, 30]. Second, we evaluate the model’s accuracy with all
possible combinations of the two parameters: [(2, 2, 2), (2, 2, 4)...(6, 6, 6)]. We finally select
the combination that leads to the best accuracy.

Alternatively, random searching can be used to evaluate only a subset of the grid, which
is usually a more appropriate technique when the hyperparameter tuning budget (in time or
$ cost) is limited. Both grid and random searching are inherently parallel techniques, in
which all points can be collected and evaluated in parallel with no dependencies. Addi-
tionally, Bayesian optimization (BO) techniques are also common in selecting the best
hyperparameters. Similar to random searching, BO operates with a budget requirement on
how many points to sample. However, BO is not inherently parallel and searches the space
in a one-by-one manner, but it has the advantage of finding near-optimal parameter values
in very few runs due to its acquisition function. The acquisition function is executed after
each data point collection, and it decides where in the space to sample the next point. By
selecting an appropriate acquisition function, BO can provide better hyperparameters over
random or grid searching under the same sampling budget.

9.3 Ethics

As discussed in the seminal paper by Cowls and Floridi [57], the fact that AI will have a
major impact on society is no longer in question. However for AI technology to deliver its
full potential benefits is critical that it is not underused—typically for thewrong reasons, thus
limiting its applications, or overused and misused, thus creating risks. Concerning the risks,
it is important to notice that everything from email phishing campaigns to cyber wars may be
accelerated or intensified bymalicious use of AI [221]. In the area of cybersecurity, a notable
example of MLmisuse is represented by gendered differences in face recognition [5], which
can result in misclassification when using images for biometric authentication. Other issues
are related to unequal privacy-preserving protections for specific racial groups [14].

As a result, AI technology and especially ML techniques have been intensely scrutinized
with respect to ethics [178]. Many initiatives to address the ethical use of AI have been
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Fig. 9.1 AI ethical principles (redrawn from Fig. 4.1 in [57])

undertaken by many different organizations, including governments, civil liberties and no-
profit organizations, professional organizations, and industry.

In general, there is an agreement on the foundational principles of AI ethics (see
Fig. 9.1) [57]. Four of them, namely beneficence, non-maleficence, autonomy, and justice,
are based on traditional principles from bioethics, whereas the other one, explicability,
is a novel principle specific to AI. Beneficence requires that AI-based processes, such as
decision-making processes, need to explicitly benefit the end-users. End-users must be the
beneficiaries of AI-based processes, not organizations or other regulatory bodies. In other
words, just like in medical care, a vaccine or other public health rule needs to benefit first
and foremost the individuals that are asked to accept it, not the issuing organizations [52].
Conversely, any implementation/deployment of AI technology, including ML for cyber-
security, should not generate adverse side-effects that counter the beneficial aspects. The
principle of non-maleficence states that if, for example, end-users are asked to share with
a ML-driven process personal data for controlling access to certain resources, the data will
not be used in further deployments of ML-based tools that may lead to surveillance of the
same individuals. The principle of autonomy in the context of bioethics refers to the rights
of individuals to make their own health decisions, such as about which medical treatments
to receive, even though they often surrender such decisions to experts. With the deployment
of AI technology, individuals (will) surrender some of their decisions to AI algorithms and
models. As pointed out by Cowls and Floridi [57], based on an analysis of several docu-
ments, “not only should the autonomy of humans be promoted, but also the autonomy of



136 9 Challenges in the Use of ML for Security

machines should be restricted and made intrinsically reversible, should human autonomy
need to be re-established.” The justice principle, even though intuitively clear, has some
variations when applied to AI, including the promotion of social justice and the elimination
of all types of discrimination, shared benefit and shared prosperity, and solidarity. Finally,
the principle of explicability, by which Cowls and Floridi synthesize explainability and
accountability, is a critical complement to the other four principles. As well exemplified
by Cowls and Floridi [57] “for AI to be beneficent and non-maleficent, we must be able to
understand the good or harm it is actually doing to society, and in which ways; for AI to
promote and not constrain human autonomy, our ‘decision about who should decide’ must
be informed by knowledge of how AI would act instead of us; and for AI to be just, we
must ensure that the technology—including its human developers and deployers—are held
accountable in the event of a serious, negative outcome, which would require in turn some
understanding of why this outcome arose.”

It is important to mention that those principles, even though very important from con-
ceptual and foundational points of view, are still very difficult to apply in actual AI systems
and tools. Therefore, industry and research in technical fields have focused on “technical AI
ethics principles”, for which implementation and deployment in AI systems are promising
and which are being widely investigated from different perspectives by researchers, com-
panies, and governmental organizations. These principles include explainability, fairness,
robustness, transparency, and privacy. As they are very relevant for the application of ML
to security, we discuss them in what follows.

9.3.1 Explainability

Explainability, also referred to as interpretability, can be loosely defined as howwell humans
can understand the decisions of aMLmodel. It can be characterized by the followingdifferent
perspectives [109]. From the global explainability perspective, the elements that need to be
explained cover all the steps of the ML processing chain, including (i) The features used
in the model; it is also critical that these features be interpretable and conveyed in a way
that humans can easily understand (we refer the reader to [258] for details on the notion of
interpretable features). (ii) The types of data expected to be used in the model, including the
boundaries of input space (e.g., only valid for students aged from 10 to 15, or for images
taken during the night). (iii) In the case of the classification tasks, how the decision is taken
using the output values (e.g., in the case of thresholding, how the threshold is chosen) [109].

The second perspective focuses on explaining a single prediction made by the MLmodel
using specific input data.While such an explanation can be based on the understanding of the
globalmodel, specific approaches canbedevised to explain the specificdecision.Approaches
include highlighting the features that had the major weight in the decisions based on the
notion of quantitative input influence [61], or providing counterfactual explanations [236].
Counterfactual explanations refer to a statement of the form: “If X had not occurred, Ywould
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not have occurred”. They suggest what should be different in the input instance to change
the outcome of aMLmodel [94] and are considered quite effective. As an example, consider
a bank loan request that is rejected. A counterfactual explanation would be a statement like:
“if the income had been 1500$ higher than the current one, and if the customer had not had
unpaid debts with other banks, the loan would have been granted.”

ML explainability for security is critical for several security tasks. For example, when
using aMLmodel for ABAC decisions, it is important to determine why a given subject was
(or was not) given access to a certain resource, or when using a ML for a network anomaly
detection to determine which features are relevant and which ones are not for detecting
malicious packets in order to reduce the overhead associated with anomaly detection. How-
ever to date, there is limited research addressing specific issues related to explainability for
security. One notable example is related to the use of GNN for analyzing attack graphs in
the context of forensics (see Sect. 7.3).

We refer the reader to [82] for a detailed tutorial on explainability and to [170] for
additional resources, including survey papers and tools.

9.3.2 Fairness

In the context of decision-making, fairness can be defined as “The absence of any prejudice
or favoritism toward an individual or a group based on their inherent or acquired characteris-
tics.” [156]. These prejudices/favoritism are also referred to as biases. Concerning the notion
of fairness for ML, it is important to notice that this notion has many different perspectives;
we refer the reader to [189] for a detailed discussion of these perspectives.

Because ML is today used in many human/socially sensitive decisions, it is critical to
ensure that these decisions do not reflect discriminatory behavior toward certain groups or
populations. Over the years, cases have emerged showing that biases in data/algorithms
resulted in discrimination; we refer the reader to [156] for the analysis of one such case.
The problem of ML fairness has been widely investigated with respect to (i) the different
types of bias [189]; (ii) which types of bias is introduced in the data, algorithm, and user
interaction ML feedback loop [156]; and (iii) “fairness tools” [205]. It is important to notice
that because of its many dimensions, the ML fairness problem is quite complex and thus
mainly specialized solutions, including tools, have been proposed—some of which are spe-
cialized for different ML techniques. Just to give an idea of the complexity, Fig. 9.2 shows
the various types of bias in ML. Pre-existing biases “are associated with an individual or
institutions. When human preferences or societal stereotypes influence the data and/or the
model, that is said to be the effect of pre-existing bias.” [189]. These biases are then reflected
in data collected over time. Technical biases are the consequences of the limitations of com-
puter and data technology and how the technology might introduce biases. For example, the
selection of features, models, and training procedures can introduce bias that is not affil-
iated with the party performing the training but with the inadequacy of those procedures
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Fig. 9.2 A taxonomy of type of bias in ML (based on Fig. 1 in [189])

to characterize [189]. Finally, emerging biases are biases that result from the deployment
of a model. Emerging bias can emerge in two different forms, via population bias and use
bias. Population bias stems from the insufficiency of a model to represent its population or
society after model deployment, whereas use biases—which are an interesting category of
biases—refer to biases that humans acquire after using a model [189].

ML fairness is relevant for security, especially in the context of access control, to make
sure that users are given fair access to controlled resources. It is also relevant for privacy—for
example to ensure that different population groups have the same level of privacy protection.
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However, it is clear that, given the complexity of the fairness problem, specific fairness
strategies must be devised and analyzed for the specific security task at hand.

9.3.3 Robustness

Robustness refers to the ability of a trained model to do well when there are changes in the
environment where the model is deployed. There are various reasons for these changes,
including malicious attacks, unmodeled phenomena, undetected biases, and significant
changes in data [246]. As discussed by Woods [246], achieving model robustness is chal-
lenging in that it requires addressing several issues, including

• Data quality, which at a high level refers to the data being “fit” for the task at hand.
Data quality in turn has many different dimensions, including correctness, consistency,
accuracy, timeliness, and no presence of biases. Data quality has beenwidely investigated
over the past 20 years and approaches and methodologies have been proposed, some of
which are based on ML. We refer the reader to the book by Batini and Scannapieco [26]
for a comprehensive coverage of the data quality area.We notice however that data quality
is verymuch application-dependent and thus good domain knowledge is critical to ensure
the quality of the data used for training ML models.

• Model decay, also called dataset shift, which refers to when new data distributions can
arise that differ from historical distributions used to train models. Addressing model
decay requires re-training the model with new data, which can be a problem if dataset
shifts are frequent, as one may not have a sufficient amount of new data to re-train a
model. An approach to address this issue is based on domain adaptation techniques (see
Chap. 2) that allow one to adapt the older training data in order to combine them with
the new data.

• Feature stability, which refers to variations in the relevance of the features used in the
trained model. Stable features typically perform well for a large variety of input data.
Approaches have been proposed for evaluating feature stability and we refer the reader
to [181] for a comprehensive survey of these approaches.

• Precision versus Recall, which refers to identifying a good trade-off between these two
metrics.More specifically, “Precision is ameasure of exactness inmodel operation.Recall
is a measure of completeness or quantity. ‘High precision’ means that a model returns
substantially more relevant results than irrelevant ones. ‘High recall’ means that a model
returns most of the relevant results that are available. There is often a trade-off between
precision and recall duringmodel training, and practitionersmust determinewhat balance
is best for any given case. Getting the balance wrong may impact the robustness of the
model” [246].
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Robustness is critical in the use of ML for security for two reasons. The first is that
attackers may manipulate input data to bypass models used for defense, such as intrusion
detection. The second is that many novel environments that need to be secured, such as edge
computing systems, cellular networks, and IoT systems, are very dynamic. In both cases,
robustness and also approaches to quickly and continuously re-train the ML models are
essential.

9.3.4 Transparency

Transparency can be defined as the ability of subjects to effectively gain access to all infor-
mation related to data and processes used in decisions that affect them [29]. Such a definition
covers many different types of subjects: data participant, a subject whose (personal) data
have been collected and possibly used; data victim, a subject affected by the use of certain
datasets or processes—we note that a subject can be victim1 even though their data has not
been collected/used; data user, a subject using data/processes for decision, research, etc. In
the context of ML transparency, four different dimensions are relevant:

• Training data transparency—it refers to information concerning the training dataset col-
lection, including the context (time, location, and so on) of data collection; and the data
collection agent (applications, sensors, and human users).

• Model transparency—it refers to all information related to the training of the model,
including hyperparameters used, thresholds, etc. We note that the notion of model trans-
parency is closely related to the notion of global explainability.

• Model use and provisioning—it refers to information about processes/decisions forwhich
the model has been used and to parties that have provisioned the model.

• Lawand policy transparency—it refers tomaking all laws, regulations, and organizational
policies associated with the use of ML models available to subjects.

It is important to mention that full transparency may conflict with business confidentiality
and personal privacy requirements. Therefore, proper trade-offs must be devised, based
perhaps on the use of aggregate/anonymized information.

In the case of security, transparency is important to allow users, such as security staff,
to understand for example the reasons why a ML model has not detected a malware or a
malicious network flow, and more in general to carry out forensics of ML models.

1 We use the term victim to emphasize that, in most cases, subjects are adversely affected. However,
subjects can also be positively affected and may actually be interested in getting information about
the used data/processes.
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9.3.5 Privacy

Privacy is a fundamental human right and has beenwidely investigated in relation to data, and
it is today a research field more active than ever. As ML relies on huge datasets for training,
ML privacy is critical. A specific threat introduced byML ismodel inversion, which refers to
the inference of data item values present in the training dataset of a model based on queries
to the model. Many variations of model inversion exist, and we refer the reader to [154] for
some recent work. Approaches have been proposed to address this problem, including the
use of differentially-private training datasets, approaches that add perturbation during the
training process, and training processes that work on encrypted data.

In security, it is critical to use privacy-preserving ML models when dealing with
security tasks related to humans, such as access control and authentication, especially
biometrics-based authentication. One should however carefully assess which privacy-
preserving approach may be suited for the specific task at hand.

9.4 Security of ML

The widespread use of ML has pushed to the forefront the problem of securing ML models
and algorithms. This problem is especially critical when ML is used for cybersecurity as
one has to make sure that attackers are not able to evade ML-based defenses.

Because of its criticality, the problem of ML security has been widely investigated over
the past 15 years. Several categories of attacks and related defense techniques have been
identified. Attacks can be classified into two major categories: (a) data poisoning attacks
that aim at manipulating the training data; (b) inference attacks that aim at manipulating the
model inferences.
Data poisoning attacks include

• Availability attacks, also known as denial-of-service attacks, where the attack goal is to
maximize the overall loss of the model and cause a degradation in model performance as
well as misclassifications. Examples of these attacks are gradient-based and GAN-based
attacks.

• Integrity attacks, where the attacker inserts carefully crafted malicious samples into the
training dataset without affecting the model’s classification of clean samples. Examples
of these attacks are clean-label poisoning and backdoor attacks. Backdoor attacks—the
most interesting attacks—only misclassify inputs containing specific (explicit or even
implicit) triggers. A trigger example for a DL model used for face-based authentication
would be the presence of glasses with a certain shape. Whenever the model analyzes a
facial imagewith glasses with such a shape, themodel would classify the image as the one
of a given system administrator, thus allowing attackers to impersonate the administrator.



142 9 Challenges in the Use of ML for Security

Fig. 9.3 ML attacks and defenses

Inference attacks include

• Evasion attacks, by which attackers make the ML model misclassify input instances.
Let x be a clean sample, M a ML model, and y be the class predicted by M for x .
The attacker adds an imperceptible perturbation δ to x to create an adversarial example
x ′ = x + δ, which is sufficient to mislead M to produce a wrong output y′ different
from y (untargeted attack). A variation of this attack is the targeted attack; the goal of
the attacker is to mislead M to predict an attacker-targeted class ytarget . A well-known
example is the one by which an attacker adds a black sticker to a stop sign to make
the model misclassify the image of the stop sign as the image of a speed limit. Those
attacks have been widely studied and there are several variations, such as the ones based
on the knowledge that the attacker has about the model (e.g., black-box, white-box, and
gray-box).

• Model inversion, by which the attackers learn information about the data used for training
the model. This type of attack is particularly relevant to privacy, when the training data
are privacy-sensitive.

• Functional extraction, which allows an attacker to learn an approximatemodel of amodel
that is kept confidential.

To protect against those various attacks, many different defense techniques have been
proposed (see Fig. 9.3 for a list of these techniques). It is important to notice that robust
training (see Sect. 9.3.3) is one of the possible defenses; however, it is only relevant to
model evasion attacks. For other attacks, different defenses need to be adopted. We refer the
reader to [103] for a comprehensive survey of both attacks and defenses.
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An observation about ML-based security is that, while focusing on specific attacks and
defenses is important, we also need to look at a broader picture. Consider the case of adver-
sarial example attacks [30]. Consider the well-known example of an autonomous vehicle
running a DNN to recognize stop signs and an attacker that has partially covered a stop
sign so that the network is not able to recognize it. An objection to such an example is
that autonomous vehicles will most likely have maps on-board with stop signs marked in
them; stop signs in the future may also emit sounds, and there will be vehicle-to-vehicle
communications and information transmission among vehicles. In other words, vehicles will
have multiple information sources that can be compared and correlated so that the correct
and safe decision is taken. We should therefore look at the problem of ML security from a
system point of view by which one can secure the system of interest by including different
ML techniques and models, and using data from independent sources. Such an approach
would not only enhance security but also the timeliness and coverage of decisions, predic-
tions, etc. In other words, our ultimate goal should not be just the protection of ML itself;
rather it should be to make accurate decisions, forecasts, and analyses and to achieve this
goal we need to think in terms of systems security. A recent approach along those lines for
network intrusion detection is by Lee et al. [142] (see also discussion in Sect. 7.2); under
this approach, different ML-based detectors are deployed, specialized for different attack
steps. For an attacker to evade this approach, the attacker would need to evade all the ML
detectors, thus raising the bar for the attacker.

9.5 Research Directions

The problem of ethics in security has been primarily investigated with respect to security
research. Today, security conferences have requirements such as responsible disclosure,
by which authors of papers reporting certain vulnerabilities are responsible to inform the
affected parties before the papers are published. Other aspects concern the privacy of data
used in security experiments, when these experiments involve privacy-sensitive data. A
recent workshop [75] has focused on ethics in computer security research with the goal
of starting more systematic discussions and analyses. However, not much work has been
done on ethics concerning specific aspects related to the deployments and use of security
techniques. For example, approaches such as active defense and retaliation need to be inves-
tigated with respect to ethics, including ethics related to ML models/techniques that may be
used as part of these approaches.
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Cybersecurity is today more critical than ever, given our society’s increasing reliance on
cyber infrastructures and data. ML, which during the past 15 years has grown in sophistica-
tion, performance, and application scope, represents an important technology for enhancing
cybersecurity. As a result, ML has been widely applied to several security functions, espe-
cially anomaly detection, malware classification, and digital forensics. There is still limited
research for other areas, such as attack management.

Concerning the specific ML techniques used in the various ML-based security functions,
many different techniques are used, ranging from association rules to attention mechanisms,
reinforcement learning, and graph neural networks. We can certainly expect that as novel
techniques are being developed in the AI/ML area, these techniques will be applied to
security functions.

However, despite the very encouraging state of the art in the application of ML to secu-
rity functions, we still have a very long way to go. One important issue is related to the
reproducibility and transparency of results using ML techniques. Most of the approaches
that we have analyzed include experimental evaluations of the proposed approaches.
However, results often depend on the datasets used in the experiments and on other aspects,
such as model parameters. Therefore, evaluation results may not always be conclusive, and
one should be very careful in actual applications. Also, designing and training a ML model
may require a lot of manual effort to fine-tune the model and clean the datasets used for
training; those efforts are not often measured and reported.

Finally, an important area of application of ML is related to security configuration and
management. This is a critical area as many attacks are due to incorrect configurations and
poor security management. Today, there is an increasing trend toward using configurable
software, that is, software that can be customized without additional programming [85].
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Configurable software typically exposes a set of configuration options which can then
be combined in different ways, resulting in different instances of the software. However,
configurable software often does not control the correctness of such combinations (see, for
example, [95]). Other examples of misconfiguration are related to firewall rules and access
control policies. Concerning security management, the main issue is that it is expensive in
terms of human costs. A recent interesting example is represented by the zero-trust paradigm,
which would require specifying a large number of policies, deciding where to place the pol-
icy enforcement points, and managing policy changes to reflect changes in application and
network traffic patterns [133]. Deploying and managing zero-trust architectures would be
extremely expensive in terms of human efforts. It is, thus, clear that automated frameworks
for security configuration and management are critical. We believe that ML techniques will
play an important role in the design of those automated frameworks.



Appendix: Publicly Available Datasets

In the appendix we provide a short description of the publicly available datasets that
have been used for experimental analyses in some of the approaches described in this
monograph.
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