

Practical Memory
Forensics

Jumpstart effective forensic analysis of volatile memory

Svetlana Ostrovskaya

Oleg Skulkin

BIRMINGHAM—MUMBAI

Practical Memory Forensics
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Wilson D'suoza
Publishing Product Manager: Shrilekha Malpani
Senior Editor: Shazeen Iqbal
Content Development Editor: Rafiaa Khan
Technical Editor: Nithik Cheruvakodan
Copy Editor: Safis Editing
Project Coordinator: Shagun Saini
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Production Designer: Joshua Misquitta
Marketing Coordinator: Sanjana Gupta

First published: December 2022
Production reference: 1070222

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-033-1
www.packt.com

http://www.packt.com

Writing the book has been a very exciting and challenging journey, and I
am truly grateful to my family, friends, and colleagues – all of whom have

believed in me and supported me in every way possible. Special thanks
to my friend and colleague Oleg, who invited me to write the book one

wonderful winter day, thus starting this journey.

– Svetlana Ostrovskaya

I would like to thank the Packt team for this opportunity and, of course,
Svetlana for accepting this challenge – words can't describe how happy I am

to have such talented people on my team.

– Oleg Skulkin

Contributors

About the authors
Svetlana Ostrovskaya is a principal DFIR consultant at Group-IB, one of the global
leaders in preventing and investigating high-tech crimes and online fraud. Besides active
involvement in incident response engagements, Svetlana has extensive training experience
in various regions, including Russia, CIS, MEA, Europe, and APAC. She has coauthored
articles on information security and computer forensics, as well as a number of training
programs, including Windows Memory Forensics, Linux Forensics, Advanced Windows
Forensic Investigations, and Windows Incident Response and Threat Hunting.

Oleg Skulkin is the head of the digital forensics and malware analysis laboratory at
Group-IB. Oleg has worked in the fields of digital forensics, incident response, and cyber
threat intelligence and research for over a decade, fueling his passion for uncovering new
techniques used by hidden adversaries. Oleg has authored and coauthored multiple blog
posts, papers, and books on related topics and holds GCFA and GCTI certifications.

About the reviewers
Rohit Tamma is a senior program manager currently working with Microsoft. With over
10 years of experience in the field of security, his background spans management and
technical consulting roles in the areas of application and cloud security, mobile security,
penetration testing, and secure coding. Rohit also coauthored Learning Android Forensics,
from Packt, which explains various ways to perform forensics on mobile platforms. You
can contact him on Twitter at @RohitTamma.

Igor Mikhaylov has been working as a forensics expert for 21 years. During this
time, he has attended a lot of seminars and training classes in top forensic companies
(such as Guidance Software, AccessData, and Cellebrite) and forensic departments of
government organizations in the Russian Federation. He has experience and skills in
computer forensics, incident response, cellphone forensics, chip-off forensics, malware
forensics, data recovery, digital image analysis, video forensics, big data, and other fields.
He has worked on several thousand forensic cases. When he works on a forensic case,
he examines evidence using in-depth, industry-leading tools and techniques. He uses
forensic software and hardware from leaders in the forensics industry. He has written
three tutorials on cellphone forensics and incident response for Russian-speaking
forensics experts. He was also the reviewer of Windows Forensics Cookbook by Oleg
Skulkin and Scar de Courcier, from Packt.

Table of Contents

Preface

Section 1: Basics of Memory Forensics

1
Why Memory Forensics?

Understanding the main
benefits of memory
forensics� 4
No trace is left behind� 4
Privacy keeper� 6

Learning about the
investigation goals and
methodology� 7
The victim's device� 7

The suspect's device� 8

Discovering the challenges
of memory forensics� 8
Tools� 9
Critical systems� 9
Instability� 9

Summary� 10

2
Acquisition Process

Introducing memory
management concepts � 11
Address space� 12
Virtual memory� 12
Paging� 13
Shared memory� 14
Stack and heap� 14

What's live memory
analysis?� 15

Windows� 16
Linux and macOS� 18

Understanding partial
versus full memory
acquisition� 18
Exploring popular
acquisition tools and
techniques� 20

viii Table of Contents

Virtual or physical� 20
Local or remote� 21
How to choose� 22

It's time� 23

Summary� 23

Section 2: Windows Forensic Analysis

3
Windows Memory Acquisition

Understanding Windows
memory-acquisition issues� 28
Preparing for Windows
memory acquisition� 29
Acquiring memory with
FTK imager� 30

Acquiring memory with
WinPmem� 33
Acquiring memory with
Belkasoft RAM Capturer� 36
Acquiring memory with
Magnet RAM Capture� 39
Summary� 40

4
Reconstructing User Activity with Windows Memory
Forensics

Technical requirements� 42
Analyzing launched
applications� 42
Introducing Volatility� 43
Profile identification� 44
Searching for active processes� 45
Searching for finished processes� 46

Searching for opened
documents� 49
Documents in process memory� 50

Investigating browser
history� 53
Chrome analysis with yarascan� 54
Firefox analysis with bulk extractor� 55
Tor analysis with Strings� 58

Examining communication
applications� 60
Email, email, email � 60
Instant messengers � 62

Recovering user
passwords� 64
Hashdump� 64
Cachedump� 64
Lsadump� 65
Plaintext passwords � 66

Detecting crypto
containers� 67
Investigating Windows
Registry� 70
Virtual registry � 71

Table of Contents ix

Installing MemProcFS� 72
Working with Windows Registry� 74

Summary� 79

5
Malware Detection and Analysis with Windows Memory
Forensics

Searching for malicious
processes� 82
Process names� 82
Detecting abnormal behavior� 84

Analyzing command-line
arguments� 88
Command line arguments of the
processes� 89
Command history � 91

Examining network
connections� 95
Process – initiator� 96
IP addresses and ports� 98

Detecting injections in
process memory� 101

Dynamic-link library injections� 101
Portable executable injections� 108
Process Hollowing� 112
Process Doppelgänging � 114

Looking for evidence
of persistence� 117
Boot or Logon Autostart
Execution� 118
Create Account� 120
Create or Modify System
Process� 123
Scheduled task� 125

Creating timelines� 126
Filesystem-based timelines� 127
Memory-based timelines� 129

Summary� 130

6
Alternative Sources of Volatile Memory

Investigating hibernation
files� 134
Acquiring a hibernation file� 134
Analyzing hiberfil.sys� 139

Examining pagefiles and
swapfiles� 142
Acquiring pagefiles � 142
Analyzing pagefile.sys� 144

Analyzing crash dumps� 155

Crash dump creation� 158
Analyzing crash dumps� 163

Summary� 170

x Table of Contents

Section 3: Linux Forensic Analysis

7
Linux Memory Acquisition

Understanding Linux
memory acquisition
issues� 174
Preparing for Linux
memory acquisition � 175
Acquiring memory with
LiME� 176

Acquiring memory with
AVML� 179
Creating a Volatility
profile� 181
Summary� 185

8
User Activity Reconstruction

Technical requirements� 188
Investigating launched
programs� 188
Analyzing Bash history� 192
Searching for opened
documents� 193
Recovering the filesystem � 195
Checking browsing
history� 203

Investigating
communication
applications� 207
Looking for mounted
devices� 209
Detecting crypto
containers� 213
Summary� 214

9
Malicious Activity Detection

Investigating network activity� 216
Analyzing malicious activity� 222

Examining kernel objects� 237
Summary� 240

Table of Contents xi

Section 4: macOS Forensic Analysis

10
MacOS Memory Acquisition

Understanding macOS
memory acquisition
issues� 244
Preparing for macOS
memory acquisition � 245
Acquiring memory

with osxpmem� 247
Creating a Volatility
profile� 252
Summary� 256

11
Malware Detection and Analysis with macOS Memory
Forensics

Learning the peculiarities of
macOS analysis
with Volatility� 258
Technical requirements� 259
Investigating network
connections� 259
Analyzing processes and
process memory� 262

Recovering the filesystem � 264
Obtaining user application
data� 266
Searching for malicious
activity� 270
Summary� 273

Index
Other Books You May Enjoy

Preface
Memory forensics is a powerful analysis technique that could be used in different areas
from incident response to malware analysis. For an experienced investigator, memory is
an essential source of valuable data. Memory forensics not only provides key insights into
the user's context and allows you to look for unique traces of malware, but also, in some
cases, helps to piece together the puzzle of a sophisticated targeted attack.

This book will introduce you to the concept of memory forensics and then gradually
progress deep into more advanced concepts of hunting and investigating advanced
malware using free tools and memory analysis frameworks. This book takes a practical
approach and uses memory images from real incidents to help you get a better
understanding of the subject so that you will be equipped with the skills required to
investigate and respond to malware-related incidents and complex targeted attacks. This
book touches on the topic of Windows, Linux, and macOS internals and covers concepts,
techniques, and tools to detect, investigate, and hunt threats using memory forensics.

By the end of this book, you will be well versed in memory forensics and will have gained
hands-on experience of using various tools associated with it. You will be able to create
and analyze memory dumps on your own, examine user activity, detect traces of fileless
malware, and reconstruct the actions taken by threat actors.

Who this book is for
This book is intended to be read by incident responders, digital forensic specialists,
cybersecurity analysts, system administrators, malware analysts, students, and curious
security professionals new to this field and interested in learning memory forensics. You
are assumed to have a basic understanding of malware and its workings. Knowledge of
operating system internals would be helpful but is not mandatory. Sufficient information
will be provided to those new to this field.

xiv Preface

What this book covers
Chapter 1, Why Memory Forensics?, explains why memory forensics is a vital part of many
digital forensic examinations nowadays based on real-world examples, describing the
main goals and investigation techniques used by DFIR specialists as well as discussing
daily challenges they face.

Chapter 2, Acquisition Process, familiarizes you with the basic techniques and tools used
for memory acquisition, and the possible issues associated with this process. In addition,
you will have the opportunity to compare live memory analysis with that of memory
dumps by examining the pros and cons.

Chapter 3, Windows Memory Acquisition, discusses Windows memory acquisition tools
along with their approach to memory work. Some suggestions for choosing the right tool
will be discussed as well as comprehensive examples.

Chapter 4, Reconstructing User Activity with Windows Memory Forensics, looks at
reconstructing user activity, which is essential for many cases since it gives a better
understanding of what is going on. This chapter provides some insights into user action
recovery techniques based not only on running processes and network connections but
also on the analysis of the Windows registry and file system in memory.

Chapter 5, Malware Detection and Analysis with Windows Memory Forensics, tackles
how modern malware tends to leave as few traces as possible on the disk, which is why
memory analysis is becoming a critical element of forensic investigation. In this chapter,
we will explain how to search for traces of malicious software in process memory as well
as in the Windows Registry, event logs, and file system artifacts in memory.

Chapter 6, Alternative Sources of Volatile Memory, addresses the fact that, sometimes, it
is impossible to create a memory dump for analysis, however, there is always a chance of
finding some volatile memory on disk. This chapter introduces alternative sources of volatile
data in Windows along with the tools and techniques for their analysis.

Chapter 7, Linux Memory Acquisition, shows the core differences between Windows and
Linux memory acquisition. Tools for Linux memory acquisition will be proposed along
with their configuration and use cases.

Chapter 8, User Activity Reconstruction, looks at how reconstructing user activity in Linux-
based systems is a bit different from that in Windows. This chapter will give you several
tricks for how to track user activity with Linux memory dumps.

Chapter 9, Malicious Activity Detection, focuses on the techniques needed to search for
malicious activity in Linux-based systems and analyze it.

Preface xv

Chapter 10, MacOS Memory Acquisition, relates to the acquisition process, focusing on
macOS memory acquisition tools and their use, so you will be able to create memory
dumps from all popular operating systems.

Chapter 11, Malware Detection and Analysis with macOS Memory Forensics, looks at
techniques that allow us to get the data we need to track user actions and detect and
analyze malicious activity in macOS memory.

To get the most out of this book
In this book, we have attempted to describe everything in great detail and take you
through the whole process step by step. So, all you need is a computer or virtual machine
with Windows and Linux installed.

Since the book is practice-oriented, we recommend that you try out all the methods and
tools described in it to get the most out of the book.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801070331_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "To find such processes, you can use the psscan plugin."

Any command-line input or output is written as follows:

C:\WINDOWS\system32> wmic process list full

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Living off the land is a very popular approach in which attackers use built-in tools and
installed legitimate software for their own purposes."

Tips or important notes	
Appear like this.

https://static.packt-cdn.com/downloads/9781801070331_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801070331_ColorImages.pdf

xvi Preface

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share your thoughts
Once you've read Practical Memory Forensics, we'd love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/ 1-801-07033-4
https://packt.link/r/ 1-801-07033-4

This section will not only inform you of the benefits of memory forensics but will also
introduce you to the basic concepts of volatile memory and the process of its acquisition
and analysis so that you have a general understanding of the topic.

This section of the book comprises the following chapters:

•	 Chapter 1, Why Memory Forensics?

•	 Chapter 2, Acquisition Process

Section 1:
Basics of

Memory Forensics

1
Why Memory

Forensics?
We are living in a world where nothing is more certain than change and cybercrimes are
no exception. New attack techniques are constantly being developed, and hundreds of
malicious programs and scripts are being written and tested to bypass security controls,
while scanners scrutinize the World Wide Web for vulnerable hosts and publicly available
services. That is why it is extremely important to stay on trend and have all kinds of tools
and techniques in your arsenal to be on the same page as the threat actors.

So, why is memory forensics a vital part of many digital forensic examinations and incident
response engagements today? What are the main investigative goals and techniques used by
digital forensics and incident response professionals? What challenges do they face every
day? You'll find answers to these questions in this chapter.

This chapter will cover the following topics:

•	 Understanding the main benefits of memory forensics

•	 Learning about the investigation goals and methodology

•	 Discovering the challenges of memory forensics

4 Why Memory Forensics?

Understanding the main benefits of memory
forensics
Naturally, for the reader who picks up this book, the benefits are obvious. Since you have
decided to deepen your knowledge of memory forensics, you probably have your own
reasons for doing so. However, let's take another look at the most common situations in
which Random Access Memory (RAM) investigation can play a crucial role (not only in
digital forensics but also incident response and malware analysis), and perhaps you will
discover new use cases for the knowledge and skills you have acquired.

No trace is left behind
The number of threat actors using living off the land and fileless attack techniques has
increased dramatically over the past few years. Attackers no longer care as much about
removing their footprints, instead, they try to leave as few of them as possible to avoid
detection. This makes the job of information security professionals much more difficult
because the use of built-in tools and the lack of malicious files on the disk that can be
scanned means that some traditional security solutions may be useless. A lack of logging
may make it very hard to reconstruct how threat actors abused built-in dual-use tools,
for example, various command and scripting interpreters, in the course of a post-mortem
examination, so acquiring and analyzing memory may play a key role in such cases.

Let's discuss each case separately.

Find me in memory
Let's start with malware that works exclusively in memory. The concept itself is not
new. When talking about the beginning of the era of memory-resident malware, some
researchers refer to Maltese Amoeba, a virus first discovered back in 1991 in Ireland.
Others prefer to start with the Code Red worm that appeared in 2001. In any case, since
the beginning of the twenty-first century, fileless attacks have only gained momentum and
are becoming more and more popular. For example, a payload may be injected directly
into memory via PowerShell, and it is becoming extremely common. The process injection
technique itself was included in the top 10 MITRE ATT&CK® techniques of 2020 by many
cybersecurity vendors. For example, here are the top 10 techniques from the Red Canary
2021 Threat Detection Report via https://redcanary.com/threat-detection-
report/techniques/:

https://redcanary.com/threat-detection-report/techniques/
https://redcanary.com/threat-detection-report/techniques/

Understanding the main benefits of memory forensics 5

Figure 1.1 – Top 10 MITRE ATT&CK techniques of 2020

Process hollowing, dynamic-link library injection, process doppelgänging, and other
process injection sub-techniques are used not only by sophisticated state-sponsored
threat groups but even by commodity malware operators.

Frame of work
The other side of the issue is the use of numerous post-exploitation frameworks, such as
Metasploit, Cobalt Strike, or PowerShell Empire. Such instrumentation provides attackers
with a wide range of options to generate a variety of malicious payloads and inject them
into memory.

Created with offensive security in mind, these frameworks allowed first penetration testers
and red teamers, and then various threat actors to use a wide range of techniques with
very limited footprints on disk, even if they didn't have outstanding malware development
experience. For example, Cobalt Strike's Beacon payload's unmanaged PowerShell features
allowed threat actors to run it without actually running powershell.exe, abusing the
Windows API instead.

6 Why Memory Forensics?

Such frameworks as Cobalt Strike have become so common that some threat actors even
use them instead of custom malware. For example, the notorious Evil Corp group, whose
members are believed to be behind high-profile ransomware attacks, including Garmin,
switched the Dridex bot to Cobalt Strike's Beacon in their WastedLocker campaigns.

Living off the land
Living off the land is a very popular approach in which attackers use built-in tools and
installed legitimate software for their own purposes. Most tools for example, PowerShell
or WMI, are used by system administrators to perform their daily tasks, making it difficult
not only to detect attackers but also to block the tools they use.

Attackers can utilize living-off-the-land techniques with a variety of tactics. PowerShell can
be used for downloading the initial payload from the attacker-controlled server, binaries
such as rundll32.exe and regsvr32.exe can be used for execution and defense
evasion, Ntdsutil can be leveraged for credentials access, and PsExec and WMIC can be
abused for remote execution. There are lots of similar examples, and if the IT infrastructure
doesn't have advanced logging capabilities, an analyst's chances of extracting such
information may be very low. If acquired in time, memory analysis may be of great help!

Another important note is that in many cases, you can find only the first stage of the
malicious binary on the disk – the next stage (and potentially even the next!) is loaded
from the server directly into memory, so you won't see it during post-mortem analysis if
you don't have a memory image.

What's more, most malicious binaries are packed, encoded, and encrypted nowadays in
order to avoid detection, but not in memory! So you can use tools such as PE-sieve to
collect potentially malicious code for further analysis. Of course, we'll show you how to do
it in the following chapters.

Privacy keeper
In recent years, the issue of privacy has become more acute. Tons of personal data, photos,
and messages appear online every day. Service providers collect information about our
personalities, interests, and routines to make their work more efficient and more useful.
Instant messengers, browsers with privacy modes, in-memory file systems, password
managers, and crypto containers are emerging as a result.

Of course, privacy is everyone's concern, but it is most relevant to cybercriminals, as they
really have something to hide. We have seen more than once situations where files of
interest found on a suspect's computer have been encrypted or saved in a crypto container.
In such situations, memory collection and analysis is the key to all doors, as it allows
investigators to retrieve the passwords and keys needed for decryption.

Learning about the investigation goals and methodology 7

As you can see, there are different cases but they all have one thing in common, which is
that in each of them, memory forensics can play an extremely important role.

Learning about the investigation goals and
methodology
The basis of any forensic investigation is goal setting. Goals determine evidence to
look for, methods to use, and tools we need. The right approach to goal setting helps to
achieve the desired result quickly and efficiently. Remember the famous "divide et impera"
principle? Despite its origins and primary purpose, this principle is great for achieving
any goals, the main thing is to understand what to divide and how to use it. As part of the
investigation goal setting, this principle can be used to break down the primary goal into
smaller and simpler ones. Thus, by dividing our goals into components, we get a set of
specific actions, the result of which will be the pieces of the puzzle and all we will have to
do is to put them together.

Let's start with the more general goals. If we receive for examination the device involved
in the incident, there is a high probability that it is either one of the following:

•	 The alleged victim's device

•	 The suspect's device

Let's look at what both are in the next sections.

The victim's device
Consider a situation in which the victim's device is under investigation. The main goal
in this case is to answer the question, What happened? One way is to break this question
down into its components:

1.	 How did an attacker gain access to the system?

2.	 What tools were launched?

3.	 Did the attacker get persistence?

4.	 Was there a lateral movement?

5.	 What actions on the objective were performed?

8 Why Memory Forensics?

Now let's do the same thing with the question, How did the attacker gain access
to the system?:

1.	 Are there any traces of potentially malicious files/links having been opened?
2.	 Are there any remote connection services running?
3.	 Are there any traces of suspicious connections?
4.	 Are there any traces of removable devices being connected?

Let's ask questions about malicious files too:

1.	 Are there any traces of suspicious files saved?
2.	 Are there any traces of suspicious links opened?
3.	 Are there any traces of suspicious files opened?

Finding answers to these questions requires not only knowledge of the digital artifacts
and their sources but also the attacker's tactics, techniques, and procedures, so such
assessments must also be cyber threat intelligence-driven.

This is the level to which each upper-level question should be broken down. As a result,
we have a final list of questions that will allow us to piece together a picture of the incident
and answer the first question of What happened? in detail.

The suspect's device
A similar method can be used to investigate the device from which the attacks are
suspected to have originated. In this case, questions would be posed based on what the
owner of the device is suspected of. For example, if they are suspected of being a malware
developer, our questions would be related to the presence of development tools, traces of
source code, sales of malware, and so on.

So, we have discussed how memory forensics can help our investigation and what
methodology we can apply to do so. However, we cannot remain silent and overlook the
weaknesses and possible risks. Let's discuss the challenges of memory forensics.

Discovering the challenges of memory
forensics
We hope you have already realized the importance of memory analysis. Now it is time
to look for the pitfalls. RAM is a very useful and extremely fragile thing. Any interaction
with the system, even the smallest one, can lead to irreversible consequences. For this
reason, one of the most important challenges in memory analysis is data preservation.

Discovering the challenges of memory forensics 9

A few important points related to memory dump creation are listed in the next sections.

Tools
Since most operating systems do not have built-in solutions for creating complete
memory dumps, you will have to use specialized tools. There are all kinds of tools
available today for creating full memory dumps as well as for extracting individual
processes. Investigators can be guided by various considerations when choosing a tool:

•	 Changes being made to the system

•	 Costs

•	 The possibility of remote dump creation

Unfortunately, even using a trusted tool cannot guarantee 100% success. Moreover, it can
corrupt the system, and that brings us to the following point.

Critical systems
In some cases, running tools to create memory dumps can cause an overload of the
system. That is why an investigator who decides to create a memory dump should be
ready to take responsibility for possible risks. The system under investigation could be a
critical object, disabling which could lead not only to the loss of important data, but also
to the shutdown of critical business processes, and in rare cases, even to a threat to the
lives and health of people. The decision to create memory dumps on such systems should
be balanced and consider all the pros and cons.

Instability
If the system under investigation is infected with poorly written malware, it is
itself unstable. In this situation, an attempt to create a memory dump could lead to
unpredictable consequences.

Besides, sometimes malware tries to use anti-forensic techniques and prevent memory
preservation in every possible way, which again leads to unpredictable consequences. This
happens rarely, but this factor should also be taken into account.

10 Why Memory Forensics?

Summary
Memory is a great source of forensic artifacts in the hands of an experienced investigator.
Memory analysis provides information on malware activity and its functionality, user
context, including recent actions, browsing activity, messaging, and unique evidence such
as fileless malware, memory-only application data, encryption keys, and so on.

Memory analysis, like anything else, must be approached in some way. One of the most
important things is to set the investigation goal and break it down into simple components
to conduct the investigation more quickly and efficiently, and, what's more important, to
decide whether it's necessary or data left on the disk is enough to get the answers.

Of course, there is no silver bullet, and memory forensics also has its drawbacks. The main
problem is data preservation, but if you can manage that, you will be generously rewarded.

So now that you've learned about the benefits of memory forensics and the challenges
associated with it, and you understand the approach to investigation, what's next? We
think it's time to dive into the more practical stuff, and our first stop is the memory
acquisition process, which we'll talk about in the next chapter.

2
Acquisition Process

Memory acquisition is usually referred to as the process of copying the contents of
volatile memory to a non-volatile storage device for preservation. To have a good
understanding of the process, the investigator needs to know at least some memory
management principles, understand how tools for memory extraction work, and be able
to choose the most appropriate tool and use it correctly. In addition, it is important to
understand that creating full memory dumps is not always the only solution. There is live
memory analysis, which also has its advantages and, in some cases, may be preferable to
memory acquisition.

In this chapter, you'll learn about the following:

•	 Introducing memory management concepts

•	 What's live memory analysis?

•	 Understanding partial versus full memory acquisition

•	 Exploring popular acquisition tools and techniques

Introducing memory management concepts
There are several concepts related to the organization and management of random-access
memory (RAM). Understanding these concepts will allow you to make the memory
investigation process more conscious and effective. Let's start with the address space.

12 Acquisition Process

Address space
RAM is an array of memory cells, each with its own physical address used to access that
cell. However, processes do not have direct access to physical memory. This is because
processes can easily harm the operating system and even cause it to crash completely
when interacting with physical memory. Moreover, the use of physical addresses by
processes makes it difficult to organize the simultaneous execution of programs. To solve
these problems, an abstraction known as address space was created.

An address space is a set of addresses that can be used to access memory. Each process
has its own isolated address space, which solves the problem of security and isolation of
processes from each other and from the operating system. But what if there is not enough
physical memory to contain all the code and data of the running processes?

Here we come to the next abstraction.

Virtual memory
Virtual memory is an abstraction designed to separate the logical memory that processes
work with from physical memory. The basic idea is that each process has its own virtual
address space. The size of this space depends on the hardware architecture. By default,
on x86 systems, each process is allocated 4 GB of memory, with the lower 2 GB allocated
for user space and the upper 2 GB for kernel space. As a result, each process thinks that
it has its own memory space from 0x00000000 to 0x7FFFFFFFF, as depicted in the
following diagram:

Figure 2.1 – Default allocation of kernel and user space on x86 systems

Splitting in half is standard, but not required. For example, in Windows, there is an option
to use a 3:1 split, where 3 GB belongs to user space.

In the x64 architecture, a greater amount of memory can be allocated to
processes. In this case, user space occupies addresses 0x0000000000000000
to 0x000007ffffffffffffff, and kernel space begins with address
0xffffff08000000000000.

Introducing memory management concepts 13

Paging
The entire process address space is divided into blocks of fixed size. Such blocks are called
pages and represent a continuous range of addresses. It is these pages that are mapped to
physical memory.

The memory manager is responsible for unloading pages and freeing physical memory.
The memory manager also translates virtual addresses into physical addresses with the
help of hardware.

So, the process accesses the memory using a virtual address from its address space,
and the operating system translates this address into a physical address to retrieve the
necessary data from the memory.

The following diagram captures paging visually:

Figure 2.2 – Illustration of the paging concept

This approach allows us to load into physical memory only those pages that are necessary
for the correct operation of the program at a particular time. The remaining pages are
stored on disk waiting to be loaded.

14 Acquisition Process

The mechanism that determines which process memory pages should be in physical
memory and which should remain on disk is called paging. There are many page
replacement algorithms (FIFO, LRU, Clock, WSClock, and so on). All of them have the
same purpose: to improve stability and performance.

To store unused memory pages, a separate file (pagefile, swapfile) or a special
partition on disk (swap) is used, depending on the operating system. Thus, during
memory dump creation we obtain only the contents of the pages loaded into RAM. At the
same time, part of the pages that contain information important for the investigator may
be located on disk. To get a complete picture, it is recommended to combine analysis of
memory dumps with analysis of non-memory-resident data.

Shared memory
As mentioned before, each process has its own isolated address space, but there are
exceptions. Developers are always looking to improve performance, increase efficiency, and
reduce resource consumption, and memory is not spared. The result is shared memory.

Shared memory is an area of memory available to several processes at the same time.
There are a few uses for this mechanism. First, processes that have access to the same
memory space can use it to exchange data or to run the same pieces of code. Secondly, this
mechanism improves the effectiveness of using libraries. For example, if there are several
processes using the same dynamic library, it is simpler to put one instance of the library
in physical memory and map the virtual memory pages of all the processes that need it to
that instance.

Stack and heap
Each process contains both static and dynamic data. Static data is placed in the associated
regions of a process's virtual address space. Dynamic data is usually stored in memory
regions called the stack and heap. For a better understanding of these concepts, here is an
illustration of a process' virtual memory:

What's live memory analysis? 15

Figure 2.3 – Illustration of a process' virtual memory

The stack stores data directly related to the executable code. If a function is called during
program execution, a separate stack frame is allocated for it. The parameters of the called
function, its variables, and the return address are placed in it. The stack frame data exists
only within the limits of execution of the given function; nevertheless, the contents of
this region can tell the investigator what functions were executed by the process at the
particular moment.

Unlike a stack, data in a heap is stored for the lifetime of a process, which is extremely
important for a digital forensic specialist. Moreover, it stores dynamically allocated data,
such as text typed in a text editor, a clipboard that can contain a password, or the content
of a chat of a running messenger.

We have broken down the basic concepts, which we will refer to in the following chapters.
Now it is time to move on to the next stop, live analysis.

What's live memory analysis?
There are several situations where it is impossible to create a memory dump. We already
discussed these situations in Chapter 1, Why Memory Forensics?. Also, memory extraction
may become inefficient for remote systems or systems with more than 32 GB of RAM.
In such cases, you can use live memory analysis for manual examination of running
processes, their memory contents, network connections, and the current system state.

16 Acquisition Process

Important Note
Keep in mind that you will often need a user with administrator rights to
perform live analysis. If a threat actor has access to the target system and uses
credential carving tools, then logging in as a privileged user simply gives away
your credentials.

Windows
To perform live memory analysis on Windows hosts, there is a wide list of various
tools, from built-in to advanced forensic frameworks. Also, many EDR/XDR solutions
nowadays allow incident responders to perform live memory analysis.

Let's look at one very common live analysis tool known as Process Hacker, as shown in
the following screenshot:

Figure 2.4 – Process Hacker Processes tab

What's live memory analysis? 17

Process Hacker allows you to get the following information:

•	 List of running processes

•	 Services launched

•	 Active network connections

•	 Disk usage

In addition, double-clicking on a running process takes you to the process memory. There
you can find information about resources used, view the address space of the process,
including stack and heap, and even search for specific data there using regular expressions.

Such an approach may be very useful when you already know what to look for. For
example, you know that a piece of malware injects the payload to explorer.exe
(Windows Explorer). Usually, there aren't many instances of explorer.exe; what's
more, it shouldn't normally perform network connections. So, using tools such as Process
Hacker and a bit of cyber threat intelligence, you can easily spot rogue processes.

As was mentioned previously, there are built-in tools such as the Windows command
shell, PowerShell, or Windows Management Instrumentation (WMI). These tools
provide a wide range of functionality that helps you get a list of active processes, the
resources they use, the contents of their memory, active network connections, and so on.

Let's look at the following command:

C:\WINDOWS\system32> wmic process list full

CommandLine=powershell.exe -nop -w hidden -enc SQBmACg<edited>

CSName=DESKTOP-1J4LKT5

Description=powershell.exe

ExecutablePath=C:\WINDOWS\System32\WindowsPowerShell\v1.0\
powershell.exe

The command, prints a list of all active processes, including their command line and the
path to the executable file via wmic (the WMI command-line utility).

18 Acquisition Process

Linux and macOS
For systems running Linux and macOS, the method described previously also works.
Both Apple Terminal and Linux Terminal allow you to view information about network
connections, resources used, or processes running, as shown in the following screenshot:

Figure 2.5 – List of active processes on a Linux-based system

Despite the convenience and quickness of live analysis, it has its disadvantages. Examining
live systems does not allow you to see information about terminated processes and closed
network connections, limits interaction with kernel objects, and, among other things, can
lead to the erasure of important traces, because any interaction with the target system
leads to changes in memory.

It is also worth noting that the contents of memory are constantly changing and during a
live analysis it is easy to lose sight of something, which is why it will never be superfluous
to make a dump when it is possible. We will consider this in the next part.

Understanding partial versus full memory
acquisition
We have determined that working with memory dumps has certain advantages. The only
remaining question is what to dump. There are a few tools that allow you to create dumps
of specific processes on Windows systems. One such tool is ProcDump, which is a part of
Sysinternals Suite.

The following screenshot shows an example of creating a full process dump of the
Telegram messenger using ProcDump:

Understanding partial versus full memory acquisition 19

Figure 2.6 – Memory dump of the Telegram process

In Figure 2.6, ProcDump also has an analog for Linux-like systems, which provides a
convenient way to create core dumps of Linux applications. Similarly, it is possible to create
process dumps on macOS using GDB (GNU Debugger), but it is a more complicated task
because it requires direct specification of memory addresses to create dumps.

Dumps of individual processes can be analyzed later using the debugger. The following
screenshot shows a dump of the Telegram process opened in WinDbg:

Figure 2.7 – Dump of the Telegram process opened in WinDbg

20 Acquisition Process

Such analysis techniques are applicable, for example, as part of incident response, when
you need to quickly extract certain data from memory, such as IP addresses or executable
code. However, if you need to perform a full-scale investigation, extract user data or
encryption keys, or build a RAM-based timeline, you will need to create a full memory
dump. That is what we are going to talk about next.

Exploring popular acquisition tools and
techniques
The creation of a memory dump is not a trivial task and depends on several factors. We
will discuss all of them individually in this part of the chapter.

Virtual or physical
The environment plays an important role in the process of dump creation. This is due to
the fact that no additional tools are required to dump virtual machine memory.

In fact, the contents of the virtual machine's memory are partially or completely placed in
a file with a certain extension, so getting a dump is reduced to getting that exact file. The
following screenshot shows the basic virtualization tools and files used to store virtual
machine memory:

Figure 2.8 – Virtualization tools and files containing memory-related data

Exploring popular acquisition tools and techniques 21

An important criterion in obtaining virtual machine memory is its state. It is necessary
to understand that if the virtual machine is running, the contents of the memory are
constantly changing. Therefore, there are two possible solutions:

•	 Suspend: The virtual machine's memory in the stable state will be saved to disk.
However, some solutions perform a few processes before suspending a virtual
machine that may cause important data to be lost. For example, VMware closes all
active network connections before the virtual machine enters the suspended state.

•	 Create a snapshot: When creating a snapshot, the current state of the virtual
machine and its memory are written to separate files without any changes.

Thus, creating a snapshot to retrieve virtual machine RAM is more preferable in terms
of saving the original data. Further work with virtual machine files will depend on the
specific vendor and the format in which the memory is saved.

Local or remote
If our target system is bare metal, we cannot avoid additional tools for creating memory
dumps. In this case, physical access to the host plays a key role.

In today's world, it is not uncommon to have to collect data from target systems remotely.
The following plan can be used to create memory dumps remotely in the simplest case:

1.	 Create a temporary user with administrator privileges, as this will help you to
prevent attackers from stealing the credentials of the privileged user.

2.	 Create a network share ($C or $ADMIN) and copy the tool needed to create
the dump.

3.	 Use any remote-control tool, service creation, or task scheduling to run your tool
and then send a dump to the network share via back-connect.

4.	 Delete the temporary administrator account.

Important Note
Make sure to calculate the checksum of the dump file before and after it is sent
over the network to check its integrity.

22 Acquisition Process

If physical access to the host is available, the first question we need to solve is where to
store the data. It is highly discouraged to save the memory dump on the target system,
as it may cause overwriting forensically significant data on the disk. To write the dumps,
you should use removable devices prepared in advance. Using the same device to work
with several suspected infected hosts, as well as the direct connection of the device to
the investigator's computer, is not desirable. This is because there is malware (mostly
used for attacks on the energy sector, for example, USBferry, Crimson.USBWorm, or
USBCulprit) that uses removable devices for self-distribution and data transfer. In such
a situation, it is better to connect the device to an intermediate host, from where all
necessary data will be sent to the investigator's host, for instance, over the network.

Both hardware and software solutions can be used to create memory dumps if the target
system is physically accessible.

One hardware solution is to use Direct Memory Access (DMA), such as FireWire. It
should be noted right away that hardware solutions have a number of limitations (for
instance, starting with Windows 10 and macOS 10.7.2, DMA is disabled for locked
systems) and often require additional drivers, which is not a benefit at all.

It is a completely different story with software solutions. There are a huge number of both
free and commercial tools on the market that allow you to create memory dumps of different
formats. In general, most tools work in a quite similar way. When dumping, the kernel
module is loaded, which maps physical addresses to the process' virtual address space, from
which the data is written to the file. It is important to note that there is such a thing as device
memory. Device memory is a part of the physical memory, which is reserved for use by the
firmware. Attempting to access this part of memory can end unpredictably. That is why most
modern tools are designed to skip device memory regions.

How to choose
The obvious question with such a huge selection of tools is how to choose the most
appropriate one. This question is quite individual. We just want to cite a few factors that
should be considered when choosing a tool:

•	 Supported operating system and hardware architecture

•	 Remote dumping capability

•	 Impact on the target system

•	 Reliability

Summary 23

The first two factors are situational – depending on the circumstances in which you have
to take the dump, you may be suited to certain tools. The last two factors are more general.
Regardless of the context, we always try to minimize the impact on the target system.
As for reliability, it is necessary to say that you should never use a tool that you have not
worked with and tested before on the target system, because it can behave unpredictably.
Therefore, it is recommended to test the tool under the same conditions before creating a
memory dump of the target.

It's time
The only thing left for us to figure out is at what point in time it is best to take the dump.
Naturally, the moment when the dump is created largely determines its content. Let's
think back to the two major cases we discussed in Chapter 1, Why Memory Forensics?:

•	 The alleged victim's device: In this case, we are most likely to want to create a
memory dump when the attacker is not visibly active. This will help us avoid
external tampering with the dumping process.

•	 The suspect's device: The situation here is the opposite, as it is important to find
evidence of illegal activity by the owner of the device. Based on this, it is best to take
a memory dump when there is any activity on the host of interest.

A general recommendation regarding the time of dumping is to choose a time other than
startup, shutdown, reboot, system update, and other periods of increased activity.

Summary
A basic understanding of memory structure and memory management concepts is key to
an intelligent and effective investigation process.

In some situations, creating memory dumps can be complicated or simply inefficient. In
this case, live memory analysis comes to the rescue, allowing you to get basic information
about the current state of the target system.

Another alternative to creating complete memory dumps is extracting the memory of
individual processes. This can be useful as part of an incident response but does not
provide a complete picture and greatly limits the investigator's capabilities.

24 Acquisition Process

Creating memory dumps is a tricky process, depending on multiple factors. To
successfully create a dump, the examiner should consider various nuances, including the
digital environment, the need for remote data extraction, the reliability of the tools used,
and the time of dump creation.

In the following chapters, we will take a closer look at the tools needed to create memory
dumps on different operating systems and try them out in practice.

This section will take you through the Windows memory acquisition process and memory
dump analysis, including recovering user actions and hunting malicious activity in memory.

This section of the book comprises the following chapters:

•	 Chapter 3, Windows Memory Acquisition

•	 Chapter 4, Reconstructing User Activity with Windows Memory Forensics

•	 Chapter 5, Malware Detection and Analysis with Windows Memory Forensics

•	 Chapter 6, Alternative Sources of Volatile Memory

Section 2:
Windows

Forensic Analysis

3
Windows Memory

Acquisition
You already know some theory, but as you may know, in essence, there's no difference
between theory and practice, but in reality there is. So, let's move on and dive into some
practical tasks, starting with Windows memory acquisition, as Windows is the most
widely used operating system.

What does it mean? It's the most common target for threat actors! It also means that you
will face it very often during your incident response engagements (and some criminal
cases, of course). Therefore it's a very good idea to start from learning how to acquire
memory from a Windows host.

This chapter will introduce you to the four most common tools used for Windows
memory acquisition, and—of course—you'll learn how to use them and obtain memory
images for further analysis.

We'll cover the following topics:

•	 Understanding Windows memory-acquisition issues

•	 Preparing for Windows memory acquisition

•	 Acquiring memory with FTK Imager

•	 Acquiring memory with WinPmem

28 Windows Memory Acquisition

•	 Acquiring memory with Belkasoft Live RAM Capturer

•	 Acquiring memory with Magnet RAM Capture

Understanding Windows memory-acquisition
issues
In the previous chapter, we covered the general concepts of memory dumping in
detail and discussed possible issues. However, each operating system has its particular
peculiarities. The main peculiarity related to memory extraction in Windows is the access
to random-access memory (RAM), but first things first.

Remember that earlier, we talked about device memory, which is the area of physical
memory that is reserved for devices? Such devices include video cards, audio cards,
Peripheral Component Interconnect (PCI) cards, and so on. Their direct access to
the physical memory is vital for their qualitative and effective operation. And do you
remember what trying to access device memory can lead to? That's right—it can lead to
unpredictable consequences.

The thing is, attempts to access or write to device memory are translated into requests
sent to the corresponding device. However, different devices may react differently to an
attempt to interact with a piece of physical memory reserved by them. In some cases, this
can lead to changes in the critical data on which a device's functionality depends. From a
forensic point of view, however, the consequence can be the loss of significant evidence,
or, in the worst case, the freezing or shutting down of the system.

Access to physical memory in the Windows operating system is implemented through a
\Device\PhysicalMemory kernel object. Previously, this file was easy to work with,
since it was fully accessible to the user-space programs. However, if we consider all the
preceding information, it is quite clear that this approach was not entirely safe.

This has all changed with the release of Windows Server 2003 Service Pack 2 (SP2).
Of course, user-space programs can still read this file, but write access is now possible
exclusively from the kernel space. Now, acquisition tools must work at the kernel level or
use special drivers to create memory dumps.

Another thing that has influenced the change in memory extraction tools is the
widespread use of virtualization. This has resulted in a system crash when such tools
are run on systems with Virtual Secure Mode (VSM) enabled. Nevertheless, the latest
versions of the most used tools have already managed to deal with this issue.

Despite these changes, the number of tools for Windows memory acquisition is still large.

Preparing for Windows memory acquisition 29

Let's look at some of the most commonly used tools in the next sections.

Preparing for Windows memory acquisition
Before we start to work with the imaging tools, we need to prepare a couple of things.
Firstly, you need to find a flash drive that you will use to store both the tool itself and the
created memory dump, so make sure it has enough space. Secondly, you need to sanitize
it. This means that you need to forensically wipe the drive.

Important note
During the standard deletion process, metadata related to the deleted files is
changed and the space where these files are located is marked as available for
reuse. In other words, after deletion, the content of the files will reside on the
drive and can be recovered. The formatting process is quite similar. A few
certain master files are rewritten, but information can still be obtained from
the drive. Thus, to delete files securely, you need to overwrite the content with
zeros or random data.

To wipe drives, different tools and methods can be used, depending on the type of
removable media. We already decided to use a flash drive; in this case, there are two quite
effective and fast options, outlined as follows:

•	 Write a pre-prepared file proportional to the entire volume of the flash drive.

•	 Use the Secure Erase option.

Unfortunately, not all vendors have their own utilities that allow you to securely wipe their
drives with the Secure Erase option. You can check this information on the official web
page of the vendor of your flash drive.

30 Windows Memory Acquisition

When you have your flash drive sanitized, you can add some imaging tools there.

Acquiring memory with FTK imager
AccessData FTK Imager is one of the most popular free tools. It's commonly used both by
forensic analysts and incident responders for disk image previews, or even live response, so
it can be used not only for bit-by-bit imaging, but also for creating custom content images
and, of course, memory images. Let's get a closer look! Follow these next steps:

1.	 To get FTK Imager, go to the AccessData official web page at https://
accessdata.com/products-services/forensic-toolkit-ftk/
ftkimager.

2.	 Choose Products & Services | FTK® Imager. Follow the Download FTK Imager
today! link and press Download now. You will be asked to fill in a short form
with your contact information. After that, a link will be sent to the email address
you specified.

Now, you need to install FTK Imager on your flash drive. You can use the InstallShield
Wizard tool, which provides step-by-step installation instructions.

To create memory dumps, FTK Imager loads a device driver into the kernel and starts to
subsequently read memory through mapping the \Device\PhysicalMemory kernel
object. From a user's point of view, the process of memory acquisition with FTK Imager is
very simple and intuitive. Follow these instructions to create your memory image:

1.	 Connect the flash drive to the target system and run FTK Imager. The main window
will appear, as shown here:

https://accessdata.com/products-services/forensic-toolkit-ftk/ftkimager
https://accessdata.com/products-services/forensic-toolkit-ftk/ftkimager
https://accessdata.com/products-services/forensic-toolkit-ftk/ftkimager

Acquiring memory with FTK imager 31

Figure 3.1 – FTK Imager main window

2.	 Go to File and click on Capture Memory…, or find the associated icon on the
toolbar. The following screenshot illustrates the former option:

Figure 3.2 – FTK Imager File menu

32 Windows Memory Acquisition

3.	 In the dialog window, click Browse to choose the location where you want to store
the memory dump. Also, you need to choose a name for the dump—by default, this
is memdump.mem. We also recommend you check the Include pagefile checkbox,
as shown here:

Figure 3.3 – Memory Capture dialog window

4.	 Press the Capture Memory button. As a result, you will see a dialog like the one in
the following screenshot, illustrating the progress of dump creation:

Figure 3.4 – Imaging progress

After a few minutes of waiting, we get our memory dump, which is a file with a .mem
extension. The image is ready to be analyzed with your tool of choice—for example, the
Volatility Framework.

Acquiring memory with WinPmem 33

FTK Imager is a powerful tool with a wide range of functionality, but we want you to have
a choice, so let's look at some other tools.

Acquiring memory with WinPmem
WinPmem was originally developed by Google and was a part of the Rekall Framework,
but has now been released as a standalone memory acquisition tool. The tool supports a
wide range of Windows versions—from XP to 10—and has standalone executables both
for 32- and 64-bit systems.

WinPmem utilizes three independent methods to create memory dumps, outlined
as follows:

•	 Page table entry (PTE) remapping

•	 Use of the MMMapIoSpace kernel application programming interface (API)

•	 Traditional \Device\PhysicalMemory mapping

The first of the preceding methods is used by default as it is considered the most stable.
However, users can choose any other method manually.

To download this tool, go to the WinPmem repository on the Velocidex GitHub page, at
https://github.com/Velocidex/WinPmem.

The page looks like this:

Figure 3.5 – WinPmem GitHub repository

https://github.com/Velocidex/WinPmem

34 Windows Memory Acquisition

On the right side of the page, go to Releases and download winpmem_mini_x64.exe.
Copy this executable to your flash drive. This program does not require any additional
dependencies and is self-contained. Also, you don't need to worry about x64 and x86
differences. WinPmem will load the correct driver automatically.

The following instructions will help you to acquire memory with WinPmem:

1.	 Connect the flash drive to the target system. Run cmd or PowerShell as
Administrator, which is shown in the following screenshot:

Figure 3.6 – Running PowerShell from the search box

Acquiring memory with WinPmem 35

2.	 Move to your flash drive and run winpmem_mini_x64.exe with the name
of the memory dump as the argument. As shown in the following screenshot,
memdump.raw is the argument provided:

Figure 3.7 – WinPmem execution

3.	 During the memory-dump process, you will be able to see all the related
information, as shown in the following screenshot:

Figure 3.8 – Dump creation with WinPmem

36 Windows Memory Acquisition

After a while, we will get a raw memory dump with the specified name.

This is how we can extract Windows memory using PowerShell and WinPmem, but there
is more to this. Let's add a couple more tools to our collection.

Acquiring memory with Belkasoft RAM
Capturer
Belkasoft RAM Capturer is another free tool for memory acquisition. As with the
previous tools outlined, it uses kernel drivers to extract the physical memory and create
dumps. This tool is compatible with all 32- and 64-bit versions of Windows, including
Windows XP, Windows Vista, Windows 7 and 8, Server 2003 and 2008, and Windows 10.

You will need to take the following steps:

1.	 To get this tool, go to the Download tab on the official Belkasoft web page at
https://belkasoft.com/.

2.	 Choose Belkasoft Live RAM Capturer and leave your email in the specified field.
After confirmation, you will receive a download link. From this link, you will get an
archive with two x64 and x86 folders, which should be extracted to a flash drive.

3.	 This time, you need to find out if you're dealing with an x64 or an x86 system.
To do so, use the Search box on the taskbar. Type system and run the System
Information application, as shown in the following screenshot:

Acquiring memory with Belkasoft RAM Capturer 37

Figure 3.9 – Running System Information from the search box

38 Windows Memory Acquisition

In the opened window, search for System Type under System Summary, as shown in the
following screenshot. The x64-based PC value identifies 64-bit systems:

Figure 3.10 – System-type detection

In the case of an x64-based PC system type, you need to use Ram Capturer from the x64
folder; otherwise, choose another one from x86. You are ready to create a memory dump.
Please take the following steps:

1.	 Connect the flash drive to the target system and run the RamCapture executable.

2.	 Type the output folder path in the specified field and press the Capture! button.

The process of dump creation will look like this:

Figure 3.11 – Imaging with Belkasoft RAM Capturer

Acquiring memory with Magnet RAM Capture 39

Finally, we get the memory dump with a .mem extension. By default, the filename consists
of the acquisition date, but you can always replace it with something more descriptive.

You can now create memory dumps using three different tools. Let's take a look at the last
tool, but not the least one.

Acquiring memory with Magnet RAM Capture
Magnet Forensics also released its own free memory acquisition tool, called Magnet
RAM Capture, which can be used to acquire memory from Windows systems. To extract
the physical memory, Magnet RAM Capture uses a kernel-mode driver. It creates memory
dumps in raw format, which is supported by both open source memory forensic tools and
full-featured digital forensic suites.

To download Magnet RAM Capture, take the following steps:

1.	 Go to the RESOURCES tab and then the FREE TOOLS tab on the official Magnet
Forensics web page at https://www.magnetforensics.com/.

2.	 Choose MAGNET RAM CAPTURE and fill in a short form. After confirmation,
you will receive a download link. After downloading, copy MRCv120.exe to your
flash drive.

Dumping memory with Magnet RAM Capture is very easy and straightforward, as the
following instructions show:

1.	 Connect the flash drive to the target system and run MRCv120.exe
as Administrator.

2.	 Choose a Segment size option in the drop-down menu (the default is Don't Split,
and it's the recommended mode).

3.	 Click on the Browse… button and choose the memory image filename and location.

4.	 Click on the Start button.

https://www.magnetforensics.com/

40 Windows Memory Acquisition

The imaging process will start; you should wait for the progress bar to get to 100%. Here is
an example of an imaging process with Magnet RAM Capture:

Figure 3.12 – Imaging process with Magnet RAM Capture

Once the process is finished, you'll find a raw memory image under the location you
specified previously.

Summary
When creating memory images, you must consider not only the general concept but also
factors unique to each individual operating system. For the Windows operating system,
such a factor is access to the /Devices/PhysicalMemory kernel object.

Most modern tools use kernel drivers to create dumps, but some tools have their
own unique approach, manifested by using alternatives to the classic /Devices/
PhysicalMemory mapping.

Despite the variety of tools for Windows memory extraction, it is worth remembering that
the best tool is the one that has been successfully tested on systems identical—or at least,
very similar—to the target.

In this chapter, we have learned how to create memory dumps using various free tools. Now,
it's time to start looking inside them! In the next chapter, we will get to know the tools for
Windows memory-dump analysis and learn how to search for traces of user activity.

4
Reconstructing

User Activity with
Windows Memory

Forensics
User activity reconstruction is essential for many use cases since it gives us a better
understanding of what is going on. In the first chapter, we discussed that if you receive
a device participating in the incident, the victim or suspect probably owned this device.
If we analyze the victim's device, user activity can tell us how the infection occurred or
how the attacker acted while remotely accessing the computer. If we are talking about
the attacker's device, such analysis allows us to understand how the preparation for the
attack took place, what actions the threat actor performed, and how to find evidence of
illegitimate activity. Also, if you are dealing with criminal cases that are not related to
hacking but more traditional crimes, such as child pornography, human trafficking, and
drug dealing, memory images may contain key sources of evidence. Here, you may be able
to recover private communications and browser history, as well as the encryption keys of
the containers that were used by the suspect to hide the data.

42 Reconstructing User Activity with Windows Memory Forensics

This chapter will provide some insights into user action recovery techniques, based not
only on running processes but also on analyzing Windows Registry and the filesystem
in memory.

The following topics will be covered in this chapter:

•	 Analyzing launched applications

•	 Searching for opened documents

•	 Investigating browser history

•	 Examining communication applications

•	 Recovering user passwords

•	 Detecting crypto containers

•	 Extracting recent activity from the registry

Technical requirements
To work with the tools described in the next three chapters and conduct Windows
memory forensics, you do not need to meet certain technical requirements. It is sufficient
to have a Windows operating system installed on the main host or a virtual machine.

Analyzing launched applications
Applications analysis may help an investigator to build the suspect's profile. The analysis
of running processes may help us to understand whether the suspect is using some
messengers or web browsers with high anonymity levels or if any encrypted containers are
currently mounted. Such data sources may be full of valuable forensic artifacts and, what's
more, be unavailable during post-mortem analysis.

Each time the user starts a program, the corresponding process is created in memory and
added to the list of active processes. By analyzing this list, we can get information about
the programs running at the moment the dump is taken. That's what we'll do once we get
to know our analysis tools.

Analyzing launched applications 43

Introducing Volatility
The Volatility framework is the most popular free tool for memory dump analysis. Many
vendors have included support for this tool in their solutions, including Autopsy and
Magnet AXIOM. The source code for this tool is written in Python, so Volatility can be
used on different operating systems. Moreover, Volatility allows you to analyze various
operating systems, ranging from Windows XP to Linux and macOS. Naturally, we also
decided to take Volatility as a basis, but we will not limit ourselves to it either.

To run Volatility, you can use one of the following options:

•	 Volatility Standalone: This version is a separate executable file. The last version
that was released in this format was Volatility 2.6. You can get it from the official
site: https://www.volatilityfoundation.org/26. Just download the
version that suits your operating system and copy the executable file to a
convenient location.

•	 Python scripts: Using scripts has its advantages as they are updated more frequently
and support a larger number of profiles. To get them, you can simply go to the
Volatility GitHub repository and clone the project: https://github.com/
volatilityfoundation/volatility.

•	 Volatility Workbench: This option is suitable for those who prefer to work with
tools that have a graphical interface. The developers of the Workbench periodically
update it, so this tool also supports the latest versions of Volatility, including
Volatility 3. However, it also has disadvantages, such as incomplete support for all
the parameters available in Volatility. You can download Workbench for free from
the official website: https://www.osforensics.com/tools/volatility-
workbench.html.

The Volatility project is actively supported, so you can always find detailed installation
instructions, official plugin descriptions, plugins from the community, and more
information from the appropriate public sources. This includes the official web page,
Volatility's GitHub repository, and various forums.

At the time of writing, the latest version of Volatility is Volatility 3. However, this version
is still under development, and some of the plugins we need are underdeveloped or
missing altogether. In addition, the output processing in Volatility 3 is not as easy as in
version 2.6, so we gave preference to the previous version of Volatility.

https://www.volatilityfoundation.org/26
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
https://www.osforensics.com/tools/volatility-workbench.html
https://www.osforensics.com/tools/volatility-workbench.html

44 Reconstructing User Activity with Windows Memory Forensics

At the time of writing, the latest version of Volatility is Volatility 3. However, this version
is still under development, and some of the plugins we need are underdeveloped or
missing altogether. In addition, the output processing in Volatility 3 is not as easy as in
version 2.6, so we gave preference to the previous version of Volatility.

We will take the easy route and choose the standalone version. If you are running
Windows, then after downloading Volatility from the official website, you will get
the volatility_2.6_win64_standalone.exe executable file. Volatility is a
command-line tool, so you need Windows PowerShell or Windows Command Prompt to
run it. To check that everything works correctly, you can open PowerShell, go to the folder
that contains the tool (in our case, this is the D:\ drive), and run Volatility with the
--info option. This option opens the help menu, as shown in the following screenshot:

Figure 4.1 – Volatility information

Pay attention to the Profiles section since it lists all the versions of the operating systems
supported by your version of Volatility. Without a correctly specified profile, the tool will
not work as expected.

Profile identification
Each profile in the Profiles section corresponds to a specific version of the operating
system. If you do not know which profile is needed to analyze your memory dump, you
can always use the imageinfo plugin, which will try to find the most suitable profiles
for you. To run this plugin, you will also need to use the -f option, after which you
must specify the path to the memory dump you want to analyze. We used the memory
dump named Win10Mem.vmem, located in the D:\user activity folder. The whole
command should look as follows:

Analyzing launched applications 45

Figure 4.2 – Volatility imageinfo

If you run the command successfully, the Suggested profiles line will show a list of
profiles that Volatility considers suitable for the analysis. In most cases, the first profile on
the list will be the most suitable, but if you notice that some plugins do not work (which
may be a lack of output, incorrect output, or an error message) with that profile, just try to
change it.

Another important point is that if the operating system that the dump was taken from is
quite new, a suitable profile may not exist. In this case, you can search on GitHub and add
a new profile to Volatility, look at the next version of Volatility – in this case, Volatility
3 – or use another tool. Of course, if you cannot find a proper profile, you can write one
yourself, but you will need a deeper knowledge of programming and operating systems to
do so.

In our case, we will use the Win10x64_14393 profile for the Win10Mem.vmem dump.

At this point, we have a tool and a suitable profile. Now, we can analyze the list of
active processes.

Searching for active processes
Volatility has several plugins for listing the processes running on the system at the time
of dump creation. The first one, pslist, allows you to get a list sorted by time. If we
are mostly interested not in creation time but the relationship between the parent and
child processes, the better option is to use pstree. Both plugins work with a list of
active processes in memory and display data that, on a live system, can be obtained with
Task Manager.

The universal command for getting started with any of the plugins is as follows:

volatility_2.6_win64_standalone.exe -f <memory dump location>
--profile <suitable profile from profile list> <plugin to run>

46 Reconstructing User Activity with Windows Memory Forensics

Let's try to get the list of active processes, sorted by time:

Figure 4.3 – Volatility pslist

Take a look at the preceding screenshot. In the output of the plugin, we can find not only
the name of the running process but also its unique identifier, the identifier of its parent
process, the number of associated handles and threads, the time the process was created,
and, if the process was terminated, the time it was exited.

Important note
There are many different kernel objects. When a process needs to open a
particular object, a reference, called handle, is opened for it. Since every active
process must have at least one thread (an object that represents the smallest
sequence of programmed instructions), there is always a handle for that type
of object. In addition to that, handles are often created for objects such as files,
registry keys, and even other processes.

However, what if the process was terminated recently and information about it has been
removed from the list of active processes?

Searching for finished processes
From the operating system's point of view, all processes are objects of a certain _EPROCESS
structure. When a process finishes its work, its data is still stored in memory for some time
until the space occupied by the process is overwritten. Volatility allows you to search for
such processes using a search for objects, similar in structure to _EPROCESS.

To find such processes, you can use the psscan plugin. Its execution will look as follows:

Analyzing launched applications 47

Figure 4.4 – Volatility psscan

As you can see, the information that's displayed is quite similar to the pslist result, but
now, we have more information about the terminated processes.

Now, we can search for programs that were running by the user when the dump was
created or were recently terminated. However, what if we need to look even further and
search for programs that terminated earlier?

In this case, Volatility has a userassist plugin, which retrieves information about the
programs that the user frequently runs. This can also include programs that the user has
recently worked with.

We can obtain such data as the application name, run count, and last run time of the
applications that were launched via Windows Explorer:

Figure 4.5 – Volatility userassist

48 Reconstructing User Activity with Windows Memory Forensics

First of all, after execution, you will be able to see information about specific locations
where this information was found. For example, \??\C:\Users\Ben\ntuser.dat
means that the shown subkeys and values are related to the user Ben.

The following screenshot shows separate entries related to each application:

Figure 4.6 – Userassist entries

As you can see, userassist shows the full path to the executable, run count, time
focused, and the date and time of the key update that is related to the last run time of the
application. Here, you can find not only programs running at the moment of memory
dump creation but also programs that were launched earlier.

Now, imagine that, in the list of running or recently completed processes, we have
WINWORD.exe (such a process is created when you start MS Word):

Searching for opened documents 49

Figure 4.7 – Active MS Word process

What document was opened there? Can we get this information from memory?

Searching for opened documents
In some cases, you may want to understand if any Microsoft Office files or just text files
were opened by corresponding applications. Why? They may contain passwords or some
data that's valuable from an investigative perspective. Volatility has several plugins that
allow you to work with files in memory. For example, the filescan plugin allows you
to get information about all the files that were encountered in the memory dump, and
dumpfiles allows you to try to extract these files (remember that some files may be
unloaded at the time the dump is created). So, how do we find a file that's been opened in
MS Word?

50 Reconstructing User Activity with Windows Memory Forensics

Documents in process memory
If we pay attention to the Process ID (PID) column, we will see that our WINWORD.exe
process has an ID of 1592. We can use this ID with the -p option to run Volatility plugins
only for this process. If we want to see what resources our process used, the handles
plugin can help us. Let's use this with the -p option and the -t File option, which will
help us display only those resources that are related to files.

Figure 4.8 – Volatility handles

In the preceding screenshot, we can see that our process resources mention a file called
GOT-7_HR. Let's find the location of this file in memory. To do that, we need to run the
filescan plugin and redirect its output to a text file, as shown here:

PS D:\> .\volatility_2.6_win64_standalone.exe -f '.\user
activity\Windows7x64.vmem' --profile Win7SP1x64 filescan > D:\
filescan.txt

When the plugin finishes running, we can find a text file called filescan.txt that
contains the following contents on the specified path:

Searching for opened documents 51

Figure 4.9 – Volatility filescan output

Here, we can see the physical offset where the file was found, some related attributes, and
the full path to the file on disk. Let's find our file:

Figure 4.10 – File offset

52 Reconstructing User Activity with Windows Memory Forensics

We now know the physical offset of our file and can use the dumpfiles plugin to
retrieve it from memory. Here, we will use the -Q option to specify the physical offset and
the -D option for the path where we want to save our file.

Figure 4.11 – Volatility dumpfiles

As you can see, our file was detected at this offset. Now, there are two new files in our
D:\user activity folder called file.None.0xfffffa80282a6b80.vacb
and file.None.0xfffffa80258625f0.dat.

File data extensions identify the object that the data was extracted from:

•	 dat: DataSectionObject

•	 vacb: ImageSectionObject

•	 img: SharedCacheMap

These files are containers where the file's content and data are stored. To get the original
file, try to rename the container with its extension. By doing this, you can open the
extracted file with a suitable tool and continue to analyze it.

Important note
If you export a file that you think is malicious, make sure that you do not run
it on your work machine for analysis. It is better to work with such files in
sandboxes or to process them with special tools, which we will discuss in the
next chapter.

With that, the files have been taken care of, but what about the processes related
to browsers?

Investigating browser history 53

Investigating browser history
Browsers can contain a lot of useful data. By analyzing the browser history, we can
understand what sites the user visited, what search queries user performed, and what files
were downloaded. Even if a private mode or a special browser (for example, Tor Browser)
was used to surf the internet, we can still find useful information in memory.

The following screenshot shows the output of the pslist plugin, where we can see
several processes related to Google Chrome, Mozilla Firefox, and Tor Browser:

Figure 4.12 – Browser-related processes

So, how do you get information about the visited resources? There are several ways to
do this:

•	 Export the process memory and process it with the Strings utility (https://
docs.microsoft.com/en-us/sysinternals/downloads/strings),
which allows you to get the list of ASCII and Unicode symbols from various files.

•	 Export the process memory and process it with bulk_extractor (https://
downloads.digitalcorpora.org/downloads/bulk_extractor/),
which allows you to scan disk images, memory dumps, specific files, or directories
and extract useful information.

•	 Search for URLs using regular expressions or YARA rules.

https://docs.microsoft.com/en-us/sysinternals/downloads/strings
https://docs.microsoft.com/en-us/sysinternals/downloads/strings
https://downloads.digitalcorpora.org/downloads/bulk_extractor/
https://downloads.digitalcorpora.org/downloads/bulk_extractor/

54 Reconstructing User Activity with Windows Memory Forensics

We have three browsers and three options, so this looks like a good plan. Let's start with
Google Chrome and the regular expression search.

Chrome analysis with yarascan
Yarascan is one of the Volatility plugins that allows you to search for some specific
information using regular expressions or YARA rules.

Important note
YARA was originally developed to help malware researchers with detecting and
classifying malware samples. However, this tool is also applicable to memory
forensics since it allows us to create search patterns using textual or binary
data. For more information, see https://yara.readthedocs.io/
en/v4.1.0/gettingstarted.html.

To use yarascan with a YARA rule file, we need to provide a path to the .yar file
with the -Y option. In our case, we will run it with the -y option and the
/(https?:\/\/)?([\w\.-]+)([\/\w \.-]*)/ regular expression. In addition,
we will scan just one of the Chrome processes – the process with ID 4236, as shown here:

Figure 4.13 – Volatility yarascan

https://yara.readthedocs.io/en/v4.1.0/gettingstarted.html
https://yara.readthedocs.io/en/v4.1.0/gettingstarted.html

Investigating browser history 55

Here, you can see that we managed to find several links using this regular expression right
away – these links are in the memory of the Google Chrome process with ID 4236.

Now that we've looked at Chrome, let's move on to Firefox.

Firefox analysis with bulk extractor
Bulk extractor is a command-line tool that allows you to search for some specific
information, such as URLs, emails, and PDF files in different sources. There is also
BEViewer, a graphical interface for bulk extractor, but it requires additional installation.

Before using this tool, we need to dump the memory of the Firefox process. The memdump
plugin is great for this as all we need to add is the -p option, along with the ID of the
required process, and the -D option, along with the folder where we want to save the
dump. In our case, the ID is 6380 and the path is .\user activity\firefox.

When the plugin completes, a file with the process ID set to a name and the .dmp
extension will appear in the specified directory.

Now, we can launch our bulk extractor.

Figure 4.14 – Volatility memdump and bulk extractor

56 Reconstructing User Activity with Windows Memory Forensics

For bulk extractor, we used several options:

•	 -o: Provides an output directory

•	 -x all: Disables all scanners

•	 -e email: Enables an email scanner that searches for emails and URLs

In the end, we need to provide a path to the file that we want to analyze.

Important note
To see all bulk extractor scanners available for use, simply run
bulk_extractor.exe without adding any options.

As a result, several files will appear in the specified directory:

Figure 4.15 – Bulk extractor's output

Investigating browser history 57

In these files, we can find information about the emails and URLs that appeared in
Firefox's memory. For instance, we can look into url_histogram.txt:

Figure 4.16 – URL histogram file's content

58 Reconstructing User Activity with Windows Memory Forensics

Alternatively, we can check the searches that were made via the Firefox browser in the
url_searches.txt file:

Figure 4.17 – URL searches

From this, we can see that our user was searching for Tor Browser.

Now that we've looked at Chrome and Firefox, it is time for the most fun part. Let's try to
analyze the Tor process with the Strings utility.

Tor analysis with Strings
Tor is a private browser that allows you to visit not only standard resources but also sites
in the deep and dark webs, where some private and sometimes illegal sources are located.
Hence, we just can't ignore this process.

For analysis, we will use the Strings utility, which is part of Sysinternals Suite and can
be used to search for different characters in files. When analyzing private browsers such as
Tor, this utility is very useful.

Investigating browser history 59

Before we start, we need to dump our Tor memory. We can use the previous technique
to do so. Our tor.exe file has ID 4708, so we will use it with the -p option for the
memdump plugin. Do not forget to add the -D option and provide a path to the location
where you want to store the dump.

After creating the dump, we can run the Strings utility. For this, we must pass the
path to our process dump as an argument and redirect the output to a text file, as we did
previously. As a result, we get the following output:

Figure 4.18 – Volatility memdump and the Strings utility

This option takes longer and the final file is harder to work with, but there is more data to
find than with the standard URLs.

We end up with a text file that looks like this:

Figure 4.19 – URLs in Tor memory

We can also use regular expressions or the usual keyword search to quickly find
information of interest.

60 Reconstructing User Activity with Windows Memory Forensics

With that, we've looked at the history of browsers and even touched on the subject of email
analysis. Now, let's take things further and take a closer look at emails and messengers.

Examining communication applications
How often do you use communication apps to chat, send videos, or look at pictures of cute
cats that have been sent to you? The answer is probably every day. Email and messengers
have become an essential part of our lives, so we cannot avoid them. While examining the
dump that's been taken from the victim's computer, we might come across a malicious
document sent by email, and in the memory dump of the suspect's computer, we might
find correspondence with accomplices.

We have already talked about email, so we'll start there.

Email, email, email
Nowadays, there are many different email agents, and some people prefer to use a browser
to check their mail. Thus, we can reduce the analysis to the following:

•	 If, in the list of running processes, we see a process related to the email agent, we
can check the resources being used by the handles plugin and look for files that
might be in the attachment.

•	 Also, if there is an active email agent process, we can extract its memory with the
memdump plugin and process the dump file with the Strings utility. This will
allow us to search not only for filenames in attachments but also for fragments of
the emails themselves.

•	 Run bulk extractor, as we did in the previous section, but now use it to analyze the
entire memory dump. In this case, we will be able to collect information about all the
emails and attachments, regardless of using an email agent or a browser. However, be
careful as bulk extractor will take much longer to run than it did previously.

Since all these methods have already been described in detail, we will take a look at just
one of them: analysis with bulk extractor.

Since we will now use the whole dump for searching, we do not need to extract the
memory of individual processes. The command for this will look like this:

Examining communication applications 61

Figure 4.20 – Full memory dump analysis with bulk extractor

Now, we can check the email_histogram.txt file, which contains information about
all the email addresses that appeared in memory:

Figure 4.21 – Email histogram

62 Reconstructing User Activity with Windows Memory Forensics

We also can do a keyword search against the url_histogram.txt file to find
information about mailboxes and attachments:

Figure 4.22 – Email attachment in the URL histogram

Everything seems to be clear regarding emails, but what about messengers? How can we
look into conversations and find something useful in them?

Instant messengers
When it comes to messengers, the easiest thing to use is a messenger memory analysis
tool. Let's look at our list of processes again:

Figure 4.23 – List of active processes

Examining communication applications 63

In the list of active processes, we can see a couple of well-known messengers, including
Telegram and Discord. We can dump the memory of these processes and parse it with the
Strings utility, as shown in the following screenshot:

Figure 4.24 – Telegram memory extraction and parsing

In the output file, you can search for specific usernames, messages, URLs, or keywords:

Figure 4.25 – Message history in Telegram's memory

This is how we can get some insights into the instant messengers' memory. By the way,
some people can use messengers and chats with themselves to share their passwords
between several devices, so you can check for the appearance of passwords as well.

64 Reconstructing User Activity with Windows Memory Forensics

Recovering user passwords
Instant messengers are not the only location where we can search for passwords. We
can find them in a cache, in the memory of text editors, buffers, command lines, or even
some specific system processes. Volatility has several plugins to collect information
about credentials:

•	 hashdump

•	 lsadump

•	 cachedump

Let's check them out, one by one.

Hashdump
The hashdump plugin can be used to dump hashes of local user passwords on Windows
systems before Windows 8. The command will look like this:

Figure 4.26 – Volatility hashdump

In the output, you can see the account name, followed by the relative identifier and the LM
and NT hashes. Notice that we have the same hashes for Administrator and Guest users.
These specific hashes indicate blank passwords.

Another way to dump credentials is to use the cachedump plugin.

Cachedump
This plugin can be used to dump hashes of cached domain user passwords. By default, our
system stores up to 10 of the most recent domain account credentials. We can try to access
them with cachedump. Its execution is quite similar to that of hashdump:

Figure 4.27 – Volatility cachedump

Recovering user passwords 65

Here, you can see the domain username, followed by the password hash and the
domain itself.

Another thing that we can do is search for Local Security Authority (LSA) information.

Lsadump
The LSA subsystem service is responsible for user authentication, so its analysis can help
us obtain some useful information. Look at the following example:

Figure 4.28 – Volatility lsadump

Here, we can see information from different resources and for some of them, we can
identify plaintext passwords. Other locations where plaintext passwords can be found are
in the memory of text editor processes or the command lines of some specific tools, such
as PsExec.

66 Reconstructing User Activity with Windows Memory Forensics

Plaintext passwords
Since we have already learned how to extract and analyze process memory, let's
concentrate on the command line. Volatility has several plugins that allow us to retrieve
command-line arguments. One such plugin is cmdline. It does not require any
additional arguments:

Figure 4.29 – Volatility cmdline

From the very beginning, we can see information about the start of the system processes
and the command lines that have been used for this purpose. In the case of running
programs that require the password to be transmitted in clear text, we will be able to find
something similar to the following:

Figure 4.30 – Plaintext password in the PsExec command line

In this case, we can see that PsExec has been used to connect remotely to the win7 host
and that the max user password has been transmitted in plaintext.

Detecting crypto containers 67

Now, you have several ways to get the user's password information. But what about those
who use encryption and crypto containers?

Detecting crypto containers
There are several popular encryption tools for Windows:

•	 Bitlocker

•	 TrueCrypt

•	 VeraCrypt

Although the implementation of these tools varies, they all serve the same purpose – to
encrypt user data. For some, this may be an opportunity to keep their data private, while
for others, it may be an opportunity for them to hide their illegitimate activity. For us, as
investigators, it is important to understand that if the encrypted disk was used at the time
of dumping, we may find cached volume passwords, master encryption keys, some parts
of unencrypted files, or their exact location in memory.

The first step of our investigation here is to identify if there are any encryption tools and
what data was encrypted. Sometimes, we will be able to easily identify the tool from the
list of running processes, as shown in the following screenshot:

Figure 4.31 – VeraCrypt process

68 Reconstructing User Activity with Windows Memory Forensics

Unfortunately, Volatility does not provide a lot of functionality to work with different
encryption solutions, but it has a nice set of plugins for TrueCrypt:

•	 truecryptmaster searches for encryption master keys.

•	 truecryptpassphrase searches for the passphrase that was used.

•	 truecryptsummary collects TrueCrypt-related information.

The last plugin allows us to gather information about TrueCrypt processes, services,
drivers, associated symbolic links, and file objects.

Figure 4.32 – Volatility TrueCrypt summary

Here, we can see that one of the drives was encrypted with TrueCrypt, so we can try to
extract the master key from memory:

Figure 4.33 – Volatility TrueCrypt master key

Detecting crypto containers 69

By default, TrueCrypt and some other tools use AES for encryption. That is why an
alternative way to get the encryption master key is to use any tool with AES detection
functionality. We have already discussed such a tool: one of the bulk extractor scanners
can be used for this purpose. Let's run aes scanner:

Figure 4.34 – Bulk extractor AES scanner

As result, we will get a text file called aes_keys.txt. The content of this file looks
as follows:

Figure 4.35 – Extracted AES keys

Here, we found several couples of AES256 keys. By combining these couples of 256-bit
keys, we can obtain our 512-bit master key.

This process is not very easy, which is why some forensic software developers included key
extraction functionality in their solutions.

70 Reconstructing User Activity with Windows Memory Forensics

Passware is one of the most popular solutions to search for encrypted files, decrypt
encrypted drives, and recover Windows passwords and passwords stored in Password
Managers. This tool supports most of the solutions for full-disk encryption, including
BitLocker, TrueCrypt, and PGP.

Figure 4.36 – Passware

If you want to try this tool, you can request a demo version from their official web page:
https://www.passware.com/kit-forensic/.

We have already discussed how to find launched programs and opened documents,
how to recover passwords, and how to detect encrypted drives. However, there is one
important thing that was left behind – Windows Registry.

Investigating Windows Registry
Information about the programs that are frequently run by the user, recently opened
documents, outgoing RDP connections, and much more is written in the computer's
registry, and we always have the most recent version of it in our memory. To avoid
confusion, we need to understand how the registry works in Windows.

https://www.passware.com/kit-forensic/

Investigating Windows Registry 71

Virtual registry
To work properly, your computer needs to store information about hardware and software
configurations, data about all the system users, information about each user's settings,
and much, much more. When our system starts up, it collects this information from the
hardware and registry files stored in non-volatile memory and creates a virtual registry in
memory. This virtual registry is where the current configurations are stored, and where all
the changes that will be transferred to the files and written to disk will be stored in the first
place. The process of interacting with the registry is ongoing, so we can always find the
hives of the virtual registry and associated files in the memory dumps.

Most of the time, we have to work with several files:

•	 SAM contains information about groups and users, including their privileges,
passwords, and last login date.

•	 SYSTEM contains OS-related information such as the computer's name, services,
connected USB devices, time zone information, and network adapter configuration.

•	 SOFTWARE contains information about installed software, scheduled tasks, autorun,
and application backward compatibility.

•	 NTUSER.DAT contains information related to a particular user: last viewed
documents, frequently run programs, explorer history, and outgoing
RDP connections.

Remember the userassist plugin? It takes information from the registry – to be more
exact, from the NTUSER.DAT file. Both hashdump and cachedump also use the registry.

Let's see how we can work with the registry files in memory.

Important note
We are not going to cover the details of Windows Registry forensics as this
topic requires in-depth studying. However, we will break down the main keys
required for our purposes.

Volatility provides several plugins for general work with the registry:

•	 Printkey shows registry keys, their subkeys, and their values.

•	 hivelist lists accessible registry hives.

•	 dumpregistry allows us to extract registry files from memory.

•	 Several plugins also take out the values of certain keys:

72 Reconstructing User Activity with Windows Memory Forensics

•	 userassist

•	 shutdowntime

•	 shellbags

All of these plugins display the values of the keys with the same name after launching them.

However, working with the registry in this way is not always convenient. In addition, they
are not adapted to work with newer versions of Windows 10. What should we do if we
need to analyze a fresh build? There is an excellent tool that allows you to view physical
memory as files in a virtual filesystem. It is called MemProcFS.

Installing MemProcFS
Take a look at this link to learn about the installation process for MemProcFS: https://
github.com/ufrisk/MemProcFS/blob/master/README.md.

This tool has several dependencies. First, you need to install LeechCore. To do so, you
need to execute the following command in PowerShell:

Figure 4.37 – Installing LeechCore

The next step is to install Microsoft Visual C++ Redistributables for Visual
Studio 2019. You can get the installer from https://go.microsoft.com/
fwlink/?LinkId=746572. Now, you must install Dokany: https://github.
com/dokan-dev/dokany/releases/latest. Developers recommend that you
download and install the DokanSetup_redist version. The last thing you need is
Python 3.6 or later. You can get a suitable version of Python from the official web page:
https://www.python.org/downloads/windows/.

Congratulations – you are now ready to download MemProcFS! Go to the MemProcFS
GitHub repository at https://github.com/ufrisk/MemProcFS and search for the
latest releases.

https://github.com/ufrisk/MemProcFS/blob/master/README.md
https://github.com/ufrisk/MemProcFS/blob/master/README.md
https://go.microsoft.com/fwlink/?LinkId=746572
https://go.microsoft.com/fwlink/?LinkId=746572
https://github.com/dokan-dev/dokany/releases/latest
https://github.com/dokan-dev/dokany/releases/latest
https://www.python.org/downloads/windows/
https://github.com/ufrisk/MemProcFS

Investigating Windows Registry 73

Figure 4.38 – MemProcFS GitHub repository

Download the files_and_binaries ZIP archive and unzip it to a suitable location. To run
MemProcFS, open PowerShell and move to the folder where you have unzipped the files.
Run the following command to create a virtual filesystem from your memory dump (use
the -device option to provide the location of your memory dump).

Figure 4.39 – MemProcFS execution

74 Reconstructing User Activity with Windows Memory Forensics

As you can see, our operating system was recognized and the dump was successfully
mounted on the M:\ drive. Now, we can open this drive via Explorer and search for
something interesting.

Working with Windows Registry
We decided to tell you about this tool for a reason. The point is that by using MemProcFS,
you can easily extract all registry files from memory. (Honestly, you do not even need to
extract anything.) Open your drive (in our case, it is the M:\ drive) and go to registry
> hive_files, as shown in the following screenshot. Here, you will find all the registry
files that are available in our dump.

Figure 4.40 – MemProcFS Hive files

Investigating Windows Registry 75

So, we found the registry, but what should we do next? There are several options here. First,
you can use Eric Zimmerman's Registry Explorer tool. The latest version can be downloaded
from the official repository at https://ericzimmerman.github.io/#!index.md.
The archive that contains the tool must be unpacked with 7-Zip; otherwise, the tool will not
work properly. Registry Explorer allows you to view various keys and values in their original
form and use prepared bookmarks that contain useful information.

Figure 4.41 – Registry Explorer

On the other hand, you can parse these files with RegRipper. By doing this, all the
information will be available to you as a single text file. This tool can be downloaded
from the following GitHub repository: https://github.com/keydet89/
RegRipper3.0.

https://ericzimmerman.github.io/#!index.md
https://github.com/keydet89/RegRipper3.0
https://github.com/keydet89/RegRipper3.0

76 Reconstructing User Activity with Windows Memory Forensics

To run the GUI tool, you need to use the rr.exe file. In the window that appears, you
need to specify the path to the file you want to process and the path to the text file where
you want to save the result of the execution. Once all the fields have been filled in, you
need to click the Rip! button. For example, let's take the file containing the name ntuser
from our hive_files folder, copy it to a convenient location, and try to analyze it.

Figure 4.42 – RegRipper

Investigating Windows Registry 77

As a result, you will get two text files. The first one, with the.log extension, is the log of
the program. The second one, with the.txt extension, contains the parsing results. You
can open it in any text editor and use a keyword search. For example, to find programs
run by a user, you can search for userassist.

Figure 4.43 – Userassist registry key

78 Reconstructing User Activity with Windows Memory Forensics

If you want to see what documents the user has recently worked with, look for opensave
or recentdocs.

Figure 4.44 – RecentDocs registry key

Finally, if you want to see what directories were visited by a user on a local or remote
host, download ShellbagsExplorer from the respective GitHub repository (https://
ericzimmerman.github.io/#!index.md). Find the usrclass registry file in the
hive_files folder and drop it into the running tool. You should get the following output:

Summary 79

Figure 4.45 – ShellBags Explorer

Note that this file is derived from the memory dump, where we found traces of the S drive
encrypted by TrueCrypt. Thanks to our analysis of the usrclass file, we can see some of
the contents of the encrypted disk.

Summary
Analyzing user activity is a very important part of investigating memory. In this chapter,
you learned that you can recover a lot of artifacts. This can be extremely valuable in
criminal investigations as such artifacts can help you reconstruct a user's activity, even if
they used anonymous web browsers or secure messengers.

Volatility is a great tool for memory dump analysis, but do not get hung up on it. Do not
be afraid to use additional tools or alternative solutions in situations where you need to.

Despite the abundance of information in process memory, do not forget about the virtual
registry, which stores a lot of useful information, including that related to user activity.
Additionally, some registry keys can tell us a lot about malware activity and persistence
traces. We will discuss these and other traces of malicious activity in the next chapter.

5
Malware Detection

and Analysis with
Windows Memory

Forensics
The forensic analysis of memory dumps is not limited to analyzing the actions of the user,
especially when it comes to a victim's computer. In this scenario, often, specialists need
to conduct analyses to find traces of malicious activity. These might be rogue processes,
network connections, code injections, or anything else related to the actions of malware or
attacker tools. Since modern malware tends to leave as few traces as possible on disk and
threat actors try to remain stealthy using PowerShell and batch scripts, memory analysis is
becoming a critical element of forensic investigation.

In this chapter, we will explain how to search for traces of malicious activity within
network connections and active processes along with the Windows Registry, event logs,
and filesystem artifacts in memory.

82 Malware Detection and Analysis with Windows Memory Forensics

In this chapter, we will cover the following topics:

•	 Searching for malicious processes

•	 Analyzing command-line arguments

•	 Examining network connections

•	 Detecting injections in process memory

•	 Looking for evidence of persistence

•	 Creating timelines

Searching for malicious processes
We have already learned how to analyze the processes that are active at the time of
dumping to identify user activity. Similar techniques can be used when searching for
traces left behind by attackers; however, here, our focus will shift to detect specific markers
that help identify malicious activity. User programs, such as browsers or MS Office
components, will be less a source of information about the user and their recent activities
than a potential source of traces of initial access, and processes related to cloud storage
will be considered under the lens of a possible data exfiltration technique. The main goal
of our investigation is to look for markers of potentially malicious activity and different
kinds of anomalies – processes with strange names or unusual arguments, their atypical
behavior, and more. However, first things first, let's start with the simplest one – the names
of the processes.

Process names
In the previous chapter, we discussed how to get a list of active processes and a plugin
called pslist. So, we will not repeat this; we will just discuss the main points that you
need to pay attention to.

First of all, you need to learn about system processes. Windows has a lot of such processes
that are responsible for running individual services and the system itself. Often, such
processes become a target for malware, which will try to find a way to masquerade as a
system process or, in the worst-case scenario, take advantage of a legitimate process. But
we will cover that in more detail later. Let's take a look at the following example:

Searching for malicious processes 83

Figure 5.1 – The Volatility pslist plugin

Figure 5.1 shows the list of processes collected by the pslist plugin. We have
intentionally added a regular expression that selects those process names that contain
host with host. Notice the svchost processes. These are the standard processes for
services loaded from dynamic libraries. Now, take a look at the name of the process with
ID 1664. Can you see the difference? This dump was taken from a host infected with
IcedID, which is a very common piece of commodity malware, distributed via phishing
emails and tied to notorious ransomware operators such as REvil, Conti, and Egregor.
During execution, this malware drops an executable file, named svhost.exe, into a
temporary directory and runs it as a child process.

To find such masqueraded processes quickly, it is necessary to not only know the names
of key system processes and their specifics but also take the context into account, as
system processes can differ in various versions of Windows. Such differences are often
insignificant, but knowing them will allow you to navigate through the process list and
analyze them more efficiently.

While some malicious programs hide behind the mask of legitimate processes, others
operate quite openly. This is the case with dual-use tools and some programs used by
attackers. Let's take a look at the list of processes, as shown in Figure 5.2:

Figure 5.2 – The list of running processes

84 Malware Detection and Analysis with Windows Memory Forensics

Here, we can see a large number of seemingly legitimate processes: whoami.exe,
ipconfig.exe, netstat.exe, and more. These utilities can be used by system
administrators or advanced users to check the settings and configure the network.
However, these same tools can also be used by attackers to gather information about the
system, as was done in our scenario.

Processes such as cmd.exe, powershell.exe, wscript.exe, cscript.exe, and
rundll32.exe require special attention, as they are frequently used by attackers and
modern malware as part of the techniques for execution, persistence, defense evasion,
discovery, collection, and other tactics. It is not only the appearance of these processes in the
list but also the related parent processes that are important here. An atypical combination of
parent and child processes is one of the markers of potentially malicious behavior.

Detecting abnormal behavior
Abnormal behavior can result in many things. For some processes, it will be atypical to
make network connections, and for others, it will be atypical to spawn new processes or
access certain filesystem objects.

Let's consider the following example:

Figure 5.3 – The process tree

Here, the WINWORD.EXE process spawns a child process, rundll32.exe, which
is completely atypical. This behavior could be the result of macros embedded inside
a document that has been opened by a user. Often, MS Office documents become
attachments in phishing emails, which, for years, has been one of the most used
techniques for initial access. Trickbot, Qakbot, Dridex, and IcedID are all spread in this
way. For example, during Trickbot, IcedID, and Qakbot phishing campaigns, users receive
a phishing email with a document that includes the following content as an attachment:

Searching for malicious processes 85

Figure 5.4 – A decoy document

You might ask the following: why do different threat actors use the same decoy? Well, the
thing is that they used the services of another threat actor called Shathak (also known as
TA551), which focuses on malware distribution.

In our case, to test the hypothesis of a malicious document, we need to find out which file
was opened in MS Word and try to export it for further analysis. To do this, we can use
the handles, filescan, and dumpfiles plugins. Let's recall the sequence of actions,
as follows:

1.	 Use the handles plugin with the -t file and --silent options to get
information about the files used by our process and look for a document opened
by a user.

2.	 Use the filescan plugin to search for information about the physical offset where
the required document is located.

3.	 Use the dumpfiles plugin with the -Q option and the physical offset obtained in the
previous step, along with the -D option and the path where we want to save the file.

In the previous chapter, we already dumped the GOT-7_HR (00000007).docm file
from the memory of WINWORD.EXE. Let's discover how to analyze this document for
malicious content. To do this, you can use the olevba tool that is included in oletools
(https://github.com/decalage2/oletools). Oletools is a package of Python
tools used to analyze Microsoft OLE2 files such as MS Office documents or Outlook
messages. The only thing that you need to install these tools is to have Python 3 installed
and to run the following command in the PowerShell:

pip3.exe install -U oletools

86 Malware Detection and Analysis with Windows Memory Forensics

The necessary dependencies will be installed automatically. As a result, you will be able to
use any of the oletools package tools via PowerShell to analyze suspicious documents.
Let's check the exported document:

Figure 5.5 – The olevba output

In the output of this tool, you can also find more detailed information about the macros,
arguments, imported libraries, and more:

Searching for malicious processes 87

Figure 5.6 – A detailed macro description

As you can see in the preceding screenshot, our document has built-in macros with
obfuscated strings and the functionality required to inject code into processes.

So, what do we have here? Well, the user opened the document in MS Word's unprotected
mode, then the embedded script was executed to create the rundll32.exe process,
which spawned several child processes of the same name.

Let's take a look at another example, as shown in Figure 5.7:

Figure 5.7 – The process tree

88 Malware Detection and Analysis with Windows Memory Forensics

Do you recall the svhost.exe process masquerading as the legitimate svchost.exe?
Let's consider its parent process – nwe.exe with PID 1744. Even if we hadn't noticed
the absence of c in svhost's name during the initial analysis, the parent process would have
revealed its secret to us. Because the svchost processes are system processes, they have
their own predefined parent process called services.exe.

Note
In addition to certain parents, all system processes have a fixed number of
instances, predefined user, start time, and location of the executable file on
disk. Any deviations from the defined parameters will be suspicious and will
require additional checking.

Going back to our nwe.exe process, note that aside from the evil svhost.exe, it also
creates several cmd.exe processes. Embedded tools such as cmd.exe, powershell.exe,
and more are commonly used by attackers to conduct fileless attacks. In doing so, threat actors
use approved applications to execute malicious commands and scripts. Unlike traditional
methods, this approach does not require any code to be installed on the target's system and
makes detection more challenging.

Let's consider the fileless ransomware example. In the first stage, a phishing email is
sent to the user with a document containing a malicious macro, as previously discussed.
Running the macro launches a command line that executes a PowerShell script. The script
downloads encryption keys and extra modules – the execution of which results in data
encryption and a ransom note demonstration.

Such attack scenarios are already becoming a classic. That is why we need to find out what
arguments were used to start these processes and what was executed.

Analyzing command-line arguments
Analyzing command-line arguments is very important because it allows you to check
the location from which the executable was run and the arguments passed to it. These
arguments can include IP addresses or hostnames of other compromised hosts, stolen
credentials, malicious filenames, and entire scripts, as shown in the following screenshot:

Analyzing command-line arguments 89

Figure 5.8 – The command-line arguments used by the Emotet operators

Let's explore a few ways to get the data of interest.

Command line arguments of the processes
First of all, we can use the pstree plugin that we are already familiar with and add
the -v option to it. This will allow us to output the process tree together with detailed
information about the command line used to start a particular program. This is how the
output, as shown in Figure 5.7, will change with the addition of the -v option:

Figure 5.9 – The verbose pstree output

90 Malware Detection and Analysis with Windows Memory Forensics

As you can see, we have new lines: audit, cmd, and path. Here, we can find information
about the location of the executable and the arguments used to start it. You can get the
same information with a separate plugin – cmdline. Its output will look like this:

Figure 5.10 – The cmdline output

For clarity, cmdline was run with the -p option and the process IDs, as shown in the
preceding example. From the output of both commands, we can see that our svhost.
exe file was executable from the C:\Users\lesly\AppData\Local\Temp directory,
which is also not standard for legitimate svchost processes. This is another marker,
claiming that the process is malicious.

Let's take a look at another example that demonstrates the role of arguments:

Figure 5.11 – The cmdline output for processes chosen by a regular expression

In this scenario, we can observe the arguments used to run PsExec, which is a tool that
is often used in attacks to remotely execute commands and run scripts on hosts. So,
what does this tell the investigator? First, it tells us that the attackers are using PsExec
for execution and lateral movement. Second, it reveals the name of the host they are
interacting with. Third, it identifies the user credentials that have been compromised.

Analyzing command-line arguments 91

Aside from the information about the arguments used to start a program, it would be
nice to know the commands executed by attackers via the command line. Let's discuss
this next.

Command history
Naturally, information about the commands executed through the command line is also
stored in memory. To get this data, you can use the Volatility cmdscan plugin, which
allows you to find command history objects in memory. The output of this plugin is
shown in Figure 5.12:

Figure 5.12 – The cmdscan output

Note that the capabilities of this plugin are quite limited. For example, it only searches
for instances of the default history size. If you wish to, you can use the -M option and set
any other value; however, if the history size has been changed, finding that value will
be problematic.

92 Malware Detection and Analysis with Windows Memory Forensics

An alternative to this plugin is to use yarascan, which we discussed in the User Activity
Reconstruction. The advantage here is that you will not be limited to cmd commands, as
you can write rules to look for PowerShell and other tools of interest:

Figure 5.13 – The use of YARA rules for malicious PowerShell detection

Figure 5.13 shows an example of a simple YARA rule for searching PowerShell with the
typical -nop, -w hidden, and -enc options for malicious scripts. Using the yarascan
plugin with this rule, you can find not only the malicious scripts themselves but also
information about the processes in the context of which they were found.

Being able to understand what was executed on the command line is good, and knowing the
result of the execution is even better. The consoles plugin allows you to get data regarding
the commands executed by different command-line interpreters: cmd, PowerShell, the
Python shell, and the Perl shell. The main advantage of consoles is that this plugin also
allows you to output information from the input and output buffers, so you can look at the
results of the command execution. Running consoles is similar to running cmdline.
Let's take a look at an example of the output obtained using this plugin:

Analyzing command-line arguments 93

Figure 5.14 – The Volatility consoles plugin

In Figure 5.14, first, we view information about the conhost.exe process and the attached
processes, which is accompanied by details about the settings that are being used. The most
interesting part is dump. Here, we can observe what was actually executed. Note that, at the
top, we can see information about the cmd.exe process and the updater.bat file, and in
the dump, we have PowerShell. So, what happened here? Let's make it a little clearer and add
to this the output of the cmdline plugin for the 3008 and 3672 processes:

Figure 5.15 – The cmdline output for the chosen processes

94 Malware Detection and Analysis with Windows Memory Forensics

In Figure 5.15, we can observe that the process with an ID of 3008 was started with
cmd.exe /c. In our case, this means that the Updater.bat file, whose path is
specified after the /c option, must be run through cmd. In the dump from the consoles
plugin, we saw that PowerShell was running, so we can conclude that PowerShell, with
all of its options, in the content of the same Updater.bat file, which is executed
through cmd.

Pay attention to the -enc option that PowerShell runs with. This option tells us that
it is followed by a Base64-encoded command. This is not uncommon in forensic
investigations. You can use the online CyberChef tool (https://gchq.github.io/
CyberChef/) to decode such code. All you need to do is copy the encoded part from
PowerShell and paste it into the Input window. Next, select the recipes that you need to
apply, and voila, everything is ready:

Figure 5.16 – The Base64 code decoded with CyberChef

Note that one of the functions of this script is to create a WebClient object. Such objects
are often used to perform network communications.

The network can be used by malware to communicate with Command and Control (C2)
servers and download malicious payloads. In addition to this, if the attackers interactively
connect to a remote host, network connections are also established. Therefore, analyzing
network connections and looking for anomalies within them is another essential part of
searching for traces of malicious activity.

Examining network connections 95

Examining network connections
The Volatility netscan plugin is used to analyze network connections. This allows you to
collect information about all active and recent connections, as well as open sockets. Let's
consider an example:

Figure 5.17 – The Volatility netscan output

In Figure 5.17, we can view the standard netscan output. This gives us information
about the OSI transport layer protocol and its version, the IP addresses and ports involved,
the PID, and the name of the process that initiated the network activity and when it was
created. For the TCP protocols, which, in contrast to UDP, create a connection to transfer
data, the status is also specified. For example, if a process is listening on a port and waiting
for an incoming connection, the state will be LISTENING. Additionally, if the connection
to the remote host is established, it will be ESTABLISHED, and if the connection is
already terminated, it will be CLOSED. So, what do we do with this information? What
do we look for?

96 Malware Detection and Analysis with Windows Memory Forensics

Process – initiator
Let's start with a simple one. As in the case of processes, where we analyze the parent-child
relationship to find atypical combinations, we can start with the data about the process
that initiated the connection. Evidently, for some processes, it is normal to create network
connections. We can refer to such processes as browsers, mail agents, or messengers.
Additionally, some programs might establish network connections to check for updates
and downloads, which is also normal behavior. Now, let's imagine a situation where a
network connection is established by the explorer process. This process is needed to give
the user access to files and directories through a graphical user interface or to display the
start menu. It is not 100% typical for it to create network connections. Although, of course,
there are situations where explorer.exe will create network connections; for example,
when transmitting Windows telemetry data, as related to changes in the start menu settings.
However, bear in mind that these connections will be established using specific IP addresses,
so foreign addresses will be a marker of malicious activity. However, we will discuss this in
more detail later.

Aside from atypical initiators, there are some processes that we have to keep an eye on.
These include cmd.exe and powershell.exe. If you have detected connections
established by these processes, be sure to check the IP addresses specified in the Foreign
Address field:

Figure 5.18 – The cmd.exe process connecting to a remote IP address

Examining network connections 97

Take a look at the preceding example. Here, the cmd.exe process with PID 2860 creates
a network connection with an IP address of 216.58.207.206. Let's check this address.
To do this, you can use various online resources, for example, VirusTotal (https://
www.virustotal.com/gui/home/search). This resource allows you to search for
information on IP addresses, URLs, file hashes, or the files themselves:

 Figure 5.19 – A suspicious IP address in VirusTotal

https://www.virustotal.com/gui/home/search
https://www.virustotal.com/gui/home/search

98 Malware Detection and Analysis with Windows Memory Forensics

In Figure 5.19, you can view the search results for our IP address. At first glance,
everything looks good – there are zero detections. However, pay attention to the 10+
detected files communicating with this IP address message. In order
to view more information regarding the files communicating with this IP address, you
can switch to the RELATIONS tab and find the Communicating Files field, as shown in
the following screenshot. If you have an account on VirusTotal, you can also click on the
graph icon on the right-hand side and view all of the communications in a graphical view:

Figure 5.20 – The VirusTotal communicating files

In Figure 5.20, we can see that although the IP address was not recognized as malicious, it
is associated with a lot of malicious files, which means that it is not so good.

As you can see, IP addresses themselves play a big role in forensic investigations.

IP addresses and ports
Not only can the IP addresses and ports being used tell you whether a particular network
connection is malicious, but sometimes, they can also tell you what tools the attackers
were using. Let's take a look at the following screenshot:

Examining network connections 99

Figure 5.21 – Volatility netscan

There is not much information displayed; however, even here, you can see that RDP can
be used to connect to this host. How about the following connection? Do you see anything
suspicious? Take a look:

Figure 5.22 – Another suspicious connection

Bingo! You can see the UWkpjFjDzM.exe process, and behind this strange name is
a meterpreter.

Important Note
Meterpreter is a Metasploit payload that provides an interactive shell with
which an attacker can perform various actions on the target machine.

100 Malware Detection and Analysis with Windows Memory Forensics

So, how did we know that from just one line of network connection information? In fact,
the port played an important role here. We have already mentioned the transport layer
protocols used to establish the connection. When two hosts establish connections using
these protocols, they are identified according to the port numbers. Often, the ports used
for specific purposes are allocated and registered by the Internet Assigned Numbers
Authority (IANA), although, in practice, there are often cases of unofficial use. However,
there is a list of standard ports used by default for a specific purpose. Sometimes, the use
of these default ports can give away a particular service or tool used by attackers. The
following is a list of the most commonly used TCP ports and their purpose:

Figure 5.23 – Common ports and their usage

As you can see, some of the ports listed in the preceding table can be used by attackers.
For example, 80, 443, 445, or 3389.

Aside from the common ports used by standard services, there are also default protocols
used in tools such as port scanners or post-exploitation frameworks. The following table
gives examples of such tools and their default ports:

Figure 5.24 – Default ports used by specific tools

Detecting injections in process memory 101

So, that solves one of the mysteries of the Meterpreter payload. But it's a tricky one, isn't it?
Usually, Meterpreter is deployed by injection into the process' memory. It is completely in
memory, so nothing is written to disk. Additionally, no new processes are created. This is
because Meterpreter is injected into a compromised process from which it can migrate to
other running processes. As a result, the forensic footprint of the attack is very limited. You
understand what this means, right? It's time to talk about injections and how to detect them.

Detecting injections in process memory
There are different types of injections within process memory. Some are similar to each
other, while others differ considerably. Depending on the technique used, the methods
for detecting injections might vary. We will attempt to discuss the most relevant types of
injections and the methods for their detection.

Dynamic-link library injections
Adversaries can use this technique for defense evasion or privilege escalation tactics. In
general, the injection of Dynamic link Libraries (DLLs) is one of the methods used to
execute arbitrary code in the address space of a legitimate process. There are two main
types of DLL injections: remote and reflective.

Remote DLL injections
The malicious process gets SeDebugPrivilege, which allows it to act as a debugger
and gain read and write access to the address space of other processes. Using these
privileges, the malicious process opens a handle for the target process, accesses its address
space, and writes the full path to the malicious library inside it. The library itself should
already exist on disk. Then, the malicious process uses Windows API functions to create
a new thread in the context of the target process. The new thread is needed to load the
malicious library into the target process' address space. When this happens, the malicious
process clears the memory location where the path to the library is written to disk and
closes the descriptor for the target process. If we put all of this into a single algorithm, we
get the following:

1.	 Get privileges and open a handle to the target process.
2.	 Write the full path to the malicious DLL to the target process' address space.
3.	 Create a new thread to load the DLL from the disk using Windows API functions.
4.	 Delete the path to the malicious DLL from the target process' memory.
5.	 Close the handle to the target process.

102 Malware Detection and Analysis with Windows Memory Forensics

Since remote DLL injection has a library written to disk, we can use Volatility plugins such
as dlllist and ldrmodules to detect this.

Interestingly, dlllist is a plugin that allows you to get a list of the libraries loaded into
the process:

Figure 5.25 – The Volatility dlllist plugin

Note that the information about the libraries used by the process is stored in three
different lists:

•	 LoadOrderList organizes the order in which modules are loaded into a process.

•	 MemoryOrderList organizes the order in which modules appear in the process'
virtual memory.

•	 InitOrderList organizes the order in which the DllMain function is executed.

The dlllist plugin only works with LoadOrderList. The problem is that sometimes,
malicious libraries can be unlinked from this list to hide their presence. This will also
affect the output of the dlllist plugin since information about the unlinked libraries
will not be displayed. In this scenario, the ldrmodules plugin comes to the rescue, as
it not only outputs information from all three lists but also provides data regarding the
presence of this or that library in each of the lists:

Detecting injections in process memory 103

Figure 5.26 – The Volatility ldrmodules plugin

In this way, you can detect the libraries that have been unlinked. These libraries will show
False in the InLoad column and True in the other columns.

Important Note
The executable itself is also present in the output of both plugins. In the output
of ldrmodules, in the InInit column, it will always show False. This is
because it initializes differently, not like other modules.

So, how can we tell whether the libraries extracted by these plugins include malicious
ones? You can start by analyzing the library names and locations. Pay attention to
atypical names and directories where the libraries are located on disk. Keep a special eye
on the user directories and the temporary ones. If you have difficulties with the visual
identification of anomalies, you can always use the dlldump and dumpfiles plugins
and try to extract the DLLs to disk for an additional checkup. Running the dlldump
plugin is similar to the dumpfiles plugin. You only need to use the -p option to specify
the ID of the process you are interested in and the -D option for the path to the directory
where you want to save the result. Files with the standard .dll extension will appear in
the directory you have specified. At this point, you can count the hashes of the libraries
and check them on VirusTotal.

Let's say we have run the following command for a process with ID 1072, which we think
is suspicious:

PS D:\> .\volatility_2.6_win64_standalone.exe -f .\dll.bin

--profile=Win7SP1x64 dlldump -p 1072 -D .\output\

104 Malware Detection and Analysis with Windows Memory Forensics

As a result, our libraries are saved inside the output directory. To quickly calculate the
hash of the DLLs, you can use the following PowerShell command:

Figure 5.27 – Calculating the hash of DLLs with PowerShell

This command calls the Get-FileHash function for every file in the directory.

Let's check our hashes with VirusTotal:

Figure 5.28 – The malicious DLL detected with VirusTotal

Here is our malicious DLL. Now, we can analyze how it made its way onto the system and
explore its functionality in more detail.

Detecting injections in process memory 105

Another important point to bear in mind is that malicious DLLs can be packed using
packers. If during the unpacking phase the DLL code is written to a new memory region,
we can use malfind plugin to detect it, which will be discussed later.

Reflective DLL injections
Another way to inject libraries is via reflective DLL injection. This method is more
popular because it does not require the library to be present on disk and, therefore,
leaves fewer traces. Such a library can be downloaded over the network and immediately
injected into process memory. Another feature of this method is the use of a reflective
loader, which is embedded in the library itself, instead of the standard Windows loader.
This loader will take care of the execution environment and run the DllMain function.

The step-by-step algorithm for reflective DLL injection is as follows:

1.	 Get privileges and open a handle to the target process.
2.	 Allocate memory in the target process and write the malicious DLL there.
3.	 Create a new thread to invoke the reflective loader.
4.	 Close the handle to the target process.

This technique is actively used by commodity malware. For example, SDBbot downloads
the malicious library from C2 and injects it into the newly created rundll32.exe
process. The same can be said about Netwalker ransomware, which reflectively
injects the library into the explorer.exe process. Among other things, many post-
exploitation frameworks have functionality for reflectively injecting DLLs, shellcodes, or
executables into processes. Metasploit, CobaltStrike, and PowerShell Empire, as we all
know, have this functionality.

You can use the malfind plugin to detect reflective DLL injection. The point is that
when using this technique (just as with packers), a page with the EXECUTE_READWRITE
protection is created in the target process memory. This is necessary in order to write
malicious code there as well as execute it. The malfind plugin allows you to find such
pages in process memory and check them for executable file headers or correct
CPU instructions.

Important Note
Some programs can inject libraries or code as a part of their legitimate activity.
For example, anti-virus solutions have such functionality.

106 Malware Detection and Analysis with Windows Memory Forensics

The malfind plugin has several useful options, which you can use individually or in
combination depending on the required result:

•	 -p <PID> allows you to search for injections in a process with a specific ID.

•	 -n <regular expression> allows you to search for injections in all processes
whose names match a regular expression.

•	 -D allows you to dump the injected code sections.

Let's take a look at the following example:

Figure 5.29 – The Volatility malfind plugin

Here, we ran malfind with the process ID of rundll32.exe and the -D option to
save the injected code dumps to the output directory. As you can see, in this scenario, our
plugin found the PAGE_EXECUTE_READWRITE page with valid CPU instructions.

Continuing to examine the plugin's output, you can also observe pages with executable file
magic numbers, as shown in the following screenshot:

Detecting injections in process memory 107

Figure 5.30 – The malfind output with the MZ magic number

You will not always be able to find such magic numbers. This is because attackers often
use various concealment techniques, including header removal. Therefore, you should not
focus on their presence; it is better to check everything that seems suspicious to you.

Since we have extracted the malfind output to disk, we can check what they are. To
do that, you can use specialized utilities such as CFF Explorer (https://ntcore.
com/?page_id=388). Alternatively, you can return to the already familiar VirusTotal,
which can give insights not only about the maliciousness of the extracted code but also
its nature.

108 Malware Detection and Analysis with Windows Memory Forensics

In our case, one of the interesting results would be the following:

Figure 5.31 – A malicious DLL detected by malfind

Here, one of the injections that we dumped was recognized as malicious. On the right-
hand side, note that the contents of the dump were a DLL.

As mentioned previously, an executable file can be injected into a process in a similar way.
Let's take a look at an example next.

Portable executable injections
The idea behind this type of injection is extremely simple. As in the previous cases, it
starts with obtaining debugger privileges and opening a handle for the target process.
Next, a memory region is allocated in the target process' address space, which is then
used to write the malicious code. When the code is written, a new thread is created whose
purpose is to execute the injected piece of malware. In this way, we get the malicious code
running in the context of a legitimate process.

In this scenario, the step-by-step algorithm looks like this:

1.	 Get privileges and open a handle to the target process.
2.	 Allocate memory in the target process and write malicious code there.
3.	 Create a new thread to run the injected code.
4.	 Close the handle to the target process.

Detecting injections in process memory 109

As you can see, everything is as simple as possible, and most importantly, no traces are
left on disk. The allocated pages in the second step usually have EXECUTE_READWRITE
PROTECTION. This means that the Volatility malfind plugin will also help us to
detect this type of injection. However, please note that malfind only analyzes private
memory regions with read, write, and execute access. This means that the detectability
of this plugin can be bypassed. Imagine a situation where attackers initially allocate a
page with read and write access; then, after writing malicious code, they change it to read
and execute. From a malicious activity point of view, everything will work as before, but
malfind will not detect it. In this case, we can use manual analysis.

A handy tool for this kind of analysis is Redline by Fireeye, which can be downloaded
from the official site (https://www.fireeye.com/services/freeware/
redline.html) by filling in a short form. This tool has a graphical interface and allows
you to view the memory sections with their contents and protection flags:

Figure 5.32 – Memory analysis with Redline

https://www.fireeye.com/services/freeware/redline.html
https://www.fireeye.com/services/freeware/redline.html

110 Malware Detection and Analysis with Windows Memory Forensics

As you can see in the preceding screenshot, we can examine the information of interest in
the table view. If we require more details about the contents of a particular section, we can
double-click on it to open it:

Figure 5.33 – Redline full detailed information

In addition to malfind, there are other plugins that allow you to search for specific
injections. For example, cobaltstrikescan was developed by Japanese CERT
specialists. It is specifically used for searching by YARA rules for Cobalt Strike beacons
injected into processes.

Detecting injections in process memory 111

Important Note
Besides the built-in Volatility plugins, you can also use plugins developed by
the community. To do this, you need to create a plugins folder in the same
directory as your version of Volatility and put the code of the plugin that you
want to use inside it. To start a new plugin, just add --plugins=<path
to plugins folder> to the Volatility command line, and don't forget to
specify the name of the plugin.

To use this plugin, we create a plugins folder in the same directory as Volatility itself and, inside
it, save a file with the .py extension downloaded from the GitHub repository (https://
github.com/JPCERTCC/aa-tools/blob/master/cobaltstrikescan.py).
When starting Volatility, we specify --plugins=./plugins. To check whether the plugin
has loaded successfully, we can use the -- info command, where a new name should appear
in the list of plugins:

Figure 5.34 – Checking for the added community plugin

Now we can test it. Let's examine how cobaltstrikescan handles the search for an
injected beacon:

Figure 5.35 – The results of cobaltstrikescan

https://github.com/JPCERTCC/aa-tools/blob/master/cobaltstrikescan.py
https://github.com/JPCERTCC/aa-tools/blob/master/cobaltstrikescan.py

112 Malware Detection and Analysis with Windows Memory Forensics

As you can see in the preceding screenshot, the Cobalt Strike beacon was detected in the
Outlook.exe and rundll32.exe processes. This means that in the memory of these
processes, you can find its configurations, where useful parameters such as the C2 IP
addresses are located.

Techniques such as DLL injection and code/executable injection have been around for
quite some time, so there are already, more or less, reliable ways in which to detect them.
Things become more complicated when detecting newer techniques, but they are used
quite often by attackers. One of the most current techniques is Process Hollowing.

Process Hollowing
The basic idea behind hollow process injection is to create a new instance of a legitimate
process in the SUSPEND state and overwrite the address space occupied by its executable
code with malicious code. Therefore, unlike previous techniques, after process hollowing,
the executable code of the legitimate process stops existing. Meanwhile, the process data
in the Process Environment Block (PEB) remains the same. As a result, we end up with
a container containing the data of the legitimate process (the DLLs, heaps, stacks, and
handles), inside which the malicious code is executed.

Important Note
PEB is a structure that stores information about the location of the DLLs,
heaps, and environment variables along with the process' command-line
arguments, current working directory, and standard handles.

For ease of understanding, let's take another look at the algorithm of actions:

1.	 Start a new instance of a legitimate process with the first thread suspended.
2.	 Free or unmap the memory section with the code of the legitimate process.
3.	 Allocate a new memory segment with read, write, and execute access.
4.	 Copy any malicious code obtained from the disk or over the network into the newly

allocated memory segment.
5.	 Set the start address of the suspended thread to the entry point of the malicious code.
6.	 Resume the thread.

As a result of these actions, the malicious code is executed in a container created by a
legitimate process. The use of process hollowing is not uncommon. For example, Trickbot
uses this technique to inject its payload inside the wermgr.exe process.

Detecting injections in process memory 113

Two methods can be used to detect process hollowing. The first one involves comparing
PEB and Virtual Address Descriptor (VAD) structures and searching for inconsistencies.

Important Note
VAD is another important structure that is used to track reserved or
committed, virtually contiguous sets of pages. These descriptors contain the
names of the memory-mapped files, the initial protection, and some other flags
related to the pages and their content.

This can be done with the psinfo plugin, written by Monnappa K. A. This plugin collects
information from VAD and PEB and outputs it in an easy-to-compare format. In addition,
psinfo tries to detect suspicious memory regions with the possibility of execution:

Figure 5.36 – The psinfo output

In Figure 5.36, you can see that the psinfo output shows the base address, process path,
and protection from VAD and PEB along with the command line and other process-
related details. So, what will we see with process hollowing? Well, the information taken
from the PEB will match the process used as a container, but the VAD structure will no
longer have a file mapped to this memory region.

Another way to detect a hollowed process is to use the ldrmodules plugin, which we
already know. Do you remember what an executable file looks like there? That's right; in
all lists except InInit, it is set to True, followed by information about the full path to
the file on disk. In the case of process hollowing, the flags (True False True) will
remain, but the path to the executable file will be missing.

114 Malware Detection and Analysis with Windows Memory Forensics

In addition to process hollowing, there is another type of injection that is often used by
attackers: Process Doppelgänging.

Process Doppelgänging
This technique was first introduced in 2017 at the BlackHat conference, and it has
been actively used by attackers ever since. For example, Bazar Loader uses Process
Doppelgänging to inject its payload.

This technique is based on the use of NTFS transactions. Transactional NTFS was
introduced in Windows Vista to make changes to the filesystem safer and more efficient.
When using transactions, special transaction files are created, and any expected
changes are written into them. Once the changes have been made, the transaction can
be committed in order to apply all of the changes at once or rolled back by deleting the
transaction file along with the changes. This technology is very useful when installing
new programs; this is because if there is a crash when the changes are being made, the
transaction will be rolled back, and the system will be in its original, stable state. Let's
examine how this technology is used in the Process Doppelgänging algorithm:

1.	 Create a transaction and open a clean transacted file.
2.	 Overwrite the transacted file with malicious code.
3.	 Create a memory section that points to the transacted file.
4.	 Roll back the transaction (this will remove all the traces of the transacted file from

the filesystem but not the memory section where the malicious code was mapped).
5.	 Create objects, process and thread objects; set the start address of the thread to the

entry point of the malicious code.
6.	 Create process parameters and copy them to the newly created process' address space.
7.	 Run the doppelgänged process.

The use of this technique is quite difficult to detect. For systems older than Windows 10, you
can check the File_Object associated with the suspicious process. If write access for this
file is enabled, that could potentially be Process Doppelgänging. For Windows 10 systems,
it's a bit easier because of the new members of the _EPROCESS structure. The point here is
that for the doppelgänged process _EPROCESS. ImageFilePointer is set to NULL. To
check this information for a suspicious process, you can use Volatility's volshell.

First of all, run ps() inside volshell to identify the offset of the suspicious process:

Detecting injections in process memory 115

Figure 5.37 – Executing volshell ps()

Then, use dt('_EPROCESS',<offset>) to get information related to your
target process:

Figure 5.38 – Obtaining process-related data

Search for 0x448 ImageFilePointer. If there is NULL instead of a normal value (as
shown in Figure 5.39), congratulations! It appears you just found the doppelgänged process:

Figure 5.39 – The normal ImageFilePointer value

116 Malware Detection and Analysis with Windows Memory Forensics

It is worth mentioning here that even if attackers use covert injection techniques, such
as Process Doppelgänging, it is possible that widely used tools, such as mimikatz or
payloads from post-exploitation frameworks, are executed in the context of legitimate
processes. This opens the possibility of searching the memory of processes using
keywords, regular expressions, and YARA rules. Let's take a look at the following
example. We have a process named wscript.exe. As mentioned earlier, this is one of
the processes we have to watch out for because threat actors can use wscript.exe to
execute their malicious scripts.

Important Note
WScript is an MS Windows component designed to run scripts written in
script languages, such as Visual Basic.

In our scenario, the investigation of the command-line arguments and the handles of files
used by the process have given us nothing but the name of the script in use. So, we dump the
process memory and use the strings utility to get the ASCII and UNICODE characters:

Figure 5.40 – Dumping the memory of wscript and parsing it with strings64

In the resulting text file, you can search for any information of interest using the
powershell, cmd, vbs, and base64 keywords:

Figure 5.41 – The Base64 keyword search results

Looking for evidence of persistence 117

In Figure 5.41, you can view the Base64-encoded code found with the base64 keyword.
To better understand the nature of this code, you can use CyberChef to decode it:

Figure 5.42 – Decoded Base64

CyberChef has automatically detected that our Base64-encoded code is a PE file. At this
point, we can save the resulting PE file for further analysis. By continuing to analyze the
lines, we discover that this file was downloaded over the network and then injected into a
new process.

That is how we can detect malicious processes and find various injections in memory
dumps. However, that's not all. Often, attackers require persistence on the system to
maintain access to the infected hosts. This can be achieved in a variety of ways. Let's
discuss them next.

Looking for evidence of persistence
There are quite a few techniques used by malware and attackers to get a foothold into
a system. These include classic techniques that have been actively used for many years.
Additionally, there are relatively new ones that are only just gaining popularity. We are not
here to tell you about every technique that exists, but rather to give you some tools that
we believe will most likely help you to spot a piece of malware persistence on the system.
And, of course, there's no shortage of examples.

118 Malware Detection and Analysis with Windows Memory Forensics

Boot or Logon Autostart Execution
In this technique, the attackers change the system settings to automatically execute a
program during a system boot or logon. For instance, they can add a path to a malicious
executable as data for some value to the following keys:

•	 HKLM \SOFTWARE\Microsoft\Windows NT\CurrentVersion\
Winlogon

•	 HKLM\Software\Microsoft\Windows\CurrentVersion\Run

•	 HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnce

•	 HKCU\Software\Microsoft\Windows\CurrentVersion\Run

•	 HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce

In the previous chapter, we looked at several approaches of how to extract the registry
from memory. You can use the most appropriate way for you to export the SOFTWARE
and NTUSER.DAT registry files corresponding to the preceding keys. To work with these
files, you can use Registry Explorer or RegRipper just as we did earlier:

Figure 5.43 – Run keys analysis

In the preceding screenshot, it is easy to see the Temp value with the Data field,
containing the path to temp.bat. You can also use the Volatility prinkey plugin with
the -K option to examine the contents of this key in the virtual registry.

Looking for evidence of persistence 119

If you want to structure your search for the key used for persistence in a more logical way,
you can start by examining the output of the handles plugin with the -t Key option,
which shows all of the registry keys used by this process:

Figure 5.44 – Volatility handles

Such an approach not only speeds up the search for the key used for persistence but also
provides information about the registry keys that the malware was interested in and how
it might have used them. It is important to note that if you do not see the key you are
looking for in the output of the handles plugin, there is no guarantee that it has not
been used. Therefore, if the results are unsatisfactory, it is recommended that you check
the registry anyway. If you can still find the key, you can check its content with prinkey
-K <key>, as shown in Figure 5.45:

Figure 5.45 – Checking the Load value with Volatility printkey

120 Malware Detection and Analysis with Windows Memory Forensics

Of course, gaining persistence by abusing the run keys isn't the only technique leveraged
by threat actors, which includes Windows registry manipulation. Here are a few
other examples:

•	 Winlogon Helper DLL (T1547.004 according to MITRE ATT&CK): The threat
actors modify the Software\Microsoft\Windows NT\CurrentVersion\
Winlogon registry key to achieve persistence.

•	 Image File Execution Options Injection (T1546.012 according to MITRE
ATT&CK): The threat actors modify the HKLM\SOFTWARE\Microsoft\
Windows NT\CurrentVersion\Image File Execution Options
and HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\
SilentProcessExit registry keys to achieve persistence.

•	 Logon Script (T1037.001 according to MITRE ATT&CK): The threat actors modify
the HKCU\Environment\UserInitMprLogonScript registry key to
achieve persistence.

Let's move on to look at other popular persistence techniques. For example, creating
new accounts.

Create Account
This technique is often used by ransomware operators, as it is excellent for maintaining
access to compromised systems. The registry can be used again to find traces of new
accounts. Remember, in the previous chapter, we talked about the SAM registry file
and how it contains information about users, including their creation date. For the easy
analysis of user creation data, it is best to use the Registry Explorer tool and the
bookmarks tab. To do this, simply drag the exported SAM file into Registry Explorer and
click on Bookmarks and then Users. This should bring up a table with all of the users:

Looking for evidence of persistence 121

Figure 5.46 – The Users bookmark

As you can see, in the preceding screenshot, the Created On column shows the date and
time that each user was created. You can use a comparison of these timestamps to identify
the users created during the attack.

Of course, this method has a significant limitation – the relevant information about
domain users might be missing. Therefore, another method we will consider is to export
the event logs.

Important Note
Windows event logs are .evtx files located in the C:\Windows\
System32\winevt\Logs directory. They contain various events related
to system operations, user activities, and more.

This method is no different from the exportation of regular files. The sequence of actions
will be as follows:

1.	 Run the filescan plugin and redirect its output to a text file.
2.	 Open the text file with the filescan results and find the log you are interested in.
3.	 Copy the offset of the log that you need from the text file.
4.	 Run dumpfiles -Q <offset>.
5.	 Rename the resulting file, including the extension.

122 Malware Detection and Analysis with Windows Memory Forensics

Events related to the creation of new users are stored in the Security.evtx log. Note
that on the computers of regular users, this log will record information about the creation
of local users, while for domain users, you need the log located on the domain controller.

To open the exported event log on Windows, you can use the built-in event viewer.
Additional information regarding creating and enabling a user can be found in the 4720
and 4722 events. You can use these event IDs to create a filter. You should end up with
the following:

Figure 5.47 – Security.evtx opened via Event Viewer

Here, we have information about the creation of the honka user in the seriouscats
domain. There is also a timestamp that refers to the time when this event occurred, and,
hence, the time when the user was created.

Important Note
Sometimes, the event logs get corrupted when they are exported from the
memory dumps. To try to recover events from a corrupted log, you can use the
excellent CQEvtxRecovery tool from CQURE.

Looking for evidence of persistence 123

As a result, depending on the circumstances, you can look for traces of new user creation
either in the registry or the event logs.

The event logs themselves are a great source of data regarding what is going on in the
system: remote connections, creating users and changing their attributes, launching
PowerShell scripts, Windows Defender crashes, and much more. Let's explore what else
we can use event logs exported from memory for.

Create or Modify System Process
When using this persistence technique, attackers install a new service that should run an
executable file on disk or execute scripts. Often, trojans such as Emotet and Trickbot
use the installation of new services.

Additional information about the installation of services is recorded in the System.evtx
event log, which can also be exported from a memory dump. We will be interested in the
event ID of 7045: A service was installed in the system. When analyzing such events, you
should pay attention to the name and location of the executable and, in the case of scripts,
the arguments used:

Figure 5.48 – System.evtx

In Figure 5.48, you can see an example of a malicious service. Note that the executable file
is located in the user's temporary folder.

124 Malware Detection and Analysis with Windows Memory Forensics

Another way to analyze services is to use special Volatility plugins. For example, you can
use the svcscan plugin to get information about the running services, service names,
types, states, binary paths, and more, as shown in Figure 5.49:

Figure 5.49 – The svcscan output

There is another plugin developed by the community called autoruns (https://
github.com/tomchop/volatility-autoruns/blob/master/autoruns.py):

Figure 5.50 – The autoruns output

https://github.com/tomchop/volatility-autoruns/blob/master/autoruns.py
https://github.com/tomchop/volatility-autoruns/blob/master/autoruns.py

Looking for evidence of persistence 125

This plugin collects information not only about the services but also the various registry
keys that could potentially be used for persistence. On the one hand, the plugin provides
fairly easy access to various information; on the other hand, the set of data collected
is limited. Therefore, before using the plugin, we recommend that you read the list of
collected data, which can be found in the same repository on GitHub.

In addition to installing new services, attackers can also create tasks through the
scheduler. Let's take a look at this technique and how to detect it.

Scheduled task
The creation of scheduled tasks is one of the most common techniques. It is widely used
by commodity malware to get persistence on the infected systems. Information about
scheduled tasks is stored in several locations:

•	 C:\Windows\System32\Tasks: Here, you can find XML files with
task descriptions.

•	 Microsoft-Windows-TaskScheduler%4Operational.evtx: You can
analyze event ID 106, which is related to the creation of a new task.

•	 SOFTWARE: Information about task cache is also stored in the registry.

We will proceed with the registry analysis. So, we need to export the SOFTWARE file just
as we did before. This time, we will use RegRipper to parse our registry file:

Figure 5.51 – Parsing SOFTWARE with RegRipper

126 Malware Detection and Analysis with Windows Memory Forensics

We can use the taskcache keyword to search for the necessary information. There are
two plugins that show task-related data: tasks and taskcache. Both plugins show
information about the path and the creation time of the task, but the second one also
displays the task ID, as follows:

Figure 5.52 – The taskcache and tasks plugins

As you can see, there are various persistence techniques, and this is only a small part of
them. However, using the methods of analysis that we have reviewed, you will be able to
analyze a far greater number of techniques.

Another important step in forensic investigation is timeline creation. Its application largely
depends on your goals because you can look not only for information related to malicious
activity but also collect data about the user's files. Let's take a closer look at this topic.

Creating timelines
Timelines are extremely useful. They can play an important role in your investigation
because not only can you find out details about what happened to the target system during
a certain period of time, but you can also reconstruct the actions of the attackers step by
step. Here are a few approaches of how to use timelines:

Creating timelines 127

•	 Analysis of system changes during the incident: If you already have data regarding
the time of the incident, you can use the timeline to analyze the changes that
occurred in the target system during this period.

•	 Analysis of the file's timestamps: Using the filesystem-based timeline, you can
search for entries that correspond to specific files and analyze timestamps of their
appearance or the actions performed on them.

•	 Search for malicious program execution: In the memory-based timeline, you will
be able to observe the creation of processes corresponding to various programs,
including malware, and in the filesystem-based timeline, you can search for the
creation of prefetch files, which will also be an indicator that a particular program
was running.

Important Note
Prefetch is a mechanism used by Windows to start programs more efficiently.
During the first seconds of startup, a file with a .pf extension is created in
the C:\Windows\Prefetch directory corresponding to the running
program. The name of this file usually includes the name of the running
program. Therefore, a record of the creation of the prefetch file in the
timeline will not only tell you that something has started but also allow you to
determine what exactly was started.

As you have already noticed, there are various types of timelines. We will talk about those
that can be built using memory dumps.

Filesystem-based timelines
This timeline is based on filesystem metafiles. For NTFS, this file would be, for example,
the Master File Table ($MFT). This file contains information about all files of the
filesystem and their timestamps.

To build a timeline based on $MFT, first, we need to get its data. This can be done with the
Volatility mftparser plugin, which collects all $MFT entries from memory. Running
this plugin will look like this:

Figure 5.53 – Volatility mftparser

128 Malware Detection and Analysis with Windows Memory Forensics

Pay attention to the options that are being used; they are needed to save the data in the
format we want. The result is a text file that contains unsorted MFT records. To turn them
into a timeline, you can use the mactime utility that is included in TheSleuthKit. To
run this utility, you will need to install Perl. To do this, simply download the installer from
the official website and follow the instructions (https://strawberryperl.com/).

To get the mactime utility itself, navigate to the official website of TheSleuthKit
(https://www.sleuthkit.org/sleuthkit/download.php) and download
Windows Binaries. Unzip the downloaded archive to a directory that is convenient for you.

Now we are ready to turn our MFT records into a timeline. Use the following command:

PS D:\> C:\Strawberry\perl\bin\perl.exe .\sleuthkit-4.10.2-
win32\bin\mactime.pl -b .\output\body.txt > .\output\timeline.
txt

With the -b option, we are specifying that we are passing the file in body format. We
redirect the output of the utility to the timeline.txt text file.

You can use a text editor or MS Excel to view this file:

 Figure 5.54 – A filesystem-based timeline

In the preceding timeline, we can see the creation of a prefetch file for Gnh3J8f.EXE,
which indicates that it was executed.

Naturally, timestamps are stored in memory, not only for files but also created processes,
network connections, and more. All of this information can be added to the timeline, too.
Let's discover how.

https://strawberryperl.com/
https://www.sleuthkit.org/sleuthkit/download.php

Creating timelines 129

Memory-based timelines
You can use the Volatility timeliner plugin to build a timeline of all the information
stored in memory. Since the output of this plugin is quite extensive, we recommend that
you immediately redirect it to a text file on disk:

PS D:\> .\volatility_2.6_win64_standalone.exe -f .\nwe.mem

--profile=Win7SP1x64 timeliner > .\output\timeline.txt

This time, there will be far more information in our file:

 Figure 5.55 – A memory-based timeline

130 Malware Detection and Analysis with Windows Memory Forensics

Sometimes, this amount of information is excessive, especially since it is not very
convenient to work with such data in the form of a text file. As an alternative, you can use
Redline, which also allows you to build a timeline based on data from memory dumps.
However, here, you will have a graphical interface and the ability to easily add and remove
certain data sources:

Figure 5.56 – Redline's timeline

It looks more convenient, doesn't it?

In this simple way, we can build different timelines and add them to our investigation.

Summary
Searching for traces of malicious activity is a complicated but interesting process.

You can use various markers to detect rogue processes. Such markers can include
process names, executable file locations, startup arguments, non-standard parent-child
combinations, and atypical behavior. Moreover, processes related to malware or attacker
tools often perform network activities. The analysis of such activities in memory helps
you to not only detect malicious processes and get the IP addresses of C2 servers but also
understand the tools used by attackers.

Summary 131

If you managed to detect a process communicating with a remote IP address but did not
find any other malicious markers, it's time to search for malware injections inside the
memory. The most commonly used types of injections include DLL injections, portable
executable injections, process hollowing, and Process Doppelgänging. Traces of such
injections can be found in memory dumps.

Once you have identified the malicious processes, it's worth looking for persistence traces,
which are often used in attacks to maintain access to compromised hosts. To search for
such traces, you can use both special Volatility plugins or registry and event log analyses.

A great addition to your investigation is to build a timeline, which will not only help you
to look for timestamps related to this or that change that occurred on your system but also
help you put everything into place.

This is how we carry out forensic investigations of memory dumps to look for traces
of malicious activity. However, memory dumps are not the only source of volatile data.
Windows also has alternative sources, such as pagefile, swapfile, hibernation
files, and crash dumps. We will discuss these sources and analyze them in the
next chapter.

6
Alternative Sources
of Volatile Memory

In previous chapters, we have talked about the importance of memory dumps as a source
of useful data for forensic investigations. We've looked at many different tools for analysis,
discussed techniques for user activity examination, and discussed techniques for detecting
traces of malicious software. However, the subject of Windows operating system memory
forensics is not over yet.

We mentioned at the very beginning that there are alternative sources of memory that
might contain similar information in addition to the main memory itself. If for some
reason you were unable to create a full memory dump or its analysis failed, you can always
turn to these sources: hibernation file, pagefile, swapfile, and crash dumps. This is what
we will talk about in this chapter.

The chapter will explain how to access alternative sources of volatile data, which tools to
use to analyze it, and, of course, which techniques to use to retrieve certain information.

134 Alternative Sources of Volatile Memory

The following topics will be covered in this chapter:

•	 Investigating hibernation files

•	 Examining pagefiles and swapfiles

•	 Analyzing crash dumps

Investigating hibernation files
The first alternative source we will look at is a hibernation file. There is a reason we are
starting here, as a hibernation file is a compressed copy of Random Access Memory
(RAM). This copy is created when the computer goes into hibernation mode when it is
enabled. It is a power-saving mode of the operating system that allows the contents of the
memory to be saved to nonvolatile memory in a hiberfil.sys file before powering off.
This is the main difference between sleep mode and hibernation mode because the power
supply is completely cut off when hibernation is used.

Because a hibernation file is a copy of RAM at the time the computer goes into
power-saving mode, it can contain files that the user was working with, even if those files
are no longer present on disk at the time when the hibernation file is taken for analysis.
This source may therefore play an important role in forensic investigation, so how do
we obtain this file?

Acquiring a hibernation file
A completed hibernation file is usually located under the root directory; however, this file
is protected by the system and is hidden by default. If you are working with a live machine
and a hibernation file has already been created, you can use imaging tools and copy the
file to removable media.

You can use the well-known Forensic Toolkit Imager (FTK Imager) for this purpose.
Run it on the target host and click File -> Add Evidence Item…, as illustrated in the
following screenshot:

Investigating hibernation files 135

Figure 6.1 – FTK Imager's Add Evidence Item option

In the window that appears, select Logical Drive, as shown in the following screenshot,
and click Next:

Figure 6.2 – Select Source window

136 Alternative Sources of Volatile Memory

From the drop-down menu, select root (C:\) and click Finish, as illustrated in the
following screenshot:

Figure 6.3 – Select Drive window

You will then have the target host's filesystem on the left side of the main window. In the
root, you can find the hibernation file. To copy it to removable media, right-click on it and
select Export Files…, as illustrated in the following screenshot:

Figure 6.4 – Export Files option

Investigating hibernation files 137

In the dialog window, select your removable media where you want to save the
hibernation file and click OK, as illustrated in the following screenshot:

Figure 6.5 – Destination path

You should see a progress bar showing the copying process to removable media,
as illustrated in the following screenshot:

Figure 6.6 – Export process

This will result in a hiberfil.sys file appearing on the removable media, ready for
further processing.

138 Alternative Sources of Volatile Memory

If there is no hibernation file on the target host but you still want to create one, you will
need to do the following:

1.	 Make sure that hibernation mode is enabled.

To do this, run PowerShell as administrator and execute the following command:
PS C:\windows\system32> .\powercfg.exe /
availablesleepstates

2.	 If hibernation is enabled, you will see Hibernate in the list that appears.
Otherwise, you can enable it by issuing the following command:

PS C:\windows\system32> .\powercfg.exe /hibernate on

Examples of commands are shown in the following screenshot:

Figure 6.7 – powercfg.exe

3.	 Create a hibernation file.

To do so, simply run the following command:
PS C:\windows\system32> .\shutdown.exe /h

Investigating hibernation files 139

This command will bring the target computer into hibernation mode, and you will get
a hiberfil.sys file with timestamps corresponding to when the command was run.
You can then use FTK Imager to export this file.

Note that in forensic investigations, you are more likely to work with forensic images
rather than with live systems. To extract a hibernation file from a forensic image,
simply open it with a special tool. You can use the same FTK Imager and the Add
Evidence Item… menu option, but now, instead of the logical drive of the live system,
you must select Image File and specify the path to the forensic copy on the drive. The
rest of the process of exporting the hibernation file to disk will be similar to the process
described previously.

Now that we have successfully obtained the hibernation file, let's look at how to analyze it.

Analyzing hiberfil.sys
As the hibernation file is a compressed copy of RAM, we first need to uncompress
it and get a raw copy. This can be done by using a Volatility plugin called imagecopy.
This plugin allows us to convert memory dumps into different formats and to convert
a hibernation file into a raw format. It looks like this:

Figure 6.8 – Volatility imagecopy

We use the -f option to specify the path to our hibernation file and the -O or --output-
image option to specify the path where we want to save the result, as well as the name and
extension of the desired file. Don't forget the --profile option, where you need to specify
the profile that corresponds to the operating system version of the target host. This will give
you a file ready for analysis, which in this case is hiberfil.raw.

Another way to convert a hibernation file into a raw format is to use the Hibr2Bin utility
included in the Comae Toolkit. To get this tool, you need to become a member of the beta
program by registering on the official website at https://www.comae.com/.

https://www.comae.com/

140 Alternative Sources of Volatile Memory

This tool can be run via the command line. Not only input and output files but also several
options such as the platform and major and minor versions of the operating system must
be specified, as shown next:

Figure 6.9 – Comae Toolkit Hibr2Bin

Hibr2Bin supports the following versions:

•	 /MAJOR 5 /MINOR 1 Windows XP

•	 /MAJOR 5 /MINOR 2 Windows XP x64; Windows 2003 R2

•	 /MAJOR 6 /MINOR 0 Windows Vista; Windows Server 2008

•	 /MAJOR 6 /MINOR 1 Windows 7; Windows Server 2008 R2

•	 /MAJOR 6 /MINOR 2 Windows 8; Windows Server 2012

•	 /MAJOR 6 /MINOR 3 Windows 8.1; Windows Server 2012 R2

•	 /MAJOR 10 /MINOR 0 Windows 10; Windows Server 2017

This will also result in a raw file. Such files can be analyzed with the tools you are already
familiar with. For example, you can use Volatility to get a list of active processes, search for
files, or detect traces of malicious activity.

Important note
Since a hibernation file has its own structure, some information will still
be missing from there. For example, when you go into hibernation mode,
information about active network connections is cleared, so you will not
be able to retrieve full information about network connections from the
hiberfil.sys file.

Let's see how we can get a list of active processes from the hibernation file using Volatility.
To do this, we use the pslist plugin, as illustrated in the following screenshot:

Investigating hibernation files 141

Figure 6.10 – List of active processes from hibernation file

Similarly, we can get details of the files encountered in the hibernation file, as illustrated in
the following screenshot:

Figure 6.11 – List of files from hibernation file

And we can even try to extract them, as shown next:

Figure 6.12 – File extraction from hibernation file

As you can see, this step of the analysis does not differ much from the analysis of full
memory dumps. You can therefore apply the techniques we discussed in the previous
chapters without any doubts.

142 Alternative Sources of Volatile Memory

For automated processing and analysis of a hibernation file, you can use paid tools such
as Hibernation Recon from Arsenal Recon or complex solutions such as Magnet AXIOM
or Belkasoft Evidence Center.

This is how we can analyze the hibernation file, but this is only one of the alternative
sources we are considering. Let's move on.

Examining pagefiles and swapfiles
We have already mentioned pagefiles and swapfiles in previous chapters. There, we talked
about the mechanism used by our operating system to keep a large number of processes
running at the same time. This mechanism operates by putting temporary process
data into a specially reserved space on disk—the pagefile—when physical memory
shortages occur.

Important Note
Data is loaded into a pagefile page by page, in blocks of 4 kilobytes (KB), so
the data can occupy a continuous area as well as different parts of the pagefile.
Consequently, you can use both file carving and string searching during
analysis. Additionally, Windows keeps track of pagefile entries and their
relation to a particular process only in memory at runtime, so it is not possible
to recover this relationship during pagefile analysis.

The main difference between swapfiles and pagefiles is that a swapfile stores data from
Microsoft Store applications (previously known as Metro applications). It stores data
that is not currently needed but may be needed when switching between applications
or opening an application from a live tile in the Start menu. The way a swapfile works is
also different. It represents a sort of hibernation mechanism for applications. Despite all
the differences, most pagefile analysis methods will work for swapfiles as well, so we will
focus on pagefile.sys.

Acquiring pagefiles
A pagefile is enabled by default, so you don't need to create it manually. Furthermore,
there may be several such files on the system and they will not always be located in the
root. To find the paging files, you need to check the HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Control\Session Manager\Memory Management
registry key values of ExistingPageFiles and PagingFiles. This can be done
using the registry editor on a live machine or by analysis of the SYSTEM registry file
obtained from the forensic image, as illustrated in the following screenshot:

Examining pagefiles and swapfiles 143

Figure 6.13 – ExistingPageFiles and PagingFiles values in SYSTEM registry file

Once you have checked the number and location of the paging files, they can be extracted
in the same way as a hibernation file, as shown next:

Figure 6.14 – Pagefile extraction

144 Alternative Sources of Volatile Memory

In addition, some tools allow you to create a copy of a pagefile along with the memory
dump. Look back at the FTK Imager dump creation process; there, you can enable
the capture of a pagefile using the Include pagefile checkbox, as illustrated in the
following screenshot:

Figure 6.15 – FTK Imager Include pagefile

This will create two files: a memory dump and a copy of the pagefile.

Once you have successfully extracted the pagefile, you can start analyzing it.

Analyzing pagefile.sys
There are different ways of analyzing a pagefile. We will try to elaborate on
the most essential ones so that you can choose the method that best suits your
investigation objectives.

Examining pagefiles and swapfiles 145

Important Note
Starting with build 10525, Windows 10 uses pagefile compression. This
means that you will need to decompress the pagefile in order to analyze it. You
can use the winmem_decompress utility developed by Maxim Sukhanov
for this purpose (https://github.com/msuhanov/winmem_
decompress).

Some tools—for instance, MemProcFS—allow the joint analysis of memory dumps,
pagefiles, and swapfiles. To do this, the -pagefile0...9 option is added to the
-device option. The default value for a pagefile is 0; for a swapfile, it is 9. An example
of running MemProcFS is shown next:

Figure 6.16 – Joint analysis of memory dump and corresponding pagefile

In this case, the data in the pagefile will complement the data in the memory dump,
but it is easier to miss specific information in this situation. Therefore, it is better to
analyze the pagefile with separate tools.

We have already mentioned that data in a pagefile is stored in blocks of 4 KB. Since
these blocks can occupy different parts of the file and it is difficult to get a structured
representation of the content, pagefile analysis will not be straightforward. So, one of the
best ways to start analyzing a pagefile is to search for strings.

https://github.com/msuhanov/winmem_decompress
https://github.com/msuhanov/winmem_decompress

146 Alternative Sources of Volatile Memory

String searching
The easiest way to start analyzing a pagefile is to look for specific strings. You can use
the Strings utility you are already familiar with to retrieve all ASCII and Unicode
characters found in a given file.
To run it, use PowerShell and the following command:

PS D:\> .\strings64.exe .\pagefile.sys > D:\output.txt

The input is the path to our pagefile, and the output is redirected to a text file, which is
output.txt. In the resulting file, as before, we can use a keyword search or simply
examine the output to see if there are any strings related to the execution of any programs
potentially used by attackers, as illustrated in the following screenshot:

Figure 6.17 – Strings output

You can see in the preceding screenshot that analysis of the Strings output detected
a HTTPS reverse shell run.

Examining pagefiles and swapfiles 147

Since we are talking about searching strings, naturally, we should not forget about
searching by regular expressions and YARA rules. Here, we have the yara utility to help
us. The principle of this utility is the same as the Volatility yarascan plugin. You can
use the official GitHub repository to download this tool, at https://github.com/
VirusTotal/yara/. You can see the GitHub page in the following screenshot:

Figure 6.18 – yara GitHub repository

https://github.com/VirusTotal/yara/
https://github.com/VirusTotal/yara/

148 Alternative Sources of Volatile Memory

On the right side of the page, there is a link to the latest releases, which is exactly what
you need. On the Releases page, select the version you need, then download and extract
the archive with the executable. You can use PowerShell to run it. To see all the options
available, run the command shown in the following screenshot:

Figure 6.19 – yara options

You can use YARA rules from public sources or write your own. Let's use a YARA rule
to find the URLs in our file. The rule and its results are shown next:

Figure 6.20 – yara scan results

Examining pagefiles and swapfiles 149

We can also extend our search with domains, emails, SQL queries, and more with bulk_
extractor, as illustrated in the following screenshot:

Figure 6.21 – bulk_extractor execution

Here, we can find not just IP addresses and domains, but also the full URLs, as
shown next:

Figure 6.22 – bulk_extractor URL histogram

150 Alternative Sources of Volatile Memory

Pay attention to IP addresses. You can always check them on VirusTotal or any
other resource you like. If you check one of the addresses we found, you will find the
following results:

Figure 6.23 – VirusTotal results

VirusTotal has detected several malicious files containing this IP address. It would be
a good idea to check if our pagefile contains such files.

File carving
In addition to string searching, you can apply tools to carve files. You can use PhotoRec
for this purpose. This tool enables signature-based searches and can recognize over 300
file families, including archives, images, Microsoft Office files, PDF files, and more.

PhotoRec can be downloaded along with the TestDisk tool from the official website at
https://www.cgsecurity.org/wiki/PhotoRec. To do this, find a link to the
latest release on the right side of the page and click on it. In the window that opens, select
the appropriate version, then download and unpack the archive. You need an executable
called photorec.

https://www.cgsecurity.org/wiki/PhotoRec

Examining pagefiles and swapfiles 151

Run the following command to analyze the paging file:

PS D:\> .\testdisk-7.2-WIP\photorec_win.exe D:\pagefile.sys

This will open a separate window, as shown next:

Figure 6.24 – PhotoRec media selection

Press Enter to continue, and you will see the following:

Figure 6.25 – PhotoRec filesystem type

152 Alternative Sources of Volatile Memory

As our filesystem is New Technology File System (NTFS), don't change anything, and
press Enter again. In the next window, you need to select the directory to save the results,
as illustrated in the following screenshot:

Figure 6.26 – PhotoRec destination folder selection

In our case, the output folder will be used to save the carving results. When the output
directory is specified, the C key must be pressed to start. The file recovery process will
look like this:

Figure 6.27 – PhotoRec carving process

Carving will take some time, so be patient. Eventually, all files that have been recovered
will appear in the directory of your choice, as illustrated in the following screenshot:

Examining pagefiles and swapfiles 153

Figure 6.28 – Carving results

As you can see in the preceding screenshot, we were able to recover a large number
of dynamic-link libraries (DLLs), as well as several text and executable files.
We can now check to see if there is a file containing the IP address we checked earlier.
Let's use PowerShell and the Select-String command, as illustrated in the
following screenshot:

Figure 6.29 – Select-String results

154 Alternative Sources of Volatile Memory

Note the context and extension of the file in which our IP address is detected. The content
resembles the signatures used by antivirus solutions to search for malware. This is
a fairly common situation, so be careful. In this case, the file is more likely to be legitimate;
however, there's nothing stopping us from checking the other files for malware.
For example, here are the results of checking one of the recovered libraries:

Figure 6.30 – Malicious DLL detection

Several vendors have identified our file as malicious. This cannot be left unattended,
so a more in-depth analysis of the recovered DLL can be performed at this point.

As you can see, a pagefile is also a good source of data. You may find not only interesting
IP addresses, domains, parts of emails, or shell commands, but also entire files. All of
this data will help you to clarify the missing pieces of the puzzle and complete a picture
of the incident.

Now, it's time to look at our latest alternative source, crash dumps.

Analyzing crash dumps 155

Analyzing crash dumps
When a system gets into an unstable state—for example, due to an exception that cannot
be handled correctly—a Windows crash occurs. This happens because of bugs in kernel
drivers or other code running at the kernel level. In this case, Windows attempts to save
information that is relevant to the crash and can be used for debugging purposes. Since
the system is in an unstable state during the crash, the data is first written to the paging
file and then transferred to the appropriate dump file during the next boot. Depending on
the system configuration, different crash dumps can be created. The following screenshot
shows the dump formats offered by Windows 10:

Figure 6.31 – Crash dump formats in Windows 10

156 Alternative Sources of Volatile Memory

Let's take a closer look at these formats, as follows:

•	 Small memory dump: These files have a size of 64 KB and 128 KB in 32-bit systems
and 64-bit systems respectively. They contain information about running processes,
loaded drivers, and bug check messages.

•	 Kernel memory dump: These files contain memory pages in kernel mode only.
Consequently, they contain information about the memory used by the kernel.
Usually, the size of such dump files will be around one-third of the size of the
physical memory on the system.

•	 Complete memory dump: These are the largest kernel-mode dumps. They contain
a complete dump of physical memory at the time of the crash. Unmapped memory
is not included.

•	 Automatic memory dump: This dump is similar to the kernel memory dump. The
main difference is in how the information is stored. For the automatic memory
dump, Windows sets the size of the system paging file. Starting with Windows 8,
this is the default method of creating crash dumps.

•	 Active memory dump: This dump was introduced in Windows 10, and it is
similar to a complete memory dump and contains active memory from user and
kernel modes. However, pages that are not likely to be relevant to troubleshooting
problems on the host machine are filtered out.

You may get varying information in different amounts depending on the dump being
created. To check which crash dumps are created on a particular host, you can check
the settings on a live system. To do this, go to My Computer -> System and Security
-> System -> Advanced Settings -> Startup and Recovery. Similar information can be
found in the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
CrashControl registry key. To retrieve this data from the forensic image, you can refer
to the SYSTEM registry file, as illustrated in the following screenshot:

Analyzing crash dumps 157

Figure 6.32 – CrashControl registry key

The CrashDumpEnabled value defines the type of dump to be created. On Windows 10,
the following values are possible:

•	 0: None

•	 1: Complete or active memory dump

•	 2: Kernel memory dump

•	 3: Small memory dump

•	 7: Automatic memory dump

Note that here, you can also find the path where the crash dump was created. By default,
this is the %SystemRoot%\MEMORY.DMP file.

158 Alternative Sources of Volatile Memory

In addition to system crashes, there may be a situation whereby a problem occurs in
a specific application and the system remains stable. In such situations, mini-crash dumps
are created containing error code, application, and host details. These are generated by
Windows error reporting and can be found at C:\ProgramData\Microsoft\
Windows\WER. WER can also be configured to create complete memory dumps of
user-mode processes. For this purpose, the LocalDumps key with a DumpType value
of DWORD = 00000002 is created in the HKLM\Software\Microsoft\Windows\
Windows error reporting registry key. Herewith, created dumps of user processes
will be stored in the %LocalAppData%\Crashdumps folder of the user who got the
error, and dumps of system processes will be stored in the C:\Windows\System32\
config\systemprofile\AppData\Local\CrashDumps\ folder.

Analysis of process crash dumps is particularly important in incident response,
as exploitation by malware of an application vulnerability is usually followed by a crash
of that application. Analysis of application crash dumps can tell us which techniques the
attackers used for the initial access.

All of the files described previously are created by the system during various crashes.
You can search for such files in forensic images and retrieve them in the way described
previously for hibernation files.

If you are working with a live system, you can create such files yourself if necessary.

Crash dump creation
Before you start creating crash dumps, you need to make sure that their creation is
enabled. Don't forget to select the type of dump you want. You can do this by going to
My Computer -> System and Security -> System -> Advanced Settings -> Startup and
Recovery. Once you are ready, you can begin creating a crash dump.

There are different ways to simulate a system crash—for example, using standard
Windows tools or the Windows Debugger (WinDbg). However, the easiest and most
reliable way is still to use the NotMyFault tool from Sysinternals. To use this tool, simply
download and unpack the archive from the official site at https://docs.microsoft.
com/en-us/sysinternals/downloads/notmyfault. In the archive, you will find
executable files for 32- and 64-bit systems.

https://docs.microsoft.com/en-us/sysinternals/downloads/notmyfault
https://docs.microsoft.com/en-us/sysinternals/downloads/notmyfault

Analyzing crash dumps 159

Simulation of a system crash
Run notmyfault.exe as administrator. In the window that opens, you will see
options corresponding to the most common causes of system crashes, as illustrated in the
following screenshot:

Figure 6.33 – NotMyFault main window

Select the option that suits you and click Crash. We will use the High IRQL fault option.
After you press Crash, you will see the notorious blue screen of death (BSoD). The next
time you start the computer up, you will have a MEMORY.DMP file, which is a crash dump.

It's a different story with application dumps. The process for creating them is simpler
and more flexible as you can use either standard Windows tools such as Task Manager,
or third-party tools. Let's look at how to create process dumps.

160 Alternative Sources of Volatile Memory

Process dump creation
Let's start with the built-in tools—more specifically, Task Manager.

To dump a process, start Task Manager by pressing Ctrl + Alt + Delete. In the window
that appears, find the suspicious process and right-click on its name. In the pop-up menu,
select Create dump file, as shown in the following screenshot:

Figure 6.34 – Creating process dump with Task Manager

If the dump was successfully created, you will see the following window:

Analyzing crash dumps 161

Figure 6.35 – Process dumping results

Here, you will find the name of the dump you have created and its location. As you
can see, this method is easy to use but does not allow you to select the dump format.
Another tool, Process Hacker (https://processhacker.sourceforge.io/
downloads.php) can be used in a similar way. You can see this tool in action in the
following screenshot:

Figure 6.36 – Creating process dump with Process Hacker

https://processhacker.sourceforge.io/downloads.php
https://processhacker.sourceforge.io/downloads.php

162 Alternative Sources of Volatile Memory

If you want to be able to create different process dumps, there is another tool from
Sysinternals, called ProcDump. As the name suggests, this tool is designed specifically
for creating process dumps. As with NotMyFault, it can be downloaded from the official
site at https://docs.microsoft.com/en-us/sysinternals/downloads/
procdump. This tool supports the types of dumps shown in the next screenshot:

Figure 6.37 – ProcDump supported formats

As you may have noticed, you will need PowerShell to run the tool. You can use the PID
from the Details tab of Task Manager to specify which process you want to dump, as
illustrated in the following screenshot:

Figure 6.38 – Identifying PID

https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump

Analyzing crash dumps 163

To create a mini-dump containing process, thread, module, handle, address space, and
stack information, you need to use the -mm option, and to create a full dump, use the -ma
option. This is how it will look:

Figure 6.39 – Mini-dump and full dump creation

These are the tools you can use to create various dumps. Now, it's time to talk about
their analysis.

Analyzing crash dumps
Since a system crash and an application crash create different dumps, some of the analysis
methods will differ. Let's start with the analysis of dumps created during a system crash.

System crash dumps
The most obvious way to analyze system crash dumps is to use WinDbg. This tool is
designed specifically for debugging and allows you to do more than just analysis of crash
dumps in order to find out the cause of the crash. Use this link to download the tool:
https://docs.microsoft.com/en-us/windows-hardware/drivers/
debugger/debugger-download-tools. Find Download WinDbg Preview from
the Microsoft Store option and click the WinDbg Preview link. Click GET. You will be
redirected to the Windows Store. Simply click GET again to install.

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools

164 Alternative Sources of Volatile Memory

After installation, you can launch WinDbg. Go to the File menu and select Open dump
file, as illustrated in the following screenshot:

Figure 6.40 – WinDbg File menu

Select your crash dump, and once it is loaded, use the command line to run the
!analyze -v command, as illustrated in the following screenshot:

Figure 6.41 – WinDbg !analyze -v command

Analyzing crash dumps 165

This command allows you to display detailed information about the cause of the crash,
as we can see here:

Figure 6.42 – WinDbg Bugcheck Analysis

Here, you will be able to find data such as faulty driver information, exception errors and
code, faulty IPs, failure ID hash strings, and so on.

Another tool that allows a similar analysis is BlueScreenView by NirSoft (https://
www.nirsoft.net/utils/blue_screen_view.html), which is shown in the
following screenshot:

Figure 6.43 – NirSoft BlueScreenView

https://www.nirsoft.net/utils/blue_screen_view.html
https://www.nirsoft.net/utils/blue_screen_view.html

166 Alternative Sources of Volatile Memory

Keep in mind that this tool works best with mini-dumps on a live system. It is therefore
not practical for postmortem analysis.

There is another solution to help you with postmortem analysis: SuperDump (https://
github.com/Dynatrace/superdump). Its main advantage is that it allows you to
automate the analysis process and get all the data in a graphical report. The tool is shown
in the following screenshot:

Figure 6.44 – SuperDump

SuperDump is a service for automated crash dump analysis that has a web as well as
a REST (Representational State Transfer) interface to upload Windows crash dumps.
Moreover, it allows you to analyze Linux core dumps as well. However, to run this tool,
you will need to have Docker installed.

You now have several tools in your arsenal for system crash dump analysis. You can
choose the tool you feel most comfortable working with. We now move on to something
more interesting: process dump analysis.

https://github.com/Dynatrace/superdump
https://github.com/Dynatrace/superdump

Analyzing crash dumps 167

Process dump analysis
Analysis of process dumps is an excellent way to investigate individual suspicious
processes without creating full memory dumps. This technique is often used during
incident response.

Debuggers can naturally be used to analyze process dumps, but more classic methods can
be applied as well—for example, string search or search by YARA rules. Analysis with the
help of bulk_extractor can be used here as well.

Let's consider an example with dump analysis of the suspicious process explorer.exe.
Let's start with the Strings tool. We will use the standard command, as follows:

PS D:\> .\strings64.exe .\explorer.exe_210813_000718.dmp > D:\
explorer.txt

The resulting text file can be searched using keywords. In our case, a keyword
search for cmd found a command executed by the malware, as illustrated in the
following screenshot:

Figure 6.45 – Malicious cmd command in the Strings output

bulk_extractor will be useful as well. We can find IP addresses and domain names
used by the malware with the following command:

PS D:\> .\bulk_extractor.exe -o D:\output\ .\explorer.
exe_210813_000718.dmp

168 Alternative Sources of Volatile Memory

Results from scanning are shown next:

Figure 6.46 – bulk_extractor domain histogram

Checking these IP addresses revealed that many of them are associated with malicious
files, as we can see here:

Figure 6.47 – IP address from bulk_extractor output

Analyzing crash dumps 169

Lastly, let's return to the results of the Strings utility. A keyword search for exe also
yielded extremely useful information, as we can see here:

Figure 6.48 – Detection of malicious files

In this case, we see the name of the directory used by the malware, as well as the names of
the executable file and library. Using the new keyword allowed us to discover even more
data related to the malicious activity, as we can see here:

Figure 6.49 – yrpoykg keyword search

170 Alternative Sources of Volatile Memory

As you can see, some analysis techniques are excellent for both full memory dumps and
memory dumps of individual processes.

Summary
Analyzing Windows memory dumps is a time-consuming process but can yield invaluable
results. In addition to examining full dumps, you should not forget about alternative
sources, which can also be of great help in forensic investigations and incident response.

Alternative sources include hibernation files, page files, and swap files, as well as crash
dumps and process memory dumps. Some of these files, such as a pagefile and a swapfile,
are enabled by default and are created automatically while the operating system is
running. Others are created when the system goes into a specific state—for example,
a hibernation file is created when the system enters the appropriate mode. The latter,
crash dumps, are created when a system crash or application crash occurs, but you can
also trigger these states artificially. Among other things, there are special tools that allow
you to create individual process dumps, such as process memory dumps, without directly
affecting their state.

For analysis of alternative sources, both special tools such as debuggers and more
general tools that allow you to search through strings, regular expressions, YARA rules,
and signatures can be used.

On that note, we're finishing our analysis of Windows memory. Although this system has
been the leader on the desktop operating system market for many years, other systems
such as macOS and Linux are becoming more and more popular year by year. It's now
time to talk about their analysis. In the next part, we will start to walk through the
process of creating Linux memory dumps in detail and then move on to their analysis.
As always, we will cover the key techniques and tools used for Linux forensic
investigation, accompanied by illustrative examples from our practice. See you in
the next part!

This section will focus on aspects of Linux memory acquisition and analysis. The
tracking of user actions and the detection and analysis of malware from a Linux forensics
perspective will be covered in detail.

This section of the book comprises the following chapters:

•	 Chapter 7, Linux Memory Acquisition

•	 Chapter 8, User Activity Reconstruction

•	 Chapter 9, Malicious Activity Detection

Section 3:
Linux

Forensic Analysis

7
Linux Memory

Acquisition
Despite Windows being the most common desktop operating system, the role of Linux-
based systems cannot be overstated. Due to their flexibility, Linux-based operating
systems can be installed on a wide range of hardware: PCs, tablets, laptops, smartphones,
and servers. The latter is especially true when it comes to Enterprise.

Servers running Linux-based operating systems are an integral part of the infrastructure
as they are often used as the basis for web, mail, application, database, and file servers.
That is why, every year, attackers show more and more interest in these hosts. The number
of attacks involving Linux-based systems steadily grows every year. More and more
groups, both state-sponsored and financially motivated ones, have Linux-based tools and
malware in their arsenals. For example, the notorious Fancy Bear APT was convinced
by NSA and FBI in using an advanced Linux rootkit called Drovorub. Another good
example is multiple ransomware operators – all major ransomware as a service programs
now provide their affiliates with Linux versions.

All this leads us to the necessity of mastering the tools and techniques required for
analyzing Linux-based systems. This will be our main topic of discussion in this part of
the book.

As we did previously, it is paramount to collect the required data. In our case, this involves
creating a memory dump. This is where we will start discussing this topic.

174 Linux Memory Acquisition

In this chapter, we will cover the following topics:

•	 Understanding Linux memory acquisition issues

•	 Preparing for Linux memory acquisition

•	 Acquiring memory with LiME

•	 Acquiring memory with AVML

•	 Creating a Volatility profile

Understanding Linux memory acquisition
issues
In Chapter 2, Acquisition Process, we discussed general memory dumping issues, which are
also relevant in the case of Linux-based systems. However, the process of creating Linux
memory dumps also has unique problems that are specific to these systems. These are the
problems we will focus on.

The main difficulty that's encountered by professionals when dumping memory is the
number of distributions. Since the Linux kernel is open source and distributed under the
GNU General Public License, it quickly gained popularity among the community and
became the basis for many distributions, each of which has its own features. Naturally, this
had an impact on the memory extraction process.

Earlier versions of the kernel, before Linux 2.6, allowed access to memory via /dev/mem
and /dev/kmem devices. The /dev/mem interface provided programs with root access
to physical memory for read and write operations, while /dev/kmem allowed access to
the kernel's virtual address space. Thus, to create a raw memory dump, it was sufficient to
use the simple cat or dd utilities to read /dev/mem and redirect the output to a separate
file. This approach was undoubtedly handy but created obvious security problems. For
example, due to non-sequential memory mapping from physical offset 0, inexperienced
technicians could directly access sensitive memory regions, leading to system instability,
memory corruption, or system crashes.

In newer versions of the Linux kernel, the interfaces described previously are disabled.
The physical memory is now accessed by loading a special kernel module. The biggest
challenge is that this kernel module must be built on the target system or a system with a
matching distribution and kernel version to work properly. Naturally, it is not a good idea
to build the module on the target system, as it requires many dependencies, and installing
them may overwrite important data. Therefore, if you are using tools that require a kernel
module to be loaded, it is best to build them in a testing environment.

Preparing for Linux memory acquisition 175

There are various tools available from different developers for memory extraction. In this
chapter, we will concentrate on the most convenient and effective tools for Linux memory
dumping, but first, let's take a look at the preparation process.

Preparing for Linux memory acquisition
Since some commonly used Linux memory extraction tools require a kernel module to be
loaded, you need to build this module in a similar environment to the real one. To do this,
you can build the module on a prepared virtual machine. You can create such a machine
using VMWare, VirtualBox, or other similar solutions. The most important thing is to
have the same operating system distribution with the same kernel version as the target host
installed on the virtual machine. Therefore, the first step in preparing a virtual environment
is to determine the distribution and exact kernel version of the target host. To determine the
distribution, run the following command in the terminal on the target host:

$ cat /etc/*-release

To get the exact kernel version, run the following command:

$ uname -r

You should get the following output:

Figure 7.1 – Target distributive and kernel version

176 Linux Memory Acquisition

We now know that Ubuntu 21.04 is installed on the target host and that the kernel
version is 5.11.0-34-generic. This information can be used to create a virtual
machine. As most distributions are freely available, you should have no problem finding the
right one. The same goes for the kernel version. Alternatively, if you already have a virtual
machine with the correct distribution and updated kernel, you can do a kernel downgrade.

You will also need to prepare removable media to dump the memory onto. We already went
through this process in Chapter 3, Windows Memory Acquisition, so we will not go into it
now. If you plan to capture the dump over the network, you will need to prepare a network
share and make sure it is available for the target host. In this chapter, we will look at both
methods of capturing dumps. In the meantime, we will start discussing specific tools.

Acquiring memory with LiME
The first tool we will look at is the Linux Memory Extractor, or LiME. LiME is a loadable
kernel module that makes it possible to dump memory from Linux and Linux-based
systems, including Android. The main advantage of this tool is its minimal process footprint
and how it can calculate the hash of dumped memory. Lime can also create dumps over the
network. This tool can be found in the following GitHub repository: https://github.
com/504ensicsLabs/LiME. The following is a screenshot of LiME:

Figure 7.2 – LiME GitHub repository

Let's start by looking at the process of building the kernel module. For this, we will use
a virtual machine with the same distribution and kernel version – Ubuntu 21.04 and
5.11.0-34-generic, respectively.

https://github.com/504ensicsLabs/LiME
https://github.com/504ensicsLabs/LiME

Acquiring memory with LiME 177

As we are working with Linux, we will do everything using the terminal. First of all, we need
to install LiME and all the required packages. To do this, use the following command:

sudo apt-get install -y linux-headers-$(uname -r) build-
essential make gcc lime-forensics-dkms

The command's execution will look as follows:

Figure 7.3 – Package installation

Once this process is complete, we can proceed to the next step: compilation. To do this,
move to the lime directory with cd and run make, as shown here:

Figure 7.4 – Kernel module creation

178 Linux Memory Acquisition

make is a utility that's needed to automate how files are converted from one form into
another. The conversion rules themselves are defined in a script named Makefile,
which is located in the root of the working directory – in our case, /usr/src/lime-
forensics-1.9.1-2.

Once make has finished running, we have a kernel module called lime-5.11.0-34-
generic.ko. We can copy it to removable media or a network share and use it to dump
the memory on the target host.

Let's look at the process of creating a dump over the network. First, we need to make the
kernel module file available on the target host. This can be done by placing it on a network
share or copying it to the target host using scp, a utility that allows you to securely copy
files and directories between two locations, including remote ones. When the module
is available, you can use insmod, a program to load kernel modules. This requires
specifying the location and name of the output file using the path parameter, as well as
the file format – raw, lime, and so on– specified in the format parameter. Since we have
agreed to create the dump over the network, we will pass the protocol to be used and the
port that the output will be sent from to the path parameter:

$ sudo insmod ./lime-5.11.0-34-generic.ko "path=tcp:4444
format=lime"

This command will load the kernel module, create a memory dump, and send it to port
4444. Note the format of the file. If you want the created memory dump to be recognized
by Volatility, it is best to create it in lime format.

You should then run netcat on the investigator's host. Netcat or nc is a command-
line utility that reads and writes data over network connections using the TCP or UDP
protocols. You also need to redirect the output to a file. This can be done as follows:

$ nc 192.168.3.132 4444 > mem.lime

In this case, netcat will receive data from the 192.168.3.132 IP address and write
it to the mem.lime file. In the end, the kernel module can be unloaded using the
following command:

$ sudo rmmod lime

Acquiring memory with AVML 179

The resulting mem.lime file can be used for analysis, but more on that later. For now, let's
look at another tool for memory dump creation.

Acquiring memory with AVML
AVML, or Acquire Volatile Memory for Linux, is a userland acquisition tool developed
by Microsoft. The main advantage of AVML is that it does not need to be built on the
target host and supports multiple sources:

•	 /dev/crash

•	 /proc/kcore

•	 /dev/mem

If no particular source is specified when you run AVML, the tool will go through all the
sources, looking for a valid one and collecting memory from it.

The disadvantage, perhaps, is that this tool has been tested on a limited number of
distributions, so it is better to check it into a virtual environment before using it.

At the time of writing this book, the following distributions have been tested:

•	 Ubuntu: 12.04, 14.04, 16.04, 18.04, 18.10, 19.04, 19.10

•	 Centos: 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6

•	 RHEL: 6.7, 6.8, 6.9, 7.0, 7.2, 7.3, 7.4, 7.5, 8

•	 Debian: 8, 9

•	 Oracle Linux: 6.8, 6.9, 7.3, 7.4, 7.5, 7.6

180 Linux Memory Acquisition

So, the first thing you need to do is download the tool. To do this, open the repository on
GitHub at https://github.com/microsoft/avml and go to the Releases tab.

Figure 7.5 – AVML GitHub repository

Find AVML, download it, and put it on removable media or a network share where you
can run it on the target host. We will use removable media this time. Before running it,
you need to make the file executable by using the chmod command, which allows you to
change the permissions of files and directories:

$ sudo chmod 755 avml

After this, you can start creating the dump. Simply run AVML and specify the location
and name of the output file. This will result in the following output:

Figure 7.6 – AVML usage

https://github.com/microsoft/avml

Creating a Volatility profile 181

Note that AVML does not require the kernel module to be built. Once this command
completes, you will get a memory dump in LiME format, ready for analysis. However,
note that Volatility does not have prebuilt profiles for Linux-based systems. With this in
mind, we should also discuss creating a profile for Volatility.

Creating a Volatility profile
To analyze Linux memory dumps, you need to create a Volatility profile that corresponds
to the target host configurations. Let's consider this with an example. First, you need to
install the zip and dwarfdump packages, as shown in the following screenshot:

Figure 7.7 – dwarfdump and zip installation

182 Linux Memory Acquisition

Next, we need to download Volatility. To do this, we will use the git clone command,
which allows us to clone repositories from GitHub. If you do not have git, it must be
installed using apt:

$ sudo apt-get install git

$ git clone https://github.com/volatilityfoundation/volatility.
git

After that, you should go to the volatility/tools/linux directory and run the
make command:

$ cd volatility/tools/linux

$ make

The listed actions will look as follows:

Figure 7.8 – Creating the dwarf module

As a result, you will get a module.dwarf file.

Important Note
Depending on the distribution you are working with, executing make may
cause a variety of errors, ranging from dependency problems to license issues.
Unfortunately, there is no one-size-fits-all recipe for solving all problems, but
searching the web for solutions to individual make errors may help you.

Creating a Volatility profile 183

The resulting dwarf module must be merged into an archive with System-map of the
correct version. This can be done using the following command:

$ sudo zip $(lsb_release -i -s)_$(uname -r).zip ./module.dwarf
/boot/System.map-$(uname -r)

Let's understand what is going on here:

•	 lsb_release -i -s outputs the name of the current distribution.

•	 uname -r will show the kernel version.

This will name your archive <distribution>_<kernel>.zip, but you can name it
as you wish.

The output of this command may look like this:

Figure 7.9 – Creating a Volatility profile

As you can see, we ended up with the Ubuntu_4.15.0-117-generic.zip archive,
which is the Volatility profile for this host. You can place this file in the profiles folder
and pass the path to this Volatility folder as the --plugins option, as shown in the
following screenshot:

Figure 7.10 – Using a custom Volatility profile

184 Linux Memory Acquisition

As you have probably already noticed, the process of collecting Linux memory is not
straightforward and requires a lot of different actions. However, in practice, you will often
encounter such systems installed in virtual machines. In these cases, you will just need
to create a snapshot of the virtual machine and simply work with the existing .vmem
file. However, this will not save you from creating a Volatility profile. On the other hand,
if you need to investigate a fairly popular distribution, you can always try to find ready-
made profiles on the web. You can start with the official Volatility Foundation repository:
https://github.com/volatilityfoundation/profiles/tree/master/
Linux.

Among other things, there are also tools you can use to automate the previous steps. For
instance, Linux Memory Capturer (https://github.com/cpuu/lmc) is a fork of
Linux Memory Grabber, which was developed by Hal Pomeranz. This tool allows you to
automate the process of creating Linux memory dumps and Volatility profiles. All you
need to do is install and run the tool.

As this tool uses LiME, you will be asked to create a kernel module where both the
module itself and the memory dump it generates will be stored on the host. You will then
be prompted to create a profile for Volatility.

The output is a folder like this:

Figure 7.11 – lmc output

Here, you will find the following:

•	 hostname-YYYYY-MM-DD_hh.mm.ss-memory.lime: The memory saved in
LiME format

•	 hostname-YYYYY-MM-DD_hh.mm.ss-profile.zip: The Volatility profile

•	 hostname-YYYY-MM-DD_hh.mm.ss-bash: A copy of /bin/bash

•	 volatilityrc: The prototype Volatility config

The generated kernel module can be found in /usr/src/lime-forensics. You
can then use the generated module to create a memory dump on the target host and the
Volatility profile to analyze it further.

https://github.com/volatilityfoundation/profiles/tree/master/Linux
https://github.com/volatilityfoundation/profiles/tree/master/Linux
https://github.com/cpuu/lmc

Summary 185

Looks good, right? However, at the moment, the tool uses Python 2.7, which means you can
only use it in a limited number of cases. Also, using tools such as this does not take away
from the make issues described previously. So, before using such tools, it is best to test them
in a virtual environment with a configuration similar to that of the target machine.

Summary
Creating memory dumps of Linux-based systems is a tedious process. You do not have a
huge range of tools that do everything you need at the click of a button. However, there are
fairly efficient solutions that, when used correctly, will help you get everything you need.

Different tools may use different methods to access memory. The most common method
is to load a kernel module; however, this method requires a lot of preparation as the
module must be built on a system with a distribution and kernel version similar to the
target host. The same conditions are needed to create Volatility profiles, without which
further analysis of the dumps would be challenging.

Several scripting solutions can automate the process of creating memory dumps and
Volatility profiles, but such solutions will often work with a limited number of distributions,
so it is better to test them in conditions similar to the real ones before using them.

In this chapter, we reviewed the tools that allow you to create memory dumps of Linux-
based systems. Now, it is time to talk about memory dumps analysis. This is what we will
do in the next chapter.

8
User Activity

Reconstruction
During forensic investigations and incident responses, reconstructing user activity
is an essential part of collecting important data from the hosts of both victims and
attackers. Linux-based systems have an important role to play here as they are often
used by attackers to carry out their activities. This is because many different network
and vulnerability scanners, web application security testing tools, and post-exploitation
frameworks are implemented under Linux. Thus, investigating the host used by the
attackers reveals to us detailed information about the tools and techniques used in the
attack. Furthermore, by examining user activity, we can learn more about the stages of
preparation for the attack, possible affiliates, activity on different forums, and more.

Based on the preceding lines, we must consider the following topics:

•	 Investigating launched programs

•	 Analyzing Bash history

•	 Searching for recent files

•	 Recovering filesystem from memory

•	 Checking browsing history

•	 Investigating communication applications

188 User Activity Reconstruction

•	 Looking for mounted devices

•	 Detecting crypto containers

Technical requirements
This time, we will use both Linux and Windows systems to work with the tools described
in the next two chapters and to carry out Linux memory forensics. In our case, Volatility
2.6.1 together with some built-in utilities will run on Ubuntu 21.04 (Hirsute Hippo) and
programs such as Bulk Extractor or PhotoRec will run on Windows.

Investigating launched programs
In the previous chapter, we already discussed the process of profile creation for Linux-based
systems, so now we'll restrict ourselves to checking which profiles you have available.

Let's assume that you have created a profile and placed it in the profiles folder. Don't forget
that you need to pass the path to this folder using the --plugins option. To check that
your profiles are available for use you can run --info. In order to get only the necessary
output, we use grep, a command-line utility that allows us to find lines that match a
given regular expression in the input and print them out:

Figure 8.1 – Linux profiles in Volatility

As you can see, we have several Ubuntu profiles at our disposal, as well as a Debian profile.
Similarly, we can see a list of all plugins available for use with these profiles:

Investigating launched programs 189

Figure 8.2 – Linux plugins in Volatility

Now that we have ensured that we have everything we need, we can start analyzing. As in
the case of Windows, we will start by investigating the active processes, which will tell us
what programs the user is running.

Volatility has a pslist and pstree equivalent for Linux-based systems. These plugins
also work with the list of active processes and allow us to view this information. Let's use
the linux_pslist plugin:

Figure 8.3 – List of active processes

The output of this plugin will be quite lengthy. This is because Linux systems use the
same kernel structure to store information about processes as they do for kernel threads.
Therefore, the output of this plugin will contain both processes and kernel threads. The
latter can be identified by the absence of DTB.

Important Note
DTB is the physical offset of the process directory table base used to read from
the process address space. Since kernel threads use the kernel address space,
they do not have a DTB.

190 User Activity Reconstruction

Note that there is also a Uid column that corresponds to the user ID. Using this column,
you can filter the information for a particular user. Let's look at the processes that were
started by the 1000 user ID. To do this, we will simply use the grep utility:

Figure 8.4 – Processes started by a specific user

We can now see that all rows with a value of 1000 in the Uid column belong to the same
user. We can take a closer look at this output:

Figure 8.5 – User processes

Here, we already see some familiar names. For example, we can infer that the user with the
1000 ID had a terminal open, nano, Thunderbird, LibreOffice, and so on. It would also be
nice to have a bit more information about the user.

Usually, user information can be found in the /etc/passwd file, but if we only have a
memory dump at our disposal, getting access to this file can be problematic. However, we
may be able to see information about the environment in which the processes in question
were started. To do this, we can use the linux_psenv plugin. Let's run this plugin and
specify one of the bash processes with the 23639 identifier:

Investigating launched programs 191

Figure 8.6 – Process environment variables

Note that the username is among the environment variables of this process. We now know
that the programs we detected were started by the itsupport user.

But let's go back to the running processes. Apart from the standard pslist and pstree
plugins, we have another interesting plugin at our disposal, which allows us to view not
only the names of the running programs but also their locations and the arguments passed
to them at startup. This plugin is called linux_psaux. Let's check it:

Figure 8.7 – Volatility linux_psaux

As you can see, we have once again used grep to get information about the processes
associated with a particular user. We now have all the data about the location of the
running programs and the arguments passed to them. Why might this be useful? Let's
look at the following figure:

Figure 8.8 – File names in command lines

192 User Activity Reconstruction

Here we can see not only the programs that the user has run but also the files opened
with them. For example, we now know that the user was not just running Libre Office,
but was running calc, an Excel analogue for Linux, and had clients.xls open with it.
We can also see that nano was used to work with the passwords.txt text file, located
on the desktop.

Important Note
Since linux_psaux shows the arguments at startup, you may not be able to
get all the information about the files opened by a program from here. You can
use another method to retrieve this information, which will be discussed later.

You have probably noticed that our user actively uses not only GUI programs, but also
works with the terminal. This is a common story for users of Linux systems, so analysis of
the executed commands becomes an integral part of user activity investigation.

Analyzing Bash history
The most commonly used shell on Linux systems is Bash, one of the most popular Unix
shells. One of the reasons for this popularity is that it is preinstalled on the vast majority of
Linux distributions. At the same time, it is quite functional, as it allows you to interactively
execute many commands and scripts, work with the filesystem, redirect the input and
output of commands, and much more.

Typically, if Bash history logging is enabled, it is stored in the user's home directory, in the
.bash_history file. Naturally, attackers may perform various manipulations on both
this file and the history-logging process in order to hide their traces. Nevertheless, we
can try to recover this information from memory. Volatility has a specific plugin for this,
linux_bash. Running this plugin looks like this:

Figure 8.9 – Bash history

As you can see, in our case, the user first tried to output the contents of the passwords file
with cat, then opened it with nano, but apparently the file was not on the desktop, so the
user created it with the touch command. Then, there was a network check, using ping
and installing Git via apt. Obviously, with a threat actor working on the host, a Bash
history analysis is of special value. Let's look at the following example:

Searching for opened documents 193

Figure 8.10 – Bash history on the attacker's host

Here, on the attacker's host, we see the post-exploitation framework, Metasploit, installed
and running, as well as the network scanning tool Nmap. We also see the rockyou.txt
file and can assume that this is one of the popular password dictionaries used for
brute-forcing.

Thus, examining the Bash history on the attacker's host can reveal to us information about
the tools used and the techniques applied, while Bash on the victim's host will tell us not
only the tools used in the attack but also the individual files or systems the attacker was
interested in.

Note that this is not the first time we have encountered the opening of certain files. Let's
take a closer look at how to obtain information about the files a user was working with.

Searching for opened documents
Unfortunately, Linux-based systems do not have the same level of information logging
as Windows. Nevertheless, it is still possible to find information about a particular file or
even try to recover its content from memory. But first things first.

194 User Activity Reconstruction

You already know that the files opened at the start of a program can be seen with the
linux_psaux or linux_bash plugins. If you are interested in the files opened while
a program is running, you can use the linux_lsof plugin by passing it the ID of the
process you are interested in via the -p option. Let's try to find information about xls
files opened by the soffice.bin process of the itupport user. To search for files of a
certain type, we will use grep:

Figure 8.11 – Files opened in LibreOffice

The output shows that, in our case, LibreOffice connected to only one file, cliens.xls.
It would be nice to know the contents of this file as well. Volatility provides a mechanism
to find out which files have recently been used and export them. The fact is that Linux-
based systems cache file data that is read from and written to disk. Volatility allows you to
list and recover such files using the linux_find_file plugin. Let's start by listing the
files cached in memory. To do this, the -L option should be used. As the list is quite long,
we recommend saving it to a file, as shown in Figure 8.12:

Figure 8.12 – List of cached files

From the output, you can see that here you can find information about the directories and
files used, as well as their inode number and address.

Important Note
An inode or index descriptor is a data structure that stores metadata about
standard files, directories, or other filesystem objects, apart from the data and
name itself.

Recovering the filesystem 195

Alternatively, if you want to quickly check for a file in memory, you can use the -F option,
followed by the name or location of the file you are looking for. If the file is found, you will
see its location and inode information.

Using this information, we can try to extract any file found. To do this, we can use
option -i, after which we should specify the desired inode. Here, we should also use
the -O option to specify the path to the output file. The file search and extraction will look
like this:

Figure 8.13 – File extraction

As you can see, we first found the file of interest and then used its inode to extract the
data file to disk. But this is not all the possibilities that inode gives us. Let's get to the
bottom of it.

Recovering the filesystem
In addition to retrieving individual files, Volatility provides the ability to recover a
portion of the filesystem that was in memory at the time the dump was created. This is
made possible precisely because of the large number of metadata stored in the inode.
Filesystem recovery can be done using the linux_recover_filesystem plugin:

$ vol.py --plugins=profiles -f /mnt/hgfs/flash/
ubuntu_11.05.58.lime

--profile=Linuxubuntu_18_04_5_4_0-84-genericx64 linux_
recover_filesystem -D /mnt/hgfs/flash/recover_fs/

196 User Activity Reconstruction

Note that here we add the -D option, specifying the directory where we want to save the
filesystem to be recovered. In our case, it will be saved in the recover_fs folder. The
result of the plugin will look like this:

Figure 8.14 – Recovered FS

Here, you can see the standard directories that have been recovered and also a swapfile,
which is the Linux equivalent of Windows' pagefile. You can analyze this file in a
similar way, using tools such as strings or Bulk Extractor.

Recovering the filesystem 197

In general, the filesystems used in Linux distributions have a similar hierarchy. The root
directory is /, followed by the /bin/, /boot/, and /etc/ standard directories,
and others:

Figure 8.15 – Linux directory hierarchy

The fact is that most Linux distributions follow the general rules described by the
Filesystem Hierarchy Standard.

Important Note
The Filesystem Hierarchy Standard (FHS) is maintained by the Linux
Foundation. It defines the directory structure and directory contents in
Linux distributions.

198 User Activity Reconstruction

Therefore, each directory has its own purpose and stores specific content. The following is
a list of the key directories:

 Figure 8.16 – Standard directories

Thus, using the recovered filesystem, you can try to find user files of interest or work
with system files such as ~/.bash_history and /etc/passwd, or system logs.
The following are a few files you might be interested in while conducting a forensic
investigation or responding to an incident:

•	 /etc/os-release – information about the operating system

•	 /etc/passwd – information about users, their uid, guid, home directory, and
login shell

Recovering the filesystem 199

•	 /etc/group – information about groups and their members

•	 /etc/sudoers – information about privilege separation

•	 /var/log/syslog – messages from different programs and services, including
the kernel mode, excluding authentication messages

•	 /var/log/auth.log – authentication messages

•	 /var/log/error.log – error messages

•	 /var/log/dmesg – general messages about operating system events

•	 /home/<user>/.bash_history – bash history

•	 Application log files

Examining the previous files can help you learn more about the users, launched programs,
executed commands, and so on.

Important Note
When extracting a filesystem from memory, Volatility tries to retain existing
file timestamps. However, filesystems prior to ext4 do not store file creation
information. Therefore, the linux_recover_filesystem plugin does
not replicate these timestamps.

Volatility also allows tmpfs to be extracted. The linux_tmpfs plugin can be used for
this purpose:

Figure 8.17 – Linux tmpfs information

Running it with the -L option will list all superblocks available for extraction, and with
the -S and -D options, you can save them to disk.

200 User Activity Reconstruction

Important Note
Tmpfs is a temporary file storage facility in many Unix-like operating systems
that resides in RAM. In Linux, tmpfs has been supported since version 2.4.
It is used to store directories containing temporary data that is deleted upon
system reboot: /var/lock, /var/run, /tmp, and so on. Tmpfs can also
host directories that store data between reboots, such as /var/tmp, or cache
directories for specific programs, such as browsers.

Another way to recover files from memory is to use the already familiar PhotoRec tool.
Let's take a look at how to do this. First of all, you need to run PhotoRec via PowerShell
using a command:

PS D:\> .\testdisk-7.2-WIP\photorec_win.exe .\ubuntu_11.05.58.
lime

Next, confirm that we want to work with the specified file:

Figure 8.18 – Input file confirmation

In the next window, select the desired partition and press Enter:

Recovering the filesystem 201

Figure 8.19 – Partition selection

Since Linux-based systems typically use ext as the filesystem, we need to specify this type
for correct file carving:

Figure 8.20 – Filesystem selection

202 User Activity Reconstruction

In the next window, select the directory in which you want to save the recovered files. In
our case, this is the photorec output directory:

Figure 8.21 – Output directory

In the last window, press Shift + C to start the recovery process:

Figure 8.22 – Recovery process

Checking browsing history 203

When the process is complete, you will see the total number of files recovered and be able
to locate the files themselves in the directory you specified earlier:

Figure 8.23 – PhotoRec recovery results

Here, you can search for files with the extensions you are interested in and analyze them.

If this method doesn't give you the results you want either, you can search for content
in the memory of the process itself. This is what we will discuss in the next part, using
browser history investigation as an example.

Checking browsing history
On Linux-based systems, as on Windows, most popular browsers store their data in
SQLite databases. For example, Firefox stores its history in the places.sqlite
file located in /home/user/.mozilla/firefox/*.default-release, and
Chrome stores its history in the history file from /home/user/.config/google-
chrome/Default. If you've managed to retrieve these files from memory during the
filesystem recovery process, that's fine. But of course, this will not always be the case. If
you do not have the standard history files at your disposal, you will have to search for
information about the visited resources in process memory. In some ways, this approach is
even more versatile in that it allows you to obtain data on the visited websites regardless of
the browser and history storage formats that are used.

204 User Activity Reconstruction

The process of accessing an individual process's memory will not be as straightforward
as it is in Windows. To give you an example, let's take another look at the list of processes
running on our host:

Figure 8.24 – Firefox in the list of active processes

Here is the Firefox process with the 12909 ID. Prior to Kernel version 3.6, information
about sites visited via browsers could be retrieved using the linux_route_cache
plugin, but in newer versions, routing cache was disabled, so we will break down a more
general method to find the information we are interested in. More specifically, we will try
to look into the memory of our Firefox process.

Unlike Windows, we can't export the whole process memory. During the runtime loader
maps all needed thigs such as executable file, shared libraries, stack, heap, and others into
the different regions of process address space. We can extract these mappings using the
linux_dump_map plugin:

Figure 8.25 – Firefox memory

Checking browsing history 205

As you can see, when using this plugin, each mapping is saved to a separate file. But
we can still use tools such as strings to search for this or that information. To avoid
handling each file individually, we can use the following simple script:

for file in <dir>

do

strings "$file" >> <output>

done

In our case, it will look like this:

Figure 8.26 – Script to run strings on multiple files

This will run strings for each file in /mnt/hgfs/flash/firefox and add the
results to firefox_strings.txt:

Figure 8.27 – Strings output

Searching by regular expressions, it is easy to find our visited URLs and a user's
search queries.

206 User Activity Reconstruction

Another way to find such information is to use the already familiar Bulk Extractor. We
will use Windows to run it, but first we will merge all the files into one so that Bulk
Extractor can handle them. To do this, we will use a PowerShell script:

> Get-ChildItem -Path D:\firefox -File -Recurse | ForEach-
Object -Process {Get-Content -Path $_.FullName | Out-File
-FilePath D:\firefox-result.vma -Append}

This script takes the content of each file in the firefox directory and adds it to the
firefox-result.vma shared file. When the shared file is received, we can start
parsing. We use the usual options:

•	 -o – to specify the output folder

•	 -x – to disable all plugins

•	 -e – to enable the email scanner to search for the URL

The resulting startup looks like the one shown next:

Figure 8.28 – Bulk Extractor execution

When the parsing is finished, you can search for the results in the output folder. For
example, from the url_histogram.txt file, we can pull out the links of interest:

Investigating communication applications 207

Figure 8.29 – Parsing results

Note that even information from search engines such as DuckDuckGo, which is
very focused on the anonymity and privacy of its users, is captured here thanks to
memory analysis.

This type of analysis can be applied to any process. Specifically, you can use process
memory analysis on applications related to communications to find the data you are
interested in – conversations, publications, and so on. This is what we will talk about.

Investigating communication applications
In addition to various browsers, Linux-based desktop operating systems also support
a large number of communication applications – messengers, mail agents, chat rooms,
and so on. Naturally, the information these applications carry may be of interest to us,
especially if they are hosted by an attacker.

As we mentioned before, analysis of such applications will not differ much from analysis
of browsers, as we will be working with process memory. Let's take a look at an example.
We have already seen that we have a Thunderbird application with the 51825 ID on the
target host. Let's dump its memory, as we did before with Firefox:

Figure 8.30 – Thunderbird memory

208 User Activity Reconstruction

We can now use the preceding script to get all the readable lines from the dumped files:

$ for file in /mnt/hgfs/flash/thunderbird/*; do strings "$file"
>> /mnt/hgfs/flash/thunderbird_strings.txt; done

Once executed, we get one big text file. It can be explored manually, searched by keywords
or regular expressions. Either way, you will be able to find, for example, different
notifications from social networks and services, which will give you an idea of what
accounts and services the user has, what he or she is interested in:

Figure 8.31 – Emails from social networks

And, of course, you can find parts of normal conversations, attachment names, sender
addresses, and so on:

Figure 8.32 – Conversation parts

Looking for mounted devices 209

With this simple method, you can find out a lot of interesting things about the user. But
now, let's move on. Our next topic of discussion is mounted devices.

Looking for mounted devices
On Linux operating systems, users have the ability to mount devices as well as specific
filesystems. Analysis of such information can help us identify not only the individual devices
and filesystems mounted to the host but also recover the relative timelines of their mounts.

The Volatility linux_mount plugin can be used to find information about attached
devices and filesystems:

Figure 8.33 – Mounted filesystems

As you can see from the screenshot, this plugin displays information about all mounted
devices and filesystems, including their location, mount point, type, and access rights. The
attentive reader may have already noticed that we also talked about the timeline, but this
information is missing here. So, what can we do?

210 User Activity Reconstruction

In this case, the kernel debug buffer will help us. The kernel debug buffer contains
information about the connected USB devices and their serial numbers, network activity
in promiscuous mode, and a timeline of events. To access this buffer, we can use the
Volatility linux_dmesg plugin. For convenience, the output of the plugin is redirected
to a text file:

Figure 8.34 – Volatility linux_dmesg output

If you still want to try to calculate at least an approximate connection time, you can
perform the following calculations:

1.	 In Figure 8.34, you can see that the SanDisk Cruzer Glide 3.0 USB device was
connected to the examined host. Here, you can see the details of its connection,
such as the absence of write protection. The timestamps you see on the left are
relative timestamps and can help you analyze the sequence of events, but there is a
problem with interpreting these timestamps. These kernel timestamps are derived
from an uptime value kept by individual CPUs. Over time, this gets out of sync with
the real-time clock, so reliably reconstructing the time of an event from the memory
dump is problematic.

Figure 8.35 – Systemd start time

Looking for mounted devices 211

2.	 We see that the start time of the systemd process is 2021-10-02 17:05:54
UTC. We need to convert this time to seconds. Any epoch converter can do this for
us. We will use the online converter at https://www.unixtimestamp.com:

Figure 8.36 – Start time conversion

3.	 This results in a value of 1633442754 seconds. The value displayed in dmesg
is in nanoseconds and must therefore be converted to seconds. The connection
timestamp of our USB device is 4824232947404.4824 nanoseconds, which is
rounded to 4824 seconds. This value is added to the Unix timestamp you calculated
earlier. We get 1633447578 seconds.

4.	 Our final step is to convert the resulting timestamp into a readable format. To do
this, we can again use the converter:

Figure 8.37 – Unix timestamp conversion

Now, we know the approximate time of USB device connection – October 5th, 2021,
15:26:18.

https://www.unixtimestamp.com

212 User Activity Reconstruction

Naturally, if we have access to a live host, the task of timing a particular event is easier.
However, please keep in mind that after being written to disk, dmesg logs can be changed
by attackers, and the events you are interested in may not be present at all. You can,
however, use cross-checking to detect these manipulations.

To output the dmesg timestamps in a readable format, the -T option has been introduced
in many Linux distributions. Its use is as follows. We run the dmesg -T command and get
the exact time of the events logged by dmesg:

Figure 8.38 – Output of dmesg on a live host

The command output shows that the connection of the USB device in question was made
on October 5, 2021 at 8:25:13 in the host's local time. The time zone in which the host is
located is PDT, so the connection time is 15:25:13 UTC. As you can see, the timestamp
we calculated has a relatively small deviation, so in the absence of access to a live host, the
above method of calculating timestamps can be used.

The last thing we need to consider is the detection of crypto containers, so that is what we
will move on to.

Detecting crypto containers 213

Detecting crypto containers
An important step in the investigation of user activity on Linux systems is to look for crypto
containers, especially when it comes to investigating hosts used by potential threat actors.
The fact is that, for their own safety, they can put important data related to the preparation
for an attack, developed malicious tools, or stolen information into the crypto containers.

Linux-based systems have various encryption options ranging from dm-Crypt to the
more standard TrueCrypt and VeraCrypt. In fact, the process of detecting crypto
containers and recovering encryption keys is almost the same as in Windows. Therefore,
we will only discuss the main points.

Firstly, you can still use analysis of running processes to detect encryption containers
because if a crypto container was opened on the system, you will still find the
corresponding process in the list.

Second, for the most popular TrueCrypt solution, Volatility has a separate plugin to
recover the cached passphrase – linux_truecrypt_passphrase.

Third, you can always use the Bulk Extractor AES scanner to search for AES keys
potentially used for encryption. This will look the same as in case of Windows:

Figure 8.39 – AES keys search with Bulk Extractor

214 User Activity Reconstruction

The output is the same aes_keys file in which all AES keys extracted by Bulk Extractor
can be found:

Figure 8.40 – AES keys found

Knowing the crypto container running on the system and using AES, and its key length,
you can try to recover the master key from the available data.

Summary
User activity analysis plays an important role regardless of the operating system under
investigation, as it can reconstruct the context in which the incident occurred and reveal
important details about the actions taken by the user. On the other hand, Linux operating
systems are often used by attackers, so investigating user activity on such systems takes on
a special meaning.

Due to the way Linux systems are designed, investigating them is not as easy as it is with
Windows. Nevertheless, we can obtain data about running programs, documents opened,
devices connected, crypto containers used, and so on.

An important aid in analyzing user activity on Linux is the examination of process
memory, which is done in several steps. Despite the relative difficulty of extracting
mappings and their further processing, the process memory may contain valuable data –
visited links, conversations, publications, email addresses, filenames, and so on.

Thus, we have covered the general methods of analyzing user activity. Now it is time to
talk about something malicious. This is what we will talk about in the next chapter.

9
Malicious Activity

Detection
Under most circumstances, the main goal of a memory forensic investigation is to look
for malicious activity. According to recent TrendMicro (https://www.trendmicro.
com/vinfo/us/security/news/cybercrime-and-digital-threats/a-
look-at-linux-threats-risks-and-recommendations) and Group-IB
(https://www.group-ib.com/media/ransomware-empire-2021/,
https://blog.group-ib.com/blackmatter) research, attacks on Linux-
based systems are on the rise, and many threat actors have added specialized software
targeting Linux-based systems to their arsenal. For example, ransomware operators such
as BlackMatter, RansomExx, and Hive have added corresponding versions to their
arsenal. Furthermore, post-exploitation frameworks and individual scripts are also used
to attack Linux-based systems. At the same time, exploitation of vulnerabilities and the
use of security misconfigurations remain the most widespread initial access techniques,
especially when we are talking about web applications.

The main activity we are going to look at is almost the same – network connections,
injections into processes, and access to atypical resources. This is what we will try to
focus on, but this time we will try to break down different analysis techniques with
concrete examples.

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/a-look-at-linux-threats-risks-and-recommendations
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/a-look-at-linux-threats-risks-and-recommendations
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/a-look-at-linux-threats-risks-and-recommendations
https://www.group-ib.com/media/ransomware-empire-2021/
https://blog.group-ib.com/blackmatter

216 Malicious Activity Detection

In this chapter, we will discuss the following topics:

•	 Investigating network activity

•	 Analyzing malicious activity

•	 Examining kernel objects

Investigating network activity
Since most malware needs to communicate with a command-and-control server,
download additional modules, or send some data, the appearance of network connections
is unavoidable. However, before going on to investigate network connections, it would
be a good idea to find out which network interfaces were used on our host and how they
were configured. To do this, we can use the Volatility linux_ifconfig plugin, which
provides all the necessary information in the following way:

Figure 9.1 – Information about network interfaces

In the output, we can see that there are three interfaces used on the investigated host:

•	 lo – A loopback interface with the standard 127.0.0.1 IP address

•	 ens33 – A network interface with the 192.168.168.144 IP address

•	 ens38 – A network interface with the 192.168.3.133 IP address

We can now start investigating active network connections. For this purpose, Volatility
has the linux_netstat plugin, which can be run as follows:

Investigating network activity 217

Figure 9.2 – Volatility linux_netstat plugin

As you can see, in this case, we will also have quite an extensive output, and it won't only
be associated with the network connections we are directly interested in, so it is better to
redirect the output to a text file:

Figure 9.3 – Active network connections

218 Malicious Activity Detection

In this case, we see a connection established by the Firefox browser, as well as multiple
connections established by Postgres and Ruby. This activity can be observed in various
situations, one of which is the use of the Metasploit post-exploitation framework on the
attacker's host. Also note the connection to the 192.168.3.132 IP address, which was
set up using port 22, which is typical for SSH. It is likely that this was the victim's host,
which was connected through SSH.

Another way to check the network activity is to use Bulk Extractor, as it allows us to
extract leftover network traffic from memory dumps. In this case, we use the net scanner,
as shown here:

Figure 9.4 – Bulk Extractor net scanner

The output will contain the packets.pcap file, which is a dump of network
traffic. This file can be opened with Wireshark, one of the most widely used network
protocol analyzers. To get this tool, simply go to the official website (https://www.
wireshark.org/), click on the Download icon, and choose the installer version
suitable for your system.

After installation, you can run Wireshark and simply drag and drop the packets.pcap
file inside:

https://www.wireshark.org/
https://www.wireshark.org/

Investigating network activity 219

Figure 9.5 – Dump of the network traffic opened with Wireshark

Here, you can see the endpoints statistics and find out what IP addresses were connected
to. To do this, open the Statistics tab and search for Endpoints:

Figure 9.6 – Endpoints

220 Malicious Activity Detection

Similarly, you can see statistics on the protocols used:

Figure 9.7 – Protocol hierarchy

We can examine individual packets or try to extract transmitted objects, and it is also
possible to configure filters and check communication with individual IP addresses. In our
case, for example, you can check whether an SSH connection was actually established with
a specific IP address by using the simple ip.addr==192.168.3.133 && ssh filter:

Figure 9.8 – Wireshark filter for SSH

Investigating network activity 221

In the figure, we see a large number of packets passing between our IP and the
192.168.3.132 IP. Such communication will naturally attract our attention.

Here is another example of how analysis of network connections or network traffic from
the memory dump can be useful:

Figure 9.9 – Meterpreter activity

Here, we can see active use of port 4444. Remember in Chapter 5, Malware Detection and
Analysis with Windows Memory Forensics, when we talked about how some ports are used
by default by different software? This is exactly the case, and port 4444 is used by default
by the Meterpreter reverse shell. So, we can already tell from one traffic analysis that there
are processes on the examined host that are related to Meterpreter.

Let's look at one more example:

Figure 9.10 – Nginx activity

222 Malicious Activity Detection

In the output of linux_netstat, we can see that the investigated host is used as a web
server because on port 80, the nginx process is listening:

Figure 9.11 – SSH connections

In addition, we can see several SSH connections with different IP addresses. In this case,
we can conclude that one of those IP addresses could potentially be used by an attacker.

Since the output of the plugin contains information on the processes that initiated the
connections, naturally, sooner or later, we will get to investigating those processes.

In all these examples, we see traces of potentially malicious activity. Let's talk about how to
analyze this kind of activity.

Analyzing malicious activity
Let's take a closer look at the last example. We saw that we had several SSH connections.
We can analyze the processes that might be related to that. To do that, let's use the
linux_pstree plugin and add sshd process identifiers – 29897 and 23251:

Figure 9.12 – Volatility linux_pstree

Analyzing malicious activity 223

In Figure 9.12, we can see that the child processes of sshd are bash as well as sudo, which
means that elevated privileges were used. In this case, we can search the bash history as
well as dump and analyze the memory of these processes.

We start with the bash history. For this, we will use the linux_bash plugin:

Figure 9.13 – Bash history

Here, we can see that someone was working with MySQL and WordPress, and we can see
the interaction with the site-info.php file, as well as the nyan-cat.gif download
associated with the bash process with the 30112 PID.

We can check which user ran bash in this case. To do this, we will use the already known
linux_psenv Volatility plugin:

Figure 9.14 – Bash process's environment

224 Malicious Activity Detection

The output of this plugin allows us to determine that this activity was performed
within the SSH connection from the 192.168.110.40 IP address by the user admin.
We can search for information about this user. In the previous chapter, we already
mentioned that this information can be found in the /etc/passwd file, so let's use the
linux_recover_filesystem plugin and try to recover the filesystem from memory.
To do that, we will use the following command:

$ vol.py --plugins=profiles -f /mnt/hgfs/flash/ubuntu-server.
vmem --profile=Linuxubuntu-server_17_47_52-profilex64 linux_
recover_filesystem -D /mnt/hgfs/flash/recovered/

In our case, the restored filesystem will be placed in the recovered folder:

Figure 9.15 – Recovered folder content

As you can see in the figure, the /etc directory failed to recover; nevertheless, we have
/var/log where we can find the auth.log file:

Analyzing malicious activity 225

Figure 9.16 – Recovered auth.log file

This file logs all authentication attempts, and we can find the following:

Figure 9.17 – The content of auth.log file

226 Malicious Activity Detection

Note that from here we get the information that the admin user was created at the time
of the attack, and we also have a specific timestamp for its creation. After that, we can
also see several logins from this user and its use of root, on behalf of which our picture
was downloaded. We also see that the picture was uploaded to /var/www/wordpress.
Fortunately, the linux_recover_filesystem plugin was able to partially recover
this folder:

Figure 9.18 – Recovered WordPress folder

Here, we can see our picture. So, we need to find out what role it plays here and how
exactly the attacker gained access to the system.

Let's add the network traffic dump extracted from the memory dump to our investigation.
To extract the traffic, we run Bulk Extractor:

Figure 9.19 – Network traffic extraction

Now, we open the packets.pcap file in Wireshark. Examining the packets, you may
come across the following:

Analyzing malicious activity 227

Figure 9.20 – Wireshark packet analysis

We see a GET request with interesting parameters. As you can see, the user agent listed
here is WPScan v.3.8.7. This means that this request was made using the WPScan
tool, used to search for vulnerabilities in the content management system WordPress.
Similar information should be logged in the nginx access log. This log was also recovered
using linux_recover_filesystem and can be found in /var/log/nginx:

Figure 9.21 – Recovered access log

228 Malicious Activity Detection

In access.log, we can see a huge number of requests sent by WPScan from an IP
address we already know. If we go further, we can also see the following:

Figure 9.22 – Comment post

After the scan was completed, a POST request was sent with a comment; possibly, a
vulnerability related to comment sending was used for the initial access.

Continuing the analysis, we can try to extract objects transmitted during the network
session using Wireshark's Export Objects feature:

 Figure 9.23 – Objects export in Wireshark

Analyzing malicious activity 229

As you can see in the preceding figure, in our case several objects have been found that we
can try to extract. This includes some comments. Let's check them out:

Figure 9.24 – Exported comments

As we can see, one of the users left a comment on the blog with a link accessing the same
192.168.110.40 IP address. You can also see in the traffic dump that the same SSH
connections started to appear sometime after the attempt to open the link.

If we consider the situation from the point of view of WordPress, the comments sent by
users must be saved in the database. Accordingly, you can look for information about
them in the MySQL logs or in the memory of this process. From the list of processes, we
can say that our mysqld process related to mysql deamon has the identifier 29602:

Figure 9.25 – Process ID of mysqld

230 Malicious Activity Detection

Now, we can dump the mapping of this process with the linux_dump_map plugin:

Figure 9.26 – Volatility linux_dump_map

Now, it is the turn of the strings utility:

$ for file in /mnt/hgfs/flash/mysql/*; do strings "$file" >> /
mnt/hgfs/flash/mysql_strings.txt; done

We can now explore the strings output and look for information about our comments:

Figure 9.27 – Comments in the mysqld process memory

Bingo! Here, we can see not only the comment that was sent but also the actual payload
that was used. Now, we know for sure that the attackers used exploitation of vulnerabilities
for the initial access. That's one mystery solved.

In Figure 9.27, we can also note the interaction with the site-info.php file in the
footer. Since we managed to extract the WordPress folder along with the filesystem, let's
find this file:

Analyzing malicious activity 231

Figure 9.28 – WordPress-related files

The content of this file looks as follows:

Figure 9.29 – The content of the site-info.php file

Based on all the information obtained, we can conclude that after accessing the host, the
attacker changed the source code of the site so that now when users visit the compromised
resource, they will see a picture instead of a blog.

232 Malicious Activity Detection

Let's consider in a similar way the Meterpreter example we mentioned earlier. This
is an example worthy of special attention because this type of payload is most often
found on Linux-based systems involved in incidents. So, we have information that
some connections were made using port 4444. Let's try to find out which process the
Meterpreter is associated with. The most logical thing to do here would be to check the
network connections and look for connections to ports and addresses we know, and then
look for the process that established the connection. However, you may come across a
situation where there is no information about network connections or no information
about the exact connections you are looking for. In this case, you can use YARA rules with
the linux_yarascan plugin to try to find a process with our IP address in its memory.
Also, injections into processes are often related to Meterpreter, as attackers need to
somehow put the payload into memory. In this case, Volatility has the linux_malfind
plugin, which is an analog of the Windows plugin with the same name. Let's run it:

Figure 9.30 – Volatility linux_malfind

In the output of the plugin, we can find something similar. We have a rules_for_emplo
process, associated with the rules_for_employees file, which is located in the
it-sec user downloads. The inject found there starts with ELF, so we are dealing with
something executable.

Important Note
Executable and Linkable Format (ELF) is a binary file format used in many
modern UNIX-like operating systems, such as Ubuntu, FreeBSD, Linux, and
Solaris.

First of all, we can try to analyze the rules_for_emplo process. For this purpose, we can
extract the executable itself using the linux_procdump plugin:

Figure 9.31 – Executable extraction

Analyzing malicious activity 233

After extraction, we can either calculate the hash of the executable and check it in cyber
threat intelligence platforms or try to run the file in a controlled environment and find out
what it does. Of course, if you have reverse engineering skills or have a dedicated malware
analysis team, they are good options as well. Another way is to extract the memory of this
process with the linux_dump_map plugin:

Figure 9.32 – Process memory extraction

Then, we can use our script again to get readable strings:

for file in /mnt/hgfs/flash/rules_for_employees/*; do strings
"$file" >> /mnt/hgfs/flash/rules_strings.txt; done

The result will be the following:

Figure 9.33 – IP addresses in the rules_for_emplo process memory

In the strings extracted from the memory of our process, we can find the
192.168.168.144 IP address with which we saw many connections and the
tcp://192.168.168.153:4444 string. From that, we can conclude that
reverse_tcp was used.

234 Malicious Activity Detection

Let's look a little bit more into what happened after the rules_for_emplo process started.
We will use the linux_pstree plugin to get a list of active processes and display their
parent and child relationships:

Figure 9.34 – Child processes of rules_for_emplo

Here, we see the rules_for_emplo process, which spawns shells, including ones with
elevated privileges, Python and systemctl. Let's see how these processes were started. To
do this, we will use the linux_psaux plugin:

Figure 9.35 – Starting arguments of child processes

Analyzing malicious activity 235

Here, we see that Python was used to spawn a tty shell and get sudo. To understand
what was going on here, we can use the linux_bash plugin to see what commands
were executed:

Figure 9.36 – Bash history

From the output of this plugin, we can see that the attacker was trying to install a cron job
to get persistence, while systemctl was used to reload the cron service and check its status.
We can also notice that the /tmp directory was used as a working directory for creating
and storing temporary files. It would be nice to know what cron job was created in the
end. On Linux-based systems, such activity should be logged to /var/log/cron.log,
from which you can get information about the job that was created.

236 Malicious Activity Detection

By the way, if you are interested in resources used by a certain process, you can still use the
linux_lsof plugin. The point is that, in Linux philosophy, everything is a file. That is to
say, if the process used text files, sockets, or pipes, all of those things can be found in the
output of linux_lsof. For example, if we run linux_lsof for rules_for_emplo and all
the processes it spawns and redirect the output to a text file, we will see the following:

Figure 9.37 – Volatility linux_lsof output

Here, we see descriptors for the following resources:

•	 /dev/null is a special file, which is a so-called empty device. Writing to it is
successful, regardless of the amount of information, and reading is equivalent to
reading the end of the file.

•	 /dev/ptmx is a character file used to create a pseudo-terminal master and slave pair.

•	 /dev/pts is a special directory that is created dynamically by the Linux kernel. The
entries in /dev/pts correspond to pseudo-terminals (pseudo-TTYs or PTYs).

•	 /dev/tty stands for the controlling terminal for the current process.

Examining kernel objects 237

As you can see, in general, the initial malicious activity detection and analysis process
on Linux-based systems is not very different from that on Windows. We concentrate on
looking for suspicious connections, processes with weird names, atypical child processes
or behavior, and afterward, we untwist the chain based on our findings. However, there
are some peculiarities. For example, rootkits were previously often used in attacks
against Linux.

Historically, the term rootkit was used to refer to loadable kernel modules, which threat
actors install immediately after gaining root privileges. A rootkit allows them to gain
persistence in a compromised system and hide activities by hiding files, processes, and the
presence of the rootkit in the system itself. Despite the fact that rootkits are now almost
non-existent, we believe it is necessary to discuss the main analysis techniques that can
help you detect the manipulation of kernel objects and their associated interfaces.

Examining kernel objects
To begin with, rootkits are loaded kernel modules. Accordingly, we need methods to detect
loaded modules. For this case, Volatility has a couple of nice plugins: linux_lsmod, which
enumerates kernel modules, and linux_hidden_modules, which carves memory to find
hidden kernel modules.

The first plugin enumerates kernel modules by walking the global list stored within the
modules variable. The output looks as follows:

Figure 9.38 – List of loaded kernel modules

Here, we can see the names of the loaded modules and their size. Note that if you used
tools that require the kernel module to be loaded when dumping, the loaded module will
also be on this list. For example, in our case, in the first line, you can see the lime module.

238 Malicious Activity Detection

The linux_hidden_modules plugin scans memory for instances of a module
structure and then compares the results with the list of modules reported by linux_
lsmod. It looks like this:

Figure 9.39 – List of hidden kernel modules

As we can see, there are two hidden modules in our case. In order to analyze them, we can
try to extract them with the Volatility linux_moddump plugin. To do this, we have to
use the -b option to set the base address and the -D option to set the directory to save the
result. For example, if we want to try to extract the RG24XR24AR24 module, we will need
to run the following command:

$ vol.py --plugins=profiles -f /mnt/hgfs/flash/it-sec.
lime --profile=Linuxubuntu_it-secx64 linux_moddump -b
0xffffffffc0521970 -D /mnt/hgfs/flash/

Of course, rootkits will not always try to hide their module; instead, they may use
masquerading and try to look like legitimate modules. In this case, to find the rootkit, it is
possible to extract all modules found with linux_lsmod and compare them with their
legitimate counterparts.

Another important point is that rootkits often use hooking to perform their activities.

Important Note
Hooking is the process of modifying or augmenting the behavior of the
operating system, applications, or other software components by intercepting
function calls, messages, or events passed between those components.

There are many hooking techniques, but the most common are IDT and syscall hooks.

Examining kernel objects 239

Important Note
An Interrupt Descriptor Table (IDT) stores pointers to interrupt service
routines. When an interrupt occurs, the processor stops its activity and calls
the interrupt service routine, which handles the interrupt. Such interrupts can
be triggered by button presses, mouse movements, or other events.

Syscalls or system calls are calls from an application program to the operating
system kernel to perform some operation. The Linux kernel header file has a
syscall function that allows such calls to be made directly, and the Linux
system call table itself is part of that operating system's API.

Volatility provides the linux_check_idt and linux_check_syscall plugins to
detect IDT and syscall hooks.

Running the first plugin is as follows:

Figure 9.40 – IDT hooks

In our case, no IDT hooks were detected because we would have seen the word HOOKED
in the output.

The second plugin runs the same way:

Figure 9.41 – Syscall hooks

240 Malicious Activity Detection

Here, the situation is more interesting. We see a lot of system call hooks, but
unfortunately, there is no additional information about these hooks, so we will have to
analyze them manually.

Among other things, Volatility provides a few more plugins for analyzing other types
of hooks:

•	 linux_apihooks – Checks for userland apihooks

•	 linux_check_evt_arm – Checks the exception vector table to look for syscall
table hooking

•	 linux_check_inline_kernel – Checks for inline kernel hooks

•	 linux_check_tty – Checks the tty devices for hooks

In some situations, rootkits can also interact with different files. Volatility allows us to find
files that are opened from within the kernel with the linux_kernel_opened_files
plugin and to check file operation structures for rootkit modifications with the
linux_check_fop plugin.

This is how we can do an initial examination of kernel objects and search for rootkits.
But again, at the time of writing this book, rootkits are almost obsolete. They have been
replaced by the use of post-exploitation frameworks and dedicated malware.

Summary
The techniques used to detect and analyze malicious activity on Linux-based systems are
similar to those used on Windows operating systems. We concentrate on the investigation
of active network connections and various anomalies in the processes and their behavior.
However, analysis of such activity often comes down to examining network traffic dumps,
which can also be extracted from memory; investigating the memory of individual
processes; or examining the filesystem in memory. In most cases, it is these three elements
that allow us to find the necessary evidence and reconstruct the actions of the threat actors.

Undoubtedly, knowledge of the filesystem structure, the location, and the contents
of the major files play an important role in the investigation of Linux-based systems.
Thus, knowing what software is being used on the system under investigation, and
knowing where its logs and configuration files are stored, will allow you to easily find the
information you need and fill in the missing details of the incident.

This concludes our examination of Linux-based systems memory. Our last stop on this
difficult but fascinating journey will be devoted to macOS. We will discuss the process of
obtaining memory dumps from macOS and actually investigating them. So, we cannot
wait to see you in the next part.

Section 4 will focus on the important points of macOS memory acquisition and analysis.
In addition, ways to get the information needed to reconstruct user actions and detect
malicious activity will be discussed.

This section of the book comprises the following chapters:

•	 Chapter 10, MacOS Memory Acquisition

•	 Chapter 11, Malware Detection and Analysis with macOS Memory Forensics

Section 4:
macOS

Forensic Analysis

10
MacOS Memory

Acquisition
The last part of our book is devoted to an important topic – the memory investigation
of systems running macOS. In the international desktop operating system market,
macOS comes in at a deserved second. Despite the fact that Apple devices were originally
considered individual devices for personal use, more and more users adopt them for work
purposes every year. Recently, the use of macOS for work has reached a new level, with
this operating system beginning to be used enterprise-wide (although this practice is
currently more common in the United States). By 2021, Macintosh achieved a 23% share
in US enterprises: https://www.computerworld.com/article/3604601/
macs-reach-23-share-in-us-enterprises-idc-confirms.html.

https://www.computerworld.com/article/3604601/macs-reach-23-share-in-us-enterprises-idc-confirms.html
https://www.computerworld.com/article/3604601/macs-reach-23-share-in-us-enterprises-idc-confirms.html

244 MacOS Memory Acquisition

With the growing number of macOS users and adoption by enterprises, the interest from
threat actors in this operating system has also increased. The number of attacks on macOS
has grown significantly in recent years. New tools specializing in attacks on this operating
system have appeared, which means that the time has come to expand our arsenal with
techniques and tools for macOS investigation. But before we can analyze the data, we
need to collect it. That is why, as always, we begin with an overview of macOS memory
acquisition techniques.

The following topics will be covered:

•	 Understanding macOS memory acquisition issues

•	 Preparing for macOS memory acquisition

•	 Acquiring memory with osxpmem

•	 Creating a Volatility profile

Understanding macOS memory acquisition
issues
In the previous chapters, we discussed hardware and software methods of memory
extraction. In the case of OS X and macOS, these methods will also be relevant, but
there are a couple of extremely important things to consider. Let's start with the hardware-
based solutions.

Recall that hardware-based acquisition tools rely on direct memory access and use
technology such as FireWire or Thunderbolt. For now, almost every Macintosh offers
a FireWire or Thunderbolt port, and acquiring memory content in this case does not
require an administrator's password and unlocked computer. However, it obviously
cannot be that simple. First, this technology only permits the acquisition of the first 4 GB
of RAM, which will not be enough to thoroughly examine systems having more than 4 GB
of RAM. Second, since 2013, Intel Virtualization Technology (VT-d) for directed input/
output was enabled. This technology works as a remapper and effectively blocks Direct
Memory Access requests. Another issue is that if FileVault is enabled, OS X and newer
versions of macOS will automatically turn off Direct Memory Access when the computer
is locked. The result is that using software solutions remains a priority.

Preparing for macOS memory acquisition 245

Software acquisition tools, as with other operating systems, must be run from a user
interface on an unlocked system. However, there are not many of these tools for OS X
and macOS, especially those that work correctly on the latest versions of the operating
system. Prior to OS X version 10.6, physical memory was accessible through the /dev/
mem device file or through /dev/kmem, which points to the kernel's virtual address
space. If these device files were available, the dd utility could be used to read the contents
of memory through the device files. However, in recent versions of the operating system,
this method is no longer available, and specialized acquisition tools are required. Since
memory protection prevents a normal user from accessing memory directly, most
memory acquisition tools rely on loading the BSD kernel extension or simply kext,
which allows read-only access to physical memory. Once kext is loaded into the kernel,
physical memory can be read from the /dev/pmem/ device file. However, to load kext
into the kernel, administrator privileges and minor security configuration changes are
needed. Let's take a look at all the steps that need to be taken before running the tools.

Preparing for macOS memory acquisition
There are not many macOS memory acquisition tools, and they all support only certain
versions of the operating system. Therefore, before choosing and testing the right tool,
we need to find out the version of the operating system we plan to work with. To see the
macOS version installed, click the Apple menu icon in the top-left corner of your screen,
and then select About This Mac:

Figure 10.1 – About This Mac

246 MacOS Memory Acquisition

In the window that appears, you will see the version of the operating system; in our case, it
is macOS Big Sur version 11.6. Using the information about the OS version, you can find
tools that support memory dumping from this OS.

At the time of writing, the following tools are publicly available:

•	 osxpmem – supports 64-bit versions of OS X Mountain Lion (10.8), OS X Mavericks
(10.9), OS X Yosemite (10.10), OS X El Capitan (10.11), macOS Sierra (10.11),
macOS High Sierra (10.13), macOS Mojave (10.14), and macOS Catalina (10.15)

•	 MandiantMemoryzeforMac – supports Mac OS X Snow Leopard (10.6) 32/64-
bit, Mac OS X Lion (10.7) 32/64-bit, and OS X Mountain Lion (10.8) 64-bit

Although these tools cover a fairly wide range of OSes, they do not allow you to get
memory dumps of the latest macOS versions. In addition to these tools, there are
proprietary solutions, such as Cellebrite Digital Collector, SUMURI RECON ITR, or
Volexity Surge Collect, which try to update their products and add support for newer
versions of macOS. For example, SUMURI recently announced that RECON now
supports macOS Monterey, while Volexity added support for new Macintoshes on the M1
to Surge.

Important Note
Do not forget that to work with the target host, you need to prepare removable
media or a network share where you will put all the necessary tools and files, as
well as the resulting memory dump.

Once you have selected the appropriate tool, you can start testing it. To do this, you will
need a virtual machine with configurations similar to those of the target host. Unlike
Windows and Linux, macOS is not so easy to install as a guest system. The thing is to
create a macOS virtual machine; you will have to do a little trick with the configuration
files. Luckily, deployment guides are not too hard to find. Here, for example, is a pretty
good guide on how to deploy macOS virtual machines on Windows using VirtualBox
and VMware: https://www.makeuseof.com/tag/macos-windows-10-
virtual-machine/.

After creating the virtual machine, you can move on to testing the tools. Since macOS has
better protection against launching third-party files than Windows and Linux, we will
have to use some tricks, which we will go over later.

https://www.makeuseof.com/tag/macos-windows-10-virtual-machine/
https://www.makeuseof.com/tag/macos-windows-10-virtual-machine/

Acquiring memory with osxpmem 247

Acquiring memory with osxpmem
This time, we will look at just one tool for creating memory dumps – osxpmem. This tool
was chosen because it is freely distributed and supports the largest number of OS X and
macOS versions.

You can download this tool from the official GitHub repository: https://github.
com/Velocidex/c-aff4/releases. In the Releases tab, find the latest release
containing osxpmem. At the time of writing, this is Release 3.2:

Figure 10.2 – The latest release with osxpmem

Download the osxpmem archive and unzip it. Inside, you will find osxpmem.app, our
tool for creating memory dumps. This is a command-line tool and is run through the
terminal. First of all, we need to open the terminal and go to osxpmem.app. From this
location, we need to load kext with kextutil, which looks like this:

Figure 10.3 – MacPmem.kext loading

https://github.com/Velocidex/c-aff4/releases
https://github.com/Velocidex/c-aff4/releases

248 MacOS Memory Acquisition

The main difficulty in using tools such as osxpmem is macOS security policies. So, if we
try to run this tool without doing any extra steps, we first get a series of File owner/
permissions are incorrect errors and, secondly, a message saying that the
software has been blocked.

To solve the first problem, we need to change the owner and permissions of our files. To
do that, run the chown and chmod commands in the terminal. To check the changes
applied, you can use the ls -lah command, as shown next:

Figure 10.4 – Owner and permissions change

To solve the second problem, open Settings and go to Security & Privacy. Here, in the
General tab, we will see information about blocking our program:

Acquiring memory with osxpmem 249

Figure 10.5 – The Security & Privacy General tab

To unlock our program, we need to click on the lock at the bottom and agree to unlock it.

In addition, you may need to disable system integrity protection. To do this, run the
following command in the terminal:

csrutil disable

In newer versions – for example, in macOS Catalina – you may need to do more global
actions, as you can only disable system integrity protection in Recovery mode.

250 MacOS Memory Acquisition

Important Note
Naturally, when changing configurations in Recovery mode, we will need to
reboot the host, which means that most data will be lost. Nevertheless, in cases
where we are dealing with persistent malware or a reverse shell listening to a
certain port and waiting for attackers to connect, the analysis of the memory
dump obtained after a reboot can still give us useful information.

To disable system integrity protection, go to Recovery mode. To do this, reboot the system
and press command + R (if you are using a virtual machine and use Windows as a host
OS, press Win + R). This will put you in the correct mode. In the window that appears,
select Utilities and Terminal:

Figure 10.6 – Recovery mode

In the terminal, we need to run the command mentioned earlier:

Acquiring memory with osxpmem 251

Figure 10.7 – Disabling system integrity protection

As you can see, you have to reboot the system again to apply the changes successfully.
After the reboot, you can open the main terminal and load kext again. This should work
without errors.

After loading kext, you need to run a command that will collect the memory dump. The
command will look like this:

sudo osxpmem.app/osxpmem --format raw -o mem.raw

The --format option is used to specify the format of the memory dump, and the -o
option is needed to specify the path to the output file.

You will end up with a mem.raw file containing the raw memory dump. In our case,
performing the preceding steps looks like this:

Figure 10.8 – Memory acquisition

252 MacOS Memory Acquisition

If you run ls -lah, you will see the resulting file:

Figure 10.9 – The created memory dump

After that, you can unload the kernel extension using the following command:

$ sudo osxpmem.app/osxpmem -u

This way, we can get a memory dump, but this is only the beginning of the journey. To be
able to work with this file using Volatility, we need to create an appropriate profile. This is
what we will talk about in the next section.

Creating a Volatility profile
To create a macOS profile, we will need to install a few additional tools. First of all, we will
need the Brew package manager, which can be installed by following the instructions from
the official website: https://docs.brew.sh/Installation.

Basically, the only thing you need to do is to run the command located on the home page:

$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/HEAD/install.sh)"

The Brew manager is needed to install the dwarfdump that we already know, so once
brew is installed, feel free to run the following command in the terminal:

$ brew install dwarf

The last thing to download is KernelDebugKit. To do this, use this link: https://
developer.apple.com/download/all/?q=debug. Note that in order to gain
access, you will need an Apple ID, which you can create by clicking on the Create
yours now link. After entering your ID, you will see the Downloads page:

https://docs.brew.sh/Installation
https://developer.apple.com/download/all/?q=debug
https://developer.apple.com/download/all/?q=debug

Creating a Volatility profile 253

Figure 10.10 – Apple Developer Downloads page

On this page, you need to find the KDK that corresponds to the version of your OS. For
example, KDK 12.1 shown in the screenshot corresponds to the latest macOS Monterey.
After downloading the KDK, you need to install it. This can be done in a standard way. A
double-click will mount the file and open the installer, which will guide you through the
installation process.

You can verify that everything is installed by using the ls command, as after installation,
your version of the KDK should appear in /Library/Developer/KDKs.

If the KDK is there, you can start getting debug info from the kernel. To do this, we use
dwarfdump, which should get the following parameters:

•	 -arch: Architecture – we specify i386 for 32-bit systems and x86_64 for
64-bit systems

•	 -i: The path to the kernel.dSYM file, located in KDK

We also need to redirect the output to a file with the dwarfdump extension.

Thus, if we work with the 64-bit macOS Mojave, the command will look like this:

$ dwarfdump -arch x86_64 -i /Library/Developer/KDKs/
KDK_10.14.6_18G2016.kdk/System/Library/Kernels/kernel.dSYM >
10.14.6_x64.dwarfdump

254 MacOS Memory Acquisition

In our case, the preceding steps look like this:

Figure 10.11 – Getting the dwarf debug info from the kernel

As a result, we get the 10.14.6_x64.dwarfdump file, which we place in the dwarf
directory. Next, we will need Volatility. In the terminal, go to volatility/tools/mac
and execute the convert.py script, passing it the path to the created dwarfdump and
the path to the output file as arguments. In our case, the command will look like this:

$ python convert.py 10.14.6_x64.dwarfdump converted_10.14.6_
x64.dwarfdump

This will create a Linux-style output readable by Volatility. After that, we need to create the
types from the converted file:

$ python convert.py converted_10.14.6_x64.dwarfdump > 10.14.6_
x64.vtypes

Next, we need to generate symbol information using dsymutil:

$ dsymutil -s -arch x86_64 /Library/Developer/KDKs/
KDK_10.14.6_18G2016.kdk/System/Library/Kernels/kernel >
10.14.6_x64.symbol.dsymutil

Once again, we pass the information about the architecture used and the path to the
kernel file from the KDK as arguments. The output is redirected to a file with the
.dsymutil extension.

Our last step is to create a ZIP file of the .dsymutil and .vtypes files. For this
purpose, we can use the following command:

$ zip 10.14.6_x64.zip 10.14.6_x64.symbol.dsymutil 10.14.6_x64.
vtypes

Creating a Volatility profile 255

Finally, you will get your profile. To use the newly created profile, simply put it in the
volatility/plugins/overlays/mac directory.

Important Note
The convert.py script works fine with versions prior to High Sierra. With
newer versions, you may have some problems because the structure of dwarf
has changed slightly. To solve this problem, you will need to modify the
convert.py script.

Creating a macOS profile is not an easy task. However, if you need to analyze a version of
macOS up to and including High Sierra, you can use a ready-to-use profile from GitHub:
https://github.com/volatilityfoundation/profiles/tree/master/
Mac. In contrast, if you use proprietary solutions such as Volexity Surge Collect, you will
have profiles ready for even the newest versions of macOS. If your target host runs on
Intel, then profiles from Volexity can be used immediately for analysis with Volatility.
With the M1, the situation is a bit different. Since this is an ARM architecture chip, there
are additional arguments that should be passed in the Volatility command line. These
arguments are the Kernel Address Space Layout Randomization (KASLR) shift and the
Directory Table Base (DTB) address. The first one is for specifying the exact location of
the variables in the memory dump, and the second one is for address translation. At the
time of writing this book, the support for automatic extraction of these parameters for
ARM is not implemented. So, you need to specify these values manually. Fortunately, you
can find them in the meta.json file created by Surge Collect. In this case, when you run
Volatility, in addition to the standard options and profile, you also add the following:

•	 --shift – value, which corresponds to the KaslrSlide parameter in
meta.json

•	 --dtb – value, which corresponds to the dtb parameter in meta.json

Thus, running Volatility will look like this:

$./vol.py -f <path to memory dump> --profile=<profile>

--shift=< KaslrSlide value> --dtb=<dtb value> <plugin>

Another important point is that to analyze memory dumps taken from Macintoshes on
M1 in Volatility, you need ARM64 support. In this case, you can use the Volatility
fork: https://github.com/tsahee/volatility/tree/arm64.

https://github.com/volatilityfoundation/profiles/tree/master/
https://github.com/tsahee/volatility/tree/arm64

256 MacOS Memory Acquisition

Summary
Compared to the OSes discussed earlier, macOS is the most difficult to work with. Most of
the tools that support creating memory dumps on newer versions of macOS are paid, and
the freeware tools support dumping only for macOS versions up to Catalina.

A further difficulty is launching the tools themselves. Due to macOS security features, it
is necessary to change a number of settings in order to run programs from third-party
sources. This is especially true for tools that use kext loading.

Another difficulty is the creation of Volatility profiles for newer versions of macOS. This
is due to the fact that creating a profile requires converting a dwarf file into a format
recognized by Volatility, and the scripts provided by Volatility developers and found in the
official GitHub repository do not work with the latest versions of macOS.

Given all the difficulties that can be encountered when creating a macOS memory dump
in a form suitable for analysis, before starting this process, we recommend that you assess
the situation, consider the pros and cons, and weigh up the need to create a memory
dump very carefully.

In this chapter, we have covered the process of creating memory dumps on macOS
systems. The next topic to be covered is an equally fascinating one – examining the
obtained memory dumps.

11
Malware Detection

and Analysis with
macOS Memory

Forensics
Previously, attacks on macOS, as well as the development of specific malware for this
operating system, were single events and were often limited to trivial adware. In 2020–
2021, the main threat to macOS was still the adware Shlayer (https://redcanary.
com/threat-detection-report/threats/shlayer/), but we are increasingly
seeing targeted attacks with advanced threat actors behind them. A good example is
APT32 or OceanLotus, a Vietnamese-linked group, which targeted macOS users with
backdoors, delivered via malicious Microsoft Word documents.

The growing popularity of macOS in enterprise environments has triggered the
appearance of various macOS post-exploitation tools: MacShellSwift, MacC2, PoshC2,
and the Empire post-exploitation framework. Moreover, Malware-as-a-Service for
macOS (https://www.computerworld.com/article/3626431/scary-
malware-as-a-service-mac-attack-discovered.html) has already appeared
on darknet forums.

https://redcanary.com/threat-detection-report/threats/shlayer/
https://redcanary.com/threat-detection-report/threats/shlayer/
https://www.computerworld.com/article/3626431/scary-malware-as-a-service-mac-attack-discovered.html
https://www.computerworld.com/article/3626431/scary-malware-as-a-service-mac-attack-discovered.html

258 Malware Detection and Analysis with macOS Memory Forensics

Not surprisingly, new devices powered by M1 chips have not escaped the attention of
cyber criminals either. Thus, Red Canary specialists recently discovered a new malware,
Silver Sparrow, targeting Macs equipped with the new M1 processors (https://www.
macworld.co.uk/news/new-malware-m1-mac-3801981/).

All this news tells us one thing: we need to know the tools and understand macOS analysis
techniques. That is what this chapter will focus on.

Here are the topics that will be covered:

•	 Learning the peculiarities of macOS analysis with Volatility

•	 Investigating network connections

•	 Analyzing processes and process memory

•	 Recovering the filesystem

•	 Obtaining user application data

•	 Searching for malicious activity

Learning the peculiarities of macOS analysis
with Volatility
In the previous chapter, we talked about the difficulties you may encounter when creating
memory dumps and corresponding profiles for Volatility on macOS. However, that is not
all. As you remember, Volatility relies on the Kernel Debug Kit to create macOS profiles in
order to get all the data you need for parsing. This data is critical to the tool's performance
because the data structures and algorithms used change from one kernel version to the
next. At the same time, Apple no longer includes all the type information in the KDK,
which leads to errors in the execution of many plugins. Another problem is that some
Volatility plugins for macOS use Intel-specific data. Thus, plugins that work on memory
dumps pulled from hosts on Intel may not work with dumps pulled from hosts on M1.
Further on, we will use plugins that work for both Intel and M1 where it is possible, and
where it is impossible, we will try to specify all the nuances. Besides, since the analysis
methodology itself and searching for anomalies in macOS memory dumps will not differ
significantly from those in Windows and Linux, this time we will focus on discussing
tools and methods for obtaining certain information, rather than on the investigation
methodology itself.

https://www.macworld.co.uk/news/new-malware-m1-mac-3801981/
https://www.macworld.co.uk/news/new-malware-m1-mac-3801981/

Technical requirements 259

Technical requirements
To analyze macOS memory dumps, we will use both Linux and Windows systems. We will
still work with Volatility 2.6.1 running on Ubuntu 21.04 (Hirsute) and programs such as
Bulk Extractor will run on Windows. For the examples, we will use memory dumps from
macOS Sierra 10.12.6, however, all the described manipulations can be applied to newer
macOS versions as well.

Investigating network connections
Network activity analysis helps us determine which processes are establishing network
connections, as well as which IP addresses and ports are being used. Since most malware
and post-exploitation tools establish network connections, investigating network activity
is one of our top priorities. In the case of macOS, Volatility offers a number of plugins to
examine network interfaces, active network connections, and the contents of routing tables.

We can use the mac_ifconfig plugin to get information about the configuration of the
network interfaces of the host under investigation:

Figure 11.1 – Volatility mac_ifconfig output

As you can see in the figure, this plugin provides information about the names of
interfaces, their assigned IP and MAC addresses, as well as the set promiscuous mode.

Important Note
Promiscuous mode is a mode for a network interface controller that forces the
controller to pass all the incoming traffic to the CPU, rather than passing only
frames that the controller is programmed to receive.

In our case, we see the following interfaces:

•	 lo0 – Loopback Interface

•	 gif0 – Software Network Interface

260 Malware Detection and Analysis with macOS Memory Forensics

•	 stf0 – 6to4 Tunnel Interface

•	 en0 – Ethernet with IPv4 and IPv6 addresses

•	 utun0 – VPN and Back to My Mac Interface

You can use the mac_netstat and mac_network_conns plugins to get information
about network connections. The first plugin will show us information about both active
connections and open sockets:

Figure 11.2 – Volatility mac_netstat output

At the same time, mac_network_conns provides information only about
network connections:

Figure 11.3 – Volatility mac_network_conns output

In addition to network connection analysis, Volatility provides the possibility to study the
routing table. The mac_route plugin is suitable for this:

Figure 11.4 – Volatility mac_route output

Investigating network connections 261

In the output of this plugin, we can see source and destination IP addresses, the name
of the interface, and starting from OS X 10.7, we can also see sent/received statistics and
expiration/delta times.

Another way to inspect network activity is to use the Bulk Extractor tool and the well-
known net parser:

> .\bulk_extractor.exe -o .\output\ -x all -e net .\
MacSierra_10_12_6_16G23ax64

As a result, we get the packets.pcap file, which contains the network capture from the
memory dump. To analyze this file we can, as before, use Wireshark:

Figure 11.5 – Network capture analysis

In this way, we can get information about the network activity on macOS. A natural
complement to investigating the network is to look at active processes. This is what we will
talk about next.

262 Malware Detection and Analysis with macOS Memory Forensics

Analyzing processes and process memory
Processes can be analyzed both to look for anomalies and identify potentially malicious
processes, and to observe user activity. As before, Volatility provides a number of plugins
for obtaining data about processes and their memory. For example, the mac_pslist,
mac_pstree, and mac_tasks plugins can be used to get a list of processes. From a
practical point of view, mac_tasks is considered the most reliable source of information
on active processes. This plugin, unlike mac_pslist, enumerates tasks and searches for
the process objects instead of relying on a linked list of processes, which can be corrupted
during macOS memory acquisition. Nevertheless, during testing on the latest versions of
the operating system, the mac_pstree plugin turns out to be the most efficient, correctly
displaying results for macOS on both Intel and M1 chips.

The plugins are launched in the same way as for Windows and Linux:

Figure 11.6 – Volatility mac_pstree output

In addition to the list of processes themselves, we are of course also interested in the
arguments used to start these processes. To get this data, we can use the mac_psaux plugin:

Figure 11.7 – Volatility mac_psaux output

Analyzing processes and process memory 263

In the output of this plugin, you can find not only arguments but also full paths to
executable files. However, when working with memory dumps taken from macOS on an
M1 chip, this plugin can work incorrectly and cause errors.

In addition to the startup arguments of the processes, we should not forget about the
history of the command line. In this case, we can use the mac_bash plugin, which
retrieves commands executed in the shell, and the mac_bash_hash plugin, which
displays the command alias hash table. Another way to find such information is to
investigate the memory of the processes related to the Terminal application. We can
extract executables and process memory for analysis with the mac_procdump and
mac_memdump plugins respectively. However, at the moment, these plugins only correctly
extract data for memory dumps obtained from hosts with an Intel chip. Despite this, for
both Intel and M1 chips, we still have an opportunity to examine allocated memory blocks
in each process, their permissions, and the names of the mapped files. This can be done
with the mac_proc_maps plugin:

Figure 11.8 – Volatility mac_proc_maps output

As you can see in Figure 11.8, in the output of this plugin, we can find information about
the files used by the process as well as their full path on disk. If necessary, we can also
retrieve these memory blocks with the mac_dump_maps plugin. If we are interested in a
particular block, we can specify its start address with the -s option, as shown next:

Figure 11.9 – Volatility mac_dump_maps results

264 Malware Detection and Analysis with macOS Memory Forensics

As you can see, the contents of the first Siri process memory block have been successfully
extracted and can be analyzed separately by additional tools. This way, we can try to
extract executables, libraries, and other files. However, there is one more way of analyzing
and extracting process-related files. Let's discuss it.

Recovering the filesystem
The methods of dealing with the filesystem in macOS memory are also not unique. First
of all, we can examine the open file descriptors of a process using the mac_lsof plugin.
Its launch, as well as the output format, does not differ from the corresponding plugin
for Linux:

Figure 11.10 – Volatility mac_lsof output

As you see, here we can also use the -p option to identify a specific process and see the
files related to it. In addition, we can collect information about all the files stored in the
file cache. The mac_list_files plugin will help us with this:

Recovering the filesystem 265

Figure 11.11 – Volatility mac_list_files output

You can use the mac_recover_filesystem plugin to export files. Of course, Volatility
also has the mac_dump_file plugin, for exporting specific files, but at the moment, this
plugin shows poor results with the latest versions of macOS. The process for starting the
mac_recover_filesystem plugin also remains the same:

$ vol.py --plugins=profiles -f /mnt/hgfs/flash/
MacSierra_10_12_6_16G23ax64

--profile=MacSierra_10_12_6_16G23ax64 mac_recover_filesystem

-D /mnt/hgfs/flash/output/

The contents of the output folder in our case look like this:

Figure 11.12 – Volatility mac_recover_filesystem results

266 Malware Detection and Analysis with macOS Memory Forensics

This way, we can recover the main locations and various files from the cached filesystem.
Here, you can also find files related to a user's bash history:

Figure 11.13 – Recovered bash history files

The disadvantage of the plugin is that it currently does not work correctly on memory
dumps collected from hosts with an M1 chip. If you work with older versions of macOS,
you can also use the PhotoRec tool, which supports the HFS+ filesystem. This option is
available for versions before High Sierra, since the default filesystem for mac computers
using macOS 10.13 or later is APFS.

As you can see, exporting files from macOS memory is not an easy task, especially when
it comes to the latest versions of the operating system. Nevertheless, there are some
positive aspects. One of them is the ability to retrieve data from specific user applications
quite easily.

Obtaining user application data
By default, macOS users have access to built-in applications from Apple, such as Calendar,
Contacts, and Notes. Due to their quality and convenience, these applications have won
the love of users, as well as the interest of investigators. Volatility provides a set of ready-
to-use plugins allowing you to extract data from the above-mentioned applications. For
example, to retrieve events from Calendar.app, you can use the mac_calendar
plugin. To retrieve the contents of Notes messages, you can use mac_notesapp, and for
contacts from Contacts.app, you can use mac_contacts:

$ vol.py --plugins=profiles -f /mnt/hgfs/flash/
MacSierra_10_12_6_16G23ax64

--profile=MacSierra_10_12_6_16G23ax64 mac_contacts

Obtaining user application data 267

Volatility Foundation Volatility Framework 2.6.1

<edited>

AppleappleAppleapple Apple ?5E

Johnyphish Johny phish Johny

Once you have this data, you can use regular expressions or YARA rules with the
mac_yarascan plugin to try to find more information about the contact. For example,
the email address associated with the contact.

Since we are talking about user activity, we should not forget the more general plugins
that allow us to get data on what programs the user is running or what devices have been
connected. In the first case, we use those same plugins to analyze the running processes.
At the same time, if there is a need to associate a process with a specific user, we can use
the mac_list_sessions plugin, which enumerates sessions from the session hash
table. The way this plugin works is as follows:

Figure 11.14 – Volatility mac_list_sessions output

In this way, we get information about the process ID, its name, and the name of the
associated user.

268 Malware Detection and Analysis with macOS Memory Forensics

With connected devices, we can turn to the familiar mac_mount and mac_dmesg plugins:

Figure 11.15 – Volatility mac_mount and mac_dmesg plugins

As you can see in Figure 11.15, these plugins are full analogues to the Linux plugins of the
same name.

Another interesting plugin for retrieving user data is mac_keychaindump. As the name
implies, this plugin tries to recover possible keychain keys. Subsequently, if the recovery
is successful, you can try to use Chainbreaker2 (https://github.com/n0fate/
chainbreaker) and get the data on the name, account, password, as well as timestamps
for the creation and last modification of the record in the keychain. However, it is
important to keep in mind that at the time of writing the book, the last officially supported
version of macOS is Catalina.

Of course, we should not forget to analyze processes related to browsers, email agents,
and messengers, as they can contain a lot of useful data, including the URLs visited, email
addresses, and conversations. To get this data, we can analyze the memory of relevant
processes using the mac_memdump or mac_dump_maps plugins along with keyword,
regular expression, or YARA rules searches. On the other hand, we can use the Bulk
Extractor tool and the email parser to retrieve URLs and email addresses:

https://github.com/n0fate/chainbreaker
https://github.com/n0fate/chainbreaker

Obtaining user application data 269

Figure 11.16 – Bulk Extractor email parser

In the output folder, we are interested in two files – email_histogram.txt and
url_histogram.txt, which contain all the email addresses and URLs extracted from
the memory dump, respectively:

Figure 11.17 – Extracted URLs

This way, we can analyze different user data. Our last topic of discussion will be the
searching for and investigation of malicious activity.

270 Malware Detection and Analysis with macOS Memory Forensics

Searching for malicious activity
Searching for malicious activity in macOS basically boils down to the basic elements we
dealt with in the previous chapters: looking for suspicious network connections, looking for
anomalies in processes, looking for code injection, looking for traces of hooking techniques
used, and examining the commands executed in the shell. For example, Shlayer uses the
shell to download the payload using the curl utility and -f0L as one of the command-line
arguments, and to unpack a protected archive into a directory under /tmp using the unzip
command. At the same time, running scripts and commands in the shell can be used in
more sophisticated attacks when threat actors have direct access to the host.

To look for code injection, we can use the familiar mac_malfind plugin. However,
please note here that running the plugin on memory dumps taken from hosts on the M1
chip may cause execution errors:

Figure 11.18 – Volatility mac_malfind output

This method comes in handy for detecting injections made with ptrace or the
NSCreateObjectFileImageFromMemory API. Also, be prepared for a lot of false-
positive results, which will need to be double-checked.

Do not forget about the injection of malicious libraries into processes either. In this case,
the mac_proc_maps and mac_dyld_maps plugins can be useful. If the malicious
library tries to hide itself, the mac_ldrmodules plugin, which compares the output of
mac_proc_maps with the list of libraries obtained from libdl, can be used:

Figure 11.19 – Volatility mac_ldrmodules output

Searching for malicious activity 271

If necessary, you can also extract libraries of interest using the mac_librarydump
plugin, which extracts any executable from process memory.

One of the distinguishing features of malicious activity analysis in macOS is the search for
traces of persistence, because in this operating system the techniques used for persistence
will be different from those discussed earlier. The most common techniques used by threat
actors and malware are the following MITRE ATT&CK sub-techniques:

•	 T1547.011: Plist Modification

•	 T1547.007: Re-Opened Applications

•	 T1547.015: Login Items

•	 T1543.001: Launch Agent

•	 T1543.004: Launch Daemon

•	 T1546.004: Unix Shell Configuration Modification

•	 T1053.003: Cron

The first two sub-techniques can be used for both persistence and privilege escalation.
To do so, attackers can modify or add paths to executables, add command-line
arguments, and insert key/pair values to property list files (plist) in auto-run
locations. To find traces of these sub-techniques, you can analyze plist files in ~/
LaunchAgents and ~/Library/Application Support/com.apple.
backgroundtaskmanagementagent/backgrounditems.btm locations. Also do
not forget to check ~/Library/Preferences/com.apple.loginwindow.plist,
~/Library/Preferences/ByHost/com.apple.loginwindow.*.plist and
an application's Info.plist files. You can try to extract these files from the cached
filesystem or check on the host itself.

The Login Items, Launch Agent, and Launch Daemon sub-techniques use a similar
approach. You should check ~/Library/Application Support/com.apple.
backgroundtaskmanagementagent/backgrounditems.btm, ~/Library
/Preferences/com.apple.loginitems.plist, and the application's /Contents
/Library/Loginltems/ to find their traces. You should also check for new plist files
in /System/Library/LaunchAgents, /Library/LaunchAgents/, /Library
/LaunchDaemons/, and ~/Library/LaunchAgents/.

272 Malware Detection and Analysis with macOS Memory Forensics

The Unix Shell Configuration Modification sub-technique is associated with modifying
the files used when running the Terminal application. Terminal basically uses zsh, which
is the default shell for all macOS versions since macOS Catalina. Please note that, for
legacy programs, /etc/bashrc is executed on startup. As a result, we should check
/etc/profile and /etc/profile.d, along with ~/.bash_profile, to find traces
of this sub-technique. You can also check the /etc/shells file where the list of file
paths for valid shells is located.

The last sub-technique is similar to the one we saw in Chapter 9, Malicious Activity
Detection, so we will not go into it here in detail. However, it is worth mentioning that
the T1547.006: Kernel Modules and Extensions sub-technique, which involves loading
a malicious kext using the kextload command, was also popular for earlier versions
of macOS. However, since macOS Catalina, kernel extensions have been deprecated
on macOS systems. Nevertheless, Volatility provides plugins to explore loaded kernel
modules and extensions: mac_lsmod and mac_lsmod_kext_map:

Figure 11.20 – Volatility mac_lsmod output

You can also use the mac_moddump plugin to export the specified kernel extension to disk.
This sub-technique has often been used by rootkits to get persistence and escalate privileges.

In general, as with Linux rootkits, macOS rootkits are now extremely hard to come by.
However, even for this rare case, we have a number of plugins that allow us to detect the
different hooking techniques used by this type of malware:

•	 mac_apihooks – Checks for API hooks and allows you to detect inline hooking
along with the Hooking Relocation Tables.

•	 mac_check_sysctl – Lists all sysctl values and handlers. Since sysctl is an
interface that allows userland components to communicate with the kernel, it was
widely used by different rootkits. Sysctl hooks provide an opportunity to hide
rootkit data and create backdoors.

Summary 273

•	 mac_check_trap_table – Checks whether trap table entries are hooked. Trap
table was implemented to satisfy requests to the BSD layer of OS X and macOS.
Replacing trap table entries can be used for rootkit implementation, so it is also of
interest to threat actors and malware.

•	 mac_notifiers – Detects rootkits that add hooks into I/O Kit. I/O Kit is a set
of different tools and APIs that provides an opportunity to interact with hardware
devices and can be abused by rootkits.

•	 mac_trustedbsd – Lists malicious trustedbsd policies. The TrustedBSD
subsystem allows you to control access to system resources through policies that
determine which processes can access which resources. Often these policies are one
of the targets of rootkits.

By searching for anomalies and traces of manipulation of the aforementioned objects, we
can thus detect rootkits on macOS.

Summary
The process of analyzing macOS memory dumps itself is not very different from that of
Windows or Linux. However, there are a number of nuances to be considered.

First, Volatility profiles for the latest versions of macOS are hardly available, and at the
moment, the only more or less adequate way to get them is to use proprietary memory
dumping solutions, where profiles can be created automatically along with the dump.

Secondly, not all of the Volatility plugins that work fine on older versions of macOS show
good results on the latest versions of the operating system. In addition, the performance of
the plugins may depend on the architecture of the chip used on the target host from which
the dump was taken.

Third, the tools that we used for file recovery from Windows and Linux, such as PhotoRec,
will not be so helpful for macOS versions starting from macOS High Sierra, as they lack
APFS support.

Otherwise, the methods of analysis of memory dumps themselves remain the same. When
analyzing user activity, we tend to focus on running applications and the dynamic data
they contain, Apple applications such as Calendar or Contacts, data from the Keychain,
and mounted devices. To detect malicious activity, we focus on examining network
connections, looking for anomalies in processes, detecting injected code and libraries, and
detecting persistence techniques used.

Index

A
abnormal behavior

detecting 84-88
Acquire Volatile Memory for

Linux (AVML)
used, for acquiring memory 179, 180

acquisition tools and techniques
exploring 21-23
selecting 22

address space 12
American Standard Code for Information

Interchange (ASCII) 146
application programming

interface (API) 33

B
Belkasoft RAM Capturer

memory, acquiring with 36-39
BEViewer 55
BitLocker 70
blue screen of death (BSoD) 159
BlueScreenView tool

reference link 165
boot/login autostart execution 118-120
Brew package manager

reference link 252
browser history

checking 203-207
Chrome analysis, with yarascan 54, 55
Firefox analysis, with bulk

extractor 55-58
investigating 53
Tor analysis, with Strings 58-60

bulk extractor
about 55
download link 53
Firefox analysis with 55-58

C
cachedump 64, 65
Cellebrite Digital Collector 246
Chrome analysis

with yarascan 54, 55
Command and Control (C2) 94
command history 91-94
command-line arguments

analyzing 88
processes 89-91

communication application
email 60-62

276

examining 60
instant messengers 62, 63
investigating 207-209

convert.py script 255
crash dump

analyzing 155-163
creating 158
process dump analysis 167-170
process dump, creating 160-163
system crash dump 163-166
system crash, simulating 159

Crimson.USBWorm 22
crypto containers

detecting 67-70, 213, 214

D
data preservation 8
device memory 28
Direct Memory Access (DMA) 22
Directory Table Base (DTB) 255
documents

in process memory 50-52
Dokany 72
Dynamic-link Libraries (DLLs)

about 101, 153
reflective DLL injections 105-107
remote DLL injections 101-105

E
email 60-62
empty device 236
Executable and Linkable

Format (ELF) 232

F
filesystem

recovering 195-203, 264-266
filesystem-based timelines 127, 128
Filesystem Hierarchy Standard (FHS) 197
Firefox analysis

with bulk extractor 55-58
FireWire 22
Forensic Toolkit Imager (FTK Imager)

about 134
memory, acquiring with 30-33

full memory acquisition
versus partial memory acquisition 18-20

G
GNU Debugger (GDB) 19

H
handle 46
hashdump 64
heap 14, 15
hiberfil.sys

analyzing 139-142
hibernation file

acquiring 134-139
investigating 134

HTTPS reverse shell 146

I
incident response (IR) 158
injections

detecting, in process memory 101
Dynamic-link Libraries (DLLs) 101
portable executable injections 108-112

 277

Process Doppelgänging 114-117
process hollowing 112-114

input and output (I/O) files 140
InstallShield Wizard 30
instant messengers 62, 63
Intel Virtualization Technology

(Intel VT) 244
Internet Assigned Numbers

Authority (IANA) 100
Internet Protocol (IP) 149
Interrupt Descriptor Table (IDT) 239

K
Kernel Address Space Layout

Randomization (KASLR) 255
KernelDebugKit

download link 252
kernel objects

examining 237-240

L
launched applications

active processes, searching 45, 46
analyzing 42
finished processes, searching 46-48
profile identification 44, 45
Volatility 43, 44

launched programs
 investigating 188-192

Linux
 live memory analysis 18

Linux memory acquisition
issues 174
preparing for 175, 176

Linux Memory Extractor (LiME)
used, for acquiring memory 176-178

live memory analysis
about 15
on Linux 18
on macOS 18
performing, on Windows 16, 17

loadable kernel modules 237
Local Security Authority (LSA) 65
lsadump 65

M
macOS

about 244
live memory analysis 18

macOS analysis
with Volatility 258

macOS memory acquisition
issues 244
operating system version,

selecting 245, 246
macOS virtual machines, on Windows

reference link 246
Magnet Forensics 39
Magnet RAM Capture

memory, acquiring with 39
malfind plugin

options 106
malicious activity

analyzing 222-237
searching for 270

malicious processes
abnormal behavior, detecting 84-88
process names 82, 83
traces, searching 82

malware
hooking techniques 272, 273

Master File Table ($MFT) 127

278

memory
acquiring, with Acquire Volatile

Memory for Linux (AVML) 179, 180
acquiring, with Belkasoft

RAM Capturer 36-39
acquiring, with FTK imager 30-33
acquiring, with Linux Memory

Extractor (LiME) 176-178
acquiring, with Magnet

RAM Capture 39
acquiring, with osxpmem 247-252
acquiring, with WinPmem 33-36

memory-based timelines 129, 130
memory forensics

benefits 4, 5
challenges, discovering 8
living off the land 6
post-exploitation frameworks 5
privacy keeper 6

memory forensics, challenges
critical systems 9
instability 9
tools 9

memory forensics, investigation
goals and methodology

about 7
suspect's device 8
victim's device 7, 8

memory management concepts
about 11
address space 12
heap 14, 15
paging 13, 14
shared memory 14
stack 14, 15
virtual memory 12

MemProcFS
about 72

installing 72-74
MITRE ATT&CK

sub-techniques 271, 272
mounted devices 209-212

N
network activity

investigating 216-222
network connections

investigating 259-261
examining 95
IP addresses 98-101
ports 98-101
processes 96-98

New Technology File System (NTFS) 152
NotMyFault tool

about 158
reference link 158

O
oletools 85
olevba 85
opened documents

searching 49
OS X 244
osxpmem

used, for acquiring memory 247-252

P
pagefiles

acquiring 142-144
examining 142

pagefile.sys
analyzing 144, 145

 279

file carving 150-154
string search 146-150

paging 13, 14
Page table entry (PTE) 33
partial memory acquisition

versus full memory acquisition 18-20
Passware Kit Forensic

reference link 70
Peripheral Component

Interconnect (PCI) 28
persistence

evidence 117
persistence techniques

accounts, creating 120-123
boot/login autostart execution 118-120
scheduled tasks 125, 126
system processes, creating 123-125
system processes, modifying 123-125

PGP 70
PhotoRec

about 266
reference link 150

plaintext passwords 66
Portable Document Format (PDF) 150
portable executable injections

about 108-112
step-by-step algorithm 108

post-exploitation frameworks 5
Postgres 218
PowerShell 17
Process Doppelgänging

about 114-117
algorithm 114

Process Environment Block (PEB) 112
processes

analyzing 262, 263

Process Hacker
about 16
reference link 161

process hollowing
about 112-114
algorithm of actions 112

Process ID (PID) 50, 162
process memory

analyzing 262, 263
injections, detecting 101

profile identification 44, 45
pseudo-TTYs 236
PsExec 65, 90
pslist plugin 82
PTYs 236
Python

download link 72
Python scripts 43

R
random access memory

(RAM) 4, 11, 28, 134
reflective DLL injection

about 105-107
step-by-step algorithm 105

regular expressions (regexes) 147
Rekall Framework 33
remapper 244
remote DLL injections

about 101-105
lists, storing information 102

REpresentational State Transfer
(REST) 166

rootkit 237
Ruby 218

280

S
scheduled tasks

about 125, 126
information, storing location 125

shared memory 14
Shathak 85
Shlayer 270
stack 14, 15
stack frame data 15
Strings

reference link 53
Tor analysis with 58-60

Structured Query Language (SQL) 149
SUMURI RECON ITR 246
swapfiles

examining 142
syscalls/system calls 239
Sysinternals 58, 158

T
TA551 85
timelines

approaches 127
creating 126
filesystem-based timelines 127, 128
memory-based timelines 129, 130

Tor analysis
with Strings 58-60

TrueCrypt
about 68
plugins 68

U
Uniform Resource Locators (URLs) 148
USBCulprit 22

USBferry 22
user application data

obtaining 266-269
user passwords, recovery

about 64
cachedump 64, 65
hashdump 64
lsadump 65
plaintext passwords 66, 67

V
Virtual Address Descriptor (VAD) 113
virtual address space 12
VirtualBox 175
virtualization 28
virtual memory 12
virtual registry 71, 72
Virtual Secure Mode (VSM) 28
VirusTotal

reference link 97
VMWare 175
Volatility

using, in macOS analysis 258
Volatility 2.6

download link 43
Volatility framework 32, 43
Volatility, options

Python scripts 43
Volatility Standalone 43
Volatility Workbench 43

Volatility profile
creating 181-185, 252-255

Volatility Workbench
about 43
reference link 43

Volexity Surge Collect 246

 281

W
Windows

live memory analysis, performing 16, 17
Windows command shell 17
Windows Debugger (WinDbg) 19, 158
Windows error reporting (WER) 158
Windows Management

Instrumentation (WMI) 17
Windows memory-acquisition

issues 28, 29
preparing for 29

Windows Registry
investigating 70
MemProcFS, installing 72-74
virtual registry 71, 72
working with 74-79

WinPmem
memory, acquiring with 33-36

Wireshark
about 218, 261
URL 218

Y
yarascan

about 54
Chrome analysis with 54, 55

Yet Another Recursive Acronym (YARA)
about 54, 147
reference link 54

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

284 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn Computer Forensics

William Oettinger

ISBN: 9781838648176

•	 Understand investigative processes, the rules of evidence, and ethical guidelines

•	 Recognize and document different types of computer hardware

•	 Understand the boot process covering BIOS, UEFI, and the boot sequence

•	 Validate forensic hardware and software

•	 Discover the locations of common Windows artifacts

•	 Document your findings using technically correct terminology

https://www.packtpub.com/product/learn-computer-forensics/9781838648176

Other Books You May Enjoy 285

Malware Analysis Techniques

Dylan Barker

ISBN: 9781839212277

•	 Discover how to maintain a safe analysis environment for malware samples

•	 Get to grips with static and dynamic analysis techniques for collecting IOCs

•	 Reverse-engineer and debug malware to understand its purpose

•	 Develop a well-polished workflow for malware analysis

•	 Understand when and where to implement automation to react quickly to threats

•	 Perform malware analysis tasks such as code analysis and API inspection

https://www.packtpub.com/product/malware-analysis-techniques/9781839212277

286

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share your thoughts
Now you've finished Practical Memory Forensics, we'd love to hear your thoughts! If
you purchased the book from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a review on the site that you
purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/ 1-801-07033-4
https://packt.link/r/ 1-801-07033-4

	Cover
	Title Page
	Copyright
	Dedication
	Contributors
	Table of Contents
	Preface
	Section 1:
Basics of
Memory Forensics
	Chapter 1: Why Memory Forensics?
	Understanding the main benefits of memory forensics
	No trace is left behind
	Privacy keeper

	Learning about the investigation goals and methodology
	The victim's device
	The suspect's device

	Discovering the challenges of memory forensics
	Tools
	Critical systems
	Instability

	Summary

	Chapter 2: Acquisition Process
	Introducing memory management concepts
	Address space
	Virtual memory
	Paging
	Shared memory
	Stack and heap

	What's live memory analysis?
	Windows
	Linux and macOS

	Understanding partial versus full memory acquisition
	Exploring popular acquisition tools and techniques
	Virtual or physical
	Local or remote
	How to choose
	It's time

	Summary

	Section 2:
Windows
Forensic Analysis
	Chapter 3: Windows Memory Acquisition
	Understanding Windows memory-acquisition issues
	Preparing for Windows memory acquisition
	Acquiring memory with FTK imager
	Acquiring memory with WinPmem
	Acquiring memory with Belkasoft RAM Capturer
	Acquiring memory with Magnet RAM Capture
	Summary

	Chapter 4: Reconstructing User Activity with Windows Memory Forensics
	Technical requirements
	Analyzing launched applications
	Introducing Volatility
	Profile identification
	Searching for active processes
	Searching for finished processes

	Searching for opened documents
	Documents in process memory

	Investigating browser history
	Chrome analysis with yarascan
	Firefox analysis with bulk extractor
	Tor analysis with Strings

	Examining communication applications
	Email, email, email
	Instant messengers

	Recovering user passwords
	Hashdump
	Cachedump
	Lsadump
	Plaintext passwords

	Detecting crypto containers
	Investigating Windows Registry
	Virtual registry
	Installing MemProcFS
	Working with Windows Registry

	Summary

	Chapter 5: Malware Detection and Analysis with Windows Memory Forensics
	Searching for malicious processes
	Process names
	Detecting abnormal behavior

	Analyzing command-line arguments
	Command line arguments of the processes
	Command history

	Examining network connections
	Process – initiator
	IP addresses and ports

	Detecting injections in process memory
	Dynamic-link library injections
	Portable executable injections
	Process Hollowing
	Process Doppelgänging

	Looking for evidence of persistence
	Boot or Logon Autostart Execution
	Create Account
	Create or Modify System Process
	Scheduled task

	Creating timelines
	Filesystem-based timelines
	Memory-based timelines

	Summary

	Chapter 6: Alternative Sources of Volatile Memory
	Investigating hibernation files
	Acquiring a hibernation file
	Analyzing hiberfil.sys

	Examining pagefiles and swapfiles
	Acquiring pagefiles
	Analyzing pagefile.sys

	Analyzing crash dumps
	Crash dump creation
	Analyzing crash dumps

	Summary

	Section 3:
Linux
Forensic Analysis
	Chapter 7: Linux Memory Acquisition
	Understanding Linux memory acquisition issues
	Preparing for Linux memory acquisition
	Acquiring memory with LiME
	Acquiring memory with AVML
	Creating a Volatility profile
	Summary

	Chapter 8: User Activity Reconstruction
	Technical requirements
	Investigating launched programs
	Analyzing Bash history
	Searching for opened documents
	Recovering the filesystem
	Checking browsing history
	Investigating communication applications
	Looking for mounted devices
	Detecting crypto containers
	Summary

	Chapter 9: Malicious Activity Detection
	Investigating network activity
	Analyzing malicious activity
	Examining kernel objects
	Summary

	Section 4:
macOS
Forensic Analysis
	Chapter 10: MacOS Memory Acquisition
	Understanding macOS memory acquisition issues
	Preparing for macOS memory acquisition
	Acquiring memory with osxpmem
	Creating a Volatility profile
	Summary

	Chapter 11: Malware Detection and Analysis with macOS Memory Forensics
	Learning the peculiarities of macOS analysis
with Volatility
	Technical requirements
	Investigating network connections
	Analyzing processes and process memory
	Recovering the filesystem
	Obtaining user application data
	Searching for malicious activity
	Summary

	Index
	About Packt
	Other Books You May Enjoy

